
MUBROFELF-1

IAR Embedded Workbench®

Migrating from UBROF to ELF/DWARF

MUBROFELF-1

MUBROFELF-1

COPYRIGHT NOTICE
Copyright © 2010 IAR Systems AB.

No part of this document may be reproduced without the prior written consent of IAR
Systems AB. The software described in this document is furnished under a license and
may only be used or copied in accordance with the terms of such a license.

DISCLAIMER
The information in this document is subject to change without notice and does not
represent a commitment on any part of IAR Systems. While the information contained
herein is assumed to be accurate, IAR Systems assumes no responsibility for any errors
or omissions.

In no event shall IAR Systems, its employees, its contractors, or the authors of this
document be liable for special, direct, indirect, or consequential damage, losses, costs,
charges, claims, demands, claim for lost profits, fees, or expenses of any nature or kind.

TRADEMARKS
IAR Systems, IAR Embedded Workbench, C-SPY, visualSTATE, From Idea To Target,
IAR KickStart Kit, IAR PowerPac, IAR YellowSuite, IAR Advanced Development Kit,
IAR, and the IAR Systems logotype are trademarks or registered trademarks owned by
IAR Systems AB. J-Link is a trademark licensed to IAR Systems AB.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

Adobe and Acrobat Reader are registered trademarks of Adobe Systems Incorporated.

All other product names are trademarks or registered trademarks of their respective
owners.

EDITION NOTICE

First edition: December 2010

Part number: MUBROFELF-1

Internal reference: ISUD.

Contents
Migrating from a UBROF-based product to an
ELF/DWARF-based product ... 5

Major differences .. 5

Compiler and C/C++ source code syntax 6

Assembler and assembler source code syntax 7

Linker and linker configuration .. 9

XLINK versus ILINK .. 9

Migrating from XLINK to ILINK ... 9

Converting XLINK.xcl to ILINK.icf ... 10

Project files and project setup in the IDE 12

Converting your project file ... 12

Migrating project options ... 13

Runtime environment and object files .. 14

Interoperability ... 14

Selecting runtime library files .. 14

Debugger .. 14

Flash loaders .. 14

Tools options .. 14

Differences related to compiler options ... 14

Differences related to assembler options ... 15

Differences related to linker options .. 15

Segments versus sections ... 17

Segments for initialization ... 17

Mapping UBROF segments to ELF/DWARF sections 17

Assembler directives ... 19

Filename extensions .. 20
MUBROFELF-1

 3

4

MUBROFELF-1

IAR Embedded Workbench®
Migrating from UBROF to ELF/DWARF

Migrating from a
UBROF-based product to
an ELF/DWARF-based
product
This guide presents the major differences between an IAR Embedded
Workbench® product that uses the UBROF object format (hereafter referred
to as a UBROF product) and an IAR Embedded Workbench® product that
uses the ELF/DWARF object format (hereafter referred to as an ELF/DWARF
product), and describes the migration considerations. Primarily, these include
how to:

● Make your existing application source code compile and link successfully

● Identify potential changes in runtime behavior.

This guide is mainly intended to help you migrate from an older version of a
UBROF-based product to a newer version of the same product that uses the
ELF/DWARF object format. If you are migrating from an IAR Embedded
Workbench for a specific microcontroller to a completely different
microcontroller, be aware that the list of issues to deal with in this guide is not
complete for that purpose.

Major differences
The main conceptual difference between a UBROF product and an ELF/DWARF
product is that the internal object format used by the IAR build tools has changed. In a
UBROF product, the IAR Systems format UBROF is used, whereas an ELF/DWARF
product uses the industry-standard Executable and Linkable Format including DWARF
for debug information (ELF/DWARF).

Because the two object formats do not support the same range of features, the tools
based on them do not support the same range of features. This is most obvious for the
linker. IAR ILINK Linker is dedicated for ELF/DWARF, and it is conceptually very
MUBROFELF-1

Migration and portability 5

6

Compiler and C/C++ source code syntax
different from the UBROF linker IAR XLINK Linker. There is also a set of
tools—referred to as the IAR Utilities—for handling the ELF/DWARF object format
files:

● The IAR Archive Tool

● The IAR ELF Tool

● The IAR ELF Dumper

● The IAR Absolute Symbol Exporter.

The ILINK linker and the IAR Utilities are described in the IAR C/C++ Development
Guide.

The benefit of using an ELF/DWARF product is its compatibility (to some extent) with
tools from other vendors that also support ELF/DWARF.

The differences in the tools force you to modify your application source code and other
related project files. In short, to migrate from a UBROF product to an ELF/DWARF
product, you must pay attention to changes in the:

● Compiler and C/C++ source code syntax

● Assembler and assembler source code syntax

● Linker and linker configuration

● Runtime environment and object files

● Project files and project setup in the IDE

● Debugger.

Note that not all issues might be relevant when you migrate your old project. Consider
carefully what actions are needed in your case.

Compiler and C/C++ source code syntax
C or C++ source code that was originally written for the IAR C Compiler in the UBROF
product can be used also with the IAR C/C++ Compiler in the ELF/DWARF product.
However, some small modifications might be required.

Before compiling existing source code using the new compiler, consider the following
changes:

● In your C/C++ source code files, the following generic syntax changes have been
made:

● Initializers are no longer allowed for absolute placed constants, which means the
following type of constructions are no longer allowed:

int const a @ 10 = 20;
MUBROFELF-1

IAR Embedded Workbench®
Migrating from UBROF to ELF/DWARF

Migrating from a UBROF-based product to an ELF/DWARF-based product
Instead, you should put the contents in a user defined section and configure the
ILINK linker to place the section at the appropriate address.

● Depending on your product, the #pragma vector directive might no longer be
available. To read more about how to specify interrupt vectors, see the IAR
C/C++ Development Guide.

● Instead of segments, the compiler now places code and data in sections. This
internal change does not require any changes in your C/C++ source code, unless
you are using any of the predefined segment names explicitly in your source code.
In that case, you must make sure to use the new section names, see Segments versus
sections, page 17.

Also, the handling of initialized segments has changed, see Segments for
initialization, page 17.

● There are some changes related to the compiler options. Some options have been
removed, some options have changed, and there are some new options. For a list of
changes, see Tools options, page 14.

● For information about changes related to filename extensions, see Filename
extensions, page 20.

Assembler and assembler source code syntax
The name of the assembler executable file has been renamed from acpuname to
iasmcpuname, where cpuname reflects the toolchain you are using.

In your assembler source code, the following generic changes have been made:

● Modules

In a UBROF product, you can define one or several assembler modules in each file.
In an ELF/DWARF product, there can only be one module per file. This means that
you must restructure your files accordingly.

In the ELF/DWARF product, the assembler cannot make a distinction between
program and library modules. If you want a module to be treated as a library module,
thus conditionally linked, you must place the module in a library.

This means that if you have used either the LIBRARY or the MODULE directive in your
existing assembler source code, these will no longer have the intended effect.

To read more about modular programming and the new syntax of the module
directives, see the IAR Assembler Reference Guide supplied with the ELF/DWARF
product.
MUBROFELF-1

Migration and portability 7

8

Assembler and assembler source code syntax
● Segments versus sections

The segment concept has been replaced by the concept of sections. This means that:

● Assembler directives operating on segments have been either removed or
replaced by new directives operating on sections instead, which means you must
modify your assembler source code accordingly. For more information, read
about section control directives in the IAR Assembler Reference Guide

● If you have used any of the predefined segments specific to the UBROF product
in your assembler source code, you must replace all old segment names with new
section names. For more information, see Segments versus sections, page 17.

● Expressions

The ELF/DWARF object format restricts the complexity of expressions more than
the UBROF object format does. Any affected expressions must be rewritten,
otherwise the assembler will generate an error. For more information about
expressions, see the IAR Assembler Reference Guide.

● Assembler directives

Some of the assembler directives have been removed and some use a new syntax or
have other changes. For a list of assembler directives which are not the same in the
ELF/DWARF product as in the UBROF product, see Assembler directives, page 19.

If you have used any of these directives in your assembler source code, you must
rewrite these constructions.

For detailed information about these directives, see the IAR Assembler Reference
Guide.

● Predefined symbols

The predefined symbol __ASMCPUNAME__ has been replaced by the symbol
__IASMCPUNAME__, where CPUNAME reflects the toolchain you are using.

● Backtrace information for the C-SPY Call stack window

The resource names for backtrace information in the C-SPY Call Stack window have
been standardized, and are defined in the Cfi.m file. This means that you can no
longer define your own resource names. If you have used the CFI assembler directive
to define your names object, this must contain a subset of the standardized resource
names. For a list of the standardized resource names, see the IAR C/C++
Development Guide.

● For information about changes related to filename extensions, see Filename
extensions, page 20.

● The environment variables ASMCPUNAME and ACPUNAME_INC have changed to
IASMCPUNAME and IASMCPUNAME_INC, respectively, where CPUNAME reflects the
toolchain you are using.
MUBROFELF-1

IAR Embedded Workbench®
Migrating from UBROF to ELF/DWARF

Migrating from a UBROF-based product to an ELF/DWARF-based product
● There are some changes related to the assembler options. Some options have been
removed, some options have changed, and there are some new options. For a list of
changes, see Tools options, page 14.

Linker and linker configuration
This section describes the changes in the linker and the linker configuration.

XLINK VERSUS ILINK

Both XLINK and ILINK combine one or more relocatable object files with selected
parts of one or more object libraries to produce an executable image. XLINK can only
take object files in UBROF format, produced by tools from IAR Systems and produce
output in the output format UBROF or in any of the other supported output formats.
ILINK can take object files in ELF format and produces an executable image in the ELF
format. IAR ELF Tool can then transform the executable image that ILINK produced.
IAR ELF Tool can add checksums over bytes, fill out areas, or convert the executable
image to another format.

In a UBROF product, the compiler places code and data in UBROF segments, which
XLINK allocates in memory according to directives specified in the linker command file
(filename extension xcl). This file is an extension of the command line, which means
that you can simply specify any XLINK command line option in it.

In an ELF/DWARF product, the compiler places code and data in ELF sections. ILINK
allocates these sections according to the configuration specified in the linker
configuration file (filename extension icf). This file also supports automatic handling
of the application’s initialization phase, which means initializing global variable areas
and code areas by copying initializers and possibly decompressing them as well.
However, the configuration file cannot contain any command line options; these must
be specified on the command line.

MIGRATING FROM XLINK TO ILINK

When you migrate from the XLINK linker to the ILINK linker, pay attention to the
following issues:

● The new IAR ILINK Linker is target-specific which the IAR XLINK Linker is not;
the name of the executable file is xlink and ilinkcpuname, respectively, where
cpuname reflects the toolchain you are using.

● To migrate your linker command file to a new ILINK configuration file, see
Converting XLINK.xcl to ILINK.icf, page 10 for an example.

● For information about how to map segments to sections, see Segments versus
sections, page 17.
MUBROFELF-1

Migration and portability 9

10

Linker and linker configuration
● There are some changes related to the linker options. Some options have been
removed, some options have changed, and there are some new options. For a list of
changes, see Tools options, page 14.

● In a UBROF product you explicitly specify the appropriate system library to use
when linking. In an ELF/DWARF product, the appropriate system library is used
automatically.

● For information about changes related to filename extensions, see Filename
extensions, page 20.

● Use IAR ELF Tool if you need to convert the ELF output to either Intel-hex or
Motorola S-records.

● In a UBROF product, the -r option controls whether debug information should be
retained and the -rt option controls the level of debug support for C-SPY. In an
ELF/DWARF product, all debug information is retained unless the option --strip
is used and the option --debug_lib enables C-SPY debug support.

To learn more about linking, see the IAR C/C++ Development Guide.

CONVERTING XLINK.XCL TO ILINK.ICF

Because the linker configuration files for XLINK and ILINK are based on two different
paradigms, nothing in the linker configuration file for XLINK is automatically
converted. Instead, you must convert your linker setup manually.

We suggest this strategy for converting an XLINK linking setup to an ILINK linking
setup:

1 Try to identify the changes in your xcl file compared to the original default file.

2 Apply those changes to a default icf file using the appropriate mechanisms.

For some general advice, see:

● Placing sections in memory, page 11

● Specifying the size of a section, page 11

● Specifying the initialization of sections, page 12.

In addition, these are some conversion topics you should look at:

● A ROM segment or an uninitialized RAM segment is added in the compiler or
assembler. Normally, the default placement is sufficient. If not, add the
corresponding section name to the relevant placement command.

● The -Q option is used in your XLINK linking setup; replace with the initialize
by copy linker directive in your ILINK setup.

● A checksum is used; read about the --checksum option in the IAR ELF Tool
documentation in the IAR C/C++ Development Guide.
MUBROFELF-1

IAR Embedded Workbench®
Migrating from UBROF to ELF/DWARF

Migrating from a UBROF-based product to an ELF/DWARF-based product
● Fill is used; read about the --fill option in the IAR ELF Tool documentation in
the IAR C/C++ Development Guide.

● An output format other that ELF is needed; read about IAR ELF Tool in the IAR
C/C++ Development Guide.

● Overlay is used; read about the overlay linker directive in the IAR C/C++
Development Guide.

● Banking is used; read about the banking linker directive in the IAR C/C++
Development Guide.

● Far memory placement is used; read about repeating ranges for regions in the IAR
C/C++ Development Guide.

Placing sections in memory

In the XLINK linker, the placement concept is to place segments, sets of segment parts
from one or more modules, into one or more address areas in a memory type (CODE,
DATA, etc). For example:

-Z(CODE)CODE,CODE2=0–2000

The segments are placed in order, in other words the CODE2 segment is placed after the
CODE segment. If you use -p, the placement instead becomes unordered.

In the ILINK linker, the placement concept is to place sections, sets of section fragments
from one or more modules, by their section type (read/write, read-only, etc) into regions.
A region is one or more address areas in a memory. A memory is a specific CPU
memory which has a maximum address range. For example:

define memory mem with size = 2G;
define region ROM = mem: [from 0x0 to 0xFFFFFF];
place in ROM { ro };

The sections have an unordered placement, which means the linker determines the order.
To place a section at a specific address you must use the place at linker directive. For
example:

place at address mem:0x0 { ro section .intvec};

Specifying the size of a section

In the XLINK linker, you can specify a constant size to a segment with the + operator.
For example:

-Z(DATA)CSTACK+8000=8000–A000

In the ILINK linker, you must use a block instead of a section to specify a size. For
example:

define block CSTACK with alignment = 8, size = 0x8000 {};
MUBROFELF-1

Migration and portability 11

12

Project files and project setup in the IDE
place in RAM { rw, block CSTACK };

With the block directive, it is also possible to specify an ordered set of blocks.

Specifying the initialization of sections

In a UBROF product, a segment that should be initialized during the startup sequence
has its initializers placed in a separate segment by the compiler, for example DATA and
DATA_I. The placement for both of these segments must be specified in the linker
configuration file using either the -Z or the -p option. During the startup sequence, the
startup code copies DATA_I to DATA.

In an ELF/DWARF product, the compiler produces only the .data section which also
contains the initializers. In the linker configuration file, you must specify how the
section should be initialized. Normally, it should be copied in which case you use the
initialize by copy linker directive. For example:

initialize by copy { rw };

For a section that should not be initialized, you must specify the do not initialize
directive. For example:

do not initialize { section .noinit };

In a UBROF product, the startup sequence must explicitly know all segments that
somehow should be initialized. In an ELF/DWARF product, the startup sequence uses a
table for this and does not know what to initialize. The ILINK linker populates that table
with initialization jobs and adds code that executes the initialization jobs.

Project files and project setup in the IDE
Upgrading to the new version of the IAR Embedded Workbench IDE requires some
manual adaptations.

CONVERTING YOUR PROJECT FILE

If you are using the IAR Embedded Workbench IDE, start your new version of the IAR
Embedded Workbench IDE and open your old workspace. When you open a workspace
that contains old projects created with a UBROF product, a dialog box asks you if you
want the project file to be converted for your ELF/DWARF product. If you click OK, a
backup of your old project is first created, and then the project is converted.

Note that this depends on the product you are using, but the UBROF product and the
ELF/DWARF product must be for the same microcontroller.
MUBROFELF-1

IAR Embedded Workbench®
Migrating from UBROF to ELF/DWARF

Migrating from a UBROF-based product to an ELF/DWARF-based product
MIGRATING PROJECT OPTIONS

Because the available project options differ between the UBROF product and the
ELF/DWARF product, you should verify your option settings after you have converted
an old project.

If you are using the command line interface, you can simply compare your makefile with
the mapping tables in Tools options, page 14, and modify the makefile accordingly.

If you are using the IDE, the options that are the same in both versions might be
automatically converted during the project conversion depending on what product and
product versions you are using. If automatically converted, the options that have
changed will be set to default values.

To verify the options manually, follow this procedure:

1 Choose Project>Options to open the Options dialog box and select these categories to
verify the options:

● Compiler category

The Code page is new, but the options were earlier available in the General category.
The options will keep their settings.

The Output page has changed. If you have defined your own segment name, this will
not be automatically converted to a section name. The default code section name is
.memattr.text. For more information about segment versus section names, see
Segments versus sections, page 17.

● Linker category

No linker options are converted automatically. During the project conversion, all
linker options will be set to default values. For more information about XLINK
options versus ILINK options, see Differences related to linker options, page 15. See
also Linker and linker configuration, page 9.

● Output Converter category

In the UBROF product, XLINK can produce a number of output formats and you
specify on the linker Output page which one to be used. In the ELF/DWARF
product, ILINK produces ELF/DWARF. Use the Output Converter options to
convert the ELF output to either Intel-hex or Motorola S-records.

● Library Builder category

In the ELF/DWARF product, there is a new library builder, which means no options
are converted automatically. During the project conversion, all library builder options
will be set to default values.

2 Remember to set any new options.

For information about where to set the equivalent options in the IAR Embedded
Workbench IDE, see the online help system.
MUBROFELF-1

Migration and portability 13

14

Runtime environment and object files
Runtime environment and object files
INTEROPERABILITY

To build code produced by the compiler in the ELF/DWARF product, you must use the
runtime environment components it provides. It is not possible to link object code
produced using the ELF/DWARF product with components provided with the UBROF
product. This means that you must rebuild your object code from the UBROF product
and in some cases you might need to make some source code modifications.

SELECTING RUNTIME LIBRARY FILES

In a UBROF product, you explicitly specify the appropriate system library to use when
linking. In an ELF/DWARF product, the appropriate system library is used
automatically.

Debugger
FLASH LOADERS

To use a flash loader for downloading your application, an additional output file in the
simple-code format is required. In a UBROF product, you must manually set up XLINK
to generate this extra sim file. In a ELF/DWARF product, this additional file is not
required as C-SPY automatically generates the information for the download.

Tools options
This section lists the differences between the command line options in a UBROF
product and an ELF/DWARF product, for the compiler, assembler, and the linker.

Note: Only changes due to the changed object format are listed.

DIFFERENCES RELATED TO COMPILER OPTIONS

This table lists the compiler command line options that have changed:

In a UBROF product Description In an ELF/DWARF product

--library_module Creates a library module Removed. To conditionally link
a module, it must be part of a
library.

--module_name Sets the object module name Removed

Table 1: Differences in compiler options
MUBROFELF-1

IAR Embedded Workbench®
Migrating from UBROF to ELF/DWARF

Migrating from a UBROF-based product to an ELF/DWARF-based product
* Might not be available in the product you are using.

DIFFERENCES RELATED TO ASSEMBLER OPTIONS

This table lists the assembler command line options that have changed (might not
concern the product you are using):

DIFFERENCES RELATED TO LINKER OPTIONS

This table summarizes the XLINK command line options and their possible
counterparts in ILINK:

--omit_types Excludes type information Removed

--segment* Changes a segment/section name --section

In a UBROF product Description In an ELF/DWARF product

-b Creates a library module Removed

-X Unreferenced externals in object
files

Removed

Table 2: Differences in assembler options

XLINK option Description In ILINK (or IAR ELF Tool)

-! Comment delimiter In the icf file, /*...*/ or //.

-A Loads as program Removed, see Assembler and assembler
source code syntax, page 7.

-a Disables static overlay Removed

-B Always generates output --force_output

-b Defines banked segments In the icf file *

-C Loads as a library Removed, see Assembler and assembler
source code syntax, page 7.

-c Specifies the processor type Removed

-D Defines a symbol --define_symbol

-d Disables code generation Removed

-E Inherent, no object code Removed

-e Renames external symbols --redirect; note that the syntax has
changed.

-F Specifies the output format Removed

Table 3: Counterparts of XLINK options in ILINK

In a UBROF product Description In an ELF/DWARF product

Table 1: Differences in compiler options (Continued)
MUBROFELF-1

Migration and portability 15

16

Tools options
-f Specifies the XCL filename -f (extends the command line); in ILINK
the configuration file is specified using
the option --config.

-G Disables global type checking Removed

-g Requires global entries --keep

-H Fills unused code memory --fill (IAR ELF Tool option)

-h Fills ranges --fill (IAR ELF Tool option)

-I Specifies the include paths --search

-J Generates a checksum --checksum (IAR ELF Tool option)

-K Duplicates code In the icf file *

-L Lists to directory --log_file

-l Lists to a named file --log_file

-M Maps logical addresses to physical
addresses

In the icf file *

-n Ignores local symbols --no_locals

-O Multiple output files Removed

-o Output file Unchanged, but --output can also be
used as an alias.

-P Defines packed segments In the icf file *

-p Specifies lines/page Removed

-Q Scatter loading In the icf file *

-q Disables relay function optimization Removed

-R Disables range check --diag_suppress

-r Debug information Removed. In ILINK, debug information is
included by default, and removed by
using --strip.

-rt Debug information with terminal
I/O

--debug_lib

-S Silent operation --silent

-s Specifies a new application entry
point

--entry

-U Address space sharing In the icf file *

-V Declares relocation areas for code
and data

In the icf file *

XLINK option Description In ILINK (or IAR ELF Tool)

Table 3: Counterparts of XLINK options in ILINK (Continued)
MUBROFELF-1

IAR Embedded Workbench®
Migrating from UBROF to ELF/DWARF

Migrating from a UBROF-based product to an ELF/DWARF-based product
* In ILINK, this functionality is not available as a linker option that you specify either on the com-
mand line or in the IAR Embedded Workbench IDE. Instead, it is part of the configuration that
you specify in the linker configuration file.

Segments versus sections
This section describes the differences between segments in a UBROF product and
sections in an ELF/DWARF product.

SEGMENTS FOR INITIALIZATION

In a UBROF product, the compiler creates one segment for initializers and one segment
for the initialized variables. In an ELF/DWARF product, the compiler creates one data
section that contains the initializers. ILINK then transforms that section for proper
handling of the initialization. To read more about initializations, see the IAR C/C++
Development Guide.

MAPPING UBROF SEGMENTS TO ELF/DWARF SECTIONS

Some of the UBROF segments have no counterparts in ELF/DWARF, and vice versa.

This table lists the UBROF segment names and their counterparts in an ELF/DWARF
product:

-w Sets diagnostics control --diag_error, --diag_remark,
--diag_suppress,
--diag_warning,
--diagnostics_tables,
--error_list, --no_warnings,
--remarks,
--warnings_are_errors,
--warnings_affect_exit_code

-x Specifies cross-reference --map

-Y Format variant Removed

-y Format variant Removed

-Z Defines segments In the icf file *

-z Segment overlap warnings Removed

XLINK option Description In ILINK (or IAR ELF Tool)

Table 3: Counterparts of XLINK options in ILINK (Continued)

UBROF segment ELF/DWARF section Comments

CODE .memattr.text

Table 4: Mapping segments to sections
MUBROFELF-1

Migration and portability 17

18

Segments versus sections
For a complete list of sections and detailed information about them, see the IAR C/C++
Development Guide.

CODE_I .memattr.textrw

CODE_ID .memattr.textrw Initialization is no longer handled by the
compiler. ILINK creates *_init
sections if needed.

CSTACK CSTACK

MEMATTR_AC -- Absolute placement of constants is no
longer supported, which means a
dedicated segment/section is no longer
needed.

MEMATTR_AN -- Absolute __no_init declared
variables no longer handled using
dedicated sections.

MEMATTR_C .memattr.rodata

MEMATTR_I .memattr.data

MEMATTR_ID .memattr.data Initialization is no longer handled by the
compiler. ILINK creates *_init
sections if needed.

MEMATTR_N .memattr.noinit

MEMATTR_Z .memattr.bss

DIFUNCT -- The section name is no longer relevant.
ILINK looks at the segment type to
recognize these.

HEAP HEAP

INITTAB -- Initialization is no longer handled by the
compiler. ILINK creates an init table
serving a similar purpose.

INTVEC .intvec

UBROF segment ELF/DWARF section Comments

Table 4: Mapping segments to sections (Continued)
MUBROFELF-1

IAR Embedded Workbench®
Migrating from UBROF to ELF/DWARF

Migrating from a UBROF-based product to an ELF/DWARF-based product
Assembler directives
Some of the assembler directives have been removed or have a modified behavior. This
table lists the assembler directives which are not the same in an ELF/DWARF product
as in a UBROF product:

UBROF product ELF/DWARF product

ARGFRAME Removed

ASEG Removed

ASEGN Removed

BLOCK Removed

CFI The resource names are standardized. A CFI names block must
contain a subset of these resource names. See Cfi.m.

COMMON Removed

DEFFN Removed

END No longer takes a program start address as an argument.

ENDMOD Recognized but without effect; a warning is generated.

FUNCALL Removed

FUNCTION Removed

LIBRARY Instead of starting a library module, it now starts an ELF module. New
syntax.

LIMIT Removed

LOCFRAME Removed

MODULE Instead of starting a library module, it now starts an ELF module. New
syntax.

NAME Starts an ELF program module. New syntax.

ORG Removed

OVERLOAD Removed

PROGRAM Starts an ELF program module. New syntax.

RSEG The first instance of the RSEG directive used must not be preceded by
any code generating directives, such as DC or DS, or by any assembler
instructions. This directive is now an alias for the new directive
SECTION. New syntax.

STACK Removed

SYMBOL Removed

Table 5: Differences in assembler directives
MUBROFELF-1

Migration and portability 19

20

Filename extensions
Filename extensions
The following table lists the differences related to default filename extensions:

* nn reflects the numerical part of the filename extension and differs depending on the product
package you are using.

UBROF filename extension* ELF/DWARF filename

extension
Description/Comments

snn s Assembler source file

rnn o Object module

rnn a Library

ann out Target program

dnn out Target program for debugging

Table 6: Differences in filename extensions
MUBROFELF-1

IAR Embedded Workbench®
Migrating from UBROF to ELF/DWARF

	Contents
	Migrating from a UBROF-based product to an ELF/DWARF-based product
	Major differences
	Compiler and C/C++ source code syntax
	Assembler and assembler source code syntax
	Linker and linker configuration
	XLINK versus ILINK
	Migrating from XLINK to ILINK
	Converting XLINK.xcl to ILINK.icf

	Project files and project setup in the IDE
	Converting your project file
	Migrating project options

	Runtime environment and object files
	Interoperability
	Selecting runtime library files

	Debugger
	Flash loaders

	Tools options
	Differences related to compiler options
	Differences related to assembler options
	Differences related to linker options

	Segments versus sections
	Segments for initialization
	Mapping UBROF segments to ELF/DWARF sections

	Assembler directives
	Filename extensions

