IAR Embedded
Workbench

JAR Assembler User
Guide

for the Renesas
RX Family

ARX-5 m

2

IAR Assembler User Guide
for RX

COPYRIGHT NOTICE
© 2009-2023 TAR Systems AB.

No part of this document may be reproduced without the prior written consent of IAR
Systems AB. The software described in this document is furnished under a license and
may only be used or copied in accordance with the terms of such a license.

DISCLAIMER

The information in this document is subject to change without notice and does not
represent a commitment on any part of [AR Systems. While the information contained
herein is assumed to be accurate, IAR Systems assumes no responsibility for any errors
or omissions.

In no event shall IAR Systems, its employees, its contractors, or the authors of this
document be liable for special, direct, indirect, or consequential damage, losses, costs,
charges, claims, demands, claim for lost profits, fees, or expenses of any nature or kind.

TRADEMARKS

IAR Systems, IAR Embedded Workbench, Embedded Trust, C-Trust, IAR Connect,
C-SPY, C-RUN, C-STAT, IAR Visual State, IAR KickStart Kit, I-jet, I-jet Trace,
I-scope, IAR Academy, IAR, and the logotype of IAR Systems are trademarks or
registered trademarks owned by IAR Systems AB.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

Renesas is a registered trademark of Renesas Electronics Corporation. RX is a
trademark of Renesas Electronics Corporation.

Adobe and Acrobat Reader are registered trademarks of Adobe Systems Incorporated.

All other product names are trademarks or registered trademarks of their respective
owners.

EDITION NOTICE
Fifth edition: August 2023

Part number: ARX-5

This guide applies to version 5.x of IAR Embedded Workbench® for the Renesas RX
family.

Internal reference: BB15, tut2017, asrct2010.3, V_110411, ISHP.

Contents

TADIES ... 11

Preface ... 13
Who should read this guide ... 13
How to use this guide ... 13
What this guide contains ..., 14
Other documentation ...

User and reference guides ...

The online help SYStEMovieriiriiniiiiirieeie e
Document coNVENtions ..o 15
Typographic CONVENTIONSccueeuerrieuirririerieieieieriesiesiesieseeeieeaeeneeneas 16
Naming CONVENLIONScocerueruieieieiiienienientenieneneneereeeeeieeseeneeseeeens 17
Introduction to the IAR Assembler for RX ..., 19
Introduction to assembler programming ... 19
Getting StATtedcc.eoveruiririeeirieeetetetee ettt 19
Modular programming ... 20
External interface details ... 21
Assembler iNVOCAtION SYNTAXceeveverrerierreriererieresenesesseeeeeeneenees 21

Passing OPLONS ...cooveiueeriiiiieieeie ettt st

Environment variables

EITOr T@LUIN COARS ..vvinviniiiiiiniieiieieeitete e
SoUrce fOrMAL ... s 23
RX architecture considerationsccccocoooeiviicnniicnnns 24

ASSEMDIET INSIIUCHIONS ...veuviviriiieiieiieiieeeiee e 24

Code and data in big-endian applicationscceccevceeveeveernierreennnen.

Expressions, operands, and operators

INEEZET CONSLANESeeuveeniieiieieeieete e

ASCII character CONSIANLSceceeeeieieierienienieneneneeeeeeeeeeneeennes 25
Floating-point CONSTANESc..coverereerueriierieieieiieeererenrenreniesresiesiesneene 26
True and falSeccceveriririnieieeeeeee e 26

SYMDOIS ..ttt 26

LaDELS oo ettt e e e et 27

RegiSter SYMDOISooiiiiiiiieiiieeieeee et 27
Predefined Symbolsccccoceviriririiiiiiiiciciene e 28
Absolute and relocatable eXpressionscecceceevererereneneneneenees 30
EXPression reStriCtioNSoc.eecvereeriereeneenieenieesiesiesieseeseesseesieenns 31
List file format ... 32

SUMMATY ettt sttt sttt ee e 32

Symbol and cross-reference tablec..coceveevievierenenenienienienenene 32
Programming hints ... 33

Using C-style preprocessor dir€CtiVeso.ceueververrenrenenierereeeeeene 33
Tracking call frame usage ...

Call frame information OVEIVIEWccccceeeriieeriiieeniieenieenieeeieeennnes

Call frame information in more detail ...

Defining a names blOCKccceeeririniniieiiiiccneneeeee
Defining a common blOCKccocueriiriiniiniiniiieicccceeceeeee e
Annotating your source code within a data blockcc.ccceeveeencnnee 36
Specitying rules for tracking resources and the stack depth 37
Using CFI expressions for tracking complex casesc..coceeeeueeneee 39
Stack usage analysis dir€CtiVeScccceveevveieienienieneneneneneneeeeene 40
Examples of using CFI dir€Ctivescccecveirierieneneneneneneeeeeenen 40
AsSemMbIer OPLIONS ... 43
Using command line assembler options ..o, 43
Specifying command line options ...
Specifying Parameterscoccoeereeeruerieereeeeeieeeee e
Extended command line fileccceceevierieiienenenienenenenceceee 44
Summary of assembler options ... 45
Description of assembler options ..., 47
—=CASE_INSENSITIVE .vvvviiiiieeiieiieieiie e eeeeeeeee e e et e e e eaaeeeseaaeeesesaaaeeeas 47

IAR Assembler User Guide
for RX

Contents °

“=IAZ_CTTOT ittt 51
—=d1aZ_TEMATK ...eviiiiiiiciece e 51
“=QIAZ_SUPPIESS .eervviruieriiiniieieenieeie ettt st e st et e e st ete s esbeeseeebeeneeas 52
-=d1aZ_WATNINE ..eveeviiiiieienteerterteeeet ettt ettt

--diagnostics_tables

“=QIT_FITST 1ottt e e et

--macro_positions_in_diagnOStiCSccecevvereriererierereneeieieeennens 59
—=NEIM_FITST weviiiiiiieniinieee ettt 59
B Ao X 0107 o | NSRRI

--no_call_frame_infocccccoiviiniiniiniinc e
--no_normalize_file_macros ...
--no_path_in_file_mMacrosc..cccevererereneneneneneeeeeeeeeeeeeeene
--n0_System_includeccoecveviiiiiiiiiiniiniiiinne
“SNO_WAITHNEZS .evveveiiriiriteitentestentetetetetestestestesuesiesseeseesesseeseeneeseensen
--NO_WIAP_dIAZNOSHICS ..eveueruienienieieieienientestesieste st sie et et esee e

--nonportable_path_warnings

==ONLY_SEAOUL .ottt et
SmOULPUL, =0 eveveeiniieteeetetetet et tes ettt bbbttt ettt be e
SPALCH e et 63
—-predef_MACTOSceovviriiriiriniiriireetetee ettt 63
“PIEINCIUAR ...ttt 63

S=PIEPIOCESS ..eveevenreurenrententententessestesseeseeseeseestentensesensessessessessessessesseene 64

STEIMATKS ottt 65
SmSTIBIE ottt 65
==SOUICE_ENCOMING ..evirviiiriieiieieteniertentert ettt ettt 65
--SYSteM_INCIUAE_dirovviiriiiiiiiiiieiieeiceieeete e 66
SoEEXE_OUL oottt ettt ettt ettt ettt ens

--use_paths_as_written

--uSe_UNiX_direCtory_SeParatorscceeveereeerueereeriuenreereenieesseenseeneens 67
S8 _LEXE TN ittt 67
SmVETSION ettt ettt ettt ettt et ettt et sa e bt bbbt sbe et e e eneene 68
--warnings_affect_exit_codeccccovervirniniiiniiinieneeeeeee 68
== WAININZS_ATC_EITOTS ...vevveurerrerrerterterseeseeseerteseeeensesessessessessesessesseene 68
Assembler OPerators ... 69
Precedence of assembler operators ... 69
Summary of assembler operators ... 69
Parenthesis operator
Function operators
UNArY OPETALOLS ..covieureeuiirtieteeieeitesitenieenteente et et eite s saeesaeesseesaeenes
Multiplicative arithmetic OPEratorscccceevveerierrierieneeneereeneennes 70
Additive arithmetic OPEratorsc..ceceeeeeeierieriereneneneneseeeeeeneen 71
Shift OPEIAtOTSc.veuieriiriiienieeieeieetetee ettt 71
COMPATiSON OPEIALOLS ...ecveerviereieieeieeierteetesresttesieenieesieesseenseenseeneens 71
Equivalence OPeratorscocceeeereeereeieieieeienieniene e seeseeneeseenees 72
L0ZICal OPEIALOLScuvinviritieiieiieiieit ettt 72
Conditional OPETALOTccoeeriirrieriiirienientenieerte ettt eie e 72
Description of assembler operators ... 72
() Parenthiesisoooouiieiuieieiiiceieeeeee ettt 72
F MUIPHCAION .eeiiiiiiiiiieiiiteeetee ettt 73
F UNATY PIUS ettt 73
F AAItION oottt 73
— UNATY MINUS coeeiiiiiieiieiceteee ettt sttt s 73
— SUDLIACLION ..cviiiiiiiieieeieeteeteee ettt 74

/ Division

IAR Assembler User Guide
for RX

Contents °

?: Conditional operator ...

LSS than ...ccveiiiiiiiiiiiccc e
<=Less than or €qual t0c..coceveriririririeieiecceeene e 75
<>, 1= NOt €qQUAL 0 oo 75
=, == EQUAl t0 i
> Greater than ...t

>= Greater than or equal to

&& Logical AND ..cc.ooiiiiiiiiiieieceeeeeee et

S Bitwise AND ..c..oiiiiiiiiiiiiictcecceteee ettt

~ BItwise NOT ...oiiiiiiiiiieeteeeeee e 77
[Bitwise OR ...c.covviiiiiiiiiiiiiiiccic e 77
A Bitwise eXclusive OR ..c..cocociiiiiiiiiiiiiiicieneneenencneeeeeeeeene 71
o MOAUIO ..ottt 78
TL0ZICal NOT ..ottt 78
1 L0ZICAl OR ..ottt 78
<< Logical Shift 1eftcoceeeriiiiiieiiieiecce e 78
>> Logical shift rightoooeiiiiiniiieee 79
BYTE]1 First byte

BYTE2 Second DYteccoueiriinieinieinienieiiieiceiceeeceeeneee e 79
BYTE3 Third BYLE ...c.ccovveieiiiiniiieicercteceteeeeeeseeeeee e 80
BYTE4 FOurth bytec.cocveoeeiiiiiniiiniiinicecieeccenenieseseeeeeeeene 80
DATE Current time/datececeeceeieieiieienienieneneseneeeeceeeeeeeas 80
HIGH High DYc.cvviiiiiiiiniiieecncecree et
HWRD High word ...

LOW LOW DY@ ..ottt
LWRD LOW WOIAcccviiiiiiiiiiniiniiiiiinicicieectesiesiee s 81
SFB SECtion DEZIN ...ccvevveviiriiiiiiiciieieieieectcresesese et
SFE SECHION €Nveuveiiiiiieiieiieieeiieteee ettt
SIZEOF section size

UGT Unsigned greater thanc..cc.cocceeeeveevievienenienienieneneeeeneeeennens 84
ULT Unsigned 1S thancccceeeeeirerieeieieieieniesienieseseseeeencene 84
UPPER Third DYEEccvvviiiiiniiiniiieiiecricieereeeeceeseee et 84
XOR Logical exclusive ORccccccevieiinininenineneneneneceeeeeeeene 84

8

IAR Assembler User Guide
for RX

ASSEMDIET AIFECLIVES ...t 85

Summary of assembler directives ... 85
Description of assembler directives ... 89
Module control dire€Ctivesccoiveiiiiiiiiiiiiiieiniceceeceece e 89

Symbol control directives

Mode coONtrol dirECHIVEScccueieriiieriieeiieeiieesiieerreesreeereeeeeeeseneenens

Section control directives

Value assignment dir€CtiVescoceeveierierierieneneneneneeeeeeeeeeeenees 98
Conditional assembly dir€CtiVEsccoeveereerierrieriienienieeneenieenieenne 100
Macro processing dir€CtiVesc.ccuevuerverrenriereeieieiererenenenenennenne 101
Listing control dir€CVEScecvevvevverienerieneneneeeeieneenteseeneeneeneens 109
C-style preprocessor dir€CtiVescoeereereenieerieerieriienieneeneeneennes 113

Data definition or allocation directives .

Assembler control dir€CtiVescccveeeevieeeieeeiieeeiieeeeee e

Call frame information directives for stack usage analysis 129

Pragma dir€CtiVeS ...t 131
Summary of pragma directives ... 131
Descriptions of pragma directives ..o 131
diag_defaultcocoeiiiiiiiiiii e 131

QIAZ_CITOT ettt ettt st 132

dIAZ_TEMATK ..oiiiiiiiiiiieeie ettt 132

IAZ_SUPPIESS ..erveverieiiiiiiiiieiieietetesteereere ettt ettt sresae e 133

dIag_ WAIMING ...ovviiiierierierieeieetetete ettt ettt et see e 133

TIESSAZE -.eeuverureenrerirenueentreteeteenteetesstessaesseesseenteeseensesatesanesseenseenseenne 133

Contents °

DIABNOSLICSoooooeurreerrereeeeeiiiissesseece s eeseeeesssss s ssssssssssss e 135

Message format ... 135
Severity levels
Remark ..o

Warning

BITOT ettt ettt e
Fatal @ITOTooiviieiiieeceeeeee et
Setting the Severity leVel ..o 136
INtErNAl @ITOT ..ooviiiiiiiiiicciee et e e 136
INAEX e 137

IAR Assembler User Guide
10 for RX

Tables

1: Typographic conventions used in this UIAEcc.cccevervieieiieiienieneiinercneenee 16
2: Naming conventions used in this gUIdecccceevieiriiriieiienienienenerererese e 17
3: Assembler environment vVariablesc..c.ccoevirinininininiteieeeee e 22
4: Assembler error return COUGScoerimiririririeieieientesestesie ettt ettt see e eaeas 22
5: Integer constant formats

6: ASCII character constant fOrmatscocceceeeereerieienieneninieeeeererereresesenieene 25
7: Floating-pOint CONSANESc..eeeeteiertiriertentinienteettetetetestestestesreseesseebeeseeseeeenaeneens 26
8: Predefined re@iSter SYMDOLScceveririirieieienieieieseseee ettt 27
9: Predefined SYMDOIScccouiriiriininiiiieiccccenee et 28
10: Symbol and cross-reference tableccoccoeverereninininieeeeeeeee e 32
11: Code sample with call frame informationcccceveeverieriinieniienieneneeneee 41
12: Assembler Options SUMIMATYccccccveverierererrinsiereereeeetetensensesessessesseeseeeeeens 45
13: Assembler directives summary -..... .. 85
14: Module control directives 90
15: Symbol control dir€CtIVEScccceerueeueruieieiiienienienesteetete ettt 92
16: Mode CONLIOl AITECLIVES ...coveeueruiriiriieiieiieieiere sttt ettt 93
17: Section cONtrol dir€CIVEScoceeeruieiiiiiiiiiieniiieeeice et s 96
18: Value assignment dir€CtIVESecveruerueriereneniniiniierietetetererere s ene

19: Macro processing dirf€CtiVESeeveeeierierieriereneneetetetetestesrenresresresaeessenene

20: Listing cOntrol dir€CtIVEScc.eeveeriieriiriieeiiiieeiesite sttt et siee e seeen

21: C-style preprocessor dir€CtiVESc.ceereeeeienierienieniinieeeteeeteiesresresresreeeeeeee

22: Data definition or allocation directives ...

23: Assembler control dir€CtivVesccecierieriinieniininieieieiceieiee e

24: Call frame information directives names block

25: Call frame information directives common block

26: Call frame information directives for data blocksc.ceccvevenceinicreccncnnenee 126
27: Unary operators in CFL @XPIresSionscececeevevenieneneneneeeeeeneeneensenrenennes 127
28: Binary operators in CFL eXPressionscceceverereneneneeneeneenienieneenreseneennes 128
29: Ternary operators in CFL @Xpressionscoccevveveenieneenieeneenieenieeneseeeveenens 129
30: Call frame information directives for tracking resources and CFAs

31: Call frame information directives for stack usage analysisc..ccccecerrerennenne.

12

IAR Assembler User Guide
for RX

32: Pragma directives summary

Preface

Welcome to the IAR Assembler User Guide for RX. The purpose of this guide is
to provide you with detailed reference information that can help you to use
the IAR Assembler for RX to develop your application according to your
requirements.

Who should read this guide

You should read this guide if you plan to develop an application, or part of an
application, using assembler language for the RX microcontroller, and need to get
detailed reference information on how to use the IAR Assembler for RX. In addition,
you should have working knowledge of the following:

o The architecture and instruction set of the RX microcontroller (refer to the chip
manufacturer’s documentation)

o General assembler language programming

o Application development for embedded systems

o The operating system of your host computer.

How to use this guide

When you first begin using the IAR Assembler for RX, you should read the chapter
Introduction to the IAR Assembler for RX.

If you are an intermediate or advanced user, you can focus more on the reference
chapters that follow the introduction.

If you are new to using IAR Embedded Workbench, we suggest that you first go through
the tutorials, which you can find in IAR Information Center in the product, under
Product Explorer. They will help you get started.

What this guide contains

14

What this guide contains

Below is a brief outline and summary of the chapters in this guide.

Introduction to the IAR Assembler for RX provides programming information. It
also describes the source code format, and the format of assembler listings.

Assembler options first explains how to set the assembler options from the
command line and how to use environment variables. It then gives an alphabetical
summary of the assembler options, and contains detailed reference information
about each option.

Assembler operators gives a summary of the assembler operators, arranged in order
of precedence, and provides detailed reference information about each operator.

Assembler directives gives an alphabetical summary of the assembler directives, and
provides detailed reference information about each of the directives, classified into
groups according to their function.

® Pragma directives describes the pragma directives available in the assembler.

e Diagnostics contains information about the formats and severity levels of diagnostic

messages.

Other documentation

IAR Assembler User Guide
for RX

User documentation is available as hypertext PDFs and as a context-sensitive online
help system in HTML format. You can access the documentation from the IAR
Information Center or from the Help menu in the IAR Embedded Workbench IDE. The
online help system is also available via the F1 key.

USER AND REFERENCE GUIDES

The complete set of IAR development tools is described in a series of guides.
Information about:

System requirements and information about how to install and register the IAR
products are available in the Installation and Licensing Quick Reference Guide and
the Licensing Guide.

Using the IDE for project management and building, is available in the /DE Project
Management and Building Guide for RX.
Using the IAR C-SPY® Debugger and C-RUN runtime error checking, is available
in the C-SPY® Debugging Guide for RX.

Programming for the IAR C/C++ Compiler for RX and linking, is available in the
IAR C/C++ Development Guide for RX.

Preface __4

o Programming for the IAR Assembler for RX, is available in the /AR Assembler
User Guide for RX.

o Performing a static analysis using C-STAT and the required checks, is available in
the C-STAT® Static Analysis Guide.

e Porting application code and projects created with a previous version of the IAR
Embedded Workbench for RX, is available in the IJAR Embedded Workbench®
Migration Guide.

o Migrating from an older UBROF-based product version to a newer version that uses
the ELF/DWAREF object format, is available in the guide /AR Embedded
Workbench® Migrating from UBROF to ELF/DWARF.

o Migrating from the Renesas High-performance Embedded Workshop and e2studio
toolchains for RX to IAR Embedded Workbench® for RX, is available in the guide
Migrating from Renesas to IAR Embedded Workbench.

Note: Additional documentation might be available depending on your product
installation.

THE ONLINE HELP SYSTEM
The context-sensitive online help contains information about:

IDE project management and building
Debugging using the IAR C-SPY® Debugger
The IAR C/C++ Compiler and Linker

The IAR Assembler

C-STAT

Document conventions

When, in the IAR documentation, we refer to the programming language C, the text also
applies to C++, unless otherwise stated.

When referring to a directory in your product installation, for example rx\doc, the full
path to the location is assumed, for example c¢: \Program Files\IAR
Systems\Embedded Workbench N.n\rx\doc, where the initial digit of the version
number reflects the initial digit of the version number of the IAR Embedded Workbench
shared components.

Document conventions

16

IAR Assembler User Guide
for RX

TYPOGRAPHIC CONVENTIONS

The IAR documentation set uses the following typographic conventions:

Style Used for
computer * Source code examples and file paths.
* Text on the command line.
* Binary, hexadecimal, and octal numbers.

parameter A placeholder for an actual value used as a parameter, for example
filename.h where filename represents the name of the file.

[option] An optional part of a linker or stack usage control directive, where [
and] are not part of the actual directive, but any [, 1, {, or } are part
of the directive syntax.

{option} A mandatory part of a linker or stack usage control directive, where {
and } are not part of the actual directive, but any [, 1, {, or } are part
of the directive syntax.

[option] An optional part of a command line option, pragma directive, or library
filename.

[a|b]|c] An optional part of a command line option, pragma directive, or library
filename with alternatives.

{a|b]|c} A mandatory part of a command line option, pragma directive, or
library filename with alternatives.

bold Names of menus, menu commands, buttons, and dialog boxes that
appear on the screen.

italic * A cross-reference within this guide or to another guide.

* Emphasis.

An ellipsis indicates that the previous item can be repeated an arbitrary
number of times.

Identifies instructions specific to the IAR Embedded Workbench® IDE
interface.

Identifies instructions specific to the command line interface.

Identifies helpful tips and programming hints.

Identifies warnings.

Table 1: Typographic conventions used in this guide

Preface __4

NAMING CONVENTIONS

The following naming conventions are used for the products and tools from IAR, when
referred to in the documentation:

Brand name Generic term

IAR Embedded Workbench® for RX IAR Embedded Workbench®
IAR Embedded Workbench® IDE for RX the IDE

IAR C-SPY® Debugger for RX C-SPY, the debugger

IAR C-SPY® Simulator the simulator

IAR C/C++ Compiler™ for RX the compiler

IAR Assembler™ for RX the assembler

IAR ILINK Linker™ ILINK, the linker

IAR DLIB Runtime Environment™ the DLIB runtime environment

Table 2: Naming conventions used in this guide

Document conventions

IAR Assembler User Guide
18 for RX

Introduction to the IAR
Assembler for RX

e Introduction to assembler programming
e Modular programming

e External interface details

e Source format

o RXarchitecture considerations

e Expressions, operands, and operators

o List file format

e Programming hints

e Tracking call frame usage

Introduction to assembler programming

Even if you do not intend to write a complete application in assembler language, there
might be situations where you find it necessary to write parts of the code in assembler,
for example, when using mechanisms in the RX microcontroller that require precise
timing and special instruction sequences.

To write efficient assembler applications, you should be familiar with the architecture
and instruction set of the RX microcontroller. Refer to the Renesas hardware
documentation for syntax descriptions of the instruction mnemonics.

GETTING STARTED

To ease the start of the development of your assembler application, you can:

o Work through the tutorials—especially the one about mixing C and assembler
modules—that you find in the Information Center, under Product Explorer

o Read about the assembler language interface—also useful when mixing C and
assembler modules—in the /AR C/C++ Development Guide for RX

Modular programming

o In the IAR Embedded Workbench IDE, you can base a new project on a template
for an assembler project.

Modular programming

Itis widely accepted that modular programming is a prominent feature of good software
design. If you structure your code in small modules—in contrast to one single
monolith—you can organize your application code in a logical structure, which makes
the code easier to understand, and which aids:

e efficient program development
e reuse of modules

® maintenance.

The IAR development tools provide different facilities for achieving a modular structure
in your software.

Typically, you write your assembler code in assembler source files—each file becomes
a named module. If you divide your source code into many small source files, you will
get many small modules. You can divide each module further into different subroutines.

A section is a logical entity containing a piece of data or code that should be mapped to
a physical location in memory. Use the section control directives to place your code and
data in sections. A section is relocatable. An address for a relocatable section is resolved
at link time. Sections enable you to control how your code and data is placed in memory.
A section is the smallest linkable unit, which allows the linker to include only those units
that are referred to.

If you are working on a large project you will soon accumulate a collection of useful
routines that are used by several of your applications. To avoid ending up with a huge
amount of small object files, collect modules that contain such routines in a library
object file. Note that a module in a library is always conditionally linked. In the IAR
Embedded Workbench IDE, you can set up a library project, to collect many object files
in one library. For an example, see the tutorials in the Information Center.

To summarize, your software design benefits from modular programming, and to
achieve a modular structure you can:
Create many small modules, one per source file

In each module, divide your assembler source code into small subroutines
(corresponding to functions on the C level)

o Divide your assembler source code into sections, to gain more precise control of
how your code and data finally is placed in memory

IAR Assembler User Guide
20 for RX

Introduction to the IAR Assembler for RX °

e Collect your routines in libraries, which means that you can reduce the number of
object files and make the modules conditionally linked.

External interface details

This section provides information about how the assembler interacts with its
environment:

® Assembler invocation syntax, page 21
® Passing options, page 22

® Environment variables, page 22

® Error return codes, page 22

You can use the assembler either from the AR Embedded Workbench IDE or from the
command line. Refer to the IDE Project Management and Building Guide for RX for
information about using the assembler from the IAR Embedded Workbench IDE.

ASSEMBLER INVOCATION SYNTAX
The invocation syntax for the assembler is:

iasmrx [options] [sourcefile] [options]

For example, when assembling the source file prog. s, use this command to generate an
object file with debug information:

iasmrx prog --debug

By default, the IAR Assembler for RX recognizes the filename extensions s, asm, and
msa for source files. The default filename extension for assembler output is o.

Generally, the order of options on the command line, both relative to each other and to
the source filename, is not significant. However, there is one exception—when you use
the -1 option—the directories are searched in the same order that they are specified on
the command line.

If you run the assembler from the command line without any arguments, the assembler
version number and all available options, including brief descriptions, are directed to
stdout and displayed on the screen.

21

External interface details

22

IAR Assembler User Guide
for RX

PASSING OPTIONS
You can pass options to the assembler in three different ways:

e Directly from the command line

Specify the options on the command line after the iasmrx command, see Assembler
invocation syntax, page 21.

e Via environment variables

The assembler automatically appends the value of the environment variables to every
command line, so it provides a convenient method of specifying options that are
required for every assembly, see Environment variables, page 22.

e Via a text file by using the - £ option, see -f, page 55.

For general guidelines for the option syntax, an options summary, and more information
about each option, see the Assembler options chapter.

ENVIRONMENT VARIABLES
You can use these environment variables with the IAR Assembler:
Environment variable Description
IASMRX Specifies command line options, for example:
set IASMRX=la . --warnings_are_errors
IASMRX_INC Specifies directories to search for include files, for example:

set IASMRX_INC=c:\myinc\

Table 3: Assembler environment variables

For example, setting this environment variable always generates a list file with the name
temp.lst:

set IASMRX=-1 temp.lst

For information about the environment variables used by the compiler and linker, see the
IAR C/C++ Development Guide for RX.

ERROR RETURN CODES

When using the IAR Assembler from within a batch file, you might have to determine
whether the assembly was successful to decide what step to take next. For this reason,
the assembler returns these error return codes:

Return code Description

0 Assembly successful, warnings might appear.

Table 4: Assembler error return codes

Introduction to the IAR Assembler for RX °

Return code Description

1 Woarnings occurred, provided that the option
--warnings_affect_exit_code was used.

2 Non-fatal errors or fatal assembly errors occurred (making the assembler
abort).
3 Crashing errors occurred.

Table 4: Assembler error return codes (Continued)

Source format

The format of an assembler source line is as follows:

[label [:]] [operation] [operands] [; comment]

where the components are as follows:

label A definition of a label, which is a symbol that represents

an address. If the label starts in the first column—that is, at
the far left on the line—the : (colon) is optional.

operation An assembler instruction or directive. This must not start
in the first column—there must be some whitespace to the
left of it.

operands An assembler instruction or directive can have zero, one,

or more operands. The operands are separated by commas.
An operand can be:

* a constant representing a numeric value or an address

* a symbolic name representing a numeric value or an
address (where the latter also is referred to as a label)

* a floating-point constant
* a register
¢ a predefined symbol
* the program location counter (PLC)
* an expression.
comment Comment, preceded by a ; (semicolon)

C or C++ comments are also allowed.

The components are separated by spaces or tabs.

23

RX architecture considerations

24

A source line cannot exceed 2,047 characters.

Tab characters, ASCII 093, are expanded according to the most common practice, that
is, to columns 8, 16, 24 etc. This affects the source code output in list files and debug
information. Because tabs might be set up differently in different editors, do not use tabs
in your source files.

RX architecture considerations

ASSEMBLER INSTRUCTIONS

The IAR Assembler for RX supports the syntax for assembler instructions as described
in the Renesas hardware documentation. It complies with the requirement of the RX
architecture on word alignment.

CODE AND DATA IN BIG-ENDIAN APPLICATIONS

When you assemble big-endian applications, the linker must be able to distinguish code
from data. This is done using the assembly directives CODE and DATA. Any object read
as data must be preceded by a DATA directive, and any lines that are to be executed must
be preceded by a CODE directive.

There is no default mode for the assembler, and there will be no assembly error
messages if these directives are omitted—but you will not be able to link successfully.

For more information, see Mode control directives, page 93.

Expressions, operands, and operators

IAR Assembler User Guide
for RX

Expressions consist of expression operands and operators.

The assembler accepts a wide range of expressions, including both arithmetic and
logical operations. All operators use 64-bit two’s complement integers. Range checking
is performed if a value is used for generating code.

Expressions are evaluated from left to right, unless this order is overridden by the
priority of operators. See also Assembler operators.

These operands are valid in an expression:

o Constants for data or addresses, excluding floating-point constants

o Symbols—symbolic names—which can represent either data or addresses, where
the latter also is referred to as labels

o The program location counter (PLC), $ (dollar).

Introduction to the IAR Assembler for RX °

The operands are described in greater details on the following pages.

Note: You cannot have two symbols in one expression, or any other complex
expression, unless the expression can be resolved at assembly time. If they are not
resolved, the assembler generates an error.

INTEGER CONSTANTS

Because all IAR assemblers use 64-bit two’s complement internal arithmetic, integers
have a (signed) range from 203 10 293-1.

Constants are written as a sequence of digits with an optional preceding - (minus) sign
in front to indicate a negative number.

Commas and decimal points are not permitted.

The following types of number representation are supported:

Integer type Example

Binary 1010b

Octal 12349

Decimal 1234, -1
Hexadecimal OFFFFh, OXFFFF

Table 5: Integer constant formats

Note: Both the prefix and the suffix can be written with either uppercase or lowercase
letters.

ASCIl CHARACTER CONSTANTS

ASCII constants can consist of any number of characters enclosed in single or double
quotes. Only printable characters and spaces can be used in ASCII strings. If the quote
character itself will be accessed, two consecutive quotes must be used:

Format Value

'"ABCD' ABCD (four characters)

"ABCD" ABCD'\O0"' (five characters the last ASCII null)
'A''B!' A'B

T NE %

"1 (4 quotes) '

"' (2 quotes) Empty string (no value)

" " (2 double quotes) "\0" (an ASCII null character)

\! ', for quote within a string, asin 'I\'d love to'

Table 6: ASCII character constant formats

25

Expressions, operands, and operators

26

IAR Assembler User Guide
for RX

Format Value
\\ \, for \ within a string
A\ ", for double quote within a string

Table 6: ASCII character constant formats (Continued)

FLOATING-POINT CONSTANTS

The IAR Assembler accepts floating-point values as constants and converts them into
IEEE single-precision (32-bit) or double-precision (64-bit) floating-point format, or
fractional format.

Floating-point numbers can be written in the format:
[+|-1[digits].[digits] [{E|e}[+|-1digits]

This table shows valid examples:

Format Value

10.23 1.023 x 10’
1.23456E-24 1.23456 x 1024
1.0E3 1.0x 103

Table 7: Floating-point constants
Spaces and tabs are not allowed in floating-point constants.
Note: Floating-point constants do not give meaningful results when used in expressions.

When a fractional format is used—for example, DQ15—the range that can be
representedis -1.0 <= x < 1.0.Any value outside that range is silently saturated into
the maximum or minimum value that can be represented.

If the word length of the fractional data is n, the fractional number will be represented
as the 2-complement number: x * 2~ (n-1).

TRUE AND FALSE

In expressions, a zero value is considered false, and a non-zero value is considered true.

Conditional expressions return the value O for false and 1 for true.

SYMBOLS

User-defined symbols can be up to 255 characters long, and all characters are
significant. Depending on what kind of operation a symbol is followed by, the symbol
is either a data symbol or an address symbol where the latter is referred to as a label. A

Introduction to the IAR Assembler for RX °

symbol before an instruction is a label and a symbol before, for example the EQU
directive, is a data symbol. A symbol can be:

e absolute—its value is known by the assembler

e relocatable—its value is resolved at link time.

Symbols must begin with a letter, a—z or A—Z, ? (question mark), or _ (underscore).
Symbols can include the digits 0-9 and $ (dollar).

Symbols may contain any printable characters if they are quoted with * (backquote), for
example:

‘strange#label’

Case is insignificant for built-in symbols like instructions, registers, operators, and
directives. For user-defined symbols, case is by default significant but can be turned on
and off using the Case sensitive user symbols (--case_insensitive) assembler
option. For more information, see --case_insensitive, page 47.

Use the symbol control directives to control how symbols are shared between modules.
For example, use the PUBLIC directive to make one or more symbols available to other
modules. The EXTERN directive is used for importing an untyped external symbol.

Note that symbols and labels are byte addresses. See also Data definition or allocation
directives, page 118.

LABELS

Symbols used for memory locations are referred to as labels.

Program location counter (PLC)

The assembler keeps track of the start address of the current instruction. This is called
the program location counter.

To refer to the program location counter in your assembler source code, use the $
(dollar) character. For example:

bra S ; Loop forever

REGISTER SYMBOLS
This table shows the existing predefined register symbols:

Name Size Description

R1-R15 32 bits General purpose registers

SP/RO 32 bits Register RO, the currently active SP

Table 8: Predefined register symbols

27

Expressions, operands, and operators

Name Size Description

PSW 32 bits Status register

PC 32 bits Program counter

USp 32 bits User mode stack pointer

ISP 32 bits Supervisor mode stack pointer

FPSW 32 bits Floating-point status register

BPSW 32 bits Backup status register (fast interrupt)
BPC 32 bits Backup program counter (fast interrupt)
FINTV 32 bits The fast interrupt vector register

INTB 32 bits The INTVEC maskable interrupt vector

base register

Table 8: Predefined register symbols

PREDEFINED SYMBOLS

The IAR Assembler for RX defines a set of symbols for use in assembler source files.
The symbols provide information about the current assembly, allowing you to test them
in preprocessor directives or include them in the assembled code.

These predefined symbols are available:

Symbol Value

__BIG_ENDIAN__ An integer that identifies the setting of the option
--endian. If --endian=b has been specified, the value
of this symbol is defined to 1 (TRUE). If --endian=1
has been specified, the value of this symbol is defined to 0
(FALSE).

_ _BUILD_NUMBER_ _ A unique integer that identifies the build number of the
assembler currently in use. The build number does not
necessarily increase with an assembler that is released
later.

__CORE_ An integer that identifies the chip core in use. The value
reflects the setting of the ——core option and is defined
to 1 for the RXvl architecture. 2 for the RXv2

architecture, or 3 for the RXv3 architecture.

__DATA_MODEL_ _ An integer that identifies the data model in use. The
symbol reflects the --data_model option and can be
definedto __NEAR__,__FAR__,or __HUGE__.

__DATE_ The current date in dd/Mmm/yyyy format (string).

Table 9: Predefined symbols

IAR Assembler User Guide
28 for RX

Introduction to the IAR Assembler for RX °

Symbol Value

__DOUBLE_ _ Either 32 or 64, depending on the setting of the option
--double.

__FPU__ An integer that is set to 1 when the code is assembled
with support for a hardware floating-point unit, and to 0
otherwise.

__FILE _ The name of the current source file (string).

__TIAR_SYSTEMS_ASM___

__TIASMRX__

__INTSIZE__

__LINE__

_ _LITTLE_ENDIAN__

__TIME__

__VER_ _

IAR assembler identifier (number). The current value is 8.
Note that the number could be higher in a future version
of the product. This symbol can be tested with #ifdef
to detect whether the code was assembled by an
assembler from IAR Systems.

An integer that is set to 1 when the code is assembled
with the IAR Assembler for RX.

Either 16 or 32, depending on the setting of the option
--int.

The current source line number (number).

An integer that identifies the setting of the option
--endian. If -—endian=1 has been specified, the value
of this symbol is defined to 1 (TRUE). If --endian=b
has been specified, the value of this symbol is defined to 0
(FALSE).

The current time in hh :mm: ss format (string).

The version number in integer format; for example,
version 4.17 is returned as 417 (number).

Table 9: Predefined symbols (Continued)

Including symbol values in code

Several data definition directives make it possible to include a symbol value in the code.
These directives define values or reserve memory. To include a symbol value in the code,
use the symbol in the appropriate data definition directive.

29

Expressions, operands, and operators

30

IAR Assembler User Guide
for RX

For example, to include the time of assembly as a string for the program to display:

name timeOfAssembly
extern printStr
public printTime
section CODE:CODE

data8 ; select data mode
; (required for big-endian)
time: dc8 __ _TIME_ ; String representing the
; time of assembly.
code ; select code mode
; (required for big-endian)
printTime:
mov.l #time,R1 ; Load address of time
; string in R1.
bsr printStr ; Call string output routine.
end

Testing symbols for conditional assembly

To test a symbol at assembly time, use one of the conditional assembly directives. These
directives let you control the assembly process at assembly time.

For example, if you want to assemble separate code sections depending on whether you
are using an old assembler version or a new assembler version, do as follows:

#if (__VER__ > 300) ; New assembler version
#else ; 0ld assembler version
#endif

For more information, see Conditional assembly directives, page 100.

ABSOLUTE AND RELOCATABLE EXPRESSIONS

Depending on what operands an expression consists of, the expression is either absolute
or relocatable. Absolute expressions are those expressions that only contain absolute
symbols or relocatable symbols that cancel each other out.

Expressions that include symbols in relocatable sections cannot be resolved at assembly
time, because they depend on the location of sections. These are referred to as
relocatable expressions.

Such expressions are evaluated and resolved at link time, by the IAR ILINK Linker.
They can only be built up out of a maximum of one symbol reference and an offset after
the assembler has reduced it.

Introduction to the IAR Assembler for RX °

For example, a program could define absolute and relocatable expressions as follows:

name simpleExpressions
section MYCONST:CONST (2)
first dc32 5 ; A relocatable label.
second equ 10 + 5 ; An absolute expression.
dc32 first ; Examples of some legal
dc32 first + 1 ; relocatable expressions.
dc32 first + second
end

Note: At assembly time, there is no range check. The range check occurs at link time
and, if the values are too large, there is a linker error.
EXPRESSION RESTRICTIONS

Expressions can be categorized according to restrictions that apply to some of the
assembler directives. One such example is the expression used in conditional statements
like TF, where the expression must be evaluated at assembly time, and therefore cannot
contain any external symbols.

The following expression restrictions are referred to in the description of each directive
they apply to.

No forward

All symbols referred to in the expression must be known, no forward references are
allowed.

No external

No external references in the expression are allowed.

Absolute

The expression must evaluate to an absolute value, a relocatable value (section offset) is
not allowed.

Fixed

The expression must be fixed, which means that it must not depend on variable-sized
instructions. A variable-sized instruction is an instruction that might vary in size
depending on the numeric value of its operand.

31

List file format

32

List file format

IAR Assembler User Guide
for RX

The format of an assembler list file is as follows:

HEADER

The header section contains product version information, the date and time when the file
was created, and which options were used.

BODY

The body of the listing contains the following fields of information:

o The line number in the source file. Lines generated by macros, if listed, have a .
(period) in the source line number field.

o The address field shows the location in memory, which can be absolute or relative
depending on the type of section. The notation is hexadecimal.

o The data field shows the data generated by the source line. The notation is
hexadecimal. Unresolved values are represented by (periods), where two periods
signify one byte. These unresolved values are resolved during the linking process.

o The assembler source line.

SUMMARY

The end of the file contains a summary of errors and warnings that were generated.

SYMBOL AND CROSS-REFERENCE TABLE

When you specify the Include cross-reference option, or if the LSTXRF+ directive was
included in the source file, a symbol and cross-reference table is produced.

This information is provided for each symbol in the table:

Information Description

Symbol The symbol’s user-defined name.

Mode ABS (Absolute), or REL (Relocatable).

Sections The name of the section that this symbol is defined relative to.
Value/Offset The value (address) of the symbol within the current module, relative to

the beginning of the current section.

Table 10: Symbol and cross-reference table

Introduction to the IAR Assembler for RX °

Programming hints

This section gives hints on how to write efficient code for the IAR Assembler. For
information about projects including both assembler and C or C++ source files, see the
IAR C/C++ Development Guide for RX.

USING C-STYLE PREPROCESSOR DIRECTIVES

The C-style preprocessor directives are processed before other assembler directives.
Therefore, do not use preprocessor directives in macros, and do not mix them with
assembler-style comments. For more information about comments, see Assembler
control directives, page 120.

C-style preprocessor directives like #define are valid in the remainder of the source
code file, while assembler directives like EQU only are valid in the current module.

Tracking call frame usage

In this section, these topics are described:

o Call frame information overview, page 34

o Call frame information in more detail, page 34
These tasks are described:

Defining a names block, page 35

Defining a common block, page 36

Annotating your source code within a data block, page 36
Specifying rules for tracking resources and the stack depth, page 37
Using CFI expressions for tracking complex cases, page 39

Stack usage analysis directives, page 40

Examples of using CFI directives, page 40

For reference information, see:

Call frame information directives for names blocks, page 123
Call frame information directives for common blocks, page 124
Call frame information directives for data blocks, page 126

Call frame information directives for tracking resources and CFAs, page 127

Call frame information directives for stack usage analysis, page 129

33

Tracking call frame usage

34

IAR Assembler User Guide
for RX

CALL FRAME INFORMATION OVERVIEW

Call frame information (CFI) is information about the call frames. Typically, a call
frame contains a return address, function arguments, saved register values, compiler
temporaries, and local variables. Call frame information holds enough information
about call frames to support two important features:

o C-SPY can use call frame information to reconstruct the entire call chain from the
current PC (program counter) and show the values of local variables in each function
in the call chain. This information is used, for example, in the Call Stack window.

o Call frame information can be used, together with information about possible calls
for calculating the total stack usage in the application. Note that this feature might
not be supported by the product you are using.

The compiler automatically generates call frame information for all C and C++ source
code. Call frame information is also typically provided for each assembler routine in the
system library. However, if you have other assembler routines and want to enable C-SPY
to show the call stack when executing these routines, you must add the required call
frame information annotations to your assembler source code. Stack usage can also be
handled this way (by adding the required annotations for each function call), but you can
also specify stack usage information for any routines in a stack usage control file (see
the /AR C/C++ Development Guide for RX), which is typically easier.

CALL FRAME INFORMATION IN MORE DETAIL

You can add call frame information to assembler files by using c£i directives. You can
use these to specify:

o The start address of the call frame, which is referred to as the canonical frame
address (CFA). There are two different types of call frames:

® On a stack—stack frames. For stack frames the CFA is typically the value of the
stack pointer after the return from the routine.

e In static memory, as used in a static overlay system—static overlay frames. This
type of call frame is not required by the RX microcontroller and is therefore not
supported.

e How to find the return address.

o How to restore various resources, like registers, when returning from the routine.
When adding the call frame information for each assembler module, you must:
1 Provide a names block where you describe the resources to be tracked.

2 Provide a common block where you define the resources to be tracked and specify
their default values. This information must correspond to the calling convention
used by the compiler.

Introduction to the IAR Assembler for RX °

3 Annotate the resources used in your source code, which in practice means that you
describe the changes performed on the call frame. Typically, this includes
information about when the stack pointer is changed, and when permanent registers
are stored or restored on the stack.

To do this you must define a data block that encloses a continuous piece of source
code where you specify rules for each resource to be tracked. When the descriptive
power of the rules is not enough, you can instead use CFI expressions.

A full description of the calling convention might require extensive call frame
information. In many cases, a more limited approach will suffice. The recommended
way to create an assembler language routine that handles call frame information
correctly is to start with a C skeleton function that you compile to generate assembler
output. For an example, see the /AR C/C++ Development Guide for RX.

DEFINING A NAMES BLOCK

A names block is used for declaring the resources available for a processor. Inside the
names block, all resources that can be tracked are defined.

Start and end a names block with the directives:

CFI NAMES name
CFI ENDNAMES name

where name is the name of the block.
Only one names block can be open at a time.

Inside a names block, four different kinds of declarations can appear—a resource
declaration, a stack frame declaration, a static overlay frame declaration, and a base
address declaration:

o To declare a resource, use one of the directives:

CFI RESOURCE resource : bits
CFI VIRTUALRESOURCE resource : bits

The parameters are the name of the resource and the size of the resource in bits. The
name must be one of the register names defined in the RX ABI specification. A
virtual resource is a logical concept, in contrast to a physical resource such as a
processor register. Virtual resources are usually used for the return address.

To declare more than one resource, separate them with commas.

A resource can also be a composite resource, made up of at least two parts. To declare
the composition of a composite resource, use the directive:

CFI RESOURCEPARTS resource part, part,

The parts are separated with commas. The resource and its parts must have been
previously declared as resources, as described above.

35

Tracking call frame usage

36

IAR Assembler User Guide
for RX

o To declare a stack frame CFA, use the directive:
CFI STACKFRAME cfa resource type

The parameters are the name of the stack frame CFA, the name of the associated
resource (the stack pointer), and the memory type (to get the address space). To
declare more than one stack frame CFA, separate them with commas.

When going back in the call stack, the value of the stack frame CFA is copied into
the associated stack pointer resource to get a correct value for the previous function
frame.

DEFINING A COMMON BLOCK

The common block is used for declaring the initial contents of all tracked resources.
Normally, there is one common block for each calling convention used.

Start a common block with the directive:
CFI COMMON name USING namesblock

where name is the name of the new block and namesblock is the name of a previously
defined names block.

Declare the return address column with the directive:
CFI RETURNADDRESS resource type

where resource is a resource defined in namesblock and type is the memory in
which the calling function resides. You must declare the return address column for the
common block.

Inside a common block, you can declare the initial value of a CFA or a resource by using
the directives available for common blocks, see Call frame information directives for
common blocks, page 124. For more information about how to use these directives, see
Specifying rules for tracking resources and the stack depth, page 37 and Using CFI
expressions for tracking complex cases, page 39.

End a common block with the directive:
CFI ENDCOMMON name

where name is the name used to start the common block.

ANNOTATING YOUR SOURCE CODE WITHIN ADATABLOCK

The data block contains the actual tracking information for one continuous piece of
code.

Start a data block with the directive:

CFI BLOCK name USING commonblock

Introduction to the IAR Assembler for RX °

where name is the name of the new block and commonblock is the name of a previously
defined common block.

If the piece of code for the current data block is part of a defined function, specify the
name of the function with the directive:

CFI FUNCTION label
where label is the code label starting the function.

If the piece of code for the current data block is not part of a function, specify this with
the directive:

CFI NOFUNCTION

End a data block with the directive:

CFI ENDBLOCK name

where name is the name used to start the data block.

Inside a data block, you can manipulate the values of the resources by using the
directives available for data blocks, see Call frame information directives for data
blocks, page 126. For more information on how to use these directives, see Specifying
rules for tracking resources and the stack depth, page 37, and Using CFI expressions for
tracking complex cases, page 39.

SPECIFYING RULES FOR TRACKING RESOURCES AND THE
STACK DEPTH

To describe the tracking information for individual resources, two sets of simple rules
with specialized syntax can be used:
o Rules for tracking resources

CFI resource { UNDEFINED | SAMEVALUE | CONCAT }

CFI resource { resource | FRAME(cfa, offset) }
o Rules for tracking the stack depth (CFAs)

CFI cfa { NOTUSED | USED }

CFI cfa { resource | resource + constant | resource - constant }
You can use these rules both in common blocks to describe the initial information for

resources and CFAs, and inside data blocks to describe changes to the information for
resources or CFAs.

In those rare cases where the descriptive power of the simple rules are not enough, you
can use a full CFI expression with dedicated operators to describe the information, see
Using CFI expressions for tracking complex cases, page 39. However, whenever
possible, you should always use a rule instead of a CFI expression.

37

Tracking call frame usage

38

IAR Assembler User Guide
for RX

Rules for tracking resources

The rules for resources conceptually describe where to find a resource when going back
one call frame. For this reason, the item following the resource name in a CFI directive
is referred to as the /location of the resource.

To declare that a tracked resource is restored, in other words, already correctly located,
use SAMEVALUE as the location. Conceptually, this declares that the resource does not
have to be restored because it already contains the correct value. For example, to declare
that a register R11 is restored to the same value, use the directive:

CFI R11 SAMEVALUE

To declare that a resource is not tracked, use UNDEFINED as location. Conceptually, this
declares that the resource does not have to be restored (when going back one call frame)
because it is not tracked. Usually it is only meaningful to use it to declare the initial
location of a resource. For example, to declare that R11 is a scratch register and does not
have to be restored, use the directive:

CFI R11 UNDEFINED

To declare that a resource is temporarily stored in another resource, use the resource
name as its location. For example, to declare that a register R11 is temporarily located
in aregister R12 (and should be restored from that register), use the directive:

CFI R11 R12

To declare that aresource is currently located somewhere on the stack, use FRAME (cfa,
offset) as location for the resource, where cfa is the CFA identifier to use as “frame
pointer” and of fset is an offset relative the CFA. For example, to declare that a register
R11 is located at offset —4 counting from the frame pointer CFA_SP, use the directive:

CFI R11 FRAME (CFA_SP,-4)

For a composite resource there is one additional location, CONCAT, which declares that
the location of the resource can be found by concatenating the resource parts for the
composite resource. For example, consider a composite resource RET with resource
parts RETLO and RETHI. To declare that the value of RET can be found by investigating
and concatenating the resource parts, use the directive:

CFI RET CONCAT

This requires that at least one of the resource parts has a definition, using the rules
described above.

Rules for tracking the stack depth (CFAs)

In contrast to the rules for resources, the rules for CFAs describe the address of the
beginning of the call frame. The call frame often includes the return address pushed by

Introduction to the IAR Assembler for RX °

the assembler call instruction. The CFA rules describe how to compute the address of
the beginning of the current stack frame.

Each stack frame CFA is associated with a stack pointer. When going back one call
frame, the associated stack pointer is restored to the current CFA. For stack frame CFAs,
there are two possible rules—an offset from a resource (not necessarily the resource
associated with the stack frame CFA) or NOTUSED.

To declare that a CFA is not used, and that the associated stack pointer should be tracked
as a normal resource, use NOTUSED as the address of the CFA. For example, to declare
that the CFA with the name CFA_SP is not used in this code block, use the directive:

CFI CFA_SP NOTUSED

To declare that a CFA has an address that is offset relative the value of a resource, specify
the stack pointer and the offset. For example, to declare that the CFA with the name
CFA_SP can be obtained by adding 4 to the value of the sP resource, use the directive:

CFI CFA_SP SP + 4

USING CFI EXPRESSIONS FOR TRACKING COMPLEX CASES

You can use call frame information expressions (CFI expressions) when the descriptive
power of the rules for resources and CFAs is not enough. However, you should always
use a simple rule if there is one.

CFI expressions consist of operands and operators. Three sets of operators are allowed
in a CFI expression:

o Unary operators
e Binary operators

e Ternary operators
In most cases, they have an equivalent operator in the regular assembler expressions.

In this example, R12 is restored to its original value. However, instead of saving it, the
effect of the two post increments is undone by the subtract instruction.

39

Tracking call frame usage

40

IAR Assembler User Guide
for RX

AddTwo:
cfi block addTwoBlock using myCommon
cfi function addTwo
cfi nocalls
cfi rl2 samevalue
add @rl2+, rl3
cfi rl2 sub(rl2, 2)
add @rl2+, rl3
cfi rl2 sub(rl2, 4)
sub #4, rl2
cfi rl2 samevalue
ret
cfi endblock addTwoBlock

For more information about the syntax for using the operators in CFI expressions, see
Call frame information directives for tracking resources and CFAs, page 127.

STACK USAGE ANALYSIS DIRECTIVES

The stack usage analysis directives (CFI FUNCALL, CFI TAILCALL, CFI
INDIRECTCALL, and CFI NOCALLS) are used for building a call graph which is needed
for stack usage analysis. These directives can be used only in data blocks. When the data
block is a function block (in other words, when the CFI FUNCTION directive has been
used in the data block), you should not specify a caller parameter. When a stack usage
analysis directive is used in code that is shared between functions, you must use the
caller parameter to specify which of the possible functions the information applies to.

The CFI FUNCALL, CFI TAILCALL, and CFI INDIRECTCALL directives must be placed
immediately before the instruction that performs the call. The CFI NOCALLS directive
can be placed anywhere in the data block.

EXAMPLES OF USING CFI DIRECTIVES

The following is a generic example of how to add and use the required CFI directives.
The example is not created for the RX microcontroller. To obtain an example specific to
the the RX microcontroller, generate assembler output when you compile a C source
file.

Consider a generic processor with a stack pointer sp, and two registers RO and R1.
Register RO is used as a scratch register—the register may be destroyed by a function
call—whereas register R1 must be restored after the function call. To simplity, all
instructions, registers, and addresses are assumed to have a width of 16 bits.

Consider the following short code example with the corresponding call frame
information. At entry, assume that the stack contains a 16-bit return address. The stack

Introduction to the IAR Assembler for RX °

grows from high addresses toward zero. The CFA denotes the top of the call frame, in
other words, the value of the stack pointer after returning from the function.

Address CFA RO RI RET Assembler code

0000 SP + 2 undefined SAME CFA - 2 funcl: PUSH R1
0002 SP + 4 CFA - 4 MOV R1,#4
0004 CALL func2
0006 POP RO
0008 SP + 2 RO MOV R1,RO
000A SAME RET

Table 11: Code sample with call frame information

Each row describes the state of the tracked resources before the execution of the
instruction. As an example, for the MOV R1, RO instruction the original value of the R1
register is located in the RO register and the top of the function frame (the CFA column)
is Sp + 2. The row at address 0000 is the initial row and the result of the calling
convention used for the function.

The RET column is the return address column—that is, the location of the return
address. The value of RO is undefined because it does not need to be restored on exit
from the function. The R1 column has SAME in the initial row to indicate that the value
of the R1 register will be restored to the same value it already has.

Defining the names block

The names block for the small example above would be:

cfi names trivialNames
cfi resource SP:16, R0:16, R1:16
cfi stackframe CFA SP DATA

; The virtual resource for the return address column.
cfi virtualresource RET:16
cfi endnames trivialNames

41

Tracking call frame usage

Defining the common block

The common block for the simple example above would be:

cfi
cfi
cfi
cfi
cfi

common trivialCommon using trivialNames
returnaddress RET DATA

CFA SP + 2

RO undefined

R1 samevalue

; Offset -2 from top of frame.

cfi
cfi

RET frame (CFA,-2)

endcommon trivialCommon

Note: sp cannot be changed using a CFI directive as it is the resource associated with

CFA.

Annotating your source code within a data block

You should place the CFI directives at the point where the call frame information has
changed, in other words, immediately affer the instruction that changes the call frame

information.

Continuing the simple example, the data block would be:

rseg
cfi
cfi

funcl push
cfi
cfi
mov
call
pop
cfi
cfi
mov
cfi
ret
cfi

IAR Assembler User Guide
42 for RX

CODE : CODE
block funclblock using trivialCommon
function funcl

rl

CFA SP + 4

R1 frame (CFA,-4)
rl, #4

func?2

r0

R1 RO

CFA SP + 2
rl,r0

R1 samevalue

endblock funclblock

Assembler options

e Using command line assembler options
e Summary of assembler options

e Description of assembler options

Using command line assembler options

Assembler options are parameters you can specify to change the default behavior of the
assembler. You can specify options from the command line—which is described in more
detail in this section—and from within the IAR Embedded Workbench® IDE.

The IDE Project Management and Building Guide for RX describes how to set
assembler options in the IDE, and gives reference information about the available
options.

SPECIFYING COMMAND LINE OPTIONS

To set assembler options from the command line, include them on the command line
after the iasmrx command, either before or after the source filename. For example,
when assembling the source file prog. s, use this command to generate an object file
with debug information:

iasmrx prog.s --debug

Some options accept a filename, included after the option letter with a separating space.
For example, to generate a listing to the file prog.1lst:

iasmrx prog.s -1 prog.lst

Some other options accept a string that is not a filename. The string is included after the
option letter, but without a space. For example, to define a symbol:

iasmrx prog.s -DDEBUG=1

Generally, the order of options on the command line, both relative to each other and to
the source filename, is not significant. However, there is one exception—when you use
the -I option, the directories are searched in the same order as they are specified on the
command line.

Notice that a command line option has a short name and/or a long name:

e A short option name consists of one character, with or without parameters. You
specify it with a single dash, for example -r.

43

Using command line assembler options

44

IAR Assembler User Guide
for RX

o A long name consists of one or several words joined by underscores, with or
without parameters. You specify it with double dashes, for example --debug.
SPECIFYING PARAMETERS

When a parameter is needed for an option with a short name, you can specify it either
immediately following the option or as the next command line argument.

For instance, you can specify an include file path of \usr\include either as:
-I\usr\include

or as

-I \usr\include

Note: You canuse / instead of \ as directory delimiter. A trailing slash or backslash can
be added to the last directory name, but is not required.

Additionally, some options can take a parameter that is a directory name. The output file
then receives a default name and extension.

When a parameter is needed for an option with a long name, you can specify it either
immediately after the equal sign (=) or as the next command line argument, for example:

--diag_suppress=Pe0001
or
--diag_suppress Pe0001

Options that accept multiple values can be repeated, and can also have comma-separated
values (without space), for example:

--diag_warning=Be0001,Be0002

The current directory is specified with a period (.), for example:

iasmrx prog -1

A file specified by - (a single dash) is standard input or output, whichever is appropriate.

Note: When an option takes a parameter, the parameter cannot start with a dash (-)
followed by another character. Instead you can prefix the parameter with two dashes
(--). This example generates a list on standard output:

iasmrx prog -1 ---

EXTENDED COMMAND LINE FILE

In addition to accepting options and source filenames from the command line, the
assembler can accept them from an extended command line file.

Assembler options ___¢

By default, extended command line files have the extension xc1, and can be specified
using the - £ command line option. For example, to read the command line options from

extend.xcl, enter:

iasmrx -f extend.xcl

Summary of assembler options

This table summarizes the assembler options available from the command line:

Command line option

Description

--case_insensitive

—-—-Ccore

-D

--data_model
--debug
--dependencies
--diag_error
--diag_remark
--diag_suppress
--diag_warning
--diagnostics_tables
--dir_first
--double

--endian

-—error_limit

-f
—-f

--fpu

--header_context

-I

Case-insensitive user symbols

Makes the assembler accept instructions specific to
a certain core

Defines preprocessor symbols
Defines the symbol __DATA_MODEL_ _
Generates debug information

Lists file dependencies

Treats these diagnostics as errors
Treats these diagnostics as remarks
Suppresses these diagnostics

Treats these diagnostics as warnings
Lists all diagnostic messages

Allows directives in the first column
Defines the symbol __DOUBLE_ _

Defines the symbols __BIG_ENDIAN__ and
__LITTLE_ENDIAN_ _

Specifies the allowed number of errors before the
assembler stops

Extends the command line

Extends the command line, optionally with a
dependency

Configures how the assembler handles
floating-point arithmetic

Lists all referred source files

Adds a search path for a header file

Table 12: Assembler options summary

45

Summary of assembler options

IAR Assembler User Guide

46 for RX

Command line option

Description

-int
-1
-M

--macro_positions_in

_diagnostics

--mnem_first
--no_bom
--no_call_frame_info

--no_normalize_file_macros

--no_path_in_file_macros

--no_system_include

--no_warnings
--no_wrap_diagnostics

--nonportable_path_warnings

-0
--only_stdout
--output

--patch

--predef_macros

--preinclude

--preprocess
-r

--remarks

--silent
--source_encoding
--system_include_dir

--text_out

Defines the symbol __ INTSIZE__
Generates a list file
Macro quote characters

Obtains positions inside macros in diagnostic
messages

Allows mnemonics in the first column
Onmits the Byte Order Mark for UTF-8 output files
Disables output of call frame information

Disables normalization of paths in the symbols
__FILE__and __BASE_FILE__

Removes the path from the return value of the
symbols __FILE__ and __BASE_FILE__

Disables the automatic search for system include
files

Disables all warnings
Disables wrapping of diagnostic messages

Generates a warning when the path used for
opening a source header file is not in the same case
as the path in the file system.

Sets the object filename. Alias for --output.
Uses standard output only
Sets the object filename

Prevents the assembler from accepting assembler
instructions specific to a certain CPU type

Lists the predefined symbols

Includes an include file before reading the source
file

Preprocessor output to file

Generates debug information. Alias for --debug.
Enables remarks

Sets silent operation

Specifies the encoding for source files

Specifies the path for system include files

Specifies the encoding for text output files

Table 12: Assembler options summary (Continued)

Assembler options ___¢

Command line option Description

--use_paths_as_written Use paths as written in debug information

--use_unix_directory_ Uses / as directory separator in paths

separators

--utf8_text_in Uses the UTF-8 encoding for text input files

--version Sends assembler output to the console and then
exits.

--warnings_affect_exit_code Warnings affect exit code

--warnings_are_errors Treats all warnings as errors

Table 12: Assembler options summary (Continued)

Description of assembler options

--case_insensitive

Syntax

Description

Example

See also

The following sections give detailed reference information about each assembler option.

If you use the page Extra Options to specify specific command line options, the IDE
does not perform an instant check for consistency problems like conflicting options,
duplication of options, or use of irrelevant options.

--case_insensitive

Use this option to make user symbols case-insensitive. By default, case sensitivity is on.

You can also use the assembler directives CASEON and CASEOFF to control case
sensitivity for user-defined symbols.

Note: The --case_insensitive option does not affect preprocessor symbols.
Preprocessor symbols are always case-sensitive, regardless of whether they are defined
in the IDE or on the command line.

By default, for example, LABEL and label refer to different symbols. When
--case_insensitive is used, LABEL and label instead refer to the same symbol.

Assembler control directives, page 120 and information about defining and undefining
preprocessor symbols under C-style preprocessor directives, page 113.

Project>Options>Assembler >Language>User symbols are case sensitive

47

Description of assembler options

48

-=core

-D

IAR Assembler User Guide

for RX

Syntax

Parameters

Description

Syntax

Parameters

Description

Example

-—core={rxvl|rxv2|rxv3}

rxvl (default) Generates code for the RXv1 architecture.
rxv2 Generates code for the RXv2 architecture.
rxv3 Generates code for the RXv3 architecture.

Use this option to make the assembler accept assembler instructions specific to a certain
core. As aresult of using this option, the symbol __core__ will be defined accordingly.
See Predefined symbols, page 28.

To find out which core a device is based on, open the * .menu file for that device in an
editor and look at the value of the <core> attribute. The * .menu files are located in the
rx\config\devices\ directory.

To set related options, choose:

Project>Options>General Options>Target>Device

-Dsymbol [=value]

symbol The name of the symbol you want to define.

value The value of the symbol. If no value is specified, 1 is used.

Use this option to define a symbol to be used by the preprocessor.

You might want to arrange your source code to produce either the test version or the
production version of your application, depending on whether the symbol TESTVER was
defined. To do this, use include sections such as:

#ifdef TESTVER

.. ; additional code lines for test version only
#endif
Then select the version required on the command line as follows:

Production version: iasmrx prog
Test version: iasmrx prog -DTESTVER

Assembler options ___¢

Alternatively, your source might use a variable that you must change often. You can then
leave the variable undefined in the source, and use -D to specify the value on the
command line, for example:

iasmrx prog -DFRAMERATE=3

Project>Options>Assembler>Preprocessor>Defined symbols

--data_model

Syntax --data_model={near|n|far|f|huge|h}
Parameters
near|n Sets the predefined symbol __DATA_MODEL__ to
__NEAR__
far | £ (default) Sets the predefined symbol __DATA_MODEL__ to __FAR _
huge |h Sets the predefined symbol __DATA MODEL__ to
__HUGE__
Description Use this option to define the symbol __DATA_ MODEL_ _.
See also Predefined symbols, page 28.

Project>Options>General Options>Target>Data model

--debug, -r
Syntax --debug
-r
Description Use this option to make the assembler generate debug information, which means the

generated output can be used in a symbolic debugger such as IAR C-SPY® Debugger.

To reduce the size and link time of the object file, the assembler does not generate debug
information by default.

Project>Options>Assembler >Output>Generate debug information

49

Description of assembler options

50

--dependencies

Syntax

Parameters

Description

Example

IAR Assembler User Guide
for RX

--dependencies[=[i|m|n][s]] {filename|directory|+}

i (default) Lists only the names of files

m Lists in makefile style (multiple rules)

n Lists in makefile style (one rule)

s Suppresses system files

+ Gives the same output as -o, but with the filename extension
d

For information about specifying a filename or directory, see Specifying parameters,
page 44.

Use this option to make the assembler list the names of all source and header files
opened for input into a file with the default filename extension 1.

If --dependencies or --dependencies=i is used, the name of each opened input
file, including the full path, if available, is output on a separate line. For example:

c:\iar\product\include\stdio.h
d:\myproject\include\foo.h

If --dependencies=mis used, the output is in makefile style. For each input file, one
line containing a makefile dependency rule is produced. Each line consists of the name
of the object file, a colon, a space, and the name of an input file. For example:

foo.o: c:\iar\product\include\stdio.h
foo.o: d:\myproject\include\foo.h

An example of using --dependencies with a popular make utility, such as GMake
(GNU make):

Set up the rule for assembling files to be something like:

%.0 : %.cC
$ (ASM) $(ASMFLAGS) $< --dependencies=m $*.d

That is, in addition to producing an object file, the command also produces a
dependency file in makefile style—in this example, using the extension .d.

Include all the dependency files in the makefile using, for example:
-include $(sources:.c=.d)

Because of the dash (-) it works the first time, when the . d files do not yet exist.

--diag_error

Syntax

Parameters

Description

Example

--diag_remark

Syntax

Parameters

Description

Example

Assembler options ___¢

This option is not available in the IDE.

--diag_error=tag, tag, ...

tag The number of a diagnostic message, for example the
message number As001.

Use this option to classify diagnostic messages as errors.

An error indicates a violation of the assembler language rules, of such severity that
object code is not generated, and the exit code will not be 0. The option can be used more
than once on the command line.

This example classifies warning As001 as an error:

--diag_error=As001

Project>Options>Assembler >Diagnostics>Treat these as errors

--diag_remark=tag, tag, ...

tag The number of a diagnostic message, for example the
message number As001.

Use this option to classify diagnostic messages as remarks.

A remark is the least severe type of diagnostic message and indicates a source code
construct that might cause strange behavior in the generated code.

This example classifies the warning As001 as a remark:

--diag_remark=As001

Project>Options>Assembler >Diagnostics>Treat these as remarks

51

Description of assembler options

--diag_suppress

Syntax

Parameters

Description

Example

--diag_warning
Syntax

Parameters

Description

Example

--diagnostics_tables

Syntax

Parameters

IAR Assembler User Guide
52 for RX

--diag_suppress=tag, tag, ...

tag The number of a diagnostic message, for example the
message number As001.

Use this option to suppress diagnostic messages.

This example suppresses the warnings As001 and As002:
--diag_suppress=As001,As002

Project>Options>Assembler >Diagnostics>Suppress these diagnostics

--diag_warning=tag, tag, ...

tag The number of a diagnostic message, for example the
message number As001.

Use this option to classify diagnostic messages as warnings.

A warning indicates an error or omission that is of concern, but which does not cause
the assembler to stop before the assembly is completed.

This example classifies the remark As028 as a warning:

--diag_warning=As028

Project>Options>Assembler >Diagnostics>Treat these as warnings

--diagnostics_tables {filename| directory}

filename The diagnostic messages are stored in the specified file.

Description

Example

--dir_first

Syntax

Description

--double

Syntax

Parameters

Description

See also

Assembler options ___¢

directory The diagnostic messages are stored in a file (filename
extension i) which is stored in the specified directory.

For information about specifying a filename or directory, see Specifying parameters,
page 44.

Use this option to list all possible diagnostic messages in a named file. This can be very
convenient, for example, if you used a #pragma directive to suppress or change the
severity level of any diagnostic messages, but forgot to document why.

This option cannot be given together with other options.

To output a list of all possible diagnostic messages to the file diag. txt, use:
--diagnostics_tables diag

This option is not available in the IDE.

--dir_first

Use this option to make directive names (without a trailing colon) that start in the first
column to be recognized as directives.

The default behavior of the assembler is to treat all identifiers starting in the first column
as labels.

Project>Options>Assembler >Language>Allow directives in first column

~-double={32]64}

32 (default) Sets the predefined symbol __DOUBLE__ to 32

64 Sets the predefined symbol __DOUBLE__ to 64

Use this option to define the symbol __DOUBLE__.

Predefined symbols, page 28.

53

Description of assembler options

--endian

Syntax

Parameters

Description

See also

--error_limit

Syntax

Parameters

Description

IAR Assembler User Guide

54 for RX

Project>Options>General Options>Target>Size of type 'double'

--endian={b|big|1l|little}

blbig Sets the predefined symbol __BIG _ENDIAN__ to 1 and
__LITTLE_ENDIAN__ to 0

1|little Sets the predefined symbol __BIG_ENDIAN__ to 0 and
(default) __LITTLE_ENDIAN__to1

Use this option to define the symbols __BIG_ENDIAN__ and __LITTLE ENDIAN__.

Predefined symbols, page 28.

Project>Options>General Options>Target>Byte order

-—error_limit=n

n The number of errors before the assembler stops the
assembly. n must be a positive integer—o0 indicates no limit.

Use this option to specify the number of errors allowed before the assembler stops. By
default, 100 errors are allowed.

This option is not available in the IDE.

Syntax

Parameters

Description

Example

See also

Syntax

Parameters

Description

Assembler options ___¢

-f filename

filename The commands that you want to extend the command line
with are read from the specified file. Notice that there must
be a space between the option itself and the filename.

For information about specifying a filename, see Specifying parameters, page 44.

Use this option to extend the command line with text read from the specified file.
The - £ option is particularly useful if there are many options which are more
conveniently placed in a file than on the command line itself.

To run the assembler with further options taken from the file extend.xc1, use:

iasmrx prog -f extend.xcl

-f, page 55 and Extended command line file, page 44.
To set this option, use:

Project>Options>Assembler>Extra Options

--f filename

filename The commands that you want to extend the command line
with are read from the specified file. Notice that there must
be a space between the option itself and the filename.

For information about specifying a filename, see Specifying parameters, page 44.
Use this option to make the assembler read command line options from the named file,
with the default filename extension xc1.

In the command file, you format the items exactly as if they were on the command line
itself, except that you may use multiple lines, because the newline character acts just as
a space or tab character.

Both C and C++ style comments are allowed in the file. Double quotes behave in the
same way as in the Microsoft Windows command line environment.

55

Description of assembler options

See also

--fpu
Syntax

Parameters

Description

--header_context

Syntax

Description

-1
Syntax

Parameters

IAR Assembler User Guide
56 for RX

If you use the assembler option --dependencies, extended command line files
specified using -- £ will generate a dependency, but those specified using - £ will not
generate a dependency.

--dependencies, page 50 and -f, page 55.

To set this option, use Project>Options>Assembler>Extra Options.

--fpu={none|32}

none Prevents the assembler from accepting FPU instructions for
floating-point arithmetic.

32 Makes the assembler accept FPU instructions for 32-bit
floating-point arithmetic.

Use this option to configure how the assembler handles floating-point arithmetic.
This option is set automatically when you choose:

Project>Options>General Options>Target>Device

--header_context
Occasionally, you must know which header file that was included from what source line,

to find the cause of a problem. Use this option to list, for each diagnostic message, not
only the source position of the problem, but also the entire include stack at that point.

This option is not available in the IDE.

-Ipath

path The search path for #include files.

Assembler options ___¢

Description Use this option to specify paths to be used by the preprocessor. This option can be used
more than once on the command line.

By default, the assembler searches for #include files in the current working directory,
in the system header directories, and in the paths specified in the TASMRX_INC
environment variable. The - option allows you to give the assembler the names of
directories which it will also search if it fails to find the file in the current working
directory.

Example For example, using the options:
-Ic:\global\ -Ic:\thisproj\headers\
and then writing:

#include "asmlib.hdr"

in the source code, make the assembler search first in the current directory, then in the
directory c:\global\, and then in the directory C:\thisproj\headers\. Finally,
the assembler searches the directories specified in the IASMRX_INC environment
variable, provided that this variable is set, and in the system header directories.

Project>Options>Assembler>Preprocessor>Additional include directories

--int
Syntax --int={16]32}
Parameters
16 Sets the predefined symbol __INTSIZE__ to 16
32 (default) Sets the predefined symbol __INTSIZE _ to 32
Description Use this option to define the symbol __INTSIZE__.
See also Predefined symbols, page 28.

m Project>Options>General Options>Target>Size of type 'int'

57

Description of assembler options

58

Syntax

Parameters

Description

Example

Syntax

Parameters

IAR Assembler User Guide
for RX

-1[al[d]l[e]l [m][o] [x][N][H] {filename|directory}

a Assembled lines only.

d The LsTOUT directive controls if lines are written to the list
file or not. Using -1d turns the start value for this to off.

e No macro expansions.

m Macro definitions.

o Multiline code.

x Includes cross-references.

N Do not include diagnostics.

H Includes header file source lines.

filename The output is stored in the specified file.

directory The output is stored in a file (filename extension i) which is

stored in the specified directory.

For information about specifying a filename or directory, see Specifying parameters,
page 44.

By default, the assembler does not generate a listing. Use this option to generate a listing
to a file.

To generate a listing to the file 1ist.1st, use:

iasm sourcefile -1 list

To set related options, select:

Project>Options>Assembler >List

-Mab

ab The characters to be used as left and right quotes of each
macro argument, respectively.

Description

Example

[IH

Assembler options ___¢

Use this option to sets the characters to be used as left and right quotes of each macro
argument to a and b respectively.

By default, the characters are < and >. The -M option allows you to change the quote
characters to suit an alternative convention, or simply allows a macro argument to
contain < or > themselves.

For example, using the option:

-M[]

in the source you would write, for example:

print [>]

to call a macro print with > as the argument.

Note: Depending on your host environment, it might be necessary to use quote marks
with the macro quote characters, for example:

iasmrx filename -M'<>’

Project>Options>Assembler >Language>Macro quote characters

--macro_positions_in_diagnostics

Syntax

Description

--mnem_first

Syntax

Description

--macro_positions_in_diagnostics
Use this option to obtain position references inside macros in diagnostic messages. This
is useful for detecting incorrect source code constructs in macros.

To set this option, use Project>Options>Assembler>Extra Options.

--mnem_first
Use this option to make mnemonics names (without a trailing colon) starting in the first
column be recognized as mnemonics.

The default behavior of the assembler is to treat all identifiers starting in the first column
as labels.

Project>Options>Assembler >Language>Allow mnemonics in first column

59

Description of assembler options

--no_bom

Syntax

Description

See also

--no_call frame_info

Syntax

Description

See also

--no_bom

Use this option to omit the Byte Order Mark (BOM) when generating a UTF-8 output
file.

--text_out, page 66. For more information about encodings, see the /AR C/C++
Development Guide for RX.

Project>Options>Assembler>Encodings>Text output file encoding

--no_call_frame_info

By default, the assembler generates call frame information in object files for assembler
code that is annotated with such information (but only for such code). Use this option to
disable the generation of call frame information entirely.

Tracking call frame usage, page 33.

To set this option, use Project>Options>Assembler>Extra Options.

--no_normalize_file_macros

Syntax

Description

Example

See also

IAR Assembler User Guide
60 for RX

--no_normalize_file_macros

Normally, apparently unneeded uses of . . and . components are collapsed in the paths
returned by the predefined preprocessor symbols __FILE _and __BASE_FILE _.Use
this option to prevent this.

The path "D:\foo\ . .\bar\baz.s" will be returned as "D: \bar\baz.s" by the
symbols __FILE__ and __BASE_FILE__ unless this option is used.

Predefined symbols, page 28.

This option is not available in the IDE.

Assembler options ___¢

--no_path_in_file_macros

Syntax

Description

--no_system_include

Syntax

Description

--no_warnings

Syntax

Description

--no_wrap_diagnostics

Syntax

Description

--no_path_in_file_macros
Use this option to exclude the path from the return value of the predefined preprocessor
symbols __FILE__ and __BASE_FILE _.

This option is not available in the IDE.

--no_system_include

By default, the assembler automatically locates the system include files. Use this option
to disable the automatic search for system include files. In this case, you might need to
set up the search path by using the -1 assembler option.

Project>Options>Assembler>Preprocessor>Ignore standard include directories

--no_warnings

By default, the assembler issues standard warning messages. Use this option to disable
all warning messages.

This option is not available in the IDE.

--no_wrap_diagnostics

By default, long lines in assembler diagnostic messages are broken into several lines to
make the message easier to read. Use this option to disable line wrapping of diagnostic
messages.

This option is not available in the IDE.

61

Description of assembler options

--nonportable_path_warnings

Syntax

Description

--only_stdout

Syntax

Description

--output, -o

Syntax

Parameters

Description

IAR Assembler User Guide
62 for RX

--nonportable_path_warnings

Use this option to make the assembler generate a warning when characters in the path
used for opening a source file or header file are lower case instead of upper case, or vice
versa, compared with the path in the file system.

This option is not available in the IDE.

--only_stdout

Use this option to make the assembler direct messages to stdout instead of to stderr.

This option is not available in the IDE.

--output {filename|directory}
-0 {filename|directory}

filename The object code is stored in the specified file.

The object code is stored in a file (filename extension o)
which is stored in the specified directory.

directory

For information about specifying a filename or directory, see Specifying parameters,
page 44.

By default, the object code produced by the assembler is located in a file with the same
name as the source file, but with the extension o. Use this option to specify a different
output filename for the object code output.

Project>Options>General Options>Output>Output directories>Object files

Assembler options ___¢

--patch
Syntax --patch=rx610
Description Prevents the assembler from accepting assembler instructions specific to a certain CPU

type. Specitying --patch=rx610 makes the assembler report an error if the MVTIPL
instruction (which causes a problem in the RX610 group) is used in your assembler
source code.

mm This option is not available in the IDE.

--predef_macros

Syntax --predef_macros {filename|directory}

Parameters
filename The list of predefined macros is stored in the specified file.
directory The list of predefined macros is stored in a file (filename

extension predef) which is stored in the specified directory.

For information about specifying a filename or directory, see Specifying parameters,
page 44.

Description Use this option to list all symbols defined by the assembler or on the command line.
When using this option, make sure to also use the same options as for the rest of your
project.

Note that this option requires that you specify a source file on the command line.

This option is not available in the IDE.

--preinclude

Syntax --preinclude includefile

Parameters
includefile The header file to be included.

63

Description of assembler options

64

Description

--preprocess

Syntax

Parameters

Description

Example

IAR Assembler User Guide
for RX

Use this option to make the assembler include the specified include file before it starts
to read the source file. This is useful if you want to change something in the source code
for the entire application, for instance if you want to define a new symbol.

To set this option, use:

Project>Options>Assembler>Preprocessor>Preinclude file

--preprocess=[c] [n] [s] {filename| directory}

No parameter A preprocessed file.

c Preserves C and C++ style comments that otherwise are
removed by the preprocessor. Assembler style comments are
always preserved.

n Preprocess only.

s Suppress #1ine directives.

filename The output is stored in the specified file.

directory The output is stored in a file (filename extension i) which is

stored in the specified directory. The filename is the same as
the name of the assembled source file.

For information about specifying a filename or directory, see Specifying parameters,
page 44.

Use this option to direct preprocessor output to a named file.

To store the assembler output with preserved comments to the file output. i, use:
iasmrx sourcefile --preprocess=c output

Project>Options>Assembler >Preprocessor>Preprocessor output to file

--remarks

Syntax

Description

See also

--silent

Syntax

Description

--source_encoding

Syntax

Parameters

Description

See also

Assembler options ___¢

--remarks

Use this option to make the assembler generate remarks, which is the least severe type
of diagnostic message and which indicates a source code construct that might cause
strange behavior in the generated code. By default, remarks are not generated.

Severity levels, page 135.

Project>Options>Assembler >Diagnostics>Enable remarks

--silent

By default, the assembler sends various minor messages via the standard output stream.
Use this option to make the assembler operate without sending any messages to the
standard output stream.

The assembler sends error and warning messages to the error output stream, so they are
displayed regardless of this setting.

This option is not available in the IDE.

--source_encoding {locale|utf8}

locale The default source encoding is the system locale encoding.

utfs The default source encoding is the UTF-8 encoding.

When reading a source file with no Byte Order Mark (BOM), use this option to specify
the encoding. If this option is not specified and the source file does not have a BOM, the
Raw encoding will be used.

For more information about encodings, see the /AR C/C++ Development Guide for RX.

Project>Options>Assembler>Encodings>Default source file encoding

65

Description of assembler options

--system_include_dir

Syntax --system_include_dir path
Parameters
path The path to the system include files.
Description By default, the assembler automatically locates the system include files. Use this option

to explicitly specify a different path to the system include files. This might be useful if
you have not installed IAR Embedded Workbench in the default location.

This option is not available in the IDE.

--text_out
Syntax --text_out {utf8|utfléle|utflébe|locale}
Parameters
utfs Uses the UTF-8 encoding
utfléle Uses the UTF-16 little-endian encoding
utflébe Uses the UTF-16 big-endian encoding
locale Uses the system locale encoding
Description Use this option to specify the encoding to be used when generating a text output file.
The default for the assembler list files is to use the same encoding as the main source
file. The default for all other text files is UTF-8 with a Byte Order Mark (BOM).
If you want text output in UTF-8 encoding without a BOM, use the option --no_bom.
See also --no_bom, page 60. For more information about encodings, see the /AR C/C++

Development Guide for RX.

Project>Options>Assembler>Encodings>Text output file encoding

IAR Assembler User Guide
66 for RX

Assembler options ___¢

--use_paths_as_written
Syntax --use_paths_as_written
Description By default, the assembler ensures that all paths in the debug information are absolute,
even if not originally specified that way.

If you use this option, paths that were originally specified as relative will be relative in
the debug information.

The paths affected by this option are:

e the paths to source files

o the paths to header files that are found using an include path that was specified as
relative

To set this option, use Project>Options>Assembler>Extra Options.

--use_unix_directory_separators

Syntax --use_unix_directory_separators

Description Use this option to make DWARF debug information use / (instead of \) as directory
separators in file paths.

This option can be useful if you have a debugger that requires directory separators in
UNIX style.

To set this option, use Project>Options>Assembler>Extra Options.

--utf8 text_in

Syntax --utf8_text_in

Description Use this option to specify that the assembler shall use UTF-8 encoding when reading a
text input file with no Byte Order Mark (BOM).

Note: This option does not apply to source files.

See also The IAR C/C++ Development Guide for RX for more information about encodings.

Project>Options>Assembler>Encodings>Default input file encoding

67

Description of assembler options

--version

Syntax

Description

--warnings_affect_exit_

Syntax

Description

[1H

--warnings_are_errors

Syntax

Description

See also

IAR Assembler User Guide
68 for RX

--version
Use this option to make the assembler send version information to the console and then
exit.

This option is not available in the IDE.

code

--warnings_affect_exit_code

By default, the exit code is not affected by warnings, only errors produce a non-zero exit
code. Use this option to make warnings generate a non-zero exit code.

This option is not available in the IDE.

--warnings_are_errors
Use this option to make the assembler treat all warnings as errors. If the assembler
encounters an error, no object code is generated.

If you want to keep some warnings, use this option in combination with the option
--diag_warning. First make all warnings become treated as errors and then reset the
ones that should still be treated as warnings, for example:

--diag_warning=As001

--diag_warning, page 52.

Project>Options>Assembler >Diagnostics>Treat all warnings as errors

Assembler operators

e Precedence of assembler operators
e Summary of assembler operators

e Description of assembler operators

Precedence of assembler operators

Each operator has a precedence number assigned to it that determines the order in which
the operator and its operands are evaluated. The precedence numbers range from 1 (the

highest precedence, that is, first evaluated) to 15 (the lowest precedence, that is, last
evaluated).

These rules determine how expressions are evaluated:

o The highest precedence operators are evaluated first, then the second highest
precedence operators, and so on until the lowest precedence operators are evaluated.

o Operators of equal precedence are evaluated from left to right in the expression.

o Parentheses (and) can be used for grouping operators and operands, and for
controlling the order in which the expressions are evaluated. For example, this
expression evaluates to 1:

7/ (1+(2*3))

Summary of assembler operators

The following tables give a summary of the operators, in order of precedence.
Synonyms, where available, are shown after the operator name.

PARENTHESIS OPERATOR

Precedence: 1

() Parenthesis.

Summary of assembler operators

70

IAR Assembler User Guide
for RX

FUNCTION OPERATORS

Precedence: 2

BYTEL First byte
BYTE2 Second byte
BYTE3 Third byte
BYTE4 Fourth byte
DATE Current date/time
HIGH High byte
HWRD High word
Low Low byte
LWRD Low word
SFB Section begin
SFE Section end
SIZEOF Section size
UPPER Third byte
UNARY OPERATORS

Precedence: 3

+ Unary plus
BINNOT [~] Bitwise NOT
NOT [!] Logical NOT

- Unary minus

MULTIPLICATIVE ARITHMETIC OPERATORS

Precedence: 4

* Multiplication
/ Division
MOD [%] Modulo

ADDITIVE ARITHMETIC OPERATORS

Precedence: 5

+ Addition

- Subtraction

SHIFT OPERATORS

Precedence: 6

SHL [<<] Logical shift left

SHR [>>] Logical shift right

COMPARISON OPERATORS

Precedence: 7

GE [>=] Greater than or equal
GT [>] Greater than

LE [<=] Less than or equal

LT [<] Less than

UGT Unsigned greater than
ULT Unsigned less than

Assembler operators ___o

71

Description of assembler operators

EQUIVALENCE OPERATORS

Precedence: 8

EQ [=] [==] Equal
NE [<>] [!=] Not equal
LOGICAL OPERATORS

Precedence: 9-14

BINAND [&] Bitwise AND (9)

BINXOR ["] Bitwise exclusive OR (10)
BINOR []] Bitwise OR (11)

AND [&&] Logical AND (12)

XOR Logical exclusive OR (13)
OR []]] Logical OR (14)

CONDITIONAL OPERATOR

Precedence: 15

? Conditional operator

Description of assembler operators
This section gives detailed descriptions of each assembler operator.

See also Expressions, operands, and operators, page 24.

() Parenthesis

Precedence 1

Description (and) group expressions to be evaluated separately, overriding the default precedence
order.

Example 1+2%3 —> 7

(1+2)*3 -> 9

IAR Assembler User Guide
72 for RX

Assembler operators ___o

* Multiplication
Precedence 4

Description * produces the product of its two operands. The operands are taken as signed 32-bit
integers, and the result is also a signed 32-bit integer.

Example 2%2 —> 4
—2%2 —> -4
+ Unary plus
Precedence 3
Description Unary plus operator; performs nothing.
Example +3 -> 3
3*+2 -> 6
+ Addition
Precedence 5
Description The + addition operator produces the sum of the two operands which surround it. The

operands are taken as signed 32-bit integers, and the result is also a signed 32-bit integer.

Example 92+19 -> 111
-2+2 —> 0
-2+-2 -> -4

- Unary minus
Precedence 3

Description The unary minus operator performs arithmetic negation on its operand.

The operand is interpreted as a 32-bit signed integer, and the result of the operator is the
two’s complement negation of that integer.

Example -3 -> -3
3*-2 -> -6
4--5 -> 9

73

Description of assembler operators

74

- Subtraction

Precedence

Description

Example

| Division
Precedence

Description

Example

The subtraction operator produces the difference when the right operand is taken away
from the left operand. The operands are taken as signed 32-bit integers, and the result is
also signed 32-bit integer.

92-19 -> 73
—2-2 -> -4
-2--2 => 0

4

/ produces the integer quotient of the left operand divided by the right operator. The
operands are taken as signed 32-bit integers, and the result is also a signed 32-bit integer.

9/2 —> 4
-12/3 -> -4
9/2*6 —-> 24

? : Conditional operator

Syntax
Precedence

Description

Example

IAR Assembler User Guide
for RX

condition ? expr : expr
15

2 results in the first expr if condition evaluates to true, and the second expr if
condi tion evaluates to false.

Note: The question mark and a following label must be separated by space or a tab,
otherwise the 2 is considered the first character of the label.

6 : 7 —>6
6 : 7 =>7

RSNV

o Ul

Assembler operators ___o

< Less than
Precedence 7
Description < or LT evaluates to 1 (true) if the left operand has a numeric value that is less than the
right operand, otherwise it is O (false).
Example -1 <2 ->1
2 <1 ->0
2 <2 >0

<= Less than or equal to

Precedence 7

Description <= or LE evaluates to 1 (true) if the left operand has a numeric value that is less than or
equal to the right operand, otherwise it is O (false).

Example 1 <=2 ->1

2 <=1 ->0
1 <=1 ->1

<>, != Not equal to

Precedence 8

Description <>, I =, or NE evaluates to 0 (false) if its two operands are identical in value or to 1 (true)
if its two operands are not identical in value.

Example 1 <>2 ->1
2 <>2 >0
'A' <> 'B' -> 1
=, == Equal to

Precedence 8

Description =, ==, or EQ evaluates to 1 (true) if its two operands are identical in value, or to O (false)
if its two operands are not identical in value.

75

Description of assembler operators

Example

> Greater than

Precedence

Description

Example

> or GT evaluates to 1 (true) if the left operand has a higher numeric value than the right
operand, otherwise it is 0 (false).

-1 >1 ->0
2>1 —>1
1>1->0

>= Greater than or equal to

Precedence

Description

Example

&& Logical AND

Precedence

Description

Example

IAR Assembler User Guide
76 for RX

7

>= or GE evaluates to 1 (true) if the left operand is equal to or has a greater numeric
value than the right operand, otherwise it is O (false).

1 >=2 ->0
2 >=1 —>1
1 >=1 -—>1

12

&& or AND performs logical AND between its two integer operands. If both operands are
non-zero the result is 1 (true), otherwise it is O (false).

1010B && 0011B -> 1
1010B && 0101B -> 1
1010B && 0000B -> O

& Bitwise AND

Precedence

Description

Example

~ Bitwise NOT

Precedence

Description

Example

| Bitwise OR

Precedence

Description

Example

A Bitwise exclusive OR

Precedence

Description

Example

Assembler operators ___4

9

& or BINAND performs bitwise AND between the integer operands. Each bit in the 32-bit
result is the logical AND of the corresponding bits in the operands.

1010B & 0011B -> 0010B

1010B & 0101B -> 0000B
1010B & 0000B -> 0000B

~ or BINNOT performs bitwise NOT on its operand. Each bit in the 32-bit result is the
complement of the corresponding bit in the operand.

~ 1010B -> 11111111111111111111111111110101B

11

| or BINOR performs bitwise OR on its operands. Each bit in the 32-bit result is the
inclusive OR of the corresponding bits in the operands.

1010B | 0101B —> 1111B
1010B | 0000B —> 1010B

10

~ or BINXOR performs bitwise XOR on its operands. Each bit in the 32-bit result is the
exclusive OR of the corresponding bits in the operands.

1010B ~ 0101B -> 1111B
1010B ~ 0011B -> 1001B

77

Description of assembler operators

% Modulo
Precedence 4
Description % or MOD produces the remainder from the integer division of the left operand by the right
operand. The operands are taken as signed 32-bit integers, and the result is also a signed
32-bit integer.
X % Yisequivalent to X-Y* (X/Y) using integer division.
Example 2%2->0
12 7 -> 5
3% 2 -—>1
! Logical NOT
Precedence 3
Description ! or NOT negates a logical argument.
Example ! 0101B -> 0
! 0000B -> 1
|| Logical OR
Precedence 14
Description | | or or performs a logical OR between two integer operands.
Example 1010B || 0000B —> 1
0000B || 0000B —> 0
<< Logical shift left
Precedence 6
Description << or sHL shifts the left operand, which is always treated as unsigned, to the left. The

number of bits to shift is specified by the right operand, interpreted as an integer value
between 0 and 32.

IAR Assembler User Guide
78 for RX

Assembler operators ___4

Example 00011100B << 3 —-> 11100000B
00000111111111111B << 5 -> 11111111111100000B
14 << 1 -> 28

>> Logical shift right

Precedence 6
Description >> or SHR shifts the left operand, which is always treated as unsigned, to the right. The
number of bits to shift is specified by the right operand, interpreted as an integer value

between 0 and 32.

Example 01110000B >> 3 -> 00001110B
1111111111111111B >> 20 -> 0
14 >> 1 —> 7

BYTEI First byte

Precedence 2

Description BYTEL takes a single operand, which is interpreted as an unsigned 32-bit integer value.
The result is the unsigned, 8-bit integer value of the lower order byte of the operand.

Example BYTEL 0xABCD -> 0xCD

BYTE2 Second byte

Precedence 2

Description BYTE?2 takes a single operand, which is interpreted as an unsigned 32-bit integer value.
The result is the middle-low byte (bits 15 to 8) of the operand.

Example BYTE2 0x12345678 -> 0x56

79

Description of assembler operators

BYTE3 Third byte

Precedence

Description

Example

BYTE4 Fourth byte

Precedence

Description

Example

BYTE3 takes a single operand, which is interpreted as an unsigned 32-bit integer value.
The result is the middle-high byte (bits 23 to 16) of the operand.

BYTE3 0x12345678 -> 0x34

BYTE4 takes a single operand, which is interpreted as an unsigned 32-bit integer value.
The result is the high byte (bits 31 to 24) of the operand.

BYTE4 0x12345678 -> 0x12

DATE Current time/date

Precedence

Description

Example

IAR Assembler User Guide
80 for RX

2

DATE gets the time when the current assembly began.

The DATE operator takes an absolute argument (expression) and returns:

DATE 1 Current second (0-59).

DATE 2 Current minute (0-59).

DATE 3 Current hour (0-23).

DATE 4 Current day (1-31).

DATE 5 Current month (1-12).

DATE 6 Current year MOD 100 (1998 —>98, 2000 —>00, 2002 —>02).

To specify the date of assembly:

today: DC8 DATE 5, DATE 4, DATE 3

HIGH High byte

Precedence

Description

Example

HWRD High word

Precedence

Description

Example

LOW Low byte

Precedence

Description

Example

LWRD Low word

Precedence

Description

Example

Assembler operators ___o

HIGH takes a single operand to its right which is interpreted as an unsigned, 16-bit
integer value. The result is the unsigned 8-bit integer value of the higher order byte of
the operand.

HIGH OxABCD -> 0xAB

HWRD takes a single operand, which is interpreted as an unsigned, 32-bit integer value.
The result is the high word (bits 31 to 16) of the operand.

HWRD 0x12345678 -> 0x1234

Low takes a single operand, which is interpreted as an unsigned, 32-bit integer value.
The result is the unsigned, 8-bit integer value of the lower order byte of the operand.

LOW OxABCD -> 0xCD

LWRD takes a single operand, which is interpreted as an unsigned, 32-bit integer value.
The result is the low word (bits 15 to 0) of the operand.

LWRD 0x12345678 -> 0x5678

81

Description of assembler operators

SFB section begin

Syntax
Precedence

Parameters

Description

Example

SFE section end

Syntax
Precedence

Parameters

Description

IAR Assembler User Guide
82 for RX

SFB(section [{+|-}offset])

2
section The name of a section, which must be defined before SFB is used.
offset An optional offset from the start address. The parentheses are

optional if offset is omitted.

SFB accepts a single operand to its right. The operator evaluates to the absolute address
of the first byte of that section. This evaluation occurs at linking time.

name sectionBegin

section MYCODE:CODE ; Forward declaration of MYCODE

section SEGTAB:CONST (2)

data32 ; Disassembled as 32-bit data
start dc32 sfb (MYCODE)

end

Even if this code is linked with many other modules, start is still set to the address of
the first byte of the section.

SFE (section [{+]|-} offset])

2
section The name of a section, which must be defined before SFE is used.
offset An optional offset from the start address. The parentheses are

optional if of £set is omitted.

SFE accepts a single operand to its right. The operator evaluates to the address of the first
byte after the section end. This evaluation occurs at linking time.

Assembler operators ___4

Example name sectionEnd
section MYCODE:CODE ; Forward declaration of MYCODE
section SEGTAB:CONST
data32 ; Disassembled as 32-bit data
endmycode dc32 sfe (MYCODE)
end

Even if this code is linked with many other modules, end is still set to the first byte after
the section MYCODE.

The size of the section MYCODE can be achieved by using the SIZEOF operator.

SIZEOF section size

Syntax SIZEOF section
Precedence 2
Parameters
section The name of a relocatable section, which must be defined
before STZEOF is used.
Description SIZEOF generates SFE-SFB for its argument. That is, it calculates the size in bytes of a

section. This is done when modules are linked together.

Example These two files set size to the size of the section MYCODE.
Table.s:
name table
section MYCODE:CODE ; Forward declaration of MYCODE
section SEGTAB:CONST
data32 ; Disassembled as 32-bit data
size dc32 sizeof (MYCODE)
end

Application.s:

name application

section MYCODE:CODE

code ; Disassembled as code

nop ; Placeholder for application
end

83

Description of assembler operators

UGT Unsigned greater than

Precedence

Description

Example

7

UGT evaluates to 1 (true) if the left operand has a larger value than the right operand,
otherwise it is 0 (false). The operation treats the operands as unsigned values.

2 UGT 1 -> 1
-1 UGT 1 —> 1

ULT Unsigned less than

Precedence

Description

Example

UPPER Third byte

Precedence

Description

Example

7

ULT evaluates to 1 (true) if the left operand has a smaller value than the right operand,
otherwise it is O (false). The operation treats the operands as unsigned values.

1 ULT 2 —> 1
-1 ULT 2 -> 0

UPPER takes a single operand, which is interpreted as an unsigned 32-bit integer value.
The result is the middle-high byte (bits 23 to 16) of the operand.

UPPER 0x12345678 -> 0x34

XOR Logical exclusive OR

Precedence

Description

Example

IAR Assembler User Guide
84 for RX

13

XOR evaluates to 1 (true) if either the left operand or the right operand is non-zero, but
to O (false) if both operands are zero or both are non-zero. Use XOR to perform logical
XOR on its two operands.

0101B XOR 1010B -> 0
0101B XOR 0000B -> 1

Assembler directives

This chapter gives a summary of the assembler directives and provides detailed

reference information for each category of directives.

Summary of assembler directives

The assembler directives are classified into these groups according to their function:

Module control directives, page 89

Symbol control directives, page 91

Mode control directives, page 93

Section control directives, page 94

Value assignment directives, page 98

Conditional assembly directives, page 100

Macro processing directives, page 101

Listing control directives, page 109

C-style preprocessor directives, page 113

Data definition or allocation directives, page 118

Assembler control directives, page 120

Function directives, page 123

Call frame information directives for names blocks, page 123.
Call frame information directives for common blocks, page 124
Call frame information directives for data blocks, page 126
Call frame information directives for tracking resources and CFAs, page 127

Call frame information directives for stack usage analysis, page 129

This table gives a summary of all the assembler directives:

Directive Description Section
#define Assigns a value to a label. C-style preprocessor
#elif Introduces a new condition in an C-style preprocessor

#if...#endif block.

#else Assembles instructions if a condition is false. ~ C-style preprocessor

#endif Ends an #1if, #ifdef, or #ifndef block. C-style preprocessor

Table 13: Assembler directives summary

85

Summary of assembler directives

86

IAR Assembler User Guide
for RX

Directive

Description

Section

#error
#if
#ifdef
#ifndef

#include
#line
#pragma
#undef

_args

/*comment*/

//

_args

ALIGN

ALIGNRAM

ASEGN

ASSIGN
CALL_GRAPH_ROOT
CASEOFF

CASEON

CFI

CODE

DATA

DATAS8

DATAl6

Generates an error.

Assembles instructions if a condition is true.

Assembles instructions if a symbol is defined.

Assembles instructions if a symbol is
undefined.

Includes a file.

Changes the line numbers.
Controls extension features.
Undefines a label.

Is set to number of arguments passed to

macro.
C-style comment delimiter.

C++ style comment delimiter.

Assigns a permanent value local to a module.

Is set to number of arguments passed to

macro.

Aligns the program location counter by
inserting zero-filled bytes.

Aligns the program location counter.
Begins a named absolute segment.

Assigns a temporary value.

Specifies that a function is a call graph root.
Disables case sensitivity.

Enables case sensitivity.

Specifies call frame information.

Subsequent instructions are assembled,
linked, and disassembled as code.

Subsequent instructions are assembled,
linked, and disassembled as 8-bit data.

Subsequent instructions are assembled,
linked, and disassembled as 8-bit data.

Subsequent instructions are assembled,
linked, and disassembled as |16-bit data.

C-style preprocessor
C-style preprocessor
C-style preprocessor

C-style preprocessor

C-style preprocessor
C-style preprocessor
C-style preprocessor
C-style preprocessor

Macro processing

Assembler control
Assembler control
Value assignment

Macro processing

Section control

Section control
Segment control
Value assignment
Function
Assembler control
Assembler control

Call frame
information
Mode control
Mode control

Mode control

Mode control

Table 13: Assembler directives summary (Continued)

Assembler directives ___¢

Directive Description Section
DATA32 Subsequent instructions are assembled, Mode control
linked, and disassembled as 32-bit data.
DATA64 Subsequent instructions are assembled, Mode control
linked, and disassembled as 64-bit data.

DC8 Generates 8-bit constants, including strings. Data definition or
allocation

DC16 Generates |6-bit constants. Data definition or
allocation

DC24 Generates 24-bit constants. Data definition or
allocation

DC32 Generates 32-bit constants. Data definition or
allocation

DC64 Generates 64-bit constants. Data definition or
allocation

DEFINE Defines a file-wide value. Value assignment

DF32 Generates 32-bit floating-point constants. Data definition or
allocation

DF64 Generates 64-bit floating-point constants. Data definition or
allocation

DQ15 Generates |6-bit fractional constants. Data definition or
allocation

DQ31 Generates 32-bit fractional constants. Data definition or
allocation

DS8 Allocates space for 8-bit integers. Data definition or
allocation

DS16 Allocates space for |6-bit integers. Data definition or
allocation

DS24 Allocates space for 24-bit integers. Data definition or
allocation

DS32 Allocates space for 32-bit integers. Data definition or
allocation

DS64 Allocates space for 64-bit integers. Data definition or
allocation

ELSE Assembles instructions if a condition is false. ~ Conditional
assembly

Table 13: Assembler directives summary (Continued)

87

Summary of assembler directives

88

IAR Assembler User Guide
for RX

Directive Description Section

ELSEIF Specifies a new condition in an IF...ENDIF Conditional
block. assembly

END Ends the assembly of the last module in a Module control
file.

ENDIF Ends an IF block. Conditional

assembly

ENDM Ends a macro definition. Macro processing

ENDR Ends a repeat structure. Macro processing

EQU Assigns a permanent value local to a module. Value assignment

ERROR Generates an error. Assembler control

EVEN Aligns the program counter to an even Section control
address.

EXITM Exits prematurely from a macro. Macro processing

EXTERN Imports an external symbol. Symbol control

EXTWEAK Imports an external symbol (which can be Symbol control
undefined.

IF Assembles instructions if a condition is true. Conditional

assembly

IMPORT Imports an external symbol. Symbol control

LIBRARY Retained for backward compatibility Module control
reasons. Recognized but ignored.

LOCAL Creates symbols local to a macro. Macro processing

LSTCND Controls conditional assembler listing. Listing control

LSTCOD Controls multi-line code listing. Listing control

LSTEXP Controls the listing of macro generated Listing control
lines.

LSTMAC Controls the listing of macro definitions. Listing control

LSTOUT Controls assembler-listing output. Listing control

LSTPAG Retained for backward compatibility Listing control
reasons; recognized but ignored.

LSTREP Controls the listing of lines generated by Listing control
repeat directives.

LSTXRF Generates a cross-reference table. Listing control

MACRO Defines a macro. Macro processing

Table 13: Assembler directives summary (Continued)

Assembler directives ___¢

Directive Description Section

MODULE Retained for backward compatibility Module control
reasons. Recognized but ignored.

NAME Retained for backward compatibility Module control
reasons. Recognized but ignored.

ODD Aligns the program location counter to an Section control
odd address.

OVERLAY Recognized but ignored. Symbol control

PROGRAM Retained for backward compatibility Module control
reasons. Recognized but ignored.

PUBLIC Exports symbols to other modules. Symbol control

PUBWEAK Exports symbols to other modules, multiple ~ Symbol control
definitions allowed.

RADIX Sets the default base. Assembler control

REPT Assembles instructions a specified number Macro processing
of times.

REPTC Repeats and substitutes characters. Macro processing

REPTI Repeats and substitutes strings. Macro processing

REQUIRE Forces a symbol to be referenced. Symbol control

RSEG Begins a section. Section control

RTMODEL Declares runtime model attributes. Module control

SECTION Begins a section. Section control

SECTION_TYPE
SET

VAR

Sets ELF type and flags for a section.
Assigns a temporary value.

Assigns a temporary value.

Section control
Value assignment

Value assignment

Table 13: Assembler directives summary (Continued)

Description of assembler directives

The following pages give reference information about the assembler directives.

Module control directives

Syntax END

RTMODEL key, value

89

Description of assembler directives

90

Parameters

Description

key A text string specifying the key.
value A text string specifying the value.
Module control directives are used for marking the end of source program modules, and

for enforcing consistency between them. For information about the restrictions that
apply when using a directive in an expression, see Expression restrictions, page 31.

Directive Description Expression restrictions

END Ends the assembly of the last module in a file. Only locally defined
labels or integer
constants

RTMODEL Declares runtime model attributes. Not applicable

Table 14: Module control directives

Terminating the source file

Use END to indicate the end of the source file. Any lines after the END directive are
ignored. The END directive also ends the module in the file.

Declaring runtime model attributes

IAR Assembler User Guide
for RX

Use RTMODEL to enforce consistency between modules. All modules that are linked
together and define the same runtime attribute key must have the same value for the
corresponding key value, or the special value *. Using the special value * is equivalent
to not defining the attribute at all. It can however be useful to explicitly state that the
module can handle any runtime model.

A module can have several runtime model definitions.

Note: The compiler runtime model attributes start with double underscores. In order to
avoid confusion, this style must not be used in the user-defined assembler attributes.

If you are writing assembler routines for use with C or C++ code, and you want to
control the module consistency, refer to the AR C/C++ Development Guide for RX.

The following examples defines three modules in one source file each, where:
e MOD_1 and MOD_2 cannot be linked together since they have different values for
runtime model CAN.

e MOD_1 and MOD_3 can be linked together since they have the same definition of
runtime model RTOS and no conflict in the definition of CAN.

e MOD_2 and MOD_3 can be linked together since they have no runtime model
conflicts. The value * matches any runtime model value.

Assembler source file f1.s:

module mod_1

Symbol control directives

Syntax

Parameters

Assembler directives ___¢

rtmodel "CAN", "IS011519"
rtmodel "Platform", "M7"
end
Assembler source file £2.s:
module mod_2
rtmodel "CAN", "I15011898"
rtmodel "Platform", "*"
end
Assembler source file £3.s:
module mod_3
rtmodel "Platform", "M7"
end
EXTERN symbol [, symbol]
EXTWEAK symbol [, symbol]
IMPORT symbol [,symbol]
PUBLIC symbol [,symboll]
PUBWEAK symbol [,symbol]
REQUIRE symbol
label Label to be used as an alias for a C/C++ symbol.
symbol Symbol to be imported or exported.

91

Description of assembler directives

Description These directives control how symbols are shared between modules:
Directive Description
EXTERN, IMPORT Imports an external symbol.
EXTWEAK Imports an external symbol. The symbol can be undefined.
OVERLAY Recognized but ignored.
PUBLIC Exports symbols to other modules.
PUBWEAK Exports symbols to other modules, multiple definitions
allowed.
REQUIRE Forces a symbol to be referenced.

Table 15: Symbol control directives

Exporting symbols to other modules

Use PUBLIC to make one or more symbols available to other modules. Symbols defined
PUBLIC can be relocatable or absolute, and can also be used in expressions (with the
same rules as for other symbols).

The pUBLIC directive always exports full 32-bit values, which makes it feasible to use
global 32-bit constants also in assemblers for 8-bit and 16-bit processors. With the Low,
HIGH, >>, and << operators, any part of such a constant can be loaded in an 8-bit or
16-bit register or word.

There can be any number of PUBLIC-defined symbols in a module.

Exporting symbols with multiple definitions to other modules

PUBWEAK is similar to PUBLIC except that it allows the same symbol to be defined in
more than one module. Only one of those definitions is used by ILINK. If a module
containing a PUBLIC definition of a symbol is linked with one or more modules
containing PUBWEAK definitions of the same symbol, ILINK uses the PUBLIC definition.

Note: Library modules are only linked if a reference to a symbol in that module is made,
and that symbol was not already linked. During the module selection phase, no
distinction is made between PUBLIC and PUBWEAK definitions. This means that to
ensure that the module containing the PUBLIC definition is selected, you should link it
before the other modules, or make sure that a reference is made to some other PUBLIC
symbol in that module.

Importing symbols
Use EXTERN or IMPORT to import an untyped external symbol.

The REQUIRE directive marks a symbol as referenced. This is useful if the section
containing the symbol must be loaded even if the code is not referenced.

IAR Assembler User Guide
92 for RX

Assembler directives ___¢

Example The following example defines a subroutine to print an error message, and exports the
entry address err so that it can be called from other modules.

Because the message is enclosed in double quotes, the string will be followed by a zero
byte.

It defines print as an external routine; the address is resolved at link time.

name errorMessage
extern print

public err

section CODE:CODE

code
err bra print
data8
dc8 "ok ok Error *x Kk n
code
rts
end
Mode control directives
Syntax CODE
DATA
DATAS8
DATAl6
DATA32
DATA64
Description These directives provide control over the assembly mode:
Directive Description
CODE Subsequent instructions are assembled, linked, and disassembled as code.
DATA, DATAS Subsequent instructions are assembled, linked, and disassembled as 8-bit
data.
DATAL6 Subsequent instructions are assembled, linked, and disassembled as 16-bit
data.
DATA32 Subsequent instructions are assembled, linked, and disassembled as 32-bit
data.
DATA64 Subsequent instructions are assembled, linked, and disassembled as 64-bit
data.

Table 16: Mode control directives

The copE and DATA directives set the assembly mode for code and data sections. This
information is used by C-SPY and IAR ELF Dumper.

93

Description of assembler directives

94

Example

Note: The cODE or DATA directives are required for big-endian applications, but they
improve the disassembly for all applications.

The CODE or DATA directives can be used for:

e Starting a code/data producing a section fragment (RSEGSECTION) that actually
generates bytes that end up in the image, either code or data

o Changing the assembly mode in the middle of a section fragment.

The directive should come after the section fragment start (for example after the
RSEGSECTION directive) and immediately precede any code-generating part
(instructions or DC declarations).

You do not need the CODE or DATA directives for declaring sections, extern labels etc,
and not when you declare RAM space.

In big-endian mode, the two least significant address bits are inverted on the RX
microcontroller. This means that the chip operates on four-byte chunks. If you change
the byte order, as you do when you switch between the code and data assembly modes,
you must make sure that each segment part begins on a 4-byte aligned address when you
toggle the assembly mode between code and data, or linking will fail with an alignment
error.

In this example, the disassembly mode changes several times to accommodate different
types of data:

name codedata
extern printStr
public printDate
section _ DEFAULT_CODE_SECTION__ :CODE

code ; Disassembled as code

printDate: mov.1l #a_date,R1 ; Load address of date
; string in RO.

bsr printStr ; Call string output routine.

rts

data8 ; Disassembled as 8-bit data.
a_date:

dc8 _ DATE_ ; String representing the

; date of assembly.
end

Section control directives

Syntax

IAR Assembler User Guide
for RX

ALIGN align [,valuel

ALIGNRAM align

Assembler directives ___¢

EVEN [value]

ODD [value]

RSEG section :type [:flagl [(align)]

SECTION section :type [:flag] [(align)]

SECTION_TYPE type-expr {,flags-expr}
Parameters

address Address where this section part is placed.

align The power of two to which the address should be aligned.
The default align value is 0, except for code sections where the
default is 1.

flag ROOT, NOROOT

ROOT (the default mode) indicates that the section fragment must not
be discarded.

NOROOT means that the section fragment is discarded by the linker if
no symbols in this section fragment are referred to. Normally, all
section fragments except startup code and interrupt vectors should
set this flag.

REORDER, NOREORDER

NOREORDER (the default mode) starts a new fragment in the section
with the given name, or a new section if no such section exists.

REORDER starts a new section with the given name.

section The name of the section. The section name is a user-defined symbol
that follows the rules described in Symbols, page 26.

type The memory type, which can be either CODE, CONST, or DATA.
value Byte value used for padding, default is zero.
type-expr A constant expression identifying the ELF type of the section.

flags-expr A constant expression identifying the ELF flags of the section.

95

Description of assembler directives

96

Description

The section directives control how code and data are located. For information about the
restrictions that apply when using a directive in an expression, see Expression
restrictions, page 31.

Directive Description Expression restrictions

ALIGN Aligns the program location counter by inserting No external references
zero-filled bytes. Absolute

ALIGNRAM Aligns the program location counter. No external references
Absolute

ASEGN Begins a named absolute section. No external references
Absolute

EVEN Aligns the program counter to an even address. No external references
Absolute

ODD Aligns the program counter to an odd address. ~ No external references
Absolute

RSEG Begins an ELF section; alias to SECTION. No external references
Absolute

SECTION Begins an ELF section. No external references
Absolute

SECTION_TYPE Sets ELF type and flags for a section.

Table 17: Section control directives

Beginning a named absolute section

Use ASEGN to start a named absolute section located at the address address.

This directive has the advantage of allowing you to specify the memory type of the
section.

Beginning a relocatable section

IAR Assembler User Guide
for RX

Use SECTION (or RSEG) to start a new section. The assembler maintains separate
location counters (initially set to zero) for all sections, which makes it possible to switch
sections and mode anytime without having to save the current program location counter.

Note: The first instance of a SECTION or RSEG directive must not be preceded by any
code generating directives, such as DC8 or DS8, or by any assembler instructions.

To set the ELF type, and possibly the ELF flags for the newly created section, use
SECTION_TYPE. By default, the values of the flags are zero. For information about valid
values, refer to the ELF documentation.

In the following example, the data following the first SECTION directive is placed in a
section called TABLE.

Assembler directives ___¢

The code following the second SECTION directive is placed in a relocatable section
called CODE:

module calculate
extern operator
extern addOperator, subOperator

section TABLE:CONST(8)
data8
operatorTable:
dc8 addOperator, subOperator

section CODE:CODE
code
calculate mov.l #operator,rl
mov.l [R1],R1
mov.l #operatorTable,R2

cmp [R2] .ub,R1
beqg add
add #1,R2
cmp [R2] .ub,R1
beqg sub
rts
add PN
rts
nop
sub P
rts
nop
end

Aligning a section

Use ALIGN to align the program location counter to a specified address boundary. You
do this by specifying an expression for the power of two to which the program counter
should be aligned. That is, a value of 1 aligns to an even address and a value of 2 aligns
to an address evenly divisible by 4.

The alignment is made relative to the section start; normally this means that the section
alignment must be at least as large as that of the alignment directive to give the desired
result.

97

Description of assembler directives

ALIGN aligns by inserting zero/filled bytes, up to a maximum of 255. The EVEN directive
aligns the program counter to an even address (which is equivalent to ALIGN 1) and the
opp directive aligns the program location counter to an odd address. The value used for
padding bytes must be within the range 0 to 255.

Use ALIGNRAM to align the program location counter by incrementing it; no data is
generated. The parameter align can be within the range O to 30.

This example starts a section, moves to an even address, and adds some data. It then
aligns to a 64-byte boundary before creating a 64-byte table.

name alignment
section DATA:DATA ;
datalé6 ;
even ;

target dclé6 1 ;

best dclé6 1 H
data8 ;
align 6 i

results ds8 64 H
end

Value assignment directives
Syntax label = expr

label ASSIGN expr

label DEFINE const_expr
label EQU expr

label SET expr

label VAR expr

Start a relocatable data section.
Disassembled as 16-bit data
Ensure it is on an even boundary.
target and best will be on an
even boundary.

Disassembled as 8-bit data

Now, align to a 64-byte boundary,
and create a 64-byte table.

Parameters
const_expr Constant value assigned to symbol.
expr Value assigned to symbol or value to be tested.
label Symbol to be defined.
Description These directives are used for assigning values to symbols:
Directive Description
=, EQU Assigns a permanent value local to a module.

Table 18: Value assignment directives

IAR Assembler User Guide
98 for RX

Assembler directives ___¢

Directive Description
ASSIGN, SET, VAR Assigns a temporary value.
DEFINE Defines a file-wide value.

Table 18: Value assignment directives (Continued)

Defining a temporary value

Use ASSIGN, SET, or VAR to define a symbol that might be redefined, such as for use
with macro variables. Symbols defined with ASSIGN, SET, or VAR cannot be declared
PUBLIC.

This example uses SET to redefine the symbol cons in a loop to generate a table of the
first 8 powers of 3:

name table
cons set 1

; Generate table of powers of 3.

cr_tabl macro times
dc32 cons

cons set cons * 3
if times > 1
cr_tabl times - 1
endif
endm

section .text:CODE(2)
table cr_tabl 4
end

Defining a permanent local value

Use EQU or = to create a local symbol that denotes a number or offset. The symbol is
only valid in the module in which it was defined, but can be made available to other
modules with a PUBLIC directive (but not with a PUBWEAK directive).

Use EXTERN to import symbols from other modules.

Defining a permanent global value

Use DEFINE to define symbols that should be known to the module containing the
directive. After the DEFINE directive, the symbol is known.

A symbol which was given a value with DEFINE can be made available to modules in
other files with the PUBLIC directive.

Symbols defined with DEFINE cannot be redefined within the same file. Also, the
expression assigned to the defined symbol must be constant.

929

Description of assembler directives

100

Conditional assembly directives

Syntax

Parameters

Description

IAR Assembler User Guide
for RX

ELSE
ELSEIF condition
ENDIF

IF condition

condition One of these:

An absolute expression The expression must not contain
forward or external references, and
any non-zero value is considered as
true.

stringl==string?2 The condition is true if stringl and
string2 have the same length and
contents.

stringl!=string2 The condition is true if stringl and
string2 have different length or
contents.

Use the IF, ELSE, ELSEIF, and ENDIF directives to control the assembly process at
assembly time. If the condition following the IF directive is not true, the subsequent
instructions do not generate any code (that is, it is not assembled or syntax checked)
until an ELSETF condition is true or ELSE or ENDIF directive is found.

Use ELSEIF to introduce a new condition after an IF directive. Conditional assembly
directives can be used anywhere in an assembly, but have their greatest use in
conjunction with macro processing.

All assembler directives (except for END) as well as the inclusion of files can be disabled
by the conditional directives. Each IF directive must be terminated by an ENDIF
directive. The ELSE and ELSEIF directives are optional, and if used, they must be inside
an IF...ENDIF block. IF...ENDIF and IF...ELSE. ..ENDIF blocks can be nested
to any level.

Assembler directives ___¢

Example This example uses a macro to add a constant to a direct page memory location:

addMem macro loc,val ; loc is a direct page memory

; location, and val is an
; 32-bit value to add to that
; location.

if val = 0
; Do nothing.

elseif wval < 16

mov.1l #loc,R1

mov.1l [R1],R2
add #val,R2
mov.1l R2, [R1]
else

mov.1l #loc,R1
mov.1l [R1],R2
add #val,R2,R2
mov.1l R2, [R1]
endif

endm

module addwithMacro
section CODE:CODE

code

addSome addMem 0xa0,0 ; Add 0 to memory loc. 0xaOl
addMem Oxa0l,1 ; Add 1 to the same address
addMem 0xa0,2 ; Add 2 to the same address
addMem 0xa0, 3 ; Add 3 to the same address
addMem Oxa0,47 ; Add 47 to the same address
rts
end

Macro processing directives
Syntax _args
ENDM
ENDR
EXITM
LOCAL symbol [, symbol]
name MACRO [argument] [,argument]

REPT expr

101

Description of assembler directives

102

Parameters

Description

IAR Assembler User Guide
for RX

REPTC formal,actual

REPTI formal,actual [,actuall

actual
argument
expr

formal

name

symbol

Strings to be substituted.
Symbolic argument names.

An expression.

An argument into which each character of actual (REPTC) or each

string of actual (REPTI) is substituted.
The name of the macro.

Symbols to be local to the macro.

These directives allow user macros to be defined. For information about the restrictions
that apply when using a directive in an expression, see Expression restrictions, page 31.

Directive Description Expression restrictions

_args Is set to number of arguments passed to macro.

ENDM Ends a macro definition.

ENDR Ends a repeat structure.

EXITM Exits prematurely from a macro.

LOCAL Creates symbols local to a macro.

MACRO Defines a macro.

REPT Assembles instructions a specified number of times. No forward references
No external references
Absolute
Fixed

REPTC Repeats and substitutes characters.

REPTI Repeats and substitutes text.

Table 19: Macro processing directives

A macro is a user-defined symbol that represents a block of one or more assembler
source lines. Once you have defined a macro, you can use it in your program like an
assembler directive or assembler mnemonic.

When the assembler encounters a macro, it looks up the macro’s definition, and inserts
the lines that the macro represents as if they were included in the source file at that

position.

Defining a macro

Assembler directives ___¢

Macros perform simple text substitution effectively, and you can control what they
substitute by supplying parameters to them.

The macro process consists of three distinct phases:

1 The assembler scans and saves macro definitions. The text between MACRO and
ENDM is saved but not syntax checked.

2 A macro call forces the assembler to invoke the macro processor (expander). The
macro expander switches (if not already in a macro) the assembler input stream
from a source file to the output from the macro expander. The macro expander takes
its input from the requested macro definition.

The macro expander has no knowledge of assembler symbols since it only deals with
text substitutions at source level. Before a line from the called macro definition is
handed over to the assembler, the expander scans the line for all occurrences of
symbolic macro arguments, and replaces them with their expansion arguments.

3 The expanded line is then processed as any other assembler source line. The input
stream to the assembler continues to be the output from the macro processor, until
all lines of the current macro definition have been read.

You define a macro with the statement:
name MACRO [argument] [,argument]

Here name is the name you are going to use for the macro, and argument is an argument
for values that you want to pass to the macro when it is expanded.

For example, you could define a macro errMac as follows:

name errMacro
errMac macro text

extern abort

bsr abort

data8

dc8 text, 0

endm

Note: This example only works in little-endian mode.

This macro uses a parameter text to set up an error message for a routine abort. You
would call the macro with a statement such as:

errMac 'Disk not ready'

103

Description of assembler directives

104

The assembler expands this to:

bsr abort
data8
dc8 'Disk not ready',O0

If you omit a list of one or more arguments, the arguments you supply when calling the
macro are called \1 to \9 and \A to \z.

The previous example could therefore be written as follows:

name errMacro
errMac macro text

extern abort

bsr abort

data8

dc8 \1,0

endm

Use the EXITM directive to generate a premature exit from a macro.
EXITM is not allowed inside REPT...ENDR, REPTC...ENDR, Or REPTI...ENDR blocks.

Use LOCAL to create symbols local to a macro. The LOCAL directive must be used before
the symbol is used.

Each time that a macro is expanded, new instances of local symbols are created by the
LocAL directive. Therefore, it is legal to use local symbols in recursive macros.

Note: It is illegal to redefine a macro.

Passing special characters

IAR Assembler User Guide
for RX

Macro arguments that include commas or white space can be forced to be interpreted as
one argument by using the matching quote characters < and > in the macro call.

For example:

name macroUser
movMac macro op

mov.1l op

endm

The macro can be called using the macro quote characters:
movMac <0x19a0,R1>

You can redefine the macro quote characters with the -M command line option; see -M,
page 58.

Predefined macro symbols

Assembler directives ___¢

The symbol _args is set to the number of arguments passed to the macro. This example

shows how _args can be used:

fill

macro
if
rept
dc8
endr
else
dc8
endif
endm

module

section

fill
fill
end

It generates this code:

19
20
21
22

22.
22.
22.
22.

23

23.
23.
23.
23.
23.
23.
23.
23.

24

Repeating statements

S W N e

0 J o Ul i WN

000000
000000
000000
000000
000000
000000
000001
000001
000001
000001
000001
000002
000003
000004
000004
000004
000004

03

04
04
04

.text:CODE (2)

module fill
section CODE:CODE
data

fill 3

if _args == 2
else

dc8 3

endif
fill
if args ==
rept
dc8
dc8
dc8
endr

'S
w

S s W

else
endif
end

Use the REPT. . . ENDR structure to assemble the same block of instructions several

times. If expr evaluates to 0 nothing is generated.

Use REPTC to assemble a block of instructions once for each character in a string. If the
string contains a comma it should be enclosed in quotation marks.

105

Description of assembler directives

IAR Assembler User Guide
106 for RX

Only double quotes have a special meaning and their only use is to enclose the
characters to iterate over. Single quotes have no special meaning and are treated as any
ordinary character.

Use REPTT to assemble a block of instructions once for each string in a series of strings.
Strings containing commas should be enclosed in quotation marks.

This example assembles a series of calls to a subroutine plot to plot each character in
a string:

name reptc
section CODE:CODE
code
banner reptc chr, "Welcome"
mov.1l #'chr',rl
bsr plotc
endr
rts
end

This produces this code:

9 name reptc

10 000000 extern plotc
11 000000 section CODE:CODE
12 000000 CODE

13 000000 banner reptc chr, "Welcome"
13.1 000000 FB1657 mov.1l #'w',rl
13.2 000003 05000000 bsr plotc
13.3 000007 FB1665 mov.1l #'e',rl
13.4 00000A 05000000 bsr plotc
13.5 00000E FBl66C mov.1l #'1',rl
13.6 000011 05000000 bsr plotc
13.7 000015 FB1663 mov.1l #'c',rl
13.8 000018 05000000 bsr plotc
13.9 00001C FBl66F mov.1l #'0',rl
13.10 00001F 05000000 bsr plotc
13.11 000023 FB166D mov.1l #'m',rl
13.12 000026 05000000 bsr plotc
13.13 000022 FB1665 mov.1l #'e',rl
13.14 00002D 05000000 bsr plotc
13.15 000031 endr

17 000031 02 rts

18 000032 end

This example uses REPTT to clear several memory locations:

banner

name
extern
sectio
code
repti
mov.1l
mov.1l
endr
rts
end

repti
base,
nn CODE:CODE

adds,
#adds,R1
#0, [R1]

This produces this code:

9
10

11
12
13

13.
13.
13.
13.
13.
13.
13.
17

18

Coding inline for efficiency

N oy Ul W N

000000

000000
000000
000000

000000
000006
000009
00000F
000012
000018
00001B
00001B
00001cC

FB1200000000
F81600
FB1200000000
F81600
FB1200000000
F81600

02

count,

base,

init

count,

banner

init

Assembler directives ___¢

name repti
extern base, count,
init
section CODE:CODE
code
repti adds, base,
count, init
mov.l #base,R1
mov.1l #0, [R1]
mov.1l #count,R1
mov.1l #0, [R1]
mov.1l #init,R1
mov.1l #0, [R1]
endr
rts
end

In time-critical code it is often desirable to code routines inline to avoid the overhead of
a subroutine call and return. Macros provide a convenient way of doing this.

107

Description of assembler directives

This example outputs bytes from a buffer to a port:

name ioBufferSubroutine
public copyBuffer
ptbd equ 0x0002 ; Definition of the port B

; data register.
section DATAL6:DATA
data
buffer ds8 256

section CODE:CODE

code
copyBuffer mov.l #buffer,R1 ; Initialize the loop counter.
mov.l #ptbd,R3
mov.l #256,R4
loop mov.b [R1+],R2
mov.b R2, [R3]
sub #1,R4
bne loop ; Have we copied 256 bytes?
rts
end

The main program calls this routine as follows:
For efficiency we can recode this using a macro:

name ioBufferInline
pthd equ 0x0002 ; Definition of the port B
; data register.
section DATA16:DATA
data
buffer ds8 256

section CODE:CODE
code
copyBuffer macro
mov.l #buffer,R1 ; Initialize the loop counter.
mov.l #ptbd,R3
mov.l #256,R4
loop mov.b [R1+],R2
mov.b R2, [R3]
sub #1,R4
bne loop ; Have we copied 256 bytes?
endm
end

Notice the use of the LOCAL directive to make the label 1o0p local to the macro;
otherwise an error is generated if the macro is used twice, as the 1oop label already
exists.

IAR Assembler User Guide
108 for RX

Listing control directives

Assembler directives ___¢

Syntax LSTCND{+ |-}

LSTCOD{+ |-}

LSTEXP{+|-}

LSTMAC{+|-}

LSTOUT{+ |-}

LSTREP{+|-}

LSTXRF{+|-}

Description These directives provide control over the assembler list file:
Directive Description
LSTCND Controls conditional assembly listing.
LSTCOD Controls multi-line code listing.
LSTEXP Controls the listing of macro-generated lines.
LSTMAC Controls the listing of macro definitions.
LSTOUT Controls assembly-listing output.
LSTREP Controls the listing of lines generated by repeat directives.
LSTXRF Generates a cross-reference table.

Table 20: Listing control directives

Note: The directives COL, LSTPAGE, PAGE, and PAGSIZ are included for backward
compatibility reasons; they are recognized but no action is taken.

Turning the listing on or off

Use LSTOUT- to disable all list output except error messages. This directive overrides
all other listing control directives.

The default is LsTouT+, which lists the output (if a list file was specified).

To disable the listing of a debugged section of program:

lstout-

; This section has already been debugged.
lstout+

; This section is currently being debugged.
end

109

Description of assembler directives

110

Listing conditional code and strings

IAR Assembler User Guide
for RX

Use LSTCND+ to force the assembler to list source code only for the parts of the assembly
that are not disabled by previous conditional IF statements.

The default setting is LSTCND-, which lists all source lines.

Use LSTCOD+ to list more than one line of code for a source line, if needed; that is, long
ASCII strings produce several lines of output.

The default setting is LSTCOD-, which restricts the listing of output code to just the first
line of code for a source line.

Using the LSTCND and LSTCOD directives does not affect code generation.

This example shows how LSTCND+ hides a call to a subroutine that is disabled by an IF
directive:

name lstcndTest
extern print
section FLASH:CODE

code
debug set 0
begin if debug
bsr print
endif
lstcnd+
begin2 if debug
bsr print
endif
end

This generates the following listing:

9 name lstcndTest
10 000000 extern print
11 000000 section FLASH:CODE
12 000000 code
13 000000 debug set 0
14 000000 begin if debug
15 bsr print
16 000000 endif
17
18 lstcnd+
19 000000 begin2 if debug
21 000000 endif
22
23 000000 end

Assembler directives ___¢

Controlling the listing of macros

Use LSTEXP- to disable the listing of macro-generated lines. The default is LSTEXP+,
which lists all macro-generated lines.

Use LsTMAC+ to list macro definitions. The default is LSTMAC-, which disables the
listing of macro definitions.

This example shows the effect of LSTMAC and LSTEXP:

name lstmacTest
extern memLoc
section FLASH:CODE (2)

code

dec2 macro arg
mov.1l #arg,R1
mov.1l [R1],R2
sub #2,R1
mov.1 R2, [R1]
endm
lstmac+

inc2 macro arg
mov.1l #arg,R1
mov.1l [R1],R2
add #2,R2
mov.1l R2, [R1]
endm

begin dec?2 memLoc
lstexp-
inc2 memLoc
rts

; Restore default values for
; listing control directives.

lstmac-
lstexp+

end

Description of assembler directives

This produces the following output:

9 name lstmacTest
10 000000 extern memLoc
11 000000 section FLASH:CODE (2)
12 000000 code
13
20
21 lstmac+
22 inc2 macro arg
23 mov.1l #arg,R1
24 mov.l [R1],R2
25 add #2,R2
26 mov.1l R2, [R1]
27 endm
28
29 000000 begin dec2 memLoc
29.1 000000 FB1200000000 mov.1l #memLoc, R1
29.2 000006 EC12 mov.1l [R1],R2
29.3 000008 6021 sub #2,R1
29.4 00000A E312 mov.1l R2, [R1]
30 lstexp-
31 00000C inc2 memLoc
32 000018 02 rts
33 ; Restore default values for
34 ; listing control directives.
35
36 lstmac-
37 lstexp+
38
39 000019 end

Controlling the listing of generated lines

Use LSTREP- to turn off the listing of lines generated by the directives REPT, REPTC,
and REPTI.

The default is LSTREP+, which lists the generated lines.

Generating a cross-reference table

Use LSTXRF+ to generate a cross-reference table at the end of the assembler list for the
current module. The table shows values and line numbers, and the type of the symbol.

The default is LSTXRF-, which does not give a cross-reference table.

IAR Assembler User Guide
112 for RX

Assembler directives ___¢

C-style preprocessor directives

Syntax #define symbol text
#elif condition
#else
#endif
#error "message"
#if condition
#ifdef symbol
#ifndef symbol
#include {"filename" | <filename>}
#line line-no {"filename"}

#undef symbol

Parameters
condition An absolute assembler expression, see Expressions, operands, and
operators, page 24.
The expression must not contain any assembler labels or symbols,
and any non-zero value is considered as true. The C preprocessor
operator defined can be used.
filename Name of file to be included or referred.
line-no Source line number.
message Text to be displayed.
symbol Preprocessor symbol to be defined, undefined, or tested.
text Value to be assigned.
Description The assembler has a C-style preprocessor that follows the C99 standard.

These C-language preprocessor directives are available:

Directive Description
#define Assigns a value to a preprocessor symbol.
#elif Introduces a new condition in an #if. . .#endif block.

Table 21: C-style preprocessor directives

113

Description of assembler directives

114

Directive Description

#else Assembles instructions if a condition is false.

#endif Ends an #if, #1ifdef, or #ifndef block.

#error Generates an error.

#if Assembles instructions if a condition is true.

#ifdef Assembles instructions if a preprocessor symbol is defined.
#ifndef Assembles instructions if a preprocessor symbol is undefined.
#include Includes a file.

#line Changes the source references in the debug information.

#pragma Controls extension features. The supported #pragma directives are

described in the chapter Pragma directives.

#undef Undefines a preprocessor symbol.

Table 21: C-style preprocessor directives (Continued)

You should not mix assembler language and C-style preprocessor directives.
Conceptually, they are different languages and mixing them might lead to unexpected
behavior because an assembler directive is not necessarily accepted as a part of the C
preprocessor language.

Note that the preprocessor directives are processed before other directives. As an
example avoid constructs like:

redef macro ; Avoid the following!
#define \1 \2
endm

because the \1 and \2 macro arguments are not available during the preprocessing
phase.

Defining and undefining preprocessor symbols

Use #define to define a value of a preprocessor symbol.
#define symbol value

Use #undef to undefine a symbol; the effect is as if it had not been defined.

Conditional preprocessor directives

IAR Assembler User Guide
for RX

Use the #if...#else...#endif directives to control the assembly process at assembly
time. If the condition following the #1i £ directive is not true, the subsequent instructions
will not generate any code (that is, it will not be assembled or syntax checked) until an
#endif or #else directive is found.

Assembler directives ___¢

All assembler directives (except for END) and file inclusion can be disabled by the
conditional directives. Each #if directive must be terminated by an #endi £ directive.
The #else directive is optional and, if used, it must be inside an #if...#endif block.

#if..#endif and #if...#else..#endif blocks can be nested to any level.

Use #1ifdef to assemble instructions up to the next #else or #endif directive only if
a symbol is defined.

Use #ifndef to assemble instructions up to the next #else or #endif directive only if
a symbol is undefined.

This example defines the labels tweak and adjust. If adjust is defined, then register
16 is decremented by an amount that depends on adjust, in this case 30.

name calibrate
extern calibrationConstant
section CODE:CODE

code
#define tweak 1
#define adjust 3

calibrate mov.1l #calibrationConstant,R1

mov.1l [R1],R2
#ifdef tweak
#1if adjust==1

sub #4,R2
#elif adjust==

add #-20,R2
#elif adjust==3

add #-30,R2,R2
#endif
#endif /* 1fdef tweak */

mov.b R2, [R1]

rts

end

Including source files

Use #include to insert the contents of a file into the source file at a specified point. The
filename can be specified within double quotes or within angle brackets.

Following is the full description of the assembler’s #include file search procedure:

e If the name of the #include file is an absolute path, that file is opened.

o When the assembler encounters the name of an #include file in angle brackets
such as:

#include <iorx62n.h>

115

Description of assembler directives

116

IAR Assembler User Guide
for RX

it searches the following directories for the file to include:

1 The directories specified with the -T option, in the order that they were
specified.

2 Any directories specified using the ARX_INC environment variable.

3 The automatically set up library system include directories. See
--no_system_include, page 61 and --system_include_dir, page 66.
o When the assembler encounters the name of an #include file in double quotes
such as:
#include "vars.h"

it searches the directory of the source file in which the #include statement occurs,
and then performs the same sequence as for angle-bracketed filenames.

If there are nested #include files, the assembler starts searching the directory of the
file that was last included, iterating upwards for each included file, searching the
source file directory last.

Use angle brackets for header files provided with the IAR Assembler for rx, and double
quotes for header files that are part of your application.

This example uses #include to include a file defining macros into the source file. For
example, these macros could be defined in Macros . inc:

; Exchange registers a and b.
; Use the stack for temporary storage.

xch macro a,b
push.1l \1
push.1l \2
pop \2
pop \1
endm

The macro definitions can then be included, using #include, as in this example:

program includeFile
public xchRegs
section CODE:CODE
code
; Standard macro definitions
#include "Macros.inc"

xchRegs xch rl,r3
xch r2,rd
rts
end

Assembler directives ___¢

Displaying errors

Use #error to force the assembler to generate an error, such as in a user-defined test.

Changing the source line numbers

Use the #1ine directive to change the source line numbers and the source filename used
in the debug information. #1ine operates on the lines following the #1ine directive.

Comments in C-style preprocessor directives

If you make a comment within a define statement, use:

o the C comment delimiters /* ... */tocomment sections

o the C++ comment delimiter // to mark the rest of the line as comment.

Do not use assembler comments within a define statement as it leads to unexpected
behavior.

This expression evaluates to 3 because the comment character is preserved by #define:

#define x 3 ; This is a misplaced comment.

module misplacedCommentl
expression equ x * 8 + 5

end

This example illustrates some problems that might occur when assembler comments are
used in the C-style preprocessor:

#define five 5 ; This comment is not OK.
#define six 6 // This comment is OK.
#define seven 7 /* This comment is OK. */

module misplacedComment?2
section MYCONST:CONST (2)

DC32 five, 11, 12

; The previous line expands to:

; "DC32 5 ; This comment is not OK., 11, 12"
DC32 six + seven, 11, 12

; The previous line expands to:

; "DC32 6 + 7, 11, 12"
end

17

Description of assembler directives

Data definition or allocation directives

Syntax DC8 expr [,expr]
DCl6 expr [,expr]
DC24 expr [,expr]
DC32 expr [,expr]
DC64 expr [,expr] .
DF32 value [,value]
DF64 value [,valuel
DQ15 value [,value]
DQ31 value [,value]
DS count
DS8 count
DS16 count
DS24 count
DS32 count
DS64 count
Parameters
count A valid absolute expression specifying the number of elements to be

reserved.

expr A valid absolute, relocatable, or external expression, or an ASCII string.
ASCII strings are zero filled to a multiple of the data size implied by the
directive. Double-quoted strings are zero-terminated. For DC64, expr
cannot be relocatable or external.
value A valid absolute expression or floating-point constant.
Description These directives define values or reserve memory.

Use DC8, DC16,DC24, DC32, DC64, DF32, or DF64 to create a constant, which means an
area of bytes is reserved big enough for the constant.

Use DS8, DS16, DS24, DS32, or DS64 to reserve a number of uninitialized bytes.

For information about the restrictions that apply when using a directive in an expression,
see Expression restrictions, page 31.

The column A/ias in the following table shows the Renesas directive that corresponds to
the IAR Systems directive.

Directive

Alias Description

DC8
DC16
DC24

Generates 8-bit constants, including strings.
Generates |6-bit constants.

Generates 24-bit constants.

Table 22: Data definition or allocation directives

IAR Assembler User Guide
118 for RX

Assembler directives ___¢

Directive Alias Description

DC32 Generates 32-bit constants.

DC64 Generates 64-bit constants.

DF32 Generates 32-bit floating-point constants.
DF64 Generates 64-bit floating-point constants.
DQ15 Generates |6-bit fractional constants.
DQ31 Generates 32-bit fractional constants.
DS8 DS Allocates space for 8-bit integers.

DS16 Allocates space for |6-bit integers.

DS24 Allocates space for 24-bit integers.

DS32 Allocates space for 32-bit integers.

DS64 Allocates space for 64-bit integers.

Table 22: Data definition or allocation directives (Continued)

Generating a lookup table

This example generates a constant table of 8-bit data that is accessed via the call
instruction and added up to a sum.

module sumTableAndIndex
section DATALl6:CONST

DATA

table dc8 12
dc8 15
dc8 17
dc8 16
dc8 14
dc8 11
dc8 9

section CODE:CODE

code
count set 0
addTable mov #0,R1

mov.1l #table,R2

19

Description of assembler directives

rept 7
if count == 7
exitm
endif
mov.b [R2+],R4
add R4,R1

count set count + 1
endr
rts
end

Defining strings
To define a string:
myMsg DC8 'Please enter your name'
To define a string which includes a trailing zero:
myCstr DC8 "This is a string."
To include a single quote in a string, enter it twice; for example:

errMsg DC8 'Don''t understand!'

Reserving space

To reserve space for 10 bytes:

table DS8 10

Assembler control directives

Syntax /* comment* /
// comment
CASEOFF
CASEON
ERROR "message"

RADIX expr

Parameters
comment Comment ignored by the assembler.

expr Default base; default 10 (decimal).

IAR Assembler User Guide
120 for RX

Description

Assembler directives ___¢

message Text to be displayed.

These directives provide control over the operation of the assembler. For information
about the restrictions that apply when using a directive in an expression, see Expression
restrictions, page 31.

Directive Description Expression restrictions

/*comment*/ C-style comment delimiter.

// C++ style comment delimiter.

CASEOFF Disables case sensitivity.

CASEON Enables case sensitivity.

ERROR Generates an error.

RADIX Sets the default base on all numeric No forward references

values. No external references

Absolute
Fixed

Table 23: Assembler control directives
Use /*...*/ to comment sections of the assembler listing.
Use // to mark the rest of the line as comment.

Use RADIX to set the default base for constants. The default base is 10.

Controlling case sensitivity

Use CASEON or CASEOFF to turn on or off case sensitivity for user-defined symbols. By
default, case sensitivity is on.

When CASEOFF is active all symbols are stored in upper case, and all symbols used by
ILINK should be written in upper case in the linker configuration file.

When CASEOFF is set, label and LABEL are identical in this example:

module caseSensitivityl
section CODE:CODE

caseoff
CODE
label nop ; Stored as "LABEL".
bra LABEL
nop
end

121

Description of assembler directives

The following will generate a duplicate label error:

label
LABEL

Generating errors

module caseSensitivity?2
section CODE:CODE

CODE

caseoff

nop ; Stored as "LABEL".

nop ; Error, "LABEL" already defined.
end

Use ERROR to force the assembler to generate an error. It us useful in, for example,

macros:

MyMacro

Defining comments

macro

if \0 == 7

error "Wrong first parameter"
endif

endm

This example shows how /*. .. */ can be used for a multi-line comment:

/*

Program to read serial input.

Version 1:
Author: mjp

*/

19.2.11

See also C-style preprocessor directives, page 113.

Changing the base

To set the default base to 16:

radix 16
mov.1l #12,R1

; With the default base set
; to 16, the immediate value
P ; of the load instruction is
; interpreted as 0x12.

; To reset the base from 16 to 10 again, the argument must be
; written in hexadecimal format.

IAR Assembler User Guide
122 for RX

radix 0x0a
mov.1l #12,R2

; Reset the default base to 10
; Now, the immediate value of
Pe.. ; the load instruction is

; interpreted as 0xOc.

Function directives

Syntax

Parameters

Description

Example

See also

Assembler directives ___¢

CALL_GRAPH_ROOT function [,categoryl]

function The function, a symbol.

category An optional call graph root category, a string.

Use this directive to specify that, for stack usage analysis purposes, the function
function is a call graph root. You can also specify an optional category, a quoted
string.

The compiler will generate this directive in assembler list files, when needed.

CALL_GRAPH_ROOT my_interrupt, "interrupt"
Call frame information directives for stack usage analysis, page 129, for information
about CFI directives required for stack usage analysis.

IAR C/C++ Development Guide for RX for information about how to enable and use
stack usage analysis.

Call frame information directives for names blocks

Syntax

Parameters

Names block directives:

CFI NAMES name

CFI ENDNAMES name

CFI RESOURCE resource : bits [, resource : bits]

CFI VIRTUALRESOURCE resource : bits [, resource : bits]

CFI RESOURCEPARTS resource part, part [, part] ...

CFI STACKFRAME cfa resource type [, cfa resource typel
CFI BASEADDRESS cfa type [, cfa typel

bits The size of the resource in bits.

cfa The name of a CFA (canonical frame address).
name The name of the block.

123

Description of assembler directives

124

Description

Example

See also

namesblock
offset

part

resource
size

type

The name of a previously defined names block.
The offset relative the CFA. An integer with an optional sign.

A part of a composite resource. The name of a previously
declared resource.

The name of a resource.
The size of the frame cell in bytes.

The segment memory type, such as CODE, CONST, or DATA. In
addition, any of the memory types supported by the IAR ILINK
Linker. It is only used for denoting an address space.

Use these directives to define a names block:

Directive

Description

CFI BASEADDRESS
CFI ENDNAMES
CFI FRAMECELL
CFI NAMES

CFI RESOURCE

Declares a base address CFA (Canonical Frame Address).
Ends a names block.

Creates a reference into the caller’s frame.

Starts a names block.

Declares a resource.

CFI RESOURCEPARTS Declares a composite resource.

CFI STACKFRAME

Declares a stack frame CFA.

CFI VIRTUALRESOURCE Declares a virtual resource.

Table 24: Call frame information directives names block

Examples of using CFI directives, page 40

Tracking call frame usage, page 33

Call frame information directives for common blocks

Syntax

IAR Assembler User Guide
for RX

Common block directives:

CFI COMMON name USING namesblock

CFI ENDCOMMON name

CFI CODEALIGN codealignfactor

CFI DATAALIGN dataalignfactor

Parameters

Description

Example

Assembler directives ___¢

CFI DEFAULT { UNDEFINED | SAMEVALUE }

CFI RETURNADDRESS resource type

codealignfactor

commonblock

dataalignfactor

name
namesblock
resource

type

The smallest common factor of all instruction sizes. Each CFI
directive for a data block must be placed according to this
alignment. 1 is the default and can always be used, but a larger
value reduces the produced call frame information in size. The
possible range is 1-256.

The name of a previously defined common block.

The smallest common factor of all frame sizes. If the stack
grows toward higher addresses, the factor is negative; if it grows
toward lower addresses, the factor is positive. 1 is the default, but
a larger value reduces the produced call frame information in
size. The possible ranges are —256 to —1 and 1 to 256.

The name of the block.
The name of a previously defined names block.
The name of a resource.

The memory type, such as CODE, CONST, or DATA. In addition,
any of the segment memory types supported by the IAR ILINK
Linker. It is only used for denoting an address space.

Use these directives to define a common block:

Directive

Description

CFI CODEALIGN
CFI COMMON
CFI DATAALIGN
CFI DEFAULT
CFI ENDCOMMON

Declares code alignment.

Starts or extends a common block.
Declares data alignment.

Declares the default state of all resources.

Ends a common block.

CFI RETURNADDRESS Declares a return address column.

Table 25: Call frame information directives common block

In addition to these directives you might also need the call frame information directives
for specifying rules, or CFI expressions for resources and CFAs, see Call frame
information directives for tracking resources and CFAs, page 127.

Examples of using CFI directives, page 40

125

Description of assembler directives

126

See also

Tracking call frame usage, page 33

Call frame information directives for data blocks

IAR Assembler User Guide

for RX

Syntax

Parameters

Description

CFI

CFI

CFI

CFI

CFI

CFI

CFI

commonblock

label

name

BLOCK name USING commonblock

ENDBLOCK name

{ NOFUNCTION | FUNCTION label }

{ INVALID | VALID }

{ REMEMBERSTATE | RESTORESTATE }

PICKER

CONDITIONAL label

labell

The name of a previously defined common block.
A function label.

The name of the block.

These directives allow call frame information to be defined in the assembler source

code:

Directive Description

CFI BLOCK Starts a data block.

CFI CONDITIONAL Declares a data block to be a conditional thread.

CFI ENDBLOCK Ends a data block.

CFI FUNCTION Declares a function associated with a data block.

CFI INVALID Starts a range of invalid call frame information.

CFI NOFUNCTION Declares a data block to not be associated with a function.

CFI PICKER Declares a data block to be a picker thread. Used by the
compiler for keeping track of execution paths when code
is shared within or between functions.

CFI REMEMBERSTATE Remembers the call frame information state.

CFI RESTORESTATE Restores the saved call frame information state.

CFI VALID Ends a range of invalid call frame information.

Table 26: Call frame information directives for data blocks

Assembler directives ___¢

In addition to these directives, you might also need the call frame information directives
for specifying rules, or CFI expressions for resources and CFAs, see Call frame
information directives for tracking resources and CFAs, page 127.

Example Examples of using CFI directives, page 40

See also Tracking call frame usage, page 33

Call frame information directives for tracking resources and CFAs

Syntax CFI cfa { resource | resource + constant | resource - constant }
CFI cfa cfiexpr
CFI resource { UNDEFINED | SAMEVALUE | CONCAT }
CFI resource { resource | FRAME (cfa, offset) }

CFI resource cfiexpr

Parameters
cfa The name of a CFA (canonical frame address).
cfiexpr A CFI expression, which can be one of these:
o A CFI operator with operands
e A numeric constant
e A CFA name
® A resource name.
constant A constant value or an assembler expression that can be
evaluated to a constant value.
offset The offset relative the CFA. An integer with an optional sign.
resource The name of a resource.
Unary operators Overall syntax: OPERATOR (operand)
CFl operator Operand Description
COMPLEMENT cfiexpr Performs a bitwise NOT on a CFl expression.
LITERAL expr Get the value of the assembler expression. This can insert

the value of a regular assembler expression into a CFl
expression.

Table 27: Unary operators in CFI expressions

127

Description of assembler directives

128

Binary operators

IAR Assembler User Guide
for RX

CFl operator Operand Description
NOT cfiexpr Negates a logical CFl expression.
UMINUS cfiexpr Performs arithmetic negation on a CFl expression.

Table 27: Unary operators in CFI expressions (Continued)

Overall syntax: OPERATOR (operandl, operand?2)

CFl operator Operands

Description

ADD
AND
DIV
EQ
GE
GT
LE

LSHIFT

LT
MOD
MUL
NE
OR

RSHIFTA

RSHIFTL

SUB

XOR

cfiexpr,cfiexpr
cfiexpr,cfiexpr
cfiexpr,cfiexpr
cfiexpr,cfiexpr
cfiexpr,cfiexpr
cfiexpr,cfiexpr
cfiexpr,cfiexpr

cfiexpr,cfiexpr

cfiexpr,cfiexpr
cfiexpr,cfiexpr
cfiexpr,cfiexpr
cfiexpr,cfiexpr
cfiexpr,cfiexpr

cfiexpr,cfiexpr

cfiexpr,cfiexpr

cfiexpr,cfiexpr

cfiexpr,cfiexpr

Addition

Bitwise AND

Division

Equal to

Greater than or equal to
Greater than

Less than or equal to

Logical shift left of the left operand. The number of
bits to shift is specified by the right operand. The sign
bit will not be preserved when shifting.

Less than
Modulo
Multiplication
Not equal to
Bitwise OR

Arithmetic shift right of the left operand. The
number of bits to shift is specified by the right
operand. In contrast with RSHIFTL, the sign bit is
preserved when shifting.

Logical shift right of the left operand. The number of
bits to shift is specified by the right operand. The sign
bit will not be preserved when shifting.

Subtraction

Bitwise XOR

Table 28: Binary operators in CFI expressions

Assembler directives ___¢

Ternary operators Overall syntax: OPERATOR (operandl, operand2, operand3)

Operator Operands Description

FRAME cfa,size,offset Gets the value from a stack frame. The operands are:
cfa, an identifier that denotes a previously declared CFA.
Ssize, a constant expression that denotes a size in bytes.
offset,a constant expression that denotes a size in bytes.
Gets the value at address cfa+offset of size size.

IF cond, true, false Conditional operator. The operands are:
cond, a CFl expression that denotes a condition.
true, any CFl expression.
false, any CFl expression.
If the conditional expression is non-zero, the result is the
value of the true expression; otherwise the result is the
value of the false expression.

LOAD size, type,addr Gets the value from memory. The operands are:
s1ze, a constant expression that denotes a size in bytes.
type, a memory type.
addr, a CFl expression that denotes a memory address.
Gets the value at address addr in the segment memory
type type of size size.

Table 29: Ternary operators in CFI expressions

Description Use these directives to track resources and CFAs in common blocks and data blocks:
Directive Description
CFI cfa Declares the value of a CFA.
CFI resource Declares the value of a resource.

Table 30: Call frame information directives for tracking resources and CFAs
Example Examples of using CFI directives, page 40

See also Tracking call frame usage, page 33

Call frame information directives for stack usage analysis
Syntax CFI FUNCALL { caller } callee
CFI INDIRECTCALL { caller }
CFI NOCALLS { caller }

CFI TAILCALL { callee }

129

Description of assembler directives

130

Parameters

Description

See also

IAR Assembler User Guide
for RX

callee

caller

The label of the called function.

The label of the calling function.

These directives allow call frame information to be defined in the assembler source

code:

Directive Description

CFI FUNCALL Declares function calls for stack usage analysis.
CFI INDIRECTCALL Declares indirect calls for stack usage analysis.
CFI NOCALLS Declares absence of calls for stack usage analysis.
CFI TAILCALL Declares tail calls for stack usage analysis.

Table 31: Call frame information directives for stack usage analysis

Tracking call frame usage, page 33

The IAR C/C++ Development Guide for RX for information about stack usage analysis.

Pragma directives

This chapter describes the pragma directives of the IAR Assembler for RX.

The pragma directives control the behavior of the assembler, for example
whether it outputs warning messages. The pragma directives are
preprocessed, which means that macros are substituted in a pragma directive.

Summary of pragma directives

This table lists the pragma directives of the assembler:

#pragma directive Description

diag_default Changes the severity level of diagnostic messages
diag_error Changes the severity level of diagnostic messages
diag_remark Changes the severity level of diagnostic messages
diag_suppress Suppresses diagnostic messages
diag_warning Changes the severity level of diagnostic messages
message Prints a message

Table 32: Pragma directives summary

Descriptions of pragma directives

diag_default

Syntax

Parameters

The following pages describe each pragma directive.

Note that all pragma directives using = for value assignment should be entered like:
#pragma pragmaname=pragmavalue

or

#pragma pragmaname = pragmavalue

#pragma diag_default=tag, tag, ...

tag The number of a diagnostic message, for example the
message number Pell7.

131

Descriptions of pragma directives

Description

Example

See also

diag _error

Syntax

Parameters

Description

Example

See also

diag remark

Syntax

Parameters

Description

Example

See also

IAR Assembler User Guide
132 for RX

Use this pragma directive to change the severity level back to the default, or to the
severity level defined on the command line by any of the options --diag_error,
--diag_remark, --diag_suppress, or --diag_warning, for the diagnostic
messages specified with the tags.

#pragma diag_default=Pell?7

The chapter Diagnostics.

#pragma diag_error=tag, tag, ...

tag The number of a diagnostic message, for example the
message number Pell7.

Use this pragma directive to change the severity level to error for the specified
diagnostic messages.

#pragma diag_error=Pell?7

The chapter Diagnostics.

#pragma diag_remark=tag, tag, ...

tag The number of a diagnostic message, for example the
message number Pel17.

Use this pragma directive to change the severity level to remark for the specified
diagnostic messages.

#pragma diag_remark=Pel77

The chapter Diagnostics.

diag_suppress

Syntax

Parameters

Description
Example

See also

diag_warning

Syntax

Parameters

Description

Example

See also

message

Syntax

Parameters

Description

Pragma directives °

#pragma diag_suppress=tag, tag, ...

tag The number of a diagnostic message, for example the
message number Pell7.

Use this pragma directive to suppress the specified diagnostic messages.
#pragma diag_suppress=Pell7,Pel77

The chapter Diagnostics.

#pragma diag_warning=tag, tag, ...

tag The number of a diagnostic message, for example the
message number Pe826.

Use this pragma directive to change the severity level to warning for the specified
diagnostic messages.

#pragma diag_warning=Pe826

The chapter Diagnostics.

#pragma message (string)

string The message that you want to direct to the standard output
stream.

Use this pragma directive to make the assembler print a message on stdout when the
file is assembled.

133

Descriptions of pragma directives

Example #ifdef TESTING
#pragma message ("Testing")
#endif

IAR Assembler User Guide
134 for RX

Diagnostics

The following pages describe the format of the diagnostic messages and
explains how diagnostic messages are divided into different levels of severity.

Message format

All diagnostic messages are issued as complete, self-explanatory messages. A typical
diagnostic message from the assembler is produced in the form:

filename, linenumber levell[tag]: message

where filename is the name of the source file in which the error was encountered;
1linenumber is the line number at which the assembler detected the error; 1evel is the
level of seriousness of the diagnostic; tag is a unique tag that identifies the diagnostic
message; message is a self-explanatory message, possibly several lines long.

Diagnostic messages are displayed on the screen, and printed in the optional list file. In
the IAR Embedded Workbench IDE, diagnostic messages are displayed in the Build
messages window.

Severity levels

The diagnostics are divided into different levels of severity:

REMARK

A diagnostic message that is produced when the assembler finds a source code construct
that can possibly lead to erroneous behavior in the generated code. Remarks are, by
default, not issued but can be enabled, see --remarks, page 65.

WARNING

A diagnostic message that is produced when the assembler finds a programming error
or omission which is of concern but not so severe as to prevent the completion of
compilation. Warnings can be disabled with the command line option --no_warnings,
see --no_warnings, page 61.

ERROR

A diagnostic message that is produced when the assembler finds a construct which
clearly violates the language rules, such that code cannot be produced. An error
produces a non-zero exit code.

135

Severity levels

FATAL ERROR

A diagnostic message that is produced when the assembler finds a condition that not
only prevents code generation, but which makes further processing of the source code
pointless. After the diagnostic is issued, assembly ends. A fatal error produces a
non-zero exit code.

SETTING THE SEVERITY LEVEL

The diagnostic messages can be suppressed or the severity level can be changed for all
types of diagnostics except for fatal errors and some of the regular errors.

For information about the assembler options that are available for setting severity levels,
see Summary of assembler options, page 45.

For information about the pragma directives that are available for setting severity levels,
see the chapter Pragma directives.

INTERNAL ERROR

An internal error is a diagnostic message that signals that there was a serious and
unexpected failure due to a fault in the assembler. It is produced using this form:

Internal error: message

where message is an explanatory message. If internal errors occur, they should be
reported to your software distributor or IAR Technical Support. Please include
information enough to reproduce the problem. This would typically include:

o The product name

@ The version number of the assembler, which can be seen in the header of the list
files generated by the assembler

Your license number
The exact internal error message text

The source file of the program that generated the internal error

A list of the options that were used when the internal error occurred.

IAR Assembler User Guide
136 for RX

A

absolute eXpPressionsvvv it 30
ADD (CFLOperator)ovveeieeeenenennn. 128
addition (assembler operator) 73
address field, in assembler listfile 32
ALIGN (assembler directive)covun... 96
alignment error, possible reasonfor 94
alignment, Of SECHONSo vttt 97
ALIGNRAM (assembler directive). 96
AND (CFLoperator)ovvvneneeieenennn. 128
_args (assembler directive) 102
_args (predefined macro symbol) 105
ASCII character constants.ooeeeuenen.. 25
ASEGN (assembler directive). 96
asm (filename extension), 21
assembler control directives 120
assembler diagnosticso 135
assembler directives
assemblercontrol. 120
CFI directives for common blocks. 124
CFI directives for datablocks 126
CFI directives for names blocks. 123
CFI directives for tracking resources and CFAs. 127
CFI for stack usage analysis. 129
conditional assembly L. 100
See also C-style preprocessor directives
C-style preprocessorc.c.oeevnenenen... 113
data definition or allocation 118
function 123
listfilecontrol 109
MACTO PrOCESSING . .« ¢ ot o v e et e e e 101
modulecontrol. 89
segment control 94
SUMIMALY © . et v ettt e e e e et e e ee e 85
symbolcontrol. L ... 91
value assignmentl 98
HPragma.ov i e 131
assembler environment variables 22

Index °

assembler eXpressions.t i 24
assembler instructions. 24
assembler invocation Syntax 21
assemblerlabels L L 27
formatof L L 23
assembler list files
addressfield. LiiiLL 32
COMMENES. . ..ottt ettt 121
conditional code and strings. 110
cross-references
generating (LSTXRF).......... 112
generating (-1) L 58
datafield L LiiiLL, 32
enabling and disabling (LSTOUT)................ 109
filename, specifying (-1). 58
generated lines, controlling (LSTREP) 112
macro-generated lines, controlling. 111
symbol and cross-reference table. 32
assembler macros
arguments, passing to.t 105
defining 103
generated lines, controlling in listfile 111
inlineroutines 107
predefined symbol 105
quote characters, specifying. 58
special characters, using. 104
assembler Operatorsiiiiian... 69
I EXPIESSIONS . o v v vttt et e e e e e e 24
precedence. 69
assembler options
passingtoassembler 22
reading from file (--f). L L 55
extended command file, setting 44
specifying parametersienen.. 44
SUIMMATY « v ettt e et e e e e e eeene 45
assembler output, including debug information 49
assembler source files, including 115
assembler source format. 23
assembler symbolso 26

137

138

CXPOTHNG . o ot ottt ettt e 92

IMPOTtING . . o vttt e 92

in relocatable expressions 30

predefined i 28
assembling, invocation syntax 21
assembly messages format 135
ASSIGN (assembler directive) 99
bitwise AND (assembler operator) 77
bitwise exclusive OR (assembler operator). 77
bitwise NOT (assembler operator) 77
bitwise OR (assembler operator). 77
bold style, inthisguide. 16
__BUILD_NUMBER___ (predefined symbol) 28
byte order

SPeCifyingoi i 54
BYTEI (assembler operator)o..... 79
BYTE2 (assembler operator)oouun.. 79
BYTES3 (assembler operator) 80
BYTEA4 (assembler operator)o..o... 80

C

call frame information directives . ..123-124, 126-127, 129

call frame information, disabling (--no_call_frame_info). . 60

CALL_GRAPH_ROOT (assembler directive) 123
case sensitivity, controlling. 47,121
CASEOFF (assembler directive). 121
CASEON (assembler directive) 121
--case_insensitive (assembler option) 47
CFA, CFlI directives for tracking 127
CFI BASEADDRESS (assembler directive). 124
CFI BLOCK (assembler directive) 126
CFI cfa (assembler directive) 129
CFI CODEALIGN (assembler directive) 125
CFI COMMON (assembler directive). 125
CFI CONDITIONAL (assembler directive) 126

IAR Assembler User Guide
for RX

CFI DATAALIGN (assembler directive) 125
CFI DEFAULT (assembler directive)................ 125
CFlI directives for common blocks 124
CFlI directives for datablocks. 126
CFlI directives for names blocks 123
CFI directives for stack usage analysis............... 129
CFI directives for tracking resources and CFAs 127
CFI ENDBLOCK (assembler directive) 126
CFI ENDCOMMON (assembler directive). 125
CFI ENDNAMES (assembler directive). 124
CFIL eXpressionsc.vuvternenenenenenenennnns 39
CFI FRAMECELL (assembler directive) 124
CFI FUNCALL (assembler directive). 130
CFI FUNCTION (assembler directive). 126
CFI INDIRECTCALL (assembler directive) 130
CFI INVALID (assembler directive) 126
CFI NAMES (assembler directive). 124
CFI NOCALLS (assembler directive). 130
CFI NOFUNCTION (assembler directive)............ 126
CFI PICKER (assembler directive). 126
CFI REMEMBERSTATE (assembler directive). 126
CFI RESOURCE (assembler directive) 124
CFI resource (assembler directive) 129
CFI RESOURCEPARTS (assembler directive) 124
CFI RESTORESTATE (assembler directive).......... 126
CFI RETURNADDRESS (assembler directive)........ 125
CFI STACKFRAME (assembler directive) 124
CFI TAILCALL (assembler directive) 130
CFI VALID (assembler directive). 126
CFI VIRTUALRESOURCE (assembler directive). 124
character constants, ASCII 25
COL (assembler directive)covvuen.... 109
command line options

part of invocation Syntaxiu.... 21

PaSSING. . oottt 22

typographic convention 16
command line, extending 55
command prompt icon, in this guide. 16
comments

in assembler listfile........................... 121

in assembler sourcecode 23

in C-style preprocessor directives 117

multi-line, using with assembler directives 122
common blocks

call frame information 34
common blocks, CFI directivesfor. 124
common block, defining 36
COMPLEMENT (CFl operator). 127
computer style (monospace font), typographic convention. 16
conditional assembly directives 100

See also C-style preprocessor directives
conditional code and strings, listing 110
constants

defaultbaseof 121

INEEEET v v ettt ettt e e e 25
conventions, used in thisguide 15
copyright noticeot 2
--core (assembleroption), 48
CRC, in assembler listfile 32
cross-references, in assembler list file

generating (LSTXRF) 112

generating (1) 58
current time/date (assembler operator) 80
C-RUN runtime error checking, documentation 14
C-STAT for static analysis, documentation for.......... 15
C-style preprocessor directives. 113
-D (assembleroption)c. i, 48
data allocation directives.c..vutvuene... 118
data blocks

call frame information 35
data blocks, CFI directives for 126
data definition directives. 118
data field, in assembler listfile 32
_ DATE__ (predefined symbol). 28
DATE (assembler operator)c.covun.. 80

Index °

DCS8 (assembler directive) 118
DCI16 (assembler directive) 118
DC24 (assembler directive) 118
DC32 (assembler directive) 119
DC64 (assembler directive) 119
--debug (assembler option) 49
debug information, including in assembler output 49
default base, forconstants. 121
#define (assembler directive) 113
DEFINE (assembler directive) 99
defining acommonblock 36
--dependencies (assembler option) 50
DF32 (assembler directive). 119
DF64 (assembler directive). 119
diagnostic MeSSAZES .« .« oot e 135
classifyingaserrors 51
classifyingasremarks 51
classifying as warningsc.c..o.. .. 52
disabling warnings. il 61
disabling wrapping of 61
enablingremarks oL 65
listingall00 ... 52
SUPPIESSING . vttt et it 52
--diagnostics_tables (assembler option) 52
diag_default (pragma directive) 131
--diag_error (assembler option). 51
diag_error (pragma directive) 132
--diag_remark (assembler option). 51
diag_remark (#pragma directive) 132
--diag_suppress (assembler option). 52
diag_suppress (pragma directive) 133
--diag_warning (assembler option) 52
diag_warning (pragma directive) 133
directives. See assembler directives
--dir_first (assembler option) 53
disassembly mode, directives 93
disclaimer.ooi it 2
DIV (CFLOperator) oo vn e eeeenn 128
division (assembler operator) 74

139

140

DLIB

naming Convention.ouuuenenen... 17
document conventionsiiieia... 15
documentation

overview of guides. i 14
--double (assembleroption) 53
DQ15 (assembler directive) 119
DQ31 (assembler directive) 119
DS (assembler directive)., 119
DSB8 (assembler directive). 119
DS16 (assembler directive). 119
DS24 (assembler directive). 119
DS32 (assembler directive). 119
DS64 (assembler directive). 119
edition, of thisguide i, 2
efficient coding techniques 33
#elif (assembler directive)., 113
#else (assembler directive) 114
END (assembler directive) 90
--endian (assembler option) 54
#endif (assembler directive) 114
ENDM (assembler directive) 102
ENDR (assembler directive). 102
environment variables

assembler. 22
EQ (CFLoperator).vvvnte e, 128
EQU (assembler directive)coo.... 98
equal to (assembler operator) 75
#error (assembler directive) 114
error checking (C-RUN), documentation 14
CITOT MESSAZES + « v v v e ve et e e et et e e e eneens 135

classifyingt 51

ERROR directive.coiiiininennnn... 122

#error, using todisplay 117
ERROR (assembler directive). 121
--error_limit (assembler option) 54

IAR Assembler User Guide
for RX

EVEN (assembler directive) 96
EXITM (assembler directive) 102
EXPIESSIONS & ¢ o v oe et ettt e e 24
extended command line file
forassembler............... 55
extended command line file (extend.xcl) 44,55
EXTERN (assembler directive) 92
EXTWEAK (assembler directive) 92
-f (assembleroption)., 44,55
--f (assembleroption) 55
false value, in assembler expressions 26
fatal error messagesttt 136
__FILE__ (predefined symbol). 29
file dependencies, tracking 50
file extensions. See filename extensions
file types
assembleroutput 21
assembler source 21
extended commandline...................... 44,55
#include, specifyingpath. 56
filename extensions
ASTIL & vttt e e e 21
00T P 21
Ot et e e e e 21
S e e e 21
XCl o 44,55
filenames, specifying for assembler object file. 62
first byte (assembler operator) 79
floating-point constants.ouerernenan.. 26
formats
assembler sourcecode 23
diagnostic MeSSages. « . v vt v vv e 135
inlistfileso i, 32
fourth byte (assembler operator). 80
--fpu (assembleroption) i 56
fractionsttt 26

FRAME (CFLoperator).vovevennenen... 129
function directives 123
GE (CFLoperator).vvtnee e, 128
global value, defining 99
greater than or equal to (assembler operator) 76
greater than (assembler operator) 76
GT (CFLOperator).ovvnee et eieienennn. 128
--header_context (assembler option). 56
high byte (assembler operator) 81
high word (assembler operator) 81
HIGH (assembler operator). 81
High-performance Embedded Workshop, migrating from . 15
HWRD (assembler operator) 81
-I (assembler option).t 56
IAR Technical Support. ooiin. .. 136
__ IAR_SYSTEMS_ASM__ (predefined symbol). 29
icons,inthisguide 16
#if (assembler directive) 114
IF (CFILoperator).oovv i 129
#ifdef (assembler directive) 114
#ifndef (assembler directive) 114
IMPORT (assembler directive). 92
#include files, specifying 56
#include (assembler directive) 114
include paths, specifying. 56
inline coding, using Macros 107
installation directory 15
--int (assembler option). i 57
INEEZETr CONSLANES . « . o\ vt v e et e e e e e e eaen e 25
internal error. 136

Index °

INVOCALION SYNEAX . v\ vt vttt 21
italic style,inthisguide 16
-1 (assembleroption).viiiiii 58
labels. See assembler labels
LE (CFLOperator)vvvuve et eeeeeennn 128
less than or equal to (assembler operator). 75
less than (assembler operator). 75
LIBRARY (assembler directive). 88
lightbulb icon, in this guide. 16
__LINE__ (predefined symbol) 29
#line (assembler directive) 114
linker options
typographic convention 16
listfileformat. i, 32
DoAY, . ot 32
CRC. . 32
header 32
symbol and cross reference 32
list files
control directives for 109
generating (-1) 58
LITERAL (CFIoperator)ovvveenenennnnn.. 127
LOAD (CFLOperator) vove e e ieee e 129
local value, defining, 99
LOCAL (assembler directive).oovuvuvnn... 102
logical AND (assembler operator) 76
logical exclusive OR (assembler operator) 84
logical NOT (assembler operator). 78
logical OR (assembler operator) 78
logical shift left (assembler operator) 78
logical shift right (assembler operator) 79
low byte (assembler operator). 81
low word (assembler operator) 81
LOW (assembler operator)c.oouvunenn.. 81
LSHIFT (CFLoperator).ouuvenenennnnnn. 128
LSTCND (assembler directive).oouvun... 109

141

142

LSTCOD (assembler directive). 109
LSTEXP (assembler directives) 109
LSTMAC (assembler directive) 109
LSTOUT (assembler directive). 109
LSTPAGE (assembler directive). 109
LSTREP (assembler directive) 109
LSTXRF (assembler directive). 109
LT (CFLOPerator) oottt eeeae e 128
LWRD (assembler operator).coeuennn.. 81
-M (assembler option). vt 58
macro processing directives 101
macro quote charactersc.ouvuuenen... 104

SPeCifyingt 58
MACRO (assembler directive) 102
macros. See assembler macros
--macro_positions_in_diagnostics (assembler option)59
Memory, reserving Space inocvuene... 118
message (pragma directive), 133
messages, excluding from standard output stream 65
migration

from a UBROF-based product.................... 15

fromRenesas HEW 15
migration, from earlier IAR compilers 15
--mnem_first (assembler option). 59
MOD (CFLOperator).ovveeeeeeeeeeeenennn. 128
mode control directives., 93
module consistency.o 90
module control directives 89
MODULE (assembler directive). 89
monospace font, meaning of in guide. See computer style
msa (filename extension) 21
MUL (CFLOoperator) «vvv e e eeeeeeeenennn. 128
multiplication (assembler operator) 73

IAR Assembler User Guide
for RX

NAME (assembler directive) 89
names blocks

call frame information 34

CFl directivesfor., 123

definingo i, 35
NAMing CONVENHONS . .. v vttt et in e e 17
NE (CFLOperator).vvuvin e i eeennn 128
--nonportable_path_warnings (assembler option). 62
not equal to (assembler operator) 75
NOT (CFLOPerator)vuuineneenenennnnnns 128
--no_bom (assembleroption) 60
--no_call_frame_info (assembler option) 60
--no_normalize_file_macros (compiler option). 60
--no_path_in_file_macros (assembler option). 61
--no_system_include (assembler option). 61
--no_warnings (assembler option). 61
--no_wrap_diagnostics (assembler option) 61
-0 (assembleroption) i 46
o (filename extension)ouuuurenn... 21
ODD (assembler directive), 96
--only_stdout (assembler option) 62
operands

formatof 23

in assembler expressions 24
operations

formatof 23

SHent . ..o 65
operators. See assembler operators
OPLON SUMMATY . .« v v vttt et e e e eeens 45
OR (CFLoperator).vovov i 128
--output (assembler option). 62
OVERLAY (assembler directive). 92

P

PAGE (assembler directive) 109
PAGSIZ (assembler directive) 109
parameters
SPeCifyingt 44
typographic conventiono 16
part number, of thisguide. 2
--patch (assembleroption), 63
#pragma (assembler directive) 114, 131
precedence, of assembler operators. 69
predefined register symbols, 27
predefined symbols. 28
in assembler macros. il 105
--predef_macros (assembler option) 63
--preinclude (assembler option) 63
--preprocess (assembler option) 64
preprocessor symbols
defining and undefining. 114
defining on command line 48
program location counter (PLC).................. ... 27
PROGRAM (assembler directive) 89
programming hints oL 33
PUBLIC (assembler directive) 92
publication date, of thisguide. 2
PUBWEAK (assembler directive) 92
-1 (assembler option). 46
RADIX (assembler directive) 121
reference information, typographic convention. 16
registered trademarks oL 2
TEISETS & v ottt e et e e e 27
relocatable expressions 30
remark (diagnostic message).i ... 135
classifying 51
enabling. 65
--remarks (assembler option), 65

Index °

Renesas HEW, migrating from...................... 15
repeating Statementst 105
REPT (assembler directive) 102
REPTC (assembler directive) 102
REPTI (assembler directive). 102
REQUIRE (assembler directive). 92
resources, CFI directives for tracking 127
RSEG (assembler directive) 96
RSHIFTA (CFloperator)cuovuenenennnnn.. 128
RSHIFTL (CFloperator)c.vovuvninnena.. 128
RTMODEL (assembler directive). 90
rules, in CFI directives, 37
runtime error checking, documentation. 14
runtime model attributes, declaring. 90
s (filename extension).ouiriirinn... 21
second byte (assembler operator) 79
SECTION (assembler directive) 96
sections

aligningo. i 97

beginning.ttt 96
SECTION_TYPE (assembler directive) 96
segment begin (assembler operator) 82
segment control directives 94
segment end (assembler operator). 82
segment size (assembler operator) 83
SET (assembler directive).covivinn... 99
severity level, of diagnostic messages. 135

Specifying 136
SFB (assembler operator)ooveuenenenn.. 82
SFE (assembler operator)couueuvnennn.. 82
SFR. See special function registers
--silent (assembler option), 65
silent operations, specifying 65
simple rules, in CFI directives 37
SIZEOF (assembler operator)oouvunn.. 83

source files

143

144

including 115

listallreferred 56
source format, assembler 23
source line numbers, changing 117
--source_encoding (assembler option) 65
stack usage analysis, CFI directivesfor 129
standard error 62
standard output streams, disabling messagesto 65
standard output, specifying. 62
statements, repeating.t 105
static analysis tool, documentation for 15
stderr, MmesSageS 10 « . vttt e 62
stdout, direct messages too vin i 62
SUB (CFIoperator)c.cueuenenenennnn.. 128
subtraction (assembler operator). 74
Support, Technical 136

symbol and cross-reference table, in assembler list file .. .32
See also Include cross-reference

symbol control directives, 91
symbols

See also assembler symbols

exporting to other modules 92

predefined, in assembler 28

predefined, in assembler macro 105

user-defined, case sensitive 47
--system_include_dir (assembler option) 66
Technical Support, IAR 136
temporary values, defining 99
--text_out (assembleroption) 66
third byte (assembler operator) 80
__TIME__ (predefined symbol) 29
time-criticalcode L i .. 107
tools icon,inthisguide.............. 16
trademarks 2
true value, in assembler expressions. 26
typographic conventions.ueuene.... 16

IAR Assembler User Guide
for RX

U

UGT (assembler operator)vuuenen.. 84
ULT (assembler operator).ooueuernunenen.. 84
UMINUS (CFLoperator).oovvuuenenennnan.. 128
unary minus (assembler operator). 73
unary plus (assembler operator) 73
#undef (assembler directive)....................... 114
unsigned greater than (assembler operator). 84
unsigned less than (assembler operator) 84
UPPER (assembler operator) 84
user symbols, case sensitive 47
--use_paths_as_written (assembler option). 67
--use_unix_directory_separators (assembler option). 67
--utf8_text_in (assembler option) 67
value assignment directives 98
values, defining. i 118
VAR (assembler directive) 99
__VER__ (predefined symbol)...................... 29
version
ofthisguide. i 2
--version (assembleroption) 68
WAIMINEZS « « . e ettt ettt e e e e e 135
classifying i 52
disabling 61
eXitcode. ...t 68
treating as €ITOrS . .« v v v v vt et e e e e e ee e 68
warnings icon, inthisguide 16
--warnings_affect_exit_code (assembler option) 23,68
--warnings_are_errors (assembler option). 68

Index °

x --fpu (assembler option) 56
--header_context (assembler option). 56
xcl (filename extension) 44,55 —-int (assembler option). 57
XOR (assembler Operator)c..o.... 84 -—-macro_positions_in_diagnostics (assembler option) 59
XOR (CFLOPEIAOL) « . v v e e e e e 128 --mnem_first (assembler option). 59
--nonportable_path_warnings (assembler option). 62
--no_bom (assembleroption) 60
Sy m b O I s --no_call_frame_info (assembler option) 60
args (assembler directive) 102 --no_normalize_file_macros (compiler option). 60
_args (predefined macro syr.n.b.oll). 105 --o_path_in_file_macros (assembler option). 61
- BUILD_NUMBER__ (predefined symbol) 28 --no_system_include (assembler option). 61
_D ATE - pre definegsymbol) 23 --no_warnings (assembler option). 61
_FILE _(pre defined symbol) 29 --no_wrap_diagnostics (assembler option) 61
__IAR_SYSTEMS_ASM__ (predefined symbol) 29 --only_stdout (assemblt?r option) 62
LINE__ (predefined symbol)\ 29 --output (assembler option). 62
TIME__ (predefined symbol)\ o\ 29 --patch (assembler option) 63
_VER _(pre defined symbol) 29 --predef_macros (assembler option) 63
:asserrgﬂer OPETALON) - + oo 73-74 --preinclude (assembler option) 63
-D (assembler option) 48 ~-preprocess (assembler 0ption) 64
-f (assembler option)., 44,55 --remarks (assembler option) ... 6
-1 (assembler option).t , 56 —-silent (assembler option) ... 6
-1 (assembler option) 58 --source_encoding (assembler option) 65
-M (assembler op tion.) """"""""""""""" 58 --system_include_dir (assembler option) 66
o (assembler option) - .-+ -+ 46 --text_out (assembler option) 66
r (assembler option). . -+~ -+ v 46 --use_paths_as_written (assembler option). 67
--case_insensitive (assembler optlon) :47 —use_unix_directory_separators (assembler option). 67
——core_(assembler option) 48 --utf8_text_in (assembler option) 67
B 49 --version (assembleroption) 68
—-dependencies (assembler option) 50 --warnings_affect_exit_code (assembler option) 23,68
--diagnostics_tables (assembler option) 52 —wamnings_are_errors (assembler option). 68
. . ! (assembler operator). 78
--diag_error (assembler option). 51
. . = (assembler operator). 75
--diag_remark (assembler option). 51
. . ?7: (assembler Operator)t 74
--diag_suppress (assembler option). 52
T . . () (assembler Operator)cueuenenenennnnenn 72
diag_warning (assembler option) 52 . bl 73
--dir_first (assembler option), 53 (assembl ©F OPETALON) .+ vee e 74
--double (assembleroption) 53 / (assembler operatf)r) oottt
. . /*...%/ (assembler directive). i 121
--endian (assembler option), 54
.. . /l (assembler directive) i, 121
--error_limit (assembler option) 54
£ (asSemmbler OPHON) « « « +« + e v v e eee e 55 & (assembler Operator)o vt v 77

145

146

&& (assembler Ooperator) 76

#define (assembler directive) 113
#elif (assembler directive). 113
#else (assembler directive) 114
#endif (assembler directive) 114
#error (assembler directive) 114
#if (assembler directive) 114
#ifdef (assembler directive) 114
#ifndef (assembler directive) 114
#include files, specifying 56
#include (assembler directive) 114
#line (assembler directive) 114
#pragma (assembler directive) 114, 131
#undef (assembler directive). 114
A (assembler Operator).o v vttt 77
+ (assembler Operator)iuiiiiienenan.. 73
< (assembler Operator)ouviiinenenan.. 75
<< (assembler Operator)ueienenenan.. 78
<= (assembler Operator)oeiiienenan.. 75
<> (assembler Operator)ouiiinenenan.. 75
= (assemblerdirective) 98
= (assembler Operator)ouiiiinenenan.. 75
== (assembler Operator)ueuenenan.. 75
> (assembler Operator)iuiiiinenenan.. 76
>= (assembler Operator)veiiienenan.. 76
>> (assembler Operator)ouiinin . 79
| (assembler operator)ot 77
Il (assembler operator).t 78
~ (assembler Operator) 77
$ (program location counter). 27

	Contents
	Tables
	Preface
	Who should read this guide
	How to use this guide
	What this guide contains
	Other documentation
	User and reference guides
	The online help system

	Document conventions
	Typographic conventions
	Naming conventions

	Introduction to the IAR Assembler for RX
	Introduction to assembler programming
	Getting started

	Modular programming
	External interface details
	Assembler invocation syntax
	Passing options
	Environment variables
	Error return codes

	Source format
	RX architecture considerations
	Assembler instructions
	Code and data in big-endian applications

	Expressions, operands, and operators
	Integer constants
	ASCII character constants
	Floating-point constants
	True and false
	Symbols
	Labels
	Program location counter (PLC)

	Register symbols
	Predefined symbols
	Including symbol values in code
	Testing symbols for conditional assembly

	Absolute and relocatable expressions
	Expression restrictions
	No forward
	No external
	Absolute
	Fixed

	List file format
	Header
	Body
	Summary
	Symbol and cross-reference table

	Programming hints
	Using C-style preprocessor directives

	Tracking call frame usage
	Call frame information overview
	Call frame information in more detail
	Defining a names block
	Defining a common block
	Annotating your source code within a data block
	Specifying rules for tracking resources and the stack depth
	Rules for tracking resources
	Rules for tracking the stack depth (CFAs)

	Using CFI expressions for tracking complex cases
	Stack usage analysis directives
	Examples of using CFI directives
	Defining the names block
	Defining the common block
	Annotating your source code within a data block

	Assembler options
	Using command line assembler options
	Specifying command line options
	Specifying parameters
	Extended command line file

	Summary of assembler options
	Description of assembler options
	--case_insensitive
	Syntax
	Description
	Example
	See also

	--core
	Syntax
	Parameters
	Description

	-D
	Syntax
	Parameters
	Description
	Example

	--data_model
	Syntax
	Parameters
	Description
	See also

	--debug, -r
	Syntax
	Description

	--dependencies
	Syntax
	Parameters
	Description
	Example

	--diag_error
	Syntax
	Parameters
	Description
	Example

	--diag_remark
	Syntax
	Parameters
	Description
	Example

	--diag_suppress
	Syntax
	Parameters
	Description
	Example

	--diag_warning
	Syntax
	Parameters
	Description
	Example

	--diagnostics_tables
	Syntax
	Parameters
	Description
	Example

	--dir_first
	Syntax
	Description

	--double
	Syntax
	Parameters
	Description
	See also

	--endian
	Syntax
	Parameters
	Description
	See also

	--error_limit
	Syntax
	Parameters
	Description

	-f
	Syntax
	Parameters
	Description
	Example
	See also

	--f
	Syntax
	Parameters
	Description
	See also

	--fpu
	Syntax
	Parameters
	Description

	--header_context
	Syntax
	Description

	-I
	Syntax
	Parameters
	Description
	Example

	--int
	Syntax
	Parameters
	Description
	See also

	-l
	Syntax
	Parameters
	Description
	Example

	-M
	Syntax
	Parameters
	Description
	Example

	--macro_positions_in_diagnostics
	Syntax
	Description

	--mnem_first
	Syntax
	Description

	--no_bom
	Syntax
	Description
	See also

	--no_call_frame_info
	Syntax
	Description
	See also

	--no_normalize_file_macros
	Syntax
	Description
	Example
	See also

	--no_path_in_file_macros
	Syntax
	Description

	--no_system_include
	Syntax
	Description

	--no_warnings
	Syntax
	Description

	--no_wrap_diagnostics
	Syntax
	Description

	--nonportable_path_warnings
	Syntax
	Description

	--only_stdout
	Syntax
	Description

	--output, -o
	Syntax
	Parameters
	Description

	--patch
	Syntax
	Description

	--predef_macros
	Syntax
	Parameters
	Description

	--preinclude
	Syntax
	Parameters
	Description

	--preprocess
	Syntax
	Parameters
	Description
	Example

	--remarks
	Syntax
	Description
	See also

	--silent
	Syntax
	Description

	--source_encoding
	Syntax
	Parameters
	Description
	See also

	--system_include_dir
	Syntax
	Parameters
	Description

	--text_out
	Syntax
	Parameters
	Description
	See also

	--use_paths_as_written
	Syntax
	Description

	--use_unix_directory_separators
	Syntax
	Description

	--utf8_text_in
	Syntax
	Description
	See also

	--version
	Syntax
	Description

	--warnings_affect_exit_code
	Syntax
	Description

	--warnings_are_errors
	Syntax
	Description
	See also

	Assembler operators
	Precedence of assembler operators
	Summary of assembler operators
	Parenthesis operator
	Function operators
	Unary operators
	Multiplicative arithmetic operators
	Additive arithmetic operators
	Shift operators
	Comparison operators
	Equivalence operators
	Logical operators
	Conditional operator

	Description of assembler operators
	() Parenthesis
	Precedence
	Description
	Example

	* Multiplication
	Precedence
	Description
	Example

	+ Unary plus
	Precedence
	Description
	Example

	+ Addition
	Precedence
	Description
	Example

	– Unary minus
	Precedence
	Description
	Example

	– Subtraction
	Precedence
	Description
	Example

	/ Division
	Precedence
	Description
	Example

	? : Conditional operator
	Syntax
	Precedence
	Description
	Example

	< Less than
	Precedence
	Description
	Example

	<= Less than or equal to
	Precedence
	Description
	Example

	<>, != Not equal to
	Precedence
	Description
	Example

	=, == Equal to
	Precedence
	Description
	Example

	> Greater than
	Precedence
	Description
	Example

	>= Greater than or equal to
	Precedence
	Description
	Example

	&& Logical AND
	Precedence
	Description
	Example

	& Bitwise AND
	Precedence
	Description
	Example

	~ Bitwise NOT
	Precedence
	Description
	Example

	| Bitwise OR
	Precedence
	Description
	Example

	^ Bitwise exclusive OR
	Precedence
	Description
	Example

	% Modulo
	Precedence
	Description
	Example

	! Logical NOT
	Precedence
	Description
	Example

	|| Logical OR
	Precedence
	Description
	Example

	<< Logical shift left
	Precedence
	Description
	Example

	>> Logical shift right
	Precedence
	Description
	Example

	BYTE1 First byte
	Precedence
	Description
	Example

	BYTE2 Second byte
	Precedence
	Description
	Example

	BYTE3 Third byte
	Precedence
	Description
	Example

	BYTE4 Fourth byte
	Precedence
	Description
	Example

	DATE Current time/date
	Precedence
	Description
	Example

	HIGH High byte
	Precedence
	Description
	Example

	HWRD High word
	Precedence
	Description
	Example

	LOW Low byte
	Precedence
	Description
	Example

	LWRD Low word
	Precedence
	Description
	Example

	SFB section begin
	Syntax
	Precedence
	Parameters
	Description
	Example

	SFE section end
	Syntax
	Precedence
	Parameters
	Description
	Example

	SIZEOF section size
	Syntax
	Precedence
	Parameters
	Description
	Example

	UGT Unsigned greater than
	Precedence
	Description
	Example

	ULT Unsigned less than
	Precedence
	Description
	Example

	UPPER Third byte
	Precedence
	Description
	Example

	XOR Logical exclusive OR
	Precedence
	Description
	Example

	Assembler directives
	Summary of assembler directives
	Description of assembler directives
	Module control directives
	Syntax
	Parameters
	Description
	Terminating the source file
	Declaring runtime model attributes

	Symbol control directives
	Syntax
	Parameters
	Description
	Exporting symbols to other modules
	Exporting symbols with multiple definitions to other modules
	Importing symbols
	Example

	Mode control directives
	Syntax
	Description
	Example

	Section control directives
	Syntax
	Parameters
	Description
	Beginning a named absolute section
	Beginning a relocatable section
	Aligning a section

	Value assignment directives
	Syntax
	Parameters
	Description
	Defining a temporary value
	Defining a permanent local value
	Defining a permanent global value

	Conditional assembly directives
	Syntax
	Parameters
	Description
	Example

	Macro processing directives
	Syntax
	Parameters
	Description
	Defining a macro
	Passing special characters
	Predefined macro symbols
	Repeating statements
	Coding inline for efficiency

	Listing control directives
	Syntax
	Description
	Turning the listing on or off
	Listing conditional code and strings
	Controlling the listing of macros
	Controlling the listing of generated lines
	Generating a cross-reference table

	C-style preprocessor directives
	Syntax
	Parameters
	Description
	Defining and undefining preprocessor symbols
	Conditional preprocessor directives
	Including source files
	Displaying errors
	Changing the source line numbers
	Comments in C-style preprocessor directives

	Data definition or allocation directives
	Syntax
	Parameters
	Description
	Generating a lookup table
	Defining strings
	Reserving space

	Assembler control directives
	Syntax
	Parameters
	Description
	Controlling case sensitivity
	Generating errors
	Defining comments
	Changing the base

	Function directives
	Syntax
	Parameters
	Description
	Example
	See also

	Call frame information directives for names blocks
	Syntax
	Parameters
	Description
	Example
	See also

	Call frame information directives for common blocks
	Syntax
	Parameters
	Description
	Example
	See also

	Call frame information directives for data blocks
	Syntax
	Parameters
	Description
	Example
	See also

	Call frame information directives for tracking resources and CFAs
	Syntax
	Parameters
	Unary operators
	Binary operators
	Ternary operators
	Description
	Example
	See also

	Call frame information directives for stack usage analysis
	Syntax
	Parameters
	Description
	See also

	Pragma directives
	Summary of pragma directives
	Descriptions of pragma directives
	diag_default
	Syntax
	Parameters
	Description
	Example
	See also

	diag_error
	Syntax
	Parameters
	Description
	Example
	See also

	diag_remark
	Syntax
	Parameters
	Description
	Example
	See also

	diag_suppress
	Syntax
	Parameters
	Description
	Example
	See also

	diag_warning
	Syntax
	Parameters
	Description
	Example
	See also

	message
	Syntax
	Parameters
	Description
	Example

	Diagnostics
	Message format
	Severity levels
	Remark
	Warning
	Error
	Fatal error
	Setting the severity level
	Internal error

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Symbols

