g IAR Embedded
Workbench
C-SPY® Debugging Guide

for the Renesas
RX Family

UCSRX-10 m

2

C-SPY® Debugging Guide
for RX

COPYRIGHT NOTICE
© 2009-2023 TAR Systems AB.

No part of this document may be reproduced without the prior written consent of IAR
Systems AB. The software described in this document is furnished under a license and
may only be used or copied in accordance with the terms of such a license.

DISCLAIMER

The information in this document is subject to change without notice and does not
represent a commitment on any part of [AR Systems. While the information contained
herein is assumed to be accurate, IAR Systems assumes no responsibility for any errors
or omissions.

In no event shall IAR Systems, its employees, its contractors, or the authors of this
document be liable for special, direct, indirect, or consequential damage, losses, costs,
charges, claims, demands, claim for lost profits, fees, or expenses of any nature or kind.

TRADEMARKS

IAR Systems, IAR Embedded Workbench, Embedded Trust, C-Trust, IAR Connect,
C-SPY, C-RUN, C-STAT, IAR Visual State, IAR KickStart Kit, I-jet, I-jet Trace,
I-scope, IAR Academy, IAR, and the logotype of IAR Systems are trademarks or
registered trademarks owned by IAR Systems AB.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

Renesas is a registered trademark of Renesas Electronics Corporation. RX is a
trademark of Renesas Electronics Corporation.

Adobe and Acrobat Reader are registered trademarks of Adobe Systems Incorporated.

All other product names are trademarks or registered trademarks of their respective
owners.

EDITION NOTICE
Tenth edition: August 2023

Part number: UCSRX-10

This guide applies to version 5.x of IAR Embedded Workbench® for the Renesas RX
family.

The C-SPY® Debugging Guide for RX replaces all debugging information in the /AR
Embedded Workbench IDE User Guide. It also replaces the C-SPY® Power Debugging
Guide for RX and the IAR C-SPY® Hardware Debugger Systems User Guide for RX.

Internal reference: FF9.2, ISHP.

Brief contents

TABIES ... 21
Preface ... 23
Part |. Basic debugging ... 31
The AR C-SPY Debugger ... 33
Getting started using C-SPY ... 45
Executing your application ... 71
Variables and eXpressions ... 97
Breakpoints ... 123
MemOory and reGISTErS ... 151
Part 2. Analyzing your application ... 187
TIHACE .o 189
The application timeline ... 211
Profiling ... 241
Analyzing code performance ..., 255
COdE COVEIAEoooiee e 263
Power debugging ... 269
C-RUN runtime error checking ... 289
Part 3. Advanced debugging ... 329
INEEITUPES ..o 331
C-SPY MACIOS oo 355

The C-SPY command line utility—cspybat ..., 415

4

C-SPY® Debugging Guide
for RX

Part 4. Additional reference information ... 437

Debugger OPLIONS ... ssssss s 439
Additional information on C-SPY drivers ..., 449
INAEX ettt ettt 463

Contents

TADIES ... 21
Preface ... 23
Who should read this guide ... 23
Required KNOWIEAZEccceeeeiiieieieieieieeee e 23
How to use this guide ..., 23
What this guide contains ... 24

Part 1. Basic debugging
Part 2. Analyzing your appliCationccecevveneeneenienneenieeneeneennes 24
Part 3. Advanced debuggingccccceevereneneneneneneneneeeeeaen 25
Part 4. Additional reference informationcccceeceveveneneneneenen. 25
Other documentation ... 25
User and reference gUIidesccccoceeveeereeieienienieneneneneseeeeeeeenees 26

The online help system

WED SIEES ..ttt
Document cONVENtioNs ..o 27
Typographic CONVENTIONScceeverueruirririerieieteieriesiesiesiesieeseeneeneeneas 27
Naming CONVENLIONScoeeeruteieieieienienienrenienenene et eieeieereeneeseeneens 28
Part |. Basic debugging ... 31
The IAR C-SPY Debugger ... 33
Introduction to C-SPY ... 33
An integrated enVIrONMENTccceeveeerrereririeeeienienteneneseeseeeeeeveenee 33
General C-SPY debugger featuresc..coceveeveeneeiienieneeneeneennen. 34
RTOS aWarenessc.ccocevveeerieieieieieiententenenenesesreeieeeeseeeeeeeens 35
Debugger CONCEPLS ... 36
C-SPY and target SYSEIMScccverueerieerierrieirienieniteseenieeieeseesreseesinens 36
The deDUZEZETcvevuirieiieiiiiieieeetcteteee s 37
The target SYSIEIMN ...ccvevveeuierieririiriirieeiteitet ettt 37

The application
C-SPY debugger SYStEIMScceevueueeuerrerrenrenienienenenenienienieeseeneeneeeens 38

The ROM-mONItOr PrOZIamceceeeerererrerereeeerienienienenensesseeseenees 38

Third-party debUZEETScc.covuievieriiiriiiieiieeteeeet et 38
C-SPY plugin modulescccceeuevueieniininineneneneneceneneceeeeeeeene 38
C-SPY drivers overview ... 39
Differences between the C-SPY driversccccocceeveneninineneenene 39
The IAR C-SPY Simulator ... 40
Supported features
The C-SPY EI/E20 and E2/E2 Lite/EZ-CUBE?2 drivers 41
CommuNICAtION OVEIVIEWccuerieriiriiriiniirieereeiieieierenrenienieneesieeseeneene 41
Hardware installationc.ccoceeerereeieieiieieienencseseneseseeeeeeeene 42
The C-SPY J-Link drivercccooovviiviviiiiiicieeeeeeean 42
CommuNICAtION OVEIVIEWccuerueriiriiriiriirieiieiietererenreniesiesresieeseeneene 42
Hardware installationc.ccoceeerereeeeienieieieniencneneneseseeee e 43
Getting started using C-SPY ... 45
Setting UP C-SPY ..o e 45
Setting up for debuggingcccooevviiriieriiniin 45
Executing from IStccceeererirerinineeieieeee et

Using a setup mMacro filecocevereriririeieieieese e

Selecting a device description file

Loading plugin modulesceceeeeieieieieienenienieneneneneeeeeeeeeneen
Starting C-SPY ... s 47
Starting a debug SESSIONcccveeviriiriirieiieeeeeeeeeee e 48
Loading executable files built outside of the IDEc..c..ccceeeneeee. 48
Starting a debug session with source files misSingcc.ccceeeeeeeneene 48
Loading multiple debug imagescccccoceevierieneenenneniienienieneene 49
Editing in C-SPY WINAOWS ...cc.coceriririiiieieienienieresienieeeeeceeeeee 50
Downloading files to external flash memoryccooceveveneninenee. 51
Start debugging a running applicationcc.cceeceevervierienieneenieennen. 52
Adapting for target hardware ...,
Modifying a device description file
Initializing target hardware before C-SPY startsccocoeveeviereennee. 54
Reference information on starting C-SPY ... 55
C-SPY Debugger main Windowcccceeverererenieneneneeeeeeeeneene 55

C-SPY® Debugging Guide
for RX

Contents °

Images window

Get Alternative File dialog DOXccocevviininiiiniiniiieeeceeeeeee 60
Download Emulator Firmware dialog boXcccccevevenenicncnicnenene 61
Operating Frequency dialog boXcccccceveveneninenieniencnecieieecene 62
Hardware Setup dialog box: MCUcccccoviriiiiiniiiniinieneeneenieeene 63
Hardware Setup dialog box: External Memoryc.cccecevcereeecnnene 66

External Area dialog box

Executing your application ... 71

Introduction to application execution ... 71
Briefly about application €XeCUutionccccceceeveerienieneeneeneeneenne 71
Source and disassembly mode debuggingccccecevverererininecnnne 71
SINGLE SEEPPING ..evveneeiiieierierieee ettt sttt
Troubleshooting slow stepping speed
Running the appliCationc.cceceeveeieieieieieneneneneneseseeeeeeeeeeaes
Highlightingccooiiiiiiieieeeeeee e
Viewing the call Stackccccceveeiiiiiiiiniieiece e 77
Terminal input and OULPULceeueeuierienierierieneneneeeseeeeeeeeceeeeae
Debug 10ZEING ..cuveiiiiiieiieiieieeeeeee s

Reference information on application execution ...
Disassembly WindOWc.cecoeieieieiiiienienienieneneneseeee e
Call Stack WiNAOW ...c..eoeeuieiiieiiieieeeeeere et
Terminal I/O Window ... 86
Terminal I/0 Log File dialog boXccccoevveveninenenenincnieeeeeneee 87
Debug Log window
Report Assert dialog DOXcc.eeverieriiriieriinienieseeeeeeeeeieeee e 89
Start/Stop Function Settings dialog boXccceeeverereniniineniecncnnne 90
Select Label dialog DOXcccccvvueerinieinieeriieeneeneeeeeeeseceeeees 92
Autostep settings dialog bOXcccveriereerieriiniiirienie e 93
ID Code Verification dialog BOXccceeceeirieierieneneneneneneeeeeenes 93
Cores window

Variables and eXpressions ... 97

Introduction to working with variables and expressions 97

Briefly about working with variables and expressions 97

C-SPY expressions

Limitations on variable informationcececeevervinvienieiiencnennens 100
Working with variables and expressionsc.cccoccennne. 101
Using the windows related to variables and expressions 101
Viewing assembler variablesc.ccoccevierieninnenienienienieneenens 102

Reference information on working with variables and

expressions ...103

AULO WINAOW ettt 103

Locals WINAOW ...c..coeiiiiiiiiiiiiiieniiiieieereeeeeeee et 106

Watch WINAOWcoveiuiiiiiiiieicicieeeeee et 108

Live Watch WINdOWccccoeviiviiiiiniiniiniininienininccectcee e 111

Statics WINAOW ...covevuiriiiiiiiiiiieieietctereette ettt s 113

Quick Watch WIndOWcooviieiiiiiiiiieiieecee e 116

SymboOIS WINAOWoouviiiiiiiiiiiiieieeicetescee et 119

Resolve Symbol Ambiguity dialog bOXc.cccceeeeeeerivcieciecenenene 122

Breakpointso 123

Introduction to setting and using breakpoints 123
Reasons for using breakpointscoceeceeererereneenienienienienenennens

Briefly about setting breakpoints ..

Breakpoint tyPescc.eeeeeeieiieieieienereneeeeeeeeet ettt
Breakpoint 1CONScceeieieiieiieieienesesieeee ettt
Breakpoints in the C-SPY simulatorccccevveeveineniieeneniencenene 127
Breakpoints in the C-SPY hardware debugger driversc........ 127
Breakpoint consumers 127
Setting breakpoints 128
Various ways to set a breakpointcoceeveveeverereeneeneeneenenenenens 129
Toggling a simple code breakpointcoccceeecveinecenerncneennne. 129
Setting breakpoints using the dialog boXc...ccccevvevvieniiiniiinennennns 129
Setting a data breakpoint in the Memory windowc...c.cccceveuee. 131
Setting breakpoints using system macros
Useful breakpoint hintsccocceveriierienienieniieeieeeseeseeneesens
Reference information on breakpoints ... 133
Breakpoints Windowcoceceveieninienininneeeeeee e 134

C-SPY® Debugging Guide
for RX

Contents °

Breakpoint Usage window

Code breakpoints dialog DOXccceeverierienieeniiniienienienieeneerieeieenne 137
Hardware Code Breakpoint dialog boXcccceeeevveieiencncncnicnenne 138
Software Code Breakpoint dialog bOXcccceceeveieieiiencncncncnene 140

Log breakpoints dialog DOXc.coverviervierienieniinieeierieseeseenieenene 141

Data breakpoints dialog box (SIMulator)cccceceeevecvecienenencnienne 142

Data breakpoints dialog box (C-SPY hardware debugger drivers) .. 144

Data Log breakpoints dialog boXcccccocuevieniinieneniieiienieneenene 146
Immediate breakpoints dialog bOXc..cocceverereenienieneninincnencne. 147

Enter Location dialog BOXcccceuevererenienininineneceeieeenenenieeene 148
Resolve Source Ambiguity dialog boXccceveeveevieriieenienieneenens 150
MemOory and FEGISTEIS ... 151
Introduction to monitoring memory and registers 151
Briefly about monitoring memory and registersccccccoeeeueen. 151
C-SPY MEMOTY ZOMNES ...ccuveririrmiiiieiiinieeieenieeireeeesieesieesiee e seeenaeenee 153
Memory configuration for the C-SPY simulatorc..cccocceceeues 153
Monitoring memory and registers ... 154
Defining application-specific register groupsc.ccecevvererreenueneene 154

Monitoring stack usage

Reference information on memory and registers 158
MemOry WINAOWc.ooveerueiiiirieinieieienieieeee et 159
Memory Save dialog BOXccceevvieviiriiniienieneeteeeeeete e 163
Memory Restore dialog DOXc.coceeeeievienieninenenenineeecieneneeene 164
Fill dialog box
Symbolic Memory Windowccecerienieneenennienienieneeneereeieenne 166
Stack WINAOW ..cvevviriiriiriiiicietcteeee et s 169
Registers WindOwcccceievieiiirieriinineneeeneeeeeeeetet et 173
Register User Groups Setup Windowcccccecereeerienieneenennieennenne 176
SFR Setup WINAOWcoeveriiiiieiiiinienieneiereeeeeeee et
Edit SFR dialog box
Memory Access Setup dialog boXccccevvevieniininiieniiiienieeeene 183
Edit Memory Access dialog DOXccccoceverererenienienienienicneneneeene 185

Introduction to using trace ...
Reasons for USING traCecccceveruieuieieieieienienie et

Briefly about tracecccoevivinieieiiiiiiieicicencecceeecene

Requirements for using trace

Collecting and using trace dataccocoooiicn 190
Getting started With traCeccoceervieriinienenieierieeeeeseeseeeee 190
Trace data collection using breakpointsc.cceceeverereeeeeenenuennens 191
Searching in trace datac.ccoeverierereninineeiee e

Browsing through trace datacccccoceviiiiiiniiniinienesceeeeeee

Reference information on trace ..

Trace Settings dialog DOXcccecuevieiieienininineneeeeteeeee e
Trace WINAOWccccooiiiiiiiiiiiii
Function Trace windowcccccceviiiiiiiiiiniiiicccce
Trace Start Trigger breakpoint dialog boXccceevevvieiienierienenennne 205
Trace Stop Trigger breakpoint dialog box
Data Trace Collection breakpoints dialog boXc.cccceeveveruernenncnne. 207
Find in Trace dialog DOXcccoeeeirieiieniirienieseneceeteeeeee e 207
Find in Trace windowccccoiiviiiiiiiiie 209
The application timeline ... 211
Introduction to analyzing your application’s timeline 211
Briefly about analyzing the timelineccccocevvereriniencncncnennene 211
Requirements for timeling SUPPOItccceoevvererereninneenieienienieneens 213
Analyzing your application’s timeline ..., 213
Displaying a graph in the Timeline windowcc.cccceceevvenencnennne 213
Navigating in the graphscccceceeveevieiienenenieneneeeeteeeeee e 214
Analyzing performance using the graph datacc.ccccecevievinenee 214
Getting started using data logging
Getting started using data SAMPINGcccevvereeieieieiieieierereniene 216
Reference information on application timeline 217
Timeline window—Call Stack graphc..ccccecevviiiiiiiincncncncnene 218

C-SPY® Debugging Guide
for RX

Contents °

Timeline window—Data Log graph

Data Log WINAOWooviviiiiiiiieiieieeieeeiteeeeeeeeeee st
Data Log Summary WindOWcc.coceeieinieinieieieieierenenenenenne
Data Sample WindOWccceceeviivieninininininineeeeceeeeeeesese e
Data Sample Setup WindowWcccevverierienieneenenienieseeseenee s
Sampled Graphs WindOWc..ccccoveviiniininininieieieecreiesenenenee
Viewing Range dialog box
Profiling ...t 241
Introduction to the profiler ... 241
Reasons for using the profilercccovvieviiiniiniininninenieeieneene 241
Briefly about the profilercococeeieieiieiieiinneneneeecececene 241
Requirements for using the profilerccocevvenenienienicniinnenennns 242
Using the profiler ... 243
Getting started using the profiler on function levelccc.ccoc.. 243
Analyzing the profiling datacccceceevieiieiienenienenneeeeeseene 244
Getting started using the profiler on instruction level 246
Selecting a time interval for profiling informationcc.cccceceeueeee 247
Reference information on the profiler ... 248

Function Profiler window

Analyzing code performance ..., 255
Introduction to performance analysis ..o 255
Reasons for using performance analysiscccceeveverenienennecneennns 255

Briefly about performance analysisc..cccceveverenienieencerienenennene 255
Requirements for performance analysisc.ccocceveeerenereenenenenn 256
Analyzing performance ... 256
Using performance analysisccccecererienenenenenienienienienenennens 256
Reference information on performance analysis 256
Performance Analysis Setup dialog bOXc..ceceeereevierienienencnennene 257
Performance Analysis WindOWc..cccocevveinieinennincincecneeeee 259
Performance Start breakpoints dialog boxccccceevecieciencncncnene 261
Performance Stop breakpoints dialog boXccccevvevieveenienencnennene 262

COde COVEIAZEoooirieiicie et 263

Introduction to code coverage ... 263
Reasons for using code COVErageocevveerieneineenieenennieenieneenns 263
Briefly about code COVEragecc.ocvvvevienenenenenineeeeieeciennenes 263

Requirements and restrictions for using code coverage 263
Using code coveragenncnicnicnennns ..264
Getting started using COde COVETaZEecoevvemriereeererienererrenenenne 264
Reference information on code coverageccccccc..... 264
Code Coverage WINAOWcoceveeriierierniennienieneesieeneeie e sire e 265
Power debugging ... 269
Introduction to power debuggingc..cccocoviniinininninns
Reasons for using power debuggingcccceceeveveiecienenenienenienne
Briefly about power debuggingccccceveverereneneneneeeenieienne
Requirements and restrictions for power debugging
Optimizing your source code for power consumption 271
Waiting for device StAtUScceceeueeieieieieienesiesescee et 271
SOftWare delayscccceveevueeiieiiirierieste et 271
DMA versus polled I/Occcocveieiiniiniiiiniiniiieicicecceenenenee 272
Low-power mode diagnostiCsceveruerierieriereneneneneeteneeieneens 272
CPU fTEQUENCY ..euviiieriiiniieniienitenieeieete ettt sttt ae e 273
Detecting mistakenly unattended peripheralsc..cccceceevecenencne 273
Peripheral units in an event-driven SyStemccccocevcervererreeeeeens 273

Finding conflicting hardware setups ..

Analog INEITEIENCEcc.evverieriirieiiiiieieietctcteeee ettt
Debugging in the power domain ...
Displaying a power profile and analyzing the resultc..c........ 276
Detecting unexpected power usage during application execution ...276
Changing the graph reSOlUtionccecuevieriererininenieieieiereriee 277
Reference information on power debugging 277
Power Log Setup WindoWcccceevuevienineneneneneeieeceeicneneneens 278

Power Log windowc.......... ...281

Timeline window—Power graph

C-SPY® Debugging Guide
for RX

Contents °

C-RUN runtime error checking ... 289

Introduction to runtime error checking ... 289
Runtime error Checkingcoceveevieneiniieninieeienieeeeseeseesieeeene
Runtime error checking using C-RUNc..cccceoivinininenininncnenn
The checked heap provided by the library
Using C-RUN in the IAR Embedded Workbench IDE 291
Using C-RUN in non-interactive modec..ceceecveevecvenuenenenenenne 292
Requirements for runtime error checkingcccocevvevencnenncncins 292

Using C-RUN ... s 292
Getting started using C-RUN runtime error checking 293
Creating rules for messages

Detecting various runtime errorscccccccocvcvcncncncnnes 295
Detecting implicit or explicit integer cOnversioncccccceeueneee 295
Detecting signed or unsigned overflowcccccevevenveeveenencnennene 297
Detecting bit loss or undefined behavior when shifting 299
Detecting diviSion DY ZEIOcccceceeeerieueniinienininieeeieiereienenienne 300
Detecting unhandled cases in switch statementscc.ccoceveruennene 300

Detecting accesses outside the bounds of arrays and other objects .301

Detecting heap USAZe EITOTcccceererieierierenenenereeeceeeeeeere e 308
Detecting heap memory 1€akscceceeveeveninineneniiencneneneneene 309
Detecting heap integrity violationscccceevvevveerienieneeneeneenenns 311
Reference information on runtime error checking 314
C-RUN Runtime Checking optionsc..cccceveveerveneneneneneeeenenn 314
C-RUN Messages WINAOWcc.eeverierienienieenienienieeseenieesieenieenieenne 316
C-RUN Messages Rules Windowcccceceeeeeeieieiiiencncnenienenne 318
Compiler and linker reference for C-RUN ... 320
--bounds_table_SizZecccoiiiiiiiiiiii 321
--debug_heap
--generate_entries_without_boundsc..ccceceeveevievieiieniencncnicnenne 321
--ignore_uninstrumented_pPOINterscccceeveereeriernieerienseenreennennes 322
--ignore_uninstrumented_pPOINLETScccceveerververrerrenenereenenennene 322
--ruNtime_CheCKingcccocevevinininiiiiieiceeeceeee e 322
#pragma default_no_boundsccceeverieniieniinenieneeeee 323

#pragma disable_check ... 324

#pragma generate_entry_without_boundsc..cccceeeveevienencnennene 325
#pragma no_arith_checksc.cocviiiiiniiniiniiiecee 325
#pragma no_boundscccccevieiiirininininneeee 325
__as_get_base
__aS_@et_DOUNA ..ooviiiiiiiiie e 326
__as_make_boundsccccoceevveviiriininininine e 326
cspybat options for C-RUN ... 327
SIIC_NADIE ..o 327
SoTEC_OULPUL ettt ettt b e st ne 327
SoTEC_TAW_LO_TXE wertirieiiieiieiieiietetete sttt ettt ettt ettt see e 328
SoTIC_TULES oottt 328

Part 3. Advanced debugging ... 329

INEEITUPES ..o 331

Introduction to iNnterrupts ...
Briefly about the interrupt simulation system

Interrupt charaCteristicseeereeieieienieieresieseee ettt

Interrupt SIMUlation SLALESc.cceveerierieerieeriirieeierre et
C-SPY system macros for interrupt simulation
Target-adapting the interrupt simulation system
Briefly about interrupt 10ZgIngccceeverviivieriienienieneereeieeiene
Using the interrupt system ...
Simulating a Simple INEETTUPLcoovereerveriereirrinieeieieeeieie e
Simulating an interrupt in a multi-task systemcccceceeenenenne
Getting started using interrupt loggingc.ceceevveveeeierienienenicnenne
Reference information on interrupts
Interrupt Setup dialog BOXcoveeviiiiiniiiniiriiieeeeeeeee
Edit Interrupt dialog BOXcceeeverueeieieieieieienenene et

Forced Interrupt Windowccecevirenineninineeieteeeeesee e

Interrupt Status WIndOWc.eovveriiriinienieeiiiieeeste e

C-SPY® Debugging Guide
for RX

Contents °

Interrupt Log Windowcccevievieiieninininineneeeceeteeeeesene e 345
Interrupt Log Summary windowc..cceceevveniineniienienienieneenens 348
Timeline window—Interrupt Log graphc..cccccceeeevievenincncncnnene 350
C-SPY MACIOS . 355
Introduction to C-SPY macroscccoocenmeennccnnccenns 355
Reasons for using C-SPY Macroscccceceeeevievienenenenenenneeieens 355
Briefly about using C-SPY macroscceceveeveeneeneenennieenieenene 356
Briefly about setup macro functions and files
Briefly about the macro 1anguageccceecevevereniinieenienienenenne
Using C-SPY MACKOScccoooiimieiinieerencenceee s
Registering C-SPY macros—an OVeIrviewcc.ceceeveveeeevenienuennens
Executing C-SPY macros—an OVEIrVIEWceccecerereereereeneeniennens
Registering and executing using setup macros and setup files 359
Executing macros using Quick Watchccccocevveniniiniencncncnenene 359
Executing a macro by connecting it to a breakpointc.ccceuee. 360
Aborting a C-SPY macrocccceeeuevveveeneeneenienennens ... 361
Reference information on the macro language362
MaACTO fUNCLIONS ..ouveviiieiietieiieiieiieteiete ettt ettt s 362
Macro variables ..o 362
MaACTO PATAMMELETLSuveuvenreririerietieiieiieitetetete st siesbesieese et esteseeeeneens 363
MACTO SEEINZS .evenviveiiieeiietieiteiieite ettt st sttt et sae b e 363
MaCrO STALEMENLScovouiiiiiiiiiiiiiiie s 364
Formatted OULPULcc.eoveruireieieieiieicicieecenereee ettt 365
Reference information on reserved setup macro function
NAMIES ...t s 367
€XECUSETAMACK ..o 367
eXECUSEIPIElOadcovevuirieiiiiiiiieieieee e 368
EXECUSETSELUP .uvveiiiiieiiiieeieete ettt ettt st 368
exeCUSEIPreResetocoiiiiiiiccc e 368
EXECUSEIRESEL ..ottt 369
eXeCUSETEXItccooiiiiiiiiiii 369
Reference information on C-SPY system macros 369

__abortLaunch

16

C-SPY® Debugging Guide
for RX

__cancelAlllnterrupts

__CANCEIINLEITUPL ...eouviiiiriiiiieiiete et

__ClearBreakc..occiiiiiiiiieecee e

__ClOSEFILE ..

_disableINteITuPLSccceeverieieieieieienenereneecectee et

__driverType

__enableINteITUPLSovviriiiiieriieiierteeee et 375
__EVAIUALE ..ottt 375
__fIIMEMOTY8 ..t 376
__FIIMEMOTY 16 oottt 377
__fAIIMEMOTY32 et 378
__@etNUMDETOTCOTESooverueenieiieieieieneneneeeee ettt 379
__8eLSEIECtEdCOreeovivuiieieiieeiieriieteieeee et 379
__1SBatChMOde ...c..ooviviieiiiiiiieiicccccecectc e 379
__isMacroSymbolDefinedccccecvevueveneneneneneeieieneereneneeene 380
__10adImagecceooiiriiieeee e
__memoryRestore

__MEMOTYSAVE .euriuriiterienieenieeteeiseseesseesseenseesseessesaresseesseesseesseens
__messageBoxYesCancelcocoocvevieiiinienieniieneeieeeseeseeeene
__messageBOXYESNOociiviiiiiiiiiiccee
__OPENFILE ..iiiiiiiie e
__OTAErINLEITUPL .eovveiiiieiiiiiieteete ettt

_popSimulatorInterruptExecutingStack ...

CTEAAFILE e
__1eadFileBytecocooviiiiiiiiiee e

__readMemory8
__readMemory16
__readMemory32

readMemoryBytec..ccceceveniniinininicenienns

[R—

__registerMacroFile ...

TESEEFILE e

__SCIECLCOTE ..iiiiiiieiiiieiiieeiie ettt ettt e n
__SetCOdEBIEakccooviiiiiieiiieieeeeeee e
__SEtDAtABIEaKvviiiiiiiieec e

Contents °

__setDatalLogBreak

__SEtLOEBIeakcoooieiiiiiii e
__SetSIMBIEakoovevviiiiiiieieiciccce e
__setTraceStartBreakccccocuevievieiienenenienininececieeneeeseeseeene 396
__SetTraceStopBIreakcocceveevierieniienierieteseeeee et 397
__SOUTCEPOSIHION ...veuvivivieiieiieiieiieictcteseeese ettt 398
__strFind

__SUDSHIING weiiieiieeiieete ettt s 399
_USYSTEIML ittt 400

_USYSTEM2 ittt ettt ettt ettt s 400
SYSEEIMS Lottt sttt ettt ettt sttt et e et e e s b st e sae e 401

__targetDebug@erVersionccccceevenenenenenenecnieieecnenenennens 402
L EOLOWET e 402
__EOSHING ceeeiiieeiieet ettt st 403
_EOUDPPLT ittt sttt 403
__unloadlmagecoceoevirineeieieeeeeee e 404
__WallTIMe _MS ..ooviiiiiiiiiiiiciiieeeeecceceee e 404
__writeFile
__WIAEFIIEBYLE ..oviiiiiiiiiiiiiiiieeteeeeee et 405
__writeMemory8, __writeMemoryByteccccccocevniiniriinniennnenn. 406
__WIEMEMOTY 16 ..ottt 406
__WIIEMEMOTY32 .oiiiiiiiieiieiieieeeee ettt s 407
Graphical environment for macros ... 407
Macro Registration window
Debugger Macros Windowc.cceverereneneneneneenteteiesieseeneennens
Macro Quicklaunch Windowcccceeeeiieeiiiieiiiieniicieeceeeiee e 412
The C-SPY command line utility—cspybat ..., 415
Using C-SPY in batch mode ... 415
Before running cspybat for the first timecccocccveiivinnnne. 415
Starting cspybat ...416
OULPUL ettt ettt sttt et st e st e st e bt e beebeenee 416
INVOCAON SYNEAX ..eoveviiieiieiieiieieieete sttt 417

18

C-SPY® Debugging Guide
for RX

Summary of C-SPY command line options 417

General cspybat OPtONSoevevieriereineerienieeie et 418
Options available for all C-SPY driversc.coceceeveeciecvevcncnicnenne 419
Options available for the simulator driverc.cocevevveeeriencnnne 419
Options available for all C-SPY hardware debugger drivers 419

Options available for
the E1/E20 and E2/E2 Lite/EZ-CUBE2 drivers

Options available for the J-Link driverc...ccccovvrveniiniiniennene.
Reference information on C-SPY command line options ...420
—=APPLICALION_ATZS ..eveveeiieiiinieiiieienteeteete sttt ettt 420
--attach_to_running_targetcoceeveeveereenieenieeneeneeneeneenieeneesnneenne 421
“DACKEIA ...t

--debug_file
—=dEVICE_SCLECT ..veiiieeiiiiieceiiee ettt
—=dIAZ_WATTING ..eviiiieiieiieieeeee ettt et
-—diSable_INTEITUPLSeoovireriiniirieriiniieieeieeectetetcrere et
“=dOUDIE .ot
-=doWNIoad_0nlYooiiiiiiiiiiieiieie e
--drv_communication ...
—=dIV_INOAE ..

RS 114 P11 H OO T ST UUUURUPRN

S 1en@th oo
--leave_target_runningcccococeeeieiiinieiininieineeeeeceeceees

22O LIE e

Contents °

--SUpPress_downloadccoceeviivieniiiniinie e 434

SmHIMNEOUL ottt ettt ettt b ettt saesresaesae e et 435
-=verify_download ..o 435

Part 4. Additional reference information 437
Debugger OPLIONS ... 439
Setting debugger options ... 439
Reference information on general debugger options 440

SEUUP ettt ettt ettt sae et 440

TMAZES oo 441

PIUZINS vttt 442
EXIra OPtONS ...c.eeviiriiriiniiniieeeiieiieteteteste ettt 443
Reference information on C-SPY hardware debugger driver
OPLIONS ...ttt 444
(107531101010 N o721 5) SR 444
DOWNIOAAceviceiieiiieieeeeee e 445
JTAG Scan Chaincocveeiiiienieniienceieeieeteeee et 446
Additional information on C-SPY drivers ..., 449
Reference information on C-SPY driver menus 449
C-SPY driver
SIMUIALOT MENUvveeieieietieiieieeteete e seeeteete e e eee e e saesseesseesseenns 450
E1/E20 EMulator MENUcccceveerierieeieeerienieeie e enes 452
E2/E2 Lite/EZ-CUBE2 MENUocvveiieiieieeieeieeieseeesieesie e eee e 454
J-LINK MENU .oviiiiieiiiiiciieieeteee ettt e eeenaeens 457

20

C-SPY® Debugging Guide
for RX

Reference information on the C-SPY simulator 459

Simulated Frequency dialog BOXcccceoeeviininiieiiiinieniinceeeee 459
Reference information on the C-SPY hardware debugger
AFIVEES ..o 459

Emulator information Windowccccceeveeiiniiniiniiniiniienienienenennens 460
Resolving problems ...

Write failure during load

No contact with the target hardwarecccocoovevviniininiiiincnenen. 461

... 463

Tables

1: Typographic conventions used in this UIAEcc.cccevervieieiieiienieneiinercneenee 27
2: Naming conventions used in this gUIdecccceevieiriiriieiienienienenerererese e 28
3: Driver differencescoeveriririiiiicteiecetestee ettt 39
4: Restrictions on registers and flagscccceceveveriniininininncceee e 91
5: MCU status when the user application starts eXecutingocceecerevererueennene 91
6: C-SPY assembler Symbols XPreSSiOnsc..ceccecveuerueruenrenrineeeeieeeeensesenenenne 99
7: Handling name conflicts between hardware registers and assembler labels 99
8: Auvailable breakpoints in C-SPY hardware debugger driversc..ccceceevenee. 127
9: C-SPY macros for breakpointsc..cecceceeiereenienieniinenenieieeereesenesesiesieeneene

10: Supported graphs in the Timeline window

11: C-SPY driver profiling SUPPOTTccoeeriieriirriiiieriente ettt

12: Project options for enabling the profilerc..cccovveeininininninieiieiecnenene

13: Project options for enabling code COVETagecocevererereeeenienienieneneniennenne 264
14: Timer INteITUPL SELLNZS woveervierierieeierieriertert et eie et et st e st setesbeesieenbeeabeennens 337
15: Examples of C-SPY macro variablesccccoveririnnncenieniencninencneeeeeee 363
16: Summary of system macros

17: __cancellnterrupt return Valuescoceevierierienienieneenieeneeneeereeee e 373
18: __disablelnterrupts return Valuescccecueeverereneninineeeeneeieienenese e 374
19: __driverType return VAlUESccceeceeierierienienenenieneneeeeteseeeeie e 375
20: __enablelnterrupts return ValUEScoceevieeriiiienienienienieeniceieenieeie e 375
21: __evaluate Teturn ValUESc..ccceeveeieienienienieniinienieeieeceeete et 376
22: __isBatchMode return valtuescccoooiiiiiiiinieiincccreeeceee e 379
23: __loadImage return ValUesccoeeveerieeiiinieniente sttt 381
24: __messageBoxYesCancel return valuesc..ccccocevevevererneenienenencnenenennes 384
25: __messageBoxYesNO return Valluescccoocevevereeienienienieneniceeeieeeereieneenee 384
26: __openFile return VAlUESccccooeeiuiereriieniienienieeiteieee ettt 385
27: __readFile return values

28: __setCodeBreak return valluesoccccooeveiiiiiiiincincnieecceeeeeeeeceeeas 391
29: __setDataBreak return valuesccccoceevievieniiniinieninininiceeiceece e 392
30: __setDatalLogBreak return valuescoccocevevevineeienieienienincneneneeeeeeeenee 393
31: __setLogBreak return Valluescc.cocevererenininenieieteieeeneesesieereeie e 394

21

22

C-SPY® Debugging Guide
for RX

32:
33:
34:
35:
36:
37:
38:

__setSimBreak return valuesc.ccocveriririniininieieieeeene e 396
__setTraceStartBreak return valuesc.ccccocevininiieininienieniencneneneneeene 396
__setTraceStopBreak return valuesc..cocceeeeeeeeienieniininenineneeeeeereeenne 397
__SourcePosition return VAIUEScocceveerierierieneninieeeiieteteieseesiesiesiesieeneene 398
__unloadImage return Valuesc..ooceeveeiieiiienienieneeieeieetese e 404
CSPYDAL PATAMELELSeeveniviieiiteietiieie sttt ettt ettt b et eenen

Options specific to the C-SPY drivers you are using

Preface

Welcome to the C-SPY® Debugging Guide for RX. The purpose of this guide is
to help you fully use the features in the IAR C-SPY® Debugger for debugging
your application based on the RX microcontroller.

Who should read this guide

Read this guide if you plan to develop an application using IAR Embedded Workbench
and want to get the most out of the features available in C-SPY.

REQUIRED KNOWLEDGE

To use the tools in IAR Embedded Workbench, you should have working knowledge of:

o The architecture and instruction set of the RX microcontroller family (refer to the
chip manufacturer's documentation)

® The C or C++ programming language

o Application development for embedded systems

o The operating system of your host computer.

For more information about the other development tools incorporated in the IDE, refer
to their respective documentation, see Other documentation, page 25.

How to use this guide

Each chapter in this guide covers a specific topic area. In many chapters, information is
typically divided into different sections based on information types:

o Concepts, which describes the topic and gives overviews of features related to the
topic area. Any requirements or restrictions are also listed. Read this section to learn
about the topic area.

o Tasks, which lists useful tasks related to the topic area. For many of the tasks, you
can also find step-by-step descriptions. Read this section for information about
required tasks as well as for information about how to perform certain tasks.

® Reference information, which gives reference information related to the topic area.
Read this section for information about certain features or GUI components. You
can easily access this type of information for a GUI component in the IDE by
pressing F1.

What this guide contains

24

If you are new to using IAR Embedded Workbench, we suggest that you first go through
the tutorials, which you can find in IAR Information Center in the product, under
Product Explorer. They will help you get started.

Finally, we recommend the Glossary if you should encounter any unfamiliar terms in
the IAR user documentation.

What this guide contains

Below is a brief outline and summary of the chapters in this guide.

C-SPY® Debugging Guide
for RX

Note: Some of the screenshots in this guide are taken from a similar product and not
from IAR Embedded Workbench for RX.

PART |. BASIC DEBUGGING

The IAR C-SPY Debugger introduces you to the C-SPY debugger and to the
concepts that are related to debugging in general and to C-SPY in particular. The
chapter also introduces the various C-SPY drivers. The chapter briefly shows the
difference in functionality that the various C-SPY drivers provide.

Getting started using C-SPY helps you get started using C-SPY, which includes
setting up, starting, and adapting C-SPY for target hardware.

Executing your application describes the conceptual differences between source
and disassembly mode debugging, the facilities for executing your application, and
finally, how you can handle terminal input and output.

Variables and expressions describes the syntax of the expressions and variables
used in C-SPY, as well as the limitations on variable information. The chapter also
demonstrates the various methods for monitoring variables and expressions.

Breakpoints describes the breakpoint system and the various ways to set
breakpoints.

Memory and registers shows how you can examine memory and registers.

PART 2. ANALYZING YOUR APPLICATION

Trace describes how you can inspect the program flow up to a specific state using
trace data.

The application timeline describes the Timeline window, and how to use the
information in it to analyze your application’s behavior.

Profiling describes how the profiler can help you find the functions in your
application source code where the most time is spent during execution.

Preface __4

Analyzing code performance describes how to use a C-SPY hardware debugger to
analyze code performance in terms of time, clock cycles, interrupts, exceptions, and
instructions.

Code coverage describes how the code coverage functionality can help you verify
whether all parts of your code have been executed, thus identifying parts which have
not been executed.

Power debugging describes techniques for power debugging and how you can use
C-SPY to find source code constructions that result in unexpected power
consumption.

C-RUN runtime error checking describes how to use C-RUN for runtime error
checking.

PART 3. ADVANCED DEBUGGING

Interrupts contains detailed information about the C-SPY interrupt simulation
system and how to configure the simulated interrupts to make them reflect the
interrupts of your target hardware.

C-SPY macros describes the C-SPY macro system, its features, the purposes of
these features, and how to use them.

The C-SPY command line utility—cspybat describes how to use C-SPY in batch
mode.

PART 4. ADDITIONAL REFERENCE INFORMATION

Debugger options describes the options you must set before you start the C-SPY
debugger.

Additional information on C-SPY drivers describes menus and features provided by
the C-SPY drivers not described in any dedicated topics.

Other documentation

User documentation is available as hypertext PDFs and as a context-sensitive online
help system in HTML format. You can access the documentation from the IAR
Information Center or from the Help menu in the ITAR Embedded Workbench IDE. The
online help system is also available via the F1 key.

25

Other documentation

26

C-SPY® Debugging Guide
for RX

USER AND REFERENCE GUIDES

The complete set of IAR development tools is described in a series of guides.
Information about:

System requirements and information about how to install and register the IAR
products are available in the Installation and Licensing Quick Reference Guide and
the Licensing Guide.

Using the IDE for project management and building, is available in the IDE Project
Management and Building Guide for RX.

Using the IAR C-SPY® Debugger and C-RUN runtime error checking, is available
in the C-SPY® Debugging Guide for RX.

Programming for the IAR C/C++ Compiler for RX and linking, is available in the
1IAR C/C++ Development Guide for RX.

Programming for the IAR Assembler for RX, is available in the /AR Assembler
Reference Guide for RX.

Performing a static analysis using C-STAT and the required checks, is available in
the C-STAT® Static Analysis Guide.

Porting application code and projects created with a previous version of the IAR
Embedded Workbench for RX, is available in the /AR Embedded Workbench®
Migration Guide.

Migrating from an older UBROF-based product version to a newer version that uses
the ELF/DWAREF object format, is available in the guide /AR Embedded
Workbench® Migrating from UBROF to ELF/DWARF.

Migrating from the Renesas High-performance Embedded Workshop and e2studio
toolchains for RX to IAR Embedded Workbench® for RX, is available in the guide
Migrating from Renesas to [AR Embedded Workbench.

Note: Additional documentation might be available depending on your product
installation.

THE ONLINE HELP SYSTEM

The context-sensitive online help contains information about:

IDE project management and building
Debugging using the IAR C-SPY® Debugger
The IAR C/C++ Compiler and Linker

The IAR Assembler

C-STAT

Preface __4

WEB SITES

Recommended web sites:

o The Renesas web site, www.renesas.com, that contains information and news about
the RX microcontrollers.

o The IAR web site, www.iar.com, that holds application notes and other product
information.

o The web site of the C standardization working group,
www.open-std.org/jtcl/sc22/wgl4.

The web site of the C++ Standards Committee, www.open-std.org/jtcl/sc22/wg21.

The C++ programming language web site, isocpp.org. This web site also has a list
of recommended books about C++ programming.

o The C and C++ reference web site, en.cppreference.com.

Document conventions

When, in the IAR documentation, we refer to the programming language C, the text also
applies to C++, unless otherwise stated.

When referring to a directory in your product installation, for example rx\doc, the full
path to the location is assumed, for example c¢: \Program Files\IAR
Systems\Embedded Workbench N.n\rx\doc, where the initial digit of the version
number reflects the initial digit of the version number of the IAR Embedded Workbench
shared components.

TYPOGRAPHIC CONVENTIONS
The IAR documentation set uses the following typographic conventions:

Style Used for

computer * Source code examples and file paths.
* Text on the command line.
* Binary, hexadecimal, and octal numbers.

parameter A placeholder for an actual value used as a parameter, for example
filename.h where filename represents the name of the file.

[option] An optional part of a linker or stack usage control directive, where [
and] are not part of the actual directive, but any [, 1, {, or } are part
of the directive syntax.

Table 1: Typographic conventions used in this guide

27

Document conventions

Style Used for

{option} A mandatory part of a linker or stack usage control directive, where {
and } are not part of the actual directive, but any [, 1, {, or } are part
of the directive syntax.

[option] An optional part of a command line option, pragma directive, or library
filename.
[a|b]|c] An optional part of a command line option, pragma directive, or library

filename with alternatives.

{a|b]|c} A mandatory part of a command line option, pragma directive, or
library filename with alternatives.

bold Names of menus, menu commands, buttons, and dialog boxes that
appear on the screen.

italic * A cross-reference within this guide or to another guide.
* Emphasis.
An ellipsis indicates that the previous item can be repeated an arbitrary
number of times.

Identifies instructions specific to the IAR Embedded Workbench® IDE

interface.

Identifies instructions specific to the command line interface.
Identifies helpful tips and programming hints.

E

Identifies warnings.

Table 1: Typographic conventions used in this guide (Continued)

NAMING CONVENTIONS

The following naming conventions are used for the products and tools from IAR, when
referred to in the documentation:

Brand name Generic term

IAR Embedded Workbench® for RX IAR Embedded Workbench®
IAR Embedded Workbench® IDE for RX the IDE

IAR C-SPY® Debugger for RX C-SPY, the debugger

IAR C-SPY® Simulator the simulator

IAR C/C++ Compiler™ for RX the compiler

IAR Assembler™ for RX the assembler

IAR ILINK Linker™ ILINK, the linker

Table 2: Naming conventions used in this guide

C-SPY® Debugging Guide
28 for RX

Preface __4

Brand name Generic term

IAR DLIB Runtime Environment™ the DLIB runtime environment

Table 2: Naming conventions used in this guide (Continued)

29

Document conventions

C-SPY® Debugging Guide
30 for RX

Part |. Basic debugging

This part of the C-SPY® Debugging Guide for RX includes these chapters:

e The IAR C-SPY Debugger
e Getting started using C-SPY
e Executing your application
e Variables and expressions

e Breakpoints

e Memory and registers

w

.hmuhhhhi

AAARRIE

32

The IAR C-SPY Debugger

e Introduction to C-SPY

e Debugger concepts

e C-SPY drivers overview

e The IAR C-SPY Simulator

e The C-SPY EI/E20 and E2/E2 Lite/EZ-CUBE2 drivers

e The C-SPY J-Link driver

Introduction to C-SPY

These topics are covered:

e An integrated environment
o General C-SPY debugger features

e RTOS awareness

AN INTEGRATED ENVIRONMENT

C-SPY is a high-level-language debugger for embedded applications. It is designed for
use with the IAR compilers and assemblers, and is completely integrated in the IDE,
providing development and debugging within the same application. This gives you
possibilities such as:

o FEditing while debugging
During a debug session, you can make corrections directly in the same source code

window that is used for controlling the debugging. Changes will be included in the
next project rebuild.

e Setting breakpoints at any point during the development cycle
You can inspect and modity breakpoint definitions also when the debugger is not
running, and breakpoint definitions flow with the text as you edit. Your debug
settings, such as watch properties, window layouts, and register groups will be
preserved between your debug sessions.

33

Introduction to C-SPY

34

C-SPY® Debugging Guide
for RX

All windows that are open in the IAR Embedded Workbench workspace will stay open
when you start the C-SPY Debugger. In addition, a set of C-SPY-specific windows are
opened.

GENERAL C-SPY DEBUGGER FEATURES

Because IAR provides an entire toolchain, the output from the compiler and linker can
include extensive debug information for the debugger, resulting in good debugging
possibilities for you.

C-SPY offers these general features:

Source and disassembly level debugging

C-SPY allows you to switch between source and disassembly debugging as required,
for both C or C++ and assembler source code.

Single-stepping on a function call level

Compared to traditional debuggers, where the finest granularity for source level
stepping is line by line, C-SPY provides a finer level of control by identifying every
statement and function call as a step point. This means that each function call—
inside expressions, and function calls that are part of parameter lists to other
functions—can be single-stepped. The latter is especially useful when debugging
C++ code, where numerous extra function calls are made, for example to object
constructors.

Code and data breakpoints

The C-SPY breakpoint system lets you set breakpoints of various kinds in the
application being debugged, allowing you to stop at locations of particular interest.
For example, you set breakpoints to investigate whether your program logic is correct
or to investigate how and when the data changes.

Monitoring variables and expressions

For variables and expressions there is a wide choice of facilities. You can easily
monitor values of a specified set of variables and expressions, continuously or on
demand. You can also choose to monitor only local variables, static variables, etc.

Container awareness

When you run your application in C-SPY, you can view the elements of library data
types such as STL lists and vectors. This gives you a very good overview and
debugging opportunities when you work with C++ STL containers.

Call stack information

The compiler generates extensive call stack information. This allows the debugger to
show, without any runtime penalty, the complete stack of function calls wherever the
program counter is. You can select any function in the call stack, and for each
function you get valid information for local variables and available registers.

The IAR C-SPY Debugger ___o

® Powerful macro system

C-SPY includes a powerful internal macro system, to allow you to define complex
sets of actions to be performed. C-SPY macros can be used on their own or in
conjunction with complex breakpoints and—for some cores or devices—the
interrupt simulation system to perform a wide variety of tasks.

Additional general C-SPY debugger features
This list shows some additional features:

Threaded execution keeps the IDE responsive while running the target application
Automatic stepping

The source browser provides easy navigation to functions, types, and variables
Extensive type recognition of variables

Configurable registers (CPU and peripherals) and memory windows

Graphical stack view with overflow detection

Support for code coverage and function level profiling

The target application can access files on the host PC using file I/O

Optional terminal I/O emulation

RTOS AWARENESS

C-SPY supports RTOS-aware debugging. For information about which operating
systems that are currently supported, see the Information Center, available from the
Help menu.

RTOS plugin modules can be provided by IAR, and by third-party suppliers. Contact
your software distributor or IAR representative, alternatively visit the IAR web site, for
information about supported RTOS modules.

A C-SPY RTOS awareness plugin module gives you a high level of control and visibility
over an application built on top of an RTOS. It displays RTOS-specific items like task
lists, queues, semaphores, mailboxes, and various RTOS system variables. Task-specific
breakpoints and task-specific stepping make it easier to debug tasks.

A loaded plugin will add its own menu, set of windows, and buttons when a debug
session is started (provided that the RTOS is linked with the application). For
information about other RTOS awareness plugin modules, refer to the manufacturer of
the plugin module.

35

Debugger concepts

36

Debugger concepts

C-SPY® Debugging Guide
for RX

This section introduces some of the concepts and terms that are related to debugging in
general and to C-SPY in particular. This section does not contain specific information
related to C-SPY features. Instead, you will find such information in the other chapters
of this documentation. The IAR user documentation uses the terms described in this
section when referring to these concepts.

These topics are covered:

C-SPY and target systems
The debugger

The target system

The application

C-SPY debugger systems
The ROM-monitor program
Third-party debuggers

C-SPY plugin modules

C-SPY AND TARGET SYSTEMS

You can use C-SPY to debug either a software target system or a hardware target system.

The IAR C-SPY Debugger ___o

This figure gives an overview of C-SPY and possible target systems:

Simulator

| N Simulator
driver
|
[
|
ROM-monitor . ROM-
| monitor

Target hardware

Emulator
| driver —\[JTAG Target
emulator [| hardware

3rd-party
driver

Workbench

Target
| hardware

|
|
|
|
|
|
|
|
IAR Embedded | driver 1
|
|
|
|
|
|
|
|
|
|
|

= Provided by IAR Systems

|:| = Provided by IAR Systems or third-party vendors

Note: In IAR Embedded Workbench for RX, there are no ROM-monitor drivers.

THE DEBUGGER

The debugger, for instance C-SPY, is the program that you use for debugging your
applications on a target system.

THE TARGET SYSTEM

The target system is the system on which you execute your application when you are
debugging it. The target system can consist of hardware, either an evaluation board or
your own hardware design. It can also be completely or partially simulated by software.
Each type of target system needs a dedicated C-SPY driver.

THE APPLICATION

A user application is the software you have developed and which you want to debug
using C-SPY.

37

Debugger concepts

38

C-SPY® Debugging Guide
for RX

C-SPY DEBUGGER SYSTEMS

C-SPY consists of both a general part which provides a basic set of debugger features,
and a target-specific back end. The back end consists of two components: a processor
module—one for every microcontroller, which defines the properties of the
microcontroller, and a C-SPY driver. The C-SPY driver is the part that provides
communication with and control of the target system. The driver also provides the user
interface—menus, windows, and dialog boxes—to the functions provided by the target
system, for instance, special breakpoints.

Typically, there are three main types of C-SPY drivers:

e Simulator driver

o ROM-monitor driver

o Emulator driver

C-SPY is available with a simulator driver, and depending on your product package,
optional drivers for hardware debugger systems. For an overview of the available C-SPY

drivers and the functionality provided by each driver, see C-SPY drivers overview, page
39.

THE ROM-MONITOR PROGRAM

The ROM-monitor program is a piece of firmware that is loaded to non-volatile memory
on your target hardware—it runs in parallel with your application. The ROM-monitor
communicates with the debugger and provides services needed for debugging the
application, for instance stepping and breakpoints.

THIRD-PARTY DEBUGGERS

You can use a third-party debugger together with the IAR toolchain as long as the
third-party debugger can read ELF/DWAREF, Intel-extended, or Motorola. For
information about which format to use with a third-party debugger, see the user
documentation supplied with that tool.

C-SPY PLUGIN MODULES

C-SPY is designed as a modular architecture with an open SDK that can be used for
implementing additional functionality to the debugger in the form of plugin modules.
These modules can be seamlessly integrated in the IDE.

Plugin modules are provided by IAR, or can be supplied by third-party vendors.
Examples of such modules are:

o The various C-SPY drivers for debugging using certain debug systems.

o RTOS plugin modules for support for real-time OS aware debugging.

The IAR C-SPY Debugger ___o

o C-SPYLink that bridges IAR Visual State and IAR Embedded Workbench to make
true high-level state machine debugging possible directly in C-SPY, in addition to
the normal C level symbolic debugging. For more information, see the
documentation provided with IAR Visual State.

For more information about the C-SPY SDK, contact IAR.

C-SPY drivers overview
At the time of writing this guide, the IAR C-SPY Debugger for the RX microcontrollers
is available with drivers for these target systems and evaluation boards:

Simulator

E1 or E20 emulator

E2 emulator

E2 Lite/EZ-CUBE2 emulator

J-Link debug probe.

DIFFERENCES BETWEEN THE C-SPY DRIVERS

This table summarizes the key differences between the C-SPY drivers:

E2 Lite/
Feature Simulator EI E20 E2 EZ-CUBE J-Link

2
Code breakpoints* Unlimited Yes Yes Yes Yes Yes
Data breakpoints Yes Yes Yes Yes Yes Yes
Execution in real time — Yes Yes Yes Yes Yes
Zero memory footprint Yes Yes Yes Yes Yes Yes
Simulated interrupts Yes — — — — —
Real interrupts — Yes Yes Yes Yes Yes
Interrupt logging Yes — — — — —
Data logging Yes — — — — —
Live watch Yes Yes Yes Yes Yes Yes
Cycle counter Yes — — — — —
Code coverage Yes Yes Yes Yes Yes Yes
Data coverage™ Yes — Yes — — —
Performance analysis* — Yes Yes Yes Yes Yes

Table 3: Driver differences

39

The IAR C-SPY Simulator

40

E2 Lite/
Feature Simulator EI E20 E2 EZ-CUBE J-Link
2
Start/stop routines — Yes Yes Yes Yes —
Profiling Yes Yes Yes Yes Yes Yes
Trace Yes Yes Yes Yes Yes Yes
Power debugging® — — — Limited — Yes

Table 3: Driver differences (Continued)

* With specific requirements or restrictions, see the respective chapter in this guide.

The IAR C-SPY Simulator

C-SPY® Debugging Guide
for RX

The C-SPY simulator simulates the functions of the target processor entirely in
software, which means that you can debug the program logic long before any hardware
is available. Because no hardware is required, it is also the most cost-effective solution
for many applications.

SUPPORTED FEATURES

The C-SPY simulator supports:

Instruction-level simulation
Memory configuration and validation

Interrupt simulation

Peripheral simulation (using the C-SPY macro system in conjunction with
immediate breakpoints).

Simulating hardware instead of using a hardware debugging system means that some
limitations do not apply, but that there are other limitations instead. For example:

You can set an unlimited number of breakpoints in the simulator.

When you stop executing your application, time actually stops in the simulator.
When you stop application execution on a hardware debugging system, there might
still be activities in the system. For example, peripheral units might still be active
and reading from or writing to SFR ports.

e Application execution is significantly much slower in a simulator compared to when
using a hardware debugging system. However, during a debug session, this might
not necessarily be a problem.

o The simulator is not cycle accurate.

The IAR C-SPY Debugger ___o

e Peripheral simulation is limited in the C-SPY Simulator and therefore the simulator
is suitable mostly for debugging code that does not interact too much with
peripheral units.

The C-SPY EI/E20 and E2/E2 Lite/EZ-CUBE2 drivers

C-SPY can connect to an E1, E2, E20, or E2 Lite/EZ-CUBE2 emulator using a C-SPY
hardware debugger driver as an interface. The C-SPY hardware debugger drivers are
automatically installed during the installation of IAR Embedded Workbench.

All RX microcontrollers have built-in, on-chip debug support. Because the hardware
debugger logic is built into the microcontroller, no ordinary ROM-monitor program or
extra specific hardware is needed to make the debugging work.

COMMUNICATION OVERVIEW

The C-SPY E1/E20 and E2/E2 Lite/EZ-CUBE2 drivers use USB to communicate with
the emulator. The emulator communicates with the Front-end firmware (FFW) interface
module. The FFW interface module, in turn, communicates with the Back-end firmware
(BFW) module on the emulator.

C-SPY debugger
—€-SPY driver

ection

/ Emulato
9 o \ \J
/ JTAG cabl{ Wy

41

The C-SPY J-Link driver

42

For more information, see the documentation supplied with the emulator.

When a debugging session is started, your application is automatically downloaded and
programmed into flash memory. You can disable this feature, if necessary.

HARDWARE INSTALLATION

USB drivers are automatically installed during the installation of IAR Embedded
Workbench. If you need to re-install them, they are available both on the installation CD
and in the rx\drivers\Renesas\ directory in the installation directory.

For more information about the hardware installation, see the documentation supplied
with the E1, E2, E20, or E2 Lite or EZ-CUBE2 emulator from Renesas. The following
power-up sequence is recommended to ensure proper communication between the target
board, the emulator, and C-SPY:

Power up the target board.

2 Start the C-SPY debugging session.

The C-SPY }-Link driver

C-SPY® Debugging Guide
for RX

Using the C-SPY J-Link driver, C-SPY can connect to the J-Link debug probe. All RX
microcontrollers have built-in, on-chip debug support. Because the hardware debugger
logic is built into the microcontroller, no ordinary ROM-monitor program or extra
specific hardware is needed to make the debugging work.

COMMUNICATION OVERVIEW

The C-SPY J-Link driver uses USB to communicate. There are two possible hardware
configurations, depending on the target board:

o If the target board has a built-in J-Link, a USB cable connects the host computer
directly to the target board.

The IAR C-SPY Debugger ___o

e If you have a separate J-Link debug probe, the probe communicates with the JTAG
interface on the microcontroller as in this figure:

C-SPY debugger
—=C-SPY J-Link driver

o J-L\:robe
’ J-Link RX adapterd
/ 14-pin Eﬁ ca”M

For more information, see the documentation supplied with the J-Link debug probe or
the target board.

When a debugging session is started, your application is automatically downloaded and
programmed into flash memory. You can disable this feature, if necessary.
HARDWARE INSTALLATION

USB drivers are automatically installed during the installation of IAR Embedded
Workbench. If you need to re-install them, they are available both on the installation CD
and in the rx\drivers\JLink\ directory in the installation directory. For more
information about the hardware installation, see the documentation supplied with the
J-Link debug probe.

The following power-up sequence is recommended to ensure proper communication
between the target board, debug probe, and C-SPY:

Power up the target board.

43

The C-SPY J-Link driver

2 Power up the J-Link debug probe.
3 Start the C-SPY debugging session.

C-SPY® Debugging Guide
44 for RX

Getting started using
C-SPY

e Setting up C-SPY
e Starting C-SPY
e Adapting for target hardware

e Reference information on starting C-SPY

Setting up C-SPY

These tasks are covered:
Setting up for debugging
Executing from reset
Using a setup macro file

Selecting a device description file

Loading plugin modules

SETTING UP FOR DEBUGGING

Before you start C-SPY, choose Project>Options>Debugger>Setup and select the
C-SPY driver that matches your debugger system—simulator or hardware debugger
system.

In the Category list, select the appropriate C-SPY driver and make your settings. For
information about these options, see Debugger options, page 439.

Click OK.
Choose Tools>Options to open the IDE Options dialog box:

o Select Debugger to configure the debugger behavior

o Select Stack to configure the debugger’s tracking of stack usage.

For more information about these options, see the /DE Project Management and
Building Guide for RX. See also Adapting for target hardware, page 53.

45

Setting up C-SPY

46

C-SPY® Debugging Guide
for RX

EXECUTING FROM RESET

The Run to option—available on the Debugger>Setup page—specifies a location you
want C-SPY to run to when you start a debug session as well as after each reset. C-SPY
will place a temporary breakpoint at this location and all code up to this point is executed
before stopping at the location. Note that this temporary breakpoint is removed when the
debugger stops, regardless of how. If you stop the execution before the Run to location
has been reached, the execution will not stop at that location when you start the
execution again.

The default location to run to is the main function. Type the name of the location if you
want C-SPY to run to a different location. You can specify assembler labels or whatever
can be evaluated to such, for instance function names.

If you leave the check box empty, the program counter will contain the regular hardware
reset address at each reset. The reset address is set by C-SPY.

If no breakpoints are available when C-SPY starts, a warning message notifies you that
single stepping will be required and that this is time consuming. You can then continue
execution in single-step mode or stop at the first instruction. If you choose to stop at the
first instruction, the debugger starts executing with the PC (program counter) at the
default reset location instead of the location you typed in the Run to box.

Note: This message will never be displayed in the C-SPY simulator, where breakpoints
are unlimited.

USING A SETUP MACRO FILE

A setup macro file is a macro file that you choose to load automatically when C-SPY
starts. You can define the setup macro file to perform actions according to your needs,
using setup macro functions and system macros. Thus, if you load a setup macro file you
can initialize C-SPY to perform actions automatically.

For more information about setup macro files and functions, see Introduction to C-SPY
macros, page 355.

For an example of how to use a setup macro file, see Initializing target hardware before
C-SPY starts, page 54.

To register a setup macro file:

Before you start C-SPY, choose Project>Options>Debugger>Setup.

Select Use macro file and type the path and name of your setup macro file, for

example Setup.mac. If you do not type a filename extension, the extension mac is
assumed.

Getting started using C-SPY ___4

SELECTING A DEVICE DESCRIPTION FILE
C-SPY uses device description files to handle device-specific information.

A default device description file is automatically used based on your project settings. If
you want to override the default file, you must select your device description file. Device
description files from IAR are provided in the rx\config directory and they have the
filename extension ddf.

For more information about device description files, see Adapting for target hardware,
page 53.

To override the default device description file:
I Before you start C-SPY, choose Project>Options>Debugger>Setup.

2 Select the Override default option, and choose a file using the Device description file
browse button.

Note: You can easily view your device description files that are used for your project.
Choose Project>Open Device Description File and select the file you want to view.
LOADING PLUGIN MODULES

On the Plugins page you can specify C-SPY plugin modules to load and make available
during debug sessions. Plugin modules can be provided by IAR, and by third-party
suppliers. Contact your software distributor or IAR representative, or visit the IAR web
site, for information about available modules.

For more information, see Plugins, page 442.

Starting C-SPY

When you have set up the debugger, you are ready to start a debug session.
These tasks are covered:

Starting a debug session

Loading executable files built outside of the IDE
Starting a debug session with source files missing
Loading multiple debug images

Editing in C-SPY windows

Downloading files to external flash memory

Start debugging a running application.

47

Starting C-SPY

48

C-SPY® Debugging Guide
for RX

°3

STARTING A DEBUG SESSION

You can choose to start a debug session with or without loading the current executable
file.

To start C-SPY and download the current executable file, click the Download and
Debug button. Alternatively, choose Project>Download and Debug.

To start C-SPY without downloading the current executable file, click the Debug
without Downloading button. Alternatively, choose Project>Debug without
Downloading.

LOADING EXECUTABLE FILES BUILT OUTSIDE OF THE IDE

You can also load C-SPY with an application that was built outside the IDE, for example
applications built on the command line. To load an externally built executable file and
to set build options you must first create a project for it in your workspace.

To create a project for an externally built file:

Choose Project>Create New Project, and specify a project name.

To add the executable file to the project, choose Project>Add Files and make sure to
choose All Files in the file type drop-down list. Locate the executable file.

To start the executable file, click the Download and Debug button. The project can be
reused whenever you rebuild your executable file.

The only project options that are meaningful to set for this kind of project are options in
the General Options and Debugger categories. Make sure to set up the general project
options in the same way as when the executable file was built.

STARTING A DEBUG SESSION WITH SOURCE FILES MISSING

Normally, when you use the AR Embedded Workbench IDE to edit source files, build
your project, and start the debug session, all required files are available and the process
works as expected.

Getting started using C-SPY ___4

However, if C-SPY cannot automatically find the source files, for example if the
application was built on another computer, the Get Alternative File dialog box is
displayed:

Get Alternative File §|

Could nat find the following source file:
C:hprojectshtutorsTutor.c

<RNones J
| Skip |

Suggested alternative:

I If possible, don't show this dialog again

Typically, you can use the dialog box like this:

e The source files are not available—Select If possible, don’t show this dialog again
and then click Skip. C-SPY will assume that there is no source file available. The
dialog box will not appear again, and the debug session will not try to display the
source code.

e Alternative source files are available at another location—Specify an alternative
source code file, select If possible, don’t show this dialog again, and then click
Use this file. C-SPY will assume that the alternative file should be used. The dialog
box will not appear again, unless a file is needed for which there is no alternative
file specified and which cannot be located automatically.

If you restart the IAR Embedded Workbench IDE, the Get Alternative File dialog box
will be displayed again once even if you have selected If possible, don’t show this
dialog again. This gives you an opportunity to modify your previous settings.

For more information, see Get Alternative File dialog box, page 60.

LOADING MULTIPLE DEBUG IMAGES

Normally, a debuggable application consists of a single file that you debug. However,
you can also load additional debug files (debug images). This means that the complete
program consists of several debug images.

Typically, this is useful if you want to debug your application in combination with a
prebuilt ROM image that contains an additional library for some platform-provided
features. The ROM image and the application are built using separate projects in the
IAR Embedded Workbench IDE and generate separate output files.

If more than one debug image has been loaded, you will have access to the combined
debug information for all the loaded debug images. In the Images window you can
choose whether you want to have access to debug information for a single debug image
or for all images.

49

Starting C-SPY

To load additional debug images at C-SPY startup:

I Choose Project>Options>Debugger>Images and specify up to three additional
debug images to be loaded. For more information, see /mages, page 441.

2 Start the debug session.

To load additional debug images at a specific moment:

Use the __loadImage system macro and execute it using either one of the methods
described in Using C-SPY macros, page 357.

To display a list of loaded debug images:

Choose Images from the View menu. The Images window is displayed, see /mages
window, page 59.

EDITING IN C-SPY WINDOWS
You can edit the contents of these windows:

Memory window

Symbolic Memory window
Registers window

Register User Groups Setup window
Auto window

Watch window

Locals window

Statics window

Live Watch window

Quick Watch window

Use these keyboard keys to edit the contents of these windows:

Enter Makes an item editable and saves the new value.

Esc Cancels a new value.

In windows where you can edit the Expression field and in the Quick Watch window,
you can specify the number of elements to be displayed in the field by adding a
semicolon followed by an integer. For example, to display only the three first elements
of an array named myArray, or three elements in sequence starting with the element
pointed to by a pointer, write:

myArray; 3

C-SPY® Debugging Guide
50 for RX

Getting started using C-SPY ___4

To display three elements pointed to by myPtr, myPtr+1, and myPtr+2, write:
myPtr;3

Optionally, add a comma and another integer that specifies which element to start with.
For example, to display elements 10-14, write:

myArray;5,10
To display myPtr+10, myPtr+11, myPtr+12, myPtr+13, and myPtr+14, write:
myPtr;5,10

Note: For pointers, there are no built-in limits on displayed element count, and no
validation of the pointer value.

DOWNLOADING FILES TO EXTERNAL FLASH MEMORY

Normally, your application is downloaded to internal memory. To download the main
executable file of your project to external flash memory, or any additional images that
you have specified using the procedure described in Loading multiple debug images,
page 49, you must configure C-SPY.

Note: Before following these instructions you must have defined external flash
definition files (USD files) for your external flash memory, using the External Flash
Definition Editor tool from Renesas Electronics Corporation. For more information, see
the documentation from Renesas.

To configure C-SPY to load files to external flash memory:
Choose C-SPY driver>Hardware Setup.

On the MCU page of the dialog box, set the Register setting option to either On-chip
ROM enabled extended mode or On-chip ROM disabled extended mode.

If you are using external RAM as working RAM, make sure that the Byte order option
is set to the same byte order as the CPU.

On the External Memory page of the dialog box, specify up to four external flash
definition files (USD files) by typing the absolute paths in the fields or by using the
browse buttons. Note that only flash memory with 4096 or fewer sectors can be
registered. If flash memory with more sectors is registered, programming cannot be
guaranteed.

Decide whether to select the Erase external flash ROM before download options for
the specified USD files. If the flash memory is not erased, addresses that are not
overwritten by the download will keep their previous contents.

If your flash memory device does not support the Lock command (see the
documentation from Renesas), select the Erase external flash ROM before download
options for the specified USD files.

51

Starting C-SPY

52

C-SPY® Debugging Guide
for RX

If you are allocating a device to multiple CS areas, do not select the Erase external
flash ROM before download options for the specified USD files.

Now you are ready to download and debug, see Starting a debug session, page 48.

Note: Before downloading images to external flash memory, you must be aware of this:

e If the address ranges of multiple specified USD files overlap each other, connection
with the hardware debugger cannot be established.

e For downloading to external flash memory, only internal RAM or CS area RAM can
be used as a work area. SDRAM areas (SDCS) cannot be used as a work area.

o The work RAM area can also be used by your application, because the hardware
debugger saves and restores data in this area. Note that the work RAM area cannot
be specified either as the destination or origin of a DMA or DTC transfer, as an
address where a DTC vector table or transfer information is to be allocated, or as the
interrupt vector for a DMAC or DTC activation source.

e If your flash memory device does not support the Lock command (see the
documentation from Renesas), USD files created with the External Flash Definition
Editor tool from Renesas should be generated with the option Clear Lock Bit
selected on the USD File Creation page.

See also Hardware Setup dialog box: External Memory, page 66.

START DEBUGGING A RUNNING APPLICATION

Using an E1, E20, E2, or E2 Lite/EZ-CUBE?2 emulator, you can start debugging a
running application at its current location, without resetting the target system.

Start debugging from the middle of execution

Make sure that your application is running on the target board and that the target board
is powered by external power.

Choose Project>Attach to Running Target. For information about this menu
command, see the IDE Project Management and Building Guide for RX.

Getting started using C-SPY ___4

3 When you are prompted, connect the emulator to the target board and click OK.

E1/E20 Emulator ==

" | Connect the emulator to the target system and click OK.

~ Your system might need some pin settings. Please read about Hot
plug-in in the hardware documentation before using this function.

4 Enter the ID code of the target MCU in the ID Code Verification dialog box.

ID Code Verification =

Enter ID Code [32 hexadecimal digits):

[(0] 3] [Cancel]

5 When the debug session starts, your application is still executing but now you can
monitor RAM and look at variables in the Live Watch window.

To stop execution, click Stop or set a breakpoint.

You can now debug your application as usual.

Adapting for target hardware

These tasks are covered:

o Modifying a device description file

e Initializing target hardware before C-SPY starts

MODIFYING A DEVICE DESCRIPTION FILE

C-SPY uses device description files provided with the product to handle several of the
target-specific adaptations, see Selecting a device description file, page 47. Device
description files contain device-specific information such as:

o Memory information for device-specific memory zones, see C-SPY memory zones,
page 153.

53

Adapting for target hardware

54

C-SPY® Debugging Guide
for RX

e Definitions of memory-mapped peripheral units, device-specific CPU registers, and
groups of these.

e Definitions for device-specific interrupts, which makes it possible to simulate these
interrupts in the C-SPY simulator, see Interrupts, page 331.

o The device name and the MCU filename, used by emulators

Normally, you do not need to modify the device description file. However, if the
predefinitions are not sufficient for some reason, you can edit the file. Note, however,
that the format of these descriptions might be updated in future upgrades of the product.

Make a copy of the device description file that best suits your needs, and modify it
according to the description in the file. Reload the project to make the changes take
effect.

For information about how to load a device description file, see Selecting a device
description file, page 47.

INITIALIZING TARGET HARDWARE BEFORE C-SPY STARTS

You can use C-SPY macros to initialize target hardware before C-SPY starts. For
example, if your hardware uses external memory that must be enabled before code can
be downloaded to it, C-SPY needs a macro to perform this action before your
application can be downloaded.

Create a new text file and define your macro function.

By using the built-in execUserPreload setup macro function, your macro function
will be executed directly after the communication with the target system is established
but before C-SPY downloads your application.

For example, a macro that enables external SDRAM could look like this:

/* Your macro function. */
enableExternal SDRAM ()
{
__message "Enabling external SDRAM\n";
__writeMemory32(...);
}

/* Setup macro determines time of execution. */
execUserPreload()
{
enableExternal SDRAM() ;
}

2 Save the file with the filename extension mac.

3 Before you start C-SPY, choose Project>Options>Debugger and click the Setup tab.

Getting started using C-SPY ___4

4 Select the Use macro file option, and choose the macro file you just created.

Your setup macro will now be loaded during the C-SPY startup sequence.

Reference information on starting C-SPY

Reference information about:

C-SPY Debugger main window, page 55

Images window, page 59

Get Alternative File dialog box, page 60

Download Emulator Firmware dialog box, page 61
Operating Frequency dialog box, page 62

Hardware Setup dialog box: MCU, page 63

Hardware Setup dialog box: External Memory, page 66

External Area dialog box, page 68
See also:

e Tools options for the debugger in the IDE Project Management and Building Guide
for RX.

C-SPY Debugger main window
When you start a debug session, these debugger-specific items appear in the main IAR
Embedded Workbench IDE window:
o A dedicated Debug menu with commands for executing and debugging your
application

o Depending on the C-SPY driver you are using, a driver-specific menu, often
referred to as the Driver menu in this documentation. Typically, this menu contains
menu commands for opening driver-specific windows and dialog boxes.

e A special debug toolbar

o Several windows and dialog boxes specific to C-SPY

The C-SPY main window might look different depending on which components of the
product installation you are using.

55

Reference information on starting C-SPY

56

Menu bar

Debug menu

C-SPY® Debugging Guide
for RX

[

These menus are available during a debug session:

Debug

Provides commands for executing and debugging the source application. Most
of the commands are also available as icon buttons on the debug toolbar.

C-SPY driver menu

Provides commands specific to a C-SPY driver. The driver-specific menu is only
available when the driver is used. For information about the driver-specific
menu commands, see Reference information on C-SPY driver menus, page 449.

The Debug menu is available during a debug session. The Debug menu provides
commands for executing and debugging the source application. Most commands are
also available as icon buttons on the debug toolbar.
* | Go F5
Break
Reset

Stop Debugging Ctrl=Shift+D

Step Into F11

a

M Step Over F10
-

™ step Out Shift=F11
4]

Mext Statement
*] Runto Cursor
s Autostep..,
*= Set Mext Statement

C++ Exceptions 3

Memaory 3
Refresh
Logaging 3

These commands are available:

Go (F5)

Executes from the current statement or instruction until a breakpoint or program
exit is reached.

Break

Stops the application execution.

»

Getting started using C-SPY ___4

Reset
Resets the target processor. Click the drop-down button to access a menu with
additional commands.

Enable Run to '1abel’, where l1abel typically is main. Enables and disables
the project option Run to without exiting the debug session. This menu
command is only available if you have selected Run to in the Options dialog
box.

Reset strategies, which contains a list of reset strategies supported by the C-SPY
driver you are using. This means that you can choose a different reset strategy
than the one used initially without exiting the debug session. Reset strategies are
only available if the C-SPY driver you are using supports alternate reset
strategies.

Stop Debugging (Ctrl+Shift+D)
Stops the debugging session and returns you to the project manager.

Step Over (F10)

Executes the next statement, function call, or instruction, without entering C or
C++ functions or assembler subroutines.

Step Into (F11)

Executes the next statement or instruction, or function call, entering C or C++
functions or assembler subroutines.

Step Out (Shift+F11)

Executes from the current statement up to the statement after the call to the
current function.

Next Statement

Executes directly to the next statement without stopping at individual function
calls.

Run to Cursor

Executes from the current statement or instruction up to a selected statement or
instruction.

Autostep

Displays a dialog box where you can customize and perform autostepping, see
Autostep settings dialog box, page 93.

Set Next Statement

Moves the program counter directly to where the cursor is, without executing
any source code. Note, however, that this creates an anomaly in the program
flow and might have unexpected effects.

57

Reference information on starting C-SPY

58

C-SPY windows

C-SPY® Debugging Guide
for RX

C++ Exceptions>Break on Throw

Specifies that the execution shall break when the target application executes a
throw statement.

To use this feature, your application must be built with the option Library
low-level interface implementation selected and the language option C++
With exceptions.

This menu command is not supported by your product package.

C++ Exceptions>Break on Uncaught Exception

Specifies that the execution shall break when the target application throws an
exception that is not caught by any matching catch statement.

To use this feature, your application must be built with the option Library
low-level interface implementation selected and the language option C++
With exceptions.

This menu command is not supported by your product package.

Memory>Save

Displays a dialog box where you can save the contents of a specified memory
area to a file, see Memory Save dialog box, page 163.

Memory>Restore

Displays a dialog box where you can load the contents of a file in, for example
Intel-extended or Motorola s-record format to a specified memory zone, see
Memory Restore dialog box, page 164.

Refresh

Refreshes the contents of all debugger windows. Because window updates are
automatic, this is needed only in unusual situations, such as when target memory
is modified in ways C-SPY cannot detect. It is also useful if code that is
displayed in the Disassembly window is changed.

Logging>Set Terminal I/O Log file

Displays a dialog box where you can choose to log simulated target access
communication to a file. You can select the destination of the log file. See
Terminal 1/O Log File dialog box, page 87.

Depending on the C-SPY driver you are using, these windows specific to C-SPY are
available during a debug session:

o C-SPY Debugger main window

o Disassembly window

Images window

Getting started using C-SPY ___4

Memory window
Symbolic Memory window
Registers window

Watch window

Locals window

Auto window

Live Watch window

Quick Watch window
Statics window

Call Stack window

Trace window

Function Trace window
Timeline window, see Reference information on application timeline, page 217
Terminal I/0 window
Code Coverage window
Function Profiler window
Images window

Stack window

Symbols window

Additional windows are available depending on which C-SPY driver you are using.

The Images window is available from the View menu.

Images v 3 X
Mame Core 0 Path

Timerlnterrupt ChiDocumentsiAR Embedded WorkhenchiarmiD...

SerialPort o CADocumentsiylAR Embedded Workbenchy .

This window lists all currently loaded debug images (debug files).

Normally, a source application consists of a single debug image that you debug.
However, you can also load additional images. This means that the complete debuggable
unit consists of several debug images. See also Loading multiple debug images, page 49.

59

Reference information on starting C-SPY

60

Requirements

Display area

Can be used with all C-SPY debugger drivers and debug probes.

C-SPY can use debug information from one or more of the loaded debug images
simultaneously. Double-click on a row to make C-SPY use debug information from that
debug image. The current choices are highlighted.

This area lists the loaded debug images in these columns:
Name

The name of the loaded debug image.

Core N

Double-click in this column to toggle using debug information from the debug
image when that core is in focus.

Path
The path to the loaded debug image.

Related information

For related information, see:

o Loading multiple debug images, page 49
® Images, page 441

® _ loadlmage, page 380

Get Alternative File dialog box

C-SPY® Debugging Guide
for RX

The Get Alternative File dialog box is displayed if C-SPY cannot automatically find
the source files to be loaded, for example if the application was built on another
computer.

Get Alternative File P§|

Could nat find the following source file:
C:hprojectshtutorsTutor.c

<RNones J
| Skip |

Suggested alternative:

I If possible, don't show this dialog again

See also Starting a debug session with source files missing, page 48.

Getting started using C-SPY ___4

Could not find the following source file

The missing source file.

Suggested alternative

Specify an alternative file.

Use this file

After you have specified an alternative file, Use this file establishes that file as the alias
for the requested file. Note that after you have chosen this action, C-SPY will
automatically locate other source files if these files reside in a directory structure similar
to the first selected alternative file.

The next time you start a debug session, the selected alternative file will be preloaded
automatically.

Skip

C-SPY will assume that the source file is not available for this debug session.

If possible, don’t show this dialog again

Instead of displaying the dialog box again for a missing source file, C-SPY will use the
previously supplied response.

Related information

For related information, see Starting a debug session with source files missing, page 48.

Download Emulator Firmware dialog box

The Download Emulator Firmware dialog box is available from the C-SPY driver
menu.

Download Emulator Firmware ﬁ

Firrnvsare: file:

=

POk | Cancel |

Use this dialog box to update the firmware of your emulator if needed. The only reason
for doing this manually is if the automatically downloaded firmware is not working
correctly.

61

Reference information on starting C-SPY

Requirements

Firmware file

One of these alternatives:

e The C-SPY E1/E20 driver
o The C-SPY E2/E2 Lite/EZ-CUBE2 driver.

Browse to the firmware file on your host computer and click OK to download it to your
emulator hardware. The emulator firmware files have the filename extension . s and are
located in subdirectories of the rx\external\ directory of your product installation.

Operating Frequency dialog box

Requirements

The Operating Frequency dialog box is available from the C-SPY driver menu during
a debug session.

Operating Frequency &J
Operating frequency:
12.5000 MHz
POk | | Cancel |

Use this dialog box to inform the emulator of the operating frequency that the MCU is
running at. This information is used by the Timeline window and by performance
counters to convert clock cycles into time.

A C-SPY hardware debugger driver.

Operating frequency

Specifies the operating frequency that the MCU is running at. This value is used by the
performance analysis to convert cycles to time and by the J-Link Timeline window to
estimate the number of elapsed cycles.

Related information

C-SPY® Debugging Guide
62 for RX

For related information, see:

® Performance Analysis Setup dialog box, page 257
o The application timeline, page 211.

Getting started using C-SPY ___4

Hardware Setup dialog box: MCU

The Hardware Setup dialog box for the hardware debuggers is available from the
C-SPY driver menu. Before C-SPY is started for the first time in a new project, and
when you change devices, the hardware must be configured.

Hardware Setup, device: RSFSTLMG (RXTIMGR\RSFSTLMG.MCU) (=23

MCU | External Memary

MCU Communication
Mode pin setting: EXTaL frequency:) JTAG clock: 6108 MHz
[single-chip mode | 27.0000 MHz]
@ FINE baud rate: -
Eyte order: ICLE. frequency:) 1.5M bps
[Litte-endian v 1200000 Mu:
System
Fiegist ting:
égls = S‘_a g Debug the program re-wiiting the PROGRAM ROM
ISlngIe-chlp mode v]

[Debug the program re-wiiting the DATA FLASH
External memory areas:

= Emulator mode:
A Bute order BUS wi.. E dit

Trace

Power supply
Power target from the emulator (M 200ma,)

@ 33V
[Allows clock source change when wiiting intemal flash

work FAM start address (02500 bytes used): 0x1000

5.0

D ownload
Eraze flash ROM before download
[Erase data flash ROM before download

o) (o)

Use the MCU options page to make general settings that control how the emulator
operates.
Requirements

A C-SPY hardware debugger driver.

Mode pin setting
Controls the MCU operation based on the pin settings. Choose between:
o Single-chip mode
o User boot mode
e USB boot mode.

63

Reference information on starting C-SPY

Note: Not all modes are available for all devices or all hardware debuggers.

EXTAL frequency
Specify the frequency in MHz of the external clock source that supplies the target MCU.

ICLK frequency

Specify the frequency in MHz of the internal clock source.

Note: This option is not available for all devices or all hardware debuggers.

Byte order
Controls the byte order of the device. Choose between:
e Little-endian

e Big-endian.

Note: This option is not available for all devices or all hardware debuggers.

Register setting
Controls the MCU operation based on register settings. Choose between:
o Single-chip mode
o On-chip ROM enabled extended mode
o On-chip ROM disabled extended mode.

Note: Not all modes are available for all devices or all hardware debuggers.

External memory areas

Lists the defined external memory areas. To edit a memory area, select the area and click
Edit to display the External Area dialog box, see External Area dialog box, page 68.

Area
The name of the external memory area.

Byte order

Identifies whether the byte order is the same as the byte order of the MCU or
different.

BUS width
The bus width of the area: 8, 16 or 32 bits.

No external memory areas are defined if the Register setting is Single-chip mode.

C-SPY® Debugging Guide
64 for RX

Getting started using C-SPY ___4

Allow clock source change when writing internal flash

Allows the clock source to change while internal flash memory is being rewritten in the
emulator.

Work RAM start address

Specify the start address of the working RAM area for the debugger. The specified
amount of bytes, beginning with the start address you specify, is used by the emulator
firmware. The debugger uses the memory area when programming the on-chip flash
memory, so the working RAM must be within the on-chip RAM area.

Your application can also use this area (because memory data in this area will be saved
on the host computer and then restored), but do not specify any address in this area as
the origin or destination of a transfer by the DMA or DTC.

Erase flash ROM before download

Erases the (internal) flash ROM before your application is downloaded. If this option is
deselected, the flash ROM memory will not be erased by the downloading process. This
means that any addresses that are not overwritten by the downloaded image will keep

their previous contents.

Note: If multiple images are downloaded, you must deselect this option.

Erase data flash ROM before download

Erases the (internal) data flash ROM before your application is downloaded. If this
option is deselected, the data flash ROM memory will not be erased by the downloading
process. This means that any addresses that are not overwritten by the downloaded
image will keep their previous contents.

Communication

Controls the communication between the emulator and the host computer. Choose
between:

JTAG clock
Selects the JTAG interface. Choose a communication clock frequency.

FINE baud rate

Selects the FINE single wire debug interface. Choose a communication speed in
bits/second.

Note that this option is not available for all devices or all hardware debuggers.

Debug the program re-writing the PROGRAM ROM
Debugs the program which writes to the program ROM (flash memory).

65

Reference information on starting C-SPY

Debug the program re-writing the DATA FLASH

Debugs the program which writes to the data flash memory.

Emulator mode
Controls how the hardware debugger can be used.
Trace

Makes the trace functionality of the C-SPY driver available, see Collecting and
using trace data, page 190.

Power target from the emulator
Select this option and the correct voltage if you are supplying the target board with
power from the hardware debugger, and not from an external power supply.

If you select this option but connect an external power supply to the target board, the
external power supply will be used instead and these settings will be ignored.

Note: This option is not available for all devices or all hardware debuggers.

Hardware Setup dialog box: External Memory

The Hardware Setup dialog box for the hardware debuggers is available from the
C-SPY driver menu. Before C-SPY is started for the first time in a new project, and

C-SPY® Debugging Guide
66 for RX

Getting started using C-SPY ___4

when you change devices, you can specify how your application will be downloaded to
the external flash memory.

Hardware Setup, device: RSFSTIMG (RX7LMGR\RSFS7LMG.MCU) (=23

MCU | External Memary

External flash definition file

]

Address range: [] Erase extemnal flash FOM before download

External flash definition file

]

Address range: [] Erase extemnal flash FOM before download

External flash definition file

]

Address range: [] Erase extemnal flash FOM before download

External flash definition file

]

Address range: [Erase external flash ROM before download

o) (o]

Use the External Memory options page to specify how your application will be
downloaded to the external flash memory.

Using these options, you can download the main output file of your project or the
additional debug images specified on the Project>Options>Debugger>Images page to
flash memory connected to an external bus.

Requirements
A C-SPY hardware debugger driver.

External flash definition file

Specify an external flash definition file (USD file) by typing the absolute path to the file
or by using the browse button to navigate to the file. Up to four USD files can be
registered.

67

Reference information on starting C-SPY

68

Address range

For more information about USD files, see the External Flash Definition Editor
documentation on www.renesas.com.

The address range of the download defined in the specified USD file.

Erase external flash ROM before download

Erases the external flash ROM before your application is downloaded. If this option is
left deselected, the flash ROM memory will not be erased by the downloading process.
This means that any addresses that are not overwritten by the downloaded image will
keep their previous contents.

Related information

For related information, see Downloading files to external flash memory, page 51.

External Area dialog box

Requirements

Byte order

Bus width

C-SPY® Debugging Guide
for RX

The External Area dialog box is available from the Hardware Setup dialog box.

External Area

Byte order:
Same byte order az the MCU w
Bus width:
g bit v

[Ok] [Cancel]

Use this dialog box to edit a defined external memory area, see Hardware Setup dialog
box: MCU, page 63.

A C-SPY hardware debugger driver.

Controls the byte order of the memory area. Choose between:

e Same byte order as the MCU
o Different byte order from the MCU.

The bus width of the area. Choose between:

o 8 bit

Getting started using C-SPY ___4

e 16 bit
e 32 bit.

69

Reference information on starting C-SPY

C-SPY® Debugging Guide
70 for RX

Executing your application

e Introduction to application execution

e Reference information on application execution

Introduction to application execution

These topics are covered:

Briefly about application execution
Source and disassembly mode debugging
Single stepping

Troubleshooting slow stepping speed
Running the application

Highlighting

Viewing the call stack

Terminal input and output

Debug logging

BRIEFLY ABOUT APPLICATION EXECUTION

C-SPY allows you to monitor and control the execution of your application. By
single-stepping through it, and setting breakpoints, you can examine details about the
application execution, for example the values of variables and registers. You can also use
the call stack to step back and forth in the function call chain.

The terminal I/O and debug log features let you interact with your application.

You can find commands for execution on the Debug menu and on the toolbar.

SOURCE AND DISASSEMBLY MODE DEBUGGING

C-SPY allows you to switch between source mode and disassembly mode debugging as
needed.

Source debugging provides the fastest and easiest way of developing your application,
without having to worry about how the compiler or assembler has implemented the
code. In the editor windows you can execute the application one statement at a time
while monitoring the values of variables and data structures.

71

Introduction to application execution

72

C-SPY® Debugging Guide
for RX

Disassembly mode debugging lets you focus on the critical sections of your application,
and provides you with precise control of the application code. You can open a
disassembly window which displays a mnemonic assembler listing of your application
based on actual memory contents rather than source code, and lets you execute the
application exactly one machine instruction at a time.

Regardless of which mode you are debugging in, you can display registers and memory,
and change their contents.

SINGLE STEPPING

C-SPY allows more stepping precision than most other debuggers because it is not
line-oriented but statement-oriented. The compiler generates detailed stepping
information in the form of step points at each statement, and at each function call. That
is, source code locations where you might consider whether to execute a step into or a
step over command. Because the step points are located not only at each statement but
also at each function call, the step functionality allows a finer granularity than just
stepping on statements.

There are several factors that can slow down the stepping speed. If you find it too slow,
see Troubleshooting slow stepping speed, page 74 for some tips.

The step commands

There are four step commands:

Step Into

°
e Step Over
o Next Statement
°

Step Out

Using the Autostep settings dialog box, you can automate the single stepping. For more
information, see Autostep settings dialog box, page 93.

If your application contains an exception that is caught outside the code which would
normally be executed as part of a step, C-SPY terminates the step at the catch
statement.

Executing your application ___4

Consider this example and assume that the previous step has taken you to the £ (i)
function call (highlighted):

extern int g(int);

int f(int n)

{

value = g(n-1) + g(n-2) + g(n-3);
return value;

}
int main()

{

£(i);
value ++;

Step Into

While stepping, you typically consider whether to step into a function and continue
stepping inside the function or subroutine. The Step Into command takes you to the first
step point within the subroutine g (n-1):

extern int g(int);

int f(int n)

{

value = g(n-1) + g(n-2) + g(n-3);
return value;

}

The Step Into command executes to the next step point in the normal flow of control,
regardless of whether it is in the same or another function.

Step Over

The Step Over command executes to the next step point in the same function, without
stopping inside called functions. The command would take you to the g (n-2) function
call, which is not a statement on its own but part of the same statement as g (n-1) . Thus,
you can skip uninteresting calls which are parts of statements and instead focus on
critical parts:

extern int g(int);

int f(int n)

{

value = g(n-1) + g(n-2) + g(n-3);
return value;

}

73

Introduction to application execution

74

C-SPY® Debugging Guide
for RX

Next Statement

The Next Statement command executes directly to the next statement, in this case
return value, allowing faster stepping:

extern int g(int);

int f(int n)

{

value = g(n-1) + g(n-2) + g(n-3);
return value;

}

Step Out

When inside the function, you can—if you wish—use the Step Out command to step
out of it before it reaches the exit. This will take you directly to the statement
immediately after the function call:

extern int g(int);

int f(int n)

{

value = g(n-1) + g(n-2) g(n-3);
return value;

}
int main()

{

£(1i);
value ++;

}

The possibility of stepping into an individual function that is part of a more complex
statement is particularly useful when you use C code containing many nested function
calls. It is also very useful for C++, which tends to have many implicit function calls,
such as constructors, destructors, assignment operators, and other user-defined
operators.

This detailed stepping can in some circumstances be either invaluable or unnecessarily
slow. For this reason, you can also step only on statements, which means faster stepping.

TROUBLESHOOTING SLOW STEPPING SPEED

If you find that stepping speed is slow, these troubleshooting tips might speed up

stepping:

e If you are using a hardware debugger system, keep track of how many hardware
breakpoints that are used and make sure some of them are left for stepping.

Executing your application __¢

Stepping in C-SPY is normally performed using breakpoints. When C-SPY performs
a step command, a breakpoint is set on the next statement and the application
executes until it reaches this breakpoint. If you are using a hardware debugger
system, the number of hardware breakpoints—typically used for setting a stepping
breakpoint in code that is located in flash/ROM memory—is limited. If you, for
example, step into a C switch statement, breakpoints are set on each branch; this
might consume several hardware breakpoints. If the number of available hardware
breakpoints is exceeded, C-SPY switches into single stepping on assembly level,
which can be very slow.

For more information, see Breakpoints in the C-SPY hardware debugger drivers,
page 127 and Breakpoint consumers, page 127.

e Disable trace data collection, using the Enable/Disable button in both the Trace
and the Function Profiling windows. Trace data collection might slow down
stepping because the collected trace data is processed after each step. Note that it is
not sufficient to just close the corresponding windows to disable trace data
collection.

o Choose to view only a limited selection of SFR registers. You can choose between
two alternatives. Either type # SFR_name (where SFR_name reflects the name of the
SFR you want to monitor) in the Watch window, or create your own filter for
displaying a limited group of SFRs in the Registers window. Displaying many SFR
registers might slow down stepping because all registers must be read from the
hardware after each step. See Defining application-specific register groups, page
154.

o Close the Memory and Symbolic Memory windows if they are open, because the
visible memory must be read after each step and that might slow down stepping.

o Close any window that displays expressions such as Watch, Live Watch, Locals,
Statics if it is open, because all these windows read memory after each step and that
might slow down stepping.

o Close the Stack window if it is open. Choose Tools>Options>Stack and disable the
Enable graphical stack display and stack usage tracking option if it is enabled.

e If possible, increase the communication speed between C-SPY and the target
board/emulator.

RUNNING THE APPLICATION

Go

The Go command continues execution from the current position until a breakpoint or
program exit is reached.

75

Introduction to application execution

76

C-SPY® Debugging Guide
for RX

Run to Cursor

The Run to Cursor command executes to the position in the source code where you
have placed the cursor. The Run to Cursor command also works in the Disassembly
window and in the Call Stack window.

HIGHLIGHTING

At each stop, C-SPY highlights the corresponding C or C++ source or instruction with
a green color, in the editor and the Disassembly window respectively. In addition, a
green arrow appears in the editor window when you step on C or C++ source level, and
in the Disassembly window when you step on disassembly level. This is determined by
which of the windows is the active window. If none of the windows are active, it is
determined by which of the windows was last active.

Tutor.c I!EEE

void init_fib{ void |

i

int i = 45;
o root[0] = root[l] = 1;

for { i=2 ; i<MAX _FIE : i++)
{

For simple statements without function calls, the whole statement is typically
highlighted. When stopping at a statement with function calls, C-SPY highlights the first
call because this illustrates more clearly what Step Into and Step Over would mean at
that time.

Occasionally, you will notice that a statement in the source window is highlighted using
a pale variant of the normal highlight color. This happens when the program counter is
at an assembler instruction which is part of a source statement but not exactly at a step
point. This is often the case when stepping in the Disassembly window. Only when the
program counter is at the first instruction of the source statement, the ordinary highlight
color is used.

Code coverage

From the context menu in the Code Coverage window, you can toggle highlight colors
and icons in the editor window that show code coverage analysis for the source code,
see Code Coverage window, page 265.

These are the colors and icons that are used:
o Red highlight color and a red diamond—the code range has not been executed.

o Green highlight color—100% of the code range has been executed.

o Yellow highlight color and a red diamond—parts of the code range have been
executed.

Executing your application __¢

This figure illustrates all three code coverage highlight colors:
callCount = 0;

InitFib():
L while (callCount < MRX FIE)

=

DoForegroundProcess () ;

VIEWING THE CALL STACK

The compiler generates extensive call frame information. This allows C-SPY to show,
without any runtime penalty, the complete function call chain at any time.

Typically, this is useful for two purposes:

e Determining in what context the current function has been called

o Tracing the origin of incorrect values in variables and in parameters, thus locating
the function in the call chain where the problem occurred.

The Call Stack window shows a list of function calls, with the current function at the
top. When you inspect a function in the call chain, the contents of all affected windows
are updated to display the state of that particular call frame. This includes the editor,
Locals, Register, Watch, and Disassembly windows. A function would normally not
make use of all registers, so these registers might have undefined states and be displayed
as dashes (---).

In the editor and Disassembly windows, a green highlight indicates the topmost, or
current, call frame; a yellow highlight is used when inspecting other frames.

For your convenience, it is possible to select a function in the call stack and click the
Run to Cursor command to execute to that function.

Assembler source code does not automatically contain any call frame information. To
see the call chain also for your assembler modules, you can add the appropriate CFI
assembler directives to the assembler source code. For more information, see the /4R
Assembler Reference Guide for RX.

Note: For highly optimized code, C-SPY might not be able to identify all calls. This
means that for highly optimized code, the call stack is not entirely trustworthy.

TERMINAL INPUT AND OUTPUT

Sometimes you might have to debug constructions in your application that use stdin
and stdout without an actual hardware device for input and output. The Terminal I/O

77

Reference information on application execution

window lets you enter input to your application, and display output from it. You can also
direct terminal I/O to a file, using the Terminal I/O Log Files dialog box.

This facility is useful in two different contexts:
F o If your application uses stdin and stdout
e For producing debug trace printouts

For more information, see Terminal 1/O window, page 86 and Terminal I/O Log File
dialog box, page 87.

DEBUG LOGGING

The Debug Log window displays debugger output, such as diagnostic messages,
macro-generated output, and information about trace.

It can sometimes be convenient to log the information to a file where you can easily
5 inspectit, see Debug Log window, page 88. The two main advantages are:

o The file can be opened in another tool, for instance an editor, so you can navigate
and search within the file for particularly interesting parts.

e The file provides history about how you have controlled the execution, for instance,
which breakpoints that have been triggered etc.

Reference information on application execution
Reference information about:

Disassembly window, page 79

Call Stack window, page 84

Terminal 1/0 window, page 86

Terminal 1/0 Log File dialog box, page 87
Debug Log window, page 88

Report Assert dialog box, page 89

Start/Stop Function Settings dialog box, page 90
Select Label dialog box, page 92

Autostep settings dialog box, page 93

1D Code Verification dialog box, page 93.

Cores window, page 94

See also Terminal I/O options in the IDE Project Management and Building Guide for
RX.

C-SPY® Debugging Guide
78 for RX

Executing your application __¢

Disassembly window
The C-SPY Disassembly window is available from the View menu.

[Go to memory address] [Select zone to display] I Toggle embedded source code

Disassemhly\ /// v O X

Gow v (Memoy ~J[B)

Disassembly J~
& 001EA o7 RET |—|
NextCounter() ;
D DoForegroundProcess:
Code coverage ’7-‘ O0LEE FDE701 CALL N:NextCounter
 informarion fib = GetFib(callCount) ;
& 0O01EE AFOOEF MOV A¥, N:callCount
& 001F1 FD4502 CALL N:UFOSTR
PutFila{ fily) ;
& 001F4 EDS002 ER N:UF1CTLO
callCount = 0O;
main:
_ & 001F7 Fi5 CLEW AKX
[Current position]7*_
—_— InitFila() ;
& 001FE FDOEODZ2 CALL N:TCR27
& 001FE EFO03 ER 5:5+0x05
_— DoForegroundProcess() ;
[Breakpeint }7'.
- while (callCount = MAX FIE)
& 00203 AFOOEF MOV A¥, N:callCount
& 00206 TCR0 XOR A, #0x80 5

This window shows the application being debugged as disassembled application code.

To change the default color of the source code in the Disassembly window:
I Choose Tools>Options>Debugger.
2 Set the default color using the Source code color in disassembly window option.

To view the corresponding assembler code for a function, you can select it in the editor
5 window and drag it to the Disassembly window.

See also Source and disassembly mode debugging, page 71.

Requirements

Can be used with all C-SPY debugger drivers and debug probes.

79

Reference information on application execution

Toolbar

The toolbar contains:

Go to
The memory location or symbol you want to view.

Zone
Selects a memory zone, see C-SPY memory zones, page 153.

Toggle Mixed-Mode

Toggles between displaying only disassembled code or disassembled code
together with the corresponding source code. Source code requires that the
corresponding source file has been compiled with debug information.

Display area

The display area shows the disassembled application code. This area contains these
graphic elements:

Green highlight color Indicates the current position, that is the next assembler
instruction to be executed. To move the cursor to any line
in the Disassembly window, click the line. Alternatively,
move the cursor using the navigation keys.

Yellow highlight color Indicates a position other than the current position, such
as when navigating between frames in the Call Stack
window or between items in the Trace window.

Red dot Indicates a breakpoint. Double-click in the gray left-side
margin of the window to set a breakpoint. For more
information, see Breakpoints, page 123.

Green diamond Code coverage icon—indicates code that has been
executed.

Red diamond Code coverage icon—indicates code that has not been
executed.

Red/yellow diamond (red Code coverage icon—indicates a branch that is never
top/yellow bottom) taken.

Red/yellow diamond (red left Code coverage icon—indicates a branch that is always
side/yellow right side) taken.

If instruction profiling has been enabled from the context menu, an extra column in the
left-side margin appears with information about how many times each instruction has
been executed.

C-SPY® Debugging Guide
80 for RX

Executing your application __¢

Context menu

This context menu is available:
Move to PC

Run to Cursor

Code Coverage

Instruction Profiling

Toggle Breakpoint (Code)
Toggle Breakpoint (Log)
Toggle Breakpoint (Trace Start)
Toggle Breakpoint (Trace Stop)
Enable/Disable Breakpoint
Edit Breakpoint...

Set Mext Statement

Copy Window Contents
Mixed-Mode

Find in Trace
Zone

Note: The contents of this menu are dynamic, which means that the commands on the
menu depend on the C-SPY driver.

These commands are available:

Move to PC

Displays code at the current program counter location.

Run to Cursor

Executes the application from the current position up to the line containing the
Cursor.

Code Coverage

Displays a submenu that provides commands for controlling code coverage.
This command is only enabled if the driver you are using supports it.

Enable Toggles code coverage on or off.

Show Toggles the display of code coverage on or off. Code
coverage is indicated by a red, green, and red/yellow
diamonds in the left margin.

Clear Clears all code coverage information.

81

Reference information on application execution

82

C-SPY® Debugging Guide
for RX

Next Different Moves the insertion point to the next line in the
Coverage > window with a different code coverage status than
the selected line.

Previous Different Moves the insertion point to the closest preceding
Coverage < line in the window with a different code coverage
status than the selected line.

Instruction Profiling

Displays a submenu that provides commands for controlling instruction
profiling. This command is only enabled if the driver you are using supports it.

Enable Toggles instruction profiling on or off.

Show Toggles the display of instruction profiling on or off.
For each instruction, the left-side margin displays
how many times the instruction has been executed.

Clear Clears all instruction profiling information.

Toggle Breakpoint (Code)
Toggles a code breakpoint. Assembler instructions and any corresponding label
at which code breakpoints have been set are highlighted in red. For more
information, see Code breakpoints dialog box, page 137.

Toggle Breakpoint (Hardware Code)

Toggles a hardware code breakpoint. Assembler instructions and any
corresponding label at which hardware code breakpoints have been set are
highlighted in red. Note that this menu command is only available for C-SPY
hardware debugger drivers. For more information, see Hardware Code
Breakpoint dialog box, page 138.

Toggle Breakpoint (Software Code)

Toggles a software code breakpoint. Assembler instructions and any
corresponding label at which software code breakpoints have been set are
highlighted in red. Note that this menu command is only available for C-SPY
hardware debugger drivers. See Software Code Breakpoint dialog box, page
140.

Toggle Breakpoint (Performance Start)

Toggles a Performance Start breakpoint. If the breakpoint has been selected in
the Performance Analysis Setup dialog box, the performance analysis starts
when this breakpoint is triggered. Note that this menu command is only
available if the C-SPY driver you are using supports performance analysis. See
Performance Start breakpoints dialog box, page 261.

Executing your application __¢

Toggle Breakpoint (Performance Stop)

Toggles a Performance Stop breakpoint. If the breakpoint has been selected in
the Performance Analysis Setup dialog box, the performance analysis stops
when this breakpoint is triggered. Note that this menu command is only
available if the C-SPY driver you are using supports performance analysis. See
Performance Stop breakpoints dialog box, page 262.

Toggle Breakpoint (Log)
Toggles alog breakpoint for trace printouts. Assembler instructions at which log
breakpoints have been set are highlighted in red. For more information, see Log
breakpoints dialog box, page 141.

Toggle Breakpoint (Trace Start)
Toggles a Trace Start breakpoint. When the breakpoint is triggered, the trace
data collection starts. Note that this menu command is only available if the
C-SPY driver you are using supports trace. For more information, see Trace
Start Trigger breakpoint dialog box, page 205.

Toggle Breakpoint (Trace Stop)
Toggles a Trace Stop breakpoint. When the breakpoint is triggered, the trace
data collection stops. Note that this menu command is only available if the
C-SPY driver you are using supports trace. For more information, see Trace
Stop Trigger breakpoint dialog box, page 206.

Enable/Disable Breakpoint
Enables and Disables a breakpoint. If there is more than one breakpoint at a
specific line, all those breakpoints are affected by the Enable/Disable
command.

Edit Breakpoint
Displays the breakpoint dialog box to let you edit the currently selected
breakpoint. If there is more than one breakpoint on the selected line, a submenu
is displayed that lists all available breakpoints on that line.

Set Next Statement
Sets the program counter to the address of the instruction at the insertion point.

Copy Window Contents
Copies the selected contents of the Disassembly window to the clipboard.

Mixed-Mode

Toggles between showing only disassembled code or disassembled code
together with the corresponding source code. Source code requires that the
corresponding source file has been compiled with debug information.

83

Reference information on application execution

84

Call Stack window

Requirements

C-SPY® Debugging Guide
for RX

Find in Trace
Searches the contents of the Trace window for occurrences of the given
location—the position of the insertion point in the source code—and reports the
result in the Find in Trace window. This menu command requires support for
Trace in the C-SPY driver you are using, see Differences between the C-SPY
drivers, page 39.

Zone

Selects a memory zone, see C-SPY memory zones, page 153.

The Call Stack window is available from the View menu.

Call Stack * o X

T Fibonacci::next()
2 main

Destination for Step ‘

[_call_main + 0x9]

Jump te main from label
plus offset

This window displays the C function call stack with the current function at the top. To
inspect a function call, double-click it. C-SPY now focuses on that call frame instead.

If the next Step Into command would step to a function call, the name of the function is
displayed in the gray bar at the top of the window. This is especially useful for implicit
function calls, such as C++ constructors, destructors, and operators.

See also Viewing the call stack, page 77.

Can be used with all C-SPY debugger drivers and debug probes.

Executing your application __¢

Display area

Each entry in the display area is formatted in one of these ways:

function(values) *** A C/C++ function with debug information.

Provided that Show Arguments is enabled, values
is a list of the current values of the parameters, or
empty if the function does not take any parameters.

**x_if present, indicates that the function has been
inlined by the compiler. For information about
function inlining, see the AR C/C++ Development
Guide for RX.

[label + offset] An assembler function, or a C/C++ function without
debug information.

<exception_frame> An interrupt.

Context menu

This context menu is available:
Go to Source
Show Arguments
Run to Cursor
Copy Window Contents
Toggle Breakpoint (Code)
Toggle Breakpoint (Log)
Toggle Breakpoint (Trace Start)
Toggle Breakpoint (Trace Stop)
Enable/Disable Breakpoint

These commands are available:

Go to Source
Displays the selected function in the Disassembly or editor windows.

Show Arguments
Shows function arguments.

Run to Cursor
Executes until return to the function selected in the call stack.

Copy Window Contents
Copies the contents of the Call Stack window and stores them on the clipboard.

85

Reference information on application execution

86

Terminal 1/0O window

C-SPY® Debugging Guide
for RX

Toggle Breakpoint (Code)
Toggles a code breakpoint.

Toggle Breakpoint (Log)
Toggles a log breakpoint.

Toggle Breakpoint (Trace Start)
Toggles a Trace Start breakpoint. When the breakpoint is triggered, trace data
collection starts. Note that this menu command is only available if the C-SPY
driver you are using supports it.

Toggle Breakpoint (Trace Stop)

Toggles a Trace Stop breakpoint. When the breakpoint is triggered, trace data
collection stops. Note that this menu command is only available if the C-SPY
driver you are using supports it.

Enable/Disable Breakpoint
Enables or disables the selected breakpoint.

The Terminal I/O window is available from the View menu.

Terminal /O *
Output: Loq file: Off
A Fibonacci object was created.

A Fibonacci object that starts at Fil
1

1 13

2

3 21

5

8 34

13

21 55

34

55 89)l
Fl 10 2
Input: Chl codes || Options...

Buffer size: 1]

Use this window to enter input to your application, and display output from it.
To use this window, you must:
Link your application with the option Include C-SPY debugging support.

C-SPY will then direct stdin, stdout and stderr to this window. If the Terminal I/O
window is closed, C-SPY will open it automatically when input is required, but not for
output.

Executing your application __¢

See also Terminal input and output, page 77.

Requirements

Can be used with all C-SPY debugger drivers and debug probes.

Input
Type the text that you want to input to your application.
Ctrl codes
Opens a menu for input of special characters, such as EOF (end of file) and NUL.
0:x00-0x0f »
O:x10-0:x1F »
ECF
Options

Opens the IDE Options dialog box where you can set options for terminal I/O. For
information about the options available in this dialog box, see Terminal 1/0 options in
IDE Project Management and Building Guide for RX.

Terminal I/O Log File dialog box

The Terminal I/0O Log File dialog box is available by choosing Debug>Logging>Set
Terminal I/O Log File.

Terminal I/0 Log File

Termninal 140 Log File

™ Enable Teminal 10 log file

| il

Use this dialog box to select a destination log file for terminal I/O from C-SPY.

See also Terminal input and output, page 77.

Requirements

Can be used with all C-SPY debugger drivers and debug probes.

Terminal I/O Log File

Controls the logging of terminal I/O. To enable logging of terminal I/O to a file, select
Enable Terminal 1/O log file and specify a filename. The default filename extension is
log. A browse button is available for your convenience.

87

Reference information on application execution

Debug Log window
The Debug Log window is available by choosing View>Messages>Debug Log.

Debug Log v 0 X

Log
Mon Jun 19, 2017 13:21:16: Loaded module
ton Jun 19, 2017 13:21:16: Target reset

Fl nm 3

This window displays debugger output, such as diagnostic messages, macro-generated
output, and information about trace. When opened, this window is, by default, grouped
together with the other message windows, see IDE Project Management and Building
Guide for RX.

Double-click any rows in one of the following formats to display the corresponding
source code in the editor window:

<path> (<row>) :<message>
<path> (<row>,<column>) :<message>

See also Debug logging, page 78.

Requirements

Can be used with all C-SPY debugger drivers and debug probes.

Context menu

This context menu is available:
Filter Level:
~ Al
Messages
Warnings

Errors

Copy
Select All

Clear All

Live Log to File >

These commands are available:

All
Shows all messages sent by the debugging tools and drivers.

C-SPY® Debugging Guide
88 for RX

Executing your application __¢

Messages

Shows all C-SPY messages.
Warnings

Shows warnings and errors.

Errors
Shows errors only.

Copy
Copies the contents of the window.

Select All
Selects the contents of the window.

Clear All
Clears the contents of the window.

Live Log to File

Displays a submenu with commands for writing the debug messages to a log file
and setting filter levels for the log.

Report Assert dialog box

Abort

Debug

The Report Assert dialog box appears if you have a call to the assert function in your
application source code, and the assert condition is false. In this dialog box you can
choose how to proceed.

Report Assert Pz|

The following Failed:

File: C:\Documents and SettingsiMy DocumentsiIAR Embedded Workbenchiresolve.cpp
Line: 35

Expression Failed:

Abort | Debug |

The application stops executing and the runtime library function abort, which is part
of your application on the target system, will be called. This means that the application
itself terminates its execution.

C-SPY stops the execution of the application and returns control to you.

89

Reference information on application execution

90

Ignore

The assertion is ignored and the application continues to execute.

Start/Stop Function Settings dialog box

Requirements

The Start/Stop Function Settings dialog box is available from the C-SPY Driver menu.

Start/Stop Function Settings &J
[~ Enable start routine.
Start routine location:
-
[~ Enable stop routine.
Stop routine location:
&
I oK I I Cancel I

Use this dialog box to configure the emulator to execute specific routines of your
application immediately before the execution starts and/or after it halts. This is useful if
you want to control your system in synchronization with starting and stopping the
execution of your application.

One of these alternatives:

o The C-SPY E1/E20 driver
o The C-SPY E2/E2 Lite/EZ-CUBE2 driver.

Restrictions on using start/stop routines

C-SPY® Debugging Guide
for RX

Some restrictions apply:

o When the start/stop feature is enabled you cannot:

e let your application use the RAM area 0x0-0x22F. For example, change the
start address for RAM_regionl6, RAM_region24, and RAM_region32 from
0x4 to 0x230 in the linker configuration file.

e set memory or download into the program area of a start/stop routine
e set breakpoints in the program area of a start/stop routine.

o While either of the start/stop routines is running, the four bytes of memory indicated
by the interrupt stack pointer are in use by the emulator.

e In the start/stop routines, these restrictions apply to registers and flags:

Executing your application __¢

Register and flag names Restrictions

ISP register When execution of a start/stop routine is ended, the register must
be returned to its value at the time the routine started.

Flag U While a specified start/stop is running, switching to user mode is
prohibited.

Flag T No interrupts are allowed during execution of a start/stop routine.

Flag PM While a start/stop routine is running, switching to user mode is
prohibited.

Table 4: Restrictions on registers and flags

o When either of the start/stop routines is running, the following does not work:
o Trace
o Breaks in execution in the start/stop routines

o Performance measurement. The start/stop routines are not within the scope of
performance measurement.

o Events. Event settings are invalid within the start/stop routines.
o While either of the start/stop routines is running, non-maskable interrupts are
always disabled.

This table shows which state the MCU will be in when your application starts running
after executing a start routine:

MCU resource Status

MCU general purpose These registers are in the same state as when your application last

registers stopped, or in states determined by the settings in the Registers
window. Changes made by the start routine to the contents of registers
are not reflected.

Memory in the MCU Accesses to memory after the start routine has finished executing are

space reflected.
MCU peripheral The operation of the MCU’s peripheral functions is continued after the
functions start routine has finished executing.

Table 5: MCU status when the user application starts executing

Enable start routine

Enables the execution of a routine immediately before your application starts executing.

Start routine location

Specifies the routine to be executed immediately before your application starts
executing. Type a label or an address, or click the browse button to open the Select
Label dialog box; see Select Label dialog box, page 92.

91

Reference information on application execution

Enable stop routine

Enables the execution of a routine immediately after your application stops executing.

Stop routine location

Specifies the routine to be executed immediately after your application stops executing.
Type a label or an address, or click the browse button to open the Select Label dialog
box; see Select Label dialog box, page 92.

Select Label dialog box
The Select Label dialog box is available from the Start/Stop Function Settings dialog

box.

Select Label ==
Label Address i
main OxFFEB39C0
next_pos 0x10
Region$sTable$sBase OxFFE83B1C
Region$$Table SSLimit OxFFE83B5C
STACKSSSBase 0x314
STACKSSSLimit Ox514
StartADC 0xFFE8364C
StartTimer 0xFFE83671
Statics_Test 0xFFE&3946
SW1_debounce OxFFE831AF
SW1_handler OxFFE8327F
SW2_debounce OxFFEB31A2
SW2_handler OxFFES321E
SW3_debounce OxFFE83195
SW3_handler 0xFFE831BC
TimerADC OxFFES36AC
TimerADC_callback OxFFE&3605
TMR_Callback OxFFES37AT7
Togglel EDs OxFFE8374C
ucReplace OxFFE20000
ucstr Ox4

[oK i [Cancel]

Select the routine you want to be executed and click OK.

Requirements
One of these alternatives:

o The C-SPY E1/E20 driver
e The C-SPY E2/E2 Lite/EZ-CUBE2 driver.

C-SPY® Debugging Guide
92 for RX

Executing your application __¢

Autostep settings dialog box
The Autostep settings dialog box is available by choosing Debug>Autostep.

Autostep settings @

I Step Into [Source level] hd I [Start]

Delay [milliseconds): 1000 Cancel

Use this dialog box to configure autostepping.

Select the step command you want to automate from the drop-down menu. The step will
be performed with the specified interval. For a description of the available step
commands, see Single stepping, page 72. You can stop the autostepping by clicking the
Break button on the debug toolbar.

Requirements

Can be used with all C-SPY debugger drivers and debug probes.

Delay (milliseconds)

The delay between each step command in milliseconds. The step is repeated with this
interval.

ID Code Verification dialog box

The ID Code Verification dialog box is displayed if the ID code programmed in the
target MCU differs from the ID code in the application that is being downloaded.

ID Code Verification =

Enter ID Code [32 hexadecimal digits):

[(0] 3] I Cancel I

If this dialog box is displayed, verify that you have the right to debug or download your
application to the target board.

Enter ID Code
Specify the ID code of the target MCU, a sequence of 32 hexadecimal digits.

93

Reference information on application execution

Cores window

Requirements

Display area

C-SPY® Debugging Guide
94 for RX

The Cores window is available from the View menu.
Cores w 0 X

Core Status PC Cycles
[E 0:Cored Stopped ORE0055F 74

This window displays information about the executing core, such as its execution state.
This information is primarily useful for IAR Embedded Workbench products that
support multicore debugging.

Can be used with all C-SPY debugger drivers and debug probes.

A row in this area shows information about a core, in these columns:
Execution state
Displays one of these icons to indicate the execution state of the core:
- in focus, not executing
not in focus, not executing
in focus, executing

in focus, unknown status

O
Cr not in focus, executing

not in focus, unknown status

Core
The name of the core.

Status
The status of the execution, which can be one of Stopped, Running, Sleeping,
or Unknown.

PC

The value of the program counter.

Executing your application __¢

Cycles | Time
The value of the cycle counter or the execution time since the start of the
execution, depending on the debugger driver you are using.

95

Reference information on application execution

C-SPY® Debugging Guide
96 for RX

Variables and expressions

o Introduction to working with variables and expressions
o Working with variables and expressions

e Reference information on working with variables and expressions

Introduction to working with variables and expressions

This section introduces different methods for looking at variables and introduces some
related concepts.

These topics are covered:

e Briefly about working with variables and expressions
o C-SPY expressions

e Limitations on variable information

BRIEFLY ABOUT WORKING WITH VARIABLES AND
EXPRESSIONS

There are several methods for looking at variables and calculating their values. These
methods are suitable for basic debugging:

e Tooltip watch—in the editor window—provides the simplest way of viewing the
value of a variable or more complex expressions. Just point at the variable with the
mouse pointer. The value is displayed next to the variable.

o The Auto window displays a useful selection of variables and expressions in, or
near, the current statement. The window is automatically updated when execution
stops.

o The Locals window displays the local variables, that is, auto variables and function
parameters for the active function. The window is automatically updated when
execution stops.

o The Watch window allows you to monitor the values of C-SPY expressions and
variables. The window is automatically updated when execution stops.

o The Live Watch window repeatedly samples and displays the values of expressions
while your application is executing. Variables in the expressions must be statically
located, such as global variables.

o The Statics window displays the values of variables with static storage duration.
The window is automatically updated when execution stops.

97

Introduction to working with variables and expressions

o The Macro Quicklaunch window and the Quick Watch window give you precise
control over when to evaluate an expression.

e The Symbols window displays all symbols with a static location, that is, C/C++
functions, assembler labels, and variables with static storage duration, including
symbols from the runtime library.

These additional methods for looking at variables are suitable for more advanced
analysis:

o The Data Log window and the Data Log Summary window display logs of
accesses to up to four different memory locations you choose by setting data log
breakpoints. Data logging can help you locate frequently accessed data. You can
then consider whether you should place that data in more efficient memory.

o The Data Sample window displays samples for up to four different variables. You
can also display the data samples as graphs in the Sampled Graphs window. By
using data sampling, you will get an indication of the data value over a length of
time. Because it is a sampled value, data sampling is best suited for slow-changing
data.

For more information about these windows, see The application timeline, page 211.

C-SPY EXPRESSIONS

C-SPY expressions can include any type of C expression, except for calls to functions.
The following types of symbols can be used in expressions:

C/C++ symbols
Assembler symbols (register names and assembler labels)

°
°
o C-SPY macro functions
°

C-SPY macro variables

Expressions that are built with these types of symbols are called C-SPY expressions and
there are several methods for monitoring these in C-SPY. Examples of valid C-SPY
expressions are:

i+ 3

i = 42

myVar = cVar

cVar = myVar + 2

#asm_label

#R2

#PC
my_macro_func(19)

If you have a static variable with the same name declared in several different functions,
use the notation function: :variable to specify which variable to monitor.

C-SPY® Debugging Guide
98 for RX

Variables and expressions °

C/C++ symbols

C symbols are symbols that you have defined in the C source code of your application,
for instance variables, constants, and functions (functions can be used as symbols but
cannot be executed). C symbols can be referenced by their names. Note that C++
symbols might implicitly contain function calls which are not allowed in C-SPY
symbols and expressions.

Note: Some attributes available in C/C++, like volatile, are not fully supported by
C-SPY. For example, this line will not be accepted by C-SPY:

sizeof (unsigned char volatile __memattr *)
However, this line will be accepted:

sizeof (unsigned char __memattr *)

Assembler symbols

Assembler symbols can be assembler labels or registers, for example the program
counter, the stack pointer, or other CPU registers. If a device description file is used, all
memory-mapped peripheral units, such as I/O ports, can also be used as assembler
symbols in the same way as the CPU registers. See Modifying a device description file,
page 53.

Assembler symbols can be used in C-SPY expressions if they are prefixed by #.

Example What it does
#PC++ Increments the value of the program counter.
myVar = #SP Assigns the current value of the stack pointer register to your

C-SPY variable.
myVar = #label Sets myVar to the value of an integer at the address of 1abel.

myptr = &#label? Sets myptr to an int * pointer pointing at label7.

Table 6: C-SPY assembler symbols expressions

In case of a name conflict between a hardware register and an assembler label, hardware
registers have a higher precedence. To refer to an assembler label in such a case, you
must enclose the label in back quotes * (ASCII character 0x60). For example:

Example What it does
#PC Refers to the program counter.
#1PC Refers to the assembler label PC.

Table 7: Handling name conflicts between hardware registers and assembler labels

Which processor-specific symbols are available by default can be seen in the Registers
window, using the CPU Registers register group. See Registers window, page 173.

929

Introduction to working with variables and expressions

100

C-SPY® Debugging Guide
for RX

C-SPY macro functions

Macro functions consist of C-SPY macro variable definitions and macro statements
which are executed when the macro is called.

For information about C-SPY macro functions and how to use them, see Briefly about
the macro language, page 356.

C-SPY macro variables

Macro variables are defined and allocated outside your application, and can be used in
a C-SPY expression. In case of a name conflict between a C symbol and a C-SPY macro
variable, the C-SPY macro variable will have a higher precedence than the C variable.
Assignments to a macro variable assign both its value and type.

For information about C-SPY macro variables and how to use them, see Reference
information on the macro language, page 362.

Using sizeof
According to standard C, there are two syntactical forms of sizeof:

sizeof (type)
sizeof expr

The former is for types and the latter for expressions.

Note: In C-SPY, do not use parentheses around an expression when you use the sizeof
operator. For example, use sizeof x+2 instead of sizeof (x+2).

LIMITATIONS ON VARIABLE INFORMATION

The value of a C variable is valid only on step points, that is, the first instruction of a
statement and on function calls. This is indicated in the editor window with a bright
green highlight color. In practice, the value of the variable is accessible and correct more
often than that.

When the program counter is inside a statement, but not at a step point, the statement or
part of the statement is highlighted with a pale variant of the ordinary highlight color.

Effects of optimizations

The compiler is free to optimize the application software as much as possible, as long
as the expected behavior remains. The optimization can affect the code so that
debugging might be more difficult because it will be less clear how the generated code
relates to the source code. Typically, using a high optimization level can affect the code
in a way that will not allow you to view a value of a variable as expected.

Variables and expressions °

Consider this example:

myFunction ()

{
int 1 = 42;

x = computer(i); /* Here, the value of i is known to C-SPY */

}

From the point where the variable i is declared until it is actually used, the compiler
does not need to waste stack or register space on it. The compiler can optimize the code,
which means that C-SPY will not be able to display the value until it is actually used. If
you try to view the value of a variable that is temporarily unavailable, C-SPY will
display the text:

Unavailable

If you need full information about values of variables during your debugging session,
you should use the lowest optimization level during compilation, that is, None.

Working with variables and expressions

These tasks are covered:

e Using the windows related to variables and expressions

o Viewing assembler variables

See also Analyzing your application’s timeline, page 213.

USING THE WINDOWS RELATED TO VARIABLES AND
EXPRESSIONS

Where applicable, you can add, modify, and remove expressions, and change the display
format in the windows related to variables and expressions.

To add a value you can also click in the dotted rectangle and type the expression you
want to examine. To modify the value of an expression, click the Value field and modify
its content. To remove an expression, select it and press the Delete key.

For text that is too wide to fit in a column—in any of these windows, except the Trace
g window—and thus is truncated, just point at the text with the mouse pointer and tooltip
information is displayed.

Right-click in any of the windows to access the context menu which contains additional
commands. Convenient drag-and-drop between windows is supported, except for in the

101

Working with variables and expressions

Locals window, data logging windows, and the Quick Watch window where it is not
relevant.

VIEWING ASSEMBLER VARIABLES

An assembler label does not convey any type information at all, which means C-SPY
cannot easily display data located at that label without getting extra information. To
view data conveniently, C-SPY by default treats all data located at assembler labels as
variables of type int. However, in the Watch, Live Watch, and Quick Watch
windows, you can select a different interpretation to better suit the declaration of the
variables.

In this figure, you can see four variables in the Watch window and their corresponding
declarations in the assembler source file to the left:

C-SPY® Debugging Guide

102 for RX

- f) + x Watch1
NHAME main — | Expression YWalue Location Type
= ssmvarl 42 0x=00000080 int
PUBLIC _ iar program start asmvar? 456 O=00000084 int
astrvard 55 O0=00000088 <8-bit unsigned>
SECTION .intwec : CODE (2)
CODES2 <clickto ... Default Format
__ilar program start EibanjEotnat
B main Octal Format
v Decimal Format
SECTION .text : CODE (2) Hexadecimal Format
Char Format
asmvarl: DC32 42
asmvar2: DC32 456 Show As b Asls
asmvar3: DC8 55 8-bit Signed
asmvard: DC8 10 Saveto File...
16-bit Signed
CopE32 16-bit Unsigned
& main NOE 32-bit Signed
B main 32-bit Unsigned
64-bit Signed
END 64-bit Unsigned
float
double

Note that asmvar4 is displayed as an int, although the original assembler declaration
probably intended for it to be a single byte quantity. From the context menu you can
make C-SPY display the variable as, for example, an 8-bit unsigned variable. This has
already been specified for the asmvar3 variable.

Variables and expressions °

Reference information on working with variables and expressions

Auto window

Requirements

Reference information about:

Auto window, page 103

Locals window, page 106
Watch window, page 108

Live Watch window, page 111
Statics window, page 113
Quick Watch window, page 116
Symbols window, page 119

Resolve Symbol Ambiguity dialog box, page 122

See also:

® Reference information on trace, page 192 for trace-related reference information

® Macro Quicklaunch window, page 412

The Auto window is available from the View menu.

Auto

Expression Yalue Location
+ MextCounter NextCounter (0x40EB)

filh 1 Memory : 0xFEFT74
+ GetFib GetFilb (0x141)

callCount & Memory : 0<FEFAS

Type
woid ...
uint3z2_t
uint32_t(..
signed int

This window displays a useful selection of variables and expressions in, or near, the
current statement. Every time execution in C-SPY stops, the values in the Auto window
are recalculated. Values that have changed since the last stop are highlighted in red.

See also Editing in C-SPY windows, page 50.

Can be used with all C-SPY debugger drivers and debug probes.

103

Reference information on working with variables and expressions

104

Display area

Context menu

C-SPY® Debugging Guide
for RX

This area contains these columns:

Expression
The name of the variable. The base name of the variable is followed by the full
name, which includes module, class, or function scope. This column is not
editable.

Value
The value of the variable. Values that have changed are highlighted in red.

Dragging text or a variable from another window and dropping it on the Value
column will assign a new value to the variable in that row.

This column is editable.
Location
The location in memory where this variable is stored.

Type
The data type of the variable.

This context menu is available:
Remove

Rermove All

Default Format
Binary Format

Octal Format
Decimal Format
Hexadecimal Format

Char Format
Show As ¥
Save to File...

+~ Right Align 'Value' Column

Options...

Note: The contents of this menu are dynamic and depend on which features that your
combination of software and hardware supports. However, the list of menu commands
below is complete and covers all possible commands.

Variables and expressions °

These commands are available:

Remove
Removes the selected expression from the window.

Remove All

Removes all expressions listed in the window.

Default Format

Binary Format

Octal Format

Decimal Format

Hexadecimal Format

Char Format
Changes the display format of expressions. The display format setting affects
different types of expressions in different ways. Your selection of display format
is saved between debug sessions. These commands are available if a selected
line in the window contains a variable.

The display format setting affects different types of expressions in these ways:

Variables The display setting affects only the selected variable, not
other variables.

Array elements The display setting affects the complete array, that is, the
same display format is used for each array element.

Structure fields All elements with the same definition—the same field
name and C declaration type—are affected by the
display setting.

Show As

Displays a submenu that provides commands for changing the default type
interpretation of variables. The commands on this submenu are mainly useful
for assembler variables—data at assembler labels—because these are, by
default, displayed as integers. For more information, see Viewing assembler
variables, page 102.

Save to File
Saves content to a file in a tab-separated format.

Right Align ‘Value’ Column
Right-aligns the contents of the Value column.

105

Reference information on working with variables and expressions

106

Locals window

Requirements

Display area

C-SPY® Debugging Guide
for RX

Options
Displays the IDE Options dialog box where you can set various options for
C-SPY windows.

The Locals window is available from the View menu.
Locals w 0 X

Yariable Value Location Type
i 1244 Memory : 0xFEF72 signed int

This window displays the local variables and parameters for the current function. Every
time execution in C-SPY stops, the values in the window are recalculated. Values that
have changed since the last stop are highlighted in red.

See also Editing in C-SPY windows, page 50.

Can be used with all C-SPY debugger drivers and debug probes.

This area contains these columns:

Variable

The name of the variable. The base name of the variable is followed by the full
name, which includes module, class, or function scope. This column is not
editable.

Value
The value of the variable. Values that have changed are highlighted in red.

Dragging text or a variable from another window and dropping it on the Value
column will assign a new value to the variable in that row.

This column is editable.

Location
The location in memory where this variable is stored.

Type
The data type of the variable.

Variables and expressions °

Context menu

This context menu is available:
Remove

Rermove All

Default Format
Binary Format

Octal Format
Decimal Format
Hexadecimal Format

Char Format
Show As ¥
Save to File...

+~ Right Align 'Value' Column

Options...

Note: The contents of this menu are dynamic and depend on which features that your
combination of software and hardware supports. However, the list of menu commands
below is complete and covers all possible commands.

These commands are available:

Remove
Removes the selected expression from the window.

Remove All
Removes all expressions listed in the window.

Default Format

Binary Format

Octal Format

Decimal Format

Hexadecimal Format

Char Format
Changes the display format of expressions. The display format setting affects
different types of expressions in different ways. Your selection of display format
is saved between debug sessions. These commands are available if a selected
line in the window contains a variable.

The display format setting affects different types of expressions in these ways:

Variables The display setting affects only the selected variable, not
other variables.

107

Reference information on working with variables and expressions

108

Watch window

C-SPY® Debugging Guide
for RX

Array elements The display setting affects the complete array, that is, the
same display format is used for each array element.

Structure fields All elements with the same definition—the same field
name and C declaration type—are affected by the
display setting.

Show As
Displays a submenu that provides commands for changing the default type
interpretation of variables. The commands on this submenu are mainly useful
for assembler variables—data at assembler labels—because these are, by
default, displayed as integers. For more information, see Viewing assembler
variables, page 102.

Save to File

Saves content to a file in a tab-separated format.

Right Align ‘Value’ Column
Right-aligns the contents of the Value column.
Options

Displays the IDE Options dialog box where you can set various options for
C-SPY windows.

The Watch window is available from the View menu.

Watch 1 * o X
Expression Yalue Location Type
callCount 2 v : OxFEFAR signed int
= Fib <array> OxFEF&0 uint3z2_t[10]
1]} 1 v : OXFEF20 uint3z2_t
M 1 v : OXFEF24 uint3z2_t
2] 2 v : OxFEF28 uint32_t
[3] 3 0xFEF8C uint32_t
[4 5 : OXFEFS0 uint32_t
[5] a v : OXFEF94 uint3z2_t
[5] 13 v : OxXFEF38 uint32_t
7 21 0xFEF2C uint32_t
[8] 34 0xFEFAD uint32_t
[9] 55 v : DXFEFA4 uint32_t

Use this window to monitor the values of C-SPY expressions or variables. You can open
up to four instances of this window, where you can view, add, modify, and remove
expressions. Tree structures of arrays, structs, and unions are expandable, which means
that you can study each item of these.

Requirements

Context menu

Variables and expressions °

Every time execution in C-SPY stops, the values in the Watch window are recalculated.
Values that have changed since the last stop are highlighted in red.

Be aware that expanding very large arrays can cause an out-of-memory crash. To avoid
this, expansion is automatically performed in steps of 5000 elements.

See also Editing in C-SPY windows, page 50.

Can be used with all C-SPY debugger drivers and debug probes.

This context menu is available:

Remove

Rermove All

Default Format
Binary Format

Octal Format
Decimal Format
Hexadecimal Format

Char Format
Show As
Save to File...
+~ Right Align 'Value' Column

Options...

Note: The contents of this menu are dynamic and depend on which features that your
combination of software and hardware supports. However, the list of menu commands

below is complete and covers all possible commands.

These commands are available:

Remove

Removes the selected expression from the window.

Remove All

Removes all expressions listed in the window.

109

Reference information on working with variables and expressions

Default Format

Binary Format

Octal Format

Decimal Format

Hexadecimal Format

Char Format
Changes the display format of expressions. The display format setting affects
different types of expressions in different ways. Your selection of display format
is saved between debug sessions. These commands are available if a selected
line in the window contains a variable.

The display format setting affects different types of expressions in these ways:

Variables The display setting affects only the selected variable, not
other variables.

Array elements The display setting affects the complete array, that is, the
same display format is used for each array element.

Structure fields All elements with the same definition—the same field
name and C declaration type—are affected by the
display setting.

Show As

Displays a submenu that provides commands for changing the default type
interpretation of variables. The commands on this submenu are mainly useful
for assembler variables—data at assembler labels—because these are, by
default, displayed as integers. For more information, see Viewing assembler
variables, page 102.

Save to File
Saves content to a file in a tab-separated format.

Right Align ‘Value’ Column
Right-aligns the contents of the Value column.
Options

Displays the IDE Options dialog box where you can set various options for
C-SPY windows.

C-SPY® Debugging Guide
110 for RX

Variables and expressions °

Live Watch window

The Live Watch window is available from the View menu.

Live Watch * o X
Expression Yalue Location Type
= GetFib GetFib (0x141) uint3zZ_t(_ne..

------ GetFib (0x141) Memory:Oxl41 uint32_t{int_f.

This window repeatedly samples and displays the value of expressions while your
application is executing. Variables in the expressions must be statically located, such as
global variables.

See also Editing in C-SPY windows, page 50.
Display area
This area contains these columns:

Expression

The name of the variable. The base name of the variable is followed by the full
name, which includes module, class, or function scope.

Value
The value of the variable. Values that have changed are highlighted in red.
Dragging text or a variable from another window and dropping it on the Value
column will assign a new value to the variable in that row.
This column is editable.

Location
The location in memory where this variable is stored.

Type

The data type of the variable.

Reference information on working with variables and expressions

112

Context menu

C-SPY® Debugging Guide
for RX

This context menu is available:

Remove

Rermove All

Default Format
Binary Format

Octal Format
Decimal Format
Hexadecimal Format

Char Format
Show As ¥
Save to File...

+~ Right Align 'Value' Column

Options...

Note: The contents of this menu are dynamic and depend on which features that your
combination of software and hardware supports. However, the list of menu commands
below is complete and covers all possible commands.

These commands are available:

Remove
Removes the selected expression from the window.

Remove All
Removes all expressions listed in the window.

Default Format

Binary Format

Octal Format

Decimal Format

Hexadecimal Format

Char Format
Changes the display format of expressions. The display format setting affects
different types of expressions in different ways. Your selection of display format
is saved between debug sessions. These commands are available if a selected
line in the window contains a variable.

The display format setting affects different types of expressions in these ways:

Variables The display setting affects only the selected variable, not
other variables.

Variables and expressions °

Array elements The display setting affects the complete array, that is, the
same display format is used for each array element.

Structure fields All elements with the same definition—the same field
name and C declaration type—are affected by the
display setting.

Show As
Displays a submenu that provides commands for changing the default type
interpretation of variables. The commands on this submenu are mainly useful
for assembler variables—data at assembler labels—because these are, by
default, displayed as integers. For more information, see Viewing assembler
variables, page 102.

Save to File
Saves content to a file in a tab-separated format.

Right Align ‘Value’ Column
Right-aligns the contents of the Value column.
Options

Displays the IDE Options dialog box where you can set various options for
C-SPY windows.

Statics window
The Statics window is available from the View menu.

Statics v 1x
Warighle Walue Location Type taodule =
- filbStat <UsingClasses\fibStat> <class> Memory:0xFB140 class Fibonacci UsingClasses

e Current 7] Memory : OxFB140 uint_fastd_t

= msFib <FibonacciByClass\FibonaccizmsFib> size=100 Memory:0xFE134 class wvectorduint3z_t» FibonacciByClass |z
E <Fiaw> <class> Memory :0xFE134 class vector<uint32_t»

=class> Memory :0xFE134 wector<uint32_t>:_Imp
0xFB134 class _“ector_wvalue<allocator...
v:0xFB134 class _ClassUtil_AllocHaolder..

<class>
<class>

OxADED 0xFB134 woid __near®

0xA270 0xFB136 woid _ _near®

0xA270 0xFB138 woid _ _near®

0 OxFROED uint3Z_t

o v:O0xFROE4 uint32_t k-

This window displays the values of variables with static storage duration that you have
selected. Typically, that is variables with file scope but it can also be static variables in
functions and classes. Note that volatile declared variables with static storage
duration will not be displayed.

113

Reference information on working with variables and expressions

114

Requirements

Display area

C-SPY® Debugging Guide
for RX

Every time execution in C-SPY stops, the values in the Statics window are recalculated.
Values that have changed since the last stop are highlighted in red.

Click any column header (except for Value) to sort on that column.
See also Editing in C-SPY windows, page 50.

To select variables to monitor:

In the window, right-click and choose Select Statics from the context menu. The
window now lists all variables with static storage duration.

Either individually select the variables you want to display, or choose one of the Select
commands from the context menu.

When you have made your selections, choose Select Statics from the context menu to
toggle back to normal display mode.

Can be used with all C-SPY debugger drivers and debug probes.

This area contains these columns:

Expression

The name of the variable. The base name of the variable is followed by the full
name, which includes module, class, or function scope.

Value
The value of the variable. Values that have changed are highlighted in red.
Dragging text or a variable from another window and dropping it on the Value
column will assign a new value to the variable in that row.
This column is editable.

Location
The location in memory where this variable is stored.

Type

The data type of the variable.

Context menu

Variables and expressions °

This context menu is available:
Remove

Rermove All

Default Format
Binary Format

Octal Format
Decimal Format
Hexadecimal Format

Char Format
Show As ¥
Save to File...

+~ Right Align 'Value' Column

Options...

Note: The contents of this menu are dynamic and depend on which features that your
combination of software and hardware supports. However, the list of menu commands
below is complete and covers all possible commands.

These commands are available:

Remove
Removes the selected expression from the window.

Remove All
Removes all expressions listed in the window.

Default Format

Binary Format

Octal Format

Decimal Format

Hexadecimal Format

Char Format
Changes the display format of expressions. The display format setting affects
different types of expressions in different ways. Your selection of display format
is saved between debug sessions. These commands are available if a selected
line in the window contains a variable.

The display format setting affects different types of expressions in these ways:

Variables The display setting affects only the selected variable, not
other variables.

115

Reference information on working with variables and expressions

Array elements The display setting affects the complete array, that is, the
same display format is used for each array element.

Structure fields All elements with the same definition—the same field
name and C declaration type—are affected by the
display setting.

Show As
Displays a submenu that provides commands for changing the default type
interpretation of variables. The commands on this submenu are mainly useful
for assembler variables—data at assembler labels—because these are, by
default, displayed as integers. For more information, see Viewing assembler
variables, page 102.

Save to File

Saves content to a file in a tab-separated format.

Right Align ‘Value’ Column
Right-aligns the contents of the Value column.
Options

Displays the IDE Options dialog box where you can set various options for
C-SPY windows.

Quick Watch window

The Quick Watch window is available from the View menu and from the context menu
in the editor window.

Quick Watch * O X

@ Timer: (] -

Expression Yalue Location Type
TimerStatus() 'Timer disabled® macro string

Use this window to watch the value of a variable or expression and evaluate expressions
at a specific point in time.

In contrast to the Watch window, the Quick Watch window gives you precise control
over when to evaluate the expression. For single variables this might not be necessary,
but for expressions with possible side effects, such as assignments and C-SPY macro
functions, it allows you to perform evaluations under controlled conditions.

See also Editing in C-SPY windows, page 50.

C-SPY® Debugging Guide
116 for RX

Variables and expressions °

To evaluate an expression:

I In the editor window, right-click on the expression you want to examine and choose
Quick Watch from the context menu that appears.

2 The expression will automatically appear in the Quick Watch window.
Alternatively:

3 In the Quick Watch window, type the expression you want to examine in the
Expressions text box.

g 4 Click the Recalculate button to calculate the value of the expression.
For an example, see Using C-SPY macros, page 357.

Requirements

Can be used with all C-SPY debugger drivers and debug probes.

Display area
This area contains these columns:

Expression

The name of the variable. The base name of the variable is followed by the full
name, which includes module, class, or function scope.

Value
The value of the variable. Values that have changed are highlighted in red.
Dragging text or a variable from another window and dropping it on the Value
column will assign a new value to the variable in that row.
This column is editable.

Location
The location in memory where this variable is stored.

Type

The data type of the variable.

17

Reference information on working with variables and expressions

118

Context menu

C-SPY® Debugging Guide
for RX

This context menu is available:

Remove

Rermove All

Default Format
Binary Format

Octal Format
Decimal Format
Hexadecimal Format

Char Format
Show As ¥
Save to File...

+~ Right Align 'Value' Column

Options...

Note: The contents of this menu are dynamic and depend on which features that your
combination of software and hardware supports. However, the list of menu commands
below is complete and covers all possible commands.

These commands are available:

Remove
Removes the selected expression from the window.

Remove All
Removes all expressions listed in the window.

Default Format

Binary Format

Octal Format

Decimal Format

Hexadecimal Format

Char Format
Changes the display format of expressions. The display format setting affects
different types of expressions in different ways. Your selection of display format
is saved between debug sessions. These commands are available if a selected
line in the window contains a variable.

The display format setting affects different types of expressions in these ways:

Variables The display setting affects only the selected variable, not
other variables.

Variables and expressions °

Array elements The display setting affects the complete array, that is, the
same display format is used for each array element.

Structure fields All elements with the same definition—the same field
name and C declaration type—are affected by the
display setting.

Show As
Displays a submenu that provides commands for changing the default type
interpretation of variables. The commands on this submenu are mainly useful
for assembler variables—data at assembler labels—because these are, by
default, displayed as integers. For more information, see Viewing assembler
variables, page 102.

Save to File

Saves content to a file in a tab-separated format.
Right Align ‘Value’ Column

Right-aligns the contents of the Value column.
Options

Displays the IDE Options dialog box where you can set various options for
C-SPY windows.

Symbols window

The Symbols window is available from the View menu.

X
- Clear
Syrmbaol Location Full Marme Module Type i
B Code:0x0020 7B TABS_ENTRY_MOD Lahel
?call_main Code:0x0039 7call_main Tocmain Label
?ocmain Code:0x002E 7cmain ?ocmain Label
DoForegroundProcess Code:0x0294 DoForegroundProcess Interrupt Function
Fik IData:0x23 Fih Utilities Yariable |_
GetFib Code:0x01A6 GetFib Ltilities Function |~
IE SFR: 0xA8 IE Interrupt Lahel
IE_hit SFRE:0xA8 IE_hit Interrupt Label
InitFik Code:0x0137 InitFib Lhtilities Function
Initllart Code:0x028C |nitlart Interrupt Function
FCOM SFR:0x27 FCOM Interrupt Label
PCOM_hit SFR:0x87 PCOM_hit Interrupt Label
FutFib Code:0x01CE PutFib Lhtilities Function =

This window displays all symbols with a static location, that is, C/C++ functions,
assembler labels, and variables with static storage duration, including symbols from the
runtime library.

19

Reference information on working with variables and expressions

120

Requirements

Toolbar

Display area

C-SPY® Debugging Guide
for RX

You can drag the contents of cells in the Symbol, Location, and Full Name columns
and drop in some other windows in the IDE.

Can be used with all C-SPY debugger drivers and debug probes.

The toolbar contains:

<filter by name>

Type the first characters of the symbol names that you want to find, and press
Enter. All symbols (of the types you have selected on the context menu) whose
name starts with these characters will be displayed. If you have chosen not to
display some types of symbols, the window will list how many of those that
were found but are not displayed.

Use the drop-down list to use old search strings. The search box has a history
depth of eight search entries.

Clear
Cancels the effects of the search filter and restores all symbols in the window.

This area contains these columns:

Symbol
The symbol name.

Location
The memory address.

Full name
The symbol name—often the same as the contents of the Symbeol column but
differs for example for C++ member functions.
Module
The program module where the symbol is defined.
Type
The symbol type, whether it is a function, label, or variable.

Click the column headers to sort the list by symbol name, location, full name, module,
or type.

Variables and expressions °

Context menu

This context menu is available:

Functions
v Variables
Labels

Add to Watch
Add to Live Watch

Copy 3 Row
Symbol
Location
Full Name
Module

Type
These commands are available:

Functions
Toggles the display of function symbols on or off in the list.

Variables
Toggles the display of variables on or off in the list.

Labels
Toggles the display of labels on or off in the list.

Add to Watch
Adds the selected symbol to the Watch window.

Add to Live Watch
Adds the selected symbol to the Live Watch window.

Copy
Copies the contents of the cells on the selected line.

Row Copies all contents of the selected line.

Symbol Copies the contents of the Symbol cell on the selected line.
Location Copies the contents of the Location cell on the selected line.
Full Name Copies the contents of the Full Name cell on the selected line.
Module Copies the contents of the Module cell on the selected line.

Type Copies the contents of the Type cell on the selected line.

121

Reference information on working with variables and expressions

Resolve Symbol Ambiguity dialog box

The Resolve Symbol Ambiguity dialog box appears, for example, when you specify a
symbol in the Disassembly window to go to, and there are several instances of the same
symbol due to templates or function overloading.

Resolve Symbol Ambiguity

Ambiguous symbol: foo

Ok

foo[void]

fon<T: Cancel

Requirements

Can be used with all C-SPY debugger drivers and debug probes.

Ambiguous symbol

Indicates which symbol that is ambiguous.

Please select one symbol

A list of possible matches for the ambiguous symbol. Select the one you want to use.

C-SPY® Debugging Guide
122 for RX

Breakpoints

e Introduction to setting and using breakpoints
e Setting breakpoints

e Reference information on breakpoints

Introduction to setting and using breakpoints

These topics are covered:

Reasons for using breakpoints

Briefly about setting breakpoints

Breakpoint types

Breakpoint icons

Breakpoints in the C-SPY simulator

Breakpoints in the C-SPY hardware debugger drivers

Breakpoint consumers

REASONS FOR USING BREAKPOINTS

C-SPY® lets you set various types of breakpoints in the application you are debugging,
allowing you to stop at locations of particular interest. You can set a breakpoint at a code
location to investigate whether your program logic is correct, or to get trace printouts.
In addition to code breakpoints, and depending on what C-SPY driver you are using,
additional breakpoint types might be available. For example, you might be able to set a
data breakpoint, to investigate how and when the data changes.

You can let the execution stop under certain conditions, which you specify. You can also
let the breakpoint trigger a side effect, for instance executing a C-SPY macro function,
by transparently stopping the execution and then resuming. The macro function can be
defined to perform a wide variety of actions, for instance, simulating hardware behavior.

All these possibilities provide you with a flexible tool for investigating the status of your
application.

BRIEFLY ABOUT SETTING BREAKPOINTS

You can set breakpoints in many various ways, allowing for different levels of
interaction, precision, timing, and automation. All the breakpoints you define will

123

Introduction to setting and using breakpoints

appear in the Breakpoints window. From this window you can conveniently view all
breakpoints, enable and disable breakpoints, and open a dialog box for defining new
breakpoints. The Breakpoint Usage window also lists all internally used breakpoints,
see Breakpoint consumers, page 127.

Breakpoints are set with a higher precision than single lines, using the same mechanism
as when stepping. For more information about the precision, see Single stepping, page
72.

You can set breakpoints while you edit your code even if no debug session is active. The
breakpoints will then be validated when the debug session starts. Breakpoints are
preserved between debug sessions.

Note: For most hardware debugger systems it is only possible to set breakpoints when
the application is not executing.

BREAKPOINT TYPES

Depending on the C-SPY driver you are using, C-SPY supports different types of
breakpoints.

Code breakpoints

Code breakpoints are used for code locations to investigate whether your program logic
is correct or to get trace printouts. Code breakpoints are triggered when an instruction is
fetched from the specified location. If you have set the breakpoint on a specific machine
instruction, the breakpoint will be triggered and the execution will stop, before the
instruction is executed.

Note: When you use a C-SPY hardware debugger driver and set a breakpoint in code
without specifying the type, a hardware code breakpoint will be set as long as there are
any available. If there are no available hardware code breakpoints, a sofiware code
breakpoint will be set.

Log breakpoints

Log breakpoints provide a convenient way to add trace printouts without having to add
any code to your application source code. Log breakpoints are triggered when an
instruction is fetched from the specified location. If you have set the breakpoint on a
specific machine instruction, the breakpoint will be triggered and the execution will
temporarily stop and print the specified message in the C-SPY Debug Log window.

Trace Start/Stop Trigger breakpoints

Trace Start Trigger and Trace Stop Trigger breakpoints start and stop trace data
collection—a convenient way to analyze instructions between two execution points.

C-SPY® Debugging Guide
124 for RX

Breakpoints °

Data trace collection breakpoints

Data trace collection breakpoints are useful for collecting trace information from
variables that have a fixed address in memory. Trace information is collected every time
that data is accessed at the specified location. This does not stop the execution.

Data breakpoints

Data breakpoints are primarily useful for variables that have a fixed address in memory.
If you set a breakpoint on an accessible local variable, the breakpoint is set on the
corresponding memory location. The validity of this location is only guaranteed for
small parts of the code. Data breakpoints are triggered when data is accessed at the
specified location.

The execution will usually stop directly after the instruction that accessed the data has
been executed.

Data Log breakpoints

Data log breakpoints are triggered when a specified memory address is accessed. A log
entry is written in the Data Log window for each access. Data logs can also be displayed
on the Data Log graph in the Timeline window, if that window is enabled.

You can set data log breakpoints using the Breakpoints window, the Memory window,
and the editor window.

Using a single instruction, the microcontroller can only access values that are four bytes
or less. If you specify a data log breakpoint on a memory location that cannot be
accessed by one instruction, for example a double or a too large area in the Memory
window, the result might not be what you intended.

Hardware code breakpoints

Hardware code breakpoints are code breakpoints that use hardware resources. Because
memory does not have to be reprogrammed after a hardware code breakpoint has been
hit, hardware code breakpoints are preferred over software code breakpoints. However,
the number of available hardware breakpoints is limited, see Breakpoints in the C-SPY
hardware debugger drivers, page 127.

Software code breakpoints

Software code breakpoints are code breakpoints that use software resources. After a
software code breakpoint has been triggered the memory must be reprogrammed, so
software code breakpoints should if possible be used only in RAM memory or for
breakpoints that are not triggered so often.

125

Introduction to setting and using breakpoints

C-SPY® Debugging Guide
126 for RX

Performance breakpoints

By default, performance analysis is running from when the hardware debugger starts
until it stops. Performance Start and Stop breakpoints are used for analyzing the
performance over a smaller region of code. For reference information about these
breakpoints, see Reference information on performance analysis, page 256.

Performance Start and Stop breakpoints share the same resources as hardware code
breakpoints, see Breakpoints in the C-SPY hardware debugger drivers, page 127.

Immediate breakpoints

The C-SPY simulator lets you set immediate breakpoints, which will halt instruction
execution only temporarily. This allows a C-SPY macro function to be called when the
simulated processor is about to read data from a location or immediately after it has
written data. Instruction execution will resume after the action.

This type of breakpoint is useful for simulating memory-mapped devices of various
kinds (for instance serial ports and timers). When the simulated processor reads from a
memory-mapped location, a C-SPY macro function can intervene and supply
appropriate data. Conversely, when the simulated processor writes to a memory-mapped
location, a C-SPY macro function can act on the value that was written.

BREAKPOINT ICONS

A breakpoint is marked with an icon in the left margin of the editor window, and the icon
varies with the type of breakpoint:

Tutor.c m |

unsigned int get_fib({ int nr |

{
| RECinr >) s (nr <= MAX FIB) |
{
keturn { rooclnr-] 7
}

l Code breakpoint l

l Log breakpoint l .

l Toeltip information l | |tog @ Utilities.c:37.5
—_— Memory:0x6a [Fetch]

’O return { 0):

Disabled code

breakpeint b

If the breakpoint icon does not appear, make sure the option Show bookmarks is
selected, see Editor options in the IDE Project Management and Building Guide for RX.

Just point at the breakpoint icon with the mouse pointer to get detailed tooltip
information about all breakpoints set on the same location. The first row gives user
breakpoint information, the following rows describe the physical breakpoints used for
implementing the user breakpoint. The latter information can also be seen in the
Breakpoint Usage window.

Breakpoints °

Note: The breakpoint icons might look different for the C-SPY driver you are using.

BREAKPOINTS IN THE C-SPY SIMULATOR

The C-SPY simulator supports all breakpoint types. The number of breakpoints is
unlimited.

BREAKPOINTS IN THE C-SPY HARDWARE DEBUGGER
DRIVERS

Using the C-SPY drivers for hardware debugger systems you can set various breakpoint
types. The amount of breakpoints you can set depends on the number of hardware
breakpoints available on the target system. If no hardware breakpoints are available,
software breakpoints will be used.

This table summarizes the characteristics of breakpoints for the different target systems:

Hardware
Software
. code and Trace Data
C-SPY hardware driver code
Log breakpoints breakpoints

breakpoints
breakpoints

EI/E2/E20/E2 Lite/EZ-CUBE2

using 12 hardware breakpoints* 256 Upto8t Upto8t Upto4*
J-Link
using 12 hardware breakpoints* 256 Upto8t Upto8t Upto4*

Table 8: Available breakpoints in C-SPY hardware debugger drivers
* The number of available breakpoints depends on the target system you are using.
1 These 8 breakpoint resources are shared between three types of breakpoints.

Hardware breakpoints in the RX emulators share the same resources. There is a total of
12 of these breakpoint events, divided into 8 that are triggered by a program counter
access and 4 that are triggered by a data access.

The software code breakpoints use a mechanism that writes to the memory with a BRK
instruction, and when a breakpoint is triggered the original instruction is written back to
the memory. This makes it possible to use the breakpoint for code in RAM, but if used
for code in flash memory the execution is slowed down by the need to reprogram the
memory. There are up to 256 software code breakpoints.

The debugger will first use any available hardware breakpoints before using software
breakpoints.

BREAKPOINT CONSUMERS

A debugger system includes several consumers of breakpoints.

127

Setting breakpoints

128

User breakpoints

The breakpoints you define in the breakpoint dialog box or by toggling breakpoints in
the editor window often consume one physical breakpoint each, but this can vary greatly.
Some user breakpoints consume several physical breakpoints and conversely, several

user breakpoints can share one physical breakpoint. User breakpoints are displayed in
the same way both in the Breakpoint Usage window and in the Breakpoints window,
for example Data @|[R] callCount.

C-SPY itself
C-SPY itself also consumes breakpoints. C-SPY will set a breakpoint if:

o The debugger option Run to has been selected, and any step command is used.
These are temporary breakpoints which are only set during a debug session. This
means that they are not visible in the Breakpoints window.

o The linker option Include C-SPY debugging support has been selected.

In the DLIB runtime environment, C-SPY will set a system breakpoint on the
__DebugBreak label.

These types of breakpoint consumers are displayed in the Breakpoint Usage window,
for example, C-SPY Terminal I/O & libsupport module.
C-SPY plugin modules

For example, modules for real-time operating systems can consume additional
breakpoints. Specifically, by default, the Stack window consumes one physical
breakpoint.

To disable the breakpoint used by the Stack window:
Choose Tools>Options>Stack.
Deselect the Stack pointer(s) not valid until program reaches: /abel option.

To disable the Stack window entirely, choose Tools>Options>Stack and make sure all
options are deselected.

Setting breakpoints

C-SPY® Debugging Guide
for RX

These tasks are covered:
o Various ways to set a breakpoint

o Toggling a simple code breakpoint

e Setting breakpoints using the dialog box
°

Setting a data breakpoint in the Memory window

Breakpoints °

e Setting breakpoints using system macros

o Useful breakpoint hints

VARIOUS WAYS TO SET A BREAKPOINT
You can set a breakpoint in various ways:

o Toggling a simple code breakpoint.

o Using the New Breakpoints dialog box and the Edit Breakpoints dialog box
available from the context menus in the editor window, Breakpoints window, and
in the Disassembly window. The dialog boxes give you access to all breakpoint
options.

e Setting a data breakpoint on a memory area directly in the Memory window.

o Using predefined system macros for setting breakpoints, which allows automation.

The different methods offer different levels of simplicity, complexity, and automation.

TOGGLING A SIMPLE CODE BREAKPOINT

Toggling a code breakpoint is a quick method of setting a breakpoint. The following
methods are available both in the editor window and in the Disassembly window:
o Click in the gray left-side margin of the window

o Place the insertion point in the C source statement or assembler instruction where
you want the breakpoint, and click the Toggle Breakpoint button in the toolbar

o Choose Edit>Toggle Breakpoint

o Right-click and choose Toggle Breakpoint from the context menu.

SETTING BREAKPOINTS USING THE DIALOG BOX

The advantage of using a breakpoint dialog box is that it provides you with a graphical
interface where you can interactively fine-tune the characteristics of the breakpoints.
You can set the options and quickly test whether the breakpoint works according to your
intentions.

All breakpoints you define using a breakpoint dialog box are preserved between debug
sessions.

You can open the dialog box from the context menu available in the editor window,
Breakpoints window, and in the Disassembly window.

To set a new breakpoint:

I Choose View>Breakpoints to open the Breakpoints window.

129

Setting breakpoints

C-SPY® Debugging Guide
130 for RX

In the Breakpoints window, right-click, and choose New Breakpoint from the context
menu.

On the submenu, choose the breakpoint type you want to set. Depending on the C-SPY
driver you are using, different breakpoint types are available.

In the breakpoint dialog box that appears, specify the breakpoint settings and click OK.
The breakpoint is displayed in the Breakpoints window.

To modify an existing breakpoint:

In the Breakpoints window, editor window, or in the Disassembly window, select the
breakpoint you want to modify and right-click to open the context menu.

| UsingClasses.cpp * | IAR Information Center | FibonacciByClass.cpp | ¥
mainf) fur
fibl = 1; // Call to Fibonacci::Fibonacci(fast
// Fibonacci::operator=
// and the Fibonacci destructor. —
[L] _' Call to Fibopgeei::operator+,
Cut rator=
Eci destructor.
Copy
/4 Extrac
for (uint loggle Breakpoint (Code) =
= Toggle Breakpoint (Log)
bool ew] .
=% cout << Toggle Breakpoint (Trace Start Trigger) setw(2) << fibl.nex
Toggle Breakpoint (Trace Stop Trigger)
= +# TF ™ ;
= /* :ie Enable/disable Breakpoint = pumbsr of
L #/ Set Data Breakpoint for 'fibl' —
if (1% Set Data Log Breakpoint for ‘fibl'
=] { . ; . B
even Edit Breakpoint 3 Edit Code Breakpoint at column 5...
| } cout I — Edit Log Breakpoint at column 18...
Add to Quick Watch: 'fibl' i
| AFIE " next Fibona
numb . Depending on
4 T Chardter End€ding o [
Options...

If there are several breakpoints on the same source code line, the breakpoints will be
listed on a submenu.

On the context menu, choose the appropriate command.
In the breakpoint dialog box that appears, specify the breakpoint settings and click OK.

The breakpoint is displayed in the Breakpoints window.

Breakpoints °

SETTING A DATA BREAKPOINT IN THE MEMORY WINDOW

You can set breakpoints directly on a memory location in the Memory window.
Right-click in the window and choose the breakpoint command from the context menu
that appears. To set the breakpoint on a range, select a portion of the memory contents.

The breakpoint is not highlighted in the Memory window—instead, you can see, edit,
and remove it using the Breakpoints window, which is available from the View menu.
The breakpoints you set in the Memory window will be triggered for both read and
write accesses. All breakpoints defined in this window are preserved between debug
sessions.

Note: Setting breakpoints directly in the Memory window is only possible if the driver
you use supports this.

SETTING BREAKPOINTS USING SYSTEM MACROS

You can set breakpoints not only in the breakpoint dialog box but also by using built-in
C-SPY system macros. When you use system macros for setting breakpoints, the
breakpoint characteristics are specified as macro parameters.

Macros are useful when you have already specified your breakpoints so that they fully
meet your requirements. You can define your breakpoints in a macro file, using built-in
system macros, and execute the file at C-SPY startup. The breakpoints will then be set
automatically each time you start C-SPY. Another advantage is that the debug session
will be documented, and that several engineers involved in the development project can
share the macro files.

Note: If you use system macros for setting breakpoints, you can still view and modify
them in the Breakpoints window. In contrast to using the dialog box for defining
breakpoints, all breakpoints that are defined using system macros are removed when you
exit the debug session.

These breakpoint macros are available:

E2/E2 Lite/

C-SPY macro for breakpoints Simulator EI/E20 EZ.CUBE2 J-Link
__setCodeBreak Yes Yes Yes Yes
__setDataBreak Yes — — —
__setLogBreak Yes Yes Yes Yes
__setSimBreak Yes — — —
__setTraceStartBreak Yes Yes Yes Yes
__setTraceStopBreak Yes Yes Yes Yes
__clearBreak Yes Yes Yes Yes

Table 9: C-SPY macros for breakpoints

131

Setting breakpoints

132

C-SPY® Debugging Guide
for RX

For information about each breakpoint macro, see Reference information on C-SPY
system macros, page 369.

Setting breakpoints at C-SPY startup using a setup macro file

You can use a setup macro file to define breakpoints at C-SPY startup. Follow the
procedure described in Using C-SPY macros, page 357.

USEFUL BREAKPOINT HINTS

Below are some useful hints related to setting breakpoints.

Tracing incorrect function arguments

If a function with a pointer argument is sometimes incorrectly called with a NULL
argument, you might want to debug that behavior. These methods can be useful:

e Set a breakpoint on the first line of the function with a condition that is true only
when the parameter is 0. The breakpoint will then not be triggered until the
problematic situation actually occurs. The advantage of this method is that no extra
source code is needed. The drawback is that the execution speed might become
unacceptably low.

® You can use the assert macro in your problematic function, for example:

int MyFunction (int * MyPtr)
{
assert (MyPtr != 0); /* Assert macro added to your source
code. */
/* Here comes the rest of your function. */

}

The execution will break whenever the condition is true. The advantage is that the
execution speed is only slightly affected, but the drawback is that you will get a small
extra footprint in your source code. In addition, the only way to get rid of the
execution stop is to remove the macro and rebuild your source code.

e Instead of using the assert macro, you can modify your function like this:

int MyFunction (int * MyPtr)
{

if (MyPtr == 0)

MyDummyStatement; /* Dummy statement where you set a
breakpoint. */

/* Here comes the rest of your function. */
}
You must also set a breakpoint on the extra dummy statement, so that the execution
will break whenever the condition is true. The advantage is that the execution speed
is only very slightly affected, but the drawback is that you will still get a small extra

Breakpoints °

footprint in your source code. However, in this way you can get rid of the execution
stop by just removing the breakpoint.

Performing a task and continuing execution

You can perform a task when a breakpoint is triggered and then automatically continue
execution.

You can use the Action text box to associate an action with the breakpoint, for instance
a C-SPY macro function. When the breakpoint is triggered and the execution of your
application has stopped, the macro function will be executed. In this case, the execution
will not continue automatically.

Instead, you can set a condition which returns 0 (false). When the breakpoint is
triggered, the condition—which can be a call to a C-SPY macro that performs a task—
is evaluated and because it is not true, execution continues.

Consider this example where the C-SPY macro function performs a simple task:

__var my_counter;

count ()

{
my_counter += 1;
return 0;

}

To use this function as a condition for the breakpoint, type count () in the Expression
text box under Conditions. The task will then be performed when the breakpoint is
triggered. Because the macro function count returns 0, the condition is false and the
execution of the program will resume automatically, without any stop.

Reference information on breakpoints

Reference information about:

Breakpoints window, page 134

Breakpoint Usage window, page 136

Code breakpoints dialog box, page 137

Hardware Code Breakpoint dialog box, page 138
Software Code Breakpoint dialog box, page 140
Log breakpoints dialog box, page 141

Data breakpoints dialog box (Simulator), page 142

Data breakpoints dialog box (C-SPY hardware debugger drivers), page 144

133

Reference information on breakpoints

o Data Log breakpoints dialog box, page 146

o [mmediate breakpoints dialog box, page 147

® FEnter Location dialog box, page 148

® Resolve Source Ambiguity dialog box, page 150
See also:

® Reference information on C-SPY system macros, page 369
® Reference information on trace, page 192

® Data Trace Collection breakpoints dialog box, page 207
® Reference information on performance analysis, page 256

Breakpoints window

The Breakpoints window is available from the View menu.

Breakpoints x
Type Location Extra

@ Code UsingClasses.cpp:39.3

0 Log UsingClasses.cpp:39.10

This window lists all breakpoints you define.
Use this window to conveniently monitor, enable, and disable breakpoints—you can
also define new breakpoints and modify existing breakpoints.

Requirements

Can be used with all C-SPY debugger drivers and debug probes.

Display area

This area lists all breakpoints you define. For each breakpoint, information about the
breakpoint type, source file, source line, and source column is provided.

C-SPY® Debugging Guide
134 for RX

Breakpoints °

Context menu

This context menu is available:

Go to Source
Edit...

Delete
Enable

Enable All
Disable All
Delete All

MNew Breakpoint 3

These commands are available:

Go to Source

Moves the insertion point to the location of the breakpoint, if the breakpoint has
a source location. Double-click a breakpoint in the Breakpoints window to
perform the same command.

Edit
Opens the breakpoint dialog box for the breakpoint you selected.

Delete
Deletes the breakpoint. Press the Delete key to perform the same command.

Enable

Enables the breakpoint. The check box at the beginning of the line will be
selected. You can also perform the command by manually selecting the check
box. This command is only available if the breakpoint is disabled.

Disable

Disables the breakpoint. The check box at the beginning of the line will be
deselected. You can also perform this command by manually deselecting the
check box. This command is only available if the breakpoint is enabled.

Enable All

Enables all defined breakpoints.
Disable All

Disables all defined breakpoints.

Delete All
Deletes all defined breakpoints.

135

Reference information on breakpoints

136

New Breakpoint
Displays a submenu where you can open the breakpoint dialog box for the
available breakpoint types. All breakpoints you define using this dialog box are
preserved between debug sessions.

Breakpoint Usage window

Requirements

Display area

C-SPY® Debugging Guide
for RX

The Breakpoint Usage window is available from the menu specific to the C-SPY driver
you are using.

Breakpoint Usage x
Breakpaint

71 Memory : 0x3C3F [Fetch 1

=1 Memory : 0x4D75 [Fetch 1

- C-SPY Terminal I/0 && library support module

This window lists all breakpoints currently set in the target system, both the ones you
have defined and the ones used internally by C-SPY. The format of the items in this
window depends on the C-SPY driver you are using.

The window gives a low-level view of all breakpoints, related but not identical to the list
of breakpoints displayed in the Breakpoints window.

C-SPY uses breakpoints when stepping. Use the Breakpoint Usage window for:

o Identifying all breakpoint consumers

o Checking that the number of active breakpoints is supported by the target system

o Configuring the debugger to use the available breakpoints in a better way, if
possible.

For more information, see Breakpoints in the C-SPY hardware debugger drivers, page
127.

Can be used with all C-SPY debugger drivers and debug probes.

For each breakpoint in the list, the address and access type are displayed. Each
breakpoint in the list can also be expanded to show its originator.

Breakpoints °

Code breakpoints dialog box

Requirements

Break At

Size

The Code breakpoints dialog box is available from the context menu in the editor
window, Breakpoints window, and in the Disassembly window.

& Code
Break at:
Edit...
Size
@ Auto
) Manual
Action
Expression:
Condtions
Expression:
@ Condttion true Skip court: 0
_) Condition changed

This figure reflects the C-SPY simulator.

Use the Code breakpoints dialog box to set a code breakpoint, see Setting breakpoints
using the dialog box, page 129.

Can be used with all C-SPY debugger drivers and debug probes.

Specify the code location of the breakpoint in the text box. Alternatively, click the Edit
button to open the Enter Location dialog box, see Enter Location dialog box, page 148.

Determines whether there should be a size—in practice, a range—of locations where the
breakpoint will trigger. Each fetch access to the specified memory range will trigger the
breakpoint. Select how to specify the size:

Auto
The size will be set automatically, typically to 1.

Manual
Specify the size of the breakpoint range in the text box.

Note: This option is only available for the C-SPY simulator driver.

137

Reference information on breakpoints

Action

Specify a valid C-SPY expression, which is evaluated when the breakpoint is triggered
and the condition is true. For more information, see Useful breakpoint hints, page 132.

Conditions

Specify simple or complex conditions:

Expression
Specify a valid C-SPY expression, see C-SPY expressions, page 98.

Condition true
The breakpoint is triggered if the value of the expression is true.

Condition changed
The breakpoint is triggered if the value of the expression has changed since it
was last evaluated.

Skip count

The number of times that the breakpoint condition must be fulfilled before the
breakpoint starts triggering. After that, the breakpoint will trigger every time the
condition is fulfilled.

Hardware Code Breakpoint dialog box

The Hardware Code Breakpoint dialog box is available from the context menu in the
editor window, Breakpoints window, and in the Disassembly window.
2 Hardware Code Breakpoint

Break &t
Action
Expression:
Conditions
Expression:
(&) Condition true Skip count: 0

() Condition changed

Use the Hardware Code breakpoints dialog box to set a hardware code breakpoint.

C-SPY® Debugging Guide
138 for RX

Breakpoints °

Requirements
A C-SPY hardware debugger driver.

Break At
Specify the location of the breakpoint in the text box. Alternatively, click the Edit button
to open the Enter Location dialog box, see Enter Location dialog box, page 148.
Action
Determines whether there is an action connected to the breakpoint. Specify an
expression, for instance a C-SPY macro function, which is evaluated when the
breakpoint is triggered and the condition is true.
Conditions

Specify simple or complex conditions:

Expression
Specify a valid C-SPY expression, see C-SPY expressions, page 98.

Condition true

The breakpoint is triggered if the value of the expression is true.

Condition changed
The breakpoint is triggered if the value of the expression has changed since it
was last evaluated.

Skip count

The number of times that the breakpoint condition must be fulfilled before the
breakpoint starts triggering. After that, the breakpoint will trigger every time the
condition is fulfilled.

139

Reference information on breakpoints

Software Code Breakpoint dialog box

Requirements

Break At

Action

Conditions

C-SPY® Debugging Guide
140 for RX

The Software Code Breakpoint dialog box is available from the context menu in the
editor window, Breakpoints window, and in the Disassembly window.
B Software Code Breakpoaint

Break &t
Action
Expression:
Conditions
Expression:
(&) Condition true Skip count: 0

() Condition changed

Use the Software Code Breakpoint breakpoints dialog box to set a software code
breakpoint.

Note: Because the memory must be reprogrammed after a software code breakpoint has
been triggered, software code breakpoints should if possible be used only in RAM
memory or for breakpoints that are not triggered so often.

A C-SPY hardware debugger driver.

Specify the location of the breakpoint in the text box. Alternatively, click the Edit button
to open the Enter Location dialog box, see Enter Location dialog box, page 148.

Determines whether there is an action connected to the breakpoint. Specify an
expression, for instance a C-SPY macro function, which is evaluated when the
breakpoint is triggered and the condition is true.

Specify simple or complex conditions:

Expression
Specify a valid C-SPY expression, see C-SPY expressions, page 98.

Breakpoints °

Condition true

The breakpoint is triggered if the value of the expression is true.

Condition changed
The breakpoint is triggered if the value of the expression has changed since it
was last evaluated.

Skip count

The number of times that the breakpoint condition must be fulfilled before the
breakpoint starts triggering. After that, the breakpoint will trigger every time the
condition is fulfilled.

Log breakpoints dialog box

The Log breakpoints dialog box is available from the context menu in the editor
window, Breakpoints window, and in the Disassembly window.
0 Log

Trigger at:

Message: [T C-Spy macro "__message" style

Condtions

Expression:

@ Condition true

_) Condition changed

This figure reflects the C-SPY simulator.

Use the Log breakpoints dialog box to set a log breakpoint, see Setting breakpoints
using the dialog box, page 129.

Requirements

Can be used with all C-SPY debugger drivers and debug probes.

Trigger at

Specify the code location of the breakpoint. Alternatively, click the Edit button to open
the Enter Location dialog box, see Enter Location dialog box, page 148.

141

Reference information on breakpoints

Message

Specify the message you want to be displayed in the C-SPY Debug Log window. The
message can either be plain text, or—if you also select the option C-SPY macro
" __message' style—a comma-separated list of arguments.

C-SPY macro "__message" style

Conditions

Select this option to make a comma-separated list of arguments specified in the Message
text box be treated exactly as the arguments to the C-SPY macro language statement
__message, see Formatted output, page 365.

Specify simple or complex conditions:
Expression

Specify a valid C-SPY expression, see C-SPY expressions, page 98.
Condition true

The breakpoint is triggered if the value of the expression is true.
Condition changed

The breakpoint is triggered if the value of the expression has changed since it
was last evaluated.

Data breakpoints dialog box (Simulator)

C-SPY® Debugging Guide
142 for RX

The Data breakpoints dialog box is available from the context menu in the editor
window, Breakpoints window, the Memory window, and in the Disassembly window.

Data
Break at:
Edit...
Access Type Size
@ Read/write @ a’m | 1
) Read ~) Manual
=) Wiite Action
Expression:
Condtions
Expression:
@ Condttion true Skip court: 0
_) Condition changed

This figure reflects the C-SPY simulator.

Requirements

Break At

Access Type

Size

Action

Breakpoints °

Use the Data breakpoints dialog box to set a data breakpoint, see Setting breakpoints
using the dialog box, page 129. Data breakpoints never stop execution within a single
instruction. They are recorded and reported after the instruction is executed.

The C-SPY simulator.

Specify the data location of the breakpoint in the text box. Alternatively, click the Edit
button to open the Enter Location dialog box, see Enter Location dialog box, page 148.

Selects the type of memory access that triggers the breakpoint:

Read/Write
Reads from or writes to location.

Read

Reads from location.

Write
Writes to location.

Determines whether there should be a size—in practice, a range—of locations where the
breakpoint will trigger. Each fetch access to the specified memory range will trigger the
breakpoint. Select how to specify the size:

Auto
The size will automatically be based on the type of expression the breakpoint is
set on. For example, if you set the breakpoint on a 12-byte structure, the size of
the breakpoint will be 12 bytes.

Manual

Specity the size of the breakpoint range in the text box.

For data breakpoints, this can be useful if you want the breakpoint to be triggered on
accesses to data structures, such as arrays, structs, and unions.

Specify a valid C-SPY expression, which is evaluated when the breakpoint is triggered
and the condition is true. For more information, see Useful breakpoint hints, page 132.

143

144

Reference information on breakpoints

Conditions

Specify simple or complex conditions:
Expression

Specify a valid C-SPY expression, see C-SPY expressions, page 98.
Condition true
The breakpoint is triggered if the value of the expression is true.

Condition changed

The breakpoint is triggered if the value of the expression has changed since it
was last evaluated.

Skip count

The number of times that the breakpoint condition must be fulfilled before the

breakpoint starts triggering. After that, the breakpoint will trigger every time the
condition is fulfilled.

Data breakpoints dialog box (C-SPY hardware debugger drivers)

The Data breakpoints dialog box is available from the context menu in the editor

window, Breakpoints window, the Memory window, and in the Disassembly window.
2 [rata Breakpoint

Break &t
Address Condition
O Mone
O Mask: Compare:
(® Range | Inside the range [<="Yalues <=) w
End address:
[ata Condition
Readwiite: | Flead/wiite v
Access size: | Mot specified w
Compare Condition
Compared data:
taszk: Compare: Specified value [==]

This figure reflects the C-SPY hardware debugger drivers.

C-SPY® Debugging Guide
for RX

Requirements

Break At

Breakpoints °

Use the Data breakpoints dialog box to set a data breakpoint. Data breakpoints never
stop execution within a single instruction. They are recorded and reported after the
instruction is executed.

A C-SPY hardware debugger driver.

Specify the location of the breakpoint, or the start location if you select the address
condition Range. Alternatively, click the Edit button to open the Enter Location dialog
box, see Enter Location dialog box, page 148.

Address Condition

Data Condition

Determines whether there should be a trigger condition for the address where the data
is located:

None
There is no condition for the address.

Mask
Specity an address mask and choose a Compare setting.

Compare
Specify whether the condition is that the address should be equal (Specified
value (==))ornotequal (Any other value (!=))to the mask.

Range
Uses the location in the Break At field as the start address of an address range.
Use the text box to specify whether the trigger condition applies to inside the
range or outside the range.

End address

Specity the end location if the Break At field contains the start location of an
address range. Alternatively, click the Edit button to open the Enter Location
dialog box, see Enter Location dialog box, page 148

Determines whether there should be data trigger conditions for the breakpoint:

Read/Write
Read — the breakpoint is only triggered by a read access

Write — the breakpoint is only triggered by a write access

145

Reference information on breakpoints

Read/Write — the breakpoint is triggered by all accesses.

Access size

Determines whether there should be a size—in practice, a range—of locations
where the breakpoint will trigger. Each fetch access to the specified memory
range will trigger the breakpoint. Choose between:

Auto — The access size will be set automatically.
Byte — The access size will be set to a byte.
Word — The access size will be set to a word.
Long — The access size will be set to a long.

Compared data
Set a value that the accessed data should be compared to, using decimal notation
or hexadecimal notation (prefixed by 0x).

Mask

Set a mask for the compared data.

Compare

Specity whether the condition is that the data should be equal (Specified
value (==))ornotequal (Any other value (!=))to the mask.

Data Log breakpoints dialog box

The Data Log breakpoints dialog box is available from the context menu in the
Breakpoints window.

Data Log

Break at:
myVar

Access Type
~) Readfwrite

Use the Data Log breakpoints dialog box to set a maximum of four data log breakpoints
on memory addresses, see Setting breakpoints using the dialog box, page 129.

See also Data Log breakpoints, page 125 and Getting started using data logging, page
215.

C-SPY® Debugging Guide
146 for RX

Requirements

Break At

Access Type

Breakpoints °

The C-SPY simulator

Specify the data location of the breakpoint in the text box. Alternatively, click the Edit
button to open the Enter Location dialog box, see Enter Location dialog box, page 148.

Selects the type of memory access that triggers the breakpoint:

Read/Write

Reads from or writes to location.
Read

Reads from location.

Write
Writes to location.

Immediate breakpoints dialog box

The Immediate breakpoints dialog box is available from the context menu in the editor
window, Breakpoints window, the Memory window, and in the Disassembly window.

Immediate

Trigger at:
Edit...
Access Type Action
@ Read Expression:
) Write

In the C-SPY simulator, you can use the Immediate breakpoints dialog box to set an
immediate breakpoint, see Setting breakpoints using the dialog box, page 129.
Immediate breakpoints do not stop execution at all—they only suspend it temporarily.

147

Reference information on breakpoints

148

Requirements

Trigger at

Access Type

Action

The C-SPY simulator.

Specify the data location of the breakpoint. Alternatively, click the Edit button to open
the Enter Location dialog box, see Enter Location dialog box, page 148.

Selects the type of memory access that triggers the breakpoint:
Read

Reads from location.

Write
Writes to location.

Specify a valid C-SPY expression, which is evaluated when the breakpoint is triggered
and the condition is true. For more information, see Useful breakpoint hints, page 132.

Enter Location dialog box

Type

C-SPY® Debugging Guide
for RX

The Enter Location dialog box is available from the breakpoints dialog box, either
when you set a new breakpoint or when you edit a breakpoint.

Enter Location @

Type Expression:
@ Expreszion

Absolute address

Source location

[(0] 3]| Cancel |

Use the Enter Location dialog box to specify the location of the breakpoint.

Note: This dialog box looks different depending on the Type you select.

Selects the type of location to be used for the breakpoint, choose between:

Expression

A C-SPY expression, whose value evaluates to a valid code or data location.

Breakpoints °

A code location, for example the function main, is typically used for code
breakpoints.

A data location is the name of a variable and is typically used for data
breakpoints. For example, my_var refers to the location of the variable my_var,
and arr [3] refers to the location of the fourth element of the array arr. For
static variables declared with the same name in several functions, use the syntax
my_func::my_static_variable to refer to a specific variable.

For more information about C-SPY expressions, see C-SPY expressions, page
98.

Absolute address

An absolute location on the form zone: hexaddress or simply hexaddress
(for example Memory: 0x42). zone refers to C-SPY memory zones and
specifies in which memory the address belongs, see C-SPY memory zones, page
153.

Source location

A location in your C source code using the syntax:
{filename} .row.column.

filename specifies the filename and full path.
row specifies the row in which you want the breakpoint.
column specifies the column in which you want the breakpoint.

For example, {C:\src\prog.c}.22.3 sets a breakpoint on the third character
position on row 22 in the source file prog. c. Note that in quoted form, for
example in a C-SPY macro, you must instead write
{C:\\src\\prog.c}.22.3.

Note that the Source location type is usually meaningful only for code locations in code
breakpoints. Depending on the C-SPY driver you are using, Source location might not
be available for data and immediate breakpoints.

149

Reference information on breakpoints

150

Resolve Source Ambiguity dialog box

The Resolve Source Ambiguity dialog box appears, for example, when you try to set a
breakpoint on templates and the source location corresponds to more than one function.

Resolve Source Ambiguity

The zource location coresponds to multiple functions.
‘which onefz] do you mean?

woid foo(T, T #|[with T=unsigned long] Al

woid foo(T, T #|[with T=double]

Cancel

™ Automatically choose all

If you check. this item, the dialog will not be shown again
unless you re-enable it in the Tools->Dptions dialog, on
the Debugger page.

To resolve a source ambiguity, perform one of these actions:

o In the text box, select one or several of the listed locations and click Selected.

o Click AlL
All

The breakpoint will be set on all listed locations.
Selected

The breakpoint will be set on the source locations that you have selected in the text box.
Cancel

No location will be used.

Automatically choose all

Determines that whenever a specified source location corresponds to more than one
function, all locations will be used.

Note that this option can also be specified in the IDE Options dialog box, see Debugger
options in the IDE Project Management and Building Guide for RX.

C-SPY® Debugging Guide

for RX

Memory and registers

e Introduction to monitoring memory and registers
e Monitoring memory and registers

e Reference information on memory and registers

Introduction to monitoring memory and registers

These topics are covered:

e Briefly about monitoring memory and registers
o C-SPY memory zones

o Memory configuration for the C-SPY simulator

BRIEFLY ABOUT MONITORING MEMORY AND REGISTERS

C-SPY provides many windows for monitoring memory and registers, most of them
available from the View menu:

o The Memory window

Gives an up-to-date display of a specified area of memory—a memory zone—and
allows you to edit it. Data coverage along with execution of your application is
highlighted with different colors. You can fill specified areas with specific values and
you can set breakpoints directly on a memory location or range. Y ou can open several
instances of this window, to monitor different memory areas. The content of the
window can be regularly updated while your application is executing.

o The Symbolic Memory window

Displays how variables with static storage duration are laid out in memory. This can
be useful for better understanding memory usage or for investigating problems
caused by variables being overwritten, for example by buffer overruns.

o The Stack window

Displays the contents of the stack, including how stack variables are laid out in
memory. In addition, integrity checks of the stack can be performed to detect and
warn about problems with stack overflow. For example, the Stack window is useful
for determining the optimal size of the stack. You can open up to two instances of
this window, each showing different stacks or different display modes of the same
stack.

151

Introduction to monitoring memory and registers

152

C-SPY® Debugging Guide
for RX

o The Registers window

Gives an up-to-date display of the contents of the processor registers and SFRs, and
allows you to edit them. Because of the large amount of registers—memory-mapped
peripheral unit registers and CPU registers—it is inconvenient to show all registers
concurrently in the Registers window. Instead you can divide registers into
application-specific groups. You can choose to load either predefined register groups
or define your own groups. You can open several instances of this window, each
showing a different register group.

o The SFR Setup window

Displays the currently defined SFRs that C-SPY has information about, both
factory-defined (retrieved from the device description file) and custom-defined
SFRs. If required, you can use the Edit SFR dialog box to customize the SFR
definitions.

To view the memory contents for a specific variable, simply drag the variable to the
Memory window or the Symbolic Memory window. The memory area where the
variable is located will appear.

Reading the value of some registers might influence the runtime behavior of your
application. For example, reading the value of a UART status register might reset a
pending bit, which leads to the lack of an interrupt that would have processed a received
byte. To prevent this from happening, make sure that the Registers window containing
any such registers is closed when debugging a running application.

Memory and registers __4

C-SPY MEMORY ZONES

In C-SPY, the term zone is used for a named memory area. A memory address, or
location, is a combination of a zone and a numerical offset into that zone. By default,
the RX architecture has one zone, Memory, which covers the whole RX memory range.
0x00000000

OxXFFFFFFFF

Default zone Memory

Memory zones are used in several contexts, most importantly in the Memory and
Disassembly windows, and in C-SPY macros. In the windows, use the Zone box to
choose which memory zone to display.

Device-specific zones

Memory information for device-specific zones is defined in the device description files.
When you load a device description file, additional zones that adhere to the specific
memory layout become available.

See the device description file for information about available memory zones.

If your hardware does not have the same memory layout as any of the predefined device
description files, you must define customized zones in this file to be able to view the
corresponding memory in the debugger.

For more information, see Selecting a device description file, page 47 and Modifying a
device description file, page 53.
MEMORY CONFIGURATION FOR THE C-SPY SIMULATOR

To simulate the target system properly, the C-SPY simulator needs information about
the memory configuration. By default, C-SPY uses a configuration based on
information retrieved from the device description file.

153

Monitoring memory and registers

The C-SPY simulator provides various mechanisms to improve the configuration
further:

o If the default memory configuration does not specify the required memory address
ranges, you can specify the memory address ranges shall be based on:

o The zones predefined in the device description file
o The section information available in the debug file

o Or, you can define your own memory address ranges, which you typically might
want to do if the files do not specify memory ranges for the specific device that
you are using, but instead for a family of devices (perhaps with various amounts
of on-chip RAM).

o For each memory address range, you can specify an access type. If a memory access
occurs that does not agree with the specified access type, C-SPY will regard this as
an illegal access and warn about it. In addition, an access to memory that is not
defined is regarded as an illegal access. The purpose of memory access checking is
to help you to identify memory access violations.

For more information, see Memory Access Setup dialog box, page 183.

Monitoring memory and registers

These tasks are covered:
o Defining application-specific register groups

o Monitoring stack usage

DEFINING APPLICATION-SPECIFIC REGISTER GROUPS

Defining application-specific register groups minimizes the amount of registers
displayed in the Registers windows and makes the debugging easier.

C-SPY® Debugging Guide
154 for RX

Memory and registers __4

To define application-specific register groups:

Choose View>Registers>Register User Groups Setup during a debug session.

Register User Groups Setup x

Group Farmat

- regCroupOne

Hexadecimal
Hexadecimal
Hexadecimal
Hexadecimal
Hexadecimal
Hexadecimal
Hexadecimal
Hexadecimal

Binary
<click to add reg>
regCroupTwo
CONTROL Hexadecimal
Binary
Binary

Hexadecimal
<click to add reg>
<click to add group>

Right-clicking in the window displays a context menu with commands. For information
about these commands, see Register User Groups Setup window, page 176.

Click on <click to add group> and specify the name of your group, for example
My Timer Group and press Enter.

Underneath the group name, click on <click to add reg> and type the name of a
register, and press Enter. You can also drag a register name from another window in the
IDE. Repeat this for all registers that you want to add to your group.

As an optional step, right-click any registers for which you want to change the integer
base, and choose Format from the context menu to select a suitable base.

When you are done, your new group is now available in the Registers windows.

If you want to define more application-specific groups, repeat this procedure for each
group you want to define.

Note: If a certain SFR that you need cannot be added to a group, you can register your

own SFRs. For more information, see SFR Setup window, page 178.

MONITORING STACK USAGE
These are the two main use cases for the Stack window:

® Monitoring stack memory usage

155

Monitoring memory and registers

C-SPY® Debugging Guide
156 for RX

o Monitoring the stack memory content.

In both cases, C-SPY retrieves information about the defined stack size and its allocation
from the definition in the linker configuration file of the section holding the stack. If you,
for some reason, have modified the stack initialization in the system startup code,
cstartup, you should also change the section definition in the linker configuration file
accordingly, otherwise the Stack window cannot track the stack usage. For more
information, see the JAR C/C++ Development Guide for RX.

To monitor stack memory usage:
Before you start C-SPY, choose Tools>Options. On the Stack page:
o Seclect Enable graphical stack display and stack usage tracking. This option also

enables the option Warn when exceeding stack threshold. Specify a suitable
threshold value.

e Note also the option Warn when stack pointer is out of bounds. Any such
warnings are displayed in the Debug Log window.

1DE Options @
- Common Fonts
Key Bindings |¥] Enable graphical stack display and stack usage trasiing
. Language 90 % stack usage threshold
' Editor Wam when exceeding stack threshold
i Messages
Project [7] Wam when stack pointeris out of bounds

- Source Code Control

[P e

.. Stack

Stack poitne ey oot v=lid eedl e g reaches:

main

Wamings
@ Log
) Log and alett

|1 Limit stack display to 50 bytes

Start C-SPY.

When your application is first loaded, and upon each reset, the memory for the stack area
is filled with the dedicated byte value 0xCD before the application starts executing.

Choose View>Stack>Stack 1 to open the Stack window.

Note that you can open up to two Stack windows, each showing a different stack—if
several stacks are available—or the same stack with different display settings.

Start executing your application.

Memory and registers __4

Whenever execution stops, the stack memory is searched from the end of the stack until
a byte whose value is not 0xCD is found, which is assumed to be how far the stack has
been used. The light gray area of the stack bar represents the unused stack memory area,
whereas the dark gray area of the bar represents the used stack memory.

For this example, you can see that only 44% of the reserved memory address range was
used, which means that it could be worth considering decreasing the size of memory:

Used stack memary, Unused stack memary,
Stack pointer J in dark gray in light gray
=i \] : 2
) I |
Locati Dt 36 bytes used out of 80 (44%) Fi
QCEUON,|, aie, Stack range: Memony:0:3FBO0 - Memory:0x4000 [ame

OxF0O
0x3FFB 0Oxdl
0x3FFC 0x40180000

Toeltip informartion with facts
about used stack memory

4| i b

Note: Although this is a reasonably reliable way to track stack usage, there is no
guarantee that a stack overflow is detected. For example, a stack can incorrectly grow
outside its bounds, and even modify memory outside the stack area, without actually
modifying any of the bytes near the end of the stack range. Likewise, your application
might modify memory within the stack area by mistake.

To monitor the stack memory content:

Before you start monitoring stack memory, you might want to disable the option
Enable graphical stack display and stack usage tracking to improve performance
during debugging.

Start C-SPY.
Choose View>Stack>Stack 1 to open the Stack window.

Note that you can access various context menus in the display area from where you can
change display format, etc.

Start executing your application.

157

Reference information on memory and registers

Whenever execution stops, you can monitor the stack memory, for example to see
function parameters that are passed on the stack:

Current stack pointer |

.

Stack 1
Stack ||
Location Data YWariable YWalue Type Frame
0x3FDE 0x0001 p.mHandle 1 int [0] _dwrite
0x3FED Ox3FES p.mBuffer 0x3FEB "‘n' unsigned charconst® [0] __chwrite
0x3FE2 0x0001 p.msize 1 size_t [0] __dwrite
0x3FE4 0x0001 p.mBetunst. 1 size_t [0] __dwrite

0x3FE6 0x72

0x3FE7 0Oxdl

0x3FE8 0x000A000A
0x3FEC 0xCDCD4048
0x3FF0 0xCDCDCDCD
0x3FF4 0xCDCDCDCD
0x3FF8 0x0000CDCD
0x3FFC 0x401441D2

Reference information on memory and registers
Reference information about:

Memory window, page 159

Memory Save dialog box, page 163
Memory Restore dialog box, page 164

Fill dialog box, page 165

Symbolic Memory window, page 166

Stack window, page 169

Registers window, page 173

Register User Groups Setup window, page 176
SFR Setup window, page 178

Edit SFR dialog box, page 181

Memory Access Setup dialog box, page 183

Edit Memory Access dialog box, page 185

C-SPY® Debugging Guide
158 for RX

Memory and registers __4

Memory window

The Memory window is available from the View menu.

Available zones Context menu button

‘ Live update

Memory 1 \\\ / x

;
e 9w
£f £f £f £f ff

000feefd £f £f £f ££f ££f ££f ££ ££ -
000feefl f£f £f £f £ff £f £f ££f £f
R 000fef00 48 65 6c 6c 6 20 57 6f Hello Wo
Mem ory DO0fef0s 72 62 64 21 00 00 68 6a rld!

000feflD Bc 74 7a 4c 00 OO OO OO .
Bddieszes 000fefld OO0 OO OO OO OO OO OO OO0
000fef20 OO0 OO OO OO OO OO OO OO0
000fef2f ﬁﬁfrOO 00 00 cd cd cd cd
DDDfeﬁ}G” cd cd cd cd cd cd cd cd
DDQEéfBS 3c 01 00 ed £f £f £f £f
_,GﬁDfef4D £ff £f £f £f £f £f £f £f
000fef4d £f £f £f ££f ££f ££f ££ ££
000fefS50 f£f ££-ff £f £f £f ££f ££f

Go to location

Data coverage
information

Mem ory contents Mem ory contents in ASCII format

This window gives an up-to-date display of a specified area of memory—a memory
zone—and allows you to edit it. You can open several instances of this window, which
is very convenient if you want to keep track of several memory or register zones, or
monitor different parts of the memory.

To view the memory corresponding to a variable, you can select it in the editor window
g5 anddrag it to the Memory window.

See also Editing in C-SPY windows, page 50.

Requirements

Can be used with all C-SPY debugger drivers and debug probes.

Toolbar

The toolbar contains:

Go to
The memory location or symbol you want to view.

Zone
Selects a memory zone, see C-SPY memory zones, page 153.

Context menu button
Displays the context menu.

159

Reference information on memory and registers

Update Now

Updates the content of the Memory window while your application is
executing. This button is only enabled if the C-SPY driver you are using has
access to the target system memory while your application is executing.

Live Update

Updates the contents of the Memory window regularly while your application
is executing. This button is only enabled if the C-SPY driver you are using has
access to the target system memory while your application is executing. To set
the update frequency, specify an appropriate frequency in the IDE
Options>Debugger dialog box.

Display area

The display area shows the addresses currently being viewed, the memory contents in

the format you have chosen, and—provided that the display mode is set to 1x Units—
the memory contents in ASCII format. You can edit the contents of the display area, both
in the hexadecimal part and the ASCII part of the area.

Data coverage is displayed with these colors:

Yellow Indicates data that has been read.
Blue Indicates data that has been written
Green Indicates data that has been both read and written.

Note: Data coverage is not supported by all C-SPY drivers. Data coverage is supported
by the C-SPY simulator and the E1/E20 driver.

C-SPY® Debugging Guide
160 for RX

Memory and registers __4

Context menu

This context menu is available:

Copy
Paste

Zone 3

v lxUnits
2x Units
4x Units
8x Units

v Little Endian
Big Endian

Data Coverage 3

Find...

Replace...

Mermory Fill...
Memory Save...

Mermory Restore...
Set Data Breakpoint

Set Data Log Breakpoint

These commands are available:
Copy, Paste

Standard editing commands.
Zone

Selects a memory zone, see C-SPY memory zones, page 153.
1x Units

Displays the memory contents as single bytes.
2x Units

Displays the memory contents as 2-byte groups.
4x Units

Displays the memory contents as 4-byte groups.
8x Units

Displays the memory contents as 8-byte groups.

Little Endian
Displays the contents in little-endian byte order.

161

Reference information on memory and registers

162

C-SPY® Debugging Guide
for RX

Big Endian
Displays the contents in big-endian byte order.

Data Coverage
Choose between:

Enable toggles data coverage on or off.
Show toggles between showing or hiding data coverage.
Clear clears all data coverage information.

These commands are only available if your C-SPY driver supports data

coverage.
Find
Displays a dialog box where you can search for text within the Memory
window—read about the Find dialog box in the IDE Project Management and
Building Guide for RX.
Replace
Displays a dialog box where you can search for a specified string and replace
each occurrence with another string—read about the Replace dialog box in the
IDE Project Management and Building Guide for RX.
Memory Fill

Displays a dialog box, where you can fill a specified area with a value, see Fill
dialog box, page 165.

Memory Save

Displays a dialog box, where you can save the contents of a specified memory
area to a file, see Memory Save dialog box, page 163.

Memory Restore
Displays a dialog box, where you can load the contents of a file in Intel-hex or
Motorola s-record format to a specified memory zone, see Memory Restore
dialog box, page 164.

Set Data Breakpoint
Sets breakpoints directly in the Memory window. The breakpoint is not
highlighted—you can see, edit, and remove it in the breakpoint dialog box. The
breakpoints you set in this window will be triggered for both read and write
access. For more information, see Setting a data breakpoint in the Memory
window, page 131.

Set Data Log Breakpoint

Memory and registers __4

Sets a breakpoint on the start address of a memory selection directly in the
Memory window. The breakpoint is not highlighted—you can see, edit, and
remove it in the breakpoint dialog box. The breakpoints you set in this window
will be triggered by both read and write accesses—to change this, use the
Breakpoints window. For more information, see Data Log breakpoints, page

125 and Getting started using data logging, page 215.

Memory Save dialog box

The Memory Save dialog box is available by choosing Debug>Memory>Save or from

Requirements

Zone

Start address

End address

File format

the context menu in the Memory window.

Zone:

IMemory 7 I [Save]

Close

Start address: End address:
0x30 0xFF

File format:

Iintel-exhended - I

Filename:
C:\Documents\IAR Embedded Workbench'memory.hex LJ

Memory Save @

Use this dialog box to save the contents of a specified memory area to a file.

Can be used with all C-SPY debugger drivers and debug probes.

Selects a memory zone, see C-SPY memory zones, page 153.

Specify the start address of the memory range to be saved.

Specify the end address of the memory range to be saved.

Selects the file format to be used, which is Intel-extended by default.

163

Reference information on memory and registers

Filename

Save

Specify the destination file to be used. A browse button is available.

Saves the selected range of the memory zone to the specified file.

Memory Restore dialog box

Requirements

Zone

Filename

Restore

C-SPY® Debugging Guide
164 for RX

The Memory Restore dialog box is available by choosing Debug>Memory>Restore
or from the context menu in the Memory window.

Merory Restore @
Zone:
| Memory - | [Restore]
Close
Filename:
C:'\Documents\TAR \memory . hex l:l

Use this dialog box to load the contents of a file in Intel-extended or Motorola S-record
format to a specified memory zone.

Can be used with all C-SPY debugger drivers and debug probes.

Selects a memory zone, see C-SPY memory zones, page 153.

Specify the file to be read. A browse button is available.

Loads the contents of the specified file to the selected memory zone.

Fill dialog box

Requirements

Start address

Length

Zone

Value

Operation

Memory and registers __4

The Fill dialog box is available from the context menu in the Memory window.

Fill

Start address:
010D

Walue:
0xFF

Memory -

[

Length: Zone:
Ox04
Operation
@ Copy AND
XOR oR
(0] 8] | Cancel |

==l

Use this dialog box to fill a specified area of memory with a value.

Can be used with all C-SPY debugger drivers and debug probes.

Type the start address—in binary, octal, decimal, or hexadecimal notation.

Type the length—in binary, octal, decimal, or hexadecimal notation.

Selects a memory zone, see C-SPY memory zones, page 153.

Type the 8-bit value to be used for filling each memory location.

These are the available memory fill operations:

Copy

Value will be copied to the specified memory area.

AND

An AND operation will be performed between Value and the existing contents of
memory before writing the result to memory.

XOR

An XOR operation will be performed between Value and the existing contents of
memory before writing the result to memory.

165

Reference information on memory and registers

166

OR

An OR operation will be performed between Value and the existing contents of
memory before writing the result to memory.

Symbolic Memory window
The Symbolic Memory window is available from the View menu during a debug

session.

Symbolic Memory x
Go to: hd |Data v||Pre\c'ious|[Mext]
Location Data “ariable Value Type 0

0x21 0x0000 callCount O int

Ox23 0x0001 Fib[0] 1 unsigned int

0x25 0x0001 Fib[1] 1 unsigned int =
0x27 0x0002 Fik[2] 2 unsigned int 3
0x29 0x0003 Fib[3] 3 unsigned int

0x2B 0x0005 Fib[4] 5| unsigned int

0x2D 0x0008 Fib[E] a unsigned int

0x2F 0x000D Fib[E] 13 unsigned int

Ox3l 0x0015 Fib[7] 21 unsigned int

Ox33 0x0022 Fib[8] 34 unsigned int -

This window displays how variables with static storage duration, typically variables
with file scope but also static variables in functions and classes, are laid out in memory.
This can be useful for better understanding memory usage or for investigating problems
caused by variables being overwritten, for example buffer overruns. Other areas of use
are spotting alignment holes or for understanding problems caused by buffers being
overwritten.

To view the memory corresponding to a variable, you can select it in the editor window
g5 anddrag it to the Symbolic Memory window.

See also Editing in C-SPY windows, page 50.

Requirements

Can be used with all C-SPY debugger drivers and debug probes.

Toolbar
The toolbar contains:

Go to
The memory location or symbol you want to view.

Zone

Selects a memory zone, see C-SPY memory zones, page 153.

C-SPY® Debugging Guide
for RX

Memory and registers __4

Previous
Highlights the previous symbol in the display area.

Next
Highlights the next symbol in the display area.

Display area
This area contains these columns:

Location

The memory address.

Data
The memory contents in hexadecimal format. The data is grouped according to
the size of the symbol. This column is editable.

Variable
The variable name—requires that the variable has a fixed memory location.
Local variables are not displayed.

Value
The value of the variable. This column is editable.

Type

The type of the variable.
There are several different ways to navigate within the memory space:

Text that is dropped in the window is interpreted as symbols
The scroll bar at the right-side of the window

°
°
o The Next and Previous toolbar buttons
°

The Go to toolbar list box can be used for locating specific locations or symbols.

Note: Rows are marked in red when the corresponding value has changed.

167

Reference information on memory and registers

168

Context menu

C-SPY® Debugging Guide
for RX

This context menu is available:
MNext Symbol

Previous Symbol

1x Units
v 2xUnits
4x Units

Add to Watch
Add to Live Watch

v Default Format
Binary Format
Octal Format
Decimal Format
Hexadecimal Format

Char Format

These commands are available:

Next Symbol
Highlights the next symbol in the display area.

Previous Symbol
Highlights the previous symbol in the display area.

1x Units

Displays the memory contents as single bytes. This applies only to rows that do
not contain a variable.

2x Units

Displays the memory contents as 2-byte groups.
4x Units

Displays the memory contents as 4-byte groups.
Add to Watch

Adds the selected symbol to the Watch window.
Add to Live Watch

Adds the selected symbol to the Live Watch window.
Default format

Displays the memory contents in the default format.

Binary format
Displays the memory contents in binary format.

Memory and registers __4

Octal format

Displays the memory contents in octal format.

Decimal format

Displays the memory contents in decimal format.

Hexadecimal format
Displays the memory contents in hexadecimal format.

Char format

Displays the memory contents in char format.

Stack window

The Stack window is available from the View menu.

I Current stack pointer] I Used memory stack, in gray ‘
N — [The graphical
[Stack view l 1 \ = * stack bar with
| - || cooip
Location Data Yarable ‘“alue Type Frame information
0x04DC | 1244 signedint [0] InitFik
i 1 004 D0C _—
Cu.rrent stack [0%CD00 Unused stack
pointer 030432 | memery, in
0x0000 light gray

+10 0x0408
+12 0xCDOO

This window is a memory window that displays the contents of the stack. The graphical
stack bar shows stack usage.

Note: By default, this window uses one physical breakpoint. For more information, see
Breakpoint consumers, page 127.

For information about options specific to the Stack window, see the IDE Project
Management and Building Guide for RX.

Requirements

Can be used with all C-SPY debugger drivers and debug probes.

169

Reference information on memory and registers

170

Toolbar

The toolbar contains:

Stack

Selects which stack to view. This applies to microcontrollers with multiple
stacks.

The graphical stack bar

Display area

C-SPY® Debugging Guide
for RX

Displays the state of the stack graphically.

The left end of the stack bar represents the bottom of the stack, in other words, the
position of the stack pointer when the stack is empty. The right end represents the end
of the memory address range reserved for the stack. The graphical stack bar turns red
when the stack usage exceeds a threshold that you can specify.

To enable the stack bar, choose Tools>Options>Stack>Enable graphical stack
display and stack usage tracking. This means that the functionality needed to detect
and warn about stack overflows is enabled.

Place the mouse pointer over the stack bar to get tooltip information about stack usage.

This area contains these columns:

Location
Displays the location in memory. The addresses are displayed in increasing
order. The address referenced by the stack pointer, in other words the top of the
stack, is highlighted in a green color.

Data
Displays the contents of the memory unit at the given location. From the Stack
window context menu, you can select how the data should be displayed—as a
1-, 2-, or 4-byte group of data.

Variable
Displays the name of a variable, if there is a local variable at the given location.
Variables are only displayed if they are declared locally in a function, and
located on the stack and not in registers.

Value
Displays the value of the variable.

Type

Displays the data type of the variable.

Context menu

Memory and registers __4

Frame

Displays the name of the function that the call frame corresponds to.

This context menu is available:
v Show Variables
Show Offsets
1x Units
2x Units
v dxUnits

Default Format
Binary Format

Octal Format
Decimal Format
Hexadecimal Format

Char Format

Options...

These commands are available:

Show Variables

Displays separate columns named Variables, Value, and Frame in the Stack
window. Variables located at memory addresses listed in the Stack window are
displayed in these columns.

Show Offsets

Displays locations in the Location column as offsets from the stack pointer.
When deselected, locations are displayed as absolute addresses.

1x Units
Displays the memory contents as single bytes.
2x Units

Displays the memory contents as 2-byte groups.

4x Units
Displays the memory contents as 4-byte groups.

171

Reference information on memory and registers

Default Format

Binary Format

Octal Format

Decimal Format

Hexadecimal Format

Char Format
Changes the display format of expressions. The display format setting affects
different types of expressions in different ways. Your selection of display format
is saved between debug sessions. These commands are available if a selected
line in the window contains a variable.

The display format setting affects different types of expressions in these ways:

Variables The display setting affects only the selected variable, not
other variables.

Array elements The display setting affects the complete array, that is, the
same display format is used for each array element.

Structure fields All elements with the same definition—the same field
name and C declaration type—are affected by the
display setting.

Options

Opens the IDE Options dialog box where you can set options specific to the
Stack window, see the IDE Project Management and Building Guide for RX.

C-SPY® Debugging Guide
172 for RX

Registers window

Requirements

Memory and registers __4

The Registers windows are available from the View menu.

Reqgisters 2 x
Find: - Group:| CPU Registers hd
Current CPU Registers Yalue Access it
RO 0x00000000 Readyrite
R1 0x00000248 Readyrite
R2 0x00000000 FeadvWrite
R3 0x1FFE00O4 FeadvWrite
R4 0x00000000 Readyrite E
RS 0x00000000 FeadvWrite
Ré& 0x00000000 Readyrite
R7 0x00000000 Readyrite
R2 0x00000000 FeadvWrite
R9 0x00000000 FeadvWrite
R10 0x00000000 Readyrite
R11 0x00000000 Readyrite
Ri12 0x00000000 Readyrite
+ APSR 0x60000000 FeadvWrite
+ IPSR 0x00000000 Readyrite
+ EPSR 0x01000000 FeadvWrite
BPC 0x00000020 Readyrite -

These windows give an up-to-date display of the contents of the processor registers and
special function registers, and allow you to edit the contents of some of the registers.
Optionally, you can choose to load either predefined register groups or your own
user-defined groups.

You can open up to four instances of this window, which is convenient for keeping track
of different register groups.

See also Editing in C-SPY windows, page 50.

To enable predefined register groups:

Select a device description file that suits your device, see Selecting a device description

file, page 47. These files contain predefined register groups.

Display the registers of a register group by selecting it from the Group drop-down
menu on the toolbar, or by right-clicking in the window and choosing View Group
from the context menu.

For information about creating your own user-defined register groups, see Defining
application-specific register groups, page 154.

Can be used with all C-SPY debugger drivers and debug probes.

173

Reference information on memory and registers

Toolbar

The toolbar contains:

Find
Specify the name, or part of a name, of a register (or group) that you want to
find. Press the Enter key and the first matching register, or group with a
matching register, is displayed. User-defined register groups are not searched.
The search box preserves a history of previous searches. To repeat a search,
select it from the search history and press Enter.

Group

Selects which predefined register group to display. Additional register groups
are predefined in the device description files that make SFR registers available
in the Registers windows. The device description file contains a section that
defines the special function registers and their groups. If some of your SFRs are
missing, you can register your own SFRs in a Custom group, see SFR Setup
window, page 178.

Display area
Displays registers and their values. Some registers are expandable, which means that the
register contains interesting bits or subgroups of bits.

If you drag a numerical value, a valid expression, or a register name from another part
of the IDE to an editable value cell in a Registers window, the value will be changed to
that of what you dragged. If you drop a register name somewhere else in the window,
the window contents will change to display the first register group where this register is
found.

Name
The name of the register.

Value
The current value of the register. Every time C-SPY stops, a value that has
changed since the last stop is highlighted. Some of the registers are editable. To
edit the contents of an editable register, click on the register and modify its
value. Press Esc to cancel the change.

To change the display format of the value, right-click on the register and choose
Format from the context menu.

Access

The access type of the register. Some of the registers are read-only, while others
are write-only.

C-SPY® Debugging Guide
174 for RX

Context menu

Memory and registers __4

For the C-SPY Simulator, these additional support registers are available in the CPU
Registers group:

CYCLECOUNTER Cleared when an application is started or reset, and is
incremented with the number of used cycles during

execution.
CCSTEP Shows the number of used cycles during the last performed
C/C++ source or assembler step.
CCTIMERI1 and Two trip counts that can be cleared manually at any given
CCTIMER2 time. They are incremented with the number of used cycles

during execution.

This context menu is available:

View Group 3
View User Group
Format 3

Open User Groups Setup Window

Save to File...
Find Mext Register G
Find Previous Register SHIFT-G

These commands are available:

View Group
Selects which predefined register group to display.

View User Group
Selects which user-defined register group to display. For information about
creating your own user-defined register groups, see Defining
application-specific register groups, page 154.

Format
Changes the display format for the contents of the register you clicked on. The
display format setting affects different types of registers in different ways. Your
selection of display format is saved between debug sessions.

Open User Groups Setup Window

Opens a window where you can create your own user-defined register groups,
see Register User Groups Setup window, page 176.

175

Reference information on memory and registers

Save to File

Opens a standard Save dialog box to save the contents of the window to a
tab-separated text file.

Find Next Register
Finds the predefined register or register group that comes immediately after
what your search found. After the last register was found, this search wraps
around and finds the first register again.

Find Previous Register
Finds the matching predefined register or register group that comes immediately
before what your search found. After the first register was found, this search
wraps around and finds the last register again.

Register User Groups Setup window
The Register User Groups Setup window is available from the View menu or from the
context menu in the Registers windows.

Register User Groups Setup x

Group Farmat

- regCroupOne
i R4 Hexadecimal
Hexadecimal
Hexadecimal
Hexadecimal
Hexadecimal
Hexadecimal
Hexadecimal
Hexadecimal
Binary

Hexadecimal
Binary
Binary
Hexadecimal

e click to add reg>
<click to add group>

Use this window to define your own application-specific register groups. These register
groups can then be viewed in the Registers windows.

Defining application-specific register groups means that the Registers windows can
display just those registers that you need to watch for your current debugging task. This
makes debugging much easier.

C-SPY® Debugging Guide
176 for RX

Memory and registers __4

Requirements

Can be used with all C-SPY debugger drivers and debug probes.

Display area
This area contains these columns:

Group

The names of register groups and the registers they contain. Clickingon <click
to add group> or <click to add reg> and typing the name of a register
group or register, adds new groups and registers, respectively. You can also drag
a register name from another window in the IDE. Click a name to change it.

A dimmed register name indicates that it is not supported by the selected device.

Format

Shows the display format for the register’s value. To change the display format
of the value, right-click on the register and choose Format from the context
menu. The selected format is used in all Registers windows.

Context menu

This context menu is available:
Format 4
Rermove
Clear Group

Remove All Groups

Save to File...

These commands are available:

Format

Changes the display format for the contents of the register you clicked on. The
display format setting affects different types of registers in different ways. Your
selection of display format is saved between debug sessions.

Remove
Removes the register or group you clicked on.

Clear Group
Removes all registers from the group you clicked on.

Remove All Groups
Deletes all user-defined register groups from your project.

177

Reference information on memory and registers

178

SFR Setup window

Requirements

Display area

C-SPY® Debugging Guide
for RX

Save to File

Opens a standard Save dialog box to save the contents of the window to a
tab-separated text file.

The SFR Setup window is available from the Project menu.

SFR Setup x
MName Address Zone Size Access 5

+ MyOwnSFR Ox20004000 Mermory g Fead only

+ MyHideSFR 0x20004004 Mermory 16 Maone
Tik2_CR1 O=40000000 termany 32 Feadfifrite

o TIMZ_CR2 0x40000004 Merory 32 Fead only
TIM2_SMCR O=40000008 termany 32 Feadfifrite
Tik2_DIER O=4000000C termany 32 Feadfifrite
TIM2_5R 0x40000010 Merory a2 Eeadhirite
Tik2_EGR 0=40000014 termary 32 Feadpdfrite -

This window displays the currently defined SFRs that C-SPY has information about.
You can choose to display only factory-defined or custom-defined SFRs, or both. If
required, you can use the Edit SFR dialog box to customize the SFR definitions, see
Edit SFR dialog box, page 181. For factory-defined SFRs (that is, retrieved from the dd £
file in use), you can only customize the access type.

To quickly find an SFR, drag a text or hexadecimal number string and drop in this
window. If what you drop starts with a 0 (zero), the Address column is searched,
otherwise the Name column is searched.

Any custom-defined SFRs are added to a dedicated register group called Custom, which
you can choose to display in the Registers window. Your custom-defined SFRs are
saved in projectCustomSFR.sfr. This file is automatically loaded in the IDE when
you start C-SPY with a project whose name matches the prefix of the filename of the
sfr file.

You can only add or modify SFRs when the C-SPY debugger is not running.

Can be used with all C-SPY debugger drivers and debug probes.

This area contains these columns:

Status
A character that signals the status of the SFR, which can be one of:

blank, a factory-defined SFR.

Memory and registers __4

C, a factory-defined SFR that has been modified.
+, a custom-defined SFR.

?, an SFR that is ignored for some reason. An SFR can be ignored when a
factory-defined SFR has been modified, but the SFR is no longer available, or it
is located somewhere else or with a different size. Typically, this might happen
if you change to another device.

Name
A unique name of the SFR.

Address
The memory address of the SFR.

Zone
Selects a memory zone, see C-SPY memory zones, page 153.

Size
The size of the register, which can be any of 8, 16, 32, or 64.

Access

The access type of the register, which can be one of Read/Write, Read only,
Write only, or None.

You can click a name or an address to change the value. The hexadecimal 0x prefix for
the address can be omitted, the value you enter will still be interpreted as hexadecimal.
For example, if you enter 4567, you will get 0x4567.

You can click a column header to sort the SFRs according to the column property.
Color coding used in the display area:

o Green, which indicates that the corresponding value has changed

o Red, which indicates an ignored SFR.

179

Reference information on memory and registers

180

Context menu

C-SPY® Debugging Guide
for RX

This context menu is available:
v Show All
Show Custom SFRs only
Show Factory SFRs only

Add...

Edit...

Delete

Delete/Revert All Custom SFRs
Save Custom SFRs...

& bits

16 bits

32 bits

64 bits
Read/Write
Read only
Write only

MNone

These commands are available:

Show All
Shows all SFR.
Show Custom SFRs only
Shows all custom-defined SFRs.
Show Factory SFRs only
Shows all factory-defined SFRs retrieved from the ddf file.
Add
Displays the Edit SFR dialog box where you can add a new SFR, see Edit SFR
dialog box, page 181.
Edit
Displays the Edit SFR dialog box where you can edit an SFR, see Edit SFR
dialog box, page 181.
Delete

Deletes an SFR. This command only works on custom-defined SFRs.

Delete/Revert All Custom SFRs

Deletes all custom-defined SFRs and reverts all modified factory-defined SFRs
to their factory settings.

Memory and registers __4

Save Custom SFRs
Opens a standard Save dialog box to save all custom-defined SFRs.
8/16/32|64 bits

Selects display format for the selected SFR, which can be 8, 16, 32, or 64 bits.
Note that the display format can only be changed for custom-defined SFRs.

Read/Write|Read only|Write only|None

Selects the access type of the selected SFR, which can be Read/Write, Read
only, Write only, or None. Note that for factory-defined SFRs, the default
access type is indicated.

Edit SFR dialog box
The Edit SFR dialog box is available from the context menu in the SFR Setup window.

Edit SFR (=23
SFR
M ame:
MyOwnSFR Carcel
Address: Zone:
0400004567 Memary -
Size Access
@ 8 bits @ Read wiite
16 bitz Fiead only
32 bitz write: only
B4 bits MHone

Definitions of the SFRs are retrieved from the device description file in use. Use this
dialog box to either modify these factory-defined definitions or define new SFRs. See
also SFR Setup window, page 178.

Requirements

Can be used with all C-SPY debugger drivers and debug probes.

Name

Specify the name of the SFR that you want to add or edit.

181

Reference information on memory and registers

182

Address

Zone

Size

Access

C-SPY® Debugging Guide

for RX

Specify the address of the SFR that you want to add or edit. The hexadecimal 0x prefix
for the address can be omitted, the value you enter will still be interpreted as
hexadecimal. For example, if you enter 4567, you will get 0x4567.

Selects the memory zone for the SFR you want to add or edit. The list of zones is
retrieved from the ddf file that is currently used.

Selects the size of the SFR. Choose between 8, 16, 32, or 64 bits. Note that the display
format can only be changed for custom-defined SFRs.

Selects the access type of the SFR. Choose between Read/Write, Read only, Write
only, or None. Note that for factory-defined SFRs, the default access type is indicated.

Memory Access Setup dialog box

The Memory Access Setup dialog box is available from the C-SPY driver menu.

Memory and registers __4

Memory Access Setup

[Use ranges based on

3) Device description file

[ebug file zegment information [only shown while debugging]

EX=)
Cancel

Access to unspecified ranges

@ Log and stop execution

Zone Start Addr End Addr Accesz Type Cypcle Costz [RAW] *
Memary 0x0 0x1FFFF R 14 =
Memary 0x80000 OxFFFFF RAw 11
Memary 0x7FCO00 Ox7FC4FF RAw 11
Memary 0x7FFCO0 Ox7FFFFF RAw 11 i
Usze manual ranges
Zone Start Addr End Addr Accesz .. Cucle Costs [RAW) New...
Edit...
Delete
Delete &l
Memory access checking
Check for: Action:
Access type violation ~ Log violations

Use this dialog box to specify which set of memory address ranges to be used by C-SPY
during debugging.

Note: If you enable both the Use ranges based on and the Use manual ranges option,

memory accesses are checked for all defined ranges.

For information about the columns and the properties displayed, see Edit Memory
Access dialog box, page 185. See also Memory configuration for the C-SPY simulator,

page 153.

Requirements

The C-SPY simulator.

Use ranges based on

Specify if the memory configuration should be retrieved from a predefined

configuration. Choose between:

Device description file

Retrieves the memory configuration from the device description file that you
have specified. See Selecting a device description file, page 47.

183

Reference information on memory and registers

This option is used by default.

Debug file segment information

Retrieves the memory configuration from the debug file, which has retrieved it
from the linker configuration file. This information is only available during a
debug session. The advantage of using this option is that the simulator can catch
memory accesses outside the linked application.

Use manual ranges

Specify your own ranges manually via the Edit Memory Access dialog box. To open
this dialog box, click New to specify a new memory address range, or select an existing
memory address range and choose Edit to modify it. For more information, see Edit
Memory Access dialog box, page 185.

The ranges you define manually are saved between debug sessions.

Memory access checking

Check for determines what to check for:

® Access type violation

® Access to unspecified ranges
Action selects the action to be performed if an access violation occurs. Choose between:

o Log violations

o Log and stop execution

Any violations are logged in the Debug Log window.

Buttons

These buttons are available for manual ranges:

New
Opens the Edit Memory Access dialog box, where you can specify a new
memory address range and associate an access type with it, see Edit Memory
Access dialog box, page 185.
Edit
Opens the Edit Memory Access dialog box, where you can edit the selected
memory address range. See Edit Memory Access dialog box, page 185.
Delete

Deletes the selected memory address range definition.

C-SPY® Debugging Guide
184 for RX

Memory and registers __4

Delete All

Deletes all defined memory address range definitions.

Edit Memory Access dialog box
The Edit Memory Access dialog box is available from the Memory Access Setup
dialog box.

Edit Memory Access @

Memory range

Zone:
II\"Iemor_l,l—VI Cancel

Start address: End address:
0«0 Ox1FFF
Access type

Read and write
@ Fead only
write: only

Cycle costs
Read: ik

1 1

Use this dialog box to specify your memory address ranges for which you want to detect
illegal accesses during the simulation, and assign an access type to each range.

Requirements
The C-SPY simulator.

Memory range
Defines the memory address range specific to your device:

Zone
Selects a memory zone, see C-SPY memory zones, page 153.

Start address

Specity the start address for the memory address range, in hexadecimal
notation.

End address
Specify the end address for the memory address range, in hexadecimal notation.

185

Reference information on memory and registers

Access type

Selects an access type to the memory address range. Choose between:

Read and write
e Read only
o Write only.

Cycle costs
o Read
o Write.

The cycle cost can be specified individually for read and write accesses, because it can
differ.

C-SPY® Debugging Guide
186 for RX

Part 2. Analyzing your
application

This part of the C-SPY® Debugging Guide for RX includes these chapters:

e Trace

e The application timeline

e Profiling

e Analyzing code performance
e Code coverage

e Power debugging

o C-RUN runtime error checking

.hmuhhhhi

187

AAARRIE

188

Trace

e Introduction to using trace
e Collecting and using trace data

e Reference information on trace

Introduction to using trace
These topics are covered:
o Reasons for using trace
e Briefly about trace
o Requirements for using trace
See also:
o Getting started using data logging, page 215
® Power debugging, page 269
o Getting started using interrupt logging, page 338
e Profiling, page 241

REASONS FOR USING TRACE

By using trace, you can inspect the program flow up to a specific state, for instance an
application crash, and use the trace data to locate the origin of the problem. Trace data
can be useful for locating programming errors that have irregular symptoms and occur
sporadically.

BRIEFLY ABOUT TRACE

To use trace in C-SPY requires that your target system can generate trace data. Once
generated, C-SPY can collect it and you can visualize and analyze the data in various
windows and dialog boxes.

Depending on your target system, different types of trace data can be generated.

Trace data is a continuously collected sequence of every executed instruction for a
selected portion of the execution.

189

Collecting and using trace data

190

Trace features in C-SPY

In C-SPY, you can use the trace-related windows—Trace, Function Trace, Timeline,
and Find in Trace.

Depending on your C-SPY driver, you:

o Can set various types of trace breakpoints to control the collection of trace data.
o Have access to windows such as the Power Log, Interrupt Log, Interrupt Log
Summary, Data Log, and Data Log Summary.

In addition, several other features in C-SPY also use trace data, features such as
Profiling, Code coverage, and Instruction profiling.

REQUIREMENTS FOR USING TRACE

The C-SPY simulator supports trace-related functionality, and there are no specific
requirements.

To use trace in your hardware debugger systems, you need debug components
(hardware, in some cases a debug probe, and a C-SPY driver) that all support trace. All
C-SPY hardware debugger drivers support trace.

Note: The specific set of debug components you are using (hardware, a debug probe,
and a C-SPY driver) determine which trace features in C-SPY that are supported.

Collecting and using trace data

C-SPY® Debugging Guide
for RX

These tasks are covered:
o Getting started with trace

e Trace data collection using breakpoints
e Searching in trace data

o Browsing through trace data

GETTING STARTED WITH TRACE

For the C-SPY E20 emulator, before you start C-SPY you must choose
E1/E20 Emulator>Hardware Setup and select Trace as the Emulator mode.

Note: If you are using the C-SPY simulator, the E1, E2, or E2 Lite or EZ-CUBE2
emulator or the J-Link debug probe, you do not need to perform this step.

Start C-SPY and choose C-SPY driver>Trace Settings. In the Trace Settings dialog
box that is displayed, check if you need to change any of the default settings. For more
information, see Trace Settings dialog box, page 193.

[Ql

Trace __o

Note: If you are using the C-SPY simulator, just start C-SPY.

Open the Trace window—available from the driver-specific menu—and click the
Activate button to enable collecting trace data.

Start the execution. When the execution stops, for example because a breakpoint is
triggered, trace data is displayed in the Trace window. For more information about the
window, see Trace window, page 196.

TRACE DATA COLLECTION USING BREAKPOINTS

A convenient way to collect trace data between two execution points is to start and stop
the data collection using dedicated breakpoints.

Choose between these alternatives:

o In the editor or Disassembly window, position your insertion point, right-click, and
toggle a Trace Start Trigger or Trace Stop Trigger breakpoint from the context
menu.

e In the Breakpoints window, choose New Breakpoint>Trace Start Trigger or
Trace Stop Trigger from the context menu.

o The C-SPY system macros __setTraceStartBreak and
__setTraceStopBreak can also be used.

For more information about these breakpoints, see Trace Start Trigger breakpoint dialog
box, page 205 and Trace Stop Trigger breakpoint dialog box, page 206, respectively.

Note: Trace information can also be collected from specified memory locations by
using data trace collection breakpoints, see Data Trace Collection breakpoints dialog
box, page 207.

SEARCHING IN TRACE DATA

When you have collected trace data, you can perform searches in the collected data to
locate the parts of your code or data that you are interested in, for example, a specific
interrupt or accesses of a specific variable.

You specify the search criteria in the Find in Trace dialog box and view the result in the
Find in Trace window.

The Find in Trace window is very similar to the Trace window, showing the same
columns and data, but only those rows that match the specified search criteria.
Double-clicking an item in the Find in Trace window brings up the same item in the
Trace window.

To search in your trace data:

On the Trace window toolbar, click the Find button.

191

Reference information on trace

192

In the Find in Trace dialog box, specify your search criteria.

Typically, you can choose to search for:

e A specific piece of text, for which you can apply further search criteria

® An address range

o A combination of these, like a specific piece of text within a specific address range.
For more information about the various options, see Find in Trace dialog box, page 207.

When you have specified your search criteria, click Find. The Find in Trace window
is displayed, which means you can start analyzing the trace data. For more information,
see Find in Trace window, page 209.

BROWSING THROUGH TRACE DATA

To follow the execution history, simply look and scroll in the Trace window.
Alternatively, you can enter browse mode.

To enter browse mode, double-click an item in the Trace window, or click the Browse
toolbar button.

The selected item turns yellow and the source and Disassembly windows will highlight
the corresponding location. You can now move around in the trace data using the up and
down arrow keys, or by scrolling and clicking—the source and Disassembly windows
will be updated to show the corresponding location. This is like stepping backward and
forward through the execution history.

Double-click again to leave browse mode.

Reference information on trace

C-SPY® Debugging Guide
for RX

Reference information about:

Trace Settings dialog box, page 193

Trace window, page 196

Function Trace window, page 203

Trace Start Trigger breakpoint dialog box, page 205
Trace Stop Trigger breakpoint dialog box, page 206
Data Trace Collection breakpoints dialog box, page 207
Find in Trace dialog box, page 207

Find in Trace window, page 209

Trace Settings dialog box

Requirements

Trace mode

The Trace Settings dialog box is available from the C-SPY driver menu.

Trace mode: Dizplayed trace information
[Fillunti stop -

Trace autput: Freguency ratio:

[Trace output v]

Trace capacity:

[‘I Mbyte v] Drata trace
Trace type: [rata to collect:
[Branch+Data v] [AII data hd

Collected data accesses

[Bestart emulatar when trace buffer is ful Doata transfers
Stack operations
Shing operations
Arithmetical operations
Logical operations
Bit operations
EPU
Exceptions

[Qg J [Lancel]

Use this dialog box to configure trace generation and collection.

See also Getting started with trace, page 190.

A C-SPY hardware debugger driver.

Selects the trace collection mode. Choose between:

Fill until stop

Continues to collect trace data until the execution stops or a trace stop

breakpoint stops the collection.

Fill until full
Continues to collect trace data until the buffer is full.

Trace __o

193

Reference information on trace

194

Trace output

Trace capacity

Trace type

Controls the generation of trace data. Choose between:

CPU execution
CPU execution is given priority, meaning that some trace data might be lost.

Trace output

Generating trace data is given priority. Because the CPU execution is paused
when trace data is generated, execution speed slows down.

Do not output
No trace data is generated. The trace buffer of the MCU will be used.

Note: For the E1, E2, and E2 Lite/EZ-CUBE2 emulators and the J-Link debug probe,
only the setting Do not output is available.

Sets the size of the trace buffer: 1, 2, 4, 8, 16, or 32 Mbytes.

Note: This option is only available for the E20 emulator.

Selects the type of trace data that is collected. Choose between:

Branch

Collects source and destination address information on branches that occurred
during program execution.

Branch+Data
Collects branch and data access information. Only available for the RX600
architecture.

Data

Collects data information on events that occurred during program execution. For
the RX100 and RX200 architectures, only data accesses set up with data trace
collection breakpoints can be traced.

Restart emulator when trace buffer is full

C-SPY® Debugging Guide
for RX

Halts execution when the trace buffer is full and restarts the emulator after the buffer has
been read by the emulator. This option offers full trace, but might result in very large
amounts of trace data.

Note: This option is only available for the E20 emulator using a 38-pin connection, and
requires that the option Trace output is set to CPU execution or Trace output.

Trace __o

Display timestamp

Displays the timestamp of the collected trace data. This option is only available for the
RX600 architecture.

Frequency ratio
Selects a frequency division ratio for the timestamp counter. This option is only
available for the RX64M group of MCUs. Choose between:

No frequency division

The frequency of the timestamp counter is equal to the selected clock source
frequency.

1/16 frequency

The frequency of the timestamp counter is 1/16 of the selected clock source
frequency.

1/256 frequency

The frequency of the timestamp counter is 1/256 of the selected clock source
frequency.

1/4096 frequency

The frequency of the timestamp counter is 1/4096 of the selected clock source
frequency.

Data to collect
Selects the data trace information to collect. Choose between:

All data
Collects all data accesses.

Data trace collection breakpoints
Collects only the data accesses that are triggered by data trace collection

breakpoints.

Collected data accesses

Selects which types of memory accesses to collect and display in the Trace window.
Choose between:

Data transfers
Displays trace information collected from data transfers.

Stack operations

Displays trace information collected from stack operations.

195

Reference information on trace

String operations

Displays trace information collected from string operations.
Arithmetical operations

Displays trace information collected from arithmetical operations.
Logical operations

Displays trace information collected from logical operations.
Bit operations

Displays trace information collected from bit operations.
FPU

Displays trace information collected from FPU instructions.

Exceptions
Displays trace information collected from exceptions.

Trace window

The Trace window is available from the C-SPY driver menu.
This window displays the collected trace data.
The content of the Trace window depends on the C-SPY driver you are using.

See also Collecting and using trace data, page 190.

Requirements

Can be used with all C-SPY debugger drivers and debug probes.

Trace toolbar
The toolbar in the Trace window contains:

m Enable/Disable

Enables and disables collecting and viewing trace data in this window.

& Clear trace data

Clears the trace buffer. Both the Trace window and the Function Trace window
are cleared.

B Toggle source

Toggles the Trace column between showing only disassembly or disassembly
together with the corresponding source code.

C-SPY® Debugging Guide
196 for RX

Trace __o

Browse

(5]

Toggles browse mode on or off for a selected item in the Trace window, see
Browsing through trace data, page 192.

Find

]

Displays a dialog box where you can perform a search, see Find in Trace dialog
box, page 207.

Save

o

Displays a standard Save As dialog box where you can save the collected trace
data to a text file, with tab-separated columns.

g Edit Settings

In the C-SPY simulator, this button is not enabled.

For the C-SPY hardware debugger drivers, this button displays the Trace
Settings dialog box, see Trace Settings dialog box, page 193.

Progress bar

When a large amount of trace data has been collected, there might be a delay
before all of it has been processed and can be displayed. The progress bar
reflects that processing.

Display area (in the C-SPY simulator)

This area displays a collected sequence of executed machine instructions. In addition,
the window can display trace data.

Trace X

DEREEEEEE

Timestamp Trace Read Addr Read Data ‘Write Addr Wirite Data. ™
2647 FFFRO4AB 66 11 MoV 8o
b4 2648 FFFBO4AA BSR.A __write
__write:
2652 FFFRO4EC 61 02 cup
2653 FFFBO4BE ENE .S ?7__write_O
?7__write_0:
2656 FFFR04C2 BEA.A __dwrite

__durite:
2659 FFFRO4CA 71 00 FO ADD

2660 FFFe04CE MOV.L RLl, [SP]

2661 FFFAO04CD MOV. L R2,4:5[SP]

2663 TFFFAO4CF MOV.L R3,8:5[5P]

2665 FFF804D1 MOV.L SP.R2

2666 FFFAO403 66 Bl MOV .- v

This area contains these columns for the C-SPY simulator:

The leftmost column contains identifying icons to simplify navigation within
the buffer:

The yellow diamond indicates the trace execution point, marking when
target execution has started.

197

Reference information on trace

l\ The right green arrow indicates a call instruction.
1 The left green arrow indicates a return instruction.
I The dark green bookmark indicates a navigation bookmark.
 The red arrow indicates an interrupt.
| The violet bar indicates the results of a search.
Timestamp
The number of cycles elapsed to this point.

Trace

The collected sequence of executed machine instructions. Optionally, the
corresponding source code can also be displayed.

Read Addr, Read Data, Write Addr, Write Data

These columns show reads and writes to memory.

A red-colored row indicates that the previous row and the red row are not consecutive.
This means that there is a gap in the collected trace data, for example because trace data
has been lost due to an overflow.

Display area (in the C-SPY hardware debugger drivers)

This area displays a sequence of trace data collected from the hardware debugger
system. In addition, the window can display the assembler source code for branch trace

data.
I TS " =
2 [.

Trace Address Data Size Acc.. Type Cond Timestamp i
259 nooooenn FFE&84106 LONG R HEMORY 650165
260 BCHD 0 650173

FFES410E RTS
261 FFE840F2 DESTINATION 650185

__iar main call:

FFEB40F2 ESE. A main
262 noooo0e04 FFE840F2 LONG R HEMORY 650189
263 FFEB40C2 DESTINATION 650197
264 noooo0e04 FFE840F& LONG W HEMORY 650209 |:|

This area contains these columns for the C-SPY hardware debugger drivers:

#

The frame number for trace data from the hardware debugger system. Restarts
from zero each time data is collected.

C-SPY® Debugging Guide
198 for RX

Trace __o

Trace

For branch trace, the assembler source code is displayed if this information
could be collected.

Address
The memory address where the data access occurred.
Data
The data value that was read or written to the address.
Size
The size of the data read or written. This can be byte, word or long.
Access
The type of the memory access, R for read or w for write.
Type
The type of the collected data, one of:
o Memory — Data access
o Destination — The destination address of a branch
o BCND - Conditional branch information
o Lost — The corresponding trace information was lost
o Source — The address that was last executed before an interrupt (RX600
series) or where a branch occurred (RX100 and RX200 series)
Cond
1 indicates that the condition for executing a conditional branch instruction was
satisfied; 0 indicates that it was not satisfied.
Each row can show information on up to 15 branches.
Timestamp

The timestamp of the collected data. This column is only available for the
RX600 architecture. The timestamp counter frequency varies depending on the
RX MCU you are using:

o For RX61x and RX62x MCUs when EXTAL x 8 < or = 100 MHz, the
timestamp counter frequency is EXTAL x 8.

o For RX61x and RX62x MCUs when EXTAL x 8 > 100 MHz, the timestamp
counter frequency is EXTAL x 4.

o For RX63x and RX64x MCUs using the EXTAL pin, the timestamp counter
frequency is 1/2 the selected clock source frequency (or equal to the
selected clock source frequency if the division ratio is set to 1:1 by the
SCKCR. ICK bit).

199

Reference information on trace

200

Context menu

C-SPY® Debugging Guide
for RX

o For RX63x and RX64x MCUs not using the EXTAL pin, the timestamp
counter frequency is equal to the selected clock source frequency. For the
RX64M MCUs, you can use the Frequency ratio option in the Trace
Settings dialog box to decrease this frequency.

An italicized row indicates that the previous row and the italicized row are not
consecutive. This means that there is a gap in the collected trace data, for example
because trace data has been lost due to an overflow.

This context menu is available:
v | Enable

Clear

Embed Source

Browse

Find 3
Find All...

MNavigate 3
Bookmarks 3
Timestamp 3

Save...

Note: The contents of this menu are dynamic and depend on which features that your
combination of software and hardware supports. However, the list of menu commands
below is complete and covers all possible commands. Note that the shortcuts to the
submenu commands do not use the Ctrl key.

These commands are available:

Enable

Enables and disables collecting and viewing trace data in this window.

Clear
Clears the trace buffer. Both the Trace window and the Function Trace window
are cleared.

Embed source
Toggles the Trace column between showing only disassembly or disassembly
together with the corresponding source code.

Browse

Toggles browse mode on or off for a selected item in the Trace window, see
Browsing through trace data, page 192.

Trace __o

Find>Find (F)
Displays a dialog box where you can perform a search in the Trace window, see
Find in Trace dialog box, page 207. The contents of the window will scroll to
display the first match.

Find>Find Next (G)
Finds the next occurrence of the specified string.

Find>Find Previous (Shift+G)

Finds the previous occurrence of the specified string.

Find>Clear (Shift+F)
Removes all search highlighting in the window.

Find All
Displays a dialog box where you can perform a search in the Trace window, see
Find in Trace dialog box, page 207. The search results are displayed in the Find
in Trace window—available by choosing the View>Messages command, see
Find in Trace window, page 209.

Navigate>After Current Loop (L)
Identifies the selected program counter and scans the trace data forward,
collecting program counters, until it finds the same address again. It has now
detected a loop. (Loops longer than 1000 instructions are not detected.) Then it
navigates forward until it finds a program counter that is not part of the collected
set. This is useful for navigating out of many iterations of an idle or polling loop.

Navigate>Before Current Loop (Shift+L)
Behaves as After Current Loop, but navigates backward out of the loop.

Navigate>After Current Function (U)
Navigates to the next unmatched return instruction. This is similar to stepping
out of the current function.

Navigate>Before Current Function (Shift+U)
Navigates to the closest previous unmatched call instruction.

Navigate>Next Statement (S)
Navigates to the next instruction that belongs to a different C statement than the
starting point. It skips function calls, i.e. it tries to reach the next statement in
the starting frame.

Navigate>Previous Statement (Shift+S)

Behaves as Next statement, but navigates backward to the closest previous
different C statement.

201

Reference information on trace

202

C-SPY® Debugging Guide
for RX

Navigate>Next on Same Address (A)
Navigates to the next instance of the starting program counter address, typically
to the next iteration of a loop.
Navigate>Previous on Same Address (Shift+A)
Navigates to the closest previous instance of the starting program counter
address.
Navigate>Next Interrupt (I)
Navigates to the next interrupt entry. (To then find the matching interrupt exit,
follow up with After Current Function.)
Navigate>Previous Interrupt (Shift+I)
Navigates to the closest previous interrupt entry.
Navigate>Next Execution Start Point (E)
Navigates to the next point where the CPU was started, for example places
where the application stopped at breakpoints, or was stepped.
Navigate>Previous Execution Start Point (Shift+E)
Navigates to the closest previous point where the CPU was started.
Navigate>Next Discontinuity (D)
Navigates to the next discontinuity in the trace data.
Navigate>Previous Discontinuity (Shift+D)
Navigates to the closest previous discontinuity in the trace data.
Bookmarks>Toggle (+)
Adds a new navigation bookmark or removes an existing bookmark.
Bookmarks>Goto Next (B)
Navigates to the next navigation bookmark.
Bookmarks>Goto Previous (Shift+B)
Navigates to the closest previous navigation bookmark.
Bookmarks>Clear All
Removes all navigation bookmarks.

Bookmarks>location (0-9)

At the bottom of the submenu, the ten most recently defined bookmarks are
listed, with a shortcut key each from 0-9.

Trace __o

Timestamp>Set as Zero Point (Z)

Sets the selected row as a reference “zero” point in the collected sequence of
trace data. The count of rows in the Trace window will show this row as 0 and
recalculate the timestamps of all other rows in relation to this timestamp.

Timestamp>Go to Zero Point (Shift+Z)
Navigates to the reference “zero” point in the collected sequence of trace data
(if you have set one).

Timestamp>Clear Zero Point

Removes the reference “zero” point from the trace data and restores the original
timestamps of all rows.

Save

Displays a standard Save As dialog box where you can save the collected trace
data to a text file, with tab-separated columns.

Function Trace window
The Function Trace window is available from the C-SPY driver menu during a debug

session.
Function Trace x
Timestamp Address Call/Return
0 SRS

12 0=xB000023C _low_level init

14 0xzB000002E _ iar program_start + 46

16 0=80000154 ._ iar_data_init?2

28 0xB0000214 ..__lar_ copy_init?2

106 0=B80000174 . dar data_init2 + 32

112 0x80000034 _ iar program =tart + 52

v

This window displays a subset of the trace data displayed in the Trace window. Instead
of displaying all rows, the Function Trace window shows:

o The functions called or returned to, instead of the traced instruction

o The corresponding trace data.

Requirements

Can be used with all C-SPY debugger drivers and debug probes.

Toolbar

For information about the toolbar, see Trace window, page 196.

203

Reference information on trace

204

Display area

Context menu

C-SPY® Debugging Guide
for RX

There are two sets of columns available, and which set is used in your debugging system
depends on the debug probe and which trace sources that are available:

® The available columns are the same as in the Trace window, see Trace window,
page 196.

e For, these columns are available:

Timestamp
The number of cycles elapsed to this point according to the timestamp in the
debug probe.

Address
The address of the executed instruction.

Call/Return
The function that was called or returned to.

The context menu in this window is a subset of the context menu in the Trace window.
All operations performed using this context menu will have effect also in the Trace
window, and vice versa. For a description of the menu commands, see Trace window,
page 196.

Trace __o

Trace Start Trigger breakpoint dialog box

The Trace Start Trigger dialog box is available from the context menu that appears
when you right-click in the Breakpoints window.

Edit Breakpoint @
o Trace Start Trigger

Break at:

Edit...

Use this dialog box to set a Trace Start Trigger breakpoint where you want to start
collecting trace data. If you want to collect trace data only for a specific range, you must
also set a Trace Stop Trigger breakpoint where you want to stop collecting data.

See also Trace Stop Trigger breakpoint dialog box, page 206 and Trace data collection
using breakpoints, page 191.

To set a Trace Start Trigger breakpoint:

I In the editor or Disassembly window, right-click and choose Trace Start Trigger from
the context menu.

Alternatively, open the Breakpoints window by choosing View>Breakpoints.

2 In the Breakpoints window, right-click and choose New Breakpoint>Trace Start
Trigger.

Alternatively, to modify an existing breakpoint, select a breakpoint in the Breakpoints
window and choose Edit on the context menu.

3 In the Break at text box, specify an expression, an absolute address, or a source
location. Click OK.

4 When the breakpoint is triggered, the trace data collection starts.

Requirements

Can be used with all C-SPY debugger drivers and debug probes.

205

Reference information on trace

206

Trigger at

Specify the code location of the breakpoint. Alternatively, click the Edit button to open
the Enter Location dialog box, see Enfer Location dialog box, page 148.

Trace Stop Trigger breakpoint dialog box

C-SPY® Debugging Guide
for RX

The Trace Stop Trigger dialog box is available from the context menu that appears
when you right-click in the Breakpoints window.

Edit Breakpoint @
° Trace Stop Trigger

Break at:

Edit...

Use this dialog box to set a Trace Stop Trigger breakpoint where you want to stop
collecting trace data. If you want to collect trace data only for a specific range, you might
also need to set a Trace Start Trigger breakpoint where you want to start collecting data.

See also Trace Start Trigger breakpoint dialog box, page 205 and Trace data collection
using breakpoints, page 191.

To set a Trace Stop Trigger breakpoint:

In the editor or Disassembly window, right-click and choose Trace Stop Trigger from
the context menu.

Alternatively, open the Breakpoints window by choosing View>Breakpoints.

In the Breakpoints window, right-click and choose New Breakpoint>Trace Stop
Trigger.

Alternatively, to modify an existing breakpoint, select a breakpoint in the Breakpoints
window and choose Edit on the context menu.

In the Break at text box, specify an expression, an absolute address, or a source
location. Click OK.

When the breakpoint is triggered, the trace data collection stops.

Trace __o

Requirements

Can be used with all C-SPY debugger drivers and debug probes.

Trigger at

Specify the code location of the breakpoint. Alternatively, click the Edit button to open
the Enter Location dialog box, see Enter Location dialog box, page 148.

Data Trace Collection breakpoints dialog box

The Data Trace Collection breakpoints dialog box is available from the context menu
in the editor window, Breakpoints window, the Memory window, and in the
Disassembly window.

Use this dialog box to set breakpoints to collect trace data from one of the hardware
debugger drivers. Data trace collection breakpoints do not break the execution.

This dialog box is designed identically to the Data breakpoints dialog box, see Data
breakpoints dialog box (C-SPY hardware debugger drivers), page 144, for reference
information.

Requirements
A C-SPY hardware debugger driver.

Find in Trace dialog box

The Find in Trace dialog box is available by clicking the Find button on the Trace
window toolbar or by choosing Edit>Find and Replace>Find.

207

Reference information on trace

Requirements

Text search

Address range

C-SPY® Debugging Guide
208 for RX

Note that the Edit>Find and Replace>Find command is context-dependent. It displays
the Find in Trace dialog box if the Trace window is the current window or the Find
dialog box if the editor window is the current window.

Find in Trace *
Text search | End |
| v]
Cancel
[IMatch case

[IMatch whole word

[only search in one column

Address range

Start | 0x0 |

End | OxFFFF |

Use this dialog box to specify the search criteria for advanced searches in the trace data.

The search results are displayed in the Find in Trace window—available from the
View>Messages menu, see Find in Trace window, page 209.

See also Searching in trace data, page 191.

Can be used with all C-SPY debugger drivers and debug probes.

Specify the string you want to search for. To specify the search criteria, choose between:

Match case
Searches only for occurrences that exactly match the case of the specified text.
Otherwise int will also find INT, Int, and so on.

Match whole word

Searches only for the string when it occurs as a separate word. Otherwise int
will also find print, sprintf, and so on.

Only search in one column
Searches only in the column you selected from the drop-down list.

Specify the address range you want to display or search. The trace data within the
address range is displayed. If you have also specified a text string in the Text search
field, the text string is searched for within the address range.

Trace __o

Find in Trace window
The Find in Trace window is available from the View>Messages menu. Alternatively,
it is automatically displayed when you perform a search using the Find in Trace dialog
box or perform a search using the Find in Trace command available from the context
menu in the editor window.

Find in Trace x
Cycles Trace callCount *
3811 0xB0002b6: LDR.N RO, [PC, #0Oxc] ; callCount [u]
3943 0xB0002b6: LDR.N RO, [PC, #0Oxc] ; callCount [u)
4276 0xB000296: LDR.N RO, [PC, #0Ox2c] ; callCount [u]
4281 0xB0002%9c: LDR.N Rl, [PC, #0x24] ; callCount [u)
4362 0xB0002b6: LDR.N RO, [PC, #0Oxc] ; callCount 1 |E
4494 0xB0002b6: LDR.N RO, [PC, #0Oxc] ; callCount 1
4626 0xB0002b6: LDR.N RO, [PC, #0Oxc] ; callCount 1
4758 0xB0002b6: LDR.N RO, [PC, #0Oxc] ; callCount 1 -

This window displays the result of searches in the trace data. Double-click an item in the
Find in Trace window to bring up the same item in the Trace window.

Before you can view any trace data, you must specify the search criteria in the Find in
Trace dialog box, see Find in Trace dialog box, page 207.

See also Searching in trace data, page 191.

Requirements

Can be used with all C-SPY debugger drivers and debug probes.
Display area

The Find in Trace window looks like the Trace window and shows the same columns
and data, but only those rows that match the specified search criteria.

209

Reference information on trace

C-SPY® Debugging Guide
210 for RX

The application timeline

e Introduction to analyzing your application’s timeline
e Analyzing your application’s timeline

e Reference information on application timeline

Introduction to analyzing your application’s timeline
These topics are covered:
e Briefly about analyzing the timeline

o Requirements for timeline support
See also:

o Trace, page 189

BRIEFLY ABOUT ANALYZING THE TIMELINE

C-SPY can provide information for various aspects of your application, collected when
the application is running. This can help you to analyze the application’s behavior.

You can view the timeline information in different representations:

o Asdifferent graphs that correlate with the running application in relation to a shared
time axis. The graphs appear either in the Timeline window or the Sampled graphs
window, depending on the source of the data

® As detailed logs
o As summaries of the logs.

Depending on the capabilities of your hardware, the debug probe, and the C-SPY driver
you are using, timeline information can be provided for:

Call stack Can be represented in the Timeline window, as a graph that displays the
sequence of function calls and returns collected by the trace system. You
get timing information between the function invocations.

Note that there is also a related Call Stack window and a Function
Trace window, see Call Stack window, page 84 and Function Trace
window, page 203, respectively.

211

Introduction to analyzing your application’s timeline

Data logging Based on data logs collected by the trace system for up to four different
variables or address ranges, specified by means of Data Log
breakpoints. Choose to display the data logs:

o In the Timeline window, as a graph of how the values change over
time.
e In the Data Log window and the Data Log Summary window.
Interrupt Based on interrupt logs collected by the trace system. Choose to display
logging the interrupt logs:
o In the Timeline window, as a graph of the interrupt events during
the execution of your application.
o In the Interrupt Log window and the Interrupt Log Summary

window.

Interrupt logging can, for example, help you locate which interrupts you
can fine-tune to make your application more efficient.

For more information, see the chapter Interrupts.

Power Based on logged power measurement samples generated by the debug
logging probe or associated hardware. Choose to display the power logs:

e In the Timeline window, as a graph of the power measurement
samples.

e In the Power Log window.

Power logs can be useful for finding peaks in the power consumption
and by double-clicking on a value you can see the corresponding source
code. The precision depends on the frequency of the samples, but there
is a good chance that you find the source code sequence that caused the
peak.

For more information, see the chapter Power debugging.

C-SPY® Debugging Guide
212 for RX

The application timeline °

REQUIREMENTS FOR TIMELINE SUPPORT

Depending on the capabilities of the hardware, the debug probe, and the C-SPY driver
you are using, trace-based timeline information is supported for:

Call Stack Interrupt Log Power Log
Target system Data Log graph

graph graph graph
C-SPY simulator Yes Yes Yes —
C-SPY J-Link driver — — — Yes
C-SPY E2 driver — — — Yes

Table 10: Supported graphs in the Timeline window

For more information about requirements related to trace data, see Requirements for
using trace, page 190.

Analyzing your application’s timeline
These tasks are covered:
Displaying a graph in the Timeline window
Navigating in the graphs
Analyzing performance using the graph data

Getting started using data logging

Getting started using data sampling
See also:

® Debugging in the power domain, page 275
o Using the interrupt system, page 335

DISPLAYING A GRAPH IN THE TIMELINE WINDOW

The Timeline window can display several graphs—follow this example procedure to
display any of these graphs. For an overview of the graphs and what they display, see
Briefly about analyzing the timeline, page 211.

I Choose J-Link>Operating Frequency and specify the operating frequency of the
MCU.

If you are using the C-SPY simulator, choose Simulator>Simulated Frequency to set
up a frequency that matches the simulated hardware.

2 Choose Timeline from the C-SPY driver menu to open the Timeline window.

213

Analyzing your application’s timeline

C-SPY® Debugging Guide

214 for RX

In the Timeline window, right-click in the window and choose Select Graphs from the
context menu to select which graphs to be displayed.

In the Timeline window, right-click in the graph area and choose Enable from the
context menu to enable a specific graph.

For the Data Log graph, you must set a Data Log breakpoint for each variable you want
a graphical representation of in the Timeline window. See Data Log breakpoints
dialog box, page 146.

Click Go on the toolbar to start executing your application. The graphs that you have
enabled appear.

NAVIGATING IN THE GRAPHS

After you have performed the steps in Displaying a graph in the Timeline window, page
213, you can use any of these alternatives to navigate in the graph:

o Right-click and from the context menu choose Zoom In or Zoom Out.
Alternatively, use the + and — keys. The graph zooms in or out depending on which
command you used.

o Right-click in the graph and from the context menu choose Navigate and the
appropriate command to move backwards and forwards on the graph. Alternatively,
use any of the shortcut keys—arrow keys, Home, End, and Ctrl+End.

o Double-click on a sample of interest to highlight the corresponding source code in
the editor window and in the Disassembly window.

o Click on the graph and drag to select a time interval, which will correlate to the
running application. The selection extends vertically over all graphs, but appears
highlighted in a darker color for the selected graph. Press Enter or right-click and
from the context menu choose Zoom>Zoom to Selection. The selection zooms in.
Use the navigation keys in combination with the Shift key to extend the selection.

ANALYZING PERFORMANCE USING THE GRAPH DATA

The Timeline window provides a set of tools for analyzing the graph data.

In the Timeline window, right-click and choose Time Axis Unit from the context
menu. Select which unit to be used on the time axis—choose between Seconds and
Cycles. If Cycles is not available, the graphs are based on different clock sources.

Execute your application to display a graph, following the steps described in
Displaying a graph in the Timeline window, page 213.

Whenever execution stops, point at the graph with the mouse pointer to get detailed
tooltip information for that location.

The application timeline °

— } }

IRQTI at level 1
CPU Clock (5 MHz)

t1: 20148.00 us (100740 cycles)
t2: 20859.20 us (104296 cycles) |

T(t2 - t1): 711.20 us (3556 cycles)

L | BN

—| '7
— =
I = U
IR
Tl
=
0.020s 0.021s 0.022s 0.023s 0.0;

Note that if you have enabled several graphs, you can move the mouse pointer over the
different graphs to get graph-specific information.

4 Click in the graph and drag to select a time interval. Point in the graph with the mouse
pointer to get timing information for the selection.

Start time of

e 127
selection in
seconds and yﬂw
cycles T t1: 181,70 us (1817 cycles)

Fl-t2: 194,50 us (1945 cycles) “The frequency that

End of selection

7]
: LT (t2 - £1): 12.80 us (128 cycles) Nl podsleclthic
in seconds and

Ul | tim e interval.

cycles i 1/T: 78125 Hz —— 1= | Typically, useful for
' _ periodically
R t + .
. 1 - 0.00020s 0.00025s occurring events.

The time interval
of the selection

GETTING STARTED USING DATA LOGGING
I To set a data log breakpoint, use one of these methods:

o In the Breakpoints window, right-click and choose New Breakpoint>Data Log to
open the breakpoints dialog box. Set a breakpoint on the memory location that you
want to collect log information for. This can be specified either as a variable or as an
address.

215

Analyzing your application’s timeline

216

C-SPY® Debugging Guide
for RX

o Inthe Memory window, select a memory area, right-click and choose Set Data Log
Breakpoint from the context menu. A breakpoint is set on the start address of the
selection.

o In the editor window, select a variable, right-click and choose Set Data Log
Breakpoint from the context menu. The breakpoint will be set on the part of the
variable that the microcontroller can access using one instruction.

You can set up to four data log breakpoints. For more information, see Data Log
breakpoints, page 125.

Choose C-SPY driver>Data Log to open the Data Log window. Optionally, you can
also choose:

o C-SPY driver>Data Log Summary to open the Data Log Summary window

o C-SPY driver>Timeline to open the Timeline window to view the Data Log graph.

From the context menu, available in the Data Log window, choose Enable to enable
the logging.

Start executing your application program to collect the log information.

To view the data log information, look in the Data Log window, the Data Log
Summary window, or the Data Log graph in the Timeline window.

If you want to save the log or summary to a file, choose Save to log file from the
context menu in the window in question.

To disable data logging, choose Disable from the context menu in each window where
you have enabled it.

GETTING STARTED USING DATA SAMPLING

Choose C-SPY driver>Data Sample Setup to open the Data Sample Setup window.
In the Data Sample Setup window, perform these actions:

o In the Expression column, type the name of the variable for which you want to
sample data. The variable must be an integral type with a maximum size of 32 bits
and you can specify up to four variables. Make sure that the checkbox is selected for
the variable that you want to sample.

o In the Sampling interval column, type the number of milliseconds to pass between
the samples.

To view the result of data sampling, you must enable it in the window in question:

o Choose C-SPY driver>Data Sample to open the Data Sample window. From the
context menu, choose Enable.

The application timeline °

o Choose C-SPY driver>Sampled Graphs to open the Sampled Graphs window.
From the context menu, choose Enable.

4 Start executing your application program. This starts the data sampling. When the
execution stops, for example because a breakpoint is triggered, you can view the result
either in the Data Sample window or as the Data Sample graph in the Sampled
Graphs window

5 If you want to save the log or summary to a file, choose Save to log file from the
context menu in the window in question.

6 To disable data sampling, choose Disable from the context menu in each window
where you have enabled it.

Reference information on application timeline
Reference information about:

Timeline window—Call Stack graph, page 218
Timeline window—Data Log graph, page 221
Data Log window, page 225

Data Log Summary window, page 228

Data Sample window, page 230

Data Sample Setup window, page 232
Sampled Graphs window, page 234

Viewing Range dialog box, page 238
See also:

o Timeline window—Interrupt Log graph, page 350

o Timeline window—Power graph, page 285

217

Reference information on application timeline

Timeline window—Call Stack graph

The Timeline window is available from the C-SPY driver menu during a debug session.

I Timing information

Timeline =
1] -
W W Wi W W
[putchar]| [putchar]| [putchar]| [putchar]| [putchar]| 3
) |?Springboa| |?Springboa| |?Springboa| |?Springboa| |?Springboa|
putch [_printf 517
?Spring [printf 537 |
_Printf | [nmiHandler::??INTVEC 16 1
printf | [nmiHandler:??INTVEC 16 ;
main 87 / <
0.000022s, ©.000024s 8.008026s 8.080028s 8.008030s 8.008032s
Il [l 3
Commaon time axis ‘ { Selection for current graph
This window displays trace data represented as different graphs, in relation to a shared
time axis.
The Call Stack graph displays the sequence of function calls and returns collected by the
trace system.
Note: There is a limit on the number of saved logs. When this limit is exceeded, the
oldest entries in the buffer are erased.
Requirements

The C-SPY simulator.

Display area for the Call Stack graph

Each function invocation is displayed as a horizontal bar which extends from the time
of entry until the return. Called functions are displayed above its caller. The horizontal
bars use four different colors:

Medium green for normal C functions with debug information

Light green for functions known to the debugger through an assembler label

Medium yellow for normal interrupt handlers, with debug information

Light yellow for interrupt handlers known to the debugger through an assembler
label

C-SPY® Debugging Guide
218 for RX

Context menu

The application timeline °

The timing information represents the number of cycles spent in, or between, the
function invocations.

At the bottom of the window, there is a shared time axis that uses seconds or cycles as
the time unit.

Click in the graph to display the corresponding source code.

Note: For highly optimized code, C-SPY might not be able to identify all calls. This
means that for highly optimized code, the call stack is not entirely trustworthy.

This context menu is available:

MNavigate 3
v Auto Scroll
Zoom 3
Call Stack
v Enable

v | Show Timing

Go to Source

Save to File...
Select Graphs 3
Time Axis Unit 3

Note: The contents of this menu are dynamic and depend on which features that your
combination of software and hardware supports. However, the list of menu commands
below is complete and covers all possible commands.

These commands are available:

Navigate
Commands for navigating the graph(s). Choose between:

Next moves the selection to the next relevant point in the graph. Shortcut key:
right arrow.

Previous moves the selection backward to the previous relevant point in the
graph. Shortcut key: left arrow.

First moves the selection to the first data entry in the graph. Shortcut key:
Home.

Last moves the selection to the last data entry in the graph. Shortcut key: End.

End moves the selection to the last data in any displayed graph, in other words
the end of the time axis. Shortcut key: Ctrl+End.

219

Reference information on application timeline

220

C-SPY® Debugging Guide
for RX

Auto Scroll
Toggles automatic scrolling on or off. When on, the most recently collected data
is automatically displayed when you choose Navigate>End.

Zoom

Commands for zooming the window, in other words, changing the time scale.
Choose between:

Zoom to Selection makes the current selection fit the window. Shortcut key:
Return.

Zoom In zooms in on the time scale. Shortcut key: +
Zoom Out zooms out on the time scale. Shortcut key: —

10ns, 100ns, 1us, etc makes an interval of 10 nanoseconds, 100 nanoseconds, 1
microsecond, respectively, fit the window.

1ms, 10ms, etc makes an interval of 1 millisecond or 10 milliseconds,
respectively, fit the window.

10m, 1h, etc makes an interval of 10 minutes or 1 hour, respectively, fit the
window.

Call Stack
A heading that shows that the Call stack-specific commands below are available.

Enable
Toggles the display of the graph on or off. If you disable a graph, that graph will
be indicated as OFF in the window. If no data has been collected for a graph, no
data will appear instead of the graph.

Show Timing

Toggles the display of the timing information on or off.

Go To Source
Displays the corresponding source code in an editor window, if applicable.

Save to File

Saves all contents (or the selected contents) of the Call Stack graph to a file. The
menu command is only available when C-SPY is not running.

Select Graphs
Selects which graphs to be displayed in the Timeline window.

Time Axis Unit
Selects the unit used in the time axis—choose between Seconds and Cycles.

The application timeline __¢

If Cycles is not available, the graphs are based on different clock sources. In that
case you can view cycle values as tooltip information by pointing at the graph
with your mouse pointer.

Profile Selection
Enables profiling time intervals in the Function Profiler window. Note that this
command is only available if the C-SPY driver supports PC Sampling. See
Selecting a time interval for profiling information, page 247.

Timeline window—Data Log graph
The Timeline window is available from the C-SPY driver menu during a debug session.

[Graph in Levels style] [Graph in Linear style]

N
Y

Tmeine \ \ x
Y\

| 0x10 —— ox0n 0x10 ox10

8.80398s 8.08399s © 9.80400s 8.80401s 8.80402s

€ Ve Il ¥

A

Commaon time axis]

This window displays trace data represented as different graphs, in relation to a shared
time axis.

The Data Log graph displays the data logs collected by the trace system, for up to four
different variables or address ranges specified as Data Log breakpoints.

Note: There is a limit on the number of saved logs. When this limit is exceeded, the
oldest entries in the buffer are erased.

Requirements
The C-SPY simulator.

221

Reference information on application timeline

222

Display area for the Data Log graph
Where:

Context menu

C-SPY® Debugging Guide
for RX

At

The label area at the left end of the graph displays the variable name or the address
for which you have specified the Data Log breakpoint.

The graph itself displays how the value of the variable changes over time. The label
area also displays the limits, or range, of the Y-axis for a variable. You can use the
context menu to change these limits. The graph is a graphical representation of the
information in the Data Log window, see Data Log window, page 225.

The graph can be displayed either as a thin line between consecutive logs or as a
rectangle for every log (optionally color-filled).

A red vertical line indicates overflow, which means that the communication channel
failed to transmit all data logs from the target system. A red question mark indicates
a log without a value.

the bottom of the window, there is a shared time axis that uses seconds or cycles as

the time unit.

This context menu is available:

v

<

MNavigate 3
Auto Scroll

Zoom 3

Data Log
Enable
Clear

o

Viewing Range...

Size 3
Style 3
Solid Graph

Show Numerical Values
Hexadecimal

Go to Source

Select Graphs 3
Time Axis Unit 3

Note: The contents of this menu are dynamic and depend on which features that your
combination of software and hardware supports. However, the list of menu commands
below is complete and covers all possible commands.

The application timeline °

These commands are available:
Navigate

Commands for navigating the graph(s). Choose between:

Next moves the selection to the next relevant point in the graph. Shortcut key:
right arrow.

Previous moves the selection backward to the previous relevant point in the
graph. Shortcut key: left arrow.

First moves the selection to the first data entry in the graph. Shortcut key:
Home.

Last moves the selection to the last data entry in the graph. Shortcut key: End.

End moves the selection to the last data in any displayed graph, in other words
the end of the time axis. Shortcut key: Ctrl+End.

Auto Scroll

Toggles automatic scrolling on or off. When on, the most recently collected data
is automatically displayed when you choose Navigate>End.

Zoom

Commands for zooming the window, in other words, changing the time scale.
Choose between:

Zoom to Selection makes the current selection fit the window. Shortcut key:
Return.

Zoom In zooms in on the time scale. Shortcut key: +
Zoom Out zooms out on the time scale. Shortcut key: —

10ns, 100ns, 1us, etc makes an interval of 10 nanoseconds, 100 nanoseconds, 1
microsecond, respectively, fit the window.

1ms, 10ms, etc makes an interval of 1 millisecond or 10 milliseconds,
respectively, fit the window.

10m, 1h, etc makes an interval of 10 minutes or 1 hour, respectively, fit the
window.

Data Log
A heading that shows that the Data Log-specific commands below are available.

Enable

Toggles the display of the graph on or off. If you disable a graph, that graph will
be indicated as OFF in the window. If no data has been collected for a graph, no
data will appear instead of the graph.

223

Reference information on application timeline

Clear

Deletes the log information. Note that this will also happen when you reset the
debugger.

Variable
The name of the variable for which the Data Log-specific commands below
apply. This menu command is context-sensitive, which means it reflects the
Data Log graph you selected in the Timeline window (one of up to four).
Viewing Range
Displays a dialog box, see Viewing Range dialog box, page 238.

Size
Determines the vertical size of the graph—choose between Small, Medium,
and Large.

Solid Graph

Displays the graph as a color-filled solid graph instead of as a thin line.

Show Numerical Value

Shows the numerical value of the variable, in addition to the graph.
Hexadecimal

Toggles between displaying the selected value in decimal or hexadecimal

format. Note that this setting also affects the log window.

Go To Source
Displays the corresponding source code in an editor window, if applicable.

Select Graphs
Selects which graphs to be displayed in the Timeline window.

Time Axis Unit
Selects the unit used in the time axis—choose between Seconds and Cycles.
If Cycles is not available, the graphs are based on different clock sources. In that

case you can view cycle values as tooltip information by pointing at the graph
with your mouse pointer.

C-SPY® Debugging Guide
224 for RX

The application timeline °

Data Log window
The Data Log window is available from the C-SPY driver menu.

Time | Program Counter | 11 Address 52 Address 2
. lG6Es === W 0=0000 @ 0=2004
0.160us O=FFEOOD49 = @ 0=x2000
24 .480us O0=FFEOOOBS R 0=0000 @ 0=2006
24 .720us O0=FFEOOOBF W O0=0042 @ 0=2004
24 .760us O=FFEOOOCE R 0O=0042 @ 0=2006
24 .960us O=FFEOODOE4 W O=00004444 @ 0=2000
FE FEfGes O=FFE00104 R 0O=0042 @ O=2004+7
79.000us — W O0=0084 @ 0=2004
100.800us O=FFEOO104 R 0=0084 @ 0=2006
101.040us O=FFEOO10E W 0=00CA @ 0=2004
JFE Edfus Overflow
136.880us O=FFEOO10E = @ 0=2004 a3
White rows indicate Grey rows indicate

read accesses write accesses

Use this window to log accesses to up to four different memory locations or areas.

Note: There is a limit on the number of saved logs. When this limit is exceeded, the
oldest entries in the buffer are erased.

See also Getting started using data logging, page 215.

Requirements
The C-SPY simulator.

Display area

Each row in the display area shows the time, the program counter, and, for every tracked
data object, its value and address. All information is cleared on reset. The information
is displayed in these columns:

Time
If the time is displayed in italics, the target system has not been able to collect a
correct time, but instead had to approximate it.
This column is available when you have selected Show time from the context
menu.

Cycles

The number of cycles from the start of the execution until the event.

225

Reference information on application timeline

If a cycle is displayed in italics, the target system has not been able to collect a
correct time, but instead had to approximate it.

This column is available when you have selected Show cycles from the context
menu.

Program Counter*
Displays one of these:

An address, which is the content of the pc, that is, the address of the instruction
that performed the memory access.

---, the target system failed to provide the debugger with any information.

Overflow in red, the communication channel failed to transmit all data from the
target system.

Value

Displays the access type and the value (using the access size) for the location or
area you want to log accesses to. For example, if zero is read using a byte access
it will be displayed as 0x00, and for a long access it will be displayed as
0x00000000.

To specify what data you want to log accesses to, use the Data Log breakpoint
dialog box. See Data Log breakpoints, page 125.

Address

The actual memory address that is accessed. For example, if only a byte of a
word is accessed, only the address of the byte is displayed. The address is
calculated as base address + offset, where the base address is retrieved from the
Data Log breakpoint dialog box and the offset is retrieved from the logs. If the
log from the target system does not provide the debugger with an offset, the
offset contains + 2.

* You can double-click a line in the display area. If the value of the pc for that line is
available in the source code, the editor window displays the corresponding source code
(this does not include library source code).

C-SPY® Debugging Guide
226 for RX

The application timeline °

Context menu

This context menu is available:
v Enable
Clear
v Hexadecimal

Save to File...

v | Show Time
Show Cycles

These commands are available:

Enable
Enables the logging system. The system will log information also when the
window is closed.

Clear
Deletes the log information. Note that this will also happen when you reset the
debugger.

Hexadecimal
Toggles between displaying the selected value in decimal or hexadecimal
format. Note that this setting also affects the log window.

Save to File
Displays a standard file selection dialog box where you can select the
destination file for the log information. The entries in the log file are separated
by TaB and LF characters. An X in the Approx column indicates that the
timestamp is an approximation.

Show Time
Displays the Time column. If the Time column is displayed by default in the
C-SPY driver you are using, this menu command is not available.

Show Cycles

Displays the Cycles column. If the Cycles column is not supported in the C-SPY
driver you are using, this menu command is not available.

227

Reference information on application timeline

228

Data Log Summary window

The Data Log Summary window is available from the C-SPY driver menu.

x

Data
tVarl
tVar2
tvar3

DataLog Summary

Requirements

Display area

C-SPY® Debugging Guide
for RX

Total Accesses Read Accesses Write Accesses Unknown Accesses
42 8 25 17

66 17 49 8

32 32 2] 2]

Approximative time count: 16
Overflow count: 8
Current time: 4301.52 us

This window displays a summary of data accesses to specific memory location or areas.

See also Getting started using data logging, page 215.

The C-SPY simulator.

Each row in this area displays the type and the number of accesses to each memory
location or area in these columns. Summary information is listed at the bottom of the
display area.

Data
The name of the data object you have selected to log accesses to. To specify
what data object you want to log accesses to, use the Data Log breakpoint
dialog box. See Data Log breakpoints, page 125.

Total Accesses
The total number of accesses.
If the sum of read accesses and write accesses is less than the total accesses, the
target system for some reason did not provide valid access type information for
all accesses.

Read Accesses

The total number of read accesses.

Write Accesses
The total number of write accesses.

The application timeline °

Unknown Accesses
The number of unknown accesses, in other words, accesses where the access
type is not known.

Approximative time count
The information displayed depends on the C-SPY driver you are using.

For some C-SPY drivers, this information is not displayed or the value is always
zero. In this case, all logs have an exact time stamp.

For other C-SPY drivers, a non-zero value is displayed. The value represents the
amount of logs with an approximative time stamp. This might happen if the
bandwidth in the communication channel is too low compared to the amount of
data packets generated by the CPU or if the CPU generated packets with an
approximative time stamp.

Overflow count
The information displayed depends on the C-SPY driver you are using.

For some C-SPY drivers, this information is not displayed or the value is always
zero.

For other C-SPY drivers, the number represents the amount of overflows in the
communication channel which can cause logs to be lost. If this happens, it
indicates that logs might be incomplete. To solve this, make sure not to use all
C-SPY log features simultaneously or check used bandwidth for the
communication channel.

Current time/Current cycles
The information displayed depends on the C-SPY driver you are using.

For some C-SPY drivers, the value is always zero or not visible at all.

For other C-SPY drivers, the number represents the current time or cycles—the
number of cycles or the execution time since the start of execution.

Context menu

This context menu is available:
v | Enable

Clear

Save to File...

Show Time

v | Show Cycles

229

Reference information on application timeline

230

Data Sample window

C-SPY® Debugging Guide
for RX

These commands are available:

Enable
Enables the logging system. The system will log information also when the
window is closed.

Clear
Deletes the log information. Note that this will also happen when you reset the
debugger.

Save to File
Displays a standard file selection dialog box where you can select the
destination file for the log information. The entries in the log file are separated
by TaB and LF characters. An X in the Approx column indicates that the
timestamp is an approximation.

Show Time
Displays the Time column. If the Time column is displayed by default in the
C-SPY driver you are using, this menu command is not available.

Show Cycles

Displays the Cycles column. If the Cycles column is not supported in the C-SPY
driver you are using, this menu command is not available.

The Data Sample window is available from the C-SPY driver menu.

Data Sample @
Sampling Time myVarl myVar2 i
1160 ms R 8xB@ R ©x000006ES
1170 ms R @x1@
1178 ms Stop
1180 ms R 8x1@ R ©x06eeeeDs
1196 ms R 8x20
1280 ms R @x1@
1210 ms R 8x1@ R ©x0000060B8
1220 ms R 8x8e -

Use this window to view the result of the data sampling for the variables you have
selected in the Data Sample Setup window.

Choose Enable from the context menu to enable data sampling.

See also Getting started using data sampling, page 216.

The application timeline °

Requirements

Can be used with any supported hardware debugger system.

Display area
This area contains these columns:

Sampling Time
The time when the data sample was collected. Time starts at zero after a reset.
Every time the execution stops, a red Stop indicates when the stop occurred.
The selected expression

The column headers display the names of the variables that you selected in the
Data Sample Setup window. The column cells display the sampling values for
the variable.

There can be up to four columns of this type, one for each selected variable.

* You can double-click a row in the display area. If you have enabled the data sample
graph in the Sampled Graphs window, the selection line will be moved to reflect the
time of the row you double-clicked.

Context menu

This context menu is available:
v Enable

Clear

Hexadecimal (for myVarl)
v Hexadecimal (for myVar2)

Save to File...

Open Setup Window

These commands are available:

Enable

Enables data sampling.

Clear
Clears the sampled data.

Hexadecimal

Toggles between displaying the selected value in decimal or hexadecimal
format. Note that this setting also affects the log window.

231

Reference information on application timeline

Save to File
Displays a standard file selection dialog box where you can select the
destination file for the log information. The entries in the log file are separated
by TaB and LF characters. An X in the Approx column indicates that the
timestamp is an approximation.

Open setup window
Opens the Data Sample Setup window.

Data Sample Setup window

The Data Sample Setup window is available from the C-SPY driver menu.

Data Sample Setup @
Expression Address Size Sampling interval [ms]
J| myvarl 0xFFFFBO2A 1 1@
v myVar2 OxFFFFBO04 4 48
cl OxFFFFBO2B 1 1680

Use this window to specify up to four variables to sample data for. You can view the
sampled data for the variables either in the Data Sample window or as graphs in the
Sampled Graphs window.

See also Getting started using data sampling, page 216.

Requirements

Can be used with any supported hardware debugger system.

Display area
This area contains these columns:

Expression
Type the name of the variable which must be an integral type with a maximum
size of 32 bits. Click the check box to enable or disable data sampling for the
variable.

Alternatively, drag an expression from the editor window and drop it in the
display area.

Variables in the expressions must be statically located, for example global
variables.

C-SPY® Debugging Guide
232 for RX

The application timeline °

Address
The actual memory address that is accessed. The column cells cannot be edited.
Size
The size of the variable, either 1, 2, or 4 bytes. The column cells cannot be
edited.
Sampling interval [ms]
Type the number of milliseconds to pass between the samples. The shortest

allowed interval is 10 ms and the interval you specify must be a multiple of that.

Note that the sampling time you specify is just the interval (according to the
Microsoft Windows calculations) for how often C-SPY checks with the C-SPY
driver (which in turn must check with the MCU for a value). If this takes longer
than the sampling interval you have specified, the next sampling will be omitted.
If this occurs, you might want to consider increasing the sampling time.

Context menu

This context menu is available:
Remove

Remove All
These commands are available:

Remove

Removes the selected variable.

Remove All
Removes all variables.

233

Reference information on application timeline

Sampled Graphs window

The Sampled Graphs window is available from the C-SPY driver menu.

Sampled Graphs @

Color-filed | !ﬂ_lﬁ

horizontal graph |

I Linear graph ‘

1288ms 1488ms 1608ms 1886ms 2008ms 2208ms

4 L 2

Use this window to display graphs for up to four different variables, and where:

o The graph displays how the value of the variable changes over time. The area on the
left displays the limits, or range, of the Y-axis for the variable. You can use the
context menu to change these limits. The graph is a graphical representation of the
information in the Data Sample window, see Data Sample window, page 230.

o The graph can be displayed as levels, where a horizontal line—optionally
color-filled—shows the value until the next sample. Alternatively, the graph can be
linear, where a line connects consecutive samples.

e A red vertical line indicates the time of application execution stops.

At the bottom of the window, there is a shared time axis that uses seconds as the time
unit.

To navigate in the graph, use any of these alternatives:
e Right-click and choose Zoom In or Zoom Out from the context menu.
Alternatively, use the + and — keys to zoom.

o Right-click in the graph and choose Navigate and the appropriate command to
move backward and forward on the graph. Alternatively, use any of the shortcut
keys: arrow keys, Home, End, and Ctrl+End.

o Double-click on a sample to highlight the corresponding source code in the editor
window and in the Disassembly window.

o Click on the graph and drag to select a time interval. Press Enter or right-click and
choose Zoom>Zoom to Selection from the context menu. The selection zooms in.

Hover with the mouse pointer in the graph to get detailed tooltip information for that
g location.

C-SPY® Debugging Guide
234 for RX

The application timeline °

See also Getting started using data sampling, page 216.

Requirements

Can be used with any supported hardware debugger system.

Context menu

This context menu is available:
MNavigate 3
v Auto Scroll

Zoom 3

Data Sample
v | Enable

Clear

myVar2:

Viewing Range...

Size 3

Style 3
v | Solid Graph

Show Mumerical Values

<

v | Hexadecimal
Select Graphs 3
These commands are available:

Navigate
Commands for navigating in the graphs. Choose between:

Next moves the selection to the next relevant point in the graph. Shortcut key:
right arrow.

Previous moves the selection to the previous relevant point in the graph.
Shortcut key: left arrow.

First moves the selection to the first data entry in the graph. Shortcut key:
Home.

Last moves the selection to the last data entry in the graph. Shortcut key: End.

End moves the selection to the last data in any displayed graph, in other words
the end of the time axis. Shortcut key: Ctrl+End.

Auto Scroll

Toggles automatic scrolling on or off. When on, the most recently collected data
is automatically displayed when you choose Navigate>End.

235

Reference information on application timeline

236

C-SPY® Debugging Guide
for RX

Zoom
Commands for zooming the window, in other words, changing the time scale.
Choose between:

Zoom to Selection makes the current selection fit the window. Shortcut key:
Return.

Zoom In zooms in on the time scale. Shortcut key: +
Zoom Out zooms out on the time scale. Shortcut key: -

1us, 10us, 100us makes an interval of 1 microseconds, 10 microseconds, or 100
microseconds, respectively, fit the window.

1ms, 10ms, 100ms makes an interval of 1 millisecond, 10 milliseconds, or 100
milliseconds, respectively, fit the window.

1s, 10s, 100s makes an interval of 1 second, 10 seconds, or 100 seconds,
respectively, fit the window.

1k s, 10k s, 100k s makes an interval of 1,000 seconds, 10,000 seconds, or
100,000 seconds, respectively, fit the window.

1M s, 10M s, makes an interval of 1,000,000 seconds or 10,000,000 seconds,
respectively, fit the window.

Data Sample
A menu item that shows that the Data Sample-specific commands below are
available.

Open Setup window (Data Sample Graph)
Opens the Data Sample Setup window.

Enable
Toggles the display of the graph on or off. If you disable a graph, that graph will
be indicated as OFF in the window. If no data has been collected for a graph, no
data will appear instead of the graph.

Clear
Clears the sampled data.

Variable
The name of the variable for which the Data Sample-specific commands below
apply. This menu item is context-sensitive, which means it reflects the Data
Sample graph you selected in the Sampled Graphs window (one of up to four).
Viewing Range
Displays a dialog box, see Viewing Range dialog box, page 238.

The application timeline °

Size
Controls the vertical size of the graph—choose between Small, Medium, and
Large.

Style
Choose how to display the graph. Choose between:

Levels, where a horizontal line—optionally color-filled—shows the value until
the next sample.

Linear, where a line connects consecutive samples.

Solid Graph

Displays the graph as a color-filled solid graph instead of as a thin line. This is
only possible if the graph is displayed as Levels.

Hexadecimal

Toggles between displaying the selected value in decimal or hexadecimal
format. Note that this setting also affects the log window.

Show Numerical Value
Shows the numerical value of the variable, in addition to the graph.

Select Graphs
Selects which graphs to display in the Sampled Graphs window.

237

Reference information on application timeline

Viewing Range dialog box

Requirements

Range for ...

C-SPY® Debugging Guide
238 for RX

The Viewing Range dialog box is available from the context menu that appears when
you right-click in any graph in the Timeline window that uses the linear, levels or
columns style.

Viewing Range §|

Range for power:

(& Auto
O Factory
O Custom

Lowest value:

{currently 0 - 70)
(5 - 200)

Highest value:

Scale:

O Linear
(%) Logarithmic

[ok |[Cancel]

Use this dialog box to specify the value range, that is, the range for the Y-axis for the
graph.

One of these alternatives:

o The C-SPY simulator
e J-Link driver (J-Link debug probe only—not built-in J-Link)

Selects the viewing range for the displayed values:

Auto
Uses the range according to the range of the values that are actually collected,
continuously keeping track of minimum or maximum values. The currently
computed range, if any, is displayed in parentheses. The range is rounded to
reasonably even limits.

Factory

For the Power Log graph—Uses the range according to the properties of the
measuring hardware (only if supported by the product edition you are using).

For all other graphs—Uses the range according to the value range of the
variable, for example 0—65535 for an unsigned 16-bit integer.

The application timeline °

Custom
Use the text boxes to specify an explicit range.

Scale

Selects the scale type of the Y-axis:

e Linear

e Logarithmic

239

Reference information on application timeline

C-SPY® Debugging Guide
240 for RX

Profiling

e Introduction to the profiler
e Using the profiler

e Reference information on the profiler

Introduction to the profiler

These topics are covered:

o Reasons for using the profiler
e Briefly about the profiler

o Requirements for using the profiler

REASONS FOR USING THE PROFILER

Function profiling can help you find the functions in your source code where the most
time is spent during execution. You should focus on those functions when optimizing
your code. A simple method of optimizing a function is to compile it using speed
optimization. Alternatively, you can move the data used by the function into more
efficient memory. For detailed information about efficient memory usage, see the /4R
C/C++ Development Guide for RX.

Alternatively, you can use filtered profiling, which means that you can exclude, for
example, individual functions from being profiled. To profile only a specific part of your
code, you can select a time interval—using the Timeline window—for which C-SPY
produces profiling information.

Instruction profiling can help you fine-tune your code on a very detailed level, especially
for assembler source code. Instruction profiling can also help you to understand where
your compiled C/C++ source code spends most of its time, and perhaps give insight into
how to rewrite it for better performance.

BRIEFLY ABOUT THE PROFILER

Function profiling information is displayed in the Function Profiler window, that is,
timing information for the functions in an application. Profiling must be turned on
explicitly using a button on the window’s toolbar, and will stay enabled until it is turned
off.

241

Introduction to the profiler

242

C-SPY® Debugging Guide
for RX

Instruction profiling information is displayed in the Disassembly window, that is, the
number of times each instruction has been executed.

Profiling sources

The profiler can use different mechanisms, or sources, to collect profiling information.
Depending on the available trace source features, one or more of the sources can be used
for profiling:

o Trace (calls)

The full instruction trace is analyzed to determine all function calls and returns.
When the collected instruction sequence is incomplete or discontinuous, the
profiling information is less accurate.

o Trace (flat)/Sampling

Each instruction in the full instruction trace or each PC Sample is assigned to a
corresponding function or code fragment, without regard to function calls or returns.
This is most useful when the application does not exhibit normal call/return
sequences, such as when you are using an RTOS, or when you are profiling code
which does not have full debug information.

Trace data for the E1, E2, and E2 Lite emulators and the J-Link debug probe is very
limited. If you are using an E1, E2, E2 Lite or EZ-CUBE2 emulator or a J-Link debug
probe, PC sampling provides much better profiling data than any other source.

Power sampling

Some debug probes support sampling of the power consumption of the development
board, or components on the board. Each sample is associated with a PC sample and
represents the power consumption (actually, the electrical current) for a small time
interval preceding the time of the sample. When the profiler is set to use Power
Sampling, additional columns are displayed in the Profiler window. Each power sample
is associated with a function or code fragment, just as with regular PC Sampling.

Note that this does not imply that all the energy corresponding to a sample can be
attributed to that function or code fragment. The time scales of power samples and
instruction execution are vastly different—during one power measurement, the CPU has
typically executed many thousands of instructions. Power Sampling is a statistics tool.

REQUIREMENTS FOR USING THE PROFILER
The C-SPY simulator supports the profiler; there are no specific requirements.

To use the profiler in your hardware debugger system, you need one of these setups:

e A target board with built-in J-Link or a J-Link/J-Link Ultra debug probe and a
J-Link RX adapter

Profiling °

e AnEl, E2, E20, E2 Lite or an EZ-CUBE2 emulator.

This table lists the C-SPY driver profiling support:

C-SPY driver Trace (calls) Trace (flat) Sampling Power
C-SPY simulator Yes Yes — —
C-SPY EI/E20 — Yes Yes —
C-SPY E2 — Yes Yes Yes
C-SPY E2 Lite — Yes Yes —
C-SPY EZ-CUBE2 — Yes Yes —
C-SPY J-Link — Yes Yes Yes

Table 11: C-SPY driver profiling support

Using the profiler

These tasks are covered:

Getting started using the profiler on function level

°
e Analyzing the profiling data

o Getting started using the profiler on instruction level
°

Selecting a time interval for profiling information

GETTING STARTED USING THE PROFILER ON FUNCTION
LEVEL

To display function profiling information in the Function Profiler window:

I Build your application using these options:

Category Setting
C/C++ Compiler Output>Generate debug information
Linker Output>Include debug information in output

Table 12: Project options for enabling the profiler
2 To set up the profiler for function profiling:

e If you use an E20 emulator and want to use another profiling source than PC
sampling, you must choose E1/E20 Emulator>Hardware Setup and choose Trace
as the Emulator mode.

e If you use the C-SPY simulator, an E1, E2, E2 Lite, or EZ-CUBE2 emulator or a
J-Link debug probe, no specific settings are required.

243

Using the profiler

244

C-SPY® Debugging Guide
for RX

When you have built your application and started C-SPY, choose C-SPY
driver>Function Profiler to open the Function Profiler window, and click the
Enable button to turn on the profiler. Alternatively, choose Enable from the context
menu that is available when you right-click in the Function Profiler window.

Start executing your application to collect the profiling information.

Profiling information is displayed in the Function Profiler window. To sort, click on
the relevant column header.

When you start a new sampling, you can click the Clear button—alternatively, use the
context menu—to clear the data.

ANALYZING THE PROFILING DATA
Here follow some examples of how to analyze the data.

The first figure shows the result of profiling using Source: Trace (calls). The profiler

follows the program flow and detects function entries and exits.

o For the InitFib function, Flat Time 231 is the time spent inside the function itself.

e For the InitFib function, Acc Time 487 is the time spent inside the function itself,
including all functions InitFib calls.

o For the InitFib/GetFib function, Acc Time 256 is the time spent inside GetFib (but
only when called from InitFib), including any functions GetFib calls.

Profiling __4

o Further down in the data, you can find the GetFib function separately and see all of
its subfunctions (in this case none).

mi=]

Function Calls Flat Time FlatTime (%) Acc. Time Acc. Time (%) =
= rnain 1 165 3.58 4356 94 .39
| DoForegroundProcess 10 3704
InitFik 1 487
PutFib 10 3174 68.78 3174 68.78
MextCounter 10 100 A il 7 100 il
= InitFib 1 3D 5.01 187 10.55
fo GetFib 16 (256)
GetFib 28 4186 9.01 4186 9.01
= DoForegroundProcess 10 270 5.85 3704 80.26
MextCounter 10
PutFil 10
= <Cther> 0 98.a5
HiE i 1 - —
A=l Source: Trace (calls)
Source: Trace (flat)
L I | »

The second figure shows the result of profiling using Source: Trace (flat). In this case,
the profiler does not follow the program flow, instead the profiler only detects whether
the pC address is within the function scope. For incomplete trace data, the data might
contain minor errors.

245

Using the profiler

246

C-SPY® Debugging Guide
for RX

For the InitFib function, Flat Time 231 is the time (number of hits) spent inside the
function itself.

Function Profiler *
. .

Function PC Count PC Count (%) -
<ldle> 0 0.00

<Mo function> 5 0.21
DoForegroundProcess 20 3.85

GetFib 260 11.12

InitFik 141 5.03 =
MextCounter &0 2.57

PutFib 230 9.84

__cmain, ?main 4 0.17

R

__ dwrite v Enable

__exit -

__iar_close_ftio ear

_!ar_copy_.ln.ltS Filtering 3
__iar_data_init3

__iar_get_ttio Source; alls’
_iar_lookup_tioh @e: Trace (faD
__iar_sh_stdout i
|< = m = b

To secure valid data when using a debug probe, make sure to use the maximum trace
buffer size and set a breakpoint in your code to stop the execution before the buffer is
full.

Note: The <No function> entry represents PC values that are not within the known
C-SPY ranges for the application.

GETTING STARTED USING THE PROFILER ON INSTRUCTION
LEVEL

To display instruction profiling information in the Disassembly window:

When you have built your application and started C-SPY, choose View>Disassembly
to open the Disassembly window, and choose Instruction Profiling>Enable from the
context menu that is available when you right-click in the left-hand margin of the
Disassembly window.

Make sure that the Show command on the context menu is selected, to display the
profiling information.

Start executing your application to collect the profiling information.

When the execution stops, for instance because the program exit is reached or a
breakpoint is triggered, you can view instruction level profiling information in the
left-hand margin of the window.

Profiling °

Disassembly x
Disassembly il
__enable_interrupt() ; 4
0xB0002ae: Oxb662 CPSIE i
0xB000200: Oxe00l B.N 0xB00020bE
DoForegroundProcess() ;
0xB0002k2: OxEf7ff Oxffed EL DoForegroundProces
while (callCount = MAX FIE)
0xB0002b6: 0x4803 LOR.N RO, [PC, #0xc]
0xB000208 : 0xG800 LOR RO, [RO]
0xB0002ba: O0x280a CMP RO, #10
0xB0002bc: Oxd3f9 BCC.N 0xB000202
¥
0xB0002be: Oxbdol POP {RO, PC}
0xB0002c0: O0x40013804 DC32 USART1_DR &
4 | i b

For each instruction, the number of times it has been executed is displayed.

Instruction profiling attempts to use the same source as the function profiler. If the
function profiler is not on, the instruction profiler will try to use first trace and then PC
sampling as source. You can change the source to be used from the context menu that is
available in the Function Profiler window.

SELECTING A TIME INTERVAL FOR PROFILING
INFORMATION

Normally, the profiler computes its information from all PC samples it receives,
accumulating more and more information until you explicitly clear the profiling
information. However, you can choose a time interval for which the profiler computes
the PC samples. This function is supported by the J-Link debug probe.

To select a time interval:

Choose Function Profiler from the C-SPY driver menu.

In the Function Profiler window, right-click and choose Source: Sampling from the
context menu.

Execute your application to collect samples.
Choose C-SPY driver>Timeline.

In the Timeline window, click and drag to select a time interval.

247

Reference information on the profiler

248

Interrupts

OFF

A selected time interval l
J

—

U ||m|||||||||”H““”HH"H HH HHHH HH M H‘Hm
Os 0.2s 0 ds 0. 6s 0. 8s 1.0s 1.2s 1.4s

6 1In the selected time interval, right-click and choose Profile Selection from the context
menu.

The Function Profiler window now displays profiling information for the selected time
interval.

o | | E| [l 160000.000us - 704000.000us

Fun

Function Prafiler

ction FC Count FC Count (%) Fower Samples Energy (%) A
GetButtons() 791 33.10 9 30.82 19f
Dy 1 00usfvoid %) 463 19.37 7 15 .38 127
GLCD_SPI_TranserByte(lntd.. 353 14 .77 4 3.3z 1210
memcrmp 325 4 14 .64 21z
IS T A FCE
GLCD_Backlight(Intal) 108 6.77 19¢
GLCD_SendCmd(GLCD_Cm... 43 0.00 -
GLCD_SPI_SendBlockiplntd... 19 4.00 11¢
GLCD_SetWindow(lnt32L, Int.. 0 0.00 -
GLCD_SetResetBoolean) 0] -

Ml 7 Click the Full/Time-interval profiling button to toggle the Full profiling view.

Reference information on the profiler

C-SPY® Debugging Guide

for RX

Reference information about:
® Function Profiler window, page 249
See also:

® Disassembly window, page 79

o Trace Settings dialog box, page 193

Profiling °

Function Profiler window

The Function Profiler window is available from the C-SPY driver menu.

Function Profiler *®
©cEE
Function Calls Flat Time FlatTime (%) Acc. Time Acc. Time (%) i
+# DoForegroundFrocess 49 5770 31.14 7198 38.84
GetFib 0 0 0.00 0 0.00
InitFik 0 0 0.00 0 0.00 |
Initlart 0 0 0.00 0 0.00 3
PutFib 4 1332 7.19 1332 7.19
UanReceiveHandler 4 96 0.52 1428 et
friin 0 0 0.00 0 0.00

This window displays function profiling information.

When Trace (flat) or Sampling is selected, a checkbox appears on each line in the
left-side margin of the window. Use these checkboxes to include or exclude lines from
the profiling. Excluded lines are dimmed but not removed.

See also Using the profiler, page 243.

Requirements

Can be used with all C-SPY debugger drivers and debug probes.

Toolbar

The toolbar contains:

) Enable/Disable

Enables or disables the profiler.
ﬁl Clear

Clears all profiling data.
[Save

Opens a standard Save As dialog box where you can save the contents of the
window to a file, with tab-separated columns. Only non-expanded rows are
included in the list file.

Graphical view

Overlays the values in the percentage columns with a graphical bar.

249

Reference information on the profiler

Progress bar

Displays a backlog of profiling data that is still being processed. If the rate of
incoming data is higher than the rate of the profiler processing the data, a
backlog is accumulated. The progress bar indicates that the profiler is still
processing data, but also approximately how far the profiler has come in the
process.

Note that because the profiler consumes data at a certain rate and the target
system supplies data at another rate, the amount of data remaining to be
processed can both increase and decrease. The progress bar can grow and shrink
accordingly.

1ol Time-interval mode

Toggles between profiling a selected time interval or full profiling. This toolbar
button is only available if PC Sampling is supported by the debug probe.

For information about which views that are supported in the C-SPY driver you
are using, see Requirements for using the profiler, page 242.

Status field

Displays the range of the selected time interval, in other words, the profiled
selection. This field is yellow when Time-interval profiling mode is enabled.
This field is only available if PC Sampling is supported by the debug probe.

For information about which views that are supported in the C-SPY driver you
are using, see Requirements for using the profiler, page 242.

Display area

The content in the display area depends on which source that is used for the profiling
information:

® For the Trace (calls) source, the display area contains one line for each function
compiled with debug information enabled. When some profiling information has
been collected, it is possible to expand rows of functions that have called other
functions. The child items for a given function list all the functions that have been
called by the parent function and the corresponding statistics.

® For the Trace (flat) source, the display area contains one line for each C function of
your application, but also lines for sections of code from the runtime library or from
other code without debug information, denoted only by the corresponding
assembler labels. Each executed pC address from trace data is treated as a separate
sample and is associated with the corresponding line in the Profiling window. Each
line contains a count of those samples.

For information about which views that are supported in the C-SPY driver you are using,
see Requirements for using the profiler, page 242.

C-SPY® Debugging Guide
250 for RX

Profiling °

More specifically, the display area provides information in these columns:

Function (All sources)
The name of the profiled C function.

For Sampling source, sections of code from the runtime library or from other
code without debug information, denoted only by the corresponding assembler
labels, is displayed.

Calls (Trace (calls))
The number of times the function has been called.

Flat time (Trace (calls))

The time expressed as the number of executed instructions spent inside the
function.

Flat time (%) (Trace (calls))
Flat time expressed as a percentage of the total time.

Acc. time (Trace (calls))
The time expressed as the number of executed instructions spent inside the
function and everything called by the function.

Acc. time (%) (Trace (calls))
Accumulated time expressed as a percentage of the total time.

PC Count (Trace (flat) and Sampling)
The number of executed instructions (Trace) or PC samples (Sampling)
associated with the function.

PC Count (%) (Trace (flat) and Sampling)
The number of executed instructions (Trace) or PC samples (Sampling)
associated with the function as a percentage of the total number of executed
instructions /PC samples.

Power Samples (Power Sampling)
The number of power samples associated with that function.

Energy (%) (Power Sampling)

The accumulated value of all measurements associated with that function,
expressed as a percentage of all measurements.

Avg Current [mA] (Power Sampling)

The average measured value for all samples associated with that function.

Min Current [mA] (Power Sampling)
The minimum measured value for all samples associated with that function.

251

Reference information on the profiler

Max Current [mA] (Power Sampling)

The maximum measured value for all samples associated with that function.

Context menu

This context menu is available:
v | Enable

Clear

v Source: Trace (calls)

Source: Trace (flat)

Save to File...

Show Source

The contents of this menu depend on the C-SPY driver you are using.
These commands are available:

Enable

Enables the profiler. The system will also collect information when the window
is closed.

Clear
Clears all profiling data.

Filtering
Selects which part of your code to profile. Choose between:

Check All—Excludes all lines from the profiling.
Uncheck All—Includes all lines in the profiling.
Load—Reads all excluded lines from a saved file.

Save—Saves all excluded lines to a file. Typically, this can be useful if you are
a group of engineers and want to share sets of exclusions.

These commands are only available when using one of the modes Trace (flat) or
Sampling.

Source

Selects which source to be used for the profiling information. See also Profiling
sources, page 242.

Note that the available sources depend on the C-SPY driver you are using.

C-SPY® Debugging Guide
252 for RX

Profiling °

Choose between:

Sampling—the instruction count for instruction profiling represents the number
of samples for each instruction.

Trace (calls)—the instruction count for instruction profiling is only as complete
as the collected trace data.

Trace (flat)—the instruction count for instruction profiling is only as complete
as the collected trace data.

Power Sampling
Toggles power sampling information on or off.

Save to File

Saves all profiling data to a file.

Show Source

Opens the editor window (if not already opened) and highlights the selected
source line.

253

Reference information on the profiler

C-SPY® Debugging Guide
254 for RX

Analyzing code
performance

e Introduction to performance analysis
e Analyzing performance

e Reference information on performance analysis.

Introduction to performance analysis
These topics are covered:
o Reasons for using performance analysis
e Briefly about performance analysis

o Requirements for performance analysis.

REASONS FOR USING PERFORMANCE ANALYSIS

The performance analyzing facility of the hardware debugger can measure a number of
execution aspects to help you understand how well your application performs on the
MCU.

Because performance analysis uses the debugger’s performance measurement circuit to
measure the execution time, it does not slow down the execution of your application.
BRIEFLY ABOUT PERFORMANCE ANALYSIS

The performance analysis is capable of measuring these execution aspects:

the total time the execution takes
the total number of cycles the execution takes
the number of cycles spent processing interrupts and other exceptions

the number of executed instructions

the number of accepted interrupts and other exceptions.
The analysis can cover either the entire execution or execution between two breakpoints.

Performance analysis settings cannot be changed during the execution and the results of
the analysis are displayed in the Performance Analysis window.

255

Analyzing performance

REQUIREMENTS FOR PERFORMANCE ANALYSIS

To use performance analysis with your hardware debugger system, you need the
appropriate hardware:

e AnEl, E2, E2 Lite, EZ-CUBE2, or E20 emulator

o Either a target board with built-in J-Link or a J-Link/J-Link Ultra debug probe and a
J-Link RX adapter.

The C-SPY simulator does not support performance analysis.

Analyzing performance

These tasks are covered:

o Using performance analysis.

USING PERFORMANCE ANALYSIS

Getting started analyzing code performance:

I When you have built your application and started C-SPY, choose C-SPY
driver>Performance Analysis to open the Performance Analysis window and click
the Enable button to turn on the analysis.

Click the Setup button to display the Performance Analysis Setup dialog box.
Use the Condition list box to select what to measure and close the dialog box.

Start executing your application to begin the analysis.

vi A W N

Measurements are displayed in the Performance Analysis window.

You can also choose to set performance breakpoints to measure the execution of certain
sections of code. These breakpoints will be displayed in the Performance Analysis
Setup dialog box.

X Before you start a new measurement, you can click the Clear button to clear the
J collected data. To clear just one of the counters, select it before clearing.

Reference information on performance analysis
Reference information about:
® Performance Analysis Setup dialog box, page 257
® Performance Analysis window, page 259

® Performance Start breakpoints dialog box, page 261

C-SPY® Debugging Guide
256 for RX

® Performance Stop breakpoints dialog box, page 262.

Performance Analysis Setup dialog box
The Performance Analysis Setup dialog box is available from the Performance

Requirements

Condition

Analysis window and from the C-SPY driver menu.

Performance Analysis Setup

(o |

Counter 1
Condition:

Ewent Type Address

Dizplay the cycle as a time span
[7] Measure the perfarmance only once
Counter 2

Condition:
Execution count

Ewent Type Address

Dizplay the cycle as a time span

[7] Measure the perfarmance only once

[Use B4-bit counter

[ok

] [Cancel]

Analyzing code performance __4

Use this dialog box to configure the analysis. You can configure one or two counters.
The size of the counters is 32 bits, which limits the amount of data they can collect. To
collect more data, select the Use 64-bit counter option and use just one counter.

A C-SPY hardware debugger driver.

Selects what to measure. Choose between:

Not in use
The counter is not in use.

257

Reference information on performance analysis

Execution cycle
The number of cycles that have elapsed.
Execution cycle (supervisor mode)
The number of cycles that have elapsed in supervisor mode.

Exception and interrupt cycle
The number of cycles spent processing interrupts and other exceptions.

Exception cycle

The number of cycles spent processing exceptions.

Interrupt cycle
The number of cycles spent processing interrupts.

Execution count
The number of valid instructions executed.
Exception and interrupt count
The number of accepted interrupts and other exceptions.

Exception count
The number of accepted exceptions.

Interrupt count

The number of accepted interrupts.

Display list

This list displays any performance start/stop breakpoints connected to the counter.
Information is provided in these columns:

Event
Identifies the breakpoint.

Type
The type of breakpoint: Start or Stop.

Address
The memory address where the breakpoint is placed.
For information about performance start/stop breakpoints, see Performance Start

breakpoints dialog box, page 261 and Performance Stop breakpoints dialog box, page
262.

C-SPY® Debugging Guide
258 for RX

Analyzing code performance __4

Display the cycle as a time span

Converts the number of cycles spent into time and displays the value in the Time column
of the Performance Analysis window, using the operating frequency value from the
Operating Frequency dialog box; see Operating Frequency dialog box, page 62. This
option requires that the counter Condition measures cycles.

Measure the performance only once

Specifies that the code section between two performance breakpoints is only analyzed
once, even if the execution loops. This option can only be used with performance
breakpoints.

Use 64-bit counter

Combines the two 32-bit counters to use them as a single 64-bit counter. This increases
the capacity when measuring the performance of a single address range. Only the
settings from Counter 1 are used.

Performance Analysis window

The Performance Analysis window is available from the C-SPY driver menu during a
debug session.

Performance Analysis x
Condition Time Count

¥ 1 Execution cycle 41.88 us 1340

¥] 2 Execution count = 286

This window displays the performance analysis.

Requirements
A C-SPY hardware debugger driver.

259

Reference information on performance analysis

260

Context menu

Display area

C-SPY® Debugging Guide
for RX

This context menu is available:

Performance Analysis Setup...

Clear

Disable

These commands are available:

Performance Analysis Setup
Displays the Performance Analysis Setup dialog box where you configure the
measurement. See Performance Analysis Setup dialog box, page 257.

Clear
Clears all data in the selected row of the display area. If no row is selected, all
data is cleared.

Enable/Disable

Enables or disables the performance analysis. Disabling the analysis does not
clear already collected data; re-enabling the analysis and running more passes
will append the new data to the previously collected data.

The display area provides information in these columns:

#

The number of the analysis counter. The numbers are 1 and 2 when a 32-bit
counter is used for both of two ranges or 1 when the two 32-bit counters are
handled as a 64-bit counter for measurement of performance in a single address
range.

The checkboxes enable/disable each counter.

Condition
Indicates the measurement type. See the description for the Performance
Analysis Setup dialog box, page 257.
Time
The cumulative total of the analyzed execution.
If the measurement type in the Condition column is cycles, the time is

calculated from the operating frequency value and the value in the Count
column.

If the measurement type in the Condition column is a count, this column
displays a —.

Analyzing code performance __4

Count

A decimal value that indicates the number of times the measurement has been
performed. Any overflows will be indicated.

Performance Start breakpoints dialog box

The Performance Start dialog box is available from the context menu that appears
when you right-click in the Breakpoints window.
2 Performance Start

Trigger At:

Use this dialog box to set performance start breakpoints.

To set a Performance Start breakpoint:

I In the editor, Breakpoints, or Disassembly window, right-click and choose one of the
two Performance Start commands from the context menu. The number of the
breakpoint, 1 or 2, connects the breakpoint to one of the two counters in the
Performance Analysis Setup dialog box.

Alternatively, to modify an existing breakpoint, select it in the Breakpoints window and
choose Edit on the context menu.

2 In the Trigger At text box, specify an expression, an absolute address, or a source
location. Click OK.

3 When the breakpoint is triggered, the performance analysis starts.

Requirements
A C-SPY hardware debugger driver.

Trigger At

Specify the location for the breakpoint in the text box. Alternatively, click the Edit
browse button to open the Enter Location dialog box, see Enter Location dialog box,
page 148.

261

Reference information on performance analysis

262

Performance Stop breakpoints dialog box

Requirements

Trigger At

C-SPY® Debugging Guide
for RX

The Performance Stop dialog box is available from the context menu that appears when
you right-click in the Breakpoints window.
& Performance Stop

Trigger At:

Use this dialog box to set performance stop breakpoints.

To set a Performance Stop breakpoint:

In the editor, Breakpoints, or Disassembly window, right-click and choose the
Performance Stop command that corresponds to a previously defined performance
start breakpoint. The number of the breakpoint, 1 or 2, connects the breakpoint to one
of the two counters in the Performance Analysis Setup dialog box.

Alternatively, to modify an existing breakpoint, select it in the Breakpoints window and
choose Edit on the context menu.

In the Trigger At text box, specify an expression, an absolute address, or a source
location. Click OK.

When the breakpoint is triggered, the performance analysis stops.

A C-SPY hardware debugger driver.

Specify the location for the breakpoint in the text box. Alternatively, click the Edit
browse button to open the Enter Location dialog box, see Enter Location dialog box,
page 148.

Code coverage

e Introduction to code coverage
e Using code coverage

e Reference information on code coverage

Introduction to code coverage

These topics are covered:

o Reasons for using code coverage
e Briefly about code coverage

o Requirements and restrictions for using code coverage

REASONS FOR USING CODE COVERAGE

The code coverage functionality is useful when you design your test procedure to verify
whether all parts of the code have been executed. It also helps you identify parts of your
code that are not reachable.

BRIEFLY ABOUT CODE COVERAGE

The Code Coverage window reports the status of the current code coverage analysis for
C or C++ code. For every program, module, and function, the analysis shows the
percentage of code that has been executed since code coverage was turned on up to the
point where the application has stopped. In addition, all statements that have not been
executed are listed. The analysis will continue until turned off.

Note: Assembler code is not covered in the Code Coverage window. To view code
coverage for assembler code, use the Disassembly window.

REQUIREMENTS AND RESTRICTIONS FOR USING CODE
COVERAGE

Code coverage is supported by the C-SPY simulator and there are no specific
requirements or restrictions.

When using use code coverage in a hardware debugger system, be aware of the
limitations. Code coverage information is based on trace data. Trace data for the E1, E2,
E2 Lite, and EZ-CUBE2 emulators and the J-Link debug probe is very limited. If you
are using an E1, E2, E2 Lite, or EZ-CUBE2 emulator or a J-Link debug probe, PC

263

Using code coverage

264

sampling provides better data than any other source. but code coverage will not be
complete regardless of the source. Code that has been executed might not be shown as
such.

Using code coverage

These tasks are covered:

o Getting started using code coverage

GETTING STARTED USING CODE COVERAGE

To get started using code coverage:

Before you can use the code coverage functionality, you must build your application
using these options:

Category Setting
C/C++ Compiler Output>Generate debug information
Linker Output>Include debug information in output

Table 13: Project options for enabling code coverage

After you have built your application and started C-SPY, choose View>Code
Coverage to open the Code Coverage window.

Click the Activate button, alternatively choose Activate from the context menu, to
switch on code coverage.

Start the execution. When the execution stops, for instance because the program exit is
reached or a breakpoint is triggered, the code coverage information is updated
automatically.

Reference information on code coverage

C-SPY® Debugging Guide
for RX

Reference information about:
o Code Coverage window, page 265
See also Single stepping, page 72.

Code coverage ___4

Code Coverage window

Requirements

The Code Coverage window is available from the View menu.

Code Coverage x
ollalé)
Code Cowverage (%) Code Range File Line Column =
= % GetStarted(Program) 75.8
: % Fibonacci (Module) 90.9 Fibonacei.c
.[¥] 4 DoForegroundP. .. 100.0
-# ¢ NextCounter 100.0
% main a0.0
4 DoForegroun. . . 0x2000032c-0x2000032 51 5-26 E
4 return 0; 0x2000033c-0x2000034b 53 N
@ Utilities(Module) 68.2 |tilities.c
..o % GetFib 50.0
retval = Ou; 0x200001 £c-0x200001££ 44 5-16
4 return retval; 0x20000200-0x20000203 4k 316
""" ¢ InitFib 100.0
4 PutFib 58.3
4 dec = 10u, 0x20000044-0x20000047 52 12-21
¢ 1if (out == ... 0x20000048-0x20000053 54 3-20
¢ putchar({'#'); 0%20000054-0x2000005f BB 517
@ putchar('in'); 0%20000060- 0x2000006k B0 518 "

This window reports the status of the current code coverage analysis. For every program,
module, and function, the analysis shows the percentage of code that has been executed
since code coverage was turned on up to the point where the application has stopped. In
addition, all statements that have not been executed are listed. The analysis will continue
until turned off.

Only source code that was compiled with debug information is displayed. Therefore,
startup code, exit code, and library code are not displayed in the window. Furthermore,
coverage information for statements in inlined functions is not displayed. Only the
statement containing the inlined function call is marked as executed.

A statement is considered to be executed when all its instructions have been executed.
By default, when a statement has been executed, it is removed from the window and the
percentage is increased correspondingly.

The C-SPY simulator.

265

Reference information on code coverage

266

Toolbar

Display area

C-SPY® Debugging Guide
for RX

The toolbar contains buttons for switching code coverage on and off, clearing the code
coverage information, and saving/restoring the code coverage session. See the
description of the context menu for more detailed information.

The toolbar contains these buttons:

Activate
Switches code coverage on and off during execution.

Clear
Clears the code coverage information. All step points are marked as not
executed.

Save session

Saves your code coverage session data to a * . dat file. This is useful if you for
some reason must abort your debug session, but want to continue the session
later on. This command might not be supported by the C-SPY driver you are
using.

Restore session

Restores previously saved code coverage session data. This is useful if you for
some reason must abort your debug session, but want to continue the session
later on. This command might not be supported by the C-SPY driver you are
using.

Double-clicking a statement or a function in the Code Coverage window displays that
statement or function as the current position in the editor window, which becomes the
active window.

These columns are available:

Code

The code coverage information is displayed as a tree structure, showing the
program, module, function, and statement levels. You can use the plus (+) sign
and minus (-) sign icons to expand and collapse the structure.

These icons give you an overview of the current status on all levels:
Red diamond—O0% of the modules or functions has been executed.

Green diamond—100% of the modules or functions has been executed.

Red and green diamond—Some of the modules or functions have been
executed.

Code coverage ___4

Red, green, and yellow colors can be used as highlight colors in the source editor
window. In the editor window, the yellow color signifies partially executed.
Coverage (%)
The amount of statements that has been covered so far, that is, the number of
executed statements divided with the total number of statements.
Code Range
The address range in code memory where the statement is located.
File
The source file where the step point is located.
Line
The source file line where the step point is located.
Column

The source file column where the step point is located.

Context menu

This context menu is available:
v Activate
Clear
Hide Covered Step Points

Show Coverage in Editor

Save Session...
Restore Session...

Save As...

These commands are available:

g Activate

Switches code coverage on and off during execution.
+—| Clear
hul

Hide Covered Step Points

Toggles the display of covered step points on and off. When this option is
selected, executed statements are removed from the window.

Clears the code coverage information. All step points are marked as not
executed.

Show Coverage in Editor

Toggles the red, green, and yellow highlight colors that indicate code coverage
in the source editor window on and off.

267

Reference information on code coverage

ﬁ | Save session
Saves your code coverage session data to a * . dat file. This is useful if you for
some reason must abort your debug session, but want to continue the session
later on. This command is available on the toolbar. This command might not be
supported by the C-SPY driver you are using.

ﬁ Restore session

Restores previously saved code coverage session data. This is useful if you for
some reason must abort your debug session, but want to continue the session
later on. This command is available on the toolbar. This command might not be
supported by the C-SPY driver you are using.

Save As
Saves the current code coverage result in a text file.

C-SPY® Debugging Guide
268 for RX

Power debugging

e Introduction to power debugging
e Optimizing your source code for power consumption
e Debugging in the power domain

e Reference information on power debugging

Introduction to power debugging

These topics are covered:

e Reasons for using power debugging
e Briefly about power debugging

o Requirements and restrictions for power debugging

REASONS FOR USING POWER DEBUGGING

Long battery lifetime is a very important factor for many embedded systems in almost
any market segment—medical, consumer electronics, home automation, etc. The power
consumption in these systems does not only depend on the hardware design, but also on
how the hardware is used. The system software controls how it is used.

For examples of when power debugging can be useful, see Optimizing your source code
for power consumption, page 271.

BRIEFLY ABOUT POWER DEBUGGING

Power debugging is based on the ability to sample the power consumption—more
precisely, the power being consumed by the CPU and the peripheral units—and
correlate each sample with the application’s instruction sequence and hence with the
source code and various events in the program execution.

Traditionally, the main software design goal has been to use as little memory as possible.
However, by correlating your application’s power consumption with its source code you
can gain insight into how the software affects the power consumption, and thus how it
can be minimized.

269

Introduction to power debugging

270

C-SPY® Debugging Guide
for RX

Measuring power consumption

The debug probe measures the voltage drop across a small resistor in series with the
supply power to the device. The voltage drop is measured by a differential amplifier and
then sampled by an AD converter.

Power debugging using C-SPY

C-SPY provides an interface for configuring your power debugging and a set of
windows for viewing the power values:

o The Power Log Setup window is where you can specify a threshold and an action
to be executed when the threshold is reached. This means that you can enable or
disable the power measurement or you can stop the application’s execution and
determine the cause of unexpected power values.

o The Power Log window displays all logged power values. This window can be used
for finding peaks in the power logging and because the values are correlated with
the executed code, you can double-click on a value in the Power Log window to get
the corresponding code. The precision depends on the frequency of the samples, but
there is a good chance that you find the source code sequence that caused the peak.

o The Power graph in the Timeline window displays power values on a time scale.
This provides a convenient way of viewing the power consumption in relation to the
other information displayed in the window. The Timeline window is correlated to
both the Power Log window, the source code window, and the Disassembly
window, which means you are just a double-click away from the source code that
corresponds to the values you see on the timeline.

o The Function Profiler window combines the function profiling with the power
logging to display the power consumption per function—power profiling. You will
get a list of values per function and also the average values together with max and
min values. Thus, you will find the regions in the application that you should focus
when optimizing for power consumption.

REQUIREMENTS AND RESTRICTIONS FOR POWER
DEBUGGING

To use the features in C-SPY for power debugging, you need one of these:
e AJ-Link/J-Link Ultra debug probe and a J-Link RX adapter. Target boards with
built-in J-Link do not support power debugging.

o An E2 emulator which must be powering the target board. E2 Lite, EZ-CUBE2, and
E2 on-board do not support power debugging.

Important! Power measurement for the E2 emulator is based on collecting pairs of
current measurements and timestamps after the application execution stops. This
slows down debugging performance considerably, so make sure that power logging

Power debugging ___4

is enabled for E2 only when you are actively using the feature. It also means that if
the IDE seems to stall now and then, it might be because of this performance
reduction.

Optimizing your source code for power consumption

This section gives some examples where power debugging can be useful and hopefully
help you identify source code constructions that can be optimized for low power
consumption.

These topics are covered:

Waiting for device status

Software delays

DMA versus polled I/0

Low-power mode diagnostics

CPU frequency

Detecting mistakenly unattended peripherals
Peripheral units in an event-driven system

Finding conflicting hardware setups

Analog interference

WAITING FOR DEVICE STATUS

One common construction that could cause unnecessary power consumption is to use a
poll loop for waiting for a status change of, for example a peripheral device.
Constructions like this example execute without interruption until the status value
changes into the expected state.

while (USBD_GetState() < USBD_STATE_CONFIGURED) ;
while ((BASE_PMC->PMC_SR & MC_MCKRDY) != PMC_MCKRDY) ;

To minimize power consumption, rewrite polling of a device status change to use
interrupts if possible, or a timer interrupt so that the CPU can sleep between the polls.

SOFTWARE DELAYS

A software delay might be implemented as a for or while loop like for example:

i = 10000; /* A software delay */
do i--;
while (i !'= 0);

271

Optimizing your source code for power consumption

Such software delays will keep the CPU busy with executing instructions performing
nothing except to make the time go by. Time delays are much better implemented using
a hardware timer. The timer interrupt is set up and after that, the CPU goes down into a
low power mode until it is awakened by the interrupt.

DMA VERSUS POLLED 1/O

DMA has traditionally been used for increasing transfer speed. For MCUs there are
plenty of DMA techniques to increase flexibility, speed, and to lower power
consumption. Sometimes, CPUs can even be put into sleep mode during the DMA
transfer. Power debugging lets you experiment and see directly in the debugger what
effects these DMA techniques will have on power consumption compared to a
traditional CPU-driven polled solution.

LOW-POWER MODE DIAGNOSTICS

Many embedded applications spend most of their time waiting for something to
happen—receiving data on a serial port, watching an I/O pin change state, or waiting for
a time delay to expire. If the processor is still running at full speed when it is idle, battery
life is consumed while very little is being accomplished. So in many applications, the
microcontroller is only active during a very small amount of the total time, and by
placing it in a low-power mode during the idle time, the battery life can be extended
considerably.

A good approach is to have a task-oriented design and to use an RTOS. In a task-oriented
design, a task can be defined with the lowest priority, and it will only execute when there
is no other task that needs to be executed. This idle task is the perfect place to implement
power management. In practice, every time the idle task is activated, it sets the
microcontroller into a low-power mode. Many microprocessors and other silicon
devices have a number of different low-power modes, in which different parts of the
microcontroller can be turned off when they are not needed. The oscillator can for
example either be turned off or switched to a lower frequency. In addition, individual
peripheral units, timers, and the CPU can be stopped. The different low-power modes
have different power consumption based on which peripherals are left turned on. A
power debugging tool can be very useful when experimenting with different low-level
modes.

You can use the Function profiler in C-SPY to compare power measurements for the task
or function that sets the system in a low-power mode when different low-power modes
are used. Both the mean value and the percentage of the total power consumption can be
useful in the comparison.

C-SPY® Debugging Guide
272 for RX

Power debugging ___4

CPU FREQUENCY

Power consumption in a CMOS MCU is theoretically given by the formula:
P=f* U2 * k

where £ is the clock frequency, U is the supply voltage, and k is a constant.

Power debugging lets you verify the power consumption as a factor of the clock
frequency. A system that spends very little time in sleep mode at 50 MHz is expected to
spend 50% of the time in sleep mode when running at 100 MHz. You can use the power
data collected in C-SPY to verify the expected behavior, and if there is a non-linear
dependency on the clock frequency, make sure to choose the operating frequency that
gives the lowest power consumption.

DETECTING MISTAKENLY UNATTENDED PERIPHERALS

Peripheral units can consume much power even when they are not actively in use. If you
are designing for low power, it is important that you disable the peripheral units and not
just leave them unattended when they are not in use. But for different reasons, a
peripheral unit can be left with its power supply on—it can be a careful and correct
design decision, or it can be an inadequate design or just a mistake. If not the first case,
then more power than expected will be consumed by your application. This will be
easily revealed by the Power graph in the Timeline window. Double-clicking in the
Timeline window where the power consumption is unexpectedly high will take you to
the corresponding source code and disassembly code. In many cases, it is enough to
disable the peripheral unit when it is inactive, for example by turning off its clock which
in most cases will shut down its power consumption completely.

However, there are some cases where clock gating will not be enough. Analog
peripherals like converters or comparators can consume a substantial amount of power
even when the clock is turned off. The Timeline window will reveal that turning off the
clock was not enough and that you need to turn off the peripheral completely.

PERIPHERAL UNITS IN AN EVENT-DRIVEN SYSTEM

Consider a system where one task uses an analog comparator while executing, but the
task is suspended by a higher-priority task. Ideally, the comparator should be turned off
when the task is suspended and then turned on again once the task is resumed. This
would minimize the power being consumed during the execution of the high-priority
task.

273

Optimizing your source code for power consumption

This is a schematic diagram of the power consumption of an assumed event-driven
system where the system at the point of time t; is in an inactive mode and the current is

IO:

Power consumption

Time

v

% LR, 5} 5 4

Atty, the system is activated whereby the current rises to I; which is the system’s power
consumption in active mode when at least one peripheral device turned on, causing the
current to rise to I. At t,, the execution becomes suspended by an interrupt which is
handled with high priority. Peripheral devices that were already active are not turned off,
although the task with higher priority is not using them. Instead, more peripheral devices
are activated by the new task, resulting in an increased current I, between t, and t; where
control is handed back to the task with lower priority.

The functionality of the system could be excellent and it can be optimized in terms of
speed and code size. But in the power domain, more optimizations can be made. The
shadowed area represents the energy that could have been saved if the peripheral devices
that are not used between t, and t3 had been turned off, or if the priorities of the two tasks
had been changed.

If you use the Timeline window, you can make a closer examination and identify that
unused peripheral devices were activated and consumed power for a longer period than
necessary. Naturally, you must consider whether it is worth it to spend extra clock cycles
to turn peripheral devices on and off in a situation like in the example.

FINDING CONFLICTING HARDWARE SETUPS

To avoid floating inputs, it is a common design practice to connect unused MCU I/O
pins to ground. If your source code by mistake configures one of the grounded I/O pins
as a logical 1 output, a high current might be drained on that pin. This high unexpected
current is easily observed by reading the current value from the Power graph in the

C-SPY® Debugging Guide
274 for RX

Power debugging