IAR Embedded
Workbench

JAR C/C++ Development
Guide

Compiling and linking

for the Renesas
RX Family

DRX- |4 m

2

IAR C/C++ Development Guide
Compiling and linking for RX

COPYRIGHT NOTICE
© 2009-2023 IAR Systems AB.

No part of this document may be reproduced without the prior written consent of IAR
Systems AB. The software described in this document is furnished under a license and
may only be used or copied in accordance with the terms of such a license.

DISCLAIMER

The information in this document is subject to change without notice and does not
represent a commitment on any part of AR Systems. While the information contained
herein is assumed to be accurate, IAR Systems assumes no responsibility for any errors
or omissions.

In no event shall IAR Systems, its employees, its contractors, or the authors of this
document be liable for special, direct, indirect, or consequential damage, losses, costs,
charges, claims, demands, claim for lost profits, fees, or expenses of any nature or kind.

TRADEMARKS

IAR Systems, IAR Embedded Workbench, Embedded Trust, C-Trust, IAR Connect,
C-SPY, C-RUN, C-STAT, IAR Visual State, IAR KickStart Kit, I-jet, I-jet Trace,
I-scope, IAR Academy, IAR, and the logotype of IAR Systems are trademarks or
registered trademarks owned by IAR Systems AB.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

Renesas is a registered trademark of Renesas Electronics Corporation. RX is a
trademark of Renesas Electronics Corporation.

Adobe and Acrobat Reader are registered trademarks of Adobe Systems Incorporated.

All other product names are trademarks or registered trademarks of their respective
owners.

EDITION NOTICE
Fourteenth edition: August 2023
Part number: DRX-14

This guide applies to version 5.x of JAR Embedded Workbench® for the Renesas RX
family.

The IAR C/C++ Development Guide for RX replaces all versions of the /AR C/C++
Compiler Reference Guide for RX and the IAR Linker and Library Tools Reference
Guide.

Internal reference: BB15, csrct2010.1, V_110411, ISHP.

Brief contents

TADIES ..o 35
Preface ... e 37
Part |. Using the build tools ... 45
Introduction to the IAR build tools ..., 47
Developing embedded applications ... 53
Data STOrAZE ..ot 67
FUNCLIONS ... 77
Linking using ILINK ... 89
Linking your application ... 107
The DLIB runtime environmMent ... 123
Assembler language interface ..., 163
USING € st 189
USING CHt s 199
Application-related considerations ... 207
Efficient coding for embedded applications ... 227
Part 2. Reference information ... 247
External interface details ... 249
ComPiler OPLIONS ... e 259
LINKEIr OPTIONSooiii s 311
Data representation ... 345

Extended keywords ... 361

4

IAR C/C++ Development Guide
Compiling and linking for RX

Pragma dir€CtiVES ... 379

INErinsic FUNCLIONS ... 407
The PreProCeSSOr ... 423
C/C++ standard library functions ... 435
The linker configuration file ... 449
SECtion referencCe ... 487
The stack usage control file ..., 499
AR ULITITIES ..o 507
Implementation-defined behavior for Standard C++ ... 555
Implementation-defined behavior for Standard C 593
Implementation-defined behavior for C89 ... 613
INAEX . 625

Contents

TADIES ..o 35
Preface ... e 37
Who should read this guidec.c.cccoooniiii, 37
Required KNOWIEdZEcccoeeveriniriiniiciiieeeeeeetee e 37
How to use this guide ...
What this guide contains ...,
Part 1. Using the build tools
Part 2. Reference informationcccceevenenenenencnencnicncncncenens 38
Other documentation ... 39
User and reference GUIdescocceceeeeueeeeienieieieieieieneese e 40
The online help SYStemc.ceceecerveririeierieneneneneeeeteeeeeeen 40
Further readingcc.coovevueiininenieeeeeee e 41
Web sites
Document CONVENLIONScccooiiieiniiinicierce s 41
Typographic CONVENTIONScceerueieriirierierienienienienieeeere ettt neene 42
NamMing CONVENTIONSc.veuvereireerienientirteeieeteeeetetesesteseeseesiesiesaesseeseas 43
Part 1. Using the build tools ... 45
Introduction to the IAR build tools ... 47
The IAR build tools—an overview ... 47
The IAR C/CH4 Compilerc.coceveririeoiiciinininieniinciencneneneneeneen 47
The TAR ASSEMDIETccueviiriiriiiiiiniiieeeeeeeeettete e 48
The TAR ILINK LinKerccccccoveneninininininineneninenceceeeeeerenen 48
Specific ELF tOOLScc.coiiirinininiiniiicteteieicecececreecrere e 48
EXternal toOLSccccevueieieiienienieieiec ettt 48
IAR language OVerview ... 49
DevVice SUPPOFIt ..ot 49
Supported RX deVICEScceveririiriiriieiieieieieieieeseste e 50

Preconfigured support filesccoccoeiiiiiiiiii 50

Examples for getting startedcccceceeveeeeieriiiiienienienenenenencenen 50

Special support for embedded systems ... 51

Extended KeyWOTdsccceeevieiiieniinininienenincneeececeeeeeeecneeene 51
Pragma dir€CtiVescc.coveeerinirineniniceciceceectctese e 51
Predefined SymDbOIScocevirerinininieieneeeee et 51
Accessing low-level featurescccocecvevvenenenenincnencnienenneenee 51
Developing embedded applications ..., 53
Developing embedded software using IAR build tools 53
CPU features and CONSLraintsccccceveeiiiiiiniiiiiniiiiccceeene 53
Mapping Of MEMOTYc.ceteriirierieieienienieste ettt ettt neene 54
Communication with peripheral Unitsc.ccceevevievienencnicnienncenens 54
Event handlingcccceoieoiininininiiiniecccctcen e 54
SYSTEIM STATTUP .eevveiententereeriesie sttt ettt ettt et e stestesbesiesbesbeebeeneene
Real-time operating systems
Interoperability with other build toOISccceouevieienierieninerenece 55
The build process—an overview ..., 56
The translation PrOCESSc.ccoevueruerrerierererieniinineeeereeeeieeerereneens 56
The linKing ProCesscccerererierieriininienreeeeiteteteteee e e seseeenea
ATEEr TINKING .eoveviiiiiiieieieeeseee ettt
Application execution—an overview
The initialization Phasecccceceeveriirieiieiieneneeeeeeseeceeaen
The eXeCUtiON PHASEc.eeeerierieieieieiere ettt
The termination Phasec.cecceveeerieereereereiieieieterene e seeseeeneen 62
Building applications—an overview ... 63
Basic project configuration ... 63
Processor configurationc.cececeevveieeierieneneneninineneeceeeeeeeneen 64
ROPIRWPL ..ottt tebe et eneieaene 65
Data MOdElc.ooviiiiiiiiiiieeeeeee e 65
Size of Int data tYPEccvevverereriiriniieietetece e 65
Size of double floating-point tyPeccceveevueveruerierierenereneneeeeneene 65
Optimization for speed and size
Data STOrAZE ..ot 67
INtroduction ... e 67
Different ways to Store datac.cceceeeeeeeereriieiiierieieneneneereeneae 67

IAR C/C++ Development Guide
Compiling and linking for RX

Contents °

MEMOFY LYPES ..o s 68
Introduction to MEMOTY LYPES ..cc.eeveruirveeueereeieieieieieteneenenenaesreeneen 68
Using data memory attributesceceeceevvereenienienienienenenieneneneenees 69
Pointers and MEMOTY LYPES ...cccevververrirrererereniririeeitertee et e 71
Structures and MEMOTY LYPES ..c.eevererrerrererierererieereereeeeieresessensens 71
MOTE EXAMPIES ...eoviiiiniiniiiiieieieeee et

C++ and memory types

Data models ...
Specifying a data modelcocevvevieciiniininenininneeceene 73
Storage of auto variables and parameters ..o 74
The StACK ..eoviieiiiiiiieeccctc et 74
Dynamic memory onthe heap ... 75
Potential problemscccoeereriririniiieieeeeeeee e 75
FUNCLIONS ...t 77
Function-related extensions ... 77
Executing functions in RAM ... 77

Primitives for interrupts, concurrency, and OS-related

PrOSFraMIMING ...c.oimiiiiiieiee ettt neeen
Interrupt functions ...
Fast interrupt funCtionsccceceeveeirieieienieeesieieese e 80
INESted INLEITUPLS w..eeuvenventiteeeieteeieeieeiieit ettt ettt 81
Monitor fUNCHONSccooiiiiiiiiiiii s 81
Inlining functions ...
C versus C++ semantics
Features controlling function inliningc.ccceevevvevicvencnvcncnncenen 85
Stack Protection ... 86
Stack protection in the IAR C/C++ Compilercccceceverenenenennene 86
Using stack protection in your applicationc.ccceeevererercnneencen 87
Linking using ILINK ... 89
Linker overview ... 89
VIBIEETS ..ottt ettt ettt et st st sbeesae e et enneeaeeenees 90
Modules and sections ... 90

8

IAR C/C++ Development Guide
Compiling and linking for RX

The linking process in detail ... 91

Placing code and data—the linker configuration file 93
A simple example of a configuration filecccccoveveenincninininn. 94
Initialization at system startup ... 96
The initialization PrOCESSccccoverrerriererererieiiiieietetenrene e sesreeneen 97
C++ dynamic initializationcecceceeeeeeieneenienieienicienenenenenceneen 98

Stack usage analysis

Introduction to stack usage analysiscccceceevevreierienencnienenencenens 99
Performing a stack usage analysiscccceeevvevienicnicnencnicncncneenens 99

Result of an analysis—the map file contentscccceceecervervenenncene 100
Specifying additional stack usage informationc.cceceeeeeeneenenne. 102
LIMItationsccccoviiiiiiiiiiiiiiciiicece e 103
Situations where warnings are isSuedccceeevererenenencnennenne. 104

Call Zraph 10g ..cc.coeeieiiiiiiiieieeecceecce e 104

Call graph XML OUEPUL «..coveeueiiiiieiiieicicieneeeeeeeeteeeee e 105
Linking your application ... 107
Linking considerations ... 107
Choosing a linker configuration filecccocevverenenienicniennennene 107

Defining your own memory areas

PIacing SECHIONS ...c.ceveuiemiiiireiniinieeieetiettett ettt
Reserving space in RAMccociiiiiiiiiiiiiininenesccesieee e
Keeping modulescccoereririniniiiiniiiiieiicceeseeeeeeeee e
Keeping symbols and SECtIONSccceevereririeieienienienienienicreeeeenes

Application startup

Setting up Stack MEMOTY ...c..cocerueruirieerierieiiieierereeresreereereereere e
Setting up heap MEMOTYcccovvevverererierenireeteee et
Setting up the ateXit Hmitcocooeveeiireniiiieeseeeeee
Changing the default initializationccceceeeverienenencninicnineene 112
Interaction between ILINK and the applicationc..cccceceeveeeeneene 116
Standard library handling
Producing output formats other than ELF/DWARF 117
Hints for troubleshooting ... 117
RElOCAtION @ITOTSouveiieniiirieiiiceieetce ettt 117

Contents °

Checking module consistency ..., 119
Runtime model attributesccocoeiiiiiiiinniiii 119
Using runtime model attributesc.ccecerereneninnenienncnieneneens 120

Linker optimizations ... 121
Virtual function eliminationcccecveevecienenenenenenenienienieneneene 121
Small function INlNING ...c..cocevvevieriinenininiiceeeecceeeen

Duplicate section merging

The DLIB runtime environment ... 123
Introduction to the runtime environment 123
Runtime environment functionalitycccecevvevenenienenienicnneneene 123

Briefly about input and output (I/O)cc.cccvereneninnenieniicnieens 124

Briefly about C-SPY emulated I/Occccoeeieniiniiniieiiieceneeee 125

Briefly about retargeting

Setting up the runtime environment ...

Setting up your runtime envirONmMentc.eceeveereereenenrenenneeneenes
Retargeting—Adapting for your target Systemc..cccocceververenene
Overriding library modulescccccevevineninineneneneeeeeeeene
Customizing and building your own runtime libraryc..c.cce.ce.
Additional information on the runtime environment
Bounds checking functionalityccccceeceeverenenenenenienienieninene
Runtime library configurationsccceceveverenenenenienienieneneene
Prebuilt runtime libraries ...
Formatters for printfcccooeevieiirinieieieeeeeee e
Formatters for scanf
The C-SPY emulated I/O mechanismccccocooviiiiiiininnnn.
Math fUNCHONS ..eouiiniinieiieiertestereeet ettt
System startup and terminationccoceeeereereereereereneneneneneeneene
System INTHAlIZAONeoveeveriiiiiiriiieieeetceccrcereere e
The DLIB low-level I/O interfaceccccocevveverenenenenienenencnene

SYSLEIIL oottt ettt s
__time32, __
Configuration symbols for file input and outputc..cccceeeeveennennee

LLOCALE oot e

Managing a multithreaded environment
Multithread support in the DLIB runtime environment

Enabling multithread SUPPOITcccceueeuieiiieniiieieieieene e

Setting up thread-local storage (TLS)ccccocevvivininininicnininieene.
Assembler language interface ..., 163

Mixing C and assembler ...
Intrinsic fUNCHONScocviiiiuiieciieecieeeee et

Mixing C and assembler modules

Inline assembler ...
Reference information for inline assemblercoceecererenvencncne 166
An example of how to use clobbered MemMoOrycccceeeeveeneenenneee 171
Calling assembler routines from C ... 172
Creating SKeleton COAecocirviriririeiieienieneniesenienie e

Compiling the skeleton code

Calling assembler routines from C++ ... 174
Calling conNVeNtion ... 175
Function declarationsccoceeereruerenenieeeieieieietesee e 176

IAR C/C++ Development Guide
Compiling and linking for RX

Contents °

Using C linkage in C++ source code ...
Preserved versus scratch regisStersc.ccceeeverenienenenenierveneneene

FUnCtion @ntrancecccceeeeeeriieeiieeeiieriieeeeeereeesee e eveeeseae e e e

FUNCHON EXIt eeiviiiiiieieieteste sttt
Restrictions for special function typesc.coceeveeevevererieriencneene
EXAMPIES ...ooviiniiiiiiiieceecc e

Assembler instructions used for calling functions

Memory access methods ...
The datal6 memory access Methodcccceevevrerienenenienicnicneneene
The data24 memory access Methodc.ccceveverienenenienienienenene
The data32 memory access Methodcccceevevvenienenenienicnicneneene
The sbrel memory access methodc.ccceeeevievieeieniinenicninicnneene
Call frame information .
CFIdIir€CtiVescccoiiiiiiiiiiiiiiiiiiciceee e
Creating assembler source with CFIL supportc..cccoceevevcervcnincne
USING C it 189
C language OVErvIeW ...

EXtensions OVErVIEW ...
Enabling language extensions

IAR C language extensions ...
Extensions for embedded systems programmingc.ccececeeveuenee. 191
Relaxations to Standard Cccccooiiviiiiniiiiiiee 193

USING CHt s 199

Overview—Standard C++ ... 199
Exceptions and RTTI

Enabling support for CH++ ... 200

C++ feature descriptions ..., 200
Using AR attributes with Classescoceecererverierenienenienienieninene 200
TEMPIALES ...ttt st 201
FUNCHON LYPES ettt 201
Using static class objects in iNteITUPLScc.everererrerereeeereeneenuenuens 202
Using New handIerscc.cccceeeveeiiriiieieienienesesieiee e 202
Debug support in C-SPYcccieiriririiiiiiiieeenecece e 203

12

IAR C/C++ Development Guide
Compiling and linking for RX

C++ language extensions ... 203
Migrating from the DLIB C++ library to the Libc++ C++

BBFArY ..o 205
Porting code from EC++ or EECH++ ..., 206
Application-related considerations ... 207
Output format considerations ..., 207
Stack considerations ... 208

The user mode and supervisor mode Stackscccceceeererververeneene 208

Stack size conSIderationscocceeeierierienieniinienieseseee e 208

Heap considerations ..o 208

Heap memory handlersccoevevenininiininininininiceneencnenene 209

Heap sections in DLIBcccoccieviiiiiiiiiiiienieseeieeiese e 210

Checksum calculation for verifying image integrity

Briefly about checksum calculationccccoeevevieieienicnienicncnenne

Calculating and verifying a checksumcccccceeiivicininininincns

Troubleshooting checksum calculationccceeevevenieniennennineene
Patching symbol definitions using $Super$$ and $Sub$$...226
An example using the $Super$$ and $Sub$$ patternso.c...... 226
Efficient coding for embedded applications ... 227
Selecting data types ... 227
Using efficient data tyPesceceeveeieieierienenenienienienie e 227
Floating-point tYPESccververeereerenieniieiieiieiienteieniesieieieseesieseeseeneens 228
Casting a floating-point value to an integerc..coeeveverververennnene 228
Alignment of elements in a SIIUCTUIEceevuerierierienierienenieneniene 228
Anonymous Structs and UNIONScceeereeueruenieerierineeineneeenreneenes 229

Contents °

Controlling data and function placement in memory 230
Data placement at an absolute 10cationcceceevevenerervcnicnennne 231
Data and function placement in SECtIONSccoecveveeververerierierenunne 232

Controlling compiler optimizations ..., 234
Scope for performed OptimiZationsc.ceceecveuerecrecienenenienienenne 234
Multi-file compilation UNItsccceceevvevvecieneneneneneneneneneeeeeens 234
Optimization levels
SPEEA VEISUS SIZE ...eeevvivreriiierieniiniinieertetet ettt
Fine-tuning enabled transformationsc..cecceceeevenenierienvcnencne 236

Facilitating good code generationcccooovininnnnnnes 239
Writing optimization-friendly source codeccccooviniiininnn. 240
Saving stack space and RAM memorycccceceeeeeneeereneneennene. 240
Aligning the function entry pointc.ccceeerererenenenienrenienieneene 240
Register 1I0CKING ...c.cocvririiiiiiiiniinieneniecece et 241
FUnCtion Prototypesccveverereneninieieietereiereresre e e e seeeneene 241
Integer types and bit NEZALIONceeeueeuieuienienieieieiee e 242
Protecting simultaneously accessed variablesc..ccccocevvererennnee 243

Accessing special function registers

Passing values between C and assembler 0bjectscecceveeverenneene 245
Non-initialized variablesccccocoviiiiiininiiiiiceee 245

Part 2. Reference information ... 247
External interface details ... 249
INVOCAtioN SYNEAXccccoiiiiiiiiciiccrc e 249
Compiler inVOCatioN SYNEAXc.ecveuerueurerereeiirieneeieiereeeeereeseeeseeeeenes 249

Linker invocation SYNEAXcc.cceceeeruerveererrieieeieieieteiesiesiesiesienieene 250

Passing OPONSc.cooueieiiriiniiniieieieieicc ettt 250

Environment variablescocooeviriiieiiienieeeeee e 251

Include file search procedure251
Compiler output ... 252
Linker output ... s 253

Text enNCOdiNGScocooiiiiiii e 254
Characters and String literalscccecvevvevienenenencncnenenieneneneene 255

Reserved identifiers ..o, 255

DiIagnoStiCscoouoiiic s 256
Message format for the compilerccccceveveneninincnicnicnicnineene 256
Message format for the linkercccceeieveneneneninieniencnencnee 256
SeVETity LEVEIS ..ooviiiiiiiriiiiiericc e 257
Setting the severity 1evelc.cccovviiviininiininiinincneeeeeeee 257
Internal error
Error return codes ..o 258

ComPiler OPLIONS ... 259

OPLIONS SYNTAX ..ottt 259
TYPES Of OPHONS ..ceveviiiiiiieiieiieieteeteee ettt 259
Rules for specifying parameterscccoceerereevenueinrerineneeeneeennes 259

Summary of compiler options ... 261

Descriptions of compiler options ... 267
=—alIZN_TUNC oot
208D s
“=CANATY_VAIUC ..ottt
==Char_iS_SIZNedcocevuiriiiiiiiieieee e

--char_is_unsigned

SmCOTE wvaineeteveretetetestee ettt et bt st bbb bttt ettt sttt n e
T2 ettt ettt st ene

D e
—=data_MOAELoooiiiiiiiiiee e
--debug, -

--dependencies

--deprecated_feature_Warningsccoceeevveruereereerenenesenenenennes 272
“=IAZ_EITOT ..iiiieieieiirieete ettt ettt sb e st 273
==d1ag_TEMATK ..ovoiiiiiiiiiicccecc e 273
==01AZ_SUPPIESS .eevververriierierierieniieiiritestete st ettt st st sbe bbb s 274
--diag_warning

--d1agnostics_tablescccocvviiiriiiiiiniiicee e 275
--discard_unused_publiCsc.ccecereeierienienieniiieieeeseeee e 275
==dlD_CONTIG e 275

IAR C/C++ Development Guide
14 Compiling and linking for RX

Contents °

--do_explicit_zero_opt_in_named_sections276

“=dOUDIE .ot 277
S ettt bttt b et b sttt b et st ebe sttt bene 277
= 17:10) [0 (<11 1 8 (<, AR RRRTRRORRRN 278
“m@IIAN et 278
“—@IUIML_IS_INE oottt ettt 278
--error_limit ...279
ettt 279
o ettt 280
P e 280
==gUATA_CAllS woueiiiiiiiiiic e 281
=-header_CONLEXL ...evueriiriieiiiiiieieieiitettetteee et 281

281
282
282
282
283
..284
284
285
285
285
286

--no_call_frame_info286
=NO_CIUSEEIING .eevvenieniiierteeeee ettt 286
=-N0_COAE_MOLION ...cuviuririeriinieniiniinieereetet ettt sre e 287
=-N0_CTOSS_CAll teoiiiiiiiiiiniiiincr e 287
SoTMO_CSE uverieeeettee e e e ettt e e e et e e et e e et e ee e e —ae e s ettt e e e atteteseeaaaeessnnnaes 287
--no_default_fp_CONtractcccecuvvevieneeneineninininineeeeeceeeene 288
“NO_EXCEPLIONS ..vvnvenrinierierienienieritnieertete sttt eneere s bbb ereenes 288
=NO_TTAZMENLS ...ovviiiiiiicieieeeeteee e 288
=NO0_INLINE eiiiiiiiiiiiiercrec e 288
--no_normalize_file_macrosccccceeevinenininininincnneeeeee 289
--no_path_in_file_mMacrosc..ceceeeeienenieneninineneseeeeeeceeeeene 289

16

IAR C/C++ Development Guide
Compiling and linking for RX

--no_rtti

=sN0SAVE_FU Lo 289
=-N0_SChEAULINGvovviiiiiiniiniierr et 290
=-NO_ShAEIING ...ooviviiiiieiiiiieeceeeree e 290
=-NO_S1Z€_CONSIIANLS ..eoververuerueriiriirieereeteteieteretessessesresresnesreereenes 290
--NO_StatiC_dESIIUCHION ...eoveruerueriiriiiiieiieieeeieictcre et 291
--no_system_include

SN0_tDAA i
--no_typedefs_in_diagnosticscccccoviiiiiiiiiiiiiiiis 292
--nO_uniform_attribute_SYNtaXcccceveevereeriereeneeneenenenennenneenes 292
=sN0_UNTOIL oottt 293
“SNO_WAITINES conveieieiiienienienienierienieestestetesteeesseseessessesnesnessesessesnes 293
--N0_WIap_diagNOSHICScceeirueuieiiieiinieieieiete et 293

—-predef _MACTOS ...coviuiiiiiiiiiiiieetceeeetc ettt e 296
SPIEINCIUAE oot 296
S=PIEPLOCESS ..vviuiiiiiiiniiie ittt s s 296
“PUDLIC_EQU ettt 297
--relaxed_fp

SmTEMATKS ettt ettt
“—TEQUITE_PIOLOLYPES evveveeveeneentenienientententetenrentereseeressesnessessesseeseenes 298
--reversed_bitfields ... 299
SmTOPL ottt 299
STWPL ettt ettt e b st 299
STWPIIICAT ottt ettt et eresre et e 300
SmSAVE_ACC wvveeiiureeeeeeieeeeeeesteeeeeiaaeesesssateeessaaaeesenatesssasaeeesssraaeessnnnaes 300
S=SECHION ..t 301
S=STIENT Lo 301
==SOUICE_ENCOMING ..uveviierierierieriiriiriteitete ettt 302

Contents °

--sqrt_must_set_errno

==STACK_PIOLECHION ..oveuvinririirieriiriiriieitceteeet et
SoSETICT oo
--SUPPIESS_COTe_attriDULE ...cceeeeuieiiiniiiiienteeciceeee et 303
--system_include_dircoccoceeviiininiiiininee 303

“=tfU_VETSION oeiiiiiiiiiicciectcectcccece e 305
--uniform_attribute_SYNtaXccccccceeeerenenineneneneneeineeeeneenes 305
—-USE_CH+_INLINE oo 306
--use_unixX_directory_SeParatorscc.cocceeeeruevevenrensenrenseneneereense 306
--US€_PAthS_aS_WITHIEI «..eoveeuieuiiiiinieniiieneentcresrctere e 306
B N1 ¢TI 1=, L 4 LTSRS U TRRRRRRRRN 307
SSVETSION ot 307
SmVIA L 307
--Warn_about_C_Style_CaStSc..cecureeierierienieniiieieeeseee e 308
--warn_about_incomplete_CONSIIUCLOTScccevevrerrereeerereneeneene 308

--warnings_affect_exit_code

--warn_about_missing_field_initializersc.cccceoerververviniinienene. 308

“-WAININZS_AT€_CITOTS .c..eeverueruerurruirueereeneentenrenresensessessensessessessessesses 309

LINKEr OPTIONS ..o 311

Summary of linker options ... 311

Descriptions of linker options ..., 314
--accurate_math

--advanced_heapc.cceeeviiiiiiiiiite e 315

==DASIC_NEAP et 315

==CAll_GraPR ..o 316

“=CPP_INIE_TOULING ..ovvirviieereeitiieriiriieiteiteeete ettt sre et 317
==debUZ_ID oo 318
--default_to_cOmPpleX_Tangesc..cccevereeruenienienieneneneninceieeneenes 318

18

IAR C/C++ Development Guide
Compiling and linking for RX

--define_symbol
--dependencies

“=0IAZ_ITOT ..oviiiiiriiriiniecieet ettt e s
==d1AZ_TEMATK ..o.eeviiiiiieiieeeeee e

--diag_suppress

--diag_warning

--diagnostics_tables ...

--enable_stack_usage

==fOTCE_OULPUL ..ovveiiiiiiiicicctetcttctce et
==IMAZE_INPUL oottt ebe s

“INIINE it ere e e

STTIO_CIUTY oottt sttt
--NO_fragments ..o
=-NO_TT€E_NEAP .eoiiiiiiiieiecee e
=NO0_INLINE eiiiiiiiiiiicnccre e
--NO_lIBrary_S€archc.cocovererireeienienieieniiiieeesteeeeeeeee e
B O X [o%: | OSSR PURRRRRRRRRN

--NO_TANZE_TESEIVALIONSciiuiuiiriiiiiiiniiiiietiseeiiee e s 333

Contents °

--no_warnings ..334
--NO_WIaP_dIaZNOSHICS ..evveruiruiriiriiiiieiieteeereicrere et 334
==ONLY_SEAOUL .eoviiiieiiiiiieniererertr ettt 334
“=OPLION_IMEIIL «eeuteuienientiienteeieeieeiteiteitestesee st e besbesbebeebesbesae et et snense e 334
SmOULPUL, =0 ettt ettt ettt st sbe bbbt bt et ne b nenne et 335
—-place_hOIdETccueviiviiniriiiiictctctccc e 335
--preconfig ...336
--printf_MUItIDYLES ...ooveviiiiiiiiiiiiiiicicecececccee e 336
STEAITECT L.t 336
SmTEMATKS oenieitietiee ettt 337
--scanf_MUILDYLESooveviiririiiiiiniccccceccee e 337
-=search, <L .o 337
SmSTLBIIE ettt 338
--small_math ... 338
--Stack_UuSage_CONMIOLcoccoceririiriiiiiiiieiiieiciccecere e 338
SoSETIP ettt s 339
SmEEXT_OUL .ttt 339
--threaded_lib ..339
--timezone_lib 340
--use_full_std_template_Namescccceeeereruiniiniininininineeeeene 340
SO _EEXT TN oo 340
SmVETSIOM ceviiieietetetet ettt sttt b et e ettt et sb e sb e s b bbb ebe s 341
SmVEE s 341

--warnings_affect_exit_code342

“=WAININZS_ATC_CITOTS .c..eeverueruerriruirseertentereesesesesessessensessessessessennes 342
--whole_archive ... 342

Data repreSentation ... seeneesess e 345
AlIgNMENT ..o 345
Alignment on the RX microcontrollerc.cococevevenienvenieniencne 346

BYte OFder ... s 346

Basic data types—integer types ... 346
Integer types—an OVEIVIEWc.ccceeeeuieierienienieieieieiesie e e sieniene 347

BOOL .. 347

20

The long long type

The enUM LYPE .c..eoveruiimiiiiiirticiereeeeeee ettt

The Char tyPe ...c.coceeieiiiiiiriniee et

The wchar_t type

The charl6_t type

The char32_t type

Bitfields .
Basic data types—floating-point types ... 353

Floating-point nVIrONMENtcc.ceveeuerreerierieieieiererereneenresensensenne 353

32-bit floating-point fOrmatcocceceevereerenenieneneneneeeeceeeneene 353

64-bit floating-point fOrmatcocceceeveeveenieninineneneneeeeeeeeene 354

Representation of special floating-point numbersc..cccceceeeeueeee 354

Pointer types
Function pointers
Data POINLELSccvivviriiiiriniieiierieteteier ettt ettt 355
CASHNE c.eeeiiteieettet ettt ettt ettt eat b et ettt et saesbesbesbesbeene 355
StrUCLUNe tYPES ..o 356

Alignment of structure types ...

General 1aYOULccoevueiiriirieieeeeeee e 356
Packed StrUCIUIE tYPESccuevvivvieuieiiniieiieiieiieteieiercrere e 357
Type qualifiers ... 358
Declaring objects VOlatilecccoceevieieiiiiienenienenencneeeeeeeeene 358
Declaring objects volatile and CONStccccecevvererenenenerrennenennnne 359
Declaring objects const
Data types in CH+ ...
Extended keywords ... 361
General syntax rules for extended keywords 361
Type attributesccceoiiiiiiiiiiiiic e 361
ODbJECt AtIIDULES ..eveviierieeieeeeiieete et 364
Summary of extended keywords ... 365
Descriptions of extended keywordscccoooerviinnnnnn, 366
__ADSOIULE e 366
_dALAL6 e 366

IAR C/C++ Development Guide
Compiling and linking for RX

Contents °

__data24 ...

dAtaB2 ..o
__FaSt_INERITUPE ..ecvviiiiiieiciciccecccc et 367
U IERITUPE ettt ettt ettt ettt et ebesbe s 368
__INETNSIC ettt 368
__INOMEOT ettt ettt ettt sttt ettt eb e ene et 368

__no_alloc, __1n0_allocl6ccccoceviririniniciinicnicnicncneeeee 369
__no_alloc_str, __n0o_alloc_strl6ccccceoenenineneninenenenncennne 370
B (Lo TN oV L PSRRI 371
__NO_SCIALCH ittt 371
CNOTELUTTL «ovevivtentenienientiteere et ettete ettt st ete et e tesbe s esnesnesaesuesuesueeneene 371
PACKEA <.ttt 372
_TAMFUNC ittt 373
TOOU euviutiiteeuteueeuteiteateat st e st sbe s bbbt e bttt et es et e st e saesbesbebeebeene e 373
_TO_PlaCEMENL «..oueiniiniiiiiieieeteeiteeeite ettt 374
USBICL et 374

Summary of pragma directives ..., 379
Descriptions of pragma directives ... 382

call_graph_TOOUccceoueiiiiiniiniiieieieeeteeeee e
data_aliGNMENTc.covueieiiriiriirieeeeeee ettt
default_function_attributes
default_variable_attributes

AEPIECALEdeeveeveiieieieiiieete ettt sttt

diag_defaultoooiiiiiii e

21

22

diag_error

diag remarkccccooeiiiiiiiinini et 389
dIAZ_ SUPPIESS ..eveiuiiuiimieiiiitirtenteietettte ettt een e sre st saesne et 389
AIAZ_WAITHNE ...ttt 389

fUNCHON_CALEZOTY ..cvviuiniiiiiiiniiiieietieiteet ettt st 390
include_alias
ININE Lo
JANGUAZE ...ttt

TOCALION ..ttt ettt et et e ettt eaaeeeteeeeaee e

INESSAZE .evevevvenierereritiieresireeeae sttt ss et st tes et s st et s bt s eneseseseenens
NO_StACK_PIOLECE ...vviuiiiiiieriinieniiriiniccrteeet ettt

ODJECT_ALTTDULE ...euieneenieniiiieee ettt s

PACK ettt ettt st bbb
PN QIS oot
public_equ
TEQUITEA ..eoviiiiiieititetete ettt ettt ettt s sbe b b nbene
TEMOAEL ..o
__SCANT ATES ettt
SECHIOM etietieitetet ettt sttt ettt et et ettt et sbe st s b bbb ebeenie
SEACK PIOLECE ..vviiieiiiniiienienienenitri ettt
STDC CX_LIMITED_RANGE
STDC FENV_ACCESSocioiirieietrnieieetneeieteenesseneieneseeseseeenensene
STDC FP_CONTRACT ...c.cioiiiiiciniicieeireeeeeneeee e
LYPE_ALIIDULE ..oveiniiiiiiiiiietietceeeee ettt

UNTOLL oot ettt ettt e et e e eaae e eaeeea

Summary of intrinsic functions ... 407
Descriptions of intrinsic functions ... 410

IAR C/C++ Development Guide
Compiling and linking for RX

Contents °

__delay_cycles ...

__disable_INteITUPLcccevuevvevririirinereririrtctentee e 411
__enable_INTETTUPL ..ccevveriiriiriiniirieeieeeeietetcrest et 411
__BXChANZE ..o 411

FSQRT .ottt 412
__get DCMR _TEZISIET ..c..evvereirieeiiiiiiiiiieieiiciestentesesiesieeeeve e 412
__ et DECNT_IEZISIEL ...evvevveiieiieieeieiieieiientente st sie e seenee v e 412
__get DEPC_T@ISLET ...coevuereiriiiiiiieiiiieieicicstentenenesieee e 412
__get DPSW_T@ZISIET ..c.evveriiriiriiiiiiiiinieicitcteeciesieeeee e 412
8t FINTV_IEZISLET ..cveviiiiiniinienieeiieietetestese e 413
__get FPSW_IEZISIET ...ccveviiiiiniinieriiiniecteteeceesiee e 413

__get_interrupt_level

et ANTETTUPL_SLALE .ouvevetetitenienteeieeiieiteit ettt see bt eee e 413
__get_Interrupt_tablecooiiiiiiiiiiie e 414
8t ISP _TEZISLET ..ottt 414
8t PSW_TEEISIET ..eeouiiniiiiiirierieeieettee et 414

__inline_hypotfc.cccooiiiriniinic e 416
INHNE_SINE oo 416
INACT ottt 416
IMNACW L Lottt 416
TNACW2 ittt ettt sttt ettt et e et et e et et ste st s bt sbe bt beebeebee e enten 417

23

24

IAR C/C++ Development Guide
Compiling and linking for RX

__Set_ DCMR _TEZISET ..ccueruiriiriieiieiiiieieieictenteseesese e 418

__S€t_ DECNT_IEZISLET ..eveveveiiieiieieeieeieeieeiceieeree e see s 419
__Set_DEPC_IEZISLET ...eoueruiriiniiiiiiieiieiiiieictentcteniesieieee e 419
__S€t_ DPSW_TEISIET ...coveviiiiiniiiieniriiniinectctce ettt 419
__S€t_FINTV_IEISEr ..eouerviriiiieiieiiiieieietetest et 419
__Set_ FPSW_T@ZISIET ...ooveiiriiiiniiiiiiciiietictctct e 419
__set_interrupt_level ... 419
__SEL_INLETTUPL_STALE .eveeueeurenreniereerieniesieeieete ettt ettt 420
__Set_INterrupt_tableccccevinininiininicececeee e 420
__set_ISP_register
__set_PSW_register
__S€L_USP_TEZISIET .uveveiiiiiiieiiinieeeeiteteecetet e
_SINCOSE it
CSINCOSTX ittt
SINEX ettt st

__software_interrupt

__wait_for_interrupt

The PreproCesSOr ... 423

Overview of the preprocessornvecnnecnnen. 423
Description of predefined preprocessor symbols 424

__BASE FILE _

Contents °

__COUNTER__
__CPIUSPIUS et
__DATA_MODELL_ _ ..ottt 425

__LITTLE_ENDIAN_ _ ..o 428
__PRETTY_FUNCTION__ ...ccccoiiiiiiiiiiiiiniciciecce 428

__STDC_LIB_EXT1__ .ioiiiiiieeieieieeeeeneieseeeveeee e 430
__STDC_NO_ATOMICS__ ..ccciiiiiiiiiiiiiiicicciccce 430
__STDC_NO_THREADS__ccccooiiiiiiiiiiiiiccce 430
__STDC_NO_VLA_ _ ettt 430

25

26

VER e 431

Descriptions of miscellaneous preprocessor extensions432

H#INCIUAE_NEXE ..o 432
NDEBUG ..ottt 432
__STDC_WANT _LIB_EXTI__ ceceerieeiinieiccninecicerneceeeienenes 432
HWATTINE ..ottt sttt et ebeere et 433
C/C++ standard library functions ... 435
C/C++ standard library overview ...
Header flescooeiieiieieicceceee e
Library object filescccveriririirinieieieiereeieeeee e
Alternative more accurate library functions ...
REENLIANCY ..cviiiiiiiiiieieciecte ettt
The longjmp fUNCLION ...c..ocveviriirieirieiicieieeee e
DLIB runtime environment—implementation details 437
Briefly about the DLIB runtime environmentcocceceeveeneeeeneene 437
C header files
CH+header files ... 439
Library functions as intrinsic functionscceceeeverierienienenene 443
Not supported C/C++ functionalityc.cceceevevververirieneeeeneneenienens 443
ALOMIC OPETALIONS ...evvvnrinrintierieiieiieiieiieteertetestetesrereresae e saeseeeaeene
Added C functionalitycccceceeveevieirieieiieneneneseee e
Non-standard implementations
Symbols used internally by the libraryc..cccceceevininvininneenne. 447
The linker configuration file ... 449
OVEIVIEW ..ottt 449

IAR C/C++ Development Guide
Compiling and linking for RX

Contents °

Declaring the build type ... 450
build for direCtiveccooviiiiiiiiiiiiiiiice 451
Defining memories and regions ..., 451
define MemMOry dir€CtIVEcceevieieuieiiiieieieneerererieieee e 452
define region dir€CtiVeccceceeveeieieieieienienieniesenee e 452
10ICal dITECHIVEeeeuinieniiiiiietieiieeeiiccter et 453
Regions .
Region [Iteralcccooiviriiniiiiieieiciicicceeeecre e 455
REZION EXPIeSSIONveuviuriiieiieiieiieiieiieiieiieitet ettt st 456
EMPLY TEZIOMN ..ottt et 457
Section handling ... 458
define block dir€Ctiveccocceiviiiiiiiiiiiiiiicicccc e 459
define SeCtion dir€CtiVecccceverierienieniinienieeeee ettt 461
define overlay dir€CtiVeccceeeevievieiieciirininicnennnecceeceeiene 464
initialize direCtiveccoooiiiiiiiiiiiiiicc e 465
do not initialize dIrECIVEccevverueeuieiieiieiieiieeeiee e 468
KEEP dITECHIVEeiiiuiiiiiiiietieiieteteieer ettt

place at directive ...

place in directive

TESETVE TEZION w.uviurinriiirinrierteteeitettetteat et eat e ebete s s esnesaesaesuesaesaeene
use init table dir€CtIVEccevivievieiriiieicierereercrcre e 473

Section selection ...
SECHION-SCIECTOTSevviiiiiiiiiinteteieietite ettt ettt sresaesrene et
extended-selectors

Using symbols, expressions, and numbers 430
check that dir€CHVEccevvivieieininieicicicrceerccre e 480
define Symbol dir€CtiVecc.cceveririninininiiececieercresrenecseene 481
EXPOTE AITECHIVE ..ottt 481
EXPIESSIONS ..eviviintinienientitietteteettete ettt ettt et ebebebesbesresaesaesaesuesaeene 482
keep symbol dir€CtivVecccooeveeeniinieieieiiieiercrcrencse e 483
TIUIDETS ..oviniieiiettentenietet et st ettt b et eb ettt et enbesaesbesbesbesbene 484

Structural configuration ... 484
CITOT AITECHIVE ..vvinriiiiiriiieiiett ettt ettt bt eresre e s saenaeene 485
A QITECTIVE ittt 485

27

28

IAR C/C++ Development Guide
Compiling and linking for RX

INCIUAE AITECHIVE ..ooevviiiiiiiciiieeiee ettt 486

SeCtion referenCe ... 487
Summary of SECtions ... 487
Descriptions of sections and blockscccc.ccccovinnnnnes 489

dAtA160.DSS .o 489
.datal6.data c..eoeeeeiiie e 489
.datal6.data_initccoceeeeirinieicieeceeeee e 490
LdAtAl6.NOINIL ..ottt 490
.datal6.r0datAo.eiueiiiiiie e 490
LdALA24.DSS .. 490
.data24.data ...oeoeiiii e 490
.data24.data_Initccoeeeiieiiiieeee et 491
.data24.noinit

.data24.rodata

.dAtA32.DSS et
.data32.data c.ooeeiiii e
.data32.data_ itcoooieeiieiiieeee et 492
.data32.noinit

.data32.rodata
DIFUNCT ..ottt ettt ettt ese s e e sbeneenan
EARLYDIFUNCT

LBXCEPEVECT .ottt ettt ettt ettt ettt ettt
HEAP ettt ettt ae s
__iar tIs$$DATA
__1ar_tISSSINITDATA ..ottt 494
AAFAYNEXIE et 494
dar.Jocale_tableoooiieiiiiiiii e 494
ANIE_AITAY vttt st 494
.inttable

ISTACK

PIEINIL_AITAY ..ouvenvirierierieieeiiniieie ettt ettt sre s a e eae e e 495
TESEEVECT eiitiiieiieiienieete et et e et sreeste e st eateeabeebt et e b e bbb e sabesaees 495
SDICLDSS <.t 495

Contents °

.sbrel.data
.SDrel.data_IMItcccveiivieeiieciiecee ettt e 496
SDIELNOINIL Lttt e ereeeenees 496

Stack usage control directives
function directive

exclude direCtiveccocooiviiiiiiiiiiiiiiiice e
possible calls direCtiVecccoeerieiririeieienieesesesee e
call graph root dir€Ctiveccceceeieirieieienienieneseneie e
max recursion depth directive ...
NO calls from dir€Ctivecoceeiriririeieieieeeeeee e
Syntactic COMPONENLScoooiiiiiie s
CALCGONY viiiiiiiiiiiiiiiiiiiii e
JURIC-SPOC .ttt sttt

module-spec ...

FUAMIE .ttt sttt
COlIAINIO ittt
SEACK=STZE ..ottt
STZE eviiiiiiiiie et
AR ULIHITIES ooooooo s 507
The IAR Archive Tool—iarchive ..., 507
INVOCAtION SYNAX ..eouviuiiiiiiiirterteienientct ettt 507
Summary of iarchive commandscceceveveeiiienenenenenenenene. 508
Summary of iarchive Optionsc..coccecerverereeeeeenenenienieierennenes 509

29

30

IAR C/C++ Development Guide
Compiling and linking for RX

Diagnostic messages

The IAR ELF Tool—ielftool ..o 511
INVOCAtION SYNTAX ..eouviviiiiiiiiiniiieietiteereetce et 511
Summary of ielftool OPtIONScc.eoereriereriiiiieereseecceeeee 512
Specifying ielftool address rangesccceceveeeevevecienenenienenenne 513

The IAR ELF Dumper—ielfdump ..., 513
Invocation syntax
Summary of ielfdump Optionsc..cccceverceririiiiiininineieeeee

The IAR ELF Object Tool—iobjmanip ..o,
INVOCAtION SYNAX ..eeuviuiiniiiiirtenteienieiet ettt
Summary of i0bjmanip OPONSceceeceeerieiiriirieneneneneneeeeneenes
DiagnostiC MESSAZESc.vevvievieriruierieiieiieiieiieteretereresre e e saeseenieene

The IAR Absolute Symbol Exporter—isymexport ...
INVOCAtION SYNTAX ..eouviuiiiiiiiiiinieietetcteereetce ettt
Summary of iSymeXport OPiONSceceeveevevevervenreneneneneneereenns
StEering fIleS ...ccvevvevieriiriieieiee e
Hide dir€Ctivecocviiiiiiiiiiiiiiiiiciiece e
Rename directive
SHOW QITECHIVE ...ttt
ShOW-T00t dITECHIVEc.oviiiiiiiiiiiiiiiiccc e
Show-Weak dir€CtIVEcocevereririiieiieieteieicictcetesteee e
DiagnostiC MESSAZEScververvirriruiriieiieiietietieeeieriesietetesiesiesieseesieene

Descriptions of Options ...

Contents °

...533

533

534

534

535

536

...536

536

537

537

=sN0_NEAAET ..ovviniiiiiiiiienerec e 537
=NO0_TE1 SECHION .eoviiuiiiiiiiiiiiieietett ettt 538
STTMO_SEIEAD woiiiiiiiiiiieeiiie ettt e s 538
=0 U8 TN it 538
2mOFESEL ot 539
S=OULPUL, =0 eviiiiiiiiiiiee s 539
SmPATILY ottt 540
--ram_reserve_ranges 541
STTANZE oeveteuterte e ete ettt ettt et eh et eh et et e be bbb eb e bt ebe s bbbt ebeens 542
STTAW ottt sttt ettt b e sa e sa e bt st ebe e 542
--remove_file_path ..o 542
“-TEMOVE_SECTION ..evuvviiiiiieieeieieieeeeeieeeeeeaeeeesessateeesesseeeesssssaeessnnnnes 543
=—TENAME_SECHIOM «.eevviiiiiireeitiiteiieiieitctete ettt sre bbb ere e 543

--rename_symbol544

SmTEPLACE, T ceveveieierieterie ettt ettt sttt st eb s 544
SmTESETVE_TANZES ..uveuvenrenrinrintintenrenrerentensessesseestesteseeseeseeseensensennesnenne 545
S=SECHION, =S ...viiiiiiiiiiiiieeiit et e 545
SmSEEIMEIIL, =C .eeuveieieieieeteeie et ettt teeteb e et et e be st et et e stestesbe bbb e ebeeaes 546
==SElf_TElOC ..uiiiiiii 546
==SHOW_ENIIY_AS .eoiiiiiiiiiciiiicicicieccectee e 547
SmSTIBIIE ottt 547
SmSIMIPLE ittt 547
“=SIMPLE-TIE .niiniiiiieicierierere ettt 548
SmSOUICE ..eeteutentetetententetestesueesesstestebtes e et et e benbenbenbessesbeebeebeebebeebeenis 548

31

32

IAR C/C++ Development Guide
Compiling and linking for RX

Implementation quantities

--update_typeless_globalsc..ccoeeiiiininiininininine 551

--use_full_std_template_namesccccerereruerieneeneneneniinicneeneene 552
SO _EEXT TN i 552
==VETDOSE, -V Lo 553
SmVETSIOM ceviiienieteietet et sttt ettt b et e ettt et st sbesbe bbbt ebe s 553
SmVEOC et 553
Implementation-defined behavior for Standard C++ ... 555
Descriptions of implementation-defined behavior for C++ ...
LSt Of tOPICS weeveviinieieieiiieeee ettt st

Implementation-defined behavior for Standard C 593
Descriptions of implementation-defined behavior 593
J.3.1 Translationcceceeceeeeieiinienieieiceeeeee ettt 593
J.3.2 ENVIFONMENE ...ovviiiiniiiinieienieiciceeeetcee ettt s 594
J.3.3 Identifiers
J.3.4 Characters
J3US TNEEZELS ettt st
J.3.6 Floating POINL ...c.ceviiiviiniieiiniieiieiieieiieretetererere e 598
J.3.7 Arrays and POINETScccoueerueieerieirieneeeiereeeeeriee e ees 599
T3 HINLS oottt 599
J.3.9 Structures, unions, enumerations, and bitfields 599
J.3.10 QUANITIETS ..ecvveeeiiiiiiiicieeiiee ettt et ees 600
J.3.11 Preprocessing dir€Ctivescoceeeeiereenierienienienieneneneneneene 600
J.3.12 Library functionsccecceveeueeeeieienieienienienieneneneneseneene 603

Contents °

J.3.13 Architecture
JALOCAIE oottt e

Implementation-defined behavior for C89 ... 613

Descriptions of implementation-defined behavior 613
Translation ...
ENVITONMENE ..ottt ettt s
Identifiers ..o
Charactersccociiiiiiiiiiiiiicc e
TIEEEETS ettt et
FLoating POINEcooviiiiiiiiintinrieieiteiier ettt
ATTays and POINLELS ...cveuvirrierierieieiieiieireretententestesresrere s e saeeaeene
REZISLETS ...ttt s

Structures, unions, enumerations, and bitfields

QUALITIETS ...eveeieiieie ettt e te et eesaeesbeesae s
DECIATALOrS ...cveeviiiiieieiiieete ettt
STABMENLS ...t
Preprocessing dir€CtiVesceeeeeieieieieienieiesiesieiee e
Library functions for the IAR DLIB runtime environment 620
INAEX s 625

33

IAR C/C++ Development Guide
34 Compiling and linking for RX

Tables

1: Typographic conventions used in this UIdecccecevveririeiieiiininiienceeeeeee 42
2: Naming conventions used in this gUIAecc.cccevererenenenienienieeeeeeeeeene 43
3: Memory types and their corresponding memory attributesc.coceeevevenennene 69
4: Data model CharaCteriStiCscevuririerierierterierienienieste sttt 73
5: Sections holding initialized dataccccccoevieiiiniiiineeee e 97
6: Description Of a relOCAtioN EITOTc.eeteuieiiierierienienienienreereereere e e e 118
7: Example of runtime model attributescoevievinenenininineeeeeeeeie e 120
8: Library CONfigUIationscccueoererereriininiieicettente ettt st ettt 134
9: Formatters for printf

10: Formatters for scanf

11: Library objects using TLScccooiiiiiiiiniiiieeeeeeeeteteececeese e 159
12: Inline assembler operand CONSIAINLScc.ceceeeruereeieienieieieicrereneesesenieneen 168
13: Supported constraint MOITIErSccceverervireiririeieeeiet et 168
14: List of valid CIODDEISccccoiiiiiiiiiiiiiiiiiiicc 170
15: Operand modifiers and transformationscececeecvevveneenrenenienenenenenenennees 171
16: Registers used for passing parameters

17: Registers used for returning valuescc.ccceceevirieiieiiinienienienienenenenenenenneen

18: Call frame information resources defined in a names blockcccccceen. 185
19: Language eXteNSIONScceuiveeuerueuirieiererieiinterteteeereeeeesseseevessereseeeeseseeaessene e 191
20: Section operators and their SymbolScccoveeirirviriiriiniieiieienenenennneeeene 193
21: Compiler optimization IeVElSc.cecevieieiiniiriininininineceeeceeecrecrere e 235
22: Compiler environment variablesc..coccooiriririniinininieieeeseeeeie e 251
23: ILINK environment variablescccocoiiiiiiininiiiniicncccc 251
24: Error return COARSc.ovviiiiiiiiiiiiiiiiieii ittt s 258
25: Compiler OptionS SUMIMATYcceeeereeruerienuerientestenenteesieseeseeseesteseesessensensessenne 261
26: Linker Options SUMIMATIYc..cccceieeeieieieretetentenienrenrenreereereeseeneesnennesnennensenne 311
27: Integer types

28: Floating-POINt LYPES ..eevververuerririerteetieieeiieieiteteteste sttt st ebe et ettt esseasesee e 353
29: Extended KEyWOrds SUMIMATYccccoceeieuirreieienienienrenrieieereereeeeseerensessensensenne 365
30: Pragma direCtives SUMMATYcccccceeerrereeinineeieneetetenesenseniesresseseessesseeneens 379
31: Intrinsic fUNCHONS SUMIMATYco.evvirvirierieniiniiniintieteet et teteee s see e siesiesieeneene 407

35

36

IAR C/C++ Development Guide
Compiling and linking for RX

32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:

Traditional Standard C header files—DLIBcccccceiiiiiiiiiiininenenienenenee 438
CH+header files ... 439
New Standard C header files—DLIBcccccciviiiiiiiiiiiiiinicce 442
Examples of section selector Specificationsc..cecceceeeeeeiesienenenienenienenenne 477
SECHON SUMIMATIY ...veoviririeiiriieiieteteteterete st st sie sttt ere et et et s s saesaesresnes 487
1arChIVE PATAMELIETS .c..evveiuiriiiiiiiieiieiteteietetet ettt ettt ettt ae 508
iarchive commands SUMIMALYc.ccoeruerueruentenieneneeeeteeneere et ee et et sesseneesee e 508
1archive Options SUMIMATYc.cceeeierterienienienieienteeeeestesre oottt enenennennesae e 509
€100l PATAMELETS ...cveevieiieiiiiieiiiieietcee ettt st 511
1elft00] OPLIONS SUMMATYerveriieiieiieieieieietete ettt ettt ettt et e sttt etebe e ene 512
1elfdUmMPIX PArAMELEIS ...c.cocveveiiiiiintieietitit ettt ettt st sr et e ae 514
ielfdumprx Options SUMMATYc.cceeterueruenuinuiniiereeieeeieeerreeenteseestessesnesessenne 514
10DJMANIP PATAMELETS ...veveeiiiriieiieiieieieiet ettt sttt eb bt et ettt eneesee e 515
10bjmanip OPtioNS SUMIMATYc..ccuevvirrerrerrininriniiereeteterererenesresre e seesaeseeeneene 516
ISYMEXPOIT PATAIMELETS ..e.veueeurenrinrenreterenrennirenteereeseesteseenrersennessessessessessensensenne 518
iSymeXport OPtioNS SUMMALYc.cc.eveverueurruereereruereeueseruersesessesessensesessemsseseeenes 519
Execution character sets and their encodingsccccecuevevvevienenenencnienienenne 557
C++ implementation quantities

Execution character sets and their encodingscccoceeveeveercnnenecncceennee 596
Translation of multibyte characters in the extended source character set 609
Message returned by strerror()—DLIB runtime environmentc.c........ 610
Execution character sets and their encodingsceceeceeeeievienenenenienenenenne 614
Message returned by strerror()—DLIB runtime environmentcc........ 623

Preface

Welcome to the IAR C/C++ Development Guide for RX. The purpose of this
guide is to provide you with detailed reference information that can help you
to use the build tools to best suit your application requirements. This guide
also gives you suggestions on coding techniques so that you can develop
applications with maximum efficiency.

Who should read this guide

Read this guide if you plan to develop an application using the C or C++ language for
the RX microcontroller, and need detailed reference information on how to use the build
tools.

REQUIRED KNOWLEDGE

To use the tools in IAR Embedded Workbench, you should have working knowledge of:

e The architecture and instruction set of the RX microcontroller family (refer to the
chip manufacturer's documentation)

o The C or C++ programming language
e Application development for embedded systems
o The operating system of your host computer.

For more information about the other development tools incorporated in the IDE, refer
to their respective documentation, see Other documentation, page 39.

How to use this guide

When you start using the IAR C/C++ Compiler and Linker for RX, you should read Part
1. Using the build tools in this guide.

When you are familiar with the compiler and linker and have already configured your
project, you can focus more on Part 2. Reference information.

If you are new to using IAR Embedded Workbench, we suggest that you first go through
the tutorials, which you can find in IAR Information Center in the product, under
Product explorer. They will help you get started.

37

What this guide contains

38

What this guide contains

Below is a brief outline and summary of the chapters in this guide.

IAR C/C++ Development Guide
Compiling and linking for RX

PART I. USING THE BUILD TOOLS

Introduction to the IAR build tools gives an introduction to the IAR build tools,
which includes an overview of the tools, the programming languages, the available
device support, and extensions provided for supporting specific features of the RX
microcontroller.

Developing embedded applications gives the information you need to get started
developing your embedded software using the IAR build tools.

e Data storage describes how to store data in memory.

e [unctions gives a brief overview of function-related extensions—mechanisms for

controlling functions—and describes some of these mechanisms in more detail.

Linking using ILINK describes the linking process using the IAR ILINK Linker and
the related concepts.

Linking your application lists aspects that you must consider when linking your
application, including using ILINK options and tailoring the linker configuration
file.

The DLIB runtime environment describes the DLIB runtime environment in which
an application executes. It covers how you can modify it by setting options,
overriding default library modules, or building your own library. The chapter also
describes system initialization introducing the file cstartup.s, how to use
modules for locale, and file /0.

Assembler language interface contains information required when parts of an
application are written in assembler language. This includes the calling convention.

Using C gives an overview of the two supported variants of the C language, and an
overview of the compiler extensions, such as extensions to Standard C.

Using C++ gives an overview of the level of C++ support.

e Application-related considerations discusses a selected range of application issues

related to using the compiler and linker.

Efficient coding for embedded applications gives hints about how to write code that
compiles to efficient code for an embedded application.

PART 2. REFERENCE INFORMATION

External interface details provides reference information about how the compiler
and linker interact with their environment—the invocation syntax, methods for
passing options to the compiler and linker, environment variables, the include file

Preface __o

search procedure, and the different types of compiler and linker output. The chapter
also describes how the diagnostic system works.

o Compiler options explains how to set options, gives a summary of the options, and
contains detailed reference information for each compiler option.

® Linker options gives a summary of the options, and contains detailed reference
information for each linker option.

e Data representation describes the available data types, pointers, and structure types.
This chapter also gives information about type and object attributes.

o FExtended keywords gives reference information about each of the RX-specific
keywords that are extensions to the standard C/C++ language.

® Pragma directives gives reference information about the pragma directives.

e [ntrinsic functions gives reference information about functions to use for accessing
RX-specific low-level features.

o The preprocessor gives a brief overview of the preprocessor, including reference
information about the different preprocessor directives, symbols, and other related
information.

o C/C++ standard library functions gives an introduction to the C or C++ library
functions, and summarizes the header files.

o The linker configuration file describes the purpose of the linker configuration file,
and describes its contents.

® Section reference gives reference information about the use of sections.

o The stack usage control file describes the syntax and semantics of stack usage
control files.

® /AR utilities describes the IAR utilities that handle the ELF and DWARF object
formats.

® Implementation-defined behavior for Standard C++ describes how the compiler
handles the implementation-defined areas of Standard C++.

® Implementation-defined behavior for Standard C describes how the compiler
handles the implementation-defined areas of Standard C.

® Implementation-defined behavior for C89 describes how the compiler handles the
implementation-defined areas of the C language standard C89.

Other documentation

User documentation is available as hypertext PDFs and as a context-sensitive online
help system in HTML format. You can access the documentation from the IAR
Information Center or from the Help menu in the IAR Embedded Workbench IDE. The
online help system is also available via the F1 key.

39

Other documentation

40

IAR C/C++ Development Guide
Compiling and linking for RX

USER AND REFERENCE GUIDES

The complete set of IAR development tools is described in a series of guides.
Information about:

System requirements and information about how to install and register the IAR
products are available in the Installation and Licensing Quick Reference Guide and
the Licensing Guide.

Using the IDE for project management and building, is available in the /DE Project
Management and Building Guide for RX.

Using the IAR C-SPY® Debugger and C-RUN runtime error checking, is available
in the C-SPY® Debugging Guide for RX.

Programming for the IAR C/C++ Compiler for RX and linking, is available in the
IAR C/C++ Development Guide for RX.

Programming for the IAR Assembler for RX, is available in the /AR Assembler
User Guide for RX.

Performing a static analysis using C-STAT and the required checks, is available in
the C-STAT® Static Analysis Guide.

Porting application code and projects created with a previous version of the IAR
Embedded Workbench for RX, is available in the JAR Embedded Workbench®
Migration Guide.

Migrating from an older UBROF-based product version to a newer version that uses
the ELF/DWAREF object format, is available in the guide /AR Embedded
Workbench® Migrating from UBROF to ELF/DWARF.

Migrating from the Renesas High-performance Embedded Workshop and e2studio
toolchains for RX to IAR Embedded Workbench® for RX, is available in the guide
Migrating from Renesas to IAR Embedded Workbench.

Note: Additional documentation might be available depending on your product
installation.

THE ONLINE HELP SYSTEM

The context-sensitive online help contains information about:

IDE project management and building
Debugging using the IAR C-SPY® Debugger
The IAR C/C++ Compiler and Linker

The IAR Assembler

C-STAT

Preface __o

FURTHER READING

These books might be of interest to you when using the IAR development tools:

e Barr, Michael, and Andy Oram, ed. Programming Embedded Systems in C and
C++. O’Reilly & Associates.

e Harbison, Samuel P. and Guy L. Steele (contributor). C: 4 Reference Manual.
Prentice Hall.

e Labrosse, Jean J. Embedded Systems Building Blocks: Complete and Ready-To-Use
Modules in C. R&D Books.

Mann, Bernhard. C fiir Mikrocontroller. Franzis-Verlag. [Written in German.]
Meyers, Scott. Effective C++. Addison-Wesley.

Meyers, Scott. More Effective C++. Addison-Wesley.

Meyers, Scott. Effective STL. Addison-Wesley.

Sutter, Herb. Exceptional C++: 47 Engineering Puzzles, Programming Problems,
and Solutions. Addison-Wesley.

The web site isocpp.org also has a list of recommended books about C++ programming.

WEB SITES

Recommended web sites:

o The Renesas web site, www.renesas.com, that contains information and news about
the RX microcontrollers.

o The IAR web site, www.iar.com, that holds application notes and other product
information.

o The web site of the C standardization working group,
www.open-std.org/jtcl/sc22/wgl4.

o The web site of the C++ Standards Committee, www.open-std.org/jtcl/sc22/wg21.

o The C++ programming language web site, isocpp.org. This web site also has a list
of recommended books about C++ programming.

o The C and C++ reference web site, en.cppreference.com.

Document conventions

When, in the IAR documentation, we refer to the programming language C, the text also
applies to C++, unless otherwise stated.

When referring to a directory in your product installation, for example rx\doc, the full
path to the location is assumed, for example c: \Program Files\IAR
Systems\Embedded Workbench N.n\rx\doc, where the initial digit of the version

Document conventions

number reflects the initial digit of the version number of the JAR Embedded Workbench
shared components.

TYPOGRAPHIC CONVENTIONS
The IAR documentation set uses the following typographic conventions:

Style Used for

computer * Source code examples and file paths.
* Text on the command line.
* Binary, hexadecimal, and octal numbers.

parameter A placeholder for an actual value used as a parameter, for example
filename.h where filename represents the name of the file.

[option] An optional part of a linker or stack usage control directive, where [
and] are not part of the actual directive, butany [, 1, {, or } are part
of the directive syntax.

{option} A mandatory part of a linker or stack usage control directive, where {
and } are not part of the actual directive, butany [, 1, {, or } are part
of the directive syntax.

[option] An optional part of a command line option, pragma directive, or library
filename.
[a|b]|c] An optional part of a command line option, pragma directive, or library

filename with alternatives.

{a|b]|c} A mandatory part of a command line option, pragma directive, or
library filename with alternatives.

bold Names of menus, menu commands, buttons, and dialog boxes that
appear on the screen.

italic * A cross-reference within this guide or to another guide.
* Emphasis.

An ellipsis indicates that the previous item can be repeated an arbitrary
number of times.

Identifies instructions specific to the IAR Embedded Workbench® IDE

interface.
Identifies instructions specific to the command line interface.

Identifies helpful tips and programming hints.
El

Identifies warnings.

Table 1: Typographic conventions used in this guide

IAR C/C++ Development Guide
42 Compiling and linking for RX

Preface __o

NAMING CONVENTIONS

The following naming conventions are used for the products and tools from IAR, when
referred to in the documentation:

Brand name Generic term

IAR Embedded Workbench® for RX IAR Embedded Workbench®
IAR Embedded Workbench® IDE for RX the IDE

IAR C-SPY® Debugger for RX C-SPY, the debugger

IAR C-SPY® Simulator the simulator

IAR C/C++ Compiler™ for RX the compiler

IAR Assembler™ for RX the assembler

IAR ILINK Linker™ ILINK, the linker

IAR DLIB Runtime Environment™ the DLIB runtime environment

Table 2: Naming conventions used in this guide

43

Document conventions

IAR C/C++ Development Guide
44 Compiling and linking for RX

Part 1. Using the build
tools

This part of the IAR C/C++ Development Guide for RX includes these
chapters:

e Introduction to the IAR build tools
e Developing embedded applications
e Data storage

e Functions

e Linking using ILINK

e Linking your application

e The DLIB runtime environment

e Assembler language interface

e Using C

e Using C++

e Application-related considerations

o Efficient coding for embedded applications

: .hﬁhhhhm

ARARAIad

46

Introduction to the AR
build tools

e The IAR build tools—an overview
e IAR language overview
e Device support

e Special support for embedded systems

The IAR build tools—an overview

In the IAR product installation you can find a set of tools, code examples, and user
documentation, all suitable for developing software for RX-based embedded
applications. The tools allow you to develop your application in C, C++, or in assembler
language.

IAR Embedded Workbench® is a powerful Integrated Development Environment (IDE)
that allows you to develop and manage complete embedded application projects. It
provides an easy-to-learn and highly efficient development environment with maximum
code inheritance capabilities, and comprehensive and specific target support. IAR
Embedded Workbench promotes a useful working methodology, and therefore a
significant reduction in development time.

For information about the IDE, see the IDE Project Management and Building Guide
for RX.

The compiler, assembler, and linker can also be run from a command line environment,

if you want to use them as external tools in an already established project environment.

THE IAR C/C++ COMPILER

The IAR C/C++ Compiler for RX is a state-of-the-art compiler that offers the standard
features of the C and C++ languages, plus extensions designed to take advantage of the
RX-specific facilities.

47

The IAR build tools—an overview

48

IAR C/C++ Development Guide
Compiling and linking for RX

THE IAR ASSEMBLER

The IAR Assembler for RX is a powerful relocating macro assembler with a versatile
set of directives and expression operators. The assembler features a built-in C language
preprocessor, and supports conditional assembly.

The IAR Assembler for RX uses the same mnemonics and operand syntax as the
Renesas RX Assembler, which simplifies the migration of existing code. For more
information, see the /AR Assembler User Guide for RX.

THE IAR ILINK LINKER

The IAR ILINK Linker for RX is a powerful, flexible software tool for use in the
development of embedded controller applications. It is equally well suited for linking
small, single-file, absolute assembler programs as it is for linking large, relocatable
input, multi-module, C/C++, or mixed C/C++ and assembler programs.

SPECIFIC ELF TOOLS

ILINK both uses and produces industry-standard ELF and DWAREF as object format,
additional IAR utilities that handle these formats are provided:

o The IAR Archive Tool—iarchive—creates and manipulates a library (archive) of
several ELF object files

e The IAR ELF Tool—ielftool—performs various transformations on an ELF
executable image (such as, fill, checksum, format conversion etc)

o The IAR ELF Dumper for RX—iel fdumprx—creates a text representation of the
contents of an ELF relocatable or executable image

o The IAR ELF Object Tool—iobjmanip—is used for performing low-level
manipulation of ELF object files

o The IAR Absolute Symbol Exporter—i symexport—exports absolute symbols
from a ROM image file, so that they can be used when linking an add-on
application.

EXTERNAL TOOLS

For information about how to extend the tool chain in the IDE, see the IDE Project
Management and Building Guide for RX.

Introduction to the IAR build tools __4

IAR language overview
The IAR C/C++ Compiler for RX supports:

o C, the most widely used high-level programming language in the embedded systems
industry. You can build freestanding applications that follow these standards:

o Standard C—also known as C18. Hereafter, this standard is referred to as
Standard C in this guide.

o (C89—also known as C94, C90, and ANSI C.

e Standard C++—also known as C++17. A well-established object-oriented
programming language with a full-featured library well suited for modular
programming. The IAR implementation of Standard C++ does not support
exceptions and runtime type information (RTTI), and offers a choice of two
different standard libraries:

e DLIB, which is a C++14 library, and which comes in two configurations:
Normal and Full. The Normal configuration is smaller and offers slightly less
functionality.

o Libc++, which is a C++17 library. It has only one configuration, corresponding
to the Full configuration of the DLIB library.

Each of the supported languages can be used in strict or relaxed mode, or relaxed with
IAR extensions enabled. The strict mode adheres to the standard, whereas the relaxed
mode allows some common deviations from the standard. Both the strict and the relaxed
mode might contain support for features in future versions of the C/C++ standards.

For more information about C, see the chapter Using C.
For more information about C++, see the chapter Using C++.

For information about how the compiler handles the implementation-defined areas of
the languages, see the chapters Implementation-defined behavior for Standard C and
Implementation-defined behavior for Standard C++.

It is also possible to implement parts of the application, or the whole application, in
assembler language. See the AR Assembler User Guide for RX.

Device support

To get a smooth start with your product development, the IAR product installation
comes with a wide range of device-specific support.

49

Device support

50

IAR C/C++ Development Guide
Compiling and linking for RX

SUPPORTED RX DEVICES

The IAR C/C++ Compiler for RX supports all devices based on the standard Renesas
RX microcontroller. The single-precision hardware floating-point unit (FPU) is also
supported.

PRECONFIGURED SUPPORT FILES

The IAR product installation contains preconfigured files for supporting different
devices. If you need additional files for device support, they can be created using one of
the provided ones as a template.

Header files for 1/O

Standard peripheral units are defined in device-specific I/O header files with the
filename extension h. The product package supplies I/O files for all devices that are
available at the time of the product release. You can find these files in the rx\inc
directory. Make sure to include the appropriate include file in your application source
files. If you need additional I/O header files, they can be created using one of the
provided ones as a template.

Linker configuration files

The rx\config directory contains ready-made linker configuration files for all
supported devices. The files have the filename extension icf and contain the
information required by the linker. For more information about the linker configuration
file, see Placing code and data—the linker configuration file, page 93, and for reference
information, the chapter The linker configuration file.

Device description files

The debugger handles several of the device-specific requirements, such as definitions of
available memory areas, peripheral registers and groups of these, by using device
description files. These files are located in the rx\config directory and they have the
filename extension ddf. The peripheral registers and groups of these can be defined in
separate files (filename extension s f£r), which in that case are included in the ddf file.
For more information about these files, see the C-SPY® Debugging Guide for RX.

EXAMPLES FOR GETTING STARTED

Example applications are provided with IAR Embedded Workbench. You can use these
examples to get started using the development tools from IAR. You can also use the
examples as a starting point for your application project.

You can find the examples in the rx\examples directory. The examples are ready to be
used as is. They are supplied with ready-made workspace files, together with source

Introduction to the IAR build tools __4

code files and all other related files. For information about how to run an example
project, see the IDE Project Management and Building Guide for RX.

Special support for embedded systems

This section briefly describes the extensions provided by the compiler to support
specific features of the RX microcontroller.
EXTENDED KEYWORDS

The compiler provides a set of keywords that can be used for configuring how the code
is generated. For example, there are keywords for controlling how to access and store

data objects, as well as for controlling how a function should work internally and how
it should be called/returned.

By default, language extensions are enabled in the IDE.

The compiler command line option -e makes the extended keywords available, and
reserves them so that they cannot be used as variable names. See -e, page 277 for
additional information.

For more information, see the chapter Extended keywords. See also Data storage and
Functions.
PRAGMA DIRECTIVES

The pragma directives control the behavior of the compiler, for example how it allocates
memory, whether it allows extended keywords, and whether it issues warning messages.

The pragma directives are always enabled in the compiler. They are consistent with
standard C, and are useful when you want to make sure that the source code is portable.

For more information about the pragma directives, see the chapter Pragma directives.

PREDEFINED SYMBOLS

With the predefined preprocessor symbols, you can inspect your compile-time
environment, for example time of compilation or the build number of the compiler.

For more information about the predefined symbols, see the chapter The preprocessor.

ACCESSING LOW-LEVEL FEATURES

For hardware-related parts of your application, accessing low-level features is essential.
The compiler supports several ways of doing this: intrinsic functions, mixing C and
assembler modules, and inline assembler. For information about the different methods,
see Mixing C and assembler, page 163.

51

Special support for embedded systems

IAR C/C++ Development Guide
52 Compiling and linking for RX

Developing embedded
applications

e Developing embedded software using IAR build tools

e The build process—an overview

Application execution—an overview

Building applications—an overview

Basic project configuration

Developing embedded software using IAR build tools

Typically, embedded software written for a dedicated microcontroller is designed as an
endless loop waiting for some external events to happen. The software is located in
ROM and executes on reset. You must consider several hardware and software factors
when you write this kind of software. To assist you, compiler options, extended
keywords, pragma directives, etc., are included.

CPU FEATURES AND CONSTRAINTS
Some of the basic features of the RX microcontroller are:

Variable byte order for data access
A multiplier/divider

MAC units

Byte variable-length instructions
A floating-point unit

Fast interrupts

Alignment constraints.

The compiler supports this by means of compiler options, extended keywords, pragma
directives etc.

53

Developing embedded software using IAR build tools

MAPPING OF MEMORY

Embedded systems typically contain various types of memory, such as on-chip RAM,
external DRAM or SRAM, ROM, EEPROM, or flash memory.

As an embedded software developer, you must understand the features of the different
types of memory. For example, on-chip RAM is often faster than other types of
memories, and variables that are accessed often would in time-critical applications
benefit from being placed here. Conversely, some configuration data might be seldom
accessed but must maintain its value after power off, so it should be saved in EEPROM
or flash memory.

For efficient memory usage, the compiler provides several mechanisms for controlling
placement of functions and data objects in memory. For more information, see
Controlling data and function placement in memory, page 230.

The linker places sections of code and data in memory according to the directives you
specify in the linker configuration file, see Placing code and data—the linker
configuration file, page 93.

COMMUNICATION WITH PERIPHERAL UNITS

If external devices are connected to the microcontroller, you might need to initialize and
control the signaling interface, for example by using chip select pins, and detect and
handle external interrupt signals. Typically, this must be initialized and controlled at
runtime. The normal way to do this is to use special function registers (SFR). These are
typically available at dedicated addresses, containing bits that control the chip
configuration.

Standard peripheral units are defined in device-specific I/O header files with the
filename extension h. See Device support, page 49. For an example, see Accessing
special function registers, page 243.

EVENT HANDLING

In embedded systems, using inferrupts is a method for handling external events
immediately, for example, detecting that a button was pressed. In general, when an
interrupt occurs in the code, the microcontroller immediately stops executing the code
it runs, and starts executing an interrupt routine instead.

The compiler provides various primitives for managing hardware and software
interrupts, which means that you can write your interrupt routines in C, see Primitives
for interrupts, concurrency, and OS-related programming, page 78.

IAR C/C++ Development Guide
54 Compiling and linking for RX

Developing embedded applications ___¢

SYSTEM STARTUP

In all embedded systems, system startup code is executed to initialize the system—both
the hardware and the software system—before the main function of the application is
called.

As an embedded software developer, you must ensure that the startup code is located at
the dedicated memory addresses, or can be accessed using a pointer from the vector
table. This means that startup code and the initial vector table must be placed in
non-volatile memory, such as ROM, EPROM, or flash.

A C/C++ application further needs to initialize all global variables. This initialization is
handled by the linker in conjunction with the system startup code. For more information,
see Application execution—an overview, page 59.

REAL-TIME OPERATING SYSTEMS

In many cases, the embedded application is the only software running in the system.
However, using an RTOS has some advantages.

For example, the timing of high-priority tasks is not affected by other parts of the
program which are executed in lower priority tasks. This typically makes a program
more deterministic and can reduce power consumption by using the CPU efficiently and
putting the CPU in a lower-power state when idle.

Using an RTOS can make your program easier to read and maintain, and in many cases
smaller as well. Application code can be cleanly separated into tasks that are
independent of each other. This makes teamwork easier, as the development work can
be easily split into separate tasks which are handled by one developer or a group of
developers.

Finally, using an RTOS reduces the hardware dependence and creates a clean interface
to the application, making it easier to port the program to different target hardware.

See also Managing a multithreaded environment, page 158.

INTEROPERABILITY WITH OTHER BUILD TOOLS

The IAR compiler and linker provide support for the RX ABI, the Application Binary
Interface for RX. For more information about this interface specification, see the
www . renesas . com wWeb site.

The advantage of this interface is the interoperability between vendors supporting it; an
application can be built up of libraries of object files produced by different vendors and
linked with a linker from any vendor, as long as they adhere to the RX ABI standard.

The RX ABI specifies full compatibility for C and C++ object code, and for the C
library. The ABI does not include specifications for the C++ library.

55

The build process—an overview

56

The build process—an overview

IAR C/C++ Development Guide
Compiling and linking for RX

This section gives an overview of the build process—how the various build tools
(compiler, assembler, and linker) fit together, going from source code to an executable
image.

To become familiar with the process in practice, you should go through the tutorials
available from the IAR Information Center.

THE TRANSLATION PROCESS

There are two tools in the IDE that translate application source files to intermediary
object files—the IAR C/C++ Compiler and the IAR Assembler. Both produce
relocatable object files in the industry-standard format ELF, including the DWARF
format for debug information.

Note: The compiler can also be used for translating C source code into assembler source
code. If required, you can modify the assembler source code which can then be
assembled into object code. For more information about the IAR Assembler, see the JAR
Assembler User Guide for RX.

This illustration shows the translation process:

C/C++ Assembler

source
files

compiler

’* Librarian
Relocatable

object
files g

Customer
library

After the translation, you can choose to pack any number of modules into an archive, or
in other words, a library. The important reason you should use libraries is that each
module in a library is conditionally linked in the application, or in other words, is only
included in the application if the module is used directly or indirectly by a module

source
files

Developing embedded applications ___¢

supplied as an object file. Optionally, you can create a library, then use the IAR utility

iarchive.

THE LINKING PROCESS

The relocatable modules in object files and libraries, produced by the IAR compiler and
assembler cannot be executed as is. To become an executable application, they must be
linked.

Note: Modules produced by a toolset from another vendor can be included in the build
as well. Be aware that this might also require a compiler utility library from the same
vendor.

The IAR ILINK Linker (i1inkrx.exe) is used for building the final application.
Normally, the linker requires the following information as input:

e Several object files and possibly certain libraries
e A program start label (set by default)

e The linker configuration file that describes placement of code and data in the
memory of the target system

This illustration shows the linking process:

Relocatable

object

files
External Customer Standard
librar; :Ji;rar : eici
Y Y library
|

ILINK /

linker ILINK
K configuration

file

Map
file

.
e

Absolute
output
ELF/DWARF

Note: The Standard C/C++ library contains support routines for the compiler, and the
implementation of the C/C++ standard library functions.

57

The build process—an overview

58

IAR C/C++ Development Guide
Compiling and linking for RX

While linking, the linker might produce error messages and logging messages on
stdout and stderr. The log messages are useful for understanding why an application
was linked the way it was, for example, why a module was included or a section
removed.

For more information about the linking process, see The linking process in detail, page
91.

AFTER LINKING

The IAR ILINK Linker produces an absolute object file in ELF format that contains the
executable image. After linking, the produced absolute executable image can be used
for:

e Loading into the IAR C-SPY Debugger or any other compatible external debugger
that reads ELF and DWAREF.

e Programming to a flash/PROM using a flash/PROM programmer. Before this is
possible, the actual bytes in the image must be converted into the standard Motorola
32-bit S-record format or the Intel Hex-32 format. For this, use ielftool, see The
IAR ELF Tool—ielfiool, page 511.

Developing embedded applications ___¢

This illustration shows the possible uses of the absolute output ELF/DW ARF file:

Absolute
output
ELF/DWARF

External C-SPY g?ﬂ:;ﬁ
debugger A debugger converter

N Ly

N
Pl o) Su——— 50
UGS DS |

Hexfile

for
download

Flash/PROM
programmer

S0 |

S

Application execution—an overview
This section gives an overview of the execution of an embedded application divided into
three phases, the:
e Initialization phase
e Execution phase

e Termination phase.

THE INITIALIZATION PHASE

Initialization is executed when an application is started (the CPU is reset) but before the
main function is entered. For simplicity, the initialization phase can be divided into:
e Hardware initialization, which as a minimum, generally initializes the stack pointer.

The hardware initialization is typically performed in the system startup code
cstartup.s and if required, by an extra low-level routine that you provide. It might
include resetting/restarting the rest of the hardware, setting up the CPU, etc, in
preparation for the software C/C++ system initialization.

o Software C/C++ system initialization

Typically, this includes assuring that every global (statically linked) C/C++ symbol
receives its proper initialization value before the main function is called.

59

Application execution—an overview

60

IAR C/C++ Development Guide
Compiling and linking for RX

e Application initialization

This depends entirely on your application. It can include setting up an RTOS kernel
and starting initial tasks for an RTOS-driven application. For a bare-bone application,
it can include setting up various interrupts, initializing communication, initializing
devices, etc.

For a ROM/flash-based system, constants and functions are already placed in ROM. The
linker has already divided the available RAM into different areas for variables, stack,
heap, etc. All symbols placed in RAM must be initialized before the main function is
called.

The following sequence of illustrations gives a simplified overview of the different
stages of the initialization.

When an application is started, the system startup code first performs hardware
initialization, such as initialization of the stack pointer to point at the end of the
predefined stack area (outside the actual stack):

vector
e Jump to cstartup

cstartup
e Set up stack pointer ~
Initialize variables to zero
ROM °

e Initialize variables

region e Call main()
main() and other code
Initializers
Stack
RAM
region Zero-initialized variables

Initialized variables

Developing embedded applications ___¢

Then, memories that should be zero-initialized are cleared, in other words, filled with
Zeros:

vector
e Jump to cstartup

cstartup

® Set up stack pointer
 Initialize variables to zero -
ROAM * Initialize variables
region e Call main()

main() and other code

Initializers

Stack

region Zero-initialized variables <):| U

Initialized variables

Typically, this is data referred to as zero-initialized data—variables declared as, for
example, int i = 0;

For initialized data, data declared, for example, like int i = 6; the initializers are
copied from ROM to RAM

vector
® Jump to cstartup

cstartup

* Set up stack pointer
 Initialize variables to zero
e |Initialize variables ~
e Call main()

ROM
region

main() and other code

Initializers [

Stack

) Copy
region Zero-initialized variables

Initialized variables

6l

Application execution—an overview

62

IAR C/C++ Development Guide
Compiling and linking for RX

Then, dynamically initialized static objects are constructed, such as C++ objects.

Finally, the main function is called:

vector
e Jump to cstartup
cstartup
e Set up stack pointer
e |nitialize variables to zero
ROM o .
region |Initialize variables
g e Call main()
I‘: main() and other code
Initializers
Stack
RAM
region Zero-initialized variables

Initialized variables

For more information about each stage, see System startup and termination, page 142.
For more information about data initialization, see Initialization at system startup, page
96.

THE EXECUTION PHASE

The software of an embedded application is typically implemented as a loop, which is
either interrupt-driven, or uses polling for controlling external interaction or internal
events. For an interrupt-driven system, the interrupts are typically initialized at the
beginning of the main function.

In a system with real-time behavior and where responsiveness is critical, a multi-task
system might be required. This means that your application software should be
complemented with a real-time operating system (RTOS). In this case, the RTOS and
the different tasks must also be initialized at the beginning of the main function.

THE TERMINATION PHASE

Typically, the execution of an embedded application should never end. If it does, you
must define a proper end behavior.

To terminate an application in a controlled way, either call one of the Standard C library
functions exit, Exit, quick_exit, or abort, or return from main. If you return

Developing embedded applications ___¢

from main, the exit function is executed, which means that C++ destructors for static
and global variables are called (C++ only) and all open files are closed.

Of course, in case of incorrect program logic, the application might terminate in an
uncontrolled and abnormal way—a system crash.

For more information about this, see System termination, page 145.

Building applications—an overview

In the command line interface, the following line compiles the source file myfile.c
into the object file myfile. o using the default settings:

iccrx myfile.c

You must also specify some critical options, see Basic project configuration, page 63.
On the command line, the following line can be used for starting the linker:

ilinkrx myfile.o myfile2.0 -o a.out --config my_configfile.icf

In this example, myfile.oandmyfile2 .o are object files, and my_configfile.icf
is the linker configuration file. The option -o specifies the name of the output file.

Note: By default, the label where the application starts is __iar_program_start.
You can use the --entry command line option to change this.

When building a project, the IAR Embedded Workbench IDE can produce extensive
g build information in the Build messages window. This information can be useful, for
example, as a base for producing batch files for building on the command line. You can
copy the information and paste it in a text file. To activate extensive build information,
right-click in the Build messages window, and select All on the context menu.

Basic project configuration

This section gives an overview of the basic settings needed to generate the best code for
the RX device you are using. You can specify the options either from the command line
interface or in the IDE. On the command line, you must specify each option separately,
but if you use the IDE, many options will be set automatically, based on your settings of
some of the fundamental options.

You need to make settings for:

e Processor core
e Byte order

e Position independence (read-only or read-write)

63

Basic project configuration

64

IAR C/C++ Development Guide
Compiling and linking for RX

Data model

Size of int data type

Size of double floating-point type
Optimization settings

Runtime environment, see Setting up the runtime environment, page 127

Customizing the ILINK configuration, see the chapter Linking your application.

In addition to these settings, you can use many other options and settings to fine-tune
the result even further. For information about how to set options and for a list of all
available options, see the chapters Compiler options, Linker options, and the IDE
Project Management and Building Guide for RX, respectively.

PROCESSOR CONFIGURATION

To make the compiler generate optimum code, you should configure it for the RX
microcontroller you are using.

Core

The compiler supports all RX architectures.

In the IDE, choose Project>Options>General Options>Target and choose an
appropriate device from the Device drop-down list. The core and device options will
then be automatically selected.

Use the --core option to select the core for which the code will be generated.

Note: Device-specific configuration files for the linker and the debugger will also be
automatically selected.

Byte order

For data access, the RX architecture allows a choice between the big- and little-endian
byte order. All user and library modules in your application must use the same byte
order.

In the IDE, choose Project>Options>General Options>Byte order to set the byte
order for data.

Use the --endian option to specify the byte order for data for your project; see
--endian, page 278, for syntax information.

= H

Developing embedded applications ___¢

ROPI/RWPI

Most applications are designed to be placed at a fixed position in memory. However,
sometimes it is useful to instead decide at runtime where to place the application, for
example in certain systems where applications are loaded dynamically.

Use the --ropi and --rwpi options to configure the compiler to generate
position-independent code and data.

In the IDE, choose Project>Options>General Options>Target>Code and read-only
data and/or Project>Options>General Options>Target>Read-write data to
generate position-independent code and data.

Read about the advantages and drawbacks with ROPI/RWPI in Position-independent
code and data, page 210.

DATA MODEL

One of the characteristics of the RX microcontroller is a trade-off in how memory is
accessed, ranging from cheap access to small memory areas, up to more expensive
access methods that can access any location.

In the compiler, you can set a default memory access method by selecting a data model.
These data models are supported:

o The Near data model can access the highest and lowest 32 Kbytes of memory

o The Far data model can access the highest and lowest 8 Mbytes of memory

o The Huge data model can access the entire 32-bit address area.

The chapter Data storage covers data models in greater detail. The chapter also covers
how to override the default access method for individual variables.

SIZE OF INT DATA TYPE

The int data type can be represented with either 16 or 32 (default) bits. Use the
compiler option --int to change the default size if you are migrating code written for
another microcontroller that uses a 16-bit int size. See --int, page 282.

SIZE OF DOUBLE FLOATING-POINT TYPE

Floating-point values are represented by 32- and 64-bit numbers in standard IEEE 754
format. If you use the compiler option --double={32| 64}, you can choose whether
data declared as double should be represented with 32 bits or 64 bits. The data type
float is always represented using 32 bits.

65

Basic project configuration

66

IAR C/C++ Development Guide
Compiling and linking for RX

OPTIMIZATION FOR SPEED AND SIZE

The compiler’s optimizer performs, among other things, dead-code elimination,
constant propagation, inlining, common sub-expression elimination, scheduling, and
precision reduction. It also performs loop optimizations, such as unrolling and induction
variable elimination.

You can choose between several optimization levels, and for the highest level you can
choose between different optimization goals—size, speed, or balanced. Most
optimizations will make the application both smaller and faster. However, when this is
not the case, the compiler uses the selected optimization goal to decide how to perform
the optimization.

The optimization level and goal can be specified for the entire application, for individual
files, and for individual functions. In addition, some individual optimizations, such as
function inlining, can be disabled.

For information about compiler optimizations and for more information about efficient
coding techniques, see the chapter Efficient coding for embedded applications.

Data storage

e Introduction

Memory types

e Data models

Storage of auto variables and parameters

e Dynamic memory on the heap

Introduction

The RX microcontroller has one continuous memory space for both code and data,
ranging from 0x00000000 to 0xFFFFFFFF. Different types of memory can be placed
in the memory range. A typical application will have ROM memory in the upper address
interval, and RAM in the lower address interval.

Both code and data can be efficiently read. Physically, data and code reside on different
memory buses, but the address spaces are disjoint

DIFFERENT WAYS TO STORE DATA
In a typical application, data can be stored in memory in three different ways:

® Auto variables

All variables that are local to a function, except those declared static, are stored either
in registers or on the stack. These variables can be used as long as the function
executes. When the function returns to its caller, the memory space is no longer valid.
For more information, see The user mode and supervisor mode stacks, page 208 and
Storage of auto variables and parameters, page 74.

o Global variables, module-static variables, and local variables declared static

In this case, the memory is allocated once and for all. The word static in this context
means that the amount of memory allocated for this kind of variables does not change
while the application is running. For more information, see Data models, page 72 and
Memory types, page 68.

® Dynamically allocated data

An application can allocate data on the heap, where the data remains valid until it is
explicitly released back to the system by the application. This type of memory is
useful when the number of objects is not known until the application executes.

67

Memory types

68

Note: There are potential risks connected with using dynamically allocated data in
systems with a limited amount of memory, or systems that are expected to run for a
long time. For more information, see Dynamic memory on the heap, page 75.

Memory types

IAR C/C++ Development Guide
Compiling and linking for RX

This section describes the concept of memory types used for accessing data by the
compiler. It also discusses pointers in the presence of multiple memory types. For each
memory type, the capabilities and limitations are discussed.

INTRODUCTION TO MEMORY TYPES

The compiler uses different memory types to access data that is placed in different areas
of the memory. There are different methods for reaching memory areas, and they have
different costs when it comes to code space, execution speed, and register usage. The
access methods range from generic but expensive methods that can access the full
memory space, to cheap methods that can access limited memory areas. Each memory
type corresponds to one memory access method. If you map different memories—or
part of memories—to memory types, the compiler can generate code that can access
data efficiently.

For example, the memory accessed using 16-bit addressing is called datal6 memory.

To choose a default memory type that your application will use, select a data model.
However, it is possible to specify—for individual variables—different memory types.
This makes it possible to create an application that can contain a large amount of data,
and at the same time make sure that variables that are used often are placed in memory
that can be efficiently accessed.

Below is an overview of the various memory types.

datal é

The datal6 memory consists of the highest and the lowest 32 Kbytes of data memory.
This is the address ranges 0x00000000-0x00007FFF and OxFFFF8000-0xFFFFFFFF.

A datal6 object can only be placed in datal6 memory, and the size of such an object is
limited to 32 Kbytes-1. If you use objects of this type, the code generated by the
compiler to access them becomes slightly smaller. This means a smaller footprint for the
application, and faster execution at runtime.

data24

The data24 memory consists of the highest and the lowest 8 Mbytes of data memory. In
hexadecimal notation, this is the address ranges 0x00000000-0x007FFFFF and
0xFF800000-0xFFFFFFFF.

Data storage °

A data24 object can only be placed in data24 memory, and the size of such an object is
limited to 8§ Mbytes-1.

data32

Using this memory type, you can place the data objects anywhere in the data memory
space. Also, unlike the other memory types, there is no limitation on the size of the
objects that can be placed in this memory type.

The data32 memory type uses 4-byte addresses, which can make the code slightly larger.
The compiler will optimize direct accesses (using literal addresses) so that the size
penalty for using different memory types becomes smaller.

sbrel

Sbrel memory uses a static base register, relative to which all accesses are made. Sbrel
memory requires RWPI, and special linker directives that define a movable block. The
movable block can be placed anywhere in memory. Sbrel is the default memory type
when RWPI is enabled.

In all other respects, sbrel memory is identical to data32 memory.

USING DATA MEMORY ATTRIBUTES

The compiler provides a set of extended keywords, which can be used as data memory
attributes. These keywords let you override the default memory type for individual data
objects, which means that you can place data objects in other memory areas than the
default memory. This also means that you can fine-tune the access method for each
individual data object, which results in smaller code size.

This table summarizes the available memory types and their corresponding keywords:

Memory type Keyword Address range Default in data model

Datal6é __datale6 0x00000000-0x00007FFF and Near
OxXFFFF8000-0xFFFFFFFF

Data24 __data24 0x00000000-0x007FFFFF and Far
0xFF800000-0xFFFFFFFF

Data32 __data32 0x00000000-0XFFFFFFFF Huge

Sbrel __sbrel 0x00000000-0xFFFFFFFF when using RWPI

Table 3: Memory types and their corresponding memory attributes
All data pointers are 32 bits.

The keywords are only available if language extensions are enabled in the compiler.

69

Memory types

IAR C/C++ Development Guide
70 Compiling and linking for RX

In the IDE, language extensions are enabled by default.

Use the -e compiler option to enable language extensions. See -e, page 277 for
additional information.

For more information about each keyword, see Descriptions of extended keywords, page
366.

Syntax

The keywords follow the same syntax as the type qualifiers const and volatile. The
memory attributes are fype attributes and therefore they must be specified both when
variables are defined and in the declaration, see General syntax rules for extended
keywords, page 361.

The following declarations place the variables i and j in datal6 memory. The variables
k and 1 will also be placed in datal6 memory. The position of the keyword does not have
any effect in this case:

__datalé int i, 3J;
int __datalé k, 1;

Note that the keyword affects both identifiers. If no memory type is specified, the default
memory type is used.

The #pragma type_attribute directive can also be used for specifying the memory
attributes. The advantage of using pragma directives for specifying keywords is that it
offers you a method to make sure that the source code is portable. Refer to the chapter
Pragma directives for details about how to use the extended keywords together with
pragma directives.

Type definitions

Storage can also be specified using type definitions. These two declarations are
equivalent:

/* Defines via a typedef */
typedef char __data32 Byte;
typedef Byte *BytePtr;

Byte aByte;

BytePtr aBytePointer;

/* Defines directly */
__data32 char aByte;
char _ _data32 *aBytePointer;

Data storage °

POINTERS AND MEMORY TYPES

Pointers are used for referring to the location of data. In general, a pointer has a type.
For example, a pointer that has the type int * points to an integer.

In the compiler, a pointer also points to some type of memory. The memory type is
specified using a keyword before the asterisk. For example, a pointer that points to an
integer stored in datal6 memory is declared by:

int __datalé * MyPtr;

Note that the location of the pointer variable MyPtr is not affected by the keyword. In
the following example, however, the pointer variable MyPtr2 is placed in datal6
memory. Like MyPtr, MyPtr2 points to a character in data24 memory.

char __data24 * __datal6 MyPtr2;

STRUCTURES AND MEMORY TYPES

For structures, the entire object is placed in the same memory type. It is not possible to
place individual structure members in different memory types.

In the example below, the variable gamma is a structure placed in datal6 memory.

struct MyStruct
{
int mAlpha;
int mBeta;
}i

__datal6 struct MyStruct gamma;

This declaration is incorrect:

struct MyStruct
{

int mAlpha;

__datalé int mBeta; /* Incorrect declaration */
Y

MORE EXAMPLES

The following is a series of examples with descriptions. First, some integer variables are
defined and then pointer variables are introduced. Finally, a function accepting a pointer
to an integer in datal6 memory is declared. The function returns a pointer to an integer

71

Data models

72

in data24 memory. It makes no difference whether the memory attribute is placed before
or after the data type.

int MyA; A variable defined in default memory
determined by the data model in use.

int __datal6 MyB; A variable in datal6 memory.
__data24 int MyC; A variable in data24 memory.
int * MyD; A pointer stored in default memory. The

pointer points to an integer in default memory.

int __datal6 * MyE; A pointer stored in default memory. The
pointer points to an integer in datal 6 memory.

int __datalé * __data24 MyF; A pointer stored in data24 memory pointing to
an integer stored in datal6 memory.

int __data24 * MyFunction(A declaration of a function that takes a
int __datalé *); parameter which is a pointer to an integer
stored in datal6 memory. The function returns
a pointer to an integer stored in data24
memory.

C++ AND MEMORY TYPES

Instances of C++ classes are placed into a memory (just like all other objects) either
implicitly, or explicitly using memory type attributes or other IAR language extensions.
Non-static member variables, like structure fields, are part of the larger object and
cannot be placed individually into specified memories.

In non-static member functions, the non-static member variables of a C++ object can be
referenced via the this pointer, explicitly or implicitly. The this pointer is of the
default data pointer type unless class memory is used, see Using AR attributes with
classes, page 200.

Static member variables can be placed individually into a data memory in the same way
as free variables.

For more information about C++ classes, see Using IAR attributes with classes, page
200.

Data models

IAR C/C++ Development Guide
Compiling and linking for RX

Technically, the data model specifies the default memory type. This means that the data
model controls the default placement of static and global variables, and constant literals.

Data storage °

The data model only specifies the default memory type. It is possible to override this for
individual variables and pointers. For information about how to specify a memory type
for individual objects, see Using data memory attributes, page 69.

Note: Your choice of data model does not affect the placement of code.

SPECIFYING A DATA MODEL

Three data models are implemented: Near, Far, and Huge. These models are controlled
by the --data_model option. Each model has a default memory type. If you do not
specify a data model option, the compiler will use the Far data model.

Your project can only use one data model at a time, and the same model must be used
by all user modules and all library modules. However, you can override the default
memory type for individual data objects by explicitly specifying a memory attribute, see
Using data memory attributes, page 69.

This table summarizes the different data models:

Default memory

Data model name attribute Pointer attribute = Placement of data

Near __datalé __data32 Low 32 Kbytes or high 32 Kbytes
Far (default) __data24 __data32 Low 8 Mbytes or high 8 Mbytes
Huge __data32 __data32 The entire 4 Gbytes of memory

Table 4: Data model characteristics
See the IDE Project Management and Building Guide for RX for information about
setting options in the IDE.

Use the --data_model option to specify the data model for your project; see
--data_model, page 270.

The impact of the different data models on the code size depends on the amount of data
with static duration. There is no principal difference in the generated code. On higher
optimization levels the difference is even smaller, because of the global clustering
optimization.

The RX microcontroller has no mode for direct addressing. This means that addresses
of static objects must be loaded into a register before the data can be read from memory.
The size of these address loads will increase if you change to a larger data model.
However, on high optimization levels, the compiler will use a base address to all objects
with static duration data in the module, and use relative addressing to access them.

For this reason, the size of the generated code does not depend very much on your choice
of data model, but you should nevertheless always use the smallest data model that you
need.

73

Storage of auto variables and parameters

74

Storage of auto variables and parameters

IAR C/C++ Development Guide
Compiling and linking for RX

Variables that are defined inside a function—and not declared static—are named auto
variables by the C standard. A few of these variables are placed in processor registers,
while the rest are placed on the stack. From a semantic point of view, this is equivalent.
The main differences are that accessing registers is faster, and that less memory is
required compared to when variables are located on the stack.

Auto variables can only live as long as the function executes—when the function
returns, the memory allocated on the stack is released.

THE STACK

The stack can contain:

Local variables and parameters not stored in registers
Temporary results of expressions
The return value of a function (unless it is passed in registers)

Processor state during interrupts

Processor registers that should be restored before the function returns (callee-save
registers).

e Canaries, used in stack-protected functions. See Stack protection, page 86.

The stack is a fixed block of memory, divided into two parts. The first part contains
allocated memory used by the function that called the current function, and the function
that called it, etc. The second part contains free memory that can be allocated. The
borderline between the two areas is called the top of stack and is represented by the stack
pointer, which is a dedicated processor register. Memory is allocated on the stack by
moving the stack pointer.

A function should never refer to the memory in the area of the stack that contains free
memory. The reason is that if an interrupt occurs, the called interrupt function can
allocate, modify, and—of course—deallocate memory on the stack.

See also Stack considerations, page 208 and Setting up stack memory, page 111.

Advantages

The main advantage of the stack is that functions in different parts of the program can
use the same memory space to store their data. Unlike a heap, a stack will never become
fragmented or suffer from memory leaks.

It is possible for a function to call itself either directly or indirectly—a recursive
function—and each invocation can store its own data on the stack.

Data storage °

Potential problems

The way the stack works makes it impossible to store data that is supposed to live after
the function returns. The following function demonstrates a common programming
mistake. It returns a pointer to the variable x, a variable that ceases to exist when the
function returns.

int *MyFunction ()

{
int x;
/* Do something here. */
return &x; /* Incorrect */

}

Another problem is the risk of running out of stack space. This will happen when one
function calls another, which in turn calls a third, etc., and the sum of the stack usage of
each function is larger than the size of the stack. The risk is higher if large data objects
are stored on the stack, or when recursive functions are used.

Dynamic memory on the heap

Memory for objects allocated on the heap will live until the objects are explicitly
released. This type of memory storage is useful for applications where the amount of
data is not known until runtime.

In C, memory is allocated using the standard library function malloc, or one of the
related functions calloc and realloc. The memory is released again using free.

In C++, a special keyword, new, allocates memory and runs constructors. Memory
allocated with new must be released using the keyword delete.

For information about how to set up the size for heap memory, see Setting up heap
memory, page 112.
POTENTIAL PROBLEMS

Applications that use heap-allocated data objects must be carefully designed, as it is
easy to end up in a situation where it is not possible to allocate objects on the heap.

The heap can become exhausted if your application uses too much memory. It can also
become full if memory that no longer is in use was not released.

For each allocated memory block, a few bytes of data for administrative purposes is
required. For applications that allocate a large number of small blocks, this
administrative overhead can be substantial.

There is also the matter of fragmentation—this means a heap where small pieces of free
memory are separated by memory used by allocated objects. It is not possible to allocate

75

Dynamic memory on the heap

a new object if no piece of free memory is large enough for the object, even though the
sum of the sizes of the free memory exceeds the size of the object.

Unfortunately, fragmentation tends to increase as memory is allocated and released. For
this reason, applications that are designed to run for a long time should try to avoid using
memory allocated on the heap.

IAR C/C++ Development Guide
76 Compiling and linking for RX

Functions

e Function-related extensions

Executing functions in RAM

e Primitives for interrupts, concurrency, and OS-related programming

Inlining functions

e Stack protection

Function-related extensions
In addition to supporting Standard C, the compiler provides several extensions for
writing functions in C. Using these, you can:
Execute functions in RAM
Use primitives for interrupts, concurrency, and OS-related programming
Control function inlining

Facilitate function optimization

Access hardware features.

The compiler uses compiler options, extended keywords, pragma directives, and
intrinsic functions to support this.

For more information about optimizations, see Efficient coding for embedded
applications, page 227. For information about the available intrinsic functions for
accessing hardware operations, see the chapter Intrinsic functions.

Executing functions in RAM

The __ramfunc keyword makes a function execute in RAM. In other words it places
the function in a section that has read/write attributes. The function is copied from ROM
to RAM at system startup just like any initialized variable, see System startup and
termination, page 142.

The keyword is specified before the return type:

__ramfunc void foo (void) ;

77

Primitives for interrupts, concurrency, and OS-related programming

78

If a function declared __ramfunc tries to access ROM, the compiler will issue a
warning.

If the whole memory area used for code and constants is disabled—for example, when
the whole flash memory is being erased—only functions and data stored in RAM may
be used. Interrupts must be disabled unless the interrupt vector and the interrupt service
routines are also stored in RAM.

String literals and other constants can be avoided by using initialized variables. For
example, the following lines:

__ramfunc void test()

{
/* myc: initializer in ROM */
const int myc[] = { 10, 20 };

/* string literal in ROM */
msg ("Hello") ;
}

can be rewritten to:

__ramfunc void test()

{
/* myc: initializer by cstartup */
static int myc[] = { 10, 20 };

/* hello: initializer by cstartup */
static char hello[] = "Hello";

msg (hello) ;
}

For more details, see Initializing code—copying ROM to RAM, page 115.

Primitives for interrupts, concurrency, and OS-related programming

IAR C/C++ Development Guide
Compiling and linking for RX

The IAR C/C++ Compiler for RX provides the following primitives related to writing
interrupt functions, concurrent functions, and OS-related functions:

o The extended keywords: __interrupt, _nested, __task, __monitor

o The pragma directive, #pragma vector

o The intrinsic functions: __enable_interrupt disable_interrupt.

ERp—

Functions °

INTERRUPT FUNCTIONS

In embedded systems, using interrupts is a method for handling external events
immediately; for example, detecting that a button was pressed.

Interrupt service routines

In general, when an interrupt occurs in the code, the microcontroller immediately stops
executing the code it runs, and starts executing an interrupt routine instead. It is
important that the environment of the interrupted function is restored after the interrupt
is handled (this includes the values of processor registers and the processor status
register). This makes it possible to continue the execution of the original code after the
code that handled the interrupt was executed.

The RX microcontroller supports many interrupt sources. For each interrupt source, an
interrupt routine can be written. Each interrupt routine is associated with a vector
number, which is specified in the RX microcontroller documentation from the chip
manufacturer. If you want to handle several different interrupts using the same interrupt
routine, you can specify several interrupt vectors.

Interrupt vectors and the interrupt vector table

For the RX microcontroller, the INTB (interrupt table) register points to the start of the
interrupt vector table and is placed in the . inttable section. The interrupt vector
number is the index into the interrupt vector table.

By default, the vector table is populated with a default interrupt handler which calls the
abort function. For each interrupt source that has no explicit interrupt service routine,
the default interrupt handler will be called. If you write your own service routine for a
specific vector, that routine will override the default interrupt handler.

The header file iodevice.h, where device corresponds to the selected device,
contains predefined names for the existing interrupt vectors.
Defining an interrupt function—an example

To define an interrupt function, the __interrupt keyword and the #pragma vector
directive can be used. For example:

#include "iorx62n.h"

#pragma vector = VECT_CMTO_CMIO /* Symbol defined in I/O header
file */

__interrupt void MyInterruptRoutine (void)

{

/* Do something */

79

Primitives for interrupts, concurrency, and OS-related programming

80

IAR C/C++ Development Guide
Compiling and linking for RX

Note: An interrupt function must have the return type void, and it cannot specify any
parameters.

Interrupt and C++ member functions

Only static member functions can be interrupt functions.

Adding an exception handler

To overload a default exception handler such as an undefined or non-maskable interrupt,
you define a user function with one of the names specified in the template file
fixedint.c. These are:

__interrupt void __floating_point_handler() ;
__interrupt void __NMI_handler () ;
__interrupt void __privileged_handler () ;
__interrupt void __undefined_handler () ;

However, __floating point_handler might already be overloaded with an
“unimplemented processing handler” that emulates floating-point for subnormal
arguments and results.

To overload the default floating-point exception handler, you must use this special linker
mechanism:

If you are not using the unimplemented processing handler described above, specify the
linker option:

--redirect __float_placeholder=_my_ float_handler
where my_float_handler is the name you choose for this handler.

However, if you are using the unimplemented processing handler described above,
specity the linker option:

--redirect __ floating_point_handler=_my_ float_handler

The unimplemented processing handler will call __floating_point_handler if the
exception was not caused by unimplemented processing.

FAST INTERRUPT FUNCTIONS

A fast interrupt function is very fast and has the highest priority. A fast interrupt uses the
FREIT return mechanism and the FINTV register as a vector. Use the intrinsic function
__set_FINTV_register to initialize this vector register, see set FINTV register,
page 419.

To specify a fast interrupt function, use the __ fast_interrupt keyword; see
__fast interrupt, page 367.

Functions °

NESTED INTERRUPTS

Interrupts are automatically disabled by the RX microcontroller prior to entering an
interrupt handler. To make nested interrupts possible, in other words, interrupts within
interrupts, the keyword __nested must be used in addition to __interrupt or
__fast_interrupt. The interrupt function entrance sequence will then enable
interrupts the first thing that occurs.

For more information, see nested, page 369.

MONITOR FUNCTIONS

A monitor function causes interrupts to be disabled during execution of the function. At
function entry, the status register is saved and interrupts are disabled. At function exit,
the original status register is restored, and thereby the interrupt status that existed before
the function call is also restored.

To define a monitor function, you can use the __monitor keyword. For more
information, see _monitor, page 368.

Avoid using the __monitor keyword on large functions, since the interrupt will
otherwise be turned off for too long.

Example of implementing a semaphore in C

In the following example, a binary semaphore—that is, a mutex—is implemented using
one static variable and two monitor functions. A monitor function works like a critical
region, that is no interrupt can occur and the process itself cannot be swapped out. A
semaphore can be locked by one process, and is used for preventing processes from
simultaneously using resources that can only be used by one process at a time, for
example a USART. The __monitor keyword assures that the lock operation is atomic;
in other words it cannot be interrupted.

81

Primitives for interrupts, concurrency, and OS-related programming

/* This is the lock-variable. When non-zero, someone owns it. */
static volatile unsigned int sTheLock = 0;

/* Function to test whether the lock is open, and if so take it.
* Returns 1 on success and 0 on failure.
*/

__monitor int TryGetLock (void)
{
if (sTheLock == 0)
{
/* Success, nobody has the lock. */

sTheLock = 1;
return 1;

}

else

{

/* Failure, someone else has the lock. */

return 0;

/* Function to unlock the lock.
* It is only callable by one that has the lock.
*/

_ _monitor void ReleaseLock(void)
{
sTheLock = 0;

/* Function to take the lock. It will wait until it gets it. */

void GetLock (void)

{
while (!TryGetLock())
{

/* Normally, a sleep instruction is used here. */

IAR C/C++ Development Guide
82 Compiling and linking for RX

Functions °

/* An example of using the semaphore. */

void MyProgram(void)
{
GetLock () ;

/* Do something here. */

ReleaseLock() ;

Example of implementing a semaphore in C++

In C++, it is common to implement small methods with the intention that they should be
inlined. However, the compiler does not support inlining of functions and methods that
are declared using the __monitor keyword.

In the following example in C++, an auto object is used for controlling the monitor
block, which uses intrinsic functions instead of the __monitor keyword.

#include <intrinsics.h>

// Class for controlling critical blocks.
class Mutex
{
public:
Mutex ()
{
// Get hold of current interrupt state.
mState = __get_interrupt_state();

// Disable all interrupts.
_ _disable_interrupt();

~Mutex ()
{

// Restore the interrupt state.
__set_interrupt_state (mState) ;

private:
_ _istate_t mState;
}i

83

Inlining functions

class Tick
{
public:
// Function to read the tick count safely.
static long GetTick()
{
long t;

// Enter a critical block.
{

Mutex m; // Interrupts are disabled while m is in scope.

// Get the tick count safely,
t = smTickCount;

}

// and return it.

return t;

private:

static volatile long smTickCount;
Y
volatile long Tick::smTickCount = 0;

extern void DoStuff () ;

void MyMain ()
{
static long nextStop = 100;

if (Tick::GetTick() >= nextStop)
{

nextStop += 100;

DoStuff();

Inlining functions

Function inlining means that a function, whose definition is known at compile time, is
integrated into the body of its caller to eliminate the overhead of the function call. This
optimization, which is performed at optimization level High, normally reduces

execution time, but might increase the code size. The resulting code might become more

IAR C/C++ Development Guide
84 Compiling and linking for RX

Functions °

difficult to debug. Whether the inlining actually occurs is subject to the compiler’s
heuristics.

The compiler heuristically decides which functions to inline. Different heuristics are
used when optimizing for speed, size, or when balancing between size and speed.
Normally, code size does not increase when optimizing for size.

C VERSUS C++ SEMANTICS

In C++, all definitions of a specific inline function in separate translation units must be
exactly the same. If the function is not inlined in one or more of the translation units,
then one of the definitions from these translation units will be used as the function
implementation.

In C, you must manually select one translation unit that includes the non-inlined version
of an inline function. You do this by explicitly declaring the function as extern in that
translation unit. If you declare the function as extern in more than one translation unit,
the linker will issue a multiple definition error. In addition, in C, inline functions cannot
refer to static variables or functions.

For example:

// In a header file.

static int sX;

inline void F(void)

{
//static int sY; // Cannot refer to statics.
//sX; // Cannot refer to statics.

// In one source file.
// Declare this F as the non-inlined version to use.
extern inline void F();

FEATURES CONTROLLING FUNCTION INLINING
There are several mechanisms for controlling function inlining:

o The inline keyword.
If you compile your function in C or C++ mode, the keyword will be interpreted
according to its definition in Standard C or Standard C++, respectively.
The main difference in semantics is that in Standard C you cannot (in general) simply
supply an inline definition in a header file. You must supply an external definition in

one of the compilation units, by designating the inline definition as being external in
that compilation unit.

85

Stack protection

86

® #pragma inline is similar to the inline keyword, but with the difference that the
compiler always uses C++ inline semantics.

By using the #pragma inline directive you can also disable the compiler’s
heuristics to either force inlining or completely disable inlining. For more
information, see inline, page 391.

® --use_c++_inline forces the compiler to use C++ semantics when compiling a
Standard C source code file.

® --no_inline, #pragma optimize=no_inline, and #pragma inline=never
all disable function inlining. By default, function inlining is enabled at optimization
level High.

The compiler can only inline a function if the definition is known. Normally, this is
restricted to the current translation unit. However, when the --mfc compiler option for
multi-file compilation is used, the compiler can inline definitions from all translation
units in the multi-file compilation unit. For more information, see Multi-file compilation
units, page 234.

For more information about the function inlining optimization, see Function inlining,
page 237.

Stack protection

IAR C/C++ Development Guide
Compiling and linking for RX

In software, a stack buffer overflow occurs when a program writes to a memory address
on the program’s call stack outside of the intended data structure, which is usually a
fixed-length buffer. The result is, almost always, corruption of nearby data, and it can
even change which function to return to. If it is deliberate, it is often called stack
smashing. One method to guard against stack buffer overflow is to use stack canaries,
named for their analogy to the use of canaries in coal mines.

STACK PROTECTION IN THE IAR C/C++ COMPILER
The IAR C/C++ Compiler for RX supports stack protection.

To enable stack protection for functions considered needing it, use the compiler option
--stack_protection. For more information, see --stack_protection, page 302.

The IAR implementation of stack protection uses a heuristic to determine whether a
function needs stack protection or not. If any defined local variable has the array type or
a structure type that contains a member of array type, the function will need stack
protection. In addition, if the address of any local variable is propagated outside of a
function, such a function will also need stack protection.

If a function needs stack protection, the local variables are sorted to let the variables with
array type to be placed as high as possible in the function stack block. After those

Functions °

variables, a canary element is placed. The canary is initialized at function entrance. By
default, the initialization value is taken from the global variable __stack_chk_guard.
To reduce the overhead, you can use the compiler option --canary_value to supply a
constant value instead, see --canary_value, page 268. This is mainly for debugging
purposes, as it is considerably less secure. At function exit, the code verifies that the
canary element still contains the original value. If not, the function
__stack_chk_fail is called.

USING STACK PROTECTION IN YOUR APPLICATION
To use stack protection, you must define these objects in your application:

® extern uint32_t __stack_chk_guard

The global variable __stack_chk_guard must be initialized prior to first use. If
the initialization value is randomized, it will be more secure.

® _ _nounwind __noreturn void __stack_chk_fail (void)

The purpose of the function __stack_chk_fail is to notify about the problem and
then terminate the application.

Note: The return address from this function will point into the function that failed.

The file stack_protection.cinthe directory rx\src\lib\runtime can be used as
a template for both __stack_chk_guard and __stack_chk_fail.

87

Stack protection

IAR C/C++ Development Guide
88 Compiling and linking for RX

Linking using ILINK

e Linker overview

e Modules and sections

e The linking process in detail

e Placing code and data—the linker configuration file
e Initialization at system startup

e Stack usage analysis

Linker overview

The IAR ILINK Linker is a powerful, flexible software tool for use in the development
of embedded applications. It is equally well suited for linking small, single-file, absolute
assembler programs as it is for linking large, relocatable, multi-module, C/C++, or
mixed C/C++ and assembler programs.

The linker combines one or more relocatable object files—produced by the IAR
compiler or assembler—with selected parts of one or more object libraries to produce
an executable image in the industry-standard format Executable and Linking Format
(ELF).

The linker will automatically load only those library modules—user libraries and
Standard C or C++ library variants—that are actually needed by the application you are
linking. Furthermore, the linker eliminates duplicate sections and sections that are not
required.

The linker uses a configuration file where you can specify separate locations for code
and data areas of your target system memory map. This file also supports automatic
handling of the application’s initialization phase, which means initializing global
variable areas and code areas by copying initializers and possibly decompressing them
as well.

The final output produced by ILINK is an absolute object file containing the executable
image in the ELF (including DWAREF for debug information) format. The file can be
downloaded to C-SPY or any other compatible debugger that supports ELF/DWAREF, or
it can be stored in EPROM or flash.

89

Modules and sections

90

To handle ELF files, various tools are included. For information about included utilities,
see Specific ELF tools, page 48.

Note: The default output format in IAR Embedded Workbench is DEBUG.

VENEERS

The RX microcontroller uses veneers when calling a function where the 24-bit offsets
do not reach. The veneer introduces code which makes the call successfully reach the
destination. This code can be inserted between any caller and called function.

ILINK inserts veneers automatically when they are needed.

Modules and sections

IAR C/C++ Development Guide
Compiling and linking for RX

Each relocatable object file contains one module, which consists of:

o Several sections of code or data

e Runtime attributes specifying various types of information, for example, the version
of the runtime environment

e Optionally, debug information in DWARF format

e A symbol table of all global symbols and all external symbols used.

Note: In a library, each module (source file) should only contain one single function.
This is important if you want to override a function in a library with a function in your
own application. The linker includes modules only if they are referred to from the rest
of the application. If the linker includes a library module that contains several functions
because one function is referred to, and another function in that module should be
overridden by a function defined by your application, the linker issues a “duplicate
definitions” error.

A section is a logical entity containing a piece of data or code that should be placed at a
physical location in memory. A section can consist of several section fragments,
typically one for each variable or function (symbols). A section can be placed either in
RAM or in ROM. In a normal embedded application, sections that are placed in RAM
do not have any content, they only occupy space.

Each section has a name and a type attribute that determines the content. The type
attribute is used (together with the name) for selecting sections for the ILINK
configuration.

The main purpose of section attributes is to distinguish between sections that can be
placed in ROM and sections that must be placed in RAM:

ro|readonly ROM sections

Linking using ILINK °

rw|readwrite RAM sections

In each category, sections can be further divided into those that contain code and those
that contain data, resulting in four main categories:

ro code Normal code

ro data Constants

rw code Code copied to RAM
rw data Variables

readwrite data also has a subcategory—zi | zeroinit—for sections that are
zero-initialized at application startup.

Note: In addition to these section types—sections that contain the code and data that are
part of your application—a final object file will contain many other types of sections,
for example, sections that contain debugging information or other type of meta
information.

A section is the smallest linkable unit—but if possible, ILINK can exclude smaller
units—section fragments—from the final application. For more information, see
Keeping modules, page 110, and Keeping symbols and sections, page 111.

At compile time, data and functions are placed in different sections. At link time, one of
the most important functions of the linker is to assign addresses to the various sections
used by the application.

The IAR build tools have many predefined section names. For more information about
each section, see the chapter Section reference.

You can group sections together for placement by using blocks. See define block
directive, page 459.

The linking process in detail

The relocatable modules in object files and libraries, produced by the IAR compiler and
assembler, cannot be executed as is. To become an executable application, they must be
linked.

Note: Modules produced by a toolset from another vendor can be included in the build
as well, as long as the module is RX ABI (RX Application Binary Interface) compliant.
Be aware that this might also require a compiler utility library from the same vendor.

91

The linking process in detail

92

IAR C/C++ Development Guide
Compiling and linking for RX

The linker is used for the link process. It normally performs the following procedure
(note that some of the steps can be turned off by command line options or by directives
in the linker configuration file):

o Determine which modules to include in the application. Modules provided in object
files are always included. A module in a library file is only included if it provides a
definition for a global symbol that is referenced from an included module.

e Select which standard library files to use. The selection is based on attributes of the
included modules. These libraries are then used for satisfying any still outstanding
undefined symbols.

e Handle symbols with more than one definition. If there is more than one non-weak
definition, an error is emitted. Otherwise, one of the definitions is picked (the
non-weak one, if there is one) and the others are suppressed. Weak definitions are
typically used for inline and template functions. If you need to override some of the
non-weak definitions from a library module, you must ensure that the library
module is not included (typically by providing alternate definitions for all the
symbols your application uses in that library module).

e Determine which sections/section fragments from the included modules to include
in the application. Only those sections/section fragments that are actually needed by
the application are included. There are several ways to determine which
sections/section fragments that are needed, for example, the __root object
attribute, the #pragma required directive, and the keep linker directive. In case
of duplicate sections, only one is included.

o Where appropriate, arrange for the initialization of initialized variables and code in
RAM. The initialize directive causes the linker to create extra sections to
enable copying from ROM to RAM. Each section that will be initialized by copying
is divided into two sections—one for the ROM part, and one for the RAM part. If
manual initialization is not used, the linker also arranges for the startup code to
perform the initialization.

e Determine where to place each section according to the section placement directives
in the linker configuration file. Sections that are to be initialized by copying appear
twice in the matching against placement directives, once for the ROM part and once
for the RAM part, with different attributes.

e Produce an absolute file that contains the executable image and any debug
information provided. The contents of each needed section in the relocatable input
files is calculated using the relocation information supplied in its file and the
addresses determined when placing sections. This process can result in one or more
relocation failures if some of the requirements for a particular section are not met,
for instance if placement resulted in the destination address for a pC-relative jump
instruction being out of range for that instruction.

Linking using ILINK °

e Optionally, produce a map file that lists the result of the section placement, the
address of each global symbol, and finally, a summary of memory usage for each
module and library.

This illustration shows the linking process:

Relocatable
object

files -
External Customer Standard
librar :Jitsyrar : eici
Y Y library
|

ILINK /

.
e

linker ILINK
K configuration
file
Map
file

Absolute
output
ELF/DWARF

During the linking, ILINK might produce error and logging messages on stdout and
stderr. The log messages are useful for understanding why an application was linked
as it was. For example, why a module or section (or section fragment) was included.

Note: To see the actual content of an ELF object file, use ielfdumprx. See The IAR
ELF Dumper—ielfdump, page 513.

Placing code and data—the linker configuration file

The placement of sections in memory is performed by the IAR ILINK Linker. It uses the
linker configuration file where you can define how ILINK should treat each section and
how they should be placed into the available memories.

A typical linker configuration file contains definitions of:

e Available addressable memories
e Populated regions of those memories

e How to treat input sections

93

Placing code and data—the linker configuration file

IAR C/C++ Development Guide
94 Compiling and linking for RX

o Created sections

e How to place sections into the available regions

The file consists of a sequence of declarative directives. This means that the linking
process will be governed by all directives at the same time.

To use the same source code with different derivatives, just rebuild the code with the
appropriate configuration file.

A SIMPLE EXAMPLE OF A CONFIGURATION FILE

Assume a simple 32-bit architecture that has these memory prerequisites:

There are 4 Gbytes of addressable memory.
There is ROM memory in the address range 0x0000-0x10000.
There is RAM memory in the range 0x20000-0x30000.

The stack has an alignment of 8.

o The system startup code must be located at a fixed address.
A simple configuration file for this assumed architecture can look like this:

/* The memory space denoting the maximum possible amount
of addressable memory */
define memory Mem with size = 4G;

/* Memory regions in an address space */
define region ROM = Mem: [from 0x00000 size 0x10000];
define region RAM = Mem: [from 0x20000 size 0x10000];

/* Create a stack */

define block STACK with size = 0x1000, alignment = 8 { };
/* Handle initialization */
initialize by copy { readwrite }; /* Initialize RW sections */
/* Place startup code at a fixed address */

place at start of ROM { readonly code object cstartup.o };

/* Place code and data */
place in ROM { readonly }; /* Place constants and initializers in

ROM: .rodata and .data_init */
place in RAM { readwrite, /* Place .data, .bss, and .noinit */
block STACK }; /* and STACK */

This configuration file defines one addressable memory Mem with the maximum of
4 Gbytes of memory. Furthermore, it defines a ROM region and a RAM region in Mem,
namely ROM and RaM. Each region has the size of 64 Kbytes.

Linking using ILINK °

The file then creates an empty block called STACK with a size of 4 Kbytes in which the
application stack will reside. To create a block is the basic method which you can use to
get detailed control of placement, size, etc. It can be used for grouping sections, but also
as in this example, to specify the size and placement of an area of memory.

Next, the file defines how to handle the initialization of variables, read/write type
(readwrite) sections. In this example, the initializers are placed in ROM and copied at
startup of the application to the RAM area. By default, ILINK may compress the
initializers if this appears to be advantageous.

The last part of the configuration file handles the actual placement of all the sections into
the available regions. First, the startup code—defined to reside in the read-only
(readonly) object module cstartup.o—is placed at the start of the ROM region, that
is at address 0x10000.

Note: The part within { } is referred to as section selection and it selects the sections for
which the directive should be applied to. Then the rest of the read-only sections are
placed in the ROM region.

Note: The section selection { readonly code object cstartup.o } takes
precedence over the more generic section selection { readonly }.

Finally, the read/write (readwrite) sections and the STACK block are placed in the RAM
region.

95

Initialization at system startup

96

This illustration gives a schematic overview of how the application is placed in memory:

Block
CSTACK
Sectlon
/} data
V initializers
Section
.data_init
Object e
files
\—) Section
text \

(Section /
_cstartup

In addition to these standard directives, a configuration file can contain directives that
define how to:

Memory Mem

Region Data

Region Text

Map a memory that can be addressed in multiple ways
Handle conditional directives
Create symbols with values that can be used in the application

More in detail, select the sections a directive should be applied to

More in detail, initialize code and data.

For more details and examples about customizing the linker configuration file, see the
chapter Linking your application.

For more information about the linker configuration file, see the chapter The linker
configuration file.

Initialization at system startup

IAR C/C++ Development Guide
Compiling and linking for RX

In Standard C, all static variables—variables that are allocated at a fixed memory
address—must be initialized by the runtime system to a known value at application
startup. This value is either an explicit value assigned to the variable, or if no value is
given, it is cleared to zero. In the compiler, there are exceptions to this rule, for example,
variables declared __no_init, which are not initialized at all.

Linking using ILINK °

The compiler generates a specific type of section for each type of variable initialization:

Categories of)) Section
Source Section type Section name

declared data content

Zero-initialized int 1i; Read/write .memattr.bss None

data data, zero-init

Zero-initialized int i = 0; Read/write .memattr.bss None

data data, zero-init

Initialized data int 1 = 6; Read/write .memattr.data The

(non-zero) data initializer

Non-initialized __no_init int i; Read/write .memattr.noinit None

data data, zero-init

Constants const int i = 6; Read-onlydata .memattr.rodata The
constant

Code __ramfunc void Read/write .textrw The code

myfunc () {} code

Table 5: Sections holding initialized data

* The actual memory attribute—mema t tr—used depends on the memory of the
variable. For a more information about possible section names, see Summary of sections,
page 487.

For information about all supported sections, see the chapter Section reference.

THE INITIALIZATION PROCESS
Initialization of data is handled by ILINK and the system startup code in conjunction.
To configure the initialization of variables, you must consider these issues:

o Sections that should be zero-initialized, or not initialized at all (__no_init) are
handled automatically by ILINK.

e Sections that should be initialized, except for zero-initialized sections, should be
listed in an initialize directive.

Normally during linking, a section that should be initialized is split into two sections,
where the original initialized section will keep the name. The contents are placed in
the new initializer section, which will get the original name suffixed with _init. The
initializers should be placed in ROM and the initialized sections in RAM, by means
of placement directives. The most common example is the . data section which the
linker splits into . data and .data_init.

e Sections that contains constants should not be initialized—they should only be
placed in flash/ROM.

97

Initialization at system startup

98

IAR C/C++ Development Guide
Compiling and linking for RX

In the linker configuration file, it can look like this:

/* Handle initialization */
initialize by copy { readwrite }; /* Initialize RW sections */

/* Place startup code at a fixed address */
place at start of ROM { readonly code object cstartup.o };

/* Place code and data */
place in ROM { readonly }; /* Place constants and initializers in

ROM: .rodata and .data_init */
place in RAM { readwrite, /* Place .data, .bss, and .noinit */
block STACK }; /* and STACK */

Note: When compressed initializers are used (see initialize directive, page 465), the
contents sections (that is, sections with the _init suffix) are not listed as separate
sections in the map file. Instead, they are combined into aggregates of “initializer bytes”.
You can place the contents sections the usual way in the linker configuration file,
however, this affects the placement—and possibly the number—of the “initializer
bytes” aggregates.

For more information about and examples of how to configure the initialization, see
Linking considerations, page 107.

C++ DYNAMIC INITIALIZATION

The compiler places subroutine pointers for performing C++ dynamic initialization into
sections of the ELF section types SHT_PREINIT_ARRAY and SHT_INIT_ARRAY. By
default, the linker will place these into a linker-created block, ensuring that all sections
of the section type SHT_PREINIT_ARRAY are placed before those of the type
SHT_INIT_ARRAY.Ifany such sections were included, code to call the routines will also
be included.

The linker-created blocks are only generated if the linker configuration does not contain
section selector patterns for the preinit_array and init_array section types. The
effect of the linker-created blocks will be very similar to what happens if the linker
configuration file contains this:

define block SHTSSPREINIT _ARRAY { preinit_array };

define block SHTSSINIT_ARRAY { init_array };

define block CPP_INIT with fixed order { block
SHTSSPREINIT_ARRAY,
block SHTSSINIT_ARRAY };

If you put this into your linker configuration file, you must also mention the CPP_INIT
block in one of the section placement directives. If you wish to select where the
linker-created block is placed, you can use a section selector with the name

".init_array".

Linking using ILINK °

See also section-selectors, page 475.

Stack usage analysis
This section describes how to perform a stack usage analysis using the linker.

In the rx\src directory, you can find an example project that demonstrates stack usage
analysis.
INTRODUCTION TO STACK USAGE ANALYSIS

Under the right circumstances, the linker can accurately calculate the maximum stack
usage for each call graph, starting from the program start, interrupt functions, tasks etc.
(each function that is not called from another function, in other words, the root).

If you enable stack usage analysis, a stack usage chapter will be added to the linker map
file, listing for each call graph root the particular call chain which results in the
maximum stack depth.

The analysis is only accurate if there is accurate stack usage information for each
function in the application.

In general, the compiler will generate this information for each C function, but if there
are indirect calls—calls using function pointers—in your application, you must supply
a list of possible functions that can be called from each calling function.

If you use a stack usage control file, you can also supply stack usage information for
functions in modules that do not have stack usage information.

You can use the check that directive in your stack usage control file to check that the
stack usage calculated by the linker does not exceed the stack space you have allocated.
PERFORMING A STACK USAGE ANALYSIS

Enable stack usage analysis:

In the IDE, choose Project>Options>Linker>Advanced>Enable stack usage
analysis.

On the command line, use the linker option --enable_stack_usage.
See --enable_stack usage, page 322.
Enable the linker map file:

In the IDE, choose Project>Options>Linker>List>Generate linker map file.

2. HE _

99

Stack usage analysis

100

IAR C/C++ Development Guide
Compiling and linking for RX

3

- H 2

On the command line, use the linker option --map.

Link your project.

Note: The linker will issue warnings related to stack usage under certain circumstances,
see Situations where warnings are issued, page 104.

Review the linker map file, which now contains a stack usage chapter with a summary
of the stack usage for each call graph root. For more information, see Result of an
analysis—the map file contents, page 100.

For more details, analyze the call graph log, see Call graph log, page 104.

Note: There are limitations and sources of inaccuracy in the analysis, see Limitations,
page 103.

You might need to specify more information to the linker to get a more representative
result. See Specifying additional stack usage information, page 102.

In the IDE, choose Project>Options>Linker>Advanced>Enable stack usage
analysis>Control file.

On the command line, use the linker option --stack_usage_control.
See --stack _usage control, page 338.

To add an automatic check that you have allocated memory enough for the stack, use
the check that directive in your linker configuration file. For example, assuming a
stack block named MY_STACK, you can write like this:

check that size(block MY_STACK) >=maxstack("Program entry")
+ totalstack("interrupt") + 100;

When linking, the linker emits an error if the check fails. In this example, an error will
be emitted if the sum of the following exceeds the size of the MyY_STACK block:

o The maximum stack usage in the category Program entry (the main program).

o The sum of each individual maximum stack usage in the category interrupt
(assuming that all interrupt routines need space at the same time).

o A safety margin of 100 bytes (to account for stack usage not visible to the analysis).

See also check that directive, page 480 and Stack considerations, page 208.

RESULT OF AN ANALYSIS—THE MAP FILE CONTENTS

When stack usage analysis is enabled, the linker map file contains a stack usage chapter
with a summary of the stack usage for each call graph root category, and lists the call

Linking using ILINK °

chain that results in the maximum stack depth for each call graph root. This is an
example of what the stack usage chapter in the map file might look like:

KAk hkhkhkhkhkhkhkhkhhkhkhkhkhkhhkhkhhhhhhdddddddddddddddddddddddrddddrrrrrrrrxx*x

**x STACK USAGE

* kK

Call Graph Root Category Max Use Total Use

interrupt 104 136
Program entry 168 168

Program entry
"__iar_program_start": 0x000085ac

Maximum call chain 168 bytes
"__iar_program_start" 0
"__cmain" 0
"_main" 8
"_printf" 24
"__PrintfTiny" 56
"__Prout" 16
"_putchar" 16
"___write" 0
" _dwrite" 0
" _dar_sh_stdout" 24
"__dar_get_ttio" 24
"__iar_lookup_ttioh" 0

interrupt

" _FaultHandler": 0x00008434

Maximum call chain 32 bytes
"_FaultHandler" 32
interrupt

"_TIRQHandler": 0x00008424

Maximum call chain 104 bytes
" _IRQHandler" 24
"do_something" in suexample.o [1] 80

The summary contains the depth of the deepest call chain in each category as well as the
sum of the depths of the deepest call chains in that category.

101

Stack usage analysis

102

IAR C/C++ Development Guide
Compiling and linking for RX

Each call graph root belongs to a call graph root category to enable convenient
calculations in check that directives.

SPECIFYING ADDITIONAL STACK USAGE INFORMATION

To specify additional stack usage information you can use either a stack usage control
file (suc) where you specify stack usage control directives or annotate the source code.

You can:

Specify complete stack usage information (call graph root category, stack usage,
and possible calls) for a function, by using the stack usage control directive
function. Typically, you do this if stack usage information is missing, for example
in an assembler module. In your suc file you can, for example, write like this:
function MyFunc: 32,

calls MyFunc2,
calls MyFunc3, MyFuncd: 16;

function [interrupt] MyInterruptHandler: 44;
See also function directive, page 500.

Exclude certain functions from stack usage analysis, by using the stack usage
control directive exclude. In your suc file you can, for example, write like this:

exclude MyFunc5, MyFuncé;

See also exclude directive, page 500.

Specify a list of possible destinations for indirect calls in a function, by using the

stack usage control directive possible calls. Use this for functions which are

known to perform indirect calls and where you know exactly which functions that

might be called in this particular application. In your suc file you can, for example,
write like this:

possible calls MyFunc7: MyFunc8, MyFunc9;

If the information about which functions that might be called is available at compile
time, consider using the #pragma calls directive instead.

See also possible calls directive, page 501 and calls, page 383.

Specify that functions are call graph roots, including an optional call graph root
category, by using the stack usage control directive call graph root or the
#pragma call_graph_root directive. In your suc file you can, for example,
write like this:

call graph root [task]: MyFunclO, MyFuncll;

If your interrupt functions have not already been designated as call graph roots by the
compiler, you must do so manually. You can do this either by using the #pragma

Linking using ILINK °

call_graph_root directive in your source code or by specifying a directive in your
suc file, for example:

call graph root [interrupt]: IrglHandler, Irg2Handler;
See also call graph root directive, page 501 and call graph root, page 384.

e Specify a maximum number of iterations through any of the cycles in the recursion
nest of which the function is a member. In your suc file you can, for example, write
like this:

max recursion depth MyFuncl2: 10;

e Selectively suppress the warning about unmentioned functions referenced by a
module for which you have supplied stack usage information in the stack usage
control file. Use the no calls from directive in your suc file, for example, like
this:
no calls from [file.o] to MyFuncl3, MyFunclé4;

e Instead of specifying stack usage information about assembler modules in a stack
usage control file, you can annotate the assembler source with call frame
information. For more information, see the IAR Assembler User Guide for RX.

For more information, see the chapter The stack usage control file.

To comply with the RX ABI, the compiler generates assembler labels for symbol and
function names by prefixing an underscore. You must remember to add this extra
underscore when you refer to C symbols in the stack usage control file. For example,
main must be written as _main.

LIMITATIONS

Apart from missing or incorrect stack usage information, there are also other sources of
inaccuracy in the analysis:

e The linker cannot always identify all functions in object modules that lack stack
usage information. In particular, this might be a problem with object modules
written in assembler language or produced by non-IAR tools. You can provide stack
usage information for such modules using a stack usage control file, and for
assembler language modules you can also annotate the assembler source code with
CF1I directives to provide stack usage information. See the /AR Assembler User
Guide for RX.

e If you use inline assembler to change the frame size or to perform function calls,
this will not be reflected in the analysis.

e Extra space consumed by other sources (the processor, an operating system, etc) is
not accounted for.

e If you use other forms of function calls, they will not be reflected in the call graph.

103

Stack usage analysis

104

IAR C/C++ Development Guide
Compiling and linking for RX

e Using multi-file compilation (--mfc) can interfere with using a stack usage control
file to specify properties of module-local functions in the involved files.

Note: Stack usage analysis produces a worst case result. The program might not actually
ever end up in the maximum call chain, by design, or by coincidence. In particular, the
set of possible destinations for a virtual function call in C++ might sometimes include
implementations of the function in question which cannot, in fact, be called from that
point in the code.

Stack usage analysis is only a complement to actual measurement. If the result is
important, you need to perform independent validation of the results of the analysis.

SITUATIONS WHERE WARNINGS ARE ISSUED

When stack usage analysis is enabled in the linker, warnings will be generated in the
following circumstances:

e There is a function without stack usage information.

e There is an indirect call site in the application for which a list of possible called
functions has not been supplied.

o There are no known indirect calls, but there is an uncalled function that is not
known to be a call graph root.

e The application contains recursion (a cycle in the call graph) for which no
maximum recursion depth has been supplied, or which is of a form for which the
linker is unable to calculate a reliable estimate of stack usage.

e There are calls to a function declared as a call graph root.

e You have used the stack usage control file to supply stack usage information for
functions in a module that does not have such information, and there are functions
referenced by that module which have not been mentioned as being called in the
stack usage control file.

CALL GRAPH LOG

To help you interpret the results of the stack usage analysis, there is a log output option
that produces a simple text representation of the call graph (--1log call_graph).

Linking using ILINK °

Example output:

Program entry:
0 __iar_program_start [168]

0 __cmain [168]
0 __iar_data_init3 [16]
8 __iar_zero_init3 [8]
16 - [0]
8 __iar_copy_init3 [8]
16 - [0]
0 __low_level_init [O0]

0 main [168]
8 printf [160]
32 _PrintfTiny [136]
88 _Prout [80]
104 putchar [64]
120 __write [48]
120 __dwrite [48]
120 __iar_sh_stdout [48]
144 __iar_get_ttio [24]
168 __iar_lookup_ttioh [0]
120 __iar_sh_write [24]
144 - [0]
88 __aeabi_uidiv [0]
88 __aeabi_idiv0 [0]
88 strlen [0]
0 exit [8]
0 _exit [8]
0 __exit [8]

0 __diar_close_ttio [8]
8 __idar_lookup_ttioh [0] ***
0 __exit [8] ***

Each line consists of this information:

The stack usage at the point of call of the function

The name of the function, or a single '-' to indicate usage in a function at a point
with no function call (typically in a leaf function)

o The stack usage along the deepest call chain from that point. If no such value could
be calculated, " [---1" is output instead. " **=*" marks functions that have already
been shown.

CALL GRAPH XML OUTPUT

The linker can also produce a call graph file in XML format. This file contains one node
for each function in your application, with the stack usage and call information relevant

105

Stack usage analysis

to that function. It is intended to be input for post-processing tools and is not particularly
human-readable.

For more information about the XML format used, see the callGraph. txt file in your
product installation.

IAR C/C++ Development Guide
106 Compiling and linking for RX

Linking your application

e Linking considerations
e Hints for troubleshooting
e Checking module consistency

e Linker optimizations

Linking considerations

Before you can link your application, you must set up the configuration required by
ILINK. Typically, you must consider:

Choosing a linker configuration file

Defining your own memory areas

Placing sections

Reserving space in RAM

Keeping modules

Keeping symbols and sections

Application startup

Setting up stack memory

Setting up heap memory

Setting up the atexit limit

Changing the default initialization

Interaction between ILINK and the application
Standard library handling

Producing output formats other than ELF/DWARF

CHOOSING A LINKER CONFIGURATION FILE

The config directory contains ready-made linker configuration files for all supported
devices. The files contain the information required by ILINK. The only change, if any,
you will normally have to make to the supplied configuration file is to customize the
start and end addresses of each region so they fit the target system memory map. If, for
example, your application uses additional external RAM, you must also add details
about the external RAM memory area.

107

Linking considerations

108

IAR C/C++ Development Guide
Compiling and linking for RX

To edit a linker configuration file, use the editor in the IDE, or any other suitable editor.

Do not change the original template file. We recommend that you make a copy in the
working directory, and modify the copy instead.

Each project in the IDE should have a reference to one, and only one, linker
configuration file. This file can be edited, but for the majority of all projects it is
sufficient to configure the vital parameters in Project>Options>Linker>Config.

DEFINING YOUR OWN MEMORY AREAS

The default configuration file that you selected has predefined ROM and RAM regions.
This example will be used as a starting-point for all further examples in this chapter:

/* Define the addressable memory */
define memory Mem with size = 4G;

/* Define a region named ROM with start address 0 and to be 64
Kbytes large */
define region ROM = Mem: [from O size 0x10000];

/* Define a region named RAM with start address 0x20000 and to be
64 Kbytes large */
define region RAM = Mem: [from 0x20000 size 0x10000];

Each region definition must be tailored for the actual hardware.

To find out how much of each memory that was filled with code and data after linking,
inspect the memory summary in the map file (command line option --map).

Adding an additional region
To add an additional region, use the define region directive, for example:

/* Define a 2nd ROM region to start at address 0x80000 and to be
128 Kbytes large */
define region ROM2 = Mem: [from 0x80000 size 0x20000];

Merging different areas into one region

If the region is comprised of several areas, use a region expression to merge the different
areas into one region, for example:

/* Define the 2nd ROM region to have two areas. The first with
the start address 0x80000 and 128 Kbytes large, and the 2nd with
the start address 0xC0000 and 32 Kbytes large */
define region ROM2 = Mem: [from 0x80000 size 0x20000]

| Mem: [from 0xC0000 size 0x08000];

Linking your application _4

or equivalently
define region ROM2 = Mem: [from 0x80000 to OxXC7FFF]
—-Mem: [from 0xA0000 to OxBFFFF];

PLACING SECTIONS

The default configuration file that you selected places all predefined sections in memory,
but there are situations when you might want to modify this. For example, if you want
to place the section that holds constant symbols in the CONSTANT region instead of in
the default place. In this case, use the place in directive, for example:

/* Place sections with readonly content in the ROM region */
place in ROM {readonly};

/* Place the constant symbols in the CONSTANT region */
place in CONSTANT {readonly section .rodata};

Note: Placing a section—used by the IAR build tools—in a different memory which use
a different way of referring to its content, will fail.

For the result of each placement directive after linking, inspect the placement summary
in the map file (the command line option --map).
Placing a section at a specific address in memory

To place a section at a specific address in memory, use the place at directive, for
example:

/* Place section .vectors at address 0 */

place at address Mem:0x0 {readonly section .vectors};
Placing a section first or last in a region

To place a section first or last in a region is similar, for example:

/* Place section .vectors at start of ROM */

place at start of ROM {readonly section .vectors};
Declare and place your own sections

To declare new sections—in addition to the ones used by the IAR build tools—to hold
specific parts of your code or data, use mechanisms in the compiler and assembler. For
example:

/* Place a variable in that section. */
const short MyVariable @ "MYOWNSECTION" = OxFOFO;

109

Linking considerations

10

IAR C/C++ Development Guide
Compiling and linking for RX

This is the corresponding example in assembler language:

name createSection

section MYOWNSECTION:CONST ; Create a section,
; and fill it with

dclé6 OxFOFO0 ; constant bytes.

end

To place your new section, the original place in ROM {readonly}; directive is
sufficient.

However, to place the section MyOownSection explicitly, update the linker configuration
file with a place in directive, for example:

/* Place MyOwnSection in the ROM region */
place in ROM {readonly section MyOwnSection};

RESERVING SPACE IN RAM

Often, an application must have an empty uninitialized memory area to be used for
temporary storage, for example, a heap or a stack. It is easiest to achieve this at link time.
You must create a block with a specified size and then place it in a memory.

In the linker configuration file, it can look like this:

define block TempStorage with size = 0x1000, alignment = 4 { };
place in RAM { block TempStorage };

To retrieve the start of the allocated memory from the application, the source code could
look like this:

/* Define a section for temporary storage. */
#pragma section = "TempStorage"
char *GetTempStorageStartAddress()
{
/* Return start address of section TempStorage. */
return __section_begin("TempStorage") ;

KEEPING MODULES

If a module is linked as an object file, it is always kept. That is, it will contribute to the
linked application. However, if a module is part of a library, it is included only if it is
symbolically referred to from other parts of the application. This is true, even if the
library module contains a root symbol. To assure that such a library module is always
included, use iarchive to extract the module from the library, see The IAR Archive
Tool—iarchive, page 507.

For information about included and excluded modules, inspect the log file (the
command line option --log modules).

Linking your application _4

For more information about modules, see Modules and sections, page 90.

KEEPING SYMBOLS AND SECTIONS

By default, ILINK removes any sections, section fragments, and global symbols that are
not needed by the application. To retain a symbol that does not appear to be needed—or
actually, the section fragment it is defined in—you can either use the root attribute on
the symbol in your C/C++ or assembler source code, or use the ILINK option --keep.
To retain sections based on attribute names or object names, use the directive keep in
the linker configuration file.

To prevent ILINK from excluding sections and section fragments, use the command line
options --no_remove or --no_fragments, respectively.

For information about included and excluded symbols and sections, inspect the log file
(the command line option --log sections).

For more information about the linking procedure for keeping symbols and sections, see
The linking process, page 57.
APPLICATION STARTUP

By default, the point where the application starts execution is defined by the
__iar_program_start label. The reset vector points to this start label. The label is
also communicated via ELF to any debugger that is used.

To change the start point of the application to another label, use the ILINK option
--entry, see --entry, page 322.
SETTING UP STACK MEMORY

The sizes of the stack blocks USTACK and ISTACK are defined in the linker configuration
file. To change the allocated amount of memory, change the block definition like this:

define block USTACK with size = 0x2000, alignment = 4{ };
Specify an appropriate size for your application.

Note: To make it possible to change the stack sizes from the IDE, use the symbols
_ISTACK_SIZE and _USTACK_SIZE instead of the actual size, like this:

define block USTACK with size = _USTACK_SIZE, alignment = 4 { };

For more information about stack memory, see Stack considerations, page 208.

Linking considerations

112

IAR C/C++ Development Guide
Compiling and linking for RX

SETTING UP HEAP MEMORY
The size of the heap is defined in the linker configuration file as a block:

define block HEAP with size = 0x1000, alignment = 4{ };
place in RAM {block HEAP};

Specify the appropriate size for your application. If you use a heap, you must allocate at
least 50 bytes for it.

Note: To make it possible to change the heap size from the IDE, use the symbol
_HEAP_SIZE instead of the actual size, like this:

define block HEAP with size = _HEAP_SIZE, alignment = 4 { };

SETTING UP THE ATEXIT LIMIT

By default, the atexit function can be called a maximum of 32 times from your
application. To either increase or decrease this number, add a line to your configuration
file. For example, to reserve room for 10 calls instead, write:

define symbol __iar_maximum_atexit_calls = 10;

CHANGING THE DEFAULT INITIALIZATION

By default, memory initialization is performed during application startup. ILINK sets
up the initialization process and chooses a suitable packing method. If the default
initialization process does not suit your application and you want more precise control
over the initialization process, these alternatives are available:

e Suppressing initialization

e Choosing the packing algorithm

e Manual initialization

e Initializing code—copying ROM to RAM.

For information about the performed initializations, inspect the log file (the command
line option --log initialization).

Suppressing initialization

If you do not want the linker to arrange for initialization by copying, for some or all
sections, make sure that those sections do not match a pattern in an initialize by
copy directive—or use an except clause to exclude them from matching. If you do not
want any initialization by copying at all, you can omit the initialize by copy
directive entirely.

This can be useful if your application, or just your variables, are loaded into RAM by
some other mechanism before application startup.

Linking your application _4

Choosing a packing algorithm
To override the default packing algorithm, write for example:
initialize by copy with packing = 1z77 { readwrite };

For more information about the available packing algorithms, see initialize directive,
page 465.

Manual initialization

In the usual case, the initialize by copy directive is used for making the linker
arrange for initialization by copying—with or without packing—of sections with
content at application startup. The linker achieves this by logically creating an
initialization section for each such section, holding the content of the section, and
turning the original section into a section without content. The name of this initialization
section is the name of the original section with the added suffix _init. For example, the
initialization section for the . data section is called .data_init. Then, the linker adds
table elements to the initialization table so that the initialization will be performed at
application startup.

Youcanuse initialize manually to suppress the creation of table elements to take
control over when and how the elements are copied. This is useful for overlays, but also
in other circumstances.

Note: The section . textrw, which contains RAM functions, must use initialize
manually in big-endian mode, to be properly initialized.

For sections without content (zero-initialized sections), the situation is reversed. The
linker arranges for zero initialization of all such sections at application startup, except
for those that are mentioned in a do not initialize directive.

Simple copying example with an automatic block

Assume that you have some initialized variables in MYSECTION. If you add this directive
to your linker configuration file:

initialize manually { section MYSECTION };
you can use this source code example to initialize the section:

#pragma section = "MYSECTION"
#pragma section = "MYSECTION_init"
void DoInit()

{

char * from = __section_begin ("MYSECTION_init") ;
char * to = __section_begin ("MYSECTION") ;
memcpy (to, from, __section_size("MYSECTION")) ;

}

113

Linking considerations

114

IAR C/C++ Development Guide
Compiling and linking for RX

This piece of source code takes advantage of the fact thatif youuse __section_begin
(and related operators) with a section name, an automatic block is created by the linker
for those sections.

Note: Automatic blocks override the normal section selection process and forces
everything that matches the section name to form one block.

Example with explicit blocks

Assume that you instead of needing manual initialization for variables in a specific
section, you need it for all initialized variables from a particular library. In that case, you
must create explicit blocks for both the variables and the content. Like this:

initialize manually { section .data object mylib.a };
define block MYBLOCK { section .data object mylib.a };
define block MYBLOCK_init { section .data_init object mylib.a };

You must also place the two new blocks using one of the section placement directives,
the block MyBLOCK in RAM and the block MYBLOCK_init in ROM.

Then you can initialize the sections using the same source code as in the previous
example, only with MYBLOCK instead of MYSECTION.

Note: When using manual initialization, you must handle each copy init batch
explicitly. The linker will create a separate batch for each combination of source block
or placement directive and destination block or placement directive. To see which
batches are created, use initialization logging (--log initialization).

In some cases, blocks are created automatically by the linker, which can affect the
number of batches. This can happen when using a block with fixed order and when
using the first, last, or midway modifiers in extended section selectors.

Overlay example

This is a simple overlay example that takes advantage of automatic block creation:

initialize manually { section MYOVERLAY* };

define overlay MYOVERLAY { section MYOVERLAY1l };
define overlay MYOVERLAY { section MYOVERLAY2 };

Linking your application _4

You must also place overlay MYOVERLAY somewhere in RAM. The copying could
look like this:

#pragma section = "MYOVERLAY"
#pragma section = "MYOVERLAY1_init"
#pragma section = "MYOVERLAY2_init"

void SwitchToOverlayl ()
{

char * from = __ section_begin ("MYOVERLAY1_ init");
char * to = __section_begin ("MYOVERLAY") ;
memcpy (to, from, _ section_size ("MYOVERLAY1_init"));

}

void SwitchToOverlay? ()
{

char * from = __section_begin ("MYOVERLAY2_init");
char * to = __section_begin ("MYOVERLAY") ;
memcpy (to, from, _ section_size ("MYOVERLAY2_init"));

}

Initializing code—copying ROM to RAM

Sometimes, an application copies pieces of code from flash/ROM to RAM. You can
direct the linker to arrange for this to be done automatically at application startup, or do
it yourself at some later time using the techniques described in Manual initialization,
page 113.

You need to list the code sections that should be copied in an initialize by copy
directive. The easiest way is usually to place the relevant functions in a particular
section—for example, RAMCODE— and add section RAMCODE to your initialize
by copy directive. For example:

initialize by copy { rw, section RAMCODE };

If you need to place the RAMCODE functions in some particular location, you must
mention them in a placement directive, otherwise they will be placed together with other
read/write sections.

If you need to control the manner and/or time of copying, you must use an initialize
manually directive instead, likewise if you—in big-endian mode—are initializing the
section . textrw, which contains RAM functions. See Manual initialization, page 113.

If the functions need to run without accessing the flash/ROM, you can use the
__ramfunc keyword when compiling. See Executing functions in RAM, page 77.

115

Linking considerations

116

IAR C/C++ Development Guide
Compiling and linking for RX

Running all code from RAM

If you want to copy the entire application from ROM to RAM at program startup, use
the initilize by copy directive, for example:

initialize by copy { readonly, readwrite };

The readwrite pattern will match all statically initialized variables and arrange for
them to be initialized at startup. The readonly pattern will do the same for all read-only
code and data, except for code and data needed for the initialization.

Because the function __low_level_init, if present, is called before initialization, it
and anything it needs, will not be copied from ROM to RAM either. In some
circumstances—for example, if the ROM contents are no longer available to the
program after startup—you might need to avoid using the same functions during startup
and in the rest of the code.

If anything else should not be copied, include it in an except clause. This can apply to,
for example, the interrupt vector table.

It is also recommended to exclude the C++ dynamic initialization table from being
copied to RAM, as it is typically only read once and then never referenced again. For
example, like this:

initialize by copy { readonly, readwrite }
except { section .intvec, /* Don’t copy
interrupt table */
section .init_array }; /* Don’'t copy
C++ init table */

INTERACTION BETWEEN ILINK AND THE APPLICATION

ILINK provides the command line options --config_def and --define_symbol to
define symbols which can be used for controlling the application. You can also use
symbols to represent the start and end of a continuous memory area that is defined in the
linker configuration file. For more information, see Interaction between the tools and
vour application, page 215.

To change a reference to one symbol to another symbol, use the ILINK command line
option --redirect. This is useful, for example, to redirect a reference from a
non-implemented function to a stub function, or to choose one of several different
implementations of a certain function, for example, how to choose the DLIB formatter
for the standard library functions printf and scanf.

The compiler generates mangled names to represent complex C/C++ symbols. If you
want to refer to these symbols from assembler source code, you must use the mangled
names.

Linking your application _4

For information about the addresses and sizes of all global (statically linked) symbols,
inspect the entry list in the map file (the command line option --map).

For more information, see Interaction between the tools and your application, page 215.

STANDARD LIBRARY HANDLING

By default, ILINK determines automatically which variant of the standard library to
include during linking. The decision is based on the sum of the runtime attributes
available in each object file and the library options passed to ILINK.

To disable the automatic inclusion of the library, use the option
--no_library_search. In this case, you must explicitly specify every library file to
be included. For information about available library files, see Prebuilt runtime libraries,
page 135.

PRODUCING OUTPUT FORMATS OTHER THAN ELF/DWARF

ILINK can only produce an output file in the ELF/DWARF format. To convert that
format into a format suitable for programming PROM/flash, see The IAR ELF Tool—
ielftool, page 511.

Hints for troubleshooting
ILINK has several features that can help you manage code and data placement correctly,
for example:
o Messages at link time, for examples when a relocation error occurs

o The --1og option that makes ILINK log information to stdout, which can be
useful to understand why an executable image became the way it is, see --/og, page
327

o The --map option that makes ILINK produce a memory map file, which contains
the result of the linker configuration file, see --map, page 329.

RELOCATION ERRORS

For each instruction that cannot be relocated correctly, ILINK will generate a relocation
error. This can occur for instructions where the target is out of reach or is of an
incompatible type, or for many other reasons.

17

Hints for troubleshooting

118

IAR C/C++ Development Guide
Compiling and linking for RX

A relocation error produced by ILINK can look like this:

Error[Lp002]: relocation failed: out of range or illegal value
Kind R_XXX_YYY[0x1]
Location 0x40000448
"myfunc" + 0x2c
Module: somecode.o
Section: 7 (.text)
Offset: O0x2c
Destination: 0x9000000c
"read"

Module: read.o(iolib.a)
Section: 6 (.text)
Offset: 0x0

The message entries are described in this table:

Message entry

Description

Kind

Location

Destination

The relocation directive that failed. The directive depends on the
instruction used.

The location where the problem occurred, described with these details:

* The instruction address, expressed both as a hexadecimal value and as
a label with an offset. In this example, 0x40000448 and
"myfunc" + 0x2c.

* The module, and the file. In this example, the module somecode. o.

* The section number and section name. In this example, section number
7 with the name . text.

* The offset, specified in number of bytes, in the section. In this example,
0x2c.

The target of the instruction, described with these details:

* The instruction address, expressed both as a hexadecimal value and as
a label with an offset. In this example, 0x9000000c¢ and "read"—
therefore, no offset.

* The module, and when applicable the library. In this example, the
module read. o and the library iolib. a.

* The section number and section name. In this example, section number
6 with the name . text.

* The offset, specified in number of bytes, in the section. In this example,
0x0.

Table 6: Description of a relocation error

Possible solutions

In this case, the distance from the instruction in myfunc to __read is too long for the

branch instruction.

Linking your application _4

Possible solutions include ensuring that the two . text sections are allocated closer to
each other or using some other calling mechanism that can reach the required distance.
It is also possible that the referring function tried to refer to the wrong target and that
this caused the range error.

Different range errors have different solutions. Usually, the solution is a variant of the
ones presented above, in other words modifying either the code or the section
placement.

Checking module consistency

This section introduces the concept of runtime model attributes, a mechanism used by
the tools provided by IAR to ensure that modules that are linked into an application are
compatible, in other words, are built using compatible settings. The tools use a set of
predefined runtime model attributes. In addition to these, you can define your own that
you can use to ensure that incompatible modules are not used together.

For example, in the compiler, it is possible to specify the size of the double
floating-point type. If you write a routine that only works for 64-bit doubles, it is
possible to check that the routine is not used in an application built using 32-bit doubles.

RUNTIME MODEL ATTRIBUTES

A runtime attribute is a pair constituted of a named key and its corresponding value. In
general, two modules can only be linked together if they have the same value for each
key that they both define.

There is one exception—if the value of an attribute is *, then that attribute matches any
value. The reason for this is that you can specify this in a module to show that you have
considered a consistency property, and this ensures that the module does not rely on that
property.

Note: For IAR predefined runtime model attributes, the linker checks them in several
ways.

19

Checking module consistency

120

IAR C/C++ Development Guide
Compiling and linking for RX

Example

In this table, the object files could (but do not have to) define the two runtime attributes
color and taste:

Object file Color Taste
filel blue not defined
file2 red not defined
file3 red *

filed red spicy
fileb red lean

Table 7: Example of runtime model attributes

In this case, £ilel cannot be linked with any of the other files, because the runtime
attribute color does not match. Also, £ile4 and £ile5 cannot be linked together,
because the taste runtime attribute does not match.

On the other hand, file2 and file3 can be linked with each other, and with either
file4 or £ileb5, but not with both.

USING RUNTIME MODEL ATTRIBUTES

To ensure module consistency with other object files, use the #pragma rtmodel
directive to specify runtime model attributes in your C/C++ source code. For example,
if you have a UART that can run in two modes, you can specify a runtime model
attribute, for example uart. For each mode, specify a value, for example model and
mode2. Declare this in each module that assumes that the UART is in a particular mode.
This is how it could look like in one of the modules:

#pragma rtmodel="uart", "model"

Alternatively, you can also use the rtmodel assembler directive to specify runtime
model attributes in your assembler source code. For example:

rtmodel "uart", "model"

Note: Key names that start with two underscores are reserved by the compiler. For more
information about the syntax, see rtmodel, page 399 and the IAR Assembler User Guide
for RX.

At link time, the IAR ILINK Linker checks module consistency by ensuring that
modules with conflicting runtime attributes will not be used together. If conflicts are
detected, an error is issued.

Linking your application _4

Linker optimizations

This section contains information about:

e Virtual function elimination
e Small function inlining

e Duplicate section merging

VIRTUAL FUNCTION ELIMINATION

Virtual Function Elimination (VFE) is a linker optimization that removes unneeded
virtual functions and dynamic runtime type information.

In order for Virtual Function Elimination to work, all relevant modules must provide
information about virtual function table layout, which virtual functions are called, and
for which classes dynamic runtime type information is needed. If one or more modules
do not provide this information, a warning is generated by the linker and Virtual
Function Elimination is not performed.

If you know that modules that lack such information do not perform any virtual function
calls and do not define any virtual function tables, you can use the --vfe=forced
linker option to enable Virtual Function Elimination anyway.

mm In the IDE, select Project>Options>Linker>Optimizations>Perform C++ Virtual
Function Elimination to enable this optimization.

Currently, tools from IAR provide the information needed for Virtual Function
Elimination in a way that the linker can use.

Note: You can disable Virtual Function Elimination entirely by using the --no_vfe
linker option. In this case, no warning will be issued for modules that lack VFE
information.

For more information, see --vfe, page 341 and --no_vfe, page 333.

SMALL FUNCTION INLINING

Small function inlining is a linker optimization that replaces some calls to small
functions with the body of the function. This requires the body to fit in the space of the
instruction that calls the function.

e In the IDE, select Project>Options>Linker>Optimizations>Inline small routines to
enable this optimization.

Use the linker option --inline.

121

Linker optimizations

DUPLICATE SECTION MERGING

The linker can detect read-only sections with identical contents and keep only one copy
of each such section, redirecting all references to any of the duplicate sections to the
retained section.

In the IDE, select Project>Options>Linker>Optimizations>Merge duplicate
sections to enable this optimization.

Use the linker option --merge_duplicate_sections.

Note: This optimization can cause different functions or constants to have the same
address, so if your application depends on the addresses being different, for example, by
using the addresses as keys into a table, you should not enable this optimization.

IAR C/C++ Development Guide
122 Compiling and linking for RX

The DLIB runtime
environment

e Introduction to the runtime environment
e Setting up the runtime environment
e Additional information on the runtime environment

e Managing a multithreaded environment

Introduction to the runtime environment

A runtime environment is the environment in which your application executes.
This section contains information about:

e Runtime environment functionality
e Briefly about input and output (I/0)
e Briefly about C-SPY emulated I/O
e Briefly about retargeting

RUNTIME ENVIRONMENT FUNCTIONALITY

The DLIB runtime environment supports Standard C and C++ and consists of:

e The C/C++ standard library, both its interface (provided in the system header files)
and its implementation.

e Startup and exit code.

e Low-level I/O interface for managing input and output (I/O).

e Special compiler support, for instance functions for switch handling or integer
arithmetics.

e Support for hardware features:

e Direct access to low-level processor operations by means of intrinsic functions,
such as functions for interrupt mask handling

e Peripheral unit registers and interrupt definitions in include files

Runtime environment functions are provided in one or more runtime libraries.

123

Introduction to the runtime environment

124

IAR C/C++ Development Guide
Compiling and linking for RX

The runtime library is delivered both as prebuilt libraries and (depending on your
product package) as source files. The prebuilt libraries are available in different
configurations to meet various needs, see Runtime library configurations, page 133.
You can find the libraries in the product subdirectories rx\1ib and rx\src\1lib,
respectively.

For more information about the library, see the chapter C/C++ standard library
functions.

BRIEFLY ABOUT INPUT AND OUTPUT (1/O)

Every application must communicate with its environment. The application might for
example display information on an LCD, read a value from a sensor, get the current date
from the operating system, etc. Typically, your application performs I/O via the C/C++
standard library or some third-party library.

There are many functions in the C/C++ standard library that deal with I/O, including
functions for standard character streams, file system access, time and date,
miscellaneous system actions, and termination and assert. This set of functions is
referred to as the standard 1/O interface.

On a desktop computer or a server, the operating system is expected to provide I[/O
functionality to the application via the standard I/O interface in the runtime
environment. However, in an embedded system, the runtime library cannot assume that
such functionality is present, or even that there is an operating system at all. Therefore,
the low-level part of the standard I/O interface is not completely implemented by
default:

Your
application-specific
code
Standard I/O
imerface | _________

DLIB runtime library
implementation

Low-level I!O implementation i
(unimplemented) ;

_______________ L

Environment

The DLIB runtime environment __¢

To make the standard I/O interface work, you can:

o Let the C-SPY debugger emulate I/O operations on the host computer, see Briefly
about C-SPY emulated /0, page 125

® Retarget the standard I/O interface to your target system by providing a suitable
implementation of the interface, see Briefly about retargeting, page 126.

It is possible to mix these two approaches. You can, for example, let debug printouts and
asserts be emulated by the C-SPY debugger, but implement your own file system. The
debug printouts and asserts are useful during debugging, but no longer needed when
running the application stand-alone (not connected to the C-SPY debugger).

BRIEFLY ABOUT C-SPY EMULATED 1/O

C-SPY emulated /0 is a mechanism which lets the runtime environment interact with
the C-SPY debugger to emulate I/O actions on the host computer:

Your
application-specific
code
Standard I/O
interface | -

DLIB runtime library
implementation

C-5PY emulated /O

l

Host computer

For example, when C-SPY emulated I/O is enabled:

e Standard character streams are directed to the C-SPY Terminal I/O window

e File system operations are performed on the host computer

e Time and date functions return the time and date of the host computer

e The C-SPY debugger notifies when the application terminates or an assert fails.

This behavior can be valuable during the early development of an application, for
example in an application that uses file I/O before any flash file system I/O drivers are

125

Introduction to the runtime environment

126

IAR C/C++ Development Guide
Compiling and linking for RX

implemented, or if you need to debug constructions in your application that use stdin
and stdout without the actual hardware device for input and output being available.

See Setting up your runtime environment, page 127 and The C-SPY emulated 1/0O
mechanism, page 141.

BRIEFLY ABOUT RETARGETING

Retargeting is the process where you adapt the runtime environment so that your
application can execute I/O operations on your target system.

The standard I/O interface is large and complex. To make retargeting easier, the DLIB
runtime environment is designed so that it performs all I/O operations through a small
set of simple functions, which is referred to as the DLIB low-level I/O interface. By
default, the functions in the low-level interface lack usable implementations. Some are
unimplemented, others have stub implementations that do not perform anything except
returning error codes.

To retarget the standard I/O interface, all you have to do is to provide implementations
for the functions in the DLIB low-level I/O interface.

Your
application-specific
code
Standard IO
interface

DLIB runtime library
implementation

DLIB low-level
/O interface

Your low-level
implementation

|

Target system environment

For example, if your application calls the functions printf and fputc in the standard
I/0 interface, the implementations of those functions both call the low-level function
__write to output individual characters. To make them work, you just need to provide
an implementation of the __write function—either by implementing it yourself, or by
using a third-party implementation.

The DLIB runtime environment __¢

For information about how to override library modules with your own implementations,
see Overriding library modules, page 130. See also The DLIB low-level I/O interface,
page 147 for information about the functions that are part of the interface.

Setting up the runtime environment

This section contains these tasks:

e Setting up your runtime environment

A runtime environment with basic project settings to be used during the initial phase
of development.

o Retargeting—Adapting for your target system
e Overriding library modules

o Customizing and building your own runtime library
See also:

e Managing a multithreaded environment—for information about how to adapt the
runtime environment to treat all library objects according to whether they are global
or local to a thread.

SETTING UP YOUR RUNTIME ENVIRONMENT

You can set up the runtime environment based on some basic project settings. It is also
often convenient to let the C-SPY debugger manage things like standard streams, file
I/O, and various other system interactions. This basic runtime environment can be used
for simulation before you have any target hardware.

To set up the runtime environment:

I Before you build your project, choose Project>Options>General Options to open the
Options dialog box.

2 On the Library Configuration page, verify the following settings:

e Library—choose which /ibrary configuration to use. Typically, choose Tiny,
Normal, or Full. For library support for C++17, choose Libe++, which uses the
Full library configuration.

For information about the various library configurations, see Runtime library
configurations, page 133.

127

Setting up the runtime environment

128

IAR C/C++ Development Guide
Compiling and linking for RX

On the Library Options page, select Auto with multibyte support or Auto without
multibyte support for both Printf formatter and Scanf formatter. This means that
the linker will automatically choose the appropriate formatters based on information
from the compiler. For more information about the available formatters and how to
choose one manually, see Formatters for printf, page 138 and Formatters for scanf,
page 140, respectively.

To enable C-SPY emulated I/O, choose Project>Options>Linker>Library and select
Include C-SPY debugging support. See Briefly about C-SPY emulated /O, page 125.

On the command line, use the linker option --debug_1lib.

Note: The C-SPY Terminal I/0 window is not opened automatically—you must open
it manually. For more information about this window, see the C-SPY® Debugging Guide
for RX.

Note: If you enable debug information before compiling, this information will be
included also in the linker output, unless you use the linker option --strip.

On some systems, terminal output might be slow because the host computer and the
target system must communicate for each character.

For this reason, a replacement for the __write function called __write_bufferedis
included in the runtime library. This module buffers the output and sends it to the
debugger one line at a time, speeding up the output.

Note: This function uses about 80 bytes of RAM memory.

To use this feature in the IDE, choose Project>Options>Linker>Library and select
the option Buffered write.

To enable this function on the command line, add this to the linker command line:
--redirect ___write=___write_buffered

Some math functions are available in different versions—default versions, smaller than
the default versions, and larger but more accurate than default versions. Consider
which versions you should use.

For more information, see Math functions, page 141.

When you build your project, a suitable prebuilt library and library configuration file
are automatically used based on the project settings you made.

For information about which project settings affect the choice of library file, see
Runtime library configurations, page 133.

You have now set up a runtime environment that can be used while developing your
application source code.

The DLIB runtime environment __¢

RETARGETING—ADAPTING FOR YOUR TARGET SYSTEM

Before you can run your application on your target system, you must adapt some parts
of the runtime environment, typically the system initialization and the DLIB low-level
I/O interface functions.

To adapt your runtime environment for your target system:
Adapt system initialization.

It is likely that you must adapt the system initialization, for example, your application
might need to initialize interrupt handling, I/O handling, watchdog timers, etc. You do
this by implementing the routine __low_level_init, which is executed before the
data sections are initialized. See System startup and termination, page 142 and System
initialization, page 146.

Note: You can find device-specific examples on this in the example projects provided in
the product installation, see the Information Center.

Adapt the runtime library for your target system. To implement such functions, you
need a good understanding of the DLIB low-level I/O interface, see Briefly about
retargeting, page 126.

Typically, you must implement your own functions if your application uses:

e Standard streams for input and output
If any of these streams are used by your application, for example by the functions
printf and scanf, you must implement your versions of the low-level functions
__readand __write.
The low-level functions identify I/O streams, such as an open file, with a file handle
that is a unique integer. The I/O streams normally associated with stdin, stdout,
and stderr have the file handles 0, 1, and 2, respectively. When the handle is -1,
all streams should be flushed. Streams are defined in stdio.h.

e File input and output

The library contains a large number of powerful functions for file I/O operations,

such as fopen, fclose, fprintf, fputs, etc. All these functions call a small set of

low-level functions, each designed to accomplish one particular task, for example,
__open opens a file, and __write outputs characters. Implement your version of
these low-level functions.

® signal and raise

If the default implementation of these functions does not provide the functionality
you need, you can implement your own versions.

129

Setting up the runtime environment

130

IAR C/C++ Development Guide
Compiling and linking for RX

o Time and date

To make the time and date functions work, you must implement the functions clock,
time32 time64,and __getzone. Whetheryouuse __time32or__time64

JR— s ——

depends on which interface you use for time_t, see time.h, page 446.
e Assert,see iar ReportAssert, page 150.
e Environment interaction

If the default implementation of system or getenv does not provide the
functionality you need, you can implement your own versions.

For more information about the functions, see The DLIB low-level I/O interface, page
147.

The library files that you can override with your own versions are located in the
rx\src\lib directory.

When you have implemented your functions of the low-level I/O interface, you must
add your version of these functions to your project. For information about this, see
Overriding library modules, page 130.

Note: If you have implemented a DLIB low-level I/O interface function and added it to
a project that you have built with support for C-SPY emulated I/O, your low-level
function will be used and not the functions provided with C-SPY emulated I/O. For
example, if you implement your own version of __write, output to the C-SPY
Terminal 1/0 window will not be supported. See Briefly about C-SPY emulated 1/O,
page 125.

Before you can execute your application on your target system, you must rebuild your
project with a Release build configuration. This means that the linker will not include
the C-SPY emulated I/O mechanism and the low-level I/O functions it provides. If your
application calls any of the low-level functions of the standard I/O interface, either
directly or indirectly, and your project does not contain these, the linker will issue an
error for every missing low-level function.

Note: By default, the NDEBUG symbol is defined in a Release build configuration, which
means asserts will no longer be checked. For more information, see

__iar ReportAssert, page 150.

OVERRIDING LIBRARY MODULES

To override a library function and replace it with your own
implementation:

Use a template source file—a library source file or another template—and place a copy
of it in your project directory.

The DLIB runtime environment __¢

The library files that you can override with your own versions are located in the
rx\src\1lib directory.

Modity the file.

Note: To override the functions in a module, you must provide alternative
implementations for all the needed symbols in the overridden module. Otherwise you
will get error messages about duplicate definitions.

Add the modified file to your project, like any other source file.

Note: If you have implemented a DLIB low-level I/O interface function and added it to
a project that you have built with support for C-SPY emulated I/O, your low-level
function will be used and not the functions provided with C-SPY emulated I/O. For
example, if you implement your own version of __write, output to the C-SPY
Terminal 1/0 window will not be supported. See Briefly about C-SPY emulated 1/O,
page 125.

You have now finished the process of overriding the library module with your version.

CUSTOMIZING AND BUILDING YOUR OWN RUNTIME
LIBRARY

If the prebuilt library configurations do not meet your requirements, you can customize
your own library configuration, but that requires that you rebuild relevant parts of the
library.

Note: Customizing and building your own runtime library requires access to the library
source code, which is not available for all types of IAR Embedded Workbench licenses.

Building a customized library is a complex process. Therefore, consider carefully
whether it is really necessary. You must build your own runtime library when:

e There is no prebuilt library for the required combination of compiler options or
hardware support, for example, locked registers or 16-bit int

e You want to build a library for applications that use either ROPI or RWPI
separately, but not both.

e You want to define your own library configuration with support for locale, file
descriptors, multibyte characters, etc. This will include or exclude certain parts of
the DLIB runtime environment.

In those cases, you must:

o Make sure that you have installed the library source code (src\1ib). If not already
installed, you can install it using the IAR License Manager, see the Licensing
Guide.

e Set up a library project

131

Setting up the runtime environment

132

IAR C/C++ Development Guide
Compiling and linking for RX

o Make the required library customizations
e Build your customized runtime library

e Finally, make sure your application project will use the customized runtime library.

To set up a library project:

In the IDE, choose Project>Create New Project and use any of the library project
templates that are available for the prebuilt libraries and that matches the project
settings you need as closely as possible. See Prebuilt runtime libraries, page 135.

Note: When you create a new library project from a template, the majority of the files
included in the new project are the original installation files. If you are going to modify
these files, make copies of them first and replace the original files in the project with
these copies.

To customize the library functionality:

The library functionality is determined by a set of configuration symbols. The default
values of these symbols are defined in the file DLib_Defaults.h which you can find
in rx\inc\c. This read-only file describes the configuration possibilities. Note that
you should not modify this file.

In addition, your custom library has its own library configuration file
libraryname.h—which you can find in the rx\config\template\project
directory—and which sets up that specific library with the required library
configuration. Customize this file by setting the values of the configuration symbols
according to the application requirements.

For information about configuration symbols that you might want to customize, see:
Configuration symbols for file input and output, page 156

Locale, page 157

Strtod, page 158

Managing a multithreaded environment, page 158

When you are finished, build your library project with the appropriate project options.
After you build your library, you must make sure to use it in your application project.

To build IAR Embedded Workbench projects from the command line, use the IAR
Command Line Build Utility (iarbuild.exe). However, no make or batch files for
building the library from the command line are provided.

For information about the build process and the IAR Command Line Build Utility, see
the IDE Project Management and Building Guide for RX.

The DLIB runtime environment __¢

To use the customized runtime library in your application project:

I In the IDE, choose Project>Options>General Options and click the Library
Configuration tab.

2 From the Library drop-down menu, choose Custom.
In the Configuration file text box, locate your library configuration file.

4 Click the Library tab, also in the Linker category. Use the Additional libraries text
box to locate your library file.

Additional information on the runtime environment

This section gives additional information on the runtime environment:

Bounds checking functionality, page 133
Runtime library configurations, page 133
Prebuilt runtime libraries, page 135
Formatters for printf, page 138

Formatters for scanf, page 140

The C-SPY emulated I/O mechanism, page 141
Math functions, page 141

System startup and termination, page 142
System initialization, page 146

The DLIB low-level I/O interface, page 147
Configuration symbols for file input and output, page 156
Locale, page 157

Strtod, page 158

BOUNDS CHECKING FUNCTIONALITY

To enable the bounds checking functions specified in Annex K (Bounds-checking
interfaces) of the C standard, define the preprocessor symbol
__STDC_WANT_LIB_EXT1__ to 1 prior to including any system headers. See C
bounds-checking interface, page 445.

RUNTIME LIBRARY CONFIGURATIONS

The runtime library is provided with different /ibrary configurations, where each
configuration is suitable for different application requirements.

133

Additional information on the runtime environment

134

IAR C/C++ Development Guide
Compiling and linking for RX

The runtime library configuration is defined in the /ibrary configuration file. It contains
information about what functionality is part of the runtime environment. The less
functionality you need in the runtime environment, the smaller the environment
becomes.

These predefined library configurations are available:

Library configuration Description

Normal DLIB (default) C locale, but no locale interface, no file descriptor support, no
multibyte characters in printf and scanf, and no hexadecimal
floating-point numbers in strtod.

Full DLIB Full locale interface, C locale, file descriptor support, and optionally
multibyte characters in printf and scanf, and hexadecimal
floating-point numbers in strtod.

Table 8: Library configurations

Note: In addition to these predefined library configurations, you can provide your own
configuration, see Customizing and building your own runtime library, page 131

If you do not specify a library configuration explicitly you will get the default
configuration. If you use a prebuilt runtime library, a configuration file that matches the
runtime library file will automatically be used. See Setting up the runtime environment,
page 127.

Note: If you use the Libc++ library, you will automatically get the Full configuration.
This is the only configuration that exists for Libc++.

To override the default library configuration, use one of these methods:
Use a prebuilt configuration of your choice—to specify a runtime configuration
explicitly:

Choose Project>Options>General Options>Library Configuration>Library and
change the default setting.

Use the --dlib_config compiler option, see --dlib_config, page 275.

The prebuilt libraries are based on the default configurations, see Runtime library
configurations, page 133.

If you have built your own customized library, choose Project>Options>General
Options>Library Configuration>Library and choose Custom to use your own
configuration. For more information, see Customizing and building your own runtime
library, page 131.

The DLIB runtime environment __¢

PREBUILT RUNTIME LIBRARIES

The prebuilt runtime libraries are configured for different combinations of these options:

FPU support

The processor core

Size of the double floating-point type
Size of the int data type
Byte order for data access

Support for position-independent code and data

Library configuration—Normal or Full.

The linker will automatically include the correct library object file and library
configuration file. To explicitly specify a library configuration, use the --d1ib_config

compiler option.

Note: All prebuilt runtime libraries are built using the Huge data model. However, they
can be used by an application built using any data model.

Library filename syntax

The names of the libraries are constructed from these elements:

{1ibrary}
{cpu}

{core}

{size_of_double}

{int_size}

{byte_order}

d1 for the IAR DLIB runtime environment
rx for the RX microcontroller
Specifies the processor core:

1 = the RXv1 core
2 = the RXv2 core
3 = the RXv3 core

Specifies the size of double:

£ =32 bits
d = 64 bits

Specifies the size of the int data type:

s = 16 bits
1 =32 bits

Specifies the byte order for data access:

1 = little-endian accesses
b = big-endian accesses

135

Additional information on the runtime environment

136

IAR C/C++ Development Guide
Compiling and linking for RX

[p-1] Specifies the support for position-independent code and
data:

c = position-independent code and read-only data (ROPI)
w = position-independent read/write data (RWPI)
r = position-independent code and data (ROPI and RWPI)

{ fou-supp} 0 = no support for FPU instructions
1 = support for 32-bit FPU instructions
2 = support for 64-bit FPU instructions

{debug_io} Specifies the type of I/O output:

n = No debug I/O output
d = Debug 1/0O output

{1ib_config} Specifies the library configuration:
n = Normal
£ = Full

You can find the library object files in the subdirectory rx\1ib\ and the library
configuration files in the rx\inc\ subdirectory.
Groups of library files

The libraries are delivered in groups of library functions:

Library files for C/C++ standard library functions

These are the functions defined by Standard C and C++, for example functions like
printf and scanf.

The names of the library files are constructed in the following way:
dlrx{size_of_double}{int_size}{byte order}|[p-il{1lib_config}.a
which more specifically means

dlrx{f|d}{s|1}{1|b}ic|r|wlin|f}.a

Library files for C++14 standard library functions

There are separate libraries for the C++14 library (dlcppl4) and the Libc++ C++17
library (dllibcpp).

The names of the C++14 library files are constructed in the following way:

dlcppldrx{size_of_double}{int_size}{byte_order}[p-il{1lib_config}.
a

The DLIB runtime environment __¢

which more specifically means

dlcppldrx{d|£}{1]|s}{b|1l}lc|r|wl{f|n}.a

Library files for C++17 standard library functions

There are two libraries when using the C++17 library (d11ibcpp). One contains the
functions for the floating-point operations for each FPU variant. The other contains
non-floating-point type functions.

The names of the C++17 floating-point type library files are constructed in the following
way:

dllibcppmrx{core}{size_of_double}{int_size}{byte order}|[p-i]{fpu-
supp}l.a

which more specifically means
dllibeppmrx{1|2|3}(d|£}{1|s}{b|1l}[c|r|wl{0|1]|2}.a

The names of the C++17 non-floating-point type library files are constructed in the
following way:

dllibcpprx{size of_double}{int_size}{byte_order}[p-i]l.a
which more specifically means

dllibepprx{d|£}{1l|s}{b|l}[c|r|w].a

Library files with startup code and runtime support functions

These files contain the system startup code, option ROM, NMI vectors, and default
exception handlers. They also include selected runtime routines, mainly floating-point,
which are needed when linking modules compiled with the IAR C/C++ Compiler for
RX with a C library from another vendor.

The names of the library files are constructed in the following way:
rtrx{core}{size of double}{int_size}{byte order}[p-i].a
which more specifically means

rtrx{1]2}{f]|d}{s|1}{1|b}[c|r|w].a

Library files for C-SPY emulated 1/10
These are functions for C-SPY emulated I/O.
The names of the library files are constructed in the following way:

dbgrx{size_of_double}{int_size}{byte_order}[p-i]{debug_io}.a

137

Additional information on the runtime environment

138

IAR C/C++ Development Guide
Compiling and linking for RX

which more specifically means

dbgrx{f|d}{s|1}{1l|b}[c|r|wl{n|d}.a

Library files for math functions

These are the functions for floating-point arithmetic and functions with a floating-point
type in its signature as defined by Standard C, for example functions like sqrt.

The names of the library files are constructed in the following way:
mrx{core}{size of double}{int_size}{byte order}[p-i]{fpu-supp}.a
which more specifically means

mrx{1|2}{f]|d}{s|1}{1|b}[c|r|wl{0]|1]|2}.a

Library files for thread support functions

These are the functions for thread support.

The names of the library files are constructed in the following way:
thrx{size_of_double}{int_size}{byte_order}[p-il1{l1ib_config}.a
which more specifically means

thrx{f|d}{s|1}{1l|b}[c|r|wl{n|f}.a

Library files for timezone and daylight saving time support functions

These are the functions with support for timezone and daylight saving time
functionality.

The names of the library files are constructed in the following way:
tzrx{size_of_double}{int_size}{byte_order}[p-il{1lib_config}.a
which more specifically means

tzrx{f|d}{s|1}{1l|b}[c|r|wl{n|f}.a

FORMATTERS FOR PRINTF

The print £ function uses a formatter called _print£. The full version is quite large,
and provides facilities not required in many embedded applications. To reduce the
memory consumption, three smaller, alternative versions are also provided. Note that
the wprintf variants are not affected.

The DLIB runtime environment __¢

This table summarizes the capabilities of the different formatters:

Formatting capabilities Tiny Small Large/ Full
SmallNoMb} LargeNoMbt FullNoMbt}
Basic specifiers ¢, d, 1, 0,p, s,u, X, x,and ¥ Yes Yes Yes Yes
Multibyte support No Yes/No Yes/No Yes/No
Floating-point specifiers a, and A No No No Yes
Floating-point specifiers e, E, £, F, g, and G No No Yes Yes
Conversion specifier n No No Yes Yes
Format flag +, -, #, 0, and space No Yes Yes Yes
Length modifiers h, 1, L, s, t,and 2 No Yes Yes Yes
Field width and precision, including * No Yes Yes Yes
long long support No No Yes Yes
wchar_t support No No No Yes

Table 9: Formatters for printf
T NoMb means without multibytes.

The compiler can automatically detect which formatting capabilities are needed in a
direct call to printf, if the formatting string is a string literal. This information is
passed to the linker, which combines the information from all modules to select a
suitable formatter for the application. However, if the formatting string is a variable, or
if the call is indirect through a function pointer, the compiler cannot perform the
analysis, forcing the linker to select the Full formatter. In this case, you might want to
override the automatically selected printf formatter.

To override the automatically selected printf formatter in the IDE:
Choose Project>Options>General Options to open the Options dialog box.
On the Library Options page, select the appropriate formatter.

To override the automatically selected printf formatter from the command
line:

Use one of these ILINK command line options:

--redirect __Printf=__PrintfFull
--redirect __Printf=__PrintfFullNoMb

--redirect __Printf=__PrintflLarge
--redirect __Printf=__PrintfLargeNoMb
--redirect __Printf=__PrintfSmall
--redirect __Printf=__PrintfSmallNoMb
--redirect __Printf=__PrintfTiny

--redirect __Printf=__PrintfTinyNoMb

139

Additional information on the runtime environment

140

IAR C/C++ Development Guide
Compiling and linking for RX

B =

If the compiler does not recognize multibyte support, you can enable it:

Select Project>Options>General Options>Library Options 1>Enable multibyte
support.

Use the linker option --printf multibytes.

FORMATTERS FOR SCANF

In a similar way to the printf function, scanf uses a common formatter, called
_Scanf. The full version is quite large, and provides facilities that are not required in
many embedded applications. To reduce the memory consumption, two smaller,
alternative versions are also provided. Note that the wscanf versions are not affected.

This table summarizes the capabilities of the different formatters:

Small/ Large/ Full/

Formatting capabilities
SmallNoMbt LargeNoMbt FullNoMbt}

Basic specifiers ¢, 4, 1, 0,p, s,u, X, %X, and % Yes Yes Yes
Multibyte support Yes/No Yes/No Yes/No
Floating-point specifiers a, and A No No Yes
Floating-point specifiers e, E, £, F, g, and G No No Yes
Conversion specifier n No No Yes
Scan set [and] No Yes Yes
Assignment suppressing * No Yes Yes
long long support No No Yes
wchar_t support No No Yes

Table 10: Formatters for scanf
T NoMb means without multibytes.

The compiler can automatically detect which formatting capabilities are needed in a
direct call to scanf, if the formatting string is a string literal. This information is passed
to the linker, which combines the information from all modules to select a suitable
formatter for the application. However, if the formatting string is a variable, or if the call
is indirect through a function pointer, the compiler cannot perform the analysis, forcing
the linker to select the full formatter. In this case, you might want to override the
automatically selected scanf formatter.

To manually specify the scanf formatter in the IDE:

Choose Project>Options>General Options to open the Options dialog box.

On the Library Options page, select the appropriate formatter.

The DLIB runtime environment __¢

To manually specify the scanf formatter from the command line:

Use one of these ILINK command line options:

--redirect __Scanf=__ScanfFull
--redirect __Scanf=__ScanfFullNoMb
--redirect __Scanf=__ScanfLarge
--redirect __Scanf=__ScanfLargeNoMb
--redirect __Scanf=__ScanfSmall
--redirect __Scanf=__ScanfSmallNoMb

If the compiler does not recognize multibyte support, you can enable it:

Select Project>Options>General Options>Library Options 1>Enable multibyte
support.

Use the linker option --scanf_multibytes.

THE C-SPY EMULATED I/O MECHANISM
The C-SPY emulated I/O mechanism works as follows:

1 The debugger will detect the presence of the function __DebugBreak, which will
be part of the application if you linked it with the linker option for C-SPY emulated
/0.

2 In this case, the debugger will automatically set a breakpoint at the __DebugBreak
function.

3 When your application calls a function in the DLIB low-level I/O interface, for
example, open, the __DebugBreak function is called, which will cause the
application to stop at the breakpoint and perform the necessary services.

4 The execution will then resume.

See also Briefly about C-SPY emulated I/O, page 125.

MATH FUNCTIONS
Some C/C++ standard library math functions are available in different versions:

o The default versions
e Smaller versions (but less accurate)

e More accurate versions (but larger).

Smaller versions

The functions cos, exp, log, log2, 1ogl0, pow, sin, and tan exist in additional,
smaller versions in the library. They are about 20% smaller and about 20% faster than
the default versions. The functions handle INF and NaN values. The drawbacks are that

141

Additional information on the runtime environment

they almost always lose some precision and they do not have the same input range as the
default versions.

The names of the functions are constructed like:
__lar_xxx_small<f|1l>

where f is used for float variants, 1 is used for long double variants, and no suffix
is used for double variants.

To specify smaller math functions on the command line:
I Specify the command line option --small_math to the linker.

2 Link your application and the complete set will be used.

More accurate versions

The functions cos, pow, sin, and tan exist in versions in the library that are more exact
and can handle larger argument ranges. The drawback is that they are larger and slower
than the default versions.

The names of the functions are constructed like:
__ilar_xxx_accurate<f|l>

where f is used for float variants, 1 is used for long double variants, and no suffix
is used for double variants.

To specify more accurate math functions on the command line:
I Specify the command line option --accurate_math to the linker.

2 Link your application and the complete set will be used.

SYSTEM STARTUP AND TERMINATION

This section describes the runtime environment actions performed during startup and
termination of your application.

The code for handling startup and termination is located in the source files
cstartup.s, cexit.s, and low_level_init.c located in the rx\src\1lib
directory.

For information about how to customize the system startup code, see System
initialization, page 146.

IAR C/C++ Development Guide
142 Compiling and linking for RX

The DLIB runtime environment __¢

System startup

During system startup, an initialization sequence is executed before the main function
is entered. This sequence performs initializations required for the target hardware and
the C/C++ environment.

For the hardware initialization, it looks like this:

Library User Application
Start label: __low_level_init()
Hardware User hardware

Setup setup
(returns C/C++
static

[initialization flag)

Initialization

e When the CPU is reset it will start executing at the program entry label
_iar_program_start in the system startup code.

e The stack pointers, ISP, USP, and the interrupt vector base, INTB, are initialized

o The function __low_level_ init is called if you defined it, giving the application
a chance to perform early initializations.

143

Additional information on the runtime environment

For the C/C++ initialization, it looks like this:

Library User application
Static C/C++ User hardware
initialization setup

i
Dynamic C++ main()
initialization
T User code
Return from
main
exit()

e Static and global variables are initialized. That is, zero-initialized variables are
cleared and the values of other initialized variables are copied from ROM to RAM
memory. This step is skipped if __low_level_ init returns zero. For more
information, see Initialization at system startup, page 96.

e Static C++ objects are constructed

o The main function is called, which starts the application.

For information about the initialization phase, see Application execution—an overview,
page 59.

IAR C/C++ Development Guide
144 Compiling and linking for RX

The DLIB runtime environment __¢

System termination

This illustration shows the different ways an embedded application can terminate in a
controlled way:

Return from main via library

Library User application
exit()

L
Explicit call
|

_exit

Dynamic C++ abort()
and atexit code Explicit call
_Exit()
Explicit call
| P

__exit

Application
terminates

An application can terminate normally in two different ways:

o Return from the main function

e Call the exit function.

Because the C standard states that the two methods should be equivalent, the system
startup code calls the exit function if main returns. The parameter passed to the exit
function is the return value of main.

The default exit function is written in C. It calls a small assembler function _exit that
will:

e Call functions registered to be executed when the application ends. This includes
C++ destructors for static and global variables, and functions registered with the
standard function atexit. See also Setting up the atexit limit, page 112.

e Close all open files

e Call __exit

e When __exit is reached, stop the system.

An application can also exit by calling the abort, the _Exit, or the quick_exit
function. The abort function just calls __exit to halt the system, and does not perform
any type of cleanup. The _Exi t function is equivalent to the abort function, except for
the fact that _Exit takes an argument for passing exit status information. The

quick_exit function is equivalent to the _Exit function, except that it calls each
function passed to at_quick_exit before calling __exit.

145

Additional information on the runtime environment

If you want your application to do anything extra at exit, for example, resetting the
system (and if using atexit is not sufficient), you can write your own implementation
of the __exit (int) function.

The library files that you can override with your own versions are located in the
rx\src\1lib directory. See Overriding library modules, page 130.

C-SPY debugging support for system termination

If you have enabled C-SPY emulated I/O during linking, the normal __exit and abort
functions are replaced with special ones. C-SPY will then recognize when those
functions are called and can take appropriate actions to emulate program termination.
For more information, see Briefly about C-SPY emulated 1/O, page 125.

SYSTEM INITIALIZATION

Itis likely that you need to adapt the system initialization. For example, your application
might need to initialize memory-mapped special function registers (SFRs), or omit the
default initialization of data sections performed by the system startup code.

You can do this by implementing your own version of the routine __low_level_init,
which is called from the cstartup. s file before the data sections are initialized.
Modifying the cstartup. s file directly should be avoided.

The code for handling system startup is located in the source files cstartup.s and
low_level_init.c, located in the rx\src\1lib directory.

Note that normally, you do not need to customize cexit.s.

Note: Regardless of whether you implement your own versionof __low_level_init
or the file cstartup.s, you do not have to rebuild the library.

Customizing __low_level_init

The value returned by __low_level init determines whether or not data sections
should be initialized by the system startup code. If the function returns 0, the data
sections will not be initialized.

The code calling __low_level_ init atstartup is only included if a module containing
a__low_level_init definition is included when linking.

Note: The file intrinsics.h must be included by low_level_init.c to assure
correct behavior of the __low_level_init routine.

Modifying the cstartup file

As noted earlier, you should not modify the cstartup. s file if implementing your own
version of __low_level_init is enough for your needs. However, if you do need to

IAR C/C++ Development Guide
146 Compiling and linking for RX

The DLIB runtime environment __¢

modify the cstartup. s file, we recommend that you follow the general procedure for
creating a modified copy of the file and adding it to your project, see Overriding library
modules, page 130.

Note: You must make sure that the linker uses the start label used in your version of
cstartup.s. For information about how to change the start label used by the linker, see
--entry, page 322.

THE DLIB LOW-LEVEL 1/O INTERFACE

The runtime library uses a set of low-level functions—which are referred to as the DLIB
low-level I/O interface—to communicate with the target system. Most of the low-level
functions have no implementation.

For more information, see Briefly about input and output (1/0), page 124.
These are the functions in the DLIB low-level I/O interface:

abort

clock

__close

__exit

getenv

__getzone
__lar_ReportAssert

__1lseek

o

o

[]

o

o

[]

o

o

® __open
® raise

® _ read

® remove

® rename

® signal

® system

® __time32, __time64
o

write

Note: You should normally not use the low-level functions prefixed with __ directly in
your application. Instead you should use the standard library functions that use these

functions. For example, to write to stdout, you should use standard library functions
like print£ or puts, which in turn calls the low-level function __write. If you have
forgot to implement a low-level function and your application calls that function via a

147

Additional information on the runtime environment

abort

Source file

Declared in
Description

C-SPY debug action
Default implementation

See also

clock

Source file
Declared in

Description

C-SPY debug action
Default implementation

See also

IAR C/C++ Development Guide
Compiling and linking for RX

standard library function, the linker issues an error when you link in release build
configuration.

Note: If you implement your own variants of the functions in this interface, your
variants will be used even though you have enabled C-SPY emulated /O, see Briefly
about C-SPY emulated /O, page 125.

rx\src\lib\runtime\abort.c

stdlib.h

Standard C library function that aborts execution.
Notifies that the application has called abort.
Calls __exit (EXIT_FAILURE).

Briefly about retargeting, page 126

System termination, page 145.

rx\src\lib\time\clock.c
time.h

Standard C library function that accesses the processor time.

It is assumed that c1lock counts seconds. If this is not the case, and CLOCKS_PER_SEC
is used, CLOCKS_PER_SEC should be set to the actual number of ticks per second prior
to using time. h. The C++ header chrono uses CLOCKS_PER_SEC when implementing
the function now ().

Returns the clock on the host computer.

Returns -1 to indicate that processor time is not available.

Briefly about retargeting, page 126.

__close

Source file

Declared in
Description

C-SPY debug action
Default implementation

See also

__exit

Source file

Declared in
Description

C-SPY debug action
Default implementation

See also

getenv

Source file

Declared in
C-SPY debug action

Default implementation

The DLIB runtime environment __¢

rx\src\lib\file\close.c
LowLevelIOInterface.h

Low-level function that closes a file.

Closes the associated host file on the host computer.
None.

Briefly about retargeting, page 126.

rx\src\lib\runtime\xxexit.c
LowLevelIOInterface.h

Low-level function that halts execution.

Notifies that the end of the application was reached.
Loops forever.

Briefly about retargeting, page 126

System termination, page 145.

rx\src\lib\runtime\getenv.c
rx\src\lib\runtime\environ.c

Stdlib.h and LowLevelIOInterface.h
Accesses the host environment.
The getenv function in the library searches the string pointed to by the global variable

__environ, for the key that was passed as argument. If the key is found, the value of it
is returned, otherwise O (zero) is returned. By default, the string is empty.

149

Additional information on the runtime environment

See also

__getzone

Source file
Declared in

Description

C-SPY debug action
Default implementation

See also

__iar_ReportAssert

Source file

Declared in

IAR C/C++ Development Guide
150 Compiling and linking for RX

To create or edit keys in the string, you must create a sequence of null-terminated strings
where each string has the format:

key=value\0

End the string with an extra null character (if you use a C string, this is added
automatically). Assign the created sequence of strings to the __environ variable.

For example:

const char MyEnv[] = "Key=Value\OKey2=Value2\0";
__environ = MyEnv;

If you need a more sophisticated environment variable handling, you should implement
your own getenv, and possibly putenv function.

Note: The putenv function is not required by the standard, and the library does not
provide an implementation of it.

Briefly about retargeting, page 126.

rx\src\lib\time\getzone.c
LowLevelIOInterface.h

Low-level function that returns the current time zone.

Note: You must enable the time zone functionality in the library by using the linker
option --timezone_lib.

Not applicable.
Returns " : ".

Briefly about retargeting, page 126 and --timezone_lib, page 340.

For more information, see the source file getzone.c.

rx\src\lib\runtime\xreportassert.c

assert.h

Description
C-SPY debug action

Default implementation

See also

__Iseek

Source file

Declared in
Description

C-SPY debug action
Default implementation

See also

__open

Source file
Declared in
Description

C-SPY debug action

Default implementation

The DLIB runtime environment __¢

Low-level function that handles a failed assert.
Notifies the C-SPY debugger about the failed assert.
Failed asserts are reported by the function __iar_ReportAssert. By default, it prints

an error message and calls abort. If this is not the behavior you require, you can
implement your own version of the function.

The assert macro is defined in the header file assert.h. To turn off assertions, define
the symbol NDEBUG.

In the IDE, the symbol NDEBUG is by default defined in a Release project and nof defined
in a Debug project. If you build from the command line, you must explicitly define the
symbol according to your needs. See NDEBUG, page 432.

Briefly about retargeting, page 126.

rx\src\lib\file\lseek.c

LowLevelIOInterface.h

Low-level function for changing the location of the next access in an open file.
Searches in the associated host file on the host computer.

None.

Briefly about retargeting, page 126.

rx\src\lib\file\open.c
LowLevelIOInterface.h
Low-level function that opens a file.
Opens a file on the host computer.

None.

151

Additional information on the runtime environment

See also Briefly about retargeting, page 126.
raise
Source file rx\src\lib\runtime\raise.c
Declared in signal.h
Description Standard C library function that raises a signal.
C-SPY debug action Not applicable.

Default implementation Calls the signal handler for the raised signal, or terminates with call to
__exit (EXIT_FAILURE).

See also Briefly about retargeting, page 126.
__read
Source file rx\src\lib\read.c
Description Low-level function that reads characters from stdin and from files.
C-SPY debug action Directs stdin to the Terminal 1/O window. All other files will read the associated host
file.

Default implementation ~ None.

IAR C/C++ Development Guide
152 Compiling and linking for RX

Example

See also

remove

Source file

Declared in

The DLIB runtime environment __¢

The code in this example uses memory-mapped I/O to read from a keyboard, whose port
is assumed to be located at 0x08:

#include <stddef.h>

no_init volatile unsigned char kbIO @ 8;

size_t __read(int handle,

}

unsigned char *buf,
size_t bufSize)

size_t nChars = 0;

/* Check for stdin

(only necessary if FILE descriptors are enabled) */
if (handle != 0)
{

return -1;

for (/*Empty*/; bufSize > 0; --bufSize)
{
unsigned char c¢ = kbIO;

if (¢ == 0)
break;
*buf++ = c;

++nChars;

return nChars;

For information about the handles associated with the streams, see Retargeting—
Adapting for your target system, page 129.

For information about the @ operator, see Controlling data and function placement in
memory, page 230.

Briefly about retargeting, page 126.

rx\src\lib\file\remove.c

stdio.h

153

Additional information on the runtime environment

Description
C-SPY debug action
Default implementation

See also

rename

Source file

Declared in
Description

C-SPY debug action
Default implementation

See also

signal

Source file
Declared in
Description

C-SPY debug action

Default implementation

See also

IAR C/C++ Development Guide
Compiling and linking for RX

Standard C library function that removes a file.
Writes a message to the Debug Log window and returns -1.
Returns 0 to indicate success, but without removing a file.

Briefly about retargeting, page 126.

rx\src\lib\file\rename.c

stdio.h

Standard C library function that renames a file.
None.

Returns -1 to indicate failure.

Briefly about retargeting, page 126.

rx\src\lib\runtime\signal.c

signal.h

Standard C library function that changes signal handlers.
Not applicable.

As specified by Standard C. You might want to modify this behavior if the environment
supports some kind of asynchronous signals.

Briefly about retargeting, page 126.

system

Source file
Declared in
Description

C-SPY debug action

Default implementation

See also

__time32, __timeb4

Source file

Declared in
Description

C-SPY debug action
Default implementation

See also

___Write

Source file
Description

C-SPY debug action

Default implementation

The DLIB runtime environment __¢

rx\src\lib\runtime\system.c

stdlib.h

Standard C library function that executes commands.

Notifies the C-SPY debugger that system has been called and then returns -1.

The system function available in the library returns 0 if a null pointer is passed to it to
indicate that there is no command processor, otherwise it returns -1 to indicate failure.
If this is not the functionality that you require, you can implement your own version.

This does not require that you rebuild the library.

Briefly about retargeting, page 126.

rx\src\lib\time\time.c
rx\src\lib\time\time64.c

time.h

Low-level functions that return the current calendar time.
Returns the time on the host computer.

Returns -1 to indicate that calendar time is not available.

Briefly about retargeting, page 126.

rx\src\lib\write.c
Low-level function that writes to stdout, stderr, or a file.

Directs stdout and stderr to the Terminal I/O window. All other files will write to
the associated host file.

None.

155

Additional information on the runtime environment

Example The code in this example uses memory-mapped I/O to write to an LCD display, whose
port is assumed to be located at address 0x08:

#include <stddef.h>
_ no_init volatile unsigned char 1lcdIO @ 8;

size_t _ _write(int handle,
const unsigned char *buf,
size_t bufSize)

size_t nChars = 0;

/* Check for the command to flush all handles */
if (handle == -1)
{

return 0;

/* Check for stdout and stderr

(only necessary if FILE descriptors are enabled.) */
if (handle != 1 && handle != 2)
{

return -1;

for (/* Empty */; bufSize > 0; --bufSize)
{

1lcdIO = *buf;

++buf;

++nChars;

return nChars;

}
For information about the handles associated with the streams, see Retargeting—
Adapting for your target system, page 129.

See also Briefly about retargeting, page 126.

CONFIGURATION SYMBOLS FOR FILE INPUT AND OUTPUT

File I/O is only supported by libraries with the Full library configuration, see Runtime
library configurations, page 133, or in a customized library when the configuration
symbol __DLIB_FILE DESCRIPTOR is defined. If this symbol is not defined, functions
taking a FILE * argument cannot be used.

IAR C/C++ Development Guide
156 Compiling and linking for RX

The DLIB runtime environment __¢

To customize your library and rebuild it, see Customizing and building your own
runtime library, page 131.

LOCALE

Locale is a part of the C language that allows language and country-specific settings for
several areas, such as currency symbols, date and time, and multibyte character
encoding.

Depending on which library configuration you are using, you get different levels of
locale support. However, the more locale support, the larger your code will get. It is
therefore necessary to consider what level of support your application needs. See
Runtime library configurations, page 133.

The DLIB runtime library can be used in two main modes:

e Using a full library configuration that has a locale interface, which makes it possible
to switch between different locales during runtime

The application starts with the C locale. To use another locale, you must call the
setlocale function or use the corresponding mechanisms in C++. The locales that
the application can use are set up at linkage.

e Using a normal library configuration that does not have a locale interface, where the
C locale is hardwired into the application.

Note: If multibytes are to be printed, you must make sure that the implementation of
__write in the DLIB low-level I/O interface can handle them.

Specifying which locales that should be available in your application

Choose Project>Options>General Options>Library Options 2>Locale support.

Use the linker option --keep with the tag of the locale as the parameter, for example:

--keep _Locale_cs_CZ_1s08859_2

The available locales are listed in the file SupportedLocales.jsoninthe rx\config
directory, for example:

['Czech language locale for Czech Republic', 'iso8859-2',
'cs_CZ.1s08859-2', '_Locale_cs_CZ_iso8859_2'],

The line contains the full locale name, the encoding for the locale, the abbreviated locale
name, and the tag to be used as parameter to the linker option --keep.

157

Managing a multithreaded environment

Changing locales at runtime

The standard library function setlocale is used for selecting the appropriate portion
of the application’s locale when the application is running.

The setlocale function takes two arguments. The first one is a locale category that is
constructed after the pattern Lc_CATEGORY. The second argument is a string that
describes the locale. It can either be a string previously returned by setlocale, or it
can be a string constructed after the pattern:

lang REGION
or
lang REGION.encoding

The 1ang part specifies the language code, and the REGION part specifies a region
qualifier, and encoding specifies the multibyte character encoding that should be used.
The available encodings are ISO-8859-1, ISO-8859-2, ISO-8859-4, ISO-8859-5,
ISO-8859-7, ISO-8859-8, ISO-8859-9, ISO-8859-15, CP932, and UTF-8.

For a complete list of the available locales and their respective encoding, see the file
SupportedLocales.json in the rx\config directory.
Example

This example sets the locale configuration symbols to Swedish to be used in Finland and
UTF8 multibyte character encoding:

setlocale (LC_ALL, "sv_FI.UTF8");

STRTOD

The function strtod does not accept hexadecimal floating-point strings in libraries
with the normal library configuration. To make strtod accept hexadecimal
floating-point strings, you must:

Enable the configuration symbol _DLIB_STRTOD_HEX_FLOAT in the library
configuration file.

2 Rebuild the library, see Customizing and building your own runtime library, page 131.

Managing a multithreaded environment

IAR C/C++ Development Guide
158 Compiling and linking for RX

This section contains information about:

o Multithread support in the DLIB runtime environment, page 159
® [Enabling multithread support, page 160

The DLIB runtime environment __¢

o Setting up thread-local storage (TLS), page 160

In a multithreaded environment, the standard library must treat all library objects
according to whether they are global or local to a thread. If an object is a true global
object, any updates of its state must be guarded by a locking mechanism to make sure
that only one thread can update it at any given time. If an object is local to a thread, the
static variables containing the object state must reside in a variable area local to that
thread. This area is commonly named thread-local storage (TLS).

The low-level implementations of locks and TLS are system-specific, and is not
included in the DLIB runtime environment. If you are using an RTOS, check if it
provides some or all of the required functions. Otherwise, you must provide your own.

MULTITHREAD SUPPORT IN THE DLIB RUNTIME
ENVIRONMENT

The DLIB runtime environment uses two kinds of locks—system locks and file stream
locks. The file stream locks are used as guards when the state of a file stream is updated,
and are only needed in the Full library configuration. The following objects are guarded
with system locks:

e The heap (in other words when malloc, new, free, delete, realloc, or calloc
is used).

o The C file system (only available in the Full library configuration), but not the file
streams themselves. The file system is updated when a stream is opened or closed,
in other words when fopen, fclose, fdopen, £flush, or freopen is used.

The signal system (in other words when signal is used).

The temporary file system (in other words when tmpnam is used).

C++ dynamically initialized function-local objects with static storage duration.
C++ locale facet handling

C++ regular expression handling

C++ terminate and unexpected handling
These library objects use TLS:

Library objects using TLS When these functions are used

Error functions errno, strerror

Table 11: Library objects using TLS

Note: If you are using printf/scanf (or any variants) with formatters, each individual
formatter will be guarded, but the complete print f/scanf invocation will not be
guarded.

159

Managing a multithreaded environment

160

IAR C/C++ Development Guide
Compiling and linking for RX

o
1

=

If C++ is used in a runtime environment with multithread support, the compiler option
--guard_calls must be used to make sure that function-static variables with dynamic
initializers are not initialized simultaneously by several threads.

ENABLING MULTITHREAD SUPPORT

To configure multithread support for use with threaded applications:

To enable multithread support:
On the command line, use the linker option --threaded_1lib.

If C++ is used, the compiler option --guard_calls should be used as well to make
sure that function-static variables with dynamic initializers are not initialized
simultaneously by several threads.

In the IDE, choose Project>Options>General Options>Library
Configuration>Enable thread support in the library. This will invoke the linker
option --threaded_1ib and if C++ is used, the IDE will automatically use the
compiler option --guard_calls to make sure that function-static variables with
dynamic initializers are not initialized simultaneously by several threads.

To complement the built-in multithread support in the runtime library, you must also:

e Implement code for the library’s system locks interface.
e If file streams are used, implement code for the library’s file stream locks interface.

e Implement code that handles thread creation, thread destruction, and TLS access
methods for the library.

You can find the required declaration of functions in the DLib_Threads.h file. There
you will also find more information.

Build your project.

Note: If you are using a third-party RTOS, check their guidelines for how to enable
multithread support with IAR tools.

SETTING UP THREAD-LOCAL STORAGE (TLS)

Thread-local storage (TLS) is supported in both C (via the _Thread_local type
specifier introduced in C11) and C++ (via the thread_local type specifier introduced
in C++11). TLS variables reside in the thread-local storage area, a memory area that
must be set up when the thread is created. Any resources used must be returned when
the thread is destroyed. In a C++ environment, any TLS object must be created after the
thread-local storage area has been set up, and destroyed before the thread-local storage
area is destroyed.

The DLIB runtime environment __¢

If you are using an operating system, refer to the relevant TLS documentation.
Additional information can be found in the IAR library header file DLib_Threads.h.
Information from such specific sources takes precedence over this general overview.

The main thread

If the linker option --threaded_1ib has been specified, TLS is active. The regular
system startup handles the initialization of the main thread’s thread-local storage area.
The initialized TLS variables in the main thread are placed in the linker section . tdata
and the zero-initialized TLS variables are placed in the section . tbss. All other threads
must set up their thread-local storage area when they are created. If --threaded_1ib
was not specified, content in the . tdata and . tbss sections is handled as if they were
.data and .bss. However, accesses to such variables are still TLS accesses.

Acquiring memory for TLS

TLS variables must be placed in memory. Exactly how this is handled does not matter
as long as the memory remains available for the duration of the thread’s lifetime. The
size of the thread-local storage area can be obtained by calling the function
__iar_tls_size (declared in DLib_Threads.h).

Some options for acquiring memory for TLS are:

e Acquire memory from the OS

e Allocate heap memory

e Use space on the stack of a function that does not return until the thread is done
e Use space in a dedicated section.

Initializing TLS memory

To initialize the TLS memory, call the function __iar_tls_init (declared in
DLib_Threads.h) with a pointer to the memory area.

The initialization function copies the contents of the linker section

__iar tlsSSINIT_DATA to the memory, and then zero-initializes the remaining
memory up to the size of the section __iar_t1s$$DATA. In a C++ environment, the
function __iar_call_tls_ctors is also called—it executes all constructors in the
section __iar_tls$$PREINIT_ARRAY. When the initialization has been performed,
the thread-local storage area is ready to use, all TLS variables have their initial values,
and in a C++ environment all thread-local objects have been constructed.

Deallocating TLS memory

When it is time to destroy the thread, the thread-local storage area must also be handled.
In a C++ environment, the thread-local objects must be destroyed before the memory

161

Managing a multithreaded environment

162

IAR C/C++ Development Guide
Compiling and linking for RX

itself is processed. This is achieved by calling the function __call thread_dtors
(declared in DLib_Threads.h). If the memory was acquired from a handler (like the
heap or the OS), that memory must be returned.

As an example, this code snippet allocates the thread-local storage area on the heap. tp
is a pointer to a thread-control object:

/* creating a new thread */

/* initialize TLS */

void * tls_mem = malloc(__iar_tls_size()); /* get memory */

__diar_tls_init(tls_mem) ; /* init TLS in the */
/* new memory */

tp->tls_area = tls_mem; /* set the thread’s */

/* TLS area to the new memory */
/* destroying a thread */
/* destroy the TLS area */

__call_thread_dtors() ; /* only if C++ is used */
free(tp->tls_area); /* return memory */

Assembler language
interface

e Mixing C and assembler

e Calling assembler routines from C

e Calling assembler routines from C++

e Calling convention

e Assembler instructions used for calling functions
e Memory access methods

e Call frame information

Mixing C and assembler

The IAR C/C++ Compiler for RX provides several ways to access low-level resources:

o Modules written entirely in assembler
e Intrinsic functions (the C alternative)
e Inline assembler.

It might be tempting to use simple inline assembler. However, you should carefully
choose which method to use.

INTRINSIC FUNCTIONS

The compiler provides a few predefined functions that allow direct access to low-level
processor operations without having to use the assembler language. These functions are
known as intrinsic functions. They can be useful in, for example, time-critical routines.

An intrinsic function looks like a normal function call, but it is really a built-in function
that the compiler recognizes. The intrinsic functions compile into inline code, either as
a single instruction, or as a short sequence of instructions.

The advantage of an intrinsic function compared to using inline assembler is that the
compiler has all necessary information to interface the sequence properly with register
allocation and variables. The compiler also knows how to optimize functions with such

163

Mixing C and assembler

164

IAR C/C++ Development Guide
Compiling and linking for RX

sequences—something the compiler is unable to do with inline assembler sequences.
The result is that you get the desired sequence properly integrated in your code, and that
the compiler can optimize the result.

For more information about the available intrinsic functions, see the chapter Intrinsic
functions.

MIXING C AND ASSEMBLER MODULES

It is possible to write parts of your application in assembler and mix them with your C
or C++ modules.

This causes some overhead in the form of function call and return instruction sequences,
and the compiler will regard some registers as scratch registers. In many cases, the
overhead of the extra instructions can be removed by the optimizer.

An important advantage is that you will have a well-defined interface between what the
compiler produces and what you write in assembler. When using inline assembler, you
will not have any guarantees that your inline assembler lines do not interfere with the
compiler generated code.

When an application is written partly in assembler language and partly in C or C++, you
are faced with several questions:

e How should the assembler code be written so that it can be called from C?

e Where does the assembler code find its parameters, and how is the return value
passed back to the caller?

e How should assembler code call functions written in C?
e How are global C variables accessed from code written in assembler language?

e Why does not the debugger display the call stack when assembler code is being
debugged?

The first question is discussed in the section Calling assembler routines from C, page
172. The following two are covered in the section Calling convention, page 175.

For information about how data in memory is accessed, see Memory access methods,
page 181.

The answer to the final question is that the call stack can be displayed when you run
assembler code in the debugger. However, the debugger requires information about the
call frame, which must be supplied as annotations in the assembler source file. For more
information, see Call frame information, page 184.

The recommended method for mixing C or C++ and assembler modules is described in
Calling assembler routines from C, page 172, and Calling assembler routines from
C++, page 174, respectively.

Assembler language interface __4

Note: To comply with the RX ABI, the compiler generates assembler labels for symbol
and function names by prefixing an underscore. You must remember to add this extra
underscore when you access C symbols from assembler. For example, main must be
written as _main.

Similarly, when referencing an external assembly module from C, an underscore will be
added to the symbol used in the C module, so the name of the assembly module must
start with an added underscore.

INLINE ASSEMBLER

Inline assembler can be used for inserting assembler instructions directly into a C or
C++ function. Typically, this can be useful if you need to:

® Access hardware resources that are not accessible in C (in other words, when there
is no definition for an SFR or there is no suitable intrinsic function available).

o Manually write a time-critical sequence of code that if written in C will not have the
right timing.

o Manually write a speed-critical sequence of code that if written in C will be too

slow.

An inline assembler statement is similar to a C function in that it can take input
arguments (input operands), have return values (output operands), and read or write to
C symbols (via the operands). An inline assembler statement can also declare c/lobbered
resources (that is, values in registers and memory that have been overwritten).

Limitations

Most things you can to do in normal assembler language are also possible with inline
assembler, with the following differences:

e In big-endian mode, DC8, DC16, and DC32 cannot be used because inline assembler
will always be in little-endian byte order.

e In general, assembler directives will cause errors or have no meaning. However,
data definition directives will work as expected.

e Resources used (registers, memory, etc) that are also used by the C compiler must
be declared as operands or clobbered resources.

e If you do not want to risk that the inline assembler statement to be optimized away
by the compiler, you must declare it volatile.

e Accessing a C symbol or using a constant expression requires the use of operands.

e Dependencies between the expressions for the operands might result in an error.

165

Mixing C and assembler

166

Reference information

Syntax

IAR C/C++ Development Guide
Compiling and linking for RX

Risks with inline assembler

Without operands and clobbered resources, inline assembler statements have no
interface with the surrounding C source code. This makes the inline assembler code
fragile, and might also become a maintenance problem if you update the compiler in the
future. There are also several limitations to using inline assembler without operands and
clobbered resources:

o The compiler’s various optimizations will disregard any effects of the inline
statements, which will not be optimized at all.

e Inlining of functions with assembler statements without declared side-effects will
not be done.

e The inline assembler statement will be volatile and clobbered memory is not
implied. This means that the compiler will not remove the assembler statement. It
will simply be inserted at the given location in the program flow. The consequences
or side-effects that the insertion might have on the surrounding code are not taken
into consideration. If, for example, registers or memory locations are altered, they
might have to be restored within the sequence of inline assembler instructions for
the rest of the code to work properly.

The following example demonstrates the risks of using the asm keyword without
operands and clobbers:

int Add(int terml, int term2)
{

int sum;

asm("ADD rl,r0,xr0");
return terml;

}

In this example, the function Add assumes that values are passed and returned in
registers in a way that they might not always be, for example if the function is inlined.

Inline assembler without using operands or clobbered resources is therefore often best
avoided. The compiler will issue a remark for them.

for inline assembler

The asmand __asm keywords both insert inline assembler instructions. However, when
you compile C source code, the asm keyword is not available when the option
--strict is used. The __asm keyword is always available.

The syntax of an inline assembler statement is (similar to the one used by GNU gcc):

asm [volatile] (string [assembler-interface])

Assembler language interface __4

A string can contain one or more operations, separated by \n. Each operation can be
a valid assembler instruction or a data definition assembler directive prefixed by an
optional label. There can be no whitespace before the label and it must be followed by :.

For example:

asm("label:nop\n"
"bra.b label");

Note that any labels you define in the inline assembler statement will be local to that
statement. You can use this for loops or conditional code.

If you define a label in an inline assembler statement using two colons (for example:
"label:: nop\n") instead of one, the label will be public, not only in the inline
assembler statement, but in the module as well. This feature is intended for testing only.

An assembler statement without declared side-effects will be treated as a volatile
assembler statement, which means it cannot be optimized at all. The compiler will issue
a remark for such an assembler statement.

assembler-interfaceis:

comma-separated list of output operands /* optional */
comma-separated list of input operands /* optional */
comma-separated list of clobbered resources /* optional */

Operands An inline assembler statement can have one input and one output comma-separated list
of operands. Each operand consists of an optional symbolic name in brackets, a quoted
constraint, followed by a C expression in parentheses.

Syntax of operands [[symbolic-name]] "[modifiers]constraint" (expr)
For example:

int Add(int terml, int term2)
{

int sum;

asm("add %2,%1,%0 \n"

"=r" (sum)

"r"(terml), "r"(term2));
return sum;

}

In this example, the assembler instruction uses one output operand, sum, two input
operands, terml and term2, and no clobbered resources.

167

Mixing C and assembler

168

Operand constraints

Constraint modifiers

Referring to operands

IAR C/C++ Development Guide
Compiling and linking for RX

It is possible to omit any list by leaving it empty. For example:

char matrix[M] [N];

void MatrixSetBit (int row)

{ asm volatile ("bset #1,%0" : : "r" (&matrix[row][0]));

}

Constraint Description

r Uses a general purpose register for the expression R1-R15.

rp Uses a general purpose register pair for the expression, R2R1-R15R14.

i An immediate integer operand (one with constant value) is allowed. This
includes symbolic constants whose values will be known only at assembly
time or later.

Int08 A constant in the range -256 to 255.

Sint08 A constant in the range -128 to 127.

Sintlé6 A constant in the range -32768 to 32767.

Sint24 A constant in the range -8388608 to 8388607.

Uint04 A constant in the range 0 to |5.

Table 12: Inline assembler operand constraints

Constraint modifiers can be used together with a constraint to modify its meaning. This
table lists the supported constraint modifiers:

Modifier Description

= Write-only operand
+ Read-write operand

& Early clobber output operand which is written to before the instruction
has processed all the input operands.

Table 13: Supported constraint modifiers
Assembler instructions refer to operands by prefixing their order number with %. The
first operand has order number 0 and is referred to by %0.

If the operand has a symbolic name, you can refer to it using the syntax
% [operand.name] . Symbolic operand names are in a separate namespace from C/C++

Assembler language interface __4

code and can be the same as a C/C++ variable names. Each operand name must however
be unique in each assembler statement. For example:

int Add(int terml, int term2)
{

int sum;

asm("add %[Rm],%[Rn],%[Rd] \n"

[RA] "=r" (sum)

[Rn]"r" (terml), [Rm]"r" (term2)) ;
return sum;

Input operands Input operands cannot have any constraint modifiers, but they can have any valid C
expression as long as the type of the expression fits the register.

The C expression will be evaluated just before any of the assembler instructions in the
inline assembler statement and assigned to the constraint, for example a register.

Output operands Output operands must have = as a constraint modifier and the C expression must be an
1-value and specify a writable location. For example, =r for a write-only general purpose
register. The constraint will be assigned to the evaluated C expression (as an 1-value)
immediately after the last assembler instruction in the inline assembler statement. Input
operands are assumed to be consumed before output is produced and the compiler may
use the same register for an input and output operand. To prohibit this, prefix the output
constraint with & to make it an early clobber resource, for example =&x. This will ensure
that the output operand will be allocated in a different register than the input operands.

Input/output operands An operand that should be used both for input and output must be listed as an output
operand and have the + modifier. The C expression must be an l-value and specify a
writable location. The location will be read immediately before any assembler
instructions and it will be written to right after the last assembler instruction.

This is an example of using a read-write operand:

int Double(int wvalue)

{
asm("add %0,%0,%0":"+r" (value)) ;
return value;

}

In the example above, the input value for value will be placed in a general purpose
register. After the assembler statement, the result from the ADD instruction will be placed
in the same register.

169

Mixing C and assembler

Clobbered resources An inline assembler statement can have a list of clobbered resources.
"resourcel", "resource2",

Specify clobbered resources to inform the compiler about which resources the inline
assembler statement destroys. Any value that resides in a clobbered resource and that is
needed after the inline assembler statement will be reloaded.

Clobbered resources will not be used as input or output operands.
This is an example of how to use clobbered resources:

int Add(int terml, int term2)
{

int sum;

asm("add %2,%1,%0 \n"
"=r" (sum)
"r" (terml), "r"(term2)
"cc");

return sum;

}

In this example the condition codes will be modified by the add instruction. Therefore,
"cc" must be listed in the clobber list.

This table lists valid clobbered resources:

Clobber Description

RO-R15 General purpose registers
R2R1, R3R2,..R15R14 General purpose register pairs
cc The condition flags (C, Z, S, and 0)

memory To be used if the instructions modify any memory. This will avoid
keeping memory values cached in registers across the inline
assembler statement.

Table 14: List of valid clobbers

IAR C/C++ Development Guide
170 Compiling and linking for RX

Assembler language interface __4

Operand modifiers An operand modifier is a single letter between the % and the operand number, which is
used for transforming the operand.

In the example below, the modifiers L. and H are used for accessing the least and most
significant 16 bits, respectively, of an immediate operand:

long long addé4 (long long a, long long b, int * C)

{
unsigned int c_flag;
__asm(" add $L2,%L0 \n" \
" adc $H2, $HO \n" \
" scc %1 \n" \
"+Rp" (a), "=R"(c_flag) \
"Rp" (b) :);
*C = c_flag;
return a;
}

Some operand modifiers can be combined, in which case each letter will transform the
result from the previous modifier. This table describes the transformation performed by
each valid modifier:

Modifier Description

L The lowest-numbered register of a register pair, or the low 16 bits of an
immediate constant.

H The highest-numbered register of a register pair, or the high 16 bits of
an immediate constant.

Table 15: Operand modifiers and transformations

AN EXAMPLE OF HOW TO USE CLOBBERED MEMORY

void MemSet (char *memory, char value, long memorySize)
{
asm("mov.l %$0,R1\n"\
"mov.l %1,R2\n"\
"mov.l %$2,R3\n"\
"sstr.b"

"r" (memory), "r"(value), "r" (memorySize)
" memory " , " Rl " , " R2 " , HR3 ") ;

171

Calling assembler routines from C

172

Calling assembler routines from C

IAR C/C++ Development Guide
Compiling and linking for RX

An assembler routine that will be called from C must:

Conform to the calling convention
Have a PUBLIC entry-point label

e Be declared as external before any call, to allow type checking and optional
promotion of parameters, as in these examples:

extern int foo(void);
or

extern int foo(int i, int j);

One way of fulfilling these requirements is to create skeleton code in C, compile it, and
study the assembler list file.

CREATING SKELETON CODE

The recommended way to create an assembler language routine with the correct
interface is to start with an assembler language source file created by the C compiler.

Note: You must create skeleton code for each function prototype.

The following example shows how to create skeleton code to which you can easily add
the functional body of the routine. The skeleton source code only needs to declare the
variables required and perform simple accesses to them. In this example, the assembler
routine takes an int and a char, and then returns an int:

extern int gInt;
extern char gChar;

int Func (int argl, char arg2)
{

int locInt = argl;

gInt = argl;

gChar = arg2;

return locInt;

int main()

{
int locInt = gInt;
gInt = Func(locInt, gChar) ;
return O;

}

Note: In this example, we use alow optimization level when compiling the code to show
local and global variable access. If a higher level of optimization is used, the required

Assembler language interface __4

references to local variables could be removed during the optimization. The actual
function declaration is not changed by the optimization level.

COMPILING THE SKELETON CODE

In the IDE, specify list options on file level. Select the file in the workspace window.
Then choose Project>Options. In the C/C++ Compiler category, select Override
inherited settings. On the List page, deselect Output list file, and instead select the
Output assembler file option and its suboption Include source. Also, be sure to specify
a low level of optimization.

Use these options to compile the skeleton code:
iccrx skeleton.c -1A . -On -e

The -1a option creates an assembler language output file including C or C++ source
lines as assembler comments. The . (period) specifies that the assembler file should be
named in the same way as the C or C++ module (skeleton), but with the filename
extension s. The -on option means that no optimization will be used and -e enables
language extensions. In addition, make sure to use relevant compiler options, usually the
same as you use for other C or C++ source files in your project.

The result is the assembler source output file skeleton.s.

Note: The -1a option creates a list file containing call frame information (CFI)
directives, which can be useful if you intend to study these directives and how they are
used. If you only want to study the calling convention, you can exclude the CF1
directives from the list file.

In the IDE, to exclude the cFI directives from the list file, choose
Project>Options>C/C++ Compiler>List and deselect the suboption Include call
frame information.

On the command line, to exclude the CFI directives from the list file, use the option -1B
instead of -1A.

Note: cr1 information must be included in the source code to make the C-SPY Call
Stack window work.

The output file

The output file contains the following important information:

The calling convention
The return values

The global variables

The function parameters

173

Calling assembler routines from C++

174

e How to create space on the stack (auto variables)

e Call frame information (CFI).

The cr1I directives describe the call frame information needed by the Call Stack
window in the debugger. For more information, see Call frame information, page 184.

Calling assembler routines from C++

IAR C/C++ Development Guide
Compiling and linking for RX

The C calling convention does not apply to C++ functions. Most importantly, a function
name is not sufficient to identify a C++ function. The scope and the type of the function
are also required to guarantee type-safe linkage, and to resolve overloading.

Another difference is that non-static member functions get an extra, hidden argument,
the this pointer.

However, when using C linkage, the calling convention conforms to the C calling
convention. An assembler routine can therefore be called from C++ when declared in
this manner:

extern "C"

{
int MyRoutine(int) ;

}

In C++, data structures that only use C features are known as PODs (“plain old data
structures”), they use the same memory layout as in C. However, we do not recommend
that you access non-PODs from assembler routines.

The following example shows how to achieve the equivalent to a non-static member
function, which means that the implicit this pointer must be made explicit. It is also
possible to “wrap” the call to the assembler routine in a member function. Use an inline

Assembler language interface __4

member function to remove the overhead of the extra call—this assumes that function
inlining is enabled:

class MyClass;

extern "C"

{
void DolIt (MyClass *ptr, int arg);

class MyClass
{
public:
inline void DoIt(int arg)
{
::DoIt(this, arg):;

Calling convention

A calling convention is the way a function in a program calls another function. The
compiler handles this automatically, but, if a function is written in assembler language,
you must know where and how its parameters can be found, how to return to the program
location from where it was called, and how to return the resulting value.

It is also important to know which registers an assembler-level routine must preserve. If
the program preserves too many registers, the program might be ineffective. If it
preserves too few registers, the result would be an incorrect program.

This section describes the calling convention used by the compiler. These items are
examined:

Function declarations

Using C linkage in C++ source code

Preserved versus scratch registers

Function entrance

Function exit

Return address handling

At the end of the section, some examples are shown to describe the calling convention
in practice.

Note: The calling convention complies with the RX ABI standard.

175

Calling convention

176

IAR C/C++ Development Guide
Compiling and linking for RX

FUNCTION DECLARATIONS

In C, a function must be declared in order for the compiler to know how to call it. A
declaration could look as follows:

int MyFunction (int first, char * second) ;

This means that the function takes two parameters: an integer and a pointer to a
character. The function returns a value, an integer.

In the general case, this is the only knowledge that the compiler has about a function.
Therefore, it must be able to deduce the calling convention from this information.

USING C LINKAGE IN C++ SOURCE CODE

In C++, a function can have either C or C++ linkage. To call assembler routines from
C++4, it is easiest if you make the C++ function have C linkage.

This is an example of a declaration of a function with C linkage:

extern "C"

{
int F(int);
}

It is often practical to share header files between C and C++. This is an example of a
declaration that declares a function with C linkage in both C and C++:

#ifdef cplusplus

extern "C"

{
#endif

int F(int);

#ifdef __cplusplus

}

#endif

PRESERVED VERSUS SCRATCH REGISTERS

The general RX CPU registers are divided into three separate sets, which are described
in this section.

Scratch registers

Any function is permitted to destroy the contents of a scratch register. If a function needs
the register value after a call to another function, it must store it during the call, for
example on the stack.

Assembler language interface __4

Any of the registers R1-R5 or R14—R15 can be used as a scratch register by the function.

Preserved registers

Preserved registers, on the other hand, are preserved across function calls. The called
function can use the register for other purposes, but must save the value before using the
register and restore it at the exit of the function.

The registers R6—R13 are preserved registers.

Special registers

The stack pointer register (R0) must at all times point to or below the last element on the
stack. In the eventuality of an interrupt, everything below the point the stack pointer
points to, will be destroyed.

The register R14 is used by veneers to extend the range of calls, so it can be destroyed
between the calling point and the entry point of the called function.

FUNCTION ENTRANCE

Parameters can be passed to a function using one of these basic methods:

e In registers

o On the stack

It is much more efficient to use registers than to take a detour via memory, so the calling
convention is designed to use registers. Only a limited number of registers can be used
for passing parameters; when no more registers are available, the remaining parameters
are passed on the stack. The parameters are also passed on the stack in these cases:

e Aggregate types (structures, unions and arrays) larger than 16 bytes, or with a lower
alignment than 4

e Unnamed parameters to variable length (variadic) functions; in other words,
functions declared as foo (parami, ...),for example printf.

Note: Interrupt functions cannot take any parameters.

Hidden parameters

In addition to the parameters visible in a function declaration and definition, there can
be hidden parameters:

If the function returns a structure that does not fit into a register, the memory location
where the structure will be stored is passed as the last function parameter.

Hidden parameters are passed in register R15.

177

Calling convention

IAR C/C++ Development Guide
178 Compiling and linking for RX

Register parameters

The registers available for passing parameters are R1-R4:

Parameters Passed in registers
8- to 32-bit values R1-R4

64-bit values R2R1, R3R2, R4R3
Aggregate values R1-R4

Table 16: Registers used for passing parameters
Small aggregate types are only passed in registers R1-R4 if they:

e are 16 bytes or smaller

e have an alignment of 4 or more.
Aggregate types that do not fit these two requirements will use a hidden parameter.

The assignment of registers to parameters is a straightforward process. Traversing the
parameters in strict order from left to right, the first parameter is assigned to the
available register or registers. Should there be no suitable register available, the
parameter is passed on the stack. This process continues until there are no more
parameter registers available or until all parameters have been passed.

Stack parameters and layout

Stack parameters are stored in the main memory, starting at the location pointed to by
the stack pointer. Below the stack pointer (toward low memory) there is free space that
the called function can use. The first stack parameter is stored at the location pointed to
by the stack pointer. The next one is stored at the next location on the stack that is
divisible by four, etc.

This figure illustrates how parameters are stored on the stack:

High
address
The caller’s stack frame
Parameter n
Parameter 1
Return address
Low
address Free stack memory

Assembler language interface __4

Objects on the stack should be aligned to 4 bytes at function entry, regardless of their
size.

When passed in registers, aggregate types follow the setting of the byte order option
--endian, but scalar types are always little-endian. On the stack, all parameters are
stored according to the byte order setting.

FUNCTION EXIT

A function can return a value to the function or program that called it, or it can have the
return type void.

The return value of a function, if any, can be scalar (such as integers and pointers),
floating-point, or a structure.
Registers used for returning values

The registers available for returning values are:

Return values Passed in registers
8- and |6-bit scalars R1

32-bit values R1

64-bit values R2R1

Aggregate values R1-R4

Table 17: Registers used for returning values

Stack layout at function exit

It is the responsibility of the caller to clean the stack after the called function returns.

Return address handling

A function written in assembler language should, when finished, return to the caller. At
a function call, the return address is stored on the stack.

Typically, a function returns by using the RTS or RTSD instruction.

RESTRICTIONS FOR SPECIAL FUNCTION TYPES

Interrupt functions save all used registers. Task functions save no registers at all, and
monitor functions save the interrupt status.

An interrupt function returns by using the RTE instruction. Task functions and monitor
functions return by using the RTS or RTSD instruction, depending on whether they need
to deallocate a stack frame or not.

179

Calling convention

180

IAR C/C++ Development Guide
Compiling and linking for RX

EXAMPLES

The following section shows a series of declaration examples and the corresponding
calling conventions. The complexity of the examples increases toward the end.

Example |
Assume this function declaration:
int addl (int) ;

This function takes one parameter in the register R1, and the return value is passed back
to its caller in the register R1.

This assembler routine is compatible with the declaration; it will return a value that is
one number higher than the value of its parameter:

name return
section .text:CODE
code

add #1,R1

rts

end

Example 2
This example shows how structures are passed on the stack. Assume these declarations:

struct MyStruct
{

short a;
short b;
short c;
short d;
short e;

Y
int MyFunction (struct MyStruct x, int y);

The calling function must reserve 20 bytes on the top of the stack and copy the contents
of the struct to that location. The integer parameter y is passed in the register R1. The
return value is passed back to its caller in the register R1.

Assembler language interface __4

Example 3
The function below will return a structure of type struct MyStruct.

struct MyStruct
{

int ma;
int mB;
Yi
struct MyStruct MyFunction(int Xx);
In this case, the struct is small enough to fit in registers, so it is returned in R2R1.
Assume that the function instead was declared to return a pointer to the structure:

struct MyStruct *MyFunction(int x);

In this case, the return value is a scalar, so there is no hidden parameter. The parameter
x is passed in R1, and the return value is returned in R1.

Assembler instructions used for calling functions

This section presents the assembler instructions that can be used for calling and
returning from functions on the RX microcontroller.

Functions can be called in different ways—directly or via a function pointer.
The normal function calling instructions are BSR (and JSR):
bsr _label

The location that the called function should return to (that is, the location immediately
after this instruction) is stored on top of the stack. If the destination label is out of range,
the linker will insert a relay jump (veneer) that jumps to the destination. The linker
generates relay jumps automatically if they are needed.

Memory access methods

This section describes the different memory types presented in the chapter Data storage.
In addition to presenting the assembler code used for accessing data, this section will
explain the reason behind the different memory types.

You should be familiar with the RX instruction set, in particular the different addressing
modes used by the instructions that can access memory.

181

Memory access methods

182

IAR C/C++ Development Guide
Compiling and linking for RX

For each of the access methods described in the following sections, there are three

examples:

e Accessing a global variable

e Accessing a global array using an unknown index

e Accessing a structure using a pointer.

These three examples can be illustrated by this C program:

char myVar;
char MyArr([10];

struct MyStruct
{

long mA;

char mB;
}i

char Foo(int i, struct MyStruct *p)

{

return myVar + MyArr[i] + p->mB;

THE DATAI16 MEMORY ACCESS METHOD

The datal6 memory consists of the highest and the lowest 32 Kbytes of data memory.
The code generated by the assembler to access datal6 memory becomes slightly
smaller. This means a smaller footprint for the application, and faster execution at

runtime.

Examples

This example accesses datal6 memory:

mov.1l #_myVar:16,r3
mov.1l #_MyArr:16,rd
movu.b [rl,rd],rl
add [r3] .ub,rl
add 0x4[r2].ub,rl

load address of myVar
load address of MyArr
indexed load from MyArr
load and add myVar
offset p to second
struct member

THE DATA24 MEMORY ACCESS METHOD

The highest and the lowest 8 Mbytes of data memory can be accessed using the data24

memory access method.

Assembler language interface __4

Examples

This example accesses data24 memory:

mov.1l #_myVar:24,r3 ; load address of myVar
mov.1l #_MyArr:24,r4d ; load address of MyArr
movu.b [rl,r4],rl ; indexed load from MyArr
add [r3] .ub,rl ; load and add myVar

add 0x4[r2] .ub,rl ; offset p to second

; struct member

THE DATA32 MEMORY ACCESS METHOD

The data32 memory access method can access the entire data memory range. The data32
memory type uses 4-byte addresses, which can make the code slightly larger.

Examples

This example accesses data32 memory:

mov.l #_myVar:32,r3 ; load address of myVar
mov.1l #_MyArr:32,rd ; load address of MyArr
movu.b [rl,rd],rl ; indexed load from MyArr
add [r3].ub,rl ; load and add myVar

add 0x4[r2].ub,rl ; offset p to second

; struct member

THE SBREL MEMORY ACCESS METHOD

The sbrel memory access method is only available when RWPI is enabled, and
addressing is relative to the sB base register. The actual register that corresponds to the
SB register depends on the compiler configuration. SB is allocated after the ROPI base
register and after registers have been locked, and will be the highest numbered available
register in the range R6—R13. This means that if RWPI is enabled but not ROPI and no
registers are locked (using the --1ock option), the SB register is R13, and that if both
ROPI and RWPI is enabled, R12 will be used.

The sbrel memory type uses 4-byte addresses, which can make the code slightly larger.

183

Call frame information

184

Examples

Assuming that R12 is the RWPI base register, this example accesses sbrel memory:

add #(_MyArr - __SD_BASE) :32,rl1l2,r3 ; compute base
; address of MyArr

movu.b [r1,r3],rl ; indexed load from MyArr

add (_myVar - __SD_BASE):16[rl1l2].ub,rl ; myVar can
; be accessed directly from
; sbrel

add 0x4[r2] .ub,rl ; offset p to second

; struct member

Call frame information

IAR C/C++ Development Guide
Compiling and linking for RX

When you debug an application using C-SPY, you can view the call stack, that is, the
chain of functions that called the current function. To make this possible, the compiler
supplies debug information that describes the layout of the call frame, in particular
information about where the return address is stored.

If you want the call stack to be available when debugging a routine written in assembler
language, you must supply equivalent debug information in your assembler source using
the assembler directive CFI. This directive is described in detail in the /AR Assembler
User Guide for RX.

CFI DIRECTIVES

The cr1I directives provide C-SPY with information about the state of the calling
function(s). Most important of this is the return address, and the value of the stack
pointer at the entry of the function or assembler routine. Given this information, C-SPY
can reconstruct the state for the calling function, and thereby unwind the stack.

A full description about the calling convention might require extensive call frame
information. In many cases, a more limited approach will suffice.

When describing the call frame information, the following three components must be
present:

® A names block describing the available resources to be tracked

® A common block corresponding to the calling convention

® A data block describing the changes that are performed on the call frame. This
typically includes information about when the stack pointer is changed, and when
permanent registers are stored or restored on the stack.

Assembler language interface __4

This table lists all the resources defined in the names block used by the compiler:

Resource Description

CFA_SP The call frame of the stack
R1-R15 Normal registers

SP The stack pointer
?RET32 The return address

Table 18: Call frame information resources defined in a names block

CREATING ASSEMBLER SOURCE WITH CFl SUPPORT

The recommended way to create an assembler language routine that handles call frame
information correctly is to start with an assembler language source file created by the
compiler.

I Start with suitable C source code, for example:

int F(int);
int cfiExample (int i)
{

return 1 + F(i);

}

2 Compile the C source code, and make sure to create a list file that contains call frame
information—the CFI directives.

On the command line, use the option -1A.

cm In the IDE, choose Project>Options>C/C++ Compiler>List and make sure the
suboption Include call frame information is selected.

185

Call frame information

186

IAR C/C++ Development Guide
Compiling and linking for RX

For the source code in this example, the list file looks like this, after it has been cleaned
up for increased readability:

NAME cfiExample

EXTERN _F

PUBLIC _cfiExample

CFI
CFI
CFI
CFI

CFI

CFI
CFI

CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI

Names cfiNamesO
StackFrame CFA SP DATA
VirtualResource ?RET:32

Res

Res

Res

ource R1:32, R2:32, R3:32, R4:32,
R5:32, R6:32, R7:32, R8:32

ource R9:32, R10:32, R11:32, R12:32,
R13:32, R14:32, R15:32

ource SP:32

EndNames cfiNames0

Common cfiCommon0O Using cfiNamesO
CodeAlign 1

Dat
Ret

aAlign 1
urnAddress ?RET CODE

CFA SP+4
?RET Frame (CFA, -4)

R1
R2
R3
R4
R5
R6
R7
R8
RO
R10
R11
R12
R13
R14
R15

Undefined
Undefined
Undefined
Undefined
Undefined
SameValue
SameValue
SameValue
SameValue
SameValue
SameValue
SameValue
SameValue
Undefined
Undefined

EndCommon cfiCommon0

Assembler language interface __4

SECTION .text:CODE:NOROOT (0)
CFI Block cfiBlock0O Using cfiCommonO
CFI Function _cfiExample
CODE
_cfiExample:
PUSH.L R6
CFI R6 Frame (CFA, -8)
CFI CFA SP+8

MOV.L R1,R6
BSR.A _F

ADD R1,R6
MOV.L R6,R1

RTSD #0x4,R6,R6

CFI EndBlock cfiBlockO

END

Note: The header file cfi .m contains the macros XCFI_NAMES and XCFI_COMMON,
which declare a typical names block and a typical common block. These two macros
declare several resources, both concrete and virtual.

187

Call frame information

IAR C/C++ Development Guide
188 Compiling and linking for RX

Using C

e C language overview
e Extensions overview

e IAR C language extensions

C language overview

The IAR C/C++ Compiler for RX supports the INCITS/ISO/IEC 9899:2018 standard,
also known as C18. C18 addresses defects in C11 (INCITS/ISO/IEC 9899:2012)
without introducing any new language features. This means that the C11 standard is also
supported. In this guide, the C18 standard is referred to as Standard C and is the default
standard used in the compiler. This standard is stricter than C89.

The compiler will accept source code written in the C18 standard or a superset thereof.

In addition, the compiler also supports the ISO 9899:1990 standard (including all
technical corrigenda and addenda), also known as C94, C90, C89, and ANSI C. In this
guide, this standard is referred to as C89. Use the --c89 compiler option to enable this
standard.

With Standard C enabled, the IAR C/C++ Compiler for RX can compile all C18/C11
source code files, except for those that depend on atomic or thread-related system header
files.

The floating-point standard that Standard C binds to is IEC 60559—known as
ISO/IEC/IEEE 60559—which is nearly identical to the IEEE 754 format.

Annex K (Bounds-checking interfaces) of the C standard is supported. See Bounds
checking functionality, page 133.

For an overview of the differences between the various versions of the C standard, see
the Wikipedia articles C18 (C standard revision), C11 (C standard revision), or C99.

Extensions overview

The compiler offers the features of Standard C and a wide set of extensions, ranging
from features specifically tailored for efficient programming in the embedded industry
to the relaxation of some minor standards issues.

189

Extensions overview

This is an overview of the available extensions:

® /AR C language extensions

For information about available language extensions, see IAR C language extensions,
page 191. For more information about the extended keywords, see the chapter
Extended keywords. For information about C++, the two levels of support for the
language, and C++ language extensions, see the chapter Using C++.

® Pragma directives

The #pragma directive is defined by Standard C and is a mechanism for using
vendor-specific extensions in a controlled way to make sure that the source code is
still portable.

The compiler provides a set of predefined pragma directives, which can be used for
controlling the behavior of the compiler, for example, how it allocates memory,
whether it allows extended keywords, and whether it outputs warning messages.
Most pragma directives are preprocessed, which means that macros are substituted
in a pragma directive. The pragma directives are always enabled in the compiler. For
several of them there is also a corresponding C/C++ language extension. For
information about available pragma directives, see the chapter Pragma directives.

® Preprocessor extensions

The preprocessor of the compiler adheres to Standard C. The compiler also makes
several preprocessor-related extensions available to you. For more information, see
the chapter The preprocessor.

® [ntrinsic functions

The intrinsic functions provide direct access to low-level processor operations and
can be useful in, for example, time-critical routines. The intrinsic functions compile
into inline code, either as a single instruction or as a short sequence of instructions.
For more information about using intrinsic functions, see Mixing C and assembler,
page 163. For information about available functions, see the chapter Intrinsic
functions.

® Library functions

The DLIB runtime environment provides the C and C++ library definitions in the
C/C++ standard library that apply to embedded systems. For more information, see
DLIB runtime environment—implementation details, page 437.

Note: Any use of these extensions, except for the pragma directives, makes your source
code inconsistent with Standard C.

IAR C/C++ Development Guide
190 Compiling and linking for RX

Using C °

ENABLING LANGUAGE EXTENSIONS
You can choose different levels of language conformance by means of project options:

Command line IDE* Description

--strict Strict All' AR C language extensions are disabled—
errors are issued for anything that is not part
of Standard C.

None Standard All relaxations to Standard C are enabled, but no
extensions for embedded systems programming.
For information about extensions, see /AR C
language extensions, page 191.

-e Standard with IAR All /AR C language extensions are enabled.
extensions

Table 19: Language extensions

* In the IDE, choose Project>Options>C/C++ Compiler>Language 1>Language
conformance and select the appropriate option. Note that language extensions are
enabled by default.

IAR C language extensions
The compiler provides a wide set of C language extensions. To help you to find the

extensions required by your application, they are grouped like this in this section:

® [xtensions for embedded systems programming—extensions specifically tailored
for efficient embedded programming for the specific microcontroller you are using,
typically to meet memory restrictions

® Relaxations to Standard C—that is, the relaxation of some minor Standard C issues
and also some useful but minor syntax extensions, see Relaxations to Standard C,
page 193.

EXTENSIONS FOR EMBEDDED SYSTEMS PROGRAMMING

The following language extensions are available both in the C and the C++
programming languages and they are well suited for embedded systems programming:
® Memory attributes, type attributes, and object attributes

For information about the related concepts, the general syntax rules, and for
reference information, see the chapter Extended keywords.

® Placement at an absolute address or in a named section

The @ operator or the directive #pragma location can be used for placing global
and static variables at absolute addresses, or placing a variable or function in a named

191

IAR C language extensions

192

IAR C/C++ Development Guide
Compiling and linking for RX

section. For more information about using these features, see Controlling data and
function placement in memory, page 230, and location, page 393.

o Alignment control

Each data type has its own alignment. For more information, see A/ignment, page
345. If you want to change the alignment, the __packed data type attribute, the
#pragma pack directive, and the #pragma data_alignment directive are
available. If you want to check the alignment of an object, use the __ALIGNOF__ ()
operator.

The __ALIGNOF__ operator is used for accessing the alignment of an object. It takes
one of two forms:

® __ALIGNOF__ (type)
® __ALIGNOF__ (expression)
In the second form, the expression is not evaluated.
See also the Standard C file stdalign.h.
® Bitfields and non-standard types

In Standard C, a bitfield must be of the type int or unsigned int. Using IAR C

language extensions, any integer type or enumeration can be used. The advantage is
that the struct will sometimes be smaller. For more information, see Bitfields, page
348.

Dedicated section operators

The compiler supports getting the start address, end address, and size for a section with
these built-in section operators:

__section_begin Returns the address of the first byte of the named section or
block.

__section_end Returns the address of the first byte affer the named section
or block.

__section_size Returns the size of the named section or block in bytes.

Note: The aliases __segment_begin/__sfb segment_end/__sfe, and

__segment_size/__sfs can also be used.

PRp—

The operators can be used on named sections or on named blocks defined in the linker
configuration file.

These operators behave syntactically as if declared like:

void * __section_begin(char const * section)
void * __section_end(char const * section)
size_t __section_size(char const * section)

Using C °

When you use the @ operator or the #pragma location directive to place a data object
or a function in a user-defined section, or when you use named blocks in the linker
configuration file, the section operators can be used for getting the start and end address
of the memory range where the sections or blocks were placed.

The named section must be a string literal and it must have been declared earlier with
the #pragma section directive. If the section was declared with a memory attribute
memattr, the type of the __section_begin operator is a pointer to memattr void.
Otherwise, the type is a default pointer to void. Note that you must enable language
extensions to use these operators.

The operators are implemented in terms of symbols with dedicated names, and will
appear in the linker map file under these names:

Operator Symbol
__section_begin(sec) secSSBase
__section_end(sec) sec$SLimit
__section_size(sec) secS$SLength

Table 20: Section operators and their symbols

Note: The linker will not necessarily place sections with the same name consecutively
when these operators are not used. Using one of these operators (or the equivalent
symbols) will cause the linker to behave as if the sections were in a named block. This
is to assure that the sections are placed consecutively, so that the operators can be
assigned meaningful values. If this is in conflict with the section placement as specified
in the linker configuration file, the linker will issue an error.

Example

In this example, the type of the __section_begin operator is void __datal6 *.

#pragma section="MYSECTION" __datalé6

section_start_address = __section_begin ("MYSECTION") ;

See also section, page 400, and /ocation, page 393.

RELAXATIONS TO STANDARD C

This section lists and briefly describes the relaxation of some Standard C issues and also
some useful but minor syntax extensions:
e Arrays of incomplete types

An array can have an incomplete struct, union, or enum type as its element type.
The types must be completed before the array is used (if it is), or by the end of the
compilation unit (if it is not).

193

IAR C language extensions

194

IAR C/C++ Development Guide
Compiling and linking for RX

Zero-length arrays

A zero-length array as the last member of a structure has similar behavior as the ISO
C99 flexible array member. This is an extension found in the GNU C compiler.

Forward declaration of enum types

The extensions allow you to first declare the name of an enum and later resolve it by
specifying the brace-enclosed list.

Accepting missing semicolon at the end of a struct or union specifier

A warning—instead of an error—is issued if the semicolon at the end of a struct
or union specifier is missing.

Null and void

In operations on pointers, a pointer to void is always implicitly converted to another
type if necessary, and a null pointer constant is always implicitly converted to a null
pointer of the right type if necessary. In Standard C, some operators allow this kind
of behavior, while others do not allow it.

Casting pointers to integers in static initializers

In an initializer, a pointer constant value can be cast to an integral type if the integral
type is large enough to contain it. For more information about casting pointers, see
Casting, page 355.

Taking the address of a register variable

In Standard C, it is illegal to take the address of a variable specified as a register
variable. The compiler allows this, but a warning is issued.

long float means double

The type long float is accepted as a synonym for double.
Binary integer literals (0b...) are supported.

Repeated typedef declarations

Redeclarations of typedef that occur in the same scope are allowed, but a warning
is issued.

Mixing pointer types

Assignment and pointer difference is allowed between pointers to types that are
interchangeable but not identical, for example, unsigned char * and char *. This
includes pointers to integral types of the same size. A warning is issued.

Assignment of a string constant to a pointer to any kind of character is allowed, and
no warning is issued.

Non-1lvalue arrays

A non-lvalue array expression is converted to a pointer to the first element of the
array when it is used.

Using C °

Comments at the end of preprocessor directives

This extension, which makes it legal to place text after preprocessor directives, is
enabled unless the strict Standard C mode is used. The purpose of this language
extension is to support compilation of legacy code—we do not recommend that you
write new code in this fashion.

An extra comma at the end of enum lists

Placing an extra comma is allowed at the end of an enum list. In strict Standard C
mode, a warning is issued.

A label preceding a }

In Standard C, a label must be followed by at least one statement. Therefore, it is
illegal to place the label at the end of a block. The compiler allows this, but issues a
warning. Note that this also applies to the labels of switch statements.

Empty declarations

An empty declaration (a semicolon by itself) is allowed, but a remark is issued
(provided that remarks are enabled).

Single-value initialization

Standard C requires that all initializer expressions of static arrays, structs, and unions
are enclosed in braces.

Single-value initializers are allowed to appear without braces, but a warning is
issued. The compiler accepts this expression:
struct str
{
int a;
} x = 10;

Declarations in other scopes

External and static declarations in other scopes are visible. In the following example,
the variable y can be used at the end of the function, even though it should only be
visible in the body of the if statement. A warning is issued.
int test(int x)
{

if (%)

{

extern int y;
y = 1;

return y;

195

IAR C language extensions

196

IAR C/C++ Development Guide
Compiling and linking for RX

Static functions in function and block scopes

Static functions may be declared in function and block scopes. Their declarations are
moved to the file scope.

Numbers scanned according to the syntax for numbers

Numbers are scanned according to the syntax for numbers rather than the
pp-number syntax. Therefore, 0x123e+1 is scanned as three tokens instead of one
valid token. (If the --strict option is used, the pp-number syntax is used instead.)

Empty translation unit
A translation unit (input file) might be empty of declarations.
Assignment of pointer types

Assignment of pointer types is allowed in cases where the destination type has added
type qualifiers that are not at the top level, for example, int ** to const int **.
Comparisons and pointer difference of such pairs of pointer types are also allowed.
A warning is issued.

Pointers to different function types

Pointers to different function types might be assigned or compared for equality (==
or inequality (!=) without an explicit type cast. A warning is issued. This extension
is not allowed in C++ mode.

Assembler statements

Assembler statements are accepted. This is disabled in strict C mode because it
conflicts with the C standard for a call to the implicitly declared asm function.

#include_next

The non-standard preprocessing directive #include_next is supported. This is a
variant of the #include directive. It searches for the named file only in the
directories on the search path that follow the directory in which the current source
file (the one containing the #include_next directive) is found. This is an extension
found in the GNU C compiler.

#warning

The non-standard preprocessing directive #warning is supported. It is similar to the
#error directive, but results in a warning instead of a catastrophic error when
processed. This directive is not recognized in strict mode. This is an extension found
in the GNU C compiler.

Concatenating strings
Mixed string concatenations are accepted.
wchar_t * str="a" L "b";

GNU style statement expressions (a sequence of statements enclosed by braces) are
accepted.

GNU style case ranges are accepted (case 1..5:).

Using C °

o GNU style designated initializer ranges are accepted.
Example: int widths[] = {[0...9] =1, [10...99] = 2, [100] = 3};
® typeof

The non-standard operator typeof is supported when IAR extensions are enabled,
as a way of referring to the type of an expression. The syntax is like that of sizeof,
but it behaves semantically like a type name defined with typedef£. This is an
extension found in the GNU C compiler.

[] auto_type

The non-standard keyword __auto_type is supported when IAR extensions are
enabled. Declaring a variable with the __auto_type keyword automatically causes
its type to be derived based on the type of its initializer. __auto_type is similar to
the auto keyword in C++11, but more limited in when it can be used. This is an
extension found in the GNU C compiler.

197

IAR C language extensions

IAR C/C++ Development Guide
198 Compiling and linking for RX

Using C++

Overview—Standard C++

Enabling support for C++

C++ feature descriptions

C++ language extensions

Migrating from the DLIB C++ library to the Libc++ C++ library

Porting code from EC++ or EEC++

Overview—Standard C++

The IAR C++ implementation fully complies with the ISO/IEC 14882:2014 C++
(“C++14”) or 14882:2017 C++ (“C++17”) standard, except for source code that
depends on atomic or thread-related system headers, or the £ilesystem header. In this
guide, the ISO/IEC 14882:2017 C++ standard is referred to as Standard C++.

The IAR C/C++ compiler accepts source code written in the C++17 standard or a
superset thereof.

When using the DLIB C++14 library, those features of C++17 that require library
support are not available.

When using the Libc++ C++17 library, all features of C++17 are available, unless
otherwise noted.

For an overview of the differences between the various versions of the C++ standard, see
the Wikipedia articles C++17, C++14, C++11, or C++ (for information about C+498).

Note: There is also a set of C++ Standard Template Library (STL) headers from an older
version of the DLIB library (DLIBS). They have fewer features, but can in some cases
result in significantly smaller code for map/set and vector. See the documentation in
the file rx/doc/HelpDLIBS.html.

EXCEPTIONS AND RTTI

Exceptions and RTTI are not supported. Thus, the following are not allowed:

throw expressions

try-catch statements

199

Enabling support for C++

200

e Exception specifications on function definitions
o The typeid operator

o The dynamic_cast operator

Enabling support for C++

In the compiler, the default language is C.

To compile files written in Standard C++, use the --c++ compiler option. See --c++,
page 269.

To enable C++ in the IDE, choose
Project>Options>C/C++ Compiler>Language 1>Language>C++.

C++ feature descriptions

IAR C/C++ Development Guide
Compiling and linking for RX

When you write C++ source code for the IAR C/C++ Compiler for RX, you must be
aware of some benefits and some possible quirks when mixing C++ features—such as
classes, and class members—with IAR language extensions, such as IAR-specific
attributes.

USING IAR ATTRIBUTES WITH CLASSES

Static data members of C++ classes are treated the same way global variables are, and
can have any applicable IAR type, memory, and object attribute.

Member functions are in general treated the same way free functions are, and can have
any applicable IAR type, memory, and object attributes. Virtual member functions can
only have attributes that are compatible with default function pointers, and constructors
and destructors cannot have any such attributes.

The location operator @ and the #pragma location directive can be used on static data
members and with all member functions.

Using C++ __o

Example of using attributes with classes

class MyClass

{

public:
// Locate a static variable in __datal6é memory at address 60
static __datal6 __no_init int mI @ 60;

// A static task function
static __task void F();

// A task function
__task void G();

// A VIRTUALtask function
virtual __task void H();

// Locate a virtual function into SPECIAL
virtual void M() const volatile @ "SPECIAL";
}i

TEMPLATES

C++ supports templates according to the C++ standard. The implementation uses a
two-phase lookup which means that the keyword typename must be inserted wherever
needed. Furthermore, at each use of a template, the definitions of all possible templates
must be visible. This means that the definitions of all templates must be in include files
or in the actual source file.

FUNCTION TYPES

A function type with extern "C" linkage is compatible with a function that has C++
linkage.

201

C++ feature descriptions

202

IAR C/C++ Development Guide
Compiling and linking for RX

Example

extern "C"

{

typedef void (*FpC) (void); // A C function typedef
}
typedef void (*FpCpp) (void) ; // A C++ function typedef
FpC F1;
FpCpp F2;

void MyF (FpC) ;

void MyG ()
{
MyF (F1) ; // Always works
MyF (F2) ; // FpCpp is compatible with FpC

USING STATIC CLASS OBJECTS IN INTERRUPTS

If interrupt functions use static class objects that need to be constructed (using
constructors) or destroyed (using destructors), your application will not work properly
if the interrupt occurs before the objects are constructed, or, during or after the objects
are destroyed.

To avoid this, make sure that these interrupts are not enabled until the static objects have
been constructed, and are disabled when returning from main or calling exit. For
information about system startup, see System startup and termination, page 142.

Function local static class objects are constructed the first time execution passes through
their declaration, and are destroyed when returning from main or when calling exit.

USING NEW HANDLERS
To handle memory exhaustion, you can use the set_new_handler function.

If you do not call set_new_handler, or call it with a NULL new handler, and
operator new fails to allocate enough memory, it will call abort. The nothrow
variant of the new operator will instead return NULL.

If you call set_new_handler with a non-NULL new handler, the provided new
handler will be called by operator new if operator new fails to allocate memory. The
new handler must then make more memory available and return, or abort execution in
some manner. The nothrow variant of operator new will never return NULL in the
presence of a new handler.

This is the same behavior as using the nothrow variants of new.

Using C++ __o

DEBUG SUPPORT IN C-SPY

The C-SPY debugger has built-in display support for the STL containers. The logical
structure of containers is presented in the watch views in a comprehensive way that is
easy to understand and follow.

For more information, see the C-SPY® Debugging Guide for RX.

C++ language extensions

When you use the compiler in C++ mode and enable IAR language extensions, the
following C++ language extensions are available in the compiler:

In a £riend declaration of a class, the class keyword can be omitted, for example:

class B;
class A
{
friend B; //Possible when using IAR language
//extensions
friend class B; //According to the standard
}i

In the declaration of a class member, a qualified name can be used, for example:

struct A

{
int A::F(); // Possible when using IAR language extensions
int G(); // According to the standard

Yi

It is permitted to use an implicit type conversion between a pointer to a function

with C linkage (extern "C") and a pointer to a function with C++ linkage

(extern "c++"), for example:

extern "C" void F(); // Function with C linkage

void (*PF) () // PF points to a function with C++ linkage
= &F; // Implicit conversion of function pointer.

According to the standard, the pointer must be explicitly converted.

If the second or third operands in a construction that contains the ? operator are
string literals or wide string literals—which in C++ are constants—the operands can
be implicitly converted to char * or wchar_t *, for example:

bool X;

char *Pl = X ? "abc" : "def"; //Possible when using IAR
//language extensions

char const *P2 = X ? "abc" : "def";//According to the standard

203

C++ language extensions

204

IAR C/C++ Development Guide
Compiling and linking for RX

e Default arguments can be specified for function parameters not only in the top-level

function declaration, which is according to the standard, but also in typedef
declarations, in pointer-to-function function declarations, and in pointer-to-member
function declarations.

In a function that contains a non-static local variable and a class that contains a
non-evaluated expression—for example a sizeof expression—the expression can
reference the non-static local variable. However, a warning is issued.

An anonymous union can be introduced into a containing class by a typedef name.
It is not necessary to first declare the union. For example:

typedef union

{

int i,3;
} U; // U identifies a reusable anonymous union.
class A
{
public:
U; // OK -- references to A::1 and A::j are allowed.

Yi

In addition, this extension also permits anonymous classes and anonymous structs,
as long as they have no C++ features—for example, no static data members or
member functions, and no non-public members—and have no nested types other
than other anonymous classes, structs, or unions. For example:

struct A
{

struct

{

int 1i,3;

}; // OK -- references to A::1 and A::j are allowed.
Yi
The friend class syntax allows non-class types as well as class types expressed
through a typedef without an elaborated type name. For example:

typedef struct S ST;

class C

{

public:
friend S; // Okay (requires S to be in scope)
friend ST; // Okay (same as "friend S;")
// friend S const; // Error, cv-qualifiers cannot

// appear directly
Y

Using C++ ___o

e It is allowed to specify an array with no size or size 0 as the last member of a struct.
For example:
typedef struct
{
int i;
char ir[0]; // Zero-length array
Yi

typedef struct
{
int i;
char irl[1]; // Zero-length array
Y
e Arrays of incomplete types

An array can have an incomplete struct, union, enum, or class type as its element
type. The types must be completed before the array is used—if it is— or by the end
of the compilation unit—if it is not.

e Concatenating strings
Mixed string literal concatenations are accepted.
wchar_t * str = "a" L "b";

e Trailing comma

A trailing comma in the definition of an enumeration type is silently accepted.
Except where noted, all of the extensions described for C are also allowed in C++ mode.

Note: If you use any of these constructions without first enabling language extensions,
errors are issued.

Migrating from the DLIB C++ library to the Libc++ C++ library

There is no Normal configuration of the Libc++ library. Support for locale, file
descriptors, etc, is always included.

The Libc++ library is a C++17 library. In C++17, some functionality that was
deprecated in C++14 is now removed. Examples include std: :auto_ptr,

std: :random_shuffle,and std: :mem_£fun. Youcandefine the preprocessor symbol
_LIBCPP_ENABLE_CXX17_REMOVED_FEATURES to enable support for these features
when using the Libc++ library.

Note: Some system headers from the DLIB C++14 library are not supported in Libc++,
and vice versa, see the descriptions in C++ header files, page 439.

205

Porting code from EC++ or EEC++

Porting code from EC++ or EEC++
Apart from the fact that Standard C++ is a much larger language than EC++ or EEC++,
there are two issues that might prevent EC++ and EEC++ code from compiling:
e The library is placed in namespace std.
There are two remedy options:
e Prefix each used library symbol with std: :.

e Insertusing namespace std; after the last include directive for a C++ system
header file.

o Some library symbols have changed names or parameter passing.

To resolve this, look up the new names and parameter passing.

IAR C/C++ Development Guide
206 Compiling and linking for RX

Application-related
considerations

e Output format considerations

e Stack considerations

e Heap considerations

e Position-independent code and data

e Changing ID code protection and option-setting memory
e Interaction between the tools and your application

e Checksum calculation for verifying image integrity

e Patching symbol definitions using $Super$$ and $Sub$$

Output format considerations

The linker produces an absolute executable image in the ELF/DWARF object file
format.

You can use the IAR ELF Tool—ielftool— to convert an absolute ELF image to a
format more suitable for loading directly to memory, or burning to a PROM or flash
memory etc.

ielftool can produce these output formats:

e Plain binary
e Motorola S-records

e Intel hex.
For a complete list of supported output formats, run ielftool without options.

Note: ielftool can also be used for other types of transformations, such as filling and
calculating checksums in the absolute image.

The source code for ielftool is provided in the rx/src directory. For more
information about ielftool, see The IAR ELF Tool—ielftool, page 511.

207

Stack considerations

208

Stack considerations

To make your application use stack memory efficiently, there are some considerations
to be made.

THE USER MODE AND SUPERVISOR MODE STACKS

There are two stacks, the user mode stack and the supervisor mode stack. They are two
continuous blocks of memory pointed to by the stack pointer registers USP and ISP.

The data block used for holding the user mode stack is called USTACK and the data block
for the supervisor mode stack is called TSTACK. The system startup code initializes the
stack pointers to the end of the stack blocks.

The processor will be in supervisor mode on power on reset and when processing an
interrupt. To enter user mode, special instruction sequences must be executed, as
described in the chip manufacturer’s documentation.

The startup sequence in cstartup.s will remain in supervisor mode when calling the
main function, so only the ISTACK block will be used until the application enters user
mode by its own means.

STACK SIZE CONSIDERATIONS

The required stack size depends heavily on the application’s behavior. If the given stack
size is too large, RAM will be wasted. If the given stack size is too small, one of two
things can happen, depending on where in memory you located your stack:

e Variable storage will be overwritten, leading to undefined behavior
o The stack will fall outside of the memory area, leading to an abnormal termination

of your application.

Both alternatives are likely to result in application failure. Because the second
alternative is easier to detect, you should consider placing your stack so that it grows
toward the end of the memory.

For more information about the stack size, see Setting up stack memory, page 111, and
Saving stack space and RAM memory, page 240.

Heap considerations

IAR C/C++ Development Guide
Compiling and linking for RX

The heap contains dynamic data allocated by use of the C function malloc (or a
corresponding function) or the C++ operator new.

Application-related considerations __¢

If your application uses dynamic memory allocation, you should be familiar with:

e The use of basic, advanced, and no-free heap memory allocation
e Linker sections used for the heap

o Allocating the heap size, see Setting up heap memory, page 112.

HEAP MEMORY HANDLERS

The system library contains three separate heap memory handlers—the basic, the
advanced, and the no-fiee heap handler.

You can use a linker option to explicitly specify which handler you want to use:

e The basic heap (--basic_heap) is a simple heap allocator, suitable for use in
applications that do not use the heap very much. In particular, it can be used in
applications that only allocate heap memory and never free it. The basic heap is not
particularly speedy, and using it in applications that repeatedly free memory is quite
likely to lead to unneeded fragmentation of the heap. The code for the basic heap is
significantly smaller than that for the advanced heap. See --basic_heap, page 315.

o The advanced heap (--advanced_heap) provides efficient memory management
for applications that use the heap extensively. In particular, applications that
repeatedly allocate and free memory will likely get less overhead in both space and
time. The code for the advanced heap is significantly larger than that for the basic
heap. See --advanced heap, page 315. For information about the definition, see
iar_dlmalloc.h, page 445.

o The no-free heap (--no_free_heap) is the smallest possible heap implementation.
This heap does not support free or realloc. See --no_fiee heap, page 331.

If no heap option has been specified, the linker automatically chooses a heap handler:

e If there are calls to heap memory allocation routines in your application, but no calls
to heap deallocation routines, the linker automatically chooses the no-free heap.

e If there are calls to heap memory allocation routines in your application, the linker
automatically chooses the advanced heap if the majority of the modules are
optimized for speed (Medium, High Balanced, or High Speed).

e If there are calls to heap memory allocation routines in, for example, the library, or
the majority of the application modules are optimized for size (None, Low, or High
Size) the linker automatically chooses the basic heap.

The optimization goal used for selecting a heap handler is not always available to the
linker—particularly not in object files that were not compiled with an IAR compiler.
Such modules are ignored for the decision.

Note: If your product has a size-limited KickStart license, the basic heap is
automatically chosen.

209

Position-independent code and data

210

HEAP SECTIONS IN DLIB

The memory allocated to the heap is placed in the section HEAP, which is only included
in the application if dynamic memory allocation is actually used.

HEAP SIZE AND STANDARD 1/O

If you excluded FILE descriptors from the DLIB runtime environment, as in the Normal
configuration, there are no input and output buffers at all. Otherwise, as in the Full
configuration, be aware that the size of the input and output buffers is set to 512 bytes
in the stdio library header file. If the heap is too small, I/O will not be buffered, which
is considerably slower than when 1/O is buffered. If you execute the application using
the simulator driver of the IAR C-SPY® Debugger, you are not likely to notice the speed
penalty, but it is quite noticeable when the application runs on an RX microcontroller.
If you use the standard I/O library, you should set the heap size to a value which
accommodates the needs of the standard 1/O buffer.

Position-independent code and data

IAR C/C++ Development Guide
Compiling and linking for RX

Most applications are designed to be placed at a fixed position in memory. The exact
placement of each function and variable is decided at link time. However, sometimes it
is useful to instead decide at runtime where to place the application, for example in
certain systems where applications are loaded dynamically.

You can configure the compiler to generate read-only position-independent code and
data.

ROPI

The term ROPI (Read-Only Position-Independent) is a synonym for the Renesas term
“PIC/PID”, and refers to RX ABI compliant position independence, where the PID base
register is the static base pointer for accessing constant data as described by the RX ABI.
In IAR Embedded Workbench for RX, this base register is the constant data and code
base cB. This means that, even though the linker places the code and data at fixed
locations, the application can still be executed correctly when the linked image is placed
at a different address than where it was linked.

In a system with ROPI applications, there might be a small amount of non-ROPI code
that handles startup, dynamic loading of applications, shared firmware functions, etc.
Such code must be compiled and linked separately from the ROPI applications.

Note: Only functions and read-only data are affected by ROPI—variables in RAM are
only position-independent when RWPI is enabled, see RWPI, page 214.

Application-related considerations __¢

Drawbacks and limitations

There are some drawbacks and limitations to bear in mind when using ROPI:

o The code generated for function pointer calls and accesses to read-only data will be
somewhat larger

e Function pointers passed as arguments have some limitations, see Function pointers
as arguments, page 213

e Data initialization at startup might be somewhat slower, and the initialization data
might be somewhat larger

e Interrupt handlers that use the #pragma vector directive are not handled
automatically

o The object attribute __ramfunc is not supported

e Data pointer constants cannot be initialized with the address of constant data, or a
string literal. Writable pointers will be initialized automatically.

e Some C library functions will work differently, mainly because they use RAM
instead of ROM for storage (for example the functions for locale support). The C99
functions erf and gamma are not supported.

Note: In some cases, there is an alternative to ROPI that avoids these limitations and
drawbacks: If there is only a small number of possible placements for the application,
you can compile the application without ROPI and link it multiple times, once for each
possible placement. Then you can choose the correct image at load time. When
applicable, this approach makes better use of the available hardware resources than
using ROPI.

Creating a static startup module

To execute a ROPI application there must also be a static part, a startup program,
because the reset vector must always be static. This program should contain:

an initialization of the CB base register (R13 by default)

a jump to the ROPI application start address (relative to the CB base register)
the NMI vectors with handlers

the __DebugBreak function, if you want to debug the application using C-SPY

any functions that should not be part of the ROPI application.

211

Position-independent code and data

212

IAR C/C++ Development Guide
Compiling and linking for RX

This basic sample program, using the normal C startup code, can be used as a starting
point:

section .text:CODE:NOROOT (2)
public _main

extern __DebugBreak
require __DebugBreak
code
_main:
mov.1l #my_address,R13
jmp R13 ; start the ropi application
end

This will include __DebugBreak and initialization code for any library parts that are
located in the static part of the application. Add a require clause to the program for
every additional C library function that should be static, for example _printf.

You can compile and link this startup program like a normal application. If you include
runtime attributes, you can control which library that is used by the linker. If parts of the
C runtime library are included, remember to include the data initialization routines.

If a static function should be visible to the ROPI application (such as the
__DebugBreak function), you must export it from the linked application using the tool
isymexport. Do not export symbols that exist in the ROPI module as well, such as
__iar_program_start or _main. Which symbols that are made visible is determined
by show clauses in the edit file (show. ic£f), for example show _printf. The syntax
for the export is:

isymexport --edit show.icf static.out static.tab

If you need to call a static function indirectly from a ROPI module, you must declare it
extern __absolute for the pointer to be initialized correctly.

Creating the ROPI module

To compile an application with position-independent code and read-only data, use the
compiler command line option --ropi. The source code cannot contain any
initializations that violate the ROPI model, that is, it cannot contain any constant data
pointers to constant data, as in this example:

const char * const msg = "error string"; // cannot be initialized
// in ROPI mode

To specify ROPI in the IDE, choose Project>Options>General Options>Target>
Code and read-only data.

Application-related considerations __¢

When you link the application, all code and constant data must be placed in a common
block, tagged movable. For example:

define movable block PIC with static base CB, alignment = 4

{ first block PICl6 with maximum size = 256k, fixed order { ro
code object cstartup.o*, ro section .datal6* }
ro };

This example places constant data with the memory attribute __data1l6 in the lowest
32 Kbytes of data memory, to allow efficient access to these objects. At the very
beginning of the block, the C initialization code is placed. This is only to simplify
calling the ROPI module, and is not required.

Interrupt handling

The interrupt vector table and the INTB register could be the responsibility of either
module, but if the interrupt table is placed in the ROPI module, it must be placed in
RAM and initialized at runtime.

Function pointers as arguments

When a ROPI module passes a function pointer as an argument, only the offset of the
function pointer address is used, and the function pointer is not resolved until it is
dereferenced.

To get the ROPI base address, use the intrinsic function __c_base, like this:
#define ROPI_TO_ABS_FPTR(X) ((f_type) ((int) (x) + __c_base()))

This takes care of the address arithmetic and creates an absolute function pointer that
can be used in a function call.

Building and debugging the application

Include the symbol table generated by isymexport when you link the ROPI module,
so that it can call functions in the static module. If the static module uses its own RAM
objects, the two applications must be linked with disjoint RAM spaces.

To run the application in C-SPY, use the static program as the main project, and add a
C-SPY macro file to this project, that loads the ROPI application image:

execUserSetup ()
{

_ loadImage (“ropi_module path”, offset, 0);
}

The offset parameter to __loadImage is the difference between the linked base
address of the ROPI module and its final address (my._address in the static assembler
program, see Creating a static startup module, page 211). For more information about

213

Position-independent code and data

214

IAR C/C++ Development Guide
Compiling and linking for RX

the __loadImage macro, see the C-SPY® Debugging Guide for RXC-SPY®
Debugging Guide for RX.

You can also load the ROPI application image using the options on the
Project>Options>Debugger>Images page in the IDE.

RWPI

If more than one application runs concurrently through an operating system, they must
share the RAM memory. To make this possible, you can build your applications for
position-independent data, RWPI (Read-Write Position Independent). RWPI applies
only to data in RAM memory.

An application built for RWPI reserves one machine register for use as a base register
for all RAM data accesses. This register is locked and cannot be used for anything else.
The memory attribute for this memory area with its static base register is __sbrel, and
becomes the default memory. To declare variables that are not position-independent, for
example shared data and semaphores, use the memory attributes __datal6, _data24,
and __data32.

[J—

The static base register SB must be initialized before the RWPI program module is
called. By default, the static base register is R12 if you are also using ROPI and rR13
otherwise (or the highest available register if R13 has been locked for other purposes).

Limitations
There are some limitations to bear in mind when using RWPI:

e Constant pointers to ___sbrel objects cannot be used

® _ sbrel objects cannot be declared const.

Creating the RWPI module

To compile an application with position-independent data, use the compiler command
line option --rwpi.

To specify RWPI in the IDE, choose Project>Options>General Options>Target>
Read-write data.

When you link the application, all read-write data must be placed in a common block,
tagged movable, with the static base register SB. For example:

define movable block SBREL with static base SB, alignment = 4
{ rw section .sbrel*, rw section __DLIB_PERTHREAD }

The section __DLIB_PERTHREAD must be placed in RWPI memory (up to 256 Kbytes
anywhere in data32 memory).

Application-related considerations __¢

Changing ID code protection and option-setting memory

The RX microcontrollers use /D codes for boot mode ID code protection and for code
protection in the OCD emulator, and/or option-setting memory, a set of processor
registers for selecting the byte order, the state of the microcontroller after a reset, and
setting similar options.

Which symbols are provided as a means to change the default values of the ID codes and
processor registers varies between the RX architectures and device families. The header
of the file defaults. s, in the directory rx\src\1lib\rx\, lists the symbols and which
device families they are available for.

Note: If your device has option-setting memory, you must specify the linker option
--option_mem to ensure that the linker includes the correct libraries, see
--option_mem, page 334.

OVERRIDING THE DEFAULT VALUES

To override the default values for these symbols, use the #pragma public_equ
directive, for example like this:

#pragma public_equ="__ID_BYTES_1_4",0x12345678

To see how to do this in assembler language, using the EQU directive, study the file
defaults.s in the rx\src\1lib\rx\ directory.

The easiest way to override the default values is to add a copy of the file defaults.s
to your project in the IDE, and modify it.

For more information about ID code protection and option-setting memory, see the
Renesas Hardware User’s Manual for your microprocessor. See also public_equ, page
398.

Interaction between the tools and your application

The linking process and the application can interact symbolically in four ways:

e Creating a symbol by using the linker command line option --define_symbol.
The linker will create a public absolute constant symbol that the application can use
as a label, as a size, as setup for a debugger, etc.

e Creating an exported configuration symbol by using the command line option
--config_def or the configuration directive define symbol, and exporting the
symbol using the export symbol directive. ILINK will create a public absolute
constant symbol that the application can use as a label, as a size, as setup for a
debugger, etc.

215

Interaction between the tools and your application

One advantage of this symbol definition is that this symbol can also be used in
expressions in the configuration file, for example, to control the placement of
sections into memory ranges.

o Using the compiler operators __section_begin, __section_end, or
__section_size, or the assembler operators SFB, SFE, or SIZEOF on a named
section or block. These operators provide access to the start address, end address,
and size of a contiguous sequence of sections with the same name, or of a linker
block specified in the linker configuration file.

e The command line option --entry informs the linker about the start label of the
application. It is used by the linker as a root symbol and to inform the debugger
where to start execution.

The following lines illustrate how to use -D to create a symbol. If you need to use this
mechanism, add these options to your command line like this:

--define_symbol NrOfElements=10
--config_def MY_HEAP_SIZE=1024

The linker configuration file can look like this:

define memory Mem with size = 4G;
define region ROM = Mem: [from 0x00000 size 0x10000];
define region RAM = Mem: [from 0x20000 size 0x100007;

/* Export of symbol */
export symbol MY HEAP_SIZE;

/* Setup a heap area with a size defined by an ILINK option */
define block MyHEAP with size = MY_HEAP_SIZE, alignment = 4 {};

place in RAM { block MyHEAP };
Add these lines to your application source code:

#include <stdlib.h>

/* Use symbol defined by ILINK option to dynamically allocate an
array of elements with specified size. The value takes the form
of a label.

*/
extern int NrOfElements;

typedef char Elements;
Elements *GetElementArray ()
{

return malloc(sizeof (Elements) * (long) &NrOfElements) ;

IAR C/C++ Development Guide
216 Compiling and linking for RX

Application-related considerations __¢

/* Use a symbol defined by ILINK option, a symbol that in the
* configuration file was made available to the application.
*/

extern char MY_HEAP_SIZE;

/* Declare the section that contains the heap. */
#pragma section = "MYHEAP"

char *MyHeap ()

{
/* First get start of statically allocated section, */
char *p = __section_begin ("MYHEAP") ;

/* ...then we zero it, using the imported size. */
for (int i = 0; 1 < (int) &MY_HEAP_SIZE; ++i)
{
pli]l = 0;
}

return p;

Checksum calculation for verifying image integrity

This section contains information about checksum calculation:

e Briefly about checksum calculation
e Calculating and verifying a checksum

e Troubleshooting checksum calculation

For more information, see also The IAR ELF Tool—ielftool, page 511.

BRIEFLY ABOUT CHECKSUM CALCULATION

You can use a checksum to verify that the image is the same at runtime as when the
image’s original checksum was generated. In other words, to verify that the image has
not been corrupted.

This works as follows:

® You need an initial checksum.

You can either use the AR ELF Tool—ielftool—to generate an initial checksum
or you might have a third-party checksum available.

217

Checksum calculation for verifying image integrity

e You must generate a second checksum during runtime.

You can either add specific code to your application source code for calculating a
checksum during runtime or you can use some dedicated hardware on your device
for calculating a checksum during runtime.

e You must add specific code to your application source code for comparing the two
checksums and take an appropriate action if they differ.

If the two checksums have been calculated in the same way, and if there are no errors
in the image, the checksums should be identical. If not, you should first suspect that
the two checksums were not generated in the same way.

No matter which solutions you use for generating the two checksum, you must make
sure that both checksums are calculated in the exact same way. If you use ielftool for
the initial checksum and use a software-based calculation during runtime, you have full
control of the generation for both checksums. However, if you are using a third-party
checksum for the initial checksum or some hardware support for the checksum
calculation during runtime, there might be additional requirements that you must
consider.

For the two checksums, there are some choices that you must always consider and there
are some choices to make only if there are additional requirements. Still, all of the details
must be the same for both checksums.

Always consider:

® Checksum range

The memory range (or ranges) that you want to verify by means of checksums.
Typically, you might want to calculate a checksum for all ROM memory. However,
you might want to calculate a checksum only for specific ranges. Remember that:

e Itis OK to have several ranges for one checksum.

o The checksum must be calculated from the lowest to the highest address for
every memory range.

o Each memory range must be verified in the same order as defined, for example,
0x100-0x1FF,0x400-0x4FF is not the same as 0x400-0x4FF,0x100-0x1FF.

e If several checksums are used, you should place them in sections with unique
names and use unique symbol names.
e A checksum should never be calculated on a memory range that contains a
checksum or a software breakpoint.
e Algorithm and size of checksum

You should consider which algorithm is most suitable in your case. There are two
basic choices, Sum—a simple arithmetic algorithm—or CRC—which is the most
commonly used algorithm. For CRC there are different sizes to choose for the
checksum, 2, 4, or 8 bytes where the predefined polynomials are wide enough to suit

IAR C/C++ Development Guide
218 Compiling and linking for RX

Application-related considerations __¢

the size, for more error detecting power. The predefined polynomials work well for
most, but possibly not for all data sets. If not, you can specify your own polynomial.
If you just want a decent error detecting mechanism, use the predefined CRC
algorithm for your checksum size, typically CRC16 or CRC32.

Note: For an n-bit polynomial, the n:th bit is always considered to be set. For a 16-bit
polynomial—for example, CRC16—this means that 0x11021 is the same as
0x1021.

For more information about selecting an appropriate polynomial for data sets with
non-uniform distribution, see for example section 3.5.3 in Tannenbaum, A.S.,
Computer Networks, Prentice Hall 1981, ISBN: 0131646990.

o Fill
Every byte in the checksum range must have a well-defined value before the
checksum can be calculated. Typically, bytes with unknown values are pad bytes that

have been added for alignment. This means that you must specify which fill pattern
to be used during calculation, typically 0xFF or 0x00.

e Initial value

The checksum must always have an explicit initial value.
In addition to these mandatory details, there might be other details to consider.
Typically, this might happen when you have a third-party checksum, you want the
checksum be compliant with the Rocksoft™ checksum model, or when you use
hardware support for generating a checksum during runtime. ielftool also provides

support for controlling alignment, complement, bit order, byte order within words, and
checksum unit size.

CALCULATING AND VERIFYING A CHECKSUM

In this example procedure, a checksum is calculated for ROM memory from 0x8002 up
to 0x8FFF and the 2-byte calculated checksum is placed at 0x8000.

If you are using ielftool from the command line, you must first allocate a memory
location for the calculated checksum.

Note: If you instead are using the IDE (and not the command line), the _checksum,
_checksum_begin, and _checksum_end symbols, and the . checksum section are
automatically allocated when you calculate the checksum, which means that you can
skip this step.

You can allocate the memory location in two ways:

e By creating a global C/C++ or assembler constant symbol with a proper size,
residing in a specific section—in this example, . checksum

e By using the linker option --place_holder.

219

Checksum calculation for verifying image integrity

For example, to allocate a 2-byte space for the symbol _checksum in the section
.checksum, with alignment 4, specify:

--place_holder _checksum, 2, .checksum, 4
2 The .checksum section will only be included in your application if the section appears
to be needed. If the checksum is not needed by the application itself, use the linker

option --keep=_checksum (or the linker directive keep) to force the section to be
included.

Alternatively, choose Project>Options>Linker>Input and specify __checksum:

Options for node "projectd”

Categony: Factary Setting

General Options

Static Analysis

Runtime Checking
C/C++ Compiler |C°”ﬁ9 I Libmry| Input |C imizations | Advanced I Output I List
Assembler
Qutput Converter
Custom Build __checksum
Build Actions
Linker
Debugger

Simulator

| Keep symbols: (one per ling)

Raw binary image
File: Symbol: Section:

3 To control the placement of the . checksum section, you must modify the linker
configuration file. For example, it can look like this (note the handling of the block
CHECKSUM):

define block CHECKSUM { ro section .checksum };
place in ROM_region { ro, first block CHECKSUM };

Note: It is possible to skip this step, but in that case the . checksum section will
automatically be placed with other read-only data.

4 When configuring ielftool to calculate a checksum, there are some basic choices to
make:
o Checksum algorithm

Choose which checksum algorithm you want to use. In this example, the CRC16
algorithm is used.

e Memory range

Using the IDE, you can specify one memory range for which the checksum should
be calculated. From the command line, you can specify any ranges.

IAR C/C++ Development Guide
220 Compiling and linking for RX

Application-related considerations __¢

e Fill pattern

Specify a fill pattern—typically 0xFF or 0x00—for bytes with unknown values. The
fill pattern will be used in all checksum ranges.

e Specify an alignment that matches the alignment requirement.
For more information, see Briefly about checksum calculation, page 217.

Torun ielftool from the IDE, choose Project>Options>Linker>Checksum and
[I:E make your settings, for example:

Checksum

Fill unused code memary

Fill pattem: k00
Start address: 8002 End address: (x8FFF
Generate checksum

Checksum size: Alignment: 1
Algorithm: CRC16 > | |E11021

Result in full size "
Initial value

Bit order: MSE first * | [Useasinput

[Reverse byte order within word

Checksum unit size:

In the simplest case, you can ignore (or leave with default settings) these options:
Alignment, Complement, Bit order, Reverse byte order within word, and
Checksum unit size.

Torun ielftool from the command line, specify the command, for example, like this:

ielftool --fi11=0x00;0x8002-0x8FFF
--checksum=_checksum:2,crcl6;0x8002-0x8FFF sourceFile.out
destinationFile.out

Note: ielftool needs an unstripped input ELF image. If you use the linker option
--strip, remove it and use the ielftooloption --strip instead.

The checksum will be created later on when you build your project and will be
automatically placed in the specified symbol _checksum in the section . checksum.

5 You can specify several ranges instead of only one range.

If you are using the IDE, perform these steps:

o Choose Project>Options>Linker>Checksum and make sure to deselect Fill
unused code memory.

221

Checksum calculation for verifying image integrity

222

IAR C/C++ Development Guide
Compiling and linking for RX

o Choose Project>Options>Build Actions and specify the ranges together with the
rest of the required commands in the Post-build command line text field, for
example like this:

STOOLKIT_DIRS\bin\ielftool "S$STARGET_PATHS" "STARGET_PATHS"
--fill 0x00;0x0-0x3FF;0x8002-0x8FFF
--checksum=_checksum:2,crcl6; 0x0-0x3FF; 0x8002-0x8FFF

In your example, replace output . out with the name of your output file.

Category:

Options for node "projectd”

General Options

Static Analysis

Runtime Checking
C/C++ Compiler
Assembler
Qutput Converter
Custom Build
Build Actions
Linker
Debugger

Simulator

Build Actions Configuration

Pre-build command line:

Post-build command line:
STOOLKIT_DIRS bin‘iefftool fill Ge00; lel-0x3FF; (eB002-08FFF —ct |

If you are using the command line, specify the ranges, for example like this:

ielftool output.out output.out
--fill 0x00;0x0-0x3FF;0x8002-0x8FFF
—--checksum=_checksum:2,crcl6; 0x0-0x3FF; 0x8002-0x8FFF

In your example, replace output. out with the name of your output file.

Application-related considerations __¢

6 Add a function for checksum calculation to your source code. Make sure that the
function uses the same algorithm and settings as for the checksum calculated by
ielftool. For example, a variant of the crc16 algorithm with small memory footprint
(in contrast to the fast variant that uses more memory):

unsigned short SmallCrcl6 (uintlé6_t

sum,

unsigned char *p,
unsigned int len)

while (len--)

{

}

int 1i;
unsigned char byte = *(p++);
for (1 = 0; 1 < 8; ++1)

{

unsigned long oSum = sum;
sum <<= 1;
if (byte & 0x80)
sum |= 1;
if (oSum & 0x8000)
sum = 0x1021;
byte <<= 1;

return sum;

}

You can find the source code for this checksum algorithm in the rx\src\linker
directory of your product installation.

223

Checksum calculation for verifying image integrity

7 Make sure that your application also contains a call to the function that calculates the
checksum, compares the two checksums, and takes appropriate action if the checksum
values do not match.

This code gives an example of how the checksum can be calculated for your application
and to be compared with the ielftool generated checksum:

/* The calculated checksum */

/* Linker generated symbols */

extern unsigned short const _checksum;
extern int _checksum_begin;

extern int _checksum_end;

void TestChecksum()

{
unsigned short calc = 0;
unsigned char zeros[2] = {0, 0};

/* Run the checksum algorithm */

calc = SmallCrcl6 (0,
(unsigned char *) &_checksum_begin,
((unsigned char *) &_checksum_end -
((unsigned char *) &_checksum_begin)+1));

/* Fill the end of the byte sequence with zeros. */
calc = SmallCrclé6(calc, zeros, 2);

/* Test the checksum */

if (calc != checksum)

{
printf ("Incorrect checksum!\n");
abort () ; /* Failure */

/* Checksum is correct */

}
8 Build your application project and download it.

During the build, ielftool creates a checksum and places it in the specified symbol
_checksum in the section . checksum.

9 Choose Download and Debug to start the C-SPY Debugger.

During execution, the checksum calculated by ielftool and the checksum calculated
by your application should be identical.

IAR C/C++ Development Guide
224 Compiling and linking for RX

Application-related considerations __¢

TROUBLESHOOTING CHECKSUM CALCULATION

If the two checksums do not match, there are several possible causes. These are some
troubleshooting hints:

e If possible, start with a small example when trying to get the checksums to match.

e Verify that the exact same memory range or ranges are used in both checksum
calculations.

To help you do this, ielftool lists the ranges for which the checksum is calculated
on stdout about the exact addresses that were used and the order in which they were
accessed.

o Make sure that all checksum symbols are excluded from all checksum calculations.

Compare the checksum placement with the checksum range and make sure they do
not overlap. You can find information in the Build message window after ielftool
has generated a checksum.

e Verify that the checksum calculations use the same polynomial.

e Verify that the bits in the bytes are processed in the same order in both checksum
calculations, from the least to the most significant bit or the other way around. You
control this with the Bit order option (or from the command line, the -m parameter
of the --checksum option).

e If you are using the small variant of CRC, check whether you need to feed
additional bytes into the algorithm.

The number of zeros to add at the end of the byte sequence must match the size of
the checksum, in other words, one zero for a 1-byte checksum, two zeros for a 2-byte
checksum, four zeros for a 4-byte checksum, and eight zeros for an 8-byte checksum.

e Any breakpoints in flash memory change the content of the flash. This means that
the checksum which is calculated by your application will no longer match the
initial checksum calculated by ielftool. To make the two checksums match
again, you must disable all your breakpoints in flash and any breakpoints set in flash
by C-SPY internally. The stack plugin and the debugger option Run to both require
C-SPY to set breakpoints. Read more about possible breakpoint consumers in the
C-SPY® Debugging Guide for RX.

e By default, a symbol that you have allocated in memory by using the linker option
--place_holder is considered by C-SPY to be of the type int. If the size of the
checksum is different than the size of an int, you can change the display format of
the checksum symbol to match its size.

In the C-SPY Watch window, select the symbol and choose Show As from the
context menu. Choose the display format that matches the size of the checksum
symbol.

225

Patching symbol definitions using $Super$$ and $Sub$$

226

Patching symbol definitions using $Super$$ and $Sub$$

IAR C/C++ Development Guide
Compiling and linking for RX

Using the $subs$ and $Super$s special patterns, you can patch existing symbol
definitions in situations where you would otherwise not be able to modify the symbol,
for example, when a symbol is located in an external library or in ROM code.

The $supers$s special pattern identifies the original unpatched function used for calling
the original function directly.

The subs special pattern identifies the new function that is called instead of the
original function. You can use the subs special pattern to add processing before or
after the original function.

AN EXAMPLE USING THE $SUPER$$ AND $SUB$$ PATTERNS

The following example shows how to use the $Supers$ and $Sub$$ patterns to insert
a call to the function ExtraFunc () before the call to the legacy function foo ().

extern void ExtraFunc (void) ;
extern void $SuperS$S$foo(void) ;

/* this function is called instead of the original foo() */
void SubS$foo (void)
{

ExtraFunc () ; /* does some extra setup work */

SSupers$sfoo(); /* calls the original foo() function */
/* To avoid calling the original foo() function
* omit the $SupersS$foo(); function call.
*/

Efficient coding for
embedded applications

e Selecting data types
e Controlling data and function placement in memory
e Controlling compiler optimizations

e Facilitating good code generation

Selecting data types

For efficient treatment of data, you should consider the data types used and the most
efficient placement of the variables.

USING EFFICIENT DATA TYPES

The data types you use should be considered carefully, because this can have a large
impact on code size and code speed.

e Use auto variables. Stack accesses are cheaper than global accesses, and many auto
variables will end up in registers, making execution very fast.

e Use unsigned integer types where possible, unless your application really requires
signed values. Many loop optimizations will work much better with unsigned loop
variables.

e Try to avoid 64-bit data types, such as 64-bit double and long long.

e Bitfields with sizes other than 1 bit should be avoided because they will result in
inefficient code compared to bit operations.

e Use signed or unsigned int for array indexing.

e Using floating-point types without using the built-in floating-point unit is very
inefficient, both in terms of code size and execution speed.

e Declaring a pointer to const data tells the calling function that the data pointed to
will not change, which opens for better optimizations.

For information about representation of supported data types, pointers, and structures
types, see the chapter Data representation.

227

Selecting data types

228

IAR C/C++ Development Guide
Compiling and linking for RX

FLOATING-POINT TYPES

Using floating-point types on a microprocessor without a math coprocessor is
inefficient, both in terms of code size and execution speed. Therefore, you should
consider replacing code that uses floating-point operations with code that uses integers,
because these are more efficient.

The compiler supports two floating-point formats—32 and 64 bits. The 32-bit
floating-point type £1loat is more efficient in terms of code size and execution speed.
The 64-bit format double supports higher precision and larger numbers.

In the compiler, the floating-point type £f1oat always uses the 32-bit format. The format
used by the double floating-point type depends on the setting of the --double
compiler option.

Unless the application requires the extra precision that 64-bit floating-point numbers
give, we recommend using 32-bit floating-point numbers instead.

By default, a floating-point constant in the source code is treated as being of the type
double. This can cause innocent-looking expressions to be evaluated in double
precision. In the example below a is converted from a float to a double, the double
constant 1.0 is added and the result is converted back to a float:

double Test (float a)
{
return a + 1.0;

}

To treat a floating-point constant as a £1oat rather than as a double, add the suffix £
to it, for example:

double Test (float a)
{

return a + 1.0f;

}

For more information about floating-point types, see Basic data types—floating-point
types, page 353.

CASTING A FLOATING-POINT VALUE TO AN INTEGER

If you want the result of casting a £1oat to an int to be a rounded value instead of a
truncated value, use the intrinsic function __ROUND to insert a ROUND instruction
directly into the code. See ROUND, page 418.

ALIGNMENT OF ELEMENTS IN A STRUCTURE

The RX microcontroller requires that when accessing data in memory, the data must be
aligned. Each element in a structure must be aligned according to its specified type

Efficient coding for embedded applications __4

requirements. This means that the compiler might need to insert pad bytes to keep the
alignment correct.

There are situations when this can be a problem:

o There are external demands, for example, network communication protocols are
usually specified in terms of data types with no padding in between

® You need to save data memory.
For information about alignment requirements, see Alignment, page 345.

Use the #pragma pack directive or the __packed data type attribute for a tighter
layout of the structure. The drawback is that each access to an unaligned element in the
structure will use more code.

Alternatively, write your own customized functions for packing and unpacking
structures. This is a more portable way, which will not produce any more code apart
from your functions. The drawback is the need for two views on the structure data—
packed and unpacked.

For more information about the #pragma pack directive, see pack, page 397.

ANONYMOUS STRUCTS AND UNIONS

When a structure or union is declared without a name, it becomes anonymous. The effect
is that its members will only be seen in the surrounding scope.

Example

In this example, the members in the anonymous union can be accessed, in function F,
without explicitly specifying the union name:

struct S
{

char mTag;

union
{
long mL;
float mF;
}i
} Sst;

void F(void)
{
St.mL = 5;

229

Controlling data and function placement in memory

The member names must be unique in the surrounding scope. Having an anonymous
struct or union at file scope, as a global, external, or static variable is also allowed.
This could for instance be used for declaring I/O registers, as in this example:

__no_init volatile
union
{
unsigned char IOPORT;
struct
{
unsigned char Way: 1;
unsigned char Out: 1;
}i
} e 8;

/* The variables are used here. */
void Test (void)
{

IOPORT = 0;

Way = 1;

out = 1;
}
This declares an I/O register byte TOPORT at address 8. The 1/O register has 2 bits
declared, way and out. Note that both the inner structure and the outer union are
anonymous.

Anonymous structures and unions are implemented in terms of objects named after the
first field, with a prefix _a_ to place the name in the implementation part of the
namespace. In this example, the anonymous union will be implemented through an
object named _A_IOPORT.

Controlling data and function placement in memory

IAR C/C++ Development Guide
230 Compiling and linking for RX

The compiler provides different mechanisms for controlling placement of functions and
data objects in memory. To use memory efficiently, you should be familiar with these
mechanisms and know which one is best suited for different situations. You can use:

e Data models

By selecting a data model, you can control the default memory placement of
variables and constants. For more information, see Data models, page 72.

Efficient coding for embedded applications __4

e Data memory attributes

Using IAR-specific keywords or pragma directives, you can override the default
placement of variables and constants. For more information, see Using data memory
attributes, page 69.

o The @ operator and the #pragma location directive for absolute placement.

Using the @ operator or the #pragma location directive, you can place individual
global and static variables at absolute addresses. For more information, see Data
placement at an absolute location, page 231.

o The e operator and the #pragma location directive for section placement.

Using the @ operator or the #pragma location directive, you can place individual
functions, variables, and constants in named sections. The placement of these
sections can then be controlled by linker directives. For more information, see Data
and function placement in sections, page 232.

DATA PLACEMENT AT AN ABSOLUTE LOCATION

The @ operator, alternatively the #pragma location directive, can be used for placing
global and static variables at absolute addresses.

To place a variable at an absolute address, the argument to the @ operator and the
#pragma location directive should be a literal number, representing the actual
address. The absolute location must fulfill the alignment requirement for the variable
that should be located.

Note: All declarations of __no_init variables placed at an absolute address are
tentative definitions. Tentatively defined variables are only kept in the output from the
compiler if they are needed in the module being compiled. Such variables will be
defined in all modules in which they are used, which will work as long as they are
defined in the same way. The recommendation is to place all such declarations in header
files that are included in all modules that use the variables.

Other variables placed at an absolute address use the normal distinction between
declaration and definition. For these variables, you must provide the definition in only
one module, normally with an initializer. Other modules can refer to the variable by
using an extern declaration, with or without an explicit address.

Examples

In this example, a __no_init declared variable is placed at an absolute address. This
is useful for interfacing between multiple processes, applications, etc:

__no_init volatile char alpha @ 0x2000;/* OK */

231

Controlling data and function placement in memory

The next example contains a const declared object which is not initialized. The object
is placed in ROM. This is useful for configuration parameters, which are accessible from
an external interface.

#pragma location=0x2004
__no_init const int beta; /* OK */

The actual value must be set by other means. The typical use is for configurations where
the values are loaded to ROM separately, or for special function registers that are
read-only.

This shows incorrect usage:

__no_init int epsilon @ 0x2007; /* Error, misaligned. */

C++ considerations

In C++, module scoped const variables are static (module local), whereas in C they are
global. This means that each module that declares a certain const variable will contain
a separate variable with this name. If you link an application with several such modules
all containing (via a header file), for instance, the declaration:

volatile const __no_init int x @ 0x100; /* Bad in C++ */
the linker will report that more than one variable is located at address 0x100.

To avoid this problem and make the process the same in C and C++, you should declare
these variables extern, for example:

/* The extern keyword makes x public. */
extern volatile const __no_init int x @ 0x100;

Note: C++ static member variables can be placed at an absolute address just like any
other static variable.

DATA AND FUNCTION PLACEMENT IN SECTIONS

The following method can be used for placing data or functions in named sections other
than default:

o The e operator, alternatively the #pragma location directive, can be used for
placing individual variables or individual functions in named sections. The named
section can either be a predefined section, or a user-defined section.

C++ static member variables can be placed in named sections just like any other static
variable.

If you use your own sections, in addition to the predefined sections, the sections must
also be defined in the linker configuration file.

IAR C/C++ Development Guide
232 Compiling and linking for RX

Efficient coding for embedded applications __4

Note: Take care when explicitly placing a variable or function in a predefined section
other than the one used by default. This is useful in some situations, but incorrect
placement can result in anything from error messages during compilation and linking to
a malfunctioning application. Carefully consider the circumstances—there might be
strict requirements on the declaration and use of the function or variable.

The location of the sections can be controlled from the linker configuration file.

For more information about sections, see the chapter Section reference.

Examples of placing variables in named sections

In the following examples, a data object is placed in a user-defined section. If no
memory attribute is specified, the variable will, like any other variable, be treated as if
itis located in the default memory. Note that you must as always ensure that the section
is placed in the appropriate memory area when linking.

__no_init int alpha @ "MY_NOINIT"; /* OK */

#pragma location="MY_CONSTANTS"

const int beta = 42; /* OK */
const int gamma @ "MY_CONSTANTS" = 17; /* OK */
int theta @ "MY_ZEROS"; /* OK */
int phi @ "MY_INITED" = 4711; /* OK */

The linker will normally arrange for the correct type of initialization for each variable.
If you want to control or suppress automatic initialization, you can use the initialize
and do not initialize directives in the linker configuration file.

As usual, you can use memory attributes to select a memory for the variable. Note that
you must as always ensure that the section is placed in the appropriate memory area
when linking.

__datal6é __no_init int alpha @ "MY_DATAl6_NOINIT";/* Placed in
datal6*/
Examples of placing functions in named sections

void f(void) @ "MY_FUNCTIONS";
void g(void) @ "MY_FUNCTIONS"
{
}

#pragma location="MY_FUNCTIONS"
void h(void) ;

233

Controlling compiler optimizations

234

Controlling compiler optimizations

IAR C/C++ Development Guide
Compiling and linking for RX

The compiler performs many transformations on your application to generate the best
possible code. Examples of such transformations are storing values in registers instead
of memory, removing superfluous code, reordering computations in a more efficient
order, and replacing arithmetic operations by cheaper operations.

The linker should also be considered an integral part of the compilation system, because
some optimizations are performed by the linker. For instance, all unused functions and
variables are removed and not included in the final output.

SCOPE FOR PERFORMED OPTIMIZATIONS

You can decide whether optimizations should be performed on your whole application
or on individual files. By default, the same types of optimizations are used for an entire
project, but you should consider using different optimization settings for individual files.
For example, put code that must execute quickly into a separate file and compile it for
minimal execution time, and the rest of the code for minimal code size. This will give a
small program, which is still fast enough where it matters.

You can also exclude individual functions from the performed optimizations. The
#pragma optimize directive allows you to either lower the optimization level, or
specify another type of optimization to be performed. See optimize, page 395, for
information about the pragma directive.

MULTI-FILE COMPILATION UNITS

In addition to applying different optimizations to different source files or even functions,
you can also decide what a compilation unit consists of—one or several source code
files.

By default, a compilation unit consists of one source file, but you can also use multi-file
compilation to make several source files in a compilation unit. The advantage is that
interprocedural optimizations such as inlining, cross call, and cross jump have more
source code to work on. Ideally, the whole application should be compiled as one
compilation unit. However, for large applications this is not practical because of
resource restrictions on the host computer. For more information, see --mfc, page 285.

Note: Only one object file is generated, and therefore all symbols will be part of that
object file.

If the whole application is compiled as one compilation unit, it is useful to make the
compiler also discard unused public functions and variables before the interprocedural
optimizations are performed. Doing this limits the scope of the optimizations to
functions and variables that are actually used. For more information, see

--discard unused publics, page 275.

Efficient coding for embedded applications __4

OPTIMIZATION LEVELS

The compiler supports different levels of optimizations. This table lists optimizations
that are typically performed on each level:

Optimization level

Description

None (Best debug support)

Low

Medium

High (Balanced)

Variables live through their entire scope
Dead code elimination

Redundant label elimination

Redundant branch elimination

Same as above but variables only live for as long as they are
needed, not necessarily through their entire scope

Same as above, and:

Live-dead analysis and optimization

Code hoisting

Register content analysis and optimization
Common subexpression elimination
Static clustering

Same as above, and:

Peephole optimization

Cross jumping

Instruction scheduling (when optimizing for speed)
Cross call (when optimizing for size)

Loop unrolling

Function inlining

Code motion

Type-based alias analysis

Table 21: Compiler optimization levels

Note: Some of the performed optimizations can be individually enabled or disabled. For
more information, see Fine-tuning enabled transformations, page 236.

A high level of optimization might result in increased compile time, and will also most
likely make debugging more difficult, because it is less clear how the generated code
relates to the source code. For example, at the low, medium, and high optimization
levels, variables do not live through their entire scope, which means processor registers
used for storing variables can be reused immediately after they were last used. Due to
this, the C-SPY Watch window might not be able to display the value of the variable
throughout its scope, or even occasionally display an incorrect value. At any time, if you
experience difficulties when debugging your code, try lowering the optimization level.

235

Controlling compiler optimizations

236

IAR C/C++ Development Guide
Compiling and linking for RX

SPEED VERSUS SIZE

At the high optimization level, the compiler balances between size and speed
optimizations. However, it is possible to fine-tune the optimizations explicitly for either
size or speed. They only differ in what thresholds that are used—speed will trade size
for speed, whereas size will trade speed for size.

If you use the optimization level High speed, the --no_size_constraints compiler
option relaxes the normal restrictions for code size expansion and enables more
aggressive optimizations.

You can choose an optimization goal for each module, or even individual functions,
using command line options and pragma directives (see -O, page 294 and optimize, page
395). For a small embedded application, this makes it possible to achieve acceptable
speed performance while minimizing the code size—Typically, only a few places in the
application need to be fast, such as the most frequently executed inner loops, or the
interrupt handlers.

Rather than compiling the whole application with High (Balanced) optimization, you
can use High (Size) in general, but override this to get High (Speed) optimization only
for those functions where the application needs to be fast.

Note: Because of the unpredictable way in which different optimizations interact, where
one optimization can enable other optimizations, sometimes a function becomes smaller
when compiled with High (Speed) optimization than if High (Size) is used. Also, using
multi-file compilation (see --mfc, page 285) can enable many optimizations to improve
both speed and size performance. It is recommended that you experiment with different
optimization settings so that you can pick the best ones for your project.

FINE-TUNING ENABLED TRANSFORMATIONS

At each optimization level you can disable some of the transformations individually. To
disable a transformation, use either the appropriate option, for instance the command
line option --no_inline, alternatively its equivalent in the IDE Function inlining, or
the #pragma optimize directive. These transformations can be disabled individually:
Common subexpression elimination

Loop unrolling

Function inlining

Code motion

Type-based alias analysis

Static clustering

Cross call

Instruction scheduling

Efficient coding for embedded applications __4

Common subexpression elimination

Redundant re-evaluation of common subexpressions is by default eliminated at
optimization levels Medium and High. This optimization normally reduces both code
size and execution time. However, the resulting code might be difficult to debug.

Note: This option has no effect at optimization levels None and Low.

For more information about the command line option, see --no_cse, page 287.

Loop unrolling

Loop unrolling means that the code body of a loop, whose number of iterations can be
determined at compile time, is duplicated. Loop unrolling reduces the loop overhead by
amortizing it over several iterations.

This optimization is most efficient for smaller loops, where the loop overhead can be a
substantial part of the total loop body.

Loop unrolling, which can be performed at optimization level High, normally reduces
execution time, but increases code size. The resulting code might also be difficult to
debug.

The compiler heuristically decides which loops to unroll. Only relatively small loops
where the loop overhead reduction is noticeable will be unrolled. Different heuristics are
used when optimizing for speed, size, or when balancing between size and speed.

Note: This option has no effect at optimization levels None, Low, and Medium.
For information about the related pragma directive, see unroll, page 403.

To disable loop unrolling, use the command line option --no_unroll, see --no_unroll,
page 293.

Function inlining

Function inlining means that a function, whose definition is known at compile time, is
integrated into the body of its caller to eliminate the overhead of the call. This
optimization normally reduces execution time, but might increase the code size.

For more information, see /nlining functions, page 84.

To disable function inlining, use the command line option --no_inline, see
--no_inline, page 288.

Code motion

Evaluation of loop-invariant expressions and common subexpressions are moved to
avoid redundant re-evaluation. This optimization, which is performed at optimization

237

Controlling compiler optimizations

238

IAR C/C++ Development Guide
Compiling and linking for RX

level Medium and above, normally reduces code size and execution time. The resulting
code might however be difficult to debug.

Note: This option has no effect at optimization levels below Medium.

For more information about the command line option, see --no_code motion, page 287.

Type-based alias analysis

When two or more pointers reference the same memory location, these pointers are said
to be aliases for each other. The existence of aliases makes optimization more difficult
because it is not necessarily known at compile time whether a particular value is being
changed.

Type-based alias analysis optimization assumes that all accesses to an object are
performed using its declared type or as a char type. This assumption lets the compiler
detect whether pointers can reference the same memory location or not.

Type-based alias analysis is performed at optimization level High. For application code
conforming to standard C or C++ application code, this optimization can reduce code
size and execution time. However, non-standard C or C++ code might result in the
compiler producing code that leads to unexpected behavior. Therefore, it is possible to
turn this optimization off.

Note: This option has no effect at optimization levels None, Low, and Medium.

For more information about the command line option, see --no_tbaa, page 291.

Example

short F(short *pl, long *p2)
{

*p2 = 0;

*pl = 1;

return *p2;

}

With type-based alias analysis, it is assumed that a write access to the short pointed to
by p1 cannot affect the 1ong value that p2 points to. Therefore, it is known at compile
time that this function returns 0. However, in non-standard-conforming C or C++ code
these pointers could overlap each other by being part of the same union. If you use
explicit casts, you can also force pointers of different pointer types to point to the same
memory location.

Static clustering

When static clustering is enabled, static and global variables that are defined within the
same module are arranged so that variables that are accessed in the same function are

Efficient coding for embedded applications __4

stored close to each other. This makes it possible for the compiler to use the same base
pointer for several accesses.

Note: This option has no effect at optimization levels None and Low.

For more information about the command line option, see --no_clustering, page 286.

Cross call

Common code sequences are extracted to local subroutines. This optimization, which is
performed at optimization level High, can reduce code size, sometimes dramatically, on
behalf of execution time and stack size. The resulting code might however be difficult
to debug. This optimization cannot be disabled using the #pragma optimize directive.

Note: This option has no effect at optimization levels None, Low, and Medium, unless
the option --do_cross_call is used.

For more information about related command line options, see --no_cross_call, page
287.

Instruction scheduling

The compiler features an instruction scheduler to increase the performance of the
generated code. To achieve that goal, the scheduler rearranges the instructions to
minimize the number of pipeline stalls emanating from resource conflicts within the
microprocessor. Note that not all cores benefit from scheduling. The resulting code
might be difficult to debug.

Note: This option has no effect at optimization levels None, Low and Medium.

For more information about the command line option, see --no_scheduling, page 290.

Facilitating good code generation
This section contains hints on how to help the compiler generate good code:

Writing optimization-friendly source code
Aligning the function entry point

Register locking

Saving stack space and RAM memory
Function prototypes

Integer types and bit negation

Protecting simultaneously accessed variables

Accessing special function registers

239

Facilitating good code generation

Passing values between C and assembler objects

Non-initialized variables

WRITING OPTIMIZATION-FRIENDLY SOURCE CODE

The following is a list of programming techniques that will, when followed, enable the
compiler to better optimize the application.

Local variables—auto variables and parameters—are preferred over static or global
variables. The reason is that the optimizer must assume, for example, that called
functions can modify non-local variables. When the life spans for local variables
end, the previously occupied memory can then be reused. Globally declared
variables will occupy data memory during the whole program execution.

Avoid taking the address of local variables using the & operator. This is inefficient
for two main reasons. First, the variable must be placed in memory, and therefore
cannot be placed in a processor register. This results in larger and slower code.
Second, the optimizer can no longer assume that the local variable is unaffected
over function calls.

Module-local variables—variables that are declared static—are preferred over
global variables (non-static). Also, avoid taking the address of frequently accessed
static variables.

The compiler is capable of inlining functions, see Function inlining, page 237. To
maximize the effect of the inlining transformation, it is good practice to place the
definitions of small functions called from more than one module in the header file
rather than in the implementation file. Alternatively, you can use multi-file
compilation. For more information, see Multi-file compilation units, page 234.

Avoid using inline assembler without operands and clobbered resources. Instead,
use SFRs or intrinsic functions if available. Otherwise, use inline assembler with
operands and clobbered resources or write a separate module in assembler
language. For more information, see Mixing C and assembler, page 163.

SAVING STACK SPACE AND RAM MEMORY

The following is a list of programming techniques that save memory and stack space:

If stack space is limited, avoid long call chains and recursive functions.

Avoid using large non-scalar types, such as structures, as parameters or return type.
To save stack space, you should instead pass them as pointers or, in C++, as
references.

ALIGNING THE FUNCTION ENTRY POINT

The runtime performance of a function depends on the entry address assigned by the
linker. To make the function execution time less dependent on the entry address, the

IAR C/C++ Development Guide
240 Compiling and linking for RX

Efficient coding for embedded applications __4

alignment of the function entry point can be specified explicitly using a compiler option,
see --align_func, page 267. A higher alignment does not necessarily make the function
faster, but the execution time will be more predictable.

REGISTER LOCKING

Register locking means that the compiler can be instructed never to touch some
processor registers. This can be useful in several situations. For example:

e Some parts of a system could be written in assembler language to improve
execution speed. These parts could be given dedicated processor registers.

o The register could be used by an operating system, or by other third-party software.
Registers are locked using the --1ock compiler option. See --lock, page 284.

In general, if two modules are used together in the same application, they should have
the same registers locked. The reason is that registers that can be locked could also be
used as parameter registers when calling functions. In other words, the calling
convention will depend on which registers that are locked.

To ensure that you only link modules with the same registers locked, you can use the
__lockRn runtime model attribute; see Checking module consistency, page 119.

FUNCTION PROTOTYPES
It is possible to declare and define functions using one of two different styles:

e Prototyped
e Kernighan & Ritchie C (K&R C)

Both styles are valid C, however it is strongly recommended to use the prototyped style,
and provide a prototype declaration for each public function in a header that is included
both in the compilation unit defining the function and in all compilation units using it.

The compiler will not perform type checking on parameters passed to functions declared
using K&R style. Using prototype declarations will also result in more efficient code in
some cases, as there is no need for type promotion for these functions.

To make the compiler require that all function definitions use the prototyped style, and
that all public functions have been declared before being defined, use the
Project>Options>C/C++ Compiler>Language 1>Require prototypes compiler
option (--require_prototypes).

241

Facilitating good code generation

242

IAR C/C++ Development Guide
Compiling and linking for RX

Prototyped style
In prototyped function declarations, the type for each parameter must be specified.

int Test(char, int); /* Declaration */

int Test(char ch, int i) /* Definition */
{

return i + ch;

Kernighan & Ritchie style

In K&R style—pre-Standard C—it is not possible to declare a function prototyped.
Instead, an empty parameter list is used in the function declaration. Also, the definition
looks different.

For example:

int Test(); /* Declaration */

int Test(ch, i) /* Definition */
char ch;

int 1i;

{

return i + ch;

INTEGER TYPES AND BIT NEGATION

In some situations, the rules for integer types and their conversion lead to possibly
confusing behavior. Things to look out for are assignments or conditionals (test
expressions) involving types with different size, and logical operations, especially bit
negation. Here, fypes also includes types of constants.

In some cases there might be warnings—for example, for constant conditional or
pointless comparison—in others just a different result than what is expected. Under
certain circumstances the compiler might warn only at higher optimizations, for
example, if the compiler relies on optimizations to identify some instances of constant
conditionals. In this example, an 8-bit character, a 32-bit integer, and two’s complement
is assumed:

void F1 (unsigned char cl)
{
if (cl == ~0x80)

7

Efficient coding for embedded applications __4

Here, the test is always false. On the right hand side, 0x80 is 0x00000080, and
~0x00000080 becomes 0xFFFFFF7F. On the left hand side, c1 is an 8-bit unsigned
character in the range 0-255, which can never be equal to 0xFFFFFF7F. Furthermore,
it cannot be negative, which means that the integral promoted value can never have the
topmost 8 bits set.

PROTECTING SIMULTANEOUSLY ACCESSED VARIABLES

Variables that are accessed asynchronously, for example, by interrupt routines or by
code executing in separate threads, must be properly marked and have adequate
protection. The only exception to this is a variable that is always read-only.

To mark a variable properly, use the volatile keyword. This informs the compiler,
among other things, that the variable can be changed from other threads. The compiler
will then avoid optimizing on the variable—for example, keeping track of the variable
in registers—will not delay writes to it, and be careful accessing the variable only the
number of times given in the source code.

For sequences of accesses to variables that you do not want to be interrupted, use the
__monitor keyword. This must be done for both write and read sequences, otherwise
you might end up reading a partially updated variable. Accessing a small-sized
volatile variable can be an atomic operation, but you should not rely on it unless you
continuously study the compiler output. It is safer to use the __monitor keyword to
ensure that the sequence is an atomic operation. For more information, see __monitor,
page 368.

For more information about the volatile type qualifier and the rules for accessing
volatile objects, see Declaring objects volatile, page 358.
ACCESSING SPECIAL FUNCTION REGISTERS

Specific header files for several RX devices are included in the IAR product installation.
The header files are named iodevice.h and define the processor-specific special
function registers (SFRs).

Note: Each header file contains one section used by the compiler, and one section used
by the assembler.

243

Facilitating good code generation

SFRs with bitfields are declared in the header file. This example is from

ior5£56108.h:

no_init volatile union

{

unsigned short mwctl2;

struct

{
unsigned
unsigned
unsigned
unsigned
unsigned

short
short
short
short
short

edr: 1;
edw: 1;
lee: 2;
lemd: 2;
lepl: 2

244

IAR C/C++ Development Guide
Compiling and linking for RX

} mwctl2bit;
} e 8;

/* By including the appropriate include file in your code,

* it i1s possible to access either the whole register or any
* individual bit (or bitfields) from C code as follows.

*/

void Test ()

{
/* Whole register access */
mwctl2 = 0x1234;

/* Bitfield accesses */
mwctl2bit.edw = 1;
mwctl2bit.lepl = 3;

}

You can also use the header files as templates when you create new header files for other
RX devices. For information about the @ operator, see Controlling data and function
placement in memory, page 230.

Efficient coding for embedded applications __4

PASSING VALUES BETWEEN C AND ASSEMBLER OBJECTS

The following example shows how you in your C source code can use inline assembler
to set and get values from a special purpose register:

static unsigned long get_INTB(void)

{
unsigned long value;
asm("mvfc INTB,%0 ;hej" : "=r"(value));
return value;

}

static void set_INTB(unsigned long value)

{

asm("mvtc %0,INTB" : : "r"(value));

}

The general purpose register is used for getting and setting the value of the special
purpose register INTB. The same method can be used also for accessing other special
purpose registers and specific instructions.

To read more about inline assembler, see Inline assembler, page 165.

NON-INITIALIZED VARIABLES

Normally, the runtime environment will initialize all global and static variables when the
application is started.

The compiler supports the declaration of variables that will not be initialized, using the
__no_init type modifier. They can be specified either as a keyword or using the
#pragma object_attribute directive. The compiler places such variables in a
separate section, according to the specified memory keyword.

For __no_init, the const keyword implies that an object is read-only, rather than that
the object is stored in read-only memory. It is not possible to give a __no_init object
an initial value.

Variables declared using the __no_init keyword could, for example, be large input
buffers or mapped to special RAM that keeps its content even when the application is
turned off.

For more information, see __ no_init, page 371.

Note: To use this keyword, language extensions must be enabled, see -e, page 277. For
more information, see object attribute, page 394.

245

Facilitating good code generation

IAR C/C++ Development Guide
246 Compiling and linking for RX

Part 2. Reference
information

This part of the IAR C/C++ Development Guide for RX contains these

chapters:

e External interface details

e Compiler options

e Linker options

e Data representation

e Extended keywords

e Pragma directives

e Intrinsic functions

e The preprocessor

e C/C++ standard library functions

e The linker configuration file

e Section reference

e The stack usage control file

e |AR utilities

e Implementation-defined behavior for Standard C++
e Implementation-defined behavior for Standard C

e Implementation-defined behavior for C89

.hﬁhhhhm

247

ARARAIad

248

External interface

Invocation syntax

Include file search procedure
Compiler output

Linker output

Text encodings

Reserved identifiers

Diagnostics

details

Invocation syntax

You can use the compiler and linker either from the IDE or from the command line. See
the IDE Project Management and Building Guide for RX for information about using

the build tools from the IDE.

COMPILER INVOCATION SYNTAX

The invocation syntax for the compiler is:

iccrx [options] [sourcefile] [options]

For example, when compiling the source file prog. c, use this command to generate an

object file with debug information:

iccrx prog.c --debug

The source file can be a C or C++ file, typically with the filename extension c or cpp,
respectively. If no filename extension is specified, the file to be compiled must have the

extension c.

Generally, the order of options on the command line, both relative to each other and to
the source filename, is not significant. There is, however, one exception: when you use
the -I option, the directories are searched in the same order as they are specified on the

command line.

249

Invocation syntax

250

IAR C/C++ Development Guide
Compiling and linking for RX

If you run the compiler from the command line without any arguments, the compiler
version number and all available options including brief descriptions are directed to
stdout and displayed on the screen.

LINKER INVOCATION SYNTAX

The invocation syntax for the linker is:

ilinkrx [arguments]

Each argument is either a command line option, an object file, or a library.

For example, when linking the object file prog. o, use this command:

ilinkrx prog.o --config configfile

If no filename extension is specified for the linker configuration file, the configuration

file must have the extension icf.

Generally, the order of arguments on the command line is not significant. There is,
however, one exception: when you supply several libraries, the libraries are searched in
the same order that they are specified on the command line. Any default libraries are
always searched last.

The output executable image will be placed in a file named a . out, unless the linker
option --output or -o is used.

If you run ILINK from the command line without any arguments, the ILINK version
number and all available options including brief descriptions are directed to stdout and
displayed on the screen.

PASSING OPTIONS
There are three different ways of passing options to the compiler and linker:

e Directly from the command line

Specify the options on the command line after the iccrx or ilinkrx commands,
see Invocation syntax, page 249.

o Via environment variables

The compiler or linker automatically appends the value of the environment variables
to every command line, see Environment variables, page 251.

e Via a text file, using the - £ option, see -f, page 279.
For general guidelines for the options syntax, an options summary, and a detailed

description of each option, see Compiler options, page 259 and Linker options, page
311.

External interface details ___o

ENVIRONMENT VARIABLES
These environment variables can be used with the compiler:

Environment variable Description

C_INCLUDE Specifies directories to search for include files, for example:
C_INCLUDE=c: \my_programs\embedded
workbench .n\rx\inc;c:\headers

QCCRX Specifies command line options, for example: QCCRX=-1A
asm.lst

Table 22: Compiler environment variables

This environment variable can be used with ILINK:

Environment variable Description

ILINKRX_CMD_LINE Specifies command line options, for example:
ILINKRX_CMD_LINE=--config full.icf
--silent

Table 23: ILINK environment variables

Include file search procedure
This is a detailed description of the compiler’s #include file search procedure:
e The string found between the " " and <> in the #include directive is used verbatim
as a source file name.

o If the name of the #include file is an absolute path specified in angle brackets or
double quotes, that file is opened.

e If the compiler encounters the name of an #include file in angle brackets, such as:
#include <stdio.h>
it searches these directories for the file to include:

1 The directories specified with the -I option, in the order that they were
specified, see -/, page 281.

2 The directories specified using the C_INCLUDE environment variable, if any, see
Environment variables, page 251.

3 The automatically set up library system include directories. See --dlib_config,
page 275.

e If the compiler encounters the name of an #include file in double quotes, for
example:

#include "vars.h"

251

Compiler output

252

it searches the directory of the source file in which the #include statement occurs,
and then performs the same sequence as for angle-bracketed filenames.

If there are nested #include files, the compiler starts searching the directory of the file
that was last included, iterating upwards for each included file, searching the source file
directory last. For example:

src.c in directory dir\src
#include "src.h"

src.h in directory dir\include
#include "config.h"

When dir\exe is the current directory, use this command for compilation:
iccrx ..\src\src.c -I..\include -I..\debugconfig

Then the following directories are searched in the order listed below for the file
config.h, which in this example is located in the dir\debugconfig directory:

dir\include Current file is src . h.

dir\src File including current file (src.c).
dir\include As specified with the first - option.
dir\debugconfig As specified with the second -I option.

Use angle brackets for standard header files, like stdio.h, and double quotes for files
that are part of your application.

Note: Both \ and / can be used as directory delimiters.

For more information, see Overview of the preprocessor, page 423.

Compiler output

IAR C/C++ Development Guide
Compiling and linking for RX

The compiler can produce the following output:

e A linkable object file

The object files produced by the compiler use the industry-standard format ELF. By
default, the object file has the filename extension o.

e Optional list files

Various kinds of list files can be specified using the compiler option -1, see -/, page
282. By default, these files will have the filename extension 1st.

External interface details ___o

e Optional preprocessor output files

A preprocessor output file is produced when you use the --preprocess option. The
file will have the filename extension i, by default.

e Diagnostic messages

Diagnostic messages are directed to the standard error stream and displayed on the
screen, and printed in an optional list file. For more information about diagnostic
messages, see Diagnostics, page 256.

e Error return codes

These codes provide status information to the operating system which can be tested
in a batch file, see Error return codes, page 258.

o Size information

Information about the generated amount of bytes for functions and data for each
memory is directed to the standard output stream and displayed on the screen. Some
of the bytes might be reported as shared.

Shared objects are functions or data objects that are shared between modules. If any
of these occur in more than one module, only one copy is retained. For example, in
some cases inline functions are not inlined, which means that they are marked as
shared, because only one instance of each function will be included in the final
application. This mechanism is sometimes also used for compiler-generated code or
data not directly associated with a particular function or variable, and when only one
instance is required in the final application.

Linker output

The linker can produce the following output:

e An absolute executable image

The final output produced by the linker is an absolute object file containing the
executable image that can be put into an EPROM, downloaded to a hardware
emulator, or executed on your PC using the IAR C-SPY Debugger Simulator. By
default, the file has the filename extension out. The output format is always in ELF,
which optionally includes debug information in the DWARF format.

e Optional logging information

During operation, the linker logs its decisions on stdout, and optionally to a file.
For example, if a library is searched, whether a required symbol is found in a library
module, or whether a module will be part of the output. Timing information for each
ILINK subsystem is also logged.

253

Text encodings

254

Optional map files

A linker map file—containing summaries of linkage, runtime attributes, memory,
and placement, as well as an entry list— can be generated by the linker option --map,
see --map, page 329. By default, the map file has the filename extension map.

Diagnostic messages

Diagnostic messages are directed to stderr and displayed on the screen, as well as
printed in the optional map file. For more information about diagnostic messages, see
Diagnostics, page 256.

Error return codes

The linker returns status information to the operating system which can be tested in
a batch file, see Error return codes, page 258.

Size information about used memory and amount of time

Information about the generated number of bytes for functions and data for each
memory is directed to stdout and displayed on the screen.

Text encodings

IAR C/C++ Development Guide

Compiling and linking for RX

Text files read or written by IAR tools can use a variety of text encodings:

Raw

This is a backward-compatibility mode for C/C++ source files. Only 7-bit ASCII
characters can be used in symbol names. Other characters can only be used in
comments, literals, etc. This is the default source file encoding if there is no Byte
Order Mark (BOM).

The system default locale

The locale that you have configured your Windows OS to use.

UTF-8

Unicode encoded as a sequence of §-bit bytes, with or without a Byte Order Mark.
UTF-16

Unicode encoded as a sequence of 16-bit words using a big-endian or little-endian
representation. These files always start with a Byte Order Mark.

In any encoding other than Raw, you can use Unicode characters of the appropriate kind
(alphabetic, numeric, etc) in the names of symbols.

When an IAR tool reads a text file with a Byte Order Mark, it will use the appropriate
Unicode encoding, regardless of the any options set for input file encoding.

External interface details ___o

For source files without a Byte Order Mark, the compiler will use the Raw encoding,
unless you specify the compiler option --source_encoding. See --source_encoding,
page 302.

For other text input files, like the extended command line (. xc1 files), without a Byte
Order Mark, the IAR tools will use the system default locale unless you specity the
compiler option --ut£8_text_in, in which case UTF-8 will be used. See

--utf8 text in, page 307.

For compiler list files and preprocessor output, the same encoding as the main source
file will be used by default. Other tools that generate text output will use the UTF-8
encoding by default. You can change this by using the compiler options --text_out
and --no_bom. See --fext_out, page 304 and --no_bom, page 286.

CHARACTERS AND STRING LITERALS

When you compile source code, characters (x) and string literals (xx) are handled as

follows:

Txt, xx" Characters in untyped character and string literals are copied
verbatim, using the same encoding as in the source file.

u8" xx" Characters in UTF-8 string literals are converted to UTF-8.

u'x', utxx" Characters in UTF-16 character and string literals are converted
to UTF-16.

U'x', U"xx" Characters in UTF-32 character and string literals are converted
to UTF-32.

L'x', L"xx" Characters in wide character and string literals are converted to
UTF-32.

Reserved identifiers

Some identifiers are reserved for use by the implementation. Some of the more
important identifiers that the C/C++ standards reserve for any use are:

e Identifiers that contain a double underscore (__)

e Identifiers that begin with an underscore followed by an uppercase letter
In addition to this, the IAR tools reserve for any use:

e Identifiers that contain a double dollar sign ($3)

e Identifiers that contain a question mark (?)

255

Diagnostics

256

More specific reservations are in effect in particular circumstances, see the C/C++
standards for more information.

Diagnostics

IAR C/C++ Development Guide
Compiling and linking for RX

This section describes the format of the diagnostic messages and explains how
diagnostic messages are divided into different levels of severity.

MESSAGE FORMAT FOR THE COMPILER

All diagnostic messages are issued as complete, self-explanatory messages. A typical
diagnostic message from the compiler is produced in the form:

filename, linenumber levell[tag]: message

with these elements:

filename The name of the source file in which the issue was encountered
linenumber The line number at which the compiler detected the issue
level The level of seriousness of the issue

tag A unique tag that identifies the diagnostic message

message An explanation, possibly several lines long

Diagnostic messages are displayed on the screen, as well as printed in the optional list
file.

Use the option --diagnostics_tables to list all possible compiler diagnostic
messages.
MESSAGE FORMAT FOR THE LINKER

All diagnostic messages are issued as complete, self-explanatory messages. A typical
diagnostic message from ILINK is produced in the form:

level[tag] : message

with these elements:

level The level of seriousness of the issue
tag A unique tag that identifies the diagnostic message
message An explanation, possibly several lines long

Diagnostic messages are displayed on the screen and printed in the optional map file.

External interface details ___o

Use the option --diagnostics_tables to list all possible linker diagnostic messages.

SEVERITY LEVELS

The diagnostic messages are divided into different levels of severity:

Remark

A diagnostic message that is produced when the compiler or linker finds a construct that
can possibly lead to erroneous behavior in the generated code. Remarks are by default
not issued, but can be enabled, see --remarks, page 298.

Warning

A diagnostic message that is produced when the compiler or linker finds a potential
problem which is of concern, but which does not prevent completion of the compilation
or linking. Warnings can be disabled by use of the command line option
--no_warnings.

Error

A diagnostic message that is produced when the compiler or linker finds a serious error.
An error will produce a non-zero exit code.

Fatal error

A diagnostic message produced when the compiler or linker finds a condition that not
only prevents code generation, but also makes further processing pointless. After the
message is issued, compilation or linking terminates. A fatal error will produce a
non-zero exit code.

SETTING THE SEVERITY LEVEL

The diagnostic messages can be suppressed or the severity level can be changed for all
diagnostics messages, except for fatal errors and some of the regular errors.

For information about the compiler options that are available for setting severity levels,
see the chapter Compiler options.

For information about the pragma directives that are available for setting severity levels
for the compiler, see the chapter Pragma directives.
INTERNAL ERROR

An internal error is a diagnostic message that signals that there was a serious and
unexpected failure due to a fault in the compiler or linker. It is produced using this form:

Internal error: message

257

Diagnostics

258

IAR C/C++ Development Guide
Compiling and linking for RX

where message is an explanatory message. If internal errors occur, they should be
reported to your software distributor or IAR Technical Support. Include enough
information to reproduce the problem, typically:

The product name

The version number of the compiler or linker, which can be seen in the header of the
list or map files generated by the compiler or linker, respectively

Your license number
The exact internal error message text
The files involved of the application that generated the internal error

A list of the options that were used when the internal error occurred.

ERROR RETURN CODES

The compiler and linker return status information to the operating system that can be
tested in a batch file.

These command line error codes are supported:

Code Description

0 Compilation or linking successful, but there might have been warnings.

| Warnings were produced and the option
--warnings_affect_exit_code was used.

2 Errors occurred.

3 Fatal errors occurred, making the tool abort.

4 Internal errors occurred, making the tool abort.

Table 24: Error return codes

Compiler options

e Options syntax
e Summary of compiler options

e Descriptions of compiler options

Options syntax

Compiler options are parameters you can specify to change the default behavior of the
compiler. You can specify options from the command line—which is described in more
detail in this section—and from within the IDE.

See the online help system for information about the compiler options available in the
IDE and how to set them.

TYPES OF OPTIONS

There are two types of names for command line options, short names and /ong names.
Some options have both.

e A short option name consists of one character, and it can have parameters. You
specify it with a single dash, for example -e

e A long option name consists of one or several words joined by underscores, and it
can have parameters. You specify it with double dashes, for example
--char_is_signed.

For information about the different methods for passing options, see Passing options,
page 250.
RULES FOR SPECIFYING PARAMETERS

There are some general syntax rules for specifying option parameters. First, the rules
depending on whether the parameter is optional or mandatory, and whether the option
has a short or a long name, are described. Then, the rules for specifying filenames and
directories are listed. Finally, the remaining rules are listed.

Rules for optional parameters

For options with a short name and an optional parameter, any parameter should be
specified without a preceding space, for example:

-0 or -Oh

259

Options syntax

260

IAR C/C++ Development Guide
Compiling and linking for RX

For options with a long name and an optional parameter, any parameter should be
specified with a preceding equal sign (=), like this:

--example_option=value

Rules for mandatory parameters

For options with a short name and a mandatory parameter, the parameter can be
specified either with or without a preceding space, for example:

-I..\srcor-I ..\src\

For options with a long name and a mandatory parameter, the parameter can be specified
either with a preceding equal sign (=) or with a preceding space, for example:

--diagnostics_tables=MyDiagnostics.lst
or

--diagnostics_tables MyDiagnostics.lst

Rules for options with both optional and mandatory parameters

For options taking both optional and mandatory parameters, the rules for specifying the
parameters are:

e For short options, optional parameters are specified without a preceding space
e For long options, optional parameters are specified with a preceding equal sign (=)

e For short and long options, mandatory parameters are specified with a preceding
space.

For example, a short option with an optional parameter followed by a mandatory
parameter:

-1A MyList.lst

For example, a long option with an optional parameter followed by a mandatory
parameter:

--preprocess=n PreprocOutput.lst

Rules for specifying a filename or directory as parameters
These rules apply for options taking a filename or directory as parameters:

e Options that take a filename as a parameter can optionally take a file path. The path
can be relative or absolute. For example, to generate a listing to the file List.1st
in the directory . .\1listings\:

iccrx prog.c -1 ..\listings\List.lst

Compiler options °

e For options that take a filename as the destination for output, the parameter can be
specified as a path without a specified filename. The compiler stores the output in
that directory, in a file with an extension according to the option. The filename will
be the same as the name of the compiled source file, unless a different name was
specified with the option -o, in which case that name is used. For example:

iccrx prog.c -1 ..\listings\

The produced list file will have the default name . .\listings\prog.lst
o The current directory is specified with a period (.). For example:

iccrx prog.c -1

/ can be used instead of \ as the directory delimiter.

e By specifying -, input files and output files can be redirected to the standard input
and output stream, respectively. For example:

iccrx prog.c -1 -

Additional rules
These rules also apply:

e When an option takes a parameter, the parameter cannot start with a dash (-)
followed by another character. Instead, you can prefix the parameter with two
dashes—this example will create a list file called -r:

iccrx prog.c -1 ---r

e For options that accept multiple arguments of the same type, the arguments can be
provided as a comma-separated list (without a space), for example:
--diag_warning=Be0001,Be0002
Alternatively, the option can be repeated for each argument, for example:

--diag_warning=Be0001
--diag_warning=Be0002

Summary of compiler options

This table summarizes the compiler command line options:

Command line option Description

--align_func Specifies the alignment of function entry points
--c89 Specifies the C89 dialect

--canary_value Specifies a constant value for the stack protection

canary element

--char_is_signed Treats char as signed

Table 25: Compiler options summary

261

Summary of compiler options

262

IAR C/C++ Development Guide
Compiling and linking for RX

Command line option

Description

--char_is_unsigned
--core

—-—Cc++

-D

--data_model

--debug

--dependencies
--deprecated_feature_warnings
--diag_error
--diag_remark
--diag_suppress
--diag_warning
--diagnostics_tables
--discard_unused_publics

--dlib_config

--do_explicit_zero_opt_in_nam

ed_sections

--double

-e
--enable_restrict

--endian

--enum_1is_int

-—error_limit

-f
--f

--fpu

Treats char as unsigned
Specifies a CPU core

Specifies Standard C++

Defines preprocessor symbols
Specifies the data model
Generates debug information
Lists file dependencies
Enables/disables warnings for deprecated features
Treats these as errors

Treats these as remarks
Suppresses these diagnostics
Treats these as warnings

Lists all diagnostic messages
Discards unused public symbols

Uses the system include files for the DLIB library
and determines which configuration of the library
to use

For user-named sections, treats explicit
initializations to zero as zero initializations

Forces the compiler to use 32-bit or 64-bit
doubles

Enables language extensions
Enables the Standard C keyword restrict

Specifies the byte order of the generated code
and data

Sets the minimum size on enumeration types

Specifies the allowed number of errors before
compilation stops

Extends the command line

Extends the command line, optionally with a
dependency

Specifies how the compiler handles floating-point
operations

Table 25: Compiler options summary (Continued)

Command line option

Compiler options °

Description

--generate_entries_without_bo
unds

--guard_calls

--header_context
-I
--ignore_uninstrumented_point

ers

--int

--joined_bitfields

-1

--libc++

--lock
--macro_positions_in
_diagnostics
--max_cost_constexpr_call

--max_depth_constexpr_call

--mfc

--misrac

--misracl998

--misrac2004

Generates extra functions for use from
non-instrumented code. See the C-RUN
documentation in the C-SPY® Debugging Guide for
RX.

Enables guards for function static variable
initialization

Lists all referred source files and header files

Specifies include file path

Disables checking of accesses via pointers from
non-instrumented code. See the C-RUN
documentation in the C-SPY® Debugging Guide for
RX.

Specifies the size of the data type int
Enables the bitfield allocation strategy Joined
types

Creates a list file

Makes the compiler and linker use the Libc++
library.

Locks registers

Obtains positions inside macros in diagnostic
messages

Specifies the limit for constexpr evaluation
cost

Specifies the limit for constexpr recursion
depth

Enables multi-file compilation

Enables error messages specific to
MISRA-C:1998. This option is a synonym of
--misracl998 and is only available for
backwards compatibility.

Enables error messages specific to
MISRA-C:1998. See the IAR Embedded
Workbench® MISRA C:1998 Reference Guide.

Enables error messages specific to
MISRA-C:2004. See the IAR Embedded
Workbench® MISRA C:2004 Reference Guide.

Table 25: Compiler options summary (Continued)

263

Summary of compiler options

264

IAR C/C++ Development Guide
Compiling and linking for RX

Command line option

Description

--misrac_verbose

--no_bom

--no_call_frame_info
--no_clustering
--no_code_motion
--no_cross_call
--no_cse

--no_default_fp_contract

--no_exceptions

--no_fragments
--no_inline

--no_normalize_file_macros

--no_path_in_file_macros

--no_rtti

--nosave_tfu

--no_scheduling
--no_shattering

--no_size_constraints

--no_static_destruction

--no_system_include

--no_tbaa

--no_typedefs_in_diagnostics

IAR Embedded Workbench® MISRA C:1998
Reference Guide or the IAR Embedded Workbench®
MISRA C:2004 Reference Guide.

Omits the Byte Order Mark for UTF-8 output
files

Disables output of call frame information
Disables static clustering optimizations
Disables code motion optimization

Disables cross-call optimization

Disables common subexpression elimination

Sets the default value for STDC FP_CONTRACT
to OFF.

This option has no effect and is included for
portability reasons

Disables section fragment handling
Disables function inlining

Disables normalization of paths in the symbols
__FILE__and __BASE_FILE__

Removes the path from the return value of the
symbols __FILE__ and __BASE_FILE__

This option has no effect and is included for
portability reasons

Does not save the TUF v2 registers in interrupt
functions

Disables the instruction scheduler
Disables variable shattering

Relaxes the normal restrictions for code size
expansion when optimizing for speed

Disables destruction of C++ static variables at
program exit

Disables the automatic search for system include
files

Disables type-based alias analysis

Disables the use of typedef names in diagnostics

Table 25: Compiler options summary (Continued)

Compiler options °

Command line option Description

--no_uniform_attribute_syntax Specifies the default syntax rules for IAR type

attributes
--no_unroll Disables loop unrolling
--no_warnings Disables all warnings
--no_wrap_diagnostics Disables wrapping of diagnostic messages
--nonportable_path_warnings Generates a warning when the path used for

opening a source header file is not in the same
case as the path in the file system

-0 Sets the optimization level

-0 Sets the object filename. Alias for --output.
--only_stdout Uses standard output only

--output Sets the object filename

--patch Generates code that does not trigger some

known hardware-related problems for a specific
device group

--pending_instantiations Sets the maximum number of instantiations of a
given C++ template.

--predef_macros Lists the predefined symbols

--preinclude Includes an include file before reading the source
file

--preprocess Generates preprocessor output

--public_equ Defines a global named assembler label

-r Generates debug information. Alias for
--debug.

--relaxed_fp Relaxes the rules for optimizing floating-point

expressions

--remarks Enables remarks

--require_prototypes Verifies that functions are declared before they
are defined

--reversed_bitfields Enables the bitfield allocation strategy Reverse

disjoint types
--ropi Generates code that uses position-independent
references to access code and read-only data

Table 25: Compiler options summary (Continued)

265

Summary of compiler options

266

IAR C/C++ Development Guide
Compiling and linking for RX

Command line option

Description

--runtime_checking

--rwpi

--rwpi_near

--save_acc

--section
--silent
--source_encoding

--sgrt_must_set_errno

--stack_protection

--strict

--suppress_core_attribute

--system_include_dir
--text_out

--tfu

--tfu_version

--uniform_attribute_syntax

--use_c++_inline
--use_paths_as_written

--use_unix_directory_

separators
--utf8_text_in

--version

--vla

Enables runtime error checking. See the C-RUN
documentation in the C-SPY® Debugging Guide for
RX.

Generates code that uses an offset from the
static base register to address-writable data

Generates code that uses an offset from the
static base register to address-writable data.
Size-limited to 64 K for increased efficiency.

Saves and restores the DSP accumulator when
the interrupt context switches

Changes a section name
Sets silent operation
Specifies the encoding for source files

Disables replacing calls to the library function
sqrtf with the RXv2/RXv3 core instruction
FSQORT

Enables stack protection

Checks for strict compliance with Standard
C/C++

Disables generation of the runtime attribute
__core
Specifies the path for system include files
Specifies the encoding for text output files
Enables support for the TUF

Specifies the TUF version that needs to be used

Specifies the same syntax rules for IAR type
attributes as for const and volatile

Uses C++ inline semantics in C
Use paths as written in debug information

Uses / as directory separator in paths

Uses the UTF-8 encoding for text input files

Sends compiler output to the console and then
exits

Enables VLA support

Table 25: Compiler options summary (Continued)

Command line option Description

Compiler options °

--warn_about_c_style_casts

--warn_about_incomplete_const

ructors

--warn_about_missing_ field_ in

itializers

used in C++ source code

Makes the compiler warn when C-style casts are

Makes the compiler warn about constructors

that do not initialize all members

explicit initializers

--warnings_affect_exit_code Warnings affect exit code

--warnings_are_errors

Makes the compiler warn about fields without

Warnings are treated as errors

Table 25: Compiler options summary (Continued)

Descriptions of compiler options

The following section gives detailed reference information about each compiler option.

--align_func

Syntax

Parameters

Description

See also

If you use the options page Extra Options to specify specific command line options,
the IDE does not perform an instant check for consistency problems like conflicting
options, duplication of options, or use of irrelevant options.

--align_func={1]2]4]|8}

1 (default)
2
4

8

Use this option to specity the alignment of the function entry points.

Sets the alignment of function entry points to 1 byte
Sets the alignment of function entry points to 2 bytes
Sets the alignment of function entry points to 4 bytes

Sets the alignment of function entry points to 8 bytes

Aligning the function entry point, page 240.

Project>Options>C/C++ Compiler>Align functions

267

Descriptions of compiler options

268

--c89

Syntax
Description

See also

--canary_value

Syntax

Parameters

Description

See also

--char_is_signed

Syntax

Description

IAR C/C++ Development Guide
Compiling and linking for RX

--c89
Use this option to enable the C89 C dialect instead of Standard C.

C language overview, page 189.

Project>Options>C/C++ Compiler>Language 1>C dialect>C89

--canary_value=n

n A constant value.

Use this option to set a constant value for the stack protection canary element, to be used
instead of a variable. This reduces the overhead, but is considerably less secure.
Stack protection, page 86.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--char_is_signed

By default, the compiler interprets the plain char type as unsigned. Use this option to
make the compiler interpret the plain char type as signed instead. This can be useful
when you, for example, want to maintain compatibility with another compiler.

Note: The runtime library is compiled without the --char_is_signed option and
cannot be used with code that is compiled with this option.

Project>Options>C/C++ Compiler>Language 2>Plain ‘char’ is

Compiler options °

--char_is_unsigned

Syntax --char_is_unsigned

Description Use this option to make the compiler interpret the plain char type as unsigned. This is
the default interpretation of the plain char type.

Project>Options>C/C++ Compiler>Language 2>Plain ‘char’ is

-=Core
Syntax --core={rxvl|rxv2|rxv3}
Parameters
rxvl (default) Generates code for the RXv1 architecture.
rxVv2 Generates code for the RXv2 architecture.
rxv3 Generates code for the RXv3 architecture.
Description Use this option to select which RX architecture to generate code for.
To find out which core a device is based on, open the * . menu file for that device in an
5 cditor and look at the value of the <core> attribute. The * . menu files are located in the
rx\config\devices\ directory.
Project>Options>General Options>Target>Device
==C++
Syntax ——c++
Description By default, the language supported by the compiler is C. If you use Standard C++, you
must use this option to set the language the compiler uses to C++.
See also Using C++, page 199.

269

Descriptions of compiler options

Syntax

Parameters

Description

--data_model

Syntax

Parameters

IAR C/C++ Development Guide
270 Compiling and linking for RX

Project>Options>C/C++ Compiler>Language 1>C++

-D symbol[=value]

symbol The name of the preprocessor symbol

value The value of the preprocessor symbol

Use this option to define a preprocessor symbol. If no value is specified, 1 is used. This
option can be used one or more times on the command line.

The option -D has the same effect as a #define statement at the top of the source file:
-Dsymbol

is equivalent to:

#define symbol 1

To get the equivalence of:

#define FOO

specify the = sign but nothing after, for example:

-DFO00=

Project>Options>C/C++ Compiler>Preprocessor>Defined symbols

--data_model={near | far|huge}

near Places variables and constant data in the lowest or highest 32
Kbytes of memory.

far (default) Places variables and constant data in the lowest or highest 8
Mbytes of memory.

huge Places variables and constant data anywhere in memory.

Description

See also

--debug, -r

Syntax

Description

--dependencies

Syntax

Parameters

Compiler options °

Use this option to select the data model, which means a default placement of data
objects. If you do not select a data model, the compiler uses the default data model. Note
that all modules of your application must use the same data model.

Data models, page 72.

Project>Options>General Options>Target>Data model

--debug
-r

Use the --debug or -r option to make the compiler include information in the object
modules required by the JAR C-SPY® Debugger and other symbolic debuggers.
Note: Including debug information will make the object files larger than otherwise.

Project>Options>C/C++ Compiler>Output>Generate debug information

--dependencies[=[1i|m|n] [s][1|w][bl] {filename|directory|+}

i (default) Lists only the names of files

m Lists in makefile style (multiple rules)

n Lists in makefile style (one rule)

s Suppresses system files

1 Uses the locale encoding instead of UTF-8

w Uses little-endian UTF-16 instead of UTF-8

b Uses a Byte Order Mark (BOM) in UTF-8 output

+ Gives the same output as -o, but with the filename extension d

See also Rules for specifying a filename or directory as parameters, page 260.

271

Descriptions of compiler options

Description

Example

Use this option to make the compiler list the names of all source and header files opened
for input into a file with the default filename extension i.

If --dependencies or --dependencies=i is used, the name of each opened input
file, including the full path, if available, is output on a separate line. For example:

c:\iar\product\include\stdio.h
d:\myproject\include\foo.h

If --dependencies=mis used, the output is in makefile style. For each input file, one
line containing a makefile dependency rule is produced. Each line consists of the name
of the object file, a colon, a space, and the name of an input file. For example:

foo.o: c:\iar\product\include\stdio.h
foo.o: d:\myproject\include\foo.h

An example of using --dependencies with a popular make utility, such as GMake
(GNU make):

Set up the rule for compiling files to be something like:

$.0 : %.C
$(ICC) $(ICCFLAGS) $< --dependencies=m $*.d

That is, in addition to producing an object file, the command also produces a
dependency file in makefile style—in this example, using the extension .d.

Include all the dependency files in the makefile using, for example:
-include $(sources:.c=.d)
Because of the dash (-) it works the first time, when the . d files do not yet exist.

This option is not available in the IDE.

--deprecated_feature_warnings

Syntax

Parameters

IAR C/C++ Development Guide
272 Compiling and linking for RX

——deprecated_feature_warnings:[+|—]feature[,[+|—]feature,...]

feature A feature can be attribute_syntax,
preprocessor_extensions, Or segment_pragmas

Description

--diag_error

Syntax

Parameters

Description

--diag_remark

Syntax

Parameters

Compiler options °

Use this option to disable or enable warnings for the use of a deprecated feature. The
deprecated features are:
® attribute_syntax

See --uniform_attribute syntax, page 305, --no_uniform_attribute syntax, page
292, and Syntax for type attributes used on data objects, page 362.

preprocessor_extensions
segment_pragmas
See the pragma directives dataseg, constseg, and memory. Use the #pragma

location and #pragma default_variable_attributes directives instead.

Because the deprecated features will be removed in a future version of the IAR C/C++
compiler, it is prudent to remove the use of them in your source code. To do this, enable
warnings for a deprecated feature. For each warning, rewrite your code so that the
deprecated feature is no longer used.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--diag_error=tagl, tag, ...]

tag The number of a diagnostic message, for example, the
message number Pell7

Use this option to reclassify certain diagnostic messages as errors. An error indicates a
violation of the C or C++ language rules, of such severity that object code will not be
generated. The exit code will be non-zero. This option may be used more than once on
the command line.

Project>Options>C/C++ Compiler>Diagnostics>Treat these as errors

--diag_remark=tagl, tag, ...]

tag The number of a diagnostic message, for example, the
message number Pel77

273

Descriptions of compiler options

274

Description

--diag_suppress

Syntax

Parameters

Description

--diag_warning

Syntax

Parameters

Description

IAR C/C++ Development Guide
Compiling and linking for RX

Use this option to reclassify certain diagnostic messages as remarks. A remark is the
least severe type of diagnostic message and indicates a source code construction that
may cause strange behavior in the generated code. This option may be used more than
once on the command line.

Note: By default, remarks are not displayed—use the --remarks option to display
them.

Project>Options>C/C++ Compiler>Diagnostics>Treat these as remarks

--diag_suppress=tagl, tag, ...]

tag The number of a diagnostic message, for example, the
message number Pell7

Use this option to suppress certain diagnostic messages. These messages will not be
displayed. This option may be used more than once on the command line.

Project>Options>C/C++ Compiler>Diagnostics>Suppress these diagnostics

--diag_warning=tagl, tag, ...]

tag The number of a diagnostic message, for example, the
message number Pe826

Use this option to reclassify certain diagnostic messages as warnings. A warning
indicates an error or omission that is of concern, but which will not cause the compiler
to stop before compilation is completed. This option may be used more than once on the
command line.

Project>Options>C/C++ Compiler>Diagnostics>Treat these as warnings

--diagnostics_tables

Syntax
Parameters

Description

Compiler options °

--diagnostics_tables {filename|directory}
See Rules for specifying a filename or directory as parameters, page 260.

Use this option to list all possible diagnostic messages to a named file. This can be
convenient, for example, if you have used a pragma directive to suppress or change the
severity level of any diagnostic messages, but forgot to document why.

Typically, this option cannot be given together with other options.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--discard_unused_publics

Syntax

Description

See also

--dlib_config

Syntax

Parameters

--discard_unused_publics
Use this option to discard unused public functions and variables when compiling with
the --mfc compiler option.

Note: Do not use this option only on parts of the application, as necessary symbols
might be removed from the generated output. Use the object attribute __root to keep
symbols that are used from outside the compilation unit, for example, interrupt handlers.
If the symbol does not have the __root attribute and is defined in the library, the library
definition will be used instead.

--mfc, page 285 and Multi-file compilation units, page 234.

Project>Options>C/C++ Compiler>Discard unused publics

--dlib_config filename.h|config

filename A DLIB configuration header file, see below the table.

275

Descriptions of compiler options

276

Description

config The default configuration file for the specified configuration
will be used. Choose between:

none, no configuration will be used

normal, the normal library configuration will be used
(default)

full, the full library configuration will be used.

See also Rules for specifyving a filename or directory as parameters, page 260.

Use this option to specify which library configuration to use, either by specifying an
explicit file or by specifying a library configuration—in which case the default file for
that library configuration will be used. Make sure that you specity a configuration that
corresponds to the library you are using. If you do not specify this option, the default
library configuration file will be used.

Note: This option cannot be used if the compiler option --1ibc++ has been specified.

You can find the library object files in the directory rx\1ib and the library
configuration files in the directory rx\inc. For examples and information about
prebuilt runtime libraries, see Prebuilt runtime libraries, page 135.

If you build your own customized runtime library, you can also create a corresponding
customized library configuration file to specify to the compiler. For more information,
see Customizing and building your own runtime library, page 131.

To set related options, choose:

Project>Options>General Options>Library Configuration

--do_explicit_zero_opt_in_named_sections

Syntax

Description

IAR C/C++ Development Guide
Compiling and linking for RX

--do_explicit_zero_opt_in_named_sections

By default, the compiler treats static initialization of variables explicitly and implicitly
initialized to zero the same, except for variables which are to be placed in user-named
sections. For these variables, an explicit zero initialization is treated as a copy
initialization, that is the same way as variables statically initialized to something other
than zero.

Use this option to disable the exception for variables in user-named sections, and thus
treat explicit initializations to zero as zero initializations, not copy initializations.

Example

--double

Syntax

Parameters

Description

See also

Syntax

Description

See also

Compiler options °

int varl; // Implicit zero init -> zero inited
int var2 = 0; // Explicit zero init -> zero inited
int var3 = 7; // Not zero init -> copy inited
int var4 @ "MYDATA"; // Implicit zero init -> zero inited
int var5 @ "MYDATA" = 0; // Explicit zero init -> copy inited

// If option specified, then zero inited

int var6 @ "MYDATA" 7; // Not zero init -> copy inited

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--double={32]|64}

32 (default) 32-bit doubles are used

64 64-bit doubles are used

Use this option to select the precision used by the compiler for representing the
floating-point types double and long double. The compiler can use either 32-bit or
64-bit precision. By default, the compiler uses 32-bit precision.

Basic data types—floating-point types, page 353.

Project>Options>General Options>Target>Size of type 'double’

In the command line version of the compiler, language extensions are disabled by
default. If you use language extensions such as extended keywords and anonymous
structs and unions in your source code, you must use this option to enable them.

Note: The - option and the --strict option cannot be used at the same time.

Enabling language extensions, page 191.
Project>Options>C/C++ Compiler>Language 1>Standard with IAR extensions
Note: By default, this option is selected in the IDE.

277

Descriptions of compiler options

--enable_restrict

Syntax

Description

--endian

Syntax

Parameters

Description

See also

--enum_is_int

Syntax

Description

See also

IAR C/C++ Development Guide
278 Compiling and linking for RX

--enable_restrict

Enables the Standard C keyword restrict in C89 and C++. By default, restrict is
recognized in Standard C and __restrict is always recognized.

This option can be useful for improving analysis precision during optimization.

To set this option, use Project>Options>C/C++ Compiler>Extra options

--endian={big|b|little|1}

big, b Specifies big-endian as the default byte order for data.

little, 1 (default) Specifies little-endian as the default byte order for data.

Use this option to specify the byte order of the generated data. By default, the compiler
generates data in little-endian byte order. (Code is always little-endian.).

Byte order, page 346.

Project>Options>General Options>Target>Byte order

-—enum_is_int

Use this option to force the size of all enumeration types to be at least 4 bytes. If you use
this option when you compile a source file that uses a specific enum type, each source
file that uses that enum type must be compiled using this option.

Note: This option will not consider the fact that an enum type can be larger than an
integer type.
The enum type, page 347.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--error_limit

Syntax

Parameters

Description

Syntax
Parameters

Description

See also

Compiler options °

--error_limit=n

n The number of errors before the compiler stops the
compilation. n must be a positive integer. 0 indicates no
limit.

Use the --error_1limit option to specify the number of errors allowed before the

compiler stops the compilation. By default, 100 errors are allowed.

This option is not available in the IDE.

-f filename
See Rules for specifying a filename or directory as parameters, page 260.
Use this option to make the compiler read command line options from the named file,

with the default filename extension xc1.

In the command file, you format the items exactly as if they were on the command line
itself, except that you may use multiple lines, because the newline character acts just as
a space or tab character.

Both C and C++ style comments are allowed in the file. Double quotes behave in the
same way as in the Microsoft Windows command line environment.

If you use the compiler option --dependencies, extended command line files
specified using - £ will not generate a dependency, but those specified using --£ will
generate a dependency.

--dependencies, page 271 and --f, page 280.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

279

Descriptions of compiler options

Syntax --f filename
Parameters See Rules for specifying a filename or directory as parameters, page 260.
Description Use this option to make the compiler read command line options from the named file,

with the default filename extension xc1.

In the command file, you format the items exactly as if they were on the command line
itself, except that you may use multiple lines, because the newline character acts just as
a space or tab character.

Both C and C++ style comments are allowed in the file. Double quotes behave in the
same way as in the Microsoft Windows command line environment.

If you use the compiler option --dependencies, extended command line files
specified using -- £ will generate a dependency, but those specified using - £ will not
generate a dependency.

See also --dependencies, page 271 and -f, page 279.
To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--fpu

Syntax
--fpu={none|32|64}
Parameters
none No FPU available. Makes the compiler call library routines when

performing floating-point arithmetic, instead of using FPU
instructions.

32 32-bit FPU available. It will be used for 32-bit floating-point
operations.

64 64-bit FPU available. An FPU will be used for all floating-point
operations.

Description Use this option to configure how the compiler handles floating-point operations.

This option is set automatically when you choose:

IAR C/C++ Development Guide
280 Compiling and linking for RX

Compiler options °

Project>Options>General Options>Target>Device

--guard_calls

Syntax --guard_calls

Description Use this option to enable guards for function static variable initialization. This option
should be used in a threaded C++ environment.
See also Managing a multithreaded environment, page 158.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--header_context

Syntax --header_context

Description Occasionally, to find the cause of a problem it is necessary to know which header file
that was included from which source line. Use this option to list, for each diagnostic
message, not only the source position of the problem, but also the entire include stack at
that point.

This option is not available in the IDE.

Syntax -I path
Parameters
path The search path for #include files
Description Use this option to specify the search paths for #include files. This option can be used

more than once on the command line.

See also Include file search procedure, page 251.

Project>Options>C/C++ Compiler>Preprocessor>Additional include directories

281

Descriptions of compiler options

Syntax

Parameters

Description

See also

--joined_bitfields

Syntax

Description

See also

Syntax

Parameters

IAR C/C++ Development Guide
282 Compiling and linking for RX

--int={16]32}

16 The size of the data type int is 16 bits. This might be useful
if you are migrating code written for another microcontroller
than RX.

32 (default) The size of the data type int is 32 bits. This is the native int

size for the RX microcontroller.

Use this option to select whether the compiler uses 16 or 32 bits to represent the int
data type. By default, 32 bits are used. Selecting 16 bits results in larger code size.

Basic data types—integer types, page 346.
Project>Options>General Options>Target>Size of type 'int'

--joined_bitfields

Use this option to enable the bitfield allocation strategy Joined types. This places bitfield
members depending on the byte order. Storage containers of bitfields will overlap other
structure members. (By default, the compiler uses the allocation strategy Disjoint types,
where bitfield containers of different types do not overlap.)

This option cannot be used together with the option --reversed_bitfields.

Bitfields, page 348.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

-1[a|a|b|B|c|C|D]IN][H] {filename|directory}

a Assembler list file

Description

--libc++

Syntax

Description

Compiler options °

A Assembler list file with C or C++ source as comments

b Basic assembler list file. This file has the same contents as a
list file produced with -1a, except that no extra
compiler-generated information (runtime model attributes,
call frame information, frame size information) is included *

B Basic assembler list file. This file has the same contents as a
list file produced with -1a, except that no extra compiler
generated information (runtime model attributes, call frame
information, frame size information) is included *

c C or C++ list file
c (default) C or C++ list file with assembler source as comments
D C or C++ list file with assembler source as comments, but

without instruction offsets and hexadecimal byte values

N No diagnostics in file

H Include source lines from header files in output. Without this
option, only source lines from the primary source file are
included

* This makes the list file less useful as input to the assembler, but more useful for reading
by a human.

See also Rules for specifying a filename or directory as parameters, page 260.

Use this option to generate an assembler or C/C++ listing to a file.
Note: This option can be used one or more times on the command line.
To set related options, choose:

Project>Options>C/C++ Compiler>List

--libc++

Use this option to make the compiler use Libc++ system headers and to make the linker
use the Libc++ library, with support for C++17. A Full library configuration will be used
and the header file DLib_Config_Full.h will be referenced.

Note: This option cannot be used together with the compiler option --dlib_config.

283

Descriptions of compiler options

See also

--lock

Syntax

Parameters

Description

Example

See also

Overview—Standard C++, page 199.

Project>Options>General Options>Library Configuration>Library>Libc++

--lock={Ri|Rj,Rk|Rm-Rp}

Ri|R7,Rk|Rm-Rp The register(s) to lock

Use this option to lock one or several of the registers R8—R13 so that they cannot be used
by the compiler but can be used for global register variables. To maintain module
consistency, make sure you lock the same registers in all modules. By default, no
registers are locked.

--lock=R10

--lock=R8,R12,R13

--lock=R10-R13

--lock=R8,R11-R13

Register locking, page 241.

Project>Options>C/C++ Compiler>Code>Lock registers

--macro_positions_in_diagnostics

Syntax

Description

IAR C/C++ Development Guide
284 Compiling and linking for RX

--macro_positions_in_diagnostics

Use this option to obtain position references inside macros in diagnostic messages. This
is useful for detecting incorrect source code constructs in macros.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

Compiler options °

--max_cost_constexpr_call

Syntax

Parameters

Description

--max_cost_constexpr_call=1imit

limit The number of calls and loop iterations. The default is 2000000.

Use this option to specify an upper limit for the cost for folding a top-level constexpr
call (function or constructor). The cost is a combination of the number of calls
interpreted and the number of loop iterations preformed during the interpretation of a
top-level call.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--max_depth_constexpr_call

Syntax

Parameters

Description

--mfc

Syntax

Description

Example

--max_depth_constexpr_call=1imit

limit The depth of recursion. The default is 1000.

Use this option to specify the maximum depth of recursion for folding a top-level
constexpr call (function or constructor).

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--mfc

Use this option to enable multi-file compilation. This means that the compiler compiles
one or several source files specified on the command line as one unit, which enhances
interprocedural optimizations.

Note: The compiler will generate one object file per input source code file, where the
first object file contains all relevant data and the other ones are empty. If you want only
the first file to be produced, use the -o compiler option and specify a certain output file.

iccrx myfilel.c myfile2.c myfile3.c --mfc

285

Descriptions of compiler options

286

See also

--no_bom

Syntax

Description

See also

--no_call frame_info

Syntax

Description

See also

--no_clustering

Syntax

Description

See also

IAR C/C++ Development Guide
Compiling and linking for RX

--discard unused publics, page 275, --output, -o, page 295, and Multi-file compilation
units, page 234.

Project>Options>C/C++ Compiler>Multi-file compilation

--no_bom

Use this option to omit the Byte Order Mark (BOM) when generating a UTF-8 output
file.

--text out, page 304, and Text encodings, page 254.

Project>Options>C/C++ Compiler>Encodings>Text output file encoding

--no_call_frame_info

Normally, the compiler always generates call frame information in the output, to enable
the debugger to display the call stack even in code from modules with no debug
information. Use this option to disable the generation of call frame information.

Call firame information, page 184.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--no_clustering

Use this option to disable static clustering optimizations.

Note: This option has no effect at optimization levels below Medium.

Static clustering, page 238.

Project>Options>C/C++ Compiler>Optimizations>Enable
transformations>Static clustering

--no_code_motion

Syntax

Description

See also

--no_cross_call

Syntax

Description

See also

--no_cse

Syntax
Description

See also

T

Compiler options °

--no_code_motion

Use this option to disable code motion optimizations.

Note: This option has no effect at optimization levels below Medium.

Code motion, page 237.

Project>Options>C/C++ Compiler>Optimizations>Enable
transformations>Code motion

--no_cross_call

Use this option to disable the cross-call optimization.

Note: This option has no effect at optimization levels below High, or when optimizing
Balanced or for Speed, because cross-call optimization is not enabled then.

Cross call, page 239.

Project>Options>C/C++ Compiler>Optimizations>Enable
transformations>Cross call

--no_cse
Use this option to disable common subexpression elimination.

Common subexpression elimination, page 237.

Project>Options>C/C++ Compiler>Optimizations>Enable
transformations>Common subexpression elimination

287

Descriptions of compiler options

288

--no_default_fp_contract

Syntax

Description

See also

--no_exceptions

Syntax

Description

--no_fragments

Syntax

Description

See also

--no_inline

Syntax
Description

See also

IAR C/C++ Development Guide
Compiling and linking for RX

--no_default_fp_contract
The pragma directive STDC FP_CONTRACT specifies whether the compiler is allowed to
contract floating-point expressions. The default for this pragma directive is ON (allowing

contraction). Use this option to change the default to oFF (disallowing contraction).

STDC FP_CONTRACT, page 402.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--no_exceptions

This option has no effect and is included for portability reasons.

--no_fragments

Use this option to disable section fragment handling. Normally, the toolset uses IAR
proprietary information for transferring section fragment information to the linker. The
linker uses this information to remove unused code and data, and further minimize the
size of the executable image. When you use this option, this information is not output in

the object files.

Keeping symbols and sections, page 111.

To set this option, use Project>Options>C/C++ Compiler>Extra Options

--no_inline
Use this option to disable function inlining.

Inlining functions, page 84.

TF

Compiler options °

Project>Options>C/C++ Compiler>Optimizations>Enable
transformations>Function inlining

--no_normalize_file_macros

Syntax

Description

Example

See also

--no_normalize_file_macros

Normally, apparently unneeded uses of . . and . components are collapsed in the paths
returned by the predefined preprocessor symbols __FILE _and __BASE_FILE _.Use
this option to prevent this.

The path "D:\foo\ . .\bar\baz.c" will be returned as "D: \bar\baz.c" by the
symbols __FILE__ and __BASE_FILE__ unless this option is used.

Description of predefined preprocessor symbols, page 424.

This option is not available in the IDE.

--no_path_in_file_macros

Syntax

Description

See also

-=-no_rtti

Syntax

Description

--nosave_tfu

Syntax

--no_path_in_file_macros

Use this option to exclude the path from the return value of the predefined preprocessor
symbols __FILE__ and __BASE_FILE_ _.

Description of predefined preprocessor symbols, page 424.

This option is not available in the IDE.

--no_rtti

This option has no effect and is included for portability reasons.

--nosave_tfu

289

Descriptions of compiler options

290

Description

--no_scheduling

Syntax

Description

See also

--no_shattering

Syntax

Description

--NO_size_constraints

Syntax

Description

IAR C/C++ Development Guide
Compiling and linking for RX

Does not save the Arithmetic Unit for Trigonometric Functions (TUF) v2 registers in
interrupt functions, unless overridden by the __t fu object attribute.

Project>Options>C/C++ Compiler>Code>Trigonometric Functions Unit

Note: If the Trigonometric Functions Unit option is nof selected in the IDE, then the
--nosave_tfu option will be available on the command line. If the Trigonometric
Functions Unit option is selected in the IDE, then the --nosave_tfu option will not
be available on the command line.

--no_scheduling

Use this option to disable the instruction scheduler.

Note: This option has no effect at optimization levels below High.

Instruction scheduling, page 239.

Project>Options>C/C++ Compiler>Optimizations>Enable
transformations>Instruction scheduling

--no_shattering

Use this option to disable variable shattering. The compiler uses this feature to break up
auto variables, which increases the performance of the generated code.

Note: This option has no effect at optimization levels below Medium.

This option is not available in the IDE.

--no_size_constraints

Use this option to relax the normal restrictions for code size expansion when optimizing
for high speed.

Note: This option has no effect unless used with -Ohs.

Compiler options °

See also Speed versus size, page 236.

m Project>Options>C/C++ Compiler>Optimizations>Enable transformations>No
size constraints

--no_static_destruction

Syntax --no_static_destruction

Description Normally, the compiler emits code to destroy C++ static variables that require
destruction at program exit. Sometimes, such destruction is not needed.

Use this option to suppress the emission of such code.

See also Setting up the atexit limit, page 112.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--no_system_include

Syntax --no_system_include

Description By default, the compiler automatically locates the system include files. Use this option
to disable the automatic search for system include files. In this case, you might need to
set up the search path by using the -1 compiler option.

See also --dlib_config, page 275, and --system_include_dir, page 303.

mm Project>Options>C/C++ Compiler>Preprocessor>Ignore standard include
directories

--no_tbaa
Syntax --no_tbaa
Description Use this option to disable type-based alias analysis.
Note: This option has no effect at optimization levels below High.
See also Type-based alias analysis, page 238.

291

Descriptions of compiler options

292

[[H

Project>Options>C/C++ Compiler>Optimizations>Enable
transformations>Type-based alias analysis

--no_typedefs_in_diagnostics

Syntax

Description

Example

--no_typedefs_in_diagnostics

Use this option to disable the use of typedef names in diagnostics. Normally, when a
type is mentioned in a message from the compiler, most commonly in a diagnostic
message of some kind, the typedef names that were used in the original declaration are
used whenever they make the resulting text shorter.

typedef int (*MyPtr) (char const *);
MyPtr p = "My text string";
will give an error message like this:

Error([Peldd]: a value of type "char *" cannot be used to
initialize an entity of type "MyPtr"

Ifthe --no_typedefs_in_diagnostics option is used, the error message will be like
this:

Error([Peldd]: a value of type "char *" cannot be used to
initialize an entity of type "int (*) (char const *)"

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--no_uniform_attribute_syntax

Syntax

Description

See also

IAR C/C++ Development Guide
Compiling and linking for RX

--no_uniform_attribute_syntax

Use this option to apply the default syntax rules to IAR type attributes specified before
a type specifier.

--uniform_attribute_syntax, page 305 and Syntax for type attributes used on data
objects, page 362.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--no_unroll

Syntax

Description

See also

--no_warnings

Syntax

Description

--no_wrap_diagnostics

Syntax

Description

Compiler options °

--no_unroll

Use this option to disable loop unrolling.

Note: This option has no effect at optimization levels below High.

Loop unrolling, page 237.

Project>Options>C/C++ Compiler>Optimizations>Enable
transformations>Loop unrolling

--no_warnings

By default, the compiler issues warning messages. Use this option to disable all warning
messages.

This option is not available in the IDE.

--no_wrap_diagnostics

By default, long lines in diagnostic messages are broken into several lines to make the
message easier to read. Use this option to disable line wrapping of diagnostic messages.

This option is not available in the IDE.

--nonportable_path_warnings

Syntax

Description

--nonportable_path_warnings

Use this option to make the compiler generate a warning when characters in the path
used for opening a source file or header file are lower case instead of upper case, or vice
versa, compared with the path in the file system.

This option is not available in the IDE.

293

Descriptions of compiler options

-O

Syntax -0[n|1l|m|h|hs|hz]

Parameters
n None* (Best debug support)
1 (default) Low*
m Medium
h High, balanced
hs High, favoring speed
hz High, favoring size

*All optimizations performed at level Low will be performed also at None. The only
difference is that at level None, all non-static variables will live during their entire scope.

Description Use this option to set the optimization level to be used by the compiler when optimizing
the code. If no optimization option is specified, the optimization level Low is used by
default. If only -0 is used without any parameter, the optimization level High balanced
is used.

A low level of optimization makes it relatively easy to follow the program flow in the
debugger, and, conversely, a high level of optimization makes it relatively hard.

See also Controlling compiler optimizations, page 234.

Project>Options>C/C++ Compiler>Optimizations

--only_stdout

Syntax --only_stdout

Description Use this option to make the compiler use the standard output stream (stdout), and
messages that are normally directed to the error output stream (stderr).

This option is not available in the IDE.

IAR C/C++ Development Guide
294 Compiling and linking for RX

--output, -o

Syntax

Parameters

Description

--patch

Syntax

Description

Compiler options °

--output {filename|directory}
-o {filename|directory}

See Rules for specifying a filename or directory as parameters, page 260.

By default, the object code output produced by the compiler is located in a file with the
same name as the source file, but with the extension o. Use this option to explicitly
specity a different output filename for the object code output.

This option is not available in the IDE.

--patch=rx610

Use this option to avoid a problem with a specific CPU type. Specifying
--patch=rx610 stops the compiler from using the MVTIPL instruction (which causes
a problem in the RX610 group) in the generated code.

This option is not available in the IDE.

--pending_instantiations

Syntax

Parameters

Description

--pending_instantiations number

number An integer that specifies the limit, where 64 is default. If 0
is used, there is no limit.

Use this option to specify the maximum number of instantiations of a given C++
template that is allowed to be in process of being instantiated at a given time. This is
used for detecting recursive instantiations.

Project>Options>C/C++ Compiler>Extra Options

295

Descriptions of compiler options

--predef_macros

Syntax

Parameters

Description

--preinclude

Syntax
Parameters

Description

--preprocess

Syntax

Parameters

IAR C/C++ Development Guide
296 Compiling and linking for RX

--predef_macros[=n] {filename|directory}

n Suppresses compilation.

See also Rules for specifyving a filename or directory as parameters, page 260.

Use this option to list all symbols defined by the compiler or on the command line.
(Symbols defined in the source code are not listed.) When using this option, make sure
to also use the same options as for the rest of your project.

If a filename is specified, the compiler stores the output in that file. If a directory is
specified, the compiler stores the output in that directory, in a file with the predef
filename extension.

If you just want the list of symbols, but do not want to compile, specify the parameter n.
Note: This option requires that you specify a source file on the command line.

This option is not available in the IDE.

--preinclude includefile
See Rules for specifying a filename or directory as parameters, page 260.
Use this option to make the compiler read the specified include file before it starts to

read the source file. This is useful if you want to change something in the source code
for the entire application, for instance if you want to define a new symbol.

Project>Options>C/C++ Compiler>Preprocessor>Preinclude file

--preprocess([=[c] [n] [s]] {filename|directory}

c Include comments

Compiler options °

n Preprocess only

s Suppress #1ine directives

See also Rules for specifying a filename or directory as parameters, page 260.

Description Use this option to generate preprocessed output to a named file.

Project>Options>C/C++ Compiler>Preprocessor>Preprocessor output to file

--public_equ

Syntax --public_equ symbol[=valuel
Parameters
symbol The name of the assembler symbol to be defined
value An optional value of the defined assembler symbol
Description This option is equivalent to defining a label in assembler language using the EQU

directive and exporting it using the PUBLIC directive. This option can be used more than
once on the command line.

This option is not available in the IDE.

--relaxed_fp

Syntax --relaxed_fp

Description Use this option to allow the compiler to relax the language rules and perform more
aggressive optimization of floating-point expressions. This option improves
performance for floating-point expressions that fulfill these conditions:

o The expression consists of both single and double-precision values

o The double-precision values can be converted to single precision without loss of
accuracy

e The result of the expression is converted to single precision.

Using this option also means that the compiler will not differentiate between a cast from
float to signed long and a cast from float to unsigned long. Some range is lost,
but the compiler can use the hardware FPU instead of having to call a library function.

297

Descriptions of compiler options

298

Example

--remarks

Syntax

Description

See also

[[H

--require_prototypes

Syntax

Description

IAR C/C++ Development Guide
Compiling and linking for RX

Note: Performing the calculation in single precision instead of double precision might
cause a loss of accuracy.

float F(float a, float b)
{

return a + b * 3.0;

}

The C standard states that 3. 0 in this example has the type double and therefore the
whole expression should be evaluated in double precision. However, when the
--relaxed_fp optionis used, 3.0 will be converted to £1oat and the whole expression
can be evaluated in f1oat precision.

To set related options, choose:

Project>Options>C/C++ Compiler>Language 2>Floating-point semantics

--remarks

The least severe diagnostic messages are called remarks. A remark indicates a source
code construct that may cause strange behavior in the generated code. By default, the
compiler does not generate remarks. Use this option to make the compiler generate
remarks.

Severity levels, page 257.

Project>Options>C/C++ Compiler>Diagnostics>Enable remarks

--require_prototypes

Use this option to force the compiler to verify that all functions have proper prototypes.
Using this option means that code containing any of the following will generate an error:

e A function call of a function with no declaration, or with a Kernighan & Ritchie
C declaration
e A function definition of a public function with no previous prototype declaration

e An indirect function call through a function pointer with a type that does not include
a prototype.

--reversed_bitfields

Syntax

Description

See also

--ropi

Syntax

Description

See also

--rwpi
Syntax

Description

Compiler options °

Project>Options>C/C++ Compiler>Language 1>Require prototypes

--reversed_bitfields

Use this option to enable the bitfield allocation strategy Reverse disjoint types. This
places bitfield members from the most significant bit to the least significant bit in the
container type. Storage containers of bitfields will not overlap other structure members.
(By default, the compiler uses the allocation strategy Disjoint types, where bitfield
members are placed from the least significant bit to the most significant bit in the
container type.)

This option cannot be used together with the option --joined_bitfields.

Bitfields, page 348.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--ropi

Use this option to make the compiler generate code that uses position-independent
references to access code and read-only data.

Position-independent code and data, page 210.

Project>Options>General Options>Target>Code and read-only data

--rwpi

Use this option to enable position-independent writable data. A base register will be
locked to hold the base address of the position-independent block. The default memory
attribute for non-constant objects will be __sbrel (position-independent).

When this option is used, these limitations apply:

299

Descriptions of compiler options

See also

--rwpi_near

Syntax

Description

See also

--save_acc

Syntax

Description

IAR C/C++ Development Guide
300 Compiling and linking for RX

e Constant pointers to __sbrel objects cannot be used

® __sbrel objects cannot be declared const.

RWPI, page 214 and Description of predefined preprocessor symbols, page 424.

Project>Options>General Options>Target>Read/write data

--rwpi_near

Use this option to enable position-independent writable data. A base register will be
locked to hold the base address of the position-independent block. The default memory
attribute for non-constant objects will be __sbrel (position-independent). This option
is equivalent to the option--rwpi in IAR Embedded Workbench for RX version 3.10
and older.

When this option is used, these limitations apply:

e Constant pointers to __sbrel objects cannot be used
® _ sbrel objects cannot be declared const

o The position-independent RAM memory is effectively limited to 64 Kbytes for
increased efficiency.
RWPI, page 214 and Description of predefined preprocessor symbols, page 424.

Project>Options>General Options>Target>Read/write data

——-save_acc

Use this option to save and restore the DSP accumulator when the interrupt context
switches. If the application uses the DSP, you should consider saving the accumulator
when context switching, because the accumulator is destroyed if the interrupt service
routine uses a MUL instruction or similar.

This option is not available in the IDE.

Compiler options °

--section
Syntax --section 0ldName=NewName
Description The compiler places functions and data objects into named sections which are referred
to by the IAR ILINK Linker. Use this option to change the name of the section 01dName
to NewName.
This is useful if you want to place your code or data in different address ranges and you
find the @ notation, alternatively the #pragma location directive, insufficient.
Note: Any changes to the section names require corresponding modifications in the
linker configuration file.
These default sections and section qualifiers can be renamed: .datalé6, .data24,
.data32, .sbdata, . text, .textrw, .switch, .inttable, bss,data,noinit, and
rodata.
Example To place functions in the section MyText, use:
--section .text=MyText
See also Controlling data and function placement in memory, page 230.
To set this option, use Project>Options>C/C++ Compiler>Extra Options.
--silent
Syntax --silent
Description By default, the compiler issues introductory messages and a final statistics report. Use

this option to make the compiler operate without sending these messages to the standard
output stream (normally the screen).

This option does not affect the display of error and warning messages.

This option is not available in the IDE.

301

Descriptions of compiler options

--source_encoding

Syntax

Parameters

Description

See also

--sqrt_must_set_errno

Syntax

Description

--stack_protection

Syntax
Description

See also

IAR C/C++ Development Guide
302 Compiling and linking for RX

--source_encoding {1ocale|utf8}

locale The default source encoding is the system locale encoding.

utfs The default source encoding is the UTF-8 encoding.

When reading a source file with no Byte Order Mark (BOM), use this option to specify
the encoding. If this option is not specified and the source file does not have a BOM, the
Raw encoding will be used.

Text encodings, page 254.

Project>Options>C/C++ Compiler>Encodings>Default source file encoding

—--sgrt_must_set_errno

Use this option to disable replacing calls to the library function sqrt£ () with the
RXv2/RXv3 core instruction FSQRT. This is needed to make the code comply with
Standard C, because the FSQRT instruction does not set the C library symbol errno if
the argument is out of range.

This option is set automatically when you choose an RXv2 or RXv3 core device using
Project>Options>General Options>Target>Device and select
Project>Options>C/C++ Compiler>Floating-point semantics>Strict conformance.

--stack_protection
Use this option to enable stack protection for the functions that are considered to need it.

Stack protection, page 86.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

-=strict

Syntax

Description

See also

Compiler options °

--strict

By default, the compiler accepts a relaxed superset of Standard C and C++. Use this
option to ensure that the source code of your application instead conforms to strict
Standard C and C++.

Note: The -e option and the --strict option cannot be used at the same time.

Enabling language extensions, page 191.

Project>Options>C/C++ Compiler>Language 1>Language conformance>Strict

--suppress_core_attribute

Syntax

Description

--system_include_dir
Syntax

Parameters

Description

See also

--suppress_core_attribute

Use this option to disable the generation of the runtime attribute __core for library
object files. This means that a library file can be linked with any RX application,
whether compiled for the RXv1, the RXv2, or the RXv3 architecture.

Project>Options>General Options>Library Configuration>Suppress the core
runtime model attribute

--system_include_dir path

To specify the path to the system include files, see Rules for specifying a filename or
directory as parameters, page 260.

By default, the compiler automatically locates the system include files. Use this option
to explicitly specify a different path to the system include files. This might be useful if
you have not installed IAR Embedded Workbench in the default location.

--dlib_config, page 275, and --no_system_include, page 291.

This option is not available in the IDE.

303

Descriptions of compiler options

304

--text_out

Syntax

Parameters

Description

See also

--tfu

Syntax

Parameters

IAR C/C++ Development Guide
Compiling and linking for RX

--text_out {utf8|utfléle|utflébe|locale}

utfsg Uses the UTF-8 encoding

utfl6le Uses the UTF-16 little-endian encoding
utflébe Uses the UTF-16 big-endian encoding
locale Uses the system locale encoding

Use this option to specify the encoding to be used when generating a text output file.

The default for the compiler list files is to use the same encoding as the main source file.
The default for all other text files is UTF-8 with a Byte Order Mark (BOM).

If you want text output in UTF-8 encoding without a BOM, use the option --no_bom.

--no_bom, page 286 and Text encodings, page 254.

Project>Options>C/C++ Compiler>Encodings>Text output file encoding

--tfu {nonel|intrinsic|intrinsic_mathlib}

none The TUF intrinsic functions are not used.
intrinsic Enables the TUF intrinsic functions:
__sincosf
__atan2hypotf

__inline_sinf
__inline_cosf
__inline_atan2f
__inline_hypotf

Compiler options °

intrinsic_mathlib Replaces these runtime library math functions with inline
TUF intrinsic functions at compile time:

sin and sinf are replaced by __inline sinf
cos and cosf are replaced by __inline cosf
atan2 and atan2f are replaced by __inline atan2f
hypot and hypotf are replaced by __inline hypotf

Description Use this option to enable support for the Arithmetic Unit for Trigonometric Functions
(TUF), which is available for some devices based on the RXv3 architecture. The TUF is
accessed using a set of intrinsic functions.

See also Intrinsic functions, page 407.

Project>Options>C/C++ Compiler>Code>Trigonometric Functions Unit

--tfu_version

Syntax --tfu_version={vl|v2}
Parameters
vl Uses the TFU versionl
v2 Uses the TFU version2
Description Specifies the Arithmetic Unit for Trigonometric Functions (TUF) version that needs to

be used. The default TUF version is 1.

This option is not available in the IDE.

--uniform_attribute_syntax

Syntax --uniform_attribute_syntax

Description By default, an IAR type attribute specified before the type specifier applies to the object
or typedef itself, and not to the type specifier, as const and volatile do. If you specify
this option, IAR type attributes obey the same syntax rules as const and volatile.

The default for IAR type attributes is to not use uniform attribute syntax.

305

Descriptions of compiler options

See also --no_uniform_attribute syntax, page 292 and Syntax for type attributes used on data
objects, page 362.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--use_c++_inline
Syntax --use_c++_inline
Description Standard C uses slightly different semantics for the inline keyword than C++ does.
Use this option if you want C++ semantics when you are using C.

See also Inlining functions, page 84.

Project>Options>C/C++ Compiler>Language 1>C dialect>C++ inline semantics

--use_unix_directory_separators

Syntax --use_unix_directory_separators
Description Use this option to make DWARF debug information use / (instead of \) as directory
separators in file paths.

This option can be useful if you have a debugger that requires directory separators in
UNIX style.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--use_paths_as_written
Syntax --use_paths_as_written
Description By default, the compiler ensures that all paths in the debug information are absolute,
even if not originally specified that way.

If you use this option, paths that were originally specified as relative will be relative in
the debug information.

The paths affected by this option are:

e the paths to source files

IAR C/C++ Development Guide
306 Compiling and linking for RX

--utf8_ text_in

Syntax

Description

See also

--version

--via

Syntax

Description

Syntax

Description

See also

Compiler options °

e the paths to header files that are found using an include path that was specified as
relative

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--utf8_text_in

Use this option to specify that the compiler shall use UTF-8 encoding when reading a
text input file with no Byte Order Mark (BOM).

Note: This option does not apply to source files.

Text encodings, page 254.

Project>Options>C/C++ Compiler>Encodings>Default input file encoding

--version

Use this option to make the compiler send version information to the console and then
exit.

This option is not available in the IDE.

--vla

Use this option to enable support for variable length arrays in C code. Such arrays are
located on the heap. This option requires Standard C and cannot be used together with
the --c89 compiler option.

Note: --v1a should not be used together with the 1ongjmp library function, as that can
lead to memory leakages.

C language overview, page 189.

307

Descriptions of compiler options

Project>Options>C/C++ Compiler>Language 1>C dialect>Allow VLA

--warn_about_c_style_casts

Syntax --warn_about_c_style_casts
Description Use this option to make the compiler warn when C-style casts are used in C++ source
code.

This option is not available in the IDE.

--warn_about_incomplete_constructors

Syntax --warn_about_incomplete_constructors

Description Use this option to make the compiler warn if a constructor does not provide an initializer
for each data member.

This option is not available in the IDE.

--warnings_affect_exit_code

Syntax --warnings_affect_exit_code

Description By default, the exit code is not affected by warnings, because only errors produce a
non-zero exit code. With this option, warnings will also generate a non-zero exit code.

This option is not available in the IDE.

--warn_about_missing_field_initializers
Syntax --warn_about_missing field_initializers
Description Use this option to make the compiler warn if the initializer for a structure does not
provide explicit initializers for all fields in the structure.

No warning is emitted for the universal zero initializer { 0 }, or—in C++—for the
empty initializer {}.

IAR C/C++ Development Guide
308 Compiling and linking for RX

Compiler options °

In C, initializers that use one or more designated initializers are not checked.

In Standard C++17, designated initializers are not available. When language extensions
are enabled (by using -e or #pragma language) they are supported, but, as in C++20,
only if the designated initializers are in field order. In this case, the structure is checked
for missing initializers.

This option is not available in the IDE.

--warnings_are_errors

Syntax --warnings_are_errors

Description Use this option to make the compiler treat all warnings as errors. If the compiler
encounters an error, no object code is generated. Warnings that have been changed into
remarks are not treated as errors.

Note: Any diagnostic messages that have been reclassified as warnings by the option
--diag_warning or the #pragma diag_warning directive will also be treated as
errors when --warnings_are_errors is used.

See also --diag warning, page 274.
Project>Options>C/C++ Compiler>Diagnostics>Treat all warnings as errors

309

Descriptions of compiler options

IAR C/C++ Development Guide
310 Compiling and linking for RX

Linker options

e Summary of linker options

e Descriptions of linker options

For general syntax rules, see Options syntax, page 259.

Summary of linker options

This table summarizes the linker options:

Command line option

Description

--accurate_math
--advanced_heap
--basic_heap

--bounds_table_size

--call_graph

--config

--config_def

--config_search

--cpp_init_routine

--debug_heap

--debug_lib

--default_to_complex_ranges

--define_symbol

--dependencies

Uses more accurate math functions
Uses an advanced heap
Uses a basic heap

Specifies the size of the global bounds table. See
the C-RUN documentation in the C-SPY®
Debugging Guide for RX.

Produces a call graph file in XML format

Specifies the linker configuration file to be used by
the linker

Defines symbols for the configuration file

Specifies more directories to search for linker
configuration files

Specifies a user-defined C++ dynamic initialization
routine

Uses the checked heap. See the C-RUN
documentation in the C-SPY® Debugging Guide for
RX.

Uses the C-SPY debug library

Makes complex ranges the default
decompressor in initialize directives

Defines symbols that can be used by the
application

Lists file dependencies

Table 26: Linker options summary

311

Summary of linker options

312

IAR C/C++ Development Guide
Compiling and linking for RX

Command line option

Description

--diag_error
--diag_remark
--diag_suppress
--diag_warning
--diagnostics_tables
--enable_stack_usage

--entry

--entry_list_in_address_order

-—error_limit

--export_builtin_config
-f
--f

--force_output

--ignore_uninstrumented_point

ers

--image_input
--inline
--keep

-L

--log
--log_file
--mangled_names_in_messages

--manual_dynamic_initializati

on
--map

--merge_duplicate_sections

Treats these message tags as errors
Treats these message tags as remarks
Suppresses these diagnostic messages
Treats these message tags as warnings
Lists all diagnostic messages

Enables stack usage analysis

Treats the symbol as a root symbol and as the
start of the application

Generates an additional entry list in the map file
sorted in address order

Specifies the allowed number of errors before
linking stops

Produces an icf file for the default configuration
Extends the command line

Extends the command line, optionally with a
dependency

Produces an output file even if errors occurred

Disables checking of accessing via pointers in
memory for which no bounds have been set. See
the C-RUN documentation in the C-SPY®
Debugging Guide for RX.

Puts an image file in a section
Inlines small routines
Forces a symbol to be included in the application

Specifies more directories to search for object and
library files. Alias for --search.

Enables log output for selected topics
Directs the log to a file
Adds mangled names in messages

Suppresses automatic initialization during system
startup

Produces a map file

Merges equivalent read-only sections

Table 26: Linker options summary (Continued)

Command line option

Linker options °

Description

--misrac

--misracl998

--misrac2004

--misrac_verbose

--no_bom

--no_entry
--no_fragments
--no_free_heap
--no_inline
--no_library_search

--no_Jlocals

--no_range_reservations
--no_remove

--no_vfe

--no_warnings
--no_wrap_diagnostics
-0

--only_stdout

--option_mem

--output

--place_holder

Enables error messages specific to MISRA-C:1998.
This option is a synonym to --misrac1998 and
is only available for backwards compatibility.

Enables error messages specific to MISRA-C:1998.
See the IAR Embedded Workbench® MISRA C:1998
Reference Guide.

Enables error messages specific to MISRA-C:2004.
See the IAR Embedded Workbench® MISRA C:2004
Reference Guide.

Enables verbose logging of MISRA C checking. See
the IAR Embedded Workbench® MISRA C:1998
Reference Guide and the IAR Embedded
Workbench® MISRA C:2004 Reference Guide.

Omits the Byte Order Mark from UTF-8 output
files

Sets the entry point to zero

Disables section fragment handling

Uses the smallest possible heap implementation
Excludes functions from small function inlining
Disables automatic runtime library search
Removes local symbols from the ELF executable
image

Disables range reservations for absolute symbols
Disables removal of unused sections

Disables Virtual Function Elimination

Disables generation of warnings

Does not wrap long lines in diagnostic messages
Alias for --output

Uses standard output only

Specifies that the device has option-setting
memory

Sets the object filename

Reserve a place in ROM to be filled by some other
tool, for example, a checksum calculated by
ielftool

Table 26: Linker options summary (Continued)

313

Descriptions of linker options

314

Command line option Description

--preconfig Reads the specified file before reading the linker
configuration file

--printf_multibytes Makes the printf formatter support multibytes

--redirect Redirects a reference to a symbol to another
symbol

--remarks Enables remarks

--scanf_multibytes Makes the scanf formatter support multibytes

--search Specifies more directories to search for object and
library files

--silent Sets silent operation

--small_math Uses smaller math functions

--stack_usage_control Specifies a stack usage control file

--strip Removes debug information from the executable
image

--text_out Specifies the encoding for text output files

--threaded_1ib Configures the runtime library for use with
threads

--timezone_lib Enables the time zone and daylight savings time

functionality in the library

--use_full_std_template_names Enables full names for standard C++ templates

--utf8_text_in Uses the UTF-8 encoding for text input files
--version Sends version information to the console and then
exits

--vfe Controls Virtual Function Elimination
--warnings_affect_exit_code Warnings affects exit code
--warnings_are_errors Warnings are treated as errors
--whole_archive Treats every object file in the archive as if it was

specified on the command line

Table 26: Linker options summary (Continued)

Descriptions of linker options
The following section gives detailed reference information about each linker option.

To comply with the RX ABI, the compiler generates assembler labels for symbol and
function names by prefixing an underscore. You must remember to add this extra

IAR C/C++ Development Guide
Compiling and linking for RX

--accurate_math

Syntax

Description

See also

--advanced_heap

Syntax
Description

See also

--basic_heap

Syntax
Description

See also

Linker options °

underscore when you refer to C symbols in any of the linker options, such as
--define_symbol and --redirect, or in directives in the linker configuration file,
such as define symbol. For example, main must be written as _main.

If you use the options page Extra Options to specify specific command line options,
the IDE does not perform an instant check for consistency problems like conflicting
options, duplication of options, or use of irrelevant options.

--accurate_math

Use this option to use math library versions designed to provide better accuracy (but
which are larger) than the default versions.

Math functions, page 141.

This option is not available in the IDE.

--advanced_heap
Use this option to use an advanced heap.

Heap memory handlers, page 209.

Project>Options>General Options>Library options 2>Heap selection

--basic_heap
Use this option to use the basic heap handler.

Heap memory handlers, page 209.

Project>Options>General Options>Library options 2>Heap selection

315

Descriptions of linker options

--call_graph

Syntax
Parameters

Description

See also

--config

Syntax
Parameters

Description

See also

--config_def

Syntax

Parameters

Description

IAR C/C++ Development Guide
316 Compiling and linking for RX

--call_graph {filename|directory}
See Rules for specifying a filename or directory as parameters, page 260.

Use this option to produce a call graph file. If no filename extension is specified, the
extension cgx is used. This option can only be used once on the command line.

Using this option enables stack usage analysis in the linker.

Stack usage analysis, page 99

Project>Options>Linker>Advanced>Enable stack usage analysis>Call graph
output (XML)

--config filename

See Rules for specifying a filename or directory as parameters, page 260.

Use this option to specity the configuration file to be used by the linker (the default
filename extension is ic£). If no configuration file is specified, a default configuration

is used. This option can only be used once on the command line.

The chapter The linker configuration file.

Project>Options>Linker>Config>Linker configuration file

--config_def symbol=constant_value

symbol The name of the symbol to be used in the configuration file.

constant_value The constant value of the configuration symbol.

Use this option to define a constant configuration symbol to be used in the configuration
file. This option has the same effect as the define symbol directive in the linker
configuration file. This option can be used more than once on the command line.

See also

--config_search

Syntax

Parameters

Description

See also

--cpp_init_routine

Syntax

Parameters

Description

Linker options °

--define_symbol, page 318 and Interaction between ILINK and the application, page
116.

Project>Options>Linker>Config>Defined symbols for configuration file

--config_search path

path A path to a directory where the linker should search for
linker configuration include files.

Use this option to specify more directories to search for files when processing an
include directive in a linker configuration file.

By default, the linker searches for configuration include files only in the system
configuration directory. To specify more than one search directory, use this option for
each path.

include directive, page 486.

To set this option, use Project>Options>Linker>Extra Options.

--cpp_init_routine routine

routine A user-defined C++ dynamic initialization routine.

When using the IAR C/C++ compiler and the standard library, C++ dynamic
initialization is handled automatically. In other cases you might need to use this option.

If any sections with the section type INIT_ARRAY or PREINIT_ARRAY are included in
your application, the C++ dynamic initialization routine is considered to be needed. By
default, this routine isnamed __iar_cstart_call_ctors andis called by the startup
code in the standard library. Use this option if you require another routine to handle the
initialization, for instance if you are not using the standard library.

317

Descriptions of linker options

To set this option, use Project>Options>Linker>Extra Options.

--debug lib
Syntax --debug_lib
Description Use this option to enable C-SPY emulated I/0.
See also Briefly about C-SPY emulated 1/0, page 125.

Project>Options>Linker>Library>Include C-SPY debugging support

--default_to_complex_ranges

Syntax --default_to_complex_ranges

Description Normally, if initializedirectivesinalinker configuration file do notspecify simple
ranges Or complex ranges, the linker uses simple ranges if the associated
section placement directives use single range regions.

Use this option to make the linker always use complex ranges by default. This was
the behavior of the linker before the introduction of simple ranges and complex

ranges.

See also initialize directive, page 465.

To set this option, use Project>Options>Linker>Extra Options

--define_symbol

Syntax --define_symbol symbol=constant_value
Parameters
symbol The name of the constant symbol that can be used by the
application.
constant_value The constant value of the symbol.

IAR C/C++ Development Guide
318 Compiling and linking for RX

Linker options °

Description Use this option to define a constant symbol, that is a label, that can be used by your
application. This option can be used more than once on the command line.

Note: This option is different from the define symbol directive.

See also --config_def, page 316 and Interaction between ILINK and the application, page 116.
Project>Options>Linker>#define>Defined symbols

--dependencies
Syntax --dependencies[=[i|m|n] [s][1|w][b]] {filename|directory|+}
Parameters
i (default) Lists only the names of files
m Lists in makefile style (multiple rules)
n Lists in makefile style (one rule)
s Suppresses system files
1 Uses the locale encoding instead of UTF-8
w Uses little-endian UTF-16 instead of UTF-8
b Uses a Byte Order Mark (BOM) in UTF-8 output
+ Gives the same output as -o, but with the filename extension d
See also Rules for specifying a filename or directory as parameters, page 260.
Description Use this option to make the linker list the names of the linker configuration, object, and
library files opened for input into a file with the default filename extension 1.
Example If --dependencies or --dependencies=i is used, the name of each opened input

file, including the full path, if available, is output on a separate line. For example:

c:\myproject\foo.o
d:\myproject\bar.o

If --dependencies=mis used, the output is in makefile style. For each input file, one
line containing a makefile dependency rule is produced. Each line consists of the name
of the output file, a colon, a space, and the name of an input file. For example:

a.out: c:\myproject\foo.o
a.out: d:\myproject\bar.o

319

Descriptions of linker options

--diag_error

Syntax

Parameters

Description

--diag_remark

Syntax

Parameters

Description

IAR C/C++ Development Guide
320 Compiling and linking for RX

This option is not available in the IDE.

--diag_error=tagl, tag, ...]

tag The number of a diagnostic message, for example, the
message number Pell7

Use this option to reclassify certain diagnostic messages as errors. An error indicates a
problem of such severity that an executable image will not be generated. The exit code
will be non-zero. This option may be used more than once on the command line.

Project>Options>Linker>Diagnostics>Treat these as errors

--diag_remark=tagl, tag, ...]

tag The number of a diagnostic message, for example, the
message number Go109

Use this option to reclassify certain diagnostic messages as remarks. A remark is the
least severe type of diagnostic message and indicates a construction that may cause
strange behavior in the executable image.

Note: Not all diagnostic messages can be reclassified. This option may be used more
than once on the command line.

Note: By default, remarks are not displayed—use the --remarks option to display
them.

Project>Options>Linker>Diagnostics>Treat these as remarks

--diag_suppress

Syntax

Parameters

Description

--diag_warning
Syntax

Parameters

Description

[[H

--diagnostics_tables

Syntax
Parameters

Description

Linker options °

--diag_suppress=tagl, tag, ...]

tag The number of a diagnostic message, for example, the
message number Pa180

Use this option to suppress certain diagnostic messages. These messages will not be
displayed. This option may be used more than once on the command line.

Note: Not all diagnostic messages can be reclassified.

Project>Options>Linker>Diagnostics>Suppress these diagnostics

--diag_warning=tagl, tag, ...]

tag The number of a diagnostic message, for example, the
message number Li004

Use this option to reclassify certain diagnostic messages as warnings. A warning
indicates an error or omission that is of concern, but which will not cause the linker to
stop before linking is completed. This option may be used more than once on the
command line.

Note: Not all diagnostic messages can be reclassified.

Project>Options>Linker>Diagnostics>Treat these as warnings

--diagnostics_tables {filename|directory}
See Rules for specifying a filename or directory as parameters, page 260.
Use this option to list all possible diagnostic messages in a named file. This can be

convenient, for example, if you have used a pragma directive to suppress or change the
severity level of any diagnostic messages, but forgot to document why.

321

Descriptions of linker options

--enable_stack_usage

Syntax

Description

See also

--entry

Syntax

Parameters

Description

See also

IAR C/C++ Development Guide
322 Compiling and linking for RX

This option cannot be given together with other options.

This option is not available in the IDE.

--enable_stack_usage

Use this option to enable stack usage analysis. If a linker map file is produced, a stack
usage chapter is included in the map file.

Note: If you use at least one of the --stack_usage_control or --call_graph
options, stack usage analysis is automatically enabled.

Stack usage analysis, page 99.

Project>Options>Linker>Advanced>Enable stack usage analysis

--entry symbol

symbol The name of the symbol to be treated as a root symbol and
start label

Use this option to make a symbol be treated as a root symbol and the start label of the
application. This is useful for loaders. If this option is not used, the default start symbol
is__iar program_start. A root symbol is kept whether or not it is referenced from
the rest of the application, provided its module is included. A module in an object file is
always included but a module part of a library is only included if needed.

Note: The label referred to must be available in your application. You must also make
sure that the reset vector refers to the new start label, for example --redirect
__lar_program_start=_myStartLabel.

--no_entry, page 331.

Project>Options>Linker>Library>Override default program entry

Linker options °

--entry_list_in_address_order

Syntax

Description

--error_limit

Syntax

Parameters

Description

--export_builtin_config

Syntax
Parameters

Description

Syntax

Parameters

--entry_list_in_address_order

Use this option to generate an additional entry list in the map file. This entry list will be
sorted in address order.

To set this option, use Project>Options>Linker>Extra Options

--error_limit=n

n The number of errors before the linker stops linking. n must
be a positive integer. 0 indicates no limit.

Use the --error_limit option to specify the number of errors allowed before the
linker stops the linking. By default, 100 errors are allowed.

This option is not available in the IDE.

--export_builtin_config filename
See Rules for specifying a filename or directory as parameters, page 260.

Exports the configuration used by default to a file.

This option is not available in the IDE.

-f filename

See Rules for specifying a filename or directory as parameters, page 260.

323

Descriptions of linker options

324

Description

See also

--f

Syntax
Parameters

Description

See also

IAR C/C++ Development Guide
Compiling and linking for RX

Use this option to make the linker read command line options from the named file, with
the default filename extension xc1.

In the command file, you format the items exactly as if they were on the command line
itself, except that you may use multiple lines, because the newline character acts just as
a space or tab character.

Both C and C++ style comments are allowed in the file. Double quotes behave in the
same way as in the Microsoft Windows command line environment.
--f, page 324.

To set this option, use Project>Options>Linker>Extra Options.

--f filename
See Rules for specifying a filename or directory as parameters, page 260.
Use this option to make the linker read command line options from the named file, with

the default filename extension xc1.

In the command file, you format the items exactly as if they were on the command line
itself, except that you may use multiple lines, because the newline character acts just as
a space or tab character.

Both C and C++ style comments are allowed in the file. Double quotes behave in the
same way as in the Microsoft Windows command line environment.

If you use the linker option --dependencies, extended command line files specified
using -- £ will generate a dependency, but those specified using - £ will not generate a
dependency.

--dependencies, page 319 and -f, page 323.

To set this option, use Project>Options>Linker>Extra Options.

--force_output

Syntax

Description

--image_input
Syntax

Parameters

Description

Example

See also

Linker options °

--force_output

Use this option to produce an output executable image regardless of any non-fatal
linking errors.

To set this option, use Project>Options>Linker>Extra Options

--image_input filenamel, symboll[,section[,alignment]]]

filename The pure binary file containing the raw image you want to
link. See Rules for specifying a filename or directory as
parameters, page 260.

symbol The symbol which the binary data can be referenced with.

section The section where the binary data will be placed. The default
is . text.

alignment The alignment of the section. The default is 1.

Use this option to link pure binary files in addition to the ordinary input files. The file’s
entire contents are placed in the section, which means it can only contain pure binary
data.

Note: Just as for sections from object files, sections created by using the
--image_input option are not included unless actually needed. You can either specify
a symbol in the option and reference this symbol in your application (or use a --keep
option), or you can specify a section name and use the keep directive in a linker
configuration file to ensure that the section is included.

--image_input bootstrap.abs,Bootstrap, CSTARTUPCODE, 4

The contents of the pure binary file bootstrap.abs are placed in the section
CSTARTUPCODE. The section where the contents are placed is 4-byte aligned and will
only be included if your application (or the command line option --keep) includes a
reference to the symbol Bootstrap.

--keep, page 326.

325

Descriptions of linker options

Project>Options>Linker>Input>Raw binary image

--inline
Syntax --inline
Description Some routines are so small that they can fit in the space of the instruction that calls the
routine. Use this option to make the linker replace the call of a routine with the body of
the routine, where applicable.
See also Small function inlining, page 121.
Project>Options>Linker>Optimizations>Inline small routines
--keep
Syntax --keep symboll,symboll, ...]
Parameters
symbol The name of the global symbols to be treated as root
symbols.
Description Normally, the linker keeps a symbol only if it is needed by your application. Use this

option to make global symbols always be included in the final application.

Project>Options>Linker>Input>Keep symbols

IAR C/C++ Development Guide
326 Compiling and linking for RX

--log

Syntax

Parameters

Description

--log topicl, topic, ..

topic can be one of:

call_graph

crt_routine_select

ion

demangle

fragment_info

initialization

libraries

merging

modules

redirects

sections

unused_fragments

Linker options °

-1

Lists the call graph as seen by stack usage analysis.

Lists details of the selection process for runtime routines—
what definitions were available, what the requirements were,
and which decision the process resulted in.

Uses demangled names instead of mangled names for
C/C++ symbols in the log output, for example,
void h(int, char) instead of _Z1lhic

Lists all fragments by number. The information contains the
section they correspond to (name, section number and file)
and the fragment size.

Lists copy batches and the compression selected for each
batch.

Lists all decisions made by the automatic library selector.
This might include extra symbols needed (--keep),
redirections (--redirect), as well as which runtime
libraries that were selected.

Lists the sections (name, section number and file) that were
merged and which symbol redirections this resulted in. Note
that section merging must be enabled by the
--merge_duplicate_sections linker option. See
--merge_duplicate sections, page 330.

Lists the modules that were selected for inclusion in the
application, and which symbol that caused them to be
included.

Lists redirected symbols.

Lists the symbols and section fragments that were selected
for inclusion in the application, and the dependence that
caused them to be included.

Lists those section fragments that were not included in the
application.

Use this option to make the linker log information to stdout. The log information can

327

Descriptions of linker options

be useful for understanding why an executable image became the way it is.

See also --log file, page 328.
Project>Options>Linker>List>Generate log

--log file

Syntax --log_file filename

Parameters See Rules for specifying a filename or directory as parameters, page 260.
Description Use this option to direct the log output to the specified file.

See also --log, page 327.

Project>Options>Linker>List>Generate log

--mangled_names_in_messages

Syntax --mangled_names_in_messages

Description Use this option to produce both mangled and demangled names for C/C++ symbols in
messages. Mangling is a technique used for mapping a complex C name or a C++
name—for example, for overloading—into a simple name. For example, void h(int,
char) becomes _Zlhic.

This option is not available in the IDE.

--manual_dynamic_initialization

Syntax --manual_dynamic_initialization

Description Normally, dynamic initialization (typically initialization of C++ objects with static
storage duration) is performed automatically during application startup. If you use
--manual_dynamic_initialization, you must call
__iar_dynamic_initialization at some later point for this initialization to be
done.

IAR C/C++ Development Guide
328 Compiling and linking for RX

--map

Syntax

Parameters

Description

Linker options °

The function __iar_dynamic_initialization is declared in the header file
iar_dynamic_init.h.

In a threaded application, --manual_dynamic_initialization also suppresses the
automatic initialization of thread-local variables for the main thread. In that case, you
mustcall __iar cstart_tls_init (NULL) before using any thread-local variables,
and before calling __iar dynamic_initialization.

The function __iar cstart_tls_init is declared in the header file
DLib_Threads.h.

To set this option use Project>Options>Linker>Extra Options.

--map {filename|directory|-|+}

- Sends the entire linker memory map to stdout.

+ Generates a map file in the same directory as the output file and
with the same name as the output file, but with the filename
extension .map

See also Rules for specifying a filename or directory as parameters, page 260.

Use this option to produce a linker memory map file. The map file has the default
filename extension map. The map file contains:

e Linking summary in the map file header which lists the version of the linker, the
current date and time, and the command line that was used.
Runtime attribute summary which lists runtime attributes.

Placement summary which lists each section/block in address order, sorted by
placement directives.

e Initialization table layout which lists the data ranges, packing methods, and
compression ratios.

o Module summary which lists contributions from each module to the image, sorted
by directory and library.

e Entry list which lists all public and some local symbols in alphabetical order,
indicating which module they came from.

e Some of the bytes might be reported as shared.

329

Descriptions of linker options

330

Shared objects are functions or data objects that are shared between modules. If any
of these occur in more than one module, only one copy is retained. For example, in
some cases inline functions are not inlined, which means that they are marked as
shared, because only one instance of each function will be included in the final
application. This mechanism is also sometimes used for compiler-generated code or
data not directly associated with a particular function or variable, and when only one
instance is required in the final application.

This option can only be used once on the command line.

Project>Options>Linker>List>Generate linker map file

--merge_duplicate_sections

Syntax

Description

See also

--no_bom

Syntax

Description

See also

IAR C/C++ Development Guide
Compiling and linking for RX

--merge_duplicate_sections

Use this option to keep only one copy of equivalent read-only sections.

Note: This can cause different functions or constants to have the same address, so an
application that depends on the addresses being different will not work correctly with
this option enabled.

Duplicate section merging, page 122.

Project>Options>Linker>Optimizations>Merge duplicate sections

--no_bom

Use this option to omit the Byte Order Mark (BOM) when generating a UTF-8 output
file.

--text_out, page 339 and Text encodings, page 254.

Project>Options>Linker>Encodings>Text output file encoding

--no_entry

Syntax
Description

See also

--no_fragments

Syntax

Description

See also

--no_free_heap

Syntax

Description

See also

Linker options °

--no_entry
Use this option to set the entry point field to zero for produced ELF files.

--entry, page 322.

Project>Options>Linker>Library>Override default program entry

--no_fragments

Use this option to disable section fragment handling. Normally, the toolset uses IAR
proprietary information for transferring section fragment information to the linker. The
linker uses this information to remove unused code and data, and further minimize the
size of the executable image. Use this option to disable the removal of fragments of
sections, instead including or not including each section in its entirety, usually resulting
in a larger application.

Keeping symbols and sections, page 111.

To set this option, use Project>Options>Linker>Extra Options

--no_free_heap

Use this option to use the smallest possible heap implementation. Because this heap
does not support free or realloc, itis only suitable for applications that in the startup
phase allocate heap memory for various buffers, etc, and for applications that never
deallocate memory.

Heap memory handlers, page 209

Project>Options>General Options>Library Options 2>Heap selection

331

Descriptions of linker options

332

--no_inline

Syntax

Parameters

Description

See also

--no_library_search

Syntax

Description

--no_locals

Syntax

Description

IAR C/C++ Development Guide
Compiling and linking for RX

--no_inline funcl(, func...]

func The name of a function symbol

Use this option to exclude some functions from small function inlining.

--inline, page 326.

To set this option, use Project>Options>Linker>Extra Options.

--no_library_search

Use this option to disable the automatic runtime library search. This option turns off the
automatic inclusion of the correct standard libraries. This is useful, for example, if the
application needs a user-built standard library, etc.

Note: The option disables all steps of the automatic library selection, some of which
might need to be reproduced if you are using the standard libraries. Use the

--log libraries linker option together with automatic library selection enabled to
determine which the steps are.

Project>Options>Linker>Library>Automatic runtime library selection

--no_Jlocals

Use this option to remove all local symbols from the ELF executable image.

Note: This option does not remove any local symbols from the DWARF information in
the executable image.

Project>Options>Linker>Output

Linker options °

--no_range_reservations

Syntax

Description

=--No_remove

Syntax

Description

See also

--no_vfe

Syntax

Description

See also

--no_range_reservations
Normally, the linker reserves any ranges used by absolute symbols with a non-zero size,
excluding them from consideration for place in commands.

When this option is used, these reservations are disabled, and the linker is free to place
sections in such a way as to overlap the extent of absolute symbols.

To set this option, use Project>Options>Linker>Extra Options.

--no_remove

When this option is used, unused sections are not removed. In other words, each module
that is included in the executable image contains all its original sections.
Keeping symbols and sections, page 111.

To set this option, use Project>Options>Linker>Extra Options.

--no_vfe

Use this option to disable the Virtual Function Elimination optimization. All virtual
functions in all classes with at least one instance will be kept, and Runtime Type
Information data will be kept for all polymorphic classes. Also, no warning message will
be issued for modules that lack VFE information.

--vfe, page 341 and Virtual function elimination, page 121.

To set related options, choose:

Project>Options>Linker>Optimizations>Perform C++ Virtual Function
Elimination

333

Descriptions of linker options

--no_warnings

Syntax

Description

--no_wrap_diagnostics

Syntax

Description

--only_stdout

Syntax

Description

--option_mem

Syntax

Parameters

Description

IAR C/C++ Development Guide
334 Compiling and linking for RX

--no_warnings

By default, the linker issues warning messages. Use this option to disable all warning
messages.

This option is not available in the IDE.

--no_wrap_diagnostics

By default, long lines in diagnostic messages are broken into several lines to make the
message easier to read. Use this option to disable line wrapping of diagnostic messages.

This option is not available in the IDE.

--only_stdout

Use this option to make the linker use the standard output stream (stdout) for messages
that are normally directed to the error output stream (stderr).

This option is not available in the IDE.

--option_mem={0|1]2}

0 (default) The device does not have option-setting memory.
1 The device has option-setting memory type 1.
2 The device has option-setting memory type 2.

Use this option to specify that the device you are using has option-setting memory. This
isrequired to ensure that the linker includes the correct libraries. The difference between

See also

--output, -o

Syntax

Parameters

Description

--place_holder

Syntax

Parameters

Description

Linker options °

type 1 and type 2 is the location of the memory areas. Which type of option-setting
memory a device has can be seen in the file defaults. s, located in the directory
rx\src\lib\rx\.

Changing ID code protection and option-setting memory, page 215.

This option is not available in the IDE.

--output {filename|directory}
-o {filename|directory}

See Rules for specifying a filename or directory as parameters, page 260.
By default, the object executable image produced by the linker is located in a file with

the name aout . out. Use this option to explicitly specify a different output filename,
which by default will have the filename extension out.

Project>Options>Linker>Output>Output file

--place_holder symboll[,sizel,section|,alignment]]]

symbol The name of the symbol to create
size Size in ROM. Default is 4 bytes
section Section name to use. Default is . text
alignment Alignment of section. Default is 1

Use this option to reserve a place in ROM to be filled by some other tool, for example,
a checksum calculated by ielftool. Each use of this linker option results in a section
with the specified name, size, and alignment. The symbol can be used by your
application to refer to the section.

Note: Like any other section, sections created by the --place_holder option will only
be included in your application if the section appears to be needed. The --keep linker
option, or the keep linker directive can be used for forcing such section to be included.

335

Descriptions of linker options

See also

--preconfig

Syntax
Parameters

Description

--printf_multibytes

Syntax

Description

--redirect

Syntax

Parameters

Description

IAR C/C++ Development Guide
336 Compiling and linking for RX

IAR utilities, page 507.

To set this option, use Project>Options>Linker>Extra Options

--preconfig filename
See Rules for specifying a filename or directory as parameters, page 260.
Use this option to make the linker read the specified file before reading the linker

configuration file.

To set this option, use Project>Options>Linker>Extra Options.

--printf_multibytes
Use this option to make the linker automatically select a print £ formatter that supports
multibytes.

Project>Options>General Options>Library options 1>Printf formatter

--redirect from_symbol=to_symbol
from_symbol The name of the source symbol

to_symbol The name of the destination symbol

Use this option to change references to an external symbol so that they refer to another
symbol.

Note: Redirection will normally not affect references within a module.

To set this option, use Project>Options>Linker>Extra Options

Linker options °

--remarks
Syntax --remarks
Description The least severe diagnostic messages are called remarks. A remark indicates a source
code construct that may cause strange behavior in the generated code. By default, the
linker does not generate remarks. Use this option to make the linker generate remarks.
See also Severity levels, page 257.

Project>Options>Linker>Diagnostics>Enable remarks

--scanf_multibytes

Syntax --scanf_multibytes
Description Use this option to make the linker automatically select a scanf formatter that supports
multibytes.

Project>Options>General Options>Library options 1>Scanf formatter

--search, -L

Syntax --search path
-L path
Parameters
path A path to a directory where the linker should search for
object and library files.
Description Use this option to specify more directories for the linker to search for object and library
files in.

By default, the linker searches for object and library files only in the working directory.
Each use of this option on the command line adds another search directory.

See also The linking process in detail, page 91.

This option is not available in the IDE.

337

Descriptions of linker options

--silent

Syntax

Description

--small_math

Syntax

Description

See also

--stack_usage_control

Syntax
Parameters

Description

See also

IAR C/C++ Development Guide
338 Compiling and linking for RX

--silent

By default, the linker issues introductory messages and a final statistics report. Use this
option to make the linker operate without sending these messages to the standard output
stream (normally stdout).

This option does not affect the display of error and warning messages.

This option is not available in the IDE.

--small_math

Use this option to use smaller versions of the math libraries (but less accurate) than the
default versions.
Math functions, page 141.

This option is not available in the IDE.

--stack_usage_control=filename
See Rules for specifying a filename or directory as parameters, page 260.

Use this option to specify a stack usage control file. This file controls stack usage
analysis, or provides more stack usage information for modules or functions. You can
use this option multiple times to specify multiple stack usage control files. If no filename
extension is specified, the extension suc is used.

Using this option enables stack usage analysis in the linker.

Stack usage analysis, page 99.

Project>Options>Linker>Advanced>Enable stack usage analysis>Control file

--strip

Syntax

Description

--text_out

Syntax

Parameters

Description

See also

--threaded_lib

Syntax

Description

Linker options °

--strip

By default, the linker retains the debug information from the input object files in the
output executable image. Use this option to remove that information.

To set related options, choose:

Project>Options>Linker>QOutput>Include debug information in output

--text_out{utf8|utfléle|utflébe|locale}

utfsg Uses the UTF-8 encoding

utfléle Uses the UTF-16 little-endian encoding
utflébe Uses the UTF-16 big-endian encoding
locale Uses the system locale encoding

Use this option to specify the encoding to be used when generating a text output file.

The default for the linker list files is to use the same encoding as the main source file.
The default for all other text files is UTF-8 with a Byte Order Mark (BOM).

If you want text output in UTF-8 encoding without BOM, you can use the option
--no_bom as well.

--no_bom, page 330 and Text encodings, page 254.

Project>Options>Linker>Encodings>Text output file encoding

--threaded_1ib

Use this option to automatically configure the runtime library for use with threads.

When this option is used, the linker creates the sections __iar_ tls$$DATA and
__iar_tls$SINIT DATA, and the sections . tdata and . tbss will continue to use the
names .tdata and . tbss. If the option --threaded_1ib is not used, the contents of

339

Descriptions of linker options

the section . tdata will be handled as if they resided in .data and the contents of the
section . tbss will be handled as if they resided in .bss.

m Project>Options>General Options>Library Configuration>Enable thread
support in library

--timezone_lib

Syntax --timezone_1lib
Description Use this option to enable the time zone and daylight savings time functionality in the
DLIB library.

Note: You must implement the time zone functionality yourself.

See also _getzone, page 150.

To set this option, use Project>Options>Linker>Extra Options.

--use_full_std_template_names

Syntax --use_full_std_template_names

Description In the demangled names of C++ entities, the linker by default uses shorter names for
some classes. For example, "std: :string" instead of
"std: :basic_string<char,
std::char_traits<char>,std::allocator<char>>". Use this option to make
the linker instead use the full, unabbreviated names.

This option is not available in the IDE.

--utf8_ text_in

Syntax --utf8_text_in

Description Use this option to specify that the linker shall use the UTF-8 encoding when reading a
text input file with no Byte Order Mark (BOM).

Note: This option does not apply to source files.

See also Text encodings, page 254.

IAR C/C++ Development Guide
340 Compiling and linking for RX

--version

--vfe

Syntax

Description

Syntax

Parameters

Description

See also

Linker options °

Project>Options>Linker>Encodings>Default input file encoding

--version

Use this option to make the linker send version information to the console and then exit.

This option is not available in the IDE.

--vfe[=forced]

forced Performs Virtual Function Elimination even if one or more
modules lack the needed virtual function elimination
information.

By default, Virtual Function Elimination is always performed but requires that all object
files contain the necessary virtual function elimination information. Use
--vfe=forced to perform Virtual Function Elimination even if one or more modules
do not have the necessary information.

Forcing the use of Virtual Function Elimination can be unsafe if some of the modules
that lack the needed information perform virtual function calls or use dynamic Runtime
Type Information.

--no_vfe, page 333 and Virtual function elimination, page 121.

To set related options, choose:

Project>Options>Linker>Optimizations>Perform C++ Virtual Function
Elimination

341

Descriptions of linker options

342

--warnings_affect_exit_code

Syntax

Description

--warnings_are_errors

Syntax

Description

See also

--whole_archive

Syntax
Parameters

Description

Example

See also

IAR C/C++ Development Guide
Compiling and linking for RX

--warnings_affect_exit_code
By default, the exit code is not affected by warnings, because only errors produce a
non-zero exit code. With this option, warnings will also generate a non-zero exit code.

This option is not available in the IDE.

--warnings_are_errors

Use this option to make the linker treat all warnings as errors. If the linker encounters
an error, no executable image is generated. Warnings that have been changed into
remarks are not treated as errors.

Note: Any diagnostic messages that have been reclassified as warnings by the option
--diag_warning will also be treated as errors when --warnings_are_errors is
used.

--diag warning, page 274 and --diag warning, page 321.

Project>Options>Linker>Diagnostics>Treat all warnings as errors

--whole_archive filename
See Rules for specifying a filename or directory as parameters, page 260.

Use this option to make the linker treat every object file in the archive as if it was
specified on the command line. This is useful when an archive contains root content that
is always included from an object file (filename extension o), but only included from an
archive if some entry from the module is referred to.

If archive. a contains the object files filel.o, file2.0, and £ile3.o, using
--whole_archive archive.a is equivalent to specifying filel.o file2.o

file3.o.

Keeping modules, page 110.

Linker options °

To set this option, use Project>Options>Linker>Extra Options

343

Descriptions of linker options

IAR C/C++ Development Guide
344 Compiling and linking for RX

Data representation

e Alignment

e Byte order

e Basic data types—integer types

e Basic data types—floating-point types
e Pointer types

e Structure types

e Type qualifiers

e Data types in C++

See the chapter Efficient coding for embedded applications for information about
which data types provide the most efficient code for your application.

Alignment

Every C data object has an alignment that controls how the object can be stored in
memory. Should an object have an alignment of, for example, 4, it must be stored on an
address that is divisible by 4.

The reason for the concept of alignment is that some processors have hardware
limitations for how the memory can be accessed.

Assume that a processor can read 4 bytes of memory using one instruction, but only
when the memory read is placed on an address divisible by 4. Then, 4-byte objects, such
as long integers, will have alignment 4.

Another processor might only be able to read 2 bytes at a time—in that environment, the
alignment for a 4-byte long integer might be 2.

A structure type will have the same alignment as the structure member with the strictest
alignment. To decrease the alignment requirements on the structure and its members,
use #pragma pack or the __packed data type attribute.

345

Byte order

346

All data types must have a size that is a multiple of their alignment. Otherwise, only the
first element of an array would be guaranteed to be placed in accordance with the
alignment requirements. This means that the compiler might add pad bytes at the end of
the structure. For more information about pad bytes, see Packed structure types, page
357.

Note: With the #pragma data_alignment directive, you can increase the alignment
demands on specific variables.

See also the Standard C file stdalign.h.

ALIGNMENT ON THE RX MICROCONTROLLER

The RX microcontroller can access memory using 8- to 32-bit operations. However,
when an unaligned access is performed, more bus cycles are required. The compiler
avoids this by assigning an alignment to every data type, ensuring that the RX
microcontroller can read the data efficiently.

Byte order

For data access, the RX architecture allows a choice between the big and little-endian
byte order. All user and library modules in your application must use the same byte
order.

Note: See the IAR Assembler User Guide for RX for more information about the
assembler directives that toggle between code and data sections in linker segments.

Basic data types—integer types

IAR C/C++ Development Guide
Compiling and linking for RX

The compiler supports both all Standard C basic data types and some additional types.

These topics are covered:

Integer types—an overview
Bool
The long long type

The enum type
The char type
The wchar_t type
The charl6_t type
The char32_t type
Bitfields

Data representation °

INTEGER TYPES—AN OVERVIEW

This table gives the size and range of each integer data type:

Data type Size Range Alignment
bool 8 bits Oto | |
char 8 bits 0 to 255 |
signed char 8 bits -128 to 127 |
unsigned char 8 bits 0 to 255 |
signed short 16 bits -32768 to 32767 2
unsigned short 16 bits 0 to 65535 2
signed int 32 bits 2310231 4
unsigned int 32 bits 010232 4
signed long 32 bits 23140 231 4
unsigned long 32 bits 0to 232 4
signed long long 64 bits 26315283) 4
unsigned long long 64 bits 0to 2641 4

Table 27: Integer types

*If you use the --int=16 compiler option, the int type will have the same size, range,
and alignment as the short type.

Signed variables are represented using the two’s complement form.

BOOL

The bool data type is supported by default in the C++ language. If you have enabled
language extensions, the bool type can also be used in C source code if you include the
file stdbool .h. This will also enable the boolean values false and true.

THE LONG LONG TYPE

The long long data type is supported with one restriction:

A long long variable cannot be used in a switch statement.

THE ENUM TYPE

The compiler will use the smallest type required to hold enum constants, preferring
signed rather than unsigned.

When IAR language extensions are enabled, and in C++, the enum constants and types
can also be of the type long, unsigned long, long long, Or unsigned long long.

347

Basic data types—integer types

348

IAR C/C++ Development Guide
Compiling and linking for RX

To make the compiler use a larger type than it would automatically use, define an enum
constant with a large enough value. For example:

/* Disables usage of the char type for enum */
enum Cards{Spadel, Spade2,
DontUseChar=257};

See also the C++ enum struct syntax.

THE CHAR TYPE

The char type is by default unsigned in the compiler, but the --char_is_signed
compiler option allows you to make it signed.

Note: The library is compiled with the char type as unsigned.

THE WCHAR_T TYPE
The wchar_t data type is 4 bytes and the encoding used for it is UTF-32.

THE CHARI6_T TYPE

The charl6_t data type is 2 bytes and the encoding used for it is UTF-16.

THE CHAR32_T TYPE
The char32_t data type is 4 bytes and the encoding used for it is UTF-32.

BITFIELDS

In Standard C, int, signed int, and unsigned int can be used as the base type for
integer bitfields. In standard C++, and in C when language extensions are enabled in the
compiler, any integer or enumeration type can be used as the base type. It is
implementation defined whether a plain integer type (char, short, int, etc) results in
a signed or unsigned bitfield.

In the IAR C/C++ Compiler for RX, plain integer types are treated as signed.

Bitfields in expressions are treated as int if int can represent all values of the bitfield.
Otherwise, they are treated as the bitfield base type.

If you are using the compiler option --joined_bitfields, each bitfield is placed in
the next container of its base type that has enough available bits to accommodate the
bitfield. Within each container, the bitfield is placed in the first available byte or bytes,
taking the byte order into account. Note that containers can overlap if needed, as long as
they are suitably aligned for their type.

In addition, the compiler supports an alternative bitfield allocation strategy (disjoint
types), where bitfield containers of different types are not allowed to overlap. Using this

Data representation °

allocation strategy, each bitfield is placed in a new container if its type is different from
that of the previous bitfield, or if the bitfield does not fit in the same container as the
previous bitfield. Within each container, the bitfield is placed from the least significant
bit to the most significant bit (disjoint types) or from the most significant bit to the least
significant bit (reverse disjoint types). This allocation strategy will never use less space
than the default allocation strategy (joined types), and can use significantly more space
when mixing bitfield types.

Note: If you are not using the compiler option --joined_bitfields, disjoint types is
the only available allocation strategy.

If you are using the compiler option --joined_bitfields, use the

#pragma bitfields directive to choose which bitfield allocation strategy to use, see
Bitfields, page 348. If you use the disjoint types allocation strategy, you can also use the
directive #pragma bitfields to place bitfields from the most significant bit to the
least significant bit in each container.

Assume this example:

struct BitfieldExample

{
uint32_t a : 12;
uintl6é_t b : 3;
uintlé_t c : 7;
uint8_t d;

Y

The example in the joined types bitfield allocation strategy

To place the first bitfield, a, the compiler allocates a 32-bit container at offset 0 and puts
a into the first and second bytes of the container.

For the second bitfield, b, a 16-bit container is needed and because there are still four
bits free at offset 0, the bitfield is placed there.

For the third bitfield, c, as there is now only one bit left in the first 16-bit container, a
new container is allocated at offset 2, and c is placed in the first byte of this container.

The fourth member, 4, can be placed in the next available full byte, which is the byte at
offset 3.

349

Basic data types—integer types

For little-endian data, each bitfield is allocated starting from the least significant free bit
of its container to ensure that it is placed into bytes from left to right.

MSB LSB
uint32_t a = padding
MSE LSB MsB LSB MsB LSB MSB LSB
a b |a c d
0 [2 3
\MsB Lse/ \MsB LSB,
uintlé6_t | |b c

For big-endian data, each bitfield is allocated starting from the most significant free bit
of its container to ensure that it is placed into bytes from left to right.

MSB LSB
uint32_t a = padding
MSE LSB MsB LSB MsB LSB MSB LSB
a a |b c d
0 [2 3
\MsB Lse/ \MsB LSB,
uintlé_t b c

The example in the disjoint types bitfield allocation strategy

To place the first bitfield, a, the compiler allocates a 32-bit container at offset 0 and puts
a into the least significant 12 bits of the container.

To place the second bitfield, b, a new container is allocated at offset 4, because the type
of the bitfield is not the same as that of the previous one. b is placed into the least
significant three bits of this container.

The third bitfield, ¢, has the same type as b and fits into the same container.

IAR C/C++ Development Guide
350 Compiling and linking for RX

Data representation °

The fourth member, d, is allocated into the byte at offset 6. d cannot be placed into the
same container as b and c because it is not a bitfield, it is not of the same type, and it
would not fit.

When using reverse order (reverse disjoint types), each bitfield is instead placed starting
from the most significant bit of its container.

This is the layout of bitfield_example for little-endian data:

MSB LSB MSB LsB
uint32_t a uintl6_t c |b = padding
MSE LSB MSB LSB MSB LS8 MSB LSB MsB LSB MSB LB MsB LSB
a a c b [d
| 2 3 4 5 6
MSB LSB MSB LSB MSB LSB MSB LSB MSB LSB MSB LSB MSB LSB
a a c b c d reversed

uint32_t a uintlé6_t | b| ¢

“._MsB LB~ \ MsB LsB/

351

Basic data types—integer types

352

IAR C/C++ Development Guide
Compiling and linking for RX

This is the layout of bitfield example for big-endian data:

MSB LSB MSB LSB
uint32_t a uintl6_t c |b = padding
MSE LSB MsB LSB MSB LS8 MSB LSB MsB LSB MSB LS8 MSB LSB
a a c c b d
| 2 3 4 5 6
MSB LSB MSB LSB MSB LSB MSB LSB MSB LSB MSB LB MSB LSB
a b c c d reversed

uin32. ¢ | a uintlét |b| c

. MsB LB~ Lse,/

Padding

Padding is usually added to the end of structures to accommodate reading/writing an
entire bitfield container when accessing bitfields, as shown above. However, when bits
are allocated from low to high addresses, padding is only added if it is needed to
accommodate the alignment of the field.

Example:
struct X { uint32_t x1 : 5; };

When the alignment of the uint32_t bitfield is 4, the size of struct Xis 4, to enable
reading/writing the entire bitfield container (uint32_t) at its natural alignment.
However, if the alignment of the field is lower (for example, by using #pragma pack),
and bits are allocated from low addresses, the size of struct X is also correspondingly
less.

Data representation °

Basic data types—floating-point types

In the IAR C/C++ Compiler for RX, floating-point values are represented in standard
IEC 60559 format. The sizes for the different floating-point types are:

Type Size if double=32 Size if double=64
__fple 16 bits 16 bits
float 32 bits 32 bits
double 32 bits (default) 64 bits
long double 32 bits 64 bits

Table 28: Floating-point types

Note: The size of double and long double depends on the --double={32|64}
option, see --double, page 277. The type long double uses the same precision as
double.

The __fp16 floating-point type is only a storage type. All numerical operations will
operate on values promoted to £loat.

FLOATING-POINT ENVIRONMENT

Exception flags are not supported. The feraiseexcept function does not raise any
exceptions.

32-BIT FLOATING-POINT FORMAT

The representation of a 32-bit floating-point number as an integer is:

31 30 23 12 0
5

Exponent Mantissa

The exponent is 8 bits, and the mantissa is 23 bits.
The value of the number is:
(-1)8 * 2(Exponent-127) x 1 Mantissa
The range of the number is at least:
+1.18E-38 to *3.39E+38

The precision of the float operators (+, -, *, and /) is approximately 7 decimal digits.

353

Basic data types—floating-point types

354

IAR C/C++ Development Guide
Compiling and linking for RX

64-BIT FLOATING-POINT FORMAT

The representation of a 64-bit floating-point number as an integer is:

63 62 52 51 v}

s Exponeant Mantissa

The exponent is 11 bits, and the mantissa is 52 bits.

The value of the number is:

(_

1)5 * o (Exponent-1023)

* 1.Mantissa

The range of the number is at least:

+2.23E-308 to *1.79E+308

The precision of the float operators (+, -, *, and /) is approximately 15 decimal digits.

REPRESENTATION OF SPECIAL FLOATING-POINT NUMBERS

This list describes the representation of special floating-point numbers:

Zero is represented by zero mantissa and exponent. The sign bit signifies positive or
negative zero.

Infinity is represented by setting the exponent to the highest value and the mantissa
to zero. The sign bit signifies positive or negative infinity.

For the float type, Not a number (NaN) is represented by setting the exponent to the
highest positive value and the mantissa to a non-zero value. The value of the sign bit
is ignored.

For the double type, Not a number (NaN) is represented by setting the exponent to
7FF and at least one of the highest twenty bits in the mantissa to non-zero. The
lower thirty-two bits of the mantissa are ignored. The value of the sign bit is also
ignored.

Subnormal numbers are used for representing values smaller than what can be
represented by normal values. The drawback is that the precision will decrease with
smaller values. The exponent is set to 0 to signify that the number is subnormal,
even though the number is treated as if the exponent was 1. Unlike normal numbers,
subnormal numbers do not have an implicit 1 as the most significant bit (the MSB)
of the mantissa. The value of a subnormal number is:

(-1)S *» 2(1-BIAS) % g Mantissa

where BIAS is 127.

By default, subnormal numbers are only supported for 64-bit floating-point numbers.
However, the RX600 libraries can use the unimplemented processing exception of the
CPU to support 32-bit floating-point subnormal numbers.

Data representation °

Note: If the 64-bit FPU is used (--fpu=64) subnormal numbers are not supported,
neither for 32-bit nor for 64-bit floating-point numbers.

To enable the subnormal number exception handler, use the /inker option --redirect
and use this linker command:

--redirect __float_placeholder=__unimpl_processing_handler

Supporting subnormal numbers for 32-bit floating-point numbers this way requires a
large overhead, both in size and speed, compared to a normal FPU instruction which
requires very few CPU cycles. The subnormal number exception handler will use
approximately 900 bytes of code space, and about 50-200 cycles per exception,
depending on the operation and the operands. For that reason, if execution speed is
important, try to use floating-point algorithms that do not require subnormal number
capabilities for 32-bit floating-point numbers.

To remove subnormal number handling for 32-bit floating-point numbers, use this linker
command:

--redirect __float_placeholder=__floating point_handler

Pointer types

The compiler has two basic types of pointers: function pointers and data pointers.

FUNCTION POINTERS

The function pointer of the IAR C/C++ Compiler for RX is a 32-bit pointer that can
address the entire memory. The internal representation of the function pointer is the
actual address it refers to. The function pointer is a pointer to __code memory.

DATA POINTERS

The data pointer of the IAR C/C++ Compiler for RX is a 32-bit signed int pointer that
can address the entire memory except the first four bytes (a valid pointer cannot not have
the value 0). It points to __data32 memory.

CASTING

Casts between pointers have these characteristics:

e Casting a value of an integer type to a pointer of a smaller type is performed by
truncation

e Casting a value of an integer type to a pointer of a larger type is performed by zero
extension

e Casting a pointer type to a smaller integer type is performed by truncation

355

Structure types

356

e Casting a pointer type to a larger integer type is performed by zero extension
e Casting a data pointer to a function pointer and vice versa is illegal

e Casting a function pointer to an integer type gives an undefined result

size_t

size_t is the unsigned integer type of the result of the sizeof operator. In the AR
C/C++ Compiler for RX, the type used for size_t isunsigned long.

ptrdiff_t

ptrdiff_t is the signed integer type of the result of subtracting two pointers. In the
IAR C/C++ Compiler for RX, the type used for ptrdi££_t is the signed integer variant
of the size_t type.

intptr_t

intptr_t is asigned integer type large enough to contain a void *. In the IAR C/C++
Compiler for RX, the type used for intptr_t is signed long.

uintptr_t

uintptr_t is equivalent to intptr_t, with the exception that it is unsigned.

Structure types

IAR C/C++ Development Guide
Compiling and linking for RX

The members of a struct are stored sequentially in the order in which they are
declared—the first member has the lowest memory address.

ALIGNMENT OF STRUCTURE TYPES

The struct and union types have the same alignment as the member with the highest
alignment requirement—this alignment requirement also applies to a member that is a
structure. To allow arrays of aligned structure objects, the size of a struct is adjusted
to an even multiple of the alignment.

GENERAL LAYOUT

Members of a struct are always allocated in the order specified in the declaration.
Each member is placed in the struct according to the specified alignment (offsets).

Data representation °

struct First
{
char c;
short s;
} os;

This diagram shows the layout in memory:

c pad s

0 | 2 3

The alignment of the structure is 2 bytes, and a pad byte must be inserted to give
short s the correct alignment.

PACKED STRUCTURE TYPES

The __packed data type attribute or the #pragma pack directive is used for relaxing
the alignment requirements of the members of a structure. This changes the layout of the
structure. The members are placed in the same order as when declared, but there might
be less pad space between members.

Note: Accessing an object that is not correctly aligned requires code that is both larger
and slower. If such structure members are accessed many times, it is usually better to
construct the correct values in a struct that is not packed, and access this struct
instead.

Special care is also needed when creating and using pointers to misaligned members.
For direct access to misaligned members in a packed struct, the compiler will emit the
correct (but slower and larger) code when needed. However, when a misaligned member
is accessed through a pointer to the member, the normal (smaller and faster) code is
used. In the general case, this will not work, because the normal code might depend on
the alignment being correct.

This example declares a packed structure:

#pragma pack(1l)
struct S
{
char c;
short s;
Y

#pragma pack()

357

Type qualifiers

358

The structure s has this memory layout:

c S

0 | 2

The next example declares a new non-packed structure, S2, that contains the structure s
declared in the previous example:

struct S2

{
struct S s;
long 1;

Y

The structure $2 has this memory layout

The structure s will use the memory layout, size, and alignment described in the
previous example. The alignment of the member 1 is 4, which means that alignment of
the structure 52 will become 4.

For more information, see Alignment of elements in a structure, page 228.

Type qualifiers

IAR C/C++ Development Guide
Compiling and linking for RX

According to the C standard, volatile and const are type qualifiers.

DECLARING OBJECTS VOLATILE

By declaring an object volatile, the compiler is informed that the value of the object
can change beyond the compiler’s control. The compiler must also assume that any
accesses can have side effects—therefore all accesses to the volatile object must be
preserved.

There are three main reasons for declaring an object volatile:
e Shared access—the object is shared between several tasks in a multitasking
environment

o Trigger access—as for a memory-mapped SFR where the fact that an access occurs
has an effect

e Modified access—where the contents of the object can change in ways not known to
the compiler.

Data representation °

Definition of access to volatile objects

The C standard defines an abstract machine, which governs the behavior of accesses to
volatile declared objects. In general and in accordance to the abstract machine:

e The compiler considers each read and write access to an object declared volatile
as an access

e The unit for the access is either the entire object or, for accesses to an element in a
composite object—such as an array, struct, class, or union—the element. For
example:

char volatile a;
a=>5; /* A write access */
a += 6; /* First a read then a write access */

e An access to a bitfield is treated as an access to the underlying type

e Adding a const qualifier to a volatile object will make write accesses to the
object impossible. However, the object will be placed in RAM as specified by the C
standard.

However, these rules are not detailed enough to handle the hardware-related
requirements. The rules specific to the IAR C/C++ Compiler for RX are described
below.

Rules for accesses

In the IAR C/C++ Compiler for RX, accesses to volatile declared objects are subject
to these rules:

e All accesses are preserved

o All accesses are complete, that is, the whole object is accessed

o All accesses are performed in the same order as given in the abstract machine

e All accesses are atomic, that is, they cannot be interrupted.

The compiler adheres to these rules for all memory types and for all properly aligned
basic data types except 64-bit double and 1ong. For 64-bit double and long, only the
rule that states that all accesses are preserved applies.

DECLARING OBJECTS VOLATILE AND CONST

If you declare a volatile object const, it will be write-protected but it will still be
stored in RAM memory as the C standard specifies.

To store the object in read-only memory instead, but still make it possible to access it as
a const volatile object, declare it with the __ro_placement attribute. See
__ro_placement, page 374.

359

Data types in C++

360

DECLARING OBJECTS CONST

The const type qualifier is used for indicating that a data object, accessed directly or
via a pointer, is non-writable. A pointer to const declared data can point to both
constant and non-constant objects. It is good programming practice to use const
declared pointers whenever possible because this improves the compiler’s possibilities
to optimize the generated code and reduces the risk of application failure due to
erroneously modified data.

Static and global objects declared const are allocated in ROM.

In C++, objects that require runtime initialization cannot be placed in ROM.

Data types in C++

IAR C/C++ Development Guide
Compiling and linking for RX

In C++, all plain C data types are represented in the same way as described earlier in this
chapter. However, if any C++ features are used for a type, no assumptions can be made
concerning the data representation. This means, for example, that it is not supported to
write assembler code that accesses class members.

Extended keywords

e General syntax rules for extended keywords
e Summary of extended keywords

e Descriptions of extended keywords

e Supported GCC attributes

For information about the address ranges of the different memory areas, see
the chapter Section reference.

General syntax rules for extended keywords

The compiler provides a set of attributes that can be used on functions or data objects to
support specific features of the RX microcontroller. There are two types of attributes—
type attributes and object attributes:

e Type attributes affect the external functionality of the data object or function

e Object attributes affect the internal functionality of the data object or function.

The syntax for the keywords differs slightly depending on whether it is a type attribute
or an object attribute, and whether it is applied to a data object or a function.

For more information about each attribute, see Descriptions of extended keywords, page
366. For information about how to use attributes to modify data, see the chapter Data
storage.

Note: The extended keywords are only available when language extensions are enabled
in the compiler.

In the IDE, language extensions are enabled by default.

Use the -e compiler option to enable language extensions. See -e, page 277.

TYPE ATTRIBUTES

Type attributes define how a function is called, or how a data object is accessed. This
means that if you use a type attribute, it must be specified both when a function or data
object is defined and when it is declared.

361

General syntax rules for extended keywords

362

IAR C/C++ Development Guide
Compiling and linking for RX

You can either place the type attributes explicitly in your declarations, or use the pragma
directive #pragma type_attribute.

Type attributes can be further divided into memory type attributes and general type
attributes. Memory type attributes are referred to as simply memory attributes in the rest
of the documentation.

Memory attributes

A memory attribute corresponds to a certain logical or physical memory in the
microcontroller.

Available data memory attributes:

__datalsé data24 data32__sbrel,and __sfr.

s —— [J—

Data objects, functions, and destinations of pointers or C++ references always have a
memory attribute. If no attribute is explicitly specified in the declaration or by the
pragma directive #pragma type_attribute, an appropriate default attribute is
implicitly used by the compiler. You can specify one memory attribute for each level of
pointer indirection.

General type attributes
Available function type attributes (affect how the function should be called):

monitor, __no_scratch, and __task.

 —

__fast_interrupt interrupt

Available data type attributes:
__packed
You can specify as many type attributes as required for each level of pointer indirection.

Note: Data type attributes (except __packed) are not allowed on structure type fields.

Syntax for type attributes used on data objects

If you select the uniform attribute syntax, data type attributes use the same syntax rules
as the type qualifiers const and volatile.

If not, data type attributes use almost the same syntax rules as the type qualifiers const
and volatile. For example:

__datalé int 1i;
int __datal6 j;

Extended keywords °

Both i and j are placed in datal6 memory.

Unlike const and volatile, when a type attribute is used before the type specifier in
a derived type, the type attribute applies to the object, or typedef itself, except in
structure member declarations.

int __datalé * p; /* pointer to integer in datal6 memory */
int * __datal6 p; /* pointer in datal6 memory */
__datal6 int * p; /* pointer in datal6 memory */

The third case is interpreted differently when uniform attribute syntax is selected. If so,
it is equivalent to the first case, just as would be the case if const or volatile were
used correspondingly.

In all cases, if a memory attribute is not specified, an appropriate default memory type
is used.

Using a type definition can sometimes make the code clearer:

typedef __datal6 int dl6_int;
dlé_int *qgl;

dl6_int is a typedef for integers in datal6 memory. The variable g1 can point to such
integers.

You can also use the #pragma type_attributes directive to specify type attributes
for a declaration. The type attributes specified in the pragma directive are applied to the
data object or typedef being declared.

#pragma type_attribute=__datal6
int * g2;

The variable g2 is placed in datal6 memory.

For more examples of using memory attributes, see More examples, page 71.

For more information about the uniform attribute syntax, see
--uniform_attribute_syntax, page 305 and --no_uniform_attribute syntax, page 292.
Syntax for type attributes used on functions

The syntax for using type attributes on functions differs slightly from the syntax of type
attributes on data objects. For functions, the attribute must be placed either in front of
the return type, or inside the parentheses for function pointers, for example:

__interrupt void my_handler (void) ;
or

void (__interrupt * my_fp) (void) ;

363

General syntax rules for extended keywords

364

IAR C/C++ Development Guide
Compiling and linking for RX

You can also use #pragma type_attribute to specify the function type attributes:

#pragma type_attribute=__interrupt
void my_handler (void) ;

#pragma type attribute=__interrupt
typedef void my_fun_t (void);
my_fun_t * my_fp;

OBJECT ATTRIBUTES
These object attributes are available:

e Object attributes that can be used for variables:
__no_alloc,__no_allocl6,__no_alloc_str,__no_alloc_strlé,
__no_init,__ro_placement

e Object attributes that can be used for functions and variables:
location, @, __root, __weak

e Object attributes that can be used for functions:

__absolute noreturn

intrinsic, __nested ramfunc, vector

 —— L—— ’ ——

You can specify as many object attributes as required for a specific function or data
object.

For more information about location and @, see Controlling data and function
placement in memory, page 230. For more information about vector, see vector, page
404.

Syntax for object attributes

The object attribute must be placed in front of the type. For example, to place myarray
in memory that is not initialized at startup:

__no_init int myarray([10];

The #pragma object_attribute directive can also be used. This declaration is
equivalent to the previous one:

#pragma object_attribute=__no_init
int myarray[10];

Note: Object attributes cannot be used in combination with the typedef keyword.

Extended keywords °

Summary of extended keywords

This table summarizes the extended keywords:

Extended keyword Description

__absolute Makes references to the object use absolute addressing
__datalé Controls the storage of data objects

__data24 Controls the storage of data objects

__data32 Controls the storage of data objects

__fast_interrupt Supports fast interrupt functions

__interrupt Specifies interrupt functions

__intrinsic Reserved for compiler internal use only

__monitor Specifies atomic execution of a function

__nested Allows an interrupt function to be nested, that is, interruptible by

another interrupt

_no_alloc, Makes a constant available in the execution file

__no_alloclé6

__no_alloc_str, Makes a string literal available in the execution file
_no_alloc_strlé6

__no_init Places a data object in non-volatile memory

__no_scratch Preserves scratch registers

_ _noreturn Informs the compiler that the function will not return
__packed Decreases data type alignment to |

__ramfunc Makes a function execute in RAM

__root Ensures that a function or variable is included in the object code

even if unused

__ro_placement Places const volatile data in read-only memory.
__sbrel Controls the storage of data objects

__sfr Controls the storage of data objects

__task Relaxes the rules for preserving registers

__weak Declares a symbol to be externally weakly linked

Table 29: Extended keywords summary

365

Descriptions of extended keywords

Descriptions of extended keywords

___absolute

Syntax

Description

Example

__datalé

Syntax

Description

Storage information

Example

See also

__data24

Syntax

Description

Storage information

IAR C/C++ Development Guide
366 Compiling and linking for RX

This section gives detailed information about each extended keyword.

See Syntax for object attributes, page 364.

The __absolute keyword makes references to the object use absolute addressing.
The following limitations apply:

e Only available when the --ropi compiler option is used

o Can only be used on external declarations.

extern __absolute int funcl (void) ;

See Syntax for type attributes used on data objects, page 362.

selected data model and places individual variables and constants in datal6 memory.

The __datalé memory attribute overrides the default storage of variables given by the

o Address range: 0-0x7FFF, 0xFFFF8000-0xFFFFFFFF (64 Kbytes)
e Maximum object size: 32 Kbytes.

e Pointer size: 4 bytes.

__datalé int x;

Memory types, page 68.

See Syntax for type attributes used on data objects, page 362.
The __data24 memory attribute overrides the default storage of variables and
constants given by the selected data model, and places individual variables and constants

in data24 memory.

® Address range: 0-0x7FFFFF, 0xFF800000-0xFFFFFFFF (16 Mbytes)

Extended keywords °

e Maximum object size: 8 Mbytes—1

e Pointer size: 4 bytes

Example __data24 int x;
See also Memory types, page 68.
__data32
Syntax See Syntax for type attributes used on data objects, page 362.
Description The __data32 memory attribute overrides the default storage of variables and

constants given by the selected data model, and places individual variables and constants
in data32 memory.

Storage information ® Address range: 0-0xFFFFFFFF (4 Gbytes)
e Maximum object size: 2 Gbytes—1

e Pointer size: 4 bytes.

Example __data32 int x;

See also Memory types, page 68.

__fast_interrupt

Syntax See Syntax for type attributes used on functions, page 363.
Description The __fast_interrupt keyword specifies a very fast interrupt function of the highest
priority, using the FREIT return mechanism. A fast interrupt function must have avoid

return type and cannot have any parameters.

Example __fast_interrupt void my_interrupt_handler (void) ;

See also Fast interrupt functions, page 80, vector, page 404, and .inttable, page 494.

367

Descriptions of extended keywords

__linterrupt

Syntax

Description

Example

See also

___intrinsic

Description

__monitor

Syntax

Description

Example

See also

IAR C/C++ Development Guide
368 Compiling and linking for RX

See Syntax for type attributes used on functions, page 363.

The __interrupt keyword specifies interrupt functions. To specify one or several
interrupt vectors, use the #pragma vector directive. The range of the interrupt vectors
depends on the device used. Itis possible to define an interrupt function without a vector,
but then the compiler will not generate an entry in the interrupt vector table.

An interrupt function must have a void return type and cannot have any parameters.

The header file iodevice.h, where device corresponds to the selected device,
contains predefined names for the existing interrupt vectors.

To make sure that the interrupt handler executes as fast as possible, you should compile
it with -Ohs, or use #pragma optimize=speed if the module is compiled with another
optimization goal.

#pragma vector=0x14
__interrupt void my_interrupt_handler (void) ;

Interrupt functions, page 79, vector, page 404, and .inttable, page 494.

The __intrinsic keyword is reserved for compiler internal use only.

See Syntax for type attributes used on functions, page 363.

The __monitor keyword causes interrupts to be disabled during execution of the
function. This allows atomic operations to be performed, such as operations on
semaphores that control access to resources by multiple processes. A function declared
with the __monitor keyword is equivalent to any other function in all other respects.

__monitor int get_lock(void) ;
Monitor functions, page 81. For information about related intrinsic functions, see

__disable_interrupt, page 411, _enable_interrupt, page 411, get interrupt state,
page 413, and __ set interrupt state, page 420, respectively.

Extended keywords °

__nested
Syntax See Syntax for object attributes, page 364.
Description The __nested keyword enables interrupts, which means new interrupts can be served
inside an interrupt or fast interrupt function.
Example __interrupt __nested void interrupt_handler (void) ;
See also Nested interrupts, page 81.

__no_alloc, __no_alloclé

Syntax See Syntax for object attributes, page 364.

Description Use the __no_allocor __no_allocl6 object attribute on a constant to make the
constant available in the executable file without occupying any space in the linked
application.

You cannot access the contents of such a constant from your application. You can take
its address, which is an integer offset to the section of the constant. The type of the offset
is unsigned long when __no_alloc is used, and unsigned short when
__no_alloc16 is used.

Example __no_alloc const struct MyData my_data @ "XXX" = {...};

See also ~_no_alloc_str, _no _alloc_strl6, page 370.

369

Descriptions of extended keywords

370

__no_alloc_str, __no_alloc_strlé

Syntax

Description

Example

See also

IAR C/C++ Development Guide
Compiling and linking for RX

__no_alloc_str(string literal @ section)
and

__no_alloc_strl6(string literal @ section)

where:

string_literal The string literal that you want to make available in the
executable file.

section The name of the section to place the string literal in.

Use the __no_alloc_str or __no_alloc_strl6 operators to make string literals
available in the executable file without occupying any space in the linked application.

The value of the expression is the offset of the string literal in the section. For
__no_alloc_str,the type of the offsetisunsigned long.For __no_alloc_strlse,
the type of the offset is unsigned short.

#define MYSEG "YYY"
#define X(str) __no_alloc_str(str @ MYSEG)

extern void dbg_printf (unsigned long fmt, ...)
#define DBGPRINTF (fmt, ...) dbg _printf(X(fmt), __VA_ARGS__)

void
foo(int i, double d)
{
DBGPRINTF ("The value of 1 is: %d, the value of d is: %f",1i,d);

}

Depending on your debugger and the runtime support, this could produce trace output
on the host computer.

Note: There is no such runtime support in C-SPY, unless you use an external plugin
module.

~_no_alloc, _no_allocl6, page 369.

_ho_init

Syntax

Description

Example

See also

__no_scratch

Syntax

Description

Example

See also

___noreturn

Syntax

Description

Example

Extended keywords °

See Syntax for object attributes, page 364.

Usethe __no_init keyword to place a data object in non-volatile memory. This means
that the initialization of the variable, for example at system startup, is suppressed.

__no_init int myarray[10];

Non-initialized variables, page 245 and do not initialize directive, page 468.

See Syntax for type attributes used on functions, page 363.

The __no_scratch keyword specifies that the function does not destroy scratch
registers, except those used as return or parameter registers. In the example below,
assuming that it contains the return value of the function, R1 will be destroyed, but all
other registers that are available as scratch registers will be preserved.

__no_scratch int my_function (void) ;

For information about scratch registers, see Calling convention, page 175.

See Syntax for object attributes, page 364.

The __noreturn keyword can be used on a function to inform the compiler that the
function will not return. If you use this keyword on such functions, the compiler can
optimize more efficiently. Examples of functions that do not return are abort and exit.

Note: At optimization levels Medium or High, the __noreturn keyword might cause
incorrect call stack debug information at any point where it can be determined that the
current function cannot return.

Note: The extended keyword __noreturn has the same meaning as the Standard C
keyword _Noreturn or the macro noreturn (if stdnoreturn.h has been included)
and as the Standard C++ attribute [[noreturn]].

__noreturn void terminate(void) ;

371

Descriptions of extended keywords

372

__packed

Syntax

Description

Example

IAR C/C++ Development Guide
Compiling and linking for RX

See Syntax for type attributes used on data objects, page 362. An exception is when the
keyword is used for modifying the structure type in a struct or union declarations,
see below.

Use the __packed keyword to specify a data alignment of 1 for a data type. __packed
can be used in two ways:

o When used before the struct or union keyword in a structure definition, the
maximum alignment of each member in the structure is set to 1, eliminating the
need for gaps between the members.

You can also use the __packed keyword with structure declarations, but it is illegal
to refer to a structure type defined without the __packed keyword using a structure
declaration with the __packed keyword.

e When used in any other position, it follows the syntax rules for type attributes, and
affects a type in its entirety. A type with the __packed type attribute is the same as
the type attribute without the __packed type attribute, except that it has a data
alignment of 1. Types that already have an alignment of 1 are not affected by the
__packed type attribute.

A normal pointer can be implicitly converted to a pointer to __packed, but the reverse
conversion requires a cast.

Note: Accessing data types at other alignments than their natural alignment can result
in code that is significantly larger and slower.

Use either __packed or #pragma pack to relax the alignment restrictions for a type
and the objects defined using that type. Mixing __packed and #pragma pack might
lead to unexpected behavior.

/* No pad bytes in X: */

__packed struct X { char ch; int i; };
/* __packed is optional here: */
struct X * xp;

/* NOTE: no __packed: */

struct Y { char ch; int 1i; };

/* ERROR: Y not defined with __packed: */
__packed struct Y * yp ;

/* Member 'i' has alignment 1: */
struct Z { char ch; __packed int i; };

See also

__ramfunc

Syntax

Description

Example

See also
__root
Syntax

Description

Example

Extended keywords °

void Foo(struct X * xp)

{

/* Error:"int __packed *" -> "int *" not allowed: */
int * pl = &xp->1;
/* OK: */

int __packed * p2 = &xp->i;
/* OK, char not affected */
char * p3 = &xp->ch;

pack, page 397.

See Syntax for object attributes, page 364.

The __ramfunc keyword makes a function execute in RAM. Two code sections will be
created: one for the RAM execution (. textrw), and one for the ROM initialization
(.textrw_init).

If a function declared __ramfunc tries to access ROM, the compiler will issue a
warning. This behavior is intended to simplify the creation of upgrade routines, for
instance, rewriting parts of flash memory. If this is not why you have declared the
function __ramfunc, you can safely ignore or disable these warnings.

Functions declared __ramfunc are by default stored in the section named . textrw.
__ramfunc int FlashPage(char * data, char * page);

To read more about __ramfunc declared functions in relation to breakpoints, see the
C-SPY® Debugging Guide for RX.

See Syntax for object attributes, page 364.
A function or variable with the __root attribute is kept whether or not it is referenced
from the rest of the application, provided its module is included. Program modules are

always included and library modules are only included if needed.

__root int myarrayl[10];

373

Descriptions of extended keywords

See also

__ro_placement

Syntax

Description

Example

__sbrel

Syntax

Description

Storage information

IAR C/C++ Development Guide
374 Compiling and linking for RX

For more information about root symbols and how they are kept, see Keeping symbols
and sections, page 111.

See Syntax for object attributes, page 364.

Unlike most object attributes, when --ropi is enabled the __ro_placement attribute
must be specified both when a data object is defined and when it is declared.

The __ro_placement attribute specifies that a data object should be placed in
read-only memory. There are two cases where you might want to use this object
attribute:

e Data objects declared const volatile are by default placed in read-write
memory. Use the __ro_placement object attribute to place the data object in
read-only memory instead.

e In C++, adata object declared const and that needs dynamic initialization is placed
in read-write memory and initialized at system startup. If you use the
__ro_placement object attribute, the compiler will give an error message if the
data object needs dynamic initialization.

You can only use the __ro_placement object attribute on const objects.

You can use the __ro_placement attribute with C++ objects if the compiler can
optimize the C++ dynamic initialization of the data objects into static initialization. This
is possible only for relatively simple constructors that have been defined in the header
files of the relevant class definitions, so that they are visible to the compiler. If the
compiler cannot find the constructor, or if the constructor is too complex, an error
message will be issued (Error [Go023]) and the compilation will fail.

__ro_placement const volatile int x = 10;

See Syntax for type attributes used on data objects, page 362.

The __sbrel memory attribute places individual variables and constants in sbrel
memory. It is only available when RWPI is enabled, and it is then the default memory
attribute.

o Address range: 0-0xFFFFFFFF (4 Gbytes), offset relative to the DB base register

e Maximum object size: 2 Gbytes—1

Extended keywords °

e Pointer size: 4 bytes.

Example __sbrel int x;
See also Memory types, page 68.
__sfr
Syntax See Syntax for type attributes used on data objects, page 362.
Description The __sfr memory attribute overrides the default storage of variables and constants

given by the selected data model, and places individual variables and constants in data32
memory. Using this attribute also stops the compiler from using the instructions SMOVF
and SSTR to access the data.

Use this memory type attribute for all special function registers (SFR) and pointers to
SFRs, to avoid unexpected program behavior.

Storage information o Address range: 0-0xFFFFFFFF (4 Gbytes)
e Maximum object size: 2 Gbytes—1

e Pointer size: 4 bytes.

Example __sfr int x;
See also Memory types, page 68.
__task
Syntax See Syntax for type attributes used on functions, page 363.
Description This keyword allows functions to relax the rules for preserving registers. Typically, the

keyword is used on the start function for a task in an RTOS.

By default, functions save the contents of used preserved registers on the stack upon
entry, and restore them at exit. Functions that are declared __task do not save all
registers, and therefore require less stack space.

Because a function declared __task can corrupt registers that are needed by the calling
function, you should only use __task on functions that do not return or call such a
function from assembler code.

375

Supported GCC attributes

376

Example

__weak

Syntax

Description

Example

The function main can be declared __task, unless it is explicitly called from the
application. In real-time applications with more than one task, the root function of each
task can be declared __task.

__task void my_handler (void) ;

See Syntax for object attributes, page 364.

Using the __weak object attribute on an external declaration of a symbol makes all
references to that symbol in the module weak.

Using the __weak object attribute on a public definition of a symbol makes that
definition a weak definition.

The linker will not include a module from a library solely to satisfy weak references to
a symbol, nor will the lack of a definition for a weak reference result in an error. If no
definition is included, the address of the object will be zero.

When linking, a symbol can have any number of weak definitions, and at most one
non-weak definition. If the symbol is needed, and there is a non-weak definition, this
definition will be used. If there is no non-weak definition, one of the weak definitions
will be used.

extern __weak int foo; /* A weak reference. */

__weak void bar (void) /* A weak definition. */
{

/* Increment foo if it was included. */

if (&foo != 0)

++foo;

Supported GCC attributes

IAR C/C++ Development Guide
Compiling and linking for RX

In extended language mode, the IAR C/C++ Compiler also supports a limited selection
of GCC-style attributes. Use the __attribute ((attribute-1list)) syntax for
these attributes.

The following attributes are supported in part or in whole. For more information, see the
GCC documentation.

® alias

aligned

always_inline

const

constructor

deprecated

format

naked

noinline

noreturn

packed

pcs (for IAR type attributes used on functions)
pure

section

target (for IAR object attributes used on functions)
unused

used

volatile

warn_unused_result

weak

Extended keywords °

377

Supported GCC attributes

IAR C/C++ Development Guide
378 Compiling and linking for RX

Pragma directives

e Summary of pragma directives

e Descriptions of pragma directives

Summary of pragma directives
The #pragma directive is defined by Standard C and is a mechanism for using
vendor-specific extensions in a controlled way to make sure that the source code is still
portable.

The pragma directives control the behavior of the compiler, for example, how it allocates
memory for variables and functions, whether it allows extended keywords, and whether

it outputs warning messages.

The pragma directives are always enabled in the compiler.

This table lists the pragma directives of the compiler that can be used either with the
#pragma preprocessor directive or the _Pragma () preprocessor operator:

Pragma directive

Description

bank

bitfields

calls
call_graph_root
cstat_disable
cstat_enable
cstat_restore
cstat_suppress
data_alignment

default_function_attributes

default_no_bounds

Saves the values of registers immediately before an
interrupt function.

Controls the order of bitfield members.

Lists possible called functions for indirect calls.
Specifies that the function is a call graph root.
See the C-STAT® Static Analysis Guide.

See the C-STAT® Static Analysis Guide.

See the C-STAT® Static Analysis Guide.

See the C-STAT® Static Analysis Guide.

Gives a variable a higher (more strict) alignment.

Sets default type and object attributes for
declarations and definitions of functions.

Applies #pragma no_bounds to a whole set of
functions. See the C-RUN documentation in the
C-SPY® Debugging Guide for RX.

Table 30: Pragma directives summary

379

Summary of pragma directives

380

IAR C/C++ Development Guide
Compiling and linking for RX

Pragma directive

Description

default_variable_attributes

define_with_bounds

define_without_bounds

deprecated
diag_default
diag_error
diag_remark
diag_suppress
diag_warning

disable_check

error
function_category

generate_entry_without_boun
ds

include_alias
inline
language

location

message

no_arith_checks

Sets default type and object attributes for
declarations and definitions of variables.

Instruments a function to track pointer bounds. See
the C-RUN documentation in the C-SPY® Debugging
Guide for RX.

Defines the version of a function that does not have
extra bounds information. See the C-RUN
documentation in the C-SPY® Debugging Guide for RX.

Marks an entity as deprecated.

Changes the severity level of diagnostic messages.
Changes the severity level of diagnostic messages.
Changes the severity level of diagnostic messages.
Suppresses diagnostic messages.

Changes the severity level of diagnostic messages.

Specifies that the immediately following function
does not check accesses against bounds. See the
C-RUN documentation in the C-SPY® Debugging
Guide for RX.

Signals an error while parsing.
Declares function categories for stack usage analysis.

Enables generation of an extra entry without bounds
for the immediately following function. See the
C-RUN documentation in the C-SPY® Debugging
Guide for RX.

Specifies an alias for an include file.
Controls inlining of a function.
Controls the IAR language extensions.

Specifies the absolute address of a variable, or places
groups of functions or variables in named sections.

Prints a message.

Specifies that no C-RUN arithmetic checks will be
performed in the following function. See the C-RUN
documentation in the C-SPY® Debugging Guide for RX.

Table 30: Pragma directives summary (Continued)

Pragma directive

Pragma directives °

Description

no_bounds

no_stack_protect

object_attribute

once

optimize

pack

__printf_args

public_equ

required

rtmodel

__scanf_args

section

segment

stack_protect

STDC CX_LIMITED_RANGE

STDC FENV_ACCESS

STDC FP_CONTRACT

type_attribute

unroll

vector

Specifies that the immediately following function is
not instrumented for bounds checking. See the
C-RUN documentation in the C-SPY® Debugging
Guide for RX.

Disables stack protection for the following function.

Adds object attributes to the declaration or
definition of a variable or function.

Prevents a header file from being processed more
than once.

Specifies the type and level of an optimization.

Specifies the alignment of structures and union
members.

Verifies that a function with a printf-style format
string is called with the correct arguments.

Defines a public assembler label and gives it a value.

Ensures that a symbol that is needed by another
symbol is included in the linked output.

Adds a runtime model attribute to the module.

Verifies that a function with a scanf-style format
string is called with the correct arguments.

Declares a section name to be used by intrinsic
functions.

This directive is an alias for #pragma section.
Forces stack protection for the function that follows.

Specifies whether the compiler can use normal
complex mathematical formulas or not.

Specifies whether your source code accesses the
floating-point environment or not.

Specifies whether the compiler is allowed to contract
floating-point expressions or not.

Adds type attributes to a declaration or to
definitions.

Unrolls loops.

Specifies the vector of an interrupt or trap function.

Table 30: Pragma directives summary (Continued)

381

Descriptions of pragma directives

Pragma directive Description

weak Makes a definition a weak definition, or creates a
weak alias for a function or a variable.

Table 30: Pragma directives summary (Continued)

Note: For portability reasons, see also Recognized pragma directives (6.10.6), page
601.

Descriptions of pragma directives

bank

Syntax

Parameters

Description

Example

bitfields

Syntax

Parameters

IAR C/C++ Development Guide
382 Compiling and linking for RX

This section gives detailed information about each pragma directive.

#pragma bank=bank_ number

bank_number The number of one of the register banks (an integer)

Use this pragma directive with an interrupt function to save the values of registers to the
specified register bank at the start of the interrupt, and restore them again afterward. The
SAVE and RSTR instructions will be used. This pragma directive requires that the
compiler option --core=rxv3 has been specified.

#pragma vector=5

#pragma bank=5

__interrupt void myInterrupt ()
{

do something here

#pragma bitfields={disjoint_types|joined_types|
reversed_disjoint_types|reversed|default}

disjoint_types Bitfield members are placed from the least significant
bit to the most significant bit in the container type.
Storage containers of bitfields with different base
types will not overlap.

calls

Description

Example

See also

Syntax

Parameters

Pragma directives °

joined_types Bitfield members are placed depending on the byte
order. Storage containers of bitfields will overlap other
structure members. For more information, see
Bitfields, page 348. This parameter is only available if
you use the compiler option --joined bitfields.

reversed_disjoint_types Bitfield members are placed from the most significant
bit to the least significant bit in the container type.
Storage containers of bitfields with different base
types will not overlap.

reversed This is an alias for reversed_disjoint_types

default Restores the default layout of bitfield members. If you
use the compiler option --joined_bitfields, the
default behavior for the compiler is joined_types.
Otherwise, the default behavior for the compiler is
disjoint_types.

Use this pragma directive to control the layout of bitfield members.

#pragma bitfields=disjoint_types
/* Structure that uses disjoint bitfield types. */

struct S

{
unsigned char error : 1;
unsigned char size : 4;
unsigned short code : 10;

Y
#pragma bitfields=default /* Restores to default setting. */

Bitfields, page 348.

#pragma calls=argl[, arg...]

arg can be one of these:

function A declared function

category A string that represents the name of a function category

383

Descriptions of pragma directives

384

Description

Example

See also

call_graph_root

Syntax

Parameters

Description

Example

See also

data_alignment

Syntax

Parameters

IAR C/C++ Development Guide
Compiling and linking for RX

Use this pragma directive to specify all functions that can be indirectly called in the
following statement. This information can be used for stack usage analysis in the linker.
You can specify individual functions or function categories. Specifying a category is
equivalent to specifying all included functions in that category.

void Funl(), Fun2();

void Caller (void (*fp) (void))

{

#pragma calls = Funl, Fun2, "Catl"

(*fp) () // Can call Funl, Fun2, and all
// functions in category "Catl"

function_category, page 390 and Stack usage analysis, page 99.

#pragma call_graph_root[=category]

category A string that identifies an optional call graph root category

Use this pragma directive to specify that, for stack usage analysis purposes, the
immediately following function is a call graph root. You can also specify an optional
category. The compiler will usually automatically assign a call graph root category to
interrupt and task functions. If you use the #pragma call_graph root directive on
such a function you will override the default category. You can specify any string as a
category.

#pragma call_graph_root="interrupt"

Stack usage analysis, page 99.

#pragma data_alignment=expression

expression A constant which must be a power of two (1, 2, 4, etc.).

Description

Pragma directives °

Use this pragma directive to give the immediately following variable a higher (more
strict) alignment of the start address than it would otherwise have. This directive can be
used on variables with static and automatic storage duration.

When you use this directive on variables with automatic storage duration, there is an
upper limit on the allowed alignment for each function, determined by the calling
convention used.

Note: Normally, the size of a variable is a multiple of its alignment. The
data_alignment directive only affects the alignment of the variable’s start address,
and not its size, and can therefore be used for creating situations where the size is not a
multiple of the alignment.

Note: To comply with the ISO C11 standard and later, it is recommended to use the
alignment specifier _Alignas for C code. To comply with the C++11 standard and later,
it is recommended to use the alignment specifier alignas for C++ code.

default_function_attributes

Syntax

Parameters

Description

#pragma default_function_attributes=[attribute...]
where attribute can be:

type_attribute
object_attribute
@ section_name

type_attribute See Tipe attributes, page 361.
object_attribute See Object attributes, page 364.
@ section_name See Data and function placement in sections, page 232.

Use this pragma directive to set default section placement, type attributes, and object
attributes for function declarations and definitions. The default settings are only used for
declarations and definitions that do not specify type or object attributes or location in
some other way.

Specifying a default_function_attributes pragma directive with no attributes,
restores the initial state where no such defaults have been applied to function
declarations and definitions.

385

Descriptions of pragma directives

Example

See also

/* Place following functions in section MYSEC" */
#pragma default_function_attributes = @ "MYSEC"
int funl(int x) { return x + 1; }

int fun2(int x) { return x - 1;

/* Stop placing functions into MYSEC */

#pragma default_function_attributes =

has the same effect as:

int funl(int x) @ "MYSEC" { return x + 1; }
int fun2(int x) @ "MYSEC" { return x - 1; }

location, page 393.
object attribute, page 394.

type_attribute, page 403.

default_variable_attributes

Syntax

Parameters

Description

IAR C/C++ Development Guide
386 Compiling and linking for RX

#pragma default_variable_attributes=[attribute...]
where attribute can be:

type_attribute
object_attribute
@ section_name

type_attribute See Type attributes, page 361.
object_attributes See Object attributes, page 364.
@ section_name See Data and function placement in sections, page 232.

Use this pragma directive to set default section placement, type attributes, and object
attributes for declarations and definitions of variables with static storage duration. The
default settings are only used for declarations and definitions that do not specity type or
object attributes or location in some other way.

Specifying a default_variable_attributes pragma directive with no attributes
restores the initial state of no such defaults being applied to variables with static storage
duration.

Note: The extended keyword __packed can be used in two ways—as a normal type
attribute and in a structure type definition. The pragma directive
default_variable_attributes only affects the use of __packed as a type

Example

See also

deprecated

Syntax

Description

Example

Pragma directives °

attribute. Structure definitions are not affected by this pragma directive. See __ packed,
page 372.

/* Place following variables in section MYSEC" */
#pragma default_variable_attributes = @ "MYSEC"
int varl = 42;

int var2 = 17;

/* Stop placing variables into MYSEC */

#pragma default_variable_attributes =

has the same effect as:

int varl @ "MYSEC"
int var2 @ "MYSEC"

42;
17;

location, page 393.
object attribute, page 394.

type_attribute, page 403.

#pragma deprecated=entity

If you place this pragma directive immediately before the declaration of a type, variable,
function, field, or constant, any use of that type, variable, function, field, or constant will
result in a warning.

The deprecated pragma directive has the same effect as the C++ attribute
[[deprecated]], but is available in C as well.

#pragma deprecated
typedef int * intp_t; // typedef intp_t is deprecated

#pragma deprecated
extern int fun(void); // function fun is deprecated

#pragma deprecated
struct xx { // struct xx 1s deprecated
int x;

Y

387

Descriptions of pragma directives

struct yy {
#pragma deprecated

int y; // field y is deprecated
}i

intp_t fun(void) // Warning here
{
struct xx ax; // Warning here
struct yy ay;
fun(); // Warning here
return ay.y; // Warning here

See also Annex K (Bounds-checking interfaces) of the C standard.

diag default

Syntax #pragma diag_default=tagl, tag, ...]

Parameters
tag The number of a diagnostic message, for example, the
message number Pel77.

Description Use this pragma directive to change the severity level back to the default, or to the
severity level defined on the command line by any of the options --diag_error,
--diag_remark, --diag_suppress, Or --diag_warnings, for the diagnostic
messages specified with the tags. This level remains in effect until changed by another
diagnostic-level pragma directive.

See also Diagnostics, page 256.

diag error

Synmx #pragma diag_error=tagl, tag, ...]

Parameters
tag The number of a diagnostic message, for example, the
message number Pel77.

Description Use this pragma directive to change the severity level to error for the specified
diagnostics. This level remains in effect until changed by another diagnostic-level
pragma directive.

IAR C/C++ Development Guide
388 Compiling and linking for RX

See also

diag remark

Syntax

Parameters

Description

See also

diag_suppress

Syntax

Parameters

Description

See also

diag_warning

Syntax

Parameters

Description

Pragma directives °

Diagnostics, page 256.

#pragma diag_remark=tagl, tag, ...]

tag The number of a diagnostic message, for example, the
message number Pel77.

Use this pragma directive to change the severity level to remark for the specified
diagnostic messages. This level remains in effect until changed by another
diagnostic-level pragma directive.

Diagnostics, page 256.

#pragma diag_suppress=tagl, tag, ...]

tag The number of a diagnostic message, for example, the
message number Pell7.

Use this pragma directive to suppress the specified diagnostic messages. This level
remains in effect until changed by another diagnostic-level pragma directive.

Diagnostics, page 256.

#pragma diag_warning=tagl, tag, ...]

tag The number of a diagnostic message, for example, the
message number Pe826.

Use this pragma directive to change the severity level to warning for the specified
diagnostic messages. This level remains in effect until changed by another
diagnostic-level pragma directive.

389

Descriptions of pragma directives

390

See also

error

Syntax

Parameters

Description

Example

function_category

Syntax

Parameters

Description

Example

See also

IAR C/C++ Development Guide
Compiling and linking for RX

Diagnostics, page 256.

#pragma error message

message A string that represents the error message.

Use this pragma directive to cause an error message when it is parsed. This mechanism
is different from the preprocessor directive #error, because the #pragma error
directive can be included in a preprocessor macro using the _Pragma form of the
directive and only causes an error if the macro is used.

#if FOO_AVAILABLE

#define FOO

#else

#define FOO _Pragma("error\"Foo i1s not available\"")
#endif

If FOO_AVAILABLE is zero, an error will be signaled if the FOO macro is used in actual
source code.

#pragma function_category=categoryl[, category...]

category A string that represents the name of a function category.

Use this pragma directive to specify one or more function categories that the
immediately following function belongs to. When used together with #pragma calls,
the function_category directive specifies the destination for indirect calls for stack
usage analysis purposes.

#pragma function_category="Catl"

calls, page 383 and Stack usage analysis, page 99.

include_alias

Syntax

Parameters

Description

Example

See also

inline
Syntax

Parameters

Pragma directives °

#pragma include_alias ("orig_header" , "subst_header")
#pragma include_alias (<orig _header> , <subst_header>)

orig_header The name of a header file for which you want to create an
alias.
subst_header The alias for the original header file.

Use this pragma directive to provide an alias for a header file. This is useful for
substituting one header file with another, and for specifying an absolute path to arelative
file.

This pragma directive must appear before the corresponding #include directives and
subst_header must match its corresponding #include directive exactly.

#pragma include_alias (<stdio.h> , <C:\MyHeaders\stdio.h>)
#include <stdio.h>

This example will substitute the relative file stdio.h with a counterpart located
according to the specified path.

Include file search procedure, page 251.

#pragma inline[=forced|=never|=no_body|=forced_no_body]

No parameter Has the same effect as the inline keyword.
forced Disables the compiler’s heuristics and forces inlining.
never Disables the compiler’s heuristics and makes sure that the

function will not be inlined.

no_body Has the same effect as the inline keyword, but the
generated function will not have a body.

forced_no_body Disables the compiler’s heuristics and forces inlining. The
generated function will not have a body.

391

Descriptions of pragma directives

392

Description

See also

language
Syntax

Parameters

Description

Example

IAR C/C++ Development Guide
Compiling and linking for RX

Use #pragma inline to advise the compiler that the function defined immediately after
the directive should be inlined according to C++ inline semantics.

Specifying #pragma inline=forced or #pragma inline=forced_no_body will
always inline the defined function. If the compiler fails to inline the function for some
reason, for example due to recursion, a warning message is emitted.

Inlining is normally performed only on the High optimization level. Specifying
#pragma inline=forced or #pragma inline=forced_no_body will inline the
function on all optimization levels or result in an error due to recursion, etc.

Inlining functions, page 84.

#pragma language={extended|default|save|restore}

extended Enables the IAR language extensions from the first use of the
pragma directive and onward.

default From the first use of the pragma directive and onward,
restores the settings for the IAR language extensions to
whatever that was specified by compiler options.

save|restore Saves and restores, respectively, the IAR language
extensions setting around a piece of source code.

Each use of save must be followed by a matching restore
in the same file without any intervening #include directive.

Use this pragma directive to control the use of language extensions.

At the top of a file that needs to be compiled with IAR extensions enabled:

#pragma language=extended
/* The rest of the file. */

Around a particular part of the source code that needs to be compiled with IAR
extensions enabled, but where the state before the sequence cannot be assumed to be the
same as that specified by the compiler options in use:

#pragma language=save
#pragma language=extended
/* Part of source code. */
#pragma language=restore

Pragma directives °

See also -e, page 277 and --strict, page 303.
location
Syntax #pragma location:{address|NAME}
Parameters
address The absolute address of the global or static variable for which

you want an absolute location.

NAME A user-defined section name—cannot be a section name
predefined for use by the compiler and linker.

Description Use this pragma directive to specify the location—the absolute address—of the global
or static variable whose declaration follows the pragma directive. The variables must be
declared __no_init. Alternatively, the directive can take a string specifying a section
for placing either a variable or a function whose declaration follows the pragma
directive. Do not place variables that would normally be in different sections—for
example, variables declared as __no_init and variables declared as const—in the
same named section.

Exmnph #pragma location=0x2000
__no_init volatile char PORT1l; /* PORT1l is located at address
0x2000 */

#pragma segment="FLASH"
#pragma location="FLASH"
_ no_init char PORT2; /* PORT2 is located in section FLASH */

/* A better way is to use a corresponding mechanism */
#define FLASH _Pragma ("location=\"FLASH\"")

/* oL *)

FLASH _ no_init int i; /* i is placed in the FLASH section */

See also Controlling data and function placement in memory, page 230 and Declare and place
your own sections, page 109.

393

Descriptions of pragma directives

message

Syntax

Parameters

Description

Example

no_stack_protect

Syntax

Description

See also

object_attribute

Syntax

Parameters

Description

Example

IAR C/C++ Development Guide
394 Compiling and linking for RX

#pragma message (message)

message The message that you want to direct to the standard output
stream.

Use this pragma directive to make the compiler print a message to the standard output
stream when the file is compiled.

#ifdef TESTING
#pragma message ("Testing")
#endif

#pragma no_stack_protect

Use this pragma directive to disable stack protection for the defined function that
follows.

This pragma directive only has effect if the compiler option --stack_protection has

been used.

Stack protection, page 86.

#pragma object_attribute=object_attributel object_attribute...]

For information about object attributes that can be used with this pragma directive, see
Object attributes, page 364.

Use this pragma directive to add one or more IAR-specific object attributes to the
declaration or definition of a variable or function. Object attributes affect the actual
variable or function and not its type. When you define a variable or function, the union
of the object attributes from all declarations including the definition, is used.

#pragma object_attribute=__no_init
char bar;

Pragma directives °

is equivalent to:

__no_init char bar;

See also General syntax rules for extended keywords, page 361.
once
Syntax #pragma once
Description Place this pragma directive at the beginning of a header file to prevent the header file
from being included more than once in a compilation. If it is included more than once,
all inclusions after the first one will be ignored.
optimize
Syntax #pragma optimize=[goal][level] [disable]
Parameters
goal Choose between:

size, optimizes for size
balanced, optimizes balanced between speed and size
speed, optimizes for speed.

no_size_constraints,optimizes for speed, but relaxes the
normal restrictions for code size expansion.

level Specifies the level of optimization—choose between none,
low, medium, or high.

395

Descriptions of pragma directives

396

Description

Example

See also

IAR C/C++ Development Guide
Compiling and linking for RX

disable Disables one or several optimizations (separated by spaces).
Choose from:

no_code_motion, disables code motion
no_cse, disables common subexpression elimination
no_inline, disables function inlining

no_relaxed_£p, disables the language relaxation that
optimizes floating-point expressions more aggressively

no_tbaa, disables type-based alias analysis
no_scheduling, disables instruction scheduling

no_unroll, disables loop unrolling

Use this pragma directive to decrease the optimization level, or to turn off some specific
optimizations. This pragma directive only affects the function that follows immediately
after the directive.

The parameters size, balanced, speed, and no_size_constraints only have
effect on the high optimization level and only one of them can be used as it is not
possible to optimize for speed and size at the same time. It is also not possible to use
preprocessor macros embedded in this pragma directive. Any such macro will not be
expanded by the preprocessor.

Note: If you use the #pragma optimize directive to specify an optimization level that
is higher than the optimization level you specify using a compiler option, the pragma
directive is ignored.

#pragma optimize=speed
int SmallAndUsedOften ()
{

/* Do something here. */

#pragma optimize=size
int BigAndSeldomUsed ()
{

/* Do something here. */

Fine-tuning enabled transformations, page 236.

Pragma directives °

pack

Syntax #pragma pack (n)
#pragma pack()
#pragma pack ({push | pop} [, name] [,n])

Parameters
n Sets an optional structure alignment—one of 1, 2, 4, 8, 0r 16
Empty list Restores the structure alignment to default
push Sets a temporary structure alignment
pop Restores the structure alignment from a temporarily pushed

alignment

name An optional pushed or popped alignment label

Description Use this pragma directive to specify the maximum alignment of struct and union

P prag pecily g

members.

The #pragma pack directive affects declarations of structures following the pragma
directive to the next #pragma pack or the end of the compilation unit.

Note: This can result in significantly larger and slower code when accessing members
of the structure.

Use either __packed or #pragma pack to relax the alignment restrictions for a type
and the objects defined using that type. Mixing __packed and #pragma pack might
lead to unexpected behavior.

See also Structure types, page 356 and __ packed, page 372.

__printf_args

Syntax #pragma __printf_args

Description Use this pragma directive on a function with a printf-style format string. For any call to
that function, the compiler verifies that the argument to each conversion specifier, for
example %d, is syntactically correct.

You cannot use this pragma directive on functions that are members of an overload set
with more than one member.

397

Descriptions of pragma directives

398

Example

public_equ

Syntax

Parameters

Description
Example

See also

required

Syntax

Parameters

Description

IAR C/C++ Development Guide
Compiling and linking for RX

#pragma __printf_args
int printf(char const *,...);

void PrintNumbers (unsigned short x)
{
printf("%d", x); /* Compiler checks that x is an integer */

}

#pragma public_equ="symbol",value

symbol The name of the assembler symbol to be defined (string).
value The value of the defined assembler symbol (integer constant
expression).

Use this pragma directive to define a public assembler label and give it a value.
#pragma public_equ="MY_SYMBOL",0x123456

--public equ, page 297.

#pragma required=symbol

symbol Any statically linked function or variable.

Use this pragma directive to ensure that a symbol which is needed by a second symbol
is included in the linked output. The directive must be placed immediately before the
second symbol.

Use the directive if the requirement for a symbol is not otherwise visible in the
application, for example, if a variable is only referenced indirectly through the section
it resides in.

Pragma directives °

Example const char copyright[] = "Copyright by me";

#pragma required=copyright
int main()
{

/* Do something here. */

}

Even if the copyright string is not used by the application, it will still be included by the
linker and available in the output.

rtmodel

Syntax #pragma rtmodel="key", "value"

Parameters
"

"key' A text string that specifies the runtime model attribute.

"value" A text string that specifies the value of the runtime model
attribute. Using the special value * is equivalent to not
defining the attribute at all.

Description Use this pragma directive to add a runtime model attribute to a module, which can be
used by the linker to check consistency between modules.

This pragma directive is useful for enforcing consistency between modules. All modules
that are linked together and define the same runtime attribute key must have the same
value for the corresponding key, or the special value *. It can, however, be useful to state
explicitly that the module can handle any runtime model.

A module can have several runtime model definitions.
Note: The predefined compiler runtime model attributes start with a double underscore.
To avoid confusion, this style must not be used in the user-defined attributes.

Example #pragma rtmodel="I2C", "ENABLED"

The linker will generate an error if a module that contains this definition is linked with
a module that does not have the corresponding runtime model attributes defined.

399

Descriptions of pragma directives

400

__scanf_args

Syntax

Description

Example

section

Syntax

Parameters

Description

IAR C/C++ Development Guide
Compiling and linking for RX

#pragma __scanf_args

Use this pragma directive on a function with a scanf-style format string. For any call to
that function, the compiler verifies that the argument to each conversion specifier, for
example %d, is syntactically correct.

You cannot use this pragma directive on functions that are members of an overload set
with more than one member.

#pragma __scanf_args
int scanf (char const *,...);

int GetNumber ()
{
int nr;
scanf ("%d", &nr); /* Compiler checks that
the argument is a
pointer to an integer */

return nr;

#pragma section="NAME" [__memoryattribute]
alias

#pragma segment="NAME" [__memoryattribute]
NAME The name of the section.

__memoryattribute An optional memory attribute identifying the memory the
section will be placed in—if not specified, default memory is
used.

Use this pragma directive to define a section name that can be used by the section
operators __section begin, _section_end, and __section_size. All section
declarations for a specific section must have the same memory type attribute and
alignment.

The __memoryattribute parameter is only relevant when used together with the

section operators __section_begin section_end, and __section_size.

s ——

Example

See also

stack_protect

Syntax
Description

See also

Pragma directives °

If an optional memory attribute is used, the return type of the section operators
__section_beginand __section_end is:

void __memoryattribute *.

Note: To place variables or functions in a specific section, use the #pragma location
directive or the @ operator.

#pragma section="MYDATAl6" __datalé6

Dedicated section operators, page 192, and the chapter Linking your application.

#pragma stack_protect
Use this pragma directive to force stack protection for the defined function that follows.

Stack protection, page 86.

STDC CX_LIMITED_RANGE

Syntax

Parameters

Description

#pragma STDC CX_LIMITED_RANGE {ON|OFF|DEFAULT}

ON Normal complex mathematic formulas can be used.
OFF Normal complex mathematic formulas cannot be used.
DEFAULT Sets the default behavior, that is OFF.

Use this pragma directive to specify that the compiler can use the normal complex
mathematic formulas for * (multiplication), / (division), and abs.

Note: This directive is required by Standard C. The directive is recognized but has no
effect in the compiler.

401

Descriptions of pragma directives

STDC FENV_ACCESS

Syntax #pragma STDC FENV_ACCESS {ON|OFF|DEFAULT}

Parameters
ON Source code accesses the floating-point environment.

Note: This argument is not supported by the compiler.

OFF Source code does not access the floating-point environment.
DEFAULT Sets the default behavior, that is OFF.
Description Use this pragma directive to specify whether your source code accesses the

floating-point environment or not.

Note: This directive is required by Standard C.

STDC FP_CONTRACT

Syntax #pragma STDC FP_CONTRACT {ON|OFF |DEFAULT}
Parameters
ON The compiler is allowed to contract floating-point
expressions.
OFF The compiler is not allowed to contract floating-point
expressions.
DEFAULT Sets the default behavior, that is oN. To change the default

behavior, use the option --no_default_fp_contract.

Description Use this pragma directive to specify whether the compiler is allowed to contract
floating-point expressions or not. This directive is required by Standard C.

Example #pragma STDC FP_CONTRACT ON

See also --no_default fp contract, page 288

IAR C/C++ Development Guide
402 Compiling and linking for RX

type_attribute

Syntax

Parameters

Description

Example

See also

unroll

Syntax

Parameters

Description

Pragma directives °

#pragma type_attribute=type_attr[type_attr...]

For information about type attributes that can be used with this pragma directive, see
Type attributes, page 361.

Use this pragma directive to specify IAR-specific type attributes, which are not part of
Standard C. Note however, that a given type attribute might not be applicable to all kind
of objects.

This directive affects the declaration of the identifier, the next variable, or the next
function that follows immediately after the pragma directive.
In this example, an int object with the memory attribute __datal6 is defined:

#pragma type_attribute=__datal6
int x;

This declaration, which uses extended keywords, is equivalent:

__datalé int x;

The chapter Extended keywords.

#pragma unroll=n

n The number of loop bodies in the unrolled loop, a constant
integer. #pragma unroll = 1 will prevent the unrolling of
a loop.

Use this pragma directive to specify that the loop following immediately after the
directive should be unrolled and that the unrolled loop should have n copies of the loop
body. The pragma directive can only be placed immediately before a for, do, or while
loop, whose number of iterations can be determined at compile time.

Normally, unrolling is most effective for relatively small loops. However, in some cases,
unrolling larger loops can be beneficial if it exposes opportunities for further
optimizations between the unrolled loop iterations, for example, common subexpression
elimination or dead code elimination.

403

Descriptions of pragma directives

Example

See also

vector

Syntax

Parameters

Description

Example

weak

Syntax

Parameters

Description

IAR C/C++ Development Guide
404 Compiling and linking for RX

The #pragma unroll directive can be used to force a loop to be unrolled if the
unrolling heuristics are not aggressive enough. The pragma directive can also be used to
reduce the aggressiveness of the unrolling heuristics.

#pragma unroll=4
for (1 = 0; 1 < 64; ++1)
{
foo(i * k, (i + 1) * k);

Loop unrolling, page 237

#pragma vector=vectorl[, vector2, vector3, ...]

vectorN The vector number(s) of an interrupt or trap function.

Use this pragma directive to specify the vector(s) of an interrupt or trap function whose
declaration follows the pragma directive. Note that several vectors can be defined for
each function.

#pragma vector=0x14
__interrupt void my_handler (void) ;

#pragma weak symboll[=symbol2]

symboll A function or variable with external linkage.

symbol2 A defined function or variable.

This pragma directive can be used in one of two ways:
e To make the definition of a function or variable with external linkage a weak
definition.

o To create a weak alias for another function or variable. You can make more than one
alias for the same function or variable.

Pragma directives °

Example To make the definition of foo a weak definition, write:
#pragma weak foo
To make NMI_Handler a weak alias for Default_Handler, write:
#pragma weak NMI_Handler=Default_Handler

If NMI_Handler is not defined elsewhere in the program, all references to
NMI_Handler will refer to Default_Handler.

405

Descriptions of pragma directives

IAR C/C++ Development Guide
406 Compiling and linking for RX

Intrinsic functions

e Summary of intrinsic functions

e Descriptions of intrinsic functions

Summary of intrinsic functions

To use intrinsic functions in an application, include the header file intrinsics.h.

Note that the intrinsic function names start with double underscores, for example:

__disable_interrupt

This table summarizes the intrinsic functions:

Intrinsic function

Description

__as_get_base

_as_get_bounds

_ _as_make_bounds

__atan2fx

__atan2hypotf

__atan2hypotfx

__break

__c_base

__cosfx

__delay_cycles

Creates a pointer of the same type as the parameter,
representing the base of the area pointed to by the
parameter. See the C-RUN documentation in the
C-SPY® Debugging Guide for RX.

Creates a pointer of the same type as the parameter,
representing the upper bound of the area pointed to by
the parameter. See the C-RUN documentation in the
C-SPY® Debugging Guide for RX.

Creates a pointer with bounds information. See the
C-RUN documentation in the C-SPY® Debugging Guide
for RX.

Calculates the arctangent, using the TUF (fixed-point)

Returns the arctangent and the hypotenuse, using the
TUF

Calculates the arctangent and the hypotenuse at the
same time, using the TUF (fixed-point)

Inserts a BRK instruction

Returns the value of the base register for constant data
when ROPI is enabled

Calculates the cosine value using TUF (fixed-point)

Inserts No Operation (NOP) instructions to delay
execution

Table 31: Intrinsic functions summary

407

Summary of intrinsic functions

Intrinsic function

Description

__disable_interrupt
__enable_interrupt
__exchange
__FSORT
__get_DCMR_register
__get_DECNT_register
__get_DEPC_register
__get_DPSW_register
__get_FINTV_register
__get_FPSW_register
__get_interrupt_level
__get_interrupt_state
__get_interrupt_table
__get_ISP_register
__get_PSW_register
__get_return_address
__get_SP
__get_USP_register

__hypotfx

__illegal_opcode
__inline_atan2f
__inline_cosft
__inline_hypotf
__inline_sinf

__macl

__macwl

__macw2

Disables interrupts

Enables interrupts

Inserts an XCHG instruction

Inserts an FSQRT instruction

Returns the value of the DCMR register
Returns the value of the DECNT register
Returns the value of the DEPC register
Returns the value of the DPSW register
Returns the value of the FINTV register
Returns the value of the FPSW register
Returns the interrupt level

Returns the interrupt state

Returns the value of the INTB register
Returns the value of the ISP register
Returns the value of the PSW register
Returns the return address

Returns the value of the stack pointer
Returns the value of the USP register
Calculates the hypotenuse length using the TUF
(fixed-point)

Inserts an illegal operation code

Returns the arctangent, using the TUF
Returns the cosine, using the TUF
Returns the hypotenuse, using the TUF
Returns the sine, using the TUF

Executes MAC operations on | 6-bit signed data vectors
and returns a 32-bit value

Executes a MAC operation on | 6-bit signed data and
returns a |6-bit value, rounded using the RACW #1
instruction

Executes a MAC operation on | 6-bit signed data and
returns a |6-bit value, rounded using the RACW #2
instruction

Table 31: Intrinsic functions summary (Continued)

IAR C/C++ Development Guide
408 Compiling and linking for RX

Intrinsic functions ___g

Intrinsic function Description

__MOVCO Inserts a MOVCO instruction

_ _MOVLI Inserts a MOVLI instruction

__no_operation Inserts a NOP instruction

__RMPA_B Inserts an RMPA . B instruction

__RMPA_L Inserts an RMPA . L instruction

__RMPA_W Inserts an RMPA . W instruction

_ _ROUND Inserts a ROUND instruction

__s_base Returns the value of the base register for static data

when RWPI is enabled

__set_DCMR_register Writes a specific value to the DCMR register
__set_DECNT_register Writes a specific value to the DECNT register
__set_DEPC_register Writes a specific value to the DEPC register
__set_DPSW_register Writes a specific value to the DPSW register
__set_FINTV_register Writes a specific value to the FINTV register
__set_FPSW_register Writes a specific value to the FPSW register
__set_interrupt_level Sets the interrupt level
__set_interrupt_state Restores the interrupt state
__set_interrupt_table Writes a specific value to the INTB register
__set_ISP_register Writes a specific value to the ISP register
__set_PSW_register Writes a specific value to the PSW register
__set_USP_register Writes a specific value to the USP register
__sincosf Returns the sine and the cosine, using the TUF
__sincosfx Calculates the sine and the cosine at the same time,

using the TUF (fixed-point)

__sinfx Calculates the sine, using the TUF (fixed-point)
__software_interrupt Inserts an INT instruction
__wait_for_interrupt Inserts a WAIT instruction

Table 31: Intrinsic functions summary (Continued)

409

Descriptions of intrinsic functions

Descriptions of intrinsic functions

___atan2fx

Syntax

Description

See also

__atan2hypotf

Syntax

Description

See also

__atan2hypotfx

Syntax
Description
See also

__break

Syntax

Description

IAR C/C++ Development Guide

410 Compiling and linking for RX

This section gives reference information about each intrinsic function.

signed long __atan2fx(signed long y, signed long X);

Calculates the arctangent of the variables y and x , using the fixed-point Arithmetic Unit
for Trigonometric Functions (TUF).

--tfu, page 304

_atan2hypotf (float _
float *dstAtan2, float *dstHypot) ;

Y, float _X,

__intrinsic void

Returns the arctangent and the hypotenuse of the variables _y and _Xx, using the
Arithmetic Unit for Trigonometric Functions (TUF). This function requires an
RXv3-based device with an TUF, and the compiler option - -t fu must be used to enable
the TUF.

--tfu, page 304

void __atan2hypotfx(signed long y, signed long x,
signed long *atan2, signed long *hypot);

Calculates the arctangent and the hypotenuse of the variables y and x at the same time,
using the fixed-point Arithmetic Unit for Trigonometric Functions (TUF).

--tfu, page 304

void __break(void) ;

Inserts a BRK instruction.

__c_base

Syntax

Description

__cosfx

Syntax

Description

__delay_cycles

Syntax

Description

__disable_interrupt

Syntax

Description

__enable_interrupt

Syntax

Description

__exchange

Syntax

Intrinsic functions ___g

unsigned long __c_base(void) ;

Returns the value of the base register for constant data when ROPI is enabled.

signed long __cosfx(signed long fx);

Calculates cosine of the variable fx with fixed-point TUF.

void __delay_cycles(unsigned long cycles);

Inserts No Operation (NOP) instructions to delay execution for at least cycles number
of execution cycles.

Note: This function does not take pipelined architecture in consideration where the
actual delay may be shorter. As a result, the __delay_cycles does not produce an exact
delay counted in cycles for devices with instruction pipelining.

void __disable_interrupt (void) ;

Disables interrupts by inserting the DI instruction.

void __enable_interrupt (void) ;

Enables interrupts by inserting the ET instruction.

unsigned long __exchange (unsigned long *src,
unsigned long *dst) ;

411

Descriptions of intrinsic functions

Description Inserts an atomic XCHG instruction.
__FSQRT
Syntax float __FSQRT(float);
Description Inserts an FSQRT instruction. This instruction is only supported by the RXv2 and RXv3
architectures.

Subnormal operands are not supported by the exception handler. Refer to the hardware
manual for other limitations on floating-point representation.

__get_DCMR_register

Syntax __intrinsic unsigned long __get_DCMR_register (void) ;

Description Returns the value of the DCMR register.

__get_ DECNT _register

Syntax __intrinsic unsigned long __get_DECNT_register (void) ;

Description Returns the value of the DECNT register.

__get_DEPC_register

Syntax __intrinsic unsigned long __get_DEPC_register (void);

Description Returns the value of the DEPC register.

__get_DPSW._register

Syntax __intrinsic unsigned long __get_DPSW_register (void) ;

Description Returns the value of the DPSW register.

IAR C/C++ Development Guide
412 Compiling and linking for RX

__get_FINTV_register

Syntax

Description

__get_FPSW_register

Syntax

Description

__get_interrupt_level

Syntax

Description

__get_interrupt_state

Syntax

Description

Example

Intrinsic functions ___g

__fast_int_f __get_FINTV_register (void) ;

Returns the value of the FINTV register. The type __fast_int_f£ is declared in the
intrinsics.h file.

unsigned long __get_ FPSW_register (void) ;

Returns the value of the FpPsw register.

__ilevel_t __get_interrupt_level (void) ;

Returns the current interrupt level. The return type __ilevel_t has this definition:
typedef unsigned char __ilevel_t;

The return value of __get_interrupt_level can be used as an argument to the
_set_interrupt_level intrinsic function.

__listate_t __get_interrupt_state(void) ;

Returns the global interrupt state. The return value can be used as an argument to the
__set_interrupt_state intrinsic function, which will restore the interrupt state.

#include "intrinsics.h"

void CriticalFn()

{
__istate_t s = __get_interrupt_state();
__disable_interrupt () ;

/* Do something here. */

_set_interrupt_state(s);

413

Descriptions of intrinsic functions

__get_interrupt_table

Syntax

Description

__get_ISP_register

Syntax

Description

__get_PSW._register

Syntax

Description

__get_return_address

Syntax

Description

__get SP

Syntax

Description

__get_USP_register

Syntax

Description

IAR C/C++ Development Guide

414 Compiling and linking for RX

The advantage of using this sequence of code compared to using
__disable_interrupt and __enable_interrupt is that the code in this example
will not enable any interrupts disabled before the call of __get_interrupt_state.

unsigned long __get_interrupt_table(void) ;

Returns the value of the INTB register.

unsigned long __get_ISP_register (void);

Returns the value of the ISP register.

unsigned long __get_PSW_register (void) ;

Returns the value of the psw register.

unsigned long __get_return_address(void) ;

Returns the return address of the current function.

void * __get_SP(void) ;

Returns the value of the current stack pointer (R0).

unsigned long __get_USP_register (void) ;

Returns the value of the USP register.

__hypotfx

Syntax

Description
See also

__illegal_opcode

Syntax

Description

__inline_atan2f

Syntax
Description
See also

__inline_cosf

Syntax

Description

See also

Intrinsic functions ___g

signed long hypotfx(signed long x, signed long vy);

Calculates the hypotenuse length of the variables y and x, using the fixed-point
Arithmetic Unit for Trigonometric Functions (TUF).

--tfu, page 304

void __illegal_opcode(void) ;

Inserts an illegal operation code.

__intrinsic float _inline_atan2f (float _Y, float _X);

Returns the arctangent of the variables _v and _x, using the Arithmetic Unit for
Trigonometric Functions (TUF). This function requires an RXv3-based device with an
TUF, and the compiler option - -t fu must be used to enable the TUF.

--tfu, page 304

__intrinsic float __inline_cosf(float _F);
Returns the cosine of the variable _F, using the Arithmetic Unit for Trigonometric
Functions (TUF). This function requires an RXv3-based device with an TUF, and the

compiler option --tfu must be used to enable the TUF.

--tfu, page 304

415

Descriptions of intrinsic functions

__inline_hypotf

Syntax

Description

See also

__inline_sinf

Syntax

Description

See also

__madl

Syntax

Description

__macwl

Syntax

Description

IAR C/C++ Development Guide
416 Compiling and linking for RX

__intrinsic float __inline_hypotf (float _X, float _Y);

Returns the hypotenuse of the variables _X and _Y, using the Arithmetic Unit for
Trigonometric Functions (TUF). This function requires an RXv3-based device with an
TUF, and the compiler option - -t fu must be used to enable the TUF.

--tfu, page 304

__intrinsic float __inline_sinf(float _F);

Returns the sine of the variable _F, using the Arithmetic Unit for Trigonometric
Functions (TUF). This function requires an RXv3-based device with an TUF, and the
compiler option --tfu must be used to enable the TUF.

--tfu, page 304

long __macl (short* datal, short* data2, unsigned long count) ;

Executes multiply and accumulate (MAC) operations on 16-bit signed data values and
returns the result as a 32-bit signed data value. The parameters datal and data2 each
specify the start address of a 16-bit signed data array. The parameter count specifies the
length of (number of elements in) the arrays.

__macwl (short* datal, short* data2, unsigned long count) ;

Executes a multiply and accumulate (MAC) operation on 16-bit signed data values and
returns the result as a 16-bit signed data value. The result is rounded using the RACW #1
instruction. The parameters datal and data2 each specify the start address of a 16-bit
signed data array. The parameter count specifies the length of (number of elements in)
the arrays.

Intrinsic functions ___g

__macw?2

Syntax __macw2 (short* datal, short* data2, unsigned long count) ;

Description Executes a multiply and accumulate (MAC) operation on 16-bit signed data values and
returns the result as a 16-bit signed data value. The result is rounded using the RACW #2
instruction. The parameters datal and data2 each specify the start address of a 16-bit
signed data array. The parameter count specifies the length of (number of elements in)
the arrays.

__MOVCO

Syntax long __MOVCO(long, long *);

Description Inserts a MOVCO instruction. The MOVCO instruction is used together with the MOVLI
instruction to support thread synchronization. These instructions are only available for
the RXv2 and RXv3 architectures.

__MovLl
Syntax void __MOVLI (long *);
Description Inserts a MOVLI instruction. The MOVLI instruction is used together with the MOVCO

instruction to support thread synchronization. These instructions are only available for
the RXv2 and RXv3 architectures.

__ho_operation

Syntax void __no_operation(void) ;
Description Inserts a NOP instruction.
Syntax void __RMPA_B(signed char * vl, signed char * v2,

unsigned long n, rmpa_t * acc);

Description Inserts an RMPA . B instruction. The RMPA instruction sequentially multiplies the two
vectors v1 and v2 and adds each product to the accumulator acc. The length of the

417

Descriptions of intrinsic functions

__RMPA_L

Syntax

Description

__RMPA_ W

Syntax

Description

__ROUND

Syntax

Description

__s _base

Syntax

Description

__set_DCMR register

Syntax

Description

IAR C/C++ Development Guide
418 Compiling and linking for RX

vectors is n. You can supply an initial value for the accumulator acc, either variable or
a constant. The type rmpa_t is declared in the intrinsics.h file.

void __RMPA_L(signed long * vl, signed long * v2,
unsigned long n, rmpa_t * acc);

Inserts an RMPA . L instruction. The RMPA instruction sequentially multiplies the two
vectors v1 and v2 and adds each product to the accumulator acc. The length of the

vectors is n. You can supply an initial value for the accumulator acc, either variable or
a constant. The type rmpa_t is declared in the intrinsics.h file.

void __RMPA_W(signed short * v1, signed short * v2,
unsigned long n, rmpa_t * acc);

Inserts an RMPA . W instruction. The RMPA instruction sequentially multiplies the two
vectors v1 and v2 and adds each product to the accumulator acc. The length of the

vectors is n. You can supply an initial value for the accumulator acc, either variable or
a constant. The type rmpa_t is declared in the intrinsics.h file.

int __ROUND(float) ;

Inserts a ROUND instruction. See Casting a floating-point value to an integer, page 228.

unsigned long __s_base(void) ;

Returns the value of the base register for static (RAM) data when RWPI is enabled.

__intrinsic void __set_DCMR_register (unsigned long) ;

Writes a specific value to the DCMR register.

Intrinsic functions ___g

__set_ DECNT _register

Syntax __intrinsic void __set_DECNT_register (unsigned long) ;

Description Writes a specific value to the DECNT register.

__set_DEPC_register

Syntax __intrinsic void __set_DEPC_register (unsigned long) ;

Description Writes a specific value to the DEPC register.

__set_DPSW_register

Syntax __intrinsic void __set_DPSW_register (unsigned long) ;

Description Writes a specific value to the DPSW register.

__set_FINTV_register

Syntax void __set_FINTV_register(__fast_int_f);

Description Writes a specific value to the FINTV register. The type __fast_int_f is declared in
the intrinsics.hfile.

__set_FPSW_register

Syntax void __set_FPSW_register (unsigned long) ;

Description Writes a specific value to the FPSw register.

__set_interrupt_level

Syntax void __set_interrupt_level (__ilevel_t);

Description Sets the interrupt level. For information about the __ilevel_t type, see
_get interrupt level, page 413.

419

Descriptions of intrinsic functions

__set_interrupt_state

Syntax void __set_interrupt_state(__istate_t);

Description Restores the interrupt state to a value previously returned by the
__get_interrupt_state function.

For information about the __istate_t type, see “__get_interrupt_state”” on page 413.

__set_interrupt_table

Syntax void __set_interrupt_table(unsigned long address) ;

Description Writes a specific value to the INTB register.

__set_ISP_register

Syntax void __set_ISP_register (unsigned long) ;

Description Writes a specific value to the ISP register.

__set_PSW_register

Syntax void __set_PSW_register (unsigned long) ;

Description Writes a specific value to the Psw register.

__set_USP_register

Syntax void __set_USP_register (unsigned long) ;
Description Writes a specific value to the USP register.
__sincosf
Syntax __intrinsic void __sincosf(float _F, float *dstSin,

float *dstCos);

IAR C/C++ Development Guide
420 Compiling and linking for RX

Intrinsic functions ___g

Description Returns the sine and cosine of the variable _F, using the Arithmetic Unit for
Trigonometric Functions (TUF). This function requires an RXv3-based device with an
TUF, and the compiler option --t fu must be used to enable the TUF.

See also --tfu, page 304
__sincosfx
Syntax void __sincosfx(signed long fx, signed long *sin,
signed long *cos);
Description Calculates the sine and cosine of the variable £x at the same time, using the fixed-point

Arithmetic Unit for Trigonometric Functions (TUF).

See also --tfu, page 304
__sinfx
Syntax signed long __sinfx(signed long fx);
Description Calculates the sine of the variable £x , using the fixed-point Arithmetic Unit for

Trigonometric Functions (TUF).

See also --tfu, page 304

__software_interrupt

Syntax void __software_interrupt (unsigned char) ;

Description Inserts an INT instruction.

__wait_for_interrupt

Syntax void __wait_for_interrupt (void) ;

Description Inserts a WAIT instruction.

421

Descriptions of intrinsic functions

IAR C/C++ Development Guide
422 Compiling and linking for RX

The preprocessor

e Overview of the preprocessor
e Description of predefined preprocessor symbols

e Descriptions of miscellaneous preprocessor extensions

Overview of the preprocessor
The preprocessor of the IAR C/C++ Compiler for RX adheres to Standard C. The
compiler also makes these preprocessor-related features available to you:
e Predefined preprocessor symbols

These symbols allow you to inspect the compile-time environment, for example, the
time and date of compilation. For more information, see Description of predefined
preprocessor symbols, page 424.

e User-defined preprocessor symbols defined using a compiler option

In addition to defining your own preprocessor symbols using the #define directive,
you can also use the option -D, see -D, page 270.

e Predefined preprocessor macro symbols

Use the option --predef_macros to see the predefined preprocessor macro
symbols and their values for a specific command line. For more information, see
--predef macros, page 296.

e Preprocessor extensions

There are several preprocessor extensions, for example, many pragma directives. For
more information, see the chapter Pragma directives. For information about other
extensions related to the preprocessor, see Descriptions of miscellaneous
preprocessor extensions, page 432.

e Preprocessor output

Use the option --preprocess to direct preprocessor output to a named file, see
--preprocess, page 296.

To specify a path for an include file, use forward slashes:
#include "mydirectory/myfile"
In source code, use forward slashes:

file = fopen("mydirectory/myfile","rt");

423

Description of predefined preprocessor symbols

=

Backslashes can also be used—use one in include file paths and two in source code
strings.

Description of predefined preprocessor symbols

__BASE_FILE__

Description

See also

_BIG

Description

__BIG_ENDIAN__

Description

__BUILD_NUMBER__

Description

IAR C/C++ Development Guide
424 Compiling and linking for RX

This section lists and describes the preprocessor symbols.

Note: To list the predefined preprocessor symbols, use the compiler option
--predef_macros. See --predef macros, page 296.

A string that identifies the name of the base source file (that is, not the header file), being
compiled.

__FILE , page 426, --no_normalize file macros, page 289, and
--no_path_in_file macros, page 289.

An integer that reflects the setting of the option --endian. It is defined when the byte
order for data is big-endian, otherwise it is undefined. When defined, its value is 1.

This symbol is available for compatibility with Renesas CC-RX.

An integer that reflects the setting of the --endian option and is defined to 1 when the
byte order for data is big-endian. The symbol is defined to 0 when the byte order for data
is little-endian.

A unique integer that identifies the build number of the compiler currently in use.

__CORE__

Description

__COUNTER__

Description

__cplusplus

Description

__DATA_MODEL__

Description

__DATE__

Description

__DBL4

Description

The preprocessor PY

An integer that identifies the chip core in use. The value reflects the setting of the
--core option and is defined to 1 for the RXv1 architecture, 2 for the RXv2
architecture, or 3 for the RXv3 architecture.

A macro that expands to a new integer each time it is expanded, starting at zero (0) and
counting up.

An integer which is defined when the compiler runs in any of the C++ modes, otherwise
it is undefined. When defined, its value is 201703L. This symbol can be used with
#ifdef to detect whether the compiler accepts C++ code. It is particularly useful when
creating header files that are to be shared by C and C++ code.

This symbol is required by Standard C.

An integer that identifies the data model in use. The value reflects the setting of the
--data_model option and is defined to __DATA16__, _DATA24__,oOr
__DATA32____DATA_MODEL_TINY__,.These symbolic names can be used when
testing the __DATA_MODEL__ symbol.

A string that identifies the date of compilation, which is returned in the form "Mmm dd
yyyy", for example, "oct 30 2018".

This symbol is required by Standard C.

An integer that reflects the setting of the option --double. It is defined when 32-bit
doubles are used, otherwise it is undefined. When defined, its value is 1.

This symbol is available for compatibility with Renesas CC-RX.

425

Description of predefined preprocessor symbols

__DBLS8

Description

__DPFPU

Description

__EXCEPTIONS

Description

__FILE__

Description

See also

_FPU

Description

_FPU__

Description

IAR C/C++ Development Guide
426 Compiling and linking for RX

An integer that reflects the setting of the option --double. It is defined when 64-bit
doubles are used, otherwise it is undefined. When defined, its value is 1.

This symbol is available for compatibility with Renesas CC-RX.

A double precision floating point unit (DPFPU) is used, where --fpu=64.

A symbol that is defined when exceptions are supported in C++.

A string that identifies the name of the file being compiled, which can be both the base
source file and any included header file.

This symbol is required by Standard C.

_ BASE FILE , page 424, --no_normalize file macros, page 289, and
--no_path_in file macros, page 289.

An integer that reflects the support for a hardware floating point unit. It is undefined
when the option --fpu=none is used, otherwise it is defined. When defined, its value
is 1.

This symbol is available for compatibility with Renesas CC-RX.

An integer that is set to 1 when the code is compiled with support for a hardware floating
point unit, and to 0 otherwise.

The preprocessor PY

__func__

Description A predefined string identifier that is initialized with the name of the function in which
the symbol is used. This is useful for assertions and other trace utilities. The symbol
requires that language extensions are enabled.

See also -e, page 277 and _ PRETTY FUNCTION __, page 428.

__FUNCTION__

Description A predefined string identifier that is initialized with the name of the function in which
the symbol is used, similar to char _FUNCTION_[]="main"; ifused inmain (). This
is useful for assertions and other trace utilities. The symbol requires that language
extensions are enabled.

See also -e, page 277 and PRETTY FUNCTION , page 428.

__IAR_SYSTEMS_ICC__

Description An integer that identifies the IAR compiler platform. The current value is 9—the
number could be higher in a future version of the product. This symbol can be tested
with #ifdef to detect whether the code was compiled by a compiler from IAR.

__ICCRX__
Description An integer that is set to 1 when the code is compiled with the IAR C/C++ Compiler for
RX.
__LIBCPP
Description A symbol that is defined when the Libc++ library is used.

_LIBCPP_ENABLE_CXXI17_REMOVED_FEATURES

Description By default, the Libc++ library does not support deprecated C++17 features. To enable
support for these, define the preprocessor symbol
_LIBCPP_ENABLE_CXX17_REMOVED_FEATURES prior to including the relevant system
header. For a list of some of these deprecated features, see Not supported C/C++
functionality, page 443.

427

Description of predefined preprocessor symbols

428

__INT_SHORT

Description

__INTSIZE__

Description

__LINE__

Description

_LIT

Description

__LITTLE_ENDIAN__

Description

An integer that reflects the setting of the option --int. It is defined when the size of the
data type int is 16-bit, otherwise it is undefined. When defined, its value is 1.

This symbol is available for compatibility with Renesas CC-RX.

An integer that identifies the size of the data type int. The value reflects the setting of
the --int option and is defined to 16 or 32.

An integer that identifies the current source line number of the file being compiled,
which can be both the base source file and any included header file.

This symbol is required by Standard C.

An integer that reflects the setting of the option --endian. It is defined when the byte
order for data is little-endian, otherwise it is undefined. When defined, its value is 1.

This symbol is available for compatibility with Renesas CC-RX.

An integer that reflects the setting of the compiler option --endian and is defined to 1
when the byte order for data is little-endian. The symbol is defined to 0 when the byte
order for data is big-endian.

__PRETTY_FUNCTION__

Description

See also

IAR C/C++ Development Guide
Compiling and linking for RX

A predefined string identifier that is initialized with the function name, including
parameter types and return type, of the function in which the symbol is used, for
example, "void func (char)". This symbol is useful for assertions and other trace
utilities. The symbol requires that language extensions are enabled.

-e, page 277 and _ func , page 427.

__ROPL__

Description

__RTTL__

Description

__RXVI

Description

__RXV2

Description

__RXV3

Description

__RWPI__

Description

__STDC__

Description

The preprocessor PY

An integer that is set to 1 when the code is compiled with the compiler option --ropi,
and to 0 otherwise.

A symbol that is defined when runtime type information (RTTI) is supported in C++.

An integer that reflects the setting of the option --core. Itis defined when the processor
core is the RXv1 architecture, otherwise it is undefined. When defined, its value is 1.

This symbol is available for compatibility with Renesas CC-RX.

An integer that reflects the setting of the option --core. Itis defined when the processor
core is the RXv2 architecture, otherwise it is undefined. When defined, its value is 1.

This symbol is available for compatibility with Renesas CC-RX.

An integer that reflects the setting of the option --core. Itis defined when the processor
core is the RXv3 architecture, otherwise it is undefined. When defined, its value is 1.

This symbol is available for compatibility with Renesas CC-RX.

An integer that is set to 1 when the code is compiled with one of the compiler options
--rwpi Or --rwpi_near, and to 0 otherwise.

An integer that is set to 1, which means the compiler adheres to Standard C. This symbol
can be tested with #1ifdef to detect whether the compiler in use adheres to Standard C.*

This symbol is required by Standard C.

429

Description of predefined preprocessor symbols

__STDC_LIB_EXTI__

Description An integer that is set to 201112L and that signals that Annex K, Bounds-checking
interfaces, of the C standard is supported.

See also _ STDC WANT LIB EXTI _, page 432.

__STDC_NO_ATOMICS__

Description Set to 1 if the compiler does not support atomic types nor stdatomic.h.

See also Atomic operations, page 444.

__STDC_NO_THREADS__

Description Set to 1 to indicate that the implementation does not support threads.

__STDC_NO_VLA _

Description Set to 1 to indicate that C variable length arrays, VLAs, are not enabled.
See also --vla, page 307.
__STDC_UTFI6__
Description Set to 1 to indicate that the values of type char16_t are UTF-16 encoded.
__STDC_UTF32__
Description Set to 1 to indicate that the values of type char32_t are UTF-32 encoded.

__STDC_VERSION_ _

Description An integer that identifies the version of the C standard in use. The symbol expands to
201710L, unless the --c89 compiler option is used, in which case the symbol expands
t0 1994009L.

This symbol is required by Standard C.

IAR C/C++ Development Guide
430 Compiling and linking for RX

__SUBVERSION__

__TFU_MATHLIB

__TIMESTAMP__

Description

_TFU

Description

See also

Description

See also

TIME__

Description

Description

VER

Description

The preprocessor PY

An integer that identifies the subversion number of the compiler version number, for
example 3 in 1.2.3.4.

An integer that is set to 1 when one of the compiler options --tfu=intrinsic or
--tfu=intrinsic_mathlib has been specified, and is undefined otherwise.

--tfu, page 304

An integer that is set to 1 when the compiler option--tfu=intrinsic_mathlib has
been specified, and is undefined otherwise.

--tfu, page 304

A string that identifies the time of compilation in the form "hh:mm:ss".

This symbol is required by Standard C.

A string constant that identifies the date and time of the last modification of the current
source file. The format of the string is the same as that used by the asctime standard
function (in other words, "Tue Sep 16 13:03:52 2014").

An integer that identifies the version number of the IAR compiler in use. The value of
the number is calculated in this way: (100 * the major version number + the
minor version number). For example, for compiler version 3.34, 3 is the major
version number and 34 is the minor version number. Hence, the value of __VER__ is
334.

431

Descriptions of miscellaneous preprocessor extensions

432

Descriptions of miscellaneous preprocessor extensions

#include_next

Description

NDEBUG

Description

See also

This section gives reference information about the preprocessor extensions that are
available in addition to the predefined symbols, pragma directives, and Standard C
directives.

This is a variant of the #include directive. It searches for the named file only in the
directories on the search path that follow the directory in which the current source file
(the one containing the #include_next directive) is found.

This preprocessor symbol determines whether any assert macros you have written in
your application shall be included or not in the built application.

If this symbol is not defined, all assert macros are evaluated. If the symbol is defined,
all assert macros are excluded from the compilation. In other words, if the symbol is:

o defined, the assert code will not be included

e not defined, the assert code will be included

This means that if you write any assert code and build your application, you should
define this symbol to exclude the assert code from the final application.

Note: The assert macro is defined in the assert . h standard include file.
In the IDE, the NDEBUG symbol is automatically defined if you build your application in

the Release build configuration.

__iar ReportAssert, page 150.

__STDC_WANT_LIB_EXTI__

Description

See also

IAR C/C++ Development Guide
Compiling and linking for RX

If this symbol is defined to 1 prior to any inclusions of system header files, it will enable
the use of functions from Annex K, Bounds-checking interfaces, of the C standard.

Bounds checking functionality, page 133 and C bounds-checking interface, page 445.

The preprocessor PY

#warning
Syntax #warning message
where message can be any string.
Description Use this preprocessor directive to produce messages. Typically, this is useful for

assertions and other trace utilities, similar to the way the Standard C #error directive
is used. This directive is not recognized when the --strict compiler option is used.

433

Descriptions of miscellaneous preprocessor extensions

IAR C/C++ Development Guide
434 Compiling and linking for RX

C/C++ standard library
functions

e C/C++ standard library overview
e DLIB runtime environment—implementation details

For detailed reference information about the library functions, see the online
help system.

C/C++ standard library overview

The compiler comes with two different implementations of the C/C++ standard library.

The IAR DLIB runtime environment offers low-level support for C as well as C++.
When using this runtime environment, you have a choice of two libraries:

o The IAR DLIB C/C++ library is a complete implementation of the C/C++ standard
library, compliant with standard C and C++14, except for thread-related
functionality. It can be configured to include different levels of support for locale,
file descriptors, multibyte characters, etc.

o The IAR Libc++ library is a complete implementation of the C/C++ standard
library, compliant with standard C and C++17, except for thread-related and
filesystem functionality. The Libc++ library is taken from LLVM under an open
source license and is used as is, with extensions and limitations from the C++17
standard.

Both these implementations are built on top of the IAR DLIB runtime environment and
both implementations support floating-point numbers in IEC 60559 format. For more
information about this environment, and about how to customize the DLIB library, see
the chapter The DLIB runtime environment.

For detailed information about the DLIB library functions, see the documentation
supplied with the product in the rx\doc directory in the file He1pDLIB6 . chm. There is
no reference information available for the Libc++ library functions.

For more information about library functions, see the chapters about
implementation-defined behavior.

435

C/C++ standard library overview

436

IAR C/C++ Development Guide
Compiling and linking for RX

HEADER FILES

Your application program gains access to library definitions through header files, which
it incorporates using the #include directive. The definitions are divided into several
different header files, each covering a particular functional area, letting you include just
those that are required.

It is essential to include the appropriate header file before making any reference to its
definitions. Failure to do so can cause the call to fail during execution, or generate error
or warning messages at compile time or link time.

LIBRARY OBJECT FILES

Most of the library definitions can be used without modification, that is, directly from
the library object files that are supplied with the product. For information about how to
set up a runtime library, see Setting up the runtime environment, page 127. The linker
will include only those routines that are required—directly or indirectly—by your
application.

For information about how you can override library modules with your own versions,
see Overriding library modules, page 130.

ALTERNATIVE MORE ACCURATE LIBRARY FUNCTIONS

The default implementation of cos, sin, tan, and pow is designed to be fast and small.
As an alternative, there are versions designed to provide better accuracy. They are
named __iar_xxx_accuratef for float variants of the functions and
__iar_xxx_accuratel for long double variants of the functions, and where xxx is
cos, sin, etc.

To use these more accurate versions, use the linker option.

REENTRANCY

A function that can be simultaneously invoked in the main application and in any
number of interrupts is reentrant. A library function that uses statically allocated data is
therefore not reentrant.

Most parts of the DLIB runtime environment are reentrant, but the following functions
and parts are not reentrant because they need static data:

e Heap functions—malloc, free, realloc, calloc, etc. and the C++ operators
new and delete
Locale functions—1localeconv, setlocale

Multibyte functions—mblen, mbrlen, mbrtowc, mbsrtowc, mbtowc, wertomb,
wcsrtomb, wectomb

C/C++ standard library functions °

Rand functions—rand, srand
Time functions—asctime, localtime, gmtime, mktime

The miscellaneous functions atexit, perror, strerror, strtok

Functions that use files or the heap in some way. This includes scanf, sscanf,
getchar, getwchar, putchar, and putwchar. In addition, if you are using the
options --printf_multibytes and --dlib_config=Full, the printf and
sprintf functions (or any variants) can also use the heap.

Functions that can set errno are not reentrant, because an errno value resulting from
one of these functions can be destroyed by a subsequent use of the function before it is
read. This applies to math and string conversion functions, among others.

Remedies for this are:

e Do not use non-reentrant functions in interrupt service routines

e Guard calls to a non-reentrant function by a mutex, or a secure region, etc.

THE LONGJMP FUNCTION

A longjmp is in effect a jump to a previously defined set jmp. Any variable length
arrays or C++ objects residing on the stack during stack unwinding will not be
destroyed. This can lead to resource leaks or incorrect application behavior.

DLIB runtime environment—implementation details
These topics are covered:

Briefly about the DLIB runtime environment
C header files

C++ header files

Library functions as intrinsic functions

Not supported C/C++ functionality

Atomic operations

Added C functionality

Non-standard implementations

Symbols used internally by the library

BRIEFLY ABOUT THE DLIB RUNTIME ENVIRONMENT

The DLIB runtime environment provides most of the important C and C++ standard
library definitions that apply to embedded systems. These are of the following types:

437

DLIB runtime environment—implementation details

IAR C/C++ Development Guide
438 Compiling and linking for RX

e Adherence to a free-standing implementation of Standard C. The library supports
most of the hosted functionality, but you must implement some of its base
functionality. For more information, see the chapter Implementation-defined
behavior for Standard C.

e Standard C library definitions, for user programs.

C++ library definitions, for user programs.

CSTARTUP, the module containing the start-up code, see the chapter The DLIB

runtime environment.

Runtime support libraries, for example, low-level floating-point routines.

Intrinsic functions, allowing low-level use of RX features. For more information,
see the chapter Intrinsic functions.

In addition, the DLIB runtime environment includes some added C functionality, see
Added C functionality, page 444.

C HEADER FILES

This section lists the C header files specific to the DLIB runtime environment. Header
files may additionally contain target-specific definitions, which are documented in the

chapter Using C.

This table lists the C header files:

Header file

Usage

assert.h

complex.h

ctype.h
errno.h
fenv.h

float.h

inttypes.

iso646.h
limits.h
locale.h
math.h

setjmp.h
signal.h

stdalign.

h

Enforcing assertions when functions execute
Computing common complex mathematical functions
Classifying characters

Testing error codes reported by library functions
Floating-point exception flags

Testing floating-point type properties

Defining formatters for all types defined in stdint.h
Alternative spellings

Testing integer type properties

Adapting to different cultural conventions
Computing common mathematical functions
Executing non-local goto statements

Controlling various exceptional conditions

Handling alignment on data objects

Table 32: Traditional Standard C header files—DLIB

Header file

C/C++ standard library functions °

Usage

stdarg.h

stdatomic.h

stdbool.h
stddef.h
stdint.h
stdio.h
stdlib.h
stdnoreturn.h
string.h
tgmath.h
threads.h

time.h
uchar.h
wchar.h

wctype.h

Accessing a varying number of arguments

Adding support for atomic operations.
This functionality is not supported.

Adds support for the bool data type in C.
Defining several useful types and macros
Providing integer characteristics
Performing input and output

Performing a variety of operations

Adding support for non-returning functions
Manipulating several kinds of strings
Type-generic mathematical functions

Adding support for multiple threads of execution
This functionality is not supported.

Converting between various time and date formats
Unicode functionality
Support for wide characters

Classifying wide characters

Table 32: Traditional Standard C header files DLIB (Continued)

C++ HEADER FILES

This section lists the C++ header files:

e The C++ library header files

The header files that constitute the Standard C++ library.

o The C++ C header files

The C++ header files that provide the resources from the C library.

The C++ library header files

This table lists the header files that can be used in C++:

Header file Usage

algorithm Defines several common operations on containers and other
sequences

any Adding support for the std: : any class. Requires Libc++.

array Adding support for the array sequencer container

Table 33: C++ header files

439

DLIB runtime environment—implementation details

Header file Usage

atomic Adding support for atomic operations
This functionality is not supported.

bitset Defining a container with fixed-sized sequences of bits

charconv Adding support for the std: : to_chars and
std: : from_chars routines. Requires Libc++.

chrono Adding support for time utilities. Note that the
steady_clock class in not available in Libc++.

codecvt Adding support for conversions between encodings
complex Defining a class that supports complex arithmetic

condition_variable Adding support for thread condition variables.
This functionality is not supported.

deque A deque sequence container

exception Defining several functions that control exception handling
forward_list Adding support for the forward list sequence container
fstream Defining several I/O stream classes that manipulate external files
functional Defines several function objects

future Adding support for passing function information between threads

This functionality is not supported.

hash_map A map associative container, based on a hash algorithm. This is a
C++14 header—it is not available in Libc++.

hash_set A set associative container, based on a hash algorithm. This is a
C++14 header—it is not available in Libc++.

initializer_list Adding support for the initializer_list class

iomanip Declaring several I/O stream manipulators that take an argument

ios Defining the class that serves as the base for many I/O streams
classes

iosfwd Declaring several I/O stream classes before they are necessarily
defined

iostream Declaring the I/O stream objects that manipulate the standard
streams

istream Defining the class that performs extractions

iterator Defines common iterators, and operations on iterators

limits Defining numerical values

list A doubly-linked list sequence container

Table 33: C++ header files (Continued)

IAR C/C++ Development Guide
440 Compiling and linking for RX

C/C++ standard library functions °

Header file Usage

locale Adapting to different cultural conventions

map A map associative container

memory Defines facilities for managing memory

mutex Adding support for the data race protection object mutex.
This functionality is not supported.

new Declaring several functions that allocate and free storage

numeric Performs generalized numeric operations on sequences

optional Adding support for the std: :optional class template.
Requires Libc++.

ostream Defining the class that performs insertions

queue A queue sequence container

random Adding support for random numbers

ratio Adding support for compile-time rational arithmetic

regex Adding support for regular expressions

scoped_allocator

set

shared_mutex

slist

sstream

stack
stdexcept
streambuf
string

string_view

strstream

system_error

Adding support for the memory resource
scoped_allocator_adaptor

A set associative container

Adding support for the data race protection object
shared_mutex.
This functionality is not supported.

A singly-linked list sequence container. This is a C++14 header—
it is not available in Libc++.

Defining several I/O stream classes that manipulate string
containers

A stack sequence container

Defining several classes useful for reporting exceptions
Defining classes that buffer 1/O stream operations
Defining a class that implements a string container

Adding support for the std: :basic_string_view class
template. Requires Libc++.

Defining several I/O stream classes that manipulate in-memory
character sequences

Adding support for global error reporting

Table 33: C++ header files (Continued)

441

DLIB runtime environment—implementation details

Header file Usage

thread Adding support for multiple threads of execution.
This functionality is not supported.

tuple Adding support for the tuple class

typeinfo Defining type information support

typeindex Adding support for type indexes

typetraits Adding support for traits on types

unordered_map

unordered_set

Adding support for the unordered map associative container

Adding support for the unordered set associative container

utility Defines several utility components

valarray Defining varying length array container

variant Adding support for the std: : variant class template.
Requires Libc++.

vector A vector sequence container

Table 33: C++ header files (Continued)

Using Standard C libraries in C++

The C++ library works in conjunction with some of the header files from the Standard
C library, sometimes with small alterations. The header files come in two forms—new
and traditional—for example, cassert and assert.h. The former puts all declared
symbols in the global and std namespace, whereas the latter puts them in the global
namespace only.

This table shows the new header files:

Header file Usage

cassert Enforcing assertions when functions execute
ccomplex Computing common complex mathematical functions
cctype Classifying characters

cerrno Testing error codes reported by library functions
cfenv Floating-point exception flags

cfloat Testing floating-point type properties

cinttypes Defining formatters for all types defined in stdint.h
ciso646 Alternative spellings

climits Testing integer type properties

clocale Adapting to different cultural conventions

Table 34: New Standard C header files—DLIB

IAR C/C++ Development Guide
442 Compiling and linking for RX

C/C++ standard library functions °

Header file Usage

cmath Computing common mathematical functions

csetjmp Executing non-local goto statements

csignal Controlling various exceptional conditions

cstdalign Handling alignment on data objects

cstdarg Accessing a varying number of arguments

cstdatomic Adding support for atomic operations

cstdbool Adds support for the bool data type in C.

cstddef Defining several useful types and macros

cstdint Providing integer characteristics

cstdio Performing input and output

cstdlib Performing a variety of operations

cstdnoreturn Adding support for non-returning functions

cstring Manipulating several kinds of strings

ctgmath Type-generic mathematical functions

cthreads Adding support for multiple threads of execution.
This functionality is not supported.

ctime Converting between various time and date formats

cuchar Unicode functionality

cwchar Support for wide characters

cwctype Classifying wide characters

Table 34: New Standard C header files—DLIB (Continued)

LIBRARY FUNCTIONS AS INTRINSIC FUNCTIONS

Certain C library functions will under some circumstances be handled as intrinsic
functions and will generate inline code instead of an ordinary function call, for example,
memcpy, memset, and strcat.

NOT SUPPORTED C/C++ FUNCTIONALITY

The following files have contents that are not supported by the IAR C/C++ Compiler:

stdatomic.h, atomic

threads.h, condition_variable, future, mutex, shared_mutex, thread,

cthreads

exception, stdexcept, typeinfo

memory_resource

443

DLIB runtime environment—implementation details

IAR C/C++ Development Guide

444 Compiling and linking for RX

® filesystem

Some library functions will have the same address. This occurs, most notably, when the
library function parameters differ in type but not in size, as for example, cos (double)
and cosl (long double).

The IAR C/C++ Compiler does not support threads as described in the C11 and C++14
standards. However, using DLib_Threads.h and an RTOS, you can build an
application with thread support. For more information, see Managing a multithreaded
environment, page 158.

C++17 parallel algorithms for containers with the header execution are not supported in
Libc++.

By default, the Libc++ library does not support deprecated C++17 features such as
auto_ptr (), auto_ptr_ref (), random_shuffle, set_unexpected(),
get_unexpected(), unary_function(), binary_function(),
const_mem_fun (), and const_mem_fun_ref_t ().

To enable support for deprecated C++17 features, define the preprocessor symbol
_LIBCPP_ENABLE_CXX17_REMOVED_FEATURES prior to including the relevant system
header.

ATOMIC OPERATIONS

Atomic operations using the files stdatomic.h and atomic are not available in the
IAR C/C++ Compiler for RX. The predefined preprocessor symbol
__STDC_NO_ATOMICS__ is always defined to 1. This is true both in C and C++.

ADDED C FUNCTIONALITY
The DLIB runtime environment includes some added C functionality:

C bounds-checking interface
DLib_Threads.h

fenv.h

iar_dlmalloc.h
LowLevelIOInterface.h
stdio.h

stdlib.h

string.h

time.h (time32.h, time64.h)

C/C++ standard library functions °

C bounds-checking interface

The C library supports Annex K (Bounds-checking interfaces) of the C standard. It adds
symbols, types, and functions in the header files errno.h, stddef.h, stdint.h,
stdio.h, stdlib.h, string.h, time.h (time32.h, time64.h), and wchar.h.

To enable the interface, define the preprocessor extension __ STDC_WANT_LIB_EXT1__
to 1 prior to including any system header file. See ~ STDC WANT LIB EXTI ,page
432.

As an added benefit, the compiler will issue warning messages for the use of unsafe
functions for which the interface has a safer version. For example, using strcpy instead
of the safer strcpy_s will make the compiler issue a warning message.

DLib_Threads.h

The DLib_Threads .h header file contains support for locks and thread-local storage
(TLS) variables. This is useful for implementing thread support. For more information,
see the header file.

fenv.h

In fenv.h, trap handling support for floating-point numbers is defined with the
functions fegettrapenable and fegettrapdisable.

iar_dlmalloc.h

The iar_dlmalloc.h header file contains support for the advanced (d1malloc) heap
handler. For more information, see Heap considerations, page 208.
LowLevellOlnterface.h

The header file LowLevelInterface.h contains declarations for the low-level I/O
functions used by DLIB. See The DLIB low-level I/O interface, page 147.

stdio.h

These functions provide additional I/O functionality:

fdopen Opens a file based on a low-level file descriptor.

fileno Gets the low-level file descriptor from the file descriptor
(FILE*).

__gets Corresponds to fgets on stdin.

getw Gets a wchar_t character from stdin.

445

DLIB runtime environment—implementation details

putw Puts a wchar_t character to stdout.
__ungetchar Corresponds to ungetc on stdout.
__write_array Corresponds to fwrite on stdout.

string.h

These are the additional functions defined in string.h:

strdup Duplicates a string on the heap.

strcasecmp Compares strings case-insensitive.
strncasecmp Compares strings case-insensitive and bounded.
strnlen Bounded string length.

time.h

There are two interfaces for using time_t and the associated functions time, ctime,
difftime, gmtime, localtime, and mktime:

e The 32-bit interface supports years from 1900 up to 2035 and uses a 32-bit integer
for time_t. The type and function have names like __time32_t time32, etc.
This variant is mainly available for backwards compatibility.

s ——

o The 64-bit interface supports years from -9999 up to 9999 and uses a signed
long long for time_t. The type and function have names like __time64_t,
__time6b4,etc.

The interfaces are defined in three header files:

® time32.hdefines __time32_t, time_t time32, time, and associated

functions.

FJp—

® time64.hdefines __time64_t, time_t, __time64, time, and associated
functions.

® time.hincludes time32.h or time64.h depending on the definition of
_DLIB_TIME_USES_64.

If _DLIB_TIME_USES_64 is:
o defined to 1, it will include time64 .h.
o defined to 0, it will include time32.h.

o undefined, it will include time32.h.

In both interfaces, time_t starts at the year 1970.

IAR C/C++ Development Guide
446 Compiling and linking for RX

C/C++ standard library functions °

An application can use either interface, and even mix them by explicitly using the 32 or
64-bit variants.

See also time32, time64, page 155.
clock_t is 8 bytes if 1ong is 8 bytes and 64-bit time.h is used, otherwise it is 4 bytes.

By default, the time library does not support the timezone and daylight saving time
functionality. To enable that functionality, use the linker option --timezone_1lib. See
--timezone_lib, page 340.

There are two functions that can be used for loading or force-loading the timezone and
daylight saving time information from __getzone:
® int _ReloadDstRules (void)

® int _ForceReloadDstRules (void)

Both these functions return 0 for DST rules found and -1 for DST rules not found.

NON-STANDARD IMPLEMENTATIONS
These functions do not work as specified by the C or C++ standards:

® fopen_s and freopen

These C functions will not propagate the u exclusivity attribute to the low-level
interface.

® towupper and towlower
These C functions will only handle 2, ...,z anda, ..., z.
® iswalnum, ..., iswxdigit
These C functions will only handle arguments in the range 0 to 127.

o The collate C functions strcoll and strxfrm will not work as intended. The same
applies to the C++ equivalent functionality.

® now
This C++ function in the C++ header chrono uses the _Xtime_get_ticks()
function and the C time.h macro CLOCKS_PER_SEC. By default,
_Xtime_get_ticks () calls __clock (). If this is not applicable, you must
override the setting of the macro _XTIME_NSECS_PER_TICK prior to using chrono
or clock_t _Xtime_get_ticks().

SYMBOLS USED INTERNALLY BY THE LIBRARY

The system header files use intrinsic functions, symbols, pragma directives etc. Some
are defined in the library and some in the compiler. These reserved symbols start with
__ (double underscores) and should only be used by the library.

447

DLIB runtime environment—implementation details

Use the compiler option --predef_macros to determine the value for any predefined
symbols.

The symbols used internally by the library are not listed in this guide.

IAR C/C++ Development Guide
448 Compiling and linking for RX

The linker configuration
file

Overview

Declaring the build type

Defining memories and regions

Regions

Section handling

Section selection

Using symbols, expressions, and numbers

Structural configuration

Before you read this chapter, you must be familiar with the concept of sections,

see Modules and sections, page 90.

Overview

To link and locate an application in memory according to your requirements, ILINK
needs information about how to handle sections and how to place them into the available
memory regions. In other words, ILINK needs a configuration, passed to it by means of
the linker configuration file.

This file consists of a sequence of directives and typically, provides facilities for:

Declaring the build type

informing the linker of whether the build is for a traditional ROM system or for a
RAM system, helping the linker check that only suitable sections are placed in the
different memory regions.

Defining available addressable memories

giving the linker information about the maximum size of possible addresses and

defining the available physical memory, as well as dealing with memories that can be
addressed in different ways.

449

Declaring the build type

450

e Defining the regions of the available memories that are populated with ROM or
RAM

giving the start and end address for each region.
e Section groups

dealing with how to group sections into blocks and overlays depending on the section
requirements.

e Defining how to handle initialization of the application

giving information about which sections that are to be initialized, and how that
initialization should be made.

e Memory allocation
defining where—in what memory region—each set of sections should be placed.
o Using symbols, expressions, and numbers

expressing addresses and sizes, etc, in the other configuration directives. The
symbols can also be used in the application itself.

e Structural configuration

meaning that you can include or exclude directives depending on a condition, and to
split the configuration file into several different files.

e Special characters in names
When specifying the name of a symbol or section that uses non-identifier characters,
you can enclose the name in back quotes. Example: ‘My Name'.

Comments can be written either as C comments (/*. . . */) or as C++ comments
//...).

Declaring the build type

IAR C/C++ Development Guide
Compiling and linking for RX

Declaring the build type in the linker configuration files specifies to the linker whether
the build is for a traditional ROM system (with, among other things, variable
initialization at program start) or for a RAM system to be used for debugging (where
other styles of initialization can be used).

build for directive

Syntax

Parameters

Description

See also

The linker configuration file __g

build for { ram rom };

ram The build is assumed to be a debugging or experimental
setup, where some or all variable initialization can be
performed at load time.

rom The build is assumed to be a traditional ROM build, where
all variable initialization is performed at program start.

If you declare a build type of rom—and especially if you also declare which memory
regions are ROM or RAM—the linker can perform better checking that only suitable
sections are placed in the different memory regions. If you do not explicitly specify an
initialize directive (see initialize directive, page 465), the linker will behave as if
you had specified initialize by copy { rw };.

If you declare a build type of ram, the linker does not check which section types are
placed in which memory region.

If you do not include the build for directive in the linker configuration file, the linker
only performs limited checking. This is useful primarily for backward compatibility
purposes.

define region directive, page 452.

Defining memories and

regions

ILINK needs information about the available memory spaces, or more specifically it
needs information about:

o The maximum size of possible addressable memories

The define memory directive defines a memory space with a given size, which is
the maximum possible amount of addressable memory, not necessarily physically
available. See define memory directive, page 452.

e Available physical memory
The define region directive defines a region in the available memories in which
specific sections of application code and sections of application data can be placed.
You can also use this directive to declare whether a region contains RAM or ROM
memory. This is primarily useful when building for a traditional ROM system. See
define region directive, page 452.

451

Defining memories and regions

452

A region consists of one or several memory ranges. A range is a continuous sequence
of bytes in a memory and several ranges can be expressed by using region
expressions. See Region expression, page 456.

This section gives detailed information about each linker directive specific to defining
memories and regions.

define memory directive

Syntax

Parameters

Description

Example

define region directive

Syntax

IAR C/C++ Development Guide
Compiling and linking for RX

define memory [name] with size = size_expr [,unit-size 1;
where unit-sizeis one of:

unitbitsize = bitsize expr
unitbytesize = bytesize expr

and where expr is an expression, see expressions, page 482.

size_expr Specifies how many units the memory space
contains—always counted from address zero.

bitsize_expr Specifies how many bits each unit contains.

bytesize expr Specifies how many bytes each unit contains. Each
byte contains 8 bits.

The define memory directive defines a memory space with a given size, which is the
maximum possible amount of addressable memory, not necessarily physically available.
This sets the limits for the possible addresses to be used in the linker configuration file.
For many microcontrollers, one memory space is sufficient. However, some
microcontrollers require two or more. For example, a Harvard architecture usually
requires two different memory spaces, one for code and one for data. If only one
memory is defined, the memory name is optional. If no unit-size is given, the unit
contains 8 bits.

/* Declare the memory space Mem of four Gigabytes */
define memory Mem with size = 4G;

define [ram | rom 1 region name = region-expr;

where region-expr is a region expression, see also Regions, page 455.

Parameters

Description

Example

logical directive

Syntax

Parameters

Description

The linker configuration file __g

ram The region contains RAM memory.
rom The region contains ROM memory.
name The name of the region.

The define region directive defines a region in which specific sections of code and
sections of data can be placed. A region consists of one or several memory ranges, where
each memory range consists of a continuous sequence of bytes in a specific memory.
Several ranges can be combined by using region expressions—these ranges do not need
to be consecutive or even in the same memory.

If you declare regions as being ROM or RAM, the linker can check that only suitable
sections are placed in the regions if you are building a traditional ROM-based system
(see build for directive, page 451).

/* Define the 0x10000-byte code region ROM located at address
0x10000 */
define rom region ROM = [from 0x10000 size 0x10000];

logical range-list = physical range-list

where range-1ist is one of

[region-expr, ... lregion-expr

[region-expr,... lfrom address-expr

region-expr A region expression, see also Regions, page 455.
address-expr An address expression

The logical directive maps logical addresses to physical addresses. The physical
address is typically used when loading or burning content into memory, while the logical
address is the one seen by your application. The physical address is the same as the
logical address, if no logical directives are used, or if the address is in a range
specified in a logical directive.

When generating ELF output, the mapping affects the physical address in program
headers. When generating output in the Intel hex or Motorola S-records formats, the
physical address is used.

453

Defining memories and regions

454

Example

IAR C/C++ Development Guide
Compiling and linking for RX

Each address in the logical range list, in the order specified, is mapped to the
corresponding address in the physical range list, in the order specified.

Unless one or both of the range lists end with the £rom form, the total size of the logical
ranges and the physical ranges must be the same. If one side ends with the from form
and not the other, the side that ends with the £rom form will include a final range of a
size that makes the total sizes match, if possible. If both sides end with a £rom form, the
ranges will extend to the highest possible address that makes the total sizes match.

Setting up a mapping from logical to physical addresses can affect how sections and
other content are placed. No content will be placed to overlap more than one individual
logical or physical range. Also, if there is a mapping from a different logical range to the
corresponding physical range, any logical range for which no mapping to physical
ranges has been specified—by not being mentioned in a logical directive—is
excluded from placement.

All logical directives are applied together. Using one or using several directives to
specify the same mapping makes no difference to the result.

// Logical range 0x8000-0x8FFF maps to physical 0x10000-0x10FFF.
// No content can be placed in the logical range 0x10000-0x10FFF.
logical [from 0x8000 size 4K] = physical [from 0x10000 size 4K];

// Another way to specify the same mapping
logical [from 0x8000 size 4K] = physical from 0x10000;

// Logical range 0x8000-0x8FFF maps to physical 0x10000-0x10FFF.
// Logical range 0x10000-0x10FFF maps to physical 0x8000-0x8FFF.
// No logical range is excluded from placement because of

// this mapping.

logical [from 0x8000 size 4K] = physical [from 0x10000 size 4K];
logical [from 0x10000 size 4K] = physical [from 0x8000 size 4K];

// Logical range 0x1000-0x13FF maps to physical 0x8000-0x83FF.
// Logical range 0x1400-0x17FF maps to physical 0x9000-0x93FF.
// Logical range 0x1800-0x1BFF maps to physical 0xA000-0xA3FF.
// Logical range 0x1C00-0x1FFF maps to physical 0xB000-0xB3FF.
// No content can be placed in the logical ranges 0x8000-0x83FF,
// 0x9000-0x9FFF, 0xA000-O0xAFFF, or 0xB000-OxBFFF.
logical [from 0x1000 size 4K] =

physical [from 0x8000 size 1K repeat 4 displacement 4K];

The linker configuration file __g

// Another way to specify the same mapping.

logical [from 0x1000 to 0x13FF] = physical [from 0x8000 to
0x83FF] ;
logical [from 0x1400 to 0x17FF] = physical [from 0x9000 to
0x93FF];
logical [from 0x1800 to 0x1BFF] = physical [from 0xA000 to
0xXA3FF];
logical [from 0x1CO00 to O0x1FFF] = physical [from 0xB000O to
0xB3FF];

Regions

Region literal

Syntax

Parameters

Description

A region is s a set of non-overlapping memory ranges. A region expression is built up
out of region literals and set operations (union, intersection, and difference) on regions.

[memory-name:][from expr { to expr | size expr }

[repeat expr [displacement expr 11]

where expr is an expression, see expressions, page 482.

memory-name

from expr
to expr
size expr

repeat expr

displacement expr

The name of the memory space in which the region literal
will be located. If there is only one memory, the name is
optional.

expr 18 the start address of the memory range (inclusive).
expr 18 the end address of the memory range (inclusive).
expr 18 the size of the memory range.

expr defines several ranges in the same memory for the
region literal.

expr is the displacement from the previous range start in the
repeat sequence. Default displacement is the same value as
the range size.

A region literal consists of one memory range. When you define a range, the memory it
resides in, a start address, and a size must be specified. The range size can be stated
explicitly by specifying a size, or implicitly by specifying the final address of the range.
The final address is included in the range and a zero-sized range will only contain an

455

Regions

456

Example

See also

Region expression

Syntax

Description

IAR C/C++ Development Guide
Compiling and linking for RX

address. A range can span over the address zero and such a range can even be expressed
by unsigned values, because it is known where the memory wraps.

The repeat parameter will create a region literal that contains several ranges, one for
each repeat. This is useful for banked or far regions.

/* The 5-byte size range spans over the address zero */
Mem: [from -2 to 2]

/* The 512-byte size range spans over zero, in a 64-Kbyte memory
*/
Mem: [from OxFF00 to OxFF]

/* Defining several ranges in the same memory, a repeating
literal */
Mem: [from 0 size 0x100 repeat 3 displacement 0x1000]

/* Resulting in a region containing:
Mem: [from 0 size 0x100]
Mem: [from 0x1000 size 0x100]
Mem: [from 0x2000 size 0x100]

*/

define region directive, page 452, and Region expression, page 456.

region-operand
| region-expr | region-operand
| region-expr - region-operand
| region-expr & region-operand

where region-operand is one of:

(region-expr)
region-name
region-literal
empty-region

where region-name is a region, see define region directive, page 452
where region-1literal is aregion literal, see Region literal, page 455
and where empty-region is an empty region, see Empty region, page 457.

Normally, a region consists of one memory range, which means a region literal is
sufficient to express it. When a region contains several ranges, possibly in different

The linker configuration file __g

memories, it is instead necessary to use a region expression to express it. Region
expressions are actually set expressions on sets of memory ranges.

To create region expressions, three operators are available: union (|), intersection (&),
and difference (-). These operators work as in set theory. For example, if you have the
sets A and B, then the result of the operators would be:

e 2 | B:all elements in either set A or set B

e A & B:all elements in both set A and B

e A - B:all elements in set A but not in B.

Example /* Resulting in a range starting at 1000 and ending at 2FFF, in
memory Mem */
Mem: [from 0x1000 to Ox1FFF] | Mem: [from 0x1500 to Ox2FFF]

/* Resulting in a range starting at 1500 and ending at 1FFF, in
memory Mem */
Mem: [from 0x1000 to Ox1FFF] & Mem: [from 0x1500 to Ox2FFF]

/* Resulting in a range starting at 1000 and ending at 14FF, in
memory Mem */
Mem: [from 0x1000 to Ox1FFF] - Mem:[from 0x1500 to Ox2FFF]

/* Resulting in two ranges. The first starting at 1000 and ending
at 1FFF, the second starting at 2501 and ending at 2FFF.
Both located in memory Mem */

Mem: [from 0x1000 to Ox2FFF] - Mem: [from 0x2000 to 0x24FF]
Empty region
Syntax [
Description The empty region does not contain any memory ranges. If the empty region is used in a

placement directive that actually is used for placing one or more sections, ILINK will
issue an error.

457

Section handling

458

Example

See also

define region Code = Mem: [from 0 size 0x10000];
if (Banked) {
define region Bank = Mem: [from 0x8000 size 0x1000];
} else {
define region Bank = [];
}

define region NonBanked = Code - Bank;

/* Depending on the Banked symbol, the NonBanked region is either
one range with 0x10000 bytes, or two ranges with 0x8000 and
0x7000 bytes, respectively. */

Region expression, page 456.

Section handling

IAR C/C++ Development Guide
Compiling and linking for RX

Section handling describes how ILINK should handle the sections of the execution
image, which means:

e Placing sections in regions

The place at and place in directives place sets of sections with similar attributes
into previously defined regions. See place at directive, page 470 and place in
directive, page 471.

e Reserving regions of memory

The reserve region directive specifies that no content may be placed in certain
memory regions. See reserve region, page 472.

o Making sets of sections with special requirements

The block directive makes it possible to create empty sections with specific or
expanding sizes, specific alignments, sequentially sorted sections of different types,
etc.

The overlay directive makes it possible to create an area of memory that can
contain several overlay images. See define block directive, page 459, and define
overlay directive, page 464.

e Initializing the application

The directives initialize and do not initialize control how the application
should be started. With these directives, the application can initialize global symbols
at startup, and copy pieces of code. The initializers can be stored in several ways, for
example, they can be compressed. See initialize directive, page 465 and do not
initialize directive, page 468.

define block directive

Syntax

Parameters

The linker configuration file __g

e Keeping removed sections

The keep directive retains sections even though they are not referred to by the rest
of the application, which means it is equivalent to the root concept in the assembler
and compiler. See keep directive, page 469.

e Specifying the contents of linker-generated sections

The define section directive can be used for creating specific sections with
content and calculations that are only available at link time.

e Additional more specialized directives:

use init table directive

This section gives detailed information about each linker directive specific to section
handling.

define [movable] block name
[with param, param...]

extended-selectors
}
[except

{

section-selectors
} 1

where param can be one of:

size = expr

minimum size = expr
maximum size = expr
expanding size
alignment = expr

end alignment = expr

fixed order
alphabetical order
static base [basenamel]

and where the rest of the directive selects sections to include in the block, see Section
selection, page 474.

name The name of the block to be defined.

size Customizes the size of the block. By default, the size of
a block is the sum of its parts dependent of its contents.

459

Section handling

460

IAR C/C++ Development Guide
Compiling and linking for RX

minimum size

maximum size

expanding size

alignment

end alignment

fixed order

alphabetical order

static base
[basenamel

Specifies alower limit for the size of the block. The block
is at least this large, even if its contents would otherwise
not require it.

Specifies an upper limit for the size of the block. An error
is generated if the sections in the block do not fit.

The block will expand to use all available space in the
memory range where it is placed.

Specifies a minimum alignment for the block. If any
section in the block has a higher alignment than the
minimum alignment, the block will have that alignment.

Specifies a minimum alignment for the end of the block.
Normally, the end address of a block is determined by its
start address and its size (which can depend on its
contents), but if this parameter is used, the end address is
increased to comply with the specified alignment if
needed.

Places sections in the specified order. Each
extended-selector is added in a separate nested
block, and these blocks are kept in the specified order.
Note that it is not possible to combine defining blocks
with fixed order with initializing entire blocks by
copy.

Places sections in alphabetical order by section name.
Onlysection-selector patterns are allowed in
alphabetical order blocks, for example, no nested
blocks. All sections in a particular alphabetical
order block must use the same kind of initialization
(read-only, zero-init, copy-init, or no-init, and otherwise
equivalent). You cannot use __section_begin, etc on
individual sections contained in an alphabetical
order block.

Specifies that the static base with the name basename
will be placed at the start of the block or in the middle of
the block, as appropriate for the particular static base.
The startup code must ensure that the register that holds
the static base is initialized to the correct value. If there
is only one static base, the name can be omitted.

The linker configuration file __g

Description The block directive defines a contiguous area of memory that contains a possibly
empty set of sections or other blocks. Blocks with no content are useful for allocating
space for stacks or heaps. Blocks with content are usually used to group together
sections that must to be consecutive.

You can access the start, end, and size of a block from an application by using the
__section_begin, _section_end, Oor __section_size operators. If there is no
block with the specified name, but there are sections with that name, a block will be

created by the linker, containing all such sections.

movable blocks are for use with read-only and read-write position independence.
Making blocks movable enables the linker to validate the application’s use of addresses.
Movable blocks are located in exactly the same way as other blocks, but the linker will
check that the appropriate relocations are used when referring to symbols in movable
blocks.

Blocks with expanding size are most often used for heaps or stacks.

Note: You cannot place a block with expanding size inside another block with
expanding size, inside a block with a maximum size, or inside an overlay.

Example /* Create a block with a minimum size for the heap that will use
all remaining space in its memory range */
define block HEAP with minimum size = 4K, expanding size,

alignment = 4 { };

See also Interaction between the tools and your application, page 215. For an accessing example,
see define overlay directive, page 464.

define section directive

Syntax define [root] section name
[with alignment = sec-align 1]

section-content-item. ..
}i

461

Section handling

462

Parameters

IAR C/C++ Development Guide
Compiling and linking for RX

where each section-content-item can be one of:

udata8 { data | string };
sdata8 data [,data 1 ...;

udatal6 data ,data ;
sdatal6 data ,data ;
udata24 data ,data

[

[

[
sdata24 data [,data

[

[

[

udata32 data ,data ;
sdata32 data ,data ;
udata6d data ,data ;

sdata64 data [,data
pad_to data-align;

[public] label:
if-item;

where if-itemis:

if (condition) {
section-content-item. ..

[} else if (condition] {
section-content-item... 1...

[} else {
section-content-item. . .]

name The name of the section.
sec-align The alignment of the section, an expression.

root Optional. If root is specified, the section is always
included, even if it is not referenced.

udata8 {data|string}; If the parameter is an expression (data), it generates an
unsigned one-byte member in the section. The data
expression is only evaluated during relocation and only if
the value is needed. It causes a relocation error if the
value of data is too large to fit in a byte. The possible
range of values is 0 to 0xFF.

If the parameter is a quoted string, it generates one
one-byte member in the section for each character in the
string.

sdata8 data; As udata8 data, except that it generates a signed
one-byte member.

The possible range of values is —0x80 to 0x7F.

udatalé

sdatal6

udata24

sdataz24

udata3?2

sdata32

udata64d

sdata64

pad_to data_align;

[public] label:

if-item

data;

data;

data;

data;

data;

data;

data;

data;

condition

The linker configuration file __g

As sdatas, except that it generates an unsigned
two-byte member. The possible range of values is 0 to
OXFFFF.

As sdata8, except that it generates a signed two-byte
member. The possible range of values is —0x8000 to
0x7FFF.

As sdatas, except that it generates an unsigned
three-byte member. The possible range of values is 0 to
OxFF 'FFFF.

As sdata8, except that it generates a signed three-byte
member. The possible range of values is—0x80' 0000 to
0x7F ' FFFF.

As sdatas, except that it generates an unsigned
four-byte member. The possible range of values is 0 to
OxXFFFF 'FFFF.

As sdata8, except that it generates a signed four-byte
member.

The possible range of values is —0x8000' 0000 to
0x7FFF ' FFFF.

As sdata8, except that it generates an unsigned
eight-byte member. The possible range of values is 0 to
0XFFFF'FFFF'FFFF 'FFFF.

As sdatas, except that it generates a signed eight-byte
member. The possible range of values is
-0x8000'0000'0000'0000 to

0x7FFF'FFFF'FFFF 'FFFF.

Generates pad bytes to make the current offset from the
start of the section to be aligned to the expression
data-align.

Defines a label at the current offset from the start of the
section. If public is specified, the label is visible to
other program modules. If not, it is only visible to other
data expressions in the linker configuration file.

Configuration-time selection of items.

An expression.

463

Section handling

Description

Example

data An expression that is only evaluated during relocation
and only if the value is needed.

Use the define section directive to create sections with content that is not available
from assembler language or C/C++. Examples of this are the results of stack usage
analysis, the size of blocks, and arithmetic operations that do not exist as relocations.

Unknown identifiers in data expressions are assumed to be labels.

Note: Only data expressions can use labels, stack usage analysis results, etc. All the
other expressions are evaluated immediately when the configuration file is read.

define section data {
/* The application entry in a 16-bit word, provided it is less
than 256K and 4-byte aligned. */
udatalé __iar_program_start >> 2;
/* The maximum stack usage in the program entry category. */
udatal6 maxstack("Application entry");
/* The size of the DATA block */
udata32 size(block DATA);

define overlay directive

Syntax

Parameters

IAR C/C++ Development Guide
464 Compiling and linking for RX

define overlay name [with param, param...]
{
extended-selectors;
}
[except
{

section-selectors
} 1

For information about extended selectors and except clauses, see Section selection, page
474.

name The name of the overlay.

size Customizes the size of the overlay. By default, the size of a
overlay is the sum of its parts dependent of its contents.

maximum size Specifies an upper limit for the size of the overlay. An error
is generated if the sections in the overlay do not fit.

Description

See also

initialize directive

Syntax

The linker configuration file __g

alignment Specifies a minimum alignment for the overlay. If any
section in the overlay has a higher alignment than the
minimum alignment, the overlay will have that alignment.

fixed order Places sections in fixed order—if not specified, the order of
the sections will be arbitrary.

The overlay directive defines a named set of sections. In contrast to the block
directive, the overlay directive can define the same name several times. Each definition
will then be grouped in memory at the same place as all other definitions of the same
name. This creates an overlaid memory area, which can be useful for an application that
has several independent sub-applications.

Place each sub-application image in ROM and reserve a RAM overlay area that can hold
all sub-applications. To execute a sub-application, first copy it from ROM to the RAM
overlay.

Note: ILINK does not help you with managing interdependent overlay definitions, apart
from generating a diagnostic message for any reference from one overlay to another
overlay.

The size of an overlay will be the same size as the largest definition of that overlay name
and the alignment requirements will be the same as for the definition with the highest
alignment requirements.

Note: Sections that were overlaid must be split into a RAM and a ROM part and you
must take care of all the copying needed.

Code in overlaid memory areas cannot be debugged—the C-SPY Debugger cannot
determine which code is currently loaded.

Manual initialization, page 113.

initialize { by copy | manually }
[with param, param...]
{
section-selectors
}
[except
{

section-selectors
} 1

where param can be one of:

465

Section handling

packing = algorithm
simple ranges
complex ranges

no exclusions

For information about section selectors and except clauses, see Section selection, page
474.

Parameters
by copy Splits the section into sections for initializers and initialized

data, and handles the initialization at application startup
automatically. Note that it is not possible to combine
defining blocks with fixed order with initializing entire
blocks by copy.

This parameter should not be used with the section
.textrw.

manually Splits the section into sections for initializers and initialized
data. The initialization at application startup is not handled
automatically.

algorithm Specifies how to handle the initializers. Choose between:

none. Disables compression of the selected section contents.
This is the default method for initialize manually.

zeros. Compresses consecutive bytes with the value zero.

packbits. Compresses with the PackBits algorithm. This
method generates good results for data with many identical
consecutive bytes.

1z77. Compresses with the Lempel-Ziv-77 algorithm. This
method handles a larger variety of inputs well, but has a
slightly larger decompressor.

auto. ILINK estimates the resulting size using each packing
method (except for auto), and then chooses the packing
method that produces the smallest estimated size. Note that
the size of the decompressor is also included. This is the
default method for initialize by copy.

smallest. This is a synonym for auto.

Description The initialize directive splits each selected section into one section that holds
initializer data and another section that holds the space for the initialized data. The
section that holds the space for the initialized data retains the original section name, and

IAR C/C++ Development Guide
466 Compiling and linking for RX

The linker configuration file __g

the section that holds initializer data gets the name suffix _init. You can choose
whether the initialization at startup should be handled automatically (initialize by
copy) or whether you should handle it yourself (initialize manually).

Note: The section . textrw, which contains RAM functions, must use initialize
manually in big-endian mode, to be properly initialized.

When you use the packing method auto (default for initialize by copy), ILINK
will automatically choose an appropriate packing algorithm for the initializers. To
override this, specify a different packing method. The --1og initialization
option shows how ILINK decided which packing algorithm to use.

When initializers are compressed, a decompressor is automatically added to the image.

Each decompressor has two variants: one that can only handle a single source and
destination range at a time, and one that can handle more complex cases. By default, the
linker chooses a decompressor variant based on whether the associated section
placement directives specify a single or multi-range memory region. In general, this is
the desired behavior, but you can use the with complex rangesorthewith simple
ranges modifier on an initialize directive to specify which decompressor variant
to use. You can also use the command line option --default_to_complex_ranges
to make initialize directives by default use complex ranges. The simple ranges
decompressors are normally hundreds of bytes smaller than the complex ranges
variants.

When initializers are compressed, the exact size of the compressed initializers is
unknown until the exact content of the uncompressed data is known. If this data contains
other addresses, and some of these addresses are dependent on the size of the
compressed initializers, the linker fails with error Lp017. To avoid this, place
compressed initializers last, or in a memory region together with sections whose
addresses do not need to be known.

Due to an internal dependence, generation of compressed initializers can also fail (with
error LP021) if the address of the initialized area depends on the size of its initializers.
To avoid this, place the initializers and the initialized area in different parts of the
memory (for example, the initializers are placed in ROM and the initialized area in
RAM).

If you specify the parameter no exclusions, an error is emitted if any sections are
excluded (because they are needed for the initialization). no exclusions can only be
used with initialize by copy (automatic initialization), not with initialize
manually.

Unless initialize manually is used, ILINK will arrange for initialization to occur
during system startup by including an initialization table. Startup code calls an
initialization routine that reads this table and performs the necessary initializations.

467

Section handling

468

Example

See also

Zero-initialized sections are not affected by the initialize directive.

The initialize directive is normally used for initialized variables, but can be used for
copying any sections, for example, copying executable code from slow ROM to fast
RAM, or for overlays. For another example, see define overlay directive, page 464.

Sections that are needed for initialization are not affected by the initialize by copy
directive. This includes the __low_level_init function and anything it references.

Anything reachable from the program entry label is considered needed for initialization
unless reached via a section fragment with a label starting with __iar_init$$done.
The --1og sections option, in addition to logging the marking of section fragments
to be included in the application, also logs the process of determining which sections are
needed for initialization.

/* Copy all read-write sections automatically from ROM to RAM at
program start */

initialize by copy { rw };

place in RAM { rw };

place in ROM { ro };

Initialization at system startup, page 96, and do not initialize directive, page 468.

do not initialize directive

Syntax

Description

IAR C/C++ Development Guide
Compiling and linking for RX

do not initialize
{
section-selectors
}
[except
{

section-selectors
} 1

For information about section selectors and except clauses, see Section selection, page
474.

Use the do not initialize directive to specify the sections that you do not want to be
automatically zero-initialized by the system startup code. The directive can only be used
on zeroinit sections.

Typically, this is useful if you want to handle zero-initialization in some other way for
all or some zeroinit sections.

This can also be useful if you want to suppress zero-initialization of variables entirely.
Normally, this is handled automatically for variables specified as __no_init in the

The linker configuration file __g

source, but if you link with object files produced by older tools from IAR or other tool
vendors, you might need to suppress zero-initialization specifically for some sections.

Example /* Do not initialize read-write sections whose name ends with
_noinit at program start */
do not initialize { rw section .*_noinit };
place in RAM { rw section .*_noinit };

See also Initialization at system startup, page 96, and initialize directive, page 465.

keep directive

Syntax keep
{
[{ section-selectors | block name }
[, {section-selectors | block name }... 1 1
}
[except
{

section-selectors
}1;

For information about selectors and except clauses, see Section selection, page 474.

Description The keep directive can be used for including blocks, overlays, or sections in the
executable image that would otherwise be discarded because no references to them exist
in the included parts of the application. Note that this directive always causes entire
input sections to be included, and not just the relevant section fragment, when matching
against a symbol name.

Furthermore, only sections from included modules are considered. The keep directive
does not cause any additional modules to be included in your application.

To cause a module that defines a specific symbol to be included, or only the section
fragment that defines a symbol, use the Keep symbols linker option (or the --keep
option on the command line), or the linker directive keep symbol.

Exmnph keep { section .keep* } except {section .keep};

469

Section handling

470

place at directive

Syntax

Parameters

IAR C/C++ Development Guide
Compiling and linking for RX

["name": 1]

place [noload 1 at { address [memory: 1 address |
start of region_expr [with mirroring to mirror_address 1 |

end of region_expr [with mirroring to mirror_address 1 }

extended-selectors
}
[except

{

section-selectors
}1;

For information about extended selectors and except clauses, see Section selection, page

474.

name

noload

memory: address

start of region_expr

end of region_expr

Optional. If it is specified, it is used in the map file, in
some log messages, and is part of the name of any ELF
output sections resulting from the directive. (This is
entirely a matter of presentation. There is no connection
to names used in the application.)

Optional. If it is specified, it prevents the sections in the
directive from being loaded to the target system. To use
the sections, you must put them into the target system in
some other way. noload can only be used when a name
is specified.

A specific address in a specific memory. The address must
be available in the supplied memory defined by the
define memory directive. The memory specifier is
optional if there is only one memory.

A region expression that results in a single-internal
region. The start of the interval is used.

A region expression that results in a single-internal
region. The end of the interval is used.

The linker configuration file __g

mirror_address Ifwith mirroring to is specified, the contents of any
sections are assumed to be mirrored to this address,
therefore debug information and symbols will appear in
the mirrored range, but the actual content bytes are placed
asifwith mirroring to was not specified.

Note: This functionality is intended to support external
(target-specific) mirroring.

Description The place at directive places sections and blocks either at a specific address or, at the
beginning or the end of a region. The same address cannot be used for two different
place at directives. It is also not possible to use an empty region in a place at
directive. If placed in a region, the sections and blocks will be placed before any other
sections or blocks placed in the same region with a place in directive.

Note: with mirroring to canbe used only together with start of and end of.

Exmnph /* Place the RO section .startup at the start of code_region */
"START": place at start of ROM { readonly section .startup };

See also place in directive, page 471.

place in directive

Syntax ["name": 1]
place [noload] in region-expr
[with mirroring to mirror_address 1]

extended-selectors
}
[except{
section-selectors
} 1

where region-expr is a region expression, see also Regions, page 455.

and where the rest of the directive selects sections to include in the block. See Section
selection, page 474.

471

Section handling

Parameters
name Optional. If it is specified, it is used in the map file, in
some log messages, and is part of the name of any ELF
output sections resulting from the directive. (This is
entirely a matter of presentation. There is no connection
to names used in the application.)
noload Optional. If it is specified, it prevents the sections in the
directive from being loaded to the target system. To use
the sections, you must put them into the target system in
some other way. noload can only be used when a name
is specified.
mirror_address Ifwith mirroring to is specified, the contents of any
sections are assumed to be mirrored to this address,
therefore debug information and symbols will appear in
the mirrored range, but the actual content bytes are placed
asif with mirroring to was not specified.
Note: This functionality is intended to support external
(target-specific) mirroring.
Description The place in directive places sections and blocks in a specific region. The sections and
blocks will be placed in the region in an arbitrary order.
To specify a specific order, use the block directive. The region can have several ranges.
Note: When with mirroring to is specified, the region-expr must resultin a
single range.
Example /* Place the read-only sections in the code_region */
"ROM": place in ROM { readonly };
See also place at directive, page 470.
reserve region
Syntax reserve region "name" = region-expr;

where region-expr is a region expression, see also Regions, page 455.

Parameters
name

IAR C/C++ Development Guide
472 Compiling and linking for RX

The name of the reserved region

Description

Example

See also

use init table directive

Syntax

Parameters

Description

The linker configuration file __g

The reserve region directive excludes a region from being used in place in
directives. If any absolute sections or place at directives overlap the reserved regions,
an error is emitted.

Reserved regions cannot overlap.

reserve region "Stay out" = [from 0x1000 size 0x100 1;

place in directive, page 471.

use init table name for
{

section-selectors
}
[except

{

section-selectors
}1;

For information about section selectors and except clauses, see Section selection, page
474.

name The name of the init table.

Normally, all initialization entries are generated into a single initialization table (called
Table). Use this directive to cause some of the entries to be put into a separate table.
You can then use this initialization table at another time, or under different
circumstances, than the normal initialization table.

Initialization entries for all variables not mentioned in ause init table directive are
put into the normal initialization table. By having multiple use init table directives
you can have multiple initialization tables.

The start, end, and size of the init table can be accessed in the application program by

using __section_begin section_end, or __section_size of

L J—

"Region$$name", respectively, or via the symbols Region$$names$Base
Region$$name$$Limit, and Region$$name$$Length.

An initialization function, TAR_TABLE_INIT, which operates on the start and end
addresses of an initialization table, is available in the include file std1ib.h. Calling the
function with start and end addresses of an initialization table created with use init
table will initialize all initialization entries in that table.

473

Section selection

474

Example

Note: Stack usage analysis handles all initialization entries as if they were called by the
normal initialization routine (IAR_DATA_INIT). This will result in stack usage
information for initialization entries that are called from another place, such as
IAR_TABLE_INIT, being incorrect. If such a function is called when almost all stack has
been used, it is possible that too much stack will be used without the stack usage analysis
detecting this. Initialization functions and routines for dynamic initialization typically
use little stack space, so this would most likely not be a serious problem.

In this example, the use init table directive resides in the linker configuration file,
while the rest of the example resides in a C file.

use init table Core2 for { section *.core2};

/* This code example needs IAR language extensions to handle
__section_begin. */

#include <stdlib.h>

/* This sets up the name of the table and ensures that pointers
to it have the correct attributes. */

#pragma section="Region$$Core2" const _DLIB_ELF_INIT TABLE_MEMORY

/* Calling this function will result in all initialization
functions in the Core2 table being called. This must be called
before any of the data/objects are accessed. Nothing prevents
the data/objects from being accessed before they are
initialized and nothing prevents the data from being
initialized more than once (data is typically overwritten by
the initial values if it is initialized more than once). */

void HandleCore2Init ()
{
IAR_TABLE_INIT(__section_begin("Region$$Core2"),
__section_end ("Region$$SCore2"));

Section selection

IAR C/C++ Development Guide
Compiling and linking for RX

The purpose of section selection is to specify—by means of section selectors and except
clauses—the sections that an ILINK directive should be applied to. All sections that
match one or more of the section selectors will be selected, and none of the sections
selectors in the except clause, if any. Each section selector can match sections on section
attributes, section name, and object or library name.

section-selectors

Syntax

Parameters

The linker configuration file __g

Some directives provide functionality that requires more detailed selection capabilities,
for example, directives that can be applied on both sections and blocks. In this case, the
extended-selectors are used.

This section gives detailed information about each linker directive specific to section
selection.

[section-selector [, section-selector... 1 1
section-selectoris:

[section-attribute 1[section-type 1
[symbol symbol-name][section section-name]
[object module-spec 1

section-attributeis:
ro [code | data 1 | rw [code | data 1 | zi
section-typeis:

[preinit_array | init_array 1

section-attribute Only sections with the specified attribute will be selected.
section-attribute can consist of:

ro|readonly, for ROM sections.
rw|readwrite, for RAM sections.

In each category, sections can be further divided into those
that contain code and those that contain data, resulting in
four main categories:

ro code, for normal code

ro data, for constants

rw code, for code copied to RAM
rw data, for variables

readwrite data also has a subcategory—
zi | zeroinit—for sections that are zero-initialized at
application startup.

475

Section selection

section-type

symbol symbol-name

section section-name

object module-spec

Only sections with that ELF section type will be selected.
section-type can be:

preinit_array, sections of the ELF section type
SHT_PREINIT_ARRAY.

init_array, sections of the ELF section type
SHT_INIT_ARRAY.

Only sections that define at least one public symbol that
matches the symbol name pattern will be selected.
symbol-name is the symbol name pattern. For example,
specifying symbol __mySymbol selects the section that

contains __mySymbol. Two wildcards are allowed:

2 matches any single character
* matches zero or more characters

See the note below for a more detailed description.

Only sections whose names match the section-name
will be selected. Two wildcards are allowed:

2 matches any single character
* matches zero or more characters.

Only sections that originate from library modules or object
files that matches module-spec will be selected.
module-spec can be in one of two forms:

module, a name in the form
objectname (libraryname). Sections from object
modules where both the object name and the library
name match their respective patterns are selected. An
empty library name pattern selects only sections from
object files. If 1ibrarynameis :sys, the pattern will
match only sections from the system library.

filename, the name of an object file, or an object in a
library.

Two wildcards are allowed:

2 matches any single character
* matches zero or more characters.

Description A section selector selects all sections that match the section attribute, section type,
symbol name, section name, and the name of the module. Up to four of the five

conditions can be omitted.

IAR C/C++ Development Guide
476 Compiling and linking for RX

The linker configuration file __g

It is also possible to use only { } without any section selectors, which can be useful
when defining blocks.

Note: Like all section selectors, symbo1 selects sections, not symbols. If you specify the
symbol __mySymbol, you select the section that contains the public symbol
__mySymbol. If that section contains more public symbols, those will also be selected.
If a section contains more than one public symbol, for instance symba and symbB, you
cannot select symbol symba to one section selector and symbol symbB to another. A
section can only match one section selector, and the match is case sensitive. Static
symbols are not affected by this directive.

You can inspect the symbol table of object files with the command

ielfdumprx -s .symtab file.o. The number of the containing section will be
listed for each symbol. If two public symbols reside in the same section, they cannot be
matched by two section selectors that use the two symbols—the single section must be
matched by one section selector.

Which section a symbol resides in might change with the optimization level. The
compiler uses an optimization called static clustering on optimization levels Medium
and higher. Clustering typically places several data symbols in the same section, which
typically reduces both the size and the execution time of the generated code. You can
disable static clustering (using the compiler option --no_clustering) to get symbols
into different sections (which allows you to match them individually with different
symbol section selectors), but the generated code will typically be larger and slower.

Note: A section selector with narrower scope has higher priority than a more generic
section selector. If more than one section selector matches for the same purpose, one of
them must be more specific. A section selector is more specific than another one if in
priority order:

e It specifies a public symbol name with no wildcards and the other one does not.

e It specifies a section name or object name with no wildcards and the other one does
not

It specifies a section type and the other one does not

There could be sections that match the other selector that also match this one,
however, the reverse is not true.

Selector | Selector 2 More specific
ro ro code Selector 2
symbol mysym section foo Selector 1
ro code section f* ro section f* Selector 1
section foo* section f* Selector 1

Table 35: Examples of section selector specifications

477

Section selection

Example

See also

extended-selectors

Syntax

Parameters

IAR C/C++ Development Guide
478 Compiling and linking for RX

Selector | Selector 2 More specific
section *x section f* Neither
init_array section f* Selector 1
section .intvec ro section .int* Selector 1
section .intvec object foo.o Neither

Table 35: Examples of section selector specifications (Continued)
{ rw } /* Selects all read-write sections */

{ section .mydata* } /* Selects only .mydata* sections */
/* Selects .mydata* sections available in the object special.o */
{ section .mydata* object special.o }

Assuming a section in an object named foo.o in a library named 1ib. a, any of these
selectors will select that section:

object foo.o(lib.a)
object f*(lib¥*)
object foo.o
object lib.a

initialize directive, page 465, do not initialize directive, page 468, and keep directive,
page 469.

[extended-selector [, extended-selector...]l]
where extended-selector is:

[first | last | midway 1
{ section-selector |
block name [inline-block-def 1 |
overlay name }

where inline-block-def is:

[block-params] extended-selectors

first Places the selected sections, block, or overlay first in the
containing placement directive, block, or overlay.

last Places the selected sections, block or overlay last in the
containing placement directive, block, or overlay.

The linker configuration file __g

midway Places the selected sections, block, or overlay so that they are
no further than half the maximum size of the containing
block away from either edge of the block. Note that this
parameter can only be used inside a block that has a
maximum size.

name The name of the block or overlay.

Description Use extended-selectors to select content for inclusion in a placement directive,
block, or overlay. In addition to using section selection patterns, you can also explicitly
specity blocks or overlays for inclusion.

Using the first or last keyword, you can specify one pattern, block, or overlay that
is to be placed first or last in the containing placement directive, block, or overlay. If you
need more precise control of the placement order you can instead use a block with fixed
order.

Blocks can be defined separately, using the define block directive, or inline, as part
of an extended-selector.

The midway parameter is primarily useful together with a static base that can have both
negative and positive offsets.

EXNﬂph define block First { ro section .f* }; /* Define a block holding
any read-only section*/
matching ".f£*" */

define block Table { first block First, ro section .b* };

/* Define a block where
the block First comes
before the sections
matching ".b*". */

You can also define the block First inline, instead of in a separate define block
directive:

define block Table { first block First { ro section .f* }
ro section .b* };

See also define block directive, page 459, define overlay directive, page 464, and place at
directive, page 470.

479

Using symbols, expressions, and numbers

Using symbols, expressions, and numbers

check that directive

Syntax

Parameters

Description

Example

See also

IAR C/C++ Development Guide
480 Compiling and linking for RX

In the linker configuration file, you can also:

® Define and export symbols

The define symbol directive defines a symbol with a specified value that can be
used in expressions in the configuration file. The symbol can also be exported to be
used by the application or the debugger. See define symbol directive, page 481, and
export directive, page 481.

e Use expressions and numbers

In the linker configuration file, expressions and numbers are used for specifying
addresses, sizes, etc. See expressions, page 482.

This section gives detailed information about each linker directive specific to defining
symbols, expressions and numbers.

check that expression;

expression A boolean expression.

You can use the check that directive to compare the results of stack usage analysis
against the sizes of blocks and regions. If the expression evaluates to zero, an error is
emitted.

Three extra operators are available for use only in check that expressions:

maxstack(category) The stack depth of the deepest call chain for any call
graph root function in the category.

totalstack(category) The sum of the stack depths of the deepest call chains
for each call graph root function in the category.

size(block) The size of the block.

check that maxstack("Program entry")
+ totalstack("interrupt")
+ 1K
<= size(block CSTACK) ;

Stack usage analysis, page 99.

The linker configuration file __g

define symbol directive

Syntax

Parameters

Description

Example

See also

export directive

Syntax

Parameters

define [exported] symbol name = expr;

exported Exports the symbol to be usable by the executable
image.

name The name of the symbol.

expr The symbol value.

The define symbol directive defines a symbol with a specified value. The symbol can
then be used in expressions in the configuration file. The symbols defined in this way
work exactly like the symbols defined with the option --config_def outside of the
configuration file.

The define exported symbol variant of this directive is a shortcut for using the
directive define symbol in combination with the export symbol directive. On the
command line this would require both a --config_def option and a
--define_symbol option to achieve the same effect.

Note:

e A symbol cannot be redefined

e Symbols that are either prefixed by _x, where X is a capital letter, or that contain __
(double underscore) are reserved for toolset vendors.

e The symbol value will be listed in the Address column of the entry list of the
generated map file.

/* Define the symbol my_symbol with the value 4 */
define symbol my_symbol = 4;

export directive, page 481 and Interaction between ILINK and the application, page
116.

export symbol name;

name The name of the symbol.

481

Using symbols, expressions, and numbers

482

Description

Example

expressions

Syntax

IAR C/C++ Development Guide
Compiling and linking for RX

The export directive defines a symbol to be exported, so that it can be used both from
the executable image and from a global label. The application, or the debugger, can then
refer to it for setup purposes etc.

Note: The symbol value will be listed in the Address column of the entry list of the
generated map file.

/* Define the symbol my_symbol to be exported */
export symbol my_symbol;

An expression is built up of the following constituents:

expression binop expression

unop expression

expression ? expression : expression
(expression)

number

symbol

func-operator

where binop is one of these binary operators:
Hm K), %, <<, >, < > =, 18, 0, | & |
where unop is one of this unary operators:
om0,

where number is a number, see numbers, page 484

where symbo1 is a defined symbol, see define symbol directive, page 481 and
--config_def, page 316

and where func-operator is one of these function-like operators, available in all
expressions:

aligndown (expr, align) The value of expr rounded down to the nearest
multiple of align. align must be a power of two.

alignup (expr, align) The value of expr rounded up to the nearest multiple
of align. align must be a power of two.

end (region) The highest address in the region.
isdefinedsymbol (name) True (1) if the symbol name is defined, otherwise
False (0).

The linker configuration file __g

isempty (region) True (1) if the region is empty, otherwise False (0).
max (expr [, expr... |) The largest of the parameters.

min(expr [, expr... |) The smallest of the parameters.

size(region) The total size of all ranges in the region.

start (region) The lowest address in the region.

where align and expr are expressions, and region is a region expression, see Region
expression, page 456.

func-operator can also be one of these operators, which are only available in
expressions for the size or alignment of a block or overlay, in check that expressions,
and in data expressions in define section directives:

imp (name) If name is the name of a symbol with a constant value,
this operator is that value. This operator can be used
together with #pragma public_equ (see public equ,
page 398) to import values from modules in your
application, for example the size of a particular struct

type.
tlsalignment () The alignment of the thread-local storage area.
tlssize() The size of the thread-local storage area.
Description In the linker configuration file, an expression is a 65-bit value with the range -2"64 to

2764. The expression syntax closely follows C syntax with some minor exceptions.
There are no assignments, casts, pre or post-operations, and no address operations (*, &,
[1,->,and .). Some operations that extract a value from a region expression, etc, use a
syntax resembling that of a function call. A boolean expression returns 0 (False) or 1

(True).
keep symbol directive
Syntax keep symbol name;
Parameters
name The name of the symbol.
Description Normally, the linker keeps a symbol only if it is needed by your application. Use this

directive to ensure that a symbol is always included in the final application.

483

Structural configuration

See also keep directive, page 469 and --keep, page 326.
numbers
Syntax nr [nr-suffix]

where nr is either a decimal number or a hexadecimal number (0x. .. or 0X...).

and where nr-suffixis one of:

K /* Kilo = (1 << 10) 1024 */
M /* Mega = (1 << 20) 1048576 */
G /* Giga = (1 << 30) 1073741824 */
T /* Tera = (1 << 40) 1099511627776 */
P /* Peta = (1 << 50) 1125899906842624 */
Description A number can be expressed either by normal C means or by suffixing it with a set of

useful suffixes, which provides a compact way of specifying numbers.

Example 1024 is the same as 0x400, which is the same as 1K.

Structural configuration
The structural directives provide means for creating structure within the configuration,
such as:
e Conditional inclusion

An if directive includes or excludes other directives depending on a condition,
which makes it possible to have directives for several different memory
configurations in the same file. See if directive, page 485.

e Dividing the linker configuration file into several different files

The include directive makes it possible to divide the configuration file into several
logically distinct files. See include directive, page 486.

e Signaling an error for unsupported cases

This section gives detailed information about each linker directive specific to structural
configuration.

IAR C/C++ Development Guide
484 Compiling and linking for RX

The linker configuration file __g

error directive

Syntax error string
Parameters
string The error message.
Description An error directive can be used for signaling an error if the directive occurs in the active

part of a conditional directive.

Example error "Unsupported configuration"
if directive
Syntax if (expr) {
directives

[} else if (expr) {
directives 1

[} else {
directives 1

}

where expr is an expression, see expressions, page 482.

Parameters
directives Any ILINK directive.

Description An if directive includes or excludes other directives depending on a condition, which
makes it possible to have directives for several different memory configurations, for
example, both a banked and non-banked memory configuration, in the same file.

The text inside a non-selected part of an i £ directive is not checked for syntax. The only
requirements for such text, is that it can be tokenized, and that any open brace ({) token
has a matching close brace (}) token.

Example See Empty region, page 457.

485

Structural configuration

486

include directive

Syntax

Parameters

Description

See also

IAR C/C++ Development Guide
Compiling and linking for RX

include "filename";

filename A path where both / and \ can be used as the directory
delimiter.

The include directive makes it possible to divide the configuration file into several
logically distinct parts, each in a separate file. For instance, there might be parts that you
need to change often and parts that you seldom edit.

Normally, the linker searches for configuration include files in the system configuration
directory. You can use the --config_search linker option to add more directories to
search.

--config search, page 317

Section reference

e Summary of sections

e Descriptions of sections and blocks

For more information, see Modules and sections, page 90.

Summary of sections

This table lists the ELF sections and blocks that are used by the IAR build tools:

Section Description

.datal6.bss Holds zero-initialized __datal6 static and global variables.

.datal6.data Holds __datalé6 static and global initialized variables.

.datal6.data_init Holds initial values for .datal6 .data sections when the
linker directive initialize is used.

.datal6.noinit Holds __no_init __datalé static and global variables.

.datal6.rodata Holds __datalé6 constant data.

.data24 .bss Holds zero-initialized __data24 static and global variables.

.data24.data Holds __data24 static and global initialized variables.

.data24.data_init Holds initial values for .data24 .data sections when the
linker directive initialize is used.

.data24.noinit Holds __no_init __data24 static and global variables.

.data24.rodata Holds __data24 constant data.

.data32.bss Holds zero-initialized __data32 static and global variables.

.data32.data Holds __data32 static and global initialized variables.

.data32.data_init Holds initial values for .data32.data sections when the
linker directive initialize is used.

.data32.noinit Holds __no_init __data32 static and global variables.

.data32.rodata Holds __data32 constant data.

DIFUNCT Holds pointers to code, typically C++ constructors, that should

be executed by the system startup code before main is called.

Table 36: Section summary

487

Summary of sections

IAR C/C++ Development Guide
488 Compiling and linking for RX

Section Description

EARLYDIFUNCT Holds pointers to code objects that require early initialization,
typically stream 1/O, that should be executed by the system
startup code before main is called.

.exceptvect Holds the exception vectors.

HEAP Holds the heap used for dynamically allocated data.

__dlar_tls$SDATA

.iar.dynexit

.lar.locale_table

.init_array
.inttable
ISTACK
.preinit_array
.resetvect
.sbrel.bss
.sbrel.data

.sbrel.data_init

.sbrel.noinit
.switch.rodata
.text

.textrw
.textrw_init

.tdata

.tbss

USTACK

_iar_tls$SINITDATA

Holds initial values for TLS variables.

Holds initial values for the TLS area.

Holds the atexit table.

Holds the locale table for the selected locales.

Holds a table of dynamic initialization functions.

Holds all interrupt vectors except for non-maskable interrupts
Holds the supervisor mode stack.

Holds a table of dynamic initialization functions.

Holds the reset vectors.

Holds zero-initialized __sbrel static and global variables.
Holds __sbrel static and global initialized variables.

Holds initial values for . sbrel .data sections when the linker
directive initialize is used.

Holds __no_init __sbrel static and global variables.
Holds tables for switch statements.

Holds the program code.

Holds __ramfunc declared program code.

Holds initializers for the . textrw declared section.

Holds thread-local initialized static and global variables for the
primary thread.

Holds thread-local zero-initialized static and global variables for
the primary thread.

Holds the user mode stack.

Table 36: Section summary (Continued)

In addition to the ELF sections used for your application, the tools use a number of other
ELF sections for a variety of purposes:

e Sections starting with . debug generally contain debug information in the DWARF

format

Section reference __4

e Sections starting with . iar.debug contain supplemental debug information in an
IAR format

o The section . comment contains the tools and command lines used for building the
file

Sections starting with . rel or .rela contain ELF relocation information
The section . symtab contains the symbol table for a file

The section . strtab contains the names of the symbol in the symbol table

The section . shstrtab contains the names of the sections.

Descriptions of sections and blocks

.datal 6.bss

Description
Memory placement

See also

.datal 6.data

Description

Memory placement

See also

This section gives reference information about each section, where the:

e Description describes what type of content the section is holding and, where
required, how the section is treated by the linker

® Memory placement describes memory placement restrictions.

For information about how to allocate sections in memory by modifying the linker
configuration file, see Placing code and data—the linker configuration file, page 93.

Holds zero-initialized __datalé static and global variables.
This section must be placed in the lowest 32 Kbytes of RAM memory.

Memory types, page 68.

Holds __datal6 static and global initialized variables. In object files, this includes the
initial values. When the linker directive initialize is used, a corresponding
.datal6.data_init section is created for each .datal6.data section, holding the
possibly compressed initial values.

This section must be placed in the lowest 32 Kbytes of RAM memory.

Memory types, page 68.

489

Descriptions of sections and blocks

.datal 6.data_init

Description

Memory placement

See also

.datal 6.noinit

Description
Memory placement

See also

.datal 6.rodata

Description

Memory placement

See also

.data24.bss

Description

Memory placement

See also

.data24.data

Description

IAR C/C++ Development Guide
490 Compiling and linking for RX

Holds the possibly compressed initial values for .datal6 .data sections. This section
is created by the linker if the initialize linker directive is used.

This section can be placed anywhere in ROM memory.

Memory types, page 68.

Holds static and global __no_init __datalé6 variables.
This section must be placed in the lowest 32 Kbytes of RAM memory.

Memory types, page 68.

Holds __datal6 constant data. This can include constant variables, string and
aggregate literals, etc.

This section must be placed in the highest 32 Kbytes of ROM memory.

Memory types, page 68.

Holds zero-initialized static and global variables that have the memory attribute
__data24.

This section must be placed in the lowest or highest 8 Mbytes of memory.

Memory types, page 68.

Holds __data24 static and global initialized variables. In object files, this includes the
initial values. When the linker directive initialize is used, a corresponding

Memory placement

See also

.data24.data_init

Description

Memory placement

See also

.data24.noinit

Description

Memory placement

See also

.data24.rodata

Description

Memory placement

See also

.data32.bss

Description

Memory placement

Section reference __4

.data24.data_init section is created for each .data24.data section, holding the
possibly compressed initial values.

This section must be placed in the lowest or highest 8 Mbytes of memory.

Memory types, page 68.

Holds the possibly compressed initial values for .data24 .data sections. This section
is created by the linker if the initialize linker directive is used.

This section can be placed anywhere in ROM memory.

Memory types, page 68.

Holds static and global __no_init variables that have the memory attribute
__data24.

This section must be placed in the lowest or highest 8 Mbytes of memory.

Memory types, page 68.

Holds constant data that has the memory attribute __data24. This can include constant
variables, string and aggregate literals, etc.

This section must be placed in the lowest or highest 8 Mbytes of ROM memory.

Memory types, page 68.

Holds zero-initialized __data32 static and global variables.

This section can be placed anywhere in RAM memory.

491

Descriptions of sections and blocks

See also Memory types, page 68.
.data32.data
Description Holds __data32 static and global initialized variables. In object files, this includes the

initial values. When the linker directive initialize is used, a corresponding
.data32.data_init section is created for each .data32.data section, holding the
possibly compressed initial values.

Memory placement This section can be placed anywhere in RAM memory.

See also Memory types, page 68.

.data32.data_init

Description Holds the possibly compressed initial values for .data32.data sections. This section
is created by the linker if the initialize linker directive is used.

Memory placement This section can be placed anywhere in ROM memory.
See also Memory types, page 68.
.data32.noinit
Description Holds static and global __no_init __data32 variables.
Memory placement This section can be placed anywhere in RAM memory.
See also Memory types, page 68.
.data32.rodata
Description Holds __data32 constant data. This can include constant variables, string and

aggregate literals, etc.
Memory placement This section can be placed anywhere in ROM memory.

See also Memory types, page 68.

IAR C/C++ Development Guide
492 Compiling and linking for RX

DIFUNCT

Description

Memory placement

EARLYDIFUNCT

Description

Memory placement

.exceptvect

Description

Memory placement

HEAP

Description

Memory placement

See also

__iar_tIs$$DATA

Description

See also

Section reference __4

Holds the dynamic initialization vector used by C++.

This section can be placed anywhere in ROM memory.

Holds the dynamic initialization vector used by C++ for objects that require early
initialization, typically stream I/O.

This section can be placed anywhere in ROM memory.

Holds the exception vector table.

The placement of this section is device-dependent. See the manufacturer’s hardware
manual.

Holds the heap used for dynamically allocated data, in other words data allocated by
malloc and free, and in C++, new and delete.

This section can be placed anywhere in RAM memory.

Setting up heap memory, page 112.

Holds the thread-local storage area for the primary thread. The main use for this section
is to use a size operator (__section_size, see Dedicated section operators, page 192)
on it to obtain the size of the thread-local storage area. You can also use the operator
__iar_tls$SDATAS$$Align to obtain the alignment of the thread-local storage.

This section is created by the linker if the linker option --threaded_1ib is used.

Managing a multithreaded environment, page 158

493

Descriptions of sections and blocks

__iar_tIs$$SINITDATA

Description

See also

.iar.dynexit

Description
Memory placement

See also

.iar.locale_table

Description
Memory placement

See also

.init_array

Description

Memory placement

.inttable

Description

Memory placement

IAR C/C++ Development Guide
494 Compiling and linking for RX

Holds initial values for the thread-local storage area. The main use for this section is to
copy it to a thread’s thread-local storage area when the thread is created. The difference
between the size of this section and the total size of the thread-local storage area (the
section __iar_ tls$$DATA) is the number of bytes in the thread-local storage area that
should be initialized to zero.

This section is created by the linker if the linker option --threaded_1ib is used.

Managing a multithreaded environment, page 158

Holds the table of calls to be made at exit.
This section can be placed anywhere in ROM memory.

Setting up the atexit limit, page 112.

Holds the locale table for the selected locales.
This section can be placed anywhere in memory.

Locale, page 157.

Holds pointers to routines to call for initializing one or more C++ objects with static
storage duration.

This section can be placed anywhere in memory.

Holds the interrupt vector table generated by the use of the __interrupt extended
keyword in combination with the #pragma vector directive.

This section can be placed anywhere in ROM memory.

ISTACK

Description
Memory placement

See also

.preinit_array

Description

Memory placement

See also

.resetvect

Description

Memory placement

.sbrel.bss

Description
Memory placement

See also

.sbrel.data

Description

Memory placement

Section reference __4

Block that holds the supervisor mode stack.
This block can be placed anywhere in RAM memory.

Setting up stack memory, page 111.

Like . init_array, butis used by the library to make some C++ initializations happen
before the others.

This section can be placed anywhere in memory.

.init_array, page 494.

Holds the reset vector.

This section must be placed in the memory range 0xFFFFFFFC—0xXFFFFFFFF.

Holds zero-initialized __sbrel static and global variables.
This section can be placed anywhere in RAM memory.

Memory types, page 68.

Holds __sbrel static and global initialized variables. In object files, this includes the
initial values. When the linker directive initialize is used, a corresponding
.sbrel.data_init section is created for each .sbrel.data section, holding the
possibly compressed initial values.

This section can be placed anywhere in RAM memory.

495

Descriptions of sections and blocks

See also Memory types, page 68.

.sbrel.data_init

Description Holds the possibly compressed initial values for . sbrel . data sections. This section is
created by the linker if the initialize linker directive is used.

Memory placement This section can be placed anywhere in ROM memory.
See also Memory types, page 68.
.sbrel.noinit
Description Holds static and global __no_init __sbrel variables.
Memory placement This section can be placed anywhere in RAM memory.
See also Memory types, page 68.
.switch.rodata
Description Holds tables for switch statements. Not all switch statements generate a table, but those

who do will place the table in this section.

Memory placement This section can be placed anywhere in ROM memory.
.text

Description Holds program code.

Memory placement This section can be placed anywhere in memory.
textrw

Description Holds __ramfunc declared program code.

Memory placement This section can be placed anywhere in RAM memory.

See also __ramfunc, page 373.

IAR C/C++ Development Guide
496 Compiling and linking for RX

Section reference __4

.textrw_init

Description Holds initializers for the . textrw declared sections.
Memory placement This section can be placed anywhere in RAM memory.
See also __ramfunc, page 373.
.tbss
Description Holds thread-local zero-initialized static and global variables for the primary thread.
See also Managing a multithreaded environment, page 158.
.tdata
Description Holds thread-local initialized static and global variables for the primary thread.
See also Managing a multithreaded environment, page 158.
USTACK
Description Block that holds the user mode stack, referred to by the usp stack pointer.
Memory placement This block can be placed anywhere in RAM memory.
See also Setting up stack memory, page 111.

497

Descriptions of sections and blocks

IAR C/C++ Development Guide
498 Compiling and linking for RX

The stack usage control
file

e Overview
e Stack usage control directives
e Syntactic components

Before you read this chapter, see Stack usage analysis, page 99.

Overview

A stack usage control file consists of a sequence of directives that control stack usage
analysis. You can use C ("/*...x/") and C++ ("//...") comments in these files.

The default filename extension for stack usage control files is suc.

Note: To comply with the RX ABI, the compiler generates assembler labels for C
symbols like function names by prefixing an underscore. You must remember to add this
extra underscore when you refer to C symbols in any of the stack usage control
directives. For example, main must be written as _main.

C++ NAMES

When you specify the name of a C++ function in a stack usage control file, you must
use the name exactly as used by the linker. Both the number and names of parameters,
as well as the names of types must match. However, most non-significant white-space
differences are accepted. In particular, you must enclose the name in quote marks
because all C++ function names include non-identifier characters.

You can also use wildcards in function names. "# *" matches any sequence of characters,
and "# 2" matches a single character. This makes it possible to write function names that
will match any instantiation of a template function.

Examples:

"operator new(unsigned int)"
"std::ostream::flush()"

"operator <<(std::ostream &, char const *)"
"vold _Sort<#*>(#*, #*, #*)"

499

Stack usage control directives

500

Stack usage control directives

function directive

Syntax

Parameters

Description

Example

exclude directive

Syntax

Parameters

Description

Example

IAR C/C++ Development Guide
Compiling and linking for RX

This section gives detailed reference information about each stack usage control
directive.

[override] function [category 1 func-spec : stack-size
[, call-info... 1;

See the information on syntactic components:

category, page 503

func-spec, page 503

call-info, page 504

stack-size, page 504

Specifies what the maximum stack usage is in a function and which other functions that
are called from that function.

Normally, an error is issued if there already is stack usage information for the function,
but if you start with override, the error will be suppressed and the information
supplied in the directive will be used instead of the previous information.

function _MyOtherFunc: (ISTACK 28, USTACK 16);
function [interrupt] _MyInterruptHandler: (ISTACK 28, USTACK 16);

exclude func-spec [, func-spec... 1;

See the information on syntactic components:

Sfunc-spec, page 503

Excludes the specified functions, and call trees originating with them, from stack usage
calculations.

exclude _MyFuncb5, _MyFuncé6;

possible calls directive

Syntax

Parameters

Description

Example

See also

The stack usage control file _o

possible calls calling-func : called-func [, called-func... 1;

See the information on syntactic components:

func-spec, page 503

Specifies an exhaustive list of possible destinations for all indirect calls in one function.
Use this for functions which are known to perform indirect calls and where you know
exactly which functions that might be called in this particular application. Consider
using the #pragma calls directive if the information about which functions that might
be called is available when compiling.

possible calls _MyFunc7: _MyFunc8, _MyFunc9;

When the function does not perform any calls, the list is empty:

possible calls _MyFunc8: ;

calls, page 383.

call graph root directive

Syntax

Parameters

Description

Example

See also

call graph root [category 1 : func-spec [, func-spec... 1;

See the information on syntactic components:

category, page 503

func-spec, page 503

Specifies that the listed functions are call graph roots. You can optionally specify a call

graph root category. Call graph roots are listed under their category in the Stack Usage
chapter in the linker map file.

The linker will normally issue a warning for functions needed in the application that are
not call graph roots and which do not appear to be called.

call graph root [task]: _MyFunclO, _MyFuncll;

call graph root, page 384.

501

Stack usage control directives

502

max recursion depth directive

Syntax

Parameters

Description

Example

no calls from directive

Syntax

Parameters

Description

Example

IAR C/C++ Development Guide
Compiling and linking for RX

max recursion depth func-spec : size;

See the information on syntactic components:

func-spec, page 503

size, page 505

Specifies the maximum number of iterations through any of the cycles in the recursion
nest of which the function is a member.

A recursion nest is a set of cycles in the call graph where each cycle shares at least one
node with another cycle in the nest.

Stack usage analysis will base its result on the max recursion depth multiplied by the
stack usage of the deepest cycle in the nest. If the nest is not entered on a point along
one of the deepest cycles, no stack usage result will be calculated for such calls.

max recursion depth _MyFuncl2: 10;

no calls from module-spec to func-spec [, func-spec... 1;

See the information on syntactic components:
Sfunc-spec, page 503
module-spec, page 503

When you provide stack usage information for some functions in a module without
stack usage information, the linker warns about functions that are referenced from the
module but not listed as called. This is primarily to help avoid problems with C runtime
routines, calls to which are generated by the compiler, beyond user control.

If there actually is no call to some of these functions, use the no calls from directive
to selectively suppress the warning for the specified functions. You can also disable the
warning entirely (--diag_suppress or
Project>Options>Linker>Diagnostics>Suppress these diagnostics).

no calls from [file.o] to _MyFuncl3, _MyFunl4;

The stack usage control file _o

Syntactic components

category

Syntax

Description

Example

func-spec

Syntax

Description

Example

module-spec

Syntax

Description

This section describes the syntactical components that can be used by the stack usage
control directives.

[name]

A call graph root category. You can use any name you like. Categories are not
case-sensitive.
category examples:

[interrupt]
[task]

[21 name [module-spec 1]

Specifies the name of a symbol, and for module-local symbols, the name of the module
it is defined in. Normally, if func-spec does not match a symbol in the program, a
warning is emitted. Prefixing with 2 suppresses this warning.

func-spec examples:

_xFun
_MyFun [file.o]
?"funl (int) "

[name [(name) 1]

Specifies the name of a module, and optionally, in parentheses, the name of the library
it belongs to. To distinguish between modules with the same name, you can specify:
o The complete path of the file ("D:\C1\test\file.o")

o As many path elements as are needed at the end of the path ("test\file.o")

e Some path elements at the start of the path, followed by " . . . ", followed by some
path elements at the end ("D:\...\file.o").

503

Syntactic components

Example

name

Description

Example

call-info
Syntax
Description

Example

stack-size

Syntax
Description

Example

IAR C/C++ Development Guide
504 Compiling and linking for RX

Note: When using multi-file compilation (--mfc), multiple files are compiled into a
single module, named after the first file.
module-spec examples

[file.o]
[file.o(lib.a)]
["D:\Cl\test\file.o"]

A name can be either an identifier or a quoted string.

The first character of an identifier must be either a letter or one of the characters "_"

—
"o

"$", or ".". The rest of the characters can also be digits.

A quoted string starts and ends with " and can contain any character. Two consecutive
" characters can be used inside a quoted string to represent a single ".

name examples:

_MyFun
file.o
"file-1.0"

calls func-spec [, func-spec... 1[: stack-size]
Specifies one or more called functions, and optionally, the stack size at the calls.

call-info examples:

calls _MyFuncl : stack 16
calls _MyFunc2, _MyFunc3, _MyFunc4

(stacknamel sizell, stackname2 sizel2l)

Specifies the size of a stack frame. A stack may not be specified more than once.

stack-size examples:

(ISTACK 28, USTACK 16)

The stack usage control file _o

size

Description A decimal integer, or 0x followed by a hexadecimal integer. Either alternative can
optionally be followed by a suffix indicating a power of two (=210, m=220, =230,
T=240, P=250).

Example size examples:
24
0x18
2048
2K

505

Syntactic components

IAR C/C++ Development Guide
506 Compiling and linking for RX

IAR utilities

e The IAR Archive Tool—iarchive—creates and manipulates a library (an
archive) of several ELF object files

e The IAR ELF Tool—ielftool—performs various transformations on an ELF
executable image (such as fill, checksum, format conversions, etc)

e The IAR ELF Dumper—ielfdump—creates a text representation of the
contents of an ELF relocatable or executable image

e The IAR ELF Object Tool—iobjmanip—is used for performing low-level
manipulation of ELF object files

e The IAR Absolute Symbol Exporter—isymexport—exports absolute
symbols from a ROM image file, so that they can be used when you link an
add-on application.

e Descriptions of options—detailed reference information about each
command line option available for the different utilities.

The IAR Archive Tool—iarchive

The IAR Archive Tool, iarchive, can create a library (an archive) file from several
ELF object files. You can also use iarchive to manipulate ELF libraries.

A library file contains several relocatable ELF object modules, each of which can be
independently used by a linker. In contrast with object modules specified directly to the
linker, each module in a library is only included if it is needed.

For information about how to build a library in the IDE, see the IDE Project
Management and Building Guide for RX.

INVOCATION SYNTAX
The invocation syntax for the archive builder is:

iarchive [command] [libraryfile]l [objectfiles] [options]

507

The IAR Archive Tool—iarchive

Parameters
The parameters are:

Parameter Description

command A command line option that defines the operation to be
performed. If the command is omitted, --create is used
by default. You can specify the command anywhere on the
command line.

libraryfile The library file to be operated on. If specified like this, it must
appear before the first object file, if any. You can also specify
the library file using the option -o.

objectfiles One or more object files as arguments to the command.
Note that some commands take no object file arguments.

options Optional command line options that modify the behavior of

the archive tool. These options can be placed anywhere on
the command line.

Table 37: iarchive parameters

Examples

This example creates a library file called mylibrary.a from the source object files
modulel.o, module.2.o0, and module3.o:

iarchive mylibrary.a modulel.o module2.o module3.o.
This example lists the contents of mylibrary.a:
iarchive --toc mylibrary.a

This example replaces module3 . o in the library with the content in the module3 . o file
and appends module4.o tomylibrary.a:

iarchive --replace mylibrary.a module3.o moduled.o

SUMMARY OF IARCHIVE COMMANDS

This table summarizes the iarchive commands:

Command line option Description

--create Creates a library that contains the listed object files.
--delete, -4 Deletes the listed object files from the library.
--extract, -x Extracts the listed object files from the library.
--replace, -r Replaces or appends the listed object files to the library.

Table 38: iarchive commands summary

IAR C/C++ Development Guide
508 Compiling and linking for RX

IAR utilities °

Command line option Description
--symbols Lists all symbols defined by files in the library.
--toc, -t Lists all files in the library.

Table 38: iarchive commands summary (Continued)

For more information, see Descriptions of options, page 524.

SUMMARY OF IARCHIVE OPTIONS

This table summarizes the iarchive command line options:

Command line option Description

-f Extends the command line.

--f Extends the command line, optionally with a dependency.
--fake_time Generates library files with identical timestamps.
--no_bom Omits the byte order mark from UTF-8 output files.
--output, -o Specifies the library file.

--text_out Specifies the encoding for text output files.
--utf8_text_in Uses the UTF-8 encoding for text input files.
--verbose, -V Reports all performed operations.

--version Sends tool output to the console and then exits.
--vtoc Produces a verbose list of files in the library.

Table 39: iarchive options summary

For more information, see Descriptions of options, page 524.

DIAGNOSTIC MESSAGES

This section lists the messages produced by iarchive:

La00l: could not open file filename

iarchive failed to open an object file.

La002: illegal path pathname

The path pathname is not a valid path.

La006: too many parameters to cmd command

A list of object modules was specified as parameters to a command that only accepts a
single library file.

509

The IAR Archive Tool—iarchive

510

IAR C/C++ Development Guide
Compiling and linking for RX

La007: too few parameters to cmd command

A command that takes a list of object modules was issued without the expected modules.

La008: lib is not a library file

The library file did not pass a basic syntax check. Most likely the file is not the intended
library file.

La009: lib has no symbol table

The library file does not contain the expected symbol information. The reason might be
that the file is not the intended library file, or that it does not contain any ELF object
modules.

La0l10: no library parameter given

The tool could not identify which library file to operate on. The reason might be that a
library file has not been specified.

La0lI: file file already exists

The file could not be created because a file with the same name already exists.

La013: file confusions, lib given as both library and object

The library file was also mentioned in the list of object modules.

La0l4: module module not present in archive lib

The specified object module could not be found in the archive.

La0l5: internal error

The invocation triggered an unexpected error in iarchive.

Ms003: could not open file filename for writing

iarchive failed to open the archive file for writing. Make sure that it is not write
protected.

Ms004: problem writing to file filename

An error occurred while writing to file £ilename. A possible reason for this is that the
volume is full.

IAR utilities °

Ms005: problem closing file filename

An error occurred while closing the file £ilename.

The IAR ELF Tool—ielftool

The IAR ELF Tool, ielftool, can generate a checksum on specific ranges of
memories. This checksum can be compared with a checksum calculated on your
application.

The source code for ielftool and a Microsoft Visual Studio template project are
available in the rx\src\elfutils directory. If you have specific requirements for how
the checksum should be generated or requirements for format conversion, you can
modify the source code accordingly.

INVOCATION SYNTAX

The invocation syntax for the IAR ELF Tool is:

ielftool [options] inputfile outputfile [options]

The ielftool tool will first process all the fill options, then it will process all the
checksum options (from left to right).

Parameters

The parameters are:

Parameter Description

inputfile An absolute ELF executable image produced by the ILINK
linker.

options Any of the available command line options, see Summary of

ielftool options, page 512.

outputfile An absolute ELF executable image, or if one of the relevant
command line options is specified, an image file in another
format.

Table 40: ielftool parameters

See also Rules for specifying a filename or directory as parameters, page 260.

511

The IAR ELF Tool—ielftool

512

IAR C/C++ Development Guide
Compiling and linking for RX

Example

This example fills a memory range with 0xFF and then calculates a checksum on the

same range:

ielftool my_input.out my_output.out --fill OxXFF;0-0xFF
—--checksum _checksum:4,crc32;0-0xFF

SUMMARY OF IELFTOOL OPTIONS

This table summarizes the ielftool command line options:

Command line option

Description

--bin
--bin-multi
--checksum
--fill
--front_headers

--ihex

--ihex-len

--offset

--parity
--self_reloc
--silent
--simple
--simple-ne
--srec
--srec-len

--srec-s3only

--strip
--titxt
--verbose, -V

--version

Sets the format of the output file to raw binary.
Produces output to multiple raw binary files.
Generates a checksum.

Specifies fill requirements.

Outputs headers in the beginning of the file.

Sets the format of the output file to 32-bit linear Intel Extended
hex.

Sets the number of data bytes in Intel Hex records.

Adds (or subtracts) an offset to all addresses in the generated
output file.

Generates parity bits.

Not for general use.

Sets silent operation.

Sets the format of the output file to Simple-code.

As --simple, but without an entry record.

Sets the format of the output file to Motorola S-records.
Sets the number of data bytes in each S-record.

Restricts the S-record output to contain only a subset of
records.

Removes debug information.
Sets the format of the output file to Texas Instruments TI-TXT.
Prints all performed operations.

Sends tool output to the console and then exits.

Table 41: ielftool options summary

For more information, see Descriptions of options, page 524.

IAR utilities °

SPECIFYING IELFTOOL ADDRESS RANGES

At the most basic level, an address range for ielftool consists of two hexadecimal
numbers—0x8000-0x87FF—which includes both 0x8000 and 0x87FF.

You can specify ELF symbols that are present in the processed ELF file as a start or end
address using __checksum_begin-__checksum_end. This range begins on the byte
that has the address value of the __ checksum_begin symbol and ends (inclusive) on
the byte that has the address value of the __checksum_end symbol. Symbol values of
0x40 and 0x3FD would equate to specifying 0x40-0x3FD.

You can add offsets to symbolic values using __start+3-__end+0x10. The
calculation is done in modulo 32-bits, therefore adding 0OxFFFFFFFF is equivalent to
subtracting 1.

You can specify blocks from an . icf file that are present in the processed ELF file using
{BLOCKNAME }. A block started on 0x400 and ending (inclusively) on 0x535, would
equate to specifying 0x400-0x535.

You can combine several address ranges, as long as they do not overlap, separated by
0x800-1FFF {FARCODE_BLOCK}.

You can specify __FLASH_BASE-__FLASH_END as a legal range (as long as there is no
overlap).

The IAR ELF Dumper—ielfdump

The IAR ELF Dumper for RX, ielfdumprx, can be used for creating a text
representation of the contents of a relocatable or absolute ELF file.

ielfdumprx can be used in one of three ways:

o To produce a listing of the general properties of the input file and the ELF segments
and ELF sections it contains. This is the default behavior when no command line
options are used.

e To also include a textual representation of the contents of each ELF section in the
input file. To specify this behavior, use the command line option --all.

e To produce a textual representation of selected ELF sections from the input file. To
specity this behavior, use the command line option --section.

INVOCATION SYNTAX
The invocation syntax for iel fdumprx is:

ielfdumprx input_file [output_filel

513

The IAR ELF Dumper—ielfdump

514

IAR C/C++ Development Guide
Compiling and linking for RX

Note: ielfdumprx is a command line tool which is not primarily intended to be used

in the IDE.

Parameters
The parameters are:

Parameter

Description

input_file

output_file

An ELF relocatable or executable file to use as input.

A file or directory where the output is emitted. If absent and
no --output option is specified, output is directed to the
console.

Table 42: ielfdumprx parameters

See also Rules for specifying a filename or directory as parameters, page 260.

SUMMARY OF IELFDUMP OPTIONS

This table summarizes the ielfdumprx command line options:

Command line option

Description

-a

--all

--code
--disasm_data
-f

--f

--no_bom
--no_header
--no_rel_section
--no_strtab
--no_utf8_in
--output, -o
--range

-—raw

--section, -s

Generates output for all sections except string table sections.

Generates output for all input sections regardless of their
names or numbers.

Dumps all sections that contain executable code.
Dumps data sections as code sections.

Extends the command line.

Extends the command line, optionally with a dependency.
Omits the Byte Order Mark from UTF-8 output files.
Suppresses production of a list header in the output.
Suppresses dumping of . rel/.rela sections.
Suppresses dumping of string table sections.

Do not assume UTF-8 for non-lAR ELF files.
Specifies an output file.

Disassembles only addresses in the specified range.

Uses the generic hexadecimal/ASCIl output format for the
contents of any selected section, instead of any dedicated
output format for that section.

Generates output for selected input sections.

Table 43: ielfdumprx options summary

IAR utilities °

Command line option Description

--segment, -g Generates output for segments with specified numbers.
--source Includes source with disassembled code in executable files.
--text_out Specifies the encoding for text output files.

--use_full_std_templat Uses full short full names for some Standard C++ templates.

e_names
--utf8_text_in Uses the UTF-8 encoding for text input files.
--version Sends tool output to the console and then exits.

Table 43: ielfdumprx options summary (Continued)

For more information, see Descriptions of options, page 524.

The IAR ELF Object Tool—iobjmanip

Use the IAR ELF Object Tool, iobjmanip, to perform low-level manipulation of ELF
object files.

INVOCATION SYNTAX
The invocation syntax for the IAR ELF Object Tool is:

iobjmanip options inputfile outputfile

Parameters
The parameters are:

Parameter Description

options Command line options that define actions to be performed.
These options can be placed anywhere on the command line.
At least one of the options must be specified.

inputfile A relocatable ELF object file.

outputfile A relocatable ELF object file with all the requested
operations applied.

Table 44: iobjmanip parameters

See also Rules for specifying a filename or directory as parameters, page 260.

515

The IAR ELF Object Tool—iobjmanip

516

IAR C/C++ Development Guide
Compiling and linking for RX

Examples

This example renames the section . example in input.o to .example2 and stores the

result in output.o:

iobjmanip --rename_section

.example=.example2 input.o output.o

SUMMARY OF IOBJMANIP OPTIONS

This table summarizes the iobjmanip options:

Command line option

Description

-f
--f

--no_bom
--remove_file_path
--remove_section
--rename_section
--rename_symbol
--strip

--text_out

--update_typeless_globals

--utf8_text_in

--version

Extends the command line.

Extends the command line, optionally with a
dependency.

Onmits the Byte Order Mark from UTF-8 output files.
Removes path information from the file symbol.
Removes one or more section.

Renames a section.

Renames a symbol.

Removes debug information.

Specifies the encoding for text output files.

Updates the type of global symbols in an object file.
Uses the UTF-8 encoding for text input files.

Sends tool output to the console and then exits.

Table 45: iobjmanip options summary

For more information, see Descriptions of options, page 524.

DIAGNOSTIC MESSAGES

This section lists the messages produced by iobjmanip:

LmO0O0I: No operation given

None of the command line parameters specified an operation to perform.

LmO002: Expected nr parameters but got nr

Too few or too many parameters. Check invocation syntax for iobjmanip and for the
used command line options.

IAR utilities °

LmO003: Invalid section/symbol renaming pattern pattern

The pattern does not define a valid renaming operation.

LmO004: Could not open file filename

iobjmanip failed to open the input file.

LmO005: ELF format error msg
The input file is not a valid ELF object file.

LmO006: Unsupported section type nr

The object file contains a section that iobjmanip cannot handle. This section will be
ignored when generating the output file.

LmO007: Unknown section type nr

iobjmanip encountered an unrecognized section. iobjmanip will try to copy the
content as is.

LmO008: Symbol symbol has unsupported format

iobjmanip encountered a symbol that cannot be handled. i objmanip will ignore this
symbol when generating the output file.

LmO009: Group type nr not supported

iobjmanip only supports groups of type GRP_COMDAT. If any other group type is
encountered, the result is undefined.

LmO010: Unsupported ELF feature in file: msg

The input file uses a feature that iobjmanip does not support.

LmOI1: Unsupported ELF file type

The input file is not a relocatable object file.

LmO012: Ambiguous rename for section/symbol name (altl and alt2)

An ambiguity was detected while renaming a section or symbol. One of the alternatives
will be used.

517

The IAR Absolute Symbol Exporter—isymexport

LmOI3: Section name removed due to transitive dependency on
name

A section was removed as it depends on an explicitly removed section.

LmO14: File has no section with index nr

A section index, used as a parameter to --remove_section Or --rename_section,
did not refer to a section in the input file.

Ms003: could not open file filename for writing

iobjmanip failed to open the output file for writing. Make sure that it is not write
protected.

Ms004: problem writing to file filename

An error occurred while writing to file £ilename. A possible reason for this is that the
volume is full.

Ms005: problem closing file filename

An error occurred while closing the file £ilename.

The IAR Absolute Symbol Exporter—isymexport

The IAR Absolute Symbol Exporter, i symexport, can export absolute symbols from a
ROM image file, so that they can be used when you link an add-on application.

To keep symbols from your symbols file in your final application, the symbols must be
referred to, either from your source code or by using the linker option --keep.

INVOCATION SYNTAX
The invocation syntax for the IAR Absolute Symbol Exporter is:

isymexport [options] inputfile outputfile

Parameters

The parameters are:

Parameter Description
inputfile A ROM image in the form of an executable ELF file (output
from linking).

Table 46: isymexport parameters

IAR C/C++ Development Guide
518 Compiling and linking for RX

IAR utilities °

Parameter Description

options Any of the available command line options, see Summary of
isymexport options, page 519.

outputfile A relocatable ELF file that can be used as input to linking, and

which contains all or a selection of the absolute symbols in the
input file. The output file contains only the symbols, not the
actual code or data sections. A steering file can be used for
controlling which symbols are included, and if desired, for also
renaming some of the symbols.

Table 46: isymexport parameters (Continued)

See also Rules for specifying a filename or directory as parameters, page 260.

In the IDE, to add the export of library symbols, choose Project>Options>Build
Actions and specity your command line in the Post-build command line text field, for

example:

STOOLKIT_DIRS\bin\isymexport.exe

"$TARGET_PATHS"

"SPROJ_DIRS\const_lib.symbols"

SUMMARY OF ISYMEXPORT OPTIONS

This table summarizes the isymexport command line options:

Command line option

Description

--edit
--export_locals
-f

--f

--generate_vfe_header

--no_bom
--ram_reserve_ranges

——-reserve_ranges

--show_entry_as

--text_out
--utf8_text_in

--version

Specifies a steering file.

Exports local symbols.

Extends the command line.

Extends the command line, optionally with a dependency.

Declares that the image does not contain any virtual function
calls to potentially discarded functions.

Omits the Byte Order Mark from UTF-8 output files.
Generates symbols for the areas in RAM that the image uses.

Generates symbols to reserve the areas in ROM and RAM
that the image uses.

Exports the entry point of the application with the given
name.

Specifies the encoding for text output files.
Uses the UTF-8 encoding for text input files.

Sends tool output to the console and then exits.

Table 47: isymexport options summary

519

The IAR Absolute Symbol Exporter—isymexport

Hide directive

Syntax

Parameters

Description

Example

IAR C/C++ Development Guide
520 Compiling and linking for RX

For more information, see Descriptions of options, page 524.

STEERING FILES

A steering file can be used for controlling which symbols are included, and if desired,
for also renaming some of the symbols. In the file, you can use show and hide directives
to select which public symbols from the input file that are to be included in the output
file. rename directives can be used for changing the names of symbols in the input file.

When you use a steering file, only actively exported symbols will be available in the
output file. Therefore, a steering file without show directives will generate an output file
without symbols.

Syntax
The following syntax rules apply:

e Each directive is specified on a separate line.
C comments (/*...*/)and C++ comments (//. . .) can be used.

Patterns can contain wildcard characters that match more than one possible
character in a symbol name.

The * character matches any sequence of zero or more characters in a symbol name.

The 2 character matches any single character in a symbol name.

Example

rename Xxx_* as YYY_* /*Change symbol prefix from xxx_ to YYY_ */
show YYY_ * /* Export all symbols from YYY package */
hide *_internal /* But do not export internal symbols */
show zzz? /* Export zzza, but not zzzaaa */

hide zzzx /* But do not export zzzx */

hide pattern

pattern A pattern to match against a symbol name.

A symbol with a name that matches the pattern will not be included in the output file
unless this is overridden by a later show directive.

/* Do not include public symbols ending in _sys. */
hide *_sys

IAR utilities °

Rename directive

Syntax rename patternl as pattern2

Parameters
patternl A pattern used for finding symbols to be renamed. The pattern
can contain no more than one * or ? wildcard character.

battern2 A pattern used for the new name for a symbol. If the pattern
contains a wildcard character, it must be of the same kind as in
patternl.
Description Use this directive to rename symbols from the output file to the input file. No exported

symbol is allowed to match more than one rename pattern.

rename directives can be placed anywhere in the steering file, but they are executed
before any show and hide directives. Therefore, if a symbol will be renamed, all show
and hide directives in the steering file must refer to the new name.

If the name of a symbol matches a patterni pattern that contains no wildcard
characters, the symbol will be renamed pattern2 in the output file.

If the name of a symbol matches a patterni pattern that contains a wildcard character,
the symbol will be renamed pat tern2 in the output file, with part of the name matching
the wildcard character preserved.

Example /* xxx_start will be renamed Y_start_X in the output file,
xxx_stop will be renamed Y_stop_X in the output file. */
rename xXxxX_* as Y_*_X

Show directive

Syntax show pattern
Parameters
pattern A pattern to match against a symbol name.
Description A symbol with a name that matches the pattern will be included in the output file unless

this is overridden by a later hide directive.

Example /* Include all public symbols ending in _pub. */
show *_pub

521

The IAR Absolute Symbol Exporter—isymexport

Show-root directive

Syntax

Parameters

Description

Example

Show-weak directive

Syntax

Parameters

Description

Example

IAR C/C++ Development Guide
522 Compiling and linking for RX

show-root pattern

pattern A pattern to match against a symbol name.

A symbol with a name that matches the pattern will be included in the output file,
marked as root, unless this is overridden by a later hide directive.

When linking with the module produced by isymexport, the symbol will be included
in the final executable file, even if no references to the symbol are present in the build.

/* Export myVar making sure that it is included when linking */
show-root myVar

show-weak pattern

pattern A pattern to match against a symbol name.

A symbol with a name that matches the pattern will be included in the output file as a
weak symbol unless this is overridden by a later hide directive.

When linking, no error will be reported if the new code contains a definition for a
symbol with the same name as the exported symbol.

Note: Any internal references in the isymexport input file are already resolved and
cannot be affected by the presence of definitions in the new code.

/* Export myFunc as a weak definition */
show-weak myFunc

DIAGNOSTIC MESSAGES

This section lists the messages produced by isymexport:

Es001: could not open file filename

isymexport failed to open the specified file.

IAR utilities °

Es002: illegal path pathname

The path pathname is not a valid path.

Es003: format error: message

A problem occurred while reading the input file.

Es004: no input file

No input file was specified.

Es005: no output file

An input file, but no output file was specified.

Es006: too many input files

More than two files were specified.

Es007: input file is not an ELF executable

The input file is not an ELF executable file.

Es008: unknown directive: directive

The specified directive in the steering file is not recognized.

Es009: unexpected end of file

The steering file ended when more input was required.

Es010: unexpected end of line

A line in the steering file ended before the directive was complete.

EsOll: unexpected text after end of directive

There is more text on the same line after the end of a steering file directive.

EsO012: expected text

The specified text was not present in the steering file, but must be present for the
directive to be correct.

523

Descriptions of options

EsO13: pattern can contain at most one * or?

Each pattern in the current directive can contain at most one * or one ? wildcard
character.

EsO014: rename patterns have different wildcards

Both patterns in the current directive must contain exactly the same kind of wildcard.
That is, both must either contain:

o No wildcards
e Exactly one *

e Exactly one ?

This error occurs if the patterns are not the same in this regard.

EsO015: ambiguous pattern match: symbol matches more than one
rename pattern

A symbol in the input file matches more than one rename pattern.

Es016: the entry point symbol is already exported

The option --show_entry_as was used with a name that already exists in the input
file.

Descriptions of options

This section gives detailed reference information about each command line option
available for the different utilities.

-a
Syntax -a
For use with ielfdumprx
Description Use this option as a shortcut for --all --no_strtab.

This option is not available in the IDE.

IAR C/C++ Development Guide
524 Compiling and linking for RX

--all

Syntax
For use with

Description

--bin
Syntax
Parameters
For use with

Description

--bin-multi

Syntax
Parameters

For use with

IAR utilities °

--all
ielfdumprx

Use this option to include the contents of all ELF sections in the output, in addition to
the general properties of the input file. Sections are output in index order, except that
each relocation section is output immediately after the section it holds relocations for.

By default, no section contents are included in the output.

This option is not available in the IDE.

--bin[=range]
See Specifying ielftool address ranges, page 513.
ielftool

Sets the format of the output file to raw binary, a binary format that includes only the
raw bytes, with no address information. If no range is specified, the output file will
include all the bytes from the lowest address for which there is content in the ELF file
to the highest address for which there is content. If a range is specified, only bytes from
that range are included. Note that in both cases, any gaps for which there is no content
will be generated as zeros.

Note: If a range with no content is specified, no output file is created.
To set related options, choose:

Project>Options>Output converter

--bin-multi[=rangel; range...]]
See Specifving ielfiool address ranges, page 513.

ielftool

525

Descriptions of options

526

Description

--checksum

Syntax

Parameters

IAR C/C++ Development Guide
Compiling and linking for RX

Use this option to produce one or more raw binary output files. If no ranges are
specified, a raw binary output file is generated for each range for which there is content
in the ELF file. If ranges are specified, a raw binary output file is generated for each
range specified for which there is content. In each case, the name of each output file will
include the start address of its range. For example, if the output file is specified as

out .bin and the ranges 0x0-0x1F and 0x8000-0x8147 are output, there will be two
files, named out-0x0.bin and out-0x8000.bin.

This option is not available in the IDE.

--checksum {symboll[{+|-}offset]|address}:size,
algorithm[:[1|2][a|m|z] [W|L|Q][x][r][R][o][i]|p]]
[,start]; rangel; range...]

symbol The name of the symbol where the checksum value should be
stored. Note that it must exist in the symbol table in the input
ELF file.

offset The offset will be added (or subtracted if a negative offset (-) is

specified) to the symbol. Address expressions using + and - are
supported in a limited fashion. For example:
(start+7) - (end-2).

address The absolute address where the checksum value should be
stored.
size The number of bytes in the checksum—1, 2, or 4. The number

cannot be larger than the size of the checksum symbol.

IAR utilities °

algorithm The checksum algorithm used. Choose between:

sum, a byte-wise calculated arithmetic sum. The result is
truncated to 8 bits.

sum8wide, a byte-wise calculated arithmetic sum. The result is
truncated to the size of the symbol.

sum32, a word-wise (32 bits) calculated arithmetic sum.

crc16, CRC16 (generating polynomial 0x1021)—used by
default.

crc32, CRC32 (generating polynomial 0x04C11DB7).
crc64iso, CRC64iso (generating polynomial 0x1B).

crcé64ecma, CRC64ECMA (generating polynomial
0x42F0ELEBA9EA3693).

crc=n, CRC with a generating polynomial of n.
12 If specified, choose between:
1, specifies one’s complement.
2, specifies two’s complement.
alm|z Reverses the order of the bits for the checksum. Choose between:
a, reverses the input bytes (but nothing else).
m, reverses the input bytes and the final checksum.
z, reverses the final checksum (but nothing else).

Note that using a and z in combination has the same effect as m.

527

Descriptions of options

528

IAR C/C++ Development Guide
Compiling and linking for RX

wlL|o

Specifies the size of the unit for which a checksum should be
calculated. Choose between:

w, calculates a checksum on 16 bits in every iteration.

L, calculates a checksum on 32 bits in every iteration.

0, calculates a checksum on 64 bits in every iteration.

If you do not specify a unit size, 8 bits will be used by default.
The input byte sequence will processed as:

e 8-bit checksum unit size—byte0, bytel, byte2, byte3, etc.
16-bit checksum unit size—bytel, byte0, byte3, byte2, etc.

e 32-bit checksum unit size—byte3, byte2, bytel, byte0,
byte7, byte6, byteS, byte4, etc.

e 064-bit checksum unit size—byte7, byte6, byte5, byte4,
byte3, byte2, bytel, byte0, bytel5, byte14, etc.

Note: The checksum unit size only affects the order in which the
input byte sequence is processed. It does not affect the size of the
checksum symbol, the polynomial, the initial value, the width of
the processor’s address bus, etc.

Most software CRC implementations use a checksum unit size
of 1 byte (8 bits). The w, L, and Q parameters are almost
exclusively used when a software CRC implementation has to
match the checksum computed by the hardware CRC
implementation. If you are not trying to cooperate with a
hardware CRC implementation, the w, L, or Q parameter will
simply compute a different checksum, because it processes the
input byte sequence in a different order.

Reverses the byte order of the checksum. This only affects the
checksum value.

Reverses the byte order of the input data. This has no effect
unless the number of bits per iteration has been set using the L or
W parameters.

For use with

Description

start

range

ielftool

IAR utilities °

Traverses the checksum range(s) in reverse order.

If the range is, for example, 0x100-0xFFF;0x2000-0x2FFF,
the checksum calculation will normally start on 0x100 and then
calculate every byte up to and including 0xFrF, followed by
calculating the byte on 0x2000 and continue to 0x2FFF.

Using the R parameter, the calculation instead starts on 0x2FFF
and continues by calculating every byte down to 0x2000, then
from 0xFFF down to and including 0x100.

Outputs the Rocksoft model specification for the checksum.

Use either i or p, if the start value is bigger than 0. Choose
between:

i, initializes the checksum value with the start value.

p, prefixes the input data with a word of size size that contains
the start value.

By default, the initial value of the checksum is 0. If necessary,
use start to supply a different initial value. If not 0, then either
i or p must be specified.

range is one or more memory ranges for which the checksum
will be calculated.

It is typically advisable to use symbols or blocks if the memory
range can change. If you use explicit addresses, for example,
0x8000-0x8347, and the code then changes, you need to update
the end address to the new value. If you instead use {CODE} or a
symbol located at the end of the code, you do not need to update
the --checksum command.

See also Specifying ielfiool address ranges, page 513.

Use this option to calculate a checksum with the specified algorithm for the specified
ranges. If you have an external definition for the checksum—for example, a hardware
CRC implementation—use the appropriate parameters to the --checksum option to
match the external design. In this case, learn more about that design in the hardware
documentation. The checksum will then replace the original value in symbol. A new
absolute symbol will be generated, with the symbol name suffixed with _value
containing the calculated checksum. This symbol can be used for accessing the
checksum value later when needed, for example, during debugging.

529

Descriptions of options

530

Example

See also

--code

Syntax
For use with

Description

IAR C/C++ Development Guide
Compiling and linking for RX

If the - -checksum option is used more than once on the command line, the options are
evaluated from left to right. If a checksum is calculated for a symbo1 that is specified in
a later evaluated --checksum option, an error is issued.

This example shows how to use the crc16 algorithm with the start value 0 over the
address range 0x8000-0x8FFF:

ielftool --checksum=_checksum:2,crcl6;0x8000-0x8FFF
sourceFile.out destinationFile.out

The input data i read from sourceFile.out, and the resulting checksum value of size
2 bytes will be stored at the symbol _checksum. The modified ELF file is saved as
destinationFile.out leaving sourceFile.out untouched.

In the next example, a symbol is used for specifying the start of the range:

ielftool --checksum=_checksum:2,crcl6;__checksum_begin-0x8FFF
sourceFile.out destinationFile.out

If BLOCK1 occupies 0x4000-0x4337 and BLOCK2 occupies 0x8000-0x87FF, this
example will compute the checksum for the bytes on 0x4000 to 0x4337 and from
0x8000 to 0x87FF:

ielftool --checksum __checksum:2,crcl6; {BLOCK1}; {BLOCK2}

BlxTest.out BlxTest2.out

Checksum calculation for verifying image integrity, page 217
Specifying ielftool address ranges, page 513
To set related options, choose:

Project>Options>Linker>Checksum

--code
ielfdumprx

Use this option to dump all sections that contain executable code—sections with the
ELF section attribute SHF_EXECINSTR.

This option is not available in the IDE.

--Create

Syntax

Parameters

For use with

Description

--delete, -d

Syntax

Parameters

For use with

Description

IAR utilities °

--create libraryfile objectfilel ... objectfileN

libraryfile The library file that the command operates on.

objectfilel ... The object file(s) to build the library from. The arguments can
objectfileN also be archive files, in which case each member in the archive

file is processed as if specified separately.

See also Rules for specifying a filename or directory as parameters, page 260
iarchive

Use this command to build a new library from a set of object files (modules) and/or
archive files. The modules are added to the library in the order that they are specified on
the command line.

If no command is specified on the command line, --create is used by default.

This option is not available in the IDE.

--delete libraryfile objectfilel ... objectfileN
-d libraryfile objectfilel ... objectfileN

libraryfile The library file that the command operates on.

objectfilel ... The object file(s) that the command operates on.
objectfileN

See also Rules for specifying a filename or directory as parameters, page 260
iarchive

Use this command to remove object files (modules) from an existing library. All object
files that are specified on the command line will be removed from the library.

This option is not available in the IDE.

531

Descriptions of options

--disasm_data

Syntax
For use with

Description

--edit

Syntax
Parameters
For use with

Description

See also

--export_locals

Syntax

Parameters

For use with

Description

IAR C/C++ Development Guide
532 Compiling and linking for RX

--disasm_data
ielfdumprx

Use this command to instruct the dumper to dump data sections as if they were code
sections.

This option is not available in the IDE.

--edit steering file
See Rules for specifying a filename or directory as parameters, page 260
isymexport

Use this option to specify a steering file for controlling which symbols are included in
the isymexport output file, and if desired, also for renaming some of the symbols.

Steering files, page 520.

This option is not available in the IDE.

--export_locals [=symbol_prefix]

symbol_prefix A custom prefix to the names of exported symbols that
replaces the default prefix LOCAL.

isymexport

Use this option to export local symbols from a ROM image file, in addition to absolute
symbols. The default name of the exported symbol is LOCAL_filename_symbolname.
Use the optional parameter symbol_prefixtoreplace LOCAL with your custom prefix.

IAR utilities °

Example When exported from the ROM image file, the symbol symb in the source filemyFile.c
becomes LOCAL_myFile_c_symb.

oo This option is not available in the IDE.

--extract, -x

Sym:ax --extract libraryfile [objectfilel ... objectfileN]
-x libraryfile [objectfilel ... objectfileN]
Parameters
libraryfile The library file that the command operates on.
objectfilel ... The object file(s) that the command operates on.
objectfileN

See also Rules for specifying a filename or directory as parameters, page 260
For use with iarchive

Description Use this command to extract object files (modules) from an existing library. If a list of
object files is specified, only these files are extracted. If a list of object files is not
specified, all object files in the library are extracted.

This option is not available in the IDE.

-f
Syntax -f filename
Parameters See Rules for specifying a filename or directory as parameters, page 260
For use with iarchive, ielfdumprx, iobjmanip, and isymexport.
Description Use this option to make the tool read command line options from the named file, with

the default filename extension xc1.

In the command file, you format the items exactly as if they were on the command line
itself, except that you can use multiple lines, because the newline character acts just as
a space or tab character.

533

Descriptions of options

534

--f

Syntax
Parameters
For use with

Description

See also

--fake_time

Syntax
For use with

Description

IAR C/C++ Development Guide
Compiling and linking for RX

Both C and C++ style comments are allowed in the file. Double quotes behave in the
same way as in the Microsoft Windows command line environment.

This option is not available in the IDE.

--f filename

See Rules for specifying a filename or directory as parameters, page 260

iarchive, ielfdumprx, iobjmanip, and isymexport.

Use this option to make the tool read command line options from the named file, with

the default filename extension xc1.

In the command file, you format the items exactly as if they were on the command line
itself, except that you may use multiple lines, because the newline character acts just as
a space or tab character.

Both C and C++ style comments are allowed in the file. Double quotes behave in the
same way as in the Microsoft Windows command line environment.

If you also specify --dependencies on the command line for the tool, extended
command line files specified using - - £ will generate a dependency, but those specified
using - £ will not generate a dependency.

-/, page 533.

This option is not available in the IDE.

--fake_time
iarchive

Use this option to generate library files with identical timestamps. The value used is
0x5CF00000, which corresponds to approximately 30th May 2019 at 18:08:32 (the
exact time will vary depending on the time settings). This option enables you to generate
identical libraries for identical object files. Without this option, the timestamp will
generate unique library files from the same input files.

-fill

Syntax

Parameters

For use with

Description

IAR utilities °

This option is not available in the IDE.

--fill [v;]lpattern; rangel; range...]

v Generates virtual fill for the fill command. Virtual fill is filler
bytes that are included in checksumming, but that are not
included in the output file. The primary use for this is certain
types of hardware where bytes that are not specified by the image
have a known value—typically, 0xFF or 0x0.

pattern A hexadecimal string with the 0x prefix, for example, 0xEF,
interpreted as a sequence of bytes, where each pair of digits
corresponds to one byte, for example 0x123456, for the
sequence of bytes 0x12, 0x34, and 0x56. This sequence is
repeated over the fill area. If the length of the fill pattern is
greater than 1 byte, it is repeated as if it started at address 0.

range Specifies the address range for the fill.

See also Specifying ielftool address ranges, page 513.
ielftool

Use this option to fill all gaps in one or more ranges with a pattern, which can be either
an expression or a hexadecimal string. The contents will be calculated as if the fill
pattern was repeatedly filled from the start address until the end address is passed, and
then the real contents will overwrite that pattern.

You might want to take alignment into consideration. If you generate fill that will be
accessed by half-word or word accesses, you should ensure that the addresses in the
filler range are half-word or word aligned.

If the --£i11 option is used more than once on the command line, the fill ranges cannot
overlap each other.

To set related options, choose:

Project>Options>Linker>Checksum

535

Descriptions of options

--front_headers

Syntax
For use with

Description

--generate_vfe_header

Syntax
For use with

Description

See also

--ihex

Syntax
For use with

Description

IAR C/C++ Development Guide
536 Compiling and linking for RX

--front_headers
ielftool

Use this option to output ELF program and section headers in the beginning of the file,
instead of at the end.

This option is not available in the IDE.

--generate_vfe_header
isymexport

Use this option to declare that the image does not contain any virtual function calls to
potentially discarded functions.

When the linker performs virtual function elimination, it discards virtual functions that
appear not to be needed. For the optimization to be applied correctly, there must be no
virtual function calls in the image that affect the functions that are discarded.

Virtual function elimination, page 121.
To set this options, use:

Project>Options>Linker>Extra Options

--ihex
ielftool

Sets the format of the output file to 32-bit linear Intel Extended hex, a hexadecimal text
format defined by Intel.

To set related options, choose:

Project>Options>Linker>Output converter

--ihex-len

Syntax

Parameters

For use with

Description

--no_bom

Syntax
For use with

Description

See also

--no_header

Syntax
For use with

Description

IAR utilities °

--ihex-len=1length

length The number of data bytes in the record.

ielftool
Sets the maximum number of data bytes in an Intel Hex record. This option can only be

used together with the --ihex option. By default, the number of data bytes in an Intel
Hex record is 16.

This option is not available in the IDE.

--no_bom
iarchive, ielfdumprx, iobjmanip, and isymexport

Use this option to omit the Byte Order Mark (BOM) when generating a UTF-8 output
file.

--text_out, page 550 and Text encodings, page 254

This option is not available in the IDE.

--no_header
ielfdumprx

By default, a standard list header is added before the actual file content. Use this option
to suppress output of the list header.

This option is not available in the IDE.

537

Descriptions of options

538

--no_rel_section

Syntax
For use with

Description

--no_strtab

Syntax
For use with

Description

--no_utf8 in

Syntax
For use with

Description

See also

IAR C/C++ Development Guide
Compiling and linking for RX

--no_rel_section
ielfdumprx

By default, whenever the content of a section of a relocatable file is generated as output,
the associated section, if any, is also included in the output. Use this option to suppress
output of the relocation section.

This option is not available in the IDE.

--no_strtab
ielfdumprx
Use this option to suppress dumping of string table sections (sections of type

SHT_STRTAB).

This option is not available in the IDE.

--no_utf8_in
ielfdumprx

The dumper can normally determine whether ELF files produced by IAR tools use the
UTF-8 text encoding or not, and produce the correct output. For ELF files produced by
non-IAR tools, the dumper will assume UTF-8 encoding unless this option is used, in

which case the encoding is assumed to be according to the current system default locale.

Note: This only makes a difference if any characters beyond 7-bit ASCII are used in
paths, symbols, etc.
Text encodings, page 254

This option is not available in the IDE.

--offset

Syntax

Parameters

For use with

Description

Example

--output, -o

Syntax

Parameters
For use with

Description

IAR utilities °

--offset [-]loffset

offset The offset will be added (or subtracted if - is specified) to
all addresses in the generated output file.

ielftool

Use this option to add or subtract an offset to the address of each output record in the
generated output file. The option only works on Motorola S-records, Intel Hex, TI-Txt,
and Simple-Code. The option has no effect when generating an ELF file or when binary
files (--bin contain no address information) are generated. No content, including the
entry point, will be changed by using this option, only the addresses in the output format.

--offset 0x30000

This will add an offset of 0x30000 to all addresses. As a result, content that was linked
at address 0x4000 will be placed at 0x34000.

This option is not available in the IDE.

-0 {filename|directory}
--output {filename|directory}

See Rules for specifying a filename or directory as parameters, page 260
iarchive and iel fdumprx

iarchive

By default, iarchive assumes that the first argument after the iarchive command is
the name of the destination library. Use this option to explicitly specify a different
filename for the library.

ielfdumprx

By default, output from the dumper is directed to the console. Use this option to direct
the output to a file instead. The default name of the output file is the name of the input
file with an added id filename extension

539

Descriptions of options

You can also specify the output file by specifying a file or directory following the name
of the input file.

This option is not available in the IDE.

--parity
Sym:ax --parity{symbol[+offset] | address}:size,algo: flashbasel: flags];ran
gel;range...]
Parameters
symbol The name of the symbol where the parity bytes should be
stored. Note that it must exist in the symbol table in the
input ELF file.
offset An offset to the symbol. By default, 0.
address The absolute address where the parity bytes should be
stored.
size The maximum number of bytes that the parity generation

can use. An error will be issued if this value is exceeded.
Note that the size must fit in the specified symbol in the ELF
file.

algo Choose between:

odd, uses odd parity.
even, Uses even parity.

flashbase The start address of the flash memory. Parity bits will not be
generated for the addresses between flashbase and the
start address of the range. If f1ashbase and the start
address of the range coincide, parity bits will be generated
for all addresses

flags Choose between:

r, reverses the byte order within each word.
L, processes 4 bytes at a time.

W, processes 2 bytes at a time.

B, processes 1 byte at a time.

IAR C/C++ Development Guide
540 Compiling and linking for RX

For use with

Description

=-ram_reserve_ranges

Syntax

Parameters

For use with

Description

See also

IAR utilities °

range The address range over which the parity bytes should be
generated.

See also Specifying ielfiool address ranges, page 513.

ielftool

Use this option to generate parity bytes over specified ranges. The range is traversed left
to the right and the parity bits are generated using the odd or even algorithm. The parity
bits are finally stored in the specified symbol where they can be accessed by your
application.

This option is not available in the IDE.

--ram_reserve_ranges [=symbol_prefix]

symbol_prefix The prefix of symbols created by this option.

isymexport

Use this option to generate symbols for the areas in RAM that the image uses. One
symbol will be generated for each such area. The name of each symbol is based on the
name of the area and is prefixed by the optional parameter symbol_prefix.

Generating symbols that cover an area in this way prevents the linker from placing other
content at the affected addresses. This can be useful when linking against an existing
image.

If --ram_reserve_ranges is used together with --reserve_ranges, the RAM
areas will get their prefix from the --ram_reserve_ranges option and the non-RAM
areas will get their prefix from the --reserve_ranges option.

--reserve_ranges, page 545.

This option is not available in the IDE.

541

Descriptions of options

542

--range

Syntax

Parameters

For use with

Description

=-=raw

Syntax
For use with

Description

--remove_file_path

Syntax

For use with

IAR C/C++ Development Guide
Compiling and linking for RX

--range start-end

start-end Disassemble code where the start address is greater than or
equal to start, and where the end address is less than end.

ielfdumprx

Use this option to specify a range for which code from an executable will be dumped.

This option is not available in the IDE.

--raw
ielfdumprx

By default, many ELF sections will be dumped using a text format specific to a
particular kind of section. Use this option to dump each selected ELF section using the
generic text format.

The generic text format dumps each byte in the section in hexadecimal format, and
where appropriate, as ASCII text.

This option is not available in the IDE.

--remove_file_path

iobjmanip

IAR utilities °

Description Use this option to make iobjmanip remove information about the directory structure
of the project source tree from the generated object file, which means that the file
symbol in the ELF object file is modified.

This option must be used in combination with --remove_section ".comment".

This option is not available in the IDE.

--remove_section

Syntax --remove_section {section | number}

Parameters
section The section—or sections, if there are more than one section with
the same name—to be removed.

number The number of the section to be removed. Section numbers can
be obtained from an object dump created using iel fdumprx.

For use with iobjmanip
Description Use this option to make iobjmanip omit the specified section when generating the
output file.

This option is not available in the IDE.

--rename_section

Syntax --rename_section {oldname|oldnumber}=newname

Parameters
oldname The section—or sections, if there are more than one section with
the same name—to be renamed.

oldnumber The number of the section to be renamed. Section numbers can
be obtained from an object dump created using iel fdumprx.

newname The new name of the section.

For use with iobjmanip

543

Descriptions of options

Description Use this option to make iobjmanip rename the specified section when generating the
output file.

oo This option is not available in the IDE.

[[H

--rename_symbol

Sym:ax --rename_symbol oldname =newname

Parameters
oldname The symbol to be renamed.
newname The new name of the symbol.

For use with iobjmanip

Description Use this option to make iobjmanip rename the specified symbol when generating the
output file.

This option is not available in the IDE.

--replace, -r

Sym:ax --replace libraryfile objectfilel ... objectfileN
-r libraryfile objectfilel ... objectfileN
Parameters
libraryfile The library file that the command operates on.
objectfilel ... The object file(s) that the command operates on. The arguments
objectfileN can also be archive files, in which case each member in the

archive file is processed as if specified separately.
See also Rules for specifying a filename or directory as parameters, page 260
For use with iarchive
Description Use this command to replace or add object files (modules) and/or archive files to an

existing library. The modules specified on the command line either replace existing
modules in the library—if they have the same name—or are appended to the library.

IAR C/C++ Development Guide
544 Compiling and linking for RX

IAR utilities °

mm This option is not available in the IDE.

=--reserve_ranges

Syntax --reserve_ranges [=symbol_prefix]|
Parameters
symbol_prefix The prefix of symbols created by this option.
For use with isymexport
Description Use this option to generate symbols for the areas in ROM and RAM that the image uses.

One symbol will be generated for each such area. The name of each symbol is based on
the name of the area and is prefixed by the optional parameter symbol_prefix.

Generating symbols that cover an area in this way prevents the linker from placing other
content at the affected addresses. This can be useful when linking against an existing
image.

If --reserve_ranges is used together with --ram_reserve_ranges, the RAM
areas will get their prefix from the --ram_reserve_ranges option and the non-RAM
areas will get their prefix from the --reserve_ranges option.

See also --ram_reserve_ranges, page 541.

mm This option is not available in the IDE.

--section, -s

Syntax --section section_number| section_namel,...]
--s section_number| section_namel,...]

Parameters
section_number The number of the section to be dumped.
section_name The name of the section to be dumped.
For use with ielfdumprx

545

Descriptions of options

Description

Example

--segment, -g

Syntax

Parameters

For use with

Description

--self reloc

Syntax
For use with

Description

IAR C/C++ Development Guide
546 Compiling and linking for RX

Use this option to dump the contents of a section with the specified number, or any
section with the specified name. If a relocation section is associated with a selected
section, its contents are output as well.

If you use this option, the general properties of the input file will not be included in the
output.

You can specify multiple section numbers or names by separating them with commas,
or by using this option more than once.

By default, no section contents are included in the output.

-s 3,17
-s .debug_frame, 42

/* Sections #3 and #17
/* Any sections named .debug_frame and
also section #42 */

This option is not available in the IDE.

--segment segment_number],...]

-g segment_number,...]

segment_number The number of a segment whose contents will be included

in the output.

ielfdumprx

Use this option to select specific segments—parts of an executable image indicated by
program headers—for inclusion in the output.

This option is not available in the IDE.

--self_reloc
ielftool

This option is intentionally not documented as it is not intended for general use.

IAR utilities °

mm This option is not available in the IDE.

--show_entry_as

Syntax --show_entry_as name
Parameters
name The name to give to the program entry point in the output file.
For use with isymexport
Description Use this option to export the entry point of the application given as input under the name
name.

This option is not available in the IDE.

--silent
Syntax --silent
For use with ielftool
Description Causes the tool to operate without sending any messages to the standard output stream.
By default, the tool sends various messages via the standard output stream. You can use
this option to prevent this. The tool sends error and warning messages to the error output
stream, so they are displayed regardless of this setting.
This option is not available in the IDE.
--simple
Syntax --simple
For use with ielftool
Description Sets the format of the output file to Simple-code, a binary format that includes address

information.

547

Descriptions of options

--simple-ne
Syntax
For use with

Description

==source

Syntax
For use with

Description

=-=Ssrec

Syntax
For use with

Description

IAR C/C++ Development Guide
548 Compiling and linking for RX

To set related options, choose:

Project>Options>Output converter

--simple-ne
ielftool

Sets the format of the output file to Simple code, but no entry record is generated.
To set related options, choose:

Project>Options>Qutput converter

--source
ielfdumprx

Use this option to make ielftool include source for each statement before the code
for that statement, when dumping code from an executable file. To make this work, the
executable image must be built with debug information, and the source code must still
be accessible in its original location.

This option is not available in the IDE.

--srec
ielftool

Sets the format of the output file to Motorola S-records, a hexadecimal text format
defined by Motorola. Note that you can use the ielftool options --srec-1len and
--srec-s3only to modify the exact format used.

To set related options, choose:

Project>Options>Output converter

--srec-len

Syntax

Parameters

For use with

Description

--srec-s3only

Syntax
For use with

Description

--strip

Syntax
For use with

Description

IAR utilities °

--srec-len=length

length The number of data bytes in each S-record.

ielftool

Sets the maximum number of data bytes in an S-record. This option can only be used
together with the --srec option. By default, the number of data bytes in an S-record is
16.

This option is not available in the IDE.

--srec-s3only

ielftool

Restricts the S-record output to contain only a subset of records, that is SO, S3 and S7
records. This option can be used in combination with the --srec option.

This option is not available in the IDE.

--strip
iobjmanip and ielftool.

Use this option to remove all sections containing debug information before the output
file is written. iobjmanip will also remove the names of all module-local function,
variable, and section symbols.

Note: ielftool needs an unstripped input ELF image. If you use the --strip option
in the linker, remove it and use the --strip option in ielftool instead.

To set related options, choose:

Project>Options>Linker>QOutput>Include debug information in output

549

Descriptions of options

--symbols

Syntax

Parameters

For use with

Description

--text_out

Syntax

Parameters

For use with

Description

See also

IAR C/C++ Development Guide
550 Compiling and linking for RX

--symbols libraryfile

libraryfile The library file that the command operates on.

See also Rules for specifyving a filename or directory as parameters, page 260
iarchive

Use this command to list all external symbols that are defined by any object file
(module) in the specified library, together with the name of the object file (module) that
defines it.

In silent mode (--silent), this command performs symbol table-related syntax checks
on the library file and displays only errors and warnings.

This option is not available in the IDE.

--text_out{utf8|utfléle|utflébe|locale}

utfsg Uses the UTF-8 encoding

utfléle Uses the UTF-16 little-endian encoding
utflébe Uses the UTF-16 big-endian encoding
locale Uses the system locale encoding

iarchive, ielfdumprx, iobjmanip, and isymexport

Use this option to specify the encoding to be used when generating a text output file.

The default for the list files is to use the same encoding as the main source file. The
default for all other text files is UTF-8 with a Byte Order Mark (BOM).

If you want text output in UTF-8 encoding without BOM, you can use the option
--no_bom as well.

--no_bom, page 537 and Text encodings, page 254

IAR utilities °

This option is not available in the IDE.

--titxt
Syntax --titxt
For use with ielftool
Description Sets the format of the output file to Texas Instruments TI-TXT, a hexadecimal text
format defined by Texas Instruments.
To set related options, choose:
Project>Options>Output converter
--toc, -t
Syntax --toc libraryfile
-t libraryfile
Parameters
libraryfile The library file that the command operates on.
See also Rules for specifying a filename or directory as parameters, page 260
For use with iarchive
Description Use this command to list the names of all object files (modules) in a specified library.

In silent mode (--silent), this command performs basic syntax checks on the library
file, and displays only errors and warnings.

This option is not available in the IDE.

--update_typeless_globals

Syntax --update_typeless_globals[=codeSectionName, dataSectionName]

Parameters
codeSectionName The name of the code section.

551

Descriptions of options

dataSectionName The name of the data section.

For use with iobjmanip

Description Use this option to update the type of relevant global symbols in an object file.

A global symbol that does not have an ELF type (ELF attribute STT_NOTYPE) will have
its type set to Code (STT_FUNC) or Data (STT_OBJECT). When no parameters are
specified, the attributes of the section that contains the symbol are used to determine if
this is a Code or a Data symbol.

If the optional section names are used, then the symbols in sections that match the
dataSectionName will be treated as Data. Similarly, the symbols in sections that
match the codeSectionName will be treated as Code. If a section does not match either
the dataSectionName or the codeSectionName, then a warning will be generated
and any symbols in that section will not be updated.

This option is not available in the IDE.

--use_full_std_template_names

Syntax --use_full_std_template_names
For use with ielfdumprx
Description Normally, the names of some standard C++ templates are used in the output in an

abbreviated form in the demangled names of symbols, for example, "std: : string"
instead of "std: :basic_string<char, std::char_traits<char>,
std_::allocator<char>>". Use this option to make ielfdump use the
unabbreviated form.

This option is not available in the IDE.

--utf8 text_in

Syntax --utf8_text_in
For use with iarchive, ielfdumprx, iobjmanip, and isymexport
Description Use this option to specify that the tool shall use the UTF-8 encoding when reading a text

input file with no Byte Order Mark (BOM).

IAR C/C++ Development Guide
552 Compiling and linking for RX

See also

--verbose, -V

Syntax

For use with

Description

--version

Syntax
For use with

Description

-=vtoc

Syntax

Parameters

For use with

IAR utilities °

Note: This option does not apply to source files.

Text encodings, page 254

This option is not available in the IDE.

--verbose
-V (iarchive only)

iarchive and ielftool.

Use this option to make the tool report which operations it performs, in addition to
giving diagnostic messages.

This option is not available in the IDE because this setting is always enabled.

--version
iarchive, ielfdumprx, ielftool, iobjmanip, isymexport

Use this option to make the tool send version information to the console and then exit.

This option is not available in the IDE.

--vtoc libraryfile

libraryfile The library file that the command operates on.

See also Rules for specifying a filename or directory as parameters, page 260

iarchive

553

Descriptions of options

Description Use this command to list the names, sizes, and modification times of all object files
(modules) in a specified library.

In silent mode (--silent), this command performs basic syntax checks on the library
file, and displays only errors and warnings.

This option is not available in the IDE.

IAR C/C++ Development Guide
554 Compiling and linking for RX

Implementation-defined
behavior for Standard C++

e Descriptions of implementation-defined behavior for C++
e Implementation quantities

If you are using C instead of C++, see Implementation-defined behavior for
Standard C, page 593 or Implementation-defined behavior for C89, page 613,
respectively.

Descriptions of implementation-defined behavior for C++

This section follows the same order as the C++ 17 standard. Each item specifies (in
parenthesis) whether it is related to the compiler (including the linker, etc) or to one or
both libraries. Each heading starts with a reference to the ISO chapter and section that
explains the implementation-defined behavior. A corresponding reference to the C++14
standard is also given for each item, if one exists.

Note: The IAR implementation adheres to a freestanding implementation of Standard
C++. This means that parts of a standard library can be excluded from the
implementation. The compiler adheres to the C++17 standard, with some additional
features from later C++ standards.

LIST OF TOPICS

3.8 Diagnostics (Compiler)
Diagnostics are produced in the form:
filename, linenumber levell[tag]: message

where filename is the name of the source file in which the error was encountered,
linenumber is the line number at which the compiler detected the error, Ievel is the
level of seriousness of the message (remark, warning, error, or fatal error), tag is a
unique tag that identifies the message, and message is an explanatory message, possibly
several lines.

C++14 reference: 1.3.6

555

Descriptions of implementation-defined behavior for C++

556

IAR C/C++ Development Guide
Compiling and linking for RX

4.1 Required libraries for freestanding implementation
(C++14/C++17 libraries)

See C++ header files, page 439 and Not supported C/C++ functionality, page 443,
respectively, for information about which Standard C++ system headers that the IAR
C/C++ Compiler does not support.

C++14 reference: 1.4

4.4 Bits in a byte (Compiler)
A byte contains 8 bits.

C++14 reference: 1.7

4.6 Interactive devices (C++14/C++17 libraries)
The streams stdin, stdout, and stderr are treated as interactive devices.

C++14 reference: 1.9

4.7 Number of threads in a program under a freestanding
implementation (Compiler)

By default, the IAR runtime environment does not support more than one thread of
execution. With an optional third-party RTOS, it might support several threads of
execution.

C++14 reference: 1.10

4.7.2 Requirement that the thread that executes main and the
threads created by std::thread provide concurrent forward progress
guarantees (Compiler)

The thread system header is not supported.

C++14 reference: Not part of the implementation-defined behavior in C++14.

5.2, C.4.1 Mapping physical source file characters to the basic source
character set (Compiler)

The source character set is the same as the physical source file multibyte character set.
By default, the standard ASCII character set is used. However, it can be UTF-8, UTF-16,
or the system locale. See Text encodings, page 254.

C++14 reference: 2.2

Implementation-defined behavior for Standard C++ _g

5.2 Physical source file characters (Compiler)

The source character set is the same as the physical source file multibyte character set.
By default, the standard ASCII character set is used. However, it can be UTF-8, UTF-16,
or the system locale. See Text encodings, page 254.

C++14 reference: 2.2

5.2 Converting characters from a source character set to the
execution character set (Compiler)

The source character set is the set of legal characters that can appear in source files. It is
dependent on the chosen encoding for the source file. See Text encodings, page 254. By
default, the source character set is Raw.

The execution character set is the set of legal characters that can appear in the execution
environment. These are the execution character sets for character constants and string
literals, and their encoding types:

Execution character set Encoding type

L UTF-32

u UTF-16

y) UTF-32

u8 UTF-8

none The source character set

Table 48: Execution character sets and their encodings

The DLIB runtime environment needs a multibyte character scanner to support a
multibyte execution character set. See Locale, page 157.

C++14 reference: 2.2
5.2 Required availability of the source of translation units to locate
template definitions (Compiler)

When locating the template definition related to template instantiations, the source of
the translation units that define the template is not required.

C++14 reference: 2.2
5.3 The execution character set and execution wide-character set
(Compiler)

The values of the members of the execution character set are the values of the ASCII
character set, which can be augmented by the values of the extra characters in the source

557

Descriptions of implementation-defined behavior for C++

558

IAR C/C++ Development Guide
Compiling and linking for RX

file character set. The source file character set is determined by the chosen encoding for
the source file. See Text encodings, page 254.

The wide character set consists of all the code points defined by ISO/IEC 10646.

C++14 reference: 2.3

5.8 Mapping header names to headers or external source files
(Compiler)

The header name is interpreted and mapped into an external source file in the most
intuitive way. In both forms of the #include preprocessing directive, the character
sequences that specify header names are interpreted exactly in the same way as for other
source constructs. They are then mapped to external header source file names.

C++14 reference: 2.9

5.8 The meaning of ’, \, /%, or /] in a gq-char-sequence or an
h-char-sequence (Compiler)

Characters in a q-char-sequence and a h-char-sequence are interpreted as a string literal.

C++14 reference: 2.9

5.13.3 The value of multi-character literals (Compiler)

An integer character constant that contains more than one character will be treated as an
integer constant. The value will be calculated by treating the leftmost character as the
most significant character, and the rightmost character as the least significant character,
in an integer constant. A diagnostic message is issued if the value cannot be represented
in an integer constant.

C++14 reference: 2.14.3

5.13.3 The value of wide-character literals with single c-char that
are not in the execution wide-character set (Compiler)

All possible c-chars have a representation in the execution wide-character set.
C++14 reference: 2.14.3

5.13.3 The value of wide-character literal containing multiple
characters (Compiler)

A diagnostic message is issued, and all but the first c-char is ignored.

C++14 reference: 2.14.3

Implementation-defined behavior for Standard C++ _g

5.13.3 The semantics of non-standard escape sequences (Compiler)
No non-standard escape sequences are supported.

C++14 reference: 2.14.3

5.13.3 The value of character literal outside range of corresponding
type (Compiler)

The value is truncated to fit the type.

C++14 reference: 2.14.3

5.13.3 The encoding of universal character name not in execution
character set (Compiler)

A diagnostic message is issued.

C++14 reference: 2.14.3

5.13.3 The range defined for character literals (Compiler)

The range is the same as an int.

C++14 reference: 2.14.3

5.13.4 The choice of larger or smaller value of floating-point literal
(Compiler)

For a floating-point literal whose scaled value cannot be represented as a floating-point
value, the nearest even floating point-value is chosen.

C++14 reference: 2.14.4

5.13.5 Concatenation of various types of string literals (Compiler)

Differently prefixed string literal tokens cannot be concatenated, except for those
specified by the ISO C++ standard.

C++14 reference: 2.14.5

6.6.1 Defining main in a freestanding environment (Compiler)
The main function must be defined.

C++14 reference: 3.6.1

559

Descriptions of implementation-defined behavior for C++

560

IAR C/C++ Development Guide
Compiling and linking for RX

6.6.1 Startup and termination in a freestanding environment
(C++14/C++17 libraries)

See Application execution—an overview, page 59 and System startup and termination,
page 142, for descriptions of the startup and termination of applications.

C++14 reference: 3.6.1

6.6.1 Parameters to main (C++14/C++17 libraries)
The only two permitted definitions for main are:

int main()
int main(int, char **)

C++14 reference: 3.6.1

6.6.1 Linkage of main (C++14/C++17 libraries)
The main function has external linkage.

C++14 reference: 3.6.1

6.6.3 Dynamic initialization of static variables before main
(C++14/C++17 libraries)

Static variables are initialized before the first statement of main, except when the linker
option --manual_dynamic_initialization is used.

C++14 reference: 3.6.2

6.6.3 Dynamic initialization of threaded local variables before entry
(C++14/C++17 libraries)

By default, the IAR runtime environment does not support more than one thread of
execution. With an optional third-party RTOS, it might support several threads of
execution.

Thread-local variables are treated as static variables except when the linker option
--threaded_1lib is used. Then they are initialized by the RTOS.

C++14 reference: 3.6.2
6.6.3 Dynamic initialization of static inline variables before main
(C++14/C++17 libraries)

Static inline variables are initialized before the first statement of main, except when the
linker option --manual_dynamic_initialization is used.

C++14 reference: 3.6.2

Implementation-defined behavior for Standard C++ _g

6.6.3 Threads and program points at which deferred dynamic
initialization is performed (C++14/C++17 libraries)

Dynamic initialization is not deferred, except when the linker option
--manual_dynamic_initialization is used.

C++14 reference: 3.6.2

6.7 Use of an invalid pointer (Compiler)

Any other use of an invalid pointer than indirection through it and passing it to a
deallocation function works as for a valid pointer.

C++14 reference: 3.7.4.2

6.7.4.3 Relaxed or strict pointer safety for the implementation
(Compiler)

The IAR implementation of Standard C++ has relaxed pointer safety.

C++14 reference: 3.7.4.3

6.9 The value of trivially copyable types (Compiler)

All bits in basic types are part of the value representation. Padding between basic types
is copied verbatim.

C++14 reference: 3.9

6.9.1 Representation and signage of char (Compiler)

A plain char is treated as an unsigned char. See --char is signed, page 268 and
--char_is_unsigned, page 269.

C++14 reference: 3.9.1

6.9.1 Extended signed integer types (Compiler)
No extended signed integer types exist in the implementation.

C++14 reference: 3.9.1

6.9.1 Value representation of floating-point types (Compiler)
See Basic data types—floating-point types, page 353.

C++14 reference: 3.9.1

561

Descriptions of implementation-defined behavior for C++

562

IAR C/C++ Development Guide
Compiling and linking for RX

6.9.2 Value representation of pointer types (Compiler)
See Pointer types, page 355.
C++14 reference: 3.9.2

6.11 Alignment (Compiler)
See Alignment, page 345.

C++14 reference: 3.11

6.11 Alignment additional values (Compiler)
See Alignment, page 345.

C++14 reference: 3.11

6.11 alignof expression additional values (Compiler)
See Alignment, page 345.

C++14 reference: 3.11

7.1 Ivalue-to-rvalue conversion for objects that contain an invalid
pointer (Compiler)

The conversion is made, but it is undefined what happens if the pointer value is used.

C++14 reference: 4.1

7.8 The value of the result of unsigned to signed conversion
(Compiler)

When an integer value is converted to a value of signed integer type, but cannot be
represented by the destination type, the value is truncated to the number of bits of the
destination type and then reinterpreted as a value of the destination type.

C++14 reference: 4.7

7.9 The result of inexact floating-point conversion (Compiler)

When a floating-point value is converted to a value of a different floating-point type, and
the value is within the range of the destination type but cannot be represented exactly,
the value is rounded to the nearest floating-point value by default.

C++14 reference: 4.8

Implementation-defined behavior for Standard C++ _g

7.10 The value of the result of an inexact integer to floating-point
conversion (Compiler)

When an integer value is converted to a value of a floating-point type, and the value is
within the range of the destination type but cannot be represented exactly, the value is
rounded to the nearest floating-point value by default.

C++14 reference: 4.9

7.15 The rank of extended signed integer types (Compiler)
The implementation has no extended signed integer types.

C++14 reference: 4.13

8.2.2 Passing argument of class type through ellipsis (Compiler)
The result is a diagnostic and is then treated as a trivially copyable object.

C++14 reference: 5.2.2

8.2.2 Ending the lifetime of a parameter when the callee returns or
at the end of the enclosing full-expression (Compiler)

The lifetime of a parameter ends when the callee returns.

C++14 reference: 5.2.2

8.2.6 The value of a bitfield that cannot represent its incremented
value (Compiler)

The value is truncated to the correct number of bits.

C++14 reference: Not part of the implementation-defined behavior in C++14.

8.2.8 The derived type for typeid (C++14/C++17 libraries)

The type of a typeid expression is an expression with dynamic type
std: :type_info.

C++14 reference: 5.2.8

8.2.10 Conversion from a pointer to an integer (Compiler)
See Casting, page 355.
C++14 reference: 5.2.10

563

Descriptions of implementation-defined behavior for C++

564

IAR C/C++ Development Guide
Compiling and linking for RX

8.2.10 Conversion from an integer to a pointer (Compiler)

See Casting, page 355.

C++14 reference: 5.2.10

8.2.10 Converting a function pointer to an object pointer and vice
versa (Compiler)

See Casting, page 355.

C++14 reference: 5.2.10

8.3.3 sizeof applied to fundamental types other than char, signed
char, and unsigned char (Compiler)

See Basic data types—integer types, page 346, Basic data types—floating-point types,
page 353, and Pointer types, page 355.

C++14 reference: 5.3.3
8.3.4, 21.6.3.2 The maximum size of an allocated object
(C++14/C++17 library)

The maximum size of an allocated object is theoretically the maximum value of
size_t, butin practice itis bounded by how much memory is allocated to the heap. See
Setting up heap memory, page 112.

C++14 reference: 5.3.4

8.7, 21.2.4 The type of ptrdiff_t (Compiler)
See ptrdiff t, page 356.
C++14 reference: 5.7, 18.2

8.8 The result of right shift of negative value (Compiler)

In a bitwise right shift operation of the form 1 >> E2, if E1 is of signed type and has
anegative value, the value of the result is the integral part of the quotient E1/ (2**E2),
except when E1 is -1.

C++14 reference: 5.8

8.18 The value of a bitfield that cannot represent its assigned value
(Compiler)

The value is truncated to the correct number of bits.

C++14 reference: Not part of the implementation-defined behavior in C++14.

Implementation-defined behavior for Standard C++ _g

10 The meaning of the attribute declaration (Compiler)

There are no other attributes supported than what is specified in the C++ standard. See
Extended keywords, page 361, for supported attributes and ways to use them with
objects.

C++14 reference: 7

10.1.7.1 Access to an object that has volatile-qualified type
(Compiler)

See Declaring objects volatile, page 358.

C++14 reference: 7.1.6.1

10.2 The underlying type for enumeration (Compiler)
See The enum type, page 347.

C++14 reference: 7.2

10.4 The meaning of the asm declaration (Compiler)
An asm declaration enables the direct use of assembler instructions.

C++14 reference: 7.4

10.5 The semantics of linkage specifiers (Compiler)
Only the string-literals "c" and "c++" can be used in a linkage specifier.

C++14 reference: 7.5

10.5 Linkage of objects to other languages (Compiler)
They should have "c" linkage.

C++14 reference: 7.5

10.6.1 The behavior of non-standard attributes (Compiler)

There are no other attributes supported other than what is specified in the C++ standard.
See Extended keywords, page 361, for a list supported attributes and ways to use them
with objects.

C++14 reference: 7.6.1

11.4.1 The string resulting from __func__ (Compiler)

The value of __ func_ _ is the C++ function name.

565

Descriptions of implementation-defined behavior for C++

566

IAR C/C++ Development Guide
Compiling and linking for RX

C++14 reference: 8.4.1

11.6 The value of a bitfield that cannot represent its initializer
(Compiler)

The value is truncated to the correct number of bits.

C++14 reference: Not part of the implementation-defined behavior in C++14.

12.2.4 Allocation of bitfields within a class object (Compiler)
See Bitfields, page 348.

C++14 reference: 9.6

17 The semantics of linkage specification on templates (Compiler)
Only the string-literals "c" and "c++" can be used in a linkage specifier.

C++14 reference: 14

17.7.1 The maximum depth of recursive template instantiations
(Compiler)

The default maximum depth is 64. To change it, use the compiler option
--pending instantiations, page 295.

C++14 reference: 14.7.1

18.3, 18.5.1 Stack unwinding before calling std::terminate()
(C++14/C++17 libraries)

When no suitable catch handler is found, the stack is not unwound before calling
std::terminate().

C++14 reference: 15.3, 15.5.1

18.5.1 Stack unwinding before calling std::terminate() when a
noexcept specification is violated (C++14/C++17 libraries)

When a noexcept specification is violated, the stack is not unwound before calling
std::terminate().

C++14 reference: 15.5.1

Implementation-defined behavior for Standard C++ _g

19 Additional supported forms of preprocessing directives
(Compiler)

The preprocessor directives #warning and #include_next are supported. See
#warning, page 433 and #include next, page 432.

C++14 reference: 16
19.1 The numeric values of character literals in #if directives
(Compiler)

Numeric values of character literals in the #if and #elif preprocessing directives
match the values that they have in other expressions.

C++14 reference: 16.1

19.1 Negative value of character literal in preprocessor (Compiler)

A plain char is treated as an unsigned char. See --char is_signed, page 268 and
--char_is_unsigned, page 269. If a char is treated as a signed character, then character
literals in #if and #elif preprocessing directives can be negative.

C++14 reference: 16.1

19.2 Search locations for < > header (Compiler)
See Include file search procedure, page 251.

C++14 reference: 16.2

19.2 The search procedure for included source file (Compiler)
See Include file search procedure, page 251.

C++14 reference: 16.2

19.2 Search locations for "" header (Compiler)
See Include file search procedure, page 251.

C++14 reference: 16.2

19.2 The sequence of places searched for a header (Compiler)
See Include file search procedure, page 251.

C++14 reference: 16.2

567

Descriptions of implementation-defined behavior for C++

568

IAR C/C++ Development Guide
Compiling and linking for RX

19.2 Nesting limit for #include directives (Compiler)
The amount of available memory sets the limit.

C++14 reference: 16.2

19.6 #pragma (Compiler)
See Recognized pragma directives (6.10.6), page 601.
C++14 reference: 16.6

19.8, C.1.10 The definition and meaning of _ STDC__ (Compiler)
__STDC__ is predefined to 1.

C++14 reference: 16.8

19.8 The text of __ DATE__ when the date of translation is not
available (Compiler)

The date of the translation is always available.

C++14 reference: 16.8

19.8 The text of __ TIME__ when the time of translation is not
available (Compiler)

The time of the translation is always available.

C++14 reference: 16.8

19.8 The definition and meaning of _ STDC_VERSION__
(Compiler)

__STDC_VERSION__ is predefined to 201710L.

C++14 reference: 16.8

20.5.1.2 Declaration of functions from Annex K of the C standard
library when C++ headers are included (C++17 library)

See C bounds-checking interface, page 445.

C++14 reference: Not part of the implementation-defined behavior in C++14.
20.5.1.3 Headers for a freestanding implementation (C++14/C++17
libraries)

See DLIB runtime environment—implementation details, page 437.

Implementation-defined behavior for Standard C++ __4

C++14 reference: 17.6.1.3

20.5.2.3 Linkage of names from Standard C library (C++14/C++17
libraries)

Declarations from the C library have "c" linkage.

C++14 reference: 17.6.2.3

20.5.5.8 Functions in Standard C++ library that can be recursively
reentered (C++14/C++17 libraries)

Functions can be recursively reentered, unless specified otherwise by the ISO C++
standard.

C++14 reference: 17.6.5.8

20.5.5.12 Exceptions thrown by standard library functions that do
not have an exception specification (C++14/C++17 libraries)

These functions do not throw any additional exceptions.

C++14 reference: 17.6.5.12

20.5.5.14 error_category for errors originating outside of the
operating system (C++14/C++17 libraries)

There is no additional error category.

C++14 reference: 17.6.5.14

21.2.3, C.5.2.7 Definition of NULL (C++14/C++17 libraries)
NULL is predefined as 0.

C++14 reference: 18.2

21.2.4 The type of ptrdiff_t (Compiler)
See ptrdiff t, page 356.

C++14 reference: 18.2

21.2.4 The type of size_t (Compiler)
See size_t, page 356.

C++14 reference: 18.2

569

Descriptions of implementation-defined behavior for C++

570

IAR C/C++ Development Guide
Compiling and linking for RX

21.2.4 The type of ptrdiff_t (Compiler)
See 8.7, 21.2.4 The type of ptrdiff t (Compiler), page 564.

21.5 Exit status (C++14/C++17 libraries)
Control is returned to the __exit library function. See _exit, page 149.

C++14 reference: 18.5

21.6.3.1 The return value of bad_alloc::what (C++14/C++17
libraries)

The return value is a pointer to "bad allocation".

C++14 reference: 18.6.2.1

21.6.3.2 The return value of bad_array_new_length::what
(C++14/C++17 libraries)

C++17: The return value is a pointer to "bad array new length".C++14: The return
value is a pointer to "bad allocation".

C++14 reference: 18.6.2.2

21.6.3.2 The maximum size of an allocated object (C++14/C++17
library)

See 8.3.4, 21.6.3.2 The maximum size of an allocated object (C++14/C++17 library),
page 564.

21.7.2 The return value of type_info::name() (C++14/C++17
libraries)
The return value is a pointer to a C string containing the name of the type.

C++14 reference: 18.7.1

21.7.3 The return value of bad_cast::what (C++14/C++17 libraries)
The return value is a pointer to "bad cast".

C++14 reference: 18.7.2

21.7.4 The return value of bad_typeid::what (C++14/C++17
libraries)

The return value is a pointer to "bad typeid".

C++14 reference: 18.7.3

Implementation-defined behavior for Standard C++ _g

21.8.2 The return value of exception::what (C++14/C++17 libraries)

C++17: The return value is a pointer to "unknown". C++14: The return value is a
pointer to std: :exception.

C++14 reference: 18.8.1

21.8.3 The return value of bad_exception::what (C++14/C++17
libraries)

The return value is a pointer to "bad exception".

C++14 reference: 18.8.2

21.10 The use of non-POF functions as signal handlers
(C++14/C++17 libraries)

Non-Plain Old Functions (POF) can be used as signal handlers if no uncaught
exceptions are thrown in the handler, and if the execution of the signal handler does not
trigger undefined behavior.

C++14 reference: 18.10

23.6.5 The return value of bad_optional_access::what (C++17
library)

The return value is a pointer to bad_optional_access.

C++14 reference: Not part of the implementation-defined behavior in C++14.

23.7.3 variant support of over-aligned types (C++17 library)
variant supports over-aligned types.

C++14 reference: Not part of the implementation-defined behavior in C++14.
23.7.11 The return value of bad_variant_access::what (C++17
library)

The return value is a pointer to bad_variant_access.

C++14 reference: Not part of the implementation-defined behavior in C++14.

23.8.2 The return value of bad_any_access::what (C++17 library)
The return value is a pointer to "bad any cast".

C++14 reference: Not part of the implementation-defined behavior in C++14.

571

Descriptions of implementation-defined behavior for C++

572

IAR C/C++ Development Guide
Compiling and linking for RX

23.10.4 get_pointer_safety returning pointer_safety::relaxed or
pointer_safety::preferred when the implementation has relaxed
pointer safety (C++14/C++17 libraries)

The function get_pointer_safety always returns
std: :pointer_safety: :relaxed.

C++14 reference: 20.7.4

23.11.2.1 The return value of bad_weak_ptr::what (C++17 library)
The return value is a pointer to bad_weak_ptr.

C++14 reference: Not part of the implementation-defined behavior in C++14.
23.11.2.2.1 The exception type when a shared_ptr constructor fails
(C++14/C++17 libraries)

Only std: :bad_alloc is thrown.

C++14 reference: 20.8.2.2.1

23.12.5.2 The largest supported value to configure the largest
allocation satisfied directly by a pool (C++17 library)

Pool resource objects are not supported.

C++14 reference: Not part of the implementation-defined behavior in C++14.
23.12.5.2 The largest supported value to configure the maximum
number of blocks to replenish a pool (C++17 library)

Pool resource objects are not supported.

C++14 reference: Not part of the implementation-defined behavior in C++14.

23.12.5.4 The default configuration of a pool (C++17 library)
Pool resource objects are not supported.

C++14 reference: Not part of the implementation-defined behavior in C++14.
23.12.6.1 The default next_buffer_size for a
monotonic_buffer_resource (C++17 library)
monotonic_buffer_ resource is not supported.

C++14 reference: Not part of the implementation-defined behavior in C++14.

Implementation-defined behavior for Standard C++ _g

23.12.6.2 The growth factor for monotonic_buffer_resource (C++17
library)

monotonic_buffer_resource is not supported.

C++14 reference: Not part of the implementation-defined behavior in C++14.
23.14.11, 23.14.11.4 The number of placeholders for bind
expressions (C++17 library)

There are ten placeholder objects.

C++14 reference: Not part of the implementation-defined behavior in C++14.
23.14.11.4 The assignability of placeholder objects (C++14/C++17
libraries)

Placeholder objects are CopyAssignable.

C++14 reference: 20.9.9.1.4

23.14.13.1.1 The return value of bad_function_call::what (C++17
library)

The return value is a pointer to std: :bad_function_call.

C++14 reference: Not part of the implementation-defined behavior in C++14.
23.15.4.3 Scalar types that have unique object representations
(C++17 library)

All integer types, booleans, and characters have unique object representations.

C++14 reference: Not part of the implementation-defined behavior in C++14.

23.15.7.6 Support for extended alignment (C++14/C++17 libraries)
Extended alignment is supported.

C++14 reference: 20.10.7.6

23.17.7.1 Rounding or truncating values to the required precision

when converting between time_t values and time_point objects
(C++14/C++17 libraries)

Values are truncated to the required precision when converting between time_t values
and time_point objects.

C++14 reference: 20.12.7.1

573

Descriptions of implementation-defined behavior for C++

23.19.3, 28.4.3 Additional execution policies supported by parallel
algorithms (C++17 library)

Parallel algorithms are not supported.

C++14 reference: Not part of the implementation-defined behavior in C++14.

24.2.3.1 The type of streampos (C++14/C++17 libraries)
The type of streampos is std: : fpos<mbstate_t>.

C++14 references: 21.2.3.1, D.6

24.2.3.1 The type of streamoff (C++14/C++17 libraries)

The type of streamoff is long.

C++14 references: 21.2.3.1, D.6

24.2.3.1, 24.2.3.4 Supported multibyte character encoding rules
(C++14/C++17 libraries)

See Locale, page 157.

C++14 references: 21.2.3.1,21.2.3.4

24.2.3.2 The type of ul 6streampos (C++14/C++17 libraries)
The type of ul6streampos is streampos.

C++14 reference: 21.2.3.2

24.2.3.2 The return value of char_traits<charl6_t>::eof
(C++14/C++17 libraries)

The return value of char_traits<charl6_t>::eof iS EOF.

C++14 reference: 21.2.3.2

24.2.3.3 The type of u32streampos (C++14/C++17 libraries)
The type of u32streampos is streampos.

C++14 reference: 21.2.3.3

24.2.3.3 The return value of char_traits<char32_t>::eof
(C++14/C++17 libraries)

The return value of char_traits<char32_t>::eof iS EOF.

C++14 reference: 21.2.3.3

IAR C/C++ Development Guide
574 Compiling and linking for RX

Implementation-defined behavior for Standard C++ _g

24.2.3.4 The type of wstreampos (C++14/C++17 libraries)

The type of wstreampos iS streampos.

C++14 reference: 21.2.3.4

24.2.3.4 The return value of char_traits<wchar_t>::eof
(C++14/C++17 libraries)

The return value of char_traits<wchar t>::eof is EOF.

C++14 reference: 21.2.3.4

24.2.3.4 Supported multibyte character encoding rules
(C++14/C++17 libraries)

See 24.2.3.1, 24.2.3.4 Supported multibyte character encoding rules (C++14/C++17
libraries), page 574.

24.3.2 The type of basic_string::const_iterator (C++17 library)

The type of basic_string::const_iterator is

__wrap_1iter<const_pointer>.

C++14 reference: Not part of the implementation-defined behavior in C++14.

24.3.2 The type of basic_string::iterator (C++17 library)
The type of basic_string::iteratoris __wrap_iter<pointer>.

C++14 reference: Not part of the implementation-defined behavior in C++14.

24.4.2 The type of basic_string_view::const_iterator (C++17 library)
The type of basic_string view::const_iterator iST const *.

C++14 reference: Not part of the implementation-defined behavior in C++14.

25.3.1 Locale object being global or per-thread (C++14/C++17
libraries)

There is one global locale object for the entire application.

C++14 reference: 22.3.1

25.3.1.1.1, 30.2.2 The set of character types that iostreams
templates can be instantiated for (C++17 library)

iostreams templates can be instantiated for char, char16_t, char32_t, and

wchar_t.

575

Descriptions of implementation-defined behavior for C++

576

IAR C/C++ Development Guide
Compiling and linking for RX

C++14 reference: Not part of the implementation-defined behavior in C++14.

25.3.1.2 Locale names (C++14/C++17 libraries)

See Locale, page 157.

C++14 reference: 22.3.1.2

25.3.1.5 The effects on the C locale of calling locale::global
(C++14/C++17 libraries)

Calling this function with an unnamed locale has no effect.

C++14 reference: 22.3.1.5

25.3.1.5 The value of ctype<char>:table_size (C++14/C++17
libraries)

The value of ctype<char>: :table_size is 256.

C++14 reference: 25.4.1.3

25.4.5.1.2 Additional formats for time_get::do_get_date
(C++14/C++17 libraries)

No additional formats are accepted for time_get: :do_get_date.

C++14 reference: 22.4.5.1.2

25.4.5.1.2 time_get::do_get_year and two-digit year numbers
(C++14/C++17 libraries)

Two-digit year numbers are accepted by time_get: :do_get_year. Years from 0 to
68 are parsed as meaning 2000 to 2068, and years from 69 to 99 are parsed as meaning
1969 to 1999.

C++14 reference: 22.4.5.1.2

25.4.5.3.2 Formatted character sequences generated by
time_put::do_put in the C locale (C++14/C++17 libraries)
The behavior is the same as that of the library function strftime.
C++14 reference: 22.4.5.3.2

25.4.7.1.2 Mapping from name to catalog when calling
messages::do_open (C++14/C++17 libraries)

No mapping occurs because this function does not open a catalog.

Implementation-defined behavior for Standard C++ _g

C++14 reference: 22.4.7.1.2

25.4.7.1.2 Mapping to message when calling messages::do_get
(C++14/C++17 libraries)

No mapping occurs because this function does not open a catalog. df1t is returned.
C++14 reference: 22.4.7.1.2

25.4.7.1.2 Mapping to message when calling messages::do_close
(C++14/C++17 libraries)

The function cannot be called because no catalog can be open.

C++14 reference: 22.4.7.1.2

25.4.7.1.2 Resource limits on a message catalog (C++17 library)
The message catalog is not supported.

C++14 reference: Not part of the implementation-defined behavior in C++14.

26.3.7.1 The type of array::const_iterator (C++14/C++17 libraries)
The type of array: :const_iteratoriST const *.

C++14 reference: 23.3.2.1

26.3.7.1 The type of array::iterator (C++14/C++17 libraries)
The type of array::iteratoris T *.

C++14 reference: 23.3.2.1

26.3.8.1 The type of deque::const_iterator (C++17 library)

The type of deque: :const_iteratoris __deque_iterator<T,

[—

const_pointer, T consté& map_const_pointer, difference_type>.

C++14 reference: Not part of the implementation-defined behavior in C++14.

26.3.8.1 The type of deque::iterator (C++17 library)

The type of deque: :iteratoris __deque_iterator<T, pointer, T&,
_ _map_pointer, difference_type>.

C++14 reference: Not part of the implementation-defined behavior in C++14.

577

Descriptions of implementation-defined behavior for C++

578

IAR C/C++ Development Guide
Compiling and linking for RX

26.3.9.1 The type of forward_list::const_iterator (C++17 library)
The type of forward_list::const_iterator iS__base::const_iterator.

C++14 reference: Not part of the implementation-defined behavior in C++14.

26.3.9.1 The type of forward_list::iterator (C++17 library)
The type of forward_list::iteratoris __base::iterator.

C++14 reference: Not part of the implementation-defined behavior in C++14.

26.3.10.1 The type of list::const_iterator (C++17 library)

The type of 1ist::const_iteratoris__list_const_iterator<value_type,
__void_pointer>.

C++14 reference: Not part of the implementation-defined behavior in C++14.

26.3.10.1 The type of list::iterator (C++17 library)

The type of 1ist::iteratoris__list_iterator<value_type,
__void_pointer>.

C++14 reference: Not part of the implementation-defined behavior in C++14.

26.3.11.1 The type of vector::const_iterator (C++17 library)
The type of vector: :const_iteratoris __wrap_iter<const_pointers>.

C++14 reference: Not part of the implementation-defined behavior in C++14.

26.3.11.1 The type of vector::iterator (C++17 library)
The type of vector: :iteratoris __wrap_iter<pointer>.

C++14 reference: Not part of the implementation-defined behavior in C++14.

26.3.12 The type of vector<bool>::const_iterator (C++17 library)
The type of vector<bool>::const_iterator iS const_pointer.

C++14 reference: Not part of the implementation-defined behavior in C++14.

26.3.12 The type of vector<bool>:iterator (C++17 library)
The type of vector<bool>::iterator is pointer.

C++14 reference: Not part of the implementation-defined behavior in C++14.

Implementation-defined behavior for Standard C++ _g

26.4.4.1 The type of map::const_iterator (C++17 library)

The type of map: : const_iterator is __map_const_iterator<typename

base: :const_iterator>.

C++14 reference: Not part of the implementation-defined behavior in C++14.

26.4.4.1 The type of map::iterator (C++17 library)
The type of map: :iteratoris __map_iterator<typename _ base::iterator>.

C++14 reference: Not part of the implementation-defined behavior in C++14.

26.4.5.1 The type of multimap::const_iterator (C++17 library)

The type of multimap: :const_iterator is __map_const_iterator<typename
_ _base::const_iterator>.

C++14 reference: Not part of the implementation-defined behavior in C++14.

26.4.5.1 The type of multimap::iterator (C++17 library)

The type of multimap: :iterator iS __map_iterator<typename
_ _base::iterator>.

C++14 reference: Not part of the implementation-defined behavior in C++14.

26.4.6.1 The type of set::const_iterator (C++17 library)
The type of set: :const_iteratoris __base::const_iterator.

C++14 reference: Not part of the implementation-defined behavior in C++14.

26.4.6.1 The type of set::iterator (C++17 library)
The type of set::iteratoris __base::const_iterator.

C++14 reference: Not part of the implementation-defined behavior in C++14.

26.4.7.1 The type of multiset::const_iterator (C++17 library)
The type of multiset::const_iterator iS__base::const_iterator.

C++14 reference: Not part of the implementation-defined behavior in C++14.

26.4.7.1 The type of multiset::iterator (C++17 library)
The type of multiset::iteratoris __base::const_iterator.

C++14 reference: Not part of the implementation-defined behavior in C++14.

579

Descriptions of implementation-defined behavior for C++

580

IAR C/C++ Development Guide
Compiling and linking for RX

26.5.4.1 The type of unordered_map::const_iterator (C++17 library)

The type of unordered_map: :const_iterator is
__hash_map_const_iterator<typename __table::const_iterator>.

C++14 reference: Not part of the implementation-defined behavior in C++14.

26.5.4.1 The type of unordered_map::const_local_iterator (C++17
library)

The type of unordered_map: :const_local_iterator is
_ _hash_map_const_iterator<typename
__table::const_local_iterators>.

C++14 reference: Not part of the implementation-defined behavior in C++14.

26.5.4.1 The type of unordered_map::iterator (C++17 library)

The type of unordered_map: :iterator is __hash _map_iterator<typename
__table::iterator>.

C++14 reference: Not part of the implementation-defined behavior in C++14.

26.5.4.1 The type of unordered_map::local_iterator (C++17 library)

The type of unordered_map: :local_iterator is
__hash _map_iterator<typename __table::local_iterator>.

C++14 reference: Not part of the implementation-defined behavior in C++14.
26.5.4.2 The default number of buckets in unordered_map
(C++14/C++17 libraries)

The IAR C/C++ Compiler for RX makes a default construction of the unordered_map
before inserting the elements.

C++14 reference: 23.5.4.2
26.5.5.2 The default number of buckets in unordered_multimap
(C++14/C++17 libraries)

The IAR C/C++ Compiler for RX makes a default construction of the
unordered_multimap before inserting the elements.

C++14 reference: 23.5.5.2

26.5.6.1 The type of unordered_set::const_iterator (C++17 library)

The type of unordered_set::const_iterator is__table::const_iterator.

Implementation-defined behavior for Standard C++ _g

C++14 reference: Not part of the implementation-defined behavior in C++14.
26.5.6.1 The type of unordered_set::const_local_iterator (C++17
library)

The type of unordered_set: :const_local_iterator is
_ _table::const_local_iterator.

C++14 reference: Not part of the implementation-defined behavior in C++14.

26.5.6.1 The type of unordered_set::iterator (C++17 library)
The type of unordered_set::iteratoris __table::const_iterator.

C++14 reference: Not part of the implementation-defined behavior in C++14.

26.5.6.1 The type of unordered_set::local_iterator (C++17 library)

The type of unordered_set::local_iterator is
_ _table::const_local_iterator.

C++14 reference: Not part of the implementation-defined behavior in C++14.
26.5.6.2 The default number of buckets in unordered_set
(C++14/C++17 libraries)

The IAR C/C++ Compiler for RX makes a default construction of the unordered_set
before inserting the elements.

C++14 reference: 23.5.6.2

26.5.7.1 The type of unordered_multiset::const_iterator (C++17
library)

The type of unordered_multiset::const_iterator is
__table::const_iterator.

C++14 reference: Not part of the implementation-defined behavior in C++14.
26.5.7.1 The type of unordered_multiset::const_local_iterator
(C++17 library)

The type of unordered_multiset::const_local_iterator is
_ _table::const_local_iterator.

C++14 reference: Not part of the implementation-defined behavior in C++14.

581

Descriptions of implementation-defined behavior for C++

582

IAR C/C++ Development Guide
Compiling and linking for RX

26.5.7.1 The type of unordered_multiset::iterator (C++17 library)
The type of unordered_multiset::iterator is__table::const_iterator.

C++14 reference: Not part of the implementation-defined behavior in C++14.

26.5.7.1 The type of unordered_multiset::local_iterator (C++17
library)

The type of unordered_multiset::local_iterator is
_ _table::const_local_iterator.

C++14 reference: Not part of the implementation-defined behavior in C++14.

26.5.7.2 The default number of buckets in unordered_multiset
(C++14/C++17 libraries)

The IAR C/C++ Compiler for RX makes a default construction of the
unordered_multiset before inserting the elements.

C++14 reference: 23.5.7.2

26.6.5.1 The type of unordered_multimap::const_iterator (C++17
library)

The type of unordered_multimap: :const_iterator is
__hash_map_const_iterator<typename __table::const_iterator>.

C++14 reference: Not part of the implementation-defined behavior in C++14.

26.6.5.1 The type of unordered_multimap::const_local_iterator
(C++17 library)

The type of unordered_multimap: :const_local_iterator is
_ _hash_map_const_iterator<typename
__table::const_local_iterators>.

C++14 reference: Not part of the implementation-defined behavior in C++14.

26.6.5.1 The type of unordered_multimap::iterator (C++17 library)

The type of unordered_multimap::iterator is
__hash_map_iterator<typename __table::iterator>.

C++14 reference: Not part of the implementation-defined behavior in C++14.

Implementation-defined behavior for Standard C++ _g

26.6.5.1 The type of unordered_multimap::local_iterator (C++17
library)

The type of unordered_multimap::local_iterator is
__hash _map_iterator<typename __ table::local_iterator>.

C++14 reference: Not part of the implementation-defined behavior in C++14.
28.4.3 Forward progress guarantees for implicit threads of parallel
algorithms (if not defined for thread) (C++17 library)

Parallel algorithms are not supported.

C++14 reference: Not part of the implementation-defined behavior in C++14.
28.4.3 The semantics of parallel algorithms invoked with
implementation-defined execution policies (C++17 library)
Parallel algorithms are not supported.

C++14 reference: Not part of the implementation-defined behavior in C++14.
28.4.3 Additional execution policies supported by parallel
algorithms (C++17 library)

See 23.19.3, 28.4.3 Additional execution policies supported by parallel algorithms
(C++17 library), page 574.

28.6.13 The underlying source of random numbers for
random_shuffle (C++14/C++17 libraries)

The underlying source is rand ().

C++14 reference: 25.3.12

29.4.1 The use of <cfenv> functions for managing floating-point
status (C++17 library)

See STDC FENV_ACCESS, page 402 and Floating-point environment, page 353.7

C++14 reference: Not part of the implementation-defined behavior in C++14.

29.4.1 Support for #pragma FENV_ACCESS (C++17 library)
See STDC FENV _ACCESS, page 402.

C++14 reference: Not part of the implementation-defined behavior in C++14.

583

Descriptions of implementation-defined behavior for C++

584

IAR C/C++ Development Guide
Compiling and linking for RX

29.5.8 The value of pow(0,0) (C++17 library)
pow (0, 0) produces an ERANGE and returns NaN.

C++14 reference: Not part of the implementation-defined behavior in C++14.

29.6.5 The type of default_random_engine (C++17 library)

The type of default_random_engine is
linear_congruential_engine<uint_fast32_t, 48271, 0, 2147483647>.

C++14 reference: Not part of the implementation-defined behavior in C++14.
29.6.6 The semantics and default value of a token parameter to
random_device constructor (C++17 library)

The token is not used.

C++14 reference: Not part of the implementation-defined behavior in C++14.
29.6.6 The exception type when random_device constructor fails
(C++17 library)

The constructor cannot fail.

C++14 reference: Not part of the implementation-defined behavior in C++14.
29.6.6 The exception type when random_device::operator() fails
(C++17 library)

The operator () cannot fail.

C++14 reference: Not part of the implementation-defined behavior in C++14.
29.6.6 The way that random_device::operator() generates values
(C++17 library)

random_device: :operator () generates values using std: :rand ().

C++14 reference: Not part of the implementation-defined behavior in C++14.
29.6.8.1 The algorithm used for producing the standard random
number distributions (C++17 library)

A linear congruential engine produces the standard random number distributions.

C++14 reference: Not part of the implementation-defined behavior in C++14.

Implementation-defined behavior for Standard C++ _g

29.6.9 rand() and the introduction of data races (C++17 library)
rand () does not introduce a data race.

C++14 reference: Not part of the implementation-defined behavior in C++14.
29.9.5.1 The effects of calling associated Laguerre polynomials with
n>=128 or m>=128 (C++17 library)

cmath assoc_laguerre functions are not supported.

C++14 reference: Not part of the implementation-defined behavior in C++14.
29.9.5.2 The effects of calling associated Legendre polynomials with
I>=128 (C++17 library)

cmath assoc_legendre functions are not supported.

C++14 reference: Not part of the implementation-defined behavior in C++14.
29.9.5.7 The effects of calling regular modified cylindrical Bessel
functions with nu>=128 (C++17 library)

cyl_bessel_i functions are not supported.

C++14 reference: Not part of the implementation-defined behavior in C++14.
29.9.5.8 The effects of calling cylindrical Bessel functions of the first
kind with nu>=128 (C++17 library)

cyl_bessel_j functions are not supported.

C++14 reference: Not part of the implementation-defined behavior in C++14.
29.9.5.9 The effects of calling irregular modified cylindrical Bessel
functions with nu>=128 (C++17 library)

cyl_bessel_k functions are not supported.

C++14 reference: Not part of the implementation-defined behavior in C++14.
29.9.5.10 The effects of calling cylindrical Neumann functions with
nu>=128 (C++17 library)

cyl_neumann functions are not supported.

C++14 reference: Not part of the implementation-defined behavior in C++14.

585

Descriptions of implementation-defined behavior for C++

586

IAR C/C++ Development Guide
Compiling and linking for RX

29.9.5.15 The effects of calling Hermite polynomials with n>=128
(C++17 library)

hermite functions are not supported.

C++14 reference: Not part of the implementation-defined behavior in C++14.
29.9.5.16 The effects of calling Laguerre polynomials with n>=128
(C++17 library)

laguerre functions are not supported.

C++14 reference: Not part of the implementation-defined behavior in C++14.
29.9.5.17 The effects of calling Legendre polynomials with 1>=128
(C++17 library)

legendre functions are not supported.

C++14 reference: Not part of the implementation-defined behavior in C++14.
29.9.5.19 The effects of calling spherical Bessel functions with
n>=128 (C++17 library)

sph_bessel functions are not supported.

C++14 reference: Not part of the implementation-defined behavior in C++14.
29.9.5.20 The effects of calling spherical associated Legendre
functions with 1>=128 (C++17 library)

sph_legendre functions are not supported.

C++14 reference: Not part of the implementation-defined behavior in C++14.
29.9.5.21 The effects of calling spherical Neumann functions with
n>=128 (C++17 library)

sph_neumann functions are not supported.

C++14 reference: Not part of the implementation-defined behavior in C++14.
30.2.2 The behavior of iostream classes when traits::pos_type is not

streampos or when traits::off_type is not streamoff (C++14/C++17
libraries)

No specific behavior has been implemented for this case.

C++14 reference: 27.2.2

Implementation-defined behavior for Standard C++ _g

30.2.2 The set of character types that iostreams templates can be
instantiated for (C++17 library)

See 25.3.1.1.1, 30.2.2 The set of character types that iostreams templates can be
instantiated for (C++17 library), page 575.

30.5.3.4 The effects of calling ios_base::sync_with_stdio after any
input or output operation on standard streams (C++14/C++17
libraries)

Previous input/output is not handled in any special way.

C++14 reference: 27.5.3.4

30.5.5.4 Argument values to construct basic_ios::failure
(C++14/C++17 libraries)

When basic_ios::clear throws an exception, it throws an exception of type
basic_ios::failure constructed with the badbit/failbit/eofbit set.

C++14 reference: 27.5.5.4

30.7.5.2.3 NTCTS in basic_ostream<charT, traits>&
operator<<(nullptr_t) (C++17 library)

sisnullptr.

C++14 reference: Not part of the implementation-defined behavior in C++14.
30.8.2.1 The basic_stringbuf move constructor and the copying of
sequence pointers (C++14/C++17 libraries)

The constructor copies the sequence pointers.

C++14 reference: 27.8.2.1

30.8.2.4 The effects of calling basic_streambuf::setbuf with non-zero
arguments (C++14/C++17 libraries)

This function has no effect.

C++14 reference: 27.8.2.4

30.9.2.1 The basic_filebuf move constructor and the copying of
sequence pointers (C++14/C++17 libraries)

The constructor copies the sequence pointers.

C++14 reference: 27.9.1.2

587

Descriptions of implementation-defined behavior for C++

588

IAR C/C++ Development Guide
Compiling and linking for RX

30.9.2.4 The effects of calling basic_filebuf::setbuf with non-zero
arguments (C++14/C++17 libraries)

C++17: The supplied buffer will be used in the basic_filebuf.C++14: This will offer
the buffer to the C stream by calling setvbuf () with the associated file. If anything
goes wrong, the stream is reinitialized.

C++14 reference: 27.9.1.5

30.9.2.4 The effects of calling basic_filebuf::sync when a get area
exists (C++14/C++17 libraries)

A get area cannot exist.

C++14 reference: 27.9.1.5

30.10.2.2 The operating system on which the implementation
depends (C++17 library)

The system header £ilesystem is not supported.

C++14 reference: Not part of the implementation-defined behavior in C++14.

30.10.6 The type of the filesystem trivial clock (C++17 library)

The system header £ilesystem is not supported.

C++14 reference: Not part of the implementation-defined behavior in C++14.
30.10.8.1 Supported root names in addition to any operating system
dependent root names (C++17 library)

The system header £ilesystem is not supported.

C++14 reference: Not part of the implementation-defined behavior in C++14.
30.10.8.2.1 The meaning of dot-dot in the root directory (C++17
library)

The system header £ilesystem is not supported.

C++14 reference: Not part of the implementation-defined behavior in C++14.
30.10.10.1 The interpretation of the path character sequence with
format path::auto_format (C++17 library)

The system header £ilesystem is not supported.

C++14 reference: Not part of the implementation-defined behavior in C++14.

Implementation-defined behavior for Standard C++ _g

30.10.10.4 Additional file_type enumerators for file systems
supporting additional types of file (C++17 library)

The system header £ilesystem is not supported.

C++14 reference: Not part of the implementation-defined behavior in C++14.

30.10.13 The type of a directory-like file (C++17 library)
The system header £ilesystem is not supported.

C++14 reference: Not part of the implementation-defined behavior in C++14.

30.10.15.3 The effect of filesystem::copy (C++17 library)
The system header £ilesystem is not supported.

C++14 reference: Not part of the implementation-defined behavior in C++14.

30.10.15.14 The result of filesystem::file_size (C++17 library)

The system header £ilesystem is not supported.

C++14 reference: Not part of the implementation-defined behavior in C++14.
30.10.15.35 The file type of the file argument of filesystem::status
(C++17 library)

The system header £ilesystem is not supported.

C++14 reference: Not part of the implementation-defined behavior in C++14.

31.5.1 The type of syntax_option_type (C++17 library)

The type for syntax_option_type is enum. See The enum type, page 347.
C++14 reference: Not part of the implementation-defined behavior in C++14.
31.5.2 The type of regex_constants::match_flag type (C++17
library)

The type for match_flag_type is enum. See The enum type, page 347.
C++14 reference: Not part of the implementation-defined behavior in C++14.
31.5.3 The type of regex_constants::error_type (C++14/C++17
libraries)

The type is an enum. See The enum type, page 347.

C++14 reference: 28.5.3

589

Implementation quantities

32.5 The values of various ATOMIC ... LOCK_FREE macros
(C++14/C++17 libraries)

In cases where atomic operations are supported, these macros will have the value 2. See
Atomic operations, page 444.

C++14 reference: 29.4

32.6, 32.6.1, 32.6.2, 32.6.3 Lock free operation of atomic types
(C++17 library)

See Atomic operations, page 444.

C++14 reference: Not part of the implementation-defined behavior in C++14.
33.2.3 The presence and meaning of native_handle_type and
native_handle (C++14/C++17 libraries)

The thread system header is not supported.

C++14 reference: 30.2.3

C.1.10 The definition and meaning of _ STDC__ (Compiler)

See 19.8, C.1.10 The definition and meaning of STDC _ (Compiler), page 568.
C.4.1 Mapping physical source file characters to the basic source
character set (Compiler)

See 5.2, C.4.1 Mapping physical source file characters to the basic source character set
(Compiler), page 556.

C.5.2.7 Definition of NULL (C++14/C++17 libraries)

See 21.2.3, C.5.2.7 Definition of NULL (C++14/C++17 libraries), page 569.

D.9 Support for over-aligned types (Compiler, C++17/C++14
libraries)

Over-aligned types are supported in new expressions and by the default allocator.

C++14 references: 5.3.4,20.7.9.1, 20.7.11

Implementation quantities

IAR C/C++ Development Guide
590 Compiling and linking for RX

The IAR implementation of C++ is, like all implementations, limited in the size of the
applications it can successfully process.

Implementation-defined behavior for Standard C++ _g

These limitations apply:

C++ feature Limitation

Nesting levels of compound statements, iteration control Limited only by memory.
structures, and selection control structures.

Nesting levels of conditional inclusion. Limited only by memory.

Pointer, array, and function declarators (in any Limited only by memory.
combination) modifying a class, arithmetic, or incomplete

type in a declaration.

Nesting levels of parenthesized expressions within a Limited only by memory.

full-expression.

Number of characters in an internal identifier or macro Limited only by memory.

name.

Number of characters in an external identifier. Limited only by memory.
External identifiers in one translation unit. Limited only by memory.
Identifiers with block scope declared in a block. Limited only by memory.
Macro identifiers simultaneously defined in one Limited only by memory.

translation unit.

Parameters in one function definition. Limited only by memory.
Arguments in one function call. Limited only by memory.
Parameters in one macro definition. Limited only by memory.
Arguments in one macro invocation. Limited only by memory.
Characters in one logical source line. Limited only by memory.
Characters in a string literal (after concatenation). Limited only by memory.
Size of an object. Limited only by memory.
Nesting levels for #include files. Limited only by memory.

Case labels for a switch statement (excluding those for Limited only by memory.
any nested switch statements).

Data members in a single class. Limited only by memory.
Enumeration constants in a single enumeration. Limited only by memory.
Levels of nested class definitions in a single Limited only by memory.

member-specification.

Functions registered by atexit. Limited by heap memory in the built
application.

Functions registered by at_quick_exit. Limited by heap memory in the built
application.

Table 49: C++ implementation quantities

591

Implementation quantities

592

IAR C/C++ Development Guide
Compiling and linking for RX

C++ feature

Limitation

Direct and indirect base classes.
Direct base classes for a single class.
Members declared in a single class.

Final overriding virtual functions in a class, accessible or
not.

Direct and indirect virtual bases of a class.
Static members of a class.

Friend declarations in a class.

Access control declarations in a class.
Member initializers in a constructor definition.
Scope qualifiers of one identifier.

Nested external specifications.

Recursive constexpr function invocations.

Full-expressions evaluated within a core constant
expression.

Template arguments in a template declaration.

Recursively nested template instantiations, including
substitution during template argument deduction (14.8.2).

Handlers per try block.
Throw specifications on a single function declaration.

Number of placeholders (20.9.9.1.4).

Limited only by memory.
Limited only by memory.
Limited only by memory.

Limited only by memory.

Limited only by memory.
Limited only by memory.
Limited only by memory.
Limited only by memory.
Limited only by memory.
Limited only by memory.
Limited only by memory.

1000. This limit can be changed by
using the compiler option
--max_cost_constexpr_call.

Limited only by memory.

Limited only by memory.

64 for a specific template. This limit
can be changed by using the
compiler option

--pending_instantiations.
Limited only by memory.
Limited only by memory.

20 placeholders from _1 to _20.

Table 49: C++ implementation quantities (Continued)

Implementation-defined
behavior for Standard C

e Descriptions of implementation-defined behavior

If you are using C89 instead of Standard C, see Implementation-defined behavior
for C89, page 613.

Descriptions of implementation-defined behavior

This section follows the same order as the C standard. Each item includes references to
the ISO chapter and section (in parenthesis) that explains the implementation-defined
behavior.

Note: The IAR implementation adheres to a freestanding implementation of Standard
C. This means that parts of a standard library can be excluded in the implementation.

J.3.1 TRANSLATION

Diagnostics (3.10, 5.1.1.3)
Diagnostics are produced in the form:
filename, linenumber levell[tag]: message

where filename is the name of the source file in which the error was encountered,
linenumber is the line number at which the compiler detected the error, Ievel is the
level of seriousness of the message (remark, warning, error, or fatal error), tag is a
unique tag that identifies the message, and message is an explanatory message, possibly
several lines.

White-space characters (5.1.1.2)

At translation phase three, each non-empty sequence of white-space characters is
retained.

593

Descriptions of implementation-defined behavior

J.3.2 ENVIRONMENT

The character set (5.1.1.2)

The source character set is the same as the physical source file multibyte character set.
By default, the standard ASCII character set is used. However, it can be UTF-8, UTF-16,
or the system locale. See Text encodings, page 254.

Main (5.1.2.1)

The function called at program startup is called main. No prototype is declared for
main, and the only definition supported for main is:

int main(void)

To change this behavior, see System initialization, page 146.

The effect of program termination (5.1.2.1)

Terminating the application returns the execution to the startup code (just after the call
to main).

Alternative ways to define main (5.1.2.2.1)

There is no alternative ways to define the main function.

The argv argument to main (5.1.2.2.1)

The argv argument is not supported.

Streams as interactive devices (5.1.2.3)

The streams stdin, stdout, and stderr are treated as interactive devices.

Multithreaded environment (5.1.2.4)

By default, the IAR runtime environment does not support more than one thread of
execution. With an optional third-party RTOS, it might support several threads of
execution.

Signals, their semantics, and the default handling (7.14)

In the DLIB runtime environment, the set of supported signals is the same as in Standard
C. A raised signal will do nothing, unless the signal function is customized to fit the
application.

IAR C/C++ Development Guide
594 Compiling and linking for RX

Implementation-defined behavior for Standard C _4

Signal values for computational exceptions (7.14.1.1)

In the DLIB runtime environment, there are no implementation-defined values that
correspond to a computational exception.

Signals at system startup (7.14.1.1)

In the DLIB runtime environment, there are no implementation-defined signals that are
executed at system startup.

Environment names (7.22.4.6)

In the DLIB runtime environment, there are no implementation-defined environment
names that are used by the getenv function.

The system function (7.22.4.8)

The system function is not supported.
).3.3 IDENTIFIERS

Multibyte characters in identifiers (6.4.2)

Additional multibyte characters may appear in identifiers depending on the chosen
encoding for the source file. The supported multibyte characters must be translatable to
one Universal Character Name (UCN).

Significant characters in identifiers (5.2.4.1, 6.4.2)

The number of significant initial characters in an identifier with or without external
linkage is guaranteed to be no less than 200.

J.3.4 CHARACTERS

Number of bits in a byte (3.6)

A byte contains 8 bits.

Execution character set member values (5.2.1)

The values of the members of the execution character set are the values of the ASCII
character set, which can be augmented by the values of the extra characters in the source
file character set. The source file character set is determined by the chosen encoding for
the source file. See Text encodings, page 254.

595

Descriptions of implementation-defined behavior

Alphabetic escape sequences (5.2.2)

The standard alphabetic escape sequences have the values \a-7, \b-8, \£-12, \n-10,
\r-13, \t-9, and \v-11.

Characters outside of the basic executive character set (6.2.5)

A character outside of the basic executive character set that is stored in a char is not
transformed.

Plain char (6.2.5, 6.3.1.1)

A plain char is treated as an unsigned char. See --char is_signed, page 268 and
--char_is_unsigned, page 269.

Source and execution character sets (6.4.4.4, 5.1.1.2)

The source character set is the set of legal characters that can appear in source files. It is
dependent on the chosen encoding for the source file. See Text encodings, page 254. By
default, the source character set is Raw.

The execution character set is the set of legal characters that can appear in the execution
environment. These are the execution character set for character constants and string
literals and their encoding types:

Execution character set Encoding type

L UTF-32
UTF-16
U UTF-32
u8 UTF-8
none The source character set

Table 50: Execution character sets and their encodings

The DLIB runtime environment needs a multibyte character scanner to support a
multibyte execution character set. See Locale, page 157.

Integer character constants with more than one character (6.4.4.4)

An integer character constant that contains more than one character will be treated as an
integer constant. The value will be calculated by treating the leftmost character as the
most significant character, and the rightmost character as the least significant character,
in an integer constant. A diagnostic message will be issued if the value cannot be
represented in an integer constant.

IAR C/C++ Development Guide
596 Compiling and linking for RX

Implementation-defined behavior for Standard C _4

Wide character constants with more than one character (6.4.4.4)
A wide character constant that contains more than one multibyte character generates a
diagnostic message.

Locale used for wide character constants (6.4.4.4)

See Source and execution character sets (6.4.4.4, 5.1.1.2), page 596.
Concatenating wide string literals with different encoding types
(6.4.5)

Wide string literals with different encoding types cannot be concatenated.

Locale used for wide string literals (6.4.5)

See Source and execution character sets (6.4.4.4, 5.1.1.2), page 596.

Source characters as executive characters (6.4.5)

All source characters can be represented as executive characters.

Encoding of wchar_t, charlé_t, and char32_t (6.10.8.2)
wchar_t has the encoding UTF-32, char16_t has the encoding UTF-16, and
char32_t has the encoding UTF-32.

J.3.5 INTEGERS

Extended integer types (6.2.5)

There are no extended integer types.

Range of integer values (6.2.6.2)

The representation of integer values are in the two's complement form. The most
significant bit holds the sign—1 for negative, O for positive and zero.

For information about the ranges for the different integer types, see Basic data types—
integer types, page 346.

The rank of extended integer types (6.3.1.1)

There are no extended integer types.

Signals when converting to a signed integer type (6.3.1.3)

No signal is raised when an integer is converted to a signed integer type.

597

Descriptions of implementation-defined behavior

Signed bitwise operations (6.5)

Bitwise operations on signed integers work the same way as bitwise operations on
unsigned integers—in other words, the sign-bit will be treated as any other bit, except
for the operator >> which will behave as an arithmetic right shift.

J.3.6 FLOATING POINT

Accuracy of floating-point operations (5.2.4.2.2)

The accuracy of floating-point operations is unknown.

Accuracy of floating-point conversions (5.2.4.2.2)

The accuracy of floating-point conversions is unknown.

Rounding behaviors (5.2.4.2.2)

There are no non-standard values of FL.T ROUNDS.

Evaluation methods (5.2.4.2.2)

There are no non-standard values of FLT_ EVAL_METHOD.

Converting integer values to floating-point values (6.3.1.4)

When an integer value is converted to a floating-point value that cannot exactly
represent the source value, the round-to-nearest rounding mode is used (FLT_ROUNDS is
defined to 1).

Converting floating-point values to floating-point values (6.3.1.5)
When a floating-point value is converted to a floating-point value that cannot exactly
represent the source value, the round-to-nearest rounding mode is used (FLT_ROUNDS is
defined to 1).

Denoting the value of floating-point constants (6.4.4.2)

The round-to-nearest rounding mode is used (FLT_ROUNDS is defined to 1).

Contraction of floating-point values (6.5)

Floating-point values are contracted. However, there is no loss in precision and because
signaling is not supported, this does not matter.

Default state of FENV_ACCESS (7.6.1)

The default state of the pragma directive FENV_ACCESS iS OFF.

IAR C/C++ Development Guide
598 Compiling and linking for RX

Implementation-defined behavior for Standard C _4

Additional floating-point mechanisms (7.6, 7.12)

There are no additional floating-point exceptions, rounding-modes, environments, and
classifications.

Default state of FP_CONTRACT (7.12.2)

The default state of the pragma directive FP_CONTRACT is ON unless the compiler option
--no_default_fp_contract is used.

J.3.7 ARRAYS AND POINTERS

Conversion from/to pointers (6.3.2.3)

For information about casting of data pointers and function pointers, see Casting, page
355.

ptrdiff_t (6.5.6)

For information about ptrdiff_t, see ptrdiff t, page 356.
J.3.8 HINTS

Honoring the register keyword (6.7.1)

User requests for register variables are not honored.

Inlining functions (6.7.4)

User requests for inlining functions increases the chance, but does not make it certain,
that the function will actually be inlined into another function. See Inlining functions,
page 84.

J.3.9 STRUCTURES, UNIONS, ENUMERATIONS, AND
BITFIELDS

Sign of 'plain’ bitfields (6.7.2, 6.7.2.1)

For information about how a 'plain’ int bitfield is treated, see Bitfields, page 348.

Possible types for bitfields (6.7.2.1)

All integer types can be used as bitfields in the compiler’s extended mode, see -e, page
2717.

599

Descriptions of implementation-defined behavior

Atomic types for bitfields (6.7.2.1)

Atomic types cannot be used as bitfields.

Bitfields straddling a storage-unit boundary (6.7.2.1)

Unless __attribute_ ((packed)) (a GNU language extension) is used, a bitfield is
always placed in one—and one only—storage unit, and thus does not straddle a
storage-unit boundary.

Allocation order of bitfields within a unit (6.7.2.1)

For information about how bitfields are allocated within a storage unit, see Bitfields,
page 348.

Alignment of non-bitfield structure members (6.7.2.1)

The alignment of non-bitfield members of structures is the same as for the member
types, see Alignment, page 345.

Integer type used for representing enumeration types (6.7.2.2)

The chosen integer type for a specific enumeration type depends on the enumeration
constants defined for the enumeration type. The chosen integer type is the smallest
possible.

J.3.10 QUALIFIERS

Access to volatile objects (6.7.3)
Any reference to an object with volatile qualified type is an access, see Declaring

objects volatile, page 358.

J.3.11 PREPROCESSING DIRECTIVES

Locations in #pragma for header names (6.4, 6.4.7)

These pragma directives take header names as parameters at the specified positions:
#pragma include_alias ("header", "header")

#pragma include_alias (<header>, <header>)

Mapping of header names (6.4.7)

Sequences in header names are mapped to source file names verbatim. A backslash "\
is not treated as an escape sequence. See Overview of the preprocessor, page 423.

IAR C/C++ Development Guide
600 Compiling and linking for RX

Implementation-defined behavior for Standard C _4

Character constants in constant expressions (6.10.1)

A character constant in a constant expression that controls conditional inclusion
matches the value of the same character constant in the execution character set.

The value of a single-character constant (6.10.1)

A single-character constant may only have a negative value if a plain character (char)
is treated as a signed character, see --char_is_signed, page 268.

Including bracketed filenames (6.10.2)

For information about the search algorithm used for file specifications in angle brackets
<>, see Include file search procedure, page 251.

Including quoted filenames (6.10.2)

For information about the search algorithm used for file specifications enclosed in
quotes, see Include file search procedure, page 251.

Preprocessing tokens in #include directives (6.10.2)

Preprocessing tokens in an #include directive are combined in the same way as outside
an #include directive.

Nesting limits for #include directives (6.10.2)

There is no explicit nesting limit for #include processing.

inserts \ in front of \u (6.10.3.2)

(stringify argument) inserts a \ character in front of a Universal Character Name
(UCN) in character constants and string literals.

Recognized pragma directives (6.10.6)

In addition to the pragma directives described in the chapter Pragma directives, the
following directives are recognized and will have an indeterminate effect. If a pragma
directive is listed both in the chapter Pragma directives and here, the information
provided in the chapter Pragma directives overrides the information here.

® alias_def

alignment

alternate_target_def

baseaddr

basic_template_matching

601

Descriptions of implementation-defined behavior

building_runtime
can_instantiate

codeseg

constseg

cplusplus_neutral
CcsSpy_support

cstat_dump

dataseg

define_type_info
do_not_instantiate
early_dynamic_initialization
exception_neutral

function

function_category
function_effects

hdrstop

important_typedef

ident

implements_aspect
init_routines_only for_needed_variables
initialization_routine
inline_template

instantiate

keep_definition
library_default_requirements
library_provides
library_requirement_override
memory

module_name

no_pch

no_vtable_use

once

pop_macro

preferred_typedef

IAR C/C++ Development Guide
602 Compiling and linking for RX

Implementation-defined behavior for Standard C _4

push_macro

separate_init_routine
set_generate_entries_without_bounds
system_include

uses_aspect

warnings

Default __DATE__and __TIME__ (6.10.8)

The definitions for __TIME__ and __DATE__ are always available.
J.3.12 LIBRARY FUNCTIONS

Additional library facilities (5.1.2.1)

Most of the standard library facilities are supported. Some of them—the ones that need
an operating system—require a low-level implementation in the application. For more
information, see The DLIB runtime environment, page 123.

Diagnostic printed by the assert function (7.2.1.1)

The assert () function prints:

filename:linenr expression -- assertion failed

when the parameter evaluates to zero.

Representation of the floating-point status flags (7.6.2.2)

For information about the floating-point status flags, see fenv.h, page 445.

Feraiseexcept raising floating-point exception (7.6.2.3)

For information about the feraiseexcept function raising floating-point exceptions,
see Floating-point environment, page 353.

Strings passed to the setlocale function (7.11.1.1)

For information about strings passed to the set locale function, see Locale, page 157.

Types defined for float_t and double_t (7.12)

The FLT_EVAL_METHOD macro can only have the value 0.

603

Descriptions of implementation-defined behavior

Domain errors (7.12.1)

No function generates other domain errors than what the standard requires.

Return values on domain errors (7.12.1)

Mathematic functions return a floating-point NaN (not a number) for domain errors.

Underflow errors (7.12.1)

Mathematic functions set errno to the macro ERANGE (a macro in errno . h) and return
zero for underflow errors.

fmod return value (7.12.10.1)

The £mod function sets errno to a domain error and returns a floating-point NaN when
the second argument is zero.

remainder return value (7.12.10.2)

The remainder function sets errno to a domain error and returns a floating-point NaN
when the second argument is zero.

The magnitude of remquo (7.12.10.3)

The magnitude is congruent modulo INT_MAX.

remquo return value (7.12.10.3)

The remguo function sets errno to a domain error and returns a floating-point NaN
when the second argument is zero.

signal() (7.14.1.1)

The signal part of the library is not supported.

Note: The default implementation of signal does not perform anything. Use the
template source code to implement application-specific signal handling. See signal,
page 154 and raise, page 152, respectively.

NULL macro (7.19)

The NULL macro is defined to 0.

Terminating newline character (7.21.2)

Stream functions recognize either newline or end of file (EOF) as the terminating
character for a line.

IAR C/C++ Development Guide
604 Compiling and linking for RX

Implementation-defined behavior for Standard C _4

Space characters before a newline character (7.21.2)

Space characters written to a stream immediately before a newline character are
preserved.

Null characters appended to data written to binary streams (7.21.2)

No null characters are appended to data written to binary streams.

File position in append mode (7.21.3)

The file position is initially placed at the beginning of the file when it is opened in
append-mode.

Truncation of files (7.21.3)

Whether a write operation on a text stream causes the associated file to be truncated
beyond that point, depends on the application-specific implementation of the low-level
file routines. See Briefly about input and output (I/0), page 124.

File buffering (7.21.3)

An open file can be either block-buffered, line-buffered, or unbuffered.

A zero-length file (7.21.3)

Whether a zero-length file exists depends on the application-specific implementation of
the low-level file routines.

Legal file names (7.21.3)

The legality of a filename depends on the application-specific implementation of the
low-level file routines.

Number of times a file can be opened (7.21.3)

Whether a file can be opened more than once depends on the application-specific
implementation of the low-level file routines.

Multibyte characters in a file (7.21.3)

The encoding of multibyte characters in a file depends on the application-specific
implementation of the low-level file routines.

605

Descriptions of implementation-defined behavior

remove() (7.21.4.1)

The effect of a remove operation on an open file depends on the application-specific
implementation of the low-level file routines. See Briefly about input and output (1/0),
page 124.

rename() (7.21.4.2)

The effect of renaming a file to an already existing filename depends on the
application-specific implementation of the low-level file routines. See Briefly about
input and output (1/0), page 124.

Removal of open temporary files (7.21.4.3)

Whether an open temporary file is removed depends on the application-specific
implementation of the low-level file routines.

Mode changing (7.21.5.4)

freopen closes the named stream, then reopens it in the new mode. The streams stdin,
stdout, and stderr can be reopened in any new mode.

Style for printing infinity or NaN (7.21.6.1, 7.29.2.1)

The style used for printing infinity or NaN for a floating-point constant is inf and nan
(INF and NAN for the F conversion specifier), respectively. The n-char-sequence is not
used for nan.

%p in printf() (7.21.6.1, 7.29.2.1)

The argument to a $p conversion specifier, print pointer, to printf () is treated as
having the type void *. The value will be printed as a hexadecimal number, similar to
using the $x conversion specifier.

Reading ranges in scanf (7.21.6.2, 7.29.2.1)

A - (dash) character is always treated as a range symbol.

%p in scanf (7.21.6.2, 7.29.2.2)

The %p conversion specifier, scan pointer, to scanf () reads a hexadecimal number and
converts it into a value with the type void *.

File position errors (7.21.9.1,7.21.9.3, 7.21.9.4)

On file position errors, the functions fgetpos, ftell, and £setpos store EFPOS in

errno.

IAR C/C++ Development Guide
606 Compiling and linking for RX

Implementation-defined behavior for Standard C _4

An n-char-sequence after nan (7.22.1.3, 7.29.4.1.1)

An n-char-sequence after a NaN is read and ignored.

errno value at underflow (7.22.1.3, 7.29.4.1.1)

errno i set to ERANGE if an underflow is encountered.

Zero-sized heap objects (7.22.3)

A request for a zero-sized heap object will return a valid pointer and not a null pointer.

Behavior of abort and exit (7.22.4.1, 7.22.4.5)

A callto abort () or _Exit () will not flush stream buffers, not close open streams, and
not remove temporary files.

Termination status (7.22.4.1, 7.22.4.4, 7.22.4.5, 7.22.4.7)

The termination status will be propagated to __exit () as a parameter. exit (),
_Exit (), and quick_exit use the input parameter, whereas abort uses
EXIT_FAILURE.

The system function return value (7.22.4.8)

The system function returns -1 when its argument is not a null pointer.

Range and precision of clock_t and time_t (7.27)

The range and precision of clock_t is up to your implementation. The range and
precision of time_t is 19000101 up to 20351231 in tics of a second if the 32-bit
time_t is used. It is -9999 up to 9999 years in tics of a second if the 64-bit time_t is
used. See time.h, page 446

The time zone (7.27.1)

The local time zone and daylight savings time must be defined by the application. For
more information, see time.h, page 446.

The era for clock() (7.27.2.1)

The era for the clock function is up to your implementation.

TIME_UTC epoch (7.27.2.5)

The epoch for TIME_UTC is up to your implementation.

607

Descriptions of implementation-defined behavior

%Z replacement string (7.27.3.5, 7.29.5.1)

By default, ":" or "" (an empty string) is used as a replacement for $z. Your application
should implement the time zone handling. See time32, time64, page 155.

Math functions rounding mode (F.10)

The functions in math.h honor the rounding direction mode in FLT-ROUNDS.

J.3.13 ARCHITECTURE

Values and expressions assigned to some macros (5.2.4.2, 7.20.2,
7.20.3)

There are always 8 bits in a byte.

MB_LEN_MAX is at the most 6 bytes depending on the library configuration that is used.

For information about sizes, ranges, etc for all basic types, see Data representation, page
345.

The limit macros for the exact-width, minimum-width, and fastest minimum-width
integer types defined in stdint.h have the same ranges as char, short, int, long,
and long long.

The floating-point constant FLT_ROUNDS has the value 1 (to nearest) and the
floating-point constant FLT_EVAL_METHOD has the value O (treat as is).

Accessing another thread's autos or thread locals (6.2.4)

The IAR runtime environment does not allow multiple threads. With a third-party
RTOS, the access will take place and work as intended as long as the accessed item has
not gone out of its scope.

The number, order, and encoding of bytes (6.2.6.1)

See Data representation, page 345.

Extended alignments (6.2.8)

For information about extended alignments, see data_alignment, page 384.

Valid alignments (6.2.8)

For information about valid alignments on fundamental types, see the chapter Data
representation.

IAR C/C++ Development Guide
608 Compiling and linking for RX

Implementation-defined behavior for Standard C _4

The value of the result of the sizeof operator (6.5.3.4)

See Data representation, page 345.

J.4 LOCALE

Members of the source and execution character set (5.2.1)

By default, the compiler accepts all one-byte characters in the host’s default character
set. The chapter Encodings describes how to change the default encoding for the source
character set, and by that the encoding for plain character constants and plain string
literals in the execution character set.

The meaning of the additional characters (5.2.1.2)

Any multibyte characters in the extended source character set is translated into the
following encoding for the execution character set:

Execution character set Encoding

L typed UTF-32

u typed UTF-16

U typed UTF-32

u8 typed UTF-8

none typed The same as the source character set

Table 51: Translation of multibyte characters in the extended source character set

It is up to your application with the support of the library configuration to handle the
characters correctly.

Shift states for encoding multibyte characters (5.2.1.2)

No shift states are supported.

Direction of successive printing characters (5.2.2)

The application defines the characteristics of a display device.

The decimal point character (7.1.1)

For a library with the configuration Normal or Tiny, the default decimal-point character
isa'.'. For alibrary with the configuration Full, the chosen locale defines what character
is used for the decimal point.

Printing characters (7.4, 7.30.2)

The set of printing characters is determined by the chosen locale.

609

Descriptions of implementation-defined behavior

Control characters (7.4, 7.30.2)
The set of control characters is determined by the chosen locale.
Characters tested for (7.4.1.2,7.4.1.3,7.4.1.7, 7.4.1.9, 7.4.1.10,

7.4.1.11,7.30.2.1.2, 7.30.5.1.3, 7.30.2.1.7, 7.30.2.1.9, 7.30.2.1.10,
7.30.2.1.11)

The set of characters tested for the character-based functions are determined by the
chosen locale. The set of characters tested for the wchar_t-based functions are the
UTF-32 code points 0x0 to 0x7F.

The native environment (7.11.1.1)

The native environment is the same as the "C" locale.

Subject sequences for numeric conversion functions (7.22.1,
7.29.4.1)

There are no additional subject sequences that can be accepted by the numeric
conversion functions.

The collation of the execution character set (7.24.4.3, 7.29.4.4.2)

Collation is not supported.

Message returned by strerror (7.24.6.2)

The messages returned by the strerror function depending on the argument is:

Argument Message

EZERO no error

EDOM domain error

ERANGE range error

EFPOS filepositioning error
EILSEQ multi-byte encoding error
<0 || >99 unknown error

all others error nnn

Table 52: Message returned by strerror()—DLIB runtime environment

Formats for time and date (7.27.3.5, 7.29.5.1)

Time zone information is as you have implemented it in the low-level function
__getzone.

IAR C/C++ Development Guide
610 Compiling and linking for RX

Implementation-defined behavior for Standard C _4

Character mappings (7.30.1)

The character mappings supported are tolower and toupper.

Character classifications (7.30.1)

The character classifications that are supported are alnum, cntrl, digit, graph,

lower, print, punct, space, upper, and xdigit.

611

Descriptions of implementation-defined behavior

IAR C/C++ Development Guide
612 Compiling and linking for RX

Implementation-defined
behavior for C89

e Descriptions of implementation-defined behavior

If you are using Standard C instead of C89, see Implementation-defined behavior
for Standard C, page 593.

Descriptions of implementation-defined behavior

The descriptions follow the same order as the ISO appendix. Each item covered includes
references to the ISO chapter and section (in parenthesis) that explains the
implementation-defined behavior.

TRANSLATION

Diagnostics (5.1.1.3)
Diagnostics are produced in the form:
filename, linenumber levell[tag]: message

where filename is the name of the source file in which the error was encountered,
linenumber is the line number at which the compiler detected the error, Ievel is the
level of seriousness of the message (remark, warning, error, or fatal error), tag is a
unique tag that identifies the message, and message is an explanatory message, possibly
several lines.

ENVIRONMENT

Arguments to main (5.1.2.2.2.1)

The function called at program startup is called main. No prototype was declared for
main, and the only definition supported for main is:

int main(void)

To change this behavior for the DLIB runtime environment, see System initialization,
page 146.

613

Descriptions of implementation-defined behavior

Interactive devices (5.1.2.3)

The streams stdin and stdout are treated as interactive devices.
IDENTIFIERS

Significant characters without external linkage (6.1.2)

The number of significant initial characters in an identifier without external linkage is
200.

Significant characters with external linkage (6.1.2)

The number of significant initial characters in an identifier with external linkage is 200.

Case distinctions are significant (6.1.2)

Identifiers with external linkage are treated as case-sensitive.

CHARACTERS

Source and execution character sets (5.2.1)

The source character set is the set of legal characters that can appear in source files. It is
dependent on the chosen encoding for the source file. See Text encodings, page 254. By
default, the source character set is Raw.

The execution character set is the set of legal characters that can appear in the execution
environment. These are the execution character set for character constants and string
literals and their encoding types:

Execution character set Encoding type

L UTF-32
UTF-16
U UTF-32
u8 UTF-8
none The source character set

Table 53: Execution character sets and their encodings

The DLIB runtime environment needs a multibyte character scanner to support a
multibyte execution character set. See Locale, page 157.

Bits per character in execution character set (5.2.4.2.1)

The number of bits in a character is represented by the manifest constant CHAR_BIT.
The standard include file 1imits.h defines CHAR_BIT as 8.

IAR C/C++ Development Guide
614 Compiling and linking for RX

Implementation-defined behavior for C89 ___o

Mapping of characters (6.1.3.4)

The mapping of members of the source character set (in character and string literals) to
members of the execution character set is made in a one-to-one way. In other words, the
same representation value is used for each member in the character sets except for the
escape sequences listed in the ISO standard.

Unrepresented character constants (6.1.3.4)

The value of an integer character constant that contains a character or escape sequence
not represented in the basic execution character set or in the extended character set for
a wide character constant generates a diagnostic message, and will be truncated to fit the
execution character set.

Character constant with more than one character (6.1.3.4)

An integer character constant that contains more than one character will be treated as an
integer constant. The value will be calculated by treating the leftmost character as the
most significant character, and the rightmost character as the least significant character,
in an integer constant. A diagnostic message will be issued if the value cannot be
represented in an integer constant.

A wide character constant that contains more than one multibyte character generates a
diagnostic message.

Converting multibyte characters (6.1.3.4)

See Locale, page 157.

Range of 'plain’ char (6.2.1.1)

A ‘plain’ char has the same range as an unsigned char.

INTEGERS

Range of integer values (6.1.2.5)

The representation of integer values are in the two's complement form. The most
significant bit holds the sign—1 for negative, O for positive and zero.

See Basic data types—integer types, page 346, for information about the ranges for the
different integer types.
Demotion of integers (6.2.1.2)

Converting an integer to a shorter signed integer is made by truncation. If the value
cannot be represented when converting an unsigned integer to a signed integer of equal

615

Descriptions of implementation-defined behavior

length, the bit-pattern remains the same. In other words, a large enough value will be
converted into a negative value.

Signed bitwise operations (6.3)

Bitwise operations on signed integers work the same way as bitwise operations on
unsigned integers—in other words, the sign-bit will be treated as any other bit, except
for the operator >> which will behave as an arithmetic right shift.

Sign of the remainder on integer division (6.3.5)

The sign of the remainder on integer division is the same as the sign of the dividend.

Negative valued signed right shifts (6.3.7)
The result of a right-shift of a negative-valued signed integral type preserves the sign-bit.

For example, shifting 0xFF00 down one step yields 0xFF80.

FLOATING POINT

Representation of floating-point values (6.1.2.5)

The representation and sets of the various floating-point numbers adheres to IEC 60559.
A typical floating-point number is built up of a sign-bit (s), a biased exponent (e), and
a mantissa (m).

See Basic data types—floating-point types, page 353, for information about the ranges
and sizes for the different floating-point types: £1loat and double.

Converting integer values to floating-point values (6.2.1.3)

When an integral number is cast to a floating-point value that cannot exactly represent
the value, the value is rounded (up or down) to the nearest suitable value.
Demoting floating-point values (6.2.1.4)

When a floating-point value is converted to a floating-point value of narrower type that
cannot exactly represent the value, the value is rounded (up or down) to the nearest
suitable value.

ARRAYS AND POINTERS

size_t (6.3.3.4, 7.1.1)

See size_t, page 356, for information about size_t.

IAR C/C++ Development Guide
616 Compiling and linking for RX

Implementation-defined behavior for C89 ___o

Conversion from/to pointers (6.3.4)

See Casting, page 355, for information about casting of data pointers and function
pointers.

ptrdiff_t (6.3.6, 7.1.1)

See ptrdiff t, page 356, for information about the ptrdiff_t.
REGISTERS

Honoring the register keyword (6.5.1)

User requests for register variables are not honored.
STRUCTURES, UNIONS, ENUMERATIONS, AND BITFIELDS

Improper access to a union (6.3.2.3)

If a union gets its value stored through a member and is then accessed using a member
of a different type, the result is solely dependent on the internal storage of the first
member.

Padding and alighment of structure members (6.5.2.1)

See the section Basic data types—integer types, page 346, for information about the
alignment requirement for data objects.

Sign of 'plain’ bitfields (6.5.2.1)

A 'plain' int bitfield is treated as a signed int bitfield. All integer types are allowed
as bitfields.

Allocation order of bitfields within a unit (6.5.2.1)

Bitfields are allocated within an integer from least-significant to most-significant bit.

Can bitfields straddle a storage-unit boundary (6.5.2.1)

Bitfields cannot straddle a storage-unit boundary for the chosen bitfield integer type.

Integer type chosen to represent enumeration types (6.5.2.2)

The chosen integer type for a specific enumeration type depends on the enumeration
constants defined for the enumeration type. The chosen integer type is the smallest
possible.

617

Descriptions of implementation-defined behavior

QUALIFIERS

Access to volatile objects (6.5.3)

Any reference to an object with volatile qualified type is an access.
DECLARATORS

Maximum numbers of declarators (6.5.4)

The number of declarators is not limited. The number is limited only by the available
memory.

STATEMENTS

Maximum number of case statements (6.6.4.2)

The number of case statements (case values) in a switch statement is not limited. The
number is limited only by the available memory.

PREPROCESSING DIRECTIVES

Character constants and conditional inclusion (6.8.1)

The character set used in the preprocessor directives is the same as the execution
character set. The preprocessor recognizes negative character values if a 'plain’ character
is treated as a signed character.

Including bracketed filenames (6.8.2)

For file specifications enclosed in angle brackets, the preprocessor does not search
directories of the parent files. A parent file is the file that contains the #include
directive. Instead, it begins by searching for the file in the directories specified on the
compiler command line.

Including quoted filenames (6.8.2)

For file specifications enclosed in quotes, the preprocessor directory search begins with
the directories of the parent file, then proceeds through the directories of any
grandparent files. Thus, searching begins relative to the directory containing the source
file currently being processed. If there is no grandparent file and the file is not found,
the search continues as if the filename was enclosed in angle brackets.

IAR C/C++ Development Guide
618 Compiling and linking for RX

Implementation-defined behavior for C89 ___o

Character sequences (6.8.2)

Preprocessor directives use the source character set, except for escape sequences. Thus,
to specify a path for an include file, use only one backslash:

#include "mydirectory\myfile"
Within source code, two backslashes are necessary:

file = fopen("mydirectory\\myfile", "rt");

Recognized pragma directives (6.8.6)

In addition to the pragma directives described in the chapter Pragma directives, the
following directives are recognized and will have an indeterminate effect. If a pragma
directive is listed both in the chapter Pragma directives and here, the information
provided in the chapter Pragma directives overrides the information here.

® alignment

® baseaddr

® basic_template_matching

® building_runtime

® can_instantiate

® codeseg

® constseg

® Cspy_support

® dataseg

® define_type_info

® do_not_instantiate

® ecarly dynamic_initialization
® function

® function_effects

® hdrstop

® important_typedef

® instantiate

® keep_definition

® library_default_requirements
® library_provides

® library requirement_override
[]

memory

619

Descriptions of implementation-defined behavior

module_name

no_pch

[]

o

® once
® system_include
o

warnings

Default __DATE__ and __TIME__ (6.8.8)

The definitions for __TIME__ and __DATE__ are always available.
LIBRARY FUNCTIONS FOR THE IAR DLIB RUNTIME
ENVIRONMENT

Note: Some items in this list only apply when file descriptors are supported by the
library configuration. For more information about runtime library configurations, see
the chapter The DLIB runtime environment.

NULL macro (7.1.6)

The NULL macro is defined to 0.

Diagnostic printed by the assert function (7.2)
The assert () function prints:
filename:linenr expression -- assertion failed

when the parameter evaluates to zero.

Domain errors (7.5.1)

NaN (Not a Number) will be returned by the mathematic functions on domain errors.

Underflow of floating-point values sets errno to ERANGE (7.5.1)

The mathematics functions set the integer expression errno to ERANGE (a macro in
errno.h) on underflow range errors.

fmod() functionality (7.5.6.4)

If the second argument to fmod () is zero, the function returns NaN—errno is set to
EDOM.

signal() (7.7.1.1)

The signal part of the library is not supported.

IAR C/C++ Development Guide
620 Compiling and linking for RX

Implementation-defined behavior for C89 ___o

Note: The default implementation of signal does not perform anything. Use the
template source code to implement application-specific signal handling. See signal,
page 154 and raise, page 152, respectively.

Terminating newline character (7.9.2)

stdout stream functions recognize either newline or end of file (EOF) as the
terminating character for a line.

Blank lines (7.9.2)

Space characters written to the stdout stream immediately before a newline character
are preserved. There is no way to read the line through the stdin stream that was
written through the stdout stream.

Null characters appended to data written to binary streams (7.9.2)

No null characters are appended to data written to binary streams.

Files (7.9.3)

Whether the file position indicator of an append-mode stream is initially positioned at
the beginning or the end of the file, depends on the application-specific implementation
of the low-level file routines.

Whether a write operation on a text stream causes the associated file to be truncated
beyond that point, depends on the application-specific implementation of the low-level
file routines. See Briefly about input and output (I/0), page 124.

The characteristics of the file buffering is that the implementation supports files that are
unbuffered, line buffered, or fully buffered.

Whether a zero-length file actually exists depends on the application-specific
implementation of the low-level file routines.

Rules for composing valid file names depends on the application-specific
implementation of the low-level file routines.

Whether the same file can be simultaneously open multiple times depends on the
application-specific implementation of the low-level file routines.
remove() (7.9.4.1)

The effect of a remove operation on an open file depends on the application-specific
implementation of the low-level file routines. See Briefly about input and output (1/0),
page 124.

621

Descriptions of implementation-defined behavior

rename() (7.9.4.2)

The effect of renaming a file to an already existing filename depends on the
application-specific implementation of the low-level file routines. See Briefly about
input and output (1/0), page 124.

%p in printf() (7.9.6.1)

The argument to a $p conversion specifier, print pointer, to printf () is treated as
having the type void *. The value will be printed as a hexadecimal number, similar to
using the $x conversion specifier.

%p in scanf() (7.9.6.2)

The %p conversion specifier, scan pointer, to scanf () reads a hexadecimal number and
converts it into a value with the type void *.

Reading ranges in scanf() (7.9.6.2)

A - (dash) character is always treated as a range symbol.

File position errors (7.9.9.1, 7.9.9.4)

On file position errors, the functions fgetpos and ftell store EFPOS in errno.

Message generated by perror() (7.9.10.4)
The generated message is:

usersuppliedprefix:errormessage

Allocating zero bytes of memory (7.10.3)

The calloc(),malloc (), and realloc () functions accept zero as an argument.
Memory will be allocated, a valid pointer to that memory is returned, and the memory
block can be modified later by realloc.

Behavior of abort() (7.10.4.1)

The abort () function does not flush stream buffers, and it does not handle files,
because this is an unsupported feature.

Behavior of exit() (7.10.4.3)

The argument passed to the exit function will be the return value returned by the main
function to cstartup.

IAR C/C++ Development Guide
622 Compiling and linking for RX

Implementation-defined behavior for C89 ___o

Environment (7.10.4.4)

The set of available environment names and the method for altering the environment list
is described in gefenv, page 149.

system() (7.10.4.5)

How the command processor works depends on how you have implemented the system
function. See system, page 155.

Message returned by strerror() (7.11.6.2)

The messages returned by strerror () depending on the argument is:

Argument Message

EZERO no error

EDOM domain error

ERANGE range error

EFPOS filepositioning error
EILSEQ multi-byte encoding error
<0 || >99 unknown error

all others error nnn

Table 54: Message returned by strerror() DLIB runtime environment

The time zone (7.12.1)

The local time zone and daylight savings time implementation is described in __time32,
_ time64, page 155.

clock() (7.12.2.1)

From where the system clock starts counting depends on how you have implemented the
clock function. See clock, page 148.

623

Descriptions of implementation-defined behavior

IAR C/C++ Development Guide
624 Compiling and linking for RX

A

-a (felfdumpoption) i 524
abort
implementation-defined behaviorinC............. 607
implementation-defined behavior in C89 (DLIB) 622
system termination (DLIB) 145
__absolute (extended keyword) 366
absolute location
data, placingat (@) il 231
language supportforo L. 191
#pragmalocation. 393
--accurate_math (linker option). 315

activation record. See stack frame
addressing. See memory types, data models,
and code models

advancedheap. i, 209
--advanced_heap (linker option) 315
algorithm (library header file). 439
algorithms, parallel (C++17)................. 444
alias_def (pragma directive) 601
alignment e 345
extended, implementation-defined behavior for C++. . 573
forcing stricter (#pragma data_alignment).......... 384
implementation-defined behavior for C++. 562
in structures (#pragmapack) 397
in structures, causing problems 228
of an object (_ ALIGNOF__) 192
ofdatatypes. ... i 346
restrictions for inline assembler. 165
alignment (pragma directive) 601, 619
__ALIGNOF__(operator)covuueuenen.. 192
alignof expression, implementation-defined behavior
for CH+. . 562
--align_func (compiler option) 267
--all (ielfdump option), 525
alternate_target_def (pragma directive) 601
ANONYMOUS SITUCTULES oot e et et e e 229

ANSI C. See C89

Index °

any (library header file) 439
application
building, overview of. oL 63
execution, overview of. 59
startup and termination (DLIB) 142
startup, specifyingtolinker 111

argv (argument), implementation-defined behavior in C. . 594
Arithmetic Unit for Trigonometric Functions (AUTF) . . . 305

intrinsic functions 415, 421
Arithmetic Unit for Trigonometric Functions (TUF)

intrinsic functions 410, 415-416
array indexing, facilitating 227
array (library headerfile) 439
arrays

global, accessing 182

implementation-defined behavior 599

implementation-defined behavior in C89........... 616

non-lvalue L L., 194

of incomplete types 193, 205

single-value initialization. 195

zerolength. L il 194
array::const_iterator,
implementation-defined behavior for C++ 577
array::iterator, implementation-defined behavior for C++ 577
asm, __asm (language extension) 166

implementation-defined behavior for C++. 565
assembler code

callingfromC 172

callingfrom C++. i 174

insertinginline. 165
assembler directives

for call frame information 184

using in inline assemblercode 165
assembler instructions

insertinginline. 165
assembler labels

default for application startup 63, 111

making public (--public_equ).................... 297

prefixed by extra underscore 103, 314, 499
assembler language interface 163

625

626

calling convention. See assembler code

assembler list file, generating 282
assembler outputfile., 173
assembler statements. 196

assembly language. See assembler language

asserts
implementation-defined behaviorof in C........... 603
implementation-defined behavior of in C89, (DLIB). . 620
including in application 432
assert.h (DLIB headerfile) 438
assignment of pointer types. 196
assoc_laguerre,
implementation-defined behavior for C++ 585
assoc_legendre,
implementation-defined behavior for C++ 585
@ (operator)
placing at absolute address. 231
placinginsections, 232
__atan2hypotf (intrinsic function). 410, 415
atexit limit, settingup i L 112
atexit, reserving space forcalls. 112
ALOMIC ACCESSES. . o .o v ve e et ettt 444
atomic OPErationsc.vuvr vt nenenenenn . 81, 444
CMONIOT Lottt 368
atomic types for bitfields,
implementation-defined behaviorinC 600
atomic types, lock free operation,
implementation-defined behavior for C++ 590
atomic (library headerfile) 440
ATOMIC_..._LOCK_FREE macros,
implementation-defined behavior for C++ 590
attribute declaration,
implementation-defined behavior for C++ 565
attributes
non-standard, implementation-defined behavior
for CH+ oo 565
ODJECt . ettt e 364
Y P .+ ettt 361
auto variables 74
atfunctionentranceoo i, 177

IAR C/C++ Development Guide
Compiling and linking for RX

making accesses more efficient 227

programming hints for efficientcode. 240
using in inline assembler statements 165
automatic variables. See auto variables
auto_ptr (deprecated function), enabling. 444
auto_ptr_ref (deprecated function), enabling 444
__auto_type (GNU Ckeyword) 197
auto, packing algorithm for initializers............... 466

backtrace information See call frame information
bad_alloc::what,

implementation-defined behavior for C++ 570
bad_any_access::what,

implementation-defined behavior for C++ 571
bad_array_new_length::what,

implementation-defined behavior for C++ 570
bad_cast::what,

implementation-defined behavior for C++ 570
bad_exception::what,

implementation-defined behavior for C++ 571
bad_function_call::what,

implementation-defined behavior for C++ 573
bad_optional_access::what,

implementation-defined behavior for C++ 571
bad_typeid::what,

implementation-defined behavior for C++ 570
bad_variant_access::what,

implementation-defined behavior for C++ 571
bad_weak_ptr::what,

implementation-defined behavior for C++ 572
bank (pragma directive) 382
Barr,Michael i 41
baseaddr (pragma directive) 601, 619
__BASE FILE__ (predefined symbol). 424
basicheap......... i 209
basic_filebuf move constructor,

implementation-defined behavior for C++ 587

basic_filebuf::setbuf,

implementation-defined behavior for C++ 588
basic_filebuf::sync,
implementation-defined behavior for C++ 588
--basic_heap (linker option) 315
basic_ios::failure,
implementation-defined behavior for C++ 587
basic_streambuf::setbuf,
implementation-defined behavior for C++ 587
basic_stringbuf move constructor,
implementation-defined behavior for C++ 587
basic_string_view::const_iterator,
implementation-defined behavior for C++ 575
basic_string::const_iterator,
implementation-defined behavior for C++ 575
basic_string::iterator,
implementation-defined behavior for C++ 575
basic_template_matching (pragma directive) 601, 619
batch files
errorreturncodes. oL 258
none for building library from command line 132
Bessel functions,
implementation-defined behavior for C++ 585
Bessel polynomials,
implementation-defined behavior for C++ 586
__BIG (predefined symbol) 424
__BIG_ENDIAN__ (predefined symbol)............. 424
big-endian (byteorder) 64, 346
--bin (ielftool option) 525
binary files, linker forcing inclusionof. 325
binary integer literals, supportfor................... 194
binary Streams.oiuitii i 605
binary streams in C89 (DLIB). 621
binary_function (deprecated function), enabling. 444
bind expressions, placeholders,
implementation-defined behavior for C++ 573
--bin-multi (ielftool option). 525
bitnegation.ottt 242

bitfield allocation strategy
joined types, enabling 282,299

Index °

bitfields
data representationof. L L. 348
hints. 227
implementation-defined behavior for C++.......... 566
implementation-defined behaviorinC............. 599
implementation-defined behavior in C89........... 617
non-standard typesin........... 192

bitfields (pragma directive). 382

bitfield, value of,
implementation-defined behavior for C++563-564, 566

bits in a byte, implementation-defined behaviorin C 595
bitset (library header file) 440
bits, number of in one byte,
implementation-defined behavior for C++ 556
bold style,inthisguide.............. 42
bool (datatype)....... ...t 347
adding support forin DLIB 439, 443
--bounds_table_size (linker option) 311
branches, eliminating redundant (optimization) 235
__break (intrinsic function). L 410
BRK (assembler instruction). 410
buffer overflow, protection against. 86
build for directive (in linker configuration file) 451
building_runtime (pragma directive). 602, 619
_ BUILD_NUMBER___ (predefined symbol) 424
byteorder......... ... i 64, 346
identifying i 424, 428
identifying (_ BIG_ENDIAN__) 424
Byte Order Mark, suppressing 330
bytes, number of bits in,
implementation-defined behavior for C++ 556
CandC++linkage, 176
C/C++ calling convention. See calling convention
Cheaderfiles 438
C language, OVeIviewcoovuiinenann.. 189
C library functionsand ROPL 211
call frame information 184

627

628

disabling (--no_call_frame_info)................. 286

inassembler listfile......... 173

in assembler list file (-1A), 283
call graph root (stack usage control directive). 501
callstack. L 184
callee-save registers, stored on stack. 74
calling convention

C++, requiring C linkage 174

incompiler. i 175
calloc (library function) 75

See also heap
implementation-defined behavior in C89 (DLIB) 622

calls (pragma directive). 383
--call_graph (linker option). 316
call_graph_root (pragma directive). 384
call-info (in stack usage control file). 504
canaries. See stack canary
--canary_value (compiler option) 268
can_instantiate (pragma directive) 602, 619
caseranges, GNU style. 196
cassert (library headerfile) 442
casting

implementation-defined behavior for C++. 562-564

of pointers and integersc....... 355

pointers to integers, language extension. 194
category (in stack usage control file) 503
CBbase registero.v ettt i 211
ccomplex (library header file). 442
cctype (DLIB headerfile). 442
cerrno (DLIB headerfile) 442
cexit (system termination code)

customizing system termination. 146
<cfenv> functions and floating-point,
implementation-defined behavior for C++ 583
cfenv (library header file) 442
CFI (assembler directive) 184
cfloat (DLIB headerfile) 442
changing default behavior. 215
char (datatype).o.ouiininin i, 347

changing default representation (--char_is_signed) . . . 268

IAR C/C++ Development Guide
Compiling and linking for RX

changing representation (--char_is_unsigned) 269
implementation-defined behavior for C++.......... 561
implementation-defined behaviorinC............. 596
signed and unsigned. L, 348
character literals,
implementation-defined behavior for C++ 559, 567
character set
implementation-defined behavior for C++. 556-557
implementation-defined behaviorinC............. 594
characters
implementation-defined behaviorinC............. 595
implementation-defined behavior in C89........... 614
charconv (library header file) 440
--char_is_signed (compiler option). 268
--char_is_unsigned (compiler option) 269
char_traits<charl6_t>::eof,
implementation-defined behavior for C++ 574
char_traits<char32_t>::eof,
implementation-defined behavior for C++ 574
char_traits<wchar_t>::eof,
implementation-defined behavior for C++ 575
charl6_t(datatype) 348
implementation-defined behaviorin C............. 597
char32_t(datatype), 348
implementation-defined behaviorin C............. 597
check that (linker directive) 480
checksum
calculationof L ool 217
display format in C-SPY forsymbol 225
--checksum (ielftool option) 526
chrono (library header file) 440, 447
steady_clock, not available in Libc++ 440
cinttypes (DLIB header file)....................... 442
cis0646 (library header file) 442
class type, passing argument of,
implementation-defined behavior for C++ 563
climits (DLIB header file). 442
clobber 166
clocale (DLIB headerfile) 442

clock (DLIB library function),

implementation-defined behaviorin C89 623
CLOCKS_PER_SEC (time.hmacro) 447
andclock(). 148
clustering (compiler transformation). 238
disabling (--no_clustering). 286
cmath (DLIB headerfile) 443
code
dead, eliminating (optimization) 235
facilitating for good generationof 239
hoisting (optimization). 235
interruption of execution 79
--code (ielfdump option). 530
code motion (compiler transformation). 237
disabling (--no_code_motion) 287
code protection, changing the default 215
__code (function pointer)oouenenan.. 355
codecvt (library headerfile) 440
codeseg (pragma directive). 602, 619
code, interruption of execution 80

coercion. See casting
command line flags. See command line options
command line options

See also compiler options

See also linker options

TARutilities. i 524

part of compiler invocation syntax. 249

part of linker invocation syntax 250

PaSSING. . oottt 250

typographic conventionc........ 42
command line switches. See command line options
command prompt icon, in this guide. 42
.comment (ELF section) 489
comments

after preprocessor directives 195
common block (call frame information) 184
common subexpr elimination (compiler transformation) . 237

disabling (--n0_CS€) . . . v v it 287
compilation date

exacttime of (_ TIME_)...................... 431

Index

identifying (_ DATE_) 425
compiler
environment variables L L. 251
INVOCAtioN SYNAX . « . oot e et e e e 249
output from 252
version number, testing, 431
compiler listing, generating (-1). 282
compiler objectfile. 56
including debug information in (--debug, -r) 271
output from compiler. 252
compiler optimization levels. 235
compiler options 259
passingtocompiler L. 250
reading from file (-f) 279
reading from file (--f). L. 280
specifying parametersc...o.on.... 261
SUMMATY « o\ v voe e ettt ettt e e e ee e aene 261
SYILAX. © o vt ettt et e 259
for creating skeletoncode 173
instruction scheduling 239
compiler platform, identifying 427
compiler subversion number. 431
compiler transformations 234
compiling
from the commandline 63
SYILAX. © o vt ettt et e 249
complex (library header file). 440
complex.h (library header file) 438
computer style (monospace font), typographic convention. 42
concatenating Strings. 196, 205
concatenating wide string literals with different encoding
types, implementation-defined behaviorinC 597
condition_variable (library header file). 440
--config (linkeroption), 316
configuration
basic project settings, 63
_low_levelinit 146

configuration files
for library project. See library configuration files
for linker. See linker configuration file

—e

629

630

configuration symbols

for file inputand output. 156

forstrtod 158

in library configuration files. 132

in linker configurationfiles 481

specifying for linker. 316
--config_def (linker option) 316
--config_search (linker option) 317
consistency, module 119
constseg (pragma directive) 602, 619
const_mem_fun (deprecated function), enabling 444
const_mem_fun_ref_t (deprecated function), enabling. . . 444
const, declaring objects. 360
contents, of thisguide. 38
control characters, implementation-defined behavior in C 610
conventions, used in thisguide 41
conversion (type). See casting
copyright noticet 2
__CORE__ (predefined symbol). 425
core

identifying i 425
cos (library function) 436
__COUNTER__ (predefined symbol). 425
__cplusplus (predefined symbol) 425
cplusplus_neutral (pragma directive) 602
--cpp_init_routine (linker option) 317
--create (iarchive option). 531
cross call (compiler transformation) 239
csetjmp (DLIB headerfile). 443
csignal (DLIB header file) 443
cspy_support (pragma directive). 602, 619
CSTACK (ELF block)

settingupsizefor. L 111
cstartup (system startupcode). 142

customizing system initialization. 146

source files for (DLIB). 142
cstat_disable (pragma directive) 379
cstat_dump (pragma directive) 602
cstat_enable (pragma directive) 379

IAR C/C++ Development Guide
Compiling and linking for RX

cstat_restore (pragma directive) 379
cstat_suppress (pragma directive). 379
cstdalign (DLIB header file)....................... 443
cstdarg (DLIB headerfile) 443
cstdbool (DLIB headerfile) 443
cstddef (DLIB headerfile) 443
cstdio (DLIB headerfile) 443
cstdlib (DLIB headerfile). 443
cstdnoreturn (DLIB header file) 443
cstring (DLIB header file). 443
ctgmath (library header file) 443
cthreads (DLIB headerfile) 443
ctime (DLIB header file). 443
ctype::table_size,
implementation-defined behavior for C++ 576
ctype.h (library header file). 438
cuchar (DLIB headerfile). 443
cwctype.h (library header file) 443
cyl_bessel_i functions,
implementation-defined behavior for C++ 585
cyl_bessel_j functions,
implementation-defined behavior for C++ 585
cyl_bessel_k functions,
implementation-defined behavior for C++ 585
cyl_neumann functions,
implementation-defined behavior for C++ 585
__c_base (intrinsic function). 411
C_INCLUDE (environment variable). 251
C-RUN runtime error checking, documentation.. 40
C-SPY
debug support for C++.l 203
interface to system termination 146
C-SPY emulated /O, enabling 318
C-STAT for static analysis, documentation for. 40
C++
absolute location 232
callingconvention 174
headerfiles. 439
implementation-defined behavior 555
language extensions.t 203

manual dynamic initialization 317, 328
static member variables 232
supportfor. 49
--c++ (compileroption) 269
Ct++headerfiles.......... 439
C++ objects, placing in memory type 72

C++17. See Standard C++
C18. See Standard C

C89
implementation-defined behavior 613
supportfor......... L 189
--c89 (compileroption). 268
C90 and C94. See C89
-D (compileroption). i 270
-d (iarchive option) i 531
data
alignmentof. i 345
different ways of storing 67
located, declaringextern 232
placing. 230
at absolute location 231
representationof 345
SEOTAZE « o v v v vttt ettt e e e 67
data block (call frame information). 184
data memory attributes, using. 69
datamodels. il 72
configuration il i i 65
identifying (_ DATA_MODEL_)............... 425
datapointerst 355
datatypes . ..o v vt 346
floating point i 353
IMCH . 360
INEEEET LY PLS. « v v v vttt e e 347
dataseg (pragma directive) 602, 619
data_alignment (pragma directive) 384
_ DATA_MODEL__ (predefined symbol) 425

Index °

--data_model (compiler option) 270
__datal6 (extended keyword). 366
datal6 (Memory type). .« o v v vttt e 68
.datal6.bss (ELFsection) 489, 497
.datal6.data (ELF section) 489
.datal6.data_init (ELF section). 490
.datal6.noinit (ELF section) 490
.datal6.rodata (ELF section). 490
__data24 (extended keyword). 366
data24 (Memory type). . . o v v vt 68
.data24.bss (ELFsection)couvuun... 490
.data24.data (ELF section) 490
.data24.data_init (ELF section). 491
.data24.noinit (ELF section) 491
.data24.rodata (ELF section). 491
__data32 (extended keyword). 367
__data32 (datapointer)c.cuenenenann.. 355
data32 (Memory type). ovvinea 69
.data32.bss (section) 491
.data32.data(section)iiiiiian.. 492
.data32.data_init (section)., 492
.data32.noinit (section) 492
.data32.rodata (section).t 492
__DATE__ (predefined symbol). 425

implementation-defined behavior for C++.......... 568
date (library function), configuring support for. 130
daylight savings time (DLIB), enabling 340
__DBLA4 (predefined symbol). 425
__DBLS8 (predefined symbol). 426
dead code elimination (optimization) 235
--debug (compiler option). 271
debug information

excluding from executable image 339

including in objectfile. 271
.debug (ELF section).covuinininnnnen.. 488
__DebugBreak function, with ROPI................. 211
--debug_heap (linker option) 311
--debug_lib (linker option) 318

decimal point, implementation-defined behavior in C . .. 609

631

632

declarations

CBIMPLY . . oottt 195
Kernighan & Ritchie 242
of functions L. 176
declarators, implementation-defined behavior in C89. .. .618
default_no_bounds (pragma directive) 379
--default_to_complex_ranges (linker option) 318
define block (linker directive). 459
define memory (linker directive) 452
define overlay (linker directive) 464
define region (linker directive) 452
define section (linker directive) 461
define symbol (linker directive) 481
--define_symbol (linker option) 318
define_type_info (pragma directive)............. 602, 619
define_without_bounds (pragma directive)............ 380
define_with_bounds (pragma directive) 380
delay code, inserting., 411
__delay_cycles (intrinsic function). 411
--delete (iarchive option). 531
delete (keyword). 75
denormalized numbers. See subnormal numbers
--dependencies (compiler option) 271
--dependencies (linker option) 319
deprecated (pragma directive). 387
--deprecated_feature_warnings (compiler option). 272
deque (library header file). 440
designated initializer ranges, GNU style.............. 197
destructors and interrupts, using 202
device description files, preconfigured for C-SPY 50
devices, interactive,
implementation-defined behavior for C++ 556
DI (assembler instruction). 411
diagnostic MEeSSAZES . .« v v vt e e 256
classifying as compilationerrors 273
classifying as compilation remarks 273
classifying as compiler warnings 274
classifying as errors 288
classifying as linker warnings 321
classifying as linkingerrors 320

IAR C/C++ Development Guide
Compiling and linking for RX

classifying as linking remarks 320
disabling compiler warnings 293
disabling linker warnings. 334
disabling wrapping of in compiler................ 293
disabling wrapping of inlinker 334
enabling compiler remarks., 298
enabling linker remarks 337
listing all used by compiler 275
listing all used by linker. 321
suppressing incompiler. 274
suppressing inlinker 321
diagnostics
farchive 509
implementation-defined behavior for C++. 555
implementation-defined behaviorinC............. 593
objmanip. 516
ISYMEXPOIT. . o ettt et e e e e e 522
--diagnostics_tables (compiler option) 275
--diagnostics_tables (linker option). 321
diag_default (pragma directive) 388
--diag_error (compiler option) 273
--no_fragments (compiler option). 288
--diag_error (linkeroption). 320
diag_error (pragma directive) 388
--diag_remark (compiler option). 273
--diag_remark (linker option) 320
diag_remark (pragma directive) 389
--diag_suppress (compiler option) 274
--diag_suppress (linker option) 321
diag_suppress (pragma directive) 389
--diag_warning (compiler option). 274
--diag_warning (linker option) 321
diag_warning (pragma directive) 389
DIFUNCT (Section)ovvviieeiineennn. 493
directives
Pragma.vviti it 51,379
stack usagecontrol. L 500
tothelinker 449
directory, specifying as parameter 260

disable_check (pragma directive) 380
__disable_interrupt (intrinsic function). 411
--disasm_data (ielfdump option). 532
--discard_unused_publics (compiler option). 275
disclaimer.t 2
DLIB. ...t 437
configurationsouiiiiiinnan.. 133
configuringc.c.iiiiiiian.. 131, 275
CH4SUPPOIt. . oottt e 49
Naming CONVention.vuvenenenenen .. 43
reference information. 435
runtime environmentouuuen... 123
--dlib_config (compiler option). 275
DLib_Defaults.h (library configuration file). 132
__DLIB_FILE_DESCRIPTOR (configuration symbol) . . 156
do not initialize (linker directive) 468
document conventionsc.oueniiin.. 41
documentation
contents of this. 38
howtousethis............ 37
overview of guides. 39
who shouldread this 37
$$ (in reserved identifiers) 255

domain errors, implementation-defined behavior in C . . . 604
domain errors, implementation-defined behavior in C89

(DLIB) . ettt e et e e e e 620
--double (compiler option), 277
double underscore (in reserved identifiers). 255
double (datatype)ot 353
avoiding.o 227
configuring size of floating-point type. 65
--do_explicit_zero_opt_in_named_sections
(compiler option)c.c.iiiiiiiiiiii. 276
do_not_instantiate (pragma directive)............ 602, 619
duplicate section merging (linker optimization) 122
dynamic initialization L oL 142
and CH++. ..o 98
dynamic memory i 75

Index °

-e (compileroption) i 277
EARLYDIFUNCT (section).ovueunnn.. 493
early_initialization (pragma directive) 602, 619
--edit (iIsymexport Option).c...vunininen. .. 532
edition, of thisguide L 2
EI (assembler instruction). 411
ELFutilities 507
embedded systems, IAR special supportfor............ 51
empty region (in linker configuration file) 457
empty translationunit.o L. 196
__enable_interrupt (intrinsic function) 411
--enable_restrict (compiler option) 278
--enable_stack_usage (linker option) 322
enabling restrict keyword oLl 278
encoding in textoutputfile................ 339
encodings 254
Rawo 254
system defaultlocale 254
Unicode......... i 254
UTF-16 . ..o 254
UTF-8 .. oo 254
endianness. See byte order
--entry (linkeroption) 322
entry label, program oo 143
entry point, Setting to Zeroouoiiun.. 331
--entry_list_in_address_order (linker option) 323
entry, implementation-defined behavior for C++ 560
enum (data type) ovvv i 347
enumerations
datarepresentation. 347
forward declarationsof 194
implementation-defined behavior for C++.......... 565
implementation-defined behaviorin C............. 599
implementation-defined behaviorin C89........... 617
--enum_is_int (compiler option) 278
environment
implementation-defined behaviorin C............. 594

633

634

implementation-defined behavior in C89........... 613

native, implementation-defined behaviorin C. 610
runtime (DLIB) 123
environment names,
implementation-defined behaviorinC 595
environment variables
CINCLUDE.ttt 251
ILINKRX CMD_LINE...........c.ccovevuienn.. 251
QCCRX . ittt e 251
EQU (assembler directive) 297
ERANGE e 604
ERANGE (C89) . ..ot vi et i 620
errno value at underflow,
implementation-defined behaviorinC 607
errno.h (library header file). 438
error checking (C-RUN), documentation 40
CITOL MESSAZES .« « « v v voee e et te e et ie e ee e 257
classifyingo i 288
classifying forcompiler............ 273
classifying forlinker 320
TANZE © o v ettt e e e 117
errorreturncodes i 258
error (linker directive). 485
error (pragma directive) i 390
errors and warnings, listing all used by the compiler
(--diagnostics_tables) i 275
errors, causing linking tostop. 323
error_category,
implementation-defined behavior for C++ 569
--error_limit (compiler option) 279
--error_limit (linker option) 323
escape sequences
implementation-defined behavior for C++.......... 559
implementation-defined behaviorinC............. 596
exception handler for floating-point 80
exception handlers
_ floating_point_handler........................ 80
_ NMI handler................. 80
__privileged_handler.............. 80
_undefined_handler........................... 80

IAR C/C++ Development Guide
Compiling and linking for RX

exception vectortable. 493
exception (library header file). 440
__EXCEPTIONS (predefined symbol). 426
exception_neutral (pragma directive) 602
exception::what,
implementation-defined behavior for C++ 571
.exceptvect (SECtion)o vttt i 493
__exchange (intrinsic function). 411
exclude (stack usage control directive)............... 500
execution character set
implementation-defined behavior for C++. 557
implementation-defined behaviorin C............. 595
execution wide-character set,
implementation-defined behavior for C++ 557
_Exit (library function) oL 145
exit (library function) 145
implementation-defined behavior for C++.......... 570
implementation-defined behaviorinC............. 607
implementation-defined behaviorin C89........... 622
_exit (library function) 145
_exit(library function) 145
export (linker directive) 481
--export_builtin_config (linker option) 323
--export_locals (isymexportoption) 532
expressions (in linker configuration file) 482
extended alignment,
implementation-defined behavior for C++ 573
extended command line file
forcompiler.......... 279-280
forlinker L. 323-324
passing Optionsc.iiitinii .. 250
extended keywords i i 361
enabling (-€). 277
OVEIVIEW ..\ttt 51
SUMIMALY © o et ovet ettt et e e et ie e ee e 365
SYIEAX. « v v ettt ettt e 70
object attributes. i 364
type attributes on data objects. 362
type attributes on functions. 363
__code (function pointer). 355

__data32 (datapointer)c.in.... 355
extended-selectors (in linker configuration file) 478
extern "C"linkage. i, 201
--extract (iarchive option) 533
-f (compileroption). oL 279
-f IAR utility option) o 533
-f(linkeroption) oo 323
--f (compileroption) Ll 280
-—f(linkeroption) Ll 324
-—f (TARutility option), 534
--fake_time (IAR utility option) 534
fast interrupt functions L. 80
__fast_interrupt (extended keyword) 367
fatal error messages 257
fdopen,instdio.h L 445
fegettrapdisable. i 445
fegettrapenable i 445
FENV_ACCESS

implementation-defined behavior for C++.......... 583

implementation-defined behaviorinC............. 598
fenv.h (library header file) 438, 442

additional C functionality. 445
fgetpos (library function)

implementation-defined behaviorinC............. 606

implementation-defined behaviorin C89........... 622
_ FILE__ (predefined symbol)..................... 426
file buffering, implementation-defined behaviorin C. . . . 605
file dependencies, tracking 271, 319
file input and output, configuration symbols for........ 156
file paths, specifying for #include files. 281
file position, implementation-defined behaviorinC. 605

file (zero-length), implementation-defined behavior in C . 605
filename

extension for device description files. 50
extension for header files. 50
extension for linker configuration files 50

Index

of object executable image. 335

of objectfile. 295, 335

search procedure for. L. 251

specifying as parameterc..... 260
filenames (legal), implementation-defined behavior in C . 605
fileno,instdioh 445
filesystem::file_size,
implementation-defined behavior for C++ 589
filesystem::status,
implementation-defined behavior for C++ 589
files, implementation-defined behavior in C

handling of temporary 606

multibyte charactersin............, 605

OPENING . ettt ettt e et 605
-fill (ielftool option). i 535
FINTYV (register)

getting the value of (__get FINTV_register)........ 413

writing a value to (__set_FINTV_register) 418-419
float (datatype).o 353
__floating_point_handler (exception handler) 80

floating-point constants

implementation-defined behavior for C++.......... 562
implementation-defined behaviorin C............. 598
floating-point environment, accessingornot 402
floating-point exception handler. 80
floating-point expressions, contracting ornot. 402
floating-point format. 353
Casting tO INLEEET . . . o vt e e e e 228
hints........ i 227-228
implementation-defined behaviorin C............. 598
implementation-defined behavior in C89........... 616
special cases. 354
unimplemented processing handler 80, 354
32-bits .. 353
64-bits 354
floating-point literals,
implementation-defined behavior for C++ 559
floating-point status flags 445

—e

635

636

floating-point types,

implementation-defined behavior for C++ 561
floating-point type, configuring size of double.......... 65
float.h (library header file) 438
FLT_EVAL_METHOD,
implementation-defined behaviorinC 598, 603, 608
FLT_ROUNDS,
implementation-defined behaviorin C 598, 608
fmod (library function),
implementation-defined behaviorin C89 620
--force_output (linker option) 325
formats

floating-point values 353

standard IEC (floating point) 353
forward_list (library header file). 440
FPSW (register)

getting the value of (__get FPSW _register) 413

writing a value to (__set FPSW _register) 419
__FPU (predefined symbol) 426
_ FPU__ (predefined symbol) 426
--fpu (compileroption) 280
FP_CONTRACT

changing default behaviorof 288

implementation-defined behaviorinC............. 599

pragmadirective for. L Lol 402
_fplo(datatype).covii 353
fragmentation, of heap memory 75
free (library function). See alsoheap 75
freopen (function) L i 447
--front_headers (ielftool option) 536
fsetpos (library function),
implementation-defined behaviorinC 606
__FSQRT (intrinsic function) 412
FSQRT (assembler instruction), disabling 302
fstream (library headerfile) 440
ftell (library function)

implementation-defined behaviorinC............. 606

implementation-defined behavior in C89........... 622
Full DLIB (library configuration) 134
__func__ (predefined symbol) 427

IAR C/C++ Development Guide
Compiling and linking for RX

implementation-defined behavior for C++.......... 565
__FUNCTION__ (predefined symbol) 427
function calls

callingconvention, 175

eliminating overhead of by inlining 85
function declarations, Kernighan & Ritchie 242
function entry point, forcing alignmentof 240, 267
function execution, inRAM 77
function inlining (compiler transformation) 237

disabling (--no_inline) 288
function inlining (linker optimization) 121
function names,
prefixed by extra underscore. 103, 314, 499
function pointer to object pointer conversion,
implementation-defined behavior for C++ 564
function pointers.t 355
function prototypes.covi it 241

enforcing 298
function return addresses 179
function (pragma directive). 602, 619
function (stack usage control directive) 500
functional (library headerfile) 440
functions. i 71

declaring i 176, 241

fastinterrupt. i 80

inlining. 237, 240, 391

INEETTUPL . o oe e et et 79, 81

INMFANSIC . o et e e 163, 240

MONITOTttt 81

PATAMELETS « . oot e et e e e 177

placinginmemory........................ 230, 232

recursive

avolding 240
storing dataonstack 74

reentrancy (DLIB) 436

related extensions. il 71

return values from L L oL oLl 179

special function types. 78
functions from Annex K of the C standard,
implementation-defined behavior for C++ 568

function_category (pragma directive)............ 390, 602
function_effects (pragma directive) 602, 619
function-spec (in stack usage control file). 503
future (library header file). 440
-g (felfdumpoption) i 546
GCCattributes 376
--generate_entries_without_bounds (compiler option) . . .263
generate_entry_without_bounds (pragma directive). 380
--generate_vfe_header (isymexport option) 536
getw,instdioh........ i 445
getzone (library function), configuring support for. 130
__get_FINTV _register (intrinsic function) 412-413
__get_ FPSW_register (intrinsic function). 413
__get_interrupt_level (intrinsic function) 413
__get_interrupt_state (intrinsic function) 413
__get_interrupt_table (intrinsic function) 414
__get_ISP_register (intrinsic function) 414
get_pointer_safety,
implementation-defined behavior for C++ 572
__get_ PSW_register (intrinsic function). 414
__get_return_address (intrinsic function) 414
__get_SP (intrinsic function) 414
get_unexpected (deprecated function), enabling. 444
__get_USP_register (intrinsic function) 414
global arrays, accessingc...oeueuiiaenan. 182
global symbols, updating typeless. 551
global variables
ACCESSING . v v vttt e e e 182
affected by static clustering 238
handled during system termination 145
hints fornotusing 240
initialized during system startup 144
GNU style
CASETANGES. . o v vt vt e ettt e e e 196
designated initializer ranges. 197
statement eXpressions. 196

Index °

GRP_COMDAT, group typecveueuenen... 517
--guard_calls (compiler option). 281
guidelines for reading this guide. 37
Harbison, Samuel P. o L 41
hardware problems, avoiding using --patch option 295
hardware supportincompiler...................... 123
hash_map (library headerfile) 440
hash_set (library header file). 440
hdrstop (pragma directive) 602, 619
header files
C o 438
Gt o 439
library 436
special functionregisters 243
DLib_Defaults.h, 132
implementation-defined behavior for C++.......... 568
including stdbool.h forbool. 347
header names
implementation-defined behavior for C++.......... 558
implementation-defined behaviorinC............. 600
--header_context (compiler option). 281
heap
advanced il 209
basic. 209
dynamic memoryt 75
nofree........ i 209
storingdata o 67
VLA allocatedon. 307
heap sections
DLIB ... 210
placing. 112
heap size
and standard I/O. oL L 210
changingdefault. 112
HEAP (ELF section).uiuiiuinnnann. 210
HEAP (section).t 493

637

638

heap (zero-sized), implementation-defined behavior in C. 607

_HEAP_SIZE (symbol) c.oo... 112
hermite functions,

implementation-defined behavior for C++ 586
Hermite polynomials,

implementation-defined behavior for C++ 586
hide (isymexport directive). 520

High-performance Embedded Workshop, migrating from . 40
hints

for good code generation 239

implementation-defined behavior 599

using efficient datatypes 227
hoisting (optimization) 235
-I (compileroption). 281
IAR Command Line Build Utility. 132
IAR Technical Support., 258
iarbuild.exe (utility) i 132
jarchive. 507

commands SUMMATYvuervnenennenenenen . 508

OPHONS SUMMAIY .« ..t voetee e ettt eeeee e 509
__iar_cos_accuratef (library function) 436
__iar_cos_accuratel (library function) 436
iar_dlmalloc.h (library header file)

additional C functionality. 445
__lar_maximum_atexit_calls 112
__iar_pow_accuratef (library function). 436
__iar_pow_accuratel (library function). 436
__iar_program_start (label). 143
__iar_sin_accuratef (library function). 436
__iar_sin_accuratel (library function). 436
__IAR_SYSTEMS_ICC__ (predefined symbol) 427
__iar_tan_accuratef (library function). 436
__iar_tan_accuratel (library function). 436
__iar_tIs$$DATA (ELF section). 493
__iar_tIS$SINITDATA (ELF section). 494
dar.debug (ELF section), 489

IAR C/C++ Development Guide
Compiling and linking for RX

dar.dynexit (ELF section)t 494

dar.locale_table (ELF section) 494
__ICCRX__ (predefined symbol)................... 427
icons,inthisguide 42
IDcodes ... 215
IDE
building a library from. 132
overview of buildtools 47
ident (pragma directive) 602
identifiers
implementation-defined behaviorinC............. 595
implementation-defined behavior in C89........... 614
reserved 255
IEC format, floating-point values 353
IEC 60559 floating-point standard 189
ielfdump 513
OPLIONS SUMMALY .« . ot vttt et et et eeeeene 514
ielftool 511
OPLIONS SUMMALY .« . v v vttt et et e eeeeaeeene 512
ielftool address ranges, specifying 513
if (linker directive) i 485
--ignore_uninstrumented_pointers (compiler option)263
--ignore_uninstrumented_pointers (linker option). 312
--ihex (ielftool option)o ion... 536
--ihex-len (ielftool option) 537
ILINKRX_CMD_LINE (environment variable). 251
ILINK. See linker
__illegal_opcode (intrinsic function) 415
--image_input (linker option) 325
image, forcing generationof. 325
implements_aspect (pragma directive) 602
important_typedef (pragma directive)............ 602, 619
#include directive,
implementation-defined behavior for C++ 568
include files
including before source files 296
search procedure implementation for C++.......... 567
SPECIfying . ..ot 251
include (linker directive). 486
include_alias (pragma directive).................... 391

#include_next (preprocessor extension) 432
INfInity . ..o 354
infinity (style for printing),
implementation-defined behaviorinC 606
_init (suffix for initializer sections). 113
initialization
changing default. 112
CH+dynamic...........coviniiiiinnnnn.. 98
dynamicC.o.vn it 142
manual. ... 113
packing algorithm for. 113
single-value i 195
SUPPIESSING « o v vttt et 112
initialization_routine (pragma directive).............. 602
initialize (linker directive). 465
initializers, static.t 194
initializer_list (library header file) 440
.Anit_array (Section).o 494
init_routines_only_for_needed_variables
(pragma directive). 602
--inline (linker option) 326
inline assembler 165
for passing values between C and assembler 245
TSKS ..o 240
See also assembler language interface
inline (pragma directive). 391
__inline_atan2f (intrinsic function). 415
__inline_cosf (intrinsic function) 415
__inline_hypotf (intrinsic function) 416
__inline_sinf (intrinsic function). 416
inline_template (pragma directive) 602
inlining functions oo 85
atlinktime.......... o L 326
compiler transformation. 237
implementation-defined behavior 599
linker optimization. 121
installation directory i 41
instantiate (pragma directive) 602, 619
instruction scheduling (compiler option). 239
--int (compileroption), 282

Index °

int (data type)
configuring size of (--int). 65, 282
identifying size of (__INTSIZE_) 428
int (data type) signed and unsigned. 347
INTB (register)
getting the value of (__get_interrupt_table)......... 414
writing a value to (__set_interrupt_table) 420
integer to floating- point conversion,
implementation-defined behavior for C++ 563
integer to pointer conversion,
implementation-defined behavior for C++ 564
INEEEET LYPES « v vt ettt e e e e e 347
CASING . o v ettt 355
implementation-defined behavior 597
implementation-defined behavior for C++. 561, 563
implementation-defined behaviorin C89........... 615
INPLE ..ot 356
ptrdiff_t. ... 356
SIZE b . ot 356
UINEPEE ettt et e e 356
integral promotionc.iiiiiiiien... 242
Intelhex i 207
interactive devices,
implementation-defined behavior for C++ 556
internalerror. L o i i 257
__interrupt (extended keyword) 79, 368
using in pragma directives 404
interrupt functions. L oL o oo 79
nested interrupts.l 81
interrupt handler. See interrupt service routine
interrupt service routine 79
interrupt state, restoring 420
INEEITUPL VECTOT « . o v vt et e et e et e e e e e 79
specifying with pragma directive. 404
interrupt vector table. L oL 494
startaddressfor o o il 79
interrupts
disabling 368
during function execution..................... 81
initialization. o ool 62

639

640

PrOCESSOL SEALE .« . v v ettt e e e 74

saving and restoring register values. 382
using with C++ destructors 202
usingwithROPI 213
INEPLr_t (INEEZET EYPE) - o v v v v v e et et e e 356
__intrinsic (extended keyword). 368
intrinsic functions Lo 240
OVEIVIBW . o\ttt ettt e e e 163
SUMMATY « v vv ettt et e et et ee e 407
intrinsics.h (header file) 407
__INTSIZE__ (predefined symbol) 428
.dnttable (section) 494
inttypes.h (library header file). 438
__INT_SHORT (predefined symbol) 428
INVOCAtION SYNEAX .« . oo v ve ettt e 249
objmanipo 515
OpLiONS SUMMATY .+« vt v vt eee e ee e 516
iomanip (library header file) 440
ios (library header file) 440
iosfwd (library headerfile) 440
iostream classes,
implementation-defined behavior for C++ 586
iostream (library header file). 440
iostreams templates, instantiation,
implementation-defined behavior for C++ 575
ios_base::sync_with_stdio,
implementation-defined behavior for C++ 587
1s0646.h (library header file). 438
ISP (register)
getting the value of (__get ISP _register)........... 414
writing a value to (__set_ISP_register) 420
ISTACK (section).ovvvininninnennn.. 208, 495
See also stack
_ISTACK _SIZE (symbol)cc.cien. .. 111
istream (library header file). 440
iswalnum (function) 447
iswxdigit (function) L i 447
ISYMEXPOIT © o v vttt ettt e e 518
OPHONS SUMMAIY .« ¢ v voete e te et et e e e e 519
italic style,inthisguide 42

IAR C/C++ Development Guide
Compiling and linking for RX

iterator (library header file). 440
/0
emulatinginC-SPY....... 318

I/O register. See SFR

)

joined types (bitfield allocation strategy)

enabling......... oL 282,299
--joined_bitfields (compiler option) 282
--keep (linkeroption), 326
keep symbol (linker directive) 483
keep (linker directive)., 469
keeping modules during linking 110
keep_definition (pragma directive).............. 602, 619
Kernighan & Ritchie function declarations. 242

disallowing i i i 298
keywords 361

extended, overview of o oL 51
-1 (compileroption). 282

for creating skeletoncode 173
-L (linkeroption) 337
labels. . ..o 195

assembler

prefixed by extra underscore. 103, 314, 499

assembler, making public. 297

redundant, eliminating (optimization) 235

_dar_program_start.eiiienen... 143

_ Program_Start.o.euet et 143
Labrosse,JeanJ.. 41
laguerre functions,
implementation-defined behavior for C++ 586

Laguerre polynomials,
implementation-defined behavior for C++ 585-586
language extensions

enabling using pragma. 392

enabling (-€).cu i 277
language overview 49
language (pragma directive) 392
Legendre functions,
implementation-defined behavior for C++ 586
Legendre polynomials,
implementation-defined behavior for C++ 585-586
__LIBCPP (predefined symbol) 427
_LIBCPP_ENABLE_CXX17_REMOVED_FEATURES
(predefined symbol) 205, 427
Libc++

CHHSUPPOTt. o .ot e et 49

migrating fromDLIB. 205

removed features L 205
--libc++ (compileroption) 283
libraries

reason forusing i 56

required, implementation-defined behavior for C++ . . 556

using aprebuilt oo 135
library configuration files

DLIB ... 134

DLib_Defaults.h 132

modifying i 132

specifying 275
library documentation. 435
library files, linker search path to (--search) 337
library functions

summary, DLIB. 438
library header files 436
librarymodules. oo 90

overriding 130
library objectfiles............ 436
library project, building using a template 132

library_default_requirements (pragma directive) . . .602, 619
library_provides (pragma directive) 602, 619
library_requirement_override (pragma directive) . . . 602, 619

Index °

lifetime of variables (optimization). 235
lightbulb icon, in this guide. 42
limits (library header file). 440
limits.h (library header file) 438
__LINE__ (predefined symbol) 428

link editor. See linker
linkage to other languages,

implementation-defined behavior for C++ 565
linkage, Cand C++.o 176
implementation-defined behavior for C++. . 565-566, 569
linker. 89
checking section types when linking 451
getting version information 341
output from 253
linker commandline. 63

linker configuration file

for placingcodeand data. 93
indepth 449
overview of 449
SElECHING. . o\ vttt 107
specifying on the command line. 316
linker configuration, exporting to file................ 323
linker messages, disabling 338
linker object executable image,
specifying filename of (-0) 335
linker optimizations 121
duplicate section merging 122
small function inlining. 121
virtual function elimination 121
linker options 311
typographic convention 42
reading fromfile (-f) Lo 323
reading from file (--f). L 324
SUMMATY © et v ve e ettt et et e e eeaenen 311
linking
from the command line 63
inthe build process 57
introduction il 89
keeping modules L. 110
process for. i 91

641

642

list (library headerfile) 440
listing, generating in compiler (-1). 282
__LIT (predefined symbol). 428
literature, recommended, 41
__LITTLE_ENDIAN__ (predefined symbol).......... 428
little-endian (byte order) 64, 346
live-dead analysis (optimization) 235
local symbols, removing from linked image 332
local variables. See auto variables
localet 157
changingatruntime 158
implementation-defined behavior for C++.......... 576
implementation-defined behaviorin C......... 597, 609
library headerfile. 441
linkersection, 494

locale.h (library header file) 438
located data, declaringextern 232
location (pragma directive). 231,393
--lock (compileroption), 284
--log (linkeroption) ciiiininan... 327
logging, enabling in linker (--log). 327
logical (linker directive), 453
--log_file (linker option) 328
long double (datatype)..........coouinininnnenn. 353
long float (data type), synonym for double............ 194
long long (data type)
avoiding.o o 227
TESIIICHONS . . . oottt et 347
signed and unsigned. oL 347
long (data type), signed and unsigned. 347
longjmp, restrictions forusing 437
loop optimizations, facilitating 227
loop unrolling (compiler transformation) 237
disabling 293, 396
PrEVENUNG . . .o v vttt et e 403
#pragmaunroll. L oo 403
loop-invariant eXpressionsoen... 237
Cdow_levelimit. ... 143

IAR C/C++ Development Guide
Compiling and linking for RX

CUSTOMIZING .« vt e ettt e e 146

initialization phase. L L. 59
low_level init.ct 142
low-level processor operations 190

ACCESSING . o v vttt et e e 163
Ivalue-to-rvalue conversion,
implementation-defined behavior for C++ 562
1277, packing algorithm for initializers............... 466
__macl (intrinsic function) 416
macros

embedded in #pragma optimize 396

ERANGE (inerrno.h) 604, 620

inclusionof assert, 432

NULL

implementation-defined behaviorinC 604
implementation-defined behavior in C89 for DLIB 620

substituted in #pragma directives. 190
--macro_positions_in_diagnostics (compiler option)284
__macwl (intrinsic function) 416
__macw?2 (intrinsic function) 417
main (function)

definition (C89) i 613

implementation-defined behavior for C++. 559-561

implementation-defined behaviorinC............. 594
malloc (library function)

Seealsoheap 75

implementation-defined behavior in C89........... 622
--mangled_names_in_messages (linker option) 328
Mann,Bernhard 41
--manual_dynamic_initialization (linker option). 328
--map (linkeroption). 329
map file (linker)

Producing.vi i 329
map (library header file) 441
math functions rounding mode,
implementation-defined behaviorinC 608

math functions (library functions). 141
IMOT'e aCCUrate Versions.oueennnn.. 142
smaller versions. 141
—accurate_math 315
—small math 338

math.h (library header file) 438

max recursion depth (stack usage control directive) 502

--max_cost_constexpr_call (compiler option). 285

--max_depth_constexpr_call (compiler option) 285

MB_LEN_MAX, implementation-defined behavior in C. 608

memory
ACCESSING . o v vttt 65, 68, 181

using datalé6 method, 182
using data24 method L. 182
using data32 method 183
using sbrel method 183
allocating in C++. . ..o 75
dynamicC.ottt 75
heap 75
non-initialized L L L. 245
RAM, Savingcovvi i 240
releasing in C++. 75
SEACK. « .o 74
SAVINE .« v v v vttt e e 240
used by global or static variables 67

memory clobber L i 166

memory map
initializing SFRs oLt 146
linker configurationfor 107
output fromlinker 254
producing (--map)oeuiiiiia. 329

memory placement
using pragma directive. oL 70
using type definitions. 70

MEMOTY LYPES - « e ettt ettt e et e ie e 68
Gt o 72
placing variablesin 72
POINLETS . oottt et ettt et e 71
specifying 69

Index °

SETUCTUTES .« v v et ettt et e e e et e e e e e 71

SUMMATY .o vvvtt e te ettt it e e eeen s 69
memory (library header file). 441
memory (pragma directive). 602, 619
merge duplicate sections. 122
-merge_duplicate_sections (linker option) 330
message catalog,
implementation-defined behavior for C++ 577
message (pragma directive) 394
messages

disablingincompiler 301

disablinginlinker 338

forcingincompiler. 394
messages::do_close,
implementation-defined behavior for C++ 577
messages::do_get,
implementation-defined behavior for C++ 577
messages::do_open,
implementation-defined behavior for C++ 576
Meyers, SCOtt . ..o .vu vt 41
--mfc (compileroption). i 285
migration

from a UBROF-based product.................... 40

fromDLIB toLibe++ oLt 205

fromRenesas HEW 40
migration, from earlier IAR compilers 40
--misrac (compileroption) 263
--misrac (linkeroption). 313
--misrac_verbose (compiler option) 264
--misrac_verbose (linker option). 313
--misrac1998 (compileroption) 263
--misrac1998 (linker option) 313
--misrac2004 (compiler option) 263
--misrac2004 (linker option) 313
mode changing, implementation-defined behavior in C . . 606
module consistency. 119

rtmodel. 399
modules

introductiono il 90
modules, keeping during linking. 110

643

644

module_name (pragma directive) 602, 620

module-spec (in stack usage control file) 503
__monitor (extended keyword)..................... 368
monitor functions i 81, 368

monospace font, meaning of in guide. See computer style
monotonic_buffer_resource,

implementation-defined behavior for C++ 572-573
Motorola S-records. i 207
__MOVCO (intrinsic function). 417
MOVCO (assembler instruction) 417
__MOVLI (intrinsic function). 417
MOVLI (assembler instruction) 417
multibyte characters
implementation-defined behavior for C++.......... 574
implementation-defined behaviorinC......... 595, 609
supportinprintf. 336
supportinscanf i 337
multithreaded environment. 158
implementation-defined behaviorinC............. 594
multi-character literals, value of,
implementation-defined behavior for C++ 558
multi-file compilation. oL 234
mutex (library header file) 441

MVTIPL (machine instruction), disabling from output. . . 295

N

name (in stack usage control file) 504
names block (call frame information). 184
Naming CONVENtionsc.vueuenenennenenen.. 43
NaN
floating-point representation 354
fordoubles......... i 354
implementationof 354
implementation-defined behaviorinC............. 606

native environment,
implementation-defined behaviorinC 610
native_handle_type,
implementation-defined behavior for C++ 590

IAR C/C++ Development Guide
Compiling and linking for RX

native_handle,

implementation-defined behavior for C++ 590
NDEBUG (preprocessor symbol) 432
negative values, right shifting,

implementation-defined behavior for C++ 564
__nested (extended keyword) 369
nested INEeITUPLSo vt e et 81
Neumann functions,

implementation-defined behavior for C++ 585-586
new (keyword) 75
new (library headerfile) 441
NMI vectors, inROPIL. 211
__NMI_handler (exception handler).................. 80
no calls from (stack usage control directive)........... 502
--nonportable_path_warnings (compiler option). 293
non-initialized variables, hints for. 245
Non-Plain Old Functions (POF),

implementation-defined behavior for C++ 571
non-scalar parameters, avoiding 240
NOP (assembler instruction). 417
__noreturn (extended keyword) 371
Normal DLIB (library configuration) 134
--nosave_tfu (compileroption) 289
Not a number. See NaN

now (function)t 447
__no_alloc (extended keyword) 369
__no_alloc_str(operator)c.iiin.. 370
__no_alloc_strl6 (operator), 370
__no_allocl6 (extended keyword) 369
--no_bom (ielfdumpoption) 537
--no_bom (iobjmanipoption) 537
--no_bom (isymexport option) 537
--no_bom (compileroption) 286
--no_bom (iarchive option). 537
--no_bom (linker option). 330
no_bounds (pragma directive). 381
--no_call_frame_info (compiler option) 286
--no_clustering (compiler option) 286
--no_code_motion (compiler option) 287
--no_cross_call (compiler option). 287

--no_cse (compileroption), 287
--no_default_fp_contract (compiler option) 288
--no_entry (linkeroption) 331
--no_exceptions (compiler option) 288
--no_fragments (linker option) 331
--no_free_heap (linker option) 331
--no_header (ielfdump option) 537
__no_init (extended keyword) 245,371
--no_inline (compiler option) 288
--no_inline (linker option). 332
--no_library_search (linker option). 332
--no_locals (linker option) 332
--no_normalize_file_macros (compiler option). 289
__no_operation (intrinsic function). 417
--no_path_in_file_macros (compiler option). 289
no_pch (pragma directive) 602, 620
--no_range_reservations (linker option) 333
--no_rel_section (ielfdump option) 538
--no_remove (linkeroption) 333
--no_rtti (compiler option) 289
--no_scheduling (compiler option) 290
__no_scratch (extended keyword) 371
--no_shattering (compiler option) 290
--no_size_constraints (compiler option) 290
no_stack_protect (pragma directive)................. 394
--no_static_destruction (compiler option)............. 291
--no_strtab (ielfdump option) 538
--no_system_include (compiler option) 291
--no_tbaa (compileroption) 291
--no_typedefs_in_diagnostics (compiler option). 292
--no_uniform_attribute_syntax (compiler option). 292
--no_unroll (compiler option) 293
--no_utf8_in (ielfdump option) 538
--no_vfe (linkeroption)., 333
no_vtable_use (pragma directive). 602
--no_warnings (compiler option) 293
--no_warnings (linker option). 334
--no_wrap_diagnostics (compiler option) 293
--no_wrap_diagnostics (linker option) 334

Index °

nofreeheap 209
NTCTS in basic_ostream& operator,
implementation-defined behavior for C++ 587
NULL

implementation-defined behavior for C++.......... 569

implementation-defined behaviorinC............. 604

implementation-defined behavior in C89 (DLIB) 620

pointer constant, relaxation to Standard C 194
numbers (in linker configuration file) 484
numeric conversion functions,
implementation-defined behaviorinC 610
numeric (library header file). 441
-O (compileroption).co.i i 294
-0 (compileroption) 295
-0 (iarchive option) 539
-o (ielfdumpoption) 539
-o (linker option).ot 335
objectattributes. 364
object filename, specifying (-0) 295, 335
object files

linker search path to (--search). 337

treating as specified on command line 342
object pointer to function pointer conversion,
implementation-defined behavior for C++ 564
object_attribute (pragma directive). 245, 394
--offset (ielftool option) 539
once (pragma directive) 395, 602, 620
--only_stdout (compiler option) 294
--only_stdout (linker option). 334
opcode. See operation code
open_s (function)c.o.iiiiiiiin... 447
operation code, inserting illegal 415
operators

See also @ (operator)

for region exXpressions, 457

for sectioncontrol, 192

precision for 32-bitfloat 353

645

646

precision for 64-bitfloat 354

sizeof, implementation-defined behaviorinC 609
__ALIGNOF__, for alignment control. 192
7, language extensionsfor 203
optimization
clustering, disabling. 286
code motion, disabling. 287
common sub-expression elimination, disabling 287
configurationc. i 66
disabling i 236
function inlining, disabling (--no_inline)........... 288
hints. 239
linker. ... 121
loop unrolling, disabling 293
scheduling, disabling 290
specifying (-O). 294
techniques i 236
type-based alias analysis, disabling (--tbaa)......... 291
using inline assemblercode 166
using pragma directive. 395
variable shattering, disabling 290
optimization levels 235
optimize (pragma directive) 395
OPLiON PArametersovvvenn e eeeeeeen e 259
optional (library header file) 441

options, compiler. See compiler options
options, iarchive. See iarchive options
options, ielfdump. See ielfdump options
options, ielftool. See ielftool options
options, iobjmanip. See iobjmanip options
options, isymexport. See isymexport options
options, linker. See linker options

--option_mem (linker option) 334
Option-setting MEeMOTY vvvt vt eee e 215
Option-Setting Memory, specifying 334
Oram, Andyot 41
ostream (library headerfile) 441
output

from preprocessor 296

IAR C/C++ Development Guide
Compiling and linking for RX

specifying for linker. 63
--output (compiler option)., 295
--output (iarchive option) 539
--output (ielfdump option) 539
--output (linker option), 335
overhead, reducing 237
over-aligned types,
implementation-defined behavior for C++ 590
pack (pragma directive) 357,397
packbits, packing algorithm for initializers............ 466
__packed (extended keyword) 372
packed structure types.ottt 357
packing, algorithms for initializers 466
parallel algorithms (C++17) 444
parallel algorithms,
implementation-defined behavior for C++ 574, 583
parameters

ending the lifetime of,

implementation-defined behavior for C++. 563

function 177

hidden 177

non-scalar, avoiding. L. 240

TEZISIEr. o o vt ittt 177-178

rules for specitying a file or directory 260

SPECIfying . ..o 261

Stack. 177-178

typographic convention 42
--parity (ielftool option) 540
part number, of this guide. 2
partial evaluation. See optimization
--patch (compiler option) 295
peephole optimization., 235
--pending_instantiations (compiler option)............ 295
Permanent regiSters. «o v vt vin e 177

perror (library function),
implementation-defined behaviorin C89 622
PIC/PID. See ROPI

place at (linker directive) 470
place in (linker directive) 471
placeholder objects,
implementation-defined behavior for C++ 573
placement
innamed sections., 232
of code and data, introductionto 93
--place_holder (linker option). 335
plain char
implementation-defined behavior for C++.......... 561
implementation-defined behaviorinC............. 596
pointer safety,
implementation-defined behavior for C++ 561,572
pointer to integer conversion,
implementation-defined behavior for C++ 563
POINLET LYPES « « . v v e et et e e e 355
ASSIGNING . o vttt e 196
implementation-defined behavior for C++.......... 562
MIXING . o ov et e 194
pointers
CASHINE . o vttt et e e e 355
data ... 355
function i 355
implementation-defined behavior 599
implementation-defined behavior for C++. 561
implementation-defined behaviorin C89........... 616
to different function types 196
pointer_safety::preferred,
implementation-defined behavior for C++ 572
pointer_safety::relaxed,
implementation-defined behavior for C++ 572
pool resource objects,
implementation-defined behavior for C++ 572
pop_macro (pragma directive) 602
porting, code containing pragma directives. 382
position-independent code and data (ROPI) 210

position-independent data. See RWPI

possible calls (stack usage control directive) 501
pow (library routine),

alternative implementationof 436

Index °

pow(0,0), implementation-defined behavior for C++ 584
pragma dir€Ctivesovu vttt 51
SUMMATY © ot vttt et ettt e e 379
for absolute located data 231
implementation-defined behavior for C++.......... 568
list of all recognized., 601
list of all recognized (C89). 619
Pack. ... 357,397
type_attribute, using. 70
#pragma FENV_ACCESS,
implementation-defined behavior for C++ 583
--preconfig (linkeroption) 336
predefined symbols
OVETVIEW .o\ttt et e e e e 51
SUMMATY « o v vve e ettt et e e e ee e aene 424
--predef_macro (compiler option). 296
preferred_typedef (pragma directive) 602
--preinclude (compiler option) 296
.preinit_array (section) 495
--preprocess (compiler option) 296
preprocessor directives
comments attheendof 195
implementation-defined behavior for C++.......... 567
implementation-defined behaviorinC............. 600
implementation-defined behavior in C89........... 618
HPragma.iiii 379
implementation-defined behavior for C++ 568
preprocessor extensions
NDEBUGcotiiiiiiiiiiiiiiiaenn.. 432
__STDC_WANT_LIB_EXTI__................. 432
#include_next. 432
HWAINING . ..ot e 433
PIEProcessor OULPUL. . ..o v v v it i e e 296
preprocessor symbols i 424
defining i 270, 318
preserved re@isterso vttt e 177
__ PRETTY_FUNCTION__ (predefined symbol). 428
primitives, for special functions 78
print formatter, selecting. 139
printf (library function)., 138

647

648

choosing formatter. 138

implementation-defined behaviorinC............. 606

implementation-defined behavior in C89........... 622
__printf_args (pragma directive). 397
--printf_multibytes (linker option) 336
printing characters,
implementation-defined behaviorinC 609
__privileged_handler (exception handler).............. 80
processing handler for floating-point, unimplemented 80, 354
processor configuration. 64
processor operations

ACCESSING . o\ vttt e e e 163

low-level 190
programentry label. oL 143
program termination,
implementation-defined behaviorinC 594
programming hints oL 239
__program_start (label). oLl 143
projects

basic settings for L L L 63

settingup foralibrary 132
prototypes, enforcingol 298
PSW (register)

getting the value of (__get PSW _register) 414

writing a value to (__set_ PSW_register) 420
ptrdiff _t (integertype), 356

implementation-defined behavior for C++. 564, 569
PUBLIC (assembler directive) 297
publication date, of this guide.. 2
--public_equ (compileroption) 297
public_equ (pragma directive) 398
push_macro (pragma directive). 603
putenv (library function), absent from DLIB 150
putw,instdioh. i 446
QCCRX (environment variable) 251
qualifiers

IAR C/C++ Development Guide
Compiling and linking for RX

constand volatile. 358
implementation-defined behavior 600
implementation-defined behavior in C89........... 618
? (in reserved identifiers) 255
queue (library header file). 441
quick_exit (library function) 145
-r (compileroption). i 271
-r (larchiveoption), 544
RACW #1 (assembler instruction) 416
RACW #2 (assembler instruction) 417
RAM
example of declaring region. 94
EXECULIONt 71
initializers copied from ROM 61
TESETVING SPACE. « . o vt vttt e e e e 110
running code fromol 116
SAVING MEMOTY. . ¢ o e oe ettt et ee e 240
__ramfunc (extended keyword) 77,373
--ram_reserve_ranges (isymexport option) 541
random number distributions,
implementation-defined behavior for C++ 584
random (library headerfile) 441
random_device constructor,
implementation-defined behavior for C++ 584
random_device::operator,
implementation-defined behavior for C++ 584
random_shuffle (deprecated feature), enabling. 444
random_shuffle,
implementation-defined behavior for C++ 583
rand(), implementation-defined behavior for C++ 585
--range (ielfdumpoption) 542
range errors, inlinker L L L Lol 117
ratio (library header file). 441
--raw (ielfdumpoption).o ... 542
read formatter, selecting 141
reading guidelines. 37
reading, recommended 41

read-only position-independent code and data (ROPI) . . .210

realloc (library function). 75
implementation-defined behavior in C89........... 622
See also heap

recursive functions

avoiding. . ..o o 240
implementation-defined behavior for C++.......... 569
storing dataonstack 74
recursive template instantiations, maximum depth of,
implementation-defined behavior for C++............ 566
--redirect (linker option) 336
reentrancy (DLIB) 436
reference information, typographic convention. 42
regex_constants::error_type,
implementation-defined behavior for C++ 589
regex_constants::match_flag_type,
implementation-defined behavior for C++ 589
region expression (in linker configuration file)......... 456
region literal (in linker configuration file). 455
register keyword, implementation-defined behavior. 599
TeISter PArametersovvvne e enenennn 177-178
registered trademarks L i L 2
registers
assigning to parametersoenenn.. 178
callee-save, stored onstack 74
FINTV
getting the value of (__get FINTV_register) 413
writing a value to (__set FINTV_register) . . . 418-419
for functionreturns 179
FPSW
getting the value of (__get FPSW _register) 413
writing a value to (__set_FPSW_register). 419
implementation-defined behaviorin C89........... 617
in assembler-level routines. 175
INTB
getting the value of (__get_interrupt_table) 414
writing a value to (__set_interrupt_table) 420
ISP
getting the value of (__get_ISP_register) 414
writing a value to (__set_ISP_register).......... 420

Index °

preserved 177
PSW
getting the value of (__get_ PSW_register) 414
writing a value to (__set_PSW_register). 420
saving the value before an interrupt. 382
scratch 176
USP
getting the value of (__get_USP_register) 414
writing a value to (__set_USP_register) 420
el (ELFsection), 489
rela (ELFsection) ..., 489
--relaxed_fp (compiler option) 297
relocation errors, resolving 117
remark (diagnostic message). 257
classifying for compiler........................ 273
classifying for linker 320
enablingincompiler 298
enablinginlinker............. 337
--remarks (compiler option) 298
--remarks (linker option). 337
remove (library function)
implementation-defined behaviorinC............. 606
implementation-defined behavior in C89 (DLIB) 621
--remove_file_path (iobjmanip option). 542
--remove_section (iobjmanip option) 543
remquo, magnitude of L L L L 604
rename (isymexport directive) 521
rename (library function)
implementation-defined behaviorinC............. 606
implementation-defined behavior in C89 (DLIB) 622
--rename_section (iobjmanip option) 543
--rename_symbol (iobjmanip option) 544
Renesas HEW, migrating from. 40
--replace (iarchive option). 544
__iar_ReportAssert (library function). 151
required (pragma directive). 398
--require_prototypes (compiler option). 298
reserve region (linker directive) 472
reserved identifiers L L. 255

649

650

--reserve_ranges (isymexport option) 545

reserving space inRAM 110
resetvectortable., 495
resetvect (SeCtion)u vttt 495
restrict keyword, enabling. 278
return addresses 179
return address, getting
the value of (__get_return_address) 414
return values, from functions 179
--reversed_bitfields (compiler option). 299
_ RMPA_B (intrinsic function) 417
_ RMPA_L (intrinsic function) 418
_ RMPA_W (intrinsic function). 418
RMPA B (assembler instruction) 417
RMPA.L (assembler instruction) 418
RMPA.W (assembler instruction). 418
ROM to RAM, copyingcoouinininennennn. 115
ROM, reserving space im.covuvnenennneenan. 335
root

make symbol treatedas 322
__root (extended keyword) oL 373
ROPIL. ... 210

configurationc.. i 65
__ROPI__ (predefined symbol) 429
--ropi (compileroption) 299
ROUND (assembler instruction). 418
__ROUND (intrinsic function) 228,418
routines, time-critical 163, 190
__ro_placement (extended keyword) 374
rtmodel (assembler directive) 120
rtmodel (pragma directive) 399
_ RTTI__ (predefined symbol) 429

run time. See runtime
runtime environment

DLIB ..ottt e 123

settingup (DLIB). 129
runtime error checking, documentation. 40
runtime libraries

configuring forthreads. 339

disabling automatic inclusionof 332

IAR C/C++ Development Guide
Compiling and linking for RX

runtime libraries (DLIB)

INtroduction 435

customizing system startupcode 146

filename syntax 135

overriding modulesin 130

using prebuilt. Lo 135
runtime libraries (Libc++)

INtroduction 435
runtime model attributes. L. 119
runtime model definitions. 399
--runtime_checking (compiler option) 266
RWPT .. 214

configurationcoviininin i 65

default memory attribute 374

lmitationsoviintn i 214
__RWPI__ (predefined symbol).................... 429
--rwpi (compileroption) L L. 299
--rwpi_near (compiler option). 300
RX

INSIUCHON SEL. .« v v v e et e e 181

MNEMNOTY ACCESS. « « « v vt v te e et e e e et e eeeen e 65

supported devices. 50
__RXV1 (predefined symbol). 429
__RXV2 (predefined symbol). 429
_ RXV3 (predefined symbol). 429
-s (lelfdumpoption) i 545
--save_acc (compileroption) 300
__sbrel (extended keyword) L 374
sbrel (Memory type) covvvine e 69
.sbrel.bss (section) i, 495
.sbrel.data (section).t 495
.sbrel.data_init (section) 496
.sbrel.noinit (section) 496
scalar type representation,
implementation-defined behavior for C++ 573

scanf (library function)

choosing formatter (DLIB)
implementation-defined behaviorinC.............
implementation-defined behavior in C89 (DLIB)
__scanf_args (pragma directive).
--scanf_multibytes (linker option).
scheduling (compiler transformation)
disabling i
scoped_allocator (library header file)
scratch registers,
search directory, for linker configuration files
(--config_search).
search path to library files (--search).
search path to object files (--search)
--search (linkeroption)
--section (ielfdump option)
section fragment handling, disabling.
--section (compileroption)
SECHIOMS . .« v o ettt et et e e
SUMMALY « .t ovtvte et et et e e ee e
allocationof. L.
checking type at link-time
declaring (#pragma section).
forcing inclusionof oL
linker merging duplicate
renaming (--S€Ction).vuvt it
specifying (--section)
__section_begin (extended operator)
__section_end (extended operator)
__section_size (extended operator).
section-selectors (in linker configuration file).
--segment (ielfdump option)
segment (pragma directive).,
--self_reloc (ielftool option)
semaphores
Cexample
CH+exampleo
OPETALIONS O . .« v vttt et e e e eae e
separate_init_routine (pragma directive).
set (library header file)
setjmp.h (library header file).

Index °

setlocale (library function) 158
settings, basic for project configuration 63
__set_FINTV_register (intrinsic function) 419
__set_ FPSW_register (intrinsic function). 419
set_generate_entries_without_bounds (pragma directive). 603
__set_interrupt_level (intrinsic function) 419
__set_interrupt_state (intrinsic function) 420
__set_interrupt_table (intrinsic function) 420
__set_ISP_register (intrinsic function) 420
__set_ PSW_register (intrinsic function) 420
set_unexpected (deprecated function), enabling 444
__set_USP_register (intrinsic function) 420
severity level, of diagnostic messages. 257
SPECIfyingot 257
SFR
accessing special function registers 243
declaring extern special function registers. 232
__sfr (extended keyword) 375
SFR data accesses, avoiding
problemsrelated to L 375
shared objects oot 253
inlinkermapfile, 329
shared_mutex (library header file) 441
shared_ptr constructor,
implementation-defined behavior for C++ 572
short (datatype), 347
show (isymexport directive) 521
--show_entry_as (isymexport option) 547
show-root (isymexport directive) 522
show-weak (isymexport directive) 522
.shstrtab (ELF section) 489
signal (library function)
implementation-defined behaviorinC............. 604
implementation-defined behaviorin C89........... 620
signals, implementation-defined behaviorinC......... 594
at SYSteM Startupoovv it 595
signal.h (library header file) 438
signed char (datatype) 347-348
specifying 268
signed int (data type).ot 347

651

652

signed long long (datatype) 347

signed long (datatype), 347
signed short (datatype).ccooiiieninan .. 347
--silent (compiler option), 301
--silent (iarchive option) 547
silent operation
specifyingincompiler. 301
specifyinginlinker, 338
--silent (ielftool option). 547
--silent (linker option). 338
--simple (ielftool option). 547
--simple-ne (ielftool option) 548
sin (library function)., 436
__sincosf (intrinsic function) 421
64-bits (floating-point format) 354
size (in stack usage control file) 505
sizeof and fundamental types,
implementation-defined behavior for C++ 564
sizeof, implementation-defined behavior for C++. 564
SIZ€_t (INLEZET LYP) - v v v v e e e et e e ee e e 356
implementation-defined behavior for C++.......... 569
skeleton code, creating for assembler language interface . 172
slist (library header file) 441
small function inlining (linker optimization). 121
excluding functions from....................... 332
smallest, packing algorithm for initializers............ 466
--small_math (linker option). 338
SMOVF (assembler instruction), avoiding
problemsrelated to. 375
__software_interrupt (intrinsic function) 421
--source (ielffdumpoption) 548
source files, listall referred. 281
--source_encoding (compiler option) 302
space characters, implementation-defined behavior in C . 605
special function registers (SFR) 243
special function typesl 78
sph_bessel functions,
implementation-defined behavior for C++ 586

sph_legendre functions,
implementation-defined behavior for C++ 586

IAR C/C++ Development Guide
Compiling and linking for RX

sph_neumann functions,

implementation-defined behavior for C++ 586
sprintf (library function) 138
choosing formatter. 138
--sqrt_must_set_errno (compiler option). 302
--srec (ielftool option). L. 548
--srec-len (ielftool option). 549
--srec-s3only (ielftool option) 549
sscanf (library function)
choosing formatter (DLIB) 140
SSTR (assembler instruction), avoiding
problemsrelated to........ol 375
sstream (library headerfile) 441
Stack 74
advantages and problems using 74
cleaning after functionreturn. 179
contentsof L L 74
frame, specifying sizeof 504
layout.o 178
SAVINZ SPACE. &« v v vt ettt e et e 240
settingupsizefor. o ool 111
SIZE. .ot 208
SUPErVISOr mode.ottt 495
usermode. 497
stack bufferoverflow 86
stack canary 86
stack cookie. See stack canary
stack parameters L oL 177-178
stackpointert 74
getting the value of (_get SP) 414
stack pointer register, considerations 177
Stack Protection.t 86
stack smashing i 86
stack usage analysis
enabling on the command line 316, 322
stack usage control file
indepth 499
overview of L i 499
specifying ... 338
stack (library header file) 441

stack_protect (pragma directive). 401
--sack_protection (compiler option) 302
--stack_usage_control (linker option) 338
stack-size (in stack usage control file) 504
Standard C i 189, 278
specifying strictusage, 303
Standard C++
enabling deprecated features 427, 444
implementation quantities 590
implementation-defined behavior 555
standard error
redirecting in compiler. 294
redirectinginlinker 334
See also diagnostic messages. 253
standard library functions,
implementation-defined behavior for C++ 569
standard output
specifyingincompiler 294
specifyinginlinker, 334

start up system. See system startup
startup code

CSEATTUP vttt ettt e e 146
statement expressions, GNU style. 196
statements, implementation-defined behavior in C89 618
static analysis tool, documentation for 40
static clustering (compiler transformation) 238
static variables i 67

taking the addressof 240
status flags for floating-point 445
stdalign.h (library header file). 438
stdarg.h (library header file) 439
stdatomic.h (library header file) 439
stdbool.h (library headerfile) 347, 439
__STDC__ (predefined symbol).................... 429

implementation-defined behavior for C++.......... 568
STDC CX_LIMITED_RANGE (pragma directive) 401
STDC FENV_ACCESS (pragma directive) 402
STDC FP_CONTRACT (pragma directive) 402
__STDC_LIB_EXT1__ (predefined symbol).......... 430

__STDC_NO_ATOMICS__ (preprocessor symbol). 430

Index °

__STDC_NO_THREADS__ (preprocessor symbol)430

__STDC_NO_VLA__ (preprocessor symbol) 430
__STDC_UTF16__ (preprocessor symbol). 430
__STDC_UTF32__ (preprocessor symbol). 430
__STDC_VERSION__ (predefined symbol) 430
implementation-defined behavior for C++.......... 568
__STDC_WANT_LIB_EXT1__ (preprocessor symbol) .432
stddef.h (library header file) 439
StAeIT. . o 129, 294
stdexcept (library header file) 441
SEAIN .o e 129
implementation-defined behavior in C89 (DLIB) 621
stdint.h (library header file) 439, 443
stdio.h (library header file) 439
stdio.h, additional C functionality................... 445
stdlib.h (library header file) 439
stdnoreturn.h (library header file) 439
Stdout . ..o 129, 294
implementation-defined behaviorinC............. 604
implementation-defined behavior in C89 (DLIB) 621
std::auto_ptr, removed in Libc++ 205
std::mem_fun, removed in Libc++ 205
std::random_shuffle, removed in Libc++ 205
std::terminate,
implementation-defined behavior for C++ 566
Steele, Guy L.. o 41
steering file, input to isymexport 520
storage
data 67
See also memory
strcasecmp, instring.ho Lo il Ll 446
strcoll (function) 447
strdup, instring.h oo 446
streambuf (library header file) 441
streamoff, implementation-defined behavior for C++. . ..574

streampos, implementation-defined behavior for C++ . ..574
streams, implementation-defined behaviorinC 594
strerror (library function)
implementation-defined behaviorinC............. 610
implementation-defined behavior in C89 (DLIB) 623

653

654

--strict (compiler option)., 303
string literals, implementation-defined behavior for C++. 559

string (library headerfile). 441
string_view (library headerfile) 441
string.h (library header file) 439
string.h, additional C functionality 446
--strip (ielftool option) 549
--strip (iobjmanip option) 549
--strip (linker option) 339
strncasecmp, instring.h. Lo ool 446
strnlen, instring.h. L L L o 446
strstream (library header file) 441
strtab (ELF section) . ..o o e oo 489
strtod (library function), configuring support for 158
structure types
alignment. 356-357
layoutof. 356
packed 357
structures
accessing using a pointerouenn.. 182
aligning L 397
ANONYIMOUS. . o . vt vt vttt e e 229
implementation-defined behaviorinC............. 599
implementation-defined behavior in C89........... 617
packing and unpacking 229
placing in memory type 71
strxfrm (function) 447
subnormal numbers. oL 354
$Sub$$ pattern 226
$Super$$ pattern. 226
support, technical, 258
--suppress_core_attribute (compiler option) 303
Sutter, Herb. 41
switch statementstable 496
.switch.rodata (section). 496
symbol names, prefixed by extra underscore . .103, 314, 499
symbols
directing from one to another. 336
including inoutput. L. 398

IAR C/C++ Development Guide
Compiling and linking for RX

linker always including 326
local, removing from linked image 332
overview of predefined 51
patching using $Super$$ and $Sub$$ 226
preprocessor, defining 270, 318
treated aSTOOL.o vt 322
--symbols (iarchive option). 550
symbols (global), updating typeless 551
.symtab (ELF section)., 489
syntax
command lineoptions 259
extended keywords 70, 362-364
invoking compiler and linker. 249
syntax_option_type,
implementation-defined behavior for C++ 589
system function,
implementation-defined behaviorinC 595, 607
system startup
CUSIOMUZING . . ¢ v vt ettt e e e 146
DLIB ... 143
implementation-defined behavior for C++.......... 560
initializationphase. 59
system termination
C-SPY interface to..............., 146
DLIB ... 145
implementation-defined behavior for C++.......... 560

system (library function)
implementation-defined behavior in C89 (DLIB)623

system_error (library header file) 441
system_include (pragma directive) 603, 620
--system_include_dir (compiler option) 303
__s_base (intrinsic function). 418
-t (larchive option), 551
tan (library function). 436
__task (extended keyword). 375
technical support, AR 258

template support

MCH . 201
Terminal I/O window

not supported when 130-131
termination of system. See system termination
termination status, implementation-defined behavior in C 607

dext (ELFsection) ..., 496
teXt encodings. . ..ot 254
text input file, specifying UTF-8.................... 340
text output file, specifying encoding. 339
--text_out (iarchive option) 550
--text_out (ielfdump option), 550
--text_out (iobjmanip option) 550
--text_out (isymexport option) 550
--text_out (linker option). 339
--text_out (compileroption) 304
__TFU (predefined symbol) 431
--tfu (compiler option), 304
__TFU_MATHLIB (predefined symbol) 431
--tfu_version (compiler option). 305
tgmath.h (library header file) 439
32-bits (floating-point format) 353
this (pointer)ot 174
thread (library header file) 442
threaded environment 158
--threaded_lib (linker option) 339
threads
configuring runtime library for 339
forward progress, implementation-defined behavior for
G o 556
number of, implementation-defined behavior for C++. 556
threads.h (library header file) 439
__TIME__ (predefined symbol) 431
implementation-defined behavior for C++.......... 568
time zone (library function)
enabling i 340
implementation-defined behaviorinC............. 607
implementation-defined behavior in C89........... 623
__TIMESTAMP__ (predefined symbol) 431
--timezone_lib (linker option). 340

Index

time_get::do_get_date,

implementation-defined behavior for C++ 576
time_get::do_get_year,
implementation-defined behavior for C++ 576
time_put::do_put,
implementation-defined behavior for C++ 576
time_t value to time_point object conversion,
implementation-defined behavior for C++ 573
time-critical routines. 163, 190
time.h (library header file) 439
additional C functionality. 446
time32 (library function), configuring support for 130
time64 (library function), configuring support for 130
tips, Programming.covueen e vnennnenen... 239
--titxt (ielftool option). Lo 551
--toc (iarchive option). oo .. 551
toolsicon,inthisguide........ 42
towlower (function) 447
towupper (function) L., 447
trademarks L i 2
trailingcomma L i 205
transformations, compiler. L. 234
See also optimization
translation
implementation-defined behavior 593
implementation-defined behavior for C++.......... 557
implementation-defined behaviorin C89........... 613
translation ProCesscuii i 56
trap vectors, specifying with pragma directive 404
tuple (library headerfile) 442
typeattributes 361
specifying ... 403
type conversion. See casting
type definitions, used for specifying memory storage. 70
type qualifiers
constand volatile., 358
implementation-defined behavior 600
implementation-defined behaviorin C89........... 618
typedefs
excluding from diagnostics 292

—e

655

656

repeated 194
typeid, derived type for,

implementation-defined behavior for C++ 563
typeindex (library header file). 442
typeinfo (library header file). 442
typeof operator (GNU extension) 197
types, trivially copyable,
implementation-defined behavior for C++ 561
typetraits (library headerfile) 442
type_attribute (pragma directive) 70, 403
type_info::name,
implementation-defined behavior for C++ 570
type-based alias analysis (compiler transformation) 238
disabling il 291
typographic conventions. 42
uchar.h (library header file) 439
uintptr_t (INteZer type)o v vt e et 356
unary_function (deprecated function), enabling 444
__undefined_handler (exception handler).............. 80
underflow errors,
implementation-defined behaviorinC 604
underflow range errors,
implementation-defined behaviorin C89 620
underscore
double in reserved identifiers. 255
extra before assembler labels............ 103, 314, 499
followed by uppercase letter (reserved identifier)255
_ungetchar,instdioh oL 446
Unicodeo 254
uniform attribute syntax oL 362
--uniform_attribute_syntax (compiler option). 305
unimplemented processing handler (floating-point) . . 80, 354
unions
ANONYINOUS. .« « . et ete e ettt e e ee e aenen 229
implementation-defined behaviorinC............. 599
implementation-defined behaviorin C89........... 617

universal character names

IAR C/C++ Development Guide
Compiling and linking for RX

implementation-defined behavior for C++.......... 559
implementation-defined behaviorinC............. 601
unordered_map (library header file) 442
implementation-defined behavior for C++.......... 580
unordered_multimap,
implementation-defined behavior for C++ 580
unordered_multiset,
implementation-defined behavior for C++ 582
unordered_set (library header file) 442
implementation-defined behavior for C++.......... 581
unreachable code. See dead code
unroll (pragma directive) 403
unsigned char (datatype) 347-348
changing tosignedchar..................... ... 268
unsigned int (data type). 347
unsigned long long (datatype) 347
unsigned long (datatype) 347
unsigned short (datatype). 347
unsigned to signed conversion,
implementation-defined behavior for C++ 562
--update_typeless_globals (iobjmanip option) 551
use init table (linker directive) 473
uses_aspect (pragma directive) 603
--use_c++_inline (compiler option) 306
--use_full_std_template_names (ielfdump option) 552
--use_full_std_template_names (linker option)......... 340
--use_paths_as_written (compiler option). 306
--use_unix_directory_separators (compiler option). 306
USP (register)
getting the value of (__get USP_register).......... 414
writing a value to (__set_USP_register). 420
USP (stack pointer). 497
USTACK (section)ovoviiinnna... 208, 497
See also stack
USTACK_SIZE (symbol). 111
UTF-16.o 254
UTF-8. . . 254
intextinputfile 340
--utf8_text_in (compiler option) 307
--utf8_text_in (iarchive option). 552

--utf8_text_in (ielfdump option) 552
--utf8_text_in (iobjmanip option) 552
--utf8_text_in (isymexportoption) 552
--utf8_text_in (linker option) 340
utilities (ELF) 507
utility (library header file). 442

ul6streampos, implementation-defined behavior for C++ 574
u32streampos, implementation-defined behavior for C++ 574

v

-V (iarchive option) 553
valarray (library header file). 442
variable shattering (compiler transformation), disabling. . 290
variables
AULO ..ottt 74
defined inside afunction 74
global
ACCESSING. . oottt 182
placementin memoryc..o.... 67
hints for choosing oL 240
life of (optimization) 235

life of. See optimization levels
local. See auto variables

non-initialized oo 245
placing at absolute addresses 232
placing in named sections 232
static
placementinmemoryc..o.... 67
taking the addressof 240
variant support of over-aligned types,
implementation-defined behavior for C++ 571
variant (library header file). 442
vector (library header file) 442
vector (pragma directive) 79, 404
cannotbeused withROPL 211
VENEELS .« ¢ o v v e ettt et et e e e e 90
--verbose (iarchive option) 553
--verbose (ielftool option). 553

Index

version
compiler subversion number 431
identifying C standard in use (__STDC_VERSION__)430
of compiler (_ VER_)........ 431
of linker (--version)c.. ... 341
version number
ofthisguide.......... i 2
--version (IAR utilitiesoption) 553
--version (linkeroption) 341
--version (compiler option). 307
--vfe (linkeroption), 341
virtual function elimination (linker optimization). 121
disabling (--no_vfe) 333
enabling (--vfe) i 341
forcingo 341
--vla (compileroption) 307
void, pointers toi i 194
volatile
and const, declaring objects. 359
declaring objects 358
protecting simultaneously accesses variables. 243
rules foraccess.t 359
volatile-qualified type,
implementation-defined behavior for C++ 565
--vtoc (iarchive option) 553
WAIT (assembler instruction). 421
__wait_for_interrupt (intrinsic function). 421
#warning (preprocessor extension) 433
WAITHNZS & ¢ . v ettt e e e e et e e e e 257
classifying in compiler. 274
classifyinginlinker 321
constructors with incomplete initialization. 308
disabling incompiler 293
disablinginlinker 334
exitcodeincompiler.......... 308
exitcodeinlinker 342

—e

657

structure without explicit initializers 308 S b I
warnings icon, in this guide 42 ym O s

warnings (pragma directive) 603,620 426
—warnings_affect_exit_code (compiler option)258, 308 _Exit (library function), 145
—warnings_affect_exit_code (linker option). 258,342 _exit (library function) 145
--warnings_are_errors (compiler option) 309 _HEAP_SIZE (Symbol)oveeeaaanenn.. 112
--warnings_are_errors (linker option). 342 _init (suffix for initializer sections). 113
--warn_about_c_style_casts (compiler option) 308 _ISTACK_SIZE (Symbol)ccovuueuo... 111
--warn_about_incomplete_constructors _LIBCPP_ENABLE_CXX17_REMOVED_FEATURES
(compiler option)o.iiiiiiiiii, 308 (predefined symbol) 205, 427, 444
--warn_about_missing_field_initializers _USTACK_SIZE (symbol). 111
(compileroption) i 308 _Xtime_get_ticks (C++ function) oooovnn. .. 447
wchar_t(datatype)......... ..., 348 _XTIME_NSECS_PER_TICK (Macro) 447
implementation-defined behaviorinC............. 597 __absolute (extended keyword)iiiii.... 366
wchar.h (library header file) 439, 443 _ ALIGNOF__ (ODIALOT) « + v v v v e eeeeeeeeeen 192
wctype.h (library header file) 439 __asm (1anguage extension) «oeeeeeeeeiin.. 166
__weak (extended keyword) oLt 376 __as_get_base (C-RUN OPerator)oooonnn... 407
weak (pragma directive) oL, 404 __as_get_bounds (C-RUN Operator). 407
web sites, recommended. L oL 41 __as_make_bounds (C-RUN operator). 407
white-space characters, implementation-defined behavior 593 __atan2hypotf (intrinsic function). 410, 415
--whole_archive (linker option) 342 __auto_type (GNU Ckeyword) - . ..o oveeeeeennn.. 197
wide-character literals, , __BASE_FILE__ (predefined symbol)............... 424
implementation-defined behavior for C++ 558 _BIG (predefined symbol) oo 404
_wr?te_array, in stdio.h. ERERREEEE RREEEEEEERRREE 446 __BIG_ENDIAN__ (predefined symbol) 404
—write_buffered (DLIB library function) 128 break (intrinsic function). 410
wstreampos, implementation-defined behavior for C++. . 575 _BUILD NUMBER__ (predefined symbol) 404
__code (function pointer) 355
X __CORE__ (predefined symbol). 425
__COUNTER__ (predefined symbol). 425
-x (iarchive option) 533 __cplusplus (predefined symbol) 425
XCHG (assembler instruction) 412 __c_base (intrinsic function). 411
_Xtime_get_ticks (C++ function) 447 __DATA_MODEL__ (predefined symbol) 425
_XTIME_NSECS_PER_TICK (macro) 447 __datal6 (extended keyword). 366
__data24 (extended keyword). 366
Z _data32 (data pOinter) . . .+ oo 355
__data32 (extended keyword). 367
zeros, packing algorithm for initializers 466 __DATE__ (predefined symbol). 425
implementation-defined behavior for C++.......... 568
__DBLA4 (predefined symbol). 425

IAR C/C++ Development Guide
658 Compiling and linking for RX

Index °

__DBLS (predefined symbol). 426 __inline_cosf (intrinsic function) 415
__DebugBreak function, with ROPL. 211 __inline_hypotf (intrinsic function) 416
__delay_cycles (intrinsic function) 411 __inline_sinf (intrinsic function). 416
__disable_interrupt (intrinsic function). 411 __interrupt (extended keyword) 79, 368
__DLIB_FILE_DESCRIPTOR (configuration symbol) . . 156 using in pragma directives 404
__enable_interrupt (intrinsic function) 411 __intrinsic (extended keyword). 368
__EXCEPTIONS (predefined symbol). 426 __INTSIZE__ (predefined symbol) 428
__exchange (intrinsic function). 411 __INT_SHORT (predefined symbol) 428
__exit (library function) 145 __LIBCPP (predefined symbol) 427
__fast_interrupt (extended keyword) 367 __LINE__ (predefined symbol) 428
__FILE__ (predefined symbol)..................... 426 __LIT (predefined symbol). 428
__floating_point_handler (exception handler) 80 __LITTLE_ENDIAN__ (predefined symbol). 428
__FPU (predefined symbol) 426 Cdow_level init.t 143
__FPU__ (predefined symbol) 426 initialization phase. L L L. 59
__fplé(datatype).oovenii 353 __low_level_init, customizing 146
__FSQRT (intrinsic function) 412 __macl (intrinsic function) 416
__FUNCTION__ (predefined symbol)............... 427 __macwl (intrinsic function) 416
__func__ (predefined symbol) 427 __macw?2 (intrinsic function) 417

implementation-defined behavior for C++.......... 565 __monitor (extended keyword)., 368
_gets,;instdio.h. oL 445 __MOVCO (intrinsic function). 417
__get_FINTV _register (intrinsic function) 412-413 __MOVLI (intrinsic function). 417
__get_ FPSW_register (intrinsic function). 413 __nested (extended keyword) 369
__get_interrupt_level (intrinsic function) 413 __NMI_handler (exception handler).................. 80
__get_interrupt_state (intrinsic function) 413 __noreturn (extended keyword) 371
__get_interrupt_table (intrinsic function) 414 __no_alloc (extended keyword) 369
__get_ISP_register (intrinsic function) 414 __no_alloc_str (operator)c.cueuinin.. 370
__get_ PSW_register (intrinsic function). 414 __no_alloc_strl6 (operator)c.ouvuenn... 370
__get_return_address (intrinsic function) 414 __no_alloc16 (extended keyword) 369
__get_SP (intrinsic function) 414 __no_init (extended keyword) 245,371
__get_USP_register (intrinsic function) 414 __no_operation (intrinsic function). 417
__lar_maximum_atexit_calls 112 __no_scratch (extended keyword) 371
__iar_program_start (label). 143 __packed (extended keyword) 372
__iar_ReportAssert (library function). 151 __ PRETTY_FUNCTION__ (predefined symbol). 428
__IAR_SYSTEMS_ICC__ (predefined symbol) 427 __printf_args (pragma directive). 397
__iar_tIs$$DATA (ELF section). 493 __privileged_handler (exception handler). 80
__iar_tIsSSSINITDATA (ELF section). 494 __program_start (label). 143
__ICCRX__ (predefined symbol)................... 427 __ramfunc (extended keyword) 373
__illegal_opcode (intrinsic function) 415 executinginRAM o 77
__inline_atan2f (intrinsic function). 415 __RMPA_B (intrinsic function) 417

659

660

_ RMPA_L (intrinsic function) 418

_ RMPA_W (intrinsic function). 418
__root (extended keyword) oL 373
__ROPI__ (predefined symbol) 429
__ROUND (intrinsic function) 228,418
__ro_placement (extended keyword) 374
__RTTI__ (predefined symbol) 429
__ RWPL__ (predefined symbol).................... 429
__RXVI (predefined symbol). 429
_ RXV2 (predefined symbol). 429
__RXV3 (predefined symbol). 429
__sbrel (extended keyword) 374
__scanf_args (pragma directive). 400
__section_begin (extended operator) 192
__section_end (extended operator) 192
__section_size (extended operator). 192
__set_FINTV_register (intrinsic function) 419
__set_FPSW _register (intrinsic function)............. 419
__set_interrupt_level (intrinsic function) 419
__set_interrupt_state (intrinsic function) 420
__set_interrupt_table (intrinsic function) 420
__set_ISP_register (intrinsic function) 420
__set_PSW_register (intrinsic function) 420
__set_USP_register (intrinsic function) 420
__sfr(extended keyword) 375
__sincosf (intrinsic function) 421
__software_interrupt (intrinsic function) 421
__STDC_LIB_EXT1__ (predefined symbol).......... 430

__STDC_NO_ATOMICS__ (preprocessor symbol). 430
__STDC_NO_THREADS__ (preprocessor symbol)430

__STDC_NO_VLA__ (preprocessor symbol) 430
__STDC_UTF16__ (preprocessor symbol). 430
__STDC_UTF32__ (preprocessor symbol). 430
__STDC_VERSION__ (predefined symbol) 430

implementation-defined behavior for C++.......... 568
__STDC_WANT_LIB_EXT1__ (preprocessor symbol) .432
__STDC__ (predefined symbol).................... 429

implementation-defined behavior for C++.......... 568
__s_base (intrinsic function). 418

IAR C/C++ Development Guide
Compiling and linking for RX

__task (extended keyword). 375
__TFU (predefined symbol) 431
__TFU_MATHLIB (predefined symbol) 431
__TIMESTAMP__ (predefined symbol) 431
__TIME__ (predefined symbol) 431

implementation-defined behavior for C++.......... 568
__undefined_handler (exception handler).............. 80
__ungetchar, instdioh L oL 446
__wait_for_interrupt (intrinsic function). 421
__weak (extended keyword) 376
__write_array, instdio.h. L L il 446
__write_buffered (DLIB library function) 128
-a (felfdumpoption) 524
-D (compileroption). i 270
-d (iarchive option) 531
-e (compileroption) i 277
-f (compileroption). 279
-f QAR utilityoption) oo 533
-f(linkeroption) 323
-g (ielfdumpoption)c. i 546
-I (compileroption). 281
-1 (compileroption). 282

for creating skeletoncode 173
-L (linkeroption), 337
-O (compileroption). 294
-0 (compileroption) i 295
-0 (iarchive option) 539
-o (ielfdumpoption) L. 539
-o (linker option).o 335
-r (compiler option). 271
-r (larchive option) 544
-s (lelfdumpoption) 545
-t (larchive option)c..oiiiiiii ... 551
-V (larchiveoption) oo, 553
-X (iarchive option)t .. 533
--accurate_math (linker option). 315
--advanced_heap (linker option) 315
--align_func (compiler option) 267
--all (ielfdump option) 525

--basic_heap (linker option) 315
--bin (ielftool option), 525
--bin-multi (ielftool option). 525
--bounds_table_size (linker option) 311
--call_graph (linker option). 316
--canary_value (compiler option) 268
--char_is_signed (compiler option). 268
--char_is_unsigned (compiler option) 269
--checksum (ielftool option) 526
--code (ielfdump option). 530
--config (linkeroption) 316
--config_def (linker option) 316
--config_search (linker option) 317
--cpp_init_routine (linker option) 317
--create (iarchive option). 531
--c++ (compileroption) 269
--c89 (compileroption). 268
--data_model (compiler option) 270
--debug (compiler option). 271
--debug_heap (linker option) 311
--debug_lib (linker option) 318
--default_to_complex_ranges (linker option) 318
--define_symbol (linker option) 318
--delete (iarchive option). 531
--dependencies (compiler option) 271
--dependencies (linker option) 319
--deprecated_feature_warnings (compiler option). 272
--diagnostics_tables (compiler option) 275
--diagnostics_tables (linker option). 321
--diag_error (compiler option) 273
--diag_error (linker option). 320
--diag_remark (compiler option). 273
--diag_remark (linker option) 320
--diag_suppress (compiler option) 274
--diag_suppress (linker option) 321
--diag_warning (compiler option). 274
--diag_warning (linker option) 321
--disasm_data (ielfdump option). 532
--discard_unused_publics (compiler option). 275

Index °

--dlib_config (compiler option). 275
--double (compiler option) 277
--do_explicit_zero_opt_in_named_sections

(compiler option)o 276
--edit (iIsymexport option).viiiien. .. 532
--enable_restrict (compiler option) 278
--enable_stack_usage (linker option) 322
--entry (linker option), 322
--entry_list_in_address_order (linker option) 323
--enum_is_int (compiler option) 278
--error_limit (compiler option) 279
--error_limit (linker option) 323
--export_builtin_config (linker option) 323
--export_locals (isymexportoption) 532
--extract (iarchive option) 533
--f (compileroption) i 280
--f (IARutility option), 534
-f (linkeroption), 324
--fake_time (IAR utility option) 534
--fill (ielftool option).o 535
--force_output (linker option) 325
--fpu (compileroption)o 280
--front_headers (ielftool option) 536
--generate_entries_without_bounds (compiler option) . . .263
--generate_vfe_header (isymexport option) 536
--guard_calls (compiler option). 281
--header_context (compiler option). 281
--ignore_uninstrumented_pointers (compiler option)263
--ignore_uninstrumented_pointers (linker option). 312
--ihex (ielftool option), 536
--ihex-len (ielftool option) 537
--image_input (linker option) 325
--inline (linker option), 326
--int (compiler option) 282
--joined_bitfields (compiler option) 282
--keep (linkeroption), 326
--libc++ (compiler option) 283
--lock (compileroption) 284
--log (linker option)cvuiiiininen... 327
--log_file (linkeroption), 328

661

662

--macro_positions_in_diagnostics (compiler option)284

--mangled_names_in_messages (linker option) 328
--manual_dynamic_initialization (linker option). 328
--map (linkeroption). 329
--merge_duplicate_sections (linker option). 330
--mfc (compileroption). 285
--misrac (compileroption) 263
--misrac (linker option). 313
--misrac_verbose (compiler option) 264
--misrac_verbose (linker option). 313
--misrac1998 (compiler option) 263
--misrac1998 (linker option) 313
--misrac2004 (compiler option) 263
--misrac2004 (linker option) 313
--nonportable_path_warnings (compiler option). 293
--nosave_tfu (compiler option) 289
--no_bom (compileroption) 286
--no_bom (ielfdump option) 537
--no_bom (iobjmanip option) 537
--no_bom (isymexport option) 537
--no_bom (linker option). 330
--no_call_frame_info (compiler option) 286
--no_clustering (compiler option) 286
--no_code_motion (compiler option) 287
--no_cross_call (compiler option). 287
--no_cse (compileroption), 287
--no_default_fp_contract (compiler option) 288
--no_entry (linkeroption) 331
--no_exceptions (compiler option) 288
--no_fragments (compiler option). 288
--no_fragments (linker option) 331
--no_free_heap (linker option) 331
--no_header (ielfdump option) 537
--no_inline (compiler option) 288
--no_inline (linker option). 332
--no_library_search (linker option). 332
--no_locals (linker option) 332
--no_normalize_file_macros (compiler option). 289
--no_path_in_file_macros (compiler option). 289

IAR C/C++ Development Guide
Compiling and linking for RX

--no_range_reservations (linker option) 333
--no_rel_section (ielfdump option) 538
--no_remove (linker option) 333
--no_rtti (compileroption) 289
--no_scheduling (compiler option) 290
--no_shattering (compiler option) 290
--no_size_constraints (compiler option) 290
--no_static_destruction (compiler option)............. 291
--no_strtab (ielffdump option) 538
--no_system_include (compiler option) 291
--no_typedefs_in_diagnostics (compiler option). 292
--no_unroll (compiler option) 293
--no_utf8_in (ielfdump option) 538
--no_vfe (linker option). 333
--no_warnings (compiler option) 293
--no_warnings (linker option) 334
--no_wrap_diagnostics (compiler option) 293
--no_wrap_diagnostics (linker option) 334
--offset (ielftool option) 539
--only_stdout (compiler option) 294
--only_stdout (linker option). 334
--option_mem (linker option) 334
--output (compiler option)., 295
--output (iarchive option) 539
--output (ielfdump option) 539
--output (linkeroption) 335
--parity (ielftool option) 540
--patch (compiler option) 295
--pending_instantiations (compiler option)............ 295
--place_holder (linker option) 335
--preconfig (linkeroption) 336
--predef_macro (compiler option). 296
--preinclude (compiler option) 296
--preprocess (compiler option) 296
--printf_multibytes (linker option) 336
--ram_reserve_ranges (isymexport option) 541
--range (ielffdump option) 542
--raw (ielfdump] option) 542
--redirect (linkeroption) 336

--relaxed_fp (compiler option) 297
--remarks (compiler option) 298
--remarks (linker option). 337
--remove_file_path (iobjmanip option). 542
--remove_section (iobjmanip option) 543
--rename_section (iobjmanip option) 543
--rename_symbol (iobjmanip option) 544
--replace (iarchive option). 544
--require_prototypes (compiler option). 298
--reserve_ranges (isymexport option) 545
--reversed_bitfields (compiler option). 299
--ropi (compileroption) 299
--runtime_checking (compiler option) 266
--rwpi (compileroption) 299
--rwpi_near (compiler option). 300
--save_acc (compileroption) 300
--scanf_multibytes (linker option). 337
--search (linkeroption) 337
--section (compileroption) 301
--section (ielfdump option) 545
--segment (ielfdump option) 546
--self_reloc (ielftool option) 546
--show_entry_as (isymexport option) 547
--silent (compiler option) 301
--silent (iarchive option) 547
--silent (ielftool option). 547
--silent (linker option). 338
--simple (ielftool option). 547
--simple-ne (ielftool option) 548
--small_math (linker option). 338
--source (ielffdump option) 548
--sqrt_must_set_errno (compiler option). 302
--srec (ielftool option)., 548
--srec-len (ielftool option). 549
--srec-s3only (ielftool option). 549
--stack_protection (compiler option). 302
--stack_usage_control (linker option) 338
--strict (compiler option)., 303
--strip (ielftool option) 549

Index °

--strip (iobjmanip option) 549
--strip (linkeroption) 339
--suppress_core_attribute (compiler option) 303
--symbols (iarchive option). 550
--system_include_dir (compiler option) 303
--text_out (iarchive option). 550
--text_out (ielfdump option) 550
--text_out (iobjmanip option) 550
--text_out (isymexport option) 550
--text_out (linker option). 339
--tfu (compileroption) 304
--tfu_version (compiler option). 305
--threaded_lib (linker option) 339
--timezone_lib (linker option). 340
--titxt (ielftool option). L. 551
--toc (iarchive option). oo, 551
--update_typeless_globals (iobjmanip option) 551
--use_c++_inline (compiler option) 306
--use_full_std_template_names (ielfdump option) 552
--use_full_std_template_names (linker option). 340
--use_paths_as_written (compiler option). 306
--use_unix_directory_separators (compiler option). 306
--utf8_text_in (linker option) 340
--verbose (iarchive option) 553
--verbose (ielftool option). 553
--version (compileroption). 307
--version (IAR utilitiesoption) 553
--version (linkeroption) 341
--vfe (linkeroption), 341
--vla (compileroption) 307
--vtoc (iarchive option) 553
--warnings_affect_exit_code (compiler option)258, 308
--warnings_affect_exit_code (linker option). 258, 342
--warnings_are_errors (compiler option) 309
--warnings_are_errors (linker option) 342
--warn_about_c_style_casts (compiler option) 308

--warn_about_incomplete_constructors

(compiler option) 308
--warn_about_missing_{field_initializers

(compiler option)t 308

663

664

--whole_archive (linker option) 342
,\, /, or // in g-char- or h-char-sequence,

implementation-defined behavior for C++ 558
? (in reserved identifiers) 255
.comment (ELF section) 489
.datal6.bss (ELF section) 489, 497
.datal6.data (ELFsection) 489
.datal6.data_init (ELF section)..................... 490
.datal6.noinit (ELF section) 490
.datal6.rodata (ELF section). 490
.data24.bss (ELF section) 490
.data24.data (ELFsection) 490
.data24.data_init (ELF section)..................... 491
.data24.noinit (ELF section) 491
.data24.rodata (ELF section). 491
.data32.bss (section)t 491
.data32.data (section)iiiiiian.. 492
.data32.data_init (section).ii.... 492
.data32.noinit (section) 492
.data32.rodata (section).uiiiin... 492
.debug (ELF section).c.covuiuiuninenan.. 488
.exceptvect (SeCtion) vt 493
dar.debug (ELF section)c.oovuinenn... 489
dar.dynexit (ELF section)., 494
dar.locale_table (ELF section) 494
.Anit_array (Section). 494
.dnttable (section) 494
.preinit_array (section), 495
el (ELFsection) ..., 489
rela(ELFsection) ..., 489
resetvect (SeCtion)u vttt 495
.sbrel.bss (section)c. .. 495
.sbrel.data (section).t 495
.sbrel.data_init (section)uuun... 496
.sbrel.noinit (section)otiiiaan.. 496
shstrtab (ELF section), 489
strtab (ELFsection) . ..o o e oo 489
.switch.rodata (section). 496
.symtab (ELF section)., 489
dext (ELFsection) ..., 496

IAR C/C++ Development Guide
Compiling and linking for RX

textrw (ELFsection), 496
textrw_init (ELF section). 497
@ (operator)
placing at absolute address. 231
placinginsections, 232
#include directive,
implementation-defined behavior for C++ 568
#include files, specifying 251, 281
#include_next............ i 196
#include_next (preprocessor extension) 432
#pragmadirective. i 379
implementation-defined behavior for C++.......... 568
#pragma FENV_ACCESS,
implementation-defined behavior for C++ 583
HWAINING. . . oottt 196
#warning (preprocessor extension) 433
%Z replacement string,
implementation-defined behaviorinC 608
<cfenv> functions and floating-point,
implementation-defined behavior for C++ 583
$Sub$$pattern 226
$Super$$ pattern. 226
$$ (in reserved identifiers) 255

Numerics

32-bits (floating-point format) 353
64-bit data types, avoiding 227
64-bits (floating-point format) 354

	Brief contents
	Contents
	Tables
	Preface
	Who should read this guide
	Required knowledge

	How to use this guide
	What this guide contains
	Part 1. Using the build tools
	Part 2. Reference information

	Other documentation
	User and reference guides
	The online help system
	Further reading
	Web sites

	Document conventions
	Typographic conventions
	Naming conventions

	Part 1. Using the build tools
	Introduction to the IAR build tools
	The IAR build tools—an overview
	The IAR C/C++ Compiler
	The IAR Assembler
	The IAR ILINK Linker
	Specific ELF tools
	External tools

	IAR language overview
	Device support
	Supported RX devices
	Preconfigured support files
	Examples for getting started

	Special support for embedded systems
	Extended keywords
	Pragma directives
	Predefined symbols
	Accessing low-level features

	Developing embedded applications
	Developing embedded software using IAR build tools
	CPU features and constraints
	Mapping of memory
	Communication with peripheral units
	Event handling
	System startup
	Real-time operating systems
	Interoperability with other build tools

	The build process—an overview
	The translation process
	The linking process
	After linking

	Application execution—an overview
	The initialization phase
	The execution phase
	The termination phase

	Building applications—an overview
	Basic project configuration
	Processor configuration
	Core
	Byte order

	ROPI/RWPI
	Data model
	Size of int data type
	Size of double floating-point type
	Optimization for speed and size

	Data storage
	Introduction
	Different ways to store data

	Memory types
	Introduction to memory types
	data16
	data24
	data32
	sbrel

	Using data memory attributes
	Syntax
	Type definitions

	Pointers and memory types
	Structures and memory types
	More examples
	C++ and memory types

	Data models
	Specifying a data model

	Storage of auto variables and parameters
	The stack
	Advantages
	Potential problems

	Dynamic memory on the heap
	Potential problems

	Functions
	Function-related extensions
	Executing functions in RAM
	Primitives for interrupts, concurrency, and OS-related programming
	Interrupt functions
	Interrupt service routines
	Interrupt vectors and the interrupt vector table
	Defining an interrupt function—an example
	Interrupt and C++ member functions
	Adding an exception handler

	Fast interrupt functions
	Nested interrupts
	Monitor functions
	Example of implementing a semaphore in C
	Example of implementing a semaphore in C++

	Inlining functions
	C versus C++ semantics
	Features controlling function inlining

	Stack protection
	Stack protection in the IAR C/C++ Compiler
	Using stack protection in your application

	Linking using ILINK
	Linker overview
	Veneers

	Modules and sections
	The linking process in detail
	Placing code and data—the linker configuration file
	A simple example of a configuration file

	Initialization at system startup
	The initialization process
	C++ dynamic initialization

	Stack usage analysis
	Introduction to stack usage analysis
	Performing a stack usage analysis
	Result of an analysis—the map file contents
	Specifying additional stack usage information
	Limitations
	Situations where warnings are issued
	Call graph log
	Call graph XML output

	Linking your application
	Linking considerations
	Choosing a linker configuration file
	Defining your own memory areas
	Adding an additional region
	Merging different areas into one region

	Placing sections
	Placing a section at a specific address in memory
	Placing a section first or last in a region
	Declare and place your own sections

	Reserving space in RAM
	Keeping modules
	Keeping symbols and sections
	Application startup
	Setting up stack memory
	Setting up heap memory
	Setting up the atexit limit
	Changing the default initialization
	Suppressing initialization
	Choosing a packing algorithm
	Manual initialization
	Initializing code—copying ROM to RAM
	Running all code from RAM

	Interaction between ILINK and the application
	Standard library handling
	Producing output formats other than ELF/DWARF

	Hints for troubleshooting
	Relocation errors
	Possible solutions

	Checking module consistency
	Runtime model attributes
	Example

	Using runtime model attributes

	Linker optimizations
	Virtual function elimination
	Small function inlining
	Duplicate section merging

	The DLIB runtime environment
	Introduction to the runtime environment
	Runtime environment functionality
	Briefly about input and output (I/O)
	Briefly about C-SPY emulated I/O
	Briefly about retargeting

	Setting up the runtime environment
	Setting up your runtime environment
	Retargeting—Adapting for your target system
	Overriding library modules
	Customizing and building your own runtime library

	Additional information on the runtime environment
	Bounds checking functionality
	Runtime library configurations
	Prebuilt runtime libraries
	Formatters for printf
	Formatters for scanf
	The C-SPY emulated I/O mechanism
	Math functions
	System startup and termination
	C-SPY debugging support for system termination

	System initialization
	The DLIB low-level I/O interface
	abort
	clock
	_ _close
	_ _exit
	getenv
	_ _getzone
	_ _iar_ReportAssert
	_ _lseek
	_ _open
	raise
	__read
	remove
	rename
	signal
	system
	_ _time32, _ _time64
	__write
	Configuration symbols for file input and output
	Locale
	Specifying which locales that should be available in your application

	Strtod

	Managing a multithreaded environment
	Multithread support in the DLIB runtime environment
	Enabling multithread support
	Setting up thread-local storage (TLS)
	The main thread
	Acquiring memory for TLS
	Initializing TLS memory
	Deallocating TLS memory

	Assembler language interface
	Mixing C and assembler
	Intrinsic functions
	Mixing C and assembler modules
	Inline assembler
	Limitations
	Risks with inline assembler

	Reference information for inline assembler
	An example of how to use clobbered memory

	Calling assembler routines from C
	Creating skeleton code
	Compiling the skeleton code
	The output file

	Calling assembler routines from C++
	Calling convention
	Function declarations
	Using C linkage in C++ source code
	Preserved versus scratch registers
	Scratch registers
	Preserved registers
	Special registers

	Function entrance
	Hidden parameters
	Register parameters
	Stack parameters and layout

	Function exit
	Registers used for returning values
	Stack layout at function exit
	Return address handling

	Restrictions for special function types
	Examples
	Example 1
	Example 2
	Example 3

	Assembler instructions used for calling functions
	Memory access methods
	The data16 memory access method
	Examples

	The data24 memory access method
	Examples

	The data32 memory access method
	Examples

	The sbrel memory access method
	Examples

	Call frame information
	CFI directives
	Creating assembler source with CFI support

	Using C
	C language overview
	Extensions overview
	Enabling language extensions

	IAR C language extensions
	Extensions for embedded systems programming
	Dedicated section operators

	Relaxations to Standard C

	Using C++
	Overview—Standard C++
	Exceptions and RTTI

	Enabling support for C++
	C++ feature descriptions
	Using IAR attributes with classes
	Example of using attributes with classes

	Templates
	Function types
	Example

	Using static class objects in interrupts
	Using New handlers
	Debug support in C-SPY

	C++ language extensions
	Migrating from the DLIB C++ library to the Libc++ C++ library
	Porting code from EC++ or EEC++

	Application-related considerations
	Output format considerations
	Stack considerations
	The user mode and supervisor mode stacks
	Stack size considerations

	Heap considerations
	Heap memory handlers
	Heap sections in DLIB
	Heap size and standard I/O

	Position-independent code and data
	ROPI
	RWPI

	Changing ID code protection and option-setting memory
	Overriding the default values

	Interaction between the tools and your application
	Checksum calculation for verifying image integrity
	Briefly about checksum calculation
	Calculating and verifying a checksum
	Troubleshooting checksum calculation

	Patching symbol definitions using $Super$$ and $Sub$$
	An example using the $Super$$ and $Sub$$ patterns

	Efficient coding for embedded applications
	Selecting data types
	Using efficient data types
	Floating-point types
	Casting a floating-point value to an integer
	Alignment of elements in a structure
	Anonymous structs and unions
	Example

	Controlling data and function placement in memory
	Data placement at an absolute location
	Examples
	C++ considerations

	Data and function placement in sections
	Examples of placing variables in named sections
	Examples of placing functions in named sections

	Controlling compiler optimizations
	Scope for performed optimizations
	Multi-file compilation units
	Optimization levels
	Speed versus size
	Fine-tuning enabled transformations
	Common subexpression elimination
	Loop unrolling
	Function inlining
	Code motion
	Type-based alias analysis
	Static clustering
	Cross call
	Instruction scheduling

	Facilitating good code generation
	Writing optimization-friendly source code
	Saving stack space and RAM memory
	Aligning the function entry point
	Register locking
	Function prototypes
	Prototyped style
	Kernighan & Ritchie style

	Integer types and bit negation
	Protecting simultaneously accessed variables
	Accessing special function registers
	Passing values between C and assembler objects
	Non-initialized variables

	Part 2. Reference information
	External interface details
	Invocation syntax
	Compiler invocation syntax
	Linker invocation syntax
	Passing options
	Environment variables

	Include file search procedure
	Compiler output
	Linker output
	Text encodings
	Characters and string literals

	Reserved identifiers
	Diagnostics
	Message format for the compiler
	Message format for the linker
	Severity levels
	Remark
	Warning
	Error
	Fatal error

	Setting the severity level
	Internal error
	Error return codes

	Compiler options
	Options syntax
	Types of options
	Rules for specifying parameters
	Rules for optional parameters
	Rules for mandatory parameters
	Rules for options with both optional and mandatory parameters
	Rules for specifying a filename or directory as parameters
	Additional rules

	Summary of compiler options
	Descriptions of compiler options
	--align_func
	--c89
	--canary_value
	--char_is_signed
	--char_is_unsigned
	--core
	--c++
	-D
	--data_model
	--debug, -r
	--dependencies
	--deprecated_feature_warnings
	--diag_error
	--diag_remark
	--diag_suppress
	--diag_warning
	--diagnostics_tables
	--discard_unused_publics
	--dlib_config
	--do_explicit_zero_opt_in_named_sections
	--double
	-e
	--enable_restrict
	--endian
	--enum_is_int
	--error_limit
	-f
	--f
	--fpu
	--guard_calls
	--header_context
	-I
	--int
	--joined_bitfields
	-l
	--libc++
	--lock
	--macro_positions_in_diagnostics
	--max_cost_constexpr_call
	--max_depth_constexpr_call
	--mfc
	--no_bom
	--no_call_frame_info
	--no_clustering
	--no_code_motion
	--no_cross_call
	--no_cse
	--no_default_fp_contract
	--no_exceptions
	--no_fragments
	--no_inline
	--no_normalize_file_macros
	--no_path_in_file_macros
	--no_rtti
	--nosave_tfu
	--no_scheduling
	--no_shattering
	--no_size_constraints
	--no_static_destruction
	--no_system_include
	--no_tbaa
	--no_typedefs_in_diagnostics
	--no_uniform_attribute_syntax
	--no_unroll
	--no_warnings
	--no_wrap_diagnostics
	--nonportable_path_warnings
	-O
	--only_stdout
	--output, -o
	--patch
	--pending_instantiations
	--predef_macros
	--preinclude
	--preprocess
	--public_equ
	--relaxed_fp
	--remarks
	--require_prototypes
	--reversed_bitfields
	--ropi
	--rwpi
	--rwpi_near
	--save_acc
	--section
	--silent
	--source_encoding
	--sqrt_must_set_errno
	--stack_protection
	--strict
	--suppress_core_attribute
	--system_include_dir
	--text_out
	--tfu
	--tfu_version
	--uniform_attribute_syntax
	--use_c++_inline
	--use_unix_directory_separators
	--use_paths_as_written
	--utf8_text_in
	--version
	--vla
	--warn_about_c_style_casts
	--warn_about_incomplete_constructors
	--warnings_affect_exit_code
	--warn_about_missing_field_initializers
	--warnings_are_errors

	Linker options
	Summary of linker options
	Descriptions of linker options
	--accurate_math
	--advanced_heap
	--basic_heap
	--call_graph
	--config
	--config_def
	--config_search
	--cpp_init_routine
	--debug_lib
	--default_to_complex_ranges
	--define_symbol
	--dependencies
	--diag_error
	--diag_remark
	--diag_suppress
	--diag_warning
	--diagnostics_tables
	--enable_stack_usage
	--entry
	--entry_list_in_address_order
	--error_limit
	--export_builtin_config
	-f
	--f
	--force_output
	--image_input
	--inline
	--keep
	--log
	--log_file
	--mangled_names_in_messages
	--manual_dynamic_initialization
	--map
	--merge_duplicate_sections
	--no_bom
	--no_entry
	--no_fragments
	--no_free_heap
	--no_inline
	--no_library_search
	--no_locals
	--no_range_reservations
	--no_remove
	--no_vfe
	--no_warnings
	--no_wrap_diagnostics
	--only_stdout
	--option_mem
	--output, -o
	--place_holder
	--preconfig
	--printf_multibytes
	--redirect
	--remarks
	--scanf_multibytes
	--search, -L
	--silent
	--small_math
	--stack_usage_control
	--strip
	--text_out
	--threaded_lib
	--timezone_lib
	--use_full_std_template_names
	--utf8_text_in
	--version
	--vfe
	--warnings_affect_exit_code
	--warnings_are_errors
	--whole_archive

	Data representation
	Alignment
	Alignment on the RX microcontroller

	Byte order
	Basic data types—integer types
	Integer types—an overview
	Bool
	The long long type
	The enum type
	The char type
	The wchar_t type
	The char16_t type
	The char32_t type
	Bitfields
	The example in the joined types bitfield allocation strategy
	The example in the disjoint types bitfield allocation strategy
	Padding

	Basic data types—floating-point types
	Floating-point environment
	32-bit floating-point format
	64-bit floating-point format
	Representation of special floating-point numbers

	Pointer types
	Function pointers
	Data pointers
	Casting
	size_t
	ptrdiff_t
	intptr_t
	uintptr_t

	Structure types
	Alignment of structure types
	General layout
	Packed structure types

	Type qualifiers
	Declaring objects volatile
	Definition of access to volatile objects
	Rules for accesses

	Declaring objects volatile and const
	Declaring objects const

	Data types in C++

	Extended keywords
	General syntax rules for extended keywords
	Type attributes
	Object attributes
	Syntax for object attributes

	Summary of extended keywords
	Descriptions of extended keywords
	_ _absolute
	_ _data16
	_ _data24
	_ _data32
	_ _fast_interrupt
	_ _interrupt
	_ _intrinsic
	_ _monitor
	_ _nested
	_ _no_alloc, _ _no_alloc16
	_ _no_alloc_str, _ _no_alloc_str16
	_ _no_init
	_ _no_scratch
	_ _noreturn
	_ _packed
	_ _ramfunc
	_ _root
	_ _ro_placement
	_ _sbrel
	_ _sfr
	_ _task
	_ _weak

	Supported GCC attributes

	Pragma directives
	Summary of pragma directives
	Descriptions of pragma directives
	bank
	bitfields
	calls
	call_graph_root
	data_alignment
	default_function_attributes
	default_variable_attributes
	deprecated
	diag_default
	diag_error
	diag_remark
	diag_suppress
	diag_warning
	error
	function_category
	include_alias
	inline
	language
	location
	message
	no_stack_protect
	object_attribute
	once
	optimize
	pack
	_ _printf_args
	public_equ
	required
	rtmodel
	_ _scanf_args
	section
	stack_protect
	STDC CX_LIMITED_RANGE
	STDC FENV_ACCESS
	STDC FP_CONTRACT
	type_attribute
	unroll
	vector
	weak

	Intrinsic functions
	Summary of intrinsic functions
	Descriptions of intrinsic functions
	_ _atan2fx
	_ _atan2hypotf
	_ _atan2hypotfx
	_ _break
	_ _c_base
	_ _cosfx
	_ _delay_cycles
	_ _disable_interrupt
	_ _enable_interrupt
	_ _exchange
	_ _FSQRT
	_ _get_DCMR_register
	_ _get_DECNT_register
	_ _get_DEPC_register
	_ _get_DPSW_register
	_ _get_FINTV_register
	_ _get_FPSW_register
	_ _get_interrupt_level
	_ _get_interrupt_state
	_ _get_interrupt_table
	_ _get_ISP_register
	_ _get_PSW_register
	_ _get_return_address
	_ _get_SP
	_ _get_USP_register
	_ _hypotfx
	_ _illegal_opcode
	_ _inline_atan2f
	_ _inline_cosf
	_ _inline_hypotf
	_ _inline_sinf
	_ _macl
	_ _macw1
	_ _macw2
	_ _MOVCO
	_ _MOVLI
	_ _no_operation
	_ _RMPA_B
	_ _RMPA_L
	_ _RMPA_W
	_ _ROUND
	_ _s_base
	_ _set_DCMR_register
	_ _set_DECNT_register
	_ _set_DEPC_register
	_ _set_DPSW_register
	_ _set_FINTV_register
	_ _set_FPSW_register
	_ _set_interrupt_level
	_ _set_interrupt_state
	_ _set_interrupt_table
	_ _set_ISP_register
	_ _set_PSW_register
	_ _set_USP_register
	_ _sincosf
	_ _sincosfx
	_ _sinfx
	_ _software_interrupt
	_ _wait_for_interrupt

	The preprocessor
	Overview of the preprocessor
	Description of predefined preprocessor symbols
	_ _BASE_FILE_ _
	_ _BIG
	_ _BIG_ENDIAN_ _
	_ _BUILD_NUMBER_ _
	_ _CORE_ _
	_ _COUNTER_ _
	_ _cplusplus
	_ _DATA_MODEL_ _
	_ _DATE_ _
	_ _DBL4
	_ _DBL8
	_ _DPFPU
	_ _EXCEPTIONS
	_ _FILE_ _
	_ _FPU
	_ _FPU_ _
	_ _func_ _
	_ _FUNCTION_ _
	_ _IAR_SYSTEMS_ICC_ _
	_ _ICCRX_ _
	_ _LIBCPP
	_LIBCPP_ENABLE_CXX17_REMOVED_FEATURES
	_ _INT_SHORT
	_ _INTSIZE_ _
	_ _LINE_ _
	_ _LIT
	_ _LITTLE_ENDIAN_ _
	_ _PRETTY_FUNCTION_ _
	_ _ROPI_ _
	_ _RTTI_ _
	_ _RXV1
	_ _RXV2
	_ _RXV3
	_ _RWPI_ _
	_ _STDC_ _
	_ _STDC_LIB_EXT1_ _
	_ _STDC_NO_ATOMICS_ _
	_ _STDC_NO_THREADS_ _
	_ _STDC_NO_VLA_ _
	_ _STDC_UTF16_ _
	_ _STDC_UTF32_ _
	_ _STDC_VERSION_ _
	_ _SUBVERSION_ _
	_ _TFU
	_ _TFU_MATHLIB
	_ _TIME_ _
	_ _TIMESTAMP_ _
	_ _VER_ _

	Descriptions of miscellaneous preprocessor extensions
	#include_next
	NDEBUG
	_ _STDC_WANT_LIB_EXT1_ _
	#warning

	C/C++ standard library functions
	C/C++ standard library overview
	Header files
	Library object files
	Alternative more accurate library functions
	Reentrancy
	The longjmp function

	DLIB runtime environment—implementation details
	Briefly about the DLIB runtime environment
	C header files
	C++ header files
	The C++ library header files
	Using Standard C libraries in C++

	Library functions as intrinsic functions
	Not supported C/C++ functionality
	Atomic operations
	Added C functionality
	C bounds-checking interface
	DLib_Threads.h
	fenv.h
	iar_dlmalloc.h
	LowLevelIOInterface.h
	stdio.h
	string.h
	time.h

	Non-standard implementations
	Symbols used internally by the library

	The linker configuration file
	Overview
	Declaring the build type
	build for directive

	Defining memories and regions
	define memory directive
	define region directive
	logical directive

	Regions
	Region literal
	Region expression
	Empty region

	Section handling
	define block directive
	define section directive
	define overlay directive
	initialize directive
	do not initialize directive
	keep directive
	place at directive
	place in directive
	reserve region
	use init table directive

	Section selection
	section-selectors
	extended-selectors

	Using symbols, expressions, and numbers
	check that directive
	define symbol directive
	export directive
	expressions
	keep symbol directive
	numbers

	Structural configuration
	error directive
	if directive
	include directive

	Section reference
	Summary of sections
	Descriptions of sections and blocks
	.data16.bss
	.data16.data
	.data16.data_init
	.data16.noinit
	.data16.rodata
	.data24.bss
	.data24.data
	.data24.data_init
	.data24.noinit
	.data24.rodata
	.data32.bss
	.data32.data
	.data32.data_init
	.data32.noinit
	.data32.rodata
	DIFUNCT
	EARLYDIFUNCT
	.exceptvect
	HEAP
	_ _iar_tls$$DATA
	_ _iar_tls$$INITDATA
	.iar.dynexit
	.iar.locale_table
	.init_array
	.inttable
	ISTACK
	.preinit_array
	.resetvect
	.sbrel.bss
	.sbrel.data
	.sbrel.data_init
	.sbrel.noinit
	.switch.rodata
	.text
	.textrw
	.textrw_init
	.tbss
	.tdata
	USTACK

	The stack usage control file
	Overview
	C++ names

	Stack usage control directives
	function directive
	exclude directive
	possible calls directive
	call graph root directive
	max recursion depth directive
	no calls from directive

	Syntactic components
	category
	func-spec
	module-spec
	name
	call-info
	stack-size
	size

	IAR utilities
	The IAR Archive Tool—iarchive
	Invocation syntax
	Parameters
	Examples

	Summary of iarchive commands
	Summary of iarchive options
	Diagnostic messages
	La001: could not open file filename
	La002: illegal path pathname
	La006: too many parameters to cmd command
	La007: too few parameters to cmd command
	La008: lib is not a library file
	La009: lib has no symbol table
	La010: no library parameter given
	La011: file file already exists
	La013: file confusions, lib given as both library and object
	La014: module module not present in archive lib
	La015: internal error
	Ms003: could not open file filename for writing
	Ms004: problem writing to file filename
	Ms005: problem closing file filename

	The IAR ELF Tool—ielftool
	Invocation syntax
	Parameters
	Example

	Summary of ielftool options
	Specifying ielftool address ranges

	The IAR ELF Dumper—ielfdump
	Invocation syntax
	Parameters

	Summary of ielfdump options

	The IAR ELF Object Tool—iobjmanip
	Invocation syntax
	Parameters
	Examples

	Summary of iobjmanip options
	Diagnostic messages
	Lm001: No operation given
	Lm002: Expected nr parameters but got nr
	Lm003: Invalid section/symbol renaming pattern pattern
	Lm004: Could not open file filename
	Lm005: ELF format error msg
	Lm006: Unsupported section type nr
	Lm007: Unknown section type nr
	Lm008: Symbol symbol has unsupported format
	Lm009: Group type nr not supported
	Lm010: Unsupported ELF feature in file: msg
	Lm011: Unsupported ELF file type
	Lm012: Ambiguous rename for section/symbol name (alt1 and alt2)
	Lm013: Section name removed due to transitive dependency on name
	Lm014: File has no section with index nr
	Ms003: could not open file filename for writing
	Ms004: problem writing to file filename
	Ms005: problem closing file filename

	The IAR Absolute Symbol Exporter—isymexport
	Invocation syntax
	Parameters

	Summary of isymexport options
	Steering files
	Syntax
	Example

	Hide directive
	Rename directive
	Show directive
	Show-root directive
	Show-weak directive
	Diagnostic messages
	Es001: could not open file filename
	Es002: illegal path pathname
	Es003: format error: message
	Es004: no input file
	Es005: no output file
	Es006: too many input files
	Es007: input file is not an ELF executable
	Es008: unknown directive: directive
	Es009: unexpected end of file
	Es010: unexpected end of line
	Es011: unexpected text after end of directive
	Es012: expected text
	Es013: pattern can contain at most one * or ?
	Es014: rename patterns have different wildcards
	Es015: ambiguous pattern match: symbol matches more than one rename pattern
	Es016: the entry point symbol is already exported

	Descriptions of options
	-a
	--all
	--bin
	--bin-multi
	--checksum
	--code
	--create
	--delete, -d
	--disasm_data
	--edit
	--export_locals
	--extract, -x
	-f
	--f
	--fake_time
	--fill
	--front_headers
	--generate_vfe_header
	--ihex
	--ihex-len
	--no_bom
	--no_header
	--no_rel_section
	--no_strtab
	--no_utf8_in
	--offset
	--output, -o
	--parity
	--ram_reserve_ranges
	--range
	--raw
	--remove_file_path
	--remove_section
	--rename_section
	--rename_symbol
	--replace, -r
	--reserve_ranges
	--section, -s
	--segment, -g
	--self_reloc
	--show_entry_as
	--silent
	--simple
	--simple-ne
	--source
	--srec
	--srec-len
	--srec-s3only
	--strip
	--symbols
	--text_out
	--titxt
	--toc, -t
	--update_typeless_globals
	--use_full_std_template_names
	--utf8_text_in
	--verbose, -V
	--version
	--vtoc

	Implementation-defined behavior for Standard C++
	Descriptions of implementation-defined behavior for C++
	List of topics
	3.8 Diagnostics (Compiler)
	4.1 Required libraries for freestanding implementation (C++14/C++17 libraries)
	4.4 Bits in a byte (Compiler)
	4.6 Interactive devices (C++14/C++17 libraries)
	4.7 Number of threads in a program under a freestanding implementation (Compiler)
	4.7.2 Requirement that the thread that executes main and the threads created by std::thread provide concurrent forward progress guarantees (Compiler)
	5.2, C.4.1 Mapping physical source file characters to the basic source character set (Compiler)
	5.2 Physical source file characters (Compiler)
	5.2 Converting characters from a source character set to the execution character set (Compiler)
	5.2 Required availability of the source of translation units to locate template definitions (Compiler)
	5.3 The execution character set and execution wide-character set (Compiler)
	5.8 Mapping header names to headers or external source files (Compiler)
	5.8 The meaning of ’, \, /*, or // in a q-char-sequence or an h-char-sequence (Compiler)
	5.13.3 The value of multi-character literals (Compiler)
	5.13.3 The value of wide-character literals with single c-char that are not in the execution wide-character set (Compiler)
	5.13.3 The value of wide-character literal containing multiple characters (Compiler)
	5.13.3 The semantics of non-standard escape sequences (Compiler)
	5.13.3 The value of character literal outside range of corresponding type (Compiler)
	5.13.3 The encoding of universal character name not in execution character set (Compiler)
	5.13.3 The range defined for character literals (Compiler)
	5.13.4 The choice of larger or smaller value of floating-point literal (Compiler)
	5.13.5 Concatenation of various types of string literals (Compiler)
	6.6.1 Defining main in a freestanding environment (Compiler)
	6.6.1 Startup and termination in a freestanding environment (C++14/C++17 libraries)
	6.6.1 Parameters to main (C++14/C++17 libraries)
	6.6.1 Linkage of main (C++14/C++17 libraries)
	6.6.3 Dynamic initialization of static variables before main (C++14/C++17 libraries)
	6.6.3 Dynamic initialization of threaded local variables before entry (C++14/C++17 libraries)
	6.6.3 Dynamic initialization of static inline variables before main (C++14/C++17 libraries)
	6.6.3 Threads and program points at which deferred dynamic initialization is performed (C++14/C++17 libraries)
	6.7 Use of an invalid pointer (Compiler)
	6.7.4.3 Relaxed or strict pointer safety for the implementation (Compiler)
	6.9 The value of trivially copyable types (Compiler)
	6.9.1 Representation and signage of char (Compiler)
	6.9.1 Extended signed integer types (Compiler)
	6.9.1 Value representation of floating-point types (Compiler)
	6.9.2 Value representation of pointer types (Compiler)
	6.11 Alignment (Compiler)
	6.11 Alignment additional values (Compiler)
	6.11 alignof expression additional values (Compiler)
	7.1 lvalue-to-rvalue conversion for objects that contain an invalid pointer (Compiler)
	7.8 The value of the result of unsigned to signed conversion (Compiler)
	7.9 The result of inexact floating-point conversion (Compiler)
	7.10 The value of the result of an inexact integer to floating-point conversion (Compiler)
	7.15 The rank of extended signed integer types (Compiler)
	8.2.2 Passing argument of class type through ellipsis (Compiler)
	8.2.2 Ending the lifetime of a parameter when the callee returns or at the end of the enclosing full-expression (Compiler)
	8.2.6 The value of a bitfield that cannot represent its incremented value (Compiler)
	8.2.8 The derived type for typeid (C++14/C++17 libraries)
	8.2.10 Conversion from a pointer to an integer (Compiler)
	8.2.10 Conversion from an integer to a pointer (Compiler)
	8.2.10 Converting a function pointer to an object pointer and vice versa (Compiler)
	8.3.3 sizeof applied to fundamental types other than char, signed char, and unsigned char (Compiler)
	8.3.4, 21.6.3.2 The maximum size of an allocated object (C++14/C++17 library)
	8.7, 21.2.4 The type of ptrdiff_t (Compiler)
	8.8 The result of right shift of negative value (Compiler)
	8.18 The value of a bitfield that cannot represent its assigned value (Compiler)
	10 The meaning of the attribute declaration (Compiler)
	10.1.7.1 Access to an object that has volatile-qualified type (Compiler)
	10.2 The underlying type for enumeration (Compiler)
	10.4 The meaning of the asm declaration (Compiler)
	10.5 The semantics of linkage specifiers (Compiler)
	10.5 Linkage of objects to other languages (Compiler)
	10.6.1 The behavior of non-standard attributes (Compiler)
	11.4.1 The string resulting from __func__ (Compiler)
	11.6 The value of a bitfield that cannot represent its initializer (Compiler)
	12.2.4 Allocation of bitfields within a class object (Compiler)
	17 The semantics of linkage specification on templates (Compiler)
	17.7.1 The maximum depth of recursive template instantiations (Compiler)
	18.3, 18.5.1 Stack unwinding before calling std::terminate() (C++14/C++17 libraries)
	18.5.1 Stack unwinding before calling std::terminate() when a noexcept specification is violated (C++14/C++17 libraries)
	19 Additional supported forms of preprocessing directives (Compiler)
	19.1 The numeric values of character literals in #if directives (Compiler)
	19.1 Negative value of character literal in preprocessor (Compiler)
	19.2 Search locations for < > header (Compiler)
	19.2 The search procedure for included source file (Compiler)
	19.2 Search locations for "" header (Compiler)
	19.2 The sequence of places searched for a header (Compiler)
	19.2 Nesting limit for #include directives (Compiler)
	19.6 #pragma (Compiler)
	19.8, C.1.10 The definition and meaning of __STDC__ (Compiler)
	19.8 The text of __DATE__ when the date of translation is not available (Compiler)
	19.8 The text of __TIME__ when the time of translation is not available (Compiler)
	19.8 The definition and meaning of __STDC_VERSION__ (Compiler)
	20.5.1.2 Declaration of functions from Annex K of the C standard library when C++ headers are included (C++17 library)
	20.5.1.3 Headers for a freestanding implementation (C++14/C++17 libraries)
	20.5.2.3 Linkage of names from Standard C library (C++14/C++17 libraries)
	20.5.5.8 Functions in Standard C++ library that can be recursively reentered (C++14/C++17 libraries)
	20.5.5.12 Exceptions thrown by standard library functions that do not have an exception specification (C++14/C++17 libraries)
	20.5.5.14 error_category for errors originating outside of the operating system (C++14/C++17 libraries)
	21.2.3, C.5.2.7 Definition of NULL (C++14/C++17 libraries)
	21.2.4 The type of ptrdiff_t (Compiler)
	21.2.4 The type of size_t (Compiler)
	21.2.4 The type of ptrdiff_t (Compiler)
	21.5 Exit status (C++14/C++17 libraries)
	21.6.3.1 The return value of bad_alloc::what (C++14/C++17 libraries)
	21.6.3.2 The return value of bad_array_new_length::what (C++14/C++17 libraries)
	21.6.3.2 The maximum size of an allocated object (C++14/C++17 library)
	21.7.2 The return value of type_info::name() (C++14/C++17 libraries)
	21.7.3 The return value of bad_cast::what (C++14/C++17 libraries)
	21.7.4 The return value of bad_typeid::what (C++14/C++17 libraries)
	21.8.2 The return value of exception::what (C++14/C++17 libraries)
	21.8.3 The return value of bad_exception::what (C++14/C++17 libraries)
	21.10 The use of non-POF functions as signal handlers (C++14/C++17 libraries)
	23.6.5 The return value of bad_optional_access::what (C++17 library)
	23.7.3 variant support of over-aligned types (C++17 library)
	23.7.11 The return value of bad_variant_access::what (C++17 library)
	23.8.2 The return value of bad_any_access::what (C++17 library)
	23.10.4 get_pointer_safety returning pointer_safety::relaxed or pointer_safety::preferred when the implementation has relaxed pointer safety (C++14/C++17 libraries)
	23.11.2.1 The return value of bad_weak_ptr::what (C++17 library)
	23.11.2.2.1 The exception type when a shared_ptr constructor fails (C++14/C++17 libraries)
	23.12.5.2 The largest supported value to configure the largest allocation satisfied directly by a pool (C++17 library)
	23.12.5.2 The largest supported value to configure the maximum number of blocks to replenish a pool (C++17 library)
	23.12.5.4 The default configuration of a pool (C++17 library)
	23.12.6.1 The default next_buffer_size for a monotonic_buffer_resource (C++17 library)
	23.12.6.2 The growth factor for monotonic_buffer_resource (C++17 library)
	23.14.11, 23.14.11.4 The number of placeholders for bind expressions (C++17 library)
	23.14.11.4 The assignability of placeholder objects (C++14/C++17 libraries)
	23.14.13.1.1 The return value of bad_function_call::what (C++17 library)
	23.15.4.3 Scalar types that have unique object representations (C++17 library)
	23.15.7.6 Support for extended alignment (C++14/C++17 libraries)
	23.17.7.1 Rounding or truncating values to the required precision when converting between time_t values and time_point objects (C++14/C++17 libraries)
	23.19.3, 28.4.3 Additional execution policies supported by parallel algorithms (C++17 library)
	24.2.3.1 The type of streampos (C++14/C++17 libraries)
	24.2.3.1 The type of streamoff (C++14/C++17 libraries)
	24.2.3.1, 24.2.3.4 Supported multibyte character encoding rules (C++14/C++17 libraries)
	24.2.3.2 The type of u16streampos (C++14/C++17 libraries)
	24.2.3.2 The return value of char_traits<char16_t>::eof (C++14/C++17 libraries)
	24.2.3.3 The type of u32streampos (C++14/C++17 libraries)
	24.2.3.3 The return value of char_traits<char32_t>::eof (C++14/C++17 libraries)
	24.2.3.4 The type of wstreampos (C++14/C++17 libraries)
	24.2.3.4 The return value of char_traits<wchar_t>::eof (C++14/C++17 libraries)
	24.2.3.4 Supported multibyte character encoding rules (C++14/C++17 libraries)
	24.3.2 The type of basic_string::const_iterator (C++17 library)
	24.3.2 The type of basic_string::iterator (C++17 library)
	24.4.2 The type of basic_string_view::const_iterator (C++17 library)
	25.3.1 Locale object being global or per-thread (C++14/C++17 libraries)
	25.3.1.1.1, 30.2.2 The set of character types that iostreams templates can be instantiated for (C++17 library)
	25.3.1.2 Locale names (C++14/C++17 libraries)
	25.3.1.5 The effects on the C locale of calling locale::global (C++14/C++17 libraries)
	25.3.1.5 The value of ctype<char>::table_size (C++14/C++17 libraries)
	25.4.5.1.2 Additional formats for time_get::do_get_date (C++14/C++17 libraries)
	25.4.5.1.2 time_get::do_get_year and two-digit year numbers (C++14/C++17 libraries)
	25.4.5.3.2 Formatted character sequences generated by time_put::do_put in the C locale (C++14/C++17 libraries)
	25.4.7.1.2 Mapping from name to catalog when calling messages::do_open (C++14/C++17 libraries)
	25.4.7.1.2 Mapping to message when calling messages::do_get (C++14/C++17 libraries)
	25.4.7.1.2 Mapping to message when calling messages::do_close (C++14/C++17 libraries)
	25.4.7.1.2 Resource limits on a message catalog (C++17 library)
	26.3.7.1 The type of array::const_iterator (C++14/C++17 libraries)
	26.3.7.1 The type of array::iterator (C++14/C++17 libraries)
	26.3.8.1 The type of deque::const_iterator (C++17 library)
	26.3.8.1 The type of deque::iterator (C++17 library)
	26.3.9.1 The type of forward_list::const_iterator (C++17 library)
	26.3.9.1 The type of forward_list::iterator (C++17 library)
	26.3.10.1 The type of list::const_iterator (C++17 library)
	26.3.10.1 The type of list::iterator (C++17 library)
	26.3.11.1 The type of vector::const_iterator (C++17 library)
	26.3.11.1 The type of vector::iterator (C++17 library)
	26.3.12 The type of vector<bool>::const_iterator (C++17 library)
	26.3.12 The type of vector<bool>::iterator (C++17 library)
	26.4.4.1 The type of map::const_iterator (C++17 library)
	26.4.4.1 The type of map::iterator (C++17 library)
	26.4.5.1 The type of multimap::const_iterator (C++17 library)
	26.4.5.1 The type of multimap::iterator (C++17 library)
	26.4.6.1 The type of set::const_iterator (C++17 library)
	26.4.6.1 The type of set::iterator (C++17 library)
	26.4.7.1 The type of multiset::const_iterator (C++17 library)
	26.4.7.1 The type of multiset::iterator (C++17 library)
	26.5.4.1 The type of unordered_map::const_iterator (C++17 library)
	26.5.4.1 The type of unordered_map::const_local_iterator (C++17 library)
	26.5.4.1 The type of unordered_map::iterator (C++17 library)
	26.5.4.1 The type of unordered_map::local_iterator (C++17 library)
	26.5.4.2 The default number of buckets in unordered_map (C++14/C++17 libraries)
	26.5.5.2 The default number of buckets in unordered_multimap (C++14/C++17 libraries)
	26.5.6.1 The type of unordered_set::const_iterator (C++17 library)
	26.5.6.1 The type of unordered_set::const_local_iterator (C++17 library)
	26.5.6.1 The type of unordered_set::iterator (C++17 library)
	26.5.6.1 The type of unordered_set::local_iterator (C++17 library)
	26.5.6.2 The default number of buckets in unordered_set (C++14/C++17 libraries)
	26.5.7.1 The type of unordered_multiset::const_iterator (C++17 library)
	26.5.7.1 The type of unordered_multiset::const_local_iterator (C++17 library)
	26.5.7.1 The type of unordered_multiset::iterator (C++17 library)
	26.5.7.1 The type of unordered_multiset::local_iterator (C++17 library)
	26.5.7.2 The default number of buckets in unordered_multiset (C++14/C++17 libraries)
	26.6.5.1 The type of unordered_multimap::const_iterator (C++17 library)
	26.6.5.1 The type of unordered_multimap::const_local_iterator (C++17 library)
	26.6.5.1 The type of unordered_multimap::iterator (C++17 library)
	26.6.5.1 The type of unordered_multimap::local_iterator (C++17 library)
	28.4.3 Forward progress guarantees for implicit threads of parallel algorithms (if not defined for thread) (C++17 library)
	28.4.3 The semantics of parallel algorithms invoked with implementation-defined execution policies (C++17 library)
	28.4.3 Additional execution policies supported by parallel algorithms (C++17 library)
	28.6.13 The underlying source of random numbers for random_shuffle (C++14/C++17 libraries)
	29.4.1 The use of <cfenv> functions for managing floating-point status (C++17 library)
	29.4.1 Support for #pragma FENV_ACCESS (C++17 library)
	29.5.8 The value of pow(0,0) (C++17 library)
	29.6.5 The type of default_random_engine (C++17 library)
	29.6.6 The semantics and default value of a token parameter to random_device constructor (C++17 library)
	29.6.6 The exception type when random_device constructor fails (C++17 library)
	29.6.6 The exception type when random_device::operator() fails (C++17 library)
	29.6.6 The way that random_device::operator() generates values (C++17 library)
	29.6.8.1 The algorithm used for producing the standard random number distributions (C++17 library)
	29.6.9 rand() and the introduction of data races (C++17 library)
	29.9.5.1 The effects of calling associated Laguerre polynomials with n>=128 or m>=128 (C++17 library)
	29.9.5.2 The effects of calling associated Legendre polynomials with l>=128 (C++17 library)
	29.9.5.7 The effects of calling regular modified cylindrical Bessel functions with nu>=128 (C++17 library)
	29.9.5.8 The effects of calling cylindrical Bessel functions of the first kind with nu>=128 (C++17 library)
	29.9.5.9 The effects of calling irregular modified cylindrical Bessel functions with nu>=128 (C++17 library)
	29.9.5.10 The effects of calling cylindrical Neumann functions with nu>=128 (C++17 library)
	29.9.5.15 The effects of calling Hermite polynomials with n>=128 (C++17 library)
	29.9.5.16 The effects of calling Laguerre polynomials with n>=128 (C++17 library)
	29.9.5.17 The effects of calling Legendre polynomials with l>=128 (C++17 library)
	29.9.5.19 The effects of calling spherical Bessel functions with n>=128 (C++17 library)
	29.9.5.20 The effects of calling spherical associated Legendre functions with l>=128 (C++17 library)
	29.9.5.21 The effects of calling spherical Neumann functions with n>=128 (C++17 library)
	30.2.2 The behavior of iostream classes when traits::pos_type is not streampos or when traits::off_type is not streamoff (C++14/C++17 libraries)
	30.2.2 The set of character types that iostreams templates can be instantiated for (C++17 library)
	30.5.3.4 The effects of calling ios_base::sync_with_stdio after any input or output operation on standard streams (C++14/C++17 libraries)
	30.5.5.4 Argument values to construct basic_ios::failure (C++14/C++17 libraries)
	30.7.5.2.3 NTCTS in basic_ostream<charT, traits>& operator<<(nullptr_t) (C++17 library)
	30.8.2.1 The basic_stringbuf move constructor and the copying of sequence pointers (C++14/C++17 libraries)
	30.8.2.4 The effects of calling basic_streambuf::setbuf with non-zero arguments (C++14/C++17 libraries)
	30.9.2.1 The basic_filebuf move constructor and the copying of sequence pointers (C++14/C++17 libraries)
	30.9.2.4 The effects of calling basic_filebuf::setbuf with non-zero arguments (C++14/C++17 libraries)
	30.9.2.4 The effects of calling basic_filebuf::sync when a get area exists (C++14/C++17 libraries)
	30.10.2.2 The operating system on which the implementation depends (C++17 library)
	30.10.6 The type of the filesystem trivial clock (C++17 library)
	30.10.8.1 Supported root names in addition to any operating system dependent root names (C++17 library)
	30.10.8.2.1 The meaning of dot-dot in the root directory (C++17 library)
	30.10.10.1 The interpretation of the path character sequence with format path::auto_format (C++17 library)
	30.10.10.4 Additional file_type enumerators for file systems supporting additional types of file (C++17 library)
	30.10.13 The type of a directory-like file (C++17 library)
	30.10.15.3 The effect of filesystem::copy (C++17 library)
	30.10.15.14 The result of filesystem::file_size (C++17 library)
	30.10.15.35 The file type of the file argument of filesystem::status (C++17 library)
	31.5.1 The type of syntax_option_type (C++17 library)
	31.5.2 The type of regex_constants::match_flag_type (C++17 library)
	31.5.3 The type of regex_constants::error_type (C++14/C++17 libraries)
	32.5 The values of various ATOMIC_..._LOCK_FREE macros (C++14/C++17 libraries)
	32.6, 32.6.1, 32.6.2, 32.6.3 Lock free operation of atomic types (C++17 library)
	33.2.3 The presence and meaning of native_handle_type and native_handle (C++14/C++17 libraries)
	C.1.10 The definition and meaning of __STDC__ (Compiler)
	C.4.1 Mapping physical source file characters to the basic source character set (Compiler)
	C.5.2.7 Definition of NULL (C++14/C++17 libraries)
	D.9 Support for over-aligned types (Compiler, C++17/C++14 libraries)

	Implementation quantities

	Implementation-defined behavior for Standard C
	Descriptions of implementation-defined behavior
	J.3.1 Translation
	Diagnostics (3.10, 5.1.1.3)
	White-space characters (5.1.1.2)

	J.3.2 Environment
	The character set (5.1.1.2)
	Main (5.1.2.1)
	The effect of program termination (5.1.2.1)
	Alternative ways to define main (5.1.2.2.1)
	The argv argument to main (5.1.2.2.1)
	Streams as interactive devices (5.1.2.3)
	Multithreaded environment (5.1.2.4)
	Signals, their semantics, and the default handling (7.14)
	Signal values for computational exceptions (7.14.1.1)
	Signals at system startup (7.14.1.1)
	Environment names (7.22.4.6)
	The system function (7.22.4.8)

	J.3.3 Identifiers
	Multibyte characters in identifiers (6.4.2)
	Significant characters in identifiers (5.2.4.1, 6.4.2)

	J.3.4 Characters
	Number of bits in a byte (3.6)
	Execution character set member values (5.2.1)
	Alphabetic escape sequences (5.2.2)
	Characters outside of the basic executive character set (6.2.5)
	Plain char (6.2.5, 6.3.1.1)
	Source and execution character sets (6.4.4.4, 5.1.1.2)
	Integer character constants with more than one character (6.4.4.4)
	Wide character constants with more than one character (6.4.4.4)
	Locale used for wide character constants (6.4.4.4)
	Concatenating wide string literals with different encoding types (6.4.5)
	Locale used for wide string literals (6.4.5)
	Source characters as executive characters (6.4.5)
	Encoding of wchar_t, char16_t, and char32_t (6.10.8.2)

	J.3.5 Integers
	Extended integer types (6.2.5)
	Range of integer values (6.2.6.2)
	The rank of extended integer types (6.3.1.1)
	Signals when converting to a signed integer type (6.3.1.3)
	Signed bitwise operations (6.5)

	J.3.6 Floating point
	Accuracy of floating-point operations (5.2.4.2.2)
	Accuracy of floating-point conversions (5.2.4.2.2)
	Rounding behaviors (5.2.4.2.2)
	Evaluation methods (5.2.4.2.2)
	Converting integer values to floating-point values (6.3.1.4)
	Converting floating-point values to floating-point values (6.3.1.5)
	Denoting the value of floating-point constants (6.4.4.2)
	Contraction of floating-point values (6.5)
	Default state of FENV_ACCESS (7.6.1)
	Additional floating-point mechanisms (7.6, 7.12)
	Default state of FP_CONTRACT (7.12.2)

	J.3.7 Arrays and pointers
	Conversion from/to pointers (6.3.2.3)
	ptrdiff_t (6.5.6)

	J.3.8 Hints
	Honoring the register keyword (6.7.1)
	Inlining functions (6.7.4)

	J.3.9 Structures, unions, enumerations, and bitfields
	Sign of 'plain' bitfields (6.7.2, 6.7.2.1)
	Possible types for bitfields (6.7.2.1)
	Atomic types for bitfields (6.7.2.1)
	Bitfields straddling a storage-unit boundary (6.7.2.1)
	Allocation order of bitfields within a unit (6.7.2.1)
	Alignment of non-bitfield structure members (6.7.2.1)
	Integer type used for representing enumeration types (6.7.2.2)

	J.3.10 Qualifiers
	Access to volatile objects (6.7.3)

	J.3.11 Preprocessing directives
	Locations in #pragma for header names (6.4, 6.4.7)
	Mapping of header names (6.4.7)
	Character constants in constant expressions (6.10.1)
	The value of a single-character constant (6.10.1)
	Including bracketed filenames (6.10.2)
	Including quoted filenames (6.10.2)
	Preprocessing tokens in #include directives (6.10.2)
	Nesting limits for #include directives (6.10.2)
	# inserts \ in front of \u (6.10.3.2)
	Recognized pragma directives (6.10.6)
	Default _ _DATE_ _ and _ _TIME_ _ (6.10.8)

	J.3.12 Library functions
	Additional library facilities (5.1.2.1)
	Diagnostic printed by the assert function (7.2.1.1)
	Representation of the floating-point status flags (7.6.2.2)
	Feraiseexcept raising floating-point exception (7.6.2.3)
	Strings passed to the setlocale function (7.11.1.1)
	Types defined for float_t and double_t (7.12)
	Domain errors (7.12.1)
	Return values on domain errors (7.12.1)
	Underflow errors (7.12.1)
	fmod return value (7.12.10.1)
	remainder return value (7.12.10.2)
	The magnitude of remquo (7.12.10.3)
	remquo return value (7.12.10.3)
	signal() (7.14.1.1)
	NULL macro (7.19)
	Terminating newline character (7.21.2)
	Space characters before a newline character (7.21.2)
	Null characters appended to data written to binary streams (7.21.2)
	File position in append mode (7.21.3)
	Truncation of files (7.21.3)
	File buffering (7.21.3)
	A zero-length file (7.21.3)
	Legal file names (7.21.3)
	Number of times a file can be opened (7.21.3)
	Multibyte characters in a file (7.21.3)
	remove() (7.21.4.1)
	rename() (7.21.4.2)
	Removal of open temporary files (7.21.4.3)
	Mode changing (7.21.5.4)
	Style for printing infinity or NaN (7.21.6.1, 7.29.2.1)
	%p in printf() (7.21.6.1, 7.29.2.1)
	Reading ranges in scanf (7.21.6.2, 7.29.2.1)
	%p in scanf (7.21.6.2, 7.29.2.2)
	File position errors (7.21.9.1, 7.21.9.3, 7.21.9.4)
	An n-char-sequence after nan (7.22.1.3, 7.29.4.1.1)
	errno value at underflow (7.22.1.3, 7.29.4.1.1)
	Zero-sized heap objects (7.22.3)
	Behavior of abort and exit (7.22.4.1, 7.22.4.5)
	Termination status (7.22.4.1, 7.22.4.4, 7.22.4.5, 7.22.4.7)
	The system function return value (7.22.4.8)
	Range and precision of clock_t and time_t (7.27)
	The time zone (7.27.1)
	The era for clock() (7.27.2.1)
	TIME_UTC epoch (7.27.2.5)
	%Z replacement string (7.27.3.5, 7.29.5.1)
	Math functions rounding mode (F.10)

	J.3.13 Architecture
	Values and expressions assigned to some macros (5.2.4.2, 7.20.2, 7.20.3)
	Accessing another thread's autos or thread locals (6.2.4)
	The number, order, and encoding of bytes (6.2.6.1)
	Extended alignments (6.2.8)
	Valid alignments (6.2.8)
	The value of the result of the sizeof operator (6.5.3.4)

	J.4 Locale
	Members of the source and execution character set (5.2.1)
	The meaning of the additional characters (5.2.1.2)
	Shift states for encoding multibyte characters (5.2.1.2)
	Direction of successive printing characters (5.2.2)
	The decimal point character (7.1.1)
	Printing characters (7.4, 7.30.2)
	Control characters (7.4, 7.30.2)
	Characters tested for (7.4.1.2, 7.4.1.3, 7.4.1.7, 7.4.1.9, 7.4.1.10, 7.4.1.11, 7.30.2.1.2, 7.30.5.1.3, 7.30.2.1.7, 7.30.2.1.9, 7.30.2.1.10, 7.30.2.1.11)
	The native environment (7.11.1.1)
	Subject sequences for numeric conversion functions (7.22.1, 7.29.4.1)
	The collation of the execution character set (7.24.4.3, 7.29.4.4.2)
	Message returned by strerror (7.24.6.2)
	Formats for time and date (7.27.3.5, 7.29.5.1)
	Character mappings (7.30.1)
	Character classifications (7.30.1)

	Implementation-defined behavior for C89
	Descriptions of implementation-defined behavior
	Translation
	Diagnostics (5.1.1.3)

	Environment
	Arguments to main (5.1.2.2.2.1)
	Interactive devices (5.1.2.3)

	Identifiers
	Significant characters without external linkage (6.1.2)
	Significant characters with external linkage (6.1.2)
	Case distinctions are significant (6.1.2)

	Characters
	Source and execution character sets (5.2.1)
	Bits per character in execution character set (5.2.4.2.1)
	Mapping of characters (6.1.3.4)
	Unrepresented character constants (6.1.3.4)
	Character constant with more than one character (6.1.3.4)
	Converting multibyte characters (6.1.3.4)
	Range of 'plain' char (6.2.1.1)

	Integers
	Range of integer values (6.1.2.5)
	Demotion of integers (6.2.1.2)
	Signed bitwise operations (6.3)
	Sign of the remainder on integer division (6.3.5)
	Negative valued signed right shifts (6.3.7)

	Floating point
	Representation of floating-point values (6.1.2.5)
	Converting integer values to floating-point values (6.2.1.3)
	Demoting floating-point values (6.2.1.4)

	Arrays and pointers
	size_t (6.3.3.4, 7.1.1)
	Conversion from/to pointers (6.3.4)
	ptrdiff_t (6.3.6, 7.1.1)

	Registers
	Honoring the register keyword (6.5.1)

	Structures, unions, enumerations, and bitfields
	Improper access to a union (6.3.2.3)
	Padding and alignment of structure members (6.5.2.1)
	Sign of 'plain' bitfields (6.5.2.1)
	Allocation order of bitfields within a unit (6.5.2.1)
	Can bitfields straddle a storage-unit boundary (6.5.2.1)
	Integer type chosen to represent enumeration types (6.5.2.2)

	Qualifiers
	Access to volatile objects (6.5.3)

	Declarators
	Maximum numbers of declarators (6.5.4)

	Statements
	Maximum number of case statements (6.6.4.2)

	Preprocessing directives
	Character constants and conditional inclusion (6.8.1)
	Including bracketed filenames (6.8.2)
	Including quoted filenames (6.8.2)
	Character sequences (6.8.2)
	Recognized pragma directives (6.8.6)
	Default _ _DATE_ _ and _ _TIME_ _ (6.8.8)

	Library functions for the IAR DLIB runtime environment
	NULL macro (7.1.6)
	Diagnostic printed by the assert function (7.2)
	Domain errors (7.5.1)
	Underflow of floating-point values sets errno to ERANGE (7.5.1)
	fmod() functionality (7.5.6.4)
	signal() (7.7.1.1)
	Terminating newline character (7.9.2)
	Blank lines (7.9.2)
	Null characters appended to data written to binary streams (7.9.2)
	Files (7.9.3)
	remove() (7.9.4.1)
	rename() (7.9.4.2)
	%p in printf() (7.9.6.1)
	%p in scanf() (7.9.6.2)
	Reading ranges in scanf() (7.9.6.2)
	File position errors (7.9.9.1, 7.9.9.4)
	Message generated by perror() (7.9.10.4)
	Allocating zero bytes of memory (7.10.3)
	Behavior of abort() (7.10.4.1)
	Behavior of exit() (7.10.4.3)
	Environment (7.10.4.4)
	system() (7.10.4.5)
	Message returned by strerror() (7.11.6.2)
	The time zone (7.12.1)
	clock() (7.12.2.1)

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z
	Symbols
	Numerics

