g IAR Embedded
Workbench
C-SPY® Debugging Guide

for Microchip Technology’s
AVR Microcontroller Family

UCSAVR-6b

2

C-SPY® Debugging Guide
for AVR

COPYRIGHT NOTICE
© 2011-2017 IAR Systems AB.

No part of this document may be reproduced without the prior written consent of IAR
Systems AB. The software described in this document is furnished under a license and
may only be used or copied in accordance with the terms of such a license.

DISCLAIMER

The information in this document is subject to change without notice and does not
represent a commitment on any part of [AR Systems. While the information contained
herein is assumed to be accurate, IAR Systems assumes no responsibility for any errors
or omissions.

In no event shall IAR Systems, its employees, its contractors, or the authors of this
document be liable for special, direct, indirect, or consequential damage, losses, costs,
charges, claims, demands, claim for lost profits, fees, or expenses of any nature or kind.

TRADEMARKS

IAR Systems, IAR Embedded Workbench, IAR Connect, C-SPY, C-RUN, C-STAT,
IAR Visual State, visual STATE, IAR KickStart Kit, I-jet, I-jet Trace, I-scope, IAR
Academy, IAR, and the logotype of IAR Systems are trademarks or registered
trademarks owned by IAR Systems AB.

Microsoft and Windows are registered trademarks of Microsoft Corporation.
Atmel and AVR are registered trademarks of Microchip Technology.
Adobe and Acrobat Reader are registered trademarks of Adobe Systems Incorporated.

All other product names are trademarks or registered trademarks of their respective
owners.

EDITION NOTICE
Sixth edition: April 2017

Part number: UCSAVR-6b

This guide applies to version 7.x of IAR Embedded Workbench® for Microchip
Technology’s AVR microcontroller family.

Internal reference: M23, Mym38.0, IMAE.

Brief contents

TABIES ... 19
Preface ... 21
Part |. Basic debugging ... 27
The IAR C-SPY Debugger ... 29
Getting started using C-SPY ... 49
Executing your application ... 63
Variables and eXpressions ..., 85
Breakpoints ... 105
MemOory and reGISTErS ... 133
Part 2. Analyzing your application 159
TIHACE .o 161
The application timeline ... 175
Profiling ..o 197
COdE COVEIAEoooee e 207
Power debugging ... e 211
Part 3. Advanced debugging ... 241
INEEITUPTS ..ot 243
C-SPY MACIOS .o sssssesssss s 251

The C-SPY command line utility—cspybat ..., 309

4

C-SPY® Debugging Guide
for AVR

Part 4. Additional reference information ... 335

Debugger OPLIONS ... 337
Additional information on C-SPY drivers ..., 367
INAEX ettt ettt 381

Contents

TADIES ... 19
Preface ... 21
Who should read this guide ... 21
Required KNOWIEAZEccceeeeiiieieieieieieeee e 21
What this guide contains ...,
Part 1. Basic debuggingc.ceceeveeeeiieieieieneneneneneneeseeeee
Part 2. Analyzing your application
Part 3. Advanced debuggingcccceevevievienieninnieeeeeeee e
Part 4. Additional reference informationc.cccecceiiicnininenn 22
Other documentation ... 23
User and reference guidesc..coceeveeeeieeeieiieniencnienencneneeeeeeeene 23
The online help SYSteMccceueieierieiiinienenieneneseseeeeceeeeeeee 24
Web sites
Document CONVENLIONS ..o e 24
Typographic CONVENTIONScceeverrerririerieieiereiene st sreeieeneeneenees 25
Naming CONVENTIONScc.eeueeuirureieieieierierieriesieseesiestesseeseeseeeeeeneeneas 25
Part |. Basic debugging ... 27
The IAR C-SPY Debugger ... 29
Introduction to C-SPY ... 29
An integrated enVIFONMENLc..coeverierireeeeieiererenenene e seereeeene 29
General C-SPY debugger featuresccccooeveverenicneneeeeeeecneenene 30
RTOS aWarenessccoceeeeeeirieieieieieienienenese s 31
Debugger cONCePLs ... 32
C-SPY and target SYSLEIMScc.eeververueeeemieieienienteieienteniesieniesiesiesienne 32
The deDUZZET ...c.eeeiiiiiie et 33
The target SYSIBIMN ...c.ecveereereriririreeiteitetetete et 33
The apPlICAtONoveviiiriieiieiieiieietetete e

C-SPY debugger systems
The ROM-mONItOr Programcccceceeeeveereeeeeerrenenereneneneeeeeenees 34

6

C-SPY® Debugging Guide
for AVR

Third-party debuggers

C-SPY plugin modulescccceeverierieniiniiiieieeieeeseeiee e 34
C-SPY drivers OVErVIEW ...t 35
Differences between the C-SPY driversccccocevenvencnenencncenene 35
The IAR C-SPY Simulator ... 36
The C-SPY Atmel-ICE driverccccooovvivenieeeee, 37
Features
Communication OVEIVIEWc.ccevevuevuiriieieieieieieienienieniesieseeneeneens 38
Hardware installationc..coceeevervciieieniinieienenenenenene e 38
The C-SPY Power Debugger driver ..., 39
FEALUIES ...ceoiviiiiiiiiiiiiieiccceee et s 39
CommuNICAtION OVEIVIEWccuerueriiriiriinririieiieiieiererenrenteniesresieereeneene 39
Hardware installationc.ccoceeerereeieienieieieneneneseneneeieeeeeeeene 40
The C-SPY JTAGICE3 driverccooooiviiiiiiiiieceeeeeenas 41
FRATUIES ...euieiiiiieieriir ettt 41
CommUNICAtION OVEIVIEWeveruiriirieriiniiniieiieiieieietesresiesiesiesieeseeneene 42
Hardware installationcccceceviviiieieiiiiiiinienicnenencncceeceeene 42
The C-SPY JTAGICE mkll/Dragon drivercooenenene. 43
FEALUIESeioniiieeie ettt e 43
Communication OVEIVIEWc.ccouereruiruirieieieieieienienieniesieseeneeneens 44
Hardware installationc..coceeeeeevcrieienienieiienenenenencnc e 44
The C-SPY AVR ONE! driver ..o 45
FEAtUIESeiviiiiiiiiiiiiieeccceee s

Communication overview ...

Hardware installationcoceeeeeeieieiieieieniee e
Getting started using C-SPY ... 49
Setting Up C-SPY .o e 49
Setting up for debuggingcccooevviiiiiriiniin 49

Executing from IStccceeereriririniirieieieeee et

Using a setup macro file
Selecting a device description filecooeevieveriiniiniienienieneeen. 51

Loading plugin modulesceceeeeieieieieienienieneneneneseeeeeeeeenen 51

Contents °

Starting C-SPY ... s 51
Starting a debug SESSIONcooveeiirieriirieeeeeeeeeeee e 52
Loading executable files built outside of the IDEc.ccccceceeeenee 52
Starting a debug session with source files missingccccceeeveeeeneee 52
Loading multiple imagesccccceveererrieriienienienieeeieeeeeee e 53
Editing in C-SPY WINAOWSccceviriiiiiiiiiiieninenenencnecieeeeeenne

Adapting for target hardware
Modifying a device description filecccceveeveniieriiinieniiinieneene 55
Initializing target hardware before C-SPY startsccccceceverenenne 55

Reference information on starting C-SPY ... 56
C-SPY Debugger main Windowc.ccoecveveeneenienniennienieniienieeneeeens 56
IMAages WINAOWc.cceviiriirinininininieiectetete et 60
Get Alternative File dialog DOXccccoceeievieieiienieneninencnencneceeene 62

Executing your application ... 63

Introduction to application execution ... 63
Briefly about application €XeCutionccccceceeveerverieneeneeneeneenne 63
Source and disassembly mode debuggingcccceceeverererieineennne 63
SINGLE SEEPPING ..evvenveniiieierierieeie ettt
Troubleshooting slow stepping speed
Running the applicationc.cceceeverieieieiieiienereneneneneseeeeeeeeaen
Highlightingccoooieiiiiiiieeeeeee s
Viewing the call Stackcccceeveeiiiiiiiiiniiecee e 68
Terminal input and OULPULceeueeierierierienieneneneeeeeeeeeeceeeeeeae 69
Debug Iog@INg ...c.coeoviuiiiiiieiiciecteee e 69

Reference information on application execution 70
Disassembly WindOWccecoeieieieiieieninenenenenesieeee e 71
Call Stack WiNAOW ...c..ooeeiiiiieiiieieieeeeese et 75
Terminal I/O Window ... 77
Terminal I/O Log File dialog boXccccoceveveneninenenencnieeeeeneee 78
Debug Log window
Log File dialog box
Report Assert dialog DOXcc.ceeevereeieiieiienienieneneresieeeceeeeeees 81
Autostep settings dialog DOXc.ceeeeririeieiienienierienienesesereeeeeeaen 82

COres WINAOW ...ooieuriieiiieeiieciee ettt e et e et e et eeetae e eareeereeeaseeennas 82

Variables and eXpressions ... 85
Introduction to working with variables and expressions 85

Briefly about working with variables and expressionsc........... 85

C-SPY EXPIESSIONS ...cvviviriiiriieiierieiteitenietetetentestesresresiesae st eneeseeneene 86

Limitations on variable informationceccecevenenenenieneneneenee. 88

Working with variables and expressionsccccccc.... 89

Using the windows related to variables and expressions 89

Viewing assembler variablescoccceivieinenieeneineneeneeene 89

Reference information on working with variables and

EXPIESSIONS ..ottt
AULO WINAOW ..ottt
Locals window ...

Watch window

StatiCs WINAOW ..evveriiriiiiiiiieiieieitetetee ettt ettt 97
Quick Watch WINAOWcccooviiiriiiiiiiiiiieeiie et 100
SymDbOIS WINAOW ...cc.ceuiiiiiiiiiiiiiiiieeeeeteereeeeieei ettt 102
Resolve Symbol Ambiguity dialog boXccceecererinvienieniencnennene 104
BreakpOints ... 105

Introduction to setting and using breakpoints

Reasons for using breakpointscccceveeeeeeveeeeiecieciecienenenenenne
Briefly about setting breakpointsc.cceceeereeeeeeieenenenenenennens
Breakpoint tYPeScc.eeeeieierierieieiesieseseeeeet ettt
Breakpoint iCONS ...c.cocviieieiinieniinienenenene ettt

Breakpoints in the C-SPY simulator

Breakpoints in the C-SPY hardware debugger drivers 108
Breakpoint CONSUIMETScovevierierienerererieniteieeeeneeeeeeeenesnennesrennes 110
Setting breakpoints ... 111
Various ways to set a breakpointcceceeveeerenereenienienienenenennens 112
Toggling a simple code breakpointcocceceeereeveneenieniencncnennens 112
Setting breakpoints using the dialog boXcc.ceceevvevieiivrcnencncnene 112
Setting a data breakpoint in the Memory windowccccevenee. 113
Setting breakpoints using SyStem MACIOSc.ceceeveevereverrerererienne 114

C-SPY® Debugging Guide
for AVR

Contents °

Useful breakpoint hints

Reference information on breakpoints ... 116
Breakpoints WindOWcccoeviereneneneneninenceeeieteeeeerene e 117
Breakpoint Usage WindOWcccccceeerenineninenineeieeeeenenenieneens 119
Code breakpoints dialog DOXccceevverierienieenieriienieeieneeneerieeieene 120

Log breakpoints dialog box

Data breakpoints dialog box ...

Data Log breakpoints dialog boXccccoocvevieneineenenieeienieneenene 125

Immediate breakpoints dialog bOXc..ceceevevereinienieneniineninenene. 126

Complex breakpoints dialog bOXcccccceeeeeeeeieieiieiienicnenenenee 127

Enter Location dialog DOXccceeviriieriiinienieniieieeieniesee e 130

Resolve Source Ambiguity dialog bOXcceceevecieciicienincncncnenne 131

MemOory and reGiSTEIS ... seesenns 133
Introduction to monitoring memory and registers 133

Briefly about monitoring memory and registers
C-SPY MEMOTY ZOMNES ...ccuveririruiiiieniienieenieenieeieetesieeseesieesieeseeenaeenne

Memory configuration for the C-SPY simulator

Monitoring memory and registers ...
Defining application-specific register groups
Monitoring Stack USAZEccveeverveeueeuieieiiieiesenieee ettt

Reference information on memory and registers 139
MeEmOTY WINAOW ...eevuiiiiiiniiiiieniieieeieeeesiteite ettt s 140
Memory Save dialog DOXcccccevievievieiiniinineneeeneceeee e 143
Memory Restore dialog DOXc.coceeeeierienienenenenenteteeeieneesieene 144
Fill dialog DOX .c.veeiiiriiieiiieee e 145
Symbolic Memory WindOWccccoeeererinrenenieieieieienienenienenee 146
Stack WINAOW ..cc.eruiriiiiiiiiiieieieteeeeee ettt s 149
RegiSters WiNAOWcc..ovieriiiriiniiiieeieeienteeeereeieeee st 153
Register User Groups Setup Windowc..coceeererereneeenneeneeneennens 156

Introduction to using trace ...
Reasons for USING traCecccceveruieuieieieieienienie et

Briefly about tracecccoevivinieieiiiiiiieicicencecceeecene

Requirements for using trace

Collecting and using trace dataccocoooiicn 162
Getting started With traCeccoceervieriinienenieierieeeeeseeseeeee 162
Trace data collection using breakpointsc.cceceeverereeeeeenenuennens 162
Searching in trace datac.ccoeverierereninineeiee e

Browsing through trace datacccccoceviiiiiiniiniinienesceeeeeee
Reference information on trace ..
Trace WINAOW ...oviiiiieiieiieiieieietee ettt ettt
Function Trace WindOWcccccevieiiieiiiiiiiininenenineceeeeeeiens
Trace Start breakpoints dialog box
Trace Stop breakpoints dialog box
Trace Expressions window
Find in Trace dialog DOXcccccceevieviiniinininininieeeeceecesenee

Find in Trace WindOWccccoeoiiiiiiieiiieeiie e
The application timeline ... 175

Introduction to analyzing your application’s timeline 175
Briefly about analyzing the timelinec..coccocevevenienencncncncnne.
Requirements for timeling SUPPOITcccevevvererereneneeeeienieieneene

Analyzing your application’s timeline
Displaying a graph in the Timeline window

Navigating in the graphscccceceevevieiienineninneneneeceeseeene
Analyzing performance using the graph datac.ccoceeceevienenenene 178
Getting started using data l0ggINGcccccovevvevininininenereereeeenn 179
Reference information on application timeline 180
Timeline window—Call Stack graphccccecevviiiiininenininenenne 181
Timeline window—Data Log graphcc.cocovenerininnicnininncnnens 184
Data Log WiNAOW ...cc.eeuieiiiiiiicieienerenieneeeeeeeceeteeee et 188

C-SPY® Debugging Guide
for AVR

Contents °

Data Log Summary Windowccccccceerenieneneneneenieieeeneneneneens 191

Viewing Range dialog BOXc.ccoocverieriiniiniiniiiieciecieeteseeneeene 194

Profiling ... 197
Introduction to the profiler ... 197
Reasons for using the profilerc..c.cccevvvvvenininininninneeeen 197

Briefly about the profilerc.ccvevieiinicineneiincieeneeeeene 197

Requirements for using the profilerc.ccocevveveenienennennennene 198

Using the profiler ... 198
Getting started using the profiler on function levelc..ccc.c... 199

Analyzing the profiling datac.ccoccevviiiiiniiniinieneeeeeee 199

Getting started using the profiler on instruction level 201

Reference information on the profiler ... 202
Function Profiler windowccccccoiiiiiiiniiiiie, 202

COdE COVEIAEoooie e 207
Introduction to code coverage ..., 207
Reasons for using code COVETageeceeveieveerieneneneneneneeieeens 207

Briefly about code COVEragecoceeeeieieienienieneneneeeeieneenieaens 207

Requirements and restrictions for using code coverage 207
Reference information on code coverage207
Code Coverage WindOWccceevierierierieneineninieeieeeeieereee e 208
Power debugging ... 211
Introduction to power debuggingcccocveniinininnines 211
Reasons for using power debuggingccceceevecveveciencnenenenenne 211
Briefly about power debuggingcccoeeviiiincniicniinccees 211
Requirements and restrictions for power debuggingc..c..c..... 213
Optimizing your source code for power consumption 213
Waiting for device status213
Software delayscc..... .213
Low-power mode diagnostiCsc.ccoevervenveneneneneneneneerenenenne 214

CPU fIEQUENCY ..evviuieiiienierienieeieeitetetete ettt 214
Detecting mistakenly unattended peripheralscccccovceerveneennenn. 215
Peripheral units in an event-driven SyStemcccceveeeeerereennenne 215

Finding conflicting hardware setups

Analog INtErferenCecocevvieriiriirieiiieeieeeeeete et

Debugging in the power domain ...,
Displaying a power profile and analyzing the resultc..cccccceenee 217
Detecting unexpected power usage during application execution ...219
Changing the graph resolutioncc.cccevevvereninineniecieieienenenne

Reference information on power debugging
Power Log Setup WindOWcocooouerieniinienienieeieeie et
Power Debugging Settingsc.ccocevverveeieieeneeieieeeieresenenenenae
Timeline window—Power graphc..ccccocevverererieniiencnencncnennene
Power Log WINAOWccccoviiiiiniiiiiiieeieteeeteceeee st
State Log Setup WINdOW ..c..coccecieiiiiniiniiniiniinieieeeeerereresie e
State Log WINAOW .c..ovviriiriiriiiiiiiiiieeeeceesiereeeeieeie e

State Log Summary WindOWcccceeeerieneriieinenienieneeneenieenieenne

Timeline window—State Log graphc..ccocevernncncnicncnicnnens

Part 3. Advanced debugging ... 241

INEEITUPES ..o 243
Introduction to interrupts ... 243
Briefly about the interrupt simulation SyStemc..coceeceecverieneennene 243

Interrupt charaCterisSticscevvverieriereenieereeeeeete et 244

C-SPY system macros for interrupt simulation

Target-adapting the interrupt simulation system

Using the interrupt system ...,
Simulating a Simple INTETTUPL ...c.ceververeiriirrirrieieieieeeteteree e
Reference information on interrupts ...
Interrupts dialog BOX ...cceeviiviiniiiriiiieeiereeeeteee et
C-SPY MACIOS .o 251
Introduction to C-SPY Macrosccccovmnenienccnenenenns 251
Reasons for using C-SPY mMacroscccceceevevvevienenenenienenneeieeens 251
Briefly about using C-SPY mMacrosccceceeevevierenenenenenneenienens 252
Briefly about setup macro functions and filescccocecercceeennne. 252

C-SPY® Debugging Guide
for AVR

Contents °

Briefly about the macro 1anguagecccceeveveneniinieenecncncnennene 252
Using C-SPY MACKOSccccooiirieicncnenceneeeie s 253
Registering C-SPY macros—an OVEIVIEWcc.coceeeeeeeevecrenenenne 254
Executing C-SPY macros—an OVEIrVIeWc..cecceceevereeeerveneenennens 254
Registering and executing using setup macros and setup files 255
Executing macros using Quick Watchccceveivvininciicnininene

Executing a macro by connecting it to a breakpoint

Aborting @ C-SPY MaCTOcceeveriiiniieiiiieeieeeeeieete et
Reference information on the macro language 258
MaACTO fUNCLIONS ..euveviiiriieeieieeiieiieteeteneeee ettt 258
Macro variablesocoieviiiiiiiiiii 258
MaACTO PATAMEGLETSvenverveierierieeieententeterentereereereeseeseeneenenenessessenne 259
MACTO SEINES .evenvinveeireeieetieieeiieite ettt sttt et et sae e e 259
MaCIO StAtEMENLSocuieuieieiieiieiieiieietenteeeee st 260

Formatted output

Reference information on reserved setup macro function

NAIMIES ..ottt ettt et sa et s et st 263
execUSerPreloadcoeieiiieiiiiiiiiiciceeecene 263
execUserExecutionStartedcccevevveriereinieneeieieieieeesiesie e 264
execUserExecutionStoppedccceevveevierienienienienieniestesienee s 264
EXECUSETSELUP ..cevinviiiiieiieiieiecictetctcteserese ettt 264
€XECUSEIPIERESELoveemiiiiiiiiiiiii e 265
€XECUSEIRESELoviviiiiiiiiiiicieiccccc e 265

eXECUSETEXIt ..ooovviiiiiiiciiicecee e ...265

Reference information on C-SPY system macros265
__abortLaunch ..o 267
__canCelAIINIEITUPLS ..ccvevviruierirrieieiieiietcree ettt 268

__CaNCEIINLEITUPE ..ottt

__ClearBreakcoocciieiiieciieeee e s

__disableInterrupts

__ATIVEITYPE ittt

__enablelnterrupts

14

C-SPY® Debugging Guide
for AVR

__evaluate

__readMemory8

__FIIIMEMOTY8 ..ottt 272
_ _fAIIMEMOTY 16 ettt 272
__fAIIMEMOTY32 ettt 273
__ELCYCICCOUNLETeoeieiiiieeiieieeieeterte sttt st 274
__1SBatChMOde ...c.ooviviiiiiiiicicicceccceececee e 275
__loadImage

__MEMOTYRESOTEeeviviiiiiiiiieieiiceieeie ettt

__memoryRestoreFromFileccccccevininininininiinicnicicncnenene
__IMNEIMOTYSAVE .eivivieiieieenieeeitetententente st et sbe st et eseeste st eseesbeseesbennens
__memorySaveTOFIlecccceviiiiiiiiiicce e
__messageBoxYesCancelccccceevinininininieniiiienicccneee
__messageBOXYESNOcooiiiiiiiiiiiiceeceeeee e
__OPENFIIE ot
__OTAETTNLRITUPE ...oeniiniiiiiiiiciieiceccecce ettt
_readFile ...

__1eadFileByte ...cocooviiiiiiiiiieece e

readMemoryByte

[R—

__1€adMEmMOTY 16 ...oeiiiiiiiiiieiieiieeeeeee et
__1eadMemOTY32 ...oouiiiiiiiiieeieete ettt
__1e@iSterMacCIOFIlecccoeuiriiiiiiiiiccncccecce
TESEEFILE e
__8etCodeBreakccoooeiviviiiniiiiiiicic e
__setComplexBreak
__SEtDAtABIEAKeeiiiiiieiieee e
__SEtLOEBIeakccooiiiiiiiii e
__SetSIMBIEakoovevviiiiiiiiieiciciecc e
__SetTraceStartBreakccvveviveeiiiiiiiiiieeceeee e
__setTraceStopBreak ...
__SOUTCEPOSIHION ...veuviiiiieiieiieiieiietcictesteseee ettt
CUSHFINA e
__SUDSHIING weiieiiiieiieiete ettt s
__targetDebug@erVersioncoceeeenienenenenenecnienienicnenenennens

B (o) 003 PR RURT

Contents °

__toString ...

EOUPPCT ettt et st
__Unloadlmagecccoeviriieiniiieicceeeeee e 298
__WIHEFILE ot 299
__WIEFIEBYLE .ooiiiiiiiiiiieeieeeeeeeee et 299
__writeMemory8, __writeMemoryByteccccocvvenienienienieeniennens 300
__writeMemory16
__writeMemory32

Graphical environment for macroscccccoovcvninncnncncnnn. 301
Macro Registration WindOWcccceevererenineneneenieieeenieneneneens 302
Debugger Macros Windowcoceevuervienienieneenienieniesee e 304
Macro Quicklaunch Windowcccoeevvieviiieiiiieniieciee e 306

The C-SPY command line utility—cspybat ... 309

Using C-SPY in batchmode ... 309
Starting CSPYDALccoeuerveieiiieiricirereeee e 309
OULPUL ettt ettt sttt et et e st e st e b e nbeebeenne 310
INVOCAON SYNEAX ..eevevieiieiieiieieictetetesereeesee ettt 310

Summary of C-SPY command line options 311
General cspybat options
Options available for all C-SPY driversc.ccceceeveeievievecncncnene 312
Options available for the simulator driverc.ccccceceveecercieniennene. 313
Options available for all C-SPY hardware debugger drivers 313
Options available for the C-SPY Power Debugger driver 313

Options available for the C-SPY JTAGICE mklII driver, the C-SPY
Dragon driver, the C-SPY JTAGICES3 driver, and the C-SPY AVR
ONE! AIIVET ..uviiiiiierienienecieetcteeteee ettt s 313
Options available for the C-SPY JTAGICE mklII driver, the C-SPY
Dragon driver, the C-SPY Atmel-ICE driver, the C-SPY Power Debug-
ger driver, the C-SPY JTAGICES3 driver, and the C-SPY AVR ONE!

ATV ettt ettt 314
Options available for the C-SPY JTAGICE mkKII driver and the C-SPY
Dragon driVercccoereririnieieieieeteeeesese ettt 314

Options available for the C-SPY Atmel-ICE driver, The C-SPY Power
Debugger driver, the C-SPY JTAGICES3 driver, and the C-SPY AVR

ONE! dIIVET ..o 314
Options available for the C-SPY JTAGICE mKII driver and the C-SPY
Dragon driVeTcccooeevieriiiiieiieeite ettt sttt 314
Options available for the C-SPY Dragon drivercccceceevenenene 315
Reference information on C-SPY command line options ...315
--64bit_doubles ... 315
“=OAK_FIaSh oo 315
--attach_to_running_targetccocceeeeeeeerenreneeeeeeieieiesieneneenienee 315
--avIoNe_jtag_ ClOCKoociiiiiiiiiiiiiicecce e 316
—-backend ...
--code_coverage_file
SmCPU et
SmCYCLES ettt s
==dEDUGLILE e

--disable_interrupts ...

-~ doWNIoad_ONLY ...coeviiiiiiiiiiiiiee e

--drv_COMMUNICALION ..c.vevveriiriiiiiiiiiiieieieiitieerceeee e 319
--drv_communication_l0gc.ccocereriririiniiniininineneeeeeeeeeene 320
==drV_debUZ_POTT ..ooueieiiniiiiiieieieeteeeeet et 320
--drv_download_datacccceviviiniiniinininieee 321

--drv_dragon

-=drV_pOWer deDUZEZETc..evveruerieriiiiieiieieteteie ettt
--drV_preserve_app_SECHONcoccerveereereerieeniensienrestenieesieeneeenieenne
--drv_preserve_bOOt_SECHIONccevervierierierinieieieieierenrenienienienne
--drv_set_exXit_breakpointcccoceeerirenieieieieieieieie e
--drv_set_getchar_breakpoint
--drv_set_putchar_breakpointccoceeeveninininiinienieneerenennenn
--drv_suppress_downloadccceverininininieeeee e
—=drv_use_PDI ...

-—drv_verify_downloadccccccceirininininieeeeee

“=@EPTOM_SIZE .eeuveurenierterierienieeitestenteteteteste sttt ebe et et eateaesbeteseestenee

C-SPY® Debugging Guide
16 for AVR

Contents °

--enhanced_core
e
--fUnNCtion_Profilingcccccceeveririneninininirieeeeeeceereesese e 326
~=JtAZICE_CLOCK nviniiiiriiiiriecieetctcee et 327
--jtagice_do_hardware_TeSetcoccevveeriereenieriieniienienieneenieeieenne 327
--jtagice_leave_timers_TUNNINGccccoveeeeeeeeeeeeeerenenrenenenenne 328

--jtagice_preserve_eeprom

--JtagICe_IeStOre_fUSEovveriiereiiiieiieieeiceeete ettt
--jtagicemklIl_use_software_breakpointscccceceeeveevecuenencnenenne 329
--leave_target_TUNMINGc.cocevveruerueruereenenriereeieeeeseetereeesresieneeneenee 329

Part 4. Additional reference information 335
Debugger OPLiONS ... 337
Setting debugger options ... 337
Reference information on general debugger options 338
SEUUP ettt sttt st 339
TMAZES e 340
PIUZINS .ottt 341

Reference information on C-SPY hardware debugger driver
OPLIONS ...t 342
AtMEI-ICE T oottt 342
AMMEL-ICE 2 ..o 345
COMMUNICALIONueiiiiiiiciiiieeereeeeee e 346
EXtra OPtiONS ...c.eovveriirieniieiieieeiieiietetete ettt ettt et s 347
AVR ONE!'T .o 348

AVR ONE!2350

JTAGICE3 1 ottt 351

JTAGICE3 2 ettt 353

JTAGICE MKIT 1 .ottt 354

JTAGICE MKIT 2 ..ottt 357

Serial POTIT ..ceviiiiiiiiiriiteectetctcet et 358
Dragon 1
Dragon 2

Power Debugger 1cocoviiiiiiiiiiiiiiiciccccerceeeeee e 362

Power DebuZEer 2c.coeeieiriieieieieiciceesenene et 364

Third-Party Driver OPtionscocceeveeeerieriienieneenieenicenieeieeee e 365

Additional information on C-SPY drivers ..., 367

Reference information on C-SPY driver menus 367

C-SPY AFIVEF ..ottt 367

SIMUIALOT TEIIU ..evveieiiiiieieieietee ettt 368

JTAGICE mKII MENU ...coovviiiiiiiiiiiiiieicieienienese et 369

Dragon MEeNUc.ooueruiriririeieieieceteseseee sttt 369

AtME]-ICE MENU ..ottt 370

JTAGICE3 menu371

AVR ONE! MENU ..ottt 372

Power Debugger MEenUcccevuevieriineneneneneneeeetetetesee e 373

Reference information on the C-SPY hardware debugger

AFIVEES ..ot
Fuse Handler dialog box
Fuse Handler dialog box

Resolving problems ...
No contact with the target hardwareccccoceceveeeinenicneennne. 379

C-SPY® Debugging Guide
for AVR

Tables

1: Typographic conventions used in this UIAEcc.cccevervieieiieiienieneiinercneenee 25
2: Naming conventions used in this gUIdecccceevieiriiriieiienienienenerererese e 25
3: Driver differencescoeveriririiiiicteiecetestee ettt 35
4: C-SPY assembler Symbols €XPIeSSIONScc.ceeeeeeeeerienienienienereneeeeteneensensensens 87
5: Handling name conflicts between hardware registers and assembler labels .. 87
6: Available breakpoints in C-SPY hardware debugger driversc.ccceceeuvenee. 109
7: C-SPY macros for Breakpointsc..ceeeeeierienienieneninenieeieeeeieesesieseeseesieeneene 114
8: Support for timeline infOormationcececeverieiieiienienieeeeeeeeeeeee e 177
9: Project options for enabling the profilerc..cccocevvinininieinieiieieencncnene 199
10: Project options for enabling code COVETagecocevererereeneenienienienenenienenes 208
11: Timer iINteITUPL SELLNZS woveerveerierieeierienitertenieert et et ete st e sbeesbeesteebeeabeennens 247
12: Examples of C-SPY macro variablescccccvvererininieeieniincninenenceeeee 259
13: Summary of system macros

14: __cancellnterrupt return values

15: __disablelnterrupts return Valuesccccecuevverereneninineeieneeieienienceeeeeeees 270
16: __driverType return VAlUESc.ccceeeeierierierienenenienieeeeeete et 270
17: __enablelnterrupts return Valuescocceveeveenieriieniieniieneeneestesieeie e 271
18: __evaluate return ValUESc.ccceceevieriinenenenininteceeetetercresre e 271
19: __isBatchMode return Valuescc.coceeveeieienieneneneneneeeeeeeeee e 275
20: __loadImage return ValUEScccooeeveerieeiieniienieniie sttt 275
21: __messageBoxYesCancel return valuesccccocevevenererneeneenienencnenenennes 279
22: __messageBoxYesNo return values

23: __openFile return VAlUESccccooceevuierieriiiniienienieeiceieete et 280
24: __readFile return Valuescc.cccevieriirieninininininteieeeeesrcsree e 282
25: __setCodeBreak return Valuesc.coeverererenenenieieeeienteneeseereereeie e 286
26: __set Complex Break return valuescooceveeveiniineeniennieenienieeie e 289
27: __setDataBreak return ValUesc..cccceceevvevienienenenininieeeeeeciesresrcere e 290
28: __setLogBreak return Valluescc.cocevereneninenenieieieieeeecsieseerceie e 291
29: __setSimBreak return valuesccccccoevienininininieicicccee e 292
30: __setTraceStartBreak return values

31:

_setTraceStopBreak return values

32: __sourcePosition return values ...

33: __unloadImage return Valuescooeevueriierienieniienieeieee et 299
34: CSPYDAL PATAMELETSeoveviiniiiiiiieiinienienteetcet ettt st 310
35: Options specific to the C-SPY drivers you are usingccccceeeeeerereenennenee 337

C-SPY® Debugging Guide
20 for AVR

Preface

Welcome to the C-SPY® Debugging Guide . The purpose of this guide is to help
you fully use the features in the IAR C-SPY® Debugger for debugging your
application based on the AVR microcontroller.

Who should read this guide

Read this guide if you plan to develop an application using IAR Embedded Workbench
and want to get the most out of the features available in C-SPY.

REQUIRED KNOWLEDGE

To use the tools in IAR Embedded Workbench, you should have working knowledge of:

o The architecture and instruction set of the Microchip AVR microcontroller (refer to
the chip manufacturer's documentation)

® The C or C++ programming language

o Application development for embedded systems

o The operating system of your host computer.

For more information about the other development tools incorporated in the IDE, refer
to their respective documentation, see Other documentation, page 23.

What this guide contains

Below is a brief outline and summary of the chapters in this guide.

Note: Some of the screenshots in this guide are taken from a similar product and not
from IAR Embedded Workbench for AVR.

PART |. BASIC DEBUGGING

® The IAR C-SPY Debugger introduces you to the C-SPY debugger and to the
concepts that are related to debugging in general and to C-SPY in particular. The
chapter also introduces the various C-SPY drivers. The chapter briefly shows the
difference in functionality that the various C-SPY drivers provide.

o Getting started using C-SPY helps you get started using C-SPY, which includes
setting up, starting, and adapting C-SPY for target hardware.

What this guide contains

22

C-SPY® Debugging Guide
for AVR

Executing your application describes the conceptual differences between source
and disassembly mode debugging, the facilities for executing your application, and
finally, how you can handle terminal input and output.

Variables and expressions describes the syntax of the expressions and variables
used in C-SPY, as well as the limitations on variable information. The chapter also
demonstrates the various methods for monitoring variables and expressions.

Breakpoints describes the breakpoint system and the various ways to set
breakpoints.

Memory and registers shows how you can examine memory and registers.

PART 2. ANALYZING YOUR APPLICATION

Trace describes how you can inspect the program flow up to a specific state using
trace data.

The application timeline describes the Timeline window, and how to use the
information in it to analyze your application’s behavior.

Profiling describes how the profiler can help you find the functions in your
application source code where the most time is spent during execution.

Code coverage describes how the code coverage functionality can help you verify
whether all parts of your code have been executed, thus identifying parts which have
not been executed.

Power debugging describes techniques for power debugging and how you can use
C-SPY to find source code constructions that result in unexpected power
consumption.

PART 3. ADVANCED DEBUGGING

Interrupts contains detailed information about the C-SPY interrupt simulation
system and how to configure the simulated interrupts to make them reflect the
interrupts of your target hardware.

C-SPY macros describes the C-SPY macro system, its features, the purposes of
these features, and how to use them.

The C-SPY command line utility—cspybat describes how to use C-SPY in batch
mode.

PART 4. ADDITIONAL REFERENCE INFORMATION

Debugger options describes the options you must set before you start the C-SPY
debugger.

e Additional information on C-SPY drivers describes menus and features provided by

the C-SPY drivers not described in any dedicated topics.

Preface __4

Other documentation

User documentation is available as hypertext PDFs and as a context-sensitive online
help system in HTML format. You can access the documentation from the Information
Center or from the Help menu in the IAR Embedded Workbench IDE. The online help
system is also available via the F1 key.

USER AND REFERENCE GUIDES

The complete set of IAR Systems development tools is described in a series of guides.
Information about:

System requirements and information about how to install and register the IAR
Systems products, is available in the booklet Quick Reference (available in the
product box) and the Installation and Licensing Guide.

Getting started using IAR Embedded Workbench and the tools it provides, is
available in the guide Getting Started with IAR Embedded Workbench®.

Using the IDE for project management and building, is available in the /DE Project
Management and Building Guide for AVR.

Using the IAR C-SPY® Debugger, is available in the C-SPY® Debugging Guide
for AVR.

Programming for the IAR C/C++ Compiler for AVR, is available in the JAR C/C++
Compiler User Guide for AVR.

Using the IAR XLINK Linker, the IAR XAR Library Builder, and the IAR XLIB
Librarian, is available in the /AR Linker and Library Tools Reference Guide.
Programming for the IAR Assembler for AVR, is available in the AVR® [AR
Assembler Reference Guide.

Performing a static analysis using C-STAT and the required checks, is available in
the C-STAT Static Analysis Guide.

Developing safety-critical applications using the MISRA C guidelines, is available
in the JAR Embedded Workbench® MISRA C:2004 Reference Guide or the IAR
Embedded Workbench® MISRA C:1998 Reference Guide.

Porting application code and projects created with a previous version of the IAR
Embedded Workbench for AVR, is available in the JAR Embedded Workbench®
Migration Guide.

Note: Additional documentation might be available depending on your product
installation.

23

Document conventions

24

THE ONLINE HELP SYSTEM

The context-sensitive online help contains:

Information about project management, editing, and building in the IDE
Information about debugging using the IAR C-SPY® Debugger

Reference information about the menus, windows, and dialog boxes in the IDE
Compiler reference information

Keyword reference information for the DLIB library functions. To obtain reference
information for a function, select the function name in the editor window and press
F1. Note that if you select a function name in the editor window and press F1 while
using the CLIB C standard library, you will get reference information for the DLIB
C/EC++ standard library.

WEB SITES

Recommended web sites:

The Microchip Technology web site, www.microchip.com, that contains
information and news about the Microchip AVR microcontrollers.

The IAR Systems web site, www.iar.com, that holds application notes and other
product information.

The web site of the C standardization working group,
www.open-std.org/jtcl/sc22/wgl4.

o The web site of the C++ Standards Committee, www.open-std.org/jtcl/sc22/wg21.

o The C++ programming language web site, isocpp.org.

This web site also has a list of recommended books about C++ programming.

The C and C++ reference web site, en.cppreference.com.

Document conventions

C-SPY® Debugging Guide
for AVR

When, in the IAR Systems documentation, we refer to the programming language C, the
text also applies to C++, unless otherwise stated.

When referring to a directory in your product installation, for example avr\doc, the full
path to the location is assumed, for example c¢: \Program Files\IAR
Systems\Embedded Workbench N.n\avr\doc, where the initial digit of the version
number reflects the initial digit of the version number of the IAR Embedded Workbench
shared components.

Preface __4

TYPOGRAPHIC CONVENTIONS
The IAR Systems documentation set uses the following typographic conventions:

Style Used for

computer * Source code examples and file paths.
* Text on the command line.
* Binary, hexadecimal, and octal numbers.

parameter A placeholder for an actual value used as a parameter, for example
filename.h where filename represents the name of the file.

[option] An optional part of a directive, where [and] are not part of the actual
directive, but any [,], {, or } are part of the directive syntax.

{option} A mandatory part of a directive, where { and } are not part of the
actual directive, butany [, 1, {, or } are part of the directive syntax.

[option] An optional part of a command.

[a]b|c] An optional part of a command with alternatives.

{a|b|c} A mandatory part of a command with alternatives.

bold Names of menus, menu commands, buttons, and dialog boxes that

appear on the screen.

italic * A cross-reference within this guide or to another guide.
* Emphasis.
An ellipsis indicates that the previous item can be repeated an arbitrary
number of times.

Identifies instructions specific to the IAR Embedded Workbench® IDE

interface.

Identifies instructions specific to the command line interface.
Identifies helpful tips and programming hints.

E

Identifies warnings.

Table 1: Typographic conventions used in this guide

NAMING CONVENTIONS

The following naming conventions are used for the products and tools from IAR
Systems®, when referred to in the documentation:

Brand name Generic term

IAR Embedded Workbench® for AVR IAR Embedded Workbench®

Table 2: Naming conventions used in this guide

25

Document conventions

26

C-SPY® Debugging Guide
for AVR

Brand name

Generic term

IAR Embedded Workbench® IDE for AVR
IAR C-SPY® Debugger for AVR

IAR C-SPY® Simulator

IAR C/C++ Compiler™ for AVR

IAR Assembler™ for AVR

IAR XLINK Linker™

IAR XAR Library Builder™

IAR XLIB Librarian™

IAR DLIB Runtime Environment™

IAR CLIB Runtime Environment™

the IDE

C-SPY, the debugger

the simulator

the compiler

the assembler

XLINK, the linker

the library builder

the librarian

the DLIB runtime environment

the CLIB runtime environment

Table 2: Naming conventions used in this guide (Continued)

Part |. Basic debugging

This part of the C-SPY® Debugging Guide for AVR includes these chapters:

e The IAR C-SPY Debugger
e Getting started using C-SPY
e Executing your application
e Variables and expressions

e Breakpoints

e Memory and registers

N

.hmuhhhm

7

RARRI

8

o~

The IAR C-SPY Debugger

e Introduction to C-SPY

e Debugger concepts

e C-SPY drivers overview

e The IAR C-SPY Simulator

o The C-SPY Atmel-ICE driver

o The C-SPY Power Debugger driver

e The C-SPY JTAGICE3 driver

e The C-SPY JTAGICE mkll/Dragon driver

e The C-SPY AVR ONE! driver

Introduction to C-SPY

These topics are covered:

e An integrated environment
o General C-SPY debugger features

e RTOS awareness

AN INTEGRATED ENVIRONMENT

C-SPY is a high-level-language debugger for embedded applications. It is designed for
use with the IAR Systems compilers and assemblers, and is completely integrated in the
IDE, providing development and debugging within the same application. This will give
you possibilities such as:

e Editing while debugging. During a debug session, you can make corrections directly
in the same source code window that is used for controlling the debugging. Changes
will be included in the next project rebuild.

e Setting breakpoints at any point during the development cycle. You can inspect and
modify breakpoint definitions also when the debugger is not running, and
breakpoint definitions flow with the text as you edit. Your debug settings, such as

29

Introduction to C-SPY

30

C-SPY® Debugging Guide
for AVR

watch properties, window layouts, and register groups will be preserved between
your debug sessions.

All windows that are open in the Embedded Workbench workspace will stay open when
you start the C-SPY Debugger. In addition, a set of C-SPY -specific windows are opened.

GENERAL C-SPY DEBUGGER FEATURES

Because IAR Systems provides an entire toolchain, the output from the compiler and
linker can include extensive debug information for the debugger, resulting in good
debugging possibilities for you.

C-SPY offers these general features:

Source and disassembly level debugging

C-SPY allows you to switch between source and disassembly debugging as required,
for both C or C++ and assembler source code.

Single-stepping on a function call level

Compared to traditional debuggers, where the finest granularity for source level
stepping is line by line, C-SPY provides a finer level of control by identifying every
statement and function call as a step point. This means that each function call—
inside expressions, and function calls that are part of parameter lists to other
functions—can be single-stepped. The latter is especially useful when debugging
C++ code, where numerous extra function calls are made, for example to object
constructors.

Code and data breakpoints

The C-SPY breakpoint system lets you set breakpoints of various kinds in the
application being debugged, allowing you to stop at locations of particular interest.
For example, you set breakpoints to investigate whether your program logic is correct
or to investigate how and when the data changes.

Monitoring variables and expressions

For variables and expressions there is a wide choice of facilities. You can easily
monitor values of a specified set of variables and expressions, continuously or on
demand. You can also choose to monitor only local variables, static variables, etc.

Container awareness

When you run your application in C-SPY, you can view the elements of library data
types such as STL lists and vectors. This gives you a very good overview and
debugging opportunities when you work with C++ STL containers.

Call stack information

The compiler generates extensive call stack information. This allows the debugger to
show, without any runtime penalty, the complete stack of function calls wherever the

The IAR C-SPY Debugger ___o

program counter is. You can select any function in the call stack, and for each
function you get valid information for local variables and available registers.

e Powerful macro system

C-SPY includes a powerful internal macro system, to allow you to define complex
sets of actions to be performed. C-SPY macros can be used on their own or in
conjunction with complex breakpoints and—if you are using the simulator—the
interrupt simulation system to perform a wide variety of tasks.

Additional general C-SPY debugger features
This list shows some additional features:

Threaded execution keeps the IDE responsive while running the target application
Automatic stepping

The source browser provides easy navigation to functions, types, and variables
Extensive type recognition of variables

Configurable registers (CPU and peripherals) and memory windows

Graphical stack view with overflow detection

Support for code coverage and function level profiling

The target application can access files on the host PC using file I/O (requires the
DLIB library)

o UBROF, Intel-extended, and Motorola input formats supported

o Optional terminal I/O emulation.

RTOS AWARENESS

C-SPY supports RTOS-aware debugging.

These operating systems are currently supported:
o Micrium uC/OS-1I

o OSEK Run Time Interface (ORTI)

RTOS plugin modules can be provided by IAR Systems, and by third-party suppliers.
Contact your software distributor or IAR Systems representative, alternatively visit the
IAR Systems web site, for information about supported RTOS modules.

A C-SPY RTOS awareness plugin module gives you a high level of control and visibility
over an application built on top of an RTOS. It displays RTOS-specific items like task
lists, queues, semaphores, mailboxes, and various RTOS system variables. Task-specific
breakpoints and task-specific stepping make it easier to debug tasks.

A loaded plugin will add its own menu, set of windows, and buttons when a debug
session is started (provided that the RTOS is linked with the application). For

31

Debugger concepts

information about other RTOS awareness plugin modules, refer to the manufacturer of
the plugin module.

Debugger concepts

This section introduces some of the concepts and terms that are related to debugging in
general and to C-SPY in particular. This section does not contain specific information
related to C-SPY features. Instead, you will find such information in the other chapters
of this documentation. The IAR Systems user documentation uses the terms described
in this section when referring to these concepts.

These topics are covered:

C-SPY and target systems
The debugger

The target system

The application

C-SPY debugger systems
The ROM-monitor program
Third-party debuggers

C-SPY plugin modules

C-SPY AND TARGET SYSTEMS

You can use C-SPY to debug either a software target system or a hardware target system.

C-SPY® Debugging Guide
32 for AVR

The IAR C-SPY Debugger ___o

This figure gives an overview of C-SPY and possible target systems:

— e e e e g e e e e e e — ==

Target system with application software

|
|
1 Simul |
| ':‘“ e Simulator
river
| |
| ——
|
ROM-monitor —
| monitor

Target hardware

Workbench C-SPY
Emulator
| driver —\[JTAG Target
emulator [T | hardware

3rd-party
driver

Target
| hardware

|
|
|
|
|
|
|
I .
IAR Embedded | driver 1
|
|
|
|
|
|
|
|
|
|
|

= Provided by IAR Systems

|:| = Provided by IAR Systems or third-party vendors

THE DEBUGGER

The debugger, for instance C-SPY, is the program that you use for debugging your
applications on a target system.

THE TARGET SYSTEM

The target system is the system on which you execute your application when you are
debugging it. The target system can consist of hardware, either an evaluation board or
your own hardware design. It can also be completely or partially simulated by software.
Each type of target system needs a dedicated C-SPY driver.

THE APPLICATION

A user application is the software you have developed and which you want to debug
using C-SPY.

C-SPY DEBUGGER SYSTEMS

C-SPY consists of both a general part which provides a basic set of debugger features,
and a target-specific back end. The back end consists of two components: a processor
module—one for every microcontroller, which defines the properties of the
microcontroller, and a C-SPY driver. The C-SPY driver is the part that provides
communication with and control of the target system. The driver also provides the user

33

Debugger concepts

34

C-SPY® Debugging Guide
for AVR

interface—menus, windows, and dialog boxes—to the functions provided by the target
system, for instance, special breakpoints. Typically, there are three main types of C-SPY
drivers:

o Simulator driver

o ROM-monitor driver

e Emulator driver.

C-SPY is available with a simulator driver, and depending on your product package,

optional drivers for hardware debugger systems. For an overview of available C-SPY
drivers and the functionality of each driver, see C-SPY drivers overview, page 35.

THE ROM-MONITOR PROGRAM

The ROM-monitor program is a piece of firmware that is loaded to non-volatile memory
on your target hardware; it runs in parallel with your application. The ROM-monitor
communicates with the debugger and provides services needed for debugging the
application, for instance stepping and breakpoints.

THIRD-PARTY DEBUGGERS

You can use a third-party debugger together with the AR Systems toolchain as long as
the third-party debugger can read any of the output formats provided by XLINK, such
as UBROF, ELF/DWARF, COFF, Intel-extended, Motorola, or any other available
format. For information about which format to use with a third-party debugger, see the
user documentation supplied with that tool.

C-SPY PLUGIN MODULES

C-SPY is designed as a modular architecture with an open SDK that can be used for
implementing additional functionality to the debugger in the form of plugin modules.
These modules can be seamlessly integrated in the IDE.

Plugin modules are provided by IAR Systems, or can be supplied by third-party vendors.
Examples of such modules are:

Code Coverage, which is integrated in the IDE.

The various C-SPY drivers for debugging using certain debug systems.

RTOS plugin modules for support for real-time OS aware debugging.

C-SPYLink that bridges IAR visualSTATE and IAR Embedded Workbench to make
true high-level state machine debugging possible directly in C-SPY, in addition to
the normal C level symbolic debugging. For more information, see the
documentation provided with IAR visualSTATE.

For more information about the C-SPY SDK, contact IAR Systems.

The IAR C-SPY Debugger ___o

C-SPY drivers overview
At the time of writing this guide, the IAR C-SPY Debugger for the AVR
microcontrollers is available with drivers for these target systems and evaluation boards:

Simulator

AVR® Atmel-ICE

AVR® Atmel Power Debugger

AVR® JTAGICE3

AVR® JTAGICE mkII/AVR® Dragon

AVR® AVR ONE!

Note: In addition to the drivers supplied with IAR Embedded Workbench, you can also
load debugger drivers supplied by a third-party vendor; see Third-Party Driver options,
page 365.

DIFFERENCES BETWEEN THE C-SPY DRIVERS

This table summarizes the key differences between the C-SPY drivers:

Power JTAGICE mkll/
Feature Simulator Atmel-ICE JTAGICE3 AVR ONE!
Debugger Dragon
Code Yes Yes! Yes! Yes! Yes! Yes!
breakpoints !
Data Yes Yes Yes Yes Yes! Yes
breakpoints !
Executionin real — Yes Yes Yes Yes Yes
time'
Zero memory Yes Yes Yes Yes Yes Yes
footprintI
Simulated Yes — — — — —
interruptsI
Real interruptsI — Yes Yes Yes Yes Yes

Data IoggingI Yes —_ — — — —
Cycle counter' Yes — — — — _
Code coverage' Yes — — — — —

Data coverage ' Yes — — — — —

Table 3: Driver differences

35

The IAR C-SPY Simulator

Power JTAGICE mkil/
Feature Simulator Atmel-ICE JTAGICE3 AVR ONE!
Debugger Dragon
Function/ Yes — — — — —
instruction
pr'ofilerI
Trace! Yes — — — — —
Power Yes — Yes — — —
debuggingI

Table 3: Driver differences (Continued)

1 With specific requirements or restrictions, see the respective chapter in this guide.

The IAR C-SPY Simulator

The C-SPY Simulator simulates the functions of the target processor entirely in
software, which means that you can debug the program logic long before any hardware
is available. Because no hardware is required, it is also the most cost-effective solution
for many applications.

The C-SPY Simulator supports:

Instruction-level simulation
Memory configuration and validation

Interrupt simulation

Peripheral simulation (using the C-SPY macro system in conjunction with
immediate breakpoints).

Simulating hardware instead of using a hardware debugging system means that some
limitations do not apply, but that there are other limitations instead. For example:

You can set an unlimited number of breakpoints in the simulator.

When you stop executing your application, time actually stops in the simulator.
When you stop application execution on a hardware debugging system, there might
still be activities in the system. For example, peripheral units might still be active
and reading from or writing to SFR ports.

o Application execution is significantly much slower in a simulator compared to when
using a hardware debugging system. However, during a debug session, this might
not necessarily be a problem.

The simulator is not cycle accurate.

Peripheral simulation is limited in the C-SPY Simulator and therefore the simulator
is suitable mostly for debugging code that does not interact too much with
peripheral units.

C-SPY® Debugging Guide
36 for AVR

The IAR C-SPY Debugger ___o

The C-SPY Atmel-ICE driver

The C-SPY Atmel-ICE driver is automatically installed during the installation of IAR
Embedded Workbench. Using the C-SPY Atmel-ICE driver, C-SPY can connect to
Atmel-ICE, Atmel Power Debugger, or EDBG. Many of the AVR microcontrollers have
built-in, on-chip debug support. Because the hardware debugger logic is built into the
microcontroller, no ordinary ROM-monitor program or extra specific hardware is
needed to make the debugging work.

FEATURES
In addition to the general features of C-SPY, the Atmel-ICE driver also provides:

o Execution in real time with full access to the microcontroller

o Use of the available hardware breakpoints on the target device and unlimited use of
software breakpoints

Zero memory footprint on the target system
Built-in flash loader

Communication via USB

Fuse handler.

37

The C-SPY Atmel-ICE driver

38

C-SPY® Debugging Guide
for AVR

COMMUNICATION OVERVIEW

The C-SPY Atmel-ICE driver uses the USB port to communicate with Atmel-ICE.
Atmel-ICE communicates with the hardware interface—for example JTAG, PDI,
debugWIRE, ISP, TPI, or UPDI—on the microcontroller.

C-SPY debugger
C-SPY Atmel-ICE driver

USB cable

l /Atmeucx e,
,; / JTAG cable (V

PDI cable

When a debug session is started, your application is automatically downloaded and
programmed into flash memory. You can disable this feature, if necessary.
HARDWARE INSTALLATION

For information about the hardware installation, see the Atmel-ICE User Guide from
Microchip Technology. This power-up sequence is recommended to ensure proper
communication between the target board, Atmel-ICE, and C-SPY:

Power up the target board.
Power up Atmel-ICE.
Start the C-SPY debug session.

To enable the hardware interface on the microcontroller, the JTAG and OCD fuse bits
must be enabled. Use the Fuse Handler dialog box available in the IAR Embedded

The IAR C-SPY Debugger ___o

Workbench IDE or a similar tool capable of programming the fuses to check and
program these bits. For more information, see the Fuse Handler dialog box, page 375.

The C-SPY Power Debugger driver

The C-SPY Power Debugger driver is automatically installed during the installation of
IAR Embedded Workbench. Using the C-SPY Power Debugger driver, C-SPY can
connect to Atmel Power Debugger. Many of the AVR microcontrollers have built-in,
on-chip debug support. Because the hardware debugger logic is built into the
microcontroller, no ordinary ROM-monitor program or extra specific hardware is
needed to make the debugging work.

FEATURES
In addition to the general features of C-SPY, the Power Debugger driver also provides:

o Execution in real time with full access to the microcontroller

Use of the available hardware breakpoints on the target device and unlimited use of
software breakpoints

Zero memory footprint on the target system
Built-in flash loader

Communication via USB

Fuse handler.

COMMUNICATION OVERVIEW

The C-SPY Power Debugger driver uses the USB port to communicate with the Atmel
Power Debugger. The Atmel Power Debugger communicates with the hardware

39

The C-SPY Power Debugger driver

40

C-SPY® Debugging Guide
for AVR

interface—for example JTAG, PDI, debugWIRE, ISP, TPI, or UPDI—on the
microcontroller.

C-SPY debugger
C-SPY Power Debugger driver

USB cable

-\
: / JTAG cable (‘ V

PDI cable

When a debug session is started, your application is automatically downloaded and
programmed into flash memory. You can disable this feature, if necessary.

HARDWARE INSTALLATION

For information about the hardware installation, see the Microchip Technology web site
www.microchip.com. This power-up sequence is recommended to ensure proper
communication between the target board, the Atmel Power Debugger, and C-SPY:

Power up the target board.
Power up the Atmel Power Debugger.
Start the C-SPY debug session.

To enable the hardware interface on the microcontroller, the JTAG and OCD fuse bits
must be enabled. Use the Fuse Handler dialog box available in the AR Embedded
Workbench IDE or a similar tool capable of programming the fuses to check and
program these bits. For more information, see the Fuse Handler dialog box, page 375.

The IAR C-SPY Debugger ___o

The C-SPY JTAGICES3 driver

The C-SPY JTAGICES3 driver is automatically installed during the installation of IAR
Embedded Workbench. Using the C-SPY JTAGICE3 driver, C-SPY can connect to
JTAGICE3. Many of the AVR microcontrollers have built-in, on-chip debug support.
Because the hardware debugger logic is built into the microcontroller, no ordinary
ROM-monitor program or extra specific hardware is needed to make the debugging
work.

FEATURES
In addition to the general features of C-SPY, the JTAGICE3 driver also provides:

o Execution in real time with full access to the microcontroller

o Use of the available hardware breakpoints on the target device and unlimited use of
software breakpoints

Zero memory footprint on the target system
Built-in flash loader

Communication via USB

Fuse handler.

41

The C-SPY JTAGICE3 driver

42

C-SPY® Debugging Guide
for AVR

COMMUNICATION OVERVIEW

The C-SPY JTAGICES3 driver uses the USB port to communicate with Atmel
JTAGICE3.JTAGICE3 communicates with the hardware interface—for example JTAG,
PDI, debugWIRE, or ISP—on the microcontroller.

C-SPY debugger
C-SPY JTAGICE3 driver

USB cable

/JTAG|CE3\\
g JTAG cable @
/ or (

PDI cable

5

When a debug session is started, your application is automatically downloaded and
programmed into flash memory. You can disable this feature, if necessary.
HARDWARE INSTALLATION

For information about the hardware installation, see the JTAGICE3 User Guide from
Microchip Technology. This power-up sequence is recommended to ensure proper
communication between the target board, JTAGICE3, and C-SPY:

Power up the target board.
Power up JTAGICE3.
Start the C-SPY debug session.

To enable the hardware interface on the microcontroller, the JTAG and OCD fuse bits
must be enabled. Use the Fuse Handler dialog box available in the IAR Embedded

The IAR C-SPY Debugger ___o

Workbench IDE or a similar tool capable of programming the fuses to check and
program these bits. For more information, see the Fuse Handler dialog box, page 375.

The C-SPY JTAGICE mkll/Dragon driver

The C-SPY JTAGICE mKII driver is automatically installed during the installation of
IAR Embedded Workbench. Using the C-SPY JTAGICE mklI driver, C-SPY can
connect to JTAGICE mklII and Dragon. Many of the AVR microcontrollers have built-in,
on-chip debug support. Because the hardware debugger logic is built into the
microcontroller, no ordinary ROM-monitor program or extra specific hardware is
needed to make the debugging work.

FEATURES
In addition to the general features of C-SPY, the JTAGICE mkII driver also provides:

o Execution in real time with full access to the microcontroller

Use of the available hardware breakpoints on the target device and unlimited use of
software breakpoints, for devices that support software breakpoints

Zero memory footprint on the target system
Built-in flash loader

Communication via the serial port or USB

Fuse handler.

43

The C-SPY JTAGICE mkll/Dragon driver

COMMUNICATION OVERVIEW

The C-SPY JTAGICE mkKII driver uses the serial port to communicate with Atmel AVR
JTAGICE mKII. JTAGICE mkII communicates with the JTAG, the PDI, or the
debugWIRE interface on the microcontroller.

C-SPY debugger
C-SPY JTAGICE mkll driver

Serial cable

(JTAGICE mkl\ \J
/ |TAG, PDI, (v

or debugWIRE
interface

When a debug session is started, your application is automatically downloaded and
programmed into flash memory. You can disable this feature, if necessary.
HARDWARE INSTALLATION

For information about the hardware installation, see the AVR® JTAGICE mkll User
Guide from Microchip Technology. The following power-up sequence is recommended
to ensure proper communication between the target board, JTAGICE mkII, and C-SPY:

I Power up the target board.
2 Power up JTAGICE mkKIIL.
Start the C-SPY debug session.

To enable the JTAG interface on the microcontroller, the JTAG and OCD fuse bits must
be enabled. Use the Fuse Handler dialog box available in the AR Embedded

C-SPY® Debugging Guide
44 for AVR

The IAR C-SPY Debugger ___o

Workbench IDE or a similar tool capable of programming the fuses to check and
program these bits. For more information, see the Fuse Handler dialog box, page 375.

The C-SPY AVR ONE! driver

The C-SPY AVR ONE! driver is automatically installed during the installation of IAR
Embedded Workbench. Using the C-SPY AVR ONE! driver, C-SPY can connect to
AVR ONE!. Many of the AVR microcontrollers have built-in, on-chip debug support.
Because the hardware debugger logic is built into the microcontroller, no ordinary
ROM-monitor program or extra specific hardware is needed to make the debugging
work.

FEATURES
In addition to the general features of C-SPY, the AVR ONE! driver also provides:

o Execution in real time with full access to the microcontroller

Use of the available hardware breakpoints on the target device and unlimited use of
software breakpoints

Zero memory footprint on the target system
Built-in flash loader

Communication via USB

Fuse handler.

45

The C-SPY AVR ONE! driver

46

C-SPY® Debugging Guide
for AVR

COMMUNICATION OVERVIEW

The C-SPY AVR ONE! driver uses the USB port to communicate with Atmel AVR
ONE!. AVR ONE! communicates with the hardware interface—for example JTAG,
PDI, debugWIRE, or ISP—on the microcontroller.

C-SPY debugger
C-SPY AVR ONE! driver

USB cable

AR ONR
o Hardware o
‘ / interface(

cable

5

When a debug session is started, your application is automatically downloaded and
programmed into flash memory. You can disable this feature, if necessary.
HARDWARE INSTALLATION

For information about the hardware installation, see the AVR ONE! User Guide from
Microchip Technology. This power-up sequence is recommended to ensure proper
communication between the target board, AVR ONE!, and C-SPY:

Power up the target board.
Power up AVR ONE!.
Start the C-SPY debug session.

To enable the hardware interface on the microcontroller, the JTAG and OCD fuse bits
must be enabled. Use the Fuse Handler dialog box available in the IAR Embedded

The IAR C-SPY Debugger ___o

Workbench IDE or a similar tool capable of programming the fuses to check and
program these bits. For more information, see the Fuse Handler dialog box, page 377.

47

The C-SPY AVR ONE! driver

C-SPY® Debugging Guide
48 for AVR

Getting started using
C-SPY

e Setting up C-SPY
e Starting C-SPY
e Adapting for target hardware

e Reference information on starting C-SPY

Setting up C-SPY

These tasks are covered:

Setting up for debugging
Executing from reset
Using a setup macro file

Selecting a device description file

Loading plugin modules

SETTING UP FOR DEBUGGING

Before you start C-SPY, choose Project>Options>Debugger>Setup and select the
C-SPY driver that matches your debugger system: simulator or a hardware debugger
system.

In the Category list, select the appropriate C-SPY driver and make your settings.
For information about these options, see Debugger options, page 337.

Click OK.

Choose Tools>Options to open the IDE Options dialog box:

o Select Debugger to configure the debugger behavior

o Select Stack to configure the debugger’s tracking of stack usage.

For more information about these options, see the /DE Project Management and
Building Guide for AVR.

See also Adapting for target hardware, page 55.

49

Setting up C-SPY

50

C-SPY® Debugging Guide
for AVR

EXECUTING FROM RESET

The Run to option—available on the Debugger>Setup page—specifies a location you
want C-SPY to run to when you start a debug session as well as after each reset. C-SPY
will place a temporary breakpoint at this location and all code up to this point is executed
before stopping at the location. Note that this temporary breakpoint is removed when the
debugger stops, regardless of how. If you stop the execution before the Run to location
has been reached, the execution will not stop at that location when you start the
execution again.

The default location to run to is the main function. Type the name of the location if you
want C-SPY to run to a different location. You can specify assembler labels or whatever
can be evaluated to such, for instance function names.

If you leave the check box empty, the program counter will then contain the regular
hardware reset address at each reset. Or, if you have selected the option Get reset
address from UBROF, the program counter will contain the __program_start label.

If no breakpoints are available when C-SPY starts, a warning message notifies you that
single stepping will be required and that this is time-consuming. You can then continue
execution in single-step mode or stop at the first instruction. If you choose to stop at the
first instruction, the debugger starts executing with the PC (program counter) at the
default reset location instead of the location you typed in the Run to box.

Note: This message will never be displayed in the C-SPY Simulator, where breakpoints
are unlimited.

USING A SETUP MACRO FILE

A setup macro file is a macro file that you choose to load automatically when C-SPY
starts. You can define the setup macro file to perform actions according to your needs,
using setup macro functions and system macros. Thus, if you load a setup macro file you
can initialize C-SPY to perform actions automatically.

For more information about setup macro files and functions, see Introduction to C-SPY
macros, page 251. For an example of how to use a setup macro file, see Initializing
target hardware before C-SPY starts, page 55.

To register a setup macro file:
Before you start C-SPY, choose Project>Options>Debugger>Setup.

Select Use macro file and type the path and name of your setup macro file, for
example Setup.mac. If you do not type a filename extension, the extension mac is
assumed.

Getting started using C-SPY ___4

SELECTING A DEVICE DESCRIPTION FILE
C-SPY uses device description files to handle device-specific information.

A default device description file is automatically used based on your project settings. If
you want to override the default file, you must select your device description file. Device
description files are provided in the AVR\config directory and they have the filename
extension ddf.

For more information about device description files, see Adapting for target hardware,
page 55.

To override the default device description file:
I Before you start C-SPY, choose Project>Options>Debugger>Setup.

2 Enable the use of a device description file and select a file using the Device
description file browse button.

Note: You can easily view your device description files that are used for your project.
Choose Project>Open Device Description File and select the file you want to view.
LOADING PLUGIN MODULES

On the Plugins page you can specify C-SPY plugin modules to load and make available
during debug sessions. Plugin modules can be provided by IAR Systems, and by
third-party suppliers. Contact your software distributor or IAR Systems representative,
or visit the AR Systems web site, for information about available modules.

For more information, see Plugins, page 341.

Starting C-SPY

When you have set up the debugger, you are ready to start a debug session.
These tasks are covered:

Starting a debug session

Loading executable files built outside of the IDE
Starting a debug session with source files missing
Loading multiple images

Editing in C-SPY windows

51

Starting C-SPY

52

C-SPY® Debugging Guide
for AVR

°3

STARTING A DEBUG SESSION

You can choose to start a debug session with or without loading the current executable
file.

To start C-SPY and download the current executable file, click the Download and
Debug button. Alternatively, choose Project>Download and Debug.

To start C-SPY without downloading the current executable file, click the Debug
without Downloading button. Alternatively, choose Project>Debug without
Downloading.

LOADING EXECUTABLE FILES BUILT OUTSIDE OF THE IDE

You can also load C-SPY with an application that was built outside the IDE, for example
applications built on the command line. To load an externally built executable file and
to set build options you must first create a project for it in your workspace.

To create a project for an externally built file:

Choose Project>Create New Project, and specify a project name.

To add the executable file to the project, choose Project>Add Files and make sure to
choose All Files in the Files of type drop-down list. Locate the executable file.

To start the executable file, click the Download and Debug button. The project can be
reused whenever you rebuild your executable file.

The only project options that are meaningful to set for this kind of project are options in
the General Options and Debugger categories. Make sure to set up the general project
options in the same way as when the executable file was built.

STARTING A DEBUG SESSION WITH SOURCE FILES MISSING

Normally, when you use the AR Embedded Workbench IDE to edit source files, build
your project, and start the debug session, all required files are available and the process
works as expected.

Getting started using C-SPY ___4

However, if C-SPY cannot automatically find the source files, for example if the
application was built on another computer, the Get Alternative File dialog box is
displayed:

Get Alternative File g|

Could nat find the following source file:
C:hprojectshtutorsTutor.c

<RNones J
| Skip |

Suggested alternative:

I If possible, don't show this dialog again

Typically, you can use the dialog box like this:

o The source files are not available: Click If possible, don’t show this dialog again
and then click Skip. C-SPY will assume that there simply is no source file available.
The dialog box will not appear again, and the debug session will not try to display
the source code.

e Alternative source files are available at another location: Specify an alternative
source code file, click If possible, don’t show this dialog again, and then click Use
this file. C-SPY will assume that the alternative file should be used. The dialog box
will not appear again, unless a file is needed for which there is no alternative file
specified and which cannot be located automatically.

If you restart the AR Embedded Workbench IDE, the Get Alternative File dialog box
will be displayed again once even if you have clicked If possible, don’t show this
dialog again. This gives you an opportunity to modify your previous settings.

For more information, see Get Alternative File dialog box, page 62.

LOADING MULTIPLE IMAGES

Normally, a debuggable application consists of exactly one file that you debug.
However, you can also load additional debug files (images). This means that the
complete program consists of several images.

Typically, this is useful if you want to debug your application in combination with a
prebuilt ROM image that contains an additional library for some platform-provided
features. The ROM image and the application are built using separate projects in the
IAR Embedded Workbench IDE and generate separate output files.

If more than one image has been loaded, you will have access to the combined debug
information for all the loaded images. In the Images window you can choose whether
you want to have access to debug information for one image or for all images.

53

Starting C-SPY

To load additional images at C-SPY startup:

I Choose Project>Options>Debugger>Images and specify up to three additional
images to be loaded. For more information, see /mages, page 340.

2 Start the debug session.
To load additional images at a specific moment:

Use the __loadImage system macro and execute it using either one of the methods
described in Using C-SPY macros, page 253.

To display a list of loaded images:

Choose Images from the View menu. The Images window is displayed, see /mages
window, page 60.

EDITING IN C-SPY WINDOWS

You can edit the contents of the Memory, Symbolic Memory, Registers, Register
User Groups Setup, Auto, Watch, Locals, Statics, and Quick Watch windows.

Use these keyboard keys to edit the contents of these windows:

Enter Makes an item editable and saves the new value.

Esc Cancels a new value.

In windows where you can edit the Expression field and in the Quick Watch window,
you can specify the number of elements to be displayed in the field by adding a
semicolon followed by an integer. For example, to display only the three first elements

of an array named myArray, or three elements in sequence starting with the element
pointed to by a pointer, write:

myArray; 3
To display three elements pointed to by myPtr, myPtr+1, and myPtr+2, write:
myPtr;3

Optionally, add a comma and another integer that specifies which element to start with.
For example, to display elements 10-14, write:

myArray; 5,10
To display myPtr+10, myPtr+11, myPtr+12, myPtr+13, and myPtr+14, write:
myPtr;5,10

Note: For pointers, there are no built-in limits on displayed element count, and no
validation of the pointer value.

C-SPY® Debugging Guide
54 for AVR

Getting started using C-SPY ___4

Adapting for target hardware

These tasks are covered:

o Modifying a device description file

e Initializing target hardware before C-SPY starts

MODIFYING A DEVICE DESCRIPTION FILE

C-SPY uses device description files provided with the product to handle several of the
target-specific adaptations, see Selecting a device description file, page 51. They contain
device-specific information such as:

o Memory information for device-specific memory zones, see C-SPY memory zones,
page 134.

e Definitions of memory-mapped peripheral units, device-specific CPU registers, and
groups of these.

e Definitions for device-specific interrupts, which makes it possible to simulate these
interrupts in the C-SPY simulator; see Interrupts, page 243.

Normally, you do not need to modify the device description file. However, if the
predefinitions are not sufficient for some reason, you can edit the file. Note, however,
that the format of these descriptions might be updated in future upgrades of the product.

Make a copy of the device description file that best suits your needs, and modify it
according to the description in the file. Reload the project to make the changes take
effect.

For information about how to load a device description file, see Selecting a device
description file, page 51.
INITIALIZING TARGET HARDWARE BEFORE C-SPY STARTS

You can use C-SPY macros to initialize target hardware before C-SPY starts. For
example, if your hardware uses external memory that must be enabled before code can
be downloaded to it, C-SPY needs a macro to perform this action before your
application can be downloaded.

I Create a new text file and define your macro function.

By using the built-in execUserPreload setup macro function, your macro function
will be executed directly after the communication with the target system is established
but before C-SPY downloads your application.

55

Reference information on starting C-SPY

For example, a macro that enables external SDRAM could look like this:

/* Your macro function. */
enableExternal SDRAM ()
{
__message "Enabling external SDRAM\n";
__writeMemory32(...);
}

/* Setup macro determines time of execution. */
execUserPreload()

{
enableExternal SDRAM() ;

}
2 Save the file with the filename extension mac.

Before you start C-SPY, choose Project>Options>Debugger and click the Setup tab.
4 Select the option Use Setup file and choose the macro file you just created.

Your setup macro will now be loaded during the C-SPY startup sequence.

Reference information on starting C-SPY

Reference information about:

o C-SPY Debugger main window, page 56
® [mages window, page 60

o Get Alternative File dialog box, page 62
See also:

o Tools options for the debugger in the /DE Project Management and Building Guide
for AVR.

C-SPY Debugger main window

When you start a debug session, these debugger-specific items appear in the main IAR
Embedded Workbench IDE window:

e A dedicated Debug menu with commands for executing and debugging your
application

o Depending on the C-SPY driver you are using, a driver-specific menu, often
referred to as the Driver menu in this documentation. Typically, this menu contains
menu commands for opening driver-specific windows and dialog boxes.

C-SPY® Debugging Guide
56 for AVR

Getting started using C-SPY ___4

e A special debug toolbar
o Several windows and dialog boxes specific to C-SPY.

The C-SPY main window might look different depending on which components of the
product installation you are using.

Menu bar

These menus are available during a debug session:

Debug

Provides commands for executing and debugging the source application. Most
of the commands are also available as icon buttons on the debug toolbar.

C-SPY driver menu
Provides commands specific to a C-SPY driver. The driver-specific menu is only
available when the driver is used. For information about the driver-specific
menu commands, see Reference information on C-SPY driver menus, page 367.

Debug menu

The Debug menu is available during a debug session. The Debug menu provides
commands for executing and debugging the source application. Most of the commands
are also available as icon buttons on the debug toolbar.
» Go F5
Break
Reset

Stop Debugging Ctrl=Shift+D

pa
]
M Step Over F10
3 stepinto F11
™ step Out Shift=F11
*1 Mext Statement

*] Runto Cursor

s Autostep..,

*= Set Mext Statement
C++ Exceptions 3

Memaory 3
Refresh
Logaging 3

These commands are available:

Go (F5)
Executes from the current statement or instruction until a breakpoint or program
exit is reached.

e

57

Reference information on starting C-SPY

58

C-SPY® Debugging Guide
for AVR

»

Break

Stops the application execution.

Reset
Resets the target processor. Click the drop-down button to access a menu with
additional commands.

Enable Run to 'I1abel', where label typically is main. Enables and disables
the project option Run to without exiting the debug session. This menu
command is only available if you have selected Run to in the Options dialog
box.

Reset strategies, which contains a list of reset strategies supported by the C-SPY
driver you are using. This means that you can choose a different reset strategy
than the one used initially without exiting the debug session. Reset strategies are
only available if the C-SPY driver you are using supports alternate reset
strategies.

Stop Debugging (Ctrl+Shift+D)
Stops the debugging session and returns you to the project manager.

Step Over (F10)
Executes the next statement, function call, or instruction, without entering C or
C++ functions or assembler subroutines.

Step Into (F11)
Executes the next statement or instruction, or function call, entering C or C++
functions or assembler subroutines.

Step Out (Shift+F11)
Executes from the current statement up to the statement after the call to the
current function.

Next Statement
Executes directly to the next statement without stopping at individual function
calls.

Run to Cursor
Executes from the current statement or instruction up to a selected statement or
instruction.

Autostep

Displays a dialog box where you can customize and perform autostepping, see
Autostep settings dialog box, page 82.

C-SPY windows

Getting started using C-SPY ___4

Set Next Statement
Moves the program counter directly to where the cursor is, without executing
any source code. Note, however, that this creates an anomaly in the program
flow and might have unexpected effects.

C++ Exceptions>Break on Throw
This menu command is not supported by your product package.

C++ Exceptions>Break on Uncaught Exception

This menu command is not supported by your product package.

Memory>Save

Displays a dialog box where you can save the contents of a specified memory
area to a file, see Memory Save dialog box, page 143.

Memory>Restore

Displays a dialog box where you can load the contents of a file in, for example
Intel-extended or Motorola s-record format to a specified memory zone, see
Memory Restore dialog box, page 144.

Refresh

Refreshes the contents of all debugger windows. Because window updates are
automatic, this is needed only in unusual situations, such as when target memory
is modified in ways C-SPY cannot detect. It is also useful if code that is
displayed in the Disassembly window is changed.

Logging>Set Log file
Displays a dialog box where you can choose to log the contents of the Debug
Log window to afile. You can select the type and the location of the log file. You
can choose what you want to log: errors, warnings, system information, user
messages, or all of these. See Log File dialog box, page 80.

Logging>Set Terminal I/0 Log file

Displays a dialog box where you can choose to log simulated target access
communication to a file. You can select the destination of the log file. See
Terminal 1/O Log File dialog box, page 78

Depending on the C-SPY driver you are using, these windows specific to C-SPY are
available during a debug session:

o C-SPY Debugger main window
o Disassembly window

e Memory window

59

Reference information on starting C-SPY

60

Images window

C-SPY® Debugging Guide
for AVR

Symbolic Memory window
Registers window

Watch window

Locals window

Auto window

Quick Watch window
Statics window

Call Stack window

Trace window

Function Trace window
Timeline window, see Reference information on application timeline, page 180
Terminal I/O window
Code Coverage window
Function Profiler window
Images window

Stack window

Symbols window.

Additional windows are available depending on which C-SPY driver you are using.

The Images window is available from the View menu.

MName Path
<All images> [Combines debug information from all images]
project] ChDocuments and Settingsihy Documentsi| AR Embedded WorkbenchDebughExeyproject! .out

exfralmage ChDocuments and Settingsi\hy Documentst| AR Embedded WorkbenchDebughExehextralmage.out

This window lists all currently loaded images (debug files).

Normally, a source application consists of exactly one image that you debug. However,
you can also load additional images. This means that the complete debuggable unit
consists of several images. See also Loading multiple images, page 53.

Getting started using C-SPY ___4

Requirements

None; this window is always available.

Display area

C-SPY can either use debug information from all of the loaded images simultaneously,
or from one image at a time. Double-click on a row to show information only for that
image. The current choice is highlighted.

This area lists the loaded images in these columns:

Name
The name of the loaded image.

Path
The path to the loaded image.

Context menu
This context menu is available:
Show only 'projectl’
These commands are available:

Show all images

Shows debug information for all loaded debug images.
Show only image

Shows debug information for the selected debug image.

Related information
For related information, see:
® Loading multiple images, page 53
o Images, page 340
o _ loadlmage, page 275.

61

Reference information on starting C-SPY

Get Alternative File dialog box

The Get Alternative File dialog box is displayed if C-SPY cannot automatically find
the source files to be loaded, for example if the application was built on another
computer.

Get Alternative File §|

Could nat find the following source file:
C:hprojectshtutorsTutor.c

<RNones J
| Skip |

Suggested alternative:

I If possible, don't show this dialog again

See also Starting a debug session with source files missing, page 52.

Could not find the following source file

The missing source file.

Suggested alternative

Specify an alternative file.

Use this file

After you have specified an alternative file, Use this file establishes that file as the alias
for the requested file. Note that after you have chosen this action, C-SPY will
automatically locate other source files if these files reside in a directory structure similar
to the first selected alternative file.

The next time you start a debug session, the selected alternative file will be preloaded
automatically.
Skip

C-SPY will assume that the source file is not available for this debug session.

If possible, don’t show this dialog again

Instead of displaying the dialog box again for a missing source file, C-SPY will use the
previously supplied response.

Related information

For related information, see Starting a debug session with source files missing, page 52.

C-SPY® Debugging Guide
62 for AVR

Executing your application

e Introduction to application execution

e Reference information on application execution

Introduction to application execution

These topics are covered:

Briefly about application execution
Source and disassembly mode debugging
Single stepping

Troubleshooting slow stepping speed
Running the application

Highlighting

Viewing the call stack

Terminal input and output

Debug logging

BRIEFLY ABOUT APPLICATION EXECUTION

C-SPY allows you to monitor and control the execution of your application. By
single-stepping through it, and setting breakpoints, you can examine details about the
application execution, for example the values of variables and registers. You can also use
the call stack to step back and forth in the function call chain.

The terminal I/O and debug log features let you interact with your application.

You can find commands for execution on the Debug menu and on the toolbar.

SOURCE AND DISASSEMBLY MODE DEBUGGING

C-SPY allows you to switch between source mode and disassembly mode debugging as
needed.

Source debugging provides the fastest and easiest way of developing your application,
without having to worry about how the compiler or assembler has implemented the
code. In the editor windows you can execute the application one statement at a time
while monitoring the values of variables and data structures.

63

Introduction to application execution

64

C-SPY® Debugging Guide
for AVR

Disassembly mode debugging lets you focus on the critical sections of your application,
and provides you with precise control of the application code. You can open a
disassembly window which displays a mnemonic assembler listing of your application
based on actual memory contents rather than source code, and lets you execute the
application exactly one machine instruction at a time.

Regardless of which mode you are debugging in, you can display registers and memory,
and change their contents.

SINGLE STEPPING

C-SPY allows more stepping precision than most other debuggers because it is not
line-oriented but statement-oriented. The compiler generates detailed stepping
information in the form of step points at each statement, and at each function call. That
is, source code locations where you might consider whether to execute a step into or a
step over command. Because the step points are located not only at each statement but
also at each function call, the step functionality allows a finer granularity than just
stepping on statements.

There are several factors that can slow down the stepping speed. If you find it too slow,
see Troubleshooting slow stepping speed, page 66 for some tips.

The step commands
There are four step commands:
e Step Into

o Step Over

o Next Statement

°

Step Out.

Using the Autostep settings dialog box, you can automate the single stepping. For more
information, see Autostep settings dialog box, page 82.

Executing your application ___4

Consider this example and assume that the previous step has taken you to the £ (i)
function call (highlighted):

extern int g(int);

int f(int n)

{

value = g(n-1) + g(n-2) + g(n-3);
return value;

}
int main()

{

£(i);
value ++;

Step Into

While stepping, you typically consider whether to step into a function and continue
stepping inside the function or subroutine. The Step Into command takes you to the first
step point within the subroutine g (n-1):

extern int g(int);

int f(int n)

{

value = g(n-1) + g(n-2) + g(n-3);
return value;

}

The Step Into command executes to the next step point in the normal flow of control,
regardless of whether it is in the same or another function.

Step Over

The Step Over command executes to the next step point in the same function, without
stopping inside called functions. The command would take you to the g (n-2) function
call, which is not a statement on its own but part of the same statement as g (n-1) . Thus,
you can skip uninteresting calls which are parts of statements and instead focus on
critical parts:

extern int g(int);

int f(int n)

{

value = g(n-1) + g(n-2) + g(n-3);
return value;

}

65

Introduction to application execution

66

C-SPY® Debugging Guide
for AVR

Next Statement

The Next Statement command executes directly to the next statement, in this case
return value, allowing faster stepping:

extern int g(int);

int f(int n)

{

value = g(n-1) + g(n-2) + g(n-3);
return value;

}

Step Out

When inside the function, you can—if you wish—use the Step Out command to step
out of it before it reaches the exit. This will take you directly to the statement
immediately after the function call:

extern int g(int);

int f(int n)

{

value = g(n-1) + g(n-2) g(n-3);
return value;

}
int main()

{

£(1i);
value ++;

}

The possibility of stepping into an individual function that is part of a more complex
statement is particularly useful when you use C code containing many nested function
calls. It is also very useful for C++, which tends to have many implicit function calls,
such as constructors, destructors, assignment operators, and other user-defined
operators.

This detailed stepping can in some circumstances be either invaluable or unnecessarily
slow. For this reason, you can also step only on statements, which means faster stepping.

TROUBLESHOOTING SLOW STEPPING SPEED

If you find that stepping speed is slow, these troubleshooting tips might speed up

stepping:

e If you are using a hardware debugger system, keep track of how many hardware
breakpoints that are used and make sure some of them are left for stepping.

Executing your application __¢

Stepping in C-SPY is normally performed using breakpoints. When C-SPY performs
a step command, a breakpoint is set on the next statement and the application
executes until it reaches this breakpoint. If you are using a hardware debugger
system, the number of hardware breakpoints—typically used for setting a stepping
breakpoint in code that is located in flash/ROM memory—is limited. If you, for
example, step into a C switch statement, breakpoints are set on each branch; this
might consume several hardware breakpoints. If the number of available hardware
breakpoints is exceeded, C-SPY switches into single stepping on assembly level,
which can be very slow.

For more information, see Breakpoints in the C-SPY hardware debugger drivers,
page 108 and Breakpoint consumers, page 110.

e Disable trace data collection, using the Enable/Disable button in both the Trace
and the Function Profiling windows. Trace data collection might slow down
stepping because the collected trace data is processed after each step. Note that it is
not sufficient to just close the corresponding windows to disable trace data
collection.

o Choose to view only a limited selection of SFR registers. You can choose between
two alternatives. Either type # SFR_name (where SFR_name reflects the name of the
SFR you want to monitor) in the Watch window, or create your own filter for
displaying a limited group of SFRs in the Registers window. Displaying many SFR
registers might slow down stepping because all registers must be read from the
hardware after each step. See Defining application-specific register groups, page
136.

o Close the Memory and Symbolic Memory windows if they are open, because the
visible memory must be read after each step and that might slow down stepping.

o Close any window that displays expressions such as Watch, Locals, Statics if it is
open, because all these windows read memory after each step and that might slow
down stepping.

o Close the Stack window if it is open. Choose Tools>Options>Stack and disable the
Enable graphical stack display and stack usage tracking option if it is enabled.

e If possible, increase the communication speed between C-SPY and the target
board/emulator.

RUNNING THE APPLICATION

Go

The Go command continues execution from the current position until a breakpoint or
program exit is reached.

67

Introduction to application execution

68

C-SPY® Debugging Guide
for AVR

Run to Cursor

The Run to Cursor command executes to the position in the source code where you
have placed the cursor. The Run to Cursor command also works in the Disassembly
window and in the Call Stack window.

HIGHLIGHTING

At each stop, C-SPY highlights the corresponding C or C++ source or instruction with
a green color, in the editor and the Disassembly window respectively. In addition, a
green arrow appears in the editor window when you step on C or C++ source level, and
in the Disassembly window when you step on disassembly level. This is determined by
which of the windows is the active window. If none of the windows are active, it is
determined by which of the windows was last active.

Tutor.c I!EEE

void init_fib{ void |

i

int i = 45;
o root[0] = root[l] = 1;

for { i=2 ; i<MAX _FIE : i++)
{

For simple statements without function calls, the whole statement is typically
highlighted. When stopping at a statement with function calls, C-SPY highlights the first
call because this illustrates more clearly what Step Into and Step Over would mean at
that time.

Occasionally, you will notice that a statement in the source window is highlighted using
a pale variant of the normal highlight color. This happens when the program counter is
at an assembler instruction which is part of a source statement but not exactly at a step
point. This is often the case when stepping in the Disassembly window. Only when the
program counter is at the first instruction of the source statement, the ordinary highlight
color is used.

VIEWING THE CALL STACK

The compiler generates extensive call frame information. This allows C-SPY to show,
without any runtime penalty, the complete function call chain at any time.

Typically, this is useful for two purposes:

o Determining in what context the current function has been called
o Tracing the origin of incorrect values in variables and in parameters, thus locating
the function in the call chain where the problem occurred.

The Call Stack window shows a list of function calls, with the current function at the
top. When you inspect a function in the call chain, the contents of all affected windows

Executing your application __¢

are updated to display the state of that particular call frame. This includes the editor,
Locals, Register, Watch, and Disassembly windows. A function would normally not
make use of all registers, so these registers might have undefined states and be displayed
as dashes (---).

In the editor and Disassembly windows, a green highlight indicates the topmost, or
current, call frame; a yellow highlight is used when inspecting other frames.

For your convenience, it is possible to select a function in the call stack and click the
Run to Cursor command to execute to that function.

Assembler source code does not automatically contain any call frame information. To
see the call chain also for your assembler modules, you can add the appropriate CFI
assembler directives to the assembler source code. For more information, see the AVR®
IAR Assembler Reference Guide.

TERMINAL INPUT AND OUTPUT

Sometimes you might have to debug constructions in your application that use stdin
and stdout without an actual hardware device for input and output. The Terminal I/O
window lets you enter input to your application, and display output from it. You can also
direct terminal I/O to a file, using the Terminal I/O Log Files dialog box.

This facility is useful in two different contexts:

e If your application uses stdin and stdout

e For producing debug trace printouts.

For more information, see Terminal 1/O window, page 77 and Terminal 1/0 Log File
dialog box, page 78.

DEBUG LOGGING

The Debug Log window displays debugger output, such as diagnostic messages,
macro-generated output, and information about trace.

It can sometimes be convenient to log the information to a file where you can easily
inspect it, see Log File dialog box, page 80. The two main advantages are:

o The file can be opened in another tool, for instance an editor, so you can navigate
and search within the file for particularly interesting parts

o The file provides history about how you have controlled the execution, for instance,
which breakpoints that have been triggered etc.

69

Reference information on application execution

Reference information on application execution

Reference information about:

Disassembly window, page 71

Call Stack window, page 75

Terminal 1/0 window, page 77

Terminal 1/0 Log File dialog box, page 78

°

°

°

°

® Debug Log window, page 79
o Log File dialog box, page 80

® Report Assert dialog box, page 81

® Autostep settings dialog box, page 82
°

Cores window, page 82

See also Terminal I/O options in the /IDE Project Management and Building Guide for
AVR.

C-SPY® Debugging Guide
70 for AVR

Executing your application __¢

Disassembly window
The C-SPY Disassembly window is available from the View menu.

[Go to memory address] [Select zone to display] I Toggle embedded source code

Disassemhly\ /// v O X

Gow v (Memoy ~J[B)

Disassembly J
& 001EA o7 RET |—|
NextCounter() ;
D DoForegroundProcess:
Code coverage ’7-‘ O0LEE FDE701 CALL N:NextCounter
 informarion fib = GetFib(callCount) ;
& 0O01EE AFOOEF MOV A¥, N:callCount
& 001F1 FD4502 CALL N:UFOSTR
PutFila{ fily) ;
& 001F4 EDS002 ER N:UF1CTLO
callCount = 0O;
main:
_ & 001F7 Fi5 CLEW AKX
[Current position }7*_
—_— InitFila() ;
& 001FE FDOEODZ2 CALL N:TCR27
& 001FE EFO03 ER S:5+0x05
_— DoForegroundProcess() ;
[Breakpeint }7'.
- while (callCount = MAX FIE)
& 00203 AFOOEF MOV A¥, N:callCount
& 00206 TCR0 XOR A, #0x80 5

This window shows the application being debugged as disassembled application code.
To change the default color of the source code in the Disassembly window:
I Choose Tools>Options>Debugger.
2 Set the default color using the Source code coloring in disassembly window option.

To view the corresponding assembler code for a function, you can select it in the editor
5 window and drag it to the Disassembly window.

See also Source and disassembly mode debugging, page 63.

Requirements

None; this window is always available.

71

Reference information on application execution

72

Toolbar

Display area

C-SPY® Debugging Guide
for AVR

The toolbar contains:

Go to
The memory location or symbol you want to view.

Zone
Selects a memory zone, see C-SPY memory zones, page 134.

Toggle Mixed-Mode

Toggles between displaying only disassembled code or disassembled code
together with the corresponding source code. Source code requires that the
corresponding source file has been compiled with debug information

The display area shows the disassembled application code.

This area contains these graphic elements:

Green highlight Indicates the current position, that is the next assembler
instruction to be executed. To move the cursor to any line in
the Disassembly window, click the line. Alternatively, move
the cursor using the navigation keys.

Yellow highlight Indicates a position other than the current position, such as
when navigating between frames in the Call Stack window
or between items in the Trace window.

Red dot Indicates a breakpoint. Double-click in the gray left-side
margin of the window to set a breakpoint. For more
information, see Breakpoints, page 105.

Green diamond Indicates code that has been executed—that is, code
coverage.

If instruction profiling has been enabled from the context menu, an extra column in the
left-side margin appears with information about how many times each instruction has
been executed.

Executing your application __¢

Context menu

This context menu is available:
Move to PC

Run to Cursor

Code Coverage

Instruction Profiling

Toggle Breakpoint (Code)
Toggle Breakpoint (Log)
Toggle Breakpoint (Trace Start)
Toggle Breakpoint (Trace Stop)
Enable/Disable Breakpoint
Edit Breakpoint...

Set Mext Statement

Copy Window Contents
Mixed-Mode

Find in Trace

Zone

Note: The contents of this menu are dynamic, which means that the commands on the
menu might depend on your product package.

These commands are available:

Move to PC
Displays code at the current program counter location.

Run to Cursor

Executes the application from the current position up to the line containing the
cursor.

Code Coverage

Displays a submenu that provides commands for controlling code coverage.
This command is only enabled if the driver you are using supports it.

Enable Toggles code coverage on or off.

Show Toggles the display of code coverage on or off.
Executed code is indicated by a green diamond.

Clear Clears all code coverage information.

73

Reference information on application execution

Instruction Profiling

Displays a submenu that provides commands for controlling instruction
profiling. This command is only enabled if the driver you are using supports it.

Enable Toggles instruction profiling on or off.

Show Toggles the display of instruction profiling on or off.
For each instruction, the left-side margin displays
how many times the instruction has been executed.

Clear Clears all instruction profiling information.

Toggle Breakpoint (Code)
Toggles a code breakpoint. Assembler instructions and any corresponding label
at which code breakpoints have been set are highlighted in red. For more
information, see Code breakpoints dialog box, page 120.

Toggle Breakpoint (Log)

Toggles alog breakpoint for trace printouts. Assembler instructions at which log
breakpoints have been set are highlighted in red. For more information, see Log
breakpoints dialog box, page 121.

Toggle Breakpoint (Trace Start)

Toggles a Trace Start breakpoint. When the breakpoint is triggered, the trace
data collection starts. Note that this menu command is only available if the
C-SPY driver you are using supports trace. For more information, see Trace
Start breakpoints dialog box, page 168.

Toggle Breakpoint (Trace Stop)

Toggles a Trace Stop breakpoint. When the breakpoint is triggered, the trace
data collection stops. Note that this menu command is only available if the
C-SPY driver you are using supports trace. For more information, see Trace
Stop breakpoints dialog box, page 169.

Enable/Disable Breakpoint
Enables and Disables a breakpoint. If there is more than one breakpoint at a
specific line, all those breakpoints are affected by the Enable/Disable
command.

Edit Breakpoint
Displays the breakpoint dialog box to let you edit the currently selected
breakpoint. If there is more than one breakpoint on the selected line, a submenu
is displayed that lists all available breakpoints on that line.

Set Next Statement

Sets the program counter to the address of the instruction at the insertion point.

C-SPY® Debugging Guide
74 for AVR

Executing your application __¢

Copy Window Contents
Copies the selected contents of the Disassembly window to the clipboard.

Mixed-Mode

Toggles between showing only disassembled code or disassembled code
together with the corresponding source code. Source code requires that the
corresponding source file has been compiled with debug information.

Find in Trace
Searches the contents of the Trace window for occurrences of the given
location—the position of the insertion point in the source code—and reports the
result in the Find in Trace window. This menu command requires support for
Trace in the C-SPY driver you are using, see Differences between the C-SPY
drivers, page 35.

Zone

Selects a memory zone, see C-SPY memory zones, page 134.

Call Stack window
The Call Stack window is available from the View menu.

Call Stack (=]

T Fibonacci::next()

- Drestination for Step Into
'::> malin i

[_call_main + O0x2]

Jump te main from label
plus offset

This window displays the C function call stack with the current function at the top. To
inspect a function call, double-click it. C-SPY now focuses on that call frame instead.

If the next Step Into command would step to a function call, the name of the function is
displayed in the gray bar at the top of the window. This is especially useful for implicit
function calls, such as C++ constructors, destructors, and operators.

See also Viewing the call stack, page 68.

Requirements

None; this window is always available.

75

Reference information on application execution

Display area

Each entry in the display area is formatted in one of these ways:

function(values) *** A C/C++ function with debug information.

Provided that Show Arguments is enabled, values
is a list of the current values of the parameters, or
empty if the function does not take any parameters.

***_if present, indicates that the function has been
inlined by the compiler. For information about
function inlining, see the /AR C/C++ Compiler User
Guide for AVR.

[label + offset] An assembler function, or a C/C++ function without
debug information.

<exception_frame> An interrupt.

Context menu

This context menu is available:
Go to Source
Show Arguments
Run to Cursor
Toggle Breakpoint (Code)
Toggle Breakpoint (Log)
Toggle Breakpoint (Trace Start)
Toggle Breakpoint (Trace Stop)
Enable/Disable Breakpoint

These commands are available:

Go to Source
Displays the selected function in the Disassembly or editor windows.

Show Arguments

Shows function arguments.

Run to Cursor

Executes until return to the function selected in the call stack.

Toggle Breakpoint (Code)
Toggles a code breakpoint.

Toggle Breakpoint (Log)
Toggles a log breakpoint.

C-SPY® Debugging Guide
76 for AVR

Terminal /0 window

Requirements

Executing your application __¢

Toggle Breakpoint (Trace Start)
Toggles a Trace Start breakpoint. When the breakpoint is triggered, trace data
collection starts. Note that this menu command is only available if the C-SPY
driver you are using supports it.

Toggle Breakpoint (Trace Stop)

Toggles a Trace Stop breakpoint. When the breakpoint is triggered, trace data
collection stops. Note that this menu command is only available if the C-SPY
driver you are using supports it.

Enable/Disable Breakpoint
Enables or disables the selected breakpoint

The Terminal I/0 window is available from the View menu.

Terminal /O *
Output: Loq file: Off
A Fibonacci object was created.

A Fibonacci object that starts at Fil
1

1 13

2

3 21

5

8 34

13

21 55

34

55 89)l
Fl 10 2
Input: Chl codes || Options...

Buffer size: 1]

Use this window to enter input to your application, and display output from it.

To use this window, you must:

Link your application with the option With I/0O emulation modules.

C-SPY will then direct stdin, stdout and stderr to this window. If the Terminal I/O
window is closed, C-SPY will open it automatically when input is required, but not for
output.

See also Terminal input and output, page 69.

None; this window is always available.

77

Reference information on application execution

Input

Ctrl codes

Options

Type the text that you want to input to your application.

Opens a menu for input of special characters, such as EOF (end of file) and NUL.

0:x00-0x0f »
O:x10-0:x1F »
ECF

Opens the IDE Options dialog box where you can set options for terminal I/O. For
reference information about the options available in this dialog box, see Terminal 1/O

options in IDE Project Management and Building Guide for AVR.

Terminal I/O Log File dialog box

Requirements

The Terminal I/O Log File dialog box is available by choosing Debug>Logging>Set

Terminal 1/0 Log File.

Terminal I/0 Log File

Termninal 140 Log File

™ Enable Teminal 10 log file

| il

Cancel

Use this dialog box to select a destination log file for terminal I/O from C-SPY.

See also Terminal input and output, page 69.

None; this dialog box is always available.

Terminal 10 Log Files

C-SPY® Debugging Guide
78 for AVR

Controls the logging of terminal I/O. To enable logging of terminal I/O to a file, select
Enable Terminal 1O log file and specify a filename. The default filename extension is

log. A browse button is available for your convenience.

Executing your application __¢

Debug Log window

The Debug Log window is available by choosing View>Messages.
.X
Log |
Fri Feb 06 10:41:40 2004: Loaded module
Fri Felb 06 10:41:40 2004: Target reset

Debug Log

This window displays debugger output, such as diagnostic messages, macro-generated
output, and information about trace. This output is only available during a debug
session. When opened, this window is, by default, grouped together with the other
message windows, see IDE Project Management and Building Guide for AVR.

Double-click any rows in one of the following formats to display the corresponding

source code in the editor window:

<path> (<row>) :<message>
<path> (<row>,<column>) :<message>

See also Debug logging, page 69 and Log File dialog box, page 80.

Requirements

None; this window is always available.

Context menu

This context menu is available:
Filter Level:
All
Messages
Warnings

Errors

Copy
Select All

Clear All

These commands are available:

All

Shows all messages sent by the debugging tools and drivers.

79

Reference information on application execution

80

Log File dialog box

Requirements

Enable Log file

Include

C-SPY® Debugging Guide
for AVR

Messages

Shows all C-SPY messages.
Warnings

Shows warnings and errors.

Errors
Shows errors only.

Copy
Copies the contents of the window.

Select All
Selects the contents of the window.

Clear All
Clears the contents of the window.

The Log File dialog box is available by choosing Debug>Logging>Set Log File.

r Log File
o Include:
¥ Enable log file
¥ Enmors ¥ “wamings
¥ Info IV User
$PROJ_DIR$ LogFile1.log J

()3 I Cancel |

Use this dialog box to log output from C-SPY to a file.

None; this dialog box is always available.

Enables or disables logging to the file.

The information printed in the file is, by default, the same as the information listed in
the Log window. Use the browse button, to override the default file and location of the

Executing your application __¢

log file (the default filename extension is 1og). To change the information logged,
choose between:

Errors
C-SPY has failed to perform an operation.

Warnings
An error or omission of concern.

Info
Progress information about actions C-SPY has performed.

User

Messages from C-SPY macros, that is, your messages using the __message
statement.

Report Assert dialog box
The Report Assert dialog box appears if you have a call to the assert function in your
application source code, and the assert condition is false. In this dialog box you can
choose how to proceed.

Report Assert P§|

The following Failed:

File: C:\Documents and SettingsiMy DocumentsiIAR Embedded Workbenchiresolve.cpp
Line: 35

Expression Failed:

a

Abort | Debug |

Abort
The application stops executing and the runtime library function abort, which is part
of your application on the target system, will be called. This means that the application
itself terminates its execution.

Debug
C-SPY stops the execution of the application and returns control to you.

Ignore

The assertion is ignored and the application continues to execute.

Reference information on application execution

Autostep settings dialog box

Requirements

Delay

Cores window

Requirements

Display area

C-SPY® Debugging Guide
82 for AVR

The Autostep settings dialog box is available from the Debug menu.

Autostep settings E

I Step Into [Source level] j Start I
Delay [miIIiseconds]:I‘I] Cancel |

Use this dialog box to customize autostepping.

The drop-down menu lists the available step commands, see Single stepping, page 64.

None; this dialog box is always available.

Specify the delay between each step in milliseconds.

The Cores window is available from the View menu.
Cores w 0 X

Core Status PC Cycles
[E 0:Cored Stopped ORE0055F 74

This window displays information about the executing core, such as its execution state.
This information is primarily useful for AR Embedded Workbench products that
support multi-core debugging.

None; this window is always available.

A row in this area shows information about a core, in these columns:

Execution state

Displays one of these icons to indicate the execution state of the core.

- in focus, not executing

Executing your application __¢

not in focus, not executing

in focus, executing

in focus, in sleep mode

O
3 not in focus, executing
G

not in focus, in sleep mode

Core
The name of the core.

Status
The status of the execution, which can be one of Stopped, Running, or
Sleeping.

PC

The value of the program counter.

Cycles | Time
The value of the cycle counter or the execution time since the start of the
execution, depending on the debugger driver you are using.

83

Reference information on application execution

C-SPY® Debugging Guide
84 for AVR

Variables and expressions

o Introduction to working with variables and expressions
o Working with variables and expressions

e Reference information on working with variables and expressions

Introduction to working with variables and expressions
This section introduces different methods for looking at variables and introduces some
related concepts.

These topics are covered:

e Briefly about working with variables and expressions
o C-SPY expressions

e Limitations on variable information.

BRIEFLY ABOUT WORKING WITH VARIABLES AND
EXPRESSIONS

There are several methods for looking at variables and calculating their values. These
methods are suitable for basic debugging:

e Tooltip watch—in the editor window—provides the simplest way of viewing the
value of a variable or more complex expressions. Just point at the variable with the
mouse pointer. The value is displayed next to the variable.

o The Auto window displays a useful selection of variables and expressions in, or
near, the current statement. The window is automatically updated when execution
stops.

o The Locals window displays the local variables, that is, auto variables and function
parameters for the active function. The window is automatically updated when
execution stops.

o The Watch window allows you to monitor the values of C-SPY expressions and
variables. The window is automatically updated when execution stops.

o The Statics window displays the values of variables with static storage duration.
The window is automatically updated when execution stops.

o The Macro Quicklaunch window and the Quick Watch window give you precise
control over when to evaluate an expression.

85

Introduction to working with variables and expressions

86

C-SPY® Debugging Guide
for AVR

o The Symbols window displays all symbols with a static location, that is, C/C++
functions, assembler labels, and variables with static storage duration, including
symbols from the runtime library.

These additional methods for looking at variables are suitable for more advanced
analysis:

e The Data Log window and the Data Log Summary window display logs of
accesses to up to four different memory locations you choose by setting data log
breakpoints. Data logging can help you locate frequently accessed data. You can
then consider whether you should place that data in more efficient memory.

For more information about these windows, see The application timeline, page 175.

C-SPY EXPRESSIONS

C-SPY expressions can include any type of C expression, except for calls to functions.
The following types of symbols can be used in expressions:

o C/C++ symbols
o Assembler symbols (register names and assembler labels)
o C-SPY macro functions

o C-SPY macro variables.

Expressions that are built with these types of symbols are called C-SPY expressions and
there are several methods for monitoring these in C-SPY. Examples of valid C-SPY
expressions are:

i+ 3

i = 42

myVar = cVar

cVar = myVar + 2

#asm_label

#R2

#PC

my_macro_func(19)

If you have a static variable with the same name declared in several different functions,
use the notation function: : variable to specify which variable to monitor.

C/C++ symbols

C symbols are symbols that you have defined in the C source code of your application,
for instance variables, constants, and functions—functions can be used as symbols but
cannot be executed. C symbols can be referenced by their names.

Note: C++ symbols might implicitly contain function calls which are not allowed in
C-SPY symbols and expressions.

Variables and expressions °

Note: Some attributes available in C/C++, like volatile, are not fully supported by
C-SPY. For example, this line will not be accepted by C-SPY:

sizeof (unsigned char volatile __memattr *)

However, this line will be accepted:

sizeof (unsigned char __memattr *)

Assembler symbols

Assembler symbols can be assembler labels or registers, for example the program
counter, the stack pointer, or other CPU registers. If a device description file is used, all
memory-mapped peripheral units, such as I/O ports, can also be used as assembler
symbols in the same way as the CPU registers. See Modifying a device description file,
page 55.

Assembler symbols can be used in C-SPY expressions if they are prefixed by #.

Example What it does
#PC++ Increments the value of the program counter-.
myVar = #SP Assigns the current value of the stack pointer register to your

C-SPY variable.
myVar = #label Sets myVar to the value of an integer at the address of 1abel.

myptr = &#label?7 Sets myptr to an int * pointer pointing at label7.

Table 4: C-SPY assembler symbols expressions

In case of a name conflict between a hardware register and an assembler label, hardware
registers have a higher precedence. To refer to an assembler label in such a case, you
must enclose the label in back quotes * (ASCII character 0x60). For example:

Example What it does
#PC Refers to the program counter.
#°PC’ Refers to the assembler label PC.

Table 5: Handling name conflicts between hardware registers and assembler labels

Which processor-specific symbols are available by default can be seen in the Registers
window, using the CPU Registers register group. See Registers window, page 153.
C-SPY macro functions

Macro functions consist of C-SPY macro variable definitions and macro statements
which are executed when the macro is called.

For information about C-SPY macro functions and how to use them, see Briefly about
the macro language, page 252.

87

Introduction to working with variables and expressions

88

C-SPY® Debugging Guide
for AVR

C-SPY macro variables

Macro variables are defined and allocated outside your application, and can be used in
a C-SPY expression. In case of a name conflict between a C symbol and a C-SPY macro
variable, the C-SPY macro variable will have a higher precedence than the C variable.
Assignments to a macro variable assign both its value and type.

For information about C-SPY macro variables and how to use them, see Reference
information on the macro language, page 258.

Using sizeof
According to standard C, there are two syntactical forms of sizeof:

sizeof (type)
sizeof expr

The former is for types and the latter for expressions.

Note: In C-SPY, do not use parentheses around an expression when you use the sizeof
operator. For example, use sizeof x+2 instead of sizeof (x+2).

LIMITATIONS ON VARIABLE INFORMATION

The value of a C variable is valid only on step points, that is, the first instruction of a
statement and on function calls. This is indicated in the editor window with a bright
green highlight color. In practice, the value of the variable is accessible and correct more
often than that.

When the program counter is inside a statement, but not at a step point, the statement or
part of the statement is highlighted with a pale variant of the ordinary highlight color.

Effects of optimizations

The compiler is free to optimize the application software as much as possible, as long
as the expected behavior remains. The optimization can affect the code so that
debugging might be more difficult because it will be less clear how the generated code
relates to the source code. Typically, using a high optimization level can affect the code
in a way that will not allow you to view a value of a variable as expected.

Consider this example:

myFunction ()

{
int 1 = 42;

x = computer(i); /* Here, the value of i is known to C-SPY */

Variables and expressions °

From the point where the variable i is declared until it is actually used, the compiler
does not need to waste stack or register space on it. The compiler can optimize the code,
which means that C-SPY will not be able to display the value until it is actually used. If
you try to view the value of a variable that is temporarily unavailable, C-SPY will
display the text:

Unavailable

If you need full information about values of variables during your debugging session,
you should make sure to use the lowest optimization level during compilation, that is,
None.

Working with variables and expressions

These tasks are covered:

e Using the windows related to variables and expressions

o Viewing assembler variables

See also Analyzing your application s timeline, page 177.

USING THE WINDOWS RELATED TO VARIABLES AND
EXPRESSIONS

Where applicable, you can add, modify, and remove expressions, and change the display
format in the windows related to variables and expressions.

To add a value you can also click in the dotted rectangle and type the expression you
want to examine. To modify the value of an expression, click the Value field and modify
its content. To remove an expression, select it and press the Delete key.

For text that is too wide to fit in a column—in any of the these windows, except the
g Trace window—and thus is truncated, just point at the text with the mouse pointer and
tooltip information is displayed.

Right-click in any of the windows to access the context menu which contains additional
commands. Convenient drag-and-drop between windows is supported, except for in the
Locals window, Data logging windows, and the Quick Watch window where it is not
relevant.

VIEWING ASSEMBLER VARIABLES

An assembler label does not convey any type information at all, which means C-SPY
cannot easily display data located at that label without getting extra information. To
view data conveniently, C-SPY by default treats all data located at assembler labels as

89

Reference information on working with variables and expressions

90

variables of type int. However, in the Watch, and Quick Watch windows, you can
select a different interpretation to better suit the declaration of the variables.

In this figure, you can see four variables in the Watch window and their corresponding
declarations in the assembler source file to the left:

asm.s

f) - x Wathi

__ilar program start
B main

asmvarl:
asmvari:
asmvar3:
asmvard:

HAME

FUBLIC

SECTION
CODES2

SECTION
DC32 42
DC32 456
DCE 35
DCE 10

CODES2

HOE
B main

END

main
_ iar program start

.intvec :

.TexXt :

—1

-

Expression
astrivarl
asrrvard

asrrvard
COLE (2)

<clickto ...

CODE (2)

Yalue
42
456
EE

Location Type
0=00000080 int
0=00000084 int
0=00000088 <8-bit unsigned>

Default Format

Binary Format
Octal Format
Decimal Format
Hexadecimal Format
Char Format
v Asls
8-bit Signed

8-bit Unsigned

Show As 3

Save to File...

16-bit Signed
16-bit Unsigned
32-bit Signed
32-bit Unsigned
64-bit Signed
64-bit Unsigned
float

double

Note that asmvar4 is displayed as an int, although the original assembler declaration
probably intended for it to be a single byte quantity. From the context menu you can
make C-SPY display the variable as, for example, an 8-bit unsigned variable. This has
already been specified for the asmvar3 variable.

Reference information on working with variables and expressions

Reference information about:

C-SPY® Debugging Guide
for AVR

Auto window, page 91

Locals window, page 93

Watch window, page 95

Statics window, page 97

Quick Watch window, page 100
Symbols window, page 102

Variables and expressions °

® Resolve Symbol Ambiguity dialog box, page 104
See also:

® Reference information on trace, page 164 for trace-related reference information

® Macro Quicklaunch window, page 306

Auto window

The Auto window is available from the View menu.

Expression Walue Location Type

i 5 0x7 short

Fib[i] 0 Mermory:0xC00C unsigned int
Fik <array> hemony:0xC002 unsigned int[10]
GetFib GetFib (0xBC) unsigned int (*)...

This window displays a useful selection of variables and expressions in, or near, the
current statement. Every time execution in C-SPY stops, the values in the Auto window
are recalculated. Values that have changed since the last stop are highlighted in red.

See also Editing in C-SPY windows, page 54.

Requirements

None; this window is always available.

Context menu
This context menu is available:
v Default Format
Binary Format
Octal Format
Decimal Format
Hexadecimal Format

Char Format

Show As 3

Note: The contents of this menu are dynamic and depend on which features that your
combination of software and hardware supports. However, the list of menu commands
below is complete and covers all possible commands.

91

Reference information on working with variables and expressions

These commands are available:

Remove
Removes the selected expression from the window.

Remove All

Removes all expressions listed in the window.

Default Format,

Binary Format,

Octal Format,

Decimal Format,

Hexadecimal Format,

Char Format
Changes the display format of expressions. The display format setting affects
different types of expressions in different ways. Your selection of display format
is saved between debug sessions. These commands are available if a selected
line in the window contains a variable.

The display format setting affects different types of expressions in these ways:

Variables The display setting affects only the selected variable, not
other variables.

Array elements The display setting affects the complete array, that is, the
same display format is used for each array element.

Structure fields All elements with the same definition—the same field
name and C declaration type—are affected by the
display setting.

Show As

Displays a submenu that provides commands for changing the default type
interpretation of variables. The commands on this submenu are mainly useful
for assembler variables—data at assembler labels—because these are, by
default, displayed as integers. For more information, see Viewing assembler
variables, page 89.

C-SPY® Debugging Guide
92 for AVR

Variables and expressions °

Locals window

The Locals window is available from the View menu.

&)

Locals

Yariable Yalue Location Type
i 45 R4 short

This window displays the local variables and parameters for the current function. Every
time execution in C-SPY stops, the values in the window are recalculated. Values that
have changed since the last stop are highlighted in red.

See also Editing in C-SPY windows, page 54.

Requirements

None; this window is always available.

Context menu
This context menu is available:

v Default Format
Binary Format
Octal Format
Decimal Format
Hexadecimal Format

Char Format

Show As 3

Note: The contents of this menu are dynamic and depend on which features that your
combination of software and hardware supports. However, the list of menu commands
below is complete and covers all possible commands.

These commands are available:

Remove

Removes the selected expression from the window.

Remove All
Removes all expressions listed in the window.

93

Reference information on working with variables and expressions

Default Format,

Binary Format,

Octal Format,

Decimal Format,

Hexadecimal Format,

Char Format
Changes the display format of expressions. The display format setting affects
different types of expressions in different ways. Your selection of display format
is saved between debug sessions. These commands are available if a selected
line in the window contains a variable.

The display format setting affects different types of expressions in these ways:

Variables The display setting affects only the selected variable, not
other variables.

Array elements The display setting affects the complete array, that is, the
same display format is used for each array element.

Structure fields All elements with the same definition—the same field
name and C declaration type—are affected by the
display setting.

Show As

Displays a submenu that provides commands for changing the default type
interpretation of variables. The commands on this submenu are mainly useful
for assembler variables—data at assembler labels—because these are, by
default, displayed as integers. For more information, see Viewing assembler
variables, page 89.

C-SPY® Debugging Guide
94 for AVR

Variables and expressions °

Watch window

The Watch window is available from the View menu.

Watch 1 =]
Expression Yalue Location Type

R 7 TS
<array> Memory : 0xFEFO2 unsigned int...
1 Memory : 0xFEFO2 unsigned int

1 Memory : 0xFEFO4 unsigned int

2 Memory : 0xFEFOS unsigned int

3 Memory : 0xFEF08 unsigned int

5 Memory : 0<FEFOA unsigned int

a Memory : 0xFEFOC unsigned int

13 Memory : 0xFEFOE unsigned int

21 Memory : 0<FEF10 unsigned int

34 Memory : 0xFEF12 unsigned int

55 Memory : 0xFEF14 unsigned int

Use this window to monitor the values of C-SPY expressions or variables. You can open
up to four instances of this window, where you can view, add, modify, and remove
expressions. Tree structures of arrays, structs, and unions are expandable, which means
that you can study each item of these.

Every time execution in C-SPY stops, the values in the Watch window are recalculated.
Values that have changed since the last stop are highlighted in red.

Be aware that expanding very huge arrays can cause an out-of-memory crash. To avoid
this, expansion is automatically performed in steps of 5000 elements.

See also Editing in C-SPY windows, page 54.

Requirements

None; this window is always available.

95

Reference information on working with variables and expressions

96

Context menu

C-SPY® Debugging Guide
for AVR

This context menu is available:

v Default Format
Binary Format
Octal Format
Decimal Format
Hexadecimal Format

Char Format

Show As 3

Note: The contents of this menu are dynamic and depend on which features that your
combination of software and hardware supports. However, the list of menu commands
below is complete and covers all possible commands.

These commands are available:

Remove

Removes the selected expression from the window.

Remove All
Removes all expressions listed in the window.

Default Format,
Binary Format,
Octal Format,
Decimal Format,
Hexadecimal Format,
Char Format

Changes the display format of expressions. The display format setting affects
different types of expressions in different ways. Your selection of display format
is saved between debug sessions. These commands are available if a selected
line in the window contains a variable.

The display format setting affects different types of expressions in these ways:

Variables The display setting affects only the selected variable, not
other variables.

Array elements The display setting affects the complete array, that is, the
same display format is used for each array element.

Structure fields All elements with the same definition—the same field
name and C declaration type—are affected by the
display setting.

Variables and expressions °

Show As
Displays a submenu that provides commands for changing the default type
interpretation of variables. The commands on this submenu are mainly useful
for assembler variables—data at assembler labels—because these are, by
default, displayed as integers. For more information, see Viewing assembler
variables, page 89.

Statics window

The Statics window is available from the View menu.

Statics @
“ariable Walue Location Type todule i
= f<CppTutoryf> <class:> 0=00000000 class stdictype<chary CppTutar
; <struct> 0=00000000 stuct std:ctype_base

__wptr 0=20000490 0=00000000 woid (* const™)()
f <CppTutoryf> <class:> 0x200002F4 class std:numpunct<char> CppTutar
f<CppTutoryf> <class:> 0=20000308 class stdinurm_put<char, stdio.. CppTutor
= msFib <Fibonacci\FibonaccizmsFib> <array: 0=2000032C unsigned long[100] Fibonacci
: 1 0=2000032C unsigned lang
1 0=20000330 unsigned long
2 0=20000334 unsigned long -

This window displays the values of variables with static storage duration that you have
selected. Typically, that is variables with file scope but it can also be static variables in
functions and classes. Note that volatile declared variables with static storage
duration will not be displayed.

Every time execution in C-SPY stops, the values in the Statics window are recalculated.
Values that have changed since the last stop are highlighted in red.

Click any column header (except for Value) to sort on that column.
See also Editing in C-SPY windows, page 54.

To select variables to monitor:

I In the window, right-click and choose Select statics from the context menu. The
window now lists all variables with static storage duration.

2 FEither individually select the variables you want to display, or choose one of the Select
commands from the context menu.

3 When you have made your selections, choose Select statics from the context menu to
toggle back to normal display mode.

Requirements

None; this window is always available.

97

Reference information on working with variables and expressions

98

Display area

C-SPY® Debugging Guide
for AVR

This area contains these columns:

Expression

The name of the variable. The base name of the variable is followed by the full
name, which includes module, class, or function scope. This column is not
editable.

Value
The value of the variable. Values that have changed are highlighted in red.

Dragging text or a variable from another window and dropping it on the Value
column will assign a new value to the variable in that row.

This column is editable.

Location
The location in memory where this variable is stored.

Type
The data type of the variable.

Module
The module of the variable.

Variables and expressions °

Context menu

This context menu is available:
v Default Format
Binary Format
Octal Format
Decimal Format
Hexadecimal Format

Char Format
Show As 3
Save to File...

v Select Statics
Select All
Select None
Select All in ‘Tutor'

Select None in ‘Tutor'

These commands are available:

Default Format,
Binary Format,

Octal Format,
Decimal Format,
Hexadecimal Format,
Char Format

Changes the display format of expressions. The display format setting affects
different types of expressions in different ways. Your selection of display format
is saved between debug sessions. These commands are available if a selected
line in the window contains a variable.

The display format setting affects different types of expressions in these ways:

Variables The display setting affects only the selected variable, not
other variables.

Array elements The display setting affects the complete array, that is, the
same display format is used for each array element.

Structure fields All elements with the same definition—the same field
name and C declaration type—are affected by the
display setting.

Save to File
Saves the content of the Statics window to a log file.

929

Reference information on working with variables and expressions

100

Quick Watch window

2

C-SPY® Debugging Guide
for AVR

Select Statics
Selects all variables with static storage duration; this command also enables all
Select commands below. Select the variables you want to monitor. When you
have made your selections, select this menu command again to toggle back to
normal display mode.

Select All
Selects all variables.

Select None
Deselects all variables.

Select All in module
Selects all variables in the selected module.

Select None in module

Deselects all variables in the selected module.

The Quick Watch window is available from the View menu and from the context menu
in the editor window.

Quick Watch =]

-

Expression Yalue Location Type
TimerStatus() 'Timer disabled® macro string

Use this window to watch the value of a variable or expression and evaluate expressions
at a specific point in time.

In contrast to the Watch window, the Quick Watch window gives you precise control
over when to evaluate the expression. For single variables this might not be necessary,
but for expressions with possible side effects, such as assignments and C-SPY macro
functions, it allows you to perform evaluations under controlled conditions.

See also Editing in C-SPY windows, page 54.

To evaluate an expression:

In the editor window, right-click on the expression you want to examine and choose
Quick Watch from the context menu that appears.

The expression will automatically appear in the Quick Watch window.

Variables and expressions °

Alternatively:

3 In the Quick Watch window, type the expression you want to examine in the
Expressions text box.

g 4 Click the Recalculate button to calculate the value of the expression.
For an example, see Using C-SPY macros, page 253.

Requirements

None; this window is always available.

Context menu
This context menu is available:

v Default Format
Binary Format
Octal Format
Decimal Format
Hexadecimal Format

Char Format

Show As 3

Note: The contents of this menu are dynamic and depend on which features that your
combination of software and hardware supports. However, the list of menu commands
below is complete and covers all possible commands.

These commands are available:

Remove
Removes the selected expression from the window.

Remove All

Removes all expressions listed in the window.

Default Format,

Binary Format,

Octal Format,

Decimal Format,

Hexadecimal Format,

Char Format
Changes the display format of expressions. The display format setting affects
different types of expressions in different ways. Your selection of display format
is saved between debug sessions. These commands are available if a selected
line in the window contains a variable.

101

Reference information on working with variables and expressions

The display format setting affects different types of expressions in these ways:

Variables The display setting affects only the selected variable, not
other variables.

Array elements The display setting affects the complete array, that is, the
same display format is used for each array element.

Structure fields All elements with the same definition—the same field
name and C declaration type—are affected by the
display setting.

Show As

Displays a submenu that provides commands for changing the default type
interpretation of variables. The commands on this submenu are mainly useful
for assembler variables—data at assembler labels—because these are, by
default, displayed as integers. For more information, see Viewing assembler
variables, page 89.

Symbols window

The Symbols window is available from the View menu after you have enabled the

Symbols plugin module.
]
Symbal | Location | Full Mame |"
call_count 0x00102228 call_count
do_foreground_process 0x000003C8 do_foreground_process()
xxit 0x000005E4 exit
get_fib 0x0000028C get_fib(int)
init_fibh 0x00000248 init_fib()
main 0x000003E2 mainf)
next_counter 0x000003BC next_counter()
put_fib 0x000002B8 put_fib{unsigned int)
putchar 0x00000464 putchar
root 0x00102200 root v

This window displays all symbols with a static location, that is, C/C++ functions,
assembler labels, and variables with static storage duration, including symbols from the
runtime library.

To enable the Symbols plugin module, choose Project>Options>Debugger>Select
plugins to load>Symbols.

Requirements

None; this window is always available.

C-SPY® Debugging Guide
102 for AVR

Variables and expressions °

Display area
This area contains these columns:

Symbol
The symbol name.

Location
The memory address.

Full name

The symbol name; often the same as the contents of the Symbol column but
differs for example for C++ member functions.

Click the column headers to sort the list by symbol name, location, or full name.

Context menu

This context menu is available:

Functions
Variables
Labels

These commands are available:

Functions
Toggles the display of function symbols on or off in the list.

Variables
Toggles the display of variables on or off in the list.

Labels
Toggles the display of labels on or off in the list.

103

Reference information on working with variables and expressions

Resolve Symbol Ambiguity dialog box

The Resolve Symbol Ambiguity dialog box appears, for example, when you specify a
symbol in the Disassembly window to go to, and there are several instances of the same
symbol due to templates or function overloading.

Resolve Symbol Ambiguity

Ambiguous symbol: foo

Ok

foo[void]

fon<T: Camcel

Requirements

None; this window is always available.

Ambiguous symbol

Indicates which symbol that is ambiguous.

Please select one symbol

A list of possible matches for the ambiguous symbol. Select the one you want to use.

C-SPY® Debugging Guide
104 for AVR

Breakpoints

e Introduction to setting and using breakpoints
e Setting breakpoints

e Reference information on breakpoints

Introduction to setting and using breakpoints

These topics are covered:

Reasons for using breakpoints

Briefly about setting breakpoints

Breakpoint types

Breakpoint icons

Breakpoints in the C-SPY simulator

Breakpoints in the C-SPY hardware debugger drivers

Breakpoint consumers

REASONS FOR USING BREAKPOINTS

C-SPY® lets you set various types of breakpoints in the application you are debugging,
allowing you to stop at locations of particular interest. You can set a breakpoint at a code
location to investigate whether your program logic is correct, or to get trace printouts.
In addition to code breakpoints, and depending on what C-SPY driver you are using,
additional breakpoint types might be available. For example, you might be able to set a
data breakpoint, to investigate how and when the data changes.

You can let the execution stop under certain conditions, which you specify. You can also
let the breakpoint trigger a side effect, for instance executing a C-SPY macro function,
by transparently stopping the execution and then resuming. The macro function can be
defined to perform a wide variety of actions, for instance, simulating hardware behavior.

All these possibilities provide you with a flexible tool for investigating the status of your
application.

BRIEFLY ABOUT SETTING BREAKPOINTS

You can set breakpoints in many various ways, allowing for different levels of
interaction, precision, timing, and automation. All the breakpoints you define will

105

Introduction to setting and using breakpoints

appear in the Breakpoints window. From this window you can conveniently view all
breakpoints, enable and disable breakpoints, and open a dialog box for defining new
breakpoints. The Breakpoint Usage window also lists all internally used breakpoints,
see Breakpoint consumers, page 110.

Breakpoints are set with a higher precision than single lines, using the same mechanism
as when stepping; for more information about precision, see Single stepping, page 64.

You can set breakpoints while you edit your code even if no debug session is active. The
breakpoints will then be validated when the debug session starts. Breakpoints are
preserved between debug sessions.

Note: For most hardware debugger systems it is only possible to set breakpoints when
the application is not executing.

BREAKPOINT TYPES

Depending on the C-SPY driver you are using, C-SPY supports different types of
breakpoints.

Code breakpoints

Code breakpoints are used for code locations to investigate whether your program logic
is correct or to get trace printouts. Code breakpoints are triggered when an instruction is
fetched from the specified location. If you have set the breakpoint on a specific machine
instruction, the breakpoint will be triggered and the execution will stop, before the
instruction is executed.

Log breakpoints

Log breakpoints provide a convenient way to add trace printouts without having to add
any code to your application source code. Log breakpoints are triggered when an
instruction is fetched from the specified location. If you have set the breakpoint on a
specific machine instruction, the breakpoint will be triggered and the execution will
temporarily stop and print the specified message in the C-SPY Debug Log window.

Trace Start and Stop breakpoints

Trace Start and Stop breakpoints start and stop trace data collection—a convenient way
to analyze instructions between two execution points.

Data breakpoints

Data breakpoints are primarily useful for variables that have a fixed address in memory.
If you set a breakpoint on an accessible local variable, the breakpoint is set on the
corresponding memory location. The validity of this location is only guaranteed for
small parts of the code. Data breakpoints are triggered when data is accessed at the

C-SPY® Debugging Guide
106 for AVR

Breakpoints °

specified location. The execution will usually stop directly after the instruction that
accessed the data has been executed.

Data Log breakpoints

Data log breakpoints are triggered when a specified memory address is accessed. A log
entry is written in the Data Log window for each access. Data logs can also be displayed
on the Data Log graph in the Timeline window, if that window is enabled.

You can set data log breakpoints using the Breakpoints window, the Memory window,
and the editor window.

Using a single instruction, the microcontroller can only access values that are one byte.
If you specify a data log breakpoint on a memory location that cannot be accessed by
one instruction, for example a double or a too large area in the Memory window, the
result might not be what you intended.

Immediate breakpoints

The C-SPY Simulator lets you set immediate breakpoints, which will halt instruction
execution only temporarily. This allows a C-SPY macro function to be called when the
simulated processor is about to read data from a location or immediately after it has
written data. Instruction execution will resume after the action.

This type of breakpoint is useful for simulating memory-mapped devices of various
kinds (for instance serial ports and timers). When the simulated processor reads from a
memory-mapped location, a C-SPY macro function can intervene and supply
appropriate data. Conversely, when the simulated processor writes to a memory-mapped
location, a C-SPY macro function can act on the value that was written.

Complex breakpoints

The C-SPY Atmel-ICE driver, the C-SPY Power Debugger driver, the C-SPY AVR
ONE! driver, and the C-SPY JTAGICES3 driver support complex breakpoints. Complex
breakpoints use the functionality of the firmware and are faster than data breakpoints
and code breakpoints. Using complex breakpoints, you can specify special conditions
for when the breakpoint should trigger.

107

Introduction to setting and using breakpoints

C-SPY® Debugging Guide
108 for AVR

BREAKPOINT ICONS

A breakpoint is marked with an icon in the left margin of the editor window, and the icon
varies with the type of breakpoint:

Tutor.c m |

unsigned int get_fib({ int nr |

{
| RECinr >) s (nr <= MAX FIB) |
{
keturn { rooclnr-] 7
}

I Code breakpoint l

I Log breakpoint l —

I Toeltip information l | |tog @ Utilities.c:37.5
—_— Memory:0x6a [Fetch]

‘O return ([0O);

Disabled code

breakpeint b

If the breakpoint icon does not appear, make sure the option Show bookmarks is
selected, see Editor options in the IDE Project Management and Building Guide for
AVR.

Just point at the breakpoint icon with the mouse pointer to get detailed tooltip
information about all breakpoints set on the same location. The first row gives user
breakpoint information, the following rows describe the physical breakpoints used for
implementing the user breakpoint. The latter information can also be seen in the
Breakpoint Usage window.

Note: The breakpoint icons might look different for the C-SPY driver you are using.

BREAKPOINTS IN THE C-SPY SIMULATOR

The C-SPY simulator supports all breakpoint types and you can set an unlimited amount
of breakpoints.

BREAKPOINTS IN THE C-SPY HARDWARE DEBUGGER
DRIVERS

Using the C-SPY drivers for hardware debugger systems you can set various breakpoint
types. The amount of breakpoints you can set depends on the number of hardware
breakpoints available on the target system or whether you have enabled software
breakpoints, in which case the number of breakpoints you can set is unlimited.

Breakpoints °

This table summarizes the characteristics of breakpoints for the different target systems:

C-SPY hardware debugger driver

Code breakpoints

Data breakpoints

JTAGICE

using hardware br'eakpoints8

using software breakpoints

JTAGICE mkll

using hardware br'eakpoints:']'8

using software breakpoints

Atmel-ICE

using hardware breakpoint53'5'7' 8

using software breakpoints
Power Debugger

using hardware breakpoint53'5'7' 8

using software breakpoints
JTAGICE3

using hardware breakpoints3'5'7' 8

using software breakpoints
AVR ONE!

using hardware breakpoints3'5'7' 8

using software breakpoints

4!

Unlimited

4I,2

Unlimited

4I,2

Unlimited

4I,2

Unlimited

4I,2

Unlimited

4I,2

Unlimited

26
26

26
26

26
26

Table 6: Available breakpoints in C-SPY hardware debugger drivers

! The sum of code and data breakpoints can never exceed 4—the number of available
hardware breakpoints. This means that for every data breakpoint in use, one less code
breakpoint is available, and that no data breakpoints are available if you use four code

breakpoints.

2 If software breakpoints are enabled, the number of code breakpoints is unlimited.

3 When the number of available hardware breakpoints is exceeded, software breakpoints

will be used if enabled.

4 Data breakpoints are not available when the debugWIRE interface is used.

51If data breakpoints and complex breakpoints have not been used, hardware breakpoints

will be used until exhausted. After that, software breakpoints will be used.

o1f complex breakpoints are used, data breakpoints are not available, and vice versa.

7 Note that a complex breakpoint uses all available hardware breakpoints.

109

Introduction to setting and using breakpoints

8 The number of available hardware breakpoints depends on the target system you are
using.

For Atmel-ICE, Power Debugger, JTAGICE3,JTAGICE mkIl, AVR ONE!, and Dragon,
the number and types of breakpoints available depend on whether the device is using the
JTAG or the debugWIRE interface. The information in this guide reflects the JTAG
interface. When a device with debugWIRE is used, data breakpoints are not available
and the debugger will use software code breakpoints.

If the driver and the device support software breakpoints and they are enabled, the
debugger will first use any available hardware breakpoints before using software
breakpoints. Exceeding the number of available hardware breakpoints, when software
breakpoints are not enabled, causes the debugger to single step. This will significantly
reduce the execution speed. For this reason you must be aware of the different
breakpoint consumers.

BREAKPOINT CONSUMERS

A debugger system includes several consumers of breakpoints.

User breakpoints

The breakpoints you define in the breakpoint dialog box or by toggling breakpoints in
the editor window often consume one physical breakpoint each, but this can vary greatly.
Some user breakpoints consume several physical breakpoints and conversely, several

user breakpoints can share one physical breakpoint. User breakpoints are displayed in
the same way both in the Breakpoint Usage window and in the Breakpoints window,
for example Data @[R] callCount.

C-SPY itself
C-SPY itself also consumes breakpoints. C-SPY will set a breakpoint if:

o The debugger option Run to has been selected, and any step command is used.
These are temporary breakpoints which are only set during a debug session. This
means that they are not visible in the Breakpoints window.

o The linker option With I/0 emulation modules has been selected.

In the DLIB runtime environment, C-SPY will set a system breakpoint on the
__DebugBreak label.

In the CLIB runtime environment, C-SPY will set a breakpoint if:

o the library functions putchar and getchar are used (low-level routines used by
functions like printf and scanf)

o the application has an exit label.

C-SPY® Debugging Guide
110 for AVR

Breakpoints °

You can disable the setting of system breakpoints on the putchar and getchar
functions and on the exit label.

For more information about the option System breakpoints on:
For AVRONE!, see AVR ONE! 2, page 350.

For Atmel-ICE, see Atmel-ICE 2, page 345.

For JTAGICE3, see JTAGICE3 2, page 353.

For JTAGICE mKlIl, see JTAGICE mklI 2, page 357.

For Dragon, see Dragon 2, page 361.

For Power Debugger, see Power Debugger 2, page 364.

These types of breakpoint consumers are displayed in the Breakpoint Usage window,
for example, C-SPY Terminal I/O & libsupport module.

C-SPY plugin modules

For example, modules for real-time operating systems can consume additional
breakpoints. Specifically, by default, the Stack window consumes one physical
breakpoint.

To disable the breakpoint used by the Stack window:
Choose Tools>Options>Stack.
Deselect the Stack pointer(s) not valid until program reaches: /abel option.

To disable the Stack window entirely, choose Tools>Options>Stack and make sure all
options are deselected.

Setting breakpoints

These tasks are covered:

Various ways to set a breakpoint

Toggling a simple code breakpoint

Setting breakpoints using the dialog box

Setting a data breakpoint in the Memory window

Setting breakpoints using system macros

Useful breakpoint hints.

Setting breakpoints

112

C-SPY® Debugging Guide
for AVR

VARIOUS WAYS TO SET A BREAKPOINT
You can set a breakpoint in various ways:

o Toggling a simple code breakpoint.

o Using the New Breakpoints dialog box and the Edit Breakpoints dialog box
available from the context menus in the editor window, Breakpoints window, and
in the Disassembly window. The dialog boxes give you access to all breakpoint
options.

e Setting a data breakpoint on a memory area directly in the Memory window.

o Using predefined system macros for setting breakpoints, which allows automation.

The different methods offer different levels of simplicity, complexity, and automation.

TOGGLING A SIMPLE CODE BREAKPOINT

Toggling a code breakpoint is a quick method of setting a breakpoint. The following
methods are available both in the editor window and in the Disassembly window:

e Click in the gray left-side margin of the window

o Place the insertion point in the C source statement or assembler instruction where
you want the breakpoint, and click the Toggle Breakpoint button in the toolbar

o Choose Edit>Toggle Breakpoint

e Right-click and choose Toggle Breakpoint from the context menu.

SETTING BREAKPOINTS USING THE DIALOG BOX

The advantage of using a breakpoint dialog box is that it provides you with a graphical
interface where you can interactively fine-tune the characteristics of the breakpoints.
You can set the options and quickly test whether the breakpoint works according to your
intentions.

All breakpoints you define using a breakpoint dialog box are preserved between debug
sessions.

You can open the dialog box from the context menu available in the editor window,
Breakpoints window, and in the Disassembly window.

To set a new breakpoint:
Choose View>Breakpoints to open the Breakpoints window.

In the Breakpoints window, right-click, and choose New Breakpoint from the context
menu.

On the submenu, choose the breakpoint type you want to set.

Depending on the C-SPY driver you are using, different breakpoint types are available.

Breakpoints °

4 1In the breakpoint dialog box that appears, specify the breakpoint settings and click OK.
The breakpoint is displayed in the Breakpoints window.

To modify an existing breakpoint:

I In the Breakpoints window, editor window, or in the Disassembly window, select the
breakpoint you want to modify and right-click to open the context menu.

35woid init fib(woid)
36 1
37 imt 1 = 45;
38 root[0] = root[l] = 1:

: 39

S 40 for | 1287 i<MAY FIB ; i++)
LA
L J az —

LAz)

Laan
45
il Complete
47 fnrt
48 4/ Match Brackets
49unsi Insert Template 3
B Open HeaderfSource File
51 ii 1B |
52 Go ko definition of rook
gi Toggle Breakpoint {Code)
55 Toggle Breakpoint {Log)
56 Enable/disable Ereakpaint
57 Set Data Breakpoint For 'root[i]'
53) Edit Code Breakpoint at column 15
:3 1 cek Next Statement Edit Log Breakpoint at column 7

If there are several breakpoints on the same source code line, the breakpoints will be
listed on a submenu.

2 On the context menu, choose the appropriate command.
3 In the breakpoint dialog box that appears, specify the breakpoint settings and click OK.

The breakpoint is displayed in the Breakpoints window.

SETTING A DATA BREAKPOINT IN THE MEMORY WINDOW

You can set breakpoints directly on a memory location in the Memory window.
Right-click in the window and choose the breakpoint command from the context menu
that appears. To set the breakpoint on a range, select a portion of the memory contents.

The breakpoint is not highlighted in the Memory window; instead, you can see, edit,
and remove it using the Breakpoints window, which is available from the View menu.
The breakpoints you set in the Memory window will be triggered for both read and

113

Setting breakpoints

114

C-SPY® Debugging Guide
for AVR

write accesses. All breakpoints defined in this window are preserved between debug
sessions.

Note: Setting breakpoints directly in the Memory window is only possible if the driver
you use supports this.

SETTING BREAKPOINTS USING SYSTEM MACROS

You can set breakpoints not only in the breakpoint dialog box but also by using built-in
C-SPY system macros. When you use system macros for setting breakpoints, the
breakpoint characteristics are specified as macro parameters.

Macros are useful when you have already specified your breakpoints so that they fully
meet your requirements. You can define your breakpoints in a macro file, using built-in
system macros, and execute the file at C-SPY startup. The breakpoints will then be set
automatically each time you start C-SPY. Another advantage is that the debug session
will be documented, and that several engineers involved in the development project can
share the macro files.

Note: If you use system macros for setting breakpoints, you can still view and modify
them in the Breakpoints window. In contrast to using the dialog box for defining
breakpoints, all breakpoints that are defined using system macros are removed when you
exit the debug session.

These breakpoint macros are available:

C-SPY macro for Power JTAGICE AVR
Simulator Atmel-ICE JTAGICE3
breakpoints Debugger mkll ONE!
__setCodeBreak Yes Yes Yes Yes Yes Yes
__setDataBreak Yes Yes Yes Yes — Yes
__setLogBreak Yes Yes Yes Yes Yes Yes
__setDatalLogBreak Yes — — — — —
__setSimBreak Yes — — — — —

__setTraceStartBreak Yes — — — — —
_setTraceStopBreak Yes — — — — —

__clearBreak Yes Yes Yes Yes Yes Yes

Table 7: C-SPY macros for breakpoints

For information about each breakpoint macro, see Reference information on C-SPY
system macros, page 265.

Breakpoints °

Setting breakpoints at C-SPY startup using a setup macro file

You can use a setup macro file to define breakpoints at C-SPY startup. Follow the
procedure described in Using C-SPY macros, page 253.

USEFUL BREAKPOINT HINTS

Below are some useful hints related to setting breakpoints.

Tracing incorrect function arguments

If a function with a pointer argument is sometimes incorrectly called with a NULL
argument, you might want to debug that behavior. These methods can be useful:

e Set a breakpoint on the first line of the function with a condition that is true only
when the parameter is 0. The breakpoint will then not be triggered until the
problematic situation actually occurs. The advantage of this method is that no extra
source code is needed. The drawback is that the execution speed might become
unacceptably low.

® You can use the assert macro in your problematic function, for example:

int MyFunction (int * MyPtr)
{

assert (MyPtr != 0); /* Assert macro added to your source

code. */

/* Here comes the rest of your function. */
}
The execution will break whenever the condition is true. The advantage is that the
execution speed is only very slightly affected, but the drawback is that you will get a
small extra footprint in your source code. In addition, the only way to get rid of the
execution stop is to remove the macro and rebuild your source code.

e Instead of using the assert macro, you can modify your function like this:

int MyFunction (int * MyPtr)
{

if (MyPtr == 0)

MyDummyStatement; /* Dummy statement where you set a
breakpoint. */

/* Here comes the rest of your function. */
}
You must also set a breakpoint on the extra dummy statement, so that the execution
will break whenever the condition is true. The advantage is that the execution speed
is only very slightly affected, but the drawback is that you will still get a small extra
footprint in your source code. However, in this way you can get rid of the execution
stop by just removing the breakpoint.

115

Reference information on breakpoints

116

Performing a task and continuing execution

You can perform a task when a breakpoint is triggered and then automatically continue
execution.

You can use the Action text box to associate an action with the breakpoint, for instance
a C-SPY macro function. When the breakpoint is triggered and the execution of your
application has stopped, the macro function will be executed. In this case, the execution
will not continue automatically.

Instead, you can set a condition which returns 0 (false). When the breakpoint is
triggered, the condition—which can be a call to a C-SPY macro that performs a task—
is evaluated and because it is not true, execution continues.

Consider this example where the C-SPY macro function performs a simple task:

__var my_counter;

count ()

{
my_counter += 1;
return 0;

}

To use this function as a condition for the breakpoint, type count () in the Expression
text box under Conditions. The task will then be performed when the breakpoint is
triggered. Because the macro function count returns 0, the condition is false and the
execution of the program will resume automatically, without any stop.

Reference information on breakpoints

C-SPY® Debugging Guide
for AVR

Reference information about:

Breakpoints window, page 117

Breakpoint Usage window, page 119

Code breakpoints dialog box, page 120

Log breakpoints dialog box, page 121

Data breakpoints dialog box, page 123
Data Log breakpoints dialog box, page 125
Immediate breakpoints dialog box, page 126
Complex breakpoints dialog box, page 127
Enter Location dialog box, page 130

Resolve Source Ambiguity dialog box, page 131.

Breakpoints °

See also:

® Reference information on C-SPY system macros, page 265

® Reference information on trace, page 164.

Breakpoints window

The Breakpoints window is available from the View menu.

Breakpoints B

Code @ Tutar.c:46.2

This window lists all breakpoints you define.
Use this window to conveniently monitor, enable, and disable breakpoints; you can also

define new breakpoints and modify existing breakpoints.

Requirements

None; this window is always available.

Display area

This area lists all breakpoints you define. For each breakpoint, information about the
breakpoint type, source file, source line, and source column is provided.

17

Reference information on breakpoints

118

Context menu

C-SPY® Debugging Guide
for AVR

This context menu is available:
G0 ko Source
Edi...

Delete
Disable
Enable Al
Disable Al

Mew Breakpoint ¥
These commands are available:

Go to Source
Moves the insertion point to the location of the breakpoint, if the breakpoint has
a source location. Double-click a breakpoint in the Breakpoints window to
perform the same command.

Edit
Opens the breakpoint dialog box for the breakpoint you selected.

Delete
Deletes the breakpoint. Press the Delete key to perform the same command.

Enable
Enables the breakpoint. The check box at the beginning of the line will be
selected. You can also perform the command by manually selecting the check
box. This command is only available if the breakpoint is disabled.
Disable
Disables the breakpoint. The check box at the beginning of the line will be
deselected. You can also perform this command by manually deselecting the
check box. This command is only available if the breakpoint is enabled.
Enable All
Enables all defined breakpoints.

Disable All
Disables all defined breakpoints.

New Breakpoint
Displays a submenu where you can open the breakpoint dialog box for the
available breakpoint types. All breakpoints you define using this dialog box are
preserved between debug sessions.

Breakpoints °

Breakpoint Usage window

The Breakpoint Usage window is available from the menu specific to the C-SPY driver
you are using.

Breakpoint Usage [%]

[Fetch
-SSP Terminal 140 & libsupport module

This window lists all breakpoints currently set in the target system, both the ones you
have defined and the ones used internally by C-SPY. The format of the items in this
window depends on the C-SPY driver you are using.

The window gives a low-level view of all breakpoints, related but not identical to the list
of breakpoints displayed in the Breakpoints window.

C-SPY uses breakpoints when stepping. Use the Breakpoint Usage window for:
o Identifying all breakpoint consumers

o Checking that the number of active breakpoints is supported by the target system

o Configuring the debugger to use the available breakpoints in a better way, if
possible.

For more information, see Breakpoints in the C-SPY hardware debugger drivers, page
108.

Requirements

None; this window is always available.

Display area

For each breakpoint in the list, the address and access type are displayed. Each
breakpoint in the list can also be expanded to show its originator.

19

Reference information on breakpoints

120

Code breakpoints dialog box

Requirements

Break At

Size

C-SPY® Debugging Guide
for AVR

The Code breakpoints dialog box is available from the context menu in the editor
window, Breakpoints window, and in the Disassembly window.

& Code
Break &f:
| Edit...l
— Size
&+ Auta I_I—
 Marual
— Action
Expression: I
Condition:
Expression:
' Condition true Skip count; I il
" Condition changed

This figure reflects the C-SPY simulator.

Use the Code breakpoints dialog box to set a code breakpoint, see Setting breakpoints
using the dialog box, page 112.

None; this dialog box is always available.

Specify the code location of the breakpoint in the text box. Alternatively, click the Edit
button to open the Enter Location dialog box, see Enter Location dialog box, page 130.

Determines whether there should be a size—in practice, a range—of locations where the
breakpoint will trigger. Each fetch access to the specified memory range will trigger the
breakpoint. Select how to specify the size:
Auto

The size will be set automatically, typically to 1.

Manual
Specity the size of the breakpoint range in the text box.

Breakpoints °

Action

Specify a valid C-SPY expression, which is evaluated when the breakpoint is triggered
and the condition is true. For more information, see Useful breakpoint hints, page 115.

Conditions

Specify simple or complex conditions:

Expression
Specify a valid C-SPY expression, see C-SPY expressions, page 86.

Condition true
The breakpoint is triggered if the value of the expression is true.

Condition changed
The breakpoint is triggered if the value of the expression has changed since it
was last evaluated.

Skip count

The number of times that the breakpoint condition must be fulfilled before the
breakpoint starts triggering. After that, the breakpoint will trigger every time the
condition is fulfilled.

Log breakpoints dialog box

The Log breakpoints dialog box is available from the context menu in the editor
window, Breakpoints window, and in the Disassembly window.
8 1o

Break &t

C:htutorsTutor.c.47.3

Meszage: C-Spy macro "'__message' style
"depth ="', call_count

Conditions
Expression:

(%) Condition true
(O Condition changed

This figure reflects the C-SPY simulator.

Use the Log breakpoints dialog box to set a log breakpoint, see Setting breakpoints
using the dialog box, page 112.

121

Reference information on breakpoints

122

Requirements

Trigger at

Message

None; this dialog box is always available.

Specify the code location of the breakpoint. Alternatively, click the Edit button to open
the Enter Location dialog box, see Enter Location dialog box, page 130.

Specify the message you want to be displayed in the C-SPY Debug Log window. The
message can either be plain text, or—if you also select the option C-SPY macro
" __message" style—a comma-separated list of arguments.

C-SPY macro "__message" style

Conditions

C-SPY® Debugging Guide

for AVR

Select this option to make a comma-separated list of arguments specified in the Message
text box be treated exactly as the arguments to the C-SPY macro language statement
__message, see Formatted output, page 261.

Specify simple or complex conditions:

Expression
Specify a valid C-SPY expression, see C-SPY expressions, page 86.

Condition true
The breakpoint is triggered if the value of the expression is true.

Condition changed

The breakpoint is triggered if the value of the expression has changed since it
was last evaluated.

Data breakpoints dialog box

The Data breakpoints dialog box is available from the context menu in the editor
window, Breakpoints window, the Memory window, and in the Disassembly window.

Requirements

Break At

’ [rata

Break &f:

—Access Type
& Feadfwiite
" Read
 Wiite

5

Breakpoints °

S & Auto 3
 Marual I

— Action

Expression: I

r— Condition:
Expression:

& Condition tue
" Condition changed

Skip count: I 1)

This figure reflects the C-SPY simulator.

Use the Data breakpoints dialog box to set a data breakpoint, see Setting breakpoints
using the dialog box, page 112. Data breakpoints never stop execution within a single
instruction. They are recorded and reported after the instruction is executed.

One of these alternatives:

The C-SPY simulator

The C-SPY Atmel-ICE driver
The C-SPY Power Debugger driver
The C-SPY JTAGICES3 driver
The C-SPY AVR ONE! driver
The C-SPY JTAGICE mKII driver, unless the debugWIRE interface is used
The C-SPY Dragon driver.

Specify the data location of the breakpoint in the text box. Alternatively, click the Edit
button to open the Enter Location dialog box, see Enter Location dialog box, page 130.

123

Reference information on breakpoints

124

Access Type

Size

Action

Conditions

C-SPY® Debugging Guide
for AVR

Selects the type of memory access that triggers the breakpoint:

Read/Write
Reads from or writes to location.

Read
Reads from location.

Write
Writes to location.

Determines whether there should be a size—in practice, a range—of locations where the
breakpoint will trigger. Each fetch access to the specified memory range will trigger the
breakpoint. Select how to specify the size:

Auto
The size will automatically be based on the type of expression the breakpoint is
set on. For example, if you set the breakpoint on a 12-byte structure, the size of
the breakpoint will be 12 bytes.

Manual

Specify the size of the breakpoint range in the text box.

For data breakpoints, this can be useful if you want the breakpoint to be triggered on
accesses to data structures, such as arrays, structs, and unions.

Specify a valid C-SPY expression, which is evaluated when the breakpoint is triggered
and the condition is true. For more information, see Useful breakpoint hints, page 115.

Specify simple or complex conditions:

Expression

Specify a valid C-SPY expression, see C-SPY expressions, page 86.

Condition true
The breakpoint is triggered if the value of the expression is true.

Condition changed

The breakpoint is triggered if the value of the expression has changed since it
was last evaluated.

Breakpoints °

Skip count

The number of times that the breakpoint condition must be fulfilled before the
breakpoint starts triggering. After that, the breakpoint will trigger every time the
condition is fulfilled.

Data Log breakpoints dialog box

The Data Log breakpoints dialog box is available from the context menu in the
Breakpoints window.

Data Log

Break at:
myVar

Access Type
~) Readfwrite

This figure reflects the C-SPY simulator.

Use the Data Log breakpoints dialog box to set a maximum of four data log breakpoints
on memory addresses, see Setting breakpoints using the dialog box, page 112.

See also Data Log breakpoints, page 107 and Getting started using data logging, page
179.

Requirements
The C-SPY simulator.

Trigger at

Specify the data location of the breakpoint. Alternatively, click the Edit button to open
the Enter Location dialog box, see Enter Location dialog box, page 130.

Access Type
Selects the type of memory access that triggers the breakpoint:

Read/Write
Reads from or writes to location.

Read
Reads from location.

125

Reference information on breakpoints

Write

Writes to location.

Immediate breakpoints dialog box

Requirements

Trigger at

Access Type

C-SPY® Debugging Guide
126 for AVR

The Immediate breakpoints dialog box is available from the context menu in the editor
window, Breakpoints window, the Memory window, and in the Disassembly window.

Immediate

Trigger at:
Edit...
Access Type Action
@ Read Expression:
) Write

In the C-SPY simulator, use the Immediate breakpoints dialog box to set an immediate
breakpoint, see Setting breakpoints using the dialog box, page 112. Immediate
breakpoints do not stop execution at all; they only suspend it temporarily.

The C-SPY simulator.

Specify the data location of the breakpoint. Alternatively, click the Edit button to open
the Enter Location dialog box, see Enter Location dialog box, page 130.

Selects the type of memory access that triggers the breakpoint:
Read

Reads from location.

Write
Werites to location.

Breakpoints °

Action

Specify a valid C-SPY expression, which is evaluated when the breakpoint is triggered
and the condition is true. For more information, see Useful breakpoint hints, page 115.

Complex breakpoints dialog box

The Complex breakpoints dialog box is available from the context menu in the
Breakpoints window.

New Breakpoint g|
2 Complex l
Breakpoint control
" Enable & Address & |
+ Enable 4 &B
 Range Address B |
Access type A access B access
" Code + Read/write + Read/write
* Data " Read " Read
" wirite " wirite
Complex data
[v Enable complex data
™ C combined with &
" CD independent combined with 458~ Value ©
(+ CD combined with A Yl ’7
™ 1[C4D) combined with & ale
™ C masked with D combined with &
C compare [compare
(+ [==data value (+ [== data valus
™ C < data value " D < data value
™ € »=data value " D »=data valus
Action
Expreszion
(] 8 | Cancel |

Use this dialog box to set a complex breakpoint. Alternatively, to modify an existing
breakpoint, select a breakpoint in the Breakpoint window and choose Edit on the
context menu.

Complex breakpoints use the functionality of the firmware and are faster than data
breakpoints and code breakpoints.

Note: A complex breakpoint uses all available hardware breakpoints.

Requirements

One of these alternatives:

127

Reference information on breakpoints

128

Breakpoint control

Address A/B

Access type

Complex data

C-SPY® Debugging Guide
for AVR

The C-SPY Atmel-ICE driver

The C-SPY Power Debugger driver
The C-SPY JTAGICE3 driver

The C-SPY AVR ONE! driver.

Controls what access type at the specified address that causes a break. Choose between:

Enable A
Enable A&B

Range

A access/B access

Breaks at the address specified in the Address A text box.

Breaks both at the address specified in Address A and at the
address in Address B.

Breaks when an address from Address A up to and
including Address B is accessed. This can be useful if you
want the breakpoint to be triggered on access to data
structures, such as arrays, structs, and unions. When using
Range, only A access is available.

Specifies the type of memory access that triggers complex
breakpoints.

Read/Write, Reads from or writes to location
Read, Reads from location

‘Write, Writes to location

Specify the code or data addresses where you want to set a breakpoint.

Selects the memory space, Code or Data, for the addresses in Address A and Address
B. Note that both addresses must have the same access type.

Enable complex data enables the data compare functionality.

Breakpoints °

Value C/D

Specify 1-byte numbers for the compare functionality.

C combined with A Breaks when Address A is accessed using A access and
Value C matches the memory contents at Address A
according to C compare.

C&D independent Breaks when Address A is accessed using A access and
combined with A&B Value C matches the memory contents at Address A
according to C compare

or

when Address B is accessed using B access and Value D
matches the memory contents at Address B according to
D compare.

C&D combined with A Breaks when Address A is accessed using A access and
Value C matches the memory contents at Address A
according to C compare and Value D matches the
memory contents at Address A according to D compare.

(C&D) combined with A Breaks when Address A is accessed using A access and
Value C does not match the memory contents of Address
A according to C compare and/or Value D does not
match the memory contents of Address A according to D

compare.
C masked with D Breaks when Address A is accessed using A access and
combined with A Value C masked with Value D matches the memory

contents at Address A according to C compare.

C/D compare

Specify the relationship between Value C or Value D and the contents of data memory
at Address A and Address B.

Action

Specify an expression, for instance a C-SPY macro function, which is evaluated when
the breakpoint is triggered and the condition is true.

129

Reference information on breakpoints

Enter Location dialog box

The Enter Location dialog box is available from the breakpoints dialog box, either
when you set a new breakpoint or when you edit a breakpoint.

Enter Location E
Type————— Expression:

' Expression I
7 Absolute address

 Souree location

()3 I Cancel |

Use the Enter Location dialog box to specify the location of the breakpoint.

Note: This dialog box looks different depending on the Type you select.

Type
Selects the type of location to be used for the breakpoint, choose between:

Expression
A C-SPY expression, whose value evaluates to a valid code or data location.

A code location, for example the function main, is typically used for code
breakpoints.

A data location is the name of a variable and is typically used for data
breakpoints. For example, my_var refers to the location of the variable my_var,
and arr [3] refers to the location of the fourth element of the array arr. For
static variables declared with the same name in several functions, use the syntax
my_func: :my_static_variable to refer to a specific variable.

For more information about C-SPY expressions, see C-SPY expressions, page
86.

Absolute address
An absolute location on the form zone: hexaddress or simply hexaddress
(for example Memory: 0x42). zone refers to C-SPY memory zones and
specifies in which memory the address belongs, see C-SPY memory zones, page
134.

Source location
A location in your C source code using the syntax:
{filename} .row.column.

filename specifies the filename and full path.

row specifies the row in which you want the breakpoint.

C-SPY® Debugging Guide
130 for AVR

column specifies the column in which you want the breakpoint.

For example, {C:\src\prog.c}.22.3
sets a breakpoint on the third character position on row 22 in the source file

prog.c. Note that in quoted form, for example in a C-SPY macro, you must
instead write {C:\\src\\prog.c}.22.3.

Breakpoints °

Note that the Source location type is usually meaningful only for code locations
in code breakpoints. Depending on the C-SPY driver you are using, Source
location might not be available for data and immediate breakpoints.

Resolve Source Ambiguity dialog box

The Resolve Source Ambiguity dialog box appears, for example, when you try to set a
breakpoint on templates and the source location corresponds to more than one function.

All

Selected

Resolve Source Ambiguity

The zource location coresponds to multiple functions.
‘which onefz] do you mean?

woid foo(T, T #|[with T=unsigned long]
woid foo(T, T #|[with T=double]

™ Automatically choose all

If you check. this item, the dialog will not be shown again
unless you re-enable it in the Tools->Dptions dialog, on
the Debugger page.

All

=

Cancel

To resolve a source ambiguity, perform one of these actions:

o In the text box, select one or several of the listed locations and click Selected.

o Click All.

The breakpoint will be set on all listed locations.

The breakpoint will be set on the source locations that you have selected in the text box.

131

Reference information on breakpoints

Cancel

No location will be used.

Automatically choose all

Determines that whenever a specified source location corresponds to more than one
function, all locations will be used.

Note that this option can also be specified in the IDE Options dialog box, see Debugger
options in the IDE Project Management and Building Guide for AVR.

C-SPY® Debugging Guide
132 for AVR

Memory and registers

e Introduction to monitoring memory and registers
e Monitoring memory and registers

e Reference information on memory and registers

Introduction to monitoring memory and registers

These topics are covered:

e Briefly about monitoring memory and registers

o C-SPY memory zones

BRIEFLY ABOUT MONITORING MEMORY AND REGISTERS

C-SPY provides many windows for monitoring memory and registers, each of them
available from the View menu:

o The Memory window

Gives an up-to-date display of a specified area of memory—a memory zone—and
allows you to edit it. Data coverage along with execution of your application is
highlighted with different colors. You can fill specified areas with specific values and
you can set breakpoints directly on a memory location or range. Y ou can open several
instances of this window, to monitor different memory areas. The content of the
window can be regularly updated while your application is executing.

o The Symbolic Memory window

Displays how variables with static storage duration are laid out in memory. This can
be useful for better understanding memory usage or for investigating problems
caused by variables being overwritten, for example by buffer overruns.

o The Stack window

Displays the contents of the stack, including how stack variables are laid out in
memory. In addition, integrity checks of the stack can be performed to detect and
warn about problems with stack overflow. For example, the Stack window is useful
for determining the optimal size of the stack. You can open up to two instances of
this window, each showing different stacks or different display modes of the same
stack.

133

Introduction to monitoring memory and registers

C-SPY® Debugging Guide
134 for AVR

o The Registers window

Gives an up-to-date display of the contents of the processor registers and SFRs, and
allows you to edit them. Because of the large amount of registers—memory-mapped
peripheral unit registers and CPU registers—it is inconvenient to show all registers
concurrently in the Registers window. Instead you can divide registers into
application-specific groups. You can choose to load either predefined register groups
or define your own groups. You can open several instances of this window, each
showing a different register group.

To view the memory contents for a specific variable, simply drag the variable to the
Memory window or the Symbolic memory window. The memory area where the
variable is located will appear.

Reading the value of some registers might influence the runtime behavior of your
application. For example, reading the value of a UART status register might reset a
pending bit, which leads to the lack of an interrupt that would have processed a received
byte. To prevent this from happening, make sure that the Registers window containing
any such registers is closed when debugging a running application.

C-SPY MEMORY ZONES

In C-SPY, the term zone is used for a named memory area. A memory address, or
location, is a combination of a zone and a numerical offset into that zone. By default,
four address zones—CODE, DATA, EEPROM, and T0_SPACE—in the debugger cover the
whole AVR memory range.

0 - 0 0
Reg window 0x1F .
Code
I/0 -« /0
EEPROM
nc 0x5F 0x3F
Data
ne
nd

nc to ne indicate the size of the memories

Memory zones are used in several contexts, most importantly in the Memory and
Disassembly windows, and in C-SPY macros. In the windows, use the Zone box to
choose which memory zone to display.

Memory and registers __4

Device-specific zones

Memory information for device-specific zones is defined in the device description files.
When you load a device description file, additional zones that adhere to the specific
memory layout become available.

See the device description file for information about available memory zones.

If your hardware does not have the same memory layout as any of the predefined device
description files, you can define customized zones by adding them to the file.

For more information, see Selecting a device description file, page 51 and Modifying a
device description file, page 55.

MEMORY CONFIGURATION FOR THE C-SPY SIMULATOR

To simulate the target system properly, the C-SPY simulator needs information about
the memory configuration. By default, C-SPY uses a configuration based on
information retrieved from the device description file.

The C-SPY simulator provides various mechanisms to improve the configuration
further:

o If the default memory configuration does not specify the required memory address
ranges, you can specify the memory address ranges shall be based on:
o The zones predefined in the device description file
o The section information available in the debug file

o Or, you can define your own memory address ranges, which you typically might
want to do if the files do not specify memory ranges for the specific device that
you are using, but instead for a family of devices (perhaps with various amounts
of on-chip RAM).

Monitoring memory and registers

These tasks are covered:

o Defining application-specific register groups, page 136
® Monitoring stack usage, page 136

135

Monitoring memory and registers

136

C-SPY® Debugging Guide
for AVR

DEFINING APPLICATION-SPECIFIC REGISTER GROUPS

Defining application-specific register groups minimizes the amount of registers
displayed in the Registers windows and makes the debugging easier.

Choose View>Registers>Register User Groups Setup during a debug session.

Register User Groups Setup x

Group Farmat

- regCroupOne

Hexadecimal
Hexadecimal
Hexadecimal
Hexadecimal
Hexadecimal
Hexadecimal
Hexadecimal
Hexadecimal

Binary
e click to add reg>
=l regGroupTwo
i CONTROL Hexadecimal
SPSEL Binary
nPRIV Binary
LR Hexadecimal

e click to add reg>
<click to add group>

Right-clicking in the window displays a context menu with commands. For information
about these commands, see Register User Groups Setup window, page 156.

Click on <click to add group> and specify the name of your group, for example
My Timer Group and press Enter.

Underneath the group name, click on <click to add reg> and type the name of a
register, and press Enter. You can also drag a register name from another window in the
IDE. Repeat this for all registers that you want to add to your group.

As an optional step, right-click any registers for which you want to change the integer
base, and choose Format from the context menu to select a suitable base.

When you are done, your new group is now available in the Registers windows.

If you want to define more application-specific groups, repeat this procedure for each
group you want to define.

MONITORING STACK USAGE

These are the two main use cases for the Stack window:

o Monitoring stack memory usage

Memory and registers __4

o Monitoring the stack memory content.

In both cases, C-SPY retrieves information about the defined stack size and its allocation
from the definition in the linker configuration file of the segment holding the stack. If
you, for some reason, have modified the stack initialization in the system startup code,
cstartup, you should also change the segment definition in the linker configuration
file accordingly; otherwise the Stack window cannot track the stack usage. For more
information about this, see the AR C/C++ Compiler User Guide for AVR.

To monitor stack memory usage:
Before you start C-SPY, choose Tools>Options. On the Stack page:
o Seclect Enable graphical stack display and stack usage tracking. This option also

enables the option Warn when exceeding stack threshold. Specify a suitable
threshold value.

o Notice also the option Warn when stack pointer is out of bounds. Any such
warnings are displayed in the Debug Log window.

IDE Options @
- Common Fonts
Key Bindings |¥] Enable graphical stack display and stack usage traciing
i Language 90 % stack usage threshold
' Editor WWam when exceeding stack threshold
i Messages
. Project [#] Wam when stack pointer is out of bounds

i~ Source Code Control Stack pomie: jo) oot =lid eeb oo i reaches:

I 5 PR

| Stack main

Wamings
9 Log
) Log and alet

[Limit stack display to 50 bytes

2 Start C-SPY.

When your application is first loaded, and upon each reset, the memory for the stack area
is filled with the dedicated byte value 0xCD before the application starts executing.

Choose View>Stack>Stack 1 to open the Stack window.

Notice that you can open up to two Stack windows, each showing a different stack—if
several stacks are available—or the same stack with different display settings.

4 Start executing your application.

137

Monitoring memory and registers

138

C-SPY® Debugging Guide
for AVR

Whenever execution stops, the stack memory is searched from the end of the stack until
a byte whose value is not 0xCD is found, which is assumed to be how far the stack has
been used. The light gray area of the stack bar represents the unused stack memory area,
whereas the dark gray area of the bar represents the used stack memory.

For this example, you can see that only 44% of the reserved memory address range was
used, which means that it could be worth considering decreasing the size of memory:

Location Data

. Used stack memory, Unused stack memory,
Stack pointer I in dark gray in light gray
Stack 1 B
e |
36 bytes used out of 80 (44%)

Stack range: Memony:0:3FB0 - Memory:0x4000 Frame

>
0x3FFC 0x40180000

Toeltip informartion with facts
about used stack memory

4 1 +

Note: Although this is a reasonably reliable way to track stack usage, there is no
guarantee that a stack overflow is detected. For example, a stack can incorrectly grow
outside its bounds, and even modify memory outside the stack area, without actually
modifying any of the bytes near the end of the stack range. Likewise, your application
might modify memory within the stack area by mistake.

To monitor the stack memory content:

Before you start monitoring stack memory, you might want to disable the option
Enable graphical stack display and stack usage tracking to improve performance
during debugging.

Start C-SPY.
Choose View>Stack>Stack 1 to open the Stack window.

Notice that you can access various context menus in the display area from where you
can change display format, etc.

Start executing your application.

Memory and registers __4

Whenever execution stops, you can monitor the stack memory, for example to see
function parameters that are passed on the stack:

Current stack pointer |

.

Stack 1 =]
Stack ~|| |
Location Data Yariable Yalue Type Frame
GRSFDOE 0x0001 p.mHandle 1 int [0] __dwrite
0x3FED Ox3FES p.mBuffer 0x3FEB "‘n' unsigned charconst® [0] __chwrite
0x3FE2 0x0001 p.msize 1 size_t [0] __dwrite
0x3FE4 0x0001 p.mBetunst. 1 size_t [0] __dwrite

0x3FE6 0x72

0x3FE7 0Oxdl

0x3FE8 0x000A000A
0x3FEC 0xCDCD4048
0x3FF0 0xCDCDCDCD
0x3FF4 0xCDCDCDCD
0x3FF8 0x0000CDCD
0x3FFC 0x401441D2

Reference information on memory and registers

Reference information about:

Memory window, page 140

Memory Save dialog box, page 143
Memory Restore dialog box, page 144
Fill dialog box, page 145

Symbolic Memory window, page 146
Stack window, page 149

Registers window, page 153

Register User Groups Setup window, page 156

139

Reference information on memory and registers

Memory window

The Memory window is available from the View menu.

Available zones Context menu button

‘ Live update

LY

IG — Memory . \ Bl
© To location e Y -
A
0O00feef0 f£f ££f £f ££f £f ££ ££ ££ -

000fe=fs ff £f ff £f ff Ff Ff Ef
000fef00 HEVES B8 B8 Bf 20 57 Bf| Hello o
Memory ‘ 000fef08 {72 6c 64 21 00 00 68 6a rld!l...
addresses | 000fefl0 B2 74 Ja 4¢ 00 OO0 OO0 OO
S 000fefls OO0 OO OO OO OO OO OO0 OO
000fe£20 0O OO OO OO OO OO OO0 OO
000fef28 OO0 OO0 OO0 00 cd cd cd cd
r | 000fef30 ed od cd ed cd ed cd ed

Data coverage
information

000fef38 3c 01 00 ed |ff ff ff ff
000fefd40d f£f £f £f £f ff ff ff ff
Oo0fefd48 f£f £f ff £f ff ff ff ff
nNNfefsn ff Ff ff ff FfFf FFf Ff £F

Mem ory contents Mem ory contents in ASCII format

This window gives an up-to-date display of a specified area of memory—a memory
zone—and allows you to edit it. You can open several instances of this window, which
is very convenient if you want to keep track of several memory or register zones, or
monitor different parts of the memory.

To view the memory corresponding to a variable, you can select it in the editor window
g anddrag it to the Memory window.

See also Editing in C-SPY windows, page 54.

Requirements

None; this window is always available.

Toolbar
The toolbar contains:
Go to
The memory location or symbol you want to view.
Zone

Selects a memory zone, see C-SPY memory zones, page 134.

Context menu button
Displays the context menu.

C-SPY® Debugging Guide
140 for AVR

Memory and registers __4

Display area

The display area shows the addresses currently being viewed, the memory contents in
the format you have chosen, and—provided that the display mode is set to 1x Units—
the memory contents in ASCII format. You can edit the contents of the display area, both
in the hexadecimal part and the ASCII part of the area.

Data coverage is displayed with these colors:

Yellow Indicates data that has been read.
Blue Indicates data that has been written
Green Indicates data that has been both read and written.

Note: Data coverage is not supported by all C-SPY drivers. Data coverage is supported
by the C-SPY Simulator.

Context menu

This context menu is available:

Copy
Paste

Zone 3

v lxUnits
2x Units
4x Units
8x Units

v Little Endian
Big Endian

Data Coverage 3

Find...
Replace...

Mermory Fill...
Memory Save...

Mermory Restore...

Set Data Breakpoint
Set Data Log Breakpoint

These commands are available:

Copy, Paste
Standard editing commands.

141

Reference information on memory and registers

Zone

Selects a memory zone, see C-SPY memory zones, page 134.

1x Units
Displays the memory contents as single bytes.

2x Units
Displays the memory contents as 2-byte groups.

4x Units

Displays the memory contents as 4-byte groups.
8x Units

Displays the memory contents as 8-byte groups.
Little Endian

Displays the contents in little-endian byte order.
Big Endian

Displays the contents in big-endian byte order.

Data Coverage
Choose between:

Enable toggles data coverage on or off.
Show toggles between showing or hiding data coverage.
Clear clears all data coverage information.

These commands are only available if your C-SPY driver supports data
coverage.

Find
Displays a dialog box where you can search for text within the Memory

window; read about the Find dialog box in the IDE Project Management and
Building Guide for AVR.

Replace

Displays a dialog box where you can search for a specified string and replace
each occurrence with another string; read about the Replace dialog box in the
IDE Project Management and Building Guide for AVR.

Memory Fill
Displays a dialog box, where you can fill a specified area with a value, see Fill
dialog box, page 145.

C-SPY® Debugging Guide
142 for AVR

Memory and registers __4

Memory Save

Displays a dialog box, where you can save the contents of a specified memory
area to a file, see Memory Save dialog box, page 143.

Memory Restore
Displays a dialog box, where you can load the contents of a file in Intel-hex or
Motorola s-record format to a specified memory zone, see Memory Restore
dialog box, page 144.

Set Data Breakpoint

Sets breakpoints directly in the Memory window. The breakpoint is not
highlighted; you can see, edit, and remove it in the Breakpoints dialog box. The
breakpoints you set in this window will be triggered for both read and write
access. For more information, see Setting a data breakpoint in the Memory
window, page 113.

Set Data Log Breakpoint
Sets a breakpoint on the start address of a memory selection directly in the
Memory window. The breakpoint is not highlighted; you can see, edit, and
remove it in the Breakpoints dialog box. The breakpoints you set in this
window will be triggered by both read and write accesses; to change this, use the
Breakpoints window. For more information, see Data Log breakpoints, page
107 and Getting started using data logging, page 179.

Memory Save dialog box

Requirements

The Memory Save dialog box is available by choosing Debug>Memory>Save or from
the context menu in the Memory window.

Memory Save g|

Zone:

Start address: End address:
080 0xFF

File: Farmat:

intel-extended v

Filename:

Ciiprojectsimemary, hex E]

Use this dialog box to save the contents of a specified memory area to a file.

None; this dialog box is always available.

143

Reference information on memory and registers

144

Zone

Start address

End address

File format

Filename

Save

Selects a memory zone, see C-SPY memory zones, page 134.

Specify the start address of the memory range to be saved.

Specify the end address of the memory range to be saved.

Selects the file format to be used, which is Intel-extended by default.

Specify the destination file to be used; a browse button is available for your convenience.

Saves the selected range of the memory zone to the specified file.

Memory Restore dialog box

Requirements

Zone

C-SPY® Debugging Guide

for AVR

The Memory Restore dialog box is available by choosing Debug>Memory>Restore
or from the context menu in the Memory window.

Memory Restore E

Zone:

= 5
Close |
Filename:

I Ciiprojectsimemary, hex e |

Use this dialog box to load the contents of a file in Intel-extended or Motorola S-record
format to a specified memory zone.

None; this dialog box is always available.

Selects a memory zone, see C-SPY memory zones, page 134.

Filename

Restore

Fill dialog box

Requirements

Start address

Length

Zone

Value

Operation

Memory and registers __4

Specify the file to be read; a browse button is available for your convenience.

Loads the contents of the specified file to the selected memory zone.

The Fill dialog box is available from the context menu in the Memory window.

Start address: Length: Zone:
101D [0 |Memay x|
Walue: Operation

FF ' Copy AND

" HOR 0OR

()3 I Cancel |

Use this dialog box to fill a specified area of memory with a value.

None; this dialog box is always available.

Type the start address—in binary, octal, decimal, or hexadecimal notation.

Type the length—in binary, octal, decimal, or hexadecimal notation.

Selects a memory zone, see C-SPY memory zones, page 134.

Type the 8-bit value to be used for filling each memory location.

These are the available memory fill operations:

Copy
Value will be copied to the specified memory area.

145

Reference information on memory and registers

AND

An AND operation will be performed between Value and the existing contents of
memory before writing the result to memory.

XOR

An XOR operation will be performed between Value and the existing contents of
memory before writing the result to memory.

OR

An OR operation will be performed between Value and the existing contents of
memory before writing the result to memory.

Symbolic Memory window

The Symbolic Memory window is available from the View menu during a debug

session.

Symbolic Memory

Go to:

~ [pata

v||Previous|[Mext]

x

Location
Ox21
0x23
0x25
0x27
0x29
0x2B
0x2D
0x2F
0x31
0x33

Data

0x0000
0x0001
0x0001
00002
00003
0x0005
Ox0008
0x000D
0x0015
0x0022

Yariable Value
callCount

a
1
1
2
3
5

2

13
21
34

Type

int

unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int
unsigned int

-

m

This window displays how variables with static storage duration, typically variables
with file scope but also static variables in functions and classes, are laid out in memory.
This can be useful for better understanding memory usage or for investigating problems
caused by variables being overwritten, for example buffer overruns. Other areas of use
are spotting alignment holes or for understanding problems caused by buffers being

overwritten.

To view the memory corresponding to a variable, you can select it in the editor window
g5 anddrag it to the Symbolic Memory window.

See also Editing in C-SPY windows, page 54.

Requirements

None; this window is always available.

C-SPY® Debugging Guide
146 for AVR

Memory and registers __4

Toolbar
The toolbar contains:

Go to
The memory location or symbol you want to view.

Zone
Selects a memory zone, see C-SPY memory zones, page 134.

Previous
Highlights the previous symbol in the display area.

Next
Highlights the next symbol in the display area.

Display area
This area contains these columns:

Location

The memory address.

Data
The memory contents in hexadecimal format. The data is grouped according to
the size of the symbol. This column is editable.

Variable
The variable name; requires that the variable has a fixed memory location. Local
variables are not displayed.

Value
The value of the variable. This column is editable.

Type

The type of the variable.
There are several different ways to navigate within the memory space:

Text that is dropped in the window is interpreted as symbols
The scroll bar at the right-side of the window

°
°
o The toolbar buttons Next and Previous
°

The toolbar list box Go to can be used for locating specific locations or symbols.

Note: Rows are marked in red when the corresponding value has changed.

147

Reference information on memory and registers

148

Context menu

C-SPY® Debugging Guide
for AVR

This context menu is available:

MNext Symbol

Previous Symbol

1x Units
v 2xUnits
4x Units

Add to Watch
Add to Live Watch

v Default Format
Binary Format
Octal Format
Decimal Format
Hexadecimal Format

Char Format

These commands are available:

Next Symbol
Highlights the next symbol in the display area.

Previous Symbol
Highlights the previous symbol in the display area.

1x Units

Displays the memory contents as single bytes. This applies only to rows which
do not contain a variable.

2x Units
Displays the memory contents as 2-byte groups.
4x Units
Displays the memory contents as 4-byte groups.
Add to Watch
Adds the selected symbol to the Watch window.
Add to Live Watch
Adds the selected symbol to the Live Watch window.
This command is not available in IAR Embedded Workbench for AVR.

Default format

Displays the memory contents in the default format.

Memory and registers __4

Binary format

Displays the memory contents in binary format.

Octal format
Displays the memory contents in octal format.

Decimal format
Displays the memory contents in decimal format.

Hexadecimal format

Displays the memory contents in hexadecimal format.

Char format
Displays the memory contents in char format.

Stack window

The Stack window is available from the View menu.

[Current stack pointer] { Used memory stack, in gray ‘

. I

. The graphical

| ;
[Stack view l — stack bar with
—_— __""'-—IStack 'l —— tooltip
| Locati0n| Data YWariable | YWalue | Frame o
[oxerFe] oxo0s .
— +1 0x08 — :
Cu.rrent stack ' +2 0x0000 p.mStatus i [1]__exit Unused stack
pointer +4 Oxdd memery, in
+5 Ox67 light gray
+6 OxEO ;
+7 0Ox04

This window is a memory window that displays the contents of the stack. The graphical
stack bar shows stack usage.

Note: By default, this window uses one physical breakpoint. For more information, see
Breakpoint consumers, page 110.

For information about options specific to the Stack window, see the IDE Project
Management and Building Guide for AVR.

Requirements

None; this window is always available.

149

Reference information on memory and registers

150

Toolbar

The toolbar contains:

Stack

Selects which stack to view. This applies to microcontrollers with multiple
stacks.

The graphical stack bar

Display area

C-SPY® Debugging Guide
for AVR

Displays the state of the stack graphically.

The left end of the stack bar represents the bottom of the stack, in other words, the
position of the stack pointer when the stack is empty. The right end represents the end
of the memory address range reserved for the stack. The graphical stack bar turns red
when the stack usage exceeds a threshold that you can specify.

To enable the stack bar, choose Tools>Options>Stack>Enable graphical stack
display and stack usage tracking. This means that the functionality needed to detect
and warn about stack overflows is enabled.

Place the mouse pointer over the stack bar to get tooltip information about stack usage.

This area contains these columns:

Location
Displays the location in memory. The addresses are displayed in increasing
order. The address referenced by the stack pointer, in other words the top of the
stack, is highlighted in a green color.

Data
Displays the contents of the memory unit at the given location. From the Stack
window context menu, you can select how the data should be displayed; as a 1-,
2-, or 4-byte group of data.

Variable
Displays the name of a variable, if there is a local variable at the given location.
Variables are only displayed if they are declared locally in a function, and
located on the stack and not in registers.

Value
Displays the value of the variable.

Type

Displays the data type of the variable.

Memory and registers __4

Frame

Displays the name of the function that the call frame corresponds to.

Context menu

This context menu is available:

v Show Variables
Show Offsets
1x Units
2x Units

v dxUnits

Default Format
Binary Format

Octal Format
Decimal Format
Hexadecimal Format

Char Format

Options...

These commands are available:

Show variables

Displays separate columns named Variables, Value, and Frame in the Stack
window. Variables located at memory addresses listed in the Stack window are
displayed in these columns.

Show offsets

Displays locations in the Location column as offsets from the stack pointer.
When deselected, locations are displayed as absolute addresses.

1x Units
Displays the memory contents as single bytes.
2x Units

Displays the memory contents as 2-byte groups.

4x Units
Displays the memory contents as 4-byte groups.

151

Reference information on memory and registers

Default Format,

Binary Format,

Octal Format,

Decimal Format,

Hexadecimal Format,

Char Format
Changes the display format of expressions. The display format setting affects
different types of expressions in different ways. Your selection of display format
is saved between debug sessions. These commands are available if a selected
line in the window contains a variable.

The display format setting affects different types of expressions in these ways:

Variables The display setting affects only the selected variable, not
other variables.

Array elements The display setting affects the complete array, that is, the
same display format is used for each array element.

Structure fields All elements with the same definition—the same field
name and C declaration type—are affected by the
display setting.

Options

Opens the IDE Options dialog box where you can set options specific to the
Stack window, see the IDE Project Management and Building Guide for AVR.

C-SPY® Debugging Guide
152 for AVR

Memory and registers __4

Registers window

The Registers windows are available from the View menu.

X
CPU Registers Yalue Access s

X 0=0000 FeadvWrite

Y 0=2020 FeadvWrite

Z 0=0000 FeadvWrite
+ SREG 0=00 Feadw'rite =
SP 0=203D FeadvWrite

PC 0=0178 FeadvWrite

CYCLES 20 FeadvWrite

RO 0=00 FeadvWrite

R1 0=00 FeadvWrite

R2 0=00 FeadvWrite

R3 0=00 FeadvWrite

R4 0=00 FeadvWrite

RS 0=00 FeadvWrite

R6 0=00 FeadvWrite

R? 0=00 FeadvWrite

RS 0=00 FeadvWrite

R9 0=00 FeadvWrite

R10 0=00 FeadvWrite o

These windows give an up-to-date display of the contents of the processor registers and
special function registers, and allows you to edit the content of some of the registers.
Optionally, you can choose to load either predefined register groups or your own
user-defined groups.

You can open up to four instances of this window, which is very convenient if you want
to keep track of different register groups.

See also Editing in C-SPY windows, page 54.

To enable predefined register groups:

I Select a device description file that suits your device, see Selecting a device description
file, page 51.

2 Display the register groups that are defined in the device description file in the
Registers window by right-clicking in the window and choosing View Group from the
context menu.

For information about creating your own user-defined register groups, see Defining
application-specific register groups, page 136.

Requirements

None; this window is always available.

153

Reference information on memory and registers

154

Toolbar

Display area

C-SPY® Debugging Guide
for AVR

The toolbar contains:

<find register>
Specify the name of a register that you want to find. Press the Enter key and the
first register group where this register is found is displayed. User-defined
register groups are not searched. The register search box has a history depth of
20 search entries.

Displays registers and their values. Some registers are expandable, which means that the
register contains interesting bits or subgroups of bits.

If you drag a numerical value, a valid expression, or a register name from another part
of the IDE to an editable value cell in a Registers window, the value will be changed to
that of what you dragged. If you drop a register name somewhere else in the window,
the window contents will change to display the first register group where this register is
found.

Register group name

The name of the register.

Value
The current value of the register. Every time C-SPY stops, a value that has
changed since the last stop is highlighted. Some of the registers are editable. To
edit the contents of an editable register, click it and modify its value. Press Esc
to cancel the change.

To change the display format of the value, right-click on the register and choose
Format from the context menu.
Access

The access type of the register. Some of the registers are read-only, some of the
registers are write-only.

Memory and registers __4

For the C-SPY Simulator, these additional support registers are available in the CPU
Registers group:

CYCLES Cleared when an application is started or reset and is
incremented with the number of used cycles during
execution.

Context menu

This context menu is available:

View Group 3
View User Group 3
Format 3

Open User Groups Setup Window

Save to File...

These commands are available:

View Group

Selects which predefined register group to display, by default CPU Registers.
Additional predefined register groups are predefined in the device description
files that make SFR registers available in the Registers windows. The device

description file contains a section that defines the special function registers and
their groups.

View User Group
Selects which user-defined register group to display. For information about
creating your own user-defined register groups, see Defining
application-specific register groups, page 136.

Format
Changes the display format for the contents of the register you clicked on. The
display format setting affects different types of registers in different ways. Your
selection of display format is saved between debug sessions.

Open User Groups Setup Window
Opens a window where you can create your own user-defined register groups,
see Register User Groups Setup window, page 156.

Save to File

Opens a standard save dialog box to save the contents of the window to a
tab-separated text file.

155

Reference information on memory and registers

156

Register User Groups Setup window

Requirements

Display area

C-SPY® Debugging Guide
for AVR

The Register User Groups Setup window is available from the View menu or from the
context menu in the Registers windows.

Register User Groups Setup =
Group Farmat

- regCroupOne

i R4 Hexadecimal

Hexadecimal
Hexadecimal
Hexadecimal
Hexadecimal
Hexadecimal
Hexadecimal
Hexadecimal
Binary

Hexadecimal
Binary
Binary
Hexadecimal

<click to add reg>
<click to add group>

Use this window to define your own application-specific register groups. These register
groups can then be viewed in the Registers windows.

Defining application-specific register groups means that the Registers windows can
display just those registers that you need to watch for your current debugging task. This
makes debugging much easier.

None; this window is always available.

This area contains these columns:

Group
The names of register groups and the registers they contain. Clickingon <click
to add group> or <click to add reg> and typing the name of a register
group or register, adds new groups and registers, respectively. You can also drag
a register name from another window in the IDE. Click a name to change it.

A dimmed register name indicates that it is not supported by the selected device.

Memory and registers __4

Format

Shows the display format for the register’s value. To change the display format
of the value, right-click on the register and choose Format from the context
menu. The selected format is used in all Registers windows.

Context menu

This context menu is available:
Format 4
Rermove
Clear Group

Remove All Groups

Save to File...

These commands are available:

Format
Changes the display format for the contents of the register you clicked on. The
display format setting affects different types of registers in different ways. Your
selection of display format is saved between debug sessions.

Remove
Removes the register or group you clicked on.

Clear Group

Removes all registers from the group you clicked on.

Remove All Groups
Deletes all user-defined register groups from your project.

Save to File

Opens a standard save dialog box to save the contents of the window to a
tab-separated text file.

157

Reference information on memory and registers

C-SPY® Debugging Guide
158 for AVR

Part 2. Analyzing your
application

This part of the C-SPY® Debugging Guide for AVR includes these chapters:
e Trace

e The application timeline

e Profiling

e Code coverage

e Power debugging

.hmuhhhm

159

RARRI

160

Trace

e Introduction to using trace
e Collecting and using trace data

e Reference information on trace

Introduction to using trace

These topics are covered:

o Reasons for using trace

e Briefly about trace

o Requirements for using trace

See also:

o Getting started using data logging, page 179
® Power debugging, page 211

e Profiling, page 197

REASONS FOR USING TRACE

By using trace, you can inspect the program flow up to a specific state, for instance an
application crash, and use the trace data to locate the origin of the problem. Trace data
can be useful for locating programming errors that have irregular symptoms and occur
sporadically.

BRIEFLY ABOUT TRACE

To use trace in C-SPY requires that your target system can generate trace data. Once
generated, C-SPY can collect it and you can visualize and analyze the data in various
windows and dialog boxes.

Trace data is a continuously collected sequence of every executed instruction or data
accesses for a selected portion of the execution.
Trace features in C-SPY

In C-SPY, you can use the trace-related windows Trace, Function Trace, Timeline, and
Find in Trace.

161

Collecting and using trace data

162

Depending on your C-SPY driver, you:

o Can set various types of trace breakpoints to control the collection of trace data.

o Have access to windows such as the Data Log, and Data Log Summary.
In addition, several other features in C-SPY also use trace data, features such as
Profiling, Code coverage, and Instruction profiling.

REQUIREMENTS FOR USING TRACE

The C-SPY simulator supports trace-related functionality, and there are no specific
requirements.

Trace data cannot be collected from the hardware debugger systems.

Collecting and using trace data

C-SPY® Debugging Guide
for AVR

These tasks are covered:

o Getting started with trace

o Trace data collection using breakpoints
e Searching in trace data

o Browsing through trace data.

GETTING STARTED WITH TRACE

After you have built your application and started C-SPY, open the Trace window—
available from the driver-specific menu—and click the Activate button to enable
collecting trace data.

Start the execution. When the execution stops, for example because a breakpoint is
triggered, trace data is displayed in the Trace window. For more information about the
window, see Trace window, page 164.

TRACE DATA COLLECTION USING BREAKPOINTS

A convenient way to collect trace data between two execution points is to start and stop
the data collection using dedicated breakpoints. Choose between these alternatives:

o In the editor or Disassembly window, position your insertion point, right-click, and
toggle a Trace Start or Trace Stop breakpoint from the context menu.
e In the Breakpoints window, choose Trace Start or Trace Stop.

o The C-SPY system macros __setTraceStartBreak and
__setTraceStopBreak can also be used.

Trace __o

For more information about these breakpoints, see Trace Start breakpoints dialog box,
page 168 and Trace Stop breakpoints dialog box, page 169, respectively.

SEARCHING IN TRACE DATA

When you have collected trace data, you can perform searches in the collected data to
locate the parts of your code or data that you are interested in, for example, a specific
interrupt or accesses of a specific variable.

You specify the search criteria in the Find in Trace dialog box and view the result in the
Find in Trace window.

The Find in Trace window is very similar to the Trace window, showing the same
columns and data, but only those rows that match the specified search criteria.
Double-clicking an item in the Find in Trace window brings up the same item in the
Trace window.

To search in your trace data:

On the Trace window toolbar, click the Find button.
In the Find in Trace dialog box, specify your search criteria.
Typically, you can choose to search for:

e A specific piece of text, for which you can apply further search criteria
® An address range

o A combination of these, like a specific piece of text within a specific address range.
For more information about the various options, see Find in Trace dialog box, page 172.

When you have specified your search criteria, click Find. The Find in Trace window
is displayed, which means you can start analyzing the trace data. For more information,
see Find in Trace window, page 173.

BROWSING THROUGH TRACE DATA

To follow the execution history, simply look and scroll in the Trace window.
Alternatively, you can enter browse mode.

To enter browse mode, double-click an item in the Trace window, or click the Browse
toolbar button.

The selected item turns yellow and the source and disassembly windows will highlight
the corresponding location. You can now move around in the trace data using the up and
down arrow keys, or by scrolling and clicking; the source and Disassembly windows
will be updated to show the corresponding location. This is like stepping backward and
forward through the execution history.

163

Reference information on trace

164

Double-click again to leave browse mode.

Reference information on trace

Trace window

Requirements

Trace toolbar

C-SPY® Debugging Guide
for AVR

B B x e

Reference information about:

Trace window, page 164

Function Trace window, page 167

Trace Start breakpoints dialog box, page 168
Trace Stop breakpoints dialog box, page 169
Trace Expressions window, page 170

Find in Trace dialog box, page 172

Find in Trace window, page 173.

The Trace window is available from the C-SPY driver menu.
This window displays the collected trace data.

See also Collecting and using trace data, page 162.

The C-SPY simulator.

The toolbar in the Trace window and in the Function Trace window contains:

Enable/Disable
Enables and disables collecting and viewing trace data in this window. This
button is not available in the Function Trace window.

Clear trace data
Clears the trace buffer. Both the Trace window and the Function Trace window
are cleared.

Toggle source
Toggles the Trace column between showing only disassembly or disassembly
together with the corresponding source code.

Browse
Toggles browse mode on or off for a selected item in the Trace window.

Display area

Trace __o

Find
Displays a dialog box where you can perform a search, see Find in Trace dialog
box, page 172.

Save
Displays a standard Save As dialog box where you can save the collected trace
data to a text file, with tab-separated columns.

Edit Settings

In the C-SPY simulator, this button is not enabled.

Edit Expressions (C-SPY simulator only)

Opens the Trace Expressions window, see Trace Expressions window, page
170.

Progress bar
When a large amount of trace data has been collected, there might be a delay
before all of it has been processed and can be displayed. The progress bar
reflects that processing.

This area displays a collected sequence of executed machine instructions. In addition,
the window can display trace data for expressions.

Trace =

RIX B Q) |

Cycles Trace callCount i

1396 2766 FFFR0574 MOV.L 5F, R2 10

1397 2787 FFFR0576 MoV #0x01:4,R1 10

1398 2771 FFFRO578 BESE.A __ DebugBreak 10
__DebugBreak:

1399 2777 FFFRO4ED RTS 10

1400 2780 FFFRO57C BREA.B OxFFFB0572 10

1401 2781 FFFR0572 MOV.L R&, [SF] 10

1402 2782 FFFR0574 MOV.L 5F, R2 10

1403 2783 FFFR0O576 Mov #0x01:4,R1 10 k%

4 n 3

This area contains these columns for the C-SPY simulator:

#

A serial number for each row in the trace buffer. Simplifies the navigation within
the buffer.

Cycles

The number of cycles elapsed to this point.

165

Reference information on trace

166

Context menu

C-SPY® Debugging Guide
for AVR

Trace

The collected sequence of executed machine instructions. Optionally, the
corresponding source code can also be displayed.

Expression
Each expression you have defined to be displayed appears in a separate column.
Each entry in the expression column displays the value affer executing the
instruction on the same row. You specify the expressions for which you want to
collect trace data in the Trace Expressions window, see Trace Expressions
window, page 170.

A red-colored row indicates that the previous row and the red row are not consecutive.
This means that there is a gap in the collected trace data, for example because trace data
has been lost due to an overflow.

This context menu is available:
v | Enable

Clear

Embed Source
Browse

Find All...

Save...

Open Trace Expressions Window...

Note: The contents of this menu are dynamic and depend on which features that your
combination of software and hardware supports. However, the list of menu commands
below is complete and covers all possible commands.

These commands are available:

Enable
Enables and disables collecting and viewing trace data in this window.

Clear

Clears the trace buffer. Both the Trace window and the Function Trace window
are cleared.

Embed source

Toggles the Trace column between showing only disassembly or disassembly
together with the corresponding source code.

Browse
Toggles browse mode on or off for a selected item in the Trace window.

Find All

Trace __o

Displays a dialog box where you can perform a search in the Trace window, see
Find in Trace dialog box, page 172. The search results are displayed in the Find
in Trace window—available by choosing the View>Messages command, see

Find in Trace window, page 173.

Save

Displays a standard Save As dialog box where you can save the collected trace
data to a text file, with tab-separated columns.

Open Trace Expressions Window

Opens the Trace Expressions window, see Trace Expressions window, page

1

Function Trace window

The Function Trace window is available from the C-SPY driver menu during a debug

Requirements

Toolbar

session.

70.

Function Trace

=)

AyE E

@]
#

475
476
477
483
485
491
494
504

Cycles
1050
1055
1058
1069
1074
1086
1092
1109

Trace

O0x000000E4 :
Ox00000242:

Ox0000025C

Ox0000022C:
Ox00000220:
0x00000232:
O0x00000074:
O0x00000234:

PutFib{un=signed int)
DoForegroundProce=ss()
cmaini) + 24
DoForegroundProce=ss()

HextCounter()
DoForegroundProce=ss()

GetFib{int)
DoForegroundProce=ss()

4

76
22

14

rmyariable

PO M3 P — o

-

Function Trace | Trace | Trace Expressions

This window displays a subset of the trace data displayed in the Trace window. Instead

of displaying all rows, the Function Trace window shows:

o The functions called or returned to, instead of the traced instruction

o The corresponding trace data.

The C-SPY simulator.

For information about the toolbar, see Trace window, page 164.

167

Reference information on trace

168

Display area

There are two sets of columns available, and which set is used in your debugging system
depends on the debug probe and which trace sources that are available:

Cycles

The number of cycles elapsed to this point according to the timestamp in the
debug probe.

Address

The address of the executed instruction.

Call/Return
The function that was called or returned to.

Trace Start breakpoints dialog box

C-SPY® Debugging Guide
for AVR

The Trace Start dialog box is available from the context menu that appears when you
right-click in the Breakpoints window.

New Breakpoint g|
9 Trace Start l

Trigger At:

| Ed,.

(] 8 | Cancel |

Use this dialog box to set a Trace Start breakpoint where you want to start collecting
trace data. If you want to collect trace data only for a specific range, you must also set a
Trace Stop breakpoint where you want to stop collecting data.

See also Trace Stop breakpoints dialog box, page 169 and Trace data collection using
breakpoints, page 162.

To set a Trace Start breakpoint:

In the editor or Disassembly window, right-click and choose Trace Start from the
context menu.

Alternatively, open the Breakpoints window by choosing View>Breakpoints.

2 In the Breakpoints window, right-click and choose New Breakpoint>Trace Start.

Trace __o

Alternatively, to modify an existing breakpoint, select a breakpoint in the Breakpoints
window and choose Edit on the context menu.

3 In the Trigger At text box, specify an expression, an absolute address, or a source
location. Click OK.

4 When the breakpoint is triggered, the trace data collection starts.

Requirements
The C-SPY simulator.

Trigger at

Specify the code location of the breakpoint. Alternatively, click the Edit button to open
the Enter Location dialog box, see Enfer Location dialog box, page 130.

Trace Stop breakpoints dialog box

The Trace Stop dialog box is available from the context menu that appears when you
right-click in the Breakpoints window.
x
& Trace Stop |

Trigger At:

| Edit.. |

()8 I Cancel |

Use this dialog box to set a Trace Stop breakpoint where you want to stop collecting
trace data. If you want to collect trace data only for a specific range, you might also need
to set a Trace Start breakpoint where you want to start collecting data.

See also Trace Start breakpoints dialog box, page 168 and Trace data collection using
breakpoints, page 162.

To set a Trace Stop breakpoint:

I In the editor or Disassembly window, right-click and choose Trace Stop from the
context menu.

Alternatively, open the Breakpoints window by choosing View>Breakpoints.

169

Reference information on trace

4

Requirements

Trigger at

In the Breakpoints window, right-click and choose New Breakpoint>Trace Stop.

Alternatively, to modify an existing breakpoint, select a breakpoint in the Breakpoints
window and choose Edit on the context menu.

In the Trigger At text box, specify an expression, an absolute address, or a source
location. Click OK.

When the breakpoint is triggered, the trace data collection stops.

The C-SPY simulator.

Specify the code location of the breakpoint. Alternatively, click the Edit button to open
the Enter Location dialog box, see Enter Location dialog box, page 130.

Trace Expressions window

Requirements

Display area

C-SPY® Debugging Guide
170 for AVR

The Trace Expressions window is available from the Trace window toolbar.

Trace Expressions x
Expression Farmat
i Default
dec Default
R4 Default
CYCLECOUNTER Default

Use this window to specity, for example, a specific variable (or an expression) for which
you want to collect trace data.

The C-SPY simulator.

Use the display area to specify expressions for which you want to collect trace data:

Expression

Specify any expression that you want to collect data from. You can specify any
expression that can be evaluated, such as variables and registers.

Trace __o

Format

Shows which display format that is used for each expression. Note that you can
change display format via the context menu.

Each row in this area will appear as an extra column in the Trace window.

Context menu

This context menu is available:
Move Up
Mowve Down
Rermove
Default
Binary
Octal
Decimal
Hexadecimal

Char

These commands are available:

Move Up
Moves the selected expression upward in the window.

Move Down
Moves the selected expression downward in the window.

Remove

Removes the selected expression from the window.

Default Format,

Binary Format,

Octal Format,

Decimal Format,

Hexadecimal Format,

Char Format
Changes the display format of expressions. The display format setting affects
different types of expressions in different ways. Your selection of display format
is saved between debug sessions. These commands are available if a selected
line in the window contains a variable.

The display format setting affects different types of expressions in these ways:

Variables The display setting affects only the selected variable, not
other variables.

171

Reference information on trace

172

Array elements The display setting affects the complete array, that is, the
same display format is used for each array element.

Structure fields All elements with the same definition—the same field
name and C declaration type—are affected by the
display setting.

Find in Trace dialog box

Requirements

Text search

C-SPY® Debugging Guide
for AVR

The Find in Trace dialog box is available by clicking the Find button on the Trace
window toolbar or by choosing Edit>Find and Replace>Find.

Note that the Edit>Find and Replace>Find command is context-dependent. It displays
the Find in Trace dialog box if the Trace window is the current window or the Find
dialog box if the editor window is the current window.

Find in Trace §|

W' Text search
| =l
Cancel

[~ Match case
I Match whale word

™ only search in one colurnn

| I

™ Address range

Use this dialog box to specify the search criteria for advanced searches in the trace data.

The search results are displayed in the Find in Trace window—available by choosing
the View>Messages command, see Find in Trace window, page 173.

See also Searching in trace data, page 163.

The C-SPY simulator.

Specify the string you want to search for. To specify the search criteria, choose between:

Match Case

Searches only for occurrences that exactly match the case of the specified text.
Otherwise int will also find INT, Int, and so on.

Trace __o

Match whole word
Searches only for the string when it occurs as a separate word. Otherwise int
will also find print, sprintf, and so on.

Only search in one column
Searches only in the column you selected from the drop-down list.

Address Range

Specify the address range you want to display or search. The trace data within the
address range is displayed. If you also have specified a text string in the Text search
field, the text string is searched for within the address range.

Find in Trace window

The Find in Trace window is available from the View>Messages menu. Alternatively,
it is automatically displayed when you perform a search using the Find in Trace dialog
box or perform a search using the Find in Trace command available from the context
menu in the editor window.

Find In Trace B
Trace i

008led CHP R4, #10 2

Find In Trace

This window displays the result of searches in the trace data. Double-click an item in the
Find in Trace window to bring up the same item in the Trace window.

Before you can view any trace data, you must specify the search criteria in the Find in
Trace dialog box, see Find in Trace dialog box, page 172.

See also Searching in trace data, page 163.

Requirements
The C-SPY simulator.

Display area

The Find in Trace window looks like the Trace window and shows the same columns
and data, but only those rows that match the specified search criteria.

173

Reference information on trace

C-SPY® Debugging Guide
174 for AVR

The application timeline

e Introduction to analyzing your application’s timeline
e Analyzing your application’s timeline

e Reference information on application timeline

Introduction to analyzing your application’s timeline

These topics are covered:

e Briefly about analyzing the timeline

o Requirements for timeline support
See also:

o Trace, page 161

BRIEFLY ABOUT ANALYZING THE TIMELINE

C-SPY can provide information for various aspects of your application, collected when
the application is running. This can help you to analyze the application’s behavior.

You can view the timeline information in different representations:

o Asdifferent graphs that correlate with the running application in relation to a shared
time axis.

® As detailed logs

o As summaries of the logs.

Depending on the capabilities of your hardware, the debug probe, and the C-SPY driver
you are using, timeline information can be provided for:

Call stack Can be represented in the Timeline window, as a graph that displays the
sequence of function calls and returns collected by the trace system. You
get timing information between the function invocations.

Note that there is also a related Call Stack window and a Function
Trace window, see Call Stack window, page 75 and Function Trace
window, page 167, respectively.

175

Introduction to analyzing your application’s timeline

Data logging Based on data logs collected by the trace system for up to four different
variables or address ranges, specified by means of Data Log
breakpoints. Choose to display the data logs:

o In the Timeline window, as a graph of how the values change over
time.
e In the Data Log window and the Data Log Summary window.

Power Based on logged power measurement samples generated by the debug
logging probe or associated hardware. Choose to display the power logs:

e In the Timeline window, as a graph of the power measurement
samples.

e In the Power Log window.

Power logs can be useful for finding peaks in the power consumption

and by double-clicking on a value you can see the corresponding source

code. The precision depends on the frequency of the samples, but there

is a good chance that you find the source code sequence that caused the
peak.

For more information, see the chapter Power debugging, page 211.

State logging Based on logged activity—state changes—for the GPIO input pins
generated by the debug probe or associated hardware. Choose to display
the state logs:

o In the Timeline window, as a graph of the state changes.

e In the State Log window and in the State Log Summary window.
The information is useful for tracing the activity on the target system.

For more information, see the chapter Power debugging, page 211.

C-SPY® Debugging Guide
176 for AVR

The application timeline °

REQUIREMENTS FOR TIMELINE SUPPORT

Depending on the capabilities of the hardware, the debug probe, and the C-SPY driver
you are using, timeline information is supported for:

Target system Call stack Data logging Power logging State logging
C-SPY simulator Yes Yes — —

C-SPY Atmel-ICE driver — — — —

C-SPY AVR ONE! driver — — — —

C-SPY JTAGICE mkll/Dragon driver — — — —

C-SPY JTAGICE3 driver — — — —

C-SPY Power Debugger — — Yes Yes

Table 8: Support for timeline information

For more information about requirements related to trace data, see Requirements for
using trace, page 162.

Analyzing your application’s timeline
These tasks are covered:
o Displaying a graph in the Timeline window, page 177
® Navigating in the graphs, page 178
® Analyzing performance using the graph data, page 178
o Getting started using data logging, page 179

See also:

® Debugging in the power domain, page 217
o Using the interrupt system, page 246

DISPLAYING A GRAPH IN THE TIMELINE WINDOW

The Timeline window can display several graphs; follow this example procedure to
display any of these graphs. For an overview of the graphs and what they display, see
Briefly about analyzing the timeline, page 175.

I If you are using the Power Debugger, choose Power Debugger>Power Debugger
Settings and select which of the four GPIO input pins that you want to monitor.

2 Choose Timeline from the C-SPY driver menu to open the Timeline window.

3 In the Timeline window, right-click in the window and choose Select graphs from the
context menu to select which graphs to be displayed.

177

Analyzing your application’s timeline

178

C-SPY® Debugging Guide
for AVR

4 1In the Timeline window, right-click in the graph area and choose Enable from the

context menu to enable a specific graph.

For the Data Log graph, you must set a Data Log breakpoint for each variable you want
a graphical representation of in the Timeline window. See Data Log breakpoints
dialog box, page 125.

Click Go on the toolbar to start executing your application. The graphs that you have
enabled appear.

NAVIGATING IN THE GRAPHS

After you have performed the steps in Displaying a graph in the Timeline window, page
177, you can use any of these alternatives to navigate in the graph:

e Right-click and from the context menu choose Zoom In or Zoom Out.
Alternatively, use the + and — keys. The graph zooms in or out depending on which
command you used.

o Right-click in the graph and from the context menu choose Navigate and the
appropriate command to move backwards and forwards on the graph. Alternatively,
use any of the shortcut keys: arrow keys, Home, End, and Ctrl+End.

o Double-click on a sample of interest to highlight the corresponding source code in
the editor window and in the Disassembly window.

o Click on the graph and drag to select a time interval, which will correlate to the
running application. The selection extends vertically over all graphs, but appears
highlighted in a darker color for the selected graph. Press Enter or right-click and
from the context menu choose Zoom>Zoom to Selection. The selection zooms in.
Use the navigation keys in combination with the Shift key to extend the selection.

ANALYZING PERFORMANCE USING THE GRAPH DATA

The Timeline window provides a set of tools for analyzing the graph data.

In the Timeline window, right-click and choose Time Axis Unit from the context
menu. Select which unit to be used on the time axis; choose between Seconds and
Cycles. If Cycles is not available, the graphs are based on different clock sources.

Execute your application to display a graph, following the steps described in
Displaying a graph in the Timeline window, page 177.

Whenever execution stops, point at the graph with the mouse pointer to get detailed
tooltip information for that location.

The application timeline °

— } }

IRQTI at level 1
CPU Clock (5 MHz)

t1: 20148.00 us (100740 cycles)
t2: 20859.20 us (104296 cycles) |

T(t2 - t1): 711.20 us (3556 cycles)

L | BN

—| '7
— =
I = U
IR
Tl
=
0.020s 0.021s 0.022s 0.023s 0.0

Note that if you have enabled several graphs, you can move the mouse pointer over the
different graphs to get graph-specific information.

4 Click in the graph and drag to select a time interval. Point in the graph with the mouse
pointer to get timing information for the selection.

Start time of

e 127
selection in
seconds and yﬂw
cycles T t1: 181.70 us (1817 cycles)

P — EJf t2: 194.50 us (1945 cycles) (Mhetepoeydm:
i u
End of selection T (2 11): 1280 us (128 cycles) correspends tothe

in seconds and i time interval.
cycles T8 1/T; 78125 Hz —— 1= | Typically, useful for
' : periodically

5s 0.00020s 0.00025s || OIS GHETE:

The time interval
of the selection

GETTING STARTED USING DATA LOGGING
I To set a data log breakpoint, use one of these methods:

o In the Breakpoints window, right-click and choose New Breakpoint>Data Log to
open the breakpoints dialog box. Set a breakpoint on the memory location that you
want to collect log information for. This can be specified either as a variable or as an
address.

179

Reference information on application timeline

o Inthe Memory window, select a memory area, right-click and choose Set Data Log
Breakpoint from the context menu. A breakpoint is set on the start address of the
selection.

o In the editor window, select a variable, right-click and choose Set Data Log
Breakpoint from the context menu. The breakpoint will be set on the part of the
variable that the microcontroller can access using one instruction.

You can set up to four data log breakpoints. For more information about data log
breakpoints, see Data Log breakpoints, page 107.

2 Choose C-SPY driver>Data Log to open the Data Log window. Optionally, you can
also choose:

o C-SPY driver>Data Log Summary to open the Data Log Summary window

o C-SPY driver>Timeline to open the Timeline window to view the Data Log graph.

3 From the context menu, available in the Data Log window, choose Enable to enable
the logging.

4 Start executing your application program to collect the log information.

To view the data log information, look in the Data Log window, the Data Log
Summary window, or the Data graph in the Timeline window.

6 If you want to save the log or summary to a file, choose Save to log file from the
context menu in the window in question.

7 To disable data logging, choose Disable from the context menu in each window where
you have enabled it.

Reference information on application timeline

Reference information about:

Timeline window—Call Stack graph, page 181
Timeline window—Data Log graph, page 184
Data Log window, page 188

Data Log Summary window, page 191

Viewing Range dialog box, page 194
See also:

o Timeline window—Power graph, page 223
® Power Log window, page 226
o Timeline window—State Log graph, page 235

C-SPY® Debugging Guide
180 for AVR

The application timeline °

o State Log window, page 231
o State Log Summary window, page 233

Timeline window—Call Stack graph

The Timeline window is available from the C-SPY driver menu during a debug session.

Timing information

Timeline =
1] -
W W Wi W W
[putchar]| [putchar]| [putchar]| [putchar]| [putchar]| 3
) |?Springboa| |?Springboa| |?Springboa| |?Springboa| |?Springboa|
putch [_printf 517
?Spring [printf 537 |
_Printf | [nmiHandler::??INTVEC 16 1
printf | [nmiHandler:??INTVEC 16 ;
main 87 / <
a. 9999225__.-’: 8.000024s 8.008026s a. B__B’BBZSS 8.008030s 8.008032s
] [b
Commaon time axis] { Selection for current graph
This window displays trace data represented as different graphs, in relation to a shared
time axis.
The Call Stack graph displays the sequence of function calls and returns collected by the
trace system.
Note: There is a limit on the number of saved logs. When this limit is exceeded, the
oldest entries in the buffer are erased.
Requirements

The C-SPY simulator.

Display area for the Call Stack graph

Each function invocation is displayed as a horizontal bar which extends from the time
of entry until the return. Called functions are displayed above its caller. The horizontal
bars use four different colors:

o Medium green for normal C functions with debug information

181

Reference information on application timeline

182

Context menu

C-SPY® Debugging Guide
for AVR

o Light green for functions known to the debugger only through an assembler label
o Medium yellow for normal interrupt handlers, with debug information

e Light yellow for interrupt handlers known to the debugger only through an
assembler label

The timing information represents the number of cycles spent in, or between, the
function invocations.

At the bottom of the window, there is a shared time axis that uses seconds or cycles as
the time unit.

Click in the graph to display the corresponding source code.

This context menu is available:

MNavigate 3
v Auto Scroll
Zoom 3
Call Stack
v Enable

v | Show Timing

Go to Source

Save to File...
Select Graphs 3
Time Axis Unit 3

Note: The contents of this menu are dynamic and depend on which features that your
combination of software and hardware supports. However, the list of menu commands
below is complete and covers all possible commands.

These commands are available:

Navigate
Commands for navigating the graph(s). Choose between:

Next moves the selection to the next relevant point in the graph. Shortcut key:
right arrow.

Previous moves the selection backward to the previous relevant point in the
graph. Shortcut key: left arrow.

First moves the selection to the first data entry in the graph. Shortcut key:
Home.

Last moves the selection to the last data entry in the graph. Shortcut key: End.

The application timeline °

End moves the selection to the last data in any displayed graph, in other words
the end of the time axis. Shortcut key: Ctrl+End.

Auto Scroll

Toggles automatic scrolling on or off. When on, the most recently collected data
is automatically displayed when you choose Navigate>End.

Zoom

Commands for zooming the window, in other words, changing the time scale.
Choose between:

Zoom to Selection makes the current selection fit the window. Shortcut key:
Return.

Zoom In zooms in on the time scale. Shortcut key: +
Zoom Out zooms out on the time scale. Shortcut key: —

10ns, 100ns, 1us, etc makes an interval of 10 nanoseconds, 100 nanoseconds, 1
microsecond, respectively, fit the window.

1ms, 10ms, etc makes an interval of 1 millisecond or 10 milliseconds,
respectively, fit the window.

10m, 1h, etc makes an interval of 10 minutes or 1 hour, respectively, fit the
window.

Call Stack
A heading that shows that the Call stack-specific commands below are available.

Enable
Toggles the display of the graph on or off. If you disable a graph, that graph will
be indicated as OFF in the window. If no data has been collected for a graph, no
data will appear instead of the graph.

Show Timing
Toggles the display of the timing information on or off.

Go To Source

Displays the corresponding source code in an editor window, if applicable.

Save to File

Saves all contents (or the selected contents) of the Call Stack graph to a file. The
menu command is only available when C-SPY is not running.

Select Graphs
Selects which graphs to be displayed in the Timeline window.

183

Reference information on application timeline

Time Axis Unit

Selects the unit used in the time axis; choose between Seconds and Cycles.

If Cycles is not available, the graphs are based on different clock sources. In that
case you can view cycle values as tooltip information by pointing at the graph
with your mouse pointer.

Profile Selection

Enables profiling time intervals in the Function Profiler window. Note that this
command is only available if the C-SPY driver supports PC Sampling.

Timeline window—Data Log graph

The Timeline window is available from the C-SPY driver menu during a debug session.

[Graph in Levels style] [Graph in Linear style]

= \ N,
Timeline \ N @

| 0x10 —— ox0n 0x10 Ox10 -

8.80398s 8.80399s 8.80400s 8.80401s 8.80402s

] l »

Commaon time axis]

This window displays trace data represented as different graphs, in relation to a shared
time axis.

The Data Log graph displays the data logs collected by the trace system, for up to four
different variables or address ranges specified as Data Log breakpoints.

Note: There is a limit on the number of saved logs. When this limit is exceeded, the

oldest entries in the buffer are erased.

Requirements
The C-SPY simulator.

C-SPY® Debugging Guide
184 for AVR

The application timeline °

Display area for the Data Log graph
Where:

o The label area at the left end of the graph displays the variable name or the address
for which you have specified the Data Log breakpoint.

o The graph itself displays how the value of the variable changes over time. The label
area also displays the limits, or range, of the Y-axis for a variable. You can use the
context menu to change these limits. The graph is a graphical representation of the
information in the Data Log window, see Data Log window, page 188.

e The graph can be displayed either as a thin line between consecutive logs or as a
rectangle for every log (optionally color-filled).

o Ared vertical line indicates overflow, which means that the communication channel
failed to transmit all data logs from the target system. A red question mark indicates
a log without a value.

At the bottom of the window, there is a shared time axis that uses seconds or cycles as
the time unit.

Context menu

This context menu is available:

MNavigate 3
v Auto Scroll

Zoom 3

Data Log
v | Enable

Clear

o

Viewing Range...

Size 3

Style 3
v | Solid Graph

<

Show Numerical Values
v Hexadecimal

Go to Source

Select Graphs 3
Time Axis Unit 3

Note: The contents of this menu are dynamic and depend on which features that your
combination of software and hardware supports. However, the list of menu commands
below is complete and covers all possible commands.

185

Reference information on application timeline

These commands are available:

Navigate

Commands for navigating the graph(s). Choose between:

Next moves the selection to the next relevant point in the graph. Shortcut key:
right arrow.

Previous moves the selection backward to the previous relevant point in the
graph. Shortcut key: left arrow.

First moves the selection to the first data entry in the graph. Shortcut key:
Home.

Last moves the selection to the last data entry in the graph. Shortcut key: End.

End moves the selection to the last data in any displayed graph, in other words
the end of the time axis. Shortcut key: Ctrl+End.

Auto Scroll

Zoom

Enable

C-SPY® Debugging Guide
186 for AVR

Toggles automatic scrolling on or off. When on, the most recently collected data
is automatically displayed when you choose Navigate>End.

Commands for zooming the window, in other words, changing the time scale.
Choose between:

Zoom to Selection makes the current selection fit the window. Shortcut key:
Return.

Zoom In zooms in on the time scale. Shortcut key: +
Zoom Out zooms out on the time scale. Shortcut key: —

10ns, 100ns, 1us, etc makes an interval of 10 nanoseconds, 100 nanoseconds, 1
microsecond, respectively, fit the window.

1ms, 10ms, etc makes an interval of 1 millisecond or 10 milliseconds,
respectively, fit the window.

10m, 1h, etc makes an interval of 10 minutes or 1 hour, respectively, fit the
window.

Toggles the display of the graph on or off. If you disable a graph, that graph will
be indicated as OFF in the window. If no data has been collected for a graph, no
data will appear instead of the graph.

The application timeline °

Clear

Deletes the log information. Note that this will happen also when you reset the
debugger.

Variable
The name of the variable for which the Data Log-specific commands below
apply. This menu command is context-sensitive, which means it reflects the
Data Log graph you selected in the Timeline window (one of up to four).
Viewing Range
Displays a dialog box, see Viewing Range dialog box, page 194.

Size
Determines the vertical size of the graph; choose between Small, Medium, and
Large.

Solid Graph

Displays the graph as a color-filled solid graph instead of as a thin line.

Show Numerical Value

Shows the numerical value of the variable, in addition to the graph.
Hexadecimal

Toggles between displaying the selected value in decimal or hexadecimal

format. Note that this setting also affects the log window.

Go To Source
Displays the corresponding source code in an editor window, if applicable.

Select Graphs
Selects which graphs to be displayed in the Timeline window.
Time Axis Unit

Selects the unit used in the time axis; choose between Seconds and Cycles.

If Cycles is not available, the graphs are based on different clock sources. In that
case you can view cycle values as tooltip information by pointing at the graph
with your mouse pointer.

187

Reference information on application timeline

188

Data Log window

Requirements

Display area

C-SPY® Debugging Guide
for AVR

The Data Log window is available from the C-SPY driver menu.

Time
0.160us
0.160us

24 . 480us
24 . 720us
24 760us
24 960us
FE FERuS
79.000us
100.800us
101.040us
JIE Eddus
136.880us

Frogram Counter | 11

0=FFEOO049 =

0=FFEOOOES

0=FFEOOOEF

0=FFEOOOCA

0=FFEOOOE4 W O=00004444
0=FFEOO104

O=FFEOO104
O=FFEOO10E
Owerf low

O=FFEOO10E

Address 52

W 0x0000
@ 0x2000

R 0x0000
O0x0042
Ox0042

s e =]

@ 0x2000

Ox0042
Ox0084
Ox0084
0=00CE

=m =

@

[==T=)

=== =]

=]

Address

Ox2004

O0x2006
Ox2004
O0x2006

Ox2004+7
O0x2004
0x2006
O0=x2004

O0=x2004

White rows indicate
read accesses

Use this window to log accesses to up to four different memory locations or areas.

Note: There is a limit on the number of saved logs. When this limit is exceeded, the

oldest entries in the buffer are erased.

Grey rows indicate

write accesses

See also Getting started using data logging, page 179.

The C-SPY simulator.

Each row in the display area shows the time, the program counter, and, for every tracked
data object, its value and address. All information is cleared on reset. The information

is displayed in these columns:

Time

If the time is displayed in italics, the target system has not been able to collect a

correct time, but instead had to approximate it.

This column is available when you have selected Show time from the context

menu.

Cycles

The number of cycles from the start of the execution until the event.

The application timeline °

If a cycle is displayed in italics, the target system has not been able to collect a
correct time, but instead had to approximate it.

This column is available when you have selected Show cycles from the context
menu.

Program Counter*
Displays one of these:

An address, which is the content of the pc, that is, the address of the instruction
that performed the memory access.

---, the target system failed to provide the debugger with any information.

Overflow in red, the communication channel failed to transmit all data from the
target system.

Value

Displays the access type and the value (using the access size) for the location or
area you want to log accesses to. For example, if zero is read using a byte access
it will be displayed as 0x00, and for a long access it will be displayed as
0x00000000.

To specify what data you want to log accesses to, use the Data Log breakpoint
dialog box. See Data Log breakpoints, page 107.

Address

The actual memory address that is accessed. For example, if only a byte of a
word is accessed, only the address of the byte is displayed. The address is
calculated as base address + offset, where the base address is retrieved from the
Data Log breakpoint dialog box and the offset is retrieved from the logs. If the
log from the target system does not provide the debugger with an offset, the
offset contains + 2.

* You can double-click a line in the display area. If the value of the pc for that line is
available in the source code, the editor window displays the corresponding source code
(this does not include library source code).

189

Reference information on application timeline

190

Context menu

C-SPY® Debugging Guide
for AVR

This context menu is available:
v Enable

Clear
v Hexadecimal

Save to File...

v | Show Time
Show Cycles

These commands are available:

Enable
Enables the logging system. The system will log information also when the
window is closed.

Clear
Deletes the log information. Note that this will happen also when you reset the
debugger.

Hexadecimal
Toggles between displaying the selected value in decimal or hexadecimal
format. Note that this setting also affects the log window.

Save to File
Displays a standard file selection dialog box where you can select the
destination file for the log information. The entries in the log file are separated
by TaB and LF characters. An X in the Approx column indicates that the
timestamp is an approximation.

Show Time
Displays the Time column.
If the Time column is displayed by default in the C-SPY driver you are using,
this menu command is not available.

Show Cycles
Displays the Cycles column.

If the Cycles column is not supported in the C-SPY driver you are using, this
menu command is not available.

The application timeline °

Data Log Summary window

The Data Log Summary window is available from the C-SPY driver menu.

Data Total Accesses Read Accesses Write Accesses Unknown Accesses
tvarl 42 8 25 17

tVar2 66 17 49 8

tvar3 32 32 2] 2]

Approximative time count: 16
Overflow count: 8
Current time: 4301.52 us

DataLog Summary

This window displays a summary of data accesses to specific memory location or areas.

See also Getting started using data logging, page 179.

Requirements
The C-SPY simulator.

Display area

Each row in this area displays the type and the number of accesses to each memory

location or area in these columns. Summary information is listed at the bottom of the

display area.

Data
The name of the data object you have selected to log accesses to. To specify
what data object you want to log accesses to, use the Data Log breakpoint
dialog box. See Data Log breakpoints, page 107.

Total Accesses
The total number of accesses.
If the sum of read accesses and write accesses is less than the total accesses, the
target system for some reason did not provide valid access type information for
all accesses.

Read Accesses

The total number of read accesses.

Write Accesses
The total number of write accesses.

191

Reference information on application timeline

192

C-SPY® Debugging Guide
for AVR

Unknown Accesses

The number of unknown accesses, in other words, accesses where the access
type is not known.

Approximative time count

The information displayed depends on the C-SPY driver you are using.

For some C-SPY drivers, this information is not displayed or the value is always
zero. In this case, all logs have an exact time stamp.

For other C-SPY drivers, a non-zero value is displayed. The value represents the
amount of logs with an approximative time stamp. This might happen if the
bandwidth in the communication channel is too low compared to the amount of
data packets generated by the CPU or if the CPU generated packets with an
approximative time stamp.

Overflow count

The information displayed depends on the C-SPY driver you are using.

For some C-SPY drivers, this information is not displayed or the value is always
zero.

For other C-SPY drivers, the number represents the amount of overflows in the
communication channel which can cause logs to be lost. If this happens, it
indicates that logs might be incomplete. To solve this, make sure not to use all
C-SPY log features simultaneously or check used bandwidth for the
communication channel.

Current time|cycles

The information displayed depends on the C-SPY driver you are using.
For some C-SPY drivers, the value is always zero or not visible at all.

For other C-SPY drivers, the number represents the current time or cycles—the
number of cycles or the execution time since the start of execution.

The application timeline °

Context menu

This context menu is available:
v Enable

Clear

Save to File...

Show Time

v | Show Cycles

These commands are available:

Enable
Enables the logging system. The system will log information also when the
window is closed.

Clear
Deletes the log information. Note that this will happen also when you reset the
debugger.

Save to File
Displays a standard file selection dialog box where you can select the
destination file for the log information. The entries in the log file are separated
by TaB and LF characters. An X in the Approx column indicates that the
timestamp is an approximation.

Show Time
Displays the Time column.
If the Time column is displayed by default in the C-SPY driver you are using,
this menu command is not available.

Show Cycles
Displays the Cycles column.

If the Cycles column is not supported in the C-SPY driver you are using, this
menu command is not available.

193

Reference information on application timeline

Viewing Range dialog box

Range for ...

Scale

C-SPY® Debugging Guide
194 for AVR

The Viewing Range dialog box is available from the context menu that appears when
you right-click in any graph in the Timeline window that uses the linear, levels or
columns style.

Viewing Range §|

Range for power:
(& Auto {currently 0 - 70)
O Factory (5 - 200)
O Custom

Lowest value: Highest value:

Scale:

O Linear
(%) Logarithmic

[ok |[Cancel]

Use this dialog box to specify the value range, that is, the range for the Y-axis for the
graph.

Selects the viewing range for the displayed values:

Auto
Uses the range according to the range of the values that are actually collected,
continuously keeping track of minimum or maximum values. The currently
computed range, if any, is displayed in parentheses. The range is rounded to
reasonably even limits.

Factory
For the Power Log graph: Uses the range according to the properties of the
measuring hardware (only if supported by the product edition you are using).

For the other graphs: Uses the range according to the value range of the variable,
for example 0-65535 for an unsigned 16-bit integer.

Custom
Use the text boxes to specify an explicit range.

Selects the scale type of the Y-axis:

e Linear

The application timeline °

o Logarithmic.

195

Reference information on application timeline

C-SPY® Debugging Guide
196 for AVR

Profiling

e Introduction to the profiler
e Using the profiler

e Reference information on the profiler

Introduction to the profiler

These topics are covered:

o Reasons for using the profiler
e Briefly about the profiler

o Requirements for using the profiler

REASONS FOR USING THE PROFILER

Function profiling can help you find the functions in your source code where the most
time is spent during execution. You should focus on those functions when optimizing
your code. A simple method of optimizing a function is to compile it using speed
optimization. Alternatively, you can move the data used by the function into more
efficient memory. For detailed information about efficient memory usage, see the /4R
C/C++ Compiler User Guide for AVR.

Alternatively, you can use filtered profiling, which means that you can exclude, for
example, individual functions from being profiled. To profile only a specific part of your
code, you can select a time interval—using the Timeline window—for which C-SPY
produces profiling information.

Instruction profiling can help you fine-tune your code on a very detailed level, especially
for assembler source code. Instruction profiling can also help you to understand where
your compiled C/C++ source code spends most of its time, and perhaps give insight into
how to rewrite it for better performance.

BRIEFLY ABOUT THE PROFILER

Function profiling information is displayed in the Function Profiler window, that is,
timing information for the functions in an application. Profiling must be turned on
explicitly using a button on the window’s toolbar, and will stay enabled until it is turned
off.

197

Using the profiler

198

Instruction profiling information is displayed in the Disassembly window, that is, the
number of times each instruction has been executed.

Profiling sources

The profiler can use different mechanisms, or sources, to collect profiling information.
Depending on the available trace source features, one or more of the sources can be used
for profiling:

o Trace (calls)

The full instruction trace is analyzed to determine all function calls and returns.
When the collected instruction sequence is incomplete or discontinuous, the
profiling information is less accurate.

o Trace (flat)

Each instruction in the full instruction trace or each PC Sample is assigned to a
corresponding function or code fragment, without regard to function calls or returns.
This is most useful when the application does not exhibit normal call/return
sequences, such as when you are using an RTOS, or when you are profiling code
which does not have full debug information.

Power sampling

Some debug probes support sampling of the power consumption of the development
board, or components on the board. Each sample is associated with a PC sample and
represents the power consumption (actually, the electrical current) for a small time
interval preceding the time of the sample. When the profiler is set to use Power
Sampling, additional columns are displayed in the Profiler window. Each power sample
is associated with a function or code fragment, just as with regular PC Sampling. Note
that this does not imply that all the energy corresponding to a sample can be attributed
to that function or code fragment. The time scales of power samples and instruction
execution are vastly different; during one power measurement, the CPU has typically
executed many thousands of instructions. Power Sampling is a statistics tool.

REQUIREMENTS FOR USING THE PROFILER

The C-SPY simulator support the profiler; there are no specific requirements.

Using the profiler

C-SPY® Debugging Guide
for AVR

These tasks are covered:

o Getting started using the profiler on function level

e Analyzing the profiling data

Profiling °

o Getting started using the profiler on instruction level

GETTING STARTED USING THE PROFILER ON FUNCTION
LEVEL

To display function profiling information in the Function Profiler window:

Build your application using these options:

Category Setting
C/C++ Compiler Output>Generate debug information
Linker Output>Format>Debug information for C-SPY

Table 9: Project options for enabling the profiler

When you have built your application and started C-SPY, choose C-SPY
driver>Function Profiler to open the Function Profiler window, and click the
Enable button to turn on the profiler. Alternatively, choose Enable from the context
menu that is available when you right-click in the Function Profiler window.

Start executing your application to collect the profiling information.

Profiling information is displayed in the Function Profiler window. To sort, click on
the relevant column header.

When you start a new sampling, you can click the Clear button—alternatively, use the
context menu—to clear the data.

ANALYZING THE PROFILING DATA
Here follow some examples of how to analyze the data.

The first figure shows the result of profiling using Source: Trace (calls). The profiler
follows the program flow and detects function entries and exits.
o For the InitFib function, Flat Time 231 is the time spent inside the function itself.

e For the InitFib function, Acc Time 487 is the time spent inside the function itself,
including all functions InitFib calls.

o For the InitFib/GetFib function, Acc Time 256 is the time spent inside GetFib (but
only when called from InitFib), including any functions GetFib calls.

199

Using the profiler

200

C-SPY® Debugging Guide
for AVR

o Further down in the data, you can find the GetFib function separately and see all of
its subfunctions (in this case none).

Ol

Function Calls Flat Time FlatTime (*%6) Acc. Time Acc Time (*
= rain 1 165 3.58 4358 94.39
; DoForegroundProcess 10 3704
InitFik 1 487
PutFib 10 3174 58,78 3174 58,78
MextCaounter 10 100 2.17 100 2.17
= InitFib 1 @ 5.01 5'497; 10.55
e GetFib 16 (256
GetFib 26 416 9.01 118 9.01
DoForegroundProcess 10 3704 80.26

MextCounter
PutFib 10
= <Other> u]

98.85

Source: Trace (calls)

The second figure shows the result of profiling using Source: Trace (flat). In this case,
the profiler does not follow the program flow, instead the profiler only detects whether
the pC address is within the function scope. For incomplete trace data, the data might
contain minor errors.

Profiling °

For the InitFib function, Flat Time 231 is the time (number of hits) spent inside the
function itself.

»

FCSamp... PCSamples ..

__iar_lookup_ttich
__iar_sh_stdout

CEL S
Source: Trace (flat) h
To secure valid data when using a debug probe, make sure to use the maximum trace
buffer size and set a breakpoint in your code to stop the execution before the buffer is
full.

<ldle> 0 0.00

<Mo function> 5 0.21
DoForegroundProcess a0 3.85

GetFib 260 11.12

InitFik 141 65.03 =
MNextCounter [s] 2.57

PutFib 230 9.84

__crain, ?main 4 0.17

_ dhwrite Enable R
__exit

__iar_close_ttio Clear

_?ar_copy_.in.itS Filtering 3
__iar_data_init3

__iar_get_ttio g

GETTING STARTED USING THE PROFILER ON INSTRUCTION
LEVEL

To display instruction profiling information in the Disassembly window:

When you have built your application and started C-SPY, choose View>Disassembly
to open the Disassembly window, and choose Instruction Profiling>Enable from the
context menu that is available when you right-click in the left-hand margin of the
Disassembly window.

Make sure that the Show command on the context menu is selected, to display the
profiling information.

Start executing your application to collect the profiling information.

When the execution stops, for instance because the program exit is reached or a
breakpoint is triggered, you can view instruction level profiling information in the
left-hand margin of the window.

201

Reference information on the profiler

202

toeilod
08005F92 BO82

08005F94 EDOS

PD1lw100us_1:

08005F96 9900
08005F98 1E49
08005F94 9100

'Dlyl00us 2.
08005F9C 9900
0800SF9E 2900
08005FAD DI1F9
while(Dly——)
?Dlyl00us

08005FA2 0001
08005FA4 1E48

for{wolatile int 1

SUB

£320 Dly = {Int32Wiarg:

SP. SP. #0=8

B ??D1lyl00us_0
= LOCP_DLY_10 i

O0Sy i de=)s

LDR R1. [SF]

SUEBS El., Rl1. #0=1

STR R1. [5SF]
for{volatile int i = LOOP_DLY_100US; i; i——):

LDR R1. [5SFP]

CHP R1l, #0=0

EHE ??Dlyl00us_1

HOVS R1. RO

SUBS R0, R1. #0=1

5

For each instruction, the number of times it has been executed is displayed.

Reference information on the profiler

Reference information about:

e Function Profiler window, page 202

See also:

e Disassembly window, page 71

Function Profiler window

The Function Profiler window is available from the C-SPY driver menu.

C-SPY® Debugging Guide
for AVR

Function Profiler

E|

[© tl@|E]]

Function | calls | FlatTime | Flat Time (%) | Acc. Time | Acc. Time (%) |

main() 1 165 3.57 4356 54.18
FutFib{unsigned int) 10 3174 62.63 3174 68.63
MextCounter() 10 100 2.16 100 2.16

InitFib) 1 231 4.93 487 10.53
GetFih(int) 26 416 8.99 416 8.93

DoForegroundProcess() 10 270 5.84 3704 80.09

<Other> o 269 5.82 4572 98.4a5

This window displays function profiling information.

Profiling °

When Trace(flat) is selected, a checkbox appears on each line in the left-side margin of
the window. Use these checkboxes to include or exclude lines from the profiling.
Excluded lines are dimmed but not removed.

See also Using the profiler, page 198.

Requirements
The C-SPY simulator.

Toolbar

The toolbar contains:

| Enable/Disable
O
Enables or disables the profiler.
ﬁl Clear
Clears all profiling data.
[Save

Opens a standard Save As dialog box where you can save the contents of the
window to a file, with tab-separated columns. Only non-expanded rows are
included in the list file.

Graphical view

Overlays the values in the percentage columns with a graphical bar.

Progress bar

Displays a backlog of profiling data that is still being processed. If the rate of
incoming data is higher than the rate of the profiler processing the data, a
backlog is accumulated. The progress bar indicates that the profiler is still
processing data, but also approximately how far the profiler has come in the
process. Note that because the profiler consumes data at a certain rate and the
target system supplies data at another rate, the amount of data remaining to be
processed can both increase and decrease. The progress bar can grow and shrink
accordingly.

Display area

The content in the display area depends on which source that is used for the profiling
information:

o For the Trace (calls) source, the display area contains one line for each function
compiled with debug information enabled. When some profiling information has
been collected, it is possible to expand rows of functions that have called other

203

Reference information on the profiler

204

C-SPY® Debugging Guide
for AVR

functions. The child items for a given function list all the functions that have been
called by the parent function and the corresponding statistics.

e For the Trace (flat) source, the display area contains one line for each C function of
your application, but also lines for sections of code from the runtime library or from
other code without debug information, denoted only by the corresponding
assembler labels. Each executed PC address from trace data is treated as a separate
sample and is associated with the corresponding line in the Profiling window. Each
line contains a count of those samples.

For information about which views that are supported in the C-SPY driver you are using,
see Requirements for using the profiler, page 198.

More specifically, the display area provides information in these columns:

Function (All sources)
The name of the profiled C function.

Calls (Trace (calls))
The number of times the function has been called.

Flat time (Trace (calls))
The time expressed as the estimated number of cycles spent inside the function.

Flat time (%) (Trace (calls))
Flat time expressed as a percentage of the total time.

Acc. time (Trace (calls))
The time expressed as the estimated number of cycles spent inside the function
and everything called by the function.

Acc. time (%) (Trace (calls))
Accumulated time expressed as a percentage of the total time.

PC Samples (Trace (flat))
The number of PC samples associated with the function.

PC Samples (%) (Trace (flat))
The number of PC samples associated with the function as a percentage of the
total number of samples.

Power Samples (Power Sampling)
The number of power samples associated with that function.

Energy (%) (Power Sampling)

The accumulated value of all measurements associated with that function,
expressed as a percentage of all measurements.

Profiling °

Avg Current [mA] (Power Sampling)
The average measured value for all samples associated with that function.

Min Current [mA] (Power Sampling)

The minimum measured value for all samples associated with that function.

Max Current [mA] (Power Sampling)
The maximum measured value for all samples associated with that function.

Context menu

This context menu is available:
v Enable

Clear

v Source: Trace (calls)

Source: Trace (flat)

Save to File...

Show Source

The contents of this menu depend on the C-SPY driver you are using.
These commands are available:

Enable

Enables the profiler. The system will collect information also when the window
is closed.

Clear
Clears all profiling data.

Filtering
Selects which part of your code to profile. Choose between:

Check All—Excludes all lines from the profiling.
Uncheck All—Includes all lines in the profiling.
Load—Reads all excluded lines from a saved file.

Save—Saves all excluded lines to a file. Typically, this can be useful if you are
a group of engineers and want to share sets of exclusions.

These commands are only available when using Trace (flat).

205

Reference information on the profiler

206

C-SPY® Debugging Guide
for AVR

Source*
Selects which source to be used for the profiling information. See also Profiling
sources, page 198. Choose between:

Trace (calls)—the instruction count for instruction profiling is only as complete
as the collected trace data.

Trace (flat)}—the instruction count for instruction profiling is only as complete
as the collected trace data.

Power Sampling

Toggles power sampling information on or off.

Save to File
Saves all profiling data to a file.

Show Source

Opens the editor window (if not already opened) and highlights the selected
source line.

* The available sources depend on the C-SPY driver you are using.

Code coverage

e Introduction to code coverage

e Reference information on code coverage.

Introduction to code coverage
These topics are covered:

o Reasons for using code coverage
e Briefly about code coverage

o Requirements and restrictions for using code coverage.

REASONS FOR USING CODE COVERAGE

The code coverage functionality is useful when you design your test procedure to verify
whether all parts of the code have been executed. It also helps you identify parts of your
code that are not reachable.

BRIEFLY ABOUT CODE COVERAGE

The Code Coverage window reports the status of the current code coverage analysis for
C code. For every program, module, and function, the analysis shows the percentage of
code that has been executed since code coverage was turned on up to the point where the
application has stopped. In addition, all statements that have not been executed are
listed. The analysis will continue until turned off.

Note: Assembler code is not covered by the code coverage analysis. To view assembler
code, use the Disassembly window.

REQUIREMENTS AND RESTRICTIONS FOR USING CODE
COVERAGE

Code coverage is supported by the C-SPY Simulator and there are no specific
requirements or restrictions.

Reference information on code coverage
Reference information about:

o Code Coverage window, page 208.

207

Reference information on code coverage

See also Single stepping, page 64.

Code Coverage window

C-SPY® Debugging Guide

208 for AVR

The Code Coverage window is available from the View menu.

Code Coverage

[© sl[c]le & &

=

=% project] 91.18%
=@ Tutor 100.00%
¢ DoFaregroundProcess 100.00%
¢ NextCounter 100.00%
% main 100.00%
=% Utilities 86.96%
=@ GetFib 66.67%
< 5-13:54 addr((xDE)
4 InitFib 100.00%
=@ PutFib 84.62%
< 5-17:65 addr(IxEB)
< 5-11:66 addr(0xF0)

This window reports the status of the current code coverage analysis. For every program,
module, and function, the analysis shows the percentage of code that has been executed
since code coverage was turned on up to the point where the application has stopped. In
addition, all statements that have not been executed are listed. The analysis will continue

until turned off.

An asterisk (*) in the title bar indicates that C-SPY has continued to execute, and that
the Code Coverage window must be refreshed because the displayed information is no
longer up to date. To update the information, use the Refresh button.

To get started using code coverage:

Before using the code coverage functionality you must build your application using

these options:

Category Setting

C/C++ Compiler
Linker

Debugger Plugins>Code Coverage

Output>Generate debug information

Format>Debug information for C-SPY

Table 10: Project options for enabling code coverage

After you have built your application and started C-SPY, choose View>Code

Coverage to open the Code Coverage window.

Click the Activate button, alternatively choose Activate from the context menu, to

switch on code coverage.

Code coverage ___4

cl 4 Start the execution. When the execution stops, for instance because the program exit is
reached or a breakpoint is triggered, click the Refresh button to view the code
coverage information.

Requirements
The C-SPY simulator.

Display area

The code coverage information is displayed in a tree structure, showing the program,
module, function, and statement levels. The window displays only source code that was
compiled with debug information. Thus, startup code, exit code, and library code is not
displayed in the window. Furthermore, coverage information for statements in inlined
functions is not displayed. Only the statement containing the inlined function call is
marked as executed. The plus sign and minus sign icons allow you to expand and
collapse the structure.

These icons give you an overview of the current status on all levels:

Red diamond Signifies that 0% of the modules or functions has been
executed.

Green diamond Signifies that 100% of the modules or functions has been
executed.

Red and green diamond ~ Signifies that some of the modules or functions have been
executed.

Yellow diamond Signifies a statement that has not been executed.
The percentage displayed at the end of every program, module, and function line shows

the amount of statements that has been covered so far, that is, the number of executed
statements divided with the total number of statements.

For statements that have not been executed (yellow diamond), the information displayed
is the column number range and the row number of the statement in the source window,
followed by the address of the step point:

<column_start>-<column_end>:row address.

A statement is considered to be executed when one of its instructions has been executed.
When a statement has been executed, it is removed from the window and the percentage
is increased correspondingly.

Double-clicking a statement or a function in the Code Coverage window displays that
statement or function as the current position in the editor window, which becomes the

209

Reference information on code coverage

active window. Double-clicking a module on the program level expands or collapses the
tree structure.

Context menu

This context menu is available:

v Activate
Clear
Refresh
Auko-refresh
Save As...

These commands are available:
Activate
Switches code coverage on and off during execution.

Clear

Clears the code coverage information. All step points are marked as not
executed.

= e

Refresh

Updates the code coverage information and refreshes the window. All step
points that have been executed since the last refresh are removed from the tree.

0

Auto-refresh

©

Toggles the automatic reload of code coverage information on and off. When
turned on, the code coverage information is reloaded automatically when
C-SPY stops at a breakpoint, at a step point, and at program exit.

Save As

Saves the current code coverage result in a text file.

ﬁ | Save session

Saves your code coverage session data to a * . dat file. This is useful if you for
some reason must abort your debug session, but want to continue the session
later on. This command is available on the toolbar. This command might not be
supported by the C-SPY driver you are using.

ﬁ Restore session

Restores previously saved code coverage session data. This is useful if you for
some reason must abort your debug session, but want to continue the session
later on. This command is available on the toolbar. This command might not be
supported by the C-SPY driver you are using.

C-SPY® Debugging Guide
210 for AVR

Power debugging

e Introduction to power debugging
e Optimizing your source code for power consumption
e Debugging in the power domain

e Reference information on power debugging.

Introduction to power debugging

These topics are covered:

e Reasons for using power debugging
e Briefly about power debugging

o Requirements and restrictions for power debugging.

REASONS FOR USING POWER DEBUGGING

Long battery lifetime is a very important factor for many embedded systems in almost
any market segment: medical, consumer electronics, home automation, etc. The power
consumption in these systems does not only depend on the hardware design, but also on
how the hardware is used. The system software controls how it is used.

For examples of when power debugging can be useful, see Optimizing your source code
for power consumption, page 213.

BRIEFLY ABOUT POWER DEBUGGING

Power debugging is based on the ability to sample the power consumption—more
precisely, the power being consumed by the CPU and the peripheral units—and
correlate each sample with the application’s instruction sequence and hence with the
source code and various events in the program execution.

Traditionally, the main software design goal has been to use as little memory as possible.
However, by correlating your application’s power consumption with its source code you
can get insight into how the software affects the power consumption, and thus how it can
be minimized.

211

Introduction to power debugging

212

C-SPY® Debugging Guide
for AVR

Measuring power consumption

Power debugging using C-SPY

C-SPY provides an interface for configuring your power debugging and a set of
windows for viewing the power values:

o The Power Setup window is where you can specify a threshold and an action to be
executed when the threshold is reached. This means that you can enable or disable
the power measurement or you can stop the application’s execution and determine
the cause of unexpected power values.

o The Power Log window displays all logged power values. This window can be used
for finding peaks in the power logging.

o The Power graph in the Timeline window displays power values on a time scale.
This provides a convenient way of viewing the power consumption in relation to the
other information displayed in the window. The Timeline window is correlated to
both the Power Log window.

o The State Log window logs activity—state changes—for peripheral units and
clocks, as well as for CPU modes. The State Log Summary window displays a
summary of the logged activity. The State Log graphs display a graphical view of
the activity. The information is useful for tracing the activity on the target system.

Power debugging with the Atmel Power Debugger

The Atmel Power Debugger has a designated circuit for sampling electrical current,
electrical voltage, and GPIO input levels. IAR Embedded Workbench for AVR can
display this data as a graph in the Timeline window and as a list of sampled values in
the Power Log window and the State Log window.

Because all samples are timestamped using the same clock on the power debugger
probe, the time accuracy is very high*. There is no direct correlation between the
samples and the program counter, but you can manually instrument your code by setting
and clearing an output pin on the chip connected to a GPIO pin on the debug probe, to
see how a certain code section in your application affects the power consumption.

* Note that the time accuracy is impaired when the execution starts after a halt, because
then the starting time needs to be approximated. This means that you cannot expect the
same time accuracy when comparing a timestamp of a sample from within one
execution period (from a Go command to the next stop) with a timestamp from another
execution period. However, the accuracy of timestamps within an execution period is
very high.

Power debugging ___4

REQUIREMENTS AND RESTRICTIONS FOR POWER
DEBUGGING

To use the features in C-SPY for power debugging, you need the Atmel Power
Debugger.

Optimizing your source code for power consumption

This section gives some examples where power debugging can be useful and thus
hopefully help you identify source code constructions that can be optimized for low
power consumption.

These topics are covered:

Waiting for device status

Software delays

Low-power mode diagnostics

CPU frequency

Detecting mistakenly unattended peripherals
Peripheral units in an event-driven system

Finding conflicting hardware setups

Analog interference

WAITING FOR DEVICE STATUS

One common construction that could cause unnecessary power consumption is to use a
poll loop for waiting for a status change of, for example a peripheral device.
Constructions like this example execute without interruption until the status value
changes into the expected state.

while (USBD_GetState() < USBD_STATE_CONFIGURED) ;
while ((BASE_PMC->PMC_SR & MC_MCKRDY) != PMC_MCKRDY) ;

To minimize power consumption, rewrite polling of a device status change to use
interrupts if possible, or a timer interrupt so that the CPU can sleep between the polls.
SOFTWARE DELAYS

A software delay might be implemented as a for or while loop like for example:

i = 10000; /* A software delay */
do i--;
while (i != 0);

213

Optimizing your source code for power consumption

Such software delays will keep the CPU busy with executing instructions performing
nothing except to make the time go by. Time delays are much better implemented using
a hardware timer. The timer interrupt is set up and after that, the CPU goes down into a
low power mode until it is awakened by the interrupt.

LOW-POWER MODE DIAGNOSTICS

Many embedded applications spend most of their time waiting for something to happen:
receiving data on a serial port, watching an I/O pin change state, or waiting for a time
delay to expire. If the processor is still running at full speed when it is idle, battery life
is consumed while very little is being accomplished. So in many applications, the
microcontroller is only active during a very small amount of the total time, and by
placing it in a low-power mode during the idle time, the battery life can be extended
considerably.

A good approach is to have a task-oriented design and to use an RTOS. In a task-oriented
design, a task can be defined with the lowest priority, and it will only execute when there
is no other task that needs to be executed. This idle task is the perfect place to implement
power management. In practice, every time the idle task is activated, it sets the
microcontroller into a low-power mode. Many microprocessors and other silicon
devices have a number of different low-power modes, in which different parts of the
microcontroller can be turned off when they are not needed. The oscillator can for
example either be turned off or switched to a lower frequency. In addition, individual
peripheral units, timers, and the CPU can be stopped. The different low-power modes
have different power consumption based on which peripherals are left turned on. A
power debugging tool can be very useful when experimenting with different low-level
modes.

CPU FREQUENCY

Power consumption in a CMOS MCU is theoretically given by the formula:
P=f* U2 * k

where £ is the clock frequency, Uis the supply voltage, and k is a constant.

Power debugging lets you verify the power consumption as a factor of the clock
frequency. A system that spends very little time in sleep mode at 10 MHz is expected to
spend 50% of the time in sleep mode when running at 20 MHz. You can use the power
data collected in C-SPY to verify the expected behavior, and if there is a non-linear
dependency on the clock frequency, make sure to choose the operating frequency that
gives the lowest power consumption.

C-SPY® Debugging Guide
214 for AVR

Power debugging ___4

DETECTING MISTAKENLY UNATTENDED PERIPHERALS

Peripheral units can consume much power even when they are not actively in use. If you
are designing for low power, it is important that you disable the peripheral units and not
just leave them unattended when they are not in use. But for different reasons, a
peripheral unit can be left with its power supply on; it can be a careful and correct design
decision, or it can be an inadequate design or just a mistake. If not the first case, then
more power than expected will be consumed by your application. In many cases, it is
enough to disable the peripheral unit when it is inactive, for example by turning off its
clock which in most cases will shut down its power consumption completely.

However, there are some cases where clock gating will not be enough. Analog
peripherals like converters or comparators can consume a substantial amount of power
even when the clock is turned off. The Timeline window will reveal that turning off the
clock was not enough and that you need to turn off the peripheral completely.

PERIPHERAL UNITS IN AN EVENT-DRIVEN SYSTEM

Consider a system where one task uses an analog comparator while executing, but the
task is suspended by a higher-priority task. Ideally, the comparator should be turned off
when the task is suspended and then turned on again once the task is resumed. This
would minimize the power being consumed during the execution of the high-priority
task.

This is a schematic diagram of the power consumption of an assumed event-driven
system where the system at the point of time t; is in an inactive mode and the current is
10:

Power consumption

Time

v

% I 5 4

Atty, the system is activated whereby the current rises to I; which is the system’s power
consumption in active mode when at least one peripheral device turned on, causing the

215

Optimizing your source code for power consumption

current to rise to I. At t,, the execution becomes suspended by an interrupt which is
handled with high priority. Peripheral devices that were already active are not turned off,
although the task with higher priority is not using them. Instead, more peripheral devices
are activated by the new task, resulting in an increased current I, between t, and t; where
control is handed back to the task with lower priority.

The functionality of the system could be excellent and it can be optimized in terms of
speed and code size. But also in the power domain, more optimizations can be made.
The shadowed area represents the energy that could have been saved if the peripheral
devices that are not used between t, and t3 had been turned off, or if the priorities of the
two tasks had been changed.

If you use the Timeline window, you can make a closer examination and identify that
unused peripheral devices were activated and consumed power for a longer period than
necessary. Naturally, you must consider whether it is worth it to spend extra clock cycles
to turn peripheral devices on and off in a situation like in the example.

FINDING CONFLICTING HARDWARE SETUPS

To avoid floating inputs, it is a common design practice to connect unused MCU I/O
pins to ground. If your source code by mistake configures one of the grounded I/O pins
as a logical 1 output, a high current might be drained on that pin. This high unexpected
current is easily observed by reading the current value from the Power graph in the
Timeline window. It is also possible to find the corresponding erratic initialization code
by looking at the Power graph at application startup.

A similar situation arises if an I/O pin is designed to be an input and is driven by an
external circuit, but your code incorrectly configures the input pin as output.

ANALOG INTERFERENCE

When mixing analog and digital circuits on the same board, the board layout and routing
can affect the analog noise levels. To ensure accurate sampling of low-level analog
signals, it is important to keep noise levels low. Obtaining a well-mixed signal design

C-SPY® Debugging Guide
216 for AVR

Power debugging ___4

requires careful hardware considerations. Your software design can also affect the
quality of the analog measurements.

Performing a lot of I/O activity at the same time as sampling analog signals causes many
digital lines to toggle state at the same time, which might introduce extra noise into the
AD converter.

Noise spike |

Umin=—3.12l)

Power debugging will help you investigate interference from digital and power supply
lines into the analog parts. Power spikes in the vicinity of AD conversions could be the
source of noise and should be investigated.

Debugging in the power domain

These tasks are covered:

e Displaying a power profile and analyzing the result
o Detecting unexpected power usage during application execution

o Changing the graph resolution.

See also:

o Timeline window—Power graph, page 223

DISPLAYING A POWER PROFILE AND ANALYZING THE
RESULT

To view the power profile:

I Choose Atmel Power Debugger>Power Debugging Settings to open the Power
Debugging Settings dialog box. Use the dialog box to select which of the four GPIO
input pins on the Atmel Power Debugger probe to monitor.

2 Start the debugger.

217

Debugging in the power domain

218

C-SPY® Debugging Guide
for AVR

Choose C-SPY driver>Power Log Setup. In the Wanted text box, you can set an
upper limit for the sampling frequency. In the ID column, make sure to select the
alternatives for which you want to enable power logging.

Choose C-SPY driver>Timeline to open the Timeline window.

Right-click in the graph area and choose Enable from the context menu to enable the
power graph you want to view.

Choose C-SPY driver>Power Log to open the Power Log window.

Optionally, if you want to correlate power values to the status of the four GPIO input
pins, right-click in the State Log graph area, and choose Enable from the context
menu.

Optionally, before you start executing your application you can configure the viewing
range of the Y-axis for the power graph. See Viewing Range dialog box, page 194.

Click Go on the toolbar to start executing your application. In the Power Log window,
all power values are displayed. In the Timeline window, you will see a graphical
representation of the power values, and a graphical representation of the logged
activity—state changes—for the four GPIO input pins if you enabled the State Log
graph. For information about how to navigate on the graph, see Navigating in the
graphs, page 178.

B

1= 25 3=
] 1 ¢

10 To analyze power consumption:

® You can identify peripheral units to disable if they are not used. You can detect this
by analyzing the power graph in combination with the other graphs in the Timeline
window. See also Detecting mistakenly unattended peripherals, page 215.

e For a specific interrupt, you can see whether the power consumption is changed in
an unexpected way after the interrupt exits, for example, if the interrupt enables a
power-intensive unit and does not turn it off before exit.

Note: To analyze power consumption as described above, you need to instrument your
code. For more information, see Power debugging with the Atmel Power Debugger,
page 212.

Power debugging ___4

DETECTING UNEXPECTED POWER USAGE DURING
APPLICATION EXECUTION

To detect unexpected power consumption:

I Choose Atmel Power Debugger>Power Debugging Settings to open the Power
Debugging Settings dialog box. Use the dialog box to select which GPIO input pins to
monitor.

2 Choose C-SPY driver>Power Log Setup to open the Power Setup window.

3 In the Power Setup window, specify a threshold value and the appropriate action, for
example Log All and Halt CPU Above Threshold.

4 Choose C-SPY driver>Power Log to open the Power Log window. If you
continuously want to save the power values to a file, choose Choose Live Log File
from the context menu. In this case you also need to choose Enable Live Logging to.

5 Start the execution.

When the power consumption passes the threshold value, the execution will stop and
perform the action you specified.

If you saved your logged power values to a file, you can open that file in an external tool
for further analysis.
CHANGING THE GRAPH RESOLUTION

To change the resolution of a Power graph in the Timeline window:

I In the Timeline window, select the Power graph, right-click and choose Open Setup
Window to open the Power Log Setup window.

2 From the context menu in the Power Log Setup window, choose a suitable unit of
measurement.

3 In the Timeline window, select the Power graph, right-click and choose Viewing
Range from the context menu.

4 1In the Viewing Range dialog box, select Custom and specify range values in the
Lowest value and the Highest value text boxes. Click OK.

5 The graph is automatically updated accordingly.

Reference information on power debugging

Reference information about:

® Power Log Setup window, page 220

219

Reference information on power debugging

Power Debugging Settings, page 222
Power Log window, page 226.

Timeline window—Power graph, page 223.
State Log Setup window, page 229.

State Log window, page 231.

State Log Summary window, page 233.

Timeline window—State Log graph, page 235.
See also:

o Trace window, page 164

o The application timeline, page 175

e Viewing Range dialog box, page 194

® Function Profiler window, page 202.

Power Log Setup window

The Power Log Setup window is available from the C-SPY driver menu during a debug

session.
Power Log Setup x
Sampling Frequency Max [Hz]: 62500 Wanted [Hz]: 10000 - Actual [Hz]: 10000
D MName Threshold Unit Action
Channel A (current) Channel A (current) 0 mé& LogAl
Channel A (voltage) Channel A (voltag... 0 mY LogAl
¥ Channel B (current) Channel B (current) 0 mé& LogAl
Channel B (voltage) Channel B (voltag... 0 mY LogAl

Use this window to configure the power measurement.

Note: To enable power logging, choose Enable from the context menu in the Power
Log window or from the context menu in the power graph in the Timeline window.

See also Debugging in the power domain, page 217.

Requirements

The C-SPY Power Debugger driver and the Power Debugger probe.

C-SPY® Debugging Guide
220 for AVR

Power debugging ___4

Display area

This area contains these columns:

ID
A unique string that identifies the measurement channel in the probe. Select the
check box to activate the channel. If the check box is deselected, logs will not
be generated for that channel.

Name
Specity a user-defined name.

Threshold
Specify a threshold value in the selected unit. The action you specify will be
executed when the threshold value is reached.

Unit
Displays the selected unit for power. You can choose a unit from the context
menu.

Action

Displays the selected action for the measurement channel. Choose between:

Log All

Log Above Threshold

Log Below Threshold

Log All and Halt CPU Above Threshold
Log All and Halt CPU Below Threshold

Context menu

This context menu is available:

nA
uA
W mA

Log All
Log Above Threshold
Log Below Threshold
v Log All and Halt CPU Above Threshold
Log All and Halt CPU Below Threshold

These commands are available:

uA, mA
Selects the unit for the power display. These alternatives are available for
channels that measure current.

221

Reference information on power debugging

Log All

Logs all values.

Log Above Threshold
Logs all values above the threshold.

Log Below Threshold
Logs all values below the threshold.

Log All and Halt CPU Above Threshold

Logs all values. If a logged value exceeds the threshold, execution is stopped.

Log All and Halt CPU Below Threshold
Logs all values. If alogged value goes below the threshold, execution is stopped.

Power Debugging Settings

Requirements

The Power Debugging Settings dialog box is available from the Atmel Power
Debugger menu.

Power Debugging Settings &J

Enabled GPIO inputs
GPIOD

Mol | concel |

[Flerio2

[ep1o3 —
Calibrate. ..

The C-SPY Power Debugger driver and the Power Debugger probe.

Enabled GPIO inputs

Calibrate

C-SPY® Debugging Guide
222 for AVR

Select which GPIO input pins to monitor.

Already logged GPIO states will be visible in the Power Log window until you clear
the log manually or until the internal (circular) buffer is full.

Calibrates the power measurement interface. This is recommended to improve the
accuracy of the power measurements.

This option is only available in an active debug session.

Power debugging ___4

Timeline window—Power graph

The power graph in the Timeline window is available from the C-SPY driver menu
during a debug session.
=

- L
= 1

=
LT
|
S
1= 2= 3=

< [[| +

The power graph displays a graphical view of power measurement samples generated
by the debug probe or associated hardware in relation to a common time axis.

Note: There is a limit on the number of saved logs. When this limit is exceeded, the
oldest entries in the buffer are erased.

For more information about the Timeline window, how to display a graph, and the other
supported graphs, see The application timeline, page 175.

See also Requirements and restrictions for power debugging, page 213.

Requirements

The C-SPY Power Debugger driver and the Power Debugger probe.

Display area
Where:
o The label area at the left end of the graph displays the name of the measurement
channel.

o The graph can be displayed as a thin line between consecutive logs, as a rectangle
for every log (optionally color-filled), or as columns.

o The resolution of the graph can be changed.

At the bottom of the window, there is a common time axis that uses seconds as the time
unit.

223

Reference information on power debugging

Context menu

This context menu is available:
MNavigate 3

v Auto Scroll

Zoom 3

Power Log
v Enable
Clear
Log0:
Viewing Range...
Size 3
Style 3
v | Solid Graph
v Show Numerical Values
Go to Source

Open Setup Window
Select Graphs 3

Time Axis Unit 3

Note: The exact contents of the context menu you see on the screen depends on which
features that your combination of software and hardware supports. However, the list of
menu commands below is complete and covers all possible commands.

These commands are available:

Navigate
Commands for navigating the graph(s). Choose between:

Next moves the selection to the next relevant point in the graph. Shortcut key:
right arrow.

Previous moves the selection backward to the previous relevant point in the
graph. Shortcut key: left arrow.

First moves the selection to the first data entry in the graph. Shortcut key:
Home.

Last moves the selection to the last data entry in the graph. Shortcut key: End.

End moves the selection to the last data in any displayed graph, in other words
the end of the time axis. Shortcut key: Ctrl+End.
Auto Scroll

Toggles automatic scrolling on or off. When on, the most recently collected data
is automatically displayed when you choose Navigate>End.

C-SPY® Debugging Guide
224 for AVR

Power debugging ___4

Zoom

Commands for zooming the window, in other words, changing the time scale.
Choose between:

Zoom to Selection makes the current selection fit the window. Shortcut key:
Return.

Zoom In zooms in on the time scale. Shortcut key: +
Zoom Out zooms out on the time scale. Shortcut key: —

10ns, 100ns, 1us, etc makes an interval of 10 nanoseconds, 100 nanoseconds, 1
microsecond, respectively, fit the window.

1ms, 10ms, etc makes an interval of 1 millisecond or 10 milliseconds,
respectively, fit the window.

10m, 1h, etc makes an interval of 10 minutes or 1 hour, respectively, fit the
window.

Power Log
A heading that shows that the Power Log-specific commands below are
available.

Enable

Toggles the display of the graph on or off. If you disable a graph, that graph will
be indicated as OFF in the window. If no data has been collected for a graph, no
data will appear instead of the graph.

Clear
Deletes the log information. Note that this will happen also when you reset the
debugger.

Viewing Range
Displays a dialog box, see Viewing Range dialog box, page 194.

Size
Determines the vertical size of the graph; choose between Small, Medium, and
Large.

Solid Graph

Displays the graph as a color-filled solid graph instead of as a thin line.

Show Numerical Value
Shows the numerical value of the variable, in addition to the graph.

Go To Source
Displays the corresponding source code in an editor window, if applicable.

225

Reference information on power debugging

226

Power Log window

Requirements

C-SPY® Debugging Guide
for AVR

Open Setup Window
Opens the Power Log Setup window.

Select Graphs
Selects which graphs to be displayed in the Timeline window.

Time Axis Unit
Selects the unit used in the time axis; choose between Seconds and Cycles.

If Cycles is not available, the graphs are based on different clock sources. In that
case you can view cycle values as tooltip information by pointing at the graph
with your mouse pointer.

Profile Selection
Enables profiling time intervals in the Function Profiler window. Note that this
command is only available if the C-SPY driver supports PC Sampling.

The Power Log window is available from the C-SPY driver menu during a debug
session.

Power Log x
Time Channel B (current) [rmA] =
791196 .95 us 270
891212 95 us 252 |2
991212 95 us 472
1= 91228 .95 us 478
1= 191228 .95 us 475
1s 291229.33 us 475
1s 391229.33 us 254 +

This window displays collected power values.

A row with only Time/Cycles displayed in pink denotes a logged power value for a
channel that was active during the actual collection of data but currently is disabled in
the Power Log Setup window.

Note: There is a limit on the number of saved logs. When this limit is exceeded, the
oldest entries in the buffer are erased.

See also Debugging in the power domain, page 217.

The C-SPY Power Debugger driver and the Power Debugger probe.

Power debugging ___4

Display area
This area contains these columns:
Time
The time from the application reset until the event. Note that the time offset of
a continuous block of samples (in other words when you start and stop the
execution) is approximated by IAR Embedded Workbench. However, relative

time periods within a block are very accurate because each sample is
timestamped at the debug probe, based on an on-board clock.

This column is available when you have selected Show Time from the context
menu.

Cycles
The number of cycles from the application reset until the event. This
information is cleared at reset.

If a cycle is displayed in italics, the target system could not collect a correct
time, but instead had to approximate it.

This column is available when you have selected Show Cycles from the context
menu.

Name |unit]

The power measurement value expressed in the unit you specified in the Power
Setup window.

227

Reference information on power debugging

Context menu
This context menu is available:

| ¥ Enable
Clear

Save to Log File...

Choose Live Log File...
Enable Live Logging to ‘PowerLoglivelog’

Clear 'PowerLoglive.log

Show Time

| ¥ Show Cycles

Open Setup Window

These commands are available:

Enable

Enables the logging system, which means that power values are saved internally
within the IDE. The values are displayed in the Power Log window and in the
Power graph in the Timeline window (if enabled). The system will log
information also when the window is closed.

Clear
Deletes the log information. Note that this will also happen when you reset the
debugger, or if you change the execution frequency in the Power Log Setup
window.

Save to File
Displays a standard file selection dialog box where you can select the
destination file for the log information. The entries in the log file are separated
by TaB and LF characters. An X in the Approx column indicates that the
timestamp is an approximation.

Choose Live Log File
Displays a standard file selection dialog box where you can choose a destination
file for the logged power values. The power values are continuously saved to that
file during execution. The content of the live log file is never automatically
cleared, the logged values are simply added at the end of the file.

Enable Live Logging to
Toggles live logging on or off. The logs are saved in the specified file.

Clear log file
Clears the content of the live log file.

C-SPY® Debugging Guide
228 for AVR

Power debugging ___4

Show Time

Displays the Time column.

If the Time column is displayed by default in the C-SPY driver you are using,
this menu command is not available.

Show Cycles
Displays the Cycles column.

If the Cycles column is not supported in the C-SPY driver you are using, this
menu command is not available.

Open Setup Window
Opens the Power Log Setup window.

The format of the log file

The log file has a tab-separated format. The entries in the log file are separated by TAB
and line feed. The logged power values are displayed in these columns:

Time/Cycles
The time from the application reset until the power value was logged.
Approx

An x in the column indicates that the power value has an approximative value
for time/cycle.

PC
The value of the program counter close to the point where the power value was
logged.

Name|unit|

The corresponding value from the Power Log window, where Name and unit
are according to your settings in the Power Log Setup window.

State Log Setup window
The State Log Setup window is available from the C-SPY driver menu during a debug

session.
State Log Setup X
Source Action
GFIO0 Halt CPU an Activation
GPION Mane
GFID2 Mane
GFIO3 Mane

229

Reference information on power debugging

230

Requirements

Display area

Context menu

C-SPY® Debugging Guide
for AVR

Use the State Log Setup window to specify whether to halt the CPU in connection with
activity—state changes—for the GPIO input pins.

The C-SPY Power Debugger driver and the Power Debugger probe.

Each row in this area displays how the CPU behaves for the listed source (GPIO input
pins).
Source

The name of the GPIO input pin.

Action

Specifies an action to take. To choose an action, right-click on the row to open
the context menu.

This context menu is available:
Sort by 3
GPIOD
MNeone
v Halt CPU on Activation
Halt CPU on Deactivation
Halt CPU When Changing State

These commands are available:

Sort by
Commands for sorting the window contents. Choose between:
ID sorts the sources by their ID.
Name sorts the sources alphabetically.

None
The CPU keeps executing when the specified source becomes active, is
deactivated, or changes state.

Halt CPU on Activation

The execution stops when the specified source becomes active. This might take
a few execution cycles.

Power debugging ___4

Halt CPU on Deactivation
The execution stops when the specified source is deactivated. This might take a
few execution cycles.

Halt CPU When Changing State

The execution stops when the specified source changes state. This might take a
few execution cycles.

State Log window
The State Log window is available from the C-SPY driver menu.

State Log x
Time Source Status Active

191431 .62 us GFIOO Off 115526 .10 us

191431 .62 u=s GPIO1 Off 115526 .10 us
2= 44899 .81 u=s GPIOT On -
3= 452040.00 us GPIO1 Off 1s 407140.19 us |

6= 227418 .67 us GFIOD On

6= 435664 .00 us GFIOD Off 208245 .33 us -~

This window logs activity—state changes—for GPIO input pins.

The information is useful for tracing the activity on the target system. When the State
Log window is open, it is updated continuously at runtime.

Note: There is a limit on the number of saved logs. When this limit is exceeded, the
oldest entries in the buffer are erased.

See also Displaying a power profile and analyzing the result, page 217 and Timeline
window—State Log graph, page 235.

Requirements

The C-SPY Power Debugger driver and the Power Debugger probe.

Display area
This area contains these columns:
Time
The time from the application reset until the event. Note that the time offset of
a continuous block of samples (in other words when you start and stop the
execution) is approximated by IAR Embedded Workbench. However, relative

time periods within a block are very accurate because each sample is
timestamped at the debug probe, based on an on-board clock.

231

Reference information on power debugging

232

Context menu

C-SPY® Debugging Guide
for AVR

This column is available when you have selected Show Time from the context
menu. If the Show Time command is not available, the Time column is
displayed by default.

Cycles
The number of cycles from the start of the execution until the event.
A cycle count displayed in italics indicates an approximative value. Italics is

used when the target system has not been able to collect a correct value, but
instead had to approximate it.

This column is available when you have selected Show Cycles from the context
menu provided that the C-SPY driver you are using supports it.

Source
The name of the GPIO input pin.

Status
The status at the given time.

Active

The active time calculated using the on and off time for the source. If it is written
in italics, it is based on at least one approximative time.

This context menu is available:

v | Enable
Clear

Save to Log File...
v | Show Time
Show Cycles

These commands are available:

Enable
Enables the logging system. The system will log information also when the
window is closed.

Clear

Deletes the log information. Note that this will happen also when you reset the
debugger.

Power debugging ___4

Save to File
Displays a standard file selection dialog box where you can select the
destination file for the log information. The entries in the log file are separated
by TaB and LF characters. An X in the Approx column indicates that the
timestamp is an approximation.

Show Time
Displays the Time column.

If the Time column is always displayed by default in the C-SPY driver you are
using, this menu command is not available.

Show Cycles
Displays the Cycles column.

If the C-SPY driver you are using does not support the Cycles column, this
menu command is not available.

State Log Summary window
The State Log Summary window is available from the C-SPY driver menu.

x

State Log Summary

Source Count First Time Total (Time) Total (%) Shortest Longest in Intersal Max Interval
GFIO0 2 76721.90 us 453404 .95 us — 159430.86 us 293974 .10 us 343331.05 us 343331.05 us
GPIO 4 76721.90 us 400127 .24 us = 60.95 us 155872.00 us 87100.57 us 203318 .48 us

This window displays a summary of logged activity—state changes—GPIO input pins.
Click a column to sort it according to the values. Click again to reverse the sort order.

At the bottom of the display area, the current time or cycles is displayed—the number
of cycles or the execution time since the start of execution.

See also Displaying a power profile and analyzing the result, page 217 and Timeline
window—State Log graph, page 235.

Requirements
The C-SPY Power Debugger driver and the Power Debugger probe.

233

Reference information on power debugging

234

Display area

C-SPY® Debugging Guide
for AVR

Each row in this area displays statistics about the specific measurement source based on
the log information in these columns; and summary information is listed at the bottom
of the display area:
Source

The name of the GPIO input pin.

Count
The number of times the source was activated.
First time
The first time the source was activated.
Total (Time)**
The accumulated time the source has been active.
Total (%)
The accumulated time in percent that the source has been active.
Shortest
The shortest time spent with this source active.
Longest
The longest time spent with this source active.
Min interval
The shortest time between two activations of this source.
Max interval
The longest time between two activations of this source.

Current time

The current time or cycles—execution time since the start of execution or the
number of cycles. (This information might not be available in the C-SPY driver
you are using.)

** Calculated in the same way as for the Execution time/cycles in the State Log
window.

Power debugging ___4

Context menu

This context menu is available:

v | Enable
Clear

Save to Log File...

v | Show Time
Show Cycles

These commands are available:

Enable
Enables the logging system. The system will log information also when the
window is closed.

Clear
Deletes the log information. Note that this will happen also when you reset the
debugger.

Save to File
Displays a standard file selection dialog box where you can select the
destination file for the log information. The entries in the log file are separated
by TaB and LF characters. An X in the Approx column indicates that the
timestamp is an approximation.

Show Time
Displays the Time column.
If the Time column is always displayed by default in the C-SPY driver you are
using, this menu command is not available.

Show Cycles
Displays the Cycles column.

If the C-SPY driver you are using does not support the Cycles column, this
menu command is not available.

Timeline window—State Log graph

The State Log graph in the Timeline window is available from the C-SPY driver menu
during a debug session.

B

lls 2IS SIS

235

Reference information on power debugging

236

Requirements

Display area

C-SPY® Debugging Guide
for AVR

The State Log graph displays a graphical view of logged activity—state changes—for
the GPIO pins in relation to a common time axis.

Note: There is a limit on the number of saved logs. When this limit is exceeded, the
oldest entries in the buffer are erased.

For more information about the Timeline window, how to display a graph, and the other
supported graphs, see The application timeline, page 175.

See also, Requirements and restrictions for power debugging, page 213.

The C-SPY Power Debugger driver and the Power Debugger probe.

Where:

o The label area at the left end of the graph displays the name of the sources of the
status information.

o The graph itself shows the state of the GPIO pins generated by the debug probe or
associated hardware. The white figure indicates the time spent in the state. This
graph is a graphical representation of the information in the State Log window, see
State Log window, page 231.

o If the bar is displayed without a vertical border, the missing border indicates an
approximate time for the log.

At the bottom of the window, there is a shared time axis that uses seconds as the time
unit.

Power debugging ___4

Context menu

This context menu is available:

MNavigate 3
v Auto Scroll
Zoom 3
State Log
v Enable
Clear

Go to Source

Sort by 3
ADCONV: 2
Open Setup Window

Select Graphs 3
Time Axis Unit 3

Note: The exact contents of the context menu you see on the screen depends on which
features that your combination of software and hardware supports. However, the list of
menu commands below is complete and covers all possible commands.

These commands are available:

Navigate
Commands for navigating the graph(s). Choose between:

Next moves the selection to the next relevant point in the graph. Shortcut key:
right arrow.

Previous moves the selection backward to the previous relevant point in the
graph. Shortcut key: left arrow.

First moves the selection to the first data entry in the graph. Shortcut key:
Home.

Last moves the selection to the last data entry in the graph. Shortcut key: End.

End moves the selection to the last data in any displayed graph, in other words
the end of the time axis. Shortcut key: Ctrl+End.

Auto Scroll

Toggles automatic scrolling on or off. When on, the most recently collected data
is automatically displayed when you choose Navigate>End.

237

Reference information on power debugging

238

C-SPY® Debugging Guide
for AVR

Zoom
Commands for zooming the window, in other words, changing the time scale.
Choose between:

Zoom to Selection makes the current selection fit the window. Shortcut key:
Return.

Zoom In zooms in on the time scale. Shortcut key: +
Zoom Out zooms out on the time scale. Shortcut key: —

10ns, 100ns, 1us, etc makes an interval of 10 nanoseconds, 100 nanoseconds, 1
microsecond, respectively, fit the window.

1ms, 10ms, etc makes an interval of 1 millisecond or 10 milliseconds,
respectively, fit the window.

10m, 1h, etc makes an interval of 10 minutes or 1 hour, respectively, fit the
window.

State Log
A heading that shows that the State Log-specific commands below are available.

Enable
Toggles the display of the graph on or off. If you disable a graph, that graph will
be indicated as OFF in the window. If no data has been collected for a graph, no
data will appear instead of the graph.
Clear
Deletes the log information. Note that this will happen also when you reset the
debugger.
Go To Source
Displays the corresponding source code in an editor window, if applicable.
Sort by
Sorts the entries according to their ID or name. The selected order is used in the
graph when new interrupts appear.
source
Goes to the previous/next log for the selected source.
Open Setup Window
Opens the State Log Setup window. This command might not be supported by

the combination of C-SPY driver and debug probe you are using.

Select Graphs
Selects which graphs to be displayed in the Timeline window.

Power debugging ___4

Time Axis Unit
Selects the unit used in the time axis; choose between Seconds and Cycles.
If Cyecles is not available, the graphs are based on different clock sources. In that
case you can view cycle values as tooltip information by pointing at the graph
with your mouse pointer.

Profile Selection

Enables profiling time intervals in the Function Profiler window. Note that this
command is only available if the C-SPY driver supports PC Sampling.

239

Reference information on power debugging

C-SPY® Debugging Guide
240 for AVR

Part 3. Advanced
debugging

This part of the C-SPY® Debugging Guide for AVR includes these chapters:
e Interrupts

o C-SPY macros

e The C-SPY command line utility—cspybat

.hmuhhhm

241

RARRI

242

Interrupts

e Introduction to interrupts
e Using the interrupt system

e Reference information on interrupts

Introduction to interrupts

These topics are covered:

e Briefly about the interrupt simulation system
e Interrupt characteristics
o C-SPY system macros for interrupt simulation

o Target-adapting the interrupt simulation system
See also:

® Reference information on C-SPY system macros, page 265
® Breakpoints, page 105
o The IAR C/C++ Compiler User Guide for AVR

BRIEFLY ABOUT THE INTERRUPT SIMULATION SYSTEM

By simulating interrupts, you can test the logic of your interrupt service routines and

debug the interrupt handling in the target system long before any hardware is available.
If you use simulated interrupts in conjunction with C-SPY macros and breakpoints, you
can compose a complex simulation of, for instance, interrupt-driven peripheral devices.

The C-SPY Simulator includes an interrupt simulation system where you can simulate
the execution of interrupts during debugging. You can configure the interrupt simulation
system so that it resembles your hardware interrupt system.

The interrupt system has the following features:

Simulated interrupt support for the AVR microcontroller
Single-occasion or periodical interrupts based on the cycle counter
Predefined interrupts for various devices

Configuration of hold time, probability, and timing variation

State information for locating timing problems

243

Introduction to interrupts

244

C-SPY® Debugging Guide
for AVR

o Configuration of interrupts using a dialog box or a C-SPY system macro—that is,
one interactive and one automating interface.

All interrupts you define using the Interrupts dialog box exist only until they have been
serviced and are not preserved between sessions.

The interrupt simulation system is activated by default, but if not required, you can turn
off the interrupt simulation system to speed up the simulation. To turn it off, use either
the Interrupts dialog box or a system macro.

INTERRUPT CHARACTERISTICS

The simulated interrupts consist of a set of characteristics which lets you fine-tune each
interrupt to make it resemble the real interrupt on your target hardware. You can specify
a first activation time, a repeat interval, a hold time, a variance, and a probability.

H H H
Activation | |_‘ |_|—| | | |
signal } I | I I
F‘meI] | | | l |
cycles
B Ton ot wt it
A A+R A+2R A+3R

*If probability is less than 100%, some interrupts may be omitted.

A = Activation time
R = Repeat interval
H =Hold time

Y =Variance

The interrupt simulation system uses the cycle counter as a clock to determine when an
interrupt should be raised in the simulator. You specify the first activation time, which
is based on the cycle counter. C-SPY will generate an interrupt when the cycle counter
has passed the specified activation time. However, interrupts can only be raised between
instructions, which means that a full assembler instruction must have been executed
before the interrupt is generated, regardless of how many cycles an instruction takes.

To define the periodicity of the interrupt generation you can specify the repeat interval
which defines the amount of cycles after which a new interrupt should be generated. In
addition to the repeat interval, the periodicity depends on the two options probability—
the probability, in percent, that the interrupt will actually appear in a period—and
variance—a time variation range as a percentage of the repeat interval. These options
make it possible to randomize the interrupt simulation. You can also specify a hold time
which describes how long the interrupt remains pending until removed if it has not been
processed.

Interrupts °

C-SPY SYSTEM MACROS FOR INTERRUPT SIMULATION

Macros are useful when you already have sorted out the details of the simulated interrupt
so that it fully meets your requirements. If you write a macro function containing
definitions for the simulated interrupts, you can execute the functions automatically
when C-SPY starts. Another advantage is that your simulated interrupt definitions will
be documented if you use macro files, and if you are several engineers involved in the
development project you can share the macro files within the group.

The C-SPY Simulator provides these predefined system macros related to interrupts:
__enableInterrupts

__disableInterrupts

__orderInterrupt

__cancellInterrupt

__cancelAllInterrupts

The parameters of the first five macros correspond to the equivalent entries of the
Interrupts dialog box.

For more information about each macro, see Reference information on C-SPY system
macros, page 265.

TARGET-ADAPTING THE INTERRUPT SIMULATION SYSTEM

The interrupt simulation system is easy to use. However, to take full advantage of the
interrupt simulation system you should be familiar with how to adapt it for the processor
you are using.

The interrupt simulation has a simplified behavior compared to the hardware. This
means that the execution of an interrupt is only dependent on the status of the global
interrupt enable bit.

To simulate device-specific interrupts, the interrupt system must have detailed
information about each available interrupt. Except for default settings, this information
is provided in the device description files. The default settings are used if no device
description file has been specified.

For information about device description files, see Selecting a device description file,
page 51.

245

Using the interrupt system

246

Using the interrupt system

C-SPY® Debugging Guide
for AVR

These tasks are covered:
o Simulating a simple interrupt
See also:

o Using C-SPY macros, page 253 for details about how to use a setup file to define
simulated interrupts at C-SPY startup

o The tutorial Simulating an interrupt in the Information Center.

SIMULATING A SIMPLE INTERRUPT

This example demonstrates the method for simulating a timer interrupt. However, the
procedure can also be used for other types of interrupts.

To simulate and debug an interrupt:

Assume this simple application which contains an interrupt service routine for a timer,
which increments a tick variable. The main function sets the necessary status registers.
The application exits when 100 interrupts have been generated.

#include <sdtio.h>
#include <ioml28.h>
#include <intrinsics.h>

volatile int ticks = 0;
void main (void)
{
/* Add your timer setup code here */

__enable_interrupt () ; /* Enable interrupts */

while (ticks < 100); /* Endless loop */
printf ("Done\n") ;

}

/* Timer interrupt service routine */
#pragma vector = TIMERO_COMP_vect
__interrupt void basic_timer (void)

{

ticks += 1;

}
Add the file to your project.

Choose Project>Options>General Options>Device and select Atmegal28. A
matching device description file will automatically be used.

Interrupts °

4 Build your project and start the simulator.

5 Choose Simulator>Interrupts to open the Interrupts dialog box. Select the Enable
simulation option to enable interrupt simulation. In the Interrupt drop-down list,
select the TIMERO COMP interrupt, and verify these settings:

Option Settings
Activation 4000
Repeat interval 2000
Hold time 10
Probability (%) 100
Variance (%) 0

Table 11: Timer interrupt settings

Click Install and then click OK.

6 Execute your application. If you have enabled the interrupt properly in your application
source code, C-SPY will:

o Generate an interrupt when the cycle counter has passed 4000

e Continuously repeat the interrupt after approximately 2000 cycles.

Reference information on interrupts
Reference information about:

o [nterrupts dialog box, page 248

247

Reference information on interrupts

Interrupts dialog box

The Interrupts dialog box is available by choosing Simulator>Interrupts.

¥ Enable simulation
— Interrupt
|USARTORXC =l

Activation time

|4DDD

Fiepeat interval Hold time
|2unu |g
Probability Wariance

=l =l
|1 00 —| |u = Istall |
 Installed interrupt

[R] USARTORXC fd difyy |

Hemove |
Remave Al |

QK | Cancel | Apply | Help |

This dialog box lists all defined interrupts. Use this dialog box to enable or disable the
interrupt simulation system, as well as to enable or disable individual interrupts.

Requirements
The C-SPY simulator.

Enable simulation
Enables or disables interrupt simulation. If the interrupt simulation is disabled, the
definitions remain but no interrupts are generated.

Interrupt

Lists all available interrupts. Your selection will automatically update the Description
box.

The list is populated with entries from the device description file that you have selected.

Activation time

Specify the value of the cycle counter, after which the specified type of interrupt will be
generated.

C-SPY® Debugging Guide
248 for AVR

Interrupts °

Repeat interval

Specify the periodicity of the interrupt in cycles.

Hold time
Specify how long, in cycles, the interrupt remains pending until removed if it has not
been processed.

Probability
Specify the probability, in percent, that the interrupt will actually occur within the
specified period.

Variance

Specify a timing variation range, as a percentage of the repeat interval in which the
interrupt may occur for a period. For example, if the repeat interval is 100 and the
variance 5%, the interrupt might occur anywhere between T=95 and T=105, to simulate
a variation in the timing.

Installed interrupts

Lists the installed interrupts. The interrupt specification text in the list is prefixed with
either [s] for a single-shot interrupt or [R] for a repeated interrupt. If the interrupt is
activated but pending an additional [P] will be inserted.

Buttons

These buttons are available:

Install Installs the interrupt you specified.
Modify Edits an existing interrupt.
Remove Removes the selected interrupt.
Remove all Removes all installed interrupts.

249

Reference information on interrupts

C-SPY® Debugging Guide
250 for AVR

C-SPY macros

e Introduction to C-SPY macros

e Using C-SPY macros

e Reference information on the macro language

e Reference information on reserved setup macro function names
e Reference information on C-SPY system macros

e Graphical environment for macros

Introduction to C-SPY macros

These topics are covered:

o Reasons for using C-SPY macros
e Briefly about using C-SPY macros
e Briefly about setup macro functions and files

e Briefly about the macro language

REASONS FOR USING C-SPY MACROS

You can use C-SPY macros either by themselves or in conjunction with complex
breakpoints and interrupt simulation to perform a wide variety of tasks. Some examples
where macros can be useful:

o Automating the debug session, for instance with trace printouts, printing values of
variables, and setting breakpoints.

e Hardware configuring, such as initializing hardware registers.

e Feeding your application with simulated data during runtime.

o Simulating peripheral devices, see the chapter /nterrupts. This only applies if you
are using the simulator driver.

o Developing small debug utility functions, for instance calculating the stack depth,
see the provided example StackChk.mac located in the directory \AVR\src\.

251

Introduction to C-SPY macros

252

C-SPY® Debugging Guide
for AVR

BRIEFLY ABOUT USING C-SPY MACROS
To use C-SPY macros, you should:

o Write your macro variables and functions and collect them in one or several macro
files

e Register your macros

e Execute your macros.

For registering and executing macros, there are several methods to choose between.

Which method you choose depends on which level of interaction or automation you
want, and depending on at which stage you want to register or execute your macro.

BRIEFLY ABOUT SETUP MACRO FUNCTIONS AND FILES

There are some reserved setup macro function names that you can use for defining
macro functions which will be called at specific times, such as:

o Once after communication with the target system has been established but before
downloading the application software

o Once after your application software has been downloaded

o FEach time the reset command is issued

o Once when the debug session ends.

To define a macro function to be called at a specific stage, you should define and register

a macro function with one of the reserved names. For instance, if you want to clear a

specific memory area before you load your application software, the macro setup

function execUserPreload should be used. This function is also suitable if you want

to initialize some CPU registers or memory-mapped peripheral units before you load
your application software.

You should define these functions in a setup macro file, which you can load before
C-SPY starts. Your macro functions will then be automatically registered each time you
start C-SPY. This is convenient if you want to automate the initialization of C-SPY, or
if you want to register multiple setup macros.

For more information about each setup macro function, see Reference information on
reserved setup macro function names, page 263.

BRIEFLY ABOUT THE MACRO LANGUAGE

The syntax of the macro language is very similar to the C language. There are:

® Macro statements, which are similar to C statements.

® Macro functions, which you can define with or without parameters and return
values.

C-SPY macros __4

o Predefined built-in system macros, similar to C library functions, which perform
useful tasks such as opening and closing files, setting breakpoints, and defining
simulated interrupts.

® Macro variables, which can be global or local, and can be used in C-SPY
expressions.

® Macro strings, which you can manipulate using predefined system macros.

For more information about the macro language components, see Reference information
on the macro language, page 258.

Example

Consider this example of a macro function which illustrates the various components of
the macro language:

__var oldval;
CheckLatest (val)
{
if (oldval !'= wval)
{
__message "Message: Changed from ", oldval, " to ", wval, "\n";
oldval = val;
}
}

Note: Reserved macro words begin with double underscores to prevent name conflicts.

Using C-SPY macros

These tasks are covered:

Registering C-SPY macros—an overview

Executing C-SPY macros—an overview

Registering and executing using setup macros and setup files
Executing macros using Quick Watch

Executing a macro by connecting it to a breakpoint

Aborting a C-SPY macro

For more examples using C-SPY macros, see:

o The tutorial about simulating an interrupt, which you can find in the Information
Center

e I[nitializing target hardware before C-SPY starts, page 55.

253

Using C-SPY macros

254

C-SPY® Debugging Guide
for AVR

REGISTERING C-SPY MACROS—AN OVERVIEW

C-SPY must know that you intend to use your defined macro functions, and thus you
must register your macros. There are various ways to register macro functions:

You can register macro functions during the C-SPY startup sequence, see
Registering and executing using setup macros and setup files, page 255.

You can register macros interactively in the Macro Registration window, see
Macro Registration window, page 302. Registered macros appear in the Debugger
Macros window, see Debugger Macros window, page 304.

You can register a file containing macro function definitions, using the system
macro __registerMacroFile. This means that you can dynamically select which
macro files to register, depending on the runtime conditions. Using the system
macro also lets you register multiple files at the same moment. For information
about the system macro, see __registerMacroFile, page 285.

Which method you choose depends on which level of interaction or automation you
want, and depending on at which stage you want to register your macro.

EXECUTING C-SPY MACROS—AN OVERVIEW

There are various ways to execute macro functions:

You can execute macro functions during the C-SPY startup sequence and at other

predefined stages during the debug session by defining setup macro functions in a

setup macro file, see Registering and executing using setup macros and setup files,
page 255.

The Quick Watch window lets you evaluate expressions, and can thus be used for
executing macro functions. For an example, see Executing macros using Quick
Watch, page 255.

The Macro Quicklaunch window is similar to the Quick Watch window, but is
more specified on designed for C-SPY macros. See Macro Quicklaunch window,
page 306.

A macro can be connected to a breakpoint; when the breakpoint is triggered the
macro is executed. For an example, see Executing a macro by connecting it to a
breakpoint, page 256.

Which method you choose depends on which level of interaction or automation you
want, and depending on at which stage you want to execute your macro.

C-SPY macros __4

REGISTERING AND EXECUTING USING SETUP MACROS AND
SETUP FILES

It can be convenient to register a macro file during the C-SPY startup sequence. To do
this, specify a macro file which you load before starting the debug session. Your macro
functions will be automatically registered each time you start the debugger.

If you use the reserved setup macro function names to define the macro functions, you
can define exactly at which stage you want the macro function to be executed.

To define a setup macro function and load it during C-SPY startup:
Create a new text file where you can define your macro function.
For example:

execUserSetup ()
{

_ _registerMacroFile("MyMacroUtils.mac") ;
_ _registerMacroFile("MyDeviceSimulation.mac") ;

}

This macro function registers the additional macro files MyMacroUtils.mac and
MyDeviceSimulation.mac. Because the macro function is defined with the function
name execUserSetup, it will be executed directly after your application has been
downloaded.

Save the file using the filename extension mac.

Before you start C-SPY, choose Project>Options>Debugger>Setup. Select Use
Setup file and choose the macro file you just created.

The macros will now be registered during the C-SPY startup sequence.

EXECUTING MACROS USING QUICK WATCH

The Quick Watch window lets you dynamically choose when to execute a macro
function.

Consider this simple macro function that checks the status of a timer enable bit:

TimerStatus ()
{
if ((TimerStatreg & 0x01) != 0)/* Checks the status of reg */
return "Timer enabled"; /* C-SPY macro string used */
else
return "Timer disabled"; /* C-SPY macro string used */

255

Using C-SPY macros

256

C-SPY® Debugging Guide
for AVR

Save the macro function using the filename extension mac.

To load the macro file, choose View>Macros>Macro Registration. The Macro
Registration window is displayed. Click Add and locate the file using the file browser.
The macro file appears in the list of macros in the Macro Registration window.

Select the macro you want to register and your macro will appear in the Debugger
Macros window.

Choose View>Quick Watch to open the Quick Watch window, type the macro call
TimerStatus () in the text field and press Return,

Alternatively, in the macro file editor window, select the macro function name
TimerStatus (). Right-click, and choose Quick Watch from the context menu that
appears.

Quick Watch =]
@ TimerStatus]] -
Expression Yalue Location Type
TimerStatus() 'Timer disabled® macro string

The macro will automatically be displayed in the Quick Watch window.

For more information, see Quick Watch window, page 100.

EXECUTING A MACRO BY CONNECTINGITTO A
BREAKPOINT

You can connect a macro to a breakpoint. The macro will then be executed when the
breakpoint is triggered. The advantage is that you can stop the execution at locations of
particular interest and perform specific actions there.

For instance, you can easily produce log reports containing information such as how the
values of variables, symbols, or registers change. To do this you might set a breakpoint
on a suspicious location and connect a log macro to the breakpoint. After the execution
you can study how the values of the registers have changed.

To create a log macro and connect it to a breakpoint:
Assume this skeleton of a C function in your application source code:

int fact(int x)
{

}

C-SPY macros __4

2 Create a simple log macro function like this example:

logfact ()
{
__message "fact(" ,x, ")";

}
The __message statement will log messages to the Log window.
Save the macro function in a macro file, with the filename extension mac.

3 To register the macro, choose View>Macros>Macro Registration to open the Macro
Registration window and add your macro file to the list. Select the file to register it.
Your macro function will appear in the Debugger Macros window.

4 To set a code breakpoint, click the Toggle Breakpoint button on the first statement
within the function fact in your application source code. Choose View>Breakpoints
to open the Breakpoints window. Select your breakpoint in the list of breakpoints and
choose the Edit command from the context menu.

5 To connect the log macro function to the breakpoint, type the name of the macro
function, logfact (), in the Action field and click Apply. Close the dialog box.

6 Execute your application source code. When the breakpoint is triggered, the macro
function will be executed. You can see the result in the Log window.

o Note that the expression in the Action field is evaluated only when the breakpoint
causes the execution to really stop. If you want to log a value and then automatically
continue execution, you can either:

Use a Log breakpoint, see Log breakpoints dialog box, page 121
o Use the Condition field instead of the Action field. For an example, see Performing

a task and continuing execution, page 116.

7 You can easily enhance the log macro function by, for instance, using the __ fmessage
statement instead, which will print the log information to a file. For information about
the __fmessage statement, see Formatted output, page 261.

For an example where a serial port input buffer is simulated using the method of
connecting a macro to a breakpoint, see the tutorial Simulating an interrupt in the
Information Center.

ABORTING A C-SPY MACRO

To abort a C-SPY macro:
I Press Ctrl+Shift+. (period) for a short while.

2 A message that says that the macro has terminated is displayed in the Debug Log
window.

257

Reference information on the macro language

This method can be used if you suspect that something is wrong with the execution, for
example because it seems not to terminate in a reasonable time.

Reference information on the macro language
Reference information about:

Macro functions, page 258
Macro variables, page 258
Macro parameters, page 259
Macro strings, page 259

Macro statements, page 260

Formatted output, page 261.

MACRO FUNCTIONS

C-SPY macro functions consist of C-SPY variable definitions and macro statements
which are executed when the macro is called. An unlimited number of parameters can
be passed to a macro function, and macro functions can return a value on exit.

A C-SPY macro has this form:

macroName (parameterList)
{

macroBody

}

where parameterList is a list of macro parameters separated by commas, and
macroBody is any series of C-SPY variable definitions and C-SPY statements.

Type checking is neither performed on the values passed to the macro functions nor on
the return value.
MACRO VARIABLES

A macro variable is a variable defined and allocated outside your application. It can then
be used in a C-SPY expression, or you can assign application data—values of the
variables in your application—to it. For more information about C-SPY expressions, see
C-SPY expressions, page 86.

The syntax for defining one or more macro variables is:
__var nameList;

where nameList is a list of C-SPY variable names separated by commas.

C-SPY® Debugging Guide
258 for AVR

C-SPY macros __4

A macro variable defined outside a macro body has global scope, and it exists
throughout the whole debugging session. A macro variable defined within a macro body
is created when its definition is executed and destroyed on return from the macro.

By default, macro variables are treated as signed integers and initialized to 0. When a
C-SPY variable is assigned a value in an expression, it also acquires the type of that
expression. For example:

Expression What it means
myvar = 3.5; myvar is now type double, value 3. 5.
myvar = (int*)i; myvar is now type pointer to int, and the value is the same as i.

Table 12: Examples of C-SPY macro variables

In case of a name conflict between a C symbol and a C-SPY macro variable, C-SPY
macro variables have a higher precedence than C variables. Note that macro variables
are allocated on the debugger host and do not affect your application.

MACRO PARAMETERS

A macro parameter is intended for parameterization of device support. The named

parameter will behave as a normal C-SPY macro variable with these differences:

o The parameter definition can have an initializer

o Values of a parameters can be set through options (either in the IDE or in cspybat).

o A value set from an option will take precedence over a value set by an initializer

e A parameter must have an initializer, be set through an option, or both. Otherwise, it
has an undefined value, and accessing it will cause a runtime error.

The syntax for defining one or more macro parameters is:

__param param|[= value, ...;]

Use the command line option --macro_param to specify a value to a parameter, see
--macro_param, page 330.

MACRO STRINGS

In addition to C types, macro variables can hold values of macro strings. Note that
macro strings differ from C language strings.

When you write a string literal, such as "Hello! ", in a C-SPY expression, the value is
a macro string. It is not a C-style character pointer char*, because char* must point to
a sequence of characters in target memory and C-SPY cannot expect any string literal to
actually exist in target memory.

You can manipulate a macro string using a few built-in macro functions, for example
__strFind or __subsString. The result can be a new macro string. You can

259

Reference information on the macro language

concatenate macro strings using the + operator, for example str + "tail". You can
also access individual characters using subscription, for example st [3]. You can get the
length of a string using sizeof (str). Note that a macro string is not
NULL-terminated.

The macro function __toString is used for converting from a NULL-terminated C
string in your application (char* or char []) to a macro string. For example, assume
this definition of a C string in your application:

char const *cstr = "Hello";

Then examine these macro examples:

__var str; /* A macro variable */

str = cstr /* str is now just a pointer to char */

sizeof str /* same as sizeof (char*), typically 2 or 4 */
str = __toString(cstr,512) /* str is now a macro string */
sizeof str /* 5, the length of the string */

str[l] /* 101, the ASCII code for 'e' */

str += " World!" /* str is now "Hello World!" */

See also Formatted output, page 261.

MACRO STATEMENTS

Statements are expected to behave in the same way as the corresponding C statements
would do. The following C-SPY macro statements are accepted:

Expressions
expression;

For more information about C-SPY expressions, see C-SPY expressions, page 86.

Conditional statements

if (expression)
Sstatement

if (expression)
statement
else
statement

C-SPY® Debugging Guide
260 for AVR

C-SPY macros __4

Loop statements

for (init_expression; cond_expression; update_expression)
statement

while (expression)
statement

do
Sstatement
while (expression);

Return statements
return;

return expression;

If the return value is not explicitly set, signed int 0 is returned by default.

Blocks

Statements can be grouped in blocks.

{
statementl
statement2

statementN

FORMATTED OUTPUT

C-SPY provides various methods for producing formatted output:

__message argList; Prints the output to the Debug Log window.
__fmessage file, argList; Prints the output to the designated file.

__smessage argList; Returns a string containing the formatted output.

where argList is acomma-separated list of C-SPY expressions or strings, and fileis
the result of the __openFile system macro, see _ openkFile, page 280.

261

Reference information on the macro language

262

C-SPY® Debugging Guide
for AVR

To produce messages in the Debug Log window:

varl = 42;
var2 = 37;
__message "This line prints the values ", varl, " and ", var2,

" in the Log window.";

This produces this message in the Log window:

This line prints the values 42 and 37 in the Log window.
To write the output to a designated file:

__fmessage myfile, "Result is ", res, "!\n";

To produce strings:

myMacroVar = __smessage 42, " is the answer.";

myMacroVar now contains the string "42 is the answer.".

Specifying display format of arguments

To override the default display format of a scalar argument (number or pointer) in
argList, suffix it with a : followed by a format specifier. Available specifiers are:

%b for binary scalar arguments

%0 for octal scalar arguments

%d for decimal scalar arguments

$x for hexadecimal scalar arguments
%c for character scalar arguments

These match the formats available in the Watch and Locals windows, but number
prefixes and quotes around strings and characters are not printed. Another example:

__message "The character '", cvar:%c, "' has the decimal value
", cvar;

Depending on the value of the variables, this produces this message:
The character 'A' has the decimal value 65

Note: A character enclosed in single quotes (a character literal) is an integer constant
and is not automatically formatted as a character. For example:

__message 'A', " is the numeric value of the character ",
'A':%C;

C-SPY macros __4

would produce:
65 is the numeric value of the character A

Note: The default format for certain types is primarily designed to be useful in the
Watch window and other related windows. For example, a value of type char is
formatted as 'A' (0x41), while a pointer to a character (potentially a C string) is
formatted as 0x8102 "Hello", where the string part shows the beginning of the string
(currently up to 60 characters).

When printing a value of type char*, use the $x format specifier to print just the pointer
value in hexadecimal notation, or use the system macro __toString to get the full
string value.

Reference information on reserved setup macro function names

There are reserved setup macro function names that you can use for defining your setup
macro functions. By using these reserved names, your function will be executed at
defined stages during execution. For more information, see Briefly about setup macro
functions and files, page 252.

Reference information about:

execUserPreload
execUserExecutionStarted

execUserExecutionStopped

execUserPreReset

[}

[J

[}

® execUserSetup
[J

® execUserReset
[}

execUserExit

execUserPreload
Syntax execUserPreload
For use with All C-SPY drivers.
Description Called after communication with the target system is established but before

downloading the target application.

Implement this macro to initialize memory locations and/or registers which are vital for
loading data properly.

263

Reference information on reserved setup macro function names

execUserExecutionStarted

Syntax
For use with

Description

execUserExecutionStarted
All C-SPY drivers.
Called when the debugger is about to start or resume execution. The macro is not called

when performing a one-instruction assembler step, in other words, Step or Step Into in
the Disassembly window.

execUserExecutionStopped

Syntax
For use with

Description

execUserSetup

Syntax
For use with

Description

C-SPY® Debugging Guide
264 for AVR

execUs erExecutionStopped
All C-SPY drivers.

Called when the debugger has stopped execution. The macro is not called when
performing a one-instruction assembler step, in other words, Step or Step Into in the
Disassembly window.

execUserSetup
All C-SPY drivers.

Called once after the target application is downloaded.

Implement this macro to set up the memory map, breakpoints, interrupts, register macro
files, etc.

If you define interrupts or breakpoints in a macro file that is executed at system start
(using execUserSetup) we strongly recommend that you also make sure that they are
removed at system shutdown (using execUserExit). An example is available in
SetupSimple.mac, see the tutorials in the Information Center.

The reason for this is that the simulator saves interrupt settings between sessions and if
they are not removed they will get duplicated every time execUserSetup is executed
again. This seriously affects the execution speed.

execUserPreReset

Syntax
For use with

Description

execUserReset

Syntax
For use with

Description

execUserExit

Syntax
For use with

Description

C-SPY macros __4

execUserPreReset
All C-SPY drivers.

Called each time just before the reset command is issued.

Implement this macro to set up any required device state.

execUserReset
All C-SPY drivers.

Called each time just after the reset command is issued.

Implement this macro to set up and restore data.

execUserExit
All C-SPY drivers.

Called once when the debug session ends.

Implement this macro to save status data etc.

Reference information on C-SPY system macros

This section gives reference information about each of the C-SPY system macros.
This table summarizes the pre-defined system macros:

Macro Description

__abortLaunch Aborts the launch of the debugger

__cancelAllInterrupts Cancels all ordered interrupts
__cancelInterrupt Cancels an interrupt

__clearBreak Clears a breakpoint

Table 13: Summary of system macros

Reference information on C-SPY system macros

Macro

Description

__closeFile
__delay
__disableInterrupts
__driverType
__enableInterrupts

__evaluate

__fillMemory8
__fillMemorylé6
__fillMemory32
__getCycleCounter
_ _isBatchMode
__loadImage

__memoryRestore

_ _memorySave

__memorySaveToFile

_ _messageBoxYesCancel

_ _messageBoxYesNo
__openFile
__orderInterrupt
__readFile
__readFileByte

__readMemorys8,
__readMemoryByte

__readMemoryl6
__readMemory32
__registerMacroFile
__resetFile
__setCodeBreak

__setComplexBreak

_memoryRestoreFromFile

Closes a file that was opened by __openFile
Delays execution

Disables generation of interrupts

Verifies the driver type

Enables generation of interrupts

Interprets the input string as an expression and
evaluates it.

Fills a specified memory area with a byte value.
Fills a specified memory area with a 2-byte value.
Fills a specified memory area with a 4-byte value.
Reads the cycle counter

Checks if C-SPY is running in batch mode or not.
Loads an image.

Restores the contents of a file to a specified memory
zone

Reads from a file and restores to memory

Saves the contents of a specified memory area to a
file

Saves a range of a memory zone to a file

Displays a Yes/Cancel dialog box for user interaction
Displays a Yes/No dialog box for user interaction
Opens a file for /O operations

Generates an interrupt

Reads from the specified file

Reads one byte from the specified file

Reads one byte from the specified memory location

Reads two bytes from the specified memory location
Reads four bytes from the specified memory location
Registers macros from the specified file

Rewinds a file opened by __openFile

Sets a code breakpoint

Sets a complex breakpoint

Table 13: Summary of system macros

C-SPY® Debugging Guide
266 for AVR

__abortLaunch

Syntax

Parameters

Return value

C-SPY macros __4

Macro Description
__setDataBreak Sets a data breakpoint

_ _setLogBreak Sets a log breakpoint
__setSimBreak Sets a simulation breakpoint

__setTraceStartBreak
__setTraceStopBreak

__sourcePosition

__strFind

__subString
_targetDebuggerVersion

__toLower

__toString

_toUpper

__unloadImage
__writeFile
__writeFileByte

_ _writeMemory8§,
__writeMemoryByte

__writeMemorylé6

__writeMemory32

Sets a trace start breakpoint
Sets a trace stop breakpoint

Returns the file name and source location if the
current execution location corresponds to a source
location

Searches a given string for the occurrence of another
string

Extracts a substring from another string
Returns the version of the target debugger

Returns a copy of the parameter string where all the
characters have been converted to lower case

Prints strings

Returns a copy of the parameter string where all the
characters have been converted to upper case

Unloads a debug image
Werites to the specified file
Werites one byte to the specified file

Writes one byte to the specified memory location

Writes a two-byte word to the specified memory
location

Writes a four-byte word to the specified memory
location

Table 13: Summary of system macros

__abortLaunch (message)

message

A string that is printed as an error message when the macro executes.

None.

267

Reference information on C-SPY system macros

For use with

Description

Example

__cancelAlllnterrupts

Syntax
Return value
For use with

Description

__cancellnterrupt

Syntax

Parameters

Return value

For use with

Description

C-SPY® Debugging Guide
268 for AVR

All C-SPY drivers.
This macro can be used for aborting a debugger launch, for example if another macro
sees that something goes wrong during initialization and cannot perform a proper setup.

This is an emergency exit, not a recommended way to end a debug session like the C
library function abort ().

if (!__messageBoxYesCancel ("Do you want to mass erase to unlock
the device?", "Unlocking device"))
{ __abortLaunch("Unlock canceled. Debug session cannot
continue."); }

__cancelAllInterrupts ()
int 0
The C-SPY Simulator.

Cancels all ordered interrupts.

__cancelInterrupt (interrupt_id)

interrupt_id

The value returned by the corresponding __orderInterrupt macro call
(unsigned long).

Result Value
Successful int 0
Unsuccessful Non-zero error number

Table 14: __cancellnterrupt return values
The C-SPY Simulator.

Cancels the specified interrupt.

C-SPY macros __4

__clearBreak
Syntax __clearBreak (break_id)
Parameters break _id
The value returned by any of the set breakpoint macros.
Return value int 0
For use with All C-SPY drivers.
Description Clears a user-defined breakpoint.
See also Breakpoints, page 105.
__closeFile
Syntax __closeFile(fileHandle)
Parameters fileHandle
A macro variable used as filehandle by the __openFile macro.
Return value int 0
For use with All C-SPY drivers.
Description Closes a file previously opened by __openFile.
__delay
Syntax __delay(value)
Parameters value
The number of milliseconds to delay execution.
Return value int 0
For use with All C-SPY drivers.
Description Delays execution the specified number of milliseconds.

269

Reference information on C-SPY system macros

__disablelnterrupts

Syntax

Return value

For use with

Description

__driverType

Syntax

Parameters

Return value

For use with

Description

C-SPY® Debugging Guide
270 for AVR

__disableInterrupts/()

Result Value
Successful int 0
Unsuccessful Non-zero error number

Table 15: __disablelnterrupts return values
The C-SPY Simulator.

Disables the generation of interrupts.

_ _driverType (driver_ id)

driver_id

A string corresponding to the driver you want to check for. Choose one of these:
"sim" corresponds to the simulator driver.

"jtagicemkII" corresponds to the C-SPY JTAGICE mkII driver
"atmel-ice" corresponds to the C-SPY Atmel-ICE driver

"power debugger" corresponds to the C-SPY Power Debugger driver
"jtagice3" corresponds to the C-SPY JTAGICES3 driver

"avrone" corresponds to the C-SPY AVR ONE! driver

Result Value
Successful 1
Unsuccessful 0

Table 16: __driverType return values

All C-SPY drivers

Checks to see if the current C-SPY driver is identical to the driver type of the
driver_id parameter.

C-SPY macros __4

Example __driverType("sim")

If the simulator is the current driver, the value 1 is returned. Otherwise 0 is returned.

__enablelnterrupts

Syntax __enableInterrupts()

Return value

Result Value
Successful int 0
Unsuccessful Non-zero error number

Table 17: __enablelnterrupts return values

For use with The C-SPY Simulator.

Description Enables the generation of interrupts.
__evaluate

Syntax __evaluate(string, valuePtr)

Parameters string

Expression string.

valuePtr

Pointer to a macro variable storing the result.

Return value

Result Value
Successful int 0
Unsuccessful int 1

Table 18: __evaluate return values
For use with All C-SPY drivers.

Description This macro interprets the input string as an expression and evaluates it. The result is
stored in a variable pointed to by valuePtr.

Example This example assumes that the variable i is defined and has the value 5:

__evaluate("i + 3", &myVar)

271

Reference information on C-SPY system macros

The macro variable myvar is assigned the value 8.

__fillMemory8
Syntax __fillMemory8 (value, address, zone, length, format)
Parameters value
An integer that specifies the value.
address
An integer that specifies the memory start address.
zone
A string that specifies the memory zone, see C-SPY memory zones, page 134.
length
An integer that specifies how many bytes are affected.
format
One of these alternatives:
Copy value will be copied to the specified memory area.
AND An AND operation will be performed between value and the
existing contents of memory before writing the result to memory.
OR An OR operation will be performed between value and the
existing contents of memory before writing the result to memory.
XOR An XOR operation will be performed between value and the
existing contents of memory before writing the result to memory.
Return value int 0
For use with All C-SPY drivers.
Description Fills a specified memory area with a byte value.
Example __fillMemory8 (0x80, 0x700, "DATA", 0x10, "OR");
__fillMemoryl 6
Syntax __fillMemoryl6 (value, address, zone, length, format)

C-SPY® Debugging Guide
272 for AVR

C-SPY macros __4

Parameters value
An integer that specifies the value.

address

An integer that specifies the memory start address.

zone
A string that specifies the memory zone, see C-SPY memory zones, page 134.
length
An integer that defines how many 2-byte entities to be affected.
format
One of these alternatives:
Copy value will be copied to the specified memory area.
AND An AND operation will be performed between value and the
existing contents of memory before writing the result to memory.
OR An OR operation will be performed between value and the
existing contents of memory before writing the result to memory.
XOR An XOR operation will be performed between value and the
existing contents of memory before writing the result to memory.
Return value int 0
For use with All C-SPY drivers.
Description Fills a specified memory area with a 2-byte value.
Exmnpk __fillMemoryl6 (0xCDCD, 0x7000, "DATA", 0x200, "Copy"):;
__fillMemory32
Syntax __fillMemory32 (value, address, zone, length, format)
Parameters value
An integer that specifies the value.
address

An integer that specifies the memory start address.

273

Reference information on C-SPY system macros

Return value
For use with
Description

Example

__getCycleCounter

Syntax
Return value
For use with

Description

C-SPY® Debugging Guide
274 for AVR

zone

A string that specifies the memory zone, see C-SPY memory zones, page 134.

length

An integer that defines how many 4-byte entities to be affected.

format

One of these alternatives:

Copy value will be copied to the specified memory area.

AND An AND operation will be performed between value
and the existing contents of memory before writing
the result to memory.

OR An OR operation will be performed between value
and the existing contents of memory before writing
the result to memory.

XOR An XOR operation will be performed between value
and the existing contents of memory before writing
the result to memory.

int 0

All C-SPY drivers.
Fills a specified memory area with a 4-byte value.

__fillMemory32 (0x0000FFFF, 0x4000, "DATA", 0x1000, "XOR");

__getCycleCounter ()
Returns the current value of the cycle counter as a long long int.
The C-SPY hardware drivers.

Reads the current value of the cycle counter.

C-SPY macros __4

__isBatchMode

Syntax __isBatchMode ()

Return value

Result Value
True int 1
False int 0

Table 19: __isBatchMode return values

For use with All C-SPY drivers.
Description This macro returns True if the debugger is running in batch mode, otherwise it returns
False.
__loadlmage
Syntax __loadImage (path, offset, debugInfoOnly)
Parameters path

A string that identifies the path to the image to download. The path must either
be absolute or use argument variables. For information about argument
variables, see the IDE Project Management and Building Guide for AVR.

offset
An integer that identifies the offset to the destination address for the downloaded
image.

debugInfoOnly

A non-zero integer value if no code or data should be downloaded to the target
system, which means that C-SPY will only read the debug information from the
debug file. Or, 0 (zero) for download.

Return value
Value Result

Non-zero integer number A unique module identification.

int 0 Loading failed.

Table 20: __loadlmage return values
For use with All C-SPY drivers.

Description Loads an image (debug file).

275

Reference information on C-SPY system macros

Example |

Example 2

See also

__memoryRestore

Syntax

Parameters

Return value
For use with

Description

C-SPY® Debugging Guide
276 for AVR

Your system consists of a ROM library and an application. The application is your active
project, but you have a debug file corresponding to the library. In this case you can add
this macro call in the execUserSetup macro in a C-SPY macro file, which you
associate with your project:

__loadImage("ROMfile", 0x8000, 1);

This macro call loads the debug information for the ROM library rRoMfi1e without
downloading its contents (because it is presumably already in ROM). Then you can
debug your application together with the library.

Your system consists of a ROM library and an application, but your main concern is the
library. The library needs to be programmed into flash memory before a debug session.
While you are developing the library, the library project must be the active project in the
IDE. In this case you can add this macro call in the execUserSetup macro in a C-SPY
macro file, which you associate with your project:

__loadImage("ApplicationFile", 0x8000, 0);

The macro call loads the debug information for the application and downloads its
contents (presumably into RAM). Then you can debug your library together with the
application.

Images, page 340 and Loading multiple images, page 53.

__memoryRestore (zone, filename)

zone

A string that specifies the memory zone, see C-SPY memory zones, page 134.

filename

A string that specifies the file to be read. The filename must include a path,
which must either be absolute or use argument variables. For information about
argument variables, see the /DE Project Management and Building Guide for
AVR.

0 if successful, otherwise 1
All C-SPY drivers.

Reads the contents of a file and saves it to the specified memory zone. It is recommended
that you use this macro instead of __memoryRestoreFromFile.

C-SPY macros __4

Example __memoryRestore ("DATA", "c:\\temp\\saved_memory.hex") ;

See also Memory Restore dialog box, page 144.

__memoryRestoreFromFile

Swnax __memoryRestoreFromFile (filename, zone)
Parameters
filename The file to be read.
zone The memory zone name (string); for a list of available zones,

see C-SPY memory zones, page 134.

Return value 0 if successful, otherwise 1
For use with All C-SPY drivers.
Description Reads the contents of a file in intel-hex or Motorola S-record format and writes it to the

specified memory zone. This macro is available for backwards compatibility.

Example __memoryRestoreFromFile ("C:\\temp\\tmp.hex", "DATA");
__MmemorySave

Syntax __memorySave (start, stop, format, filename)

Parameters start

A string that specifies the first location of the memory area to be saved.

stop
A string that specifies the last location of the memory area to be saved.

format

A string that specifies the format to be used for the saved memory. Choose
between:

intel-extended
motorola
motorola-sl9

motorola-s28

277

Reference information on C-SPY system macros

278

__memorySaveToFile

C-SPY® Debugging Guide

for AVR

Return value
For use with

Description

Example

See also

Syntax

Parameters

Return value
For use with

Description

Example

motorola-s37.

filename
A string that specifies the file to write to. The filename must include a path,
which must either be absolute or use argument variables. For information about
argument variables, see the IDE Project Management and Building Guide for
AVR.

0 if successful. At failure, macro execution is aborted and log messages are produced.
All C-SPY drivers.

Saves the contents of a specified memory area to a file. It is recommended that you use
this macro instead of __memorySaveToFile.

_ _memorySave ("DATA:0x00", "DATA:0xXFF", "intel-extended",
"c:\\temp\\saved_memory.hex") ;

Memory Save dialog box, page 143.

__memorySaveToFile(filename, zone, start, stop)

filename The file to be written.

zone The memory zone name (string); for a list of available zones,
see C-SPY memory zones, page 134.

start The start address of the memory range to be saved.
stop The stop address of the memory range to be saved.
0 if successful, otherwise 1

All C-SPY drivers.

Saves a range of a memory zone to a file. The file is written in the Intel hex format. This
macro is available for backwards compatibility.

__memoryRestoreFromFile ("C:\\temp\\tmp.hex", "DATA", "0x1000",
"0x1100") ;

C-SPY macros __4

__messageBoxYesCancel

Syntax __messageBoxYesCancel (message, caption)

Parameters message

A message that will appear in the message box.

caption

The title that will appear in the message box.

Return value

Result Value
Yes 1
No 0

Table 21: __messageBoxYesCancel return values
For use with All C-SPY drivers.

Description Displays a Yes/Cancel dialog box when called and returns the user input. Typically, this
is useful for creating macros that require user interaction.

__messageBoxYesNo
Syntax __messageBoxYesNo (message, caption)
Parameters message

A message that will appear in the message box.

caption

The title that will appear in the message box.

Return value

Result Value
Yes 1
No 0

Table 22: __messageBoxYesNo return values
For use with All C-SPY drivers.

Description Displays a Yes/No dialog box when called and returns the user input. Typically, this is
useful for creating macros that require user interaction.

279

Reference information on C-SPY system macros

__openFile
Syntax __openFile(filename, access)
Parameters filename

The file to be opened. The filename must include a path, which must either be
absolute or use argument variables. For information about argument variables,
see the IDE Project Management and Building Guide for AVR.

access

The access type (string).

These are mandatory but mutually exclusive:

"a" append, new data will be appended at the end of the open file

"r" read (by default in text mode; combine with b for binary mode: rb)
"w" write (by default in text mode; combine with b for binary mode: wb)
These are optional and mutually exclusive:

"b" binary, opens the file in binary mode

"t ASCII text, opens the file in text mode

This access type is optional:

"+" together with r, w, or a; r+ or w+ is read and write, while a+ is read and

append
Return value
Result Value
Successful The file handle
Unsuccessful An invalid file handle, which tests as False

Table 23: __openFile return values
For use with All C-SPY drivers.

Description Opens a file for I/O operations. The default base directory of this macro is where the
currently open project file (* . ewp) is located. The argument to __openFile can
specify a location relative to this directory. In addition, you can use argument variables
such as $PROJ_DIRS$ and $TOOLKIT_DIRS in the path argument.

C-SPY® Debugging Guide
280 for AVR

Example

See also

__orderlinterrupt

Syntax

Parameters

Return value

For use with

Description

C-SPY macros __4

__var myFileHandle; /* The macro variable to contain */
/* the file handle */

myFileHandle = __openFile("$SPROJ_DIRS\\Debug\\Exe\\test.tst",

I|rl|);

if (myFileHandle)
{

/* successful opening */

For information about argument variables, see the IDE Project Management and
Building Guide for AVR.

__orderInterrupt (specification, first_activation,
repeat_interval, variance,
hold_time, probability)

specification
The interrupt name (string). The interrupt system will automatically get the
description from the device description file.

first_activation

The first activation time in cycles (integer)

repeat_interval

The periodicity in cycles (integer)

variance

The timing variation range in percent (integer between 0 and 100)

hold_time
The hold time (integer)

probability
The probability in percent (integer between 0 and 100)

The macro returns an interrupt identifier (unsigned long).

If the syntax of specification is incorrect, it returns -1.
The C-SPY Simulator.

Generates an interrupt.

281

Reference information on C-SPY system macros

Example

__readFile

Syntax

Parameters

Return value

For use with

Description

Example

C-SPY® Debugging Guide
282 for AVR

This example generates a repeating interrupt using an infinite hold time first activated
after 4000 cycles:

__orderInterrupt("USARTO TXC", 4000, 2000, O, 0, 100);

__readFile(fileHandle, valuePtr)

fileHandle
A macro variable used as filehandle by the __openFile macro.

valuePtr

A pointer to a variable.

Result Value
Successful 0
Unsuccessful Non-zero error number

Table 24: __readFile return values
All C-SPY drivers.

Reads a sequence of hexadecimal digits from the given file and converts them to an
unsigned long which is assigned to the value parameter, which should be a pointer
to a macro variable.

Only printable characters representing hexadecimal digits and white-space characters
are accepted, no other characters are allowed.

__var number;
if (__readFile(myFileHandle, &number) == 0)
{

// Do something with number

}

In this example, if the file pointed to by myFileHandle contains the ASCII characters
1234 abcd 90ef, consecutive reads will assign the values 0x1234 Oxabcd 0x90ef
to the variable number.

C-SPY macros __4

__readFileByte
Syntax __readFileByte (fileHandle)
Parameters fileHandle
A macro variable used as filehandle by the __openFile macro.
Return value -1 upon error or end-of-file, otherwise a value between 0 and 255.
For use with All C-SPY drivers.
Description Reads one byte from a file.
Example __var byte;

while ((byte = __readFileByte (myFileHandle)) != -1)
{
/* Do something with byte */

__readMemory8, __readMemoryByte

Syntax __readMemory8 (address, zone)
__readMemoryByte (address, zone)

Parameters address

The memory address (integer).

zone
A string that specifies the memory zone, see C-SPY memory zones, page 134.
Return value The macro returns the value from memory.
For use with All C-SPY drivers.
Description Reads one byte from a given memory location.
Example __readMemory8 (0x0108, "DATA");

283

Reference information on C-SPY system macros

__readMemoryl é

Syntax __readMemorylé6 (address, zone)
Parameters address

The memory address (integer).

zone

A string that specifies the memory zone, see C-SPY memory zones, page 134.
Return value The macro returns the value from memory.
For use with All C-SPY drivers.
Description Reads a two-byte word from a given memory location.
Example __readMemoryl6 (0x0108, "DATA");

__readMemory32

Syntax __readMemory32 (address, zone)
Parameters address

The memory address (integer).

zone

A string that specifies the memory zone, see C-SPY memory zones, page 134.
Return value The macro returns the value from memory.
For use with All C-SPY drivers.
Description Reads a four-byte word from a given memory location.
Example __readMemory32 (0x0108, "DATA");

C-SPY® Debugging Guide
284 for AVR

C-SPY macros __4

__registerMacrofFile

Syntax __registerMacroFile(filename)

Parameters filename
A file containing the macros to be registered (string). The filename must include
a path, which must either be absolute or use argument variables. For information
about argument variables, see the IDE Project Management and Building Guide
for AVR.

Return value int 0

For use with All C-SPY drivers.

Description Registers macros from a setup macro file. With this function you can register multiple

macro files during C-SPY startup.
Example __registerMacroFile("c:\\testdir\\macro.mac") ;
See also Using C-SPY macros, page 253.
__resetFile

Syntax __resetFile(fileHandle)

Parameters fileHandle
A macro variable used as filehandle by the __openFile macro.

Return value int 0

For use with All C-SPY drivers.

Description Rewinds a file previously opened by __openFile.

285

Reference information on C-SPY system macros

__setCodeBreak
Syntax __setCodeBreak(location, count, condition, cond_type, action)
Parameters location

A string that defines the code location of the breakpoint, either a valid C-SPY
expression whose value evaluates to a valid address, an absolute location, or a
source location. For more information about the location types, see Enter
Location dialog box, page 130.

count
The number of times that a breakpoint condition must be fulfilled before a break
occurs (integer).

condition

The breakpoint condition (string).

cond_type
The condition type; either "CHANGED" or "TRUE" (string).

action

An expression, typically a call to a macro, which is evaluated when the
breakpoint is detected.

Return value
Result Value

Successful An unsigned integer uniquely identifying the breakpoint. This value
must be used to clear the breakpoint.

Unsuccessful 0

Table 25: __setCodeBreak return values
For use with All C-SPY drivers.

Description Sets a code breakpoint, that is, a breakpoint which is triggered just before the processor
fetches an instruction at the specified location.

Examples __setCodeBreak ("{D:\\src\\prog.c}.12.9", 3, "d>16", "TRUE",
"ActionCode()");
This example sets a code breakpoint on the label main in your source:

__setCodeBreak("main", 0, "1", "TRUE", "");

See also Breakpoints, page 105.

C-SPY® Debugging Guide
286 for AVR

__setComplexBreak

C-SPY macros __4

Syntax __setComplexBreak (control, a_addr, b_addr, access_type,

a_access, b_access,

d_compare,

Parameters
control

a_addr

b_addr

access_type

a_access

complex_data, c_value, d_value, c_compare,

Breakpoint control:

ENABLE_A to enable a breakpoint at a_addr

ENABLE_AB to enable breakpoints at a_addr and b_addr
RANGE to enable a range breakpoint from a_addr to b_addr.
A string with a location description. This can be:

A source location on the form { filename}.line. col, for
example {D:\\src\\prog.c}.12.9, although this is not
very useful for data breakpoints.

An absolute location on the form zone: hexaddress or
simply hexaddress, for example Memory: 0x42

An expression whose value designates a location, for
example myGlobalvariable.

A string with a location description. This can be:

A source location on the form { filename}.line.col, for
example {D:\\src\\prog.c}.12.9, although this is not
very useful for data breakpoints.

An absolute location on the form zone: hexaddress or
simply hexaddress, for example Memory: 0x42.

An expression whose value designates a location, for
example myGlobalvariable.

The memory space:
DATA for data memory
CODE for code memory
The memory access type:
R for read

w for write

Rw for read/write

287

Reference information on C-SPY system macros

b_access

complex_data

c_value

d_value

c_compare

d_compare

action

C-SPY® Debugging Guide
288 for AVR

The memory access type:

R for read

w for write

RW for read/write

Complex data control:

C_COMBINED_WITH_A for enable complex data

cD_cOoMBINED_WITH_AB for C combined with A and D
combined with B

cD_coMBINED_WITH_A for C and D combined with A

NOTCD_COMBINED_WITH_A for not C and D combined with
A

C_MASKED_WITH_D_COMBINED_WITH_A for C masked with
D combined with A

Single-byte value for comparison with the memory contents
of a_addr and b_addr.

Single-byte value for comparison with the memory contents
of a_addr and b_addr.

The relationship between c_value and the contents of data
memory at a_addr and b_addr:

EQ matches when c_value and the data value are equal
LE matches when c_value is less than the data value

GE matches when c_valueis greater than or equal to the data
value

The relationship between d_value and the contents of data
memory at a_addr and b_addr:

EQ matches when d_value and the data value are equal
LE matches when d_value is less than the data value

GE matches when d_valueis greater than or equal to the data
value

An expression, typically a call to a macro, which is evaluated
when the breakpoint is detected.

Return value

For use with

Description

Example

See also

__setDataBreak

Syntax

Parameters

C-SPY macros __4

Result Value

Successful An unsigned integer uniquely identifying the breakpoint. This value must be
used to clear the breakpoint.

Unsuccessful 0

Table 26: __set Complex Break return values

The C-SPY AVR ONE! driver
The C-SPY Atmel-ICE driver
The C-SPY JTAGICE3 driver

Sets a complex breakpoint, that is, a breakpoint which is triggered directly after the
processor has read or written data at the specified location.

The following example enables one data read/write breakpoint at the address for
variable a and will break if the memory byte value at address is equal to 0x22, and it
enables one data read breakpoint at the address for variable b and will break if the
memory byte value at address is greater than or equal to 0x11. When a break occurs, the
macro function ActionData () will be called.

__var brk;

brk=__setComplexBreak ("ENABLE_AB", "a", "b", "DATA", "RW", "R",
"CD_COMBINED_WITH_AB", "0x22", "Oxl1l" "EQ", "GE",

"ActionData () ") ;

__clearBreak (brk) ;

Breakpoints, page 105.

__setDataBreak (location, count, condition, cond_type, access,
action)

location
A string that defines the data location of the breakpoint, either a valid C-SPY
expression whose value evaluates to a valid address or an absolute location. For
more information about the location types, see Enter Location dialog box, page
130.

289

Reference information on C-SPY system macros

count

The number of times that a breakpoint condition must be fulfilled before a break
occurs (integer).

condition

The breakpoint condition (string).

cond_type
The condition type; either "CHANGED" or "TRUE" (string).

access

The memory access type: "R", for read, "w" for write, or "Rw" for read/write.

action
An expression, typically a call to a macro, which is evaluated when the
breakpoint is detected.

Return value
Result Value

Successful An unsigned integer uniquely identifying the breakpoint. This value
must be used to clear the breakpoint.

Unsuccessful 0

Table 27: __setDataBreak return values

For use with The C-SPY Simulator.
The C-SPY Atmel-ICE driver
The C-SPY JTAGICE3 driver
The C-SPY AVR ONE! driver

Description Sets a data breakpoint, that is, a breakpoint which is triggered directly after the processor
has read or written data at the specified location.

Example __var brk;
brk = __setDataBreak ("DATA:0x4710", 3, "d>»6", "TRUE",
"W", "ActionData()");

__clearBreak (brk) ;

See also Breakpoints, page 105.

C-SPY® Debugging Guide
290 for AVR

__setLogBreak

Syntax

Parameters

Return value

For use with

Description

C-SPY macros __4

__setLogBreak (location, message, msg_type, condition,
cond_type)

location

A string that defines the code location of the breakpoint, either a valid C-SPY
expression whose value evaluates to a valid address, an absolute location, or a
source location. For more information about the location types, see Enter
Location dialog box, page 130.

message

The message text.

msg_type
The message type; choose between:

TEXT, the message is written word for word.

ARGS, the message is interpreted as a comma-separated list of C-SPY
expressions or strings.

condition

The breakpoint condition (string).

cond_type
The condition type; either "CHANGED" or "TRUE" (string).

Result Value

Successful An unsigned integer uniquely identifying the breakpoint. The same
value must be used when you want to clear the breakpoint.

Unsuccessful 0

Table 28: __setLogBreak return values
All C-SPY drivers.

Sets a log breakpoint, that is, a breakpoint which is triggered when an instruction is
fetched from the specified location. If you have set the breakpoint on a specific machine
instruction, the breakpoint will be triggered and the execution will temporarily halt and
print the specified message in the C-SPY Debug Log window.

291

Reference information on C-SPY system macros

Example __var logBpl;
__var logBp2;
logOn ()
{
logBpl = __setLogBreak ("{C:\\temp\\Utilities.c}.23.1",
"\"Entering trace zone at :\", #PC:%X", "ARGS", "1", "TRUE");
logBp2 = __setLogBreak ("{C:\\temp\\Utilities.c}.30.1",
"Leaving trace zone...", "TEXT", "1", "TRUE");
}
logOff ()
{

__clearBreak(logBpl) ;
__clearBreak (logBp2) ;

See also Formatted output, page 261 and Breakpoints, page 105.
__setSimBreak

Syntax __setSimBreak(location, access, action)

Parameters location

A string that defines the data location of the breakpoint, either a valid C-SPY
expression whose value evaluates to a valid address or an absolute location. For
more information about the location types, see Enter Location dialog box, page
130.

access

The memory access type: "R" for read or "w" for write.

action

An expression, typically a call to a macro, which is evaluated when the
breakpoint is detected.

Return value
Result Value

Successful An unsigned integer uniquely identifying the breakpoint. This value
must be used to clear the breakpoint.

Unsuccessful 0

Table 29: __setSimBreak return values

For use with The C-SPY Simulator.

C-SPY® Debugging Guide
292 for AVR

C-SPY macros __4

Description Use this system macro to set immediate breakpoints, which will halt instruction
execution only temporarily. This allows a C-SPY macro function to be called when the
processor is about to read data from a location or immediately after it has written data.
Instruction execution will resume after the action.

This type of breakpoint is useful for simulating memory-mapped devices of various
kinds (for instance serial ports and timers). When the processor reads at a
memory-mapped location, a C-SPY macro function can intervene and supply the
appropriate data. Conversely, when the processor writes to a memory-mapped location,
a C-SPY macro function can act on the value that was written.

__setTraceStartBreak
Syntax __setTraceStartBreak (location)
Parameters location

A string that defines the code location of the breakpoint, either a valid C-SPY
expression whose value evaluates to a valid address, an absolute location, or a
source location. For more information about the location types, see Enter
Location dialog box, page 130.

Return value
Result Value

Successful An unsigned integer uniquely identifying the breakpoint. The same
value must be used when you want to clear the breakpoint.

Unsuccessful 0

Table 30: __setTraceStartBreak return values
For use with The C-SPY Simulator.

Description Sets a breakpoint at the specified location. When that breakpoint is triggered, the trace
system is started.

293

Reference information on C-SPY system macros

Example

See also

__setTraceStopBreak

Syntax

Parameters

Return value

For use with

Description

Example

C-SPY® Debugging Guide
294 for AVR

__var startTraceBp;

__var stopTraceBp;

traceOn ()
{
startTraceBp = __setTraceStartBreak
("{C:\\TEMP\\Utilities.c}.23.1");
stopTraceBp = __setTraceStopBreak

("{C:\\temp\\Utilities.c}.30.1");

traceOff ()
{

__clearBreak(startTraceBp) ;
__clearBreak (stopTraceBp) ;

Breakpoints, page 105.

__setTraceStopBreak (location)

location
A string that defines the code location of the breakpoint, either a valid C-SPY
expression whose value evaluates to a valid address, an absolute location, or a
source location. For more information about the location types, see Enter
Location dialog box, page 130.

Result Value

Successful An unsigned integer uniquely identifying the breakpoint. The same
value must be used when you want to clear the breakpoint.

Unsuccessful int 0

Table 31: __setTraceStopBreak return values
The C-SPY Simulator.

Sets a breakpoint at the specified location. When that breakpoint is triggered, the trace
system is stopped.

See setTraceStartBreak, page 293.

C-SPY macros __4

See also Breakpoints, page 105.
__sourcePosition

Syntax __sourcePosition(linePtr, colPtr)

Parameters linePtr

Pointer to the variable storing the line number

colPtr
Pointer to the variable storing the column number

Return value

Result Value
Successful Filename string
Unsuccessful Empty (" ") string

Table 32: __sourcePosition return values
For use with All C-SPY drivers.

Description If the current execution location corresponds to a source location, this macro returns the
filename as a string. It also sets the value of the variables, pointed to by the parameters,
to the line and column numbers of the source location.

__strFind
Syntax __strFind(macroString, pattern, position)
Parameters macroString
A macro string.
pattern
The string pattern to search for
position
The position where to start the search. The first position is 0
Return value The position where the pattern was found or -1 if the string is not found.
For use with All C-SPY drivers.

295

Reference information on C-SPY system macros

Description

Example

See also

__subString

Syntax

Parameters

Return value
For use with
Description

Example

See also

This macro searches a given string (macroString) for the occurrence of another string
(pattern).

__strFind("Compiler", "pile", 0) =3
__strFind("Compiler", "foo", 0) = -1

Macro strings, page 259.

__subString(macroString, position, length)

macroString

A macro string.

position

The start position of the substring. The first position is 0.

length
The length of the substring

A substring extracted from the given macro string.
All C-SPY drivers.
This macro extracts a substring from another string (macroString).

__subString("Compiler", 0, 2)
The resulting macro string contains Co.
__subString("Compiler", 3, 4)

The resulting macro string contains pile.

Macro strings, page 259.

__targetDebuggerVersion

Syntax
Return value

For use with

C-SPY® Debugging Guide
296 for AVR

__targetDebuggerVersion ()
A string that represents the version number of the C-SPY debugger processor module.

All C-SPY drivers.

C-SPY macros __4

Description This macro returns the version number of the C-SPY debugger processor module.
Example __var toolVer;
toolVer = __targetDebuggerVersion() ;
__message "The target debugger version is, ", toolVer;
__toLower
Syntax __toLower (macroString)
Parameters macroString

A macro string.

Return value The converted macro string.
For use with All C-SPY drivers.
Description This macro returns a copy of the parameter macroString where all the characters have

been converted to lower case.

Example __toLower ("IAR")
The resulting macro string contains iar.
__toLower ("Mix42")

The resulting macro string contains mix42.

See also Macro strings, page 259.
__toString

Syntax __toString(C_string, maxlength)

Parameters C_string

Any null-terminated C string.

maxlength

The maximum length of the returned macro string.
Return value Macro string.

For use with All C-SPY drivers.

297

Reference information on C-SPY system macros

298

Description

Example

See also

__toUpper

Syntax

Parameters

Return value
For use with

Description

Example

See also

__unloadimage

Syntax

Parameters

C-SPY® Debugging Guide
for AVR

This macro is used for converting C strings (char* or char []) into macro strings.

Assuming your application contains this definition:
char const * hptr = "Hello World!";

this macro call:

__toString (hptr, 5)

would return the macro string containing Hello.

Macro strings, page 259.

__toUpper (macroString)

macroString

A macro string.
The converted string.
All C-SPY drivers.

This macro returns a copy of the parameter macroString where all the characters have
been converted to upper case.

_toUpper ("string")

The resulting macro string contains STRING.

Macro strings, page 259.

__unloadImage (module_id)

module_id

An integer which represents a unique module identification, which is retrieved
as a return value from the corresponding __loadImage C-SPY macro.

Return value

For use with
Description

See also

__writeFile

Syntax

Parameters

Return value
For use with

Description

__writeFileByte

Syntax

Parameters

C-SPY macros __4

Value Result

module_id A unique module identification (the same as the input
parameter).

int 0 The unloading failed.

Table 33: __unloadlmage return values

All C-SPY drivers.

Unloads debug information from an already downloaded image.

Loading multiple images, page 53 and Images, page 340.

__writeFile(fileHandle, value)

fileHandle

A macro variable used as filehandle by the __openFile macro.

value

An integer.
int 0

All C-SPY drivers.

Prints the integer value in hexadecimal format (with a trailing space) to the file file.

Note: The __fmessage statement can do the same thing. The __writeFile macro is

provided for symmetry with __readFile.

__writeFileByte(fileHandle, value)

fileHandle

A macro variable used as filehandle by the __openFile macro.

value

An integer.

299

Reference information on C-SPY system macros

Return value int 0
For use with All C-SPY drivers.
Description Writes one byte to the file fileHandle.

__writeMemory8, __writeMemoryByte

Syntax __writeMemory8 (value, address, zone)
__writeMemoryByte(value, address, zone)

Parameters value
An integer.

address

The memory address (integer).

zone
A string that specifies the memory zone, see C-SPY memory zones, page 134.
Return value int 0
For use with All C-SPY drivers.
Description Writes one byte to a given memory location.
Example __writeMemory8 (0x2F, 0x8020, "DATA");
__writeMemoryl 6
Syntax __writeMemoryl6 (value, address, zone)
Parameters value
An integer.
address
The memory address (integer).
zone
A string that specifies the memory zone, see C-SPY memory zones, page 134.
Return value int 0

C-SPY® Debugging Guide
300 for AVR

C-SPY macros __4

For use with All C-SPY drivers.
Description Writes two bytes to a given memory location.
Example __writeMemoryl6 (0x2FFF, 0x8020, "DATA");
__writeMemory32

Syntax __writeMemory32 (value, address, zone)
Parameters value

An integer.

address

The memory address (integer).

zone

A string that specifies the memory zone, see C-SPY memory zones, page 134.

Return value int 0

For use with All C-SPY drivers.

Description Writes four bytes to a given memory location.

Example __writeMemory32 (0x5555FFFF, 0x8020, "DATA");

Graphical environment for macros
Reference information about:

® Macro Registration window, page 302
® Debugger Macros window, page 304
® Macro Quicklaunch window, page 306

301

Graphical environment for macros

302

Macro Registration window

The Macro Registration window is available from the View>Macros submenu during

Requirements

Display area

C-SPY® Debugging Guide
for AVR

a debug session.

V| SetupSimple.mac
SetupAdvanced.mac

Macro Registration =]
Add Remove Remove Al Reload
File Full Path

ChtutonSetupSimple.mac
ChtutonSetupAdvanced.mac

Use this window to list, register, and edit your debugger macro files.

Double-click a macro file to open it in the editor window and edit it.

See also Registering C-SPY macros—an overview, page 254.

None; this window is always available.

This area contains these columns:

File

The name of an available macro file. To register the macro file, select the check
box to the left of the filename. The name of a registered macro file appears in

bold style.
Full path

The path to the location of the added macro file.

C-SPY macros __4

Context menu

This context menu is available:
Add...

Remove
Rermove All

Reload
Open File

Open Debugger Macros Window

These commands are available:

Add
Opens a file browser where you can locate the macro file that you want to add
to the list. This menu command is also available as a function button at the top
of the window.

Remove

Removes the selected debugger macro file from the list. This menu command is
also available as a function button at the top of the window.

Remove All

Removes all macro files from the list. This menu command is also available as
a function button at the top of the window.

Reload

Registers the selected macro file. Typically, this is useful when you have edited
a macro file. This menu command is also available as a function button at the
top of the window.

Open File

Opens the selected macro file in the editor window.

Open Debugger Macros Window
Opens the Debugger Macros window.

303

Graphical environment for macros

Debugger Macros window
The Debugger Macros window is available from the View>Macros submenu during a

debug session.
Click the Name header or the File

header to sort alphabetically on
either function name or filename.

[=]]

Debugger Macros
MName Parameters File i
Access i} SetupSimple.mac 3
__cancelAllinterrupts i}
__cancellnterrupt {inf)
__clearBreak {id)
__closeFile (file)
~delay fwalug) Sglect amacroand
—disablelnterrupts 0 ick Fl for reference
__driverType (string) information o

Use this window to list all registered debugger macro functions, either predefined
system macros or your own. This window is useful when you edit your own macro
functions and want an overview of all available macros that you can use.
o Click the column headers Name or File to sort alphabetically on either function
name or filename.
Double-clicking a macro defined in a file opens that file in the editor window.
To open a macro in the Macro Quicklaunch window, drag it from the Debugger
Macros window and drop it in the Macro Quicklaunch window.

e Select a macro and press F1 to get online help information for that macro.

Requirements
None; this window is always available.

Display area
This area contains these columns:

Name
The name of the debugger macro.

Parameters
The parameters of the debugger macro.

File
For macros defined in a file, the name of the file is displayed. For predefined
system macros, -System Macro- is displayed.

C-SPY® Debugging Guide
304 for AVR

C-SPY macros __4

Context menu

This context menu is available:

Open File

Add to Quicklaunch Window

User Macros
System Macros

v All Macros

Open Macro Registration Window

These commands are available:
Open File
Opens the selected debugger macro file in the editor window.

Add to Quicklaunch Window
Adds the selected macro to the Macro Quicklaunch window.

User Macros

Lists only the debugger macros that you have defined yourself.

System Macros
Lists only the predefined system macros.

All Macros

Lists all debugger macros, both predefined system macros and your own.

Open Macro Registration Window
Opens the Macro Registration window.

305

Graphical environment for macros

306

Macro Quicklaunch window

al

Requirements

C-SPY® Debugging Guide
for AVR

The Macro Quicklaunch window is available from the View menu.

= Expression Result
G testEval()
G nval Error (col 1): Unknown or ambiguous symbol. nval
G testEval2() 0
Q s2-37
G incval() 3
=
2
B
=
5
&
2
= Macro Quicklaunch B

Use this window to evaluate expressions, typically C-SPY macros.

For some devices, there are predefined C-SPY macros available with device support,
typically provided by the chip manufacturer. These macros are useful for performing
certain device-specific tasks. The macros are available in the Macro Quicklaunch
window and are easily identified by their green icon,

The Macro Quicklaunch window is similar to the Quick Watch window, but is
primarily designed for evaluating C-SPY macros. The window gives you precise control
over when to evaluate an expression.

See also Executing C-SPY macros—an overview, page 254.
To add an expression:
Choose one of these alternatives:

o Drag the expression to the window

e In the Expression column, type the expression you want to examine.

If the expression you add and want to evaluate is a C-SPY macro, the macro must first
be registered, see Registering C-SPY macros—an overview, page 254.

To evaluate an expression:

Double-click the Recalculate icon to calculate the value of that expression.

None; this window is always available.

C-SPY macros __4

Display area
This area contains these columns:

g Recalculate icon

To evaluate the expression, double-click the icon. The latest evaluated
expression appears in bold style.

Expression

One or several expressions that you want to evaluate. Click <click to add>
to add an expression. If the return value has changed since last time, the value
will be displayed in red.

Result
Shows the return value from the expression evaluation.

Context menu

This context menu is available:

Evaluate Now
Rermove
Rermove All

These commands are available:

Evaluate Now

Evaluates the selected expression.

Remove
Removes the selected expression.

Remove All
Removes all selected expressions.

307

Graphical environment for macros

C-SPY® Debugging Guide
308 for AVR

The C-SPY command line
utility—cspybat

e Summary of C-SPY command line options

e Reference information on C-SPY command line options.

Using C-SPY in batch mode

You can execute C-SPY in batch mode if you use the command line utility cspybat,
installed in the directory common\bin.

These topics are covered:

e Starting cspybat
e Output

e Invocation syntax

STARTING CSPYBAT

I To start cspybat you must first create a batch file. An easy way to do that is to use one
of the batch files that C-SPY automatically generates when you start C-SPY in the
IDE.

C-SPY generates a batch file projectname. buildconfiguration.cspy.bat every
time C-SPY is initialized. In addition, two more files are generated:

® project.buildconfiguration.general.xcl, which contains options specific
to cspybat.

® project.buildconfiguration.driver.xcl, which contains options specific to
the C-SPY driver you are using.

You can find the files in the directory $PROJ_DIR$\settings. The files contain the
same settings as the IDE, and provide hints about additional options that you can use.

2 To start cspybat, you can use this command line:

project.cspybat.bat [debugfile]

309

Using C-SPY in batch mode

310

C-SPY® Debugging Guide
for AVR

Note that debug£ileis optional. You can specify it if you want to use a different debug
file than the one that is used in the project.buildconfiguration.general .xcl
file.

OUTPUT

When you run cspybat, these types of output can be produced:

Terminal output from cspybat itself

All such terminal output is directed to stderr. Note that if you run cspybat from
the command line without any arguments, the cspybat version number and all
available options including brief descriptions are directed to stdout and displayed
on your screen.

Terminal output from the application you are debugging

All such terminal output is directed to stdout, provided that you have used the
--plugin option. See --plugin, page 331.

Error return codes

cspybat returns status information to the host operating system that can be tested in

abatch file. For successful, the value int 0 is returned, and for unsuccessful the value
int 1 is returned.

INVOCATION SYNTAX

The invocation syntax for cspybat is:

cspybat processor DLL driver DLL debug_file

[cspybat_options] --backend driver_ options

Note: In those cases where a filename is required—including the DLL files—you are
recommended to give a full path to the filename.

Parameters

The parameters are:

Parameter Description

processor_DLL The processor-specific DLL file; available in avr\bin.

driver DLL The C-SPY driver DLL file; available in avr\bin.

debug_file The object file that you want to debug (filename extension d90). See

also —debugfile, page 318.

cspybat_options The command line options that you want to pass to cspybat. Note

that these options are optional. For information about each option,
see Reference information on C-SPY command line options, page 315.

Table 34: cspybat parameters

The C-SPY command line utility—cspybat ___¢

Parameter Description

--backend Marks the beginning of the parameters to the C-SPY driver; all
options that follow will be sent to the driver. Note that this option is
mandatory.

driver_options The command line options that you want to pass to the C-SPY driver.
Note that some of these options are mandatory and some are
optional. For information about each option, see Reference information
on C-SPY command line options, page 315.

Table 34: cspybat parameters (Continued)

Summary of C-SPY command line options

Reference information about:

General cspybat options

Options available for all C-SPY drivers

Options available for the simulator driver

Options available for all C-SPY hardware debugger drivers
Options available for the C-SPY Power Debugger driver

Options available for the C-SPY JTAGICE mklII driver, the C-SPY Dragon driver,
the C-SPY JTAGICE3 driver, and the C-SPY AVR ONE! driver

o Options available for the C-SPY JTAGICE mKII driver, the C-SPY Dragon driver,
the C-SPY Atmel-ICE driver, the C-SPY Power Debugger driver, the C-SPY
JTAGICES3 driver, and the C-SPY AVR ONE! driver

o Options available for the C-SPY JTAGICE mKII driver and the C-SPY Dragon
driver

o Options available for the C-SPY Atmel-ICE driver, The C-SPY Power Debugger
driver, the C-SPY JTAGICE3 driver, and the C-SPY AVR ONE! driver

o Options available for the C-SPY JTAGICE mKII driver and the C-SPY Dragon
driver

e Options available for the C-SPY Dragon driver

GENERAL CSPYBAT OPTIONS

--attach_to_running ta Makes the debugger attach to a running application at
rget its current location, without resetting the target system.

--backend Marks the beginning of the parameters to be sent to the
C-SPY driver (mandatory).

Summary of C-SPY command line options

312

C-SPY® Debugging Guide
for AVR

--code_coverage_file

--cycles
--debugfile

--download_only

-f

--leave_target_running

--macro
--macro_param
--plugin
--silent

--timeout

Enables the generation of code coverage information
and places it in a specified file.

Specifies the maximum number of cycles to run.
Specifies an alternative debug file.

Downloads a code image without starting a debug
session afterwards.

Extends the command line.

Makes the debugger leave the application running on
the target hardware after the debug session is closed.

Specifies a macro file to be used.

Assigns a value to a C-SPY macro parameter.
Specifies a plugin file to be used.

Onmits the sign-on message.

Limits the maximum allowed execution time.

OPTIONS AVAILABLE FOR ALL C-SPY DRIVERS

--64bit_doubles

--64k_flash

--cpu

Specifies that 64-bit doubles are used instead of
32-bit doubles.

Enables 64-Kbytes flash mode for the processor
configurations -v2 and -v3.

Specifies the CPU model your application was
compiled for.

--disable_internal_eeprom Disables the internal EEPROM.

--eeprom_size
--enhanced_core
-b

-V

Specifies the size of the built-in EEPROM area.
Enables the enhanced instruction set.
Specifies the device description file to be used.

Specifies the processor configuration your
application was compiled for.

The C-SPY command line utility—cspybat ___¢

OPTIONS AVAILABLE FOR THE SIMULATOR DRIVER

--disable_interrupts Disables the interrupt simulation.

--function_profiling Analyzes your source code to find where the most time is
spent during execution.

OPTIONS AVAILABLE FOR ALL C-SPY HARDWARE
DEBUGGER DRIVERS

--drv_communication Specifies the communication channel to be used
between C-SPY and the target system.

--drv_communication_log Logs the communication between C-SPY and the
target system.

--drv_download_data Enables downloading of constant data into RAM.
--drv_suppress_download Suppresses download of the executable image.
--drv_verify download Verifies the executable image.

OPTIONS AVAILABLE FOR THE C-SPY POWER DEBUGGER
DRIVER

--drv_power debugger Specifies the C-SPY Power Debugger driver to be
used.

OPTIONS AVAILABLE FOR THE C-SPY JTAGICE MKII DRIVER,
THE C-SPY DRAGON DRIVER, THE C-SPY JTAGICE3 DRIVER,
AND THE C-SPY AVR ONE! DRIVER

--drv_set_exit_breakpoint Sets a system breakpoint on the exit label.

--drv_set_getchar_breakpoint Sets a system breakpoint on the getchar
label.

--drv_set_putchar_breakpoint Sets a system breakpoint on the putchar
label.

--jtagice_do_hardware_reset Makes the hardware reset every time the

debugger is reset.

313

Summary of C-SPY command line options

--jtagice_leave_timers_running Ensures that the timers always run, even if
the application is stopped.

--jtagice_preserve_eeprom Preserves the EEPROM contents even if the
device is reprogrammed.

--jtagice_restore_fuse Allows the debugger to modify the OCD
enable fuse and preserve the EEPROM fuse
at startup.

OPTIONS AVAILABLE FOR THE C-SPY JTAGICE MKII DRIVER,
THE C-SPY DRAGON DRIVER, THE C-SPY ATMEL-ICE DRIVER,
THE C-SPY POWER DEBUGGER DRIVER, THE C-SPY JTAGICE3
DRIVER, AND THE C-SPY AVR ONE! DRIVER

--drv_preserve_app_section Preserves the application area of the flash
memory during download.

--drv_preserve_boot_section Preserves the boot area of the flash
memory during download.

OPTIONS AVAILABLE FOR THE C-SPY JTAGICE MKII DRIVER
AND THE C-SPY DRAGON DRIVER

--jtagice_clock Specifies the speed of the JTAG clock.

OPTIONS AVAILABLE FOR THE C-SPY ATMEL-ICE DRIVER,
THE C-SPY POWER DEBUGGER DRIVER, THE C-SPY JTAGICE3
DRIVER, AND THE C-SPY AVR ONE! DRIVER

--avrone_jtag_clock Specifies the speed of the debugging
interface.
--drv_debug_port Specifies the debug interface.

OPTIONS AVAILABLE FOR THE C-SPY JTAGICE MKII DRIVER
AND THE C-SPY DRAGON DRIVER

--drv_use_PDI Makes the C-SPY driver communicate
with the device using the PDI interface.

C-SPY® Debugging Guide
314 for AVR

The C-SPY command line utility—cspybat ___¢

--jtagicemkII_use_software_brea Makes software breakpoints available.
kpoints

OPTIONS AVAILABLE FOR THE C-SPY DRAGON DRIVER

--drv_dragon Specifies the AVR Dragon driver to be
used.

Reference information on C-SPY command line options

--64bit_doubles

Syntax
For use with

Description

--64k_flash

Syntax
For use with

Description

This section gives detailed reference information about each cspybat option and each
option available to the C-SPY drivers.

--64bit_doubles

All C-SPY drivers.

Use this option to specify that 64-bit doubles are used instead of 32-bit doubles.

Project>Options>General Options>Target>Use 64-bit doubles

--64k_flash
All C-SPY drivers.

Use this option to enable 64-Kbytes flash mode for the processor configurations -v2 and

-v3.

Project>Options>General Options>Target>No RAMPZ register

--attach_to_running_target

Syntax

--attach_to_running_ target

315

Reference information on C-SPY command line options

For use with

Description

--avrone_jtag clock

Syntax

Parameters

For use with

Description

--backend

Syntax

Parameters

C-SPY® Debugging Guide
316 for AVR

cspybat.

Note: This option might not be supported by the combination of C-SPY driver and
device that you are using. If you are using this option with an unsupported combination,
C-SPY produces a message.

Use this option to make the debugger attach to a running application at its current
location, without resetting the target system.

If you have defined any breakpoints in your project, the C-SPY driver will set them
during attachment. If the C-SPY driver cannot set them without stopping the target
system, the breakpoints will be disabled. The option also suppresses download and the
Run to option.

Project>Attach to Running Target

--avrone_jtag_clock=speed

speed The JTAG or PDI clock frequency in Hz. Possible values are 0-65535000
Hz in steps of 1000 Hz.

The C-SPY Atmel-ICE driver
The C-SPY Power Debugger driver
The C-SPY AVR ONE! driver
The C-SPY JTAGICE3 driver

Use this option to specify the speed of the debugging interface.

Project>Options>Debugger>Driver>Driver 1>Debug Port>Frequency in kHz

--backend {driver options}

driver options

Any option available to the C-SPY driver you are using.

For use with

Description

--code_coverage _file

Syntax

Parameters

For use with

Description

See also

--cpu
Syntax

Parameters

For use with

The C-SPY command line utility—cspybat ___¢

cspybat (mandatory).
Use this option to send options to the C-SPY driver. All options that follow --backend
will be passed to the C-SPY driver, and will not be processed by cspybat itself.

This option is not available in the IDE.

--code_coverage_file file
Note that this option must be placed before the - -backend option on the command line.

file
The name of the destination file for the code coverage information.

cspybat

Use this option to enable the generation of a text-based report file for code coverage
information. The code coverage information will be generated after the execution has
completed and you can find it in the specified file. Because most embedded applications
do not terminate, you might have to use this option in combination with --timeout or
--cycles.

Note that this option requires that the C-SPY driver you are using supports code
coverage. If you try to use this option with a C-SPY driver that does not support code
coverage, an error message will be directed to stderr.

Code coverage, page 207, --cycles, page 318, --timeout, page 333.

To set this option, choose View>Code Coverage, right-click and choose Save As when

the C-SPY debugger is running.

--cpu=cpu_name

The CPU model, xm128al, m2560, tiny441, etc.

cpu_name

All C-SPY drivers.

317

Reference information on C-SPY command line options

Description

--cycles

Syntax

Parameters

For use with

Description

--debugfile

Syntax

Parameters

For use with

Description

C-SPY® Debugging Guide
318 for AVR

Use this option to specify the CPU model your application was compiled for. This
option cannot be used together with -v.

Project>Options>General Options>Target>Processor configuration

--cycles cycles

Note that this option must be placed before the - -backend option on the command line.

cycles

The number of cycles to run.
cspybat

Use this option to specify the maximum number of cycles to run. If the target program
executes longer than the number of cycles specified, the target program will be aborted.
Using this option requires that the C-SPY driver you are using supports a cycle counter,
and that it can be sampled while executing.

This option is not available in the IDE.

--debugfile filename

filename

The name of the debug file to use.
cspybat
This option can be placed both before and after the --backend option on the command
line.
Use this option to make cspybat use the specified debug file instead of the one used in
the generated cpsybat .bat file.

This option is not available in the IDE.

The C-SPY command line utility—cspybat ___¢

--disable_internal_eeprom

Syntax --disable_internal_eeprom
For use with All C-SPY drivers.
Description Use this option to disable the internal EEPROM.

To set related options, choose:

Project>Options>General Options>Target>Utilize inbuilt EEPROM

--disable_interrupts

Syntax --disable_interrupts
For use with The C-SPY Simulator driver.
Description Use this option to disable the interrupt simulation.

To set this option, choose Simulator>Interrupts and deselect the Enable simulation
option.

--download_only

Syntax --download_only

Note that this option must be placed before the - -backend option on the command line.
For use with cspybat

Description Use this option to download the code image without starting a debug session afterwards.

To set a related option, choose:

Project>Options>Debugger>Setup and deselect Run to.

--drv_communication

Syntax --drv_communication=[COMn|USB]

Parameters
COMn A serial communication port. n can be between 1 and 32. Note that coMn
is not used in AVR ONE! and JTAGICE3.

319

Reference information on C-SPY command line options

For use with

Description

USB The USB port. Can only be used by the AVR ONE!, JTAGICE mKII,
JTAGICE3, and AVR Dragon drivers.

All C-SPY hardware drivers.

Use this option to specify the communication channel to be used between C-SPY and
the target system.

Project>Options>Debugger>Driver

--drv_communication_log

Syntax

Parameters

For use with

Description

--drv_debug port

Syntax

Parameters

C-SPY® Debugging Guide
320 for AVR

--drv_communication_log=filename

filename The name of the log file.

All C-SPY hardware drivers.

Use this option to log the communication between C-SPY and the target system to a file.
To interpret the result, detailed knowledge of the communication protocol is required.
Project>Options>Debugger>Atmel-ICE>Communication>Log communication

Project>Options>Debugger>Power Debugger>Communication>Log
communication

Project>Options>Debugger>AVR ONE!>Communication>Log communication
Project>Options>Debugger>JTAGICE3>Communication>Log communication
Project>Options>Debugger>JTAGICE mKkII>Serial Port>Log communication

Project>Options>Debugger>Dragon>Communication>Log communication

--drv_debug_port={autodetect|debugwire|pdi|jtag|tpi|updi}

autodetect Specifies auto-detection of the debug interface.

debugwire Specifies the debugWIRE debug interface.

The C-SPY command line utility—cspybat ___¢

pdi Specifies the PDI debug interface.
jtag Specifies the JTAG debug interface.
tpi Specifies the TPI programming interface.
updi Specifies the UPDI debug interface.
For use with The C-SPY Atmel-ICE driver

The C-SPY Power Debugger driver
The C-SPY AVR ONE! driver
The C-SPY JTAGICES3 driver

Description Use this option to specify the debug interface.
Project>Options>Debugger>Atmel-ICE>Atmel-ICE 1>Debug Port
[[E Project>Options>Debugger>Power Debugger>Power Debugger 1>Debug Port
Project>Options>Debugger>AVR ONE!>AVR ONE! 1>Debug Port
Project>Options>Debugger>JTAGICE3>JTAGICE3 1>Debug Port

--drv_download_data

Syntax --drv_download_data
For use with All C-SPY hardware drivers.
Description Use this option to enable downloading of constant data into RAM.

Project>Options>Debugger>Driver>Driver 1>Allow download to RAM

--drv_dragon

Syntax --drv_dragon
For use with The C-SPY AVR Dragon driver.
Description Use this option to specify the AVR Dragon driver to be used.

321

Reference information on C-SPY command line options

Project>Options>Debugger>Driver

--drv_power debugger

Syntax --drv_power_debugger
For use with The C-SPY Power Debugger driver.
Description Use this option to specify the C-SPY Power Debugger driver to be used.

Project>Options>Debugger>Driver

--drv_preserve_app_section

Syntax --drv_preserve_app_section

For use with The C-SPY Atmel-ICE driver
The C-SPY Power Debugger driver
The C-SPY AVR ONE! driver
The C-SPY AVR Dragon driver
The C-SPY JTAGICE mKII driver
The C-SPY JTAGICE3 driver

Description Use this option to preserve the application area of the flash memory during download.

Project>Options>Debugger>Driver>Driver 2>Preserve FLASH>Application Area

--drv_preserve_boot_section
Syntax --drv_preserve_boot_section
For use with The C-SPY Atmel-ICE driver

The C-SPY Power Debugger driver
The C-SPY AVR ONE! driver

C-SPY® Debugging Guide
322 for AVR

The C-SPY command line utility—cspybat ___¢

The C-SPY JTAGICE3 driver
The C-SPY AVR Dragon driver
The C-SPY JTAGICE mkII driver

Description Use this option to preserve the boot area of the flash memory during download.

Project>Options>Debugger>Driver>Driver 2>Preserve FLASH>Boot Area

--drv_set_exit_breakpoint

Syntax --drv_set_exit_breakpoint

For use with The C-SPY Atmel-ICE driver
The C-SPY Power Debugger driver
The C-SPY AVR ONE! driver
The C-SPY AVR Dragon driver
The C-SPY JTAGICE mKII driver
The C-SPY JTGICE3 driver
Description Use this option in the CLIB runtime environment to set a system breakpoint on the exit
label. This consumes a hardware breakpoint.
See also Breakpoint consumers, page 110

Project>Options>Debugger>Driver>Driver 2>System breakpoints on>exit

--drv_set_getchar_breakpoint

Syntax --drv_set_getchar_breakpoint

For use with The C-SPY Atmel-ICE driver
The C-SPY Power Debugger driver
The C-SPY AVR Dragon driver
The C-SPY AVR ONE! driver
The C-SPY JTAGICE mkKII driver

323

Reference information on C-SPY command line options

The C-SPY JTAGICE3 driver

Description Use this option in the CLIB runtime environment to set a system breakpoint on the
getchar label. This consumes a hardware breakpoint.
See also Breakpoint consumers, page 110

Project>Options>Debugger>Driver>Driver 2>System breakpoints on>getchar

--drv_set_putchar_breakpoint

Syntax --drv_set_putchar_breakpoint

For use with The C-SPY Atmel-ICE driver
The C-SPY Power Debugger driver
The C-SPY AVR Dragon driver
The C-SPY AVR ONE! driver
The C-SPY JTAGICE mKII driver
The C-SPY JTAGICES3 driver
Description Use this option in the CLIB runtime environment to set a system breakpoint on the
putchar label. This consumes a hardware breakpoint.
See also Breakpoint consumers, page 110

Project>Options>Debugger>Driver>Driver 2>System breakpoints on>putchar

--drv_suppress_download

Syntax --drv_suppress_download
For use with All C-SPY hardware drivers.
Description Use this option to disable the downloading of code, preserving the current contents of

the flash memory.

Project>Options>Debugger>Driver>Driver 1>Suppress download

C-SPY® Debugging Guide
324 for AVR

The C-SPY command line utility—cspybat ___¢

--drv_use_ PDI

Syntax --drv_use_PDI

For use with The C-SPY AVR Dragon driver
The C-SPY JTAGICE mKII driver

Description Use this option if you want the C-SPY driver to communicate with the device using the
PDI interface.

Project>Options>Debugger>Driver>Driver 1>Use PDI

--drv_verify_download

Syntax --drv_verify_download
For use with All C-SPY hardware drivers.
Description Use this option to verify that the downloaded code image can be read back from target

memory with the correct contents.

Project>Options>Debugger>Driver>Driver 1>Target Consistency Check>Verify
All

--eeprom_size

Syntax -—eeprom_size=size

Parameters
size The size of the built-in EEPROM area in bytes.

For use with All C-SPY drivers.
Description Use this option to specify the size of the built-in EEPROM area. Do not use together
with --cpu.

Project>Options>General Options>Target>Utilize inbuilt EEPROM

325

Reference information on C-SPY command line options

326

--enhanced_core

Syntax
For use with

Description

Syntax

Parameters

For use with

Description

--function_profiling

Syntax

Parameters

C-SPY® Debugging Guide
for AVR

--enhanced_core

All C-SPY drivers.

Use this option to enable the enhanced instruction set; the instructions MOvVW, MUL, MULS,
MULSU, FMUL, FMULS, FMULSU, LPM Rd, Z, LPM Rd, Z+, ELPM Rd, Z, ELPM Rd, Z+, and
SPM.

Project>Options>General Options>Target>Enhanced core

-f filename

filename

A text file that contains the command line options (default filename extension
xcl).
cspybat
This option can be placed either before or after the --backend option on the command
line.
Use this option to make cspybat read command line options from the specified file.

In the command file, you format the items exactly as if they were on the command line
itself, except that you may use multiple lines, because the newline character is treated
like a space or tab character.

Both C/C++ style comments are allowed in the file. Double quotes behave in the same
way as in the Microsoft Windows command line environment.

To set this option, use Project>Options>Debugger>Extra Options.

--function_profiling filename

filename

The name of the log file where the profiling data is saved.

The C-SPY command line utility—cspybat ___¢

For use with The C-SPY simulator driver.

Description Use this option to find the functions in your source code where the most time is spent
during execution. The profiling information is saved to the specified file. For more
information about function profiling, see Profiling, page 197.

C-SPY driver>Function Profiling

--jtagice_clock

Syntax --jtagice_clock=speed

Parameters
speed The JTAG clock frequency in Hz. Possible values are 0-3570000 Hz .

For use with The C-SPY AVR Dragon driver
The C-SPY JTAGICE mKII driver

Description Use this option to specify the speed of the JTAG clock.
Project>Options>Debugger>Driver>Driver 1>JTAG Port>Frequency in Hz

--jtagice_do_hardware_reset

Syntax --jtagice_do_hardware_reset

For use with The C-SPY Atmel-ICE driver
The C-SPY Power Debugger driver
The C-SPY AVR Dragon driver
The C-SPY AVR ONE! driver
The C-SPY JTAGICE mKII driver
The C-SPY JTAGICE3 driver

Description Use this option to make the hardware reset every time the debugger is reset.

Project>Options>Debugger>Driver>Driver 2>Hardware reset on C-SPY reset

327

Reference information on C-SPY command line options

--jtagice_leave_timers_running

Syntax --jtagice_leave_timers_running

For use with The C-SPY AVR Dragon driver
The C-SPY AVR ONE! driver
The C-SPY JTAGICE mKII driver

Description Use this option to ensure that the timers always run, even if the application is stopped.

Project>Options>Debugger>Driver>Driver 2>Run timers in stopped mode

--jtagice_preserve_eeprom

Syntax --jtagice_preserve_eeprom

For use with The C-SPY Atmel-ICE driver
The C-SPY Power Debugger driver
The C-SPY AVR Dragon driver
The C-SPY AVR ONE! driver
The C-SPY JTAGICE mKII driver
The C-SPY JTAGICE3 driver

Description Use this option to preserve the EEPROM contents even if device is reprogrammed.

m Project>Options>Debugger>Driver>Driver 2>Preserve EEPROM contents even if
device is reprogrammed

--jtagice_restore_fuse

Syntax --jtagice_restore_fuse

For use with The C-SPY Atmel-ICE driver
The C-SPY Power Debugger driver
The C-SPY AVR Dragon driver
The C-SPY AVR ONE! driver

C-SPY® Debugging Guide
328 for AVR

Description

The C-SPY command line utility—cspybat ___¢

The C-SPY JTAGICE mkKII driver
The C-SPY JTAGICE3 driver
Use this option to allow the debugger to modify the OCD enable fuse and preserve the

EEPROM fuse at startup. Note that each change of fuse switch decreases the life span
of the chip.

Project>Options>Debugger>Driver>Driver 2>Restore fuses when ending debug
session

--jtagicemkll_use_software_breakpoints

Syntax

For use with

Description

--leave_target_running

Syntax

For use with

Description

--jtagicemkII_use_software_breakpoints

The C-SPY Atmel-ICE driver

The C-SPY Power Debugger driver
The C-SPY AVR Dragon driver
The C-SPY AVR ONE! driver

The C-SPY JTAGICE mkKII driver
The C-SPY JTAGICE3 driver

Use this option to make software breakpoints available.

Project>Options>Debugger>Driver>Driver 2>Enable software breakpoints

--leave_target_running

cspybat.
Any C-SPY hardware debugger driver.
Note: Even if this option is supported by the C-SPY driver you are using, there might

be device-specific limitations.

Use this option to make the debugger leave the application running on the target
hardware after the debug session is closed.

329

Reference information on C-SPY command line options

=-=-macro

Syntax

Parameters

For use with

Description

See also

--mMacro_param

Syntax

Parameters

For use with

Description

See also

C-SPY® Debugging Guide
330 for AVR

Any existing breakpoints will not be automatically removed. You might want to
consider disabling all breakpoints before using this option.

C-SPY driver>Leave Target Running

--macro filename

Note that this option must be placed before the --backend option on the command line.

filename

The C-SPY macro file to be used (filename extension mac).
cspybat

Use this option to specify a C-SPY macro file to be loaded before executing the target
application. This option can be used more than once on the command line.

Briefly about using C-SPY macros, page 252.

Project>Options>Debugger>Setup>Setup macros>Use macro file

--macro_param [param=value]

Note that this option must be placed before the --backend option on the command line.

param = value

paramis a parameter defined using the __param C-SPY macro construction.
value is a value.

cspybat

Use this option to assign av value to a C-SPY macro parameter.This option can be used
more than once on the command line.

Macro parameters, page 259.

Syntax

Parameters

For use with
Description

See also

--plugin

Syntax

Parameters

For use with

Description

The C-SPY command line utility—cspybat ___¢

Project>Options>Debugger>Extra Options

-p filename

filename

The device description file to be used.
All C-SPY drivers.
Use this option to specify the device description file to be used.

Selecting a device description file, page 51.

Project>Options>Debugger>Setup>Device description file

--plugin filename

Note that this option must be placed before the - -backend option on the command line.

filename

The plugin file to be used (filename extension d11).
cspybat

Certain C/C++ standard library functions, for example print £, can be supported by
C-SPY—for example, the C-SPY Terminal I/0 window—instead of by real hardware
devices. To enable such support in cspybat, a dedicated plugin module called
avrlibsupportbat.dll located in the avr\bin directory must be used.

Use this option to include this plugin during the debug session. This option can be used
more than once on the command line.

Note: You can use this option to include also other plugin modules, but in that case the
module must be able to work with cspybat specifically. This means that the C-SPY
plugin modules located in the common\plugin directory cannot normally be used with
cspybat.

331

Reference information on C-SPY command line options

Project>Options>Debugger>Plugins

--program_fuses_after_download

Swwax --program_fuses_after_download fuse=valuel, fuse=value, ...]
Parameters
fuse The fuse or lock bit to set a value for. Choose between:

--lock_bits_value
--low_fuse_value
--high_fuse_value
--extended_fuse_value
--fuse_bytel_value
--fuse_bytel_value
--fuse_byte2_value
--fuse_byted_value
--fuse_byte5_value

value 0x00-0xFF

For use with The C-SPY Atmel-ICE driver
The C-SPY Power Debugger driver
The C-SPY AVR ONE! driver
The C-SPY Dragon driver
The C-SPY JTAGICE mKII driver
The C-SPY JTAGICES3 driver.

Description Use this option to write values to device-specific on-chip fuses and lock bits after
downloading your application to the device.

Example --program_fuses_after_download --fuse_byte3_value=0x20

See also For more information about fuse settings, see the device-specific documentation
provided by Microchip Technology.

To set related options, choose C-SPY driver>Fuse Handler.

C-SPY® Debugging Guide
332 for AVR

--silent

Syntax

For use with

Description

--timeout

'

Syntax

Parameters

For use with

Description

Syntax

Parameters

The C-SPY command line utility—cspybat ___¢

--silent

Note that this option must be placed before the - -backend option on the command line.
cspybat

Use this option to omit the sign-on message.

This option is not available in the IDE.

--timeout milliseconds
Note that this option must be placed before the --backend option on the command line.

milliseconds

The number of milliseconds before the execution stops.
cspybat

Use this option to limit the maximum allowed execution time.

This option is not available in the IDE.

~v {0]|1]2]3|4]5]6)

0 A maximum of 256 bytes data and 8 Kbytes code. Default memory model: Tiny.

1 A maximum of 64 Kbytes data and 8 Kbytes code. Default memory model: Tiny.
2 A maximum of 256 bytes data and 128 Kbytes code. Default memory model: Tiny.
3 A maximum of 64 Kbytes data and 128 Kbytes code. Default memory model: Tiny.

4 A maximum of 16 Mbytes data and 128 Kbytes code. Default memory model:
Small.

333

Reference information on C-SPY command line options

5 A maximum of 64 Kbytes data and 8 Mbytes code. Default memory model: Small.

6 A maximum of 16 Mbytes data and 8 Mbytes code. Default memory model: Small.

For use with All C-SPY drivers.

Description Use this option to specify the processor configuration your application was compiled
for. This option cannot be used together with --cpu.

Project>Options>General Options>Target>Processor configuration

C-SPY® Debugging Guide
334 for AVR

Part 4. Additional
reference information

This part of the C-SPY® Debugging Guide for AVR includes these chapters:
e Debugger options

o Additional information on C-SPY drivers

.hmuhhhm

335

RARRI

336

Debugger options

e Setting debugger options
e Reference information on general debugger options

e Reference information on C-SPY hardware debugger driver options

Setting debugger options

Before you start the C-SPY debugger you might need to set some options—both C-SPY
generic options and options required for the target system (C-SPY driver-specific
options).

To set debugger options in the IDE:
I Choose Project>Options to display the Options dialog box.

2 Select Debugger in the Category list.

For more information about the generic options, see Reference information on general
debugger options, page 338.

3 On the Setup page, make sure to select the appropriate C-SPY driver from the Driver
drop-down list.

4 To set the driver-specific options, select the appropriate driver from the Category list.
Depending on which C-SPY driver you are using, different options are available.

C-SPY driver Available options pages

C-SPY AVR ONE! driver AVR ONE! |, page 348
AVR ONE! 2, page 350
Communication, page 346
Extra Options, page 347

C-SPY Atmel-ICE driver Atmel-ICE |, page 342
Atmel-ICE 2, page 345
Communication, page 346
Extra Options, page 347

Table 35: Options specific to the C-SPY drivers you are using

337

Reference information on general debugger options

C-SPY driver Available options pages

C-SPY JTAGICES3 driver JTAGICE3 |, page 351
JTAGICE3 2, page 353
Communication, page 346
Extra Options, page 347

C-SPY JTAGICE mk Il driver JTAGICE mkll 1, page 354
JTAGICE mklil 2, page 357
Serial Port, page 358
Extra Options, page 347

C-SPY Dragon driver Dragon |, page 359
Dragon 2, page 361
Communication, page 346
Extra Options, page 347

C-SPY Power Debugger driver Power Debugger |, page 362
Power Debugger 2, page 364
Communication, page 346
Extra Options, page 347

C-SPY Simulator Extra Options, page 347

Third-party driver Third-Party Driver options, page 365
Extra Options, page 347

Table 35: Options specific to the C-SPY drivers you are using (Continued)
5 To restore all settings to the default factory settings, click the Factory Settings button.

6 When you have set all the required options, click OK in the Options dialog box.

Reference information on general debugger options
Reference information about:
e Setup
o Images

e Plugins

C-SPY® Debugging Guide
338 for AVR

Debugger options °

Setup

The general Setup options select the C-SPY driver, the setup macro file, and device
description file to use, and specify which default source code location to run to.

Setup |
Driver—————————————— o Fiils
I Simulator j Imain
[T Use UBROF reset vector
— Setup macro

[T Use macra file
| L

— Device description file
[T Overide default

Inone |

Driver

Selects the C-SPY driver for the target system you have.

Run to

Specifies the location C-SPY runs to when the debugger starts after a reset. By default,
C-SPY runs to the main function.

To override the default location, specify the name of a different location you want
C-SPY torunto. You can specify assembler labels or whatever can be evaluated as such,
for example function names.

If the option is deselected, the program counter will contain the regular hardware reset
address at each reset.

See also Executing from reset, page 50.

Use UBROF reset vector

Makes the debugger use the reset vector specified as the entry label __program_start,
see the IDE Project Management and Building Guide for AVR. By default, the reset
vector is set to 0x0.

Setup macros

Registers the contents of a setup macro file in the C-SPY startup sequence. Select Use
macro file and specify the path and name of the setup file, for example
SetupSimple.mac. If no extension is specified, the extension mac is assumed. A
browse button is available for your convenience.

339

Reference information on general debugger options

340

Device description file

Images

A default device description file is selected automatically based on your project settings.
To override the default file, select Override default and specify an alternative file. A
browse button is available for your convenience.

For information about the device description file, see Modifying a device description
file, page 55.

IAR-specific device description files for each AVR device are provided in the directory
avr\config and have the filename extension daf.

The Images options control the use of additional debug files to be downloaded.

Images

[Download extra image

| [
|7 -

[Download extra image

:

[Download extra image

|
[-

Download extra Images

C-SPY® Debugging Guide
for AVR

Controls the use of additional debug files to be downloaded:

Path
Specity the debug file to be downloaded. A browse button is available for your
convenience.

Offset
Specify an integer that determines the destination address for the downloaded
debug file.

Debug info only
Makes the debugger download only debug information, and not the complete
debug file.

If you want to download more than three images, use the related C-SPY macro, see
__loadlmage, page 275.

Plugins

For more information, see Loading multiple images, page 53.

Debugger options °

The Plugins options select the C-SPY plugin modules to be loaded and made available

during debug sessions.

Flugins

Select pluging to load:

Code Coverage

Description: |[Enables code coverage in the debugger.

Lacatian: |\common\plugins\EodeEoverage\EodeEoverage.dII

Originator: |IAF| Systems
Wersior: |4.B.D.D

Select plugins to load

Description

Location

Originator

Version

Selects the plugin modules to be loaded and made available during debug sessions. The
list contains the plugin modules delivered with the product installation.

Describes the plugin module.

Informs about the location of the plugin module.

Generic plugin modules are stored in the common\plugins directory. Target-specific

plugin modules are stored in the avr\plugins directory.

Informs about the originator of the plugin module, which can be modules provided by

IAR Systems or by third-party vendors.

Informs about the version number.

341

Reference information on C-SPY hardware debugger driver options

342

Reference information on C-SPY hardware debugger driver options

Atmel-ICE |

C-SPY® Debugging Guide
for AVR

Reference information about:

AVR ONE! 1, page 348

AVR ONE! 2, page 350
Communication, page 346
Extra Options, page 347
Serial Port, page 358
Atmel-ICE 1, page 342
Atmel-ICE 2, page 345
JTAGICE3 1, page 351
JTAGICE3 2, page 353
JTAGICE mkll 1, page 354
JTAGICE mkll 2, page 357
Dragon 1, page 359

Dragon 2, page 361

Power Debugger 1, page 362
Power Debugger 2, page 364

Third-Party Driver options, page 365

The Atmel-ICE 1 options control the C-SPY driver for Atmel-ICE.

Atmel-ICE 1
Debug Port
Auto detect Frequency in @ |100KHz -
@ JTAG kHz: =
PDI ' —
Download control
ITAG Port [Suppress Download
Target device is part of a [C] Allow download to RAM
JTAG daisy chain Target Consistency Check
@ MNone
_) Verify Boundaries
2 Vegrfy Al

Debugger options °

Debug Port

Selects the communication type. Choose between:

Auto detect Auto-detects JTAG or PDI. The JTAG Port options are not
available with this setting. A JTAG device must be firstin a
JTAG chain.

JTAG Specifies JTAG only mode.
PDI Specifies PDI only mode.

Frequency in Hz Defines the debug port clock speed. You can choose the
value from the drop-down list, or enter a custom value in the
text box. The value is in kHz and can be any value from 1 to
65536. The default value is 100 kHz.

A too small value (less than 28 kHz) might cause the
communication to time out.

A too large value will result in an unexpected error while

debugging, such as an execution/read/write failure.

JTAG Port
Configures the JTAG port.

Target device is part of Ifthe AVR CPU is not alone on the JTAG chain, its position
a JTAG daisy chain in the chain is defined by this option.

Devices Before Specify the number of JTAG data bits before the device in
the JTAG chain.

Devices After Specify the number of JTAG data bits after the device in the
JTAG chain.

Instruction bits Before Specify the number of JTAG instruction register bits before
the device in the JTAG chain.

Instruction bits After ~ Specify the number of JTAG instruction register bits after
the device in the JTAG chain.

343

Reference information on C-SPY hardware debugger driver options

344

Download control

C-SPY® Debugging Guide
for AVR

Controls the download.

Suppress download

Allow download to
RAM

Target consistency
check

Disables the downloading of code, while preserving the
present content of the flash memory. This command is
useful if you want to debug an application that already
resides in target memory. The implicit RESET performed
by C-SPY at startup is not disabled, though.

If this option is combined with the Verify all option, the
debugger will read back the code image from non-volatile
memory and verify that it is identical to the debugged
application.

Downloads constant data into RAM. By default, the option
is deselected and an error message is displayed if you try to
download constant data to RAM.

Verifies that the memory on the target system is writable
and mapped in a consistent way. A warning message will
appear if there are any problems during download. Choose
between:

None, target consistency check is not performed.

Verify Boundaries, verifies the boundaries of each
downloaded module. This is a fast and simple, but not
complete, check of the memory.

Verify All, checks every byte after loading. This is a slow,
but complete, check of the memory.

Debugger options °

Atmel-ICE 2
The Atmel-ICE 2 options control the C-SPY driver for Atmel-ICE.

Atmel-ICE 2

Run timers in stopped mode

[Preserve EEPROM cortents even if device is reprogrammed
[Restore fuses when ending debug session

Enable software breakpoints

System breakpoints on Preserve FLASH
exit 3) None
putchar Boat Area
getchar Application Area

Run timers in stopped mode

Runs the timers even if the program is stopped.

Preserve EEPROM contents even if device is reprogrammed

Erases flash memory before download. If this option is deselected, both the EEPROM
and the flash memory will be erased when you reprogram the flash memory.

Restore fuses when ending debug session

Enables C-SPY to modify the OCD enable fuse and preserve the EEPROM fuse at
startup. Note that each change of fuse switch will decrease the life span of the chip.

Enable software breakpoints

Enables the use of software breakpoints. The number of software breakpoints is
unlimited. For more information about breakpoints, see Breakpoints, page 105.

System breakpoints on

Disables the use of system breakpoints in the CLIB runtime environment. If you do not
use the C-SPY Terminal I/O window or if you do not need a breakpoint on the exit
label, you can save hardware breakpoints by not reserving system breakpoints.

Select or deselect the options exit, putchar, and getchar, respectively.

In the DLIB runtime environment, C-SPY will always set a system breakpoint on the
__DebugBreak label. You cannot disable this behavior.

For more information, see Breakpoint consumers, page 110.

345

Reference information on C-SPY hardware debugger driver options

Preserve FLASH

Communication

USB

USB ID

Selects which part of the flash memory, if any, that you want to preserve during
download. Choose between None, Boot Area, or Application Area.

The Communication options control the C-SPY driver for Atmel-ICE, AVR ONE!,
JTAGICE3, Dragon, or Power Debugger.

Communication

@ USB
JUSBID

[Log communication

SPROJ_DIRS \cspycomm log

Specifies single emulator mode. Use this option for the USB port and if you have one
device connected to your host computer.

Specifies multi-emulator mode. Use this option for the USB port and if you have more
than one device connected to your host computer. Specify the serial number of the

device that you want to connect to, or the USB ID visible in the Log Messages window.
The serial number, for example ONE00737, is printed on the tag underneath the device.

Log communication

C-SPY® Debugging Guide
346 for AVR

Logs the communication between C-SPY and the target system to a file. To interpret the
result, detailed knowledge of the interface is required.

Debugger options °

Extra Options

The Extra Options page provides you with a command line interface to C-SPY.

Extra Dptions |
™ Use command line options
[Eammand line optians: [aneipenline]
=
e

Use command line options

Specify command line arguments that are not supported by the IDE to be passed to
C-SPY.

Note that it is possible to use the /args option to pass command line arguments to the
debugged application.

Syntax: /args arg0 argl

Multiple lines with /args are allowed, for example:
/args --logfile log.txt

/args --verbose

If you use /args, these variables must be defined in your application:

/* __argc, the number of arguments in __argv. */
__no_init int __argc;
/* __argv, an array of pointers to strings that holds the

arguments; must be large enough to fit the number of
parameters.*/
__no_init const char * __argv[MAX_ ARGS];

/* __argvbuf, a storage area for __argv; must be large enough to
hold all command line parameters. */
__no_init __root char __argvbuf [MAX_ARG_SIZE];

347

Reference information on C-SPY hardware debugger driver options

The AVR ONE! 1 options control the C-SPY driver for AVR ONE!.

Frequency in o I‘IDD kHz 'l
kHz:
« [0

Download contral
" Suppress Download

[~ Allow download to Biéhd

Target Consistency Check
& Mone

" Verify Boundaries
 Verify All

Selects the communication type. Choose between

AVR ONE! |
AR ONELT |
—Debug Port
' Auto detect
o JTAG
" PDI
—JTAG Part
r Target device iz part of &
JTAG daisy chain
Devices: [nstruction bits:
Befare: ID ID
Aifter: ID ID
Debug Port
Auto detect
JTAG
PDI
Frequency in Hz
JTAG Port

Auto-detects JTAG or PDI. The ITAG Port options are not
available in this mode. A JTAG device must be first in a
JTAG chain.

Specifies JTAG only mode.
Specifies PDI only mode.

Defines the debug port clock speed. You can choose the
value from the drop-down list, or enter a custom value in the
text box. The value is in kHz and can be any value from 1 to
65536. The default value is 100 kHz.

A too small value (less than 28 kHz) might cause the
communication to time out.

A too large value will result in an unexpected error while
debugging, such as an execution/read/write failure.

Configures the JTAG port.

Target device is part of Ifthe AVR CPU is not alone on the JTAG chain, its position

a JTAG daisy chain

C-SPY® Debugging Guide
348 for AVR

in the chain is defined by this option.

Debugger options °

Devices Before Specify the number of JTAG data bits before the device in
the JTAG chain.

Devices After Specify the number of JTAG data bits after the device in the
JTAG chain.

Instruction bits Before Specify the number of JTAG instruction register bits before
the device in the JTAG chain.

Instruction bits After ~ Specify the number of JTAG instruction register bits after
the device in the JTAG chain.

Download control

Controls the download.

Suppress download Disables the downloading of code, while preserving the
present content of the flash memory. This command is
useful if you want to debug an application that already
resides in target memory. The implicit RESET performed
by C-SPY at startup is not disabled, though.

If this option is combined with the Verify all option, the
debugger will read back the code image from non-volatile
memory and verify that it is identical to the debugged

application.
Allow download to Downloads constant data into RAM. By default, the option
RAM is deselected and an error message is displayed if you try to

download constant data to RAM.

Target consistency Verifies that the memory on the target system is writable

check and mapped in a consistent way. A warning message will
appear if there are any problems during download. Choose
between:

None, target consistency check is not performed.

Verify Boundaries, verifies the boundaries of each
downloaded module. This is a fast and simple, but not
complete, check of the memory.

Verify All, checks every byte after loading. This is a slow,
but complete, check of the memory.

349

Reference information on C-SPY hardware debugger driver options

AVR ONE! 2
The AVR ONE! 2 options control the C-SPY driver for AVR ONE!.

AVRONE!'2

Run timers in stopped mode

[Preserve EEPROM cortents even if device is reprogrammed
[Hardware reset on C-SPY reset
[Restore fuses when ending debug session

Enable software breakpoints

System breakpoints on Preserve FLASH

[exit 3) None

putchar Boat Area
getchar Application Area

Run timers in stopped mode

Runs the timers even if the program is stopped.

Preserve EEPROM contents even if device is reprogrammed

Erases flash memory before download. When this option is not used, both the EEPROM
and the flash memory will be erased when you reprogram the flash memory.

Hardware reset on C-SPY reset

Causes a reset in the debugger to also do a hardware reset by pulling down the nSRST
signal.

Restore fuses when ending debug session

Enables C-SPY to modify the OCD enable fuse and preserve the EEPROM fuse at
startup. Note that each change of fuse switch will decrease the life span of the chip.

Enable software breakpoints

Enables the use of software breakpoints. The number of software breakpoints is
unlimited. For more information about breakpoints, see Breakpoints, page 105.

System breakpoints on

Disables the use of system breakpoints in the CLIB runtime environment. If you do not
use the C-SPY Terminal I/O window or if you do not need a breakpoint on the exit
label, you can save hardware breakpoints by not reserving system breakpoints.

Select or deselect the options exit, putchar, and getchar, respectively.

C-SPY® Debugging Guide
350 for AVR

Debugger options °

In the DLIB runtime environment, C-SPY will always set a system breakpoint on the
__DebugBreak label. You cannot disable this behavior.

For more information, see Breakpoint consumers, page 110.

Preserve FLASH

Selects which part of the flash memory, if any, that you want to preserve during
download. Choose between None, Boot Area, or Application Area.

The JTAGICES3 1 options control the C-SPY driver for JTAGICE3.
JTAGICE3 1
Debug Port
Auto detect Frequency in @ [100KHz -
@ JTAG kHz: © [
PDI —
Download control
ITAG Port [Suppress Download
Target device is part of a [Allow download to RAM
O JTAG daisy chain
=¥ Target Consistency Check
@ Mone
() Venify Boundaries
() Verify Al
Debug Port

Selects the communication type. Choose between

Auto detect Auto-detects JTAG or PDI. The JTAG Port options are not
available with this setting. A JTAG device must be firstin a
JTAG chain.

JTAG Specifies JTAG only mode.

PDI Specifies PDI only mode.

351

Reference information on C-SPY hardware debugger driver options

Frequency in Hz

JTAG Port

Defines the debug port clock speed. You can choose the
value from the drop-down list, or enter a custom value in the
text box. The value is in kHz and can be any value from 1 to
65536. The default value is 100 kHz.

A too small value (less than 28 kHz) might cause the
communication to time out.

A too large value will result in an unexpected error while
debugging, such as an execution/read/write failure.

Configures the JTAG port.

Target device is part of Ifthe AVR CPU is not alone on the JTAG chain, its position

a JTAG daisy chain

Devices Before

Devices After

Instruction bits Before

Instruction bits After

Download control

Controls the download.

Suppress download

C-SPY® Debugging Guide
352 for AVR

in the chain is defined by this option.

Specify the number of JTAG data bits before the device in
the JTAG chain.

Specify the number of JTAG data bits after the device in the
JTAG chain.

Specify the number of JTAG instruction register bits before
the device in the JTAG chain.

Specify the number of JTAG instruction register bits after
the device in the JTAG chain.

Disables the downloading of code, while preserving the
present content of the flash memory. This command is
useful if you want to debug an application that already
resides in target memory. The implicit RESET performed
by C-SPY at startup is not disabled, though.

If this option is combined with the Verify all option, the
debugger will read back the code image from non-volatile
memory and verify that it is identical to the debugged
application.

Allow download to
RAM

Target consistency
check

JTAGICE3 2

Debugger options °

Downloads constant data into RAM. By default, the option
is deselected and an error message is displayed if you try to
download constant data to RAM.

Verifies that the memory on the target system is writable
and mapped in a consistent way. A warning message will
appear if there are any problems during download. Choose
between:

None, target consistency check is not performed.

Verify Boundaries, verifies the boundaries of each
downloaded module. This is a fast and simple, but not
complete, check of the memory.

Verify All, checks every byte after loading. This is a slow,
but complete, check of the memory.

The JTAGICES3 2 options control the C-SPY driver for JTAGICE3.

JTAGICE3 2

Run timers in stopped mode

Enable software breakpoints

System breakpoints on
exit
putchar

getchar

[Preserve EEPROM cortents even if device is reprogrammed

[Restore fuses when ending debug session

Preserve FLASH
@ Mone
Boot Area

Application Area

Run timers in stopped mode

Runs the timers even if the program is stopped.

Preserve EEPROM contents even if device is reprogrammed

Erases flash memory before download. When this option is not used, both the EEPROM
and the flash memory will be erased when you reprogram the flash memory.

353

Reference information on C-SPY hardware debugger driver options

Restore fuses when ending debug session

Enables C-SPY to modify the OCD enable fuse and preserve the EEPROM fuse at
startup. Note that each change of fuse switch will decrease the life span of the chip.

Enable software breakpoints

Enables the use of software breakpoints. The number of software breakpoints is
unlimited. For more information about breakpoints, see Breakpoints, page 105.

System breakpoints on

Disables the use of system breakpoints in the CLIB runtime environment. If you do not
use the C-SPY Terminal I/O window or if you do not need a breakpoint on the exit
label, you can save hardware breakpoints by not reserving system breakpoints.

Select or deselect the options exit, putchar, and getchar, respectively.

In the DLIB runtime environment, C-SPY will always set a system breakpoint on the
__DebugBreak label. You cannot disable this behavior.

For more information, see Breakpoint consumers, page 110.

Preserve FLASH

Selects which part of the flash memory, if any, that you want to preserve during
download. Choose between None, Boot Area, or Application Area.

JTAGICE mkill |
The JTAGICE mKII 1 options control the C-SPY drivers for JTAGICE mkII and

Dragon.
ATAGICE il 1 |
r Communication
" USB
" USEID
JTAG Part + Serial port

inHz & |100KHz =
EEpErEy i z D ownload contral

. ™ Suppress Download
Target device is part of a ™ Allow download to Ra
r JTAG daizy chain
Y Target Congistency Check
* Mone

" Verify Boundaries
I

" Werify All

C-SPY® Debugging Guide
354 for AVR

Debugger options °

Use PDI

Enables communication with the device using the PDI interface.

Communication

Selects the communication type. Choose between:

USB Selects the USB port. Use this setting if you have one AVR
JTAGICE mKII device connected to your host computer.

USB ID Selects the USB port. Use this setting if you have more than
one AVR JTAGICE mkII device connected to your host
computer. Specify the serial number of the device that you
want to connect to. The serial number is printed on the tag
underneath the device.

Serial port Selects the serial port. To configure the serial port, select
the Serial Port page in the Options dialog box and then
choose a port from the Default communication drop-down
list. By default, the COM1 port is used at 38400 baud.

JTAG Port
Configures the JTAG port.

Frequency in Hz Defines the JTAG clock speed. You can choose the value
from the drop-down list, or enter a custom value in the text
box. The value is in Hz and can be any value from 5000 to
1000000. The frequency value is rounded down to nearest
available in the JTAGICE. The default value is 100 kHz.

A too small value (less than 28000) might cause the
communication to time out. The value must not be greater
than 1/4 of the target CPU clock frequency.

A too large value will result in an unexpected error while
debugging, such as an execution/read/write failure.

Target device is part of Ifthe AVR CPU is not alone on the JTAG chain, its position
in the chain is defined by this option.

a JTAG daisy chain

Devices Before Specify the number of JTAG data bits before the device in
the JTAG chain.

Devices After Specify the number of JTAG data bits after the device in the
JTAG chain.

355

Reference information on C-SPY hardware debugger driver options

356

Instruction bits Before

Instruction bits After

Download control

C-SPY® Debugging Guide
for AVR

Controls the download.

Suppress download

Allow download to
RAM

Target consistency
check

Specify the number of JTAG instruction register bits before
the device in the JTAG chain.

Specify the number of JTAG instruction register bits after
the device in the JTAG chain.

Disables the downloading of code, while preserving the
present content of the flash memory. This command is
useful if you want to debug an application that already
resides in target memory. The implicit RESET performed
by C-SPY at startup is not disabled, though.

If this option is combined with the Verify all option, the
debugger will read back the code image from non-volatile
memory and verify that it is identical to the debugged
application.

Downloads constant data into RAM. By default, the option
is deselected and an error message is displayed if you try to
download constant data to RAM.

Verifies that the memory on the target system is writable
and mapped in a consistent way. A warning message will
appear if there are any problems during download. Choose
between:

None, target consistency check is not performed.

Verify Boundaries, verifies the boundaries of each
downloaded module. This is a fast and simple, but not
complete, check of the memory.

Verify All, checks every byte after loading. This is a slow,
but complete, check of the memory.

Debugger options °

JTAGICE mklil 2

The JTAGICE mKII 2 options control the C-SPY drivers for JTAGICE mkII and
Dragon.

JTAGICE mkll 2

Run timers in stopped mode

[Preserve EEPROM cortents even if device is reprogrammed
[Hardware reset on C-SPY reset
[Restore fuses when ending debug session

Enable software breakpoints

System breakpoints on Preserve FLASH
[exit

putchar
getchar

Run timers in stopped mode

Runs the timers even if the program is stopped.

Preserve EEPROM contents even if device is reprogrammed

Erases flash memory before download. When this option is not used, both the EEPROM
and the flash memory will be erased when you reprogram the flash memory.

Hardware reset on C-SPY reset

Causes a reset in the debugger to also do a hardware reset by pulling down the nSRST
signal.

Enable software breakpoints

Enables the use of software breakpoints. The number of software breakpoints is
unlimited. For more information about breakpoints, see Breakpoints, page 105.

System breakpoints on

Disables the use of system breakpoints in the CLIB runtime environment. If you do not
use the C-SPY Terminal I/O window or if you do not need a breakpoint on the exit
label, you can save hardware breakpoints by not reserving system breakpoints.

Select or deselect the options exit, putchar, and getchar, respectively.

In the DLIB runtime environment, C-SPY will always set a system breakpoint on the
__DebugBreak label. You cannot disable this behavior.

For more information, see Breakpoint consumers, page 110.

357

Reference information on C-SPY hardware debugger driver options

Preserve FLASH

Selects which part of the flash memory, if any, that you want to preserve during
download. Choose between None, Boot Area, or Application Area.

Serial Port

The Serial Port options determine how the serial port should be used.

Serial Port

[Defautt communication

COM 1 Pot [com 1 -]
Baud [m v]

Partty [None v]

Data bits (g data bits -

Stop bits [1 stop bit v]

Handshaking [None v]

[Log communication

cspycomm log

Default communication

Sets the default communication to use the port you specify and use it at 38400 baud.

Port
Selects one of the supported ports: COM1 (default), COM2, ..., COM32.

Baud
Selects the baud rate.
If the debug session is terminated unexpectedly (by a fatal error, for instance), you might
have to switch the emulator on and off to make it reconnect—first at default rate and then
at the selected rate.

Parity
Selects the parity; only None is allowed.

Data bits

Selects the number of data bits; only 8 data bits is allowed.

C-SPY® Debugging Guide
358 for AVR

Debugger options °

Stop bits
Selects the number of stop bits: 1 stop bit or 2 stop bits.

Handshaking
Selects the handshaking method, None or RTSCTS.

Log communication

Logs the communication between C-SPY and the target system to a file. To interpret the
result, detailed knowledge of the interface is required.

Dragon |
The Dragon 1 options control the C-SPY drivers for Dragon.
Dragon 1
Use PDI
JTAG Port
inHz ® [100KHz +
Frequency in Hz: @ Download control
€ [Suppress Download
&l Target dgvice is_ part of a [Allow download to RAM
JTAG daisy chain Target Consistency Check
@ Mone
() Venify Boundaries
() Verify Al
Use PDI

Enables communication with the device using the PDI interface.

359

Reference information on C-SPY hardware debugger driver options

360

JTAG Port

Configures the JTAG port.

Frequency in Hz

Target device is part of
a JTAG daisy chain

Devices Before

Devices After

Instruction bits Before

Instruction bits After

Download control

C-SPY® Debugging Guide
for AVR

Controls the download.

Suppress download

Defines the JTAG clock speed. You can choose the value
from the drop-down list, or enter a custom value in the text
box. The value is in Hz and can be any value from 5000 to
1000000. The frequency value is rounded down to nearest
available in the JTAGICE. The default value is 100 kHz.

A too small value (less than 28000) might cause the
communication to time out. The value must not be greater
than 1/4 of the target CPU clock frequency.

A too large value will result in an unexpected error while
debugging, such as an execution/read/write failure.

If the AVR CPU is not alone on the JTAG chain, its position
in the chain is defined by this option.

Specify the number of JTAG data bits before the device in
the JTAG chain.

Specify the number of JTAG data bits after the device in the
JTAG chain.

Specify the number of JTAG instruction register bits before
the device in the JTAG chain.

Specify the number of JTAG instruction register bits after
the device in the JTAG chain.

Disables the downloading of code, while preserving the
present content of the flash memory. This command is
useful if you want to debug an application that already
resides in target memory. The implicit RESET performed
by C-SPY at startup is not disabled, though.

If this option is combined with the Verify all option, the
debugger will read back the code image from non-volatile
memory and verify that it is identical to the debugged
application.

Debugger options °

Allow download to Downloads constant data into RAM. By default, the option
RAM is deselected and an error message is displayed if you try to
download constant data to RAM.

Target consistency Verifies that the memory on the target system is writable

check and mapped in a consistent way. A warning message will
appear if there are any problems during download. Choose
between:

None, target consistency check is not performed.

Verify Boundaries, verifies the boundaries of each
downloaded module. This is a fast and simple, but not
complete, check of the memory.

Verify All, checks every byte after loading. This is a slow,
but complete, check of the memory.

Dragon 2
The Dragon 2 options control the C-SPY drivers for Dragon.

Dragon 2

Run timers in stopped mode

[Preserve EEPROM cortents even if device is reprogrammed
[Hardware reset on C-SPY reset
[Restore fuses when ending debug session

Enable software breakpoints

System breakpoints on Preserve FLASH
[exit @ None
putchar oot A

getchar

Run timers in stopped mode

Runs the timers even if the program is stopped.

Preserve EEPROM contents even if device is reprogrammed

Erases flash memory before download. When this option is not used, both the EEPROM
and the flash memory will be erased when you reprogram the flash memory.

361

Reference information on C-SPY hardware debugger driver options

Hardware reset on C-SPY reset

Causes a reset in the debugger to also do a hardware reset by pulling down the nSRST
signal.

Enable software breakpoints

Enables the use of software breakpoints. The number of software breakpoints is
unlimited. For more information about breakpoints, see Breakpoints, page 105.

System breakpoints on

Disables the use of system breakpoints in the CLIB runtime environment. If you do not
use the C-SPY Terminal I/O window or if you do not need a breakpoint on the exit
label, you can save hardware breakpoints by not reserving system breakpoints.

Select or deselect the options exit, putchar, and getchar, respectively.

In the DLIB runtime environment, C-SPY will always set a system breakpoint on the
__DebugBreak label. You cannot disable this behavior.

For more information, see Breakpoint consumers, page 110.

Power Debugger |
The Power Debugger 1 options control the C-SPY driver for Power Debugger.

Power Debugger 1
Debug Port
Auto detect Frequency in @ |100KHz =
@ JTAG kHz: .
PDI —
Download control
ITAG Port [Suppress Download
Target device is part of a [T Allow download to RAM
O JTAG daisy chain
=¥ Target Consistency Check
@ Mone
_ Verify Boundaries
~) Verify All

Debug Port
Selects the communication type. Choose between:
Auto detect Auto-detects JTAG or PDI. The JTAG Port options are not

available with this setting. A JTAG device must be firstin a
JTAG chain.

C-SPY® Debugging Guide
362 for AVR

Debugger options °

JTAG Specifies JTAG only mode.
PDI Specifies PDI only mode.
Frequency in Hz Defines the debug port clock speed. You can choose the

value from the drop-down list, or enter a custom value in the
text box. The value is in kHz and can be any value from 1 to
65536. The default value is 100 kHz.

A too small value (less than 28 kHz) might cause the
communication to time out.

A too large value will result in an unexpected error while

debugging, such as an execution/read/write failure.

JTAG Port
Configures the JTAG port.

Target device is part of Ifthe AVR CPU is not alone on the JTAG chain, its position
a JTAG daisy chain in the chain is defined by this option.

Devices Before Specify the number of JTAG data bits before the device in
the JTAG chain.

Devices After Specify the number of JTAG data bits after the device in the
JTAG chain.

Instruction bits Before Specify the number of JTAG instruction register bits before
the device in the JTAG chain.

Instruction bits After Specify the number of JTAG instruction register bits after
the device in the JTAG chain.

Download control

Controls the download.

Suppress download Disables the downloading of code, while preserving the
present content of the flash memory. This command is
useful if you want to debug an application that already
resides in target memory. Note that the implicit RESET
performed by C-SPY at startup is not disabled.

If this option is combined with the Verify all option, the
debugger will read back the code image from non-volatile
memory and verify that it is identical to the debugged
application.

363

Reference information on C-SPY hardware debugger driver options

Allow download to
RAM

Target consistency
check

Downloads constant data into RAM. By default, the option
is deselected and an error message is displayed if you try to
download constant data to RAM.

Verifies that the memory on the target system is writable
and mapped in a consistent way. A warning message will

appear if there are any problems during download. Choose
between:

None, target consistency check is not performed.

Verify Boundaries, verifies the boundaries of each
downloaded module. This is a fast and simple, but not
complete, check of the memory.

Verify All, checks every byte after loading. This is a slow,
but complete, check of the memory.

Power Debugger 2
The Power Debugger 2 options control the C-SPY driver for Power Debugger.

Power Debugger 2

Run timers in stopped mode

[Preserve EEPROM cortents even if device is reprogrammed
[Restore fuses when ending debug session

Enable software breakpoints

System breakpoints on Preserve FLASH
exit 3) None
putchar Boat Area
getchar Application Area

Run timers in stopped mode

Runs the timers even if the program is stopped.

Preserve EEPROM contents even if device is reprogrammed

Erases flash memory before download. If this option is deselected, both the EEPROM
and the flash memory will be erased when you reprogram the flash memory.

C-SPY® Debugging Guide
364 for AVR

Debugger options °

Restore fuses when ending debug session

Enables C-SPY to modify the OCD enable fuse and preserve the EEPROM fuse at
startup. Note that each change of fuse switch will decrease the life span of the chip.

Enable software breakpoints

Enables the use of software breakpoints. The number of software breakpoints is
unlimited. For more information about breakpoints, see Breakpoints, page 105.

System breakpoints on

Disables the use of system breakpoints in the CLIB runtime environment. If you do not
use the C-SPY Terminal I/O window or if you do not need a breakpoint on the exit
label, you can save hardware breakpoints by not reserving system breakpoints.

Select or deselect the options exit, putchar, and getchar, respectively.

In the DLIB runtime environment, C-SPY will always set a system breakpoint on the
__DebugBreak label. You cannot disable this behavior.

For more information, see Breakpoint consumers, page 110.

Preserve FLASH

Selects which part of the flash memory, if any, that you want to preserve during
download. Choose between None, Boot Area, or Application Area.

Third-Party Driver options
The Third-Party Driver options are used for loading any driver plugin provided by a
third-party vendor. These drivers must be compatible with the C-SPY debugger driver
specification.
Third-Party Driver |

&R debugger driver plugin
IBrowse to wour Third party driver J

™ Suppress download
I~ Werify al

" Log communication
[$TOOLKIT_DIRg espyzommlog J

365

Reference information on C-SPY hardware debugger driver options

366

IAR debugger driver plugin

Specify the file path to the third-party driver plugin DLL file. A browse button is
available for your convenience.

Suppress download

Verify all

Disables the downloading of code, while preserving the present content of the flash.
This command is useful if you need to exit C-SPY for a while and then continue the
debug session without downloading code. The implicit RESET performed by C-SPY at
startup is not disabled though.

If this option is combined with Verify all, the debugger will read your application back
from the flash memory and verify that it is identical with the application currently being
debugged.

This option can be used if it is supported by the third-party driver.

Verifies that the memory on the target system is writable and mapped in a consistent
way. A warning message will appear if there are any problems during download. Every
byte is checked after it is loaded. This is a slow but complete check of the memory. This
option can be used if is supported by the third-party driver.

Log communication

C-SPY® Debugging Guide
for AVR

Logs the communication between C-SPY and the target system to a file. To interpret the
result, detailed knowledge of the interface is required. This option can be used if is
supported by the third-party driver.

Additional information on
C-SPY drivers

This chapter describes the additional menus and features provided by the

C-SPY® drivers. You will also find some useful hints about resolving problems.

Reference information on C-SPY driver menus

C-SPY driver

Reference information about:

C-SPY driver, page 367
Simulator menu, page 368
JTAGICE mkll menu, page 369
Dragon menu, page 369
Atmel-ICE menu, page 370
JTAGICE3 menu, page 371

AVR ONE! menu, page 372
Power Debugger menu, page 373

Before you start the C-SPY debugger, you must first specify a C-SPY driver in the
Options dialog box, using the option Debugger>Setup>Driver.

When you start a debug session, a menu specific to that C-SPY driver will appear on the
menu bar, with commands specific to the driver.

When we in this guide write “choose C-SPY driver>" followed by a menu command,
C-SPY driver refers to the menu. If the feature is supported by the driver, the command
will be on the menu.

367

Reference information on C-SPY driver menus

368

Simulator menu

When you use the simulator driver, the Simulator menu is added to the menu bar.

Interrupts...
#

Trace

+|= Function Trace
Trace Expressions

Function Profiler

Data Log
Data Log Summary

Timeline

E Breakpoint Usage

Menu commands
These commands are available on the menu:

Interrupts
Displays a dialog box where you can manage interrupts, see Interrupts dialog
box, page 248.
4 Trace
' Opens a window which displays the collected trace data, see Trace window,
page 164.
4 Function Trace
Opens a window which displays the trace data for function calls and function
returns, see Function Trace window, page 167.
Trace Expressions
Opens a window where you can specify specific variables and expressions for
which you want to collect trace data, see Trace Expressions window, page 170.
Function Profiler
Opens a window which shows timing information for the functions, see
Function Profiler window, page 202.
Data Log
Opens a window which logs accesses to up to four different memory locations
or areas, see Data Log window, page 188.
Data Log Summary

Opens a window which displays a summary of data accesses to specific memory
location or areas, see Data Log Summary window, page 191.

C-SPY® Debugging Guide
for AVR

JTAGICE mkll menu

Dragon menu

Additional information on C-SPY drivers ___¢

Timeline

Opens a window which gives a graphical view of various kinds of information
on a timeline, see The application timeline, page 175.

Breakpoint Usage

Displays a window which lists all active breakpoints, see Breakpoint Usage
window, page 119.

When you are using the C-SPY JTAGICE mKII driver, the JTAGICE mkII menu is
added to the menu bar. Before the debugger is started, the menu looks like this:

Fuse Handler
This command is available on the menu:

Fuse Handler Displays a dialog box, which provides programming
possibilities of the device-specific on-chip fuses, see Fuse
Handler dialog box, page 375.

When the debugger is running, the menu looks like this:

Break Gn Eranch/Skip
Ending Session Disables debugiwire
Breakpoint Usage. ..

These commands are available on the menu:

Break On Branch/Skip Stops execution just after each branch instruction.

Ending Session Disables Disables the use of debugWIRE before ending the debug
debugWire session.

Breakpoint Usage Opens a window which lists all active breakpoints, see
Breakpoint Usage window, page 119.

When you are using the C-SPY Dragon driver, the Dragon menu is added to the menu
bar. Before the debugger is started, the menu looks like this:

Fuse Handler

369

Reference information on C-SPY driver menus

370

Atmel-ICE menu

C-SPY® Debugging Guide
for AVR

This command is available on the menu:

Fuse Handler Displays a dialog box, which provides programming
possibilities of the device-specific on-chip fuses, see Fuse
Handler dialog box, page 375.

When the debugger is running, the menu looks like this:

Break Gn Eranch/Skip
Ending Session Disables debugiwire
Breakpoint Usage. ..

These commands are available on the menu:

Break On Branch/Skip Stops execution just after each branch instruction.

Ending Session Disables Disables the use of debugWIRE before ending the debug
debugWire session.

Breakpoint Usage Opens a window which lists all active breakpoints, see
Breakpoint Usage window, page 119.

When you are using the C-SPY Atmel-ICE driver, the Atmel-ICE menu is added to the
menu bar. Before the debugger is started, the menu looks like this:

Power Debugging Settings

Fuse Handler

Chip Erase

These commands are available on the menu:

Power Debugging This command is not applicable to Atmel-ICE.
Settings
Fuse Handler Displays a dialog box, which provides programming

possibilities of the device-specific on-chip fuses, see Fuse
Handler dialog box, page 377.

Chip Erase Performs a chip erase, that is, erases flash memory,
EEPROM, and lock bits. For more information, see the
documentation for the target you are using.

JTAGICE3 menu

Additional information on C-SPY drivers ___¢

When the debugger is running, the menu looks like this:

Ending Session Disables debugWire

Power Debugging Settings
Pou

r Log Setup
Power Log
State Log Setup
State Log

State Log Summary

Timeline

Breakpoint Usage...

This command is available on the menu:

Ending Session Disables Disables the use of debugWire before ending the debug

debugWire session.

Power Debugging This command is not applicable to Atmel-ICE.
Settings

Power Log Setup This command is not applicable to Atmel-ICE.
Power Log This command is not applicable to Atmel-ICE.
State Log Setup This command is not applicable to Atmel-ICE.
State Log This command is not applicable to Atmel-ICE.

State Log Summary This command is not applicable to Atmel-ICE.

Timeline This command is not applicable to Atmel-ICE.

Breakpoint Usage

Opens a window which lists all active breakpoints, see

Breakpoint Usage window, page 119.

When you are using the C-SPY JTAGICE3 driver, the JTAGICE3 menu is added to the
menu bar. Before the debugger is started, the menu looks like this:

Fuse Handler
Chip Erase

These commands are available on the menu:

371

Reference information on C-SPY driver menus

372

AVR ONE! menu

C-SPY® Debugging Guide
for AVR

Fuse Handler Displays a dialog box, which provides programming
possibilities of the device-specific on-chip fuses, see Fuse
Handler dialog box, page 375.

Chip Erase Performs a chip erase, that is, erases flash memory,
EEPROM, and lock bits. For more information, see the
documentation for the target you are using.

When the debugger is running, the menu looks like this:
Breakpoint Usage. .. |

This command is available on the menu:

Breakpoint Usage Opens a window which lists all active breakpoints, see
Breakpoint Usage window, page 119.

When you are using the C-SPY AVR ONE! driver, the AVR ONE! menu is added to the
menu bar. Before the debugger is started, the menu looks like this:

Fuse Handler
Chip Erase

These commands are available on the menu:

Fuse Handler Displays a dialog box, which provides programming
possibilities of the device-specific on-chip fuses, see Fuse
Handler dialog box, page 377.

Chip Erase Performs a chip erase, that is, erases flash memory,
EEPROM, and lock bits. For more information, see the
documentation for the target you are using.

When the debugger is running, the menu looks like this:

Ending Session Disables debugiwire
Breakpoint Usage. ..

These commands are available on the menu:

Ending Session Disables Disables the use of debugWIRE before ending the debug
debugWire session.

Additional information on C-SPY drivers ___¢

Breakpoint Usage Opens a window which lists all active breakpoints, see
Breakpoint Usage window, page 119.

Power Debugger menu

When you are using the C-SPY Power Debugger driver, the Power Debugger menu is
added to the menu bar. Before the debugger is started, the menu looks like this:

Power Debugging Settings

Fuse Handler

Chip Erase

These commands are available on the menu:

Power Debugging Settings Displays a dialog box where you can select which GP1IO
input pins to monitor, see Power Debugging Settings,
page 222.

Fuse Handler Displays a dialog box, which provides programming
possibilities of the device-specific on-chip fuses, see
Fuse Handler dialog box, page 377.

Chip Erase Performs a chip erase, that is, erases flash memory,
EEPROM, and lock bits. For more information, see the
documentation for the target you are using.

When the debugger is running, the menu looks like this:

Ending Session Disables debugWire

Power Debugging Settings
Power Log Setup

Power Log Window

State Log Setup
State Log
State Log Summary

m Timeline

Breakpoint Usage...

These commands are available on the menu:

Ending Session Disables Disables the use of debugWire before ending the debug
debugWire session.

Power Debugging Settings Displays a dialog box; see Power Debugging Settings,
page 222.

373

Reference information on the C-SPY hardware debugger drivers

374

Power Log Setup Opens a window; see Power Log Setup window, page
220.

Power Log Opens a window; see Power Log window, page 226.

State Log Setup Opens a window; see State Log Setup window, page
229.

State Log Opens a window; see State Log window, page 231.

State Log Summary Opens a window; see State Log Summary window, page
233.

Timeline Opens the Timeline window; see Reference

information on application timeline, page 180.

Breakpoint Usage Opens a window which lists all active breakpoints, see
Breakpoint Usage window, page 119.

Reference information on the C-SPY hardware debugger drivers

C-SPY® Debugging Guide
for AVR

This section gives additional reference information on the C-SPY hardware debugger
drivers, reference information not provided elsewhere in this documentation.

Reference information about:

o Fuse Handler dialog box, page 375 (JTAGICE mkII and Dragon)

® Fuse Handler dialog box, page 377 (Atmel-ICE, Atmel Power Debugger, AVR
ONE!, and JTAGICE3)

Additional information on C-SPY drivers ___¢

Fuse Handler dialog box

The Fuse Handler dialog box is available from the JTAGICE mkII menu or the
Dragon menu, respectively.

Overvie
Lock Bits Low Fusze High Fuse Extended Fusze

Mew Value: |DxFF |DxE2 |DxSF IUHFS
OidValue: [o.fF [0z [0F [0sF9

03302,

" Device ID——— Program Fuses |

Lloze |

Lock Bits Low Fuse | High Fuse I Extended Fuze I

Old W alue: nggz Mew Value: Igmz
™ Divide clock by 8 intemally; [CKDIYE=0]
¥ Clock output on PORTED; [CkOUT=0]

IInt. RC Dzc. 8 MHz: Start-up time PWRODWH/RESET: 6 CEA14 CK + 65 ms; [CKSEL=0010 5UT=10]; default value j

Log Meszage

Temporarily disabling the DWEN fuze. To re-enable it, switch off the target board power and then switch it on again.

AYRJTAGICE mkll, HAY version: 0x0000, 52 version: 0x0403 040418, Device id: 023302
Using debugwire, Target voltage: 5.118%, CPU: ATmegals

Starting to read fuses. ..

Succeded to read fuses

Note: To use the fuse handler, the JTAG Enable fuse must be enabled on one of the
pages. If a debugWIRE interface is used, it will be temporarily disabled while using the
fuse handler. Before you start debugging and after programming the fuses, you must
enable the interface again. The JTAGICE mkIl/Dragon debugger driver will guide you
through this.

The fuse handler provides programming possibilities of the device-specific on-chip
fuses and lock bits via JTAGICE mkII/Dragon.

Because different devices have different features, the available options and possible
settings depend on which device is selected. However, the available options are divided
into a maximum of four groups: Lock Bits, Low Fuse, High Fuse, and Extended Fuse.
For detailed information about the fuse settings, see the device-specific documentation
provided by Microchip Technology.

When you open the Fuse Handler dialog box, the device-specific fuses are read and the
dialog box will reflect the fuse values.

375

Reference information on the C-SPY hardware debugger drivers

376

Requirements

Overview

One of these alternatives:

o The C-SPY JTAGICE mkII driver
o The C-SPY Dragon driver.

Displays an overview of the fuse settings for each fuse group.

New Value Displays the value of the fuses reflecting the user-defined
settings. In other words, the value of the fuses after they have
been programmed.

Old Value Displays the last read value of the fuses.

Lock Bits, Low Fuse, High Fuse, Extended Fuse pages

Device ID

Read Fuses

Program Fuses

C-SPY® Debugging Guide
for AVR

Contain the available options for each group of fuses. The options and possible settings
depend on the selected device.

Old Value Displays the last read value of the on-chip fuses on the
device.
New Value Displays the value of the fuses reflecting the user-defined

settings. This text field is editable.

To specity the fuse settings, you can either use the New Value text field or use the
options.

Selecting an option means that this fuse should be enabled/programmed, which means
that the on-chip fuse is set to zero.

Displays the device ID that has been read from the device.

Reads the on-chip fuses from the device and the Before text fields will be updated
accordingly.

Programs the new fuse values—displayed in the After text box—to the on-chip fuses.

Additional information on C-SPY drivers ___¢

Log Messages

Displays the device information, and status and diagnostic messages for all
read/program operations.

Fuse Handler dialog box

The Fuse Handler dialog box is available from the Atmel-ICE menu, the Power
Debugger menu, the AVR ONE! menu, or the JTAGICE3 menu, respectively.

— Device (D

[oxe374c03F =
- Program Fuses |
— Dwervie

Lock Bits Fuse 0 Fuze 1 Fuse 2 Fuse 3 Fuse 4 Oksz |
Old Yalue: |DxFF IDxFF

[S N

MNewVale: [ofe [0FF [oFF [0FF [0FE [04FF

Lack Bits | Fusegl Fusell Fusegl Fuse§| Fuseé_ll
0ld Value: IW Mew Value: IW

[~ Lockbit 7 - BLEB1

[~ Lockbit 6 - BLEBD

[~ Lockbit 5 - BLBAT

[~ Lockbit 4 - BLBAD

[~ Lockbit 3 - BLBAT1

[~ Lockbit 2 - BLBATO

[~ Lockbit1-LB1

[~ Lockbit 0-LBO

Log Meszage

JTAG interface detected

AYROMEL USE 1D: 000000000305, MCU P version: 2.09, FPGA Py version: 1.03
JTAG clock: 12000 kHz, Target voltage: 3424, Device |D: B74C03F

Starting to read fuses. ..

Succeded to read fuses

Note: To use the fuse handler, the JTAG Enable fuse must be enabled on one of the tabs
or you can use PDI, see Atmel-ICE 1, page 342, Power Debugger 1, page 362, AVR
ONE! 1, page 348, or JTAGICE3 1, page 351, specifically the information about the
Debug Port option.The debugger driver will guide you through this.

The fuse handler provides programming possibilities of the device-specific on-chip
fuses and lock bits via the debug probe.

Because different devices have different features, the available options and possible
settings depend on which device is selected. However, the available options are divided
into a maximum of six groups: Lock Bits, Fuse 0, Fuse 1, Fuse 2, Fuse 3, and Fuse 4.

377

Reference information on the C-SPY hardware debugger drivers

378

Requirements

Device ID

Overview

For detailed information about the fuse settings, see the device-specific documentation
provided by Microchip Technology.

When you open the Fuse Handler dialog box, the device-specific fuses are read and the
dialog box will reflect the fuse values.

One of these alternatives:

o The C-SPY Atmel-ICE driver
o The C-SPY Power Debugger driver
o The C-SPY AVR ONE! driver
o The C-SPY JTAGICE3 driver.

Displays the device ID that has been read from the device.

Displays an overview of the fuse settings for each fuse group.

New Value Displays the value of the fuses reflecting the user-defined
settings. In other words, the value of the fuses after they have
been programmed.

Old Value Displays the last read value of the fuses.

Lock Bits, Fuse 0, Fuse I, Fuse 2, Fuse 3, and Fuse 4 pages

C-SPY® Debugging Guide
for AVR

Contain the available options for each group of fuses. The options and possible settings
depend on the selected device.

Old Value Displays the last read value of the on-chip fuses on the
device.
New Value Displays the value of the fuses reflecting the user-defined

settings. This text field is editable.

To specify the fuse settings, you can either use the New Value text field or use the
options.

Selecting an option means that this fuse should be enabled/programmed, which means
that the on-chip fuse is set to zero.

Read Fuses

Program Fuses

Log Messages

Additional information on C-SPY drivers ___¢

Reads the on-chip fuses from the device and the Before text fields will be updated
accordingly.

Programs the new fuse values—displayed in the After text box—to the on-chip fuses.

Displays the device information, and status and diagnostic messages for all
read/program operations.

Resolving problems

These topics are covered:
o No contact with the target hardware

Debugging using the C-SPY hardware debugger systems requires interaction between
many systems, independent from each other. For this reason, setting up this debug
system can be a complex task. If something goes wrong, it might be difficult to locate
the cause of the problem.

This section includes suggestions for resolving the most common problems that can
occur when debugging with the C-SPY hardware debugger systems.

For problems concerning the operation of the evaluation board, refer to the
documentation supplied with it, or contact your hardware distributor.
NO CONTACT WITH THE TARGET HARDWARE

There are several possible reasons for C-SPY to fail to establish contact with the target
hardware. Do this:

Check the communication devices on your host computer

Verify that the cable is properly plugged in and not damaged or of the wrong type

Make sure that the evaluation board is supplied with sufficient power

Check that the correct options for communication have been specified in the IAR
Embedded Workbench IDE.

Examine the linker configuration file to make sure that the application has not been
linked to the wrong address.

379

Resolving problems

C-SPY® Debugging Guide
380 for AVR

A

A access (Complex breakpoints option) 128
Abort (Report Assertoption)c.ouen... 81
__abortLaunch (C-SPY system macro). 267
absolute location, specifying for a breakpoint. 130
Action (Data breakpoints option) 129
Add to Watch Window (Symbolic Memory window context
1073111 [148
Address Range (Find in Trace option) 173
Allow download to RAM (Atmel-ICE option) 344,364
Allow download to RAM (AVR ONE! option) 349
Allow download to RAM (Dragon option) 361
Allow download to RAM (JTAGICE mkII option). 356
Allow download to RAM (JTAGICE3 option). 353
Ambiguous symbol (Resolve Symbol Ambiguity option). 104
application, built outside the IDE 52
assembler labels, viewing 89
assembler source code, fine-tuning. 197
assembler symbols, using in C-SPY expressions 87
assembler variables, viewing, 89
assumptions, programming experience. 21
Atmel Power Debugger. 212
Atmel-ICEoptions, 342,345
Atmel-ICE (C-SPY driver). ..., 37
181331 P 370

Auto Scroll (Timeline window context menu) 183,186,224,
237

Autowindowl 91
Autostep settings dialog box.o L. 82
Autostep (Debugmenu) 58
AVRONE!options.c.cvvinininnnna.. 348, 350
AVR ONE! (C-SPY driver)ccovvviueinn. . 45

hardware installation 46

081331 P 372
--avrone_jtag_clock (C-SPY command line option). 316

Index °

B access (Complex breakpoints option) 128
--attach_to_running_target (C-SPY command line option)315
--backend (C-SPY command line option). 316
backtrace information

viewing in Call Stack window 75
batch mode, using C-SPY in....................... 309
Baud (debuggeroption), 358
Big Endian (Memory window context menu). 142
blocks, in C-SPY macroscooon... 261
bold style, inthisguide. 25
Break On Branch/Skip (Dragon menu). 370
Break On Branch/Skip (JTAGICE mkll menu) 369
Break on Throw (Debugmenu) 59
Break on Uncaught Exception (Debug menu). 59
Break (Debugmenu)., 58
breakpoint condition, example 115-116
Breakpoint control (Complex breakpoints option) 128
Breakpoint Usage window 119
Breakpoint Usage (Atmel-ICEmenu)................ 371
Breakpoint Usage (AVRONE! menu) 373
Breakpoint Usage (Dragon menu). 370
Breakpoint Usage JTAGICE mkIImenu) 369
Breakpoint Usage JTAGICE3 menu) 372
Breakpoint Usage (Power Debugger menu) 374
breakpoints

code,example 286

COMPIEX . . vttt e 127

example. 289

connectinga C-SPY macro 256

consumers of i 110

data ... 123

datalog 125

descriptionof L L i 105

disabling used by Stack window 111

iconsforinthe IDE 108

in Memory window L. 113

listingall i, 119

381

382

reasons forusing 105

setting
inmemory window. 113
USINg SYSteM MACIOS . . « . v v v e e eeeeaene 114
using the dialogbox 112
single-stepping if not available 50
toggling 112
YPeS Of .« oot 106
useful tips.o 115
Breakpoints dialog box
Code .o 120
Complexooiiiini i 127
Data..... ... 123
Datalog ...t 125
Immediate i 126
Log oo 121
Trace Start......... ..., 168
Trace StOp « .« o v 169
Breakpoints window i 117
Browse (Tracetoolbar) 164
byte order, setting in Memory window 142
C function information, in C-SPY.................... 68
C symbols, using in C-SPY expressions 86
C variables, using in C-SPY expressions 86
Calibrate (Power Debugging Settings option). 222
call chain, displaying in C-SPY 68
Call stack information. 68
Call Stackwindow 75
for backtrace information. 68
Call Stack (Timeline window context menu) 183
__cancelAllInterrupts (C-SPY system macro) 268
__cancellnterrupt (C-SPY system macro). 268
Chip Erase (Atmel-ICEmenu) 370
Chip Erase JTAGICE3menu)..................... 372
Chip Erase (Power Debugger menu). 373
Clear All (Debug Log window context menu) 80

C-SPY® Debugging Guide
for AVR

Clear Group (Registers User Groups

Setup window contextmenu) 157
Clear trace data (Trace toolbar). 164
Clear (Interrupt Log window context menu). 232,235
Clear (Power Log window context menu). 228
__clearBreak (C-SPY systemmacro) 269
CLIB

consuming breakpoints, 110

library reference informationfor 24

Naming Convention.veuenenenen .. 26
__closeFile (C-SPY system macro) 269
code breakpoints

OVEIVIEW . .ottt 106

toggling 112
Code Coverage windowcovuen... 208
Code Coverage (Disassembly window context menu)73
--code_coverage_file (C-SPY command line option)317
code, covering executionof 208
command line options. 315

typographic convention 25
command prompt icon, in this guide. 25
Communication JTAGICE mkIl option) 355
complex breakpoints, OvVerview 107
Complex data (Complex breakpoints option) 128
computer style, typographic convention 25
conditional statements, in C-SPY macros............. 260
context menu, in Windowso, 89
conventions, used inthisguide 24
Copy Window Contents (Disassembly
Wwindow CONteXt Menu)vvvenenvnenenennnnnnn 75
Copy (Debug Log window context menu) 80
Copyright noticet 2
Core (Cores window)ooiii i, 83
cores

inspecting state of L L L 82
Cores Window. oottt 82
--cpu (C-SPY command line option). 317
CSPYbat . .. 309

reading options from file (-f) 326
current position, in C-SPY Disassembly window 72

cursor, in C-SPY Disassembly window 72
--cycles (C-SPY command line option) 318
Cycles (Cores Window).ovvviinn .. 83
C-SPY
batch mode, usingin 309
debugger systems, overview of 33
differences betweendrivers 35
environment OVerview 29
plugin modules, loading. 51
SELNG UP .« v vttt 49-50
starting the debugger 51
C-SPY drivers
Atmel-ICE. 37
AVRONE! 45
differencesbetween............ 35
Dragon...... ... 43
JTAGICEmKIIo ... 43
JTAGICE3. 41
OVETVIEW . ..ttt 35
Power Debugger il 39
Specifyingo 339
EYPeS Of .« oot e 34
C-SPY eXPressionsovveeeneneenenenenan.. 86
evaluating, using Macro Quicklaunch window 306
evaluating, using Quick Watch window. 100
inC-SPYmacros.c.coeininininaa... 260
Tooltip watch, using 85
Watch window, using. 85
C-SPY macros
blocks. ..o 261
conditional statements, 260
C-SPY eXpressionsc.coeeeuenenennnn.. 260
EXAMPIES . ..o 253
checking status of register. 255
creatingalogmacro 256
CXECULINE .« v vttt ettt e e e 253
connecting to a breakpoint 256
using Quick Watch 255
using setup macro and setup file............... 255

Index °

functions 87, 258
keywords 258-259, 261
loop statementsc.iiiiiiien.. 261
MACIO STALEMENLS .« .+« v v v e v e et e e e e eee e 260
PATAMELETS « « v v v v vttt e e 259
setupmacrofile L L 252
CXECULINE. « o v v vttt e 255
setup macro functions 252
SUMMATY - ¢ ov ettt e et e e e e eee s 263
system macros, summary of. 265
USING «.ov et e 251
variables. 88, 258
C-SPY options
Extra Options.covin it 347
Images...... ..o 340
Plugins. i 341
SEUDP v vttt 339
C-SPYLink.o 34
C-STAT for static analysis, documentation for. 23
C++terminology. . . . oo oot 24
Data bits (debugger option)., 358
data breakpoints, OVerviewcooeuenon. .. 106
Data Coverage (Memory window context menu) 142
data coverage, in Memory window. 141
data log breakpoints, overview 107
Data Log Summary window 191
Data Log Summary (Simulatormenu) 368
DataLogwindow, 188
Data Log (Simulatormenu) 368
ddf (filename extension), selecting afile 51
Debug Logwindow, 79
Debug menu (C-SPY main window). 57
Debug Port (Atmel-ICE option) 343
Debug Port (AVR ONE! option). 348
Debug Port JTAGICE3 option)ovvvuvnn... 351
Debug Port (Power Debugger option). 362

383

384

Debug (Report Assert option).covuenen.n.. 81

--debugfile (cspybatoption) 318
debugger concepts, definitionsof 32
debugger drivers
simulator 36
Debugger Macros window 304
debugger SyStem OVerviewveieienen.n.. 33
debugging projects
externally built applications. 52
loading multiple images. 53
debugging, RTOS awarenessc....... 31
debugWIRE i 369-370
Default communication (Serial Port option) 358
__delay (C-SPY system macro)c....... 269
Delay (Autostep Settings option) 82
Delete (Breakpoints window context menu). 118
Device description file (debugger option). 340
device descriptionfiles 51
definitionof L il 55
MEMOTY ZONES .+« et e vve e eeee e eeeeeenes 135
modifying 55
TEZISIET ZOMC. « . v vt ettt e e e e 135
Device ID (Fuse Handler option) 376, 378
Devices After (Atmel-ICE option) 343,363
Devices After (AVR ONE! option). 349
Devices After (Dragonoption) 360
Devices After JTAGICE mklII option). 355
Devices After JTAGICE3 option) 352
Devices Before (Atmel-ICE option) 343,363
Devices Before (AVR ONE! option) 349
Devices Before (Dragon option). 360
Devices Before (JTAGICE mklIl option) 355
Devices Before JTAGICE3 option). 352
Disable All (Breakpoints window context menu) 118
Disable (Breakpoints window context menu) 118
__disablelnterrupts (C-SPY system macro) 270
--disable_internal_eeprom (C-SPY command line option) 319
--disable_interrupts (C-SPY command line option) 319
Disassembly window 71

C-SPY® Debugging Guide
for AVR

CONEXEMENUottt ettt et e e e e 73
disclaimer. 2
DLIB

consuming breakpoints, 110

Naming Convention.veuenenenen .. 26
do (macro statement)t 261
document conventions 24
documentation

overview of guides. il 23

overview of thisguide 21
Download control (Atmel-ICE option) 344
Download control (AVR ONE! option) 349
Download control (Dragon option). 360
Download control (JTAGICE mkII option) 356
Download control JTAGICE3 option). 352
Download control (Power Debugger option) 363
--download_only (C-SPY command line option) 319
Dragonoptionscoiiiii.. 359, 361
Dragon (C-SPY driver)........ ..., 43

MENU .« .ttt ettt e e et 369
Driver (debuggeroption) 339
__driverType (C-SPY systemmacro)................ 270
--drv_communication (C-SPY command line option). . . .319
--drv_communication_log (C-SPY command line option) 320
--drv_debug_port (C-SPY command line option). 320
--drv_download_data (C-SPY command line option). . .. 321
--drv_dragon (C-SPY command line option) 321

--drv_power_debugger (C-SPY command line option). . . 322
--drv_preserve_app_section (C-SPY command

Ne option)o vt 322
--drv_preserve_boot_section (C-SPY command
lineoption)c.coiuin i 322

--drv_set_exit_breakpoint (C-SPY command line option) 323
--drv_set_getchar_breakpoint

(C-SPY command line option) 323
--drv_set_putchar_breakpoint

(C-SPY command line option) 324
--drv_suppress_download (C-SPY command line option) 324
--drv_use_PDI (C-SPY command line option) 325

--drv_verify_download (C-SPY command line option) . .325

E

Edit Expressions (Trace toolbar). 165
Edit Settings (Trace toolbar). 165
Edit (Breakpoints window context menu). 118
edition, of thisguide i, 2
EEPROM
contents, preserving in Atmel-ICE. 345
contents, preserving in AVRONE! 350
contents, preserving in Dragon 361
contents, preserving in JTAGICEmkKII 357
contents, preserving in JTAGICE3 353
contents, preserving in Power Debugger 364
--eeprom_size (C-SPY command line option) 325
Enable All (Breakpoints window context menu). 118
Enable Log File (Log File option). 80
Enable simulation (Interrupts option) 248
Enable software breakpoints (Atmel-ICE option). 345
Enable software breakpoints (AVR ONE! option) 350
Enable software breakpoints (Dragon option). 362
Enable software breakpoints (JTAGICE mkII option) . ..357
Enable software breakpoints (JTAGICE3 option). 354
Enable software breakpoints (Power Debugger option) . . 365
Enable (Breakpoints window context menu). 118
Enable (Interrupt Log window context menu) 232,235
Enable (Power Log window contextmenu) 228
Enable (Timeline window contextmenu) 183
Enabled GPIO inputs (Power Debugging Settings option) 222
__enablelnterrupts (C-SPY system macro)............ 271
Enable/Disable Breakpoint (Call
Stack window contextmenu) 77
Enable/Disable Breakpoint (Disassembly window context
110153 111 A 74
Enable/Disable (Trace toolbar) 164
End address (Memory Save option) 144

endianness. See byte order
Ending Session Disables debugWire (AVR ONE! menu). 372
Ending Session Disables debugWIRE (Dragon menu) . . . 370

Index °

Ending Session Disables debugWire

(Power Debuggermenu).c.covnen... 373
Ending Session Disables
debugWIRE (JTAGICE mklImenu) 369
--enhanced_core (C-SPY command line option). 326
Enter Location dialog box. 130
__evaluate (C-SPY systemmacro) 271
Evaluate Now (Macro Quicklaunch
window conteXt menu)ouveirenenn.n.. 307
examples
C-SPY MacCrosoovvinennieeenn 253
interrupts
HIMET . . oot 246
macros
checking status of register. 255
creatingalogmacro, 256
using Quick Watch 255
performing tasks and continue execution. 116
tracing incorrect function arguments 115
execUserExecutionStarted (C-SPY setup macro) 264
execUserExecutionStopped (C-SPY setup macro) 264
execUserExit (C-SPY setupmacro) 265
execUserPreload (C-SPY setup macro) 263
execUserPreReset (C-SPY setup macro). 265
execUserReset (C-SPY setupmacro) 265
execUserSetup (C-SPY setup macro) 264
executed code, cOVering 208
execution history, tracing 163
Execution state (Cores window) 82
expressions. See C-SPY expressions
extended command line file, for cspybat. 326
Extra Options, for C-SPY 347
-f(cspybatoption). 326
File format (Memory Save option) 144
file types
device description, specifyinginIDE 51
MACTO . .« o v et et e et e et e e e et 50, 339

385

386

filename extensions

ddf, selecting device description file 51

mac, usingmacrofile. L. 50
Filename (Memory Restore option) 145
Filename (Memory Save option) 144
Fill dialog boX.o 145
__writeMemory8 (C-SPY system macro)............. 272
__writeMemory16 (C-SPY system macro)............ 272
__writeMemory32 (C-SPY system macro)............ 273
Find in Trace dialogbox......... 172
Findin Trace window. 173
Find in Trace (Disassembly window context menu). 75
Find (Memory window contextmenu) 142
Find (Trace toolbar) 165
first activation time (interrupt property)
definitionof 244
flash memory, load library module to................ 276
__fmessage (C-SPY macrokeyword)................ 261
for (macro statement) 261
Format (Registers User Groups
Setup window contextmenu) 157
Format (Registers window context menu) 155
formats, C-SPY input 31
Frequency in Hz (Atmel-ICE option) 343,363
Frequency in Hz (AVR ONE! option) 348
Frequency in Hz (Dragon option) 360
Frequency in Hz (JTAGICE mkII option). 355
Frequency in Hz JTAGICE3 option). 352
Function Profiler window 202
Function Profiler (Simulator menu) 368
Function Trace window 167
functions

C-SPY running to when starting 50, 339

most time spent in, locating 197
--function_profiling (cspybat option) 326
Fuse Handler dialogbox. 375, 377
Fuse Handler (Atmel-ICEmenu) 370
Fuse Handler (AVRONE! menu). 372
Fuse Handler (Dragonmenu) 370
Fuse Handler JTAGICE mkIl menu). 369

C-SPY® Debugging Guide
for AVR

Fuse Handler JTAGICE3 menu) 372
Fuse Handler (Power Debugger menu). 373
__getCycleCounter (C-SPY system macro) 274
Go to Source (Breakpoints window context menu). 118
Go to Source (Call Stack window context menu) 76
Go To Source (Timeline window context

MENU) .. ov vt eeeeee e e 183, 187, 225-226, 238
Go(Debugmenu)..........covuiuiniinnnn. 57, 67
Handshaking (debugger option) 359
Hardware reset on C-SPY reset (AVR ONE! option) 350
Hardware reset on C-SPY reset (Dragon option) 362
Hardware reset on C-SPY reset (JTAGICE mkII

OPLION) vt ettt e e e 357
hardware setup, power consumption because of 216
highlighting, inC-SPY 68
IAR debugger driver plugin (debugger option). 366
icons,inthisguide 25
if else (macro statement). 260
if (macrostatement)c.cviininan... 260
Ignore (Report Assertoption) 81
Images Window. it 60
Images, loading multiple. 340
immediate breakpoints, overview 107
Include (Log Fileoption) 80
input formats, C-SPY o ool 31
Input Mode dialogbox 78
input, special characters in Terminal I/O window. 78
installation directory oo 24
Instruction bits After (Atmel-ICE option). 343,363
Instruction bits After (AVR ONE! option) 349

Instruction bits After (Dragon option). 360
Instruction bits After JTAGICE mklII option) 356
Instruction bits After JTAGICE3 option) 352
Instruction bits Before (Atmel-ICE option). 343,363
Instruction bits Before (AVR ONE! option) 349
Instruction bits Before (Dragon option) 360
Instruction bits Before JTAGICE mklII option) 356
Instruction bits Before JTAGICE3 option) 352
Instruction Profiling (Disassembly window context menu) 74
Intel-extended, C-SPY input format 31
Intel-extended, C-SPY output format 34
interference, power consumption because of 217
interrupt handling, power consumption during 215
Interrupt Log Summary window. 233
interrupt system, using device description file 245
interrupts
adapting C-SPY system for target hardware 245
simulated, introductionto 243
timer,example. i 246
USING SYSLEM MACIOS .« . v vv et eee e e et enennn 245
Interrupts dialogbox. oL 248
__isBatchMode (C-SPY system macro) 275
italic style, inthisguide 25

I/O register. See SFR

)

JTAG daisy chain (AVR ONE! option) 348
JTAG daisy chain (Dragon option). 360
JTAG daisy chain JTAGICE mKII option) 355
JTAG daisy chain JTAGICE3 option). 352
JTAG Port (Atmel-ICE option). 343
JTAG Port (AVRONE!option) 348
JTAG Port (Dragonoption) 360
JTAG Port JTAGICE mkIl option) 355
JTAG Port JTAGICE3 option) 352
JTAG Port (Power Debugger option) 363
JTAGICE mkIl options.covuvnvnn... 354, 357
JTAGICE mKII (C-SPY driver) 43

Index °

hardware installation 44

1001C) L AN 369
--jtagicemklII_use_software_breakpoints
(C-SPY command line option) 329
--jtagice_clock (C-SPY command line option) 327
--jtagice_do_hardware_reset
(C-SPY command line option) 327
--jtagice_leave_timers_running
(C-SPY command line option) 328
--jtagice_preserve_eeprom (C-SPY command line option)328
--jtagice_restore_fuse (C-SPY command line option). . . .328
JTAGICE3 0ptionso oo vt e e e eeaenn 351,353
JTAGICE3 (C-SPY driver).coviunennen. .. 41

hardware installation 38, 40,42

813110 PP 371
labels (assembler), viewing. 89
--leave_target_running (C-SPY command line option). . . 329
Length (Fill option)., 145
library functions

C-SPY support for using, plugin module 331

onlinehelpfor........... 24
lightbulb icon, in this guide. 25
linker options

typographic convention 25

consuming breakpoints, 110
Little Endian (Memory window context menu) 142
__loadImage (C-SPY system macro) 275
loading multiple debug files, list currently loaded 60
loading multiple images, 53
Localswindowo .. 93
log breakpoints, overview. 106
Log communication (debugger option). 346, 359, 366
Log File dialogboX., 80
Log Messages (Fuse Handler option) 371, 379
Logging>Set Log file (Debugmenu) 59
Logging>Set Terminal I/O Log file (Debug menu). 59
loop statements, in C-SPY macros 261

387

388

low-power mode, power consumption during. 214

M

mac (filename extension), using a macro file 50
--macro (C-SPY command line option) 330
macro files, specifying 50, 339
Macro Quicklaunch window. 306
Macro Registration window 302
MACTO SLAtEMENES . . o\ vt v et e e e e e e 260
macros

CXECULINE v vt ettt ettt i e e e 253

USING &« vttt ettt 251
--macro-param (C-SPY command line option) 330
main function, C-SPY running to when starting 50, 339
Memory Fill (Memory window context menu). 142
Memory Restore dialogbox 144
Memory Restore (Memory window context menu) 143
Memory Save dialogbox i, 143
Memory Save (Memory window context menu). 143
Memory Window.ot 140
MEMOTY ZOMES. « « « v e vov v e te e et eee e ee e eee e 134

in device descriptionfile 135
__memoryRestore (C-SPY system macro) 276
__memoryRestoreFromFile (C-SPY system macro). 277
__memorySave (C-SPY system macro) 277
__memorySaveToFile (C-SPY system macro)......... 278
Memory>Restore (Debugmenu) 59
Memory>Save (Debugmenu). 59
menu bar, C-SPY-specific 57
__message (C-SPY macro keyword) 261
__messageBoxYesCancel (C-SPY system macro) 279
__messageBoxYesNo (C-SPY system macro) 279
Messages window, amount of output 79
migration, from earlier IAR compilers 23
MISRA C

documentationouuitititiiaiaann 23
Mixed Mode (Disassembly window context menu) 75
Motorola, C-SPY input format 31

C-SPY® Debugging Guide
for AVR

Motorola, C-SPY output format 34
Move to PC (Disassembly window context menu) 73
NAMing CONVENHONS ovvt vt ete s e e 25

Navigate (Timeline window context menu)182, 186, 224, 237
New Breakpoint (Breakpoints window context menu) . . . 118
Next Statement (Debugmenu) 58
Next Symbol (Symbolic Memory window context menu) 148

o

Open Setup Window (Power Log window context menu) 229
Open User Groups Setup Window (Registers window context

00153 110) 155
__openFile (C-SPY systemmacro). 280
Operation (Filloption), 145
operators, sizeof in C-SPY 88
optimizations, effects on variables 88
options

intheIDE i 337

onthecommandline 315, 347
Options (Stack window context menu). 152
__orderInterrupt (C-SPY system macro). 281
Originator (debugger option) 341
-p (C-SPY command lineoption) 331
__param (C-SPY macrokeyword) 259
parameters

tracing incorrect values of 68

typographic convention 25
Parity (debuggeroption) 358
part number, of this guide. 2
PC (Cores window)., 83
peripheral units

debugging power consumption for. 211

detecting mistakenly unattended 215
detecting unattended, 215
device-specific.o 55
displayed in Registers window. 134
in an event-driven system 215
in C-SPY expressionsoouvuvenen... 87
initializing using setup macros. 252

peripherals register. See SFR
Please select one symbol

(Resolve Symbol Ambiguity option) 104
--plugin (C-SPY command line option) 331
plugin modules (C-SPY). oLt 34
loading.t 51
Plugins (C-SPY options). 341
pop-up menu. See context menu
Port (Serial Portoption) 358
power consumption, measuring 198, 211
Power Debuggeroptions. 362, 364
Power Debugger (C-SPY driver) 39
Power Debugging Settings dialogbox 222
Power Debugging Settings (Power Debugger menu)373
Power Log Setup window. 220
Power Log Setup (Power Debugger menu). 374
Power Logwindow. i 226
Power Log Window (Power Debugger menu) 374
Power Log (Timeline window context menu). 225
power sampling. 198
prerequisites, programming experience 21
Preserve EEPROM contents (Atmel-ICE option) 345
Preserve EEPROM contents (AVR ONE! option) 350
Preserve EEPROM contents (Dragon option). 361
Preserve EEPROM contents (JTAGICE mkII option) . ..357
Preserve EEPROM contents (JTAGICE3 option). 353
Preserve EEPROM contents (Power Debugger option) . . 364
Preserve FLASH (Atmel-ICE option). 346
Preserve FLASH (AVR ONE! option) 351
Preserve FLASH (JTAGICE mkll option) 358
Preserve FLASH (JTAGICE3 option) 354
Preserve FLASH (Power Debugger option) 365

Index °

Previous Symbol (Symbolic

Memory window context menu) 148
probability (interrupt property)

definitionof L L 244
Profile Selection (Timeline window context
100155 110) PPt 184, 226, 239
profiling

analyzingdata i 199

onfunctionlevel 199

oninstructionlevel. 201
profiling information, on functions and instructions. 197
profiling sources

trace(calls) i 198, 203

trace (flat) 198, 204
program execution

breaking. i 106-107

iNC-SPY 63
Program Fuses (Fuse Handler option). 376, 379
programming eXperience 21
--program_fuses_after_download
(C-SPY command line option) 332
program. See application
projects, for debugging externally built applications. 52
publication date, of this guide. 2
Quick Watchwindow 100

executing C-SPY macros. 255
Range for (Viewing Range option). 194
Read Fuses (Fuse Handler option) 376, 379
__readFile (C-SPY system macro) 282
__readFileByte (C-SPY system macro) 283
__readMemoryByte (C-SPY system macro). 283
__readMemory8 (C-SPY system macro) 283
__readMemory16 (C-SPY system macro) 284

389

390

__readMemory32 (C-SPY system macro) 284

reference information, typographic convention. 25
Refresh (Debugmenu), 59
TEEISET GTOUPS « .« o v v ettt e e e e e 134
predefined, enabling. 153
Register User Groups Setup window 156
registered trademarks oL 2
__registerMacroFile (C-SPY system macro) 285
Registers window 153
registers, displayed in Registers window 153
Remove All Groups (Registers User
Groups Setup window context menu). 157
Remove All (Macro Quicklaunch window
CONEEXEMENU) . & v vttt ettt e e e et e e ee e 307

Remove (Macro Quicklaunch window context menu) . . .307
Remove (Registers User Groups

Setup window contextmenu)o.... 157
repeat interval (interrupt property), definition of 244
Replace (Memory window context menu) 142
Report Assert dialogbox 81
Reset(Debugmenu).............ooviiiiininenn.. 58
__resetFile (C-SPY system macro). 285
Resolve Source Ambiguity dialogbox 131
Restore fuses when ending debug session (Atmel-ICE
OPLION) © vttt ettt e e e e 345
Restore fuses when ending debug session (AVR ONE!
OPLION) « vttt ettt e e e e e 350
Restore fuses when ending debug session (JTAGICE3
OPLION) « vttt ettt e e e e 354
Restore fuses when ending debug session (Power Debugger
OPLION) vttt et e e e 365
Restore (Memory Restore option). 145
return (macro statement)., 261
ROM-monitor, definitionof 34
RTOS awareness debugging. 31
RTOS awareness (C-SPY pluginmodule) 31
Run timers in stopped mode (Atmel-ICE option) 345
Run timers in stopped mode (AVR ONE! option) 350
Run timers in stopped mode (Dragon option) 361

Run timers in stopped mode (JTAGICE mkII option). . . . 357

C-SPY® Debugging Guide
for AVR

Run timers in stopped mode (JTAGICE3 option). 353
Run timers in stopped mode (Power Debugger option). . . 364
Run to Cursor (Call Stack window context menu) 76
Run to Cursor (Debugmenu) 58
Run to Cursor (Disassembly window context menu) 73
Run to Cursor, command for executing 68
Runto (C-SPYoption), 50, 339

S

Save to File (Register User Groups

Setup window contextmenu) 157
Save to File (Registers window context menu). 155
Save (Memory Save option)coouinan... 144
Save (Tracetoolbar) 165
Scale (Viewing Range option) 194
Select All (Debug Log window context menu). 80
Select Graphs
(Timeline window context menu). 183, 187, 226, 238
Select plugins to load (debugger option). 341
serial port setup, hardware drivers 358
Set Data Breakpoint (Memory window context menu). . . 143
Set Data Log
Breakpoint (Memory window context menu) 143
Set Next Statement (Debugmenu) 59
Set Next Statement (Disassembly window context menu) . 74
__setCodeBreak (C-SPY system macro). 286
__setComplexBreak (C-SPY system macro) 287
__setDataBreak (C-SPY systemmacro) 289
__setLogBreak (C-SPY system macro) 291
__setSimBreak (C-SPY system macro) 292
__setTraceStartBreak (C-SPY system macro) 293
__setTraceStopBreak (C-SPY system macro).......... 294
setup macro file, registering 50
setup macro functions. i, 252

reserved Names.ttt 263
Setup macros (debuggeroption), .. 339
Setup (C-SPY options)o .. 339
SFR

in Registers window. 155

using as assembler symbols 87
shortcut menu. See context menu
Show all images (Images window context menu). 61
Show Arguments (Call Stack window context menu). 76
Show Cycles (Interrupt Log window context
MENW) « .ottt ettt e e e 229,233,235
Show Numerical Value (Timeline
window conteXt menu)tai.... 187,225
Show offsets (Stack window context menu) 151
Show only (Image window contextmenu) 61
Show Time (Interrupt Log window context
10755 110 P 229,233,235
Show variables (Stack window context menu) 151
--silent (C-SPY command line option) 333
simulating interrupts, enabling/disabling 248
Simulatormenu. L i 368
simulator, introduction 36
Size (Timeline window context menu) 187,225
Sizeof 88
__smessage (C-SPY macro keyword). 261
software breakpoints
enabling for Atmel-ICE 345
enabling for AVR Dragon 329, 362
enabling for AVRONE! 329, 350
enabling for JTAGICEmKII 329, 357
enabling for JTAGICE3. 329, 354
enabling for Power Debugger 365
use Of . ..o 110
software delay, power consumption during. 213
Solid Graph (Timeline window context menu). 187, 225
__sourcePosition (C-SPY system macro) 295
special function registers (SFR)
in Registers window. 155
using as assembler symbols 87
Stack window 149
StACK.MAC . o .ottt 251
standard C, sizeof operator in C-SPY 88
Start address (Fill option) 145
Start address (Memory Save option). 144
State Log Setup (Power Debugger menu)............. 374

Index °

State Log Summary (Power Debugger menu). 374
State Logwindow. i 231
State Log (Power Debugger menu). 374
State Log (Timeline window context menu). 238
static analysis
documentationfor L L. 23
Staticswindow L 97
Status (Cores window)coiiiennnean... 83
stdin and stdout, redirecting to C-SPY window 77
Step Into (Debugmenu) 58
Step Into, descriptionc.ciiiiia.. 65
Step Out (Debugmenu) ..., 58
Step Out, description.ovuitnn . 66
Step Over (Debugmenu)c.c.oiu.. 58
Step Over, description.oueienenenennn. 65
step points, definitionof L L 64
Stop bits (debugger option)., 359
Stop Debugging (Debugmenu) 58
__strFind (C-SPY system macro) 295
__subString (C-SPY system macro) 296
Suppress download
Atmel-ICEoption 344,363
AVRONE!option.c.oiiiiiiia... 349
debuggeroption.c.iiiiiiiin.. 366
Dragon optionc.ouiuiiiniiinnen.. 360
JTAGICE mkIloption, 356
JTAGICE3 0ptionvvvininininenen.n. 352
Symbolic Memory window. 146
Symbols window, 102
symbols, using in C-SPY expressions. 86
System breakpoints on (Atmel-ICE option) 345
System breakpoints on (AVR ONE! option)........... 350
System breakpoints on (Dragon option) 362
System breakpoints on (JTAGICE mkII option). 357
System breakpoints on (JTAGICE3 option) 354
System breakpoints on (Power Debugger option). 365

391

392

T

Target Consistency Check (Atmel-ICE option)344, 364

Target Consistency Check (AVR ONE! option)........ 349
Target Consistency Check (Dragon option) 361
Target Consistency Check (JTAGICE mkII

OPLION) © vttt ettt e e e e 356
Target Consistency Check JTAGICE3 option) 353
Target device is part of a JTAG

daisy chain (Atmel-ICE option) 343,363
Target device is part of a JTAG

daisy chain (AVR ONE! option). 348
Target device is part of a JTAG

daisy chain (Dragonoption) 360
Target device is part of a JTAG

daisy chain JTAGICE mkII option). 355
Target device is part of a JTAG

daisy chain (JTAGICE3 option) 352
target system, definitionof 33
__targetDebuggerVersion (C-SPY system macro) 296
Terminal IO Log Files (Terminal IO Log Files option) .. .78
Terminal I/O Log Files dialogbox 78
Terminal /Owindow 69, 77
terminology. . ..o v 24
Text search (Find in Trace option) 172
Third-Party Driver (debugger options) 365
Time Axis Unit (Timeline

window contextmenu) 184, 187, 226, 239
Timeline window 181, 184, 229, 235
Timeline (Power Debuggermenu) 374
--timeout (C-SPY command line option) 333
timer interrupt, example 246
timers (Atmel-ICE), running in stopped mode 345
timers (AVR ONE!), running in stopped mode. 350
timers (Dragon), running in stopped mode 361
timers (JTAGICE mklIl), running in stopped mode. 357
timers (JTAGICE3), running in stopped mode 353
timers (Power Debugger), running in stopped mode. 364
Toggle Breakpoint (Code) (Call

Stack window contextmenu) 76

C-SPY® Debugging Guide
for AVR

Toggle Breakpoint (Code) (Disassembly

window CONteXt MENU) vv v vvi e i e eee e e, 74
Toggle Breakpoint (Log) (Call
Stack window contextmenu) 76
Toggle Breakpoint (Log) (Disassembly
Window CONteXt MENU) . . . oo vt vv e e e eeee e e 74
Toggle Breakpoint (Trace Start) (Call
Stack window contextmenu) 77
Toggle Breakpoint (Trace Start) (Disassembly
WIndow CONtEXt MENU) . . . oot v v e et eee e eee e e 74
Toggle Breakpoint (Trace Stop) (Call
Stack window contextmenu) 77
Toggle Breakpoint (Trace Stop) (Disassembly
window CONteXt MENU) oot vvi e i e eee e e, 74
Toggle source (Trace toolbar). 164
__toLower (C-SPY system macro) 297
toolsicon,inthisguide.............. 25
__toString (C-SPY systemmacro) 297
__toUpper (C-SPY system macro) 298
ITACE vttt e et e et e 161, 175
Trace Expressions window 170
trace start and stop breakpoints, overview 106
Trace Start breakpoints dialogbox 168
Trace Stop breakpoints dialogbox 169
Trace windowttt 164
trace (calls), profiling source 198, 203
trace (flat), profiling source 198, 204
trace, in Timeline window 181, 184, 229, 235
trademarks 2
typographic conventions. 25
UBROF. . . .o e 31
Unavailable, C-SPY message 89
Universal Binary Relocatable Object Format. See UBROF
__unloadImage(C-SPY system macro). 298
USB
Atmel-IVEoption 346
AVRONE!option.ooiiiiiininan... 346

Dragonoption, 346
JTAGICE mkIloption., 355
JTAGICE3optioncovvnenininnnnnnn.. 346
Power Debuggeroption........................ 346
USB ID (Atmel_ICEoption) 346
USBID (AVRONE! option)cooveennnn... 346
USB ID (Dragon option).vovvvvnnnnenenen... 346
USB ID (JTAGICE mkIl option) 355
USB ID (JTAGICE3 option).o ovovevieenene 346
USB ID (Power Debugger option) 346
Use command line options (debugger option). 347
Use Extra Images (debugger option). 340
Use PDI JTAGICE mkll option) 355, 359
Use UBROF reset vector (debugger option) 339
user application, definitionof 33
-v (C-SPY command line option) 333
Value (Filloption)coviinninenen... 145
__var (C-SPY macrokeyword). 258
variables
effects of optimizations 88
information, limitationon 88
using in C-SPY expressions. 86
variance (interrupt property), definitionof 244
Verify all (debuggeroption) 366
version
ofthisguide.......... 2
View Group (Registers window context menu) 155
View User Group (Registers window context menu) 155
Viewing Range dialogboxX 194
Viewing Range (Timeline window context menu) . . 187, 225
visualSTATE, C-SPY plugin module for 34
waiting for device, power consumption during. 213
warnings icon, inthisguide 25

Index °

Watchwindow 95
USING .ottt e 85
web sites, recommended. 24
while (macro statement) 261
windows, specific to C-SPY 59
With I/O emulation modules (linker option), using. 77
__writeFile (C-SPY systemmacro) 299
__writeFileByte (C-SPY system macro). 299
__writeMemoryByte (C-SPY system macro) 300
__writeMemory8 (C-SPY system macro). 300
__writeMemory16 (C-SPY system macro)............ 300
__writeMemory32 (C-SPY system macro)............ 301
zone
defined in device description file................. 135
InC-SPY 134
part of an absolute address. 130

Zoom (Timeline window context menu). . 183, 186, 225, 238

Symbols

__abortLaunch (C-SPY system macro). 267
__cancelAllInterrupts (C-SPY system macro) 268
__cancellnterrupt (C-SPY system macro). 268
__clearBreak (C-SPY systemmacro) 269
__closeFile (C-SPY systemmacro) 269
__delay (C-SPY systemmacro) 269
__disableInterrupts (C-SPY system macro) 270
__driverType (C-SPY system macro)................ 270
__enablelnterrupts (C-SPY system macro)............ 271
__evaluate (C-SPY systemmacro) 271
__fillMemory8 (C-SPY system macro) 272
__fillMemory16 (C-SPY system macro). 272
__fillMemory32 (C-SPY system macro). 273
__fmessage (C-SPY macro keyword)................ 261
__getCycleCounter (C-SPY system macro) 274
__isBatchMode (C-SPY system macro) 275

393

394

__loadImage (C-SPY systemmacro) 275

__memoryRestore (C-SPY system macro) 276
__memoryRestoreFromFile (C-SPY system macro). 2717
__memorySave (C-SPY system macro) 2717
__memorySaveToFile (C-SPY system macro)......... 278
__message (C-SPY macro keyword) 261
__messageBoxYesCancel (C-SPY system macro) 279
__messageBoxYesNo (C-SPY system macro) 279
__openFile (C-SPY system macro). 280
__orderInterrupt (C-SPY system macro). 281
__param (C-SPY macrokeyword) 259
__readFile (C-SPY systemmacro) 282
__readFileByte (C-SPY systemmacro) 283
__readMemoryByte (C-SPY system macro)........... 283
__readMemory8 (C-SPY system macro) 283
__readMemory16 (C-SPY system macro) 284
__readMemory32 (C-SPY system macro) 284
__registerMacroFile (C-SPY system macro) 285
__resetFile (C-SPY system macro). 285
__setCodeBreak (C-SPY system macro). 286
__setComplexBreak (C-SPY system macro) 287
__setDataBreak (C-SPY system macro) 289
__setLogBreak (C-SPY system macro) 291
__setSimBreak (C-SPY system macro) 292
__setTraceStartBreak (C-SPY system macro) 293
__setTraceStopBreak (C-SPY system macro). 294
__smessage (C-SPY macro keyword). 261
__sourcePosition (C-SPY system macro) 295
__strFind (C-SPY systemmacro) 295
__subString (C-SPY systemmacro) 296
__targetDebuggerVersion (C-SPY system macro) 296
__toLower (C-SPY systemmacro) 297
__toString (C-SPY systemmacro) 297
__toUpper (C-SPY systemmacro) 298
__unloadImage (C-SPY system macro) 298
__var (C-SPY macrokeyword). 258
__writeFile (C-SPY system macro) 299
__writeFileByte (C-SPY system macro).............. 299
__writeMemoryByte (C-SPY system macro) 300

C-SPY® Debugging Guide
for AVR

__writeMemory8 (C-SPY system macro). 300
__writeMemory16 (C-SPY system macro)............ 300
__writeMemory32 (C-SPY system macro)............ 301
-f(cspybatoption). 326
-p (C-SPY command lineoption) 331
-v (C-SPY command lineoption) 333
--attach_to_running_target (C-SPY command line option)315
--avrone_jtag_clock (C-SPY command line option). 316
--backend (C-SPY command line option) 316
--code_coverage_file (C-SPY command line option)317
--cpu (C-SPY command line option). 317
--cycles (C-SPY command line option) 318
--debugfile (cspybat option) 318
--disable_internal_eeprom (C-SPY command

Ne option)o v it 319
--disable_interrupts (C-SPY command line option) 319
--download_only (C-SPY command line option) 319
--drv_communication (C-SPY command line option). . . .319
--drv_communication_log (C-SPY command

lineoption)c.ooiuini i 320
--drv_debug_port (C-SPY command line option). 320

--drv_download_data (C-SPY command line option). . . . 321
--drv_dragon (C-SPY command line option) 321
--drv_power_debugger (C-SPY command line option). . . 322
--drv_preserve_app_section (C-SPY command

lineoption) iu it 322
--drv_preserve_boot_section (C-SPY command

lNe option)o v vt e 322
--drv_set_exit_breakpoint (C-SPY command

HNe option)o vt 323
--drv_set_getchar_breakpoint

(C-SPY command line option) 323
--drv_set_putchar_breakpoint

(C-SPY command line option) 324
--drv_suppress_download (C-SPY command

TN Option) . .« oottt e 324
--drv_use_PDI (C-SPY command line option) 325
--drv_verify_download (C-SPY command line option) .. 325
--eeprom_size (C-SPY command line option) 325
--enhanced_core (C-SPY command line option). 326

--function_profiling (cspybat option)
--jtagicemklII_use_software_breakpoints

(C-SPY command line option)
--jtagice_clock (C-SPY command line option)
--jtagice_do_hardware_reset

(C-SPY command lineoption)
--jtagice_leave_timers_running

(C-SPY command lineoption)
--jtagice_preserve_eeprom (C-SPY command

line Option) . .« ottt
--jtagice_restore_fuse (C-SPY command line option). . . .
--leave_target_running (C-SPY command line option). . .
--macro (C-SPY command line option)
--macro_param (C-SPY command line option).
--plugin (C-SPY command line option)
--program_fuses_after_download

(C-SPY command line option)
--silent (C-SPY command line option)
--timeout (C-SPY command line option)
--64bit_doubles (C-SPY command line option)
--64k_flash (C-SPY command line option).

Numerics

1x Units (Symbolic Memory window context menu)
--64bit_doubles (C-SPY command line option)
--64k_flash (C-SPY command line option).
8x Units (Memory window context menu)

Index °

395

	Brief contents
	Contents
	Tables
	Preface
	Who should read this guide
	Required knowledge

	What this guide contains
	Part 1. Basic debugging
	Part 2. Analyzing your application
	Part 3. Advanced debugging
	Part 4. Additional reference information

	Other documentation
	User and reference guides
	The online help system
	Web sites

	Document conventions
	Typographic conventions
	Naming conventions

	Part 1. Basic debugging
	The IAR C-SPY Debugger
	Introduction to C-SPY
	An integrated environment
	General C-SPY debugger features
	RTOS awareness

	Debugger concepts
	C-SPY and target systems
	The debugger
	The target system
	The application
	C-SPY debugger systems
	The ROM-monitor program
	Third-party debuggers
	C-SPY plugin modules

	C-SPY drivers overview
	Differences between the C-SPY drivers

	The IAR C-SPY Simulator
	The C-SPY Atmel-ICE driver
	Features
	Communication overview
	Hardware installation

	The C-SPY Power Debugger driver
	Features
	Communication overview
	Hardware installation

	The C-SPY JTAGICE3 driver
	Features
	Communication overview
	Hardware installation

	The C-SPY JTAGICE mkII/Dragon driver
	Features
	Communication overview
	Hardware installation

	The C-SPY AVR ONE! driver
	Features
	Communication overview
	Hardware installation

	Getting started using C-SPY
	Setting up C-SPY
	Setting up for debugging
	Executing from reset
	Using a setup macro file
	Selecting a device description file
	Loading plugin modules

	Starting C-SPY
	Starting a debug session
	Loading executable files built outside of the IDE
	Starting a debug session with source files missing
	Loading multiple images
	Editing in C-SPY windows

	Adapting for target hardware
	Modifying a device description file
	Initializing target hardware before C-SPY starts

	Reference information on starting C-SPY
	C-SPY Debugger main window
	Images window
	Get Alternative File dialog box

	Executing your application
	Introduction to application execution
	Briefly about application execution
	Source and disassembly mode debugging
	Single stepping
	Troubleshooting slow stepping speed
	Running the application
	Highlighting
	Viewing the call stack
	Terminal input and output
	Debug logging

	Reference information on application execution
	Disassembly window
	Call Stack window
	Terminal I/O window
	Terminal I/O Log File dialog box
	Debug Log window
	Log File dialog box
	Report Assert dialog box
	Autostep settings dialog box
	Cores window

	Variables and expressions
	Introduction to working with variables and expressions
	Briefly about working with variables and expressions
	C-SPY expressions
	Limitations on variable information

	Working with variables and expressions
	Using the windows related to variables and expressions
	Viewing assembler variables

	Reference information on working with variables and expressions
	Auto window
	Locals window
	Watch window
	Statics window
	Quick Watch window
	Symbols window
	Resolve Symbol Ambiguity dialog box

	Breakpoints
	Introduction to setting and using breakpoints
	Reasons for using breakpoints
	Briefly about setting breakpoints
	Breakpoint types
	Breakpoint icons
	Breakpoints in the C-SPY simulator
	Breakpoints in the C-SPY hardware debugger drivers
	Breakpoint consumers

	Setting breakpoints
	Various ways to set a breakpoint
	Toggling a simple code breakpoint
	Setting breakpoints using the dialog box
	Setting a data breakpoint in the Memory window
	Setting breakpoints using system macros
	Useful breakpoint hints

	Reference information on breakpoints
	Breakpoints window
	Breakpoint Usage window
	Code breakpoints dialog box
	Log breakpoints dialog box
	Data breakpoints dialog box
	Data Log breakpoints dialog box
	Immediate breakpoints dialog box
	Complex breakpoints dialog box
	Enter Location dialog box
	Resolve Source Ambiguity dialog box

	Memory and registers
	Introduction to monitoring memory and registers
	Briefly about monitoring memory and registers
	C-SPY memory zones
	Memory configuration for the C-SPY simulator

	Monitoring memory and registers
	Defining application-specific register groups
	Monitoring stack usage

	Reference information on memory and registers
	Memory window
	Memory Save dialog box
	Memory Restore dialog box
	Fill dialog box
	Symbolic Memory window
	Stack window
	Registers window
	Register User Groups Setup window

	Part 2. Analyzing your application
	Trace
	Introduction to using trace
	Reasons for using trace
	Briefly about trace
	Requirements for using trace

	Collecting and using trace data
	Getting started with trace
	Trace data collection using breakpoints
	Searching in trace data
	Browsing through trace data

	Reference information on trace
	Trace window
	Function Trace window
	Trace Start breakpoints dialog box
	Trace Stop breakpoints dialog box
	Trace Expressions window
	Find in Trace dialog box
	Find in Trace window

	The application timeline
	Introduction to analyzing your application’s timeline
	Briefly about analyzing the timeline
	Requirements for timeline support

	Analyzing your application’s timeline
	Displaying a graph in the Timeline window
	Navigating in the graphs
	Analyzing performance using the graph data
	Getting started using data logging

	Reference information on application timeline
	Timeline window—Call Stack graph
	Timeline window—Data Log graph
	Data Log window
	Data Log Summary window
	Viewing Range dialog box

	Profiling
	Introduction to the profiler
	Reasons for using the profiler
	Briefly about the profiler
	Requirements for using the profiler

	Using the profiler
	Getting started using the profiler on function level
	Analyzing the profiling data
	Getting started using the profiler on instruction level

	Reference information on the profiler
	Function Profiler window

	Code coverage
	Introduction to code coverage
	Reasons for using code coverage
	Briefly about code coverage
	Requirements and restrictions for using code coverage

	Reference information on code coverage
	Code Coverage window

	Power debugging
	Introduction to power debugging
	Reasons for using power debugging
	Briefly about power debugging
	Requirements and restrictions for power debugging

	Optimizing your source code for power consumption
	Waiting for device status
	Software delays
	Low-power mode diagnostics
	CPU frequency
	Detecting mistakenly unattended peripherals
	Peripheral units in an event-driven system
	Finding conflicting hardware setups
	Analog interference

	Debugging in the power domain
	Displaying a power profile and analyzing the result
	Detecting unexpected power usage during application execution
	Changing the graph resolution

	Reference information on power debugging
	Power Log Setup window
	Power Debugging Settings
	Timeline window—Power graph
	Power Log window
	State Log Setup window
	State Log window
	State Log Summary window
	Timeline window—State Log graph

	Part 3. Advanced debugging
	Interrupts
	Introduction to interrupts
	Briefly about the interrupt simulation system
	Interrupt characteristics
	C-SPY system macros for interrupt simulation
	Target-adapting the interrupt simulation system

	Using the interrupt system
	Simulating a simple interrupt

	Reference information on interrupts
	Interrupts dialog box

	C-SPY macros
	Introduction to C-SPY macros
	Reasons for using C-SPY macros
	Briefly about using C-SPY macros
	Briefly about setup macro functions and files
	Briefly about the macro language

	Using C-SPY macros
	Registering C-SPY macros—an overview
	Executing C-SPY macros—an overview
	Registering and executing using setup macros and setup files
	Executing macros using Quick Watch
	Executing a macro by connecting it to a breakpoint
	Aborting a C-SPY macro

	Reference information on the macro language
	Macro functions
	Macro variables
	Macro parameters
	Macro strings
	Macro statements
	Formatted output

	Reference information on reserved setup macro function names
	execUserPreload
	execUserExecutionStarted
	execUserExecutionStopped
	execUserSetup
	execUserPreReset
	execUserReset
	execUserExit

	Reference information on C-SPY system macros
	_ _abortLaunch
	_ _cancelAllInterrupts
	_ _cancelInterrupt
	_ _clearBreak
	_ _closeFile
	_ _delay
	_ _disableInterrupts
	_ _driverType
	_ _enableInterrupts
	_ _evaluate
	_ _fillMemory8
	_ _fillMemory16
	_ _fillMemory32
	_ _getCycleCounter
	_ _isBatchMode
	_ _loadImage
	_ _memoryRestore
	_ _memoryRestoreFromFile
	_ _memorySave
	_ _memorySaveToFile
	_ _messageBoxYesCancel
	_ _messageBoxYesNo
	_ _openFile
	_ _orderInterrupt
	_ _readFile
	_ _readFileByte
	_ _readMemory8, _ _readMemoryByte
	_ _readMemory16
	_ _readMemory32
	_ _registerMacroFile
	_ _resetFile
	_ _setCodeBreak
	_ _setComplexBreak
	_ _setDataBreak
	_ _setLogBreak
	_ _setSimBreak
	_ _setTraceStartBreak
	_ _setTraceStopBreak
	_ _sourcePosition
	_ _strFind
	_ _subString
	_ _targetDebuggerVersion
	_ _toLower
	_ _toString
	_ _toUpper
	_ _unloadImage
	_ _writeFile
	_ _writeFileByte
	_ _writeMemory8, _ _writeMemoryByte
	_ _writeMemory16
	_ _writeMemory32

	Graphical environment for macros
	Macro Registration window
	Debugger Macros window
	Macro Quicklaunch window

	The C-SPY command line utility—cspybat
	Using C-SPY in batch mode
	Starting cspybat
	Output
	Invocation syntax

	Summary of C-SPY command line options
	General cspybat options
	Options available for all C-SPY drivers
	Options available for the simulator driver
	Options available for all C-SPY hardware debugger drivers
	Options available for the C-SPY Power Debugger driver
	Options available for the C-SPY JTAGICE mkII driver, the C-SPY Dragon driver, the C-SPY JTAGICE3 driver, and the C-SPY AVR ONE! driver
	Options available for the C-SPY JTAGICE mkII driver, the C-SPY Dragon driver, the C-SPY Atmel-ICE driver, the C-SPY Power Debugger driver, the C-SPY JTAGICE3 driver, and the C-SPY AVR ONE! driver
	Options available for the C-SPY JTAGICE mkII driver and the C-SPY Dragon driver
	Options available for the C-SPY Atmel-ICE driver, The C-SPY Power Debugger driver, the C-SPY JTAGICE3 driver, and the C-SPY AVR ONE! driver
	Options available for the C-SPY JTAGICE mkII driver and the C-SPY Dragon driver
	Options available for the C-SPY Dragon driver

	Reference information on C-SPY command line options
	--64bit_doubles
	--64k_flash
	--attach_to_running_target
	--avrone_jtag_clock
	--backend
	--code_coverage_file
	--cpu
	--cycles
	--debugfile
	--disable_internal_eeprom
	--disable_interrupts
	--download_only
	--drv_communication
	--drv_communication_log
	--drv_debug_port
	--drv_download_data
	--drv_dragon
	--drv_power debugger
	--drv_preserve_app_section
	--drv_preserve_boot_section
	--drv_set_exit_breakpoint
	--drv_set_getchar_breakpoint
	--drv_set_putchar_breakpoint
	--drv_suppress_download
	--drv_use_PDI
	--drv_verify_download
	--eeprom_size
	--enhanced_core
	-f
	--function_profiling
	--jtagice_clock
	--jtagice_do_hardware_reset
	--jtagice_leave_timers_running
	--jtagice_preserve_eeprom
	--jtagice_restore_fuse
	--jtagicemkII_use_software_breakpoints
	--leave_target_running
	--macro
	--macro_param
	-p
	--plugin
	--program_fuses_after_download
	--silent
	--timeout
	-v

	Part 4. Additional reference information
	Debugger options
	Setting debugger options
	Reference information on general debugger options
	Setup
	Images
	Plugins

	Reference information on C-SPY hardware debugger driver options
	Atmel-ICE 1
	Atmel-ICE 2
	Communication
	Extra Options
	AVR ONE! 1
	AVR ONE! 2
	JTAGICE3 1
	JTAGICE3 2
	JTAGICE mkII 1
	JTAGICE mkII 2
	Serial Port
	Dragon 1
	Dragon 2
	Power Debugger 1
	Power Debugger 2
	Third-Party Driver options

	Additional information on C-SPY drivers
	Reference information on C-SPY driver menus
	C-SPY driver
	Simulator menu
	JTAGICE mkII menu
	Dragon menu
	Atmel-ICE menu
	JTAGICE3 menu
	AVR ONE! menu
	Power Debugger menu

	Reference information on the C-SPY hardware debugger drivers
	Fuse Handler dialog box
	Fuse Handler dialog box

	Resolving problems
	No contact with the target hardware

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z
	Symbols
	Numerics

