

Migration guide

Part number: EW8051_MigratingFromKeil-5 Page 1 of 7

Migrating from Keil µVision® for 8051 to IAR Embedded Workbench® for 8051

Use this guide as a guideline when converting project files from the µVision IDE and source code written
for Keil toolchains for 8051 to IAR Embedded Workbench for 8051.

 Product Version number

Migrating from Keil µVision IDE (C51 compiler) V4.x, V5.x

Migrating to IAR Embedded Workbench for 8051 V9.30 and newer

Migration overview

Migration of an existing project from Keil µVision requires that you collect information about your current project and then

apply this information to the new IAR Embedded Workbench project. In addition, you need to make some changes in the actual

source code. The information in this guide simplifies this process.

Note: If you are new to using IAR Embedded Workbench, we suggest that you first look at the user guides and tutorials which

you can find in the IAR Information Center.

Project conversion

To migrate existing Keil µVision applications to IAR Embedded Workbench there is a tool called IAR Project Converter.

This is a GUI application included with IAR Embedded Workbench, available via the Tools menu.

The IAR Project Converter tool converts µVision

project files into IAR Embedded Workbench project

files without changing the original file. Information

about source files, include paths, defined symbols, and

build configuration is transferred. As an option, also

source code substitutions are performed and you can add

your own substitution rules including support for regular

expressions. There are a number of pre-defined

substitution rules.

Procedure

1. Start IAR Embedded Workbench.

2. Start IAR Project Converter available in the

Tools menu.

3. Navigate to the µVision project to convert by

clicking the browse button.

4. Click the Execute button and a new IAR

Embedded Workbench project file will be

created.

5. Add the new project to a workspace by

choosing Add Existing Project in the Project

menu.

6. Set the relevant project options by choosing

Options in the Project menu.

Hint: Open the original project in µVision,

walk through the options and set the

corresponding options in IAR Embedded

Workbench as suggested in the section

Important tool settings below.

Migrating from Keil µVision for 8051 to IAR Embedded Workbench for 8051

Part number: EW8051_MigratingFromKeil-5 Page 2 of 7

Basic code differences

The following sections show some of the basic differences between code written for the Keil toolchain and IAR Embedded

Workbench that you should handle before building your converted project.

Initialization code

In IAR Embedded Workbench, initialization code is primarily located in the file cstartup.s51.

This file contains system startup code executed after reset, but before the main() function is called. Data/segment

initialization, stack pointer initialization and other things are performed here. This code is part of the runtime library but can be

overridden by including a copy of this assembler file in your project. You find the file in the folder 8051\src\lib in the

IAR Embedded Workbench installation.

The function int __low_level_init(void) is called from cstartup.s51. Its purpose is to perform any hardware

initialization required before segment initialization and calling main(). You may include your own version of this function in

your project by adding a copy of the file low_level_init.c, located in the folder 8051\src\lib, and edit it according

to you needs.

Special Function Registers

Each device supported by IAR Embedded Workbench has its own header file that contains variable definitions to access the

SFRs of the device, both for C/C++ and assembler. The naming convention for these header files is iodevice-name.h and

they are located in 8051\inc.

Example: ioEFM8SB20F64G.h

The names of SFR variables might sometimes differ from the names used in the Keil toolchain. SFR bit access differs because

IAR Embedded Workbench does not support the sbit keyword which is commonly used in the Keil toolchain for the purpose

of defining variables to access specific SFR bits. Instead, a C struct where each member represents one or more bits is used

for this purpose. This struct is named SFR-name_bit, where SFR-name is the name of the corresponding SFR variable

represented as a byte.

Sometimes several SFR bits, which are semantically related within the same SFR, are represented by separate sbit variables

in the Keil toolchain while they can be combined into a single bit-field in IAR Embedded Workbench. This can make it

necessary to rewrite source code which manipulates such bits or define your own variables to access the bits separately.

The __sfr memory type attribute keyword is used in IAR Embedded Workbench to define/declare SFR variables, for example

as follows:

__sfr __no_init volatile unsigned char TL0 @ 0x8A;

To define a variable which represents an SFR which consists of two bytes there is no special keyword like sfr16 which is

used in the Keil toolchain. The same keyword is used but the variable has the type unsigned short instead of unsigned

char:

__sfr __no_init volatile unsigned short ADC0 @ 0xBD;

The same restrictions as in the Keil toolchain apply when using this type of variable, the low byte should immediately precede

the high byte address wise and the low byte is the address of the variable. There is one difference though, when writing to the

variable Keil writes the most significant byte first and the least significant byte last while IAR Embedded Workbench writes

them in the opposite order. Generally, the writing order of SFRs can affect the hardware behavior so care must be taken when

utilizing multi-byte SFRs.

Interrupt Service Routines

The interrupt keyword is used in the Keil toolchain when defining an interrupt function (ISR). In IAR Embedded

Workbench, the extended keyword __interrupt is used for the same purpose. The interrupt keyword has a numeric

parameter which the Keil compiler automatically translates into an interrupt vector number. IAR Embedded Workbench

requires the application developer to specify the vector number directly using the vector pragma directive. For convenience,

the device-specific header file containing the SFR access variables also contain defined names for the interrupt vectors. Here is

an example comparing the syntax used in the two toolchains:

Migrating from Keil µVision for 8051 to IAR Embedded Workbench for 8051

Part number: EW8051_MigratingFromKeil-5 Page 3 of 7

Keil toolchain IAR Embedded Workbench

void timer0_isr(void) interrupt 1

{

...

}

#pragma vector=0x0B

__interrupt void timer0_isr(void)

{

...

}

It is also possible to specify a register bank which will be used by an interrupt function. In the Keil toolchain, this can be done

for any function, but in IAR Embedded Workbench it is only applicable to interrupt functions. The using keyword is used in

the Keil toolchain whereas the register_bank pragma directive is used in IAR Embedded Workbench. Here is an example:

Keil toolchain IAR Embedded Workbench

void timer0_isr(void) interrupt 1 using 2

{

...

}

#pragma register_bank=2

#pragma vector=0x0B

__interrupt void timer0_isr(void)

{

...

}

Inline assembler

Inline assembler is handled somewhat differently in the Keil toolchain than in IAR Embedded Workbench. The Keil toolchain

provides mechanisms to insert assembler code only if configured to generate a separate assembler source file (.src) which is

then assembled to object code. IAR Embedded Workbench integrates the assembler code directly into the object code when

compiling, but of course it is possible to generate a separate assembler source file (.s51) if desired.

The mechanism used in the Keil toolchain are the pragma directives ASM and ENDASM (or the alternative keyword __asm).

There are no corresponding pragmas in IAR Embedded Workbench, the asm keyword (or its alias __asm) is used instead.

Note that __asm in the Keil toolchain does not have the same syntax or semantics as __asm in IAR Embedded Workbench.

Here is an example of two equivalent code sequences:

Keil toolchain IAR Embedded Workbench

#pragma ASM

 MOV A, #33H

 MOV R1, #22H

 ADD A, R1

 JMP $

#pragma ENDASM

 __asm("MOV A, #0x33\n"

 "MOV R1, #0x22\n"

 "ADD A, R1\n"

 "JMP $");

Managing memory

The memory models used in the Keil toolchain – which can be applied to functions, constants and variables – correspond to the

concepts of code model and data model in IAR Embedded Workbench. The code and data models are set per project and

specify the default storage model for functions and data respectively. The code model can be overridden for individual

functions using function memory attribute extended keywords in the source code. The data model can be overridden for

individual data objects or pointers by specifying data memory attribute extended keywords in the source code. The data

memory attributes correspond to memory type specifiers in the Keil toolchain.

Data with an integer type represented by more than one byte is stored as big endian in the Keil toolchain. In IAR Embedded

Workbench such data is stored as little endian. This fact might require source code to be rewritten to work as expected.

Many library functions declared in string.h (such as memcpy, memcmp, strcat etc.) cannot handle parameters which are

located in different memory types. This might cause unexpected results.

Bit variables

Declaring a single-bit variable (which will be located in the bit-addressable area of the internal RAM) is done in the Keil

toolchain using the type bit. In IAR Embedded Workbench, this is accomplished by declaring a variable which has the type

bool in combination with the __bit data memory attribute. A declaration using the __bit attribute has limitations; it must be

located outside the function scope, and the object attribute __no_init must also be used which means that such a variable cannot

be initialized at the same time it is declared. If, in code written for the Keil toolchain, a variable declared with the bit keyword

resides within a function, a function argument list, or if a function returns a value of type bit, a supported type such as bool

should be used in IAR Embedded Workbench.

Migrating from Keil µVision for 8051 to IAR Embedded Workbench for 8051

Part number: EW8051_MigratingFromKeil-5 Page 4 of 7

Variables previously declared using the type bit have another type in IAR Embedded Workbench. Therefore they are no longer

bit-oriented and references to such variables should be reviewed carefully because bit-oriented operators such as ~, ^, & and |

will most probably not have the same effect after the change of type.

Building your project

After successfully converting the Keil µVision project and considered the basic code differences described above, you will still

most likely need to fine-tune parts of the source code so that it follows the IAR Embedded Workbench syntax.

1. Select your device under Project>Options>General Options.

2. Choose Project>Make.

3. To find the different errors/warnings, press F4 (Next Error/Tag).

This will bring you to the location in the source code that generated this error/warning.

4. For each error/warning, modify the source code to match the IAR Embedded Workbench syntax.

Note: You might have to consult the IAR C/C++ Compiler User Guide for this step.

5. After correcting one or more errors/warnings, repeat the procedure.

Note: It is always a good idea to start by correcting the first couple of errors/warnings in different source files because errors

and warnings later in the source code might just be effects of faulty syntax at the beginning of the source code.

Important tool settings

This is an overview of the most important tool settings. Note that many settings do not have a one-to-one mapping. An example

is the memory segment configuration which is available in Keil µVision through the Options dialog box. In IAR Embedded

Workbench segment configuration is all done in the linker configuration file which can be pointed out in the Options dialog

box.

Keil µVision IAR Embedded Workbench

Device selection

Default memory model

EW8051_CompilerGuide.pdf

Migrating from Keil µVision for 8051 to IAR Embedded Workbench for 8051

Part number: EW8051_MigratingFromKeil-5 Page 5 of 7

Migrating from Keil µVision for 8051 to IAR Embedded Workbench for 8051

Part number: EW8051_MigratingFromKeil-5 Page 6 of 7

Keil µVision IAR Embedded Workbench

Output type

Output format

Compiler options

Migrating from Keil µVision for 8051 to IAR Embedded Workbench for 8051

Part number: EW8051_MigratingFromKeil-5 Page 7 of 7

Keil µVision IAR Embedded Workbench

Defined symbols and include directories

Linker options

Note: We recommend that you verify all settings to make sure they match your project requirements.

IAR Systems, IAR Embedded Workbench, IAR Connect, C-SPY, C-RUN, C-STAT, IAR Visual State, visualSTATE,
IAR KickStart Kit, I-jet, I-jet Trace, I-scope, IAR Academy, IAR, and the logotype of IAR Systems are trademarks or
registered trademarks owned by IAR Systems AB. All other product names are trademarks of their respective
owners.

All information is subject to change without notice. IAR Systems assumes no responsibility for errors and shall not
be liable for any damage or expenses.

© 2018 IAR Systems AB. Part number: EW8051_MigratingFromKeil-5. Fifth edition: Mars 2018

