
M78K-3

IAR Embedded Workbench®
Migration Guide

for NEC Electronics’
78K0 and 78K0S Microcontroller Subfamilies

M78K-3

COPYRIGHT NOTICE
© Copyright 1997–2009 IAR Systems AB.

No part of this document may be reproduced without the prior written consent of IAR
Systems AB. The software described in this document is furnished under a license and
may only be used or copied in accordance with the terms of such a license.

DISCLAIMER
The information in this document is subject to change without notice and does not
represent a commitment on any part of IAR Systems. While the information contained
herein is assumed to be accurate, IAR Systems assumes no responsibility for any errors
or omissions.

In no event shall IAR Systems, its employees, its contractors, or the authors of this
document be liable for special, direct, indirect, or consequential damage, losses, costs,
charges, claims, demands, claim for lost profits, fees, or expenses of any nature or kind.

TRADEMARKS
IAR Systems, IAR Embedded Workbench, C-SPY, visualSTATE, From Idea To Target,
IAR KickStart Kit, IAR PowerPac, IAR YellowSuite, IAR Advanced Development Kit,
IAR, and the IAR Systems logotype are trademarks or registered trademarks owned by
IAR Systems AB. J-Link is a trademark licensed to IAR Systems AB.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

All other product names are trademarks or registered trademarks of their respective
owners.

EDITION NOTICE

Third edition: May 2009

Part number: M78K-3

This guide applies to version 4.x of IAR Embedded Workbench® for 78K.

Internal reference: ISUD.

Contents
Migrating from earlier versions of IAR Embedded Workbench 1

Key advantages .. 1

The migration process ... 2

Project file and project setup .. 2

C source code and compiler considerations 3

Assembler considerations ... 4

Runtime library, runtime environment, and object file
considerations .. 4

Compiling and linking with the DLIB runtime library 4

Program entry ... 5

System initialization—Cstartup ... 6

Migrating from CLIB to DLIB .. 6

Device-specific header files ... 6

Calling convention ... 7

Object file considerations ... 7

Compiler options .. 8

Migrating project options ... 8

Filenames ... 11

List files .. 12

Extended keywords .. 12

SFR ... 13

Bit variables ... 13

Storage modifiers ... 14

Interrupt functions and vectors .. 15

Absolute located variables ... 16

Pragma directives ... 16

Intrinsic functions ... 18

Segments .. 19

Linker command file considerations .. 20

Other changes .. 24

Object file format ... 24
M78K-3

iii

iv
Predefined symbols .. 24

Nested comments ... 24

Sizeof in preprocessor directives ... 25

Migrating from the NEC tools ... 27

Migration help .. 27

Device-specific header files ... 27

System startup and exit code .. 28

Interrupt functions in C .. 28

Interrupt functions in assembler ... 28

Pragma directives ... 29

Keywords ... 30

Intrinsic functions .. 31

Specifying segments in assembler ... 31

Calling convention ... 33

Assembler directives .. 35

Operand identifiers ... 42

Integer constants .. 42

Special characters ... 43
M78K-3

IAR Embedded Workbench®
Migration Guide

Migrating from earlier
versions of IAR Embedded
Workbench
This guide gives hints for porting your application code and projects to the
78K IAR Embedded Workbench IDE version 4.x.

This guide presents the major differences between the 78K IAR Embedded
Workbench version 3.x and the 78K IAR Embedded Workbench version 4.x,
and describes the migration considerations.

C source code that was originally written for the IAR 78000 C Compiler
version 3.x can be used also with the new 78K IAR C/C++ Compiler version
4.x. However, some modifications may be required.

Key advantages
This section lists the major differences between the IAR 78000 C Compiler version 3.x
and the 78K IAR C/C++ Compiler version 4.x. Hereafter, the two compiler versions are
referred to as version 3.x and version 4.x, respectively.

● The most obvious difference is that support for C++ has become available.
● Moreover, 4.x adheres more strictly to the ISO/ANSI C standard; for example, it is

possible to use pragma directives instead of extended keywords for defining special
function registers (SFRs).

● The checking of data types adheres more strictly to the ISO/ANSI C standard,
compared to version 3.x. This helps you to identify and correct problems in the
code, which improves the quality of the object code.

● Efficient window management through dockable windows optionally organized in
tab groups.

● Source browser with a catalog of functions, classes, variables, et cetera, for a quick
navigation to symbol definitions.

● Template projects to get a project that links and runs out of the box for a smooth
development start up.

● Batch build with ordered lists of configurations to build.
● Improved context-sensitive help with reference information for windows, dialog

boxes, and C/C++ DLIB library functions.
M78K-3

1

2

The migration process
● Easy configuration of the C/C++ libraries.
● Smart display of STL containers at debugging
● Auto-display debugger watch window
● A broad range of small feature enhancements to improve the look and feel.

Note: It is important to be aware of the fact that code written for version 3.x may
generate warnings or errors in version 4.x.

The migration process
In short, to migrate to version 4.x, consider the following:

● The project file and project setup
● C source code and compiler considerations
● Assembler considerations
● Runtime environment, runtime library, and object file considerations.

To migrate your old project, follow the described migration process. Note that not all
items in the described migration process may be relevant for your project. Consider
carefully what actions are needed in your case.

Project file and project setup
If you are using the IAR Embedded Workbench IDE, follow these steps to verify that
your project file has been properly converted:

1 Start your new version of the 78K IAR Embedded Workbench and create a new
workspace by choosing File>New and then Workspace.

2 Choose Project>Add Existing Project to insert your old project into the workspace.
This step will create two new project files with the same name as the old file, but with
the extensions ewp and ewd. The ewp file contains all settings required to build the
application, while the ewd file contains all settings related to the debugger. The old
project file will remain untouched.

3 It is strongly recommended that you verify that your options have been setup correctly.

To generate a text file with the command line equivalents of the project options in your
old project, see Migrating project options, page 8.

Also, set any new options.

4 If you have your own linker command file, compare this file with the original file in the
old installation and make the required changes in a copy of the corresponding file in
the new installation. For information about changes related to segments, see Segments,
page 19.
M78K-3

IAR Embedded Workbench®
Migration Guide

Migrating from earlier versions of IAR Embedded Workbench
C source code and compiler considerations
In short, the process of migrating from version 3.x to version 4.x involves the following
steps:

1 Replace or modify extended keywords according to the description in the section
Extended keywords, page 12. The include file for the old intrinsic functions, in78k.h,
defines some of the old extended keywords and can be used if you want to keep the old
syntax. However, the syntax of the keywords for interrupts must be migrated.

2 Replace or modify pragma directives according to the section Pragma directives, page
16.

3 Make sure not to use nested comments in your source code. In version 4.x, nested
comments are never allowed. For more information, see Nested comments, page 24.

4 The new compiler uses a different C parser and a large number of new optimizations
have been added. Depending on your old source code, this might require you to modify
your source code. One example of this is a simple delay loop, such as:

i = 50000;
do {i--;}
while (i-- != 0);

This code will be removed by the optimizer, unless you declare the variable i as
volatile.

In order to produce more efficient code, the compiler performs transformations like, for
example, removing redundant calculations, replacing division by shift and removing
useless calculations. Code that the compiler considers as not useful is removed and this
may cause unexpected effects as in this example.

5 Replace or modify intrinsic functions according to the section Intrinsic functions, page
18.

6 Version 4.x will by default not accept preprocessor expressions containing any of the
following:

● Floating-point expressions
● Basic type names and sizeof
● All symbol names (including typedefs and variables).

With the option --migration_preprocessor_extensions, version 4.x will accept
such non-standard expressions. For details about this option, see the IAR C/C++
Compilers Reference Guide for 78K.
M78K-3

3

4

Assembler considerations
Assembler considerations
● If your application is written partly in assembler and partly in C, and if you have

used any of the memory segments specific to version 3.x in assembler source code,
you must replace all old segment names with new segment names. For further
details, see the section Segments, page 19.

● The old assembler environment variables have changed:

● If your application is written entirely in assembler, you should not include a library
in your application. To exclude the library from the build, choose Project>Options,
select the General Options category and click the Library Configuration tab.
Select None from the Library drop-down list.

● The RSEG directive is no longer allowed in MACRO definitions, because it causes
calculations of relative jump distances to become incorrect.

Runtime library, runtime environment, and object file considerations
In version 4.x, two sets of runtime libraries are provided—the IAR DLIB Library and
the IAR CLIB Library. CLIB corresponds to the runtime library provided with version
3.x, and it can be used in the same way as before.

For information about how to migrate from the CLIB library to the DLIB library, see
Migrating from CLIB to DLIB, page 6. For more information about the two libraries, and
the runtime environment they provide see the IAR C/C++ Compilers Reference Guide
for 78K.

To build code produced by version 4.x of the compiler, you must use the runtime
environment components it provides. For information about how to link object code
produced using version 4.x with components provided with version 3.x, see Object file
considerations, page 7.

COMPILING AND LINKING WITH THE DLIB RUNTIME
LIBRARY

In earlier versions, the choice of runtime library did not have any impact on the
compilation. In 78K IAR Embedded Workbench version 4.x, this has changed. Now you
can configure the runtime library to contain the features that are needed by your
application.

Version 3.x assembler Version 4.x assembler

ASM_78000 ASM_78K

A78000_INC A78K_INC
M78K-3

IAR Embedded Workbench®
Migration Guide

Migrating from earlier versions of IAR Embedded Workbench
One example is input and output. An application may use the fprintf function for
terminal I/O (stdout), but the application does not use file I/O functionality on file
descriptors associated with the files. In this case the library can be configured so that
code related to file I/O is removed but still provides terminal I/O functionality.

This configuration involves the library header files, for example stdio.h. This means
that when you build your application, the same header file setup must be used as when
the library was built. The library setup is specified in a library configuration file, which
is a header file that defines the library functionality.

When building an application using the IAR Embedded Workbench, there are three
library configuration alternatives to choose between: Normal, Full, and Custom.
Normal and Full are prebuilt library configurations delivered with the product, where
Normal should be used in the above example with file I/O. Custom is used for custom
built libraries. Note that the choice of the library configuration file is handled
automatically.

When building an application from the command line, you must use the same library
configuration file as when the library was built. For the prebuilt libraries (r26) there is
a corresponding library configuration file (h), which has the same name as the library.
The files are located in the 78k\lib directory. The command lines for specifying the
library configuration file and library object file could look like this:

icc78k -D_DLIB_CONFIG_FILE=C:\...\78k\lib\dlib\dl78ksln.h
xlink dl78ksln.r26

In case you intend to build your own library version, use the default library configuration
file dl78kCustom.h.

To take advantage of the features it is recommended that you read about the runtime
environment in the IAR C/C++ Compilers Reference Guide for 78K.

PROGRAM ENTRY

By default, the linker includes all root declared segment parts in program modules
when building an application. However, there is a new mechanism that affects the load
procedure.

There is a new linker option Entry label (-s) to specify a start label. By specifying the
start label, the linker will look in all modules for a matching start label, and start loading
from that point. Like before, any program modules containing a root segment part will
also be loaded.

In version 4.x, the default program entry label in cstartup.s26 is
__program_start, which means the linker will start loading from there. The
advantage of this new behavior is that it is much easier to override cstartup.s26.
M78K-3

5

6

Runtime library, runtime environment, and object file considerations
If you build your application in the IAR Embedded Workbench, just add your
customized cstartup file to your project. It will then be used instead of the cstartup
module in the library. It is also possible to switch startup files just by overriding the
name of the program entry point.

If you build your application from the command line, the -s option must be explicitly
specified when linking a C/C++ application. If you link without the option, the resulting
output executable will be empty because no modules will be referred to.

SYSTEM INITIALIZATION—CSTARTUP

The content of the cstartup.s26 file has been split up into two files:

cstartup.s26, cexit_clib.s26 (for CLIB), cexit_dlib.s26 (for DLIB)

Now, the cstartup.s26 file contains exception vectors and initial startup code to setup
stacks and it initializes data segments and executes C++ constructors. Note that only the
cstartup.s26 file might require any modifications.

The cexit.s26 file contains termination code, for example, execution of C++
destructors.

For old applications that used a modified copy of cstartup.s26, you must make a
copy of the supplied new cstartup file and adapt it to your needs.

MIGRATING FROM CLIB TO DLIB

There are some considerations to have in mind when if you want to migrate from the
CLIB, the legacy C library, to the modern DLIB C/C++ library:

● The CLIB exp10() function defined in iccext.h is not available in DLIB.
● The DLIB library uses the low-level I/O routines __write and __read instead of

putchar and getchar.
● If the heap size in your version 3.x project using CLIB was defined in a file named

heap.c, you must now set the heap size either in the extended linker command file
(*.xcl) or in the Embedded Workbench to use the DLIB library.

You should also see the chapter The DLIB runtime environment in the IAR C/C++
Compilers Reference Guide for 78K.

DEVICE-SPECIFIC HEADER FILES

The header files that defines peripheral registers delivered with version 2.x and 3.x
cannot be used with version 4.x. For version 4.x applications, make sure to use the
header files delivered with version 4.x.
M78K-3

IAR Embedded Workbench®
Migration Guide

Migrating from earlier versions of IAR Embedded Workbench
CALLING CONVENTION

For backwards compatibility, the 78K IAR C/C++ Compiler version 4.x also supports
the calling conventions used by the versions 2.x and 3.x of the compiler. For information
about the old calling conventions, see the user documentation provided with those
compiler versions. To use any of the old calling conventions in version 4.x, define and
declare your functions with the appropriate keyword available for backward
compatibility:

OBJECT FILE CONSIDERATIONS

Object files (r26) created with the compiler version 3.x or 2.x will be possible to link
with object files created with version 4.x under the following conditions:

● The appropriate extended keyword __V3_call or __V2_call is used in function
declarations

● The object file does not call any CLIB library functions. This is not allowed because
the calling convention has changed

● Debug information cannot be available
● The version 4.x cstartup.s26 file has been modified, see System

initialization—Cstartup, page 6
● The linker command file has been updated with segment name information, see

Compiler options, page 8.

Linker errors and warnings

When linking the application, the following linker error might be generated:

Error [e46]: Undefined external "?xxxxx_Lnn" referred in Example1

This error message is generated if the version 3.x or 2.x object module is referring a
runtime library function which is not available in the version 4.x runtime library. In this
case, you can extract the referred function from the version 3.x or 2.x runtime library
module and include it in your version 4.x project by using the IAR XLIB Librarian.

The following linker warnings can be ignored:

Warning [w31]: Modules have been compiled with possibly
incompatible settings:
1 modules (including 'Example1' [78000 v1 m0 ...]) used one set.

Keywords for backward

compatibility
Description

__V2_call Calling convention compatible with version 2.x of the compiler

__V3_call Calling convention compatible with version 3.x of the compiler

Table 1: Keywords for old calling conventions
M78K-3

7

8

Compiler options
1 modules (including 'Example2' [78000 v1 m0 ...]) used one set.

Warning [w6]: Type conflict for external/entry "Example3", in
module Example4 against external/entry in module Example5; types
have different memory attributes

Compiler options
The command line options in version 4.x follow two different syntax styles:

● Long option names containing one or more words prefixed with two dashes, and
sometimes followed by an equal sign and a modifier, for example --strict_ansi
and --module_name=test.

● Short option names consisting of a single letter prefixed with a single dash, and
sometimes followed by a modifier, for example -r.

Some options appear in one style only, while other options appear as synonyms in both
styles. A number of new command line options have been added. For a complete list of
the available command line options, see the IAR C/C++ Compilers Reference Guide for
78K.

The old environment variable QCC78000 has changed to QCC78K.

MIGRATING PROJECT OPTIONS

Since the available compiler options differ between version 3.x and version 4.x, you
should verify your option settings after you have converted an old project.

If you are using the command line interface, you can simply compare your makefile with
the option tables in this section, and modify the makefile accordingly.

If you are using the IAR Embedded Workbench IDE, all option settings are
automatically converted during the project conversion.

However, it is still recommended to verify the options manually. Follow these steps:

1 Open the old project in the old IAR Embedded Workbench version.

2 In the project window, select the project level to get information about options on all
levels in your project.

3 To save the project settings to a file, right-click in the project window. On the context
menu that appears, choose Save As Text, and save the settings to an appropriate
destination.

4 Use this file and the option tables in this section to verify whether the options you used
in your old project are still available or needed. Also check whether you need to use
any of the new options.
M78K-3

IAR Embedded Workbench®
Migration Guide

Migrating from earlier versions of IAR Embedded Workbench
For information about where to set the equivalent options in the IAR Embedded
Workbench IDE, see the IAR C/C++ Compilers Reference Guide for 78K.

Removed options

The following table shows the command line options that have been removed:

Old option Description

-C Nested comments

-d Static locals

-Es Switch statement code inline

-Eu Disables word alignment for data segments

-Err No use of register variables

-F Form-feed in list file after each function

-G Open standard input as source; replaced by - (dash) as source file name
in version 4.x

-g Global strict type checking; in version 4.x, global strict type checking is
always enabled

-gO No type information in object code

-h Disable assignment compatibility attribute test

-i Add #include file text

-K ‘//’ comments; in version 4.x, ‘//’ comments are allowed unless the
option --strict_ansi is used

-P Generate promable code

-pnn Lines/page

-R Code segment name

-T Active lines only

-tn Tab spacing

-Usymb Undefined preprocessor symbol

-X Explain C declarations

-x[DFT2] Cross-reference

-y Writable strings

Table 2: Version 3.x compiler options not available in version 4.x
M78K-3

9

10

Compiler options
Identical options

The following table shows the command line options that are identical in version 3.x and
version 4.x:

Note: For the optimization options (-s and -z), only levels 2, 3, 6, and 9 are available
in version 4.x.

Renamed or modified options

The following version 3.x command line options have been renamed and/or modified:

Option Comment

-Dsymb=value Define symbols

-e Language extensions

-f filename Extend the command line

-I Include paths (The syntax is more free in ICC78K version 4.x)

-o filename Set object filename

-s[0–9] Optimize for speed

-z[0–9] Optimize for size

Table 3: Compiler options identical in both compiler versions

Old option New option Description

-A

-a filename
-la .

-la filename

Assembler output; see Filenames, page 11

-b --library_module Makes an object a library module

-c --char_is_signed ‘char’ is ‘signed char’

-gA --strict_ansi Flags old-style functions

-Hname --module_name=name Sets object module name

-L[prefix], -l filename -l[a|A|b|B|c|C|D][N][H]
{filename|directory}

Generates list file; the modifiers specify the
type of list file to create

-ms --code_model standard Model for non-banked function calls; library
functions are called with the CALL
instruction

-mS --code_model standard

--generate_callt_runtime_

library_calls

Model for non-banked function calls; library
functions are called with the CALLT
instruction

-mb --code_model banked Model for banked function calls; library
functions are called with the CALL
instruction

Table 4: Renamed or modified options
M78K-3

IAR Embedded Workbench®
Migration Guide

Migrating from earlier versions of IAR Embedded Workbench
FILENAMES

In version 3.x, file references can be made in either of the following ways:

● With a specific filename, and in some cases with a default extension added, using a
command line option such as -a filename (assembler output to named file).

● With a prefix string added to the default name, using a command line option such as
-A[prefix] (assembler output to prefixed filename).

In version 4.x, a file reference is always regarded as a file path that can be a directory
which the compiler will check and then add a default filename to, or a filename.

The following table shows some examples where it is assumed that the source file is
named test.c, myfile is not a directory and mydir is a directory:

-mB --code_model banked

--generate_callt_runtime_

library_calls

Model for banked function calls; library
functions are called with the CALLT
instruction

-Nprefix, -n filename --preprocess=[c][n][l]

filename

Preprocessor output

-q -lA .

-lC .

Inserts mnemonics; list file syntax has
changed

-r[012][i][n][r][e] -r

--debug

Generates debug information; the
modifiers have been removed

-S --silent Sets silent operation

-u --disable_data_alignment Disables data alignment of data objects

-v[0|1|2] --core=[78k0_basic|78k0|

78k0s]

Specifies the microcontroller core

-W{rs} --workseg_area{=rs} Specifies the space reserved in the saddr
area for the WRKSEG segment.

-w --no_warnings Disables warnings

Old option New option Description

Table 4: Renamed or modified options (Continued)

Old command New command Result

-l myfile -l myfile myfile.lst

-Lmyfile -l myfiletest myfiletest.lst

-L -l . test.lst

-Lmydir/ -l mydir mydir/test.lst

Table 5: Specifying filename and directory in version 3.x and version 4.x
M78K-3

11

12

Extended keywords
LIST FILES

In version 3.x, only one C list file and one assembler list file can be produced; in version
4.x there is no upper limit on the number of list files that can be generated. The new
command line option -l[a|A|b|B|c|C|D][N][H] {filename|directory} is used
for specifying the behavior of each list file.

Extended keywords
The set of extended keywords has changed in version 4.x. Some keywords have been
added, some keywords have been removed, and for some keywords the syntax has
changed. In addition, memory attributes have a different interpretation if used in
combination with typedef.

In version 4.x, all extended keywords except asm start with two underscores, for
example __no_init.

The following table lists the old keywords, their new equivalents, and completely new
keywords:

Old keyword/construction New keyword/construction

_ASM (this was an intrinsic
function in version 3.x)

asm

banked __banked

bit Bit variables are now supported by using 1-bit char bitfields

callf __callf

callt __callt

interrupt __interrupt

monitor __monitor

near __near

non_banked __non_banked

no_init __no_init

no_save __no_save

saddr __saddr

shortad __saddr

sfr SFRs are declared using absolute declarations with the @ or
#pragma location syntax together with the keywords __sfr
__no_init volatile char

Table 6: Old and new extended keywords
M78K-3

IAR Embedded Workbench®
Migration Guide

Migrating from earlier versions of IAR Embedded Workbench
To simplify the migration, the include file migration.h is delivered with version 4.x.
This include file maps the old keywords with their new counterparts, if possible. For
example: #define near __near

Whenever possible, the include file also maps old and new intrinsic functions.

For detailed information about the extended keywords available in version 4.x, see the
IAR C/C++ Compilers Reference Guide for 78K.

SFR

In version 3.x of the compiler, the keywords sfr and sfrp denote an object of byte or
word size residing in the Special Function Register (SFR) memory area for the chip, and
having a volatile type. The SFR is always located at an absolute address. For
example:

sfr P0=FF00;

In version 4.x, the keywords sfr and sfrp are not available. Instead is possible to:

● Place any object into any memory, by using a memory attribute; for example:
__near int b;

● Locate any object at an absolute address by using the #pragma location directive
or by using the locator operator @; for example:
long P0 @ FF00;

● Use the volatile attribute on any type, for example:
volatile char P0 @ FF00;

BIT VARIABLES

A bit variable in version 3.x is a volatile boolean variable that can have an absolute
bit address, be co-located with an SFR or be a relocatable object, like ordinary variables.
For example:

bit a = 87; /* at bit-address 87 (version 3.x) */
bit p0_bit = P0.5; /* bit 5 of P0 (version 3.x) */

sfrp Declaration of SFRs is done by using absolute declarations with the
@ or #pragma location syntax together with the keywords
__sfr __no_init volatile short

sfr...__IO_NB __no_bit_access

sfr...__IO_RO const

sfr...__IO_WO The SFR write only access is no longer available

using[n] The bank number n has to be declared using #pragma bank=n

Old keyword/construction New keyword/construction

Table 6: Old and new extended keywords (Continued)
M78K-3

13

14

Extended keywords
bit r; /* relocatable bit (version 3.x) */

Version 4.x uses bitfields of width 1 to implement bit variables. The extended language
feature anonymous structures allows the bits, which are structure members, to be used
as if they were variables in the enclosing scope. The keyword bit is not available in
version 4.x.

The following example shows an anonymous structure in version 4.x:

/* anonymous structure */
struct {
 char b0:1, b1:1, b2:1, :5, b7:1;
};
char foo() { return b7; }
void bar() { b0 = 1; }

Anonymous unions are used for locating an SFR and a bitfield at the same address. The
declaration of P0 (address 0xFF00) and the bits of P0 are combined in the following
way:

/* anonymous union */
extern __sfr __no_init volatile union
{
 unsigned char P0;
 struct
 {
 unsigned char no0:1;
 unsigned char no1:1;
 unsigned char no2:1;
 unsigned char no3:1;
 unsigned char no4:1;
 unsigned char no5:1;
 unsigned char no6:1;
 unsigned char no7:1;
 }P0_bit;
} @ 0xFF00;

The version 4.x notation is not as brief as the one used in version 3.x. It is, on the other
hand, more flexible. Bitfields can have any width (not only 1), can be located in any
memory and are not necessarily volatile. The same (maximal) packing as in version
3.x can be achieved by placing all bits in the same anonymous structure.

STORAGE MODIFIERS

Both version 3.x and version 4.x allow keywords that specify memory location of an
object—memory attributes. Each of these attributes can be used either as a placement
attribute for an object, or as a pointer type attribute denoting a pointer that can point to
the specified memory.
M78K-3

IAR Embedded Workbench®
Migration Guide

Migrating from earlier versions of IAR Embedded Workbench
When the attributes are used directly in the source code, they behave in a similar way in
both compiler versions. However, the usage of memory attributes in combination with
the keyword typedef is more strict in version 4.x than in version 3.x.

Version 3.x behaves unexpectedly in some cases:

typedef int __near NINT;
NINT a,b;
NINT __saddr c; /* Illegal */
NINT *p; /* p stored in near memory, points to default

 memory type */

The first variable declaration works as expected, that is a and b are located in near
memory. However, the declaration of c is illegal.

In the last declaration, the __near keyword of the type definition affects the location of
the pointer variable p, not the pointer type. The pointer type is default.

The corresponding example for version 4.x is:

typedef int __near NINT;
NINT a,b;
NINT __saddr c; /* c stored in saddr memory; override attribute

 in typedef */
NINT *p; /* p stored in default memory, points to

 near memory */

The declaration of c and p differ. The __saddr keyword in the declaration of c will
always compile. It overrides the keyword of the typedef. In the last declaration the
__near keyword of the typedef affects the type of the pointer. It is thus a __near
pointer to int. However, the location of the variable p is not affected.

INTERRUPT FUNCTIONS AND VECTORS

The syntax for defining interrupt functions has changed from version 3.x.

Old syntax

The syntax when defining interrupt functions using version 3.x:

interrupt [vector] using [bankno] void function_name(void);

where vector is the vector offset in the vector table and bankno is the register bank to
be used.
M78K-3

15

16

Pragma directives
New syntax

The syntax when defining interrupt functions using version 4.x:

#pragma bank=bankno
#pragma vector=vector
__interrupt void function_name(void);

where vector is the vector offset in the vector table and bankno is the register bank to
be used.

For further details of the new pragma directives, see the IAR C/C++ Compilers
Reference Guide for 78K.

ABSOLUTE LOCATED VARIABLES

In version 3.x the syntax was:

sfr PORT = 0xFF10;

The extended keyword sfr is exchanged with the keyword __sfr in version 4.x. Note
that the new keyword has a different syntax.

In version 4.x you can:

● Locate any object at an absolute address by using the #pragma location directive,
or by using the locator operator @, for example:
__no_init long PORT @ 100;

● Use the volatile attribute on any type, for example:
__sfr __no_init volatile unsigned char PORT @ 0xFF10;

For further details about how to locate variables, see the IAR C/C++ Compilers
Reference Guide for 78K.

Pragma directives
Version 3.x and version 4.x have different sets of pragma directives for specifying
attributes, and they also behave differently:

● In version 3.x, #pragma memory specifies the default location of data objects, and
#pragma function specifies the default location of functions. They change the
default attribute to use for declared objects; they do not have an effect on pointer
types.

● In version 4.x, the #pragma type_attribute and #pragma object_attribute
directives only change the next declared object or typedef.

See the IAR C/C++ Compilers Reference Guide for 78K for information about the
pragma directives available in version 4.x.
M78K-3

IAR Embedded Workbench®
Migration Guide

Migrating from earlier versions of IAR Embedded Workbench
The following pragma directives have been removed:

● codeseg

● function

● memory

● warnings

They are recognized and will give a diagnostic message but will not work in version 4.x.

Note: Instead of the #pragma codeseg directive, the #pragma location directive or
the @ operator can be used for specifying an absolute location.

The following table shows the mapping of pragma directives:

It is important to note that the new directives #pragma type_attribute, #pragma
object_attribute, and #pragma vector affect only the first of the declarations that
follow after the directive. In the following example, x is affected, but z and y are not
affected by the directive:

#pragma object_attribute=__no_init
int x,z;
int y;

Specific segment placement

In version 3.x, the #pragma memory directive supports a syntax that enables subsequent
data objects that match certain criteria to end up in a specified segment. Each object
found after the invocation of a segment placement directive will be placed in the
segment, provided that it does not have a memory attribute placement, and that it has the
correct constant attribute. For constseg, it must be a constant, while for dataseg, it
cannot be declared const.

In version 4.x, the directive #pragma location and the @ operator are available for this
purpose.

Old directive New pragma directive

#pragma function=interrupt #pragma type_attribute=__interrupt

#pragma function=monitor #pragma type_attribute=__monitor

#pragma memory=constseg #pragma constseg, #pragma location

#pragma memory=dataseg #pragma dataseg, #pragma location

#message #pragma message

Table 7: Old and new pragma directives
M78K-3

17

18

Intrinsic functions
Intrinsic functions
Version 4.x has a new naming convention for intrinsic functions, as well as a large
number of additional functions.

The old intrinsic functions _OPC, _args$ and _argt$ available in version 3.x are
removed and cannot be used in version 4.x. However, except for these three functions,
all intrinsic functions available in version 3.x can be used also in version 4.x.

To use the old intrinsic functions, include the files migration.h and intrinsics.h.
To use only the new intrinsic functions, include only the file intrinsics.h.

Note: The compiler option -e (Enable IAR C extended language) must be selected.

The following table lists the old intrinsic functions and their new equivalents, as well as
the new intrinsic functions:

See the IAR C/C++ Compilers Reference Guide for 78K for further information about
the intrinsic functions available in version 4.x.

Old intrinsic

function
New intrinsic function Description

_args$ None Returns an array of the parameters to a
function.

_argt$ None Returns the type of a parameter.

_ASM asm (this is an extended keyword, and
not an intrinsic function, in version 4.x)

Inserts an assembler statement.

_BRK __break Inserts a BRK instruction.

_DI __disable_interrupt Disables interrupts by inserting the DI
instruction.

_EI __enable_interrupt Enables interrupts by inserting the EI
instruction.

– __get_interrupt_state Returns the current interrupt state.

_HALT __halt Inserts a halt / nop instruction pair.

_NOP __no_operation Generates a NOP instruction.

_OPC None Inserts a byte constant.

– __segment_begin Returns the start address of a segment.

– __segment_end Returns the end address of a segment.

– __set_interrupt_state Sets the current interrupt state.

_STOP __stop Inserts a stop / no-operation instruction
pair.

Table 8: Old and new intrinsic functions
M78K-3

IAR Embedded Workbench®
Migration Guide

Migrating from earlier versions of IAR Embedded Workbench
Segments
The segment naming convention has changed since the version 3.x. Some of the old
segments have disappeared, and some new ones have been introduced.

For details of the new segments, their names, and how they are used, IAR C/C++
Compilers Reference Guide for 78K.

This table lists the old segment names, their counterparts in version 4.x, and additional
segments:

Old segment New segment

BITVARS –

CCSTR 1 –

CDATA0, CDATA1 SADDR_ID

CDATA2 NEAR_ID

CODE CODE, BCODE

CONST CONST

CSTACK CSTACK

CSTR CONST

ECSTR 1 –

FCODE FCODE

FLIST, IFLIST CLTVEC

IDATA0, IDATA1 SADDR_I

IDATA2 NEAR_I

INTVEC INTVEC

NO_INIT NEAR_N, SADDR_N

RCODE RCODE

UDATA0, UDATA1 SADDR_Z

UDATA2 NEAR_Z

WRKSEG WRKSEG

– NEAR_AC 2

– NEAR_AN 2

– DIFUNC

– HEAP

– SADDR_AC 2

– SADDR_AN 2

Table 9: Old and new segments
M78K-3

19

20

Segments
1) Version 4.x does not support placing strings in writable memory. For this reason, the old seg-
ments used for this task have no counterparts in version 4.x.
2) Segments ending in _AN and _AC contain data located at absolute addresses, and should not
be included in the linker command file.

LINKER COMMAND FILE CONSIDERATIONS

If you have created your own customized linker command file, compare this file with
the original file in the old installation and make the required changes related to segment
names in a copy of the corresponding file in the new installation.

New linker segment control directive -P supersedes -b

If you earlier used the linker segment control directive -b for locating your banked code
in memory, be aware that this directive is now obsolete and has been superseded by the
new directive -P. If you have an old linker command file (.xcl) that uses the -b
directive, you should replace those instances with the -P directive in a way that has an
equivalent effect.

The -b linker directive is intended exclusively for placement of banked segments and
uses a special syntax to specify the ranges where the segments are placed. It has a limited
support for address translation. In addition to this, range errors generated by banked
code are suppressed because earlier versions of the compiler were unable to generate
correct range checks for banked code.

The -P linker directive, on the other hand, is used for packed segment placement, and
uses the linker directive -M to perform address translation.

Code segments generated by the current compiler sometimes rely on the linker to place
them in certain ways. Because segment placement using -b does not use the linker this
way, it is unsafe to use -b for placing banked code generated by the current compiler.

It is important to understand how the -b directive works, to express the same thing with
a -P command. You must also note that the current compiler might generate code in a
different way than earlier versions and that the name and size of segments have changed.
In addition, there might also be dependencies between the segments that were not there
before. Therefore, you should carefully consider whether you really want an exact
translation.

How -b works

The basic -b command looks like this:

-b(CODE)A,B,C,D=START,LENGTH,INCREMENT,COUNT

– SWITCH

Old segment New segment

Table 9: Old and new segments (Continued)
M78K-3

IAR Embedded Workbench®
Migration Guide

Migrating from earlier versions of IAR Embedded Workbench
This command allocates the segments A, B, C, and D. The governing parameters are:

Note: START, LENGTH, and INCREMENT are all hexadecimal numbers, COUNT is
decimal.

Placement starts with the first segment, A. The segment parts of A are placed
contiguously in bank 0 until all parts have been placed or there is not enough space left
in bank 0. When all parts of segment A have been placed, the placement of the next
segment (B) starts in the same bank (bank 0). If there is not enough space in bank 0 to
place all parts of segment A, the placement of A continues in the next bank (bank 1).

Once the segment placement has left a bank, nothing more will be allocated to it, even
if there actually is space available there.

How -P works

Packed segment placement looks like this:

-P(CODE)A,B,C,D=[RANGE_START-RANGE_END]*NUMBER_OF_RANGES+INCREMENT

This command places the segments A, B, C, and D. There are a total of
NUMBER_OF_RANGES ranges, numbered 0 to NUMBER_OF_RANGES-1. Each range
begins at address RANGE_START + x * INCREMENT where x is the range number.

The segments can be placed anywhere in any of these ranges. This allows for a more
dense segment placement; if there is some available space in a range that was too small
for a certain segment part, that range can be used by the linker for another segment part
later on.

How the -b and -P directives correspond to each other

Regard this example:

-b(CODE)A,B,C,D=4000,1000,10000,2

This command has two available ranges (COUNT = 2).

Parameter Description

START The start address of the first bank.

LENGTH The length (size) in bytes of each bank.

INCREMENT The address interval between each bank. Each subsequent bank after the first
starts at the address START + x * INCREMENT where x is the bank number.

COUNT The number of banks available in this placement command, numbered 0 to
COUNT-1

Table 10: Parameters to -b
M78K-3

21

22

Segments
Bank 0 starts at address 0x4000 (START = 4000) and is 0x1000 (LENGTH = 1000) bytes
long (ending at address 0x4FFF). Bank 1 starts at address 0x14000 (INCREMENT =
10000) and ends at 0x14FFF. Expressed as a range in XLINK this would be
4000-4FFF,14000-14FFF.

In other words, this command places its segments into two banks, one at 4000–4FFF and
another at 14000–14FFF. The equivalent using the packed segment placement -P
directive would be:

-P(CODE)A,B,C,D=4000-4FFF,14000-14FFF

Another way of achieving the same thing is to use:

-P(CODE)A,B,C,D=[4000-4FFF]*2+10000

or

-P(CODE)A,B,C,D=[4000:+1000]*2+10000

The [4000-4FFF]*2+10000 style will be used in the rest of this section.

More examples

Here is another example:

-b(CODE)A,B,C,D=C000,4000,10000,5

There are a total of five banks, each one 0x4000 bytes long, and the first one starts at
address 0xC000. The distance between the banks is 0x10000 bytes. The possible
address ranges are: C000–FFFF, 1C000–1FFFF, 2C000–2FFFF, 3C000–3FFFF, and
4C000–4FFFF. Using the -P directive, this can be expressed as:

-P(CODE)A,B,C,D=[C000-FFFF]*5+10000

An example with no maximum number of banks:

-b(CODE)A,B,C=4000,8000,10000

Three segments are placed. There is no limit on the number of banks (COUNT is missing),
each bank is 0x4000 bytes long, and the first bank starts at the address 0x4000. The
distance between the banks is 0x20000 bytes. Expressed as a packed segment
placement, this could look like this:

-P(CODE)A,B,C=[4000-BFFF]*3+10000

Note: The -b directive allows open ranges (no maximum number of banks) while -P
requires closed ranges (a fixed number of ranges). It is impossible to know in advance
that three banks will be needed; the segments might require 1, 2, 20, or perhaps even
more banks. The number of banks to use must be based on information about the sizes
of the segments that are placed.
M78K-3

IAR Embedded Workbench®
Migration Guide

Migrating from earlier versions of IAR Embedded Workbench
Colon-separated segment lists

The -b directive can be used with colon-separated lists of segments:

-b(CODE)A:B:C:D=START,LENGTH,INCREMENT,COUNT

This syntax (meaning that each segment will be placed in a new bank) has no direct -P
equivalent; usually a single -b command with a colon-separated segment list must be
replaced with several -P commands, one for each segment.

See this example:

-b(CODE)A:B:C:D=1000,8000,10000

This command locates the segments A, B, C, and D. There is no limit to the number of
banks, each bank is 0x8000 bytes long, and the first bank starts at the address 0x1000.
The distance between the banks is 0x10000 bytes and each segment must be placed in
its own bank. Using -P, this could look like this:

-P(CODE)A=1000-8FFF
-P(CODE)B=11000-18FFF
-P(CODE)C=21000-28FFF
-P(CODE)D=31000-38FFF

This assumes that each segment will fit in a single bank. If, for instance, segment B
requires 3 banks and segment D requires 2 banks it could look like this:

-P(CODE)A=1000-8FFF
-P(CODE)B=[11000-18FFF]*3+10000
-P(CODE)C=[41000-48FFF]*2+10000
-P(CODE)D=61000-68FFF

Address translation using the -M directive

If the -b placement command you want to replace uses # (-b#, linear physical
addresses) or @ (-b@, 64180-type physical addresses) you must also use the XLINK
address translation directive -M to achieve the desired result.

See this example:

-b#(CODE)A,B,C=8000,4000,10000,2

The ranges are 8000–BFFF and 18000–1BFFF, so the -P equivalent might be:

-P(CODE)BANKED=[8000-BFFF]*2+10000

The linear physical addresses directive used with the -b directive specifies that the
banks are placed contiguously in memory. The addresses in this case would be
8000–BFFF, C000–FFFF. Using the -M directive, this can be expressed as:

-M(CODE)[8000-BFFF]*2+10000=8000
M78K-3

23

24

Other changes
Note: We do not have to map the address to the address 0x8000, we could use any
address. -M is a more powerful replacement for the limited address translation offered
by -b# and -b@.

For details of the -P directive, see the IAR Linker and Library Tools Reference Guide.

Other changes
This section describes changes related to:

● Object file format
● Predefined symbols
● Nested comments
● Sizeof in preprocessor directives
● Floating-point arithmetics.

OBJECT FILE FORMAT

In version 3.x, two types of source references can be generated in the object file. When
the command line option -r is used, the source statements are being referred to. When
the command line option -re is used, the actual source code is embedded in the object
format.

In version 4.x, when the command line option -r or --debug is used, source file
references are always generated. Embedding of the source code is not supported.

PREDEFINED SYMBOLS

All predefined symbols supported in version 3.x are also supported in version 4.x.
Version 4.x, however, has additional ones.

The predefined symbol __IAR_SYSTEMS_ICC is provided only for compatibility with
version 3.x. Version 4.x also has the __IAR_SYSTEMS_ICC__ symbol.

See the IAR C/C++ Compilers Reference Guide for 78K for information about the
predefined symbols available in version 4.x.

NESTED COMMENTS

In the old version, nested comments are allowed if the option -C is used. In version 4.x,
nested comments are never allowed. For example, if a comment was used for removing
a statement as in the following example, it would not have the desired effect.

/*
/* x is a counter */
int x = 0;
*/
M78K-3

IAR Embedded Workbench®
Migration Guide

Migrating from earlier versions of IAR Embedded Workbench
The variable x will still be defined, there will be a warning where the inner comment
begins, and there will be an error where the outer comment ends.

 /* x is a counter */
 ^
"c:\bar.c",2 Warning[Pe009]: nested comment is not allowed

 */
 ^
"c:\bar.c",4 Error[Pe040]: expected an identifier

The solution is to use #if 0 to “hide” portions of the source code when compiling:

#if 0
/* x is a counter */
int x = 0;
#endif

Note: #if statements may be nested.

SIZEOF IN PREPROCESSOR DIRECTIVES

In version 3.x, sizeof could be used in #if directives, for example:

#if sizeof(int)==2
int i = 0;
#endif

In version 4.x, sizeof is not allowed in #if directives. The following error message
will be produced:

 #if sizeof(int)==2
 ^
"c:\bar.c",1 Error[Pe059]: function call is not allowed in a
constant expression.

Macros can be used instead, for example SIZEOF_INT. Macros can be defined using the
-D option, or a #define in the source code:

#if SIZEOF_INT==2
int i = 0;
#endif

To find the size of a predefined data type, see IAR C/C++ Compilers Reference Guide
for 78K.
M78K-3

25

26

Other changes
Complex data types may be computed using one of two methods:

● Write a small program and run it in the simulator, with terminal I/O.
#include <stdio.h>
struct s { char c; int a; };

void main(void)
{
 printf("sizeof(struct s)=%d \n", sizeof(struct s));
}

● Write a small program, compile it with the option -la . to get an assembler listing
in the current directory, and look for the definition of the constant x.
struct s { char c; int a; };
const int x = sizeof(struct s);
M78K-3

IAR Embedded Workbench®
Migration Guide

Migrating from the NEC
tools
This chapter gives hints for porting your application code and projects from
the NEC Development environment for 78K/K0S and 78K0R
microcontrollers to version 4.x of IAR Embedded Workbench for 78K.

This chapter does not try to provide a complete list of all differences between
the two products, but to provide some useful migration hints.

Migration help
If you have a project created with the NEC Development environment for 78K/K0S and
78K0R microcontrollers that you want to migrate to IAR Embedded Workbench for
78K, there are some details to consider.

In short, this migration help covers these details:

● Device-specific header files

● System startup and exit code

● Interrupt functions in C

● Interrupt functions in assembler

● Pragma directives

● Keywords

● Intrinsic functions

● Specifying segments in assembler

● Calling convention

● Assembler directives

● Integer constants

● Special characters.

DEVICE-SPECIFIC HEADER FILES

The IAR C/C++ Compiler for 78K provides device header files where special function
registers and their bitfields use the same names as in the corresponding NEC files.
M78K-3

27

28

Migration help
When converting C source code written for the NEC compiler to the IAR C/C++
Compiler, the NEC specific #pragma sfr directive should be replaced with #include
"ioxxx.h" where all SFRs are defined.

SYSTEM STARTUP AND EXIT CODE

The process for preparing the system startup code differs in the NEC compiler compared
to the IAR C/C++ Compiler for 78K.

In the NEC compiler, the system startup code is available in the cstart.asm file.

In the IAR C/C++ Compiler for 78K the system startup code is located in the
ready-made cstartup.s26 file. In addition, you specify additional settings, for
example for the stack and heap size, either in the IAR Embedded Workbench IDE or
from the command line, typically in the linker command file.

It is likely that you need to customize the code for system initialization. For example,
your application might need to initialize memory-mapped special function registers
(SFRs), or omit the default initialization of data segments performed by cstartup.

You can do this by providing a customized version of the routine __low_level_init,
which is called from cstartup.s26 before the data segments are initialized.
Modifying the file cstartup directly should be avoided. To read more about this, see
the IAR C/C++ Compilers Reference Guide for 78K.

INTERRUPT FUNCTIONS IN C

In the NEC compiler you declare an interrupt function, for example, like this:

#pragma interrupt BRK_I inter_b RB2
__interrupt_brk void inter_b();

In the IAR C/C++ Compiler for 78K you should write for example, like this:

#pragma bank=2
#pragma vector=BRK_I_vect
__interrupt void inter_b(void);

INTERRUPT FUNCTIONS IN ASSEMBLER

Writing an interrupt handler in assembler language is slightly different when using the
IAR Assembler compared to when using the NEC assembler.
M78K-3

IAR Embedded Workbench®
Migration Guide

Migrating from the NEC tools
Setting up interrupt handlers

Interrupt functions should be declared as ROOT so that they cannot be discarded by the
linker even if no symbols in the segment are referred to. To insert an entry in the interrupt
vector table, define the destination with the DW directive, for example like this:

 COMMON INTVEC:CODE:ROOT(1)
 ORG 0x08 ; INTP0
branch_to_inter0:
 DW inter0

PRAGMA DIRECTIVES

This table maps the NEC pragma directives to the corresponding functionality in the
IAR C/C++ Compiler for 78K:

NEC pragma directives NEC Description
Related primitives in the IAR

C/C++ Compiler for 78K

#pragma brk Describes CPU instructions in C Intrinsic function __break

#pragma di Describes DI instruction in C Intrinsic function
__disable_interrupt

#pragma div Uses division function Use hardware
multiplier/divider option in
the IDE.

#pragma ei Describes EI instruction in C Intrinsic function
__enable_interrupt

#pragma ext_func Calls a function to the flash area
from the boot area

--

#pragma ext_table Specifies the first address of the
flash area branch table

--

#pragma halt Describes CPU instructions in C Intrinsic function __halt

#pragma inline Expands the standard library
functions memcpy and memset
inline

#pragma inline

#pragma interrupt Describes interrupt processing in CKeyword __interrupt

#pragma mul Uses multiplication function Use hardware
multiplier/divider option in
the IDE.

#pragma name Changes module name Compiler option
--module_name

Table 11: Porting from NEC pragma directives
M78K-3

29

30

Migration help
KEYWORDS

This table maps the NEC keywords to the corresponding functionality in the IAR C/C++
Compiler for 78K:

#pragma nop Describes CPU instructions in C Intrinsic function
__no_operation

#pragma opc Uses data insertion function __asm, asm

#pragma rot Uses rotate function --

#pragma

rtos_interrupt

Uses interrupt handler for
RX78K0R

--

#pragma rtos_task Uses task function for RX78K0R Keyword __no_save

#pragma segment Changes compiler output section
name

#pragma constseg

#pragma dataseg

#pragma location

Compiler option
--code_segment

#pragma sfr Describes SFR name in C #include "ioxxx.h"

#pragma stop Describes CPU instructions in C Intrinsic function __stop

#pragma vect Describes interrupt processing in C#pragma vector

NEC keyword NEC description
Related primitives in the IAR

C/C++ Compiler for 78K

__asm Assembler statement __asm, asm

__BANK0-15 Bank functions at constant
addresses

#pragma location

__banked, __non_banked Bank interface __banked,
__non_banked

bit Declaration of bit type variable --

__boolean/boolean Declaration of boolean type
variable

bool

__callf, callf Declaration of callf function __callf

__callt, callt Declaration of callt function __callt

Table 12: Porting from NEC keywords

NEC pragma directives NEC Description
Related primitives in the IAR

C/C++ Compiler for 78K

Table 11: Porting from NEC pragma directives (Continued)
M78K-3

IAR Embedded Workbench®
Migration Guide

Migrating from the NEC tools
INTRINSIC FUNCTIONS

To use intrinsic functions with the IAR C/C++ Compiler for 78K, the header file
intrinsics.h must be included.

SPECIFYING SEGMENTS IN ASSEMBLER

With the NEC assembler, segments are defined using the commands BSEG, CSEG, and
DSEG, which define a bit segment, code segment, and a data segment respectively. Each
type of segment can be placed at a specific memory position using the AT address
syntax, for example

CCI CSEG AT 2400H

With the IAR Assembler for 78K, code segments are defined using the assembler
directives ASEG, ASEGN, COMMON, and RSEG, which means absolute, named absolute,
common and relocatable segments. A STACK segment can also be defined.

__directmap Absolute address allocation
specification

@ operator
#pragma location

__far Memory allocation area
specification

__far, __far_func

__flash Firmware ROM function --

__flashf __flashf function --

__interrupt Hardware interrupt function __interrupt

__interrupt_brk Software interrupt function __interrupt

__leaf/norec Declaration of leaf/norec
function

--

__mxcall __mxcall function --

__near Memory allocation area
specification

__near, __near_func

noauto Declaration of noauto function --

__pascal Pascal function --

__rtos_interrupt Interrupt handler for real-time
OS

--

__sreg/sreg Declaration of sreg variable __saddr

__temp Temporary variable --

NEC keyword NEC description
Related primitives in the IAR

C/C++ Compiler for 78K

Table 12: Porting from NEC keywords (Continued)
M78K-3

31

32

Migration help
Absolute and named absolute segments are placed at a specific memory address whereas
common and relocatable segments are placed at an arbitrary position. A stack segment
is used for allocating data from high to low addresses, as opposed to the low-to-high
allocation used by RSEG.

The syntax for the IAR Assembler for 78K directives are:

ASEG [address]
ASEGN segment [:type], address
COMMON segment [:type] [flag] [(align)]
RSEG segment [:type] [flag] [(align)]
STACK segment [:type] [(align)]

Examples:

ASEG 0x2400
ASEGN A_DATA:DATA, 0x2400
COMMON INTVEC:CODE:ROOT(1)
RSEG CODE:CODE:NOROOT(0)
STACK INVSEG:DATA(0)

A simple conversion table:

Bit segments cannot be defined explicitly using the IAR Assembler, but can easily be
defined using bit operators in code or data segments. As a byte is the smallest allocatable
memory segment, no memory is lost or gained using either tool.

NEC assembler IAR Assembler for 78K

name CSEG RSEG name:CODE

name CSEG AT address ASEGN name:CODE, address

name DSEG RSEG name:DATA

name DSEG AT address ASEGN name:DATA, address

Table 13: Segment conversion table
M78K-3

IAR Embedded Workbench®
Migration Guide

Migrating from the NEC tools
CALLING CONVENTION

This section describes the differences in the calling convention used by each compiler.

Parameters passed on the stack

These are the differences regarding parameters passed on the stack:

Parameters passed in register

These are the differences regarding parameters passed in registers:

NEC compiler IAR C/C++ Compiler for 78K

The second and later arguments are passed on
the stack, but the first parameter is passed in a
register (in normal mode).

Any 3-byte objects for which there is no suitable
register and objects larger than 4 bytes are
passed on the stack.

Table 14: Parameters passed on the stack

NEC compiler IAR C/C++ Compiler for 78K

Parameters in the normal model:
8-bit values passed in AX
16-bit values passed in AX
24-bit values passed in AX,BC
32-bit values passed in AX,BC
Floating-point values passed in AX,BC

8-bit values passed in A, B, C, X, D, and E
16-bit values passed in AX, BC, and DE
24-bit values passed in C:AX (78K0/K0S) or
passed on the stack (78K0R)
32-bit values passed in BC:AX

Parameters in the static model:
8-bit values: first argument passed in A, 2nd
argument passed in B, 3rd argument passed in
H

16-bit values: first argument passed in AX, 2nd
argument passed in BC, 3rd argument passed
in HL

Table 15: Parameters passed in registers
M78K-3

33

34

Migration help
Return values

These are the differences regarding return values:

Preserved registers

These are the differences regarding preserved registers:

NEC compiler IAR C/C++ Compiler for 78K

8-bit integers, BC in normal model, and A in
static model
16-bit integers, BC in normal model, and AX in
static model
32-bit integers, BC (lower) and DE (upper) in
normal model, not supported in static model
Pointer (bank -mf not set), BC in normal
model, and AX in static model
Pointer (bank -mf set), BC for function
pointers in normal model, and BC (lower) DE
(upper) for data pointers in normal model, not
supported in static model
structure and unions, BC in normal model, not
supported in static model
1 bit, CY in normal model, and CY in static
model
Floating-point numbers, BC (lower) and DE
(upper) in normal model, not supported in
static model

8-bit values passed in A
16-bit values passed in AX
24-bit values passed in C:AX for 78K0/K0S and
A:HL for 78K0R
32-bit values passed in BC:AX

Table 16: Return values

NEC compiler IAR C/C++ Compiler for 78K

DE BC and DE for unbanked functions, and DE for
banked functions

Table 17: Preserved registers
M78K-3

IAR Embedded Workbench®
Migration Guide

Migrating from the NEC tools
Scratch registers

These are the differences regarding scratch registers:

ASSEMBLER DIRECTIVES

This table maps the NEC assembler directives to the corresponding assembler directives
in the IAR Assembler for 78K:

NEC compiler IAR C/C++ Compiler for 78K

AX, BC and HL
Registers used for parameters or for return
values.

AX,HL for 78K0/K0S, and CS and ES for
78K0R, DE for banked functions
Registers used for parameters or for return
values

Table 18: Preserved registers

Directive in the

NEC assembler

Directive in the IAR

Assembler for 78K
Description Section

-- _args Is set to number of arguments passed to macro. Macro processing

INCLUDE $ Includes a file. 78K0/78K0S only. Assembler control

-- #define Assigns a value to a label. C-style preprocessor

-- #elif Introduces a new condition in a #if…#endif
block.

C-style preprocessor

-- #else Assembles instructions if a condition is false. C-style preprocessor

-- #endif Ends a #if, #ifdef, or #ifndef block. C-style preprocessor

-- #error Generates an error. C-style preprocessor

-- #if Assembles instructions if a condition is true. C-style preprocessor

-- #ifdef Assembles instructions if a symbol is defined. C-style preprocessor

-- #ifndef Assembles instructions if a symbol is undefined. C-style preprocessor

INCLUDE #include Includes a file. C-style preprocessor

-- #line Changes the line numbers. C-style preprocessor

-- #message Generates a message on standard output.
78K0/78K0S only.

C-style preprocessor

#pragma #pragma Controls extension features. 78K0R only. C-style preprocessor

-- #undef Undefines a label. C-style preprocessor

/*comment*/ /*comment*/ C-style comment delimiter. Assembler control

// // C++ style comment delimiter. Assembler control

; ; Assembler style comment delimiter. Assembler control

Table 19: Assembler directives summary
M78K-3

35

36

Migration help
-- = Assigns a permanent value local to a module. Value assignment

-- ALIAS Assigns a permanent value local to a module. Value assignment

-- ALIGN Aligns the program location counter by inserting
zero-filled bytes.

Segment control

-- ALIGNRAM Aligns the program location counter. Segment control

-- ARGFRAME Declares the space used for the arguments to a
function.

Function

-- ASEG Begins an absolute segment. Segment control

CSEG AT ASEGN Begins a named absolute segment. Segment control

-- ASSIGN Assigns a temporary value. Value assignment

-- BLOCK Defines type information for a symbol. Recognized for future
compatibility

-- BREAK Exits prematurely from a loop or switch
construct. 78K0/78K0S only.

Structured assembly

BSEG -- Begins a bit segment.

BSEG AT -- Begins an absolute bit segment.

-- CASE Case in SWITCH block. 78K0/78K0S only. Structured assembly

-- CASEOFF Disables case sensitivity. Assembler control

-- CASEON Enables case sensitivity. Assembler control

-- CFI Specifies call frame information. Call frame
information

WIDTH COL Sets the number of columns per page
(78K0/78K0S). Retained in 78K0R for backward
compatibility reasons.

Listing control

-- COMMON Begins a common segment. Segment control

-- CONST Specifies an SFR label as read-only. 78K0/78K0S
only.

Value assignment

-- CONTINUE Continues execution of a loop or switch
construct. 78K0/78K0S only.

Structured assembly

DB DB Generates 8-bit constants, including strings. Data definition or
allocation

DBIT -- Reserves 1-bit memory area.

Directive in the

NEC assembler

Directive in the IAR

Assembler for 78K
Description Section

Table 19: Assembler directives summary (Continued)
M78K-3

IAR Embedded Workbench®
Migration Guide

Migrating from the NEC tools
DB DC8 Generates 8-bit constants, including strings. Data definition or
allocation

DW DC16 Generates 16-bit constants. Data definition or
allocation

-- DC24 Generates 24-bit constants. Data definition or
allocation

-- DC32 Generates 32-bit constants. Data definition or
allocation

-- DC64 Generates 64-bit constants. 78K0R only. Data definition or
allocation

-- DD Generates 32-bit constants. Data definition or
allocation

-- DEFAULT Default case in SWITCH block. 78K0/78K0S only. Structured assembly

-- DEFINE Defines a file-wide value. Value assignment

DEBUG Assembler options
--debug (78K0R
only) and -r

Outputs debug information to a file.

DEBUGA Assembler options
--debug (78K0R
only) and -r

Outputs assembler debug information to a file.

NODEBUG Assembler options
--debug (78K0R
only) and -r

Does not output debug information to a file.

NODEBUGA Assembler options
--debug (78K0R
only) and -r

Does not output assembler debug information to
a file.

-- DF32 Generates 32-bit floating-point constants. 78K0R
only.

Data definition or
allocation

-- DF64 Generates 64-bit floating-point constants. 78K0R
only.

Data definition or
allocation

DG -- Generates 20-bit constants in a 32-bit area.

-- DP Generates 24-bit constants. Data definition or
allocation

DS DS Allocates space for 8-bit integers. Data definition or
allocation

Directive in the

NEC assembler

Directive in the IAR

Assembler for 78K
Description Section

Table 19: Assembler directives summary (Continued)
M78K-3

37

38

Migration help
bit -- 3-bit immediate data or label. Data definition or
allocation

byte DS8 Allocates space for 8-bit integers. Data definition or
allocation

word, addr16 DS16 Allocates space for 16-bit integers. 78K0R only. Data definition or
allocation

addr11 -- Immediate data or label.

addr5 -- Immediate data or label, even addresses only.

-- DS24 Allocates space for 24-bit integers. 78K0R only. Data definition or
allocation

-- DS32 Allocates space for 32-bit integers. 78K0R only. Data definition or
allocation

-- DS64 Allocates space for 64-bit integers. 78K0R only. Data definition or
allocation

DW DW Generates 16-bit constants. Data definition or
allocation

ELSE ELSE Assembles instructions if a condition is false. Conditional assembly

_ELSE ELSE Assembles instructions if a condition is false. Conditional assembly

ELSEIF ELSEIF Specifies a new condition in an IF…ENDIF
block.

Conditional assembly

_ELSEIF ELSEIF Specifies a new condition in an IF…ENDIF
block.

Conditional assembly

-- ELSEIFS Specifies a new condition in an IFS...ENDIF
block. 78K0/78K0S only.

Structured assembly

-- ELSES Specifies instructions to be executed if a condition
is false. 78K0/78K0S only.

Structured assembly

-- END Terminates the assembly of the last module in a
file.

Module control

-- ENDF Ends a FOR loop. 78K0/78K0S only. Structured assembly

ENDIF ENDIF Ends an IF block. Conditional assembly

-- ENDIFS Ends an IFS block. 78K0/78K0S only. Structured assembly

ENDM ENDM Ends a macro definition. Macro processing

-- ENDMAC Exits prematurely from a macro. Macro processing

ENDM ENDMOD Terminates the assembly of the current module. Module control

Directive in the

NEC assembler

Directive in the IAR

Assembler for 78K
Description Section

Table 19: Assembler directives summary (Continued)
M78K-3

IAR Embedded Workbench®
Migration Guide

Migrating from the NEC tools
-- ENDR Ends a repeat structure Macro processing

-- ENDS Ends a SWITCH block. 78K0/78K0S only. Structured assembly

-- ENDW Ends a WHILE loop. 78K0/78K0S only. Structured assembly

EQU EQU Assigns a permanent value local to a module. Value assignment

-- EVEN Aligns the program counter to an even address. Segment control

EXITM EXITM Exits prematurely from a macro. Macro processing

-- EXPORT Exports symbols to other modules. Symbol control

EXTBIT -- Imports an external bit symbol.

EXTRN EXTERN Imports an external symbol. Symbol control

-- FOR Repeats subsequent instructions a specified
number of times. 78K0/78K0S only.

Structured assembly

-- FUNCALL Declares that the function caller calls the
function callee.

Function

-- FUNCTION Declares a label name to be a function. Function

IF IF Assembles instructions if a condition is true.

_IF IF Assembles instructions if a condition is true. Conditional assembly

-- IFS Specifies instructions to be executed if a condition
is true. 78K0/78K0S only.

Structured assembly

-- IMPORT Imports an external symbol. Symbol control

IRP -- Loops through every input variable.

KANJICODE -- Interprets Kanji character code.

-- LIBRARY Begins a library module. Module control

-- LIMIT Checks a value against limits. Value assignment

LOCAL LOCAL Creates symbols local to a macro. Macro processing

-- LOCFRAME Declares the space used for the locals in a
function.

Function

COND/NOCOND LSTCND Controls conditional assembly listing. Listing control

-- LSTCOD Controls multi-line code listing. Listing control

-- LSTEXP Controls the listing of macro generated lines. Listing control

GEN/NOGEN LSTMAC Controls the listing of macro definitions. Listing control

LIST/NOLIST LSTOUT Controls assembler-listing output. Listing control

Directive in the

NEC assembler

Directive in the IAR

Assembler for 78K
Description Section

Table 19: Assembler directives summary (Continued)
M78K-3

39

40

Migration help
-- LSTPAG Controls the formatting of output into pages
(78K0/78K0S). Retained in 78K0R for backward
compatibility reasons.

Listing control

-- LSTREP Controls the listing of lines generated by repeat
directives.

Listing control

-- LSTSAS Controls structured assembly listing. 78K0/78K0S
only.

Listing control

TITLE -- Prints string as list title.

SUBTITLE -- Prints string as list subtitle.

TAB -- Sets tab size in list file.

SYMLIST -- Outputs a symbol list to a file.

NOSYMLIST -- Does not output a symbol list to a file.

FORMFEED -- Outputs form feed as end of list file.

NOFORMFEED -- Does not output form feed as end of list file.

XREF LSTXRF Generates a cross-reference table. Listing control

NOXREF Default behavior Does not generate a cross-reference table.

MACRO MACRO Defines a macro. Macro processing

-- MODULE Begins a library module. Module control

NAME NAME Begins a program module. Module control

-- ODD Aligns the program location counter to an odd
address.

Segment control

ORG ORG Sets the program location counter. Segment control

-- OVERLOAD Overloaded class name. Recognized for future
compatibility

EJECT PAGE Generates a new page (78K0/78K0S). Retained in
78K0R for backward compatibility reasons.

Listing control

LENGTH PAGSIZ Sets the number of lines per page (78K0/78K0S).
Retained in 78K0R for backward compatibility
reasons.

Listing control

PROCESSOR Assembler options
--core (78K0R
only) and -v (78K0S
only)

Specifies assembler target type.

-- PROGRAM Begins a program module. Module control

Directive in the

NEC assembler

Directive in the IAR

Assembler for 78K
Description Section

Table 19: Assembler directives summary (Continued)
M78K-3

IAR Embedded Workbench®
Migration Guide

Migrating from the NEC tools
PUBLIC PUBLIC Exports symbols to other modules. Symbol control

-- PUBWEAK Exports symbols to other modules, multiple
definitions allowed.

Symbol control

-- RADIX Sets the default base. Assembler control

-- REPEAT Repeats subsequent instructions until a condition
is true. 78K0/78K0S only.

Structured assembly

REPT REPT Assembles instructions a specified number of
times.

Macro processing

-- REPTC Repeats and substitutes characters. Macro processing

-- REPTI Repeats and substitutes strings. Macro processing

-- REQUIRE Forces a symbol to be referenced. Symbol control

RESET -- Sets a temporary value as false.

CSEG RSEG Begins a relocatable segment. Segment control

-- RTMODEL Declares runtime model attributes. Module control

saddr SADDR Begins a short address relocatable segment.
78K0/78K0S only.

Segment control

saddrp -- Begins a short address relocatable segment, even
address only.

Segment control

SET SET Assigns a temporary value. Value assignment

sfr sfr Creates byte-access SFR labels. 78K0/78K0S only. Value assignment

sfrp sfrp Creates word-access SFR labels. 78K0/78K0S only. Value assignment

-- SFRTYPE Specifies SFR attributes. 78K0/78K0S only. Value assignment

-- SHORTAD Begins a short address relocatable segment.
78K0/78K0S only.

Segment control

-- STACK Begins a stack segment. 78K0/78K0S only. Segment control

-- SWITCH Multiple case switch. 78K0/78K0S only. Structured assembly

-- SYMBOL Defines part of a class name. Recognized for future
compatibility

-- UNTIL Ends a REPEAT loop. 78K0/78K0S only. Structured assembly

-- VAR Assigns a temporary value. Value assignment

-- WHILE Repeats subsequent instructions until a condition
is true. 78K0/78K0S only.

Structured assembly

Directive in the

NEC assembler

Directive in the IAR

Assembler for 78K
Description Section

Table 19: Assembler directives summary (Continued)
M78K-3

41

42

Migration help
OPERAND IDENTIFIERS

This table maps the NEC operand identifiers to the corresponding integer constants in
the IAR Assembler for 78K:

* These are the only operand identifiers available in the compiler for 78K0.

INTEGER CONSTANTS

This table maps the NEC integer constants to the corresponding integer constants in the
IAR Assembler for 78K:

NEC operand identifier
Corresponding in the IAR

Assembler for 78K
Description

Immediate data specification.

! N:* (default) 16-bit absolute address specification.

!! F:, ES: 20-bit absolute address specification.

$ $:, S:*, S:$ 8-bit relative address specification.

$! R:, R:S 16-bit relative address specification.

[] [] Indirect address specification.

ES: Extension address specification.

Table 20: Integer constants conversion table

Type NEC special characters
Corresponding in the IAR

Assembler for 78K

Binary 1010Y 1010b

b'1010

Octal 1234O

1234Q

1234q

q'1234

1234

Decimal 1234

-1234

1234T

1234D

1234

-1234

d'1234

1234d

Hexadecimal 0FFFH

0xFFFF

0FFFFh

0xFFFF

h'FFFF

Table 21: Integer constants conversion table
M78K-3

IAR Embedded Workbench®
Migration Guide

Migrating from the NEC tools
SPECIAL CHARACTERS

This table maps the NEC special characters to the corresponding special characters in
the IAR Assembler for 78K:

Special character NEC special characters
Corresponding in the IAR

C/C++ Compiler for 78K

' \' \'

" \" \"

? \? ?

\ \\ \\

Table 22: Special character conversion table
M78K-3

43

	Contents
	Migrating from earlier versions of IAR Embedded Workbench
	Key advantages
	The migration process
	Project file and project setup
	C source code and compiler considerations
	Assembler considerations
	Runtime library, runtime environment, and object file considerations
	Compiling and linking with the DLIB runtime library
	Program entry
	System initialization-Cstartup
	Migrating from CLIB to DLIB
	Device-specific header files
	Calling convention
	Object file considerations

	Compiler options
	Migrating project options
	Filenames
	List files

	Extended keywords
	SFR
	Bit variables
	Storage modifiers
	Interrupt functions and vectors
	Absolute located variables

	Pragma directives
	Intrinsic functions
	Segments
	Linker command file considerations

	Other changes
	Object file format
	Predefined symbols
	Nested comments
	Sizeof in preprocessor directives

	Migrating from the NEC tools
	Migration help
	Device-specific header files
	System startup and exit code
	Interrupt functions in C
	Interrupt functions in assembler
	Pragma directives
	Keywords
	Intrinsic functions
	Specifying segments in assembler
	Calling convention
	Assembler directives
	Operand identifiers
	Integer constants
	Special characters

