IAR Embedded
Workbench

O

JAR C/C++ Development
Guide

Compiling and Linking

for Arm Limited’s
Arm® Cores

DARM-29 W EMB Development

IAR C/C++ Development Guide
Compiling and Linking for Arm

COPYRIGHT NOTICE
© 1999-2023 IAR Systems AB.

No part of this document may be reproduced without the prior written consent of IAR
Systems AB. The software described in this document is furnished under a license and
may only be used or copied in accordance with the terms of such a license.

DISCLAIMER

The information in this document is subject to change without notice and does not
represent a commitment on any part of [AR Systems. While the information contained
herein is assumed to be accurate, IAR Systems assumes no responsibility for any errors
or omissions.

In no event shall IAR Systems, its employees, its contractors, or the authors of this
document be liable for special, direct, indirect, or consequential damage, losses, costs,
charges, claims, demands, claim for lost profits, fees, or expenses of any nature or kind.

TRADEMARKS

IAR Systems, IAR Embedded Workbench, Embedded Trust, C-Trust, IAR Connect,
C-SPY, C-RUN, C-STAT, IAR Visual State, IAR KickStart Kit, I-jet, I-jet Trace,
I-scope, IAR Academy, IAR, and the logotype of IAR Systems are trademarks or
registered trademarks owned by IAR Systems AB.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

Arm, Cortex, Thumb, and TrustZone are registered trademarks of Arm Limited.
EmbeddedICE is a trademark of Arm Limited. uC/OS-II and uC/OS-III are trademarks
of Micrium, Inc. CMX-RTX is a trademark of CMX Systems, Inc. Azure RTOS
ThreadX is a trademark of Microsoft Corporation. RTXC is a trademark of Quadros
Systems. Fusion is a trademark of Unicoi Systems.

Renesas Synergy is a trademark of Renesas Electronics Corporation.
Adobe and Acrobat Reader are registered trademarks of Adobe Systems Incorporated.

All other product names are trademarks or registered trademarks of their respective
owners.

EDITION NOTICE
Twenty-ninth edition: June 2023

Part number: DARM-29
This guide applies to version 9.40.x of IAR Embedded Workbench® for Arm.
Internal reference: BB14, csrct2010.1, V_110411, ISHP.

Brief contents

TADIES ... 39
Preface ... 41
Part |. Using the build tools ... 49
Introduction to the IAR build tools ..., 51
Developing embedded applications ... 59
Data STOrage ... 73
FUNCLIONS ... 77
Linking using ILINK ..o 95
Linking your application ... 113
The DLIB runtime environment ... 129
Assembler language interface ... 171
USING C i 199
USING CH e 209
Application-related considerations ... 219
Efficient coding for embedded applications ... 245
Part 2. Reference information ... 265
External interface details ... 267
COMPIlEr OPLIONSioo e 277
LINKEI OPLIONS ..o 333
Data representation ... 375

Extended keywords ... 391

IAR C/C++ Development Guide
Compiling and Linking for Arm

Pragma dir€CtiVeS ...t 409

INtrinsSic FUNCLIONScoooooovvviieiiicc s eeeiesss s 437
The PreproCesSOr ... 479
C/C++ standard library functions ... 497
The linker configuration file ..., 511
SECtion referenCe ... 549
The stack usage control file ..., 557
TAR UBIITIES .ooooooo s 565
Implementation-defined behavior for Standard C++ ... 617
Implementation-defined behavior for Standard C 655
Implementation-defined behavior for C89 ... 675
INAEX .ottt 687

Contents

TADIES ... 39
Preface ... 41
Who should read this guide ... 41
Required KNOWIEAZEccceeeeiiieieieieieieeee e 41
How to use this guide ... 41
What this guide contains ..., 42
Part 1. Using the build toOISccceceeieiiiierienienieneneneeeeeeeeee 42
Part 2. Reference informationccceccevevveveeienienicnencnincncncenn. 42
Other documentation ... 43
User and reference gUidescccooveeeeereeieienienienienienieseseeeeeeieneas 44
The online help SYStemcccecveiiierieriinenenenineneseceeeeeeeeee 44
Further readingcccoovevereninenineeeeeceeeese s 45
Web sites
Document conventions ... 46
Typographic CONVENTIONScceeverrerririerieieiereiene st sreeieeneeneenees 46
Naming CONVENTIONScc.eeueeuirureieieieierierieriesieseesiestesseeseeseeeeeeneeneas 47
Part |. Using the build tools ... 49
Introduction to the IAR build tools ..., 51
The IAR build tools—an overview ... 51
The IAR C/CH+ COmPIITcoueverriiiiiiiiicieneneneseeeeceeeeee 51
The TAR ASSEMDIETcoveruiriiiiiiiiieieieieieeneese e 52
The TAR ILINK LINKerccccoveeviririiiiiiiieiiiiienenienesescececeeenen 52
Specific ELF tOOLScoiviniririiiiieiiieiectciesteiesesesesie e 52
EXternal toOISccevuiriininininieniieeeteeeteee e 52
IAR language OVErVIeW ... 53
DeViCe SUPPOKLcoooiiiiiiiiiicce ettt

32-bit Arm devices
64-bit Arm devices

Preconfigured support filesccccoevererenenienieninininenececeeeene 55

Examples for getting startedccceceeveerienienenenenenenenceeeeeen 56

Execution Modes ... 56

Special support for embedded systems ... 57
Extended KEYWOIdSccccovevuerinenininineniieeeteeseeseee s 57
Pragma dir€CtiVesc.eevveviieriieniieiiiieeteeteee et 57
Predefined Symbolsccccoeviririniiiiiiiciciene e
Accessing low-level features

Developing embedded applications ... 59

Developing embedded software using IAR build tools 59
Mapping of MEMOTY ...cccueriiriirierieiieeeeeteee e 59
Communication with peripheral unitscc.cccceeevenenienienenneeneeneene 60
Event handlingcccooceeiiieiiiiiiieieeeeeee s 60
System startup
Real-time Operating SYSteIMSccccevevereeieieneerienenienieneseeeeeneeneenees 60
Interoperability with other build toOlScceceevieveniereneninieieneee 61

The build process—an overview ... 61
The translation PrOCESSc..ceereeeeieieieeiesientenere s eeeeeneeneenees 62
The liNKing PrOCESSc.eevervieuiririieieieieteiesieseeree ettt ees 62
After linking

Application execution—an overview ..., 64
The initialization Phasecceceeveeiieienieneneneeeeeeee e 65
The eXecution PhaSecccceveereerieriiiriierieeie et 68
The termination Phasecc.ceceeereeieierierierienerese e 68

Building applications—an overview ... 69

Basic project configuration
32-bit mode processor configuration
64-bit mode processor CoONfigurationcceeceeeeeeeesiesienenienienenne 71
Optimization for speed and S1Z€cc.cceveeverieriieriieneenieneeneeeeeene 71

Data StOrage ... 73

Introduction ... 73
Different ways to Store datacocceceeeeeeieieniereneneneneseeeeeeenen 73

Storage of auto variables and parametersc.cccoceene 74
The Stack ..o 74

IAR C/C++ Development Guide
Compiling and Linking for Arm

Contents °

Dynamic memory on the heap ..., 75
Potential problemscocevierieriinieneeieeeeceteeee e 75
FUNCLIONS ..o 77
Function-related extensionsccccccoevvvieenincccieee, 77
32-bit Arm and Thumb code ..., 78
64-bit Ab4 COde ... 78
Execution in RAM ...
Interrupt functions for Cortex-M devices ...
Interrupts for COrteX-Mcccerierieriniinieniinieeieetete e
Interrupts for Cortex-M with FPUccoconiiiiiniiceee, 80

Interrupt functions for Arm7/9/11, Cortex-A, and
Cortex=-R devicescocoioiiiiiieeeeeeeeeeee e

Interrupt functions

Installing exception fUNCHONScccevveruerrenenerinieeieienenereseeeeeneen 82
Interrupts and fast iNtEITUPLScocvevveveererrinireeieieeeere e 83
NeSted INEITUPLS ...veeuveeieeiieieeieeie ettt ettt e ene e see e 84
SOftWAre INLETTUPLS ...oveveveriiriieieeieeeetete ettt 85
INterrupt OPErationsccccecveveereenieriiniinieetieeee ettt 86

Exception functions for 64-bit mode

EXception fUNCHIONSccoevirerinerinineeteteeesesee e 87
Exceptions and C++ member functionsccceceveevereneneneneenns 87
Exception Vector tablec.ccooeevieiiiiienierienieeeeee e

Nested exception fUNCLIONScoccevereririeieiierereneneneeeeeeeeeeeae

Supervisor-defined functions

Reset addresscovevveieviniininiiiiiciie e
Inlining functions ... 90

C Versus C+ SEMANTICSevververeerierierieeieeieeieetieeetetetestesiesee e siesienee 91

Features controlling function inliningccecevvevienieneenieeneenennne. 91
Stack Protection ...

Stack protection in the IAR C/C++ Compiler

Using stack protection in your applicationcceceveeeveeneeneeneennne.
TrustZone interface ... 93

Linking using ILINK ..o ereeeeissns s ssesesnieens 95

Linker overview ... 95
Modules and Sections ... 96
The linking process in detail ... 97
Placing code and data—the linker configuration file 99
A simple example of a configuration fileccccoccoveninininncnennns 100
Initialization at system startup ...,
The initialiZation PrOCESSceeveeeerierierierereneneneeteeeeeeeseeneennens
C++ dynamic inttialiZationcccecvevierieneeneineiieeiesee e
Stack usage analysisccoociiiinene s
Introduction to stack usage analysis
Performing a stack usage analysiscccceecerviervienieniienieeneeneenens
Result of an analysis—the map file contentscccccceevevveeenencnne 106
Specitying additional stack usage informationc..ceceeceevenennene 108
LImitationscccooviiiiiiiiiiiiiiii 109
Situations where warnings are iSSUedcoceeveeeeeeiecnevenenienenne 110
Call raph 10 ..covevvevieriiririeceee e 110
Call graph XML OULPULovuviriiiriienieiieieeieete ettt 111
Linking your application ... 113
Linking considerations ... 113
Choosing a linker configuration filecc.coceveviiiiiiinincnicninenne 113
Defining your own memory areasceceeeeereeeeneereereensesenennens 114
Placing sectionscceceevververeennen. .. 115
Reserving space in RAMc..cocooiiiiiiiiniiniiiieeececrceneniee 116
Keeping modulescoeveeiiieieieniinieiesieeeeieereee et 117
Keeping symbols and SECHIONSc.cevververrierienieneeneenieenieenieeieenne 117
Application startup in 32-bit MOdec.cccevvevueninineninieieienenene 117
Application startup in 64-bit MOdeccecvevererienienienieierenene 117
Setting up Stack MEMOTY ...c..coviiriiiiiiiiiiieiieneeee e e 118
Setting up heap MEMOTY ...c..coceeerereeieieiiieeneereeeeeeeeeee e 118
Setting up the atexit Hmitcc.ceoeverininininiieeeeeee e 118
Changing the default initializationcccceeeeeveriieniieniienieneeneene 118
Interaction between ILINK and the applicationccccccceeuevvenuennene 122

IAR C/C++ Development Guide
Compiling and Linking for Arm

Contents °

Standard library handlingccceceeveiininininininnieecencnee 123

Producing output formats other than ELF/DWARF 123

VBINEETS ..onviniiieiiriinieeiteitet ettt sttt ettt s sresaesaesae et 123

Hints for troubleshooting ... 123

Relocation EITOTScc.ccvevvivuiriiniieiieiieieicieienteie et 124

Checking module consistency ..., 125
Runtime model attributes

Using runtime model attributesc.ccooeeverrerieniienieneeneeneenene 126

Linker optimizations ... 127

Virtual function eliminationccceeceverenenenenennienenenenenenens 127

Small function InliNINgcceceeveriiiiiniinieneeeeeeeeeee e 127

Duplicate Section METZINGccccouevuerveruerrinrenrieeeieeerererenienenenne 128

The DLIB runtime environment ... 129

Introduction to the runtime environment 129

Runtime environment functionalitycccoceeververienieenienienenennens 129

Briefly about input and output (I/O)130

Briefly about C-SPY emulated I/O 132

Briefly about retargetingccoceeeeeeieieieiienieniese et 132

Setting up the runtime environment ..o 133

Setting up your runtime envirOnmentce.ceceeceeeeceerueruenenenenne 134

Retargeting—Adapting for your target Systemcc.ceceevereneennene 135

Overriding library modulesccoccevierieneniieiienienieneeneeieeeee 137

Customizing and building your own runtime libraryc..ccccoc.. 138

Additional information on the runtime environment 139

Bounds checking functionality
Runtime library configurations
Prebuilt runtime lbrariescooeceeeeieieiieiienineneneneeeeeeeeiene

Formatters for printfcoccooveviiniiniinieieeeee e

Formatters for scanfcccooiiiiiiieiiicceee e
The C-SPY emulated I/O mechanismccocoeeeeeeiiiiecreeeenneene. 148
The semihosting MEChaNISIMcecveriirienienieneeeeie e

Math fUNCHIONS ...ooiviiiiiiieiie et

System startup and termination

IAR C/C++ Development Guide
Compiling and Linking for Arm

System initialization
The DLIB low-level I/O interfaceccccevevvevenenineenieiencnennens 155

SYSLEIIL .ottt
__time32, __time64
WIEER euvententeteeteeteete ettt et et e e et et s te st e bt et eb e st et e st et et e be b e besbeenes
Configuration symbols for file input and outputc..cocccervecenennee 165
LOCAlE ..o 165
Managing a multithreaded environment 166
Multithread support in the DLIB runtime environment 167

Enabling multithread support

C++ exceptions in threadscecueveerierieriineneeieeeeeeieeee e

Setting up thread-local storage (TLS)cccevvieviinienieniiniiieeene, 168

Assembler language interface ... 171
Mixing C and assembler ...
Intrinsic fUNCHONSocoiiiiiiiiiiicce e

Mixing C and assembler modules

Inline assembIErccceieviiiiiiieiiie e
Reference information for inline assemblerc...ccceeeeveeenneennenn. 174
An example of how to use clobbered memorycccecevereeeencene 182

Contents °

Calling assembler routines from C ... 182
Creating skeleton COdeoviiririiiniiriiiniienierie e 183
Compiling the skeleton codec.ccceverininininrinininieicienenene 183

Calling assembler routines from C++ ... 185

Calling convention ...

Function declarationsccoeceveerieriernieerenieeie e
Using C linkage in C++ source code ...
Preserved versus scratCh registerscoceeveeveeveriierienieeniieneenens
FUNCtion eNntrancecccceeveeeieeieriieneeneeseeie e eee e
FUNCHON EXIE .eieivieiiieiecieeicesieee ettt sneens
EXAMPIES ..onviiniiiiieiiiieceee e
Call frame informationc..ccoooeinieee s
CFI dITECHIVES uvveeieiieiieieeieeieeteseesteestee e eseeaesseesseesseesseenseeseenns

USING € e 199
C language OVervieweeeeesnees 199
EXtensions OVErVIeW ... 199

Enabling 1anguage eXtensionsccceceeeververierererereseneeseenuenuens 201

IAR C language extensions

Extensions for embedded systems programmingc..cecceceeeeneee 201
Relaxations to Standard Ccoceeeeieiieieiieninene et 203
USING CH e 209
Overview—Standard C++ ..., 209
Modes for exceptions and RTTI supportc.ceceeeeeevecvenienenenenenne 210
Exception handling
Enabling support for C++ ... 212
C++ feature descriptions ... 212
Using AR attributes with Classesccccoceverienenieniinienneneenienieneens 212
TEMPIALES ..ottt 213
FUNCHON LYPES ettt ettt s 213
Using static class objects in iNteITUPLSc.ecvevverrererereereeeereenennens 213
Using New handIersc.cceceeeeieieieiienienieneseneseeteeeteie e 214
Debug support in C-SPYc.cccovirininininiieeneeeeecerereneneniee 214

12

IAR C/C++ Development Guide
Compiling and Linking for Arm

C++ language eXtensions ... 215
Migrating from the

DLIB C++ library to the Libct++ C++ library 217
Porting code from EC++ or EEC++ ... 218

Application-related considerations ... 219

Output format considerations ... 219

Stack considerations ...
Stack size CONSIAETAIONSco.eeueeuieiiiiiintinrinieeieeeee ettt
Stack aligNMENtcc.eevereireeieieieieeee ettt
EXCeption StaCkccceevieriiriiniiiieiiereeeeteeee e

Heap considerations ...
Heap memory handlersccoceveieiieniinenenineceeeeeeeeneee

Heap size and standard I/O

Heap aligNmentc.cceceeeeieniinienieniininieeieeeeeitetet e
Interaction between the tools and your application 223
Checksum calculation for verifying image integrity 225

Briefly about checksum calculationccceceveneniniiencncncnennene 225

Calculating and verifying a checkSumcccceeceverenieieiiesienenenne 227

Troubleshooting checksum calculationc.ccecceceevivcienienicninennen. 233
AEABI compliance ..o 234

Linking AEABI-compliant modules using the IAR ILINK linker ..235

Linking AEABI-compliant modules using a third-party linker 235

Enabling AEABI compliance in the compilerc.coceeeevencnennene 236
CMSIS integration (32-bit mode) ... 236

CMSIS DSP IIBIaryc.ccccvvueveiiniviiiiiiieciieeieieeeesceeeeseeneenns 236

Customizing the CMSIS DSP librarycccccceeevenenenenienieneenenee 237

Building with CMSIS on the command lineccocoecerererneeniennene 237

Building with CMSIS in the IDEccooociiiniiiniiiiiniccie 237
Arm TrustZone® ...

In 32-bit mode

In 64-bit MOdEcooviiiiiiiiiiiiic
Branch protection (PACBTI) — 32-bit mode only 241

Using branch protection in your applicationcc.ceeeveereereeneennene 241

Contents °

Patching symbol definitions using $Super$$ and $Sub$$...243

An example using the $Super$$ and $Sub$$ patterns 243
Efficient coding for embedded applications ..., 245
Selecting data types ...
Using efficient data typesccccecveveervenueniinininieieeeieieresenieneenne
Floating-point tYPESccceeveeueeuiruieiieieienieniesiesieeie et et ste e e s
Alignment of elements in a structure ...
Anonymous Structs and UNIONSccceevevververrinenrenenienenreeereeenne
Controlling data and function placement in memory 248
Data placement at an absolute locationcceceeveeieeveriienceennn. 249
Data and function placement in SECtiONSccccevererererereereeneennns 250
Data placement in registers (32-bit mode)cccceeeeveerererenenennen. 251
Controlling compiler optimizations ... 252
Scope for performed OptimiZationscccceveevververeneneneneeeeeenne 253
Multi-file compilation UNItSceceeveerierierenerienenieeeeeieseeneenaens 253
Optimization 1EVELScocveriiriiiiiiiiieieeece e 254
SPEEA VEISUS SIZE ..evverviriirieriereiienietentete sttt ettt et esae e e 255
Fine-tuning enabled transformationscccceccevevenererenenneeene 255

Facilitating good code generation

Writing optimization-friendly source codec..cccceceveeerenrenuennene 259
Saving stack space and RAM memorycoccceveeveeereenuennecnnennes 259
FUnction PrototyPescecveveerierienienieeieenieeeeeieeire e seesiee e naeens 259
Integer types and bit NEZAIONccevvevverieieieieienercrencreeeeeene

Protecting simultaneously accessed variables

Accessing special function registerscooceveereerieriieenenieenneennn.
Passing values between C and assembler objectscccccceveruennene 263
Non-initialized variablescc.cocevievienenenenieneneeeeeeeeseseeene 263
Part 2. Reference information ... 265
External interface details ... 267
INVOCAtion SYNtAXococoiiiiiiiiicee s 267
Compiler INVOCAtION SYNEAXcoververrirrinrinrierieiieierererenenresrenrenienee 267

14

IAR C/C++ Development Guide
Compiling and Linking for Arm

Linker invocation syntax

Passing OPLONSccueevuierieriiiieiie ettt st st
Environment variablesc..cccceouevieriinieninininieieeeieereiesenene
Include file search procedure ... 269
Compiler oUtPUL ..o 270
Linker output ...
Text encodings
Characters and string literalscc.ccoocevvervenieniienieeneeneeeeeeiee 273
Reserved identifiers ... 273
DiIagnostiCs ..o s 274
Message format for the compilerccocoeveevieneniiniinieniencenene 274
Message format for the linkerc..ccccoceveevininininiininininieecenn 274
SEVETItY IEVEIS .uveviiiriiiiirieciietcteeteee et 275
Setting the severity 1eVelccccooeriiiiiniiniiiiieieeeeeee 275
INEETNAL BITOT ...eviuiiiiiitietieiceiietet ettt 276
EITOr TELUIN COARS ..nvinviiieieiieiieiieicces ettt 276
ComMPIiler OPLIONS ... seeneooe 277
OPLioNS SYNEAX ... s 277

TYPes Of OPLIONS .cuveuiiiiiiriiiiieniieeeeee et 277
Rules for specifying parametersceccecveevevererienienenieneeneeneeneens 277
Summary of compiler options ... 279
Descriptions of compiler optionsc..ccccocvinincninnines 285

--char_is_signed
--Char_is_UnSignedc..coccocevveeeeiiniiniinenieeeeee e 288
SCIMISE ittt eiite et e ettt e st e ettt et ettt e e et e e be e e eaaeeeaae e e 289

Contents °

==dePENdENCIEScoveriirierieriirieiiteiietctctetereere ettt
--deprecated_feature_warnings
“=QIAZ_BTTOT eeiiiiiiiiiteetet ettt sttt ettt
-=d1ag_TeMATK ..eeovieiiiiiiiienr e
==1AZ_SUPPIESS ..erververmeirierieienteteteteereeresreereete et et e et esaesaesaenaeseenee
—=dIAZ_WAIMING ..evviiieiieiieieeeee ettt ettt
--d1agnoStCS_tabIesc.cccuevuiiiriiniiniiiiniiciee e

--discard_unused_publiCsccceoereriririnininieieteiee e

==AID_CONTIZ oottt

--do_explicit_zero_opt_in_named_SeCtionsccccecveeverrerererienne 297

--enable_hardware_workaroundccccoeviiiiniiiiniiiiieee e 298

--enable_restrict

R 114 111 KOO OO SO U OO SRR PUN

--fpu ...
==UATA_CALLS ..ottt e

=-header_COMLEXLocoviiiiiiiiieeiie ettt e 302

--lock_regs
--macro_positions_in_diagnoStiCscc.eceerererverrieriesierienienienienenne 305
--make_all_definitions_weakcc.coecvenrineineninncieneecnee 305
--max_cost_consteXpr_callcccccoererinininiininieieieeenenenee 305

--max_depth_constexpr_callc.cccceeeminininiiiinieiieeeeeee 306

--no_alignment_reductioncccceevieieininieieieieieieienenenenne 306
STNO_DOIM ettt 307
--no_call_frame_infoccocooirininininineeee 307
=sNO_CIUSIETING ..vevieiiiiieieeieeieete ettt ettt 307
=-N0_COAE_MOLION ...verviriiriiiiiiieiiienieteteteterereere et eaene 308
--no_const_align

STTIO_CSC vttt
--no_default_fp_contractccccoeeeeininininieiieicceeeneenee 309
“NO_EXCEPLIONS ..evverveninieieeitetetetenteeteetesteeteeueesee et et esnentesseneesaenee
~-NO_fTAZMENLS ..eoviiiiiiieiieiieieeteeteete ettt et et
“NO_INLNE oottt
=-NO_LIteral_POO]coveimiiiiiiiiiiiiiteee e
=-NO_100P_AlIZN .ooiiiiiiiiiiiiiteccceete e
--no_mem_idioms

--no_normalize_file_macrosc..cccceceeverirenenieeieieieienienenenee 311
--no_path_in_file_macrosc..ccceeeeirinininiiniiniiieicicieenenene 312
SDO_TTHL ettt 312
=-NO_IW_AYNAMIC_INIE .evtevieniiieieienieeieeieetceieeieeee ettt 312
=-NO_SChEAUIING ..c.eviiiiiiiiiiiieiceeeete e 313
=-NO_SI1Z€_CONSIIANLS ..eouveueeuieriretitierierieriereeteeteeseeeneerenesnessensesaenne 313
--N0_StatiC_dESIIUCTIONvvvvveiiiiiiiieeieieeceeeeee et 313
--n0_System_includeccccoveviiviiniinininieiieee 314
--no_tbaa

--no_typedefs_in_diagnosticsceoereruirenininineneneeeeeeeeenee 314
--N0_UNAligned_aCCeSSccueviiriiriiniiniiniiniieiieietercrerere e 315
--no_uniform_attribute_SYNtaxcccceceeverveerenenienieneninenenennenne 315
—O_UNTOIL oottt
SsNO_VAT_AlIZN ittt
“SNO_WAIMINEZS wevverveieeiteitenteitetetetenseeseeseeseeseeseeseenesnennesnessessessessense
--NO_WIAP_dIaZNOSHICS ..eeveeuieniiieieeieiieieeteeteetteieetee e eateee e seeseeseenee

--nonportable_path_warnings ..

IAR C/C++ Development Guide
16 Compiling and Linking for Arm

Contents °

SmOULPUL, 0 vttt st st st st sae et et ettt st e bbb sbe bt sbe e eseenee 318
--pending_iNStantiationscecveveereerierrieriienieneenieeneeeeereseresieeaes 319
—-predef_MACTOSccvevverierieriiriiiciietctctetttere ettt 319
SPIEINCIUAE oo 319
S PIEPIOCESS evenveenrienteriresttesiresuteteeseesesseesesasesseesaeanseenseenseensessennne 320
“PUDLIC_EQU ettt 320

--relaxed_fp

==SOUICE_ENCOUING ..veiuviiniiriiiiiiriieeiieriteieeieei ettt s e e nbeenees 326
==StACK_PIOLECHION ..evveeviviniiniiiiieietietceteerte ettt sae e 326
SoSETICT eeutenteteete sttt ettt ettt ettt b bt a e sttt ettt e st see e e 326
--SYSteM_INCIUE_dIrcovveeriiiiiiiiiiieienieeee e 327
SoBXE_OUL ettt ettt bbbttt sr et e et 327
StHUIMD et 328
--UNiform_attribute_SYNTAXcccceeereeeeierieieieneeneeereeneeeeeeseseensenes 328
--use_c++_inline

--USE_PAthS_aS_WIItEN ..eouevvereeiieiiieieieienieteieetee ettt 329
--US€_UNiX_direCtOry_SeParatorsccceeeereerverrueeruenieeneenueenensenne 329
S8 _LEXE TN ettt 329
SVECLOTIZE ..uveuveteienienteeiteitettet et e ettt sb bt e bt eae et et et e aesbesaesaeseene 330
SmVETSION ouiiiiiiiiieieie sttt ettt ettt 330
SmVIA et e 330
--warn_about_C_Style_CaStSccoererererieiinieieeeteiee e 331

--warn_about_incomplete_constructors

--warn_about_missing_field_initializersc.ccceeeceecueneniencnienne 331

--warnings_affect_exit_codecocceverieriinienenininenee e 332

“=WAININZS_ATE_EITOTS ...veuverrererterierrerseeseeseeeeeensensensessessessesseseeseenne 332

LiNKer OPLIONS ...t 333
Summary of linker options ... 333
Descriptions of linker optionsc..ccooceiincncnicis 337

“mADT e 337
—=ACCUTALE_IMNALN ...ooiiiiiiiiiiiiiie et 338

--adVanCed_heapccocceeeiriiniiriieieeeeee e
=-bASIC_NEAP .eviiiiiiiriie e
SBER e
BE32 e
==CAll_Graph ..o
“mCONTIG ettt ettt
--config_def

--config_search

“=CPP_INIE_TOULING ..evveeiiieiienieieieiesteeteeteet et ettt ettt sae e 341
SCPUL ettt ettt ettt e ettt b e bt e bt et et eab e et e st e bt e beenaeenee 342
--default_to_cOmPpleX_rangescocceceeveeveeeenienienieneneneneereneeenne 342
-—define_Symbolccccoveriririniiieee e 342
—=dEPENAENCIES ..ecuvieiiriiieiieiiieeiterieeeetee ettt sttt 343
“=QIAZ_CTTOT vttt 344
==diag_TEMATKooviiiiiiiieierieee e 344
“=QIAZ_SUPPIESS .eervviruieriieieeieeteete et site st et et et st e st e saeesbeenseeneenne 345
==dIAZ_WATMIINE ..evvevieireieienienierieni ettt

--diagnostics_tables

--d0_Se@MENt_PAd ..cveevieiiiiiiiiieteieeeeee e
--enable_hardware_workaroundcc.cccceoeeieiiniiniiiiieiinincncnee 346
-—enable_StaCK_USAZEccceeverieieieiiieieniieteete ettt 346
Sm@IITY ettt ettt ettt ettt et ettt ettt ettt st sht et e bt e bt e be e b enne 347
-—entry_list_in_address_orderc.cccovveereeniiniinienenineneneeeene 347
--error_limit

—-€XCEPLION_LADIES ...eeiiiiiiiiiiiiiieeieeteet et 348
--eXpOort_builtin_configccocevevirinininieieeeeeeeeeeee 349
—=€XETA_ITIIL c.vveiiitieetieeette e et eeete e et e et e ea e e et e et e e eateeeaeeeeaeeeeaaeeenaeeens 349

IAR C/C++ Development Guide
18 Compiling and Linking for Arm

Contents °

--fOICE_EXCEPHIONS uvevviiiriiiiinieiieiietetctetcereercereere et

==FOTCE_OULPUL ..eveniiiieiieiteiecteteeet ettt

—-IMAZE_INPUL .o
--import_cmse_lib_in ...
--import_cmse_lib_0Utccccviviiriiiiiniiiiiiiccecceeee

“INIINE it e ra e e

--no_dynamic_rtti_eliminationccoceverereneneneneneeeeeeeeeenee 359
STTIO_BIITY coteiuteeuteeiteettenttestt et et ete st e btesbe e bt et e e sbe e et e sae e bt ebeebeenee 359
“NO_EXCEPLIONS ..evverveviniineeitititetentiereereereereeeeereenesnennennessessesaesaenee 360
=NO_TTAZMENTS ...oviiiiiiiiiiiieietee ettt 360
=-NO_fTEE_NEAP ..eiviiiiiiiieiiiie e 360
--no_inline

--NO_lIDrary_Searchcc.ccccevereriinienininiieieeiececeeie e 361
=-NO_IEral_POOLooiiiiiiiiiiieieeeecteete e 361
“N0_LOCALS ottt 362
=-NO_TaNZE_TESETVALIONServeeueerienieieieiertenrentenseeseesesseeseeseensensesenes 362

--no_remove

STNO_VER L e 363
“NO_WAITHNEZS .evververieeiientenieientententestesteebesteeseeneeseebessestesessessesseseenee 363
--NO_WIAP_dIAZNOSHICS ..eeuveiniieiiiieriieiieniieieeieete st enne 363
==ONLY_SEAOUL .ottt ettt 363
SmOULPUL, 0 eeviiteiieitetenieie st stesbeete et et este st et e be st e b e besbeebe e bt eabe s ensenee 364

20

IAR C/C++ Development Guide
Compiling and Linking for Arm

--pi_veneers

=Place_hOLdETco.eoviiiiiiiiiiieiteeee e 364
SPIECONTIZ ettt 365
--printf_mMUultibytesccevevirininiriciceeeeeeee e 365
STEAITECT vttt

SsT@MATKS ooiiiiiiiiiiciie ettt ettt b e e et be e ebeeeaae e

--require_bti

--require_pac
--scanf_MUItDYLES ...ccoocveviiviinininecc e 367
—=8CATCH, “LL oo

--semihosting

S=SIIEIL et re e et aeeeaae e

SoSETID ettt ettt sttt

Bl (=), 01 L SRS
--threaded_lib

--timezone_lib

--treat_rvet_modules_as_SOftPcccevererieininiieieieeeeeeee 371
--use_full_std_template_Namescccceveerereneeieieieieienienenienns 371
--use_optimized_VAariantsccoceereeieieieeeieiererenenenenenenne 371
B V11 £ T <>, S 1 1 O SRUPRRRRRPRURRRRIN 372
SmVETSION oviiiiiieiiiieie sttt sttt ettt sa bbbt e 372

--warnings_affect_exit_codececcevierieriineneninineneeeeee e 373

“=WATNINZS_ATE_EITOTS ...evveeriererrerrerirenieeneenseenseessessesseseesseenseenses 373

--whole_archive ... 374

Data representation ... 375
AlIgNMENT ..o
Alignment on the Arm core .

Byte order (32-bit mode only)c..ccccoceinininiince 376

Basic data types—integer types ... 371

Integer types—an OVEIVIEWcccceeueevieieieienienienie e et 377

Contents °

The @NUM LYPE ...eveeviiiiiiieiieieeie ettt et st 378
The Char tYPEe ...ccveevievirieieiieicicecc e 378
The WChar_t tYPE .eeeveeueerieiieieieieeeteteseene ettt 378
The charlO_t tYPe ...eevevuieriierieeieeteeieetert ettt 378
The Char32_t tYPE ...ccveeueeieieieieietenereseneetee ettt 378
Bitfields

Basic data types—floating-point types ... 383
Floating-point envIironmentc.ccoceeuervenvenreereeeeeeeenenressenenenne 383
32-bit floating-point fOormatc..coceceeveeveeneerenenineneneeeeeeeeeenee 383
64-bit floating-point formatc..cceceevveerieneenenneneeeeeeneeeee 384
Representation of special floating-point numberscccceceeveeneee. 384

Pointer types
Function pointers
Data POINLETS ...oververieriiriirieeiieteteietetere ettt ettt sre e e saeae 385
CASLIINZ ceveuvenreierierierieet ettt ettt bbb et ettt saesaesee e ne 386
SErUCLUNE tYPES ..ottt 386

Alignment of structure types ...

General 1ayOUtcocceieiiiiieieeeee e 387
Packed Structure typescocceecveveerieneenieenieeieeieete st 387
Type QUAlIfiers ... s 388
Declaring objects VOlatilecccevieienenienieniniceeieieeeesesene 388
Declaring objects volatile and cOnstcccceevevveerverieneeneeneenenns 390

Declaring objects const

Data types in CH+ s
Extended keywords ... 391
General syntax rules for extended keywords 391
TYPE AUITDULES ..ottt ettt 391
ODbjJeCt AtIDULES ..eveeeierieeieeieeeeteeeet ettt 393
Summary of extended keywords ... 394
Descriptions of extended keywords ... 395
__ADSOIULE . 395
L _ATTID evieeeeeiiieeeeecteeeeeeteeeeeeaateeeeetabaeeeabbeaeeenaaeeeeanaaaeeeaaraaeeeearraaeenns 396

21

__big_endian

__cmse_nonsecure_callccccoceviiniiniiniiniininne 396
__CIMSE_NONSECUIE_ENLTY ...eoureuriurenrererrenienientenienieeseeteneeeensensensensens 397
__CXCEPLION ettt ettt sttt et ettt 397

__no_alloc, __no_alloCl6cccceieeiiiiiieciiieeeeee e 400
__no_alloc_str, __no_alloc_Strl6cccceevvveeiivvveeeiiireeeeereeeeeens 400
U TIO_ANIE eiieiiiieeiieeiie ettt e et e ettt e e et e e e ebeeebe e e taeeeabeeenbeeenaees 401

Summary of pragma directives ... 409
Descriptions of pragma directives ..o 412
bitfields
calls ..ooovevenennene
Call_graph_TOO0tcovueeviiriiiierierie ettt 414
data_aligNMENtc..coererereriiiieieieeeseer ettt 414
default_function_attribUtesoocvvviiiiiiiiiiieiieeieeeeeeeeeee e 415

IAR C/C++ Development Guide
Compiling and Linking for Arm

Contents °

default_variable_attributes

EPIECAEd ..couveeueiiieiieiieieee ettt ettt
diag_defaultcocooiiiiiiiiiii e
QIAZ_CTTOT ettt
dIAZ_TEMATK oottt
dIAZ_SUPPIESS ..erververiiiiiiitiiieiieteietesteeteere ettt ettt sresae e e

diag_warning

fUNCHION_CALEZOTY ..ottt
inClude_aliasccooooiiiiiiiiiiiiece s
TN Lottt e
JANGUAZE ..ottt
OCATION ..ot
INESSAZE .oevevvirieiniiiireresit ettt ettt ae et sa et n st
NO_StACK_PIOLECE ..eviiiiiinieiiiiiieietiereercercere ettt sresae e

ODJECE_ALITDULE «..eveneeeiiieiecieeectcte ettt

optimize
PACK ettt sttt
__PTINEE QTS ceieiiiieiieiiete ettt 427
PUDIIC_EQU .cuiiniitiiieiieiieieiet ettt
TEQUITEA ..eniinietiiieteeteete ettt ettt ettt a et bbb
IIMOAEL ..o

__scanf_args ...

SECLIOML Leutetiiirieetieiieitet ettt st ettt et bbb et e st et et et e saesbesbesbesteee
SECHON_PIETIX .eeviiiiiiiiieiiieiieietee ettt s 431
SEACK _PIOLECE .eevviiiiiiiiiiiieiietetetetetetcer ettt sae e 431
STDC CX_LIMITED_RANGEccooiiiiiiiiieeeeeeee e 431
STDC FENV_ACCESS

STDC FP_CONTRACT ..ottt 432
SVC_INUITIDET ..vvvviiiiiiiiiee ettt e e ettt e e eeaae e e e e eaaeeesesnaaeeesennnees 433
EYPE_AUITDULE ...eeentiiiiiiieeiieeiie ettt ettt 433
UNTOIL coeiiiiiiice e e e e e e e te ettt 434
VECLOTIZE .enveuventintieteetieteeteeuteteatentestestesbesbe s bt sbeebtesteneestentenbenbesbesbeaneas 434

23

24

IAR C/C++ Development Guide
Compiling and Linking for Arm

Summary of intrinsic functions ...
Intrinsic functions for ACLEcccccociiiiiiiniiniiieeeeieeeeee
Intrinsic functions for Neon inStructionsc.cceeceereeveeneeneennnnns
Intrinsic functions for MVE instructionscccceceevveevieecieeiennenne
Intrinsic functions for CDE instructions

Descriptions of IAR intrinsic functions ...

ArM_CAP2 oo
arm_ldc12 ... 440

arm_mcr2, __arm_mcIT, __arm_mcrr2 440

__arm_cdp,

__arm_ldc arm_ldcl arm_ldc2

R— ER— ER—

__arm_mcr

[Jp—

__arm_mrc, __arm_mrc2, __arm_mIrc, __arm_mIrc2 441

__arm_rsr arm_rsr64 arm_rsrp

Ea— ER—

arm_stc2]coceeeeiieennnn. 442
__arm_wsr, __arm_wSIro4, __arm_WSIPeceevvevuerererenenenieeneeneens
__CDP, __CDP2 ..ottt

__arm_stc, __arm_stcl, __arm_stc2

[J— L J— [J—

crc32h, __cre32w, __crc32d

__crc32b

LJp— TJ— EJp—

__crc32c¢b, __crc32ch, __cre32cw, __crc32cd neieiiiiiiieieeeeees 445
__disable_debUugccceeiriiiiiiieeeee e 445
__diSADIE_fIq c.veeurieiiieiee e 446
__diSable_INteITUPL ...ccuevvereireierieiieiieiieieteteteserie ettt 446

__disable_irq
__disable_SError

__enable_debugccccoociiiiiiiini e

__eNADIE_fIQ werveeiiiriieee e
__enable_interrupt

__@NADIE_ITQ ceveeiiieiiiriieite et
_enable_SEITOT .c.ooiiiiiiiiieieieceecceseeeeetee e

_fma, _ fmaf Lo

Contents °

__get BASEPRI
__get_CONTROLccociiiiiiiiiiiiii 449
88t CPSR .o 449
__get FAULTMASK ..ot 449
__get_ FPSCR ..o 450
__ @t INLETTUPL_STALE .eevvevireerieeieiieiieiteterere st eie et seennenae s 450
__get IPSR
LR e
__get MSP
__get_ PRIMASK ..o 451
_ 8t PSP 452
Gt PSR e 452
__get 1eturn_addIeSsscoevveeeereieieieieieiete ettt 452
BEL_SB et 452
GEE SP e 453
LS B s 453
__LDC, __LDCL, __LDC2, __LDC2L ...ccceosectrinrineirereerennnes 453
__LDC_noidx, __LDCL_noidx, __LDC2_noidx,
B) D 10%) B 1 1o (e b SRR SRRSO 454
__LDREX, __LDREXB, __LDREXD,__LDREXHccc...... 454
__MCR, __MCR2ccooiiiiiiiiiiiee s 455
455
456
..457
457
457
458
458
_ ...458
__QADD, __QDADD, __QDSUB, __QSUBccccccecererrerrennnee 459
__QADDS, __QADDI16, __QASX, __QSAX,
__QSUBS8, __QSUBIOcorvvreiiiiiiiiiiicinieiciceiccceeecenes 459
Z_QCFIAG ..o 459
__QDOUBLEccoiiiiiiieteteeet ettt 460

25

26

IAR C/C++ Development Guide
Compiling and Linking for Arm

_1eset_Q_flag ..o 460
_1€Set_QC_flag .o 461
__REV, __REVI16, __REVSHcccccceceiiniiiinniiiiicniccics 461

__SADDS, __SADDI16, __SASX, __SSAX,

__SSUBB8, __SSUBILO .etrtiriiiieieieieneeeeenieeeeteeeteie e 462
L SEL e 462
8t BASEPRIooiiiiiiiiieicccccen et 463
__8et_CONTROLooiioiiiiiiiieieicceeceeneese sttt 463
8L CPSR ..o 463
__Set_FAULTMASK ..ottt 463
__SEL_FPSCR .o 464

_set_interrupt_state
set LR ...

__set_MSP

__Set_PRIMASK ..ottt 465
L SEL PSP e 465

SHASX, __SHSAX, __SHSUBS,

__SHADDS, __SHADDI16, __.

__SHSUBIO ..coiiiiiiiiiiiiciiiic s 466
__SMLABB, __SMLABT, __SMLATB,

__SMLATT, __SMLAWB, __SMLAWTcccceceviiiiiiiiniininn
__SMLAD, __SMLADX, __SMLSD, __SMLSDX

__SMLALBB, __SMLALBT, __SMLALTB, __SMLALTT 467
__SMLALD, __SMLALDX, __SMLSLD, __SMLSLDX 467
__SMMLA, _SMMLAR, __SMMLS, __SMMLSRccccceueue. 467
__SMMUL, __SMMULRcccccoiiiiiiiiiniiiiiiieieee e 468
__SMUAD, __SMUADX, __SMUSD, __SMUSDXccccceeu.. 468

Contents __4

__SMULBB, __SMULBT, __SMULTB,

EJ—)

__SMULTT, __SMULWB, __SMULWTcccccocenrininennennnes 469
STty SATLE e
SSAT ettt
C SSATIO e e
__STC, __STCL, __STC2, __STC2L ...
__STC_noidx, __STCL_noidx, __STC2_noidx,
__STC2L_N0IAX weuveviiirririieieieiieeetetestes ettt s 471
__STREX, __STREXB, __STREXD, __STREXHcccccoeuenee. 471
__SWP, _ _SWPB ..ottt 472
__SXTAB, __SXTAB16, __SXTAH, __SXTBI6ccccecuvereeuennee. 472
__TT, __TTT, __TTA, __TTAT .t 472
__UADDS, __UADDI16, __UASX, __USAX,
__USUBS8, __USUBIO ...eveuiiiiiiieiieeceesieeieeeese s 472
__UHADDS, __UHADDI6, __UHASX, __UHSAX,
__UHSUBS, __UHSUBI16
UMAAL ..ottt
__UQADDS, __UQADDI16, __UQASX, __UQSAX,
__UQSUBS, __UQSUBIO ...ccecerririimieiriiieienieeeieneeeneteeneeeneenes 473
__USADS, __USADAS ...ttt 474
USAT ettt sttt eaan 474
C_USATIO ettt 474
__UXTAB, __UXTABI16, __UXTAH, __UXTBI16 ... 475
__VFEMA_F64, __VFMS_F64, __VFNMA_F64, __VFNMS_F64,
__VFMA_F32, __VFMS_F32,
__VENMA _F32, __VFENMS_F32 ..ot 475
__VMINNM_F64, __VMAXNM_F64, __ VMINNM_F32,
__VMAXNM_F32 ettt 475
__VRINTA_F64, __VRINTM_F64, __ VRINTN_F64,
__VRINTP_F64, __VRINTX_F64, __VRINTR_F64,
__VRINTZ_F64, __VRINTA_F32, __VRINTM_F32,
__VRINTN_F32, __VRINTP_F32, __ VRINTX_F32,
__VRINTR_F32, __VRINTZ_F32 ...cceiiiiieieeeeeeeeeiee 476

27

__VSQRT_F64, __VSQRT_F32

> ——

__WFE, __WFI, __YIELDccccccociiiiiiiiiiiiiiiiiii
The PreProCeSSON ... 479
Overview of the preprocessorececcccncnnens 479
Description of predefined preprocessor symboils 430
C_AAPCS
__AAPCS_VFP__ ...
__AarchBd__ Lo
CATTII_ _ eeeieeeeeeeii e e e e e e e e e eeeeeeaeeeetaaa b ————————————aaaarens
__ARM_32BIT_STATEcccecoviiiiiiiiiiiiccc 481
__ARM_G4BIT_STATE ..o 481
__ARM_ADVANCED_SIMD_ _ ...ccccoiiiiiiiiiiiiiiiniiccicicies 481
__ARM_ALIGN_MAX PWR
__ARM_ALIGN_MAX_STACK_PWRcccociiiiiiiniienne. 481
__ARM_ARCHccciiiiiiiiiiiiicic 482
__ARM_ARCH_ISA_AG64ccccooiiiiiiiiiiiiiiicice 482
__ARM_ARCH_ISA_ARMcccooiiiiiiiiiiiereeeeeeeeeeee 482
__ARM_ARCH_ISA_THUMBccccccoiiiiiiiniiiiiiiciciciciee 482
__ARM_ARCH_PROFILE
__ARM_BIG_ENDIAN ..o
__ARM_FEATURE_AESccccooiiiiiininiiiiicicicicicee
__ARM_FEATURE_CLZccccoceiiiiiiniiiiiiiiciicc e
__ARM_FEATURE_CMSE
__ARM_FEATURE_CRC32
__ARM_FEATURE_CRYPTOccccocenininiiiniiiiiinienicnicncee 483
__ARM_FEATURE_DIRECTED_ROUNDINGccccceerueuenene 484
__ARM_FEATURE_DSPcccccocciiiiiiiiiiiiniiiiicicicicicee 484
__ARM_FEATURE_FMAccccoiiiiiniiiiniiiiccc, 484
__ARM_FEATURE_FP16_FMLccccccooiiiiiiiniincecnccne 484
__ARM_FEATURE_IDIV
__ARM_FEATURE_NUMERIC_MAXMINcccccecvvvvrreninannenn 484
__ARM_FEATURE_QBITccccooiiiiiiiiieeeneee e 485
__ARM_FEATURE_QRDMXccccceiiiinininiiiiiiiiiiicniciee 485

IAR C/C++ Development Guide
28 Compiling and Linking for Arm

Contents °

__ARM_FEATURE_SAT ...485
__ARM_FEATURE_SHA?2ccccooiiimiirincineieenceneee s 485
__ARM_FEATURE_SHA3ccooiiiiiiiieineeeeneee s 485
__ARM_FEATURE_SHASI2 ..ccccovtiiiiiinnreeeninieeineerecereereneenees 485
__ARM_FEATURE_SIMD32ccoociiiiiniiniinincenciececereeenes 486
__ARM_FEATURE_SM3 486
__ARM_FEATURE_SM4 ...486
__ARM_FEATURE_UNALIGNED 486
Z_ARM_FP it 486
__ARM_FPI6_ARGScciririetiiriniereenineeieieeseeentesieseeesseneseeneenes 486
__ARM_FPI6_FMLccccooiiiiiiiiiiiiiiiiiccneeeceeceneecnnes 487
__ARM_FP16_FORMAT_IEEEcccccecoviniiiiniinenenecne 487
__ARM_MEDIA_ _ ..ottt ettt 487
__ARM_NEONccciiiiiiiiiiiiiiiicictecs e 487
__ARM_NEON_FPcccceotniiiiiiiiininecteeeeeese e 487
__ARM_PCS_AAPCSO4oovereiiiriereiinieicentniereeneraereteeseereenennes 487
__ARM_PROFILE_M_ _ ...cccccoiiiiiiiiiicinieecceeecnes 488
__ARM_ROPI ...488
__ARM_RWPT .ottt 488
__ARM_SIZEOF_MINIMAL_ENUMccccovvinirniniinceccnnnes 488
__ARM_SIZEOF_WCHAR_T ...cccioiiiiriiiineiseeneeeees 488
__ARMVEP_ s 489
__ARMVFP_DI16__ .ocoviiiiiiiiiiiiiiiiecsecece 489
__ARMVFP_SP__ ...489
__BASE FILE__ ..o 489
__BUILD_NUMBER_ _ ...ccccoeviuiiiiiiiiiiiiiiinieeieneecceeecnnes 489
C_CORE__ ottt 490
__COUNTER__ oottt 490
__cplusplus ...490
__CPU_MODE_ _ ..ottt 490
L DATE e 490
__EXCEPTIONScciiiiiiiiiiiiiiriecitreeteeeeeees e 491
CFILE ot 491
UG e 491

29

30

__LITTLE_ENDIAN_ _ ..o 492

B T SO 493
B 251 55 b 'l 516) N5 4 (0) NN 493
D o) . A 493

23 0 (OO 493

2 A 493
B3 o SO 494
BN w0l 110 =5 N T 494
__STDC_NO_ATOMICS__ .oooeeeeeeeeeceeeeeeesesseessesesseeseeessessessesee 494
__STDC_NO_THREADS__ ...ooooooooeceeeeeeeeeseeeeseseseees e 494

Descriptions of miscellaneous preprocessor extensions495
FINCIUAE_NEXE ..o
NDEBUG ..ottt
__STDC_WANT_LIB_EXT1__
FEWATTHILZ ...vvovventintintetiete ettt ettt ettt sbe ettt sae e ebesae b v
C/C++ standard library functions ... 497
C/C++ standard library overview ... 497
Header filesccoeoiiirieineieecereecee e 498

IAR C/C++ Development Guide
Compiling and Linking for Arm

Contents °

REENIIANCY ..ovviiiiiiiiniirienerrtctctcec e 498
The longjmp fUNCONc.coveiiiiiiiiineneeeeeee e 499
DLIB runtime environment—implementation details 499
Briefly about the DLIB runtime environmentcccccccoeeveennne 499
C header files
CH+header files ... 501
Library functions as intrinsic functionsc.cceceeveeverververvencnnns 505
Not supported C/C++ functionalityccceeeveverenenneeneenencnennens 505
ALOMIC OPETALIONS ..vvveireiieiieniienieenieeieeiteetesieesieeseeenteensesareennesanenne 506
Added C functionalitycocceceeveeieeenienieniiniineneeieeeienereeseneenee 506
Non-standard implementationsc.ceceeceevvereererenieneneneeneeneeneens 509
Symbols used internally by the librarycoccoviiviniiniiniennne 509
The linker configuration file ..., 511
OVEIVIEW ..ottt s
Declaring the build type ...
build fOr dITECHIVE ...ouviuvieiiieiieiieiieieieeeee et

Defining memories and regions ..
define memory dir€Ctiveccoevueriinienininineeieeeeiee e
define region dir€CtiVeceeceeveeierienienieniiniene ettt
10@ICAl dITECHIVE ...oviineiiniiiiieieeie ettt

REGIONS ...
Region literal
REZION EXPIeSSION ..cuvviiiiiieiiiiieieeieeie ettt ettt
EMPLY TEZIOMN ..eenviniiiiiieiieiieieeiteeeeteneeeie ettt

Section handling ...
define block dir€CtiVecccevieieieniiiiiiiiniiiicicieeeceece e
define section dir€CtiVeccceoeevieriinieneninineeieieteiese e
define overlay directive
INItIAlIZE dITECTIVE ..cveviiiiiiiiiiiiiiiitctc e
do not initialize direCtiVecccceveeieriiriirienirireeieeeeeeee e

KEEP QITECHIVE ..uvinientiiieieetieieeiteie ettt

31

32

IAR C/C++ Development Guide
Compiling and Linking for Arm

place at directive ...

place in directive

TESETVE TEZION ..vvinrinririririeteeiieiteitetete et re st st eaeenteeeeeaeseenne v
use init table direCtiVeccceevierieiiriiniirenireeeeee e 535
Section selection ...
SECHION-SEIECTOTS ..vevveviiiieiiiiieciteiietctcre sttt
extended-selectors
Using symbols, expressions, and numbersc...c....... 542
check that dIir€CIVEcoceeueeieiiiiiiiienencceee e 542
define symbol dir€CtiVecoceeeeieeeniiriiniiniineeeeeeeeieeree e 543
EXPOIt AITECLIVE ..eeviinnieniiiiieieeie ettt ettt et s 543
EXPIESSIONS .eeveevtinientintetentieteereeteete ettt eeteeresaestesaestesbeeneebeeseeneeneens 544
keep SymbOl dir€CtiVEcc.eeueeuiruieieiiieieienenene ettt 545
IUINDETS ..cveviiiiiiienieitteiteiteete ettt s et ebt et eanesnesaesnesaesaeeae 546
Structural configuration ... 546
CITOT AITECHIVE ..envitiiiieeieeiieit ettt ettt
I dITECTIVE ittt s

include directive

Section reference ... 549
Summary of sections and blocks ... 549
Descriptions of sections and blocks ... 550

DS 550

dALA_INIE (oo 551
LBXCLEXE wouvitititeetieteeie ettt ettt et et ettt b e bttt ettt r b b eas 551
HEAP .ottt 551
__1ar_tISSEDATA .o 552
__1ar_tISSSINITDATA ..ottt 552
.dar.dynexit

dar.docale_table ..o 552
ANIE_ATTAY wenveiiierieeteeteet ettt ettt 553
ANEVEC ittt ettt sttt sttt ettt ettt sbe s 553

Contents °

TRQ_STACK ..ottt et 553
JOIMIE Lo 553
PIEINIL_AITAY .eeveveniiieiieiieiieiteretet ettt st ev ettt nes 553
PIEPTEINIL_AITAY ..eeviviiierieiieiieietete ettt ettt sre s 554
TOAALA Lo 554

AEXITW_INIE ©oiiiiiiiitiieciie ettt ettt e et e et eeveeeareeennas 555
VeENnEerSSCMSEooviiiiiieeiceeeeteeeeeeee ettt 555

The stack usage control file ..., 557

OVEIVIEW ..o
C NAINES ettt sttt et et sa et e e

Stack usage control directives ...
call graph root dir€CtiVEceeeevieeriiiieiienienieeeesee e
EXCIUAE dITECHIVE ...veviiiiieiieiieiieieceeeeeeeeete e
fUNCHION AITECLIVE ...oviiiiiiieiieiieiieteee et
max recursion depth directive
N0 calls from direCtivecoeeueeieieiieienierinereeceeeeee e
possible calls direCiVEcoeeirieieiieienieieresereeeeteeee e

Syntactic COMPONENLSccccouiiiiinicniceece s
category
func-spec

TNOAUIC-SPEC ...ttt ettt

CAII-TRLO oottt

SEACK-STZE ..ottt ettt ra e e beeabeeneas

LAR UBHITIES ..o 565
The IAR Archive Tool—iarchive

TNVOCAION SYNEAX ..eoviriiieiieieieieteee sttt

Summary of iarchive commandsccccoeeveeeeierinienciecerccenenene

33

34

IAR C/C++ Development Guide
Compiling and Linking for Arm

Summary of iarchive options
Diagnostic MESSAZES ...cveeveereerrierieriienienieesieenieeieetesrestesieenieenaeens
The IAR ELF Tool—ielftool ...,
INVOCAON SYNEAX ..eovevieiieiieiieiieieieete ettt

Summary of ielftool options
Specifying ielftool address ranges

The IAR ELF Dumper—ielfdump

INVOCAtION SYNEAX ..eivuiiiiiiiiiieeie ettt
Summary of ielfdump Optionsc..cocevereeerieniinieninineeeeeeeeeen
The IAR ELF Object Tool—iobjmanip ..., 573
INVOCAtION SYNEAX ..eiriiiiieiiieieeie ettt s 573
Summary of iobjmanip OPONSc..ceevereeeerieniinrinreneneneeeeeeeenne 574
DiagnostiC MESSAZESeeveeverueemieuieieieienienienienienieereetetesteseeseenaennens 574
The IAR Absolute Symbol Exporter—isymexport 576
INVOCALION SYNLAX .c.veoveuieireniiiiienienenenierieree ettt ettt sreenes 576
Summary of iSymeXport OPONScceeveeveereeeeiereeieieienienenenenee 577

Steering files

Hide directive
Rename dir€CtiVecceeeeuieieieieieieieseeeeeetee et
ShOW dITECHIVE ..ottt s
SHhOW-T00t ITECHIVEeviieriiriiiiiiiiiieicicteteteeree ettt
ShowW-Weak dif€CHIVE ...c..evveruerieieieierieiesieeteete ettt
Diagnostic MESSAZES ...ccveeveereerrierieriientenieenieeneeeteetesrestesieesieenaeens
The IAR ELF Relocatable Object Creator—iexe2obj .
INVOCAION SYNEAX ..evvieieiieiieieieieieee ettt
Building the input fileccocoviiiiniiniiieeeeee e
Summary of ieXe20bj OPtONSc..ccvevvevuiriiniinininrieenieeererereenne

Descriptions of options ...

Contents °

--front_headersccccccevieiiiniiniiniiniiie e 595
--generate_vfe_headerc.cccoceeviiiiiiiiiininininneceeee 595
=-hide_SYMDOIS ...ceveuiiiiiiriiniiiictcteeee et 595
STREX e
STNEXALEN et
--keep_mode_symbols

STN0_DOIML ettt
--no_header

—-N0_TEI_SECHION ..ovviiiiiiiiie ettt et 597
SNO_SIIEAD Lo 598
SNO_UEE8_IN ittt 598
“mOFESEE ettt bbbttt st 598

--remove_file_path
—-T@MOVE_SECHION ...vvieiiiierieeiieeeireeeteeeieeeteeeeeeeeseaeeesaeeebeeeseeennseeens
—-TENAIME_SECHION ..evvvviieiiieieieeietiee et e e et e e eeare e e e e saeeesesaaeessennees
--r€NAME_SYMDOL ...ooiiiiiiiiiiiiiiiieeetee e

STEPIACE, T .o

=mTESEIVE_TANZES ..vniniiiiiiiiiiiiiiiiiiriirr sttt

35

36

--section, -s

SmSEZIMEIIL, =€ .eouvieniieiieteeiteeiteeute st e st et e e st e e te st e satesie e st e sae e beente e b enne 606
2=SCIE T@IOC ..ttt 607
==SNOW_ENIIY_AS t.eeiuieiiiiiienienierieri ettt 607
SmSIIBIE it 607

—UPdate_SYMDOLooiiiiiiiiiiieieeteeete e
--update_typeless_globals
--use_full_std_template_Namesccocevererereneneneneeeeieeeeenne 613
SUHB_LEXE TN oottt 614
2=VEIDOSE, =V et 614
--version
“mVEOC ittt et e s b e e e aaas
--Wrap ...
Implementation-defined behavior for Standard C++ ... 617
Descriptions of implementation-defined
behavior for CH+ ... 617
LSt Of tOPICS t.vveeuvieiiieiiiritesieesteee ettt et st 617
Implementation quantities ... 652
Implementation-defined behavior for Standard C 655
Descriptions of implementation-defined behavior ...
J.3.1 Translationc..cceeeeeeeeieienieieieseeeeeee ettt
J.3.2 ENVIFONMENTeouviniiiiiiniiniieiieiieiiereierenresie et eeaeaens

IAR C/C++ Development Guide
Compiling and Linking for Arm

Contents °

J3U5 INEEZEILS vttt
J.3.6 Floating POINEccueeveruerueeiieiieieieienienieniesieeie ettt
J.3.7 Arrays and POINLETSceceereeriierieriieeiienientesitesieesieesieenieenieens
J3U8 HINLS ettt
J.3.9 Structures, unions, enumerations, and bitfields ...
J.3.10 QUALITIETS .ooeviiiiiiieiie ettt e 662
J.3.11 Preprocessing dir€CtiVesceeeeerieueerecienienenereneneeeennens 662
J.3.12 Library functionscccceceeveeeeeeieienieneneneneneneseeeeeeneens 665
J.3.13 ArChItecturecoevvivuieuieiieieiiiciciceeseeee e 670
JAALOCALE .ot 671
Implementation-defined behavior for C89 ... 675
Descriptions of implementation-defined behavior 675
TranSlationcceeeeieieieieieiee ettt 675
ENvironmentc..cccceeeeniinininieieiieicicece e 675
TAENHIETS ..ot 676
CRATACKETS ..euveveiiierieeiteitetete ettt ettt ettt bt e b 676

TNEEEETS .ottt st 677
FLoAting POINE ...c.eevviriiiiieiiriieeeieieteeesestese ettt 678
ATTays and POINLETS ...c.eevverviruiriirtieiieiieieieiertestesieete et et etebeseesae e 678
REZISIETS ..ottt et 679
Structures, unions, enumerations, and bitfieldsccceeverrinnnns 679
Qualifiers
DeClaratorsccoeeeieieiiieiiiiieieice e 680
STALETNENLSeveviiiiiiienieieiete sttt ettt ettt st see s eseeneene 680
Preprocessing dir€CtiVescoeeeeueeuieieieieienienie et 680
Library functions for the IAR DLIB runtime environment 682
INAEX e 687

37

IAR C/C++ Development Guide
38 Compiling and Linking for Arm

Tables

: Inline assembler operand constraints in 32-bit mode

: Operand modifiers and transformations in 32-bit mode
: Operand modifiers and transformations in 64-bit mode

: Registers used in 32-bit mode for passing parameters

: Compiler environment variables

: Typographic conventions used in this UIdeccccecerererinieenieneniericnencereaeee 46
: Naming conventions used in this guideccccoceeviriiriieieneneneneneeeseeeen 47

: Sections holding initialized datac..ccccoeevevininiininieiieeceeneee s

Description of a reloCation EITOTcecuevuereriereneneneeeeieteiee e eeeneens

: Example of runtime model attributescccooevuererininininieieieriesese e
1 Library cOnfigurationsc.ccocoererinininienieteieeteeereeieeee et
1 Formatters fOr Printfcooviiiiininieeee e
1 Formatters fOr SCANTcooviiiiiiiiiieieeeee et

: Library objects using TLSc.ccoooiiiririiiiieiceeeneeeeercee et

: Inline assembler operand constraints in 64-bit Modeccccevceerverieneeneenne.
: Supported constraint MOIfieTSccceeverieiieiieiieiiinininereneeeee e
2 List Of Valid CLODDEIS ...c..ovverviiiiiiiiiieiiieeceecee e

: Registers used in 32-bit mode for returning valuesc..ccceeevveveneneneeneenee. 191
: Registers used in 64-bit mode for returning valuesc..ccceeeveevenenenennennee. 192
: 32-bit mode call frame information resources defined in a names block 196
: 64-bit mode call frame information resources defined in a names block 196
1 Language EXIENSIONS ...c..coceeeeierterienientinientesieeie ettt et etete et see st bbb eneenees 201
: Section operators and their Symbolsccoccooeeviiiiininiinieieeeeen 203
: Exception stacks for Arm7/9/11, Cortex-A, and Cortex-Rccccccvevinennneee 221
: Memory ranges for TrustZone eXamplecc.cccceeererenenenieneneneneneneeeenes 240

: Compiler optimization IEVEISccceviiiiiriiiiiiiieiierteecceeeeeee e 254

: ILINK environment variablesccccoccvieiiiiiiiieeiie e e e
T EITOr TETUIN COARS ...vviiiiiiiiiiieiiiecie ettt ettt et e eba e eeaaesnaeas

: Compiler OptionS SUMMATYcccceuerueruerrerrenrinreneneneeteretetensensessessesseeneeneenees

: Linker Options SUMMATY ...c..ceeeeeeeienieientenienientenieeieeieeite et seeseesieseeseesneeseenees

39

40

IAR C/C++ Development Guide
Compiling and Linking for Arm

34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:

FUNCHON POINLETSueiniiiiiiiieiietieteeeietetetest ettt s
Daata POINLETS ...eevirietieiieiieiieieitetentent ettt ettt et sb e bbb n e
Extended keywords SUMMATYcccceveeriienierniennienieeienteseeneesiee e
Pragma directives SUMMATYcccceviererenenininieeeteteieseesreere e
Traditional Standard C header files—DLIB ...

CH4 header filesoociviiiiiiiiiiiiic e 501
New Standard C header files—DLIBcccccccoviniiriiiiiiiiinininenineeeeeeees 504
Examples of section selector specifiCationsc..cecceveeveeeenienenienenenenenenes 539
SECHION SUMIMATYvevuviriieriieriieteeieeteest et eitesite st e sieesbeesteesbeenaesabeesbesanesaeesieenee 549
1aTCHIVE PATAIMELETS ...eueeureiiiirireienieriererterie ettt be s sbe e ene 566
iarchive commands SUMMATYcccecvevveriererererereeeenteeeeensensensessessessesseesenne 566
1archive OPtioNS SUMIMATY ...cc.cevvierieerteerieenientenieetenitesteneeesseeseeeseesesneseesinenne 567
1EIfLO0] PATAIMGIETSveevivivieiieiieiieieteterer ettt a bbb 569
1elfto0] OPtIONS SUMIMATYeoverueerieiieiieieierienienierierie ettt sbesre b b eaes 570
ielfdumparm Parameterscoceeveereerernieniienie ettt 572

ielfdumparm options summary ...

10DJMANIP PATAIMELETS ...eveviiriiieiteieteie sttt ettt et et e bbb b ebe e easeaene
10bjmanip OPtioNS SUMIMATY ...cc.eerverterieerienieriienieenieenteenseesteessesnreessesnesseesnenee
ISYMEXPOIt PATAMELELSveuvvireneerintetirteseetetetestesesteteteseesesteeeseseesesbesesnessesensens
ISYMEXPOrt OPLIONS SUIMMATLY ...ceveueeueenieierieiereerieriesiesseeseesteneensensessessessessesseenes
1€XE20D] PATAMELETSeeuveeviiieeieeiteeite ettt ettt et sat et sieeseeesaeebe et eaesane e

iexe2obj options summary ...

Execution character sets and their encodingscccoceeveerecinineccnenieenennnes 619
C++ implementation UANTITIEScceereereerieeriernienieneeneenieenieesreesteeie e srenaee 653
Execution character sets and their encodingsc..ccccoceeveevenieneneneneneneenenns 658
Translation of multibyte characters in the extended source character set 671
Message returned by strerror()—DLIB runtime environmentce.c...... 672
Execution character sets and their encodingscccceceveeienieneneneneneneenenn 676
Message returned by strerror()—DLIB runtime environmentco.c....... 685

Preface

Welcome to the IAR C/C++ Development Guide for Arm. The purpose of this
guide is to provide you with detailed reference information that can help you
to use the build tools to best suit your application requirements. This guide
also gives you suggestions on coding techniques so that you can develop
applications with maximum efficiency.

Who should read this guide

Read this guide if you plan to develop an application using the C or C++ language for
32-bit or 64-bit Arm cores, and need detailed reference information on how to use the
build tools.

REQUIRED KNOWLEDGE

To use the tools in IAR Embedded Workbench, you should have working knowledge of:

o The architecture and instruction set of the Arm core you are using (refer to the chip
manufacturer's documentation)

o The C or C++ programming language
o Application development for embedded systems
o The operating system of your host computer.

For more information about the other development tools incorporated in the IDE, refer
to their respective documentation, see Other documentation, page 47.

How to use this guide

When you start using the IAR C/C++ Compiler and Linker for Arm, you should read
Part 1. Using the build tools in this guide.

When you are familiar with the compiler and linker and have already configured your
project, you can focus more on Part 2. Reference information.

If you are new to using IAR Embedded Workbench, we suggest that you first go through
the tutorials, which you can find in IAR Information Center in the product, under
Product explorer. They will help you get started.

41

What this guide contains

42

What this guide contains

Below is a brief outline and summary of the chapters in this guide.

IAR C/C++ Development Guide
Compiling and Linking for Arm

PART I. USING THE BUILD TOOLS

Introduction to the IAR build tools gives an introduction to the IAR build tools,
which includes an overview of the tools, the programming languages, the available
device support, and extensions provided for supporting specific features of the
various Arm cores and devices.

Developing embedded applications gives the information you need to get started
developing your embedded software using the IAR build tools.

® Data storage describes how to store data in memory.

® Functions gives a brief overview of function-related extensions—mechanisms for

controlling functions—and describes some of these mechanisms in more detail.

Linking using ILINK describes the linking process using the IAR ILINK Linker and
the related concepts.

Linking your application lists aspects that you must consider when linking your
application, including using ILINK options and tailoring the linker configuration
file.

The DLIB runtime environment describes the DLIB runtime environment in which
an application executes. It covers how you can modify it by setting options,
overriding default library modules, or building your own library. The chapter also
describes system initialization introducing the file cstartup.s, how to use
modules for locale, and file 1/0.

Assembler language interface contains information required when parts of an
application are written in assembler language. This includes the calling convention.

Using C gives an overview of the two supported variants of the C language, and an
overview of the compiler extensions, such as extensions to Standard C.

Using C++ gives an overview of the level of C++ support.

e Application-related considerations discusses a selected range of application issues

related to using the compiler and linker.

Efficient coding for embedded applications gives hints about how to write code that
compiles to efficient code for an embedded application.

PART 2. REFERENCE INFORMATION

External interface details provides reference information about how the compiler
and linker interact with their environment—the invocation syntax, methods for
passing options to the compiler and linker, environment variables, the include file

Preface __4

search procedure, and the different types of compiler and linker output. The chapter
also describes how the diagnostic system works.

o Compiler options explains how to set options, gives a summary of the options, and
contains detailed reference information for each compiler option.

® Linker options gives a summary of the options, and contains detailed reference
information for each linker option.

o Data representation describes the available data types, pointers, and structure types.
This chapter also gives information about type and object attributes.

® FExtended keywords gives reference information about each of the Arm-specific
keywords that are extensions to the standard C/C++ language.

® Pragma directives gives reference information about the pragma directives.

e [ntrinsic functions gives reference information about functions to use for accessing
Arm-specific low-level features.

o The preprocessor gives a brief overview of the preprocessor, including reference
information about the different preprocessor directives, symbols, and other related
information.

o C/C++ standard library functions gives an introduction to the C or C++ library
functions, and summarizes the header files.

o The linker configuration file describes the purpose of the linker configuration file,
and describes its contents.

e Section reference gives reference information about the use of sections.

® The stack usage control file describes the syntax and semantics of stack usage
control files.

® /AR utilities describes the IAR utilities that handle the ELF and DWARF object
formats.

o [mplementation-defined behavior for Standard C++ describes how the compiler
handles the implementation-defined areas of Standard C++.

o Implementation-defined behavior for Standard C describes how the compiler
handles the implementation-defined areas of Standard C.

o Implementation-defined behavior for C89 describes how the compiler handles the
implementation-defined areas of the C language standard C89.

Other documentation

User documentation is available as hypertext PDFs and as a context-sensitive online
help system in HTML format. You can access the documentation from the IAR
Information Center or from the Help menu in the IAR Embedded Workbench IDE. The
online help system is also available via the F1 key.

43

Other documentation

44

IAR C/C++ Development Guide
Compiling and Linking for Arm

USER AND REFERENCE GUIDES

The complete set of IAR development tools is described in a series of guides.
Information about:

o System requirements and information about how to install and register the IAR
products are available in the Installation and Licensing Quick Reference Guide and
the Licensing Guide.

o Using the IDE for project management and building, is available in the IDE Project
Management and Building Guide for Arm.

o Using the IAR C-SPY® Debugger and C-RUN runtime error checking, is available
in the C-SPY® Debugging Guide for Arm.

o Programming for the IAR C/C++ Compiler for Arm and linking, is available in the
1IAR C/C++ Development Guide for Arm.

o Programming for the AR Assembler for Arm, is available in the /AR Assembler
User Guide for Arm.

o Performing a static analysis using C-STAT and the required checks, is available in
the C-STAT® Static Analysis Guide.

o Using I-jet, refer to the /AR Debug Probes User Guide for I-jet®, I-jet Trace, and
I-scope.
o Using IAR J-Link and IAR J-Trace, refer to the J-Link/J-Trace User Guide.

e Porting application code and projects created with a previous version of the IAR
Embedded Workbench for Arm, is available in the /AR Embedded Workbench®
Migration Guide.

Note: Additional documentation might be available depending on your product
installation.

THE ONLINE HELP SYSTEM
The context-sensitive online help contains information about:

IDE project management and building
Debugging using the IAR C-SPY® Debugger
The IAR C/C++ Compiler and Linker

The IAR Assembler

C-STAT

Preface __4

FURTHER READING

These books might be of interest to you when using the IAR development tools:

Seal, David, and David Jagger. ARM Architecture Reference Manual.
Addison-Wesley.

Barr, Michael, and Andy Oram, ed. Programming Embedded Systems in C and
C++. O’Reilly & Associates.

o Furber, Steve. ARM System-on-Chip Architecture. Addison-Wesley.

o Harbison, Samuel P. and Guy L. Steele (contributor). C: A Reference Manual.

Prentice Hall.

Labrosse, Jean J. Embedded Systems Building Blocks: Complete and Ready-To-Use
Modules in C. R&D Books.

Mann, Bernhard. C fiir Mikrocontroller. Franzis-Verlag. [Written in German.]
Meyers, Scott. Effective C++. Addison-Wesley.

Meyers, Scott. More Effective C++. Addison-Wesley.

Meyers, Scott. Effective STL. Addison-Wesley.

Sloss, Andrew N. et al, ARM System Developer's Guide: Designing and Optimizing
System Software. Morgan Kaufmann.

Sutter, Herb. Exceptional C++: 47 Engineering Puzzles, Programming Problems,
and Solutions. Addison-Wesley.

The web site isocpp.org also has a list of recommended books about C++ programming.

WEB SITES

Recommended web sites:

e The chip manufacturer’s web site.

e The Arm Limited web site, www.arm.com, that contains information and news

about the Arm cores.

The IAR web site, www.iar.com, that holds application notes and other product
information.

The web site of the C standardization working group,
www.open-std.org/jtcl/sc22/wgl4.

o The web site of the C++ Standards Committee, www.open-std.org/jtcl/sc22/wg21.

o The C++ programming language web site, isocpp.org. This web site also has a list

of recommended books about C++ programming.

The C and C++ reference web site, en.cppreference.com.

45

Document conventions

46

Document conventions

IAR C/C++ Development Guide
Compiling and Linking for Arm

When, in the IAR documentation, we refer to the programming language C, the text also
applies to C++, unless otherwise stated.

When referring to a directory in your product installation, for example arm\doc, the full
path to the location is assumed, for example c: \Program Files\IAR
Systems\Embedded Workbench N.n\arm\doc, where the initial digit of the version
number reflects the initial digit of the version number of the IAR Embedded Workbench
shared components.

TYPOGRAPHIC CONVENTIONS
The IAR documentation set uses the following typographic conventions:

Style Used for

computer * Source code examples and file paths.
* Text on the command line.
* Binary, hexadecimal, and octal numbers.

parameter A placeholder for an actual value used as a parameter, for example
filename.h where filename represents the name of the file.

[option] An optional part of a linker or stack usage control directive, where [
and] are not part of the actual directive, but any [, 1, {, or } are part
of the directive syntax.

{option} A mandatory part of a linker or stack usage control directive, where {
and } are not part of the actual directive, but any [, 1, {, or } are part
of the directive syntax.

[option] An optional part of a command line option, pragma directive, or library
filename.
[a|b]|c] An optional part of a command line option, pragma directive, or library

filename with alternatives.

{a|b]|c} A mandatory part of a command line option, pragma directive, or
library filename with alternatives.

bold Names of menus, menu commands, buttons, and dialog boxes that
appear on the screen.

italic * A cross-reference within this guide or to another guide.
* Emphasis.
An ellipsis indicates that the previous item can be repeated an arbitrary
number of times.

Table 1: Typographic conventions used in this guide

Preface ___o

Style Used for

Identifies instructions specific to the IAR Embedded Workbench® IDE
interface.

Identifies instructions specific to the command line interface.

Identifies helpful tips and programming hints.

Identifies warnings.

Table 1: Typographic conventions used in this guide (Continued)

NAMING CONVENTIONS

The following naming conventions are used for the products and tools from IAR, when
referred to in the documentation:

Brand name Generic term

IAR Embedded Workbench® for Arm IAR Embedded Workbench®
IAR Embedded Workbench® IDE for Arm the IDE

IAR C-SPY® Debugger for Arm C-SPY, the debugger

IAR C-SPY® Simulator the simulator

IAR C/C++ Compiler™ for Arm the compiler

IAR Assembler™ for Arm the assembler

IAR ILINK Linker™ ILINK, the linker

IAR DLIB Runtime Environment™ the DLIB runtime environment

Table 2: Naming conventions used in this guide

In 32-bit mode refers to using IAR Embedded Workbench for Arm configured for the
instruction sets T32/T and A32.

In 64-bit mode refers to using IAR Embedded Workbench for Arm configured for the
instruction set A64.

For more information, see Execution modes, page 60.

47

Document conventions

IAR C/C++ Development Guide
48 Compiling and Linking for Arm

Part |. Using the build

tools

This part of the IAR C/C++ Development Guide for Arm includes these

chapters:

o Introduction to the IAR build tools
e Developing embedded applications
e Data storage

e Functions

o Linking using ILINK

e Linking your application

e The DLIB runtime environment

e Assembler language interface

e Using C

e Using C++

e Application-related considerations

o Efficient coding for embedded applications

S

.hmuiuhhhi

9

AAARRIE

50

Introduction to the AR
build tools

e The IAR build tools—an overview

IAR language overview
e Device support

e Execution modes

Special support for embedded systems

The IAR build tools—an overview

In the IAR product installation you can find a set of tools, code examples, and user
documentation, all suitable for developing software for Arm-based embedded
applications. The tools allow you to develop your application in C, C++, or in assembler
language.

IAR Embedded Workbench® is a powerful Integrated Development Environment (IDE)
that allows you to develop and manage complete embedded application projects. It
provides an easy-to-learn and highly efficient development environment with maximum
code inheritance capabilities, and comprehensive and specific target support. IAR
Embedded Workbench promotes a useful working methodology, and therefore a
significant reduction in development time.

For information about the IDE, see the IDE Project Management and Building Guide
for Arm.

The compiler, assembler, and linker can also be run from a command line environment,

if you want to use them as external tools in an already established project environment.

THE IAR C/C++ COMPILER

The IAR C/C++ Compiler for Arm is a state-of-the-art compiler that offers the standard
features of the C and C++ languages, plus extensions designed to take advantage of the
Arm-specific facilities.

51

The IAR build tools—an overview

52

IAR C/C++ Development Guide
Compiling and Linking for Arm

THE IAR ASSEMBLER

The IAR Assembler for Arm is a powerful relocating macro assembler with a versatile
set of directives and expression operators. The assembler features a built-in C language
preprocessor, and supports conditional assembly.

The IAR Assembler for Arm uses the same mnemonics and operand syntax as the Arm
Limited Arm Assembler, which simplifies the migration of existing code. For more
information, see the /AR Assembler User Guide for Arm.

THE IAR ILINK LINKER

The IAR ILINK Linker for Arm is a powerful, flexible software tool for use in the
development of embedded controller applications. It is equally well suited for linking
small, single-file, absolute assembler programs as it is for linking large, relocatable
input, multi-module, C/C++, or mixed C/C++ and assembler programs.

SPECIFIC ELF TOOLS

ILINK both uses and produces industry-standard ELF and DWARF as object format,
additional IAR utilities that handle these formats are provided:

® The IAR Archive Tool—iarchive—creates and manipulates a library (archive) of
several ELF object files

o The IAR ELF Tool—ielftool—performs various transformations on an ELF
executable image (such as, fill, checksum, format conversion etc)

o The IAR ELF Dumper for Arm—iel fdumparm—creates a text representation of
the contents of an ELF relocatable or executable image

o The IAR ELF Object Tool—iobjmanip—is used for performing low-level
manipulation of ELF object files

o The IAR Absolute Symbol Exporter—i symexport—exports absolute symbols
from a ROM image file, so that they can be used when linking an add-on
application.

Note: These ELF utilities are well-suited for object files produced by the tools from
IAR. Therefore, we recommend using them instead of the GNU binary utilities.
EXTERNAL TOOLS

For information about how to extend the tool chain in the IDE, see the IDE Project
Management and Building Guide for Arm.

Introduction to the IAR build tools __4

IAR language overview
The IAR C/C++ Compiler for Arm supports:

o C, the most widely used high-level programming language in the embedded systems
industry. You can build freestanding applications that follow these standards:

o Standard C—also known as C18. Hereafter, this standard is referred to as
Standard C in this guide.

o (C89—also known as C94, C90, and ANSI C.

o Standard C++—also known as C++17. A well-established object-oriented
programming language with a full-featured library well suited for modular
programming. The IAR implementation of Standard C++ can be used with different
levels of support for exceptions and runtime type information (RTTI), and offers a
choice of two different standard libraries:

e DLIB, which is a C++14 library, and which comes in two configurations:
Normal and Full. The Normal configuration is smaller and offers slightly less
functionality.

o Libc++, which is a C++17 library. It has only one configuration, corresponding
to the Full configuration of the DLIB library.

Each of the supported languages can be used in strict or relaxed mode, or relaxed with
TAR extensions enabled. The strict mode adheres to the standard, whereas the relaxed
mode allows some common deviations from the standard. Both the strict and the relaxed
mode might contain support for features in future versions of the C/C++ standards.

For more information about C, see the chapter Using C.
For more information about C++, see the chapter Using C++.

For information about how the compiler handles the implementation-defined areas of
the languages, see the chapters Implementation-defined behavior for Standard C and
Implementation-defined behavior for Standard C++.

It is also possible to implement parts of the application, or the whole application, in
assembler language. See the /AR Assembler User Guide for Arm.

Device support
To get a smooth start with your product development, the IAR product installation
comes with a wide range of device-specific support.

Note: The object code that the compiler generates is not always binary compatible
between the cores. Therefore it is crucial to specify a processor. The default core is
Cortex-M3.

53

Device support

54

IAR C/C++ Development Guide
Compiling and Linking for Arm

32-BIT ARM DEVICES

Most of the cores and devices that belong to the Armv4, ArmvS, Armv6, Armv7 and
Armv8 generations are supported (including Armv8.1-M).

Arm architecture profiles

From Armv7, the Arm architectures consist of three architectural profiles:

o The A profile, the application profile, implemented by the Cortex-A series,
compatible with AArch32.

o The R profile, the real-time profile, implemented by the Cortex-R series.

o The M profile, the microcontroller profile, implemented by most cores in the
Cortex-M series.

32-bit Arm properties
o The 32-bit Arm devices (except the M profile) have CPU modes: User mode,
Interrupt (FIQ, IRQ) mode, Supervisor mode, etc.

o The 32-bit Arm devices have these instruction sets (not all cores have all instruction
sets):

o Thumb (T), 16-bit wide instructions. Used for compact code.

e Arm (A32), 32-bit wide instructions. Used for faster code.

o Thumb-2 (T32), extended 32-bit wide instructions to the Thumb instruction set.
® Addresses are always 32-bit.
o The register set consists of thirteen generic 32-bit registers.

o Some 32-bit Arm devices can have coprocessors, like VFP (vector floating point)
and SIMD (serial instructions multiple data). The coprocessors have sixteen 64-bit
registers or thirty-two 128-bit registers.

o The 32-bit Arm devices use 32-bit ELF as object and image format.

64-BIT ARM DEVICES

o The 64-bit Arm devices based on architectures up to Armv8.4-A are supported, as
well as Armv8-R AArch64.

o The Armv8-A/R generation defines two execution states: AArch32 and AArch64.
(Not all cores support both execution states.)
The AArch32 execution state

The 32-bit AArch32 execution state is compatible with the Armv7-A architecture—it
has the same CPU modes, instruction sets, register set, etc—and it has VFP and

Introduction to the IAR build tools __4

advanced SIMD. In this execution state, the CPU always runs in 32-bit mode (see
Execution modes, page 60).

The AArché64 execution state

o AArch64 supports four levels of privilege:
e ELO, exception level 0, user mode.
e ELI, exception level 1, OS mode.
e EL2, exception level 2, hypervisor mode. Optional.
e EL3, exception level 3, secure monitor mode. Optional.

The CPU can traverse from a higher EL to a lower one, and during that traversion it
can change from the AArch64 into the AArch32 execution state.

In the AArch64 state, the CPU runs in 64-bit mode. See Execution modes, page 60.
AArch64 supports one instruction set, A64, that has 32-bit instructions.
Addresses are always 64-bit.

The register set has thirty-one 64-bit wide generic registers.

A VFP and NEON module is always present. That module have 32 registers that are
128-bits wide.

® There are three defined data models for AArch64:

o ILP32. It has 32-bit 1ong and pointer types, and 32-bit wchar_t type. It uses
32-bit ELF as object and image format.

o LP64. It has 64-bit long and pointer types, and 32-bit wchar_t type. It uses
64-bit ELF as object and image format.

o LLP64. It has 32-bit 1ong type, 64-bit pointer type, and 16-bit wchar_t type.
IAR Embedded Workbench for Arm does not support this data model.

Note: Code generated for AArch64 using the ILP32 data model cannot be linked
with code generated using the LP64 data model. Neither can code generated for
AArch32 and AArch64 be linked together.

PRECONFIGURED SUPPORT FILES

The IAR product installation contains preconfigured files for supporting different
devices. If you need additional files for device support, they can be created using one of
the provided ones as a template.

Header files for 110

Standard peripheral units are defined in device-specific I/O header files with the
filename extension h. The product package supplies I/O files for all devices that are
available at the time of the product release. You can find these files in the

55

Execution modes

56

arm\inc\<vendor> directory. Make sure to include the appropriate include file in your
application source files. If you need additional I/O header files, they can be created using
one of the provided ones as a template. For detailed information about the header file
format, see EWARM_HeaderFormat .pdf located in the arm\doc directory.

Linker configuration files

The arm\config directory contains ready-made linker configuration files for all
supported devices. The files have the filename extension icf and contain the
information required by the linker. For more information about the linker configuration
file, see Placing code and data—the linker configuration file, page 113, and for
reference information, the chapter The linker configuration file.

Device description files

The debugger handles several of the device-specific requirements, such as definitions of
available memory areas, peripheral registers and groups of these, by using device
description files. These files are located in the arm\config directory and they have the
filename extension ddf. The peripheral registers and groups of these can be defined in
separate files (filename extension sfr), which in that case are included in the daf file.
For more information about these files, see the C-SPY® Debugging Guide for Arm and
EWARM_DDFFORMAT.pdf located in the arm\doc directory.

EXAMPLES FOR GETTING STARTED

Example applications are provided with IJAR Embedded Workbench. You can use these
examples to get started using the development tools from IAR. You can also use the
examples as a starting point for your application project.

The examples are ready to be used as is. They are supplied with ready-made workspace
files, together with source code files and all other related files. For information about
how to run an example project, see the IDE Project Management and Building Guide
for Arm.

Execution modes

IAR C/C++ Development Guide
Compiling and Linking for Arm

IAR Embedded Workbench for Arm supports the 32-bit and 64-bit Arm architectures by
means of execution modes.

In 32-bit mode refers to using IAR Embedded Workbench for Arm configured to
generate and debug code for the instruction sets T32/T and A32, either on an
Armv4/5/6/7 core or in the AArch32 execution state on an Arm v8-A core. In 32-bit
mode you can use both the A32 and T32/T instruction sets and switch between them
using jump instructions.

Introduction to the IAR build tools __4

In 64-bit mode refers to using IAR Embedded Workbench for Arm configured to
generate and debug code for the instruction set A64 in the AArch64 execution state on
an Arm v8-A core. Code in 64-bit mode can trap into code in 32-bit mode, and that code
can return back. However, the IAR translator tools do not support this switch being used
in a single linked image. Switching between A32/T32/T code and A64 code must be
performed by using several images. For example, an OS using 64-bit mode can start
applications in either 64-bit or in 32-bit mode.

The AArch32 execution state is compatible with the Arm v7 architecture. The AArch32
execution state is emulated inside the AArch64 execution state.

Special support for embedded systems

This section briefly describes the extensions provided by the compiler to support
specific features of the various Arm cores and devices.

EXTENDED KEYWORDS

The compiler provides a set of keywords that can be used for configuring how the code
is generated. For example, there are keywords for controlling how to access and store

data objects, as well as for controlling how a function should work internally and how
it should be called/returned.

By default, language extensions are enabled in the IDE.

The compiler command line option -e makes the extended keywords available, and
reserves them so that they cannot be used as variable names. See -e, page 344 for
additional information.

For more information, see the chapter Extended keywords. See also Data storage and
Functions.
PRAGMA DIRECTIVES

The pragma directives control the behavior of the compiler, for example how it allocates
memory, whether it allows extended keywords, and whether it issues warning messages.

The pragma directives are always enabled in the compiler. They are consistent with
standard C, and are useful when you want to make sure that the source code is portable.

For more information about the pragma directives, see the chapter Pragma directives.

PREDEFINED SYMBOLS

With the predefined preprocessor symbols, you can inspect your compile-time
environment, for example time of compilation or the build number of the compiler.

57

Special support for embedded systems

For more information about the predefined symbols, see the chapter The preprocessor.

ACCESSING LOW-LEVEL FEATURES

For hardware-related parts of your application, accessing low-level features is essential.
The compiler supports several ways of doing this: intrinsic functions, mixing C and
assembler modules, and inline assembler. For information about the different methods,
see Mixing C and assembler, page 193.

IAR C/C++ Development Guide
58 Compiling and Linking for Arm

Developing embedded
applications

e Developing embedded software using IAR build tools
e The build process—an overview

Application execution—an overview

Building applications—an overview

Basic project configuration

Developing embedded software using IAR build tools

Typically, embedded software written for a dedicated microcontroller is designed as an
endless loop waiting for some external events to happen. The software is located in
ROM and executes on reset. You must consider several hardware and software factors
when you write this kind of software. To assist you, compiler options, extended
keywords, pragma directives, etc., are included.

MAPPING OF MEMORY

Embedded systems typically contain various types of memory, such as on-chip RAM,
external DRAM or SRAM, ROM, EEPROM, or flash memory.

As an embedded software developer, you must understand the features of the different
types of memory. For example, on-chip RAM is often faster than other types of
memories, and variables that are accessed often would in time-critical applications
benefit from being placed here. Conversely, some configuration data might be seldom
accessed but must maintain its value after power off, so it should be saved in EEPROM
or flash memory.

For efficient memory usage, the compiler provides several mechanisms for controlling
placement of functions and data objects in memory. For more information, see
Controlling data and function placement in memory, page 286.

The linker places sections of code and data in memory according to the directives you
specify in the linker configuration file, see Placing code and data—the linker
configuration file, page 113.

59

Developing embedded software using IAR build tools

COMMUNICATION WITH PERIPHERAL UNITS

If external devices are connected to the microcontroller, you might need to initialize and
control the signaling interface, for example by using chip select pins, and detect and
handle external interrupt signals. Typically, this must be initialized and controlled at
runtime. The normal way to do this is to use special function registers (SFR). These are
typically available at dedicated addresses, containing bits that control the chip
configuration.

Standard peripheral units are defined in device-specific I/O header files with the
filename extension h. See Device support, page 57. For an example, see Accessing
special function registers, page 299.

EVENT HANDLING

In embedded systems, using interrupts is a method for handling external events
immediately, for example, detecting that a button was pressed. In general, when an
interrupt occurs in the code, the core immediately stops executing the code it runs, and
starts executing an interrupt routine instead.

The compiler provides various primitives for managing hardware and software
interrupts, which means that you can write your interrupt routines in C, see Interrupt
functions for Cortex-M devices, page 90 and Interrupt functions for Arm7/9/11,
Cortex-A, and Cortex-R devices, page 91. See also Exception functions for 64-bit mode,
page 96.

SYSTEM STARTUP

In all embedded systems, system startup code is executed to initialize the system—both
the hardware and the software system—before the main function of the application is
called. The CPU imposes this by starting execution from a fixed memory address.

As an embedded software developer, you must ensure that the startup code is located at
the dedicated memory addresses, or can be accessed using a pointer from the vector
table. This means that startup code and the initial vector table must be placed in
non-volatile memory, such as ROM, EPROM, or flash.

A C/C++ application further needs to initialize all global variables. This initialization is
handled by the linker in conjunction with the system startup code. For more information,
see Application execution—an overview, page 68.

REAL-TIME OPERATING SYSTEMS

In many cases, the embedded application is the only software running in the system.
However, using an RTOS has some advantages.

IAR C/C++ Development Guide
60 Compiling and Linking for Arm

Developing embedded applications ___¢

For example, the timing of high-priority tasks is not affected by other parts of the
program which are executed in lower priority tasks. This typically makes a program
more deterministic and can reduce power consumption by using the CPU efficiently and
putting the CPU in a lower-power state when idle.

Using an RTOS can make your program easier to read and maintain, and in many cases
smaller as well. Application code can be cleanly separated into tasks that are
independent of each other. This makes teamwork easier, as the development work can
be easily split into separate tasks which are handled by one developer or a group of
developers.

Finally, using an RTOS reduces the hardware dependence and creates a clean interface
to the application, making it easier to port the program to different target hardware.

See also Managing a multithreaded environment, page 188.

INTEROPERABILITY WITH OTHER BUILD TOOLS

The IAR compiler and linker provide support for AEABI, the Embedded Application
Binary Interface for Arm. For more information about this interface specification, see
the www.arm.com web site.

The advantage of this interface is the interoperability between vendors supporting it—
an application can be built up of libraries of object files produced by different vendors
and linked with a linker from any vendor, as long as they adhere to the AEABI standard.

AEABI specities full compatibility for C and C++ object code, and for the C library. The
AEABI does not include specifications for the C++ library.

For more information about the AEABI support in the IAR build tools, see AEABI
compliance, page 266.

The IAR build tools for Arm with version numbers from 8.xx and up are not fully
compatible with earlier versions of the product. For more information, see the /AR
Embedded Workbench® Migration Guide for ARM.

For more information, see Linker optimizations, page 145.

The build process—an overview

This section gives an overview of the build process—how the various build tools
(compiler, assembler, and linker) fit together, going from source code to an executable
image.

To become familiar with the process in practice, you should go through the tutorials
available from the IAR Information Center.

61

The build process—an overview

THE TRANSLATION PROCESS

There are two tools in the IDE that translate application source files to intermediary
object files—the IAR C/C++ Compiler and the IAR Assembler. Both produce
relocatable object files in the industry-standard format ELF, including the DWARF
format for debug information.

Note: The compiler can also be used for translating C source code into assembler source
code. If required, you can modify the assembler source code which can then be
assembled into object code. For more information about the [AR Assembler, see the /AR
Assembler User Guide for Arm.

This illustration shows the translation process:

C/C++ Assembler

source
files

source
files

compiler

’* Librarian
Relocatable

object
files g

Customer
library

After the translation, you can choose to pack any number of modules into an archive, or
in other words, a library. The important reason you should use libraries is that each
module in a library is conditionally linked in the application, or in other words, is only
included in the application if the module is used directly or indirectly by a module
supplied as an object file. Optionally, you can create a library, then use the IAR utility
iarchive.

THE LINKING PROCESS

The relocatable modules in object files and libraries, produced by the IAR compiler and
assembler cannot be executed as is. To become an executable application, they must be
linked.

IAR C/C++ Development Guide
62 Compiling and Linking for Arm

Developing embedded applications ___¢

Note: Modules produced by a toolset from another vendor can be included in the build
as well. Be aware that this might also require a compiler utility library from the same
vendor.

The IAR ILINK Linker (i1inkarm.exe) is used for building the final application.
Normally, the linker requires the following information as input:

o Several object files and possibly certain libraries
e A program start label (set by default)

o The linker configuration file that describes placement of code and data in the
memory of the target system

This illustration shows the linking process:

Relocatable

object

files
External Customer Standard
librar; :Ji;rar : eici
Y Y library
|

ILINK /

linker ILINK

K configuration

file
Map <—/

file

Absolute
output
ELF/DWARF

Note: The Standard C/C++ library contains support routines for the compiler, and the
implementation of the C/C++ standard library functions.

While linking, the linker might produce error messages and logging messages on
stdout and stderr. The log messages are useful for understanding why an application
was linked the way it was, for example, why a module was included or a section
removed.

For more information about the linking process, see The linking process in detail, page
111.

63

Application execution—an overview

64

AFTER LINKING

The IAR ILINK Linker produces an absolute object file in ELF format that contains the
executable image. After linking, the produced absolute executable image can be used
for:

o Loading into the IAR C-SPY Debugger or any other compatible external debugger
that reads ELF and DWAREF.

o Programming to a flash/PROM using a flash/PROM programmer. Before this is
possible, the actual bytes in the image must be converted into the standard Motorola
32-bit S-record format or the Intel Hex-32 format. For this, use ielftool, see The
1IAR ELF Tool—ielftool, page 661.

This illustration shows the possible uses of the absolute output ELF/DWAREF file:

Absolute
output
ELF/DWARF

|
External C-SPY g?ﬂ:;ﬁ
debugger N debugger converter

L

o

S

e OF—— 21& ¢

PA

12

Hexfile

for
download

Flash/PROM
programmer
P

et
cOs———
52

2

Application execution—an overview

IAR C/C++ Development Guide
Compiling and Linking for Arm

This section gives an overview of the execution of an embedded application divided into
three phases, the:

e Initialization phase

e Execution phase

o Termination phase.

Developing embedded applications ___¢

THE INITIALIZATION PHASE

Initialization is executed when an application is started (the CPU is reset) but before the
main function is entered. For simplicity, the initialization phase can be divided into:

e Hardware initialization, which as a minimum, generally initializes the stack pointer.

The hardware initialization is typically performed in the system startup code
cstartup.s and if required, by an extra low-level routine that you provide. It might
include resetting/restarting the rest of the hardware, setting up the CPU, etc, in
preparation for the software C/C++ system initialization.

o Software C/C++ system initialization
Typically, this includes assuring that every global (statically linked) C/C++ symbol
receives its proper initialization value before the main function is called.

o Application initialization
This depends entirely on your application. It can include setting up an RTOS kernel
and starting initial tasks for an RTOS-driven application. For a bare-bone application,
it can include setting up various interrupts, initializing communication, initializing
devices, etc.

For a ROM/flash-based system, constants and functions are already placed in ROM. The
linker has already divided the available RAM into different areas for variables, stack,
heap, etc. All symbols placed in RAM must be initialized before the main function is
called.

65

Application execution—an overview

The following sequence of illustrations gives a simplified overview of the different
stages of the initialization.

I When an application is started, the system startup code first performs hardware
initialization, such as initialization of the stack pointer to point at the end of the
predefined stack area:

vector
e Jump to cstartup

cstartup
e Set up stack pointer ~
Initialize variables to zero
ROM °

e Initialize variables

region e Call main()
main() and other code
Initializers
Stack
RAM
region Zero-initialized variables

Initialized variables

IAR C/C++ Development Guide
66 Compiling and Linking for Arm

Developing embedded applications ___¢

2 Then, memories that should be zero-initialized are cleared, in other words, filled with

ZEeros:
vector
e Jump to cstartup
cstartup
® Set up stack pointer
 Initialize variables to zero -
ROAM * Initialize variables
region e Call main()
main() and other code
Initializers
Stack
RAM
region Zero-initialized variables <):' 0......
Initialized variables

Typically, this is data referred to as zero-initialized data—variables declared as, for
example, int i = 0;

3 For initialized data, data declared, for example, like int i = 6; the initializers are
copied from ROM to RAM

vector
® Jump to cstartup

cstartup

* Set up stack pointer
 Initialize variables to zero
e |Initialize variables ~
e Call main()

ROM
region

main() and other code

Initializers [

Stack

) Copy
region Zero-initialized variables

Initialized variables

67

Application execution—an overview

68

IAR C/C++ Development Guide
Compiling and Linking for Arm

Then, dynamically initialized static objects are constructed, such as C++ objects.

Finally, the main function is called:

vector
e Jump to cstartup
cstartup
e Set up stack pointer
e |nitialize variables to zero
ROM o .
region |Initialize variables
g e Call main()
I‘: main() and other code
Initializers
Stack
RAM
region Zero-initialized variables

Initialized variables

For more information about each stage, see System startup and termination, page 172.
For more information about data initialization, see /nitialization at system startup, page
116.

THE EXECUTION PHASE

The software of an embedded application is typically implemented as a loop, which is
either interrupt-driven, or uses polling for controlling external interaction or internal
events. For an interrupt-driven system, the interrupts are typically initialized at the
beginning of the main function.

In a system with real-time behavior and where responsiveness is critical, a multi-task
system might be required. This means that your application software should be
complemented with a real-time operating system (RTOS). In this case, the RTOS and
the different tasks must also be initialized at the beginning of the main function.

THE TERMINATION PHASE

Typically, the execution of an embedded application should never end. If it does, you
must define a proper end behavior.

To terminate an application in a controlled way, either call one of the Standard C library
functions exit, Exit, quick_exit, or abort, or return from main. If you return

Developing embedded applications ___¢

from main, the exit function is executed, which means that C++ destructors for static
and global variables are called (C++ only) and all open files are closed.

Of course, in case of incorrect program logic, the application might terminate in an
uncontrolled and abnormal way—a system crash.

For more information about this, see System termination, page 175.

Building applications—an overview

In the command line interface, the following line compiles the source file myfile.c
into the object file myfile. o using the default settings:

iccarm myfile.c

You must also specify some critical options, see Basic project configuration, page 73.
On the command line, the following line can be used for starting the linker:
ilinkarm myfile.o myfile2.0 -o a.out --config my_configfile.icf

In this example, myfile.oandmyfile2.o are object files, and my_configfile.icf
is the linker configuration file. The option -o specifies the name of the output file.

Note: By default, the label where the application starts is __iar_program_start.
You can use the --entry command line option to change this.

When building a project, the IAR Embedded Workbench IDE can produce extensive
5 build information in the Build messages window. This information can be useful, for
example, as a base for producing batch files for building on the command line. You can
copy the information and paste it in a text file. To activate extensive build information,
right-click in the Build messages window, and select All on the context menu.

Basic project configuration

This section gives an overview of the basic settings needed to generate the best code for
the Arm device you are using. You can specify the options either from the command line
interface or in the IDE. On the command line, you must specity each option separately,
but if you use the IDE, many options will be set automatically, based on your settings of
some of the fundamental options.

You need to make settings for:

® Processor configuration, that is processor variant, CPU mode, VFP and
floating-point arithmetic, and byte order

e Optimization settings

69

Basic project configuration

70

IAR C/C++ Development Guide
Compiling and Linking for Arm

o Runtime environment, see Setting up the runtime environment, page 155

o Customizing the ILINK configuration, see the chapter Linking your application.

In addition to these settings, you can use many other options and settings to fine-tune
the result even further. For information about how to set options and for a list of all
available options, see the chapters Compiler options, Linker options, and the IDE
Project Management and Building Guide for Arm, respectively.

32-BIT MODE PROCESSOR CONFIGURATION

To make the compiler generate optimum code, you should configure it for the Arm core
you are using.

Processor variant

The IAR C/C++ Compiler for Arm supports most 32-bit Arm cores and devices. All
supported cores support Thumb instructions and 64-bit multiply instructions. The object
code that the compiler generates is not always binary compatible between the cores,
therefore it is crucial to specify a processor option to the compiler. The default core is
Cortex-M3.

Execution mode should be 32-bit. For information about setting the Processor variant
option, see the IDE Project Management and Building Guide for Arm.

Use the --cpu option to specify the Arm core. For syntax information, see --arm, page
333 and --thumb, page 374.
VFP and floating-point arithmetic

If you are using an Arm core that contains a Vector Floating Point (VFP) coprocessor,
you can use the --£fpu option to generate code that carries out floating-point operations
utilizing the coprocessor, instead of using the software floating-point library routines.

See the IDE Project Management and Building Guide for Arm, for information about
setting the FPU option in the IDE.

Use the --fpu option to specify the Arm core. For syntax information, see --fpu, page
347.
Byte order

The compiler supports the big-endian and little-endian byte order. All user and library
modules in your application must use the same byte order.

See the IDE Project Management and Building Guide for Arm for information about
setting the Endian mode option in the IDE.

Developing embedded applications ___¢

Use the --endian option to specify the byte order for your project. For syntax
information, see --endian, page 345.

64-BIT MODE PROCESSOR CONFIGURATION

To make the compiler generate optimum code, you should configure it for the Arm core
you are using.

Processor variant

Select a 64-bit Armv8-A core that the IAR C/C++ Compiler for Arm supports. The
object code that the compiler generates is not always binary compatible between the
cores, therefore it is crucial to specify a processor option to the compiler.

Execution mode should be 64-bit. For information about setting the Processor variant
option, see the IDE Project Management and Building Guide for Arm.

Use the --cpu option to specify the Arm core. For syntax information, see --cpu, page
335, and --aarch64, page 331.

Data model
Select a data model to use for the generated code, ILP32 or LP64.

For information about setting the Data model option, see the IDE Project Management
and Building Guide for Arm.

Use the --abi option to specify the data model. For syntax information, see --abi, page
332.

OPTIMIZATION FOR SPEED AND SIZE

The compiler’s optimizer performs, among other things, dead-code elimination,
constant propagation, inlining, common sub-expression elimination, static clustering,
instruction scheduling, and precision reduction. It also performs loop optimizations,
such as unrolling and induction variable elimination.

You can choose between several optimization levels, and for the highest level you can
choose between different optimization goals—size, speed, or balanced. Most
optimizations will make the application both smaller and faster. However, when this is
not the case, the compiler uses the selected optimization goal to decide how to perform
the optimization.

The optimization level and goal can be specified for the entire application, for individual
files, and for individual functions. In addition, some individual optimizations, such as
function inlining, can be disabled.

71

Basic project configuration

For information about compiler optimizations and for more information about efficient
coding techniques, see the chapter Efficient coding for embedded applications.

IAR C/C++ Development Guide
72 Compiling and Linking for Arm

Data storage

Introduction
Storage of auto variables and parameters

Dynamic memory on the heap

Introduction

A 32-bit Arm core can address 4 Gbytes of continuous memory, ranging from 0x0 to
OxFFFF'FFFF. A 64-bit Arm core can address 16 Exbibytes of continuous memory,
ranging from 0x0 to 0xFFFF ' FFFF 'FFFF ' FFFF. Different types of physical memory
can be placed in the memory range. A typical application will have both read-only
memory (ROM) and read/write memory (RAM). In addition, some parts of the memory
range contain processor control registers and peripheral units.

DIFFERENT WAYS TO STORE DATA

In a typical application, data can be stored in memory in three different ways:

Auto variables

All variables that are local to a function, except those declared static, are stored either
in registers or on the stack. These variables can be used as long as the function
executes. When the function returns to its caller, the memory space is no longer valid.
For more information, see Storage of auto variables and parameters, page 82.

Global variables, module-static variables, and local variables declared static

In this case, the memory is allocated once and for all. The word static in this context
means that the amount of memory allocated for this kind of variables does not change
while the application is running. The Arm core has one single address space and the
compiler supports full memory addressing.

Dynamically allocated data
An application can allocate data on the heap, where the data remains valid until it is

explicitly released back to the system by the application. This type of memory is
useful when the number of objects is not known until the application executes.

Note: There are potential risks connected with using dynamically allocated data in
systems with a limited amount of memory, or systems that are expected to run for a
long time. For more information, see Dynamic memory on the heap, page 83.

73

Storage of auto variables and parameters

74

Storage of auto variables and parameters

IAR C/C++ Development Guide
Compiling and Linking for Arm

Variables that are defined inside a function—and not declared static—are named auto
variables by the C standard. A few of these variables are placed in processor registers,
while the rest are placed on the stack. From a semantic point of view, this is equivalent.
The main differences are that accessing registers is faster, and that less memory is
required compared to when variables are located on the stack.

Auto variables can only live as long as the function executes—when the function
returns, the memory allocated on the stack is released.

THE STACK

The stack can contain:

Local variables and parameters not stored in registers
Temporary results of expressions
The return value of a function (unless it is passed in registers)

Processor state during interrupts

Processor registers that should be restored before the function returns (callee-save
registers).

e Canaries, used in stack-protected functions. See Stack protection, page 102.

The stack is a fixed block of memory, divided into two parts. The first part contains
allocated memory used by the function that called the current function, and the function
that called it, etc. The second part contains free memory that can be allocated. The
borderline between the two areas is called the top of stack and is represented by the stack
pointer, which is a dedicated processor register. Memory is allocated on the stack by
moving the stack pointer.

A function should never refer to the memory in the area of the stack that contains free
memory. The reason is that if an interrupt occurs, the called interrupt function can
allocate, modify, and—of course—deallocate memory on the stack.

See also Stack considerations, page 252 and Setting up stack memory, page 136.

Advantages

The main advantage of the stack is that functions in different parts of the program can
use the same memory space to store their data. Unlike a heap, a stack will never become
fragmented or suffer from memory leaks.

It is possible for a function to call itself either directly or indirectly—a recursive
function—and each invocation can store its own data on the stack.

Data storage °

Potential problems

The way the stack works makes it impossible to store data that is supposed to live after
the function returns. The following function demonstrates a common programming
mistake. It returns a pointer to the variable x, a variable that ceases to exist when the
function returns.

int *MyFunction ()

{
int x;
/* Do something here. */
return &x; /* Incorrect */

}

Another problem is the risk of running out of stack space. This will happen when one
function calls another, which in turn calls a third, etc., and the sum of the stack usage of
each function is larger than the size of the stack. The risk is higher if large data objects
are stored on the stack, or when recursive functions are used.

Dynamic memory on the heap

Memory for objects allocated on the heap will live until the objects are explicitly
released. This type of memory storage is useful for applications where the amount of
data is not known until runtime.

In C, memory is allocated using the standard library function malloc, or one of the
related functions calloc and realloc. The memory is released again using free.

In C++, a special keyword, new, allocates memory and runs constructors. Memory
allocated with new must be released using the keyword delete.

For information about how to set up the size for heap memory, see Setting up heap
memory, page 136.
POTENTIAL PROBLEMS

Applications that use heap-allocated data objects must be carefully designed, as it is
easy to end up in a situation where it is not possible to allocate objects on the heap.

The heap can become exhausted if your application uses too much memory. It can also
become full if memory that no longer is in use was not released.

For each allocated memory block, a few bytes of data for administrative purposes is
required. For applications that allocate a large number of small blocks, this
administrative overhead can be substantial.

There is also the matter of fragmentation—this means a heap where small pieces of free
memory are separated by memory used by allocated objects. It is not possible to allocate

75

Dynamic memory on the heap

a new object if no piece of free memory is large enough for the object, even though the
sum of the sizes of the free memory exceeds the size of the object.

Unfortunately, fragmentation tends to increase as memory is allocated and released. For
this reason, applications that are designed to run for a long time should try to avoid using
memory allocated on the heap.

IAR C/C++ Development Guide
76 Compiling and Linking for Arm

Functions

e Function-related extensions

e 32-bit Arm and Thumb code

e 64-bit A64 code

e Execution in RAM

e Interrupt functions for Cortex-M devices

e Interrupt functions for Arm7/9/11, Cortex-A, and Cortex-R devices
e Exception functions for 64-bit mode

e Inlining functions

e Stack protection

e TrustZone interface

Function-related extensions
In addition to supporting Standard C, the compiler provides several extensions for
writing functions in C. Using these, you can:

Generate code for the 32-bit CPU modes Arm and Thumb

Generate code for the A64 instruction set

Execute functions in RAM

Write interrupt functions for the different devices

Control function inlining

Facilitate function optimization

Access hardware features.

Create interface functions for TrustZone

The compiler uses compiler options, extended keywords, pragma directives, and
intrinsic functions to support this.

77

32-bit Arm and Thumb code

78

For more information about optimizations, see Efficient coding for embedded
applications, page 283. For information about the available intrinsic functions for
accessing hardware operations, see the chapter Intrinsic functions.

32-bit Arm and Thumb code

In 32-bit mode, the IAR C/C++ Compiler for Arm can generate code for either the
32-bit Arm, or the 16-bit Thumb or Thumb?2 instruction set. Use the --cpu_mode
option, alternatively the --arm or --thumb options, to specify which instruction set
should be used for your project. For individual functions, it is possible to override the
project setting using the extended keywords __arm and __thumb. You can freely mix
Arm and Thumb code in the same application.

When performing function calls, the compiler always attempts to generate the most
efficient assembler language instruction or instruction sequence available. As a result,
4 Gbytes of continuous memory in the range 0x0-0xFFFF ' FFFF can be used for
placing code. There is a limit of 4 Mbytes per code module.

The size of all code pointers is 4 bytes. There are restrictions to implicit and explicit
casts from code pointers to data pointers or integer types or vice versa. For further
information about restrictions, see Pointer types, page 455.

In the chapter Assembler language interface, the generated code is studied in more detail
in the description of calling C functions from assembler language and vice versa.

64-bit A64 code

IAR C/C++ Development Guide
Compiling and Linking for Arm

In 64-bit mode, the IAR C/C++ Compiler for Arm can generate code for the A64
instruction set. Use the --cpu_mode option, alternatively the --aarch64 or --abi
options, to specify which instruction set should be used for your project.

When performing function calls, the compiler always attempts to generate the most
efficient assembler language instruction or instruction sequence available. As a result,
16 Exbibytes of continuous memory in the range 0x0-0xFFFF ' FFFF ' FFFF 'FFFF can
be used for placing code. There is a limit of 64 Mbytes per code module.

The size of code pointers is 4 or 8 bytes, depending on the data model. There are
restrictions to implicit and explicit casts from code pointers to data pointers or integer
types or vice versa. For further information about restrictions, see Pointer types, page
455.

In the chapter Assembler language interface, the generated code is studied in more detail
in the description of calling C functions from assembler language and vice versa.

Functions __4

Execution in RAM

The __ramfunc keyword makes a function execute in RAM. In other words it places
the function in a section that has read/write attributes. The function is copied from ROM
to RAM at system startup just like any initialized variable, see System startup and
termination, page 172.

The keyword is specified before the return type:
__ramfunc void foo(void) ;

If a function declared __ramfunc tries to access ROM, the compiler will issue a
warning.

If the whole memory area used for code and constants is disabled—for example, when
the whole flash memory is being erased—only functions and data stored in RAM may
be used. Interrupts must be disabled unless the interrupt vector and the interrupt service
routines are also stored in RAM.

String literals and other constants can be avoided by using initialized variables. For
example, the following lines:

__ramfunc void test()

{
/* myc: initializer in ROM */
const int myc([] = { 10, 20 };

/* string literal in ROM */
msg("Hello") ;
}

can be rewritten to:

__ramfunc void test()

{
/* myc: initialized by cstartup */
static int myc[] = { 10, 20 };

/* hello: initialized by cstartup */
static char hello[] = "Hello";

msg (hello) ;
}

For more information, see Initializing code—copying ROM to RAM, page 139.

79

Interrupt functions for Cortex-M devices

80

Interrupt functions for Cortex-M devices

IAR C/C++ Development Guide
Compiling and Linking for Arm

Cortex-M has a different interrupt mechanism than previous Arm architectures, which
means the primitives provided by the compiler are also different.

INTERRUPTS FOR CORTEX-M

On Cortex-M, an interrupt service routine enters and returns in the same way as a normal
function, which means no special keywords are required. Therefore, the keywords
__irq,__fig,and __nested are not available when you compile for Cortex-M.

These exception function names are defined in cstartup_M.c and cstartup_M.s.
They are referred to by the library exception vector code:

NMI_Handler
HardFault_Handler
MemManage_Handler
BusFault_Handler
UsageFault_Handler
SVC_Handler
DebugMon_Handler
PendSV_Handler
SysTick_Handler

The vector table is implemented as an array. It should always have the name
vector_table, because the C-SPY debugger looks for that symbol when

determining where the vector table is located.

The predefined exception functions are defined as weak symbols. A weak symbol is
only included by the linker as long as no duplicate symbol is found. If another symbol
is defined with the same name, it will take precedence. Your application can therefore
simply define its own exception function by just defining it using the correct name from
the list above. If you need other interrupts or other exception handlers, you must make
a copy of the cstartup_M.c or cstartup_M. s file and make the proper addition to
the vector table.

The intrinsic functions __get_CPSR and __set_CPSR are not available when you
compile for Cortex-M. Instead, if you need to get or set values of these or other registers,
you can use inline assembler. For more information, see Passing values between C and
assembler objects, page 301.

INTERRUPTS FOR CORTEX-M WITH FPU

For a Cortex-M core with an FPU, the system register bit FPCCR . ASPEN must be set to
1 to enable automatic state preservation of floating point registers (S0—S15 and FPSCR).
This will make interrupt service routines enter and return in the same way as normal
functions also when floating-point registers are used.

Functions __4

The floating-point context saving procedure (FPCCR.ASPEN=0) can be omitted when:
e only one application task, and no interrupt handler, is going to use the FPU, or
e 1o application task, and only one interrupt handler, is going to use the FPU.

An application running without an operating system is regarded as one single
application task. All handlers are affected, including the SVC_Handler, so software
interrupt functions (functions declared with the __svc keyword) are also affected.

Interrupt functions for Arm7/9/11, Cortex-A, and Cortex-R devices

The IAR C/C++ Compiler for Arm provides the following primitives related to writing
interrupt functions for Arm7/9/11, Cortex-A, and Cortex-R devices:

o The extended keywords: __irqg, __fiq, __nested,

o The intrinsic functions: __enable_interrupt, __disable_interrupt,
__get_interrupt_state,__set_interrupt_state

Note: Cortex-M has a different interrupt mechanism than other Arm devices, and for
these devices a different set of primitives is available. For more information, see
Interrupt functions for Cortex-M devices, page 90.

INTERRUPT FUNCTIONS

In embedded systems, using interrupts is a method for handling external events
immediately, for example, detecting that a button was pressed.

Interrupt service routines

In general, when an interrupt occurs in the code, the core immediately stops executing
the code it runs, and starts executing an interrupt routine instead. It is important that the
environment of the interrupted function is restored after the interrupt is handled—this

includes the values of processor registers and the processor status register. This makes
it possible to continue the execution of the original code after the code that handled the
interrupt was executed.

The compiler supports interrupts, software interrupts, and fast interrupts. For each
interrupt type, an interrupt routine can be written.

All interrupt functions must be compiled in Arm mode—if you are using Thumb mode,
use the __arm extended keyword or the #pragma type_attribute=__armdirective
to override the default behavior. This is not applicable for Cortex-M devices.

81

Interrupt functions for Arm7/9/11, Cortex-A, and Cortex-R devices

82

IAR C/C++ Development Guide
Compiling and Linking for Arm

Interrupt vectors and the interrupt vector table

Each interrupt routine is associated with a vector address/instruction in the exception
vector table, which is specified in the Arm cores documentation. The interrupt vector is
the address in the exception vector table. For the Arm cores, the exception vector table
starts at address 0x0.

By default, the vector table is populated with a default interrupt handler which loops
indefinitely. For each interrupt source that has no explicit interrupt service routine, the
default interrupt handler will be called. If you write your own service routine for a
specific vector, that routine will override the default interrupt handler.

Defining an interrupt function—an example

To define an interrupt function, the __irq or the __fig keyword can be used. For
example:

__irg __arm void IRQ_Handler (void)
{

/* Do something */
}

For more information about the interrupt vector table, see the Arm cores documentation.

Note: An interrupt function must have the return type void, and it cannot specify any
parameters.

Interrupt and C++ member functions

Only static member functions can be interrupt functions. When a non-static member
function is called, it must be applied to an object. When an interrupt occurs and the
interrupt function is called, there is no object available to apply the member function to.

INSTALLING EXCEPTION FUNCTIONS

All interrupt functions and software interrupt handlers must be installed in the vector
table. This is done in assembler language in the system startup file cstartup.s.

The default implementation of the Arm exception vector table in the standard runtime
library jumps to predefined functions that implement an infinite loop. Any exception
that occurs for an event not handled by your application will therefore be caught in the
infinite loop (B.).

The predefined functions are defined as weak symbols. A weak symbol is only included
by the linker as long as no duplicate symbol is found. If another symbol is defined with
the same name, it will take precedence. Your application can therefore simply define its
own exception function by just defining it using the correct name.

Functions __4

These exception function names are defined in cstartup.s and referred to by the
library exception vector code:

Undefined_Handler
SVC_Handler
Prefetch_Handler
Abort_Handler
IRQ_Handler
FIQ_Handler

To implement your own exception handler, define a function using the appropriate
exception function name from the list above.

For example, to add an interrupt function in C, it is sufficient to define an interrupt
function named IRQ_Handler:

__irg __arm void IRQ_Handler ()
{
}

An interrupt function must have C linkage, read more in Calling convention, page 207.
If you use C++, an interrupt function could look, for example, like this:

extern "C"

{

__irg __arm void IRQ_Handler (void) ;

__irg __arm void IRQ_Handler (void)
{
}

No other changes are needed.

INTERRUPTS AND FAST INTERRUPTS

The interrupt and fast interrupt functions are easy to handle as they do not accept
parameters or have a return value. Use any of these keywords:

o To declare an interrupt function, use the __irqg extended keyword or the #pragma
type_attribute=__irgqg directive. For syntax information, see _irgq, page 468
and type_attribute, page 509, respectively.

o To declare a fast interrupt function, use the __fiqg extended keyword or the
#pragma type_attribute=__fig directive. For syntax information, see __fig,
page 468, and type_attribute, page 509, respectively.

Note: An interrupt function (irq) and a fast interrupt function (£1ig) must have a return
type of void and cannot have any parameters. A software interrupt function (swi or svc)

83

Interrupt functions for Arm7/9/11, Cortex-A, and Cortex-R devices

84

IAR C/C++ Development Guide
Compiling and Linking for Arm

may have parameters and return values. By default, only four registers, R0O-R3, can be
used for parameters and only the registers RO-R1 can be used for return values.

NESTED INTERRUPTS

Interrupts are automatically disabled by the Arm core prior to entering an interrupt
handler. If an interrupt handler re-enables interrupts, calls functions, and another
interrupt occurs, then the return address of the interrupted function—stored in LR—is
overwritten when the second IRQ is taken. In addition, the contents of SPSR will be
destroyed when the second interrupt occurs. The __irqg keyword itself does not save
and restore LR and SPSR. To make an interrupt handler perform the necessary steps
needed when handling nested interrupts, the keyword __nested must be used in
addition to __irg. The function prolog—function entrance sequence—that the
compiler generates for nested interrupt handlers will switch from IRQ mode to system
mode. Make sure that both the IRQ stack and system stack is set up. If you use the
default cstartup. s file, both stacks are correctly set up.

Compiler-generated interrupt handlers that allow nested interrupts are supported for
IRQ interrupts only. The FIQ interrupts are designed to be serviced quickly, which in
most cases mean that the overhead of nested interrupts would be too high.

This example shows how to use nested interrupts with the Arm vectored interrupt
controller (VIC):

__irg __nested __arm void interrupt_handler (void)
{

void (*interrupt_task) ();

unsigned int vector;

/* Get interrupt vector. */
vector = VICVectAddr;

interrupt_task = (void(*) ()) vector;

/* Allow other IRQ interrupts to be serviced. */
__enable_interrupt () ;

/* Execute the task associated with this interrupt. */

(*interrupt_task) () ;

}

Note: The __nested keyword requires the processor mode to be in either User or
System mode.

Functions __4

SOFTWARE INTERRUPTS

Software interrupt functions are slightly more complex than other interrupt functions, in
the way that they need a software interrupt handler (a dispatcher), are invoked (called)
from running application software, and that they accept arguments and have return
values. The mechanisms for calling a software interrupt function and how the software
interrupt handler dispatches the call to the actual software interrupt function is described
here.

Calling a software interrupt function

To call a software interrupt function from your application source code, the assembler
instruction SVC #immed is used, where immed is an integer value that is referred to as
the software interrupt number—or svc_number—in this guide. The compiler provides
an easy way to implicitly generate this instruction from C/C++ source code, by using the
__svc keyword and the #pragma svc_number directive when declaring the function.

An __svc function can, for example, be declared like this:

#pragma svc_number=0x23
__svc int svc_function(int a, int b);

In this case, the assembler instruction SvC 0x23 will be generated where the function
is called.

Software interrupt functions follow the same calling convention regarding parameters
and return values as an ordinary function, except for the stack usage, see Calling
convention, page 207.

For more information, see __svc, page 475, and sve_number, page 509, respectively.

The software interrupt handler and functions

The interrupt handler—for example SvC_Handler—works as a dispatcher for software
interrupt functions. It is invoked from the interrupt vector and is responsible for
retrieving the software interrupt number and then calling the proper software interrupt
function. The SVC_Handler must be written in assembler as there is no way to retrieve
the software interrupt number from C/C++ source code.

The software interrupt functions

The software interrupt functions can be written in C or C++. Use the __svc keyword in
a function definition to make the compiler generate a return sequence suited for a
specific software interrupt function. The #pragma svc_number directive is not needed
in the interrupt function definition.

For more information, see __svc, page 475.

85

Exception functions for 64-bit mode

Setting up the software interrupt stack pointer

If software interrupts will be used in your application, then the software interrupt stack
pointer (SVC_STACK) must be set up and some space must be allocated for the stack. The
SVC_STACK pointer can be set up together with the other stacks in the cstartup. s file.
As an example, see the set up of the interrupt stack pointer. Relevant space for the
SVC_STACK pointer is set up in the linker configuration file, see Setting up stack
memory, page 136.

INTERRUPT OPERATIONS

An interrupt function is called when an external event occurs. Normally it is called
immediately while another function is executing. When the interrupt function has
finished executing, it returns to the original function. It is imperative that the
environment of the interrupted function is restored—this includes the value of processor
registers and the processor status register.

When an interrupt occurs, the following actions are performed:

o The operating mode is changed corresponding to the particular exception

o The address of the instruction following the exception entry instruction is saved in
R14 of the new mode

o The old value of the CPSR is saved in the SPSR of the new mode

e Interrupt requests are disabled by setting bit 7 of the CPSR and, if the exception is a
fast interrupt, further fast interrupts are disabled by setting bit 6 of the CPSR

o The PC is forced to begin executing at the relevant vector address.

For example, if an interrupt for vector 0x18 occurs, the processor will start to execute
code at address 0x18. The memory area that is used as start location for interrupts is
called the interrupt vector table. The content of the interrupt vector is normally a branch
instruction jumping to the interrupt routine.

Note: If the interrupt function enables interrupts, the special processor registers needed
to return from the interrupt routine must be assumed to be destroyed. For this reason they
must be stored by the interrupt routine to be restored before it returns. This is handled
automatically if the __nested keyword is used.

Exception functions for 64-bit mode

IAR C/C++ Development Guide
86 Compiling and Linking for Arm

The compiler provides the following primitives related to writing exception functions
for the 64-bit mode:

o The extended keywords __exception nested, and __svc

L —

® The intrinsic functions __enable_interrupt and __disable_interrupt

Functions __4

o The special function names Synchronous_Handler_ A64, Error_Handler_ A64,
IRQ_Handler_A64, and FIQ_Handler_ A64

EXCEPTION FUNCTIONS

An exception function is used for handling external interrupt events or internal
exceptions. When an exception occurs, the code executed in the core is stopped and code
in an exception starts executing instead. It is important that the environment of the
excepted code is restored after the exception has been handled—this includes the values
of the processor registers, status registers, etc. The execution can then continue as if no
exception took place.

__exception is a function type attribute that defines an exception function. It must
have void as areturn value, and cannot have parameters. All used registers are saved at
entrance and restored at exit. It returns with an ERET instruction.

__exception void func(void)
{

/* Do something */

EXCEPTIONS AND C++ MEMBER FUNCTIONS

Only static member functions can be exception functions. When a non-static member
function is called, it must be applied to an object. When an exception occurs and the
exception function is called, there is no object available to apply the member function to.

EXCEPTION VECTOR TABLE

The IAR C/C++ Compiler uses the same exception vector table for the three exception
levels EL1, EL2, and EL3. The exception vector table starts at the linker-defined symbol
__eevector. It has 16 vectors, each 128 bytes large.

The IAR C/C++ Compiler only defines the vectors for exceptions that do not change
exception level and that use the sp for the current exception level (offsets 0x200,
0x280, 0x300, and 0x380). Those four defined vectors have the names
Synchronous_Handler_ A64, Error_Handler_ A64, IRQ _Handler_a64, and

FIQ Handler_ A64. They have a default implementation that can be overridden by
defining an __exception function with one of those names. If the function is too large

87

Exception functions for 64-bit mode

88

IAR C/C++ Development Guide
Compiling and Linking for Arm

to fit in a vector, the compiler will issue an error. The function cannot then be used
directly as an exception function. Instead, you must:

1 Write an assembler module that starts with a global symbol, for example ee. The
symbol should jump to the exception function.

2 Edit the linker configuration file. Replace the place at directive for the relevant
exception function (for example Synchronous_Handler_A64) withplace at
address synchronous_evector { symbol ee };.

By default, the exception vector table is placed at address 2048. To place it at another
address, use one of these methods:

o Use the linker option --config_def to set the linker configuration symbol
__Exception_table_address, like this:
--config_def __ Exception_table_address=4096

e Edit the linker configuration file that the project uses

The exception table must be 2Kbyte-aligned.

NESTED EXCEPTION FUNCTIONS

An exception function can be nested. This also saves the ELR_EL1 system register at
entrance. When the function exits, interrupts are disabled and all saved registers are
restored.

Note that the SPSR_ELL system register is not saved automatically. It must be saved
explicitly before interrupts are enabled, for the status flags to be preserved after the
exception. Doing this explicitly allows other bits of SPSR_EL1 to be manipulated.

An example:

#include <intrinsics.h>
__exception _ _nested void func(void)

{ // All used registers + ELR_EL1 have been saved. SPSR_EL1
// and ESR_EL1l can be saved/used.
_ _enable_interrupt();
// Do stuff
_ _disable_interrupt() ;
// The possibly changed SPSR_EL1l and ESR_EL1l can be restored.

// At exit, interrupts will be disabled and then all used
// registers are restored. Then ERET is executed.

Functions __4

SUPERVISOR-DEFINED FUNCTIONS

A function defined using the function type attribute __svc can have return values and
can take parameters. It preserves the same registers as a normal function call, and returns
with an ERET instruction. An SVC-defined function handles synchronous exceptions.

__svec void func(void)

{

/* Do something */
}

See below for an example.

Supervisor call

SVvC is an A64 instruction that makes a supervisor call, that is, an exception. It is handled
by the synchronous exception vector. The IAR C/C++ Compiler supports exchanging
the normal call instruction used to call a function with the SvC instruction, by using the
pragma directive svc_number in front of any function declaration or definition. The
supplied number will be stored in the ESR_EL1 system register.

#pragma svc_number = 23
__svc int Synchronous_Handler_A64 (int 1)

{

return 1i;

void f()
{
int 1 = Synchronous_Handler_A64(5); // Will use an SVC

}

The intended use for SVC functions is to let code executing in a lower exception level
call code in a higher exception level.

89

Inlining functions

90

// User code
#pragma svc_number = 1
int svcl (int) ;

1l
(S}

#pragma svc_number
int svc2 (int) ;

int main(void)
{

svecl(l);

// Supervisor code
__svc int Synchronous_Handler_A64 (int a)
{
// Get syndrome: AARCH64 SVC
long long nr = 0;
__asm("MRS %x0, ESR_EL1\n"
int ec = (nr >> 26) & 0x3F;
if (ec !'= 0x15)
return -1;

"=r"(nr));

// Get SVC number.
nr &= OxFF'FFFF;

return nr + a;

}

Functions declared with #pragma svc_number do not have to use the same function
signature. If different signatures are used, Synchronous_Handler_ A64 must be
written in assembler language as a trampoline to the various calling handlers, in order
to pass parameters and handle return values correctly.

RESET ADDRESS

By default, the reset address is assumed to be at address 0. To place it at another address,
use one of these methods:

o Use the linker option --config_def to set the linker configuration symbol
__Reset_address, like this: --config_def _ Reset_address=4096

o Edit the linker configuration file that the project uses

Inlining functions

IAR C/C++ Development Guide
Compiling and Linking for Arm

Function inlining means that a function, whose definition is known at compile time, is
integrated into the body of its caller to eliminate the overhead of the function call. This
optimization, which is performed at optimization level High, normally reduces

Functions __4

execution time, but might increase the code size. The resulting code might become more
difficult to debug. Whether the inlining actually occurs is subject to the compiler’s
heuristics.

The compiler heuristically decides which functions to inline. Different heuristics are
used when optimizing for speed, size, or when balancing between size and speed.
Normally, code size does not increase when optimizing for size.

C VERSUS C++ SEMANTICS

In C++, all definitions of a specific inline function in separate translation units must be
exactly the same. If the function is not inlined in one or more of the translation units,
then one of the definitions from these translation units will be used as the function
implementation.

In C, you must manually select one translation unit that includes the non-inlined version
of an inline function. You do this by explicitly declaring the function as extern in that
translation unit. If you declare the function as extern in more than one translation unit,
the linker will issue a multiple definition error. In addition, in C, inline functions cannot
refer to static variables or functions.

For example:

// In a header file.

static int sX;

inline void F(void)

{
//static int sY; // Cannot refer to statics.
//sX; // Cannot refer to statics.

// In one source file.
// Declare this F as the non-inlined version to use.
extern inline void F();

FEATURES CONTROLLING FUNCTION INLINING
There are several mechanisms for controlling function inlining:

o The inline keyword.

If you compile your function in C or C++ mode, the keyword will be interpreted
according to its definition in Standard C or Standard C++, respectively.

The main difference in semantics is that in Standard C you cannot (in general) simply
supply an inline definition in a header file. You must supply an external definition in
one of the compilation units, by designating the inline definition as being external in
that compilation unit.

91

Stack protection

92

® d#pragma inline is similar to the inline keyword, but with the difference that the
compiler always uses C++ inline semantics.

By using the #pragma inline directive you can also disable the compiler’s
heuristics to either force inlining or completely disable inlining. For more
information, see inline, page 497.

® --use_c++_inline forces the compiler to use C++ semantics when compiling a
Standard C source code file.

® --no_inline, #pragma optimize=no_inline, and #pragma inline=never
all disable function inlining. By default, function inlining is enabled at optimization
level High.

The compiler can only inline a function if the definition is known. Normally, this is
restricted to the current translation unit. However, when the - -mfc compiler option for
multi-file compilation is used, the compiler can inline definitions from all translation
units in the multi-file compilation unit. For more information, see Multi-file compilation
units, page 291.

For more information about the function inlining optimization, see Function inlining,
page 294.

Stack protection

IAR C/C++ Development Guide
Compiling and Linking for Arm

In software, a stack buffer overflow occurs when a program writes to a memory address
on the program’s call stack outside of the intended data structure, which is usually a
fixed-length buffer. The result is, almost always, corruption of nearby data, and it can
even change which function to return to. If it is deliberate, it is often called stack
smashing. One method to guard against stack buffer overflow is to use stack canaries,
named for their analogy to the use of canaries in coal mines.

STACK PROTECTION IN THE IAR C/C++ COMPILER
The IAR C/C++ Compiler for Arm supports stack protection.

To enable stack protection for functions considered needing it, use the compiler option
--stack_protection. For more information, see --stack_protection, page 372.

The IAR implementation of stack protection uses a heuristic to determine whether a
function needs stack protection or not. If any defined local variable has the array type or
a structure type that contains a member of array type, the function will need stack
protection. In addition, if the address of any local variable is propagated outside of a
function, such a function will also need stack protection.

If a function needs stack protection, the local variables are sorted to let the variables with
array type to be placed as high as possible in the function stack block. After those

Functions __4

variables, a canary element is placed. The canary is initialized at function entrance. The
initialization value is taken from the global variable __stack_chk_guard. At function
exit, the code verifies that the canary element still contains the original value. If not, the
function __stack_chk_£fail is called.

USING STACK PROTECTION IN YOUR APPLICATION
To use stack protection, you must define these objects in your application:

® extern uint32_t __stack_chk_guard

The global variable __stack_chk_guard must be initialized prior to first use. If
the initialization value is randomized, it will be more secure.

® __interwork __nounwind __noreturn void __stack_chk_fail (void)

The purpose of the function __stack_chk_£fail is to notify about the problem and
then terminate the application.

Note: The return address from this function will point into the function that failed.

The file stack_protection.c in the directory arm\src\lib\runtime can be used
as a template for both __stack_chk_guard and __stack_chk_fail.

TrustZone interface

TrustZone for Arm v8-M (32-bit mode) needs some compiler support to create a secure
interface between the secure and the non-secure code. For this purpose, there are two
function type attributes that control how code is generated—
__cmse_nonsecure_entry and __cmse_nonsecure_call. For more information,
see Arm TrustZone®, page 270.

Note: TrustZone support is automatic in 64-bit mode.

93

TrustZone interface

IAR C/C++ Development Guide
94 Compiling and Linking for Arm

Linking using ILINK

e Linker overview

e Modules and sections

e The linking process in detail

e Placing code and data—the linker configuration file
e |Initialization at system startup

e Stack usage analysis

Linker overview

The IAR ILINK Linker is a powerful, flexible software tool for use in the development
of embedded applications. It is equally well suited for linking small, single-file, absolute
assembler programs as it is for linking large, relocatable, multi-module, C/C++, or
mixed C/C++ and assembler programs.

The linker combines one or more relocatable object files—produced by the IAR
compiler or assembler—with selected parts of one or more object libraries to produce
an executable image in the industry-standard format Executable and Linking Format
(ELF).

The linker will automatically load only those library modules—user libraries and
Standard C or C++ library variants—that are actually needed by the application you are
linking. Furthermore, the linker eliminates duplicate sections and sections that are not
required.

ILINK can link both Arm and Thumb code, as well as a combination of them. By
automatically inserting additional instructions (veneers), ILINK will assure that the
destination will be reached for any calls and branches, and that the processor state is
switched when required. For more details about how to generate veneers, see Veneers,
page 141.

The linker uses a configuration file where you can specify separate locations for code
and data areas of your target system memory map. This file also supports automatic
handling of the application’s initialization phase, which means initializing global
variable areas and code areas by copying initializers and possibly decompressing them
as well.

95

Modules and sections

96

The final output produced by ILINK is an absolute object file containing the executable
image in the ELF (including DWAREF for debug information) format. The file can be
downloaded to C-SPY or any other compatible debugger that supports ELF/DWAREF, or
it can be stored in EPROM or flash.

To handle ELF files, various tools are included. For information about included utilities,
see Specific ELF tools, page 56.

Note: The default output format in JAR Embedded Workbench is DEBUG.

Modules and sections

IAR C/C++ Development Guide
Compiling and Linking for Arm

Each relocatable object file contains one module, which consists of:

o Several sections of code or data

o Runtime attributes specifying various types of information, for example, the version
of the runtime environment

o Optionally, debug information in DWARF format
o A symbol table of all global symbols and all external symbols used.

Note: In a library, each module (source file) should only contain one single function.
This is important if you want to override a function in a library with a function in your
own application. The linker includes modules only if they are referred to from the rest
of the application. If the linker includes a library module that contains several functions
because one function is referred to, and another function in that module should be
overridden by a function defined by your application, the linker issues a “duplicate
definitions” error.

A section is a logical entity containing a piece of data or code that should be placed at a
physical location in memory. A section can consist of several section fragments,
typically one for each variable or function (symbols). A section can be placed either in
RAM or in ROM. In a normal embedded application, sections that are placed in RAM
do not have any content, they only occupy space.

Each section has a name and a type attribute that determines the content. The type
attribute is used (together with the name) for selecting sections for the ILINK
configuration.

The main purpose of section attributes is to distinguish between sections that can be
placed in ROM and sections that must be placed in RAM:

ro|readonly ROM sections

rw|readwrite RAM sections

Linking using ILINK °

In each category, sections can be further divided into those that contain code and those
that contain data, resulting in four main categories:

ro code Normal code

ro data Constants

rw code Code copied to RAM
rw data Variables

readwrite data also has a subcategory—z1i | zeroinit—{for sections that are
zero-initialized at application startup.

Note: In addition to these section types—sections that contain the code and data that are
part of your application—a final object file will contain many other types of sections,
for example, sections that contain debugging information or other type of meta
information.

A section is the smallest linkable unit—but if possible, ILINK can exclude smaller
units—section fragments—from the final application. For more information, see
Keeping modules, page 135, and Keeping symbols and sections, page 135.

At compile time, data and functions are placed in different sections. At link time, one of
the most important functions of the linker is to assign addresses to the various sections
used by the application.

The IAR build tools have many predefined section names. For more information about
each section, see the chapter Section reference.

You can group sections together for placement by using blocks. See define block
directive, page 609.

The linking process in detail

The relocatable modules in object files and libraries, produced by the IAR compiler and
assembler, cannot be executed as is. To become an executable application, they must be
linked.

Note: Modules produced by a toolset from another vendor can be included in the build
as well, as long as the module is AEABI (Arm Embedded Application Binary Interface)
compliant. Be aware that this might also require a compiler utility library from the same
vendor.

97

The linking process in detail

98

IAR C/C++ Development Guide
Compiling and Linking for Arm

The linker is used for the link process. It normally performs the following procedure
(note that some of the steps can be turned off by command line options or by directives
in the linker configuration file):

o Determine which modules to include in the application. Modules provided in object
files are always included. A module in a library file is only included if it provides a
definition for a global symbol that is referenced from an included module.

e Select which standard library files to use. The selection is based on attributes of the
included modules. These libraries are then used for satisfying any still outstanding
undefined symbols.

e Handle symbols with more than one definition. If there is more than one non-weak
definition, an error is emitted. Otherwise, one of the definitions is picked (the
non-weak one, if there is one) and the others are suppressed. Weak definitions are
typically used for inline and template functions. If you need to override some of the
non-weak definitions from a library module, you must ensure that the library
module is not included (typically by providing alternate definitions for all the
symbols your application uses in that library module).

o Determine which sections/section fragments from the included modules to include
in the application. Only those sections/section fragments that are actually needed by
the application are included. There are several ways to determine which
sections/section fragments that are needed, for example, the __root object
attribute, the #pragma required directive, and the keep linker directive. In case
of duplicate sections, only one is included.

o Where appropriate, arrange for the initialization of initialized variables and code in
RAM. The initialize directive causes the linker to create extra sections to
enable copying from ROM to RAM. Each section that will be initialized by copying
is divided into two sections—one for the ROM part, and one for the RAM part. If
manual initialization is not used, the linker also arranges for the startup code to
perform the initialization.

o Determine where to place each section according to the section placement directives
in the /inker configuration file. Sections that are to be initialized by copying appear
twice in the matching against placement directives, once for the ROM part and once
for the RAM part, with different attributes. During the placement, the linker also
adds any required veneers to make a code reference reach its destination or to
switch CPU modes.

o Produce an absolute file that contains the executable image and any debug
information provided. The contents of each needed section in the relocatable input
files is calculated using the relocation information supplied in its file and the
addresses determined when placing sections. This process can result in one or more
relocation failures if some of the requirements for a particular section are not met,
for instance if placement resulted in the destination address for a pc-relative jump
instruction being out of range for that instruction.

Linking using ILINK °

e Optionally, produce a map file that lists the result of the section placement, the
address of each global symbol, and finally, a summary of memory usage for each
module and library.

This illustration shows the linking process:

Relocatable
object

files -
External Customer Standard
librar :Jitsyrar : eici
Y Y library
|

ILINK /

.
e

linker ILINK
K configuration
file
Map
file

Absolute
output
ELF/DWARF

During the linking, ILINK might produce error and logging messages on stdout and
stderr. The log messages are useful for understanding why an application was linked
as it was. For example, why a module or section (or section fragment) was included.

Note: To see the actual content of an ELF object file, use iel fdumparm. See The [AR
ELF Dumper—ielfdump, page 663.

Placing code and data—the linker configuration file

The placement of sections in memory is performed by the IAR ILINK Linker. It uses the
linker configuration file where you can define how ILINK should treat each section and
how they should be placed into the available memories.

A typical linker configuration file contains definitions of:

o Auvailable addressable memories
o Populated regions of those memories

e How to treat input sections

929

Placing code and data—the linker configuration file

IAR C/C++ Development Guide
100 Compiling and Linking for Arm

o Created sections

e How to place sections into the available regions

The file consists of a sequence of declarative directives. This means that the linking
process will be governed by all directives at the same time.

To use the same source code with different derivatives, just rebuild the code with the
appropriate configuration file.

A SIMPLE EXAMPLE OF A CONFIGURATION FILE

Assume a simple 32-bit architecture that has these memory prerequisites:

There are 4 Gbytes of addressable memory.
There is ROM memory in the address range 0x0000-0x10000.
There is RAM memory in the range 0x20000-0x30000.

The stack has an alignment of 8.

o The system startup code must be located at a fixed address.
A simple configuration file for this assumed architecture can look like this:

/* The memory space denoting the maximum possible amount
of addressable memory */
define memory Mem with size = 4G;

/* Memory regions in an address space */
define region ROM = Mem: [from 0x00000 size 0x10000];
define region RAM = Mem: [from 0x20000 size 0x100007;

/* Create a stack */

define block STACK with size = 0x1000, alignment = 8 { };
/* Handle initialization */
initialize by copy { readwrite }; /* Initialize RW sections */
/* Place startup code at a fixed address */

place at start of ROM { readonly section .cstartup };

/* Place code and data */
place in ROM { readonly }; /* Place constants and initializers in

ROM: .rodata and .data_init */
place in RAM { readwrite, /* Place .data, .bss, and .noinit */
block STACK }; /* and STACK */

This configuration file defines one addressable memory Mem with the maximum of
4 Gbytes of memory. Furthermore, it defines a ROM region and a RAM region in Mem,
namely ROM and RaM. Each region has the size of 64 Kbytes.

Linking using ILINK °

The file then creates an empty block called STACK with a size of 4 Kbytes in which the
application stack will reside. To create a block is the basic method which you can use to
get detailed control of placement, size, etc. It can be used for grouping sections, but also
as in this example, to specify the size and placement of an area of memory.

Next, the file defines how to handle the initialization of variables, read/write type
(readwrite) sections. In this example, the initializers are placed in ROM and copied at
startup of the application to the RAM area. By default, ILINK may compress the
initializers if this appears to be advantageous.

The last part of the configuration file handles the actual placement of all the sections into
the available regions. First, the startup code—defined to reside in the read-only
(readonly) section .cstartup—is placed at the start of the ROM region, that is at
address 0x10000.

Note: The part within { } is referred to as section selection and it selects the sections for
which the directive should be applied to. Then the rest of the read-only sections are
placed in the ROM region.

Note: The section selection { readonly section .cstartup } takes precedence
over the more generic section selection { readonly }.

Finally, the read/write (readwrite) sections and the STACK block are placed in the RAM
region.

101

Initialization at system startup

102

This illustration gives a schematic overview of how the application is placed in memory:

Block
CSTACK
Sectlon
/> o]
V initializers
Section
.data_init
Object e
files
\—) Section
text
\ Region Text

(Section /
_cstartup

In addition to these standard directives, a configuration file can contain directives that
define how to:

Memory Mem

Region Data

Map a memory that can be addressed in multiple ways
Handle conditional directives
Create symbols with values that can be used in the application

More in detail, select the sections a directive should be applied to

More in detail, initialize code and data.

For more details and examples about customizing the linker configuration file, see the
chapter Linking your application.

For more information about the linker configuration file, see the chapter The linker
configuration file.

Initialization at system startup

IAR C/C++ Development Guide
Compiling and Linking for Arm

In Standard C, all static variables—variables that are allocated at a fixed memory
address—must be initialized by the runtime system to a known value at application
startup. This value is either an explicit value assigned to the variable, or if no value is
given, it is cleared to zero. In the compiler, there are exceptions to this rule, for example,
variables declared __no_init, which are not initialized at all.

Linking using ILINK °

The compiler generates a specific type of section for each type of variable initialization:

Categories of)) Section
Source Section type Section name

declared data content

Zero-initialized int 1i; Read/write .bss None

data data, zero-init

Zero-initialized int 1 = 0; Read/write .bss None

data data, zero-init

Initialized data int i = 6; Read/write .data The

(non-zero) data initializer

Non-initialized __no_init int i; Read/write .noinit None

data data, zero-init

Constants const int i = 6; Read-onlydata .rodata The
constant

Code __ramfunc void Read/write .textrw The code

myfunc () {} code

Table 3: Sections holding initialized data

Note: Clustering of static variables might group zero-initialized variables together with
initialized data in .data. The compiler can decide to place constants in the . text
section to avoid loading the address of a constant from a constant table.

For information about all supported sections, see the chapter Section reference.

THE INITIALIZATION PROCESS
Initialization of data is handled by ILINK and the system startup code in conjunction.
To configure the initialization of variables, you must consider these issues:

o Sections that should be zero-initialized, or not initialized at all (__no_init) are
handled automatically by ILINK.

e Sections that should be initialized, except for zero-initialized sections, should be
listed in an initialize directive.

Normally during linking, a section that should be initialized is split into two sections,
where the original initialized section will keep the name. The contents are placed in
the new initializer section, which will get the original name suffixed with _init. The
initializers should be placed in ROM and the initialized sections in RAM, by means
of placement directives. The most common example is the . data section which the
linker splits into .data and .data_init.

e Sections that contains constants should not be initialized—they should only be
placed in flash/ROM.

103

Initialization at system startup

104

IAR C/C++ Development Guide
Compiling and Linking for Arm

In the linker configuration file, it can look like this:

/* Handle initialization */
initialize by copy { readwrite }; /* Initialize RW sections */

/* Place startup code at a fixed address */
place at start of ROM { readonly section .cstartup };

/* Place code and data */
place in ROM { readonly }; /* Place constants and initializers in

ROM: .rodata and .data_init */
place in RAM { readwrite, /* Place .data, .bss, and .noinit */
block STACK }; /* and STACK */

Note: When compressed initializers are used (see initialize directive, page 615), the
contents sections (that is, sections with the _init suffix) are not listed as separate
sections in the map file. Instead, they are combined into aggregates of “initializer bytes”.
You can place the contents sections the usual way in the linker configuration file,
however, this affects the placement—and possibly the number—of the “initializer
bytes” aggregates.

For more information about and examples of how to configure the initialization, see
Linking considerations, page 131.

C++ DYNAMIC INITIALIZATION

The compiler places subroutine pointers for performing C++ dynamic initialization into
sections of the ELF section types SHT_PREINIT_ARRAY and SHT_INIT_ ARRAY. By
default, the linker will place these into a linker-created block, ensuring that all sections
of the section type SHT_PREINIT_ARRAY are placed before those of the type
SHT_INIT_ARRAY. Ifany such sections were included, code to call the routines will also
be included.

The linker-created blocks are only generated if the linker configuration does not contain
section selector patterns for the preinit_array and init_array section types. The
effect of the linker-created blocks will be very similar to what happens if the linker
configuration file contains this:

define block SHTSSPREINIT_ARRAY { preinit_array };

define block SHTSSINIT ARRAY { init_array };

define block CPP_INIT with fixed order { block
SHTSSPREINIT ARRAY,
block SHTSSINIT_ARRAY };

If you put this into your linker configuration file, you must also mention the CPP_INIT
block in one of the section placement directives. If you wish to select where the
linker-created block is placed, you can use a section selector with the name
".init_array"

Linking using ILINK °

See also section-selectors, page 625.

Stack usage analysis

= .82 -

This section describes how to perform a stack usage analysis using the linker.

In the arm\src directory, you can find an example project that demonstrates stack
usage analysis.

INTRODUCTION TO STACK USAGE ANALYSIS

Under the right circumstances, the linker can accurately calculate the maximum stack
usage for each call graph, starting from the program start, interrupt functions, tasks etc.
(each function that is not called from another function, in other words, the root).

If you enable stack usage analysis, a stack usage chapter will be added to the linker map
file, listing for each call graph root the particular call chain which results in the
maximum stack depth.

The analysis is only accurate if there is accurate stack usage information for each
function in the application.

In general, the compiler will generate this information for each C function, but if there
are indirect calls—calls using function pointers—in your application, you must supply
a list of possible functions that can be called from each calling function.

If you use a stack usage control file, you can also supply stack usage information for
functions in modules that do not have stack usage information.

You can use the check that directive in your stack usage control file to check that the
stack usage calculated by the linker does not exceed the stack space you have allocated.

PERFORMING A STACK USAGE ANALYSIS
Enable stack usage analysis:

In the IDE, choose Project>Options>Linker>Advanced>Enable stack usage
analysis.

On the command line, use the linker option --enable_stack_usage.
See --enable_stack usage, page 406.
Enable the linker map file:

In the IDE, choose Project>Options>Linker>List>Generate linker map file.

105

Stack usage analysis

106

IAR C/C++ Development Guide
Compiling and Linking for Arm

3

- H E

On the command line, use the linker option --map.

Link your project.

Note: The linker will issue warnings related to stack usage under certain circumstances,
see Situations where warnings are issued, page 124.

Review the linker map file, which now contains a stack usage chapter with a summary
of the stack usage for each call graph root. For more information, see Result of an
analysis—the map file contents, page 120.

For more details, analyze the call graph log, see Call graph log, page 124.

Note: There are limitations and sources of inaccuracy in the analysis, see Limitations,
page 123.

You might need to specitfy more information to the linker to get a more representative
result. See Specifying additional stack usage information, page 122.

In the IDE, choose Project>Options>Linker>Advanced>Enable stack usage
analysis>Control file.

On the command line, use the linker option --stack_usage_control.
See --stack_usage_control, page 429.

To add an automatic check that you have allocated memory enough for the stack, use
the check that directive in your linker configuration file. For example, assuming a
stack block named MY_STACK, you can write like this:

check that size(block MY_STACK) >=maxstack("Program entry")
+ totalstack("interrupt") + 100;

When linking, the linker emits an error if the check fails. In this example, an error will
be emitted if the sum of the following exceeds the size of the My_STACK block:

o The maximum stack usage in the category Program entry (the main program).

o The sum of each individual maximum stack usage in the category interrupt
(assuming that all interrupt routines need space at the same time).

o A safety margin of 100 bytes (to account for stack usage not visible to the analysis).

See also check that directive, page 630 and Stack considerations, page 252.

RESULT OF AN ANALYSIS—THE MAP FILE CONTENTS

When stack usage analysis is enabled, the linker map file contains a stack usage chapter
with a summary of the stack usage for each call graph root category, and lists the call

Linking using ILINK °

chain that results in the maximum stack depth for each call graph root. This is an
example of what the stack usage chapter in the map file might look like:

E R R R R R

*** STACK USAGE

* % %

Call Graph Root Category Max Use
interrupt 104
Program entry 168

Program entry
"__iar_program_start": 0x000085ac
Maximum call chain

"__iar_program_start"
"__cmain"

"main"

"printf"
"_PrintfTiny"
"_Prout"

"putchar"

" _write"

"__dwrite"
"__jar_sh_stdout"
"__iar_get_ttio"
"__iar_lookup_ttioh"

interrupt
"FaultHandler": 0x00008434

Maximum call chain
"FaultHandler"

interrupt
"IRQHandler": 0x00008424

Maximum call chain

"TRQHandler"

"do_something" in suexample.o [1]

Total Use

168

24
56
16
16

24
24

32

32

104

24
80

bytes

bytes

bytes

The summary contains the depth of the deepest call chain in each category as well as the
sum of the depths of the deepest call chains in that category.

107

Stack usage analysis

108

IAR C/C++ Development Guide
Compiling and Linking for Arm

Each call graph root belongs to a call graph root category to enable convenient
calculations in check that directives.

SPECIFYING ADDITIONAL STACK USAGE INFORMATION

To specify additional stack usage information you can use either a stack usage control
file (suc) where you specify stack usage control directives or annotate the source code.

You can:

Specify complete stack usage information (call graph root category, stack usage,
and possible calls) for a function, by using the stack usage control directive
function. Typically, you do this if stack usage information is missing, for example
in an assembler module. In your suc file you can, for example, write like this:
function MyFunc: 32,

calls MyFunc?2,
calls MyFunc3, MyFunc4: 16;

function [interrupt] MyInterruptHandler: 44;
See also function directive, page 650.

Exclude certain functions from stack usage analysis, by using the stack usage
control directive exclude. In your suc file you can, for example, write like this:
exclude MyFunc5, MyFuncé;

See also exclude directive, page 650.

Specity a list of possible destinations for indirect calls in a function, by using the
stack usage control directive possible calls. Use this for functions which are
known to perform indirect calls and where you know exactly which functions that
might be called in this particular application. In your suc file you can, for example,
write like this:

possible calls MyFunc7: MyFunc8, MyFunc9;

If the information about which functions that might be called is available at compile
time, consider using the #pragma calls directive instead.

See also possible calls directive, page 652 and calls, page 489.

Specity that functions are call graph roots, including an optional call graph root
category, by using the stack usage control directive call graph root or the
#pragma call_graph_root directive. In your suc file you can, for example,
write like this:

call graph root [task]: MyFunclO, MyFuncll;

If your interrupt functions have not already been designated as call graph roots by the
compiler, you must do so manually. You can do this either by using the #pragma

Linking using ILINK °

call_graph_root directive in your source code or by specifying a directive in your
suc file, for example:

call graph root [interrupt]: IrglHandler, Irg2Handler;

See also call graph root directive, page 650 and call _graph_root, page 490.
Specify a maximum number of iterations through any of the cycles in the recursion
nest of which the function is a member. In your suc file you can, for example, write
like this:

max recursion depth MyFuncl2: 10;

Selectively suppress the warning about unmentioned functions referenced by a
module for which you have supplied stack usage information in the stack usage
control file. Use the no calls from directive in your suc file, for example, like
this:

no calls from [file.o] to MyFuncl3, MyFuncld;

Instead of specifying stack usage information about assembler modules in a stack
usage control file, you can annotate the assembler source with call frame
information. For more information, see the /AR Assembler User Guide for Arm.

For more information, see the chapter The stack usage control file.

LIMITATIONS

Apart from missing or incorrect stack usage information, there are also other sources of
inaccuracy in the analysis:

The linker cannot always identify all functions in object modules that lack stack
usage information. In particular, this might be a problem with object modules
written in assembler language or produced by non-IAR tools. You can provide stack
usage information for such modules using a stack usage control file, and for
assembler language modules you can also annotate the assembler source code with
CF1I directives to provide stack usage information. See the /AR Assembler User
Guide for Arm.

If you use inline assembler to change the frame size or to perform function calls,
this will not be reflected in the analysis.

Extra space consumed by other sources (the processor, an operating system, etc) is
not accounted for.

Source code that uses exceptions is not supported.

If you use other forms of function calls, like software interrupts, they will not be
reflected in the call graph.

Using multi-file compilation (--mfc) can interfere with using a stack usage control
file to specify properties of module-local functions in the involved files.

109

Stack usage analysis

110

IAR C/C++ Development Guide
Compiling and Linking for Arm

Note: Stack usage analysis produces a worst case result. The program might not actually
ever end up in the maximum call chain, by design, or by coincidence. In particular, the
set of possible destinations for a virtual function call in C++ might sometimes include
implementations of the function in question which cannot, in fact, be called from that
point in the code.

Stack usage analysis is only a complement to actual measurement. If the result is
important, you need to perform independent validation of the results of the analysis.

SITUATIONS WHERE WARNINGS ARE ISSUED

When stack usage analysis is enabled in the linker, warnings will be generated in the
following circumstances:

o There is a function without stack usage information.

o There is an indirect call site in the application for which a list of possible called
functions has not been supplied.

o There are no known indirect calls, but there is an uncalled function that is not
known to be a call graph root.

o The application contains recursion (a cycle in the call graph) for which no
maximum recursion depth has been supplied, or which is of a form for which the
linker is unable to calculate a reliable estimate of stack usage.

o There are calls to a function declared as a call graph root.

® You have used the stack usage control file to supply stack usage information for
functions in a module that does not have such information, and there are functions
referenced by that module which have not been mentioned as being called in the
stack usage control file.

CALL GRAPH LOG

To help you interpret the results of the stack usage analysis, there is a log output option
that produces a simple text representation of the call graph (--1og call_graph).

Linking using ILINK °

Example output:

Program entry:
0 __iar_program_start [168]

0 __cmain [168]
0 __iar_data_init3 [16]
8 __dar_zero_init3 [8]
16 - [0]
8 __dar_copy_init3 [8]
16 - [0]
0 __low_level_init [O0]

0 main [168]
8 printf [160]
32 _PrintfTiny [136]
88 _Prout [80]
104 putchar [64]
120 __write [48]
120 __dwrite [48]
120 __iar_sh_stdout [48]
144 __iar_get_ttio [24]
168 __iar_lookup_ttioh [0]
120 __idar_sh_write [24]
144 - [0]
88 _ _aeabi_uidiv [0]
88 __aeabi_idiv0 [0]
88 strlen [0]

0 exit [8]
0 _exit [8]
0 __exit [8]
0 __iar close_ttio [8]
8 __dar_lookup_ttioh [0] ***
0 __exit [8] **x*

Each line consists of this information:

The stack usage at the point of call of the function

The name of the function, or a single '-' to indicate usage in a function at a point
with no function call (typically in a leaf function)

o The stack usage along the deepest call chain from that point. If no such value could
be calculated, " [---1" is output instead. " ***" marks functions that have already
been shown.

CALL GRAPH XML OUTPUT

The linker can also produce a call graph file in XML format. This file contains one node
for each function in your application, with the stack usage and call information relevant

Stack usage analysis

to that function. It is intended to be input for post-processing tools and is not particularly
human-readable.

For more information about the XML format used, see the callGraph. txt file in your
product installation.

IAR C/C++ Development Guide
112 Compiling and Linking for Arm

Linking your application

e Linking considerations
e Hints for troubleshooting
e Checking module consistency

e Linker optimizations

Linking considerations
Before you can link your application, you must set up the configuration required by
ILINK. Typically, you must consider:

Choosing a linker configuration file

Defining your own memory areas

Placing sections

Reserving space in RAM

Keeping modules

Keeping symbols and sections

Application startup in 32-bit mode

Application startup in 64-bit mode

Setting up stack memory

Setting up heap memory

Setting up the atexit limit

Changing the default initialization

Interaction between ILINK and the application

Standard library handling

Producing output formats other than ELF/DWARF

Veneers

CHOOSING A LINKER CONFIGURATION FILE

The config directory contains ready-made templates for linker configuration files
(*.icf) for all supported cores.

113

Linking considerations

114

IAR C/C++ Development Guide
Compiling and Linking for Arm

The files contain the information required by ILINK. The only change, if any, you will
normally have to make to the supplied configuration file is to customize the start and end
addresses of each region so they fit the target system memory map. If, for example, your
application uses additional external RAM, you must also add details about the external
RAM memory area.

For some devices, device-specific configuration files are automatically selected.

To edit a linker configuration file, use the editor in the IDE, or any other suitable editor.
Alternatively, choose Project>Options>Linker and click the Edit button on the Config
page to open the dedicated linker configuration file editor.

Do not change the original template file. We recommend that you make a copy in the
working directory, and modify the copy instead. If you are using the linker configuration
file editor in the IDE, the IDE will make a copy for you.

Each project in the IDE should have a reference to one, and only one, linker
configuration file. This file can be edited, but for the majority of all projects it is
sufficient to configure the vital parameters in Project>Options>Linker>Config.

DEFINING YOUR OWN MEMORY AREAS

The default configuration file that you selected has predefined ROM and RAM regions.
This example will be used as a starting-point for all further examples in this chapter.
Note that all examples are for 32-bit mode unless otherwise stated.

/* Define the addressable memory */
define memory Mem with size = 4G;

/* Define a region named ROM with start address 0 and to be 64
Kbytes large */
define region ROM = Mem: [from 0 size 0x10000];

/* Define a region named RAM with start address 0x20000 and to be
64 Kbytes large */
define region RAM = Mem: [from 0x20000 size 0x10000];

Each region definition must be tailored for the actual hardware.

To find out how much of each memory that was filled with code and data after linking,
inspect the memory summary in the map file (command line option --map).

Adding an additional region

To add an additional region, use the define region directive, for example:

/* Define a 2nd ROM region to start at address 0x80000 and to be
128 Kbytes large */
define region ROM2 = Mem: [from 0x80000 size 0x20000];

Linking your application __¢

Merging different areas into one region

If the region is comprised of several areas, use a region expression to merge the different
areas into one region, for example:

/* Define the 2nd ROM region to have two areas. The first with
the start address 0x80000 and 128 Kbytes large, and the 2nd with
the start address 0xC0000 and 32 Kbytes large */
define region ROM2 = Mem: [from 0x80000 size 0x20000]

| Mem: [from 0xC0000 size 0x08000];

or equivalently

define region ROM2 = Mem: [from 0x80000 to OxC7FFF]
—-Mem: [from 0xA0000 to OxBFFFF];

PLACING SECTIONS

The default configuration file that you selected places all predefined sections in memory,
but there are situations when you might want to modify this. For example, if you want
to place the section that holds constant symbols in the CONSTANT region instead of in
the default place. In this case, use the place in directive, for example:

/* Place sections with readonly content in the ROM region */
place in ROM {readonly};

/* Place the constant symbols in the CONSTANT region */
place in CONSTANT {readonly section .rodata};

Note: Placing a section—used by the IAR build tools—in a different memory which use
a different way of referring to its content, will fail.

For the result of each placement directive after linking, inspect the placement summary
in the map file (the command line option --map).
Placing a section at a specific address in memory

To place a section at a specific address in memory, use the place at directive, for
example:

/* Place section .vectors at address 0 */

place at address Mem:0x0 {readonly section .vectors};
Placing a section first or last in a region

To place a section first or last in a region is similar, for example:

/* Place section .vectors at start of ROM */
place at start of ROM {readonly section .vectors};

115

Linking considerations

116

IAR C/C++ Development Guide
Compiling and Linking for Arm

Declare and place your own sections

To declare new sections—in addition to the ones used by the IAR build tools—to hold
specific parts of your code or data, use mechanisms in the compiler and assembler. For
example:

/* Place a variable in that section. */
const short MyVariable @ "MYOWNSECTION" = OxFOFO;

This is the corresponding example in assembler language:

name createSection

section MYOWNSECTION:CONST ; Create a section,
; and fill it with

dclé6 O0xFOFO0 ; constant bytes.

end

To place your new section, the original place in ROM {readonly}; directive is
sufficient.

However, to place the section MyOwnSection explicitly, update the linker configuration
file with a place in directive, for example:

/* Place MyOwnSection in the ROM region */
place in ROM {readonly section MyOwnSection};

RESERVING SPACE IN RAM

Often, an application must have an empty uninitialized memory area to be used for
temporary storage, for example, a heap or a stack. It is easiest to achieve this at link time.
You must create a block with a specified size and then place it in a memory.

In the linker configuration file, it can look like this:

define block TempStorage with size = 0x1000, alignment = 4 { };
place in RAM { block TempStorage };

To retrieve the start of the allocated memory from the application, the source code could
look like this:

/* Define a section for temporary storage. */
#pragma section = "TempStorage"
char *GetTempStorageStartAddress()
{
/* Return start address of section TempStorage. */
return __section_begin("TempStorage") ;

Linking your application __¢

KEEPING MODULES

If a module is linked as an object file, it is always kept. That is, it will contribute to the
linked application. However, if a module is part of a library, it is included only if it is
symbolically referred to from other parts of the application. This is true, even if the
library module contains a root symbol. To assure that such a library module is always
included, use iarchive to extract the module from the library, see The IAR Archive
Tool—iarchive, page 657.

For information about included and excluded modules, inspect the log file (the
command line option --1log modules).

For more information about modules, see Modules and sections, page 110.

KEEPING SYMBOLS AND SECTIONS

By default, ILINK removes any sections, section fragments, and global symbols that are
not needed by the application. To retain a symbol that does not appear to be needed—or
actually, the section fragment it is defined in—you can either use the root attribute on

the symbol in your C/C++ or assembler source code, or use the ILINK option --keep.
To retain sections based on attribute names or object names, use the directive keep in

the linker configuration file.

To prevent ILINK from excluding sections and section fragments, use the command line
options --no_remove Or --no_fragments, respectively.

For information about included and excluded symbols and sections, inspect the log file
(the command line option --1log sections).

For more information about the linking procedure for keeping symbols and sections, see
The linking process, page 66.

APPLICATION STARTUP IN 32-BIT MODE

By default, the point where the application starts execution is defined by the
__iar_program_start label, whichis defined to point at the start of the cstartup. s
file. The label is also communicated via ELF to any debugger that is used.

To change the start point of the application to another label, use the ILINK option
--entry, see --entry, page 407.
APPLICATION STARTUP IN 64-BIT MODE

The point where the application starts execution is defined by the __Reset_address
label (it determines where the cstartup module starts). The __iar_program_start
label is placed at the same address. This label is also communicated via ELF to any
debugger that is used.

17

Linking considerations

118

IAR C/C++ Development Guide
Compiling and Linking for Arm

For information about how to change the reset address, see Reset address, page 100.

SETTING UP STACK MEMORY

The size of the csTACK block is defined in the linker configuration file. To change the
allocated amount of memory, change the block definition for CSTACK:

define block CSTACK with size = 0x2000, alignment = 8{ };

Specify an appropriate size for your application. Note that in 64-bit mode, the stack
alignment is 16.

For more information about the stack, see Stack considerations, page 252.

SETTING UP HEAP MEMORY
The size of the heap is defined in the linker configuration file as a block:

define block HEAP with size = 0x1000, alignment = 8{ };
place in RAM {block HEAP};

Specify the appropriate size for your application. If you use a heap, you must allocate at
least 50 bytes for it. Note that in 64-bit mode, the heap alignment is 16.

SETTING UP THE ATEXIT LIMIT

By default, the atexit function can be called a maximum of 32 times from your
application. To either increase or decrease this number, add a line to your configuration
file. For example, to reserve room for 10 calls instead, write:

define symbol __iar_maximum_atexit_calls = 10;

CHANGING THE DEFAULT INITIALIZATION

By default, memory initialization is performed during application startup. ILINK sets
up the initialization process and chooses a suitable packing method. If the default
initialization process does not suit your application and you want more precise control
over the initialization process, these alternatives are available:

e Suppressing initialization

o Choosing the packing algorithm

o Manual initialization

e Initializing code—copying ROM to RAM.

For information about the performed initializations, inspect the log file (the command
line option --log initialization).

Linking your application __¢

Suppressing initialization

If you do not want the linker to arrange for initialization by copying, for some or all
sections, make sure that those sections do not match a pattern in an initialize by
copy directive—or use an except clause to exclude them from matching. If you do not
want any initialization by copying at all, you can omit the initialize by copy
directive entirely.

This can be useful if your application, or just your variables, are loaded into RAM by
some other mechanism before application startup.

Choosing a packing algorithm
To override the default packing algorithm, write for example:
initialize by copy with packing = 1z77 { readwrite };

For more information about the available packing algorithms, see initialize directive,
page 615.

Manual initialization

In the usual case, the initialize by copy directive is used for making the linker
arrange for initialization by copying—with or without packing—of sections with
content at application startup. The linker achieves this by logically creating an
initialization section for each such section, holding the content of the section, and
turning the original section into a section without content. The name of this initialization
section is the name of the original section with the added suffix _init. For example, the
initialization section for the . data section is called .data_init. Then, the linker adds
table elements to the initialization table so that the initialization will be performed at
application startup.

Youcanuse initialize manually to suppress the creation of table elements to take
control over when and how the elements are copied. This is useful for overlays, but also
in other circumstances.

For sections without content (zero-initialized sections), the situation is reversed. The
linker arranges for zero initialization of all such sections at application startup, except
for those that are mentioned in a do not initialize directive.

Simple copying example with an automatic block

Assume that you have some initialized variables in MYSECTION. If you add this directive
to your linker configuration file:

initialize manually { section MYSECTION };

19

Linking considerations

120

IAR C/C++ Development Guide
Compiling and Linking for Arm

you can use this source code example to initialize the section:

#pragma section = "MYSECTION"
#pragma section = "MYSECTION_init"
void DoInit ()

{

char * from = _ section_begin ("MYSECTION_init") ;
char * to = __section_begin("MYSECTION") ;
memcpy (to, from, _ section_size("MYSECTION")) ;

}

This piece of source code takes advantage of the fact that if youuse __section_begin
(and related operators) with a section name, an automatic block is created by the linker
for those sections.

Note: Automatic blocks override the normal section selection process and forces
everything that matches the section name to form one block.

Example with explicit blocks

Assume that you instead of needing manual initialization for variables in a specific
section, you need it for all initialized variables from a particular library. In that case, you
must create explicit blocks for both the variables and the content. Like this:

initialize manually { section .data object mylib.a };
define block MYBLOCK { section .data object mylib.a };
define block MYBLOCK_init { section .data_init object mylib.a };

You must also place the two new blocks using one of the section placement directives,
the block MYBLOCK in RAM and the block MYBLOCK_init in ROM.

Then you can initialize the sections using the same source code as in the previous
example, only with MYBLOCK instead of MYSECTION.

Note: When using manual initialization, you must handle each copy init batch
explicitly. The linker will create a separate batch for each combination of source block
or placement directive and destination block or placement directive. To see which
batches are created, use initialization logging (--1log initialization).

In some cases, blocks are created automatically by the linker, which can affect the
number of batches. This can happen when using a block with fixed order and when
using the first, last, or midway modifiers in extended section selectors.

Linking your application __¢

Overlay example
This is a simple overlay example that takes advantage of automatic block creation:

initialize manually { section MYOVERLAY* };

define overlay MYOVERLAY { section MYOVERLAY1l };
define overlay MYOVERLAY { section MYOVERLAY2 };

You must also place overlay MYOVERLAY somewhere in RAM. The copying could
look like this:

#pragma section = "MYOVERLAY"
#pragma section = "MYOVERLAY1_ init"
#pragma section = "MYOVERLAY2_init"

void SwitchToOverlayl ()
{

char * from = _ section_begin ("MYOVERLAY1_ init");
char * to = __section_begin ("MYOVERLAY") ;
memcpy (to, from, _ section_size("MYOVERLAY1l_ init"));

}

void SwitchToOverlay? ()
{

char * from = __section_begin ("MYOVERLAY2_init");
char * to = _ section_begin ("MYOVERLAY") ;
memcpy (to, from, _ section_size("MYOVERLAY2_init"));

}

Initializing code—copying ROM to RAM

Sometimes, an application copies pieces of code from flash/ROM to RAM. You can
direct the linker to arrange for this to be done automatically at application startup, or do
it yourself at some later time using the techniques described in Manual initialization,
page 137.

You need to list the code sections that should be copied in an initialize by copy
directive. The easiest way is usually to place the relevant functions in a particular
section—for example, RAMCODE— and add section RAMCODE to your initialize
by copy directive. For example:

initialize by copy { rw, section RAMCODE };

If you need to place the RAMCODE functions in some particular location, you must
mention them in a placement directive, otherwise they will be placed together with other
read/write sections.

If you need to control the manner and/or time of copying, you mustuse an initialize
manually directive instead. See Manual initialization, page 137.

121

Linking considerations

122

IAR C/C++ Development Guide
Compiling and Linking for Arm

If the functions need to run without accessing the flash/ROM, you can use the
__ramfunc keyword when compiling. See Execution in RAM, page 89.

Running all code from RAM

If you want to copy the entire application from ROM to RAM at program startup, use
the initilize by copy directive, for example:

initialize by copy { readonly, readwrite };

The readwrite pattern will match all statically initialized variables and arrange for
them to be initialized at startup. The readonly pattern will do the same for all read-only
code and data, except for code and data needed for the initialization.

Because the function __low_level_init, if present, is called before initialization, it
and anything it needs, will not be copied from ROM to RAM either. In some
circumstances—for example, if the ROM contents are no longer available to the
program after startup—you might need to avoid using the same functions during startup
and in the rest of the code.

If anything else should not be copied, include it in an except clause. This can apply to,
for example, the interrupt vector table.

It is also recommended to exclude the C++ dynamic initialization table from being
copied to RAM, as it is typically only read once and then never referenced again. For
example, like this:

initialize by copy { readonly, readwrite }
except { section .intvec, /* Don’t copy
interrupt table */
section .init_array }; /* Don’t copy
C++ init table */

INTERACTION BETWEEN ILINK AND THE APPLICATION

ILINK provides the command line options --config_def and --define_symbol to
define symbols which can be used for controlling the application. You can also use
symbols to represent the start and end of a continuous memory area that is defined in the
linker configuration file. For more information, see Interaction between the tools and
your application, page 255.

To change a reference to one symbol to another symbol, use the ILINK command line
option --redirect. This is useful, for example, to redirect a reference from a
non-implemented function to a stub function, or to choose one of several different
implementations of a certain function, for example, how to choose the DLIB formatter
for the standard library functions printf and scanf.

Linking your application __¢

The compiler generates mangled names to represent complex C/C++ symbols. If you
want to refer to these symbols from assembler source code, you must use the mangled
names.

For information about the addresses and sizes of all global (statically linked) symbols,
inspect the entry list in the map file (the command line option --map).

For more information, see Interaction between the tools and your application, page 255.

STANDARD LIBRARY HANDLING

By default, ILINK determines automatically which variant of the standard library to
include during linking. The decision is based on the sum of the runtime attributes
available in each object file and the library options passed to ILINK.

To disable the automatic inclusion of the library, use the option

--no_library_ search. In this case, you must explicitly specify every library file to
be included. For information about available library files, see Prebuilt runtime libraries,
page 163.

PRODUCING OUTPUT FORMATS OTHER THAN ELF/DWARF

ILINK can only produce an output file in the ELF/DWAREF format. To convert that
format into a format suitable for programming PROM/flash, see The IAR ELF Tool—
ielftool, page 661.

VENEERS

Veneers are small sequences of code inserted by the linker to bridge the gap when a call
instruction does not reach its destination or cannot switch to the correct mode.

Code for veneers can be inserted between any caller and called function. As a result,
some registers must be treated as scratch registers at function calls, including functions
written in assembler language. This applies to jumps as well. In 32-bit mode, R12 must
be treated as a scratch register. In 64-bit mode, both x16 and X17 must be treated as
scratch registers.

Hints for troubleshooting
ILINK has several features that can help you manage code and data placement correctly,
for example:
o Messages at link time, for examples when a relocation error occurs

o The --1og option that makes ILINK log information to stdout, which can be
useful to understand why an executable image became the way it is, see --log, page
415

123

Hints for troubleshooting

124

IAR C/C++ Development Guide
Compiling and Linking for Arm

o The --map option that makes ILINK produce a memory map file, which contains
the result of the linker configuration file, see --map, page 417.

RELOCATION ERRORS

For each instruction that cannot be relocated correctly, ILINK will generate a relocation
error. This can occur for instructions where the target is out of reach or is of an

incompatible type, or for many other reasons.

A relocation error produced by ILINK can look like this:

Error [Lp002]: relocation failed: out of range or illegal value
Kind R_XXX_YYY[0x1]
Location 0x40000448
"myfunc" + 0x2c
Module: somecode.o
Section: 7 (.text)
Offset: O0x2c
Destination: 0x9000000c
"read"

Module: read.o(iolib.a)
Section: 6 (.text)
Offset: 0x0

The message entries are described in this table:

Message entry

Description

Kind

Location

The relocation directive that failed. The directive depends on the
instruction used.

The location where the problem occurred, described with these details:

* The instruction address, expressed both as a hexadecimal value and as
a label with an offset. In this example, 0x40000448 and
"myfunc" + 0x2c.

* The module, and the file. In this example, the module somecode. o.

* The section number and section name. In this example, section number
7 with the name . text.

* The offset, specified in number of bytes, in the section. In this example,
0x2c.

Table 4: Description of a relocation error

Linking your application __¢

Message entry Description

Destination The target of the instruction, described with these details:

* The instruction address, expressed both as a hexadecimal value and as
a label with an offset. In this example, 0x9000000c¢ and "read"—
therefore, no offset.

* The module, and when applicable the library. In this example, the
module read. o and the library iolib.a.

* The section number and section name. In this example, section number
6 with the name . text.

* The offset, specified in number of bytes, in the section. In this example,
0x0.

Table 4: Description of a relocation error (Continued)

Possible solutions

In this case, the distance from the instruction in my func to __read is too long for the
branch instruction.

Possible solutions include ensuring that the two . text sections are allocated closer to
each other or using some other calling mechanism that can reach the required distance.
It is also possible that the referring function tried to refer to the wrong target and that
this caused the range error.

Different range errors have different solutions. Usually, the solution is a variant of the
ones presented above, in other words modifying either the code or the section
placement.

Checking module consistency

This section introduces the concept of runtime model attributes, a mechanism used by
the tools provided by IAR to ensure that modules that are linked into an application are
compatible, in other words, are built using compatible settings. The tools use a set of
predefined runtime model attributes. In addition to these, you can define your own that
you can use to ensure that incompatible modules are not used together.

Note: In addition to the predefined attributes, compatibility is also checked against the
AEABI runtime attributes. These attributes deal mainly with object code compatibility,
etc. They reflect compilation settings and are not user-configurable.

RUNTIME MODEL ATTRIBUTES

A runtime attribute is a pair constituted of a named key and its corresponding value. In
general, two modules can only be linked together if they have the same value for each
key that they both define.

125

Checking module consistency

126

IAR C/C++ Development Guide
Compiling and Linking for Arm

There is one exception—if the value of an attribute is *, then that attribute matches any
value. The reason for this is that you can specify this in a module to show that you have
considered a consistency property, and this ensures that the module does not rely on that
property.

Note: For IAR predefined runtime model attributes, the linker checks them in several
ways.

Example

In this table, the object files could (but do not have to) define the two runtime attributes
color and taste:

Object file Color Taste
filel blue not defined
file2 red not defined
file3 red *

file4d red spicy
file5 red lean

Table 5: Example of runtime model attributes

In this case, £ilel cannot be linked with any of the other files, because the runtime
attribute color does not match. Also, file4 and £ile5 cannot be linked together,
because the taste runtime attribute does not match.

On the other hand, file2 and file3 can be linked with each other, and with either
filed or fileb5, but not with both.

USING RUNTIME MODEL ATTRIBUTES

To ensure module consistency with other object files, use the #pragma rtmodel
directive to specify runtime model attributes in your C/C++ source code. For example,
if you have a UART that can run in two modes, you can specify a runtime model
attribute, for example uart. For each mode, specify a value, for example model and
mode2. Declare this in each module that assumes that the UART is in a particular mode.
This is how it could look like in one of the modules:

#pragma rtmodel="uart", "model"

Alternatively, you can also use the rtmodel assembler directive to specify runtime
model attributes in your assembler source code. For example:

rtmodel "uart", "model"

Linking your application __¢

Note: Key names that start with two underscores are reserved by the compiler. For more
information about the syntax, see rtmodel, page 505 and the IAR Assembler User Guide
Sfor Arm.

At link time, the IAR ILINK Linker checks module consistency by ensuring that
modules with conflicting runtime attributes will not be used together. If conflicts are
detected, an error is issued.

Linker optimizations

This section contains information about:

e Virtual function elimination
o Small function inlining

o Duplicate section merging

VIRTUAL FUNCTION ELIMINATION

Virtual Function Elimination (VFE) is a linker optimization that removes unneeded
virtual functions and dynamic runtime type information.

In order for Virtual Function Elimination to work, all relevant modules must provide
information about virtual function table layout, which virtual functions are called, and
for which classes dynamic runtime type information is needed. If one or more modules
do not provide this information, a warning is generated by the linker and Virtual
Function Elimination is not performed.

If you know that modules that lack such information do not perform any virtual function
calls and do not define any virtual function tables, you can use the --vfe=forced
linker option to enable Virtual Function Elimination anyway.

mm [n the IDE, select Project>Options>Linker>Optimizations>Perform C++ Virtual
Function Elimination to enable this optimization.

Note: You can disable Virtual Function Elimination entirely by using the --no_vfe
linker option. In this case, no warning will be issued for modules that lack VFE
information.

For more information, see --vfe, page 433 and --no_vfe, page 423.

SMALL FUNCTION INLINING

Small function inlining is a linker optimization that replaces some calls to small
functions with the body of the function. This requires the body to fit in the space of the
instruction that calls the function.

127

Linker optimizations

128

IAR C/C++ Development Guide
Compiling and Linking for Arm

In the IDE, select Project>Options>Linker>Optimizations>Inline small routines to
enable this optimization.

Use the linker option --inline.

DUPLICATE SECTION MERGING

The linker can detect read-only sections with identical contents and keep only one copy
of each such section, redirecting all references to any of the duplicate sections to the
retained section.

In the IDE, select Project>Options>Linker>Optimizations>Merge duplicate
sections to enable this optimization.

Use the linker option --merge_duplicate_sections.

Note: This optimization can cause different functions or constants to have the same
address, so if your application depends on the addresses being different, for example, by
using the addresses as keys into a table, you should not enable this optimization.

The DLIB runtime
environment

e Introduction to the runtime environment
e Setting up the runtime environment
o Additional information on the runtime environment

e Managing a multithreaded environment

Introduction to the runtime environment

A runtime environment is the environment in which your application executes.
This section contains information about:

e Runtime environment functionality
e Briefly about input and output (I/O)
e Briefly about C-SPY emulated I/0

e Briefly about retargeting

RUNTIME ENVIRONMENT FUNCTIONALITY

The DLIB runtime environment supports Standard C and C++ and consists of:

o The C/C++ standard library, both its interface (provided in the system header files)
and its implementation.

e Startup and exit code.

o Low-level I/O interface for managing input and output (I/O).

o Special compiler support, for instance functions for switch handling or integer
arithmetics.

e Support for hardware features:

e Direct access to low-level processor operations by means of intrinsic functions,
such as functions for interrupt mask handling

e Peripheral unit registers and interrupt definitions in include files

o The Vector Floating Point (VFP) coprocessor.

129

Introduction to the runtime environment

130

IAR C/C++ Development Guide
Compiling and Linking for Arm

o Special ABI functions. For more information about AEABI compliance, see AEABI
compliance, page 266.

Runtime environment functions are provided in a runtime library.

The runtime library is delivered both as a prebuilt library and (depending on your
product package) as source files. The prebuilt libraries are available in different
configurations to meet various needs, see Runtime library configurations, page 162.
You can find the libraries in the product subdirectories arm\1ib and arm\src\1lib,
respectively.

For more information about the library, see the chapter C/C++ standard library
functions.

BRIEFLY ABOUT INPUT AND OUTPUT (1/O)

Every application must communicate with its environment. The application might for
example display information on an LCD, read a value from a sensor, get the current date
from the operating system, etc. Typically, your application performs I/O via the C/C++
standard library or some third-party library.

There are many functions in the C/C++ standard library that deal with I/O, including
functions for standard character streams, file system access, time and date,
miscellaneous system actions, and termination and assert. This set of functions is
referred to as the standard 1/0O interface.

On a desktop computer or a server, the operating system is expected to provide I/O
functionality to the application via the standard I/O interface in the runtime
environment. However, in an embedded system, the runtime library cannot assume that
such functionality is present, or even that there is an operating system at all. Therefore,

The DLIB runtime environment ___¢

the low-level part of the standard I/O interface is not completely implemented by
default:

Your
application-specific
code
Standard I/O
interface | ____

DLIB runtime library
implementation

i Low-level I!O implementation
) (unimplemented)

Environment

To make the standard I/O interface work, you can:

o Let the C-SPY debugger emulate I/O operations on the host computer, see Briefly
about C-SPY emulated I/0, page 154

® Retarget the standard I/O interface to your target system by providing a suitable
implementation of the interface, see Briefly about retargeting, page 154.

Itis possible to mix these two approaches. You can, for example, let debug printouts and
asserts be emulated by the C-SPY debugger, but implement your own file system. The
debug printouts and asserts are useful during debugging, but no longer needed when
running the application stand-alone (not connected to the C-SPY debugger).

131

Introduction to the runtime environment

132

IAR C/C++ Development Guide
Compiling and Linking for Arm

BRIEFLY ABOUT C-SPY EMULATED 1/O

C-SPY emulated 1I/0 is a mechanism which lets the runtime environment interact with
the C-SPY debugger to emulate I/O actions on the host computer:

Your
application-specific
code
Standard I/O
interface | -

DLIB runtime library
implementation

C-5PY emulated /O

l

Host computer

For example, when C-SPY emulated /O is enabled:

e Standard character streams are directed to the C-SPY Terminal I/O window

e File system operations are performed on the host computer

o Time and date functions return the time and date of the host computer

o The C-SPY debugger notifies when the application terminates or an assert fails.
This behavior can be valuable during the early development of an application, for
example in an application that uses file I/O before any flash file system 1/O drivers are
implemented, or if you need to debug constructions in your application that use stdin
and stdout without the actual hardware device for input and output being available.

See Setting up your runtime environment, page 156 and The semihosting mechanism,
page 170.
BRIEFLY ABOUT RETARGETING

Retargeting is the process where you adapt the runtime environment so that your
application can execute I/O operations on your target system.

The standard I/O interface is large and complex. To make retargeting easier, the DLIB
runtime environment is designed so that it performs all I/O operations through a small
set of simple functions, which is referred to as the DLIB low-level I/O interface. By

The DLIB runtime environment ___¢

default, the functions in the low-level interface lack usable implementations. Some are
unimplemented, others have stub implementations that do not perform anything except
returning error codes.

To retarget the standard I/O interface, all you have to do is to provide implementations
for the functions in the DLIB low-level I/O interface.

Your
application-specific
code
Standard IO
interface

DLIB runtime library
implementation

DLIB low-level
/O interface

Your low-level
implementation

|

Target system environment

For example, if your application calls the functions printf and fputc in the standard
I/O interface, the implementations of those functions both call the low-level function
__write to output individual characters. To make them work, you just need to provide
an implementation of the __write function—either by implementing it yourself, or by
using a third-party implementation.

For information about how to override library modules with your own implementations,
see Overriding library modules, page 159. See also The DLIB low-level 1/O interface,
page 177 for information about the functions that are part of the interface.

Setting up the runtime environment

This section contains these tasks:

e Setting up your runtime environment

A runtime environment with basic project settings to be used during the initial phase
of development.

o Retargeting—Adapting for your target system

e Overriding library modules

133

Setting up the runtime environment

134

IAR C/C++ Development Guide
Compiling and Linking for Arm

(]

o Customizing and building your own runtime library
See also:

o Managing a multithreaded environment—for information about how to adapt the
runtime environment to treat all library objects according to whether they are global
or local to a thread.

SETTING UP YOUR RUNTIME ENVIRONMENT

You can set up the runtime environment based on some basic project settings. It is also
often convenient to let the C-SPY debugger manage things like standard streams, file
1/0, and various other system interactions. This basic runtime environment can be used
for simulation before you have any target hardware.

To set up the runtime environment:

Before you build your project, choose Project>Options>General Options to open the
Options dialog box.

On the Library Configuration page, verify the following settings:

o Library—choose which library configuration to use. Typically, choose None,
Normal, Full, or Custom. For library support for C++17, choose Libe++, which
uses the Full library configuration.

For information about the various library configurations, see Runtime library
configurations, page 162.

On the Library Options page, select Auto with multibyte support or Auto without
multibyte support for both Printf formatter and Scanf formatter. This means that
the linker will automatically choose the appropriate formatters based on information
from the compiler. For more information about the available formatters and how to
choose one manually, see Formatters for printf, page 167 and Formatters for scanf,
page 169, respectively.

To enable C-SPY emulated I/O, choose Project>Options>General Options>Library
Configuration and choose Semihosted (--semihosted) or IAR breakpoint
(--semihosting=iar_breakpoint).

Note: For some Cortex-M devices it is also possible to direct stdout/stderr via
SWO. This can significantly improve stdout/stderr performance compared to
semihosting. For hardware requirements, see the C-SPY® Debugging Guide for Arm.

To enable stdout via SWO on the command line, use the linker option --redirect
__iar_sh_stdout=__iar_sh_stdout_swo.

To enable stdout via SWO in the IDE, select the Semihosted option and the
stdout/stderr via SWO option.

- H &

The DLIB runtime environment ___¢

See Briefly about C-SPY emulated 1/O, page 154 and The semihosting mechanism, page
170.

On some systems, terminal output might be slow because the host computer and the
target system must communicate for each character.

For this reason, a replacement for the __write function called __write_bufferedis
included in the runtime library. This module buffers the output and sends it to the
debugger one line at a time, speeding up the output.

Note: This function uses about 80 bytes of RAM memory.

To use this feature in the IDE, choose Project>Options>General Options>Library
Options 1 and select the option Buffered terminal output.

To enable this function on the command line, add this to the linker command line:
--redirect __write=__write_buffered

Some math functions are available in different versions—default versions, smaller than
the default versions, and larger but more accurate than default versions. Consider
which versions you should use.

For more information, see Math functions, page 171.

When you build your project, a suitable prebuilt library and library configuration file
are automatically used based on the project settings you made.

For information about which project settings affect the choice of library file, see
Runtime library configurations, page 162.

You have now set up a runtime environment that can be used while developing your
application source code.

RETARGETING—ADAPTING FOR YOUR TARGET SYSTEM

Before you can run your application on your target system, you must adapt some parts
of the runtime environment, typically the system initialization and the DLIB low-level
I/O interface functions.

To adapt your runtime environment for your target system:

Adapt system initialization.

It is likely that you must adapt the system initialization, for example, your application
might need to initialize interrupt handling, I/O handling, watchdog timers, etc. You do
this by implementing the routine __low_level_init, which is executed before the
data sections are initialized. See System startup and termination, page 172 and System
initialization, page 176.

135

Setting up the runtime environment

136

IAR C/C++ Development Guide
Compiling and Linking for Arm

Note: You can find device-specific examples on this in the example projects provided in
the product installation, see the Information Center.

Adapt the runtime library for your target system. To implement such functions, you
need a good understanding of the DLIB low-level I/O interface, see Briefly about
retargeting, page 154.

Typically, you must implement your own functions if your application uses:

Standard streams for input and output

If any of these streams are used by your application, for example by the functions
printf and scanf, you must implement your versions of the low-level functions
__readand __write.

The low-level functions identify I/O streams, such as an open file, with a file handle
that is a unique integer. The I/O streams normally associated with stdin, stdout,
and stderr have the file handles 0, 1, and 2, respectively. When the handle is -1,
all streams should be flushed. Streams are defined in stdio. h.

File input and output

The library contains a large number of powerful functions for file I/O operations,
such as fopen, fclose, fprintf, fputs, etc. All these functions call a small set of
low-level functions, each designed to accomplish one particular task, for example,
__open opens a file, and __write outputs characters. Implement your version of
these low-level functions.

signal and raise

If the default implementation of these functions does not provide the functionality
you need, you can implement your own versions.

Time and date

To make the time and date functions work, you must implement the functions clock,
__time32,__time64,and __getzone. Whether youuse __time32 or__time64
depends on which interface you use for time_t, see time.h, page 594.

Assert, see __aeabi_assert, page 178.
Environment interaction

If the default implementation of system or getenv does not provide the
functionality you need, you can implement your own versions.

For more information about the functions, see The DLIB low-level I/O interface, page
1717.

The library files that you can override with your own versions are located in the
arm\src\1lib directory.

The DLIB runtime environment ___¢

When you have implemented your functions of the low-level I/O interface, you must
add your version of these functions to your project. For information about this, see
Overriding library modules, page 159.

Note: If you have implemented a DLIB low-level I/O interface function and added it to
a project that you have built with support for C-SPY emulated I/O, your low-level
function will be used and not the functions provided with C-SPY emulated I/O. For
example, if you implement your own version of __write, output to the C-SPY
Terminal I/0 window will not be supported. See Briefly about C-SPY emulated /0,
page 154.

Before you can execute your application on your target system, you must rebuild your
project with a Release build configuration. This means that the linker will not include
the C-SPY emulated I/0O mechanism and the low-level I/O functions it provides. If your
application calls any of the low-level functions of the standard I/O interface, either
directly or indirectly, and your project does not contain these, the linker will issue an
error for every missing low-level function.

Note: By default, the NDEBUG symbol is defined in a Release build configuration, which
means asserts will no longer be checked. For more information, see __aeabi_assert,
page 178.

OVERRIDING LIBRARY MODULES

To override a library function and replace it with your own
implementation:

Use a template source file—a library source file or another template—and place a copy
of it in your project directory.

The library files that you can override with your own versions are located in the
arm\src\1lib directory.

Modity the file.

Note: To override the functions in a module, you must provide alternative
implementations for all the needed symbols in the overridden module. Otherwise you
will get error messages about duplicate definitions.

Add the modified file to your project, like any other source file.

Note: If you have implemented a DLIB low-level I/O interface function and added it to
a project that you have built with support for C-SPY emulated I/O, your low-level
function will be used and not the functions provided with C-SPY emulated 1/O. For
example, if you implement your own version of __write, output to the C-SPY
Terminal I/0 window will not be supported. See Briefly about C-SPY emulated 1/0,
page 154.

137

Setting up the runtime environment

138

IAR C/C++ Development Guide
Compiling and Linking for Arm

You have now finished the process of overriding the library module with your version.

CUSTOMIZING AND BUILDING YOUR OWN RUNTIME
LIBRARY

If the prebuilt library configurations do not meet your requirements, you can customize
your own library configuration, but that requires that you rebuild relevant parts of the

library.
Note: Customizing and building your own runtime library requires access to the library
source code, which is not available for all types of AR Embedded Workbench licenses.

Building a customized library is a complex process. Therefore, consider carefully
whether it is really necessary. You must build your own runtime library when:

o You want to define your own library configuration with support for locale, file
descriptors, multibyte characters, etc. This will include or exclude certain parts of
the DLIB runtime environment.

In those cases, you must:

o Make sure that you have installed the library source code (src\1ib). If not already
installed, you can install it using the IAR License Manager, see the Licensing
Guide.

Set up a library project
Make the required library customizations

Build your customized runtime library

Finally, make sure your application project will use the customized runtime library.

Note that the customized library only replaces the part of the DLIB runtime
environment implemented in the libraries for C and C++ library functions.
Rebuilding libraries for the following is not supported:

e math functions
runtime support functions
thread support functions

timezone and daylight saving time functions

debug support functions

To set up a library project:

In the IDE, choose Project>Create New Project and use the library project template
which can be used for customizing the runtime environment configuration. There is a
library template for the Full library configuration, see Runtime library configurations,
page 162

S

The DLIB runtime environment ___¢

Note: When you create a new library project from a template, the majority of the files
included in the new project are the original installation files. If you are going to modify
these files, make copies of them first and replace the original files in the project with
these copies.

To customize the library functionality:

The library functionality is determined by a set of configuration symbols. The default
values of these symbols are defined in the file DLib_Defaults.h which you can find
in arm\inc\c. This read-only file describes the configuration possibilities. Note that
you should not modity this file.

In addition, you can create your own library configuration file by making a copy of the
file DLib_Config_configuration.h—which you can find in the arm\inc\c
directory—and customize it by setting the values of the configuration symbols
according to the application requirements.

For information about configuration symbols that you might want to customize, see:

o Configuration symbols for file input and output, page 187

® Locale, page 187

® Managing a multithreaded environment, page 188

When you are finished, build your library project with the appropriate project options.
After you build your library, you must make sure to use it in your application project.

To build IAR Embedded Workbench projects from the command line, use the IAR
Command Line Build Utility (iarbuild.exe). However, no make or batch files for
building the library from the command line are provided.

For information about the build process and the IAR Command Line Build Utility, see
the IDE Project Management and Building Guide for Arm.

To use the customized runtime library in your application project:

In the IDE, choose Project>Options>General Options and click the Library
Configuration tab.

From the Library drop-down menu, choose Custom.
In the Configuration file text box, locate your library configuration file.

Click the Library tab, also in the Linker category. Use the Additional libraries text
box to locate your library file.

Additional information

on the runtime environment

This section gives additional information on the runtime environment:

139

Additional information on the runtime environment

IAR C/C++ Development Guide

140 Compiling and Linking for Arm

Bounds checking functionality, page 162
Runtime library configurations, page 162
Prebuilt runtime libraries, page 163
Formatters for printf, page 167

Formatters for scanf, page 169

The C-SPY emulated I/O mechanism, page 170
The semihosting mechanism, page 170

Math functions, page 171

System startup and termination, page 172
System initialization, page 176

The DLIB low-level 1/O interface, page 177
Configuration symbols for file input and output, page 187

Locale, page 187

BOUNDS CHECKING FUNCTIONALITY

To enable the bounds checking functions specified in Annex K (Bounds-checking
interfaces) of the C standard, define the preprocessor symbol
__STDC_WANT_LIB_EXT1__ to 1 prior to including any system headers. See C
bounds-checking interface, page 593.

RUNTIME LIBRARY CONFIGURATIONS

The runtime library is provided with different library configurations, where each
configuration is suitable for different application requirements.

The runtime library configuration is defined in the library configuration file. It contains
information about what functionality is part of the runtime environment. The less
functionality you need in the runtime environment, the smaller the environment
becomes.

These predefined library configurations are available:

Library configuration Description

Normal DLIB (default) C locale, but no locale interface, no file descriptor support, no

multibyte characters in printf and scanf.

Full DLIB Full locale interface, C locale, file descriptor support, and optionally

multibyte characters in printf and scanf.

Table 6: Library configurations

Note: In addition to these predefined library configurations, you can provide your own
configuration, see Customizing and building your own runtime library, page 160

B 2

The DLIB runtime environment ___¢

If you do not specify a library configuration explicitly you will get the default
configuration. If you use a prebuilt runtime library, a configuration file that matches the
runtime library file will automatically be used. See Setting up the runtime environment,
page 155.

Note: If you use the Libc++ library, you will automatically get the Full configuration.
This is the only configuration that exists for Libc++.

To override the default library configuration, use one of these methods:
Use a prebuilt configuration of your choice—to specify a runtime configuration
explicitly:

Choose Project>Options>General Options>Library Configuration>Library and
change the default setting.

Use the --d1ib_config compiler option, see --dlib_config, page 342.

The prebuilt libraries are based on the default configurations, see Runtime library
configurations, page 162.

If you have built your own customized library, choose Project>Options>General
Options>Library Configuration>Library and choose Custom to use your own
configuration. For more information, see Customizing and building your own runtime
library, page 160.

PREBUILT RUNTIME LIBRARIES

The prebuilt runtime libraries are configured for different combinations of these options:

e Processor variant

e Data model

o Library configuration—Normal or Full.

The linker will automatically include the correct library files and library configuration

file. To explicitly specify a library configuration, use the --dlib_config compiler
option.

Note: If you use the Libc++ library, you will automatically get the Full library
configuration. This is the only configuration that exists for Libc++. The
--dlib_config compiler option cannot be used to specify another configuration.

141

Additional information on the runtime environment

Library filename syntax

The names of the libraries are constructed from these elements:

arch Specifies the CPU architecture:
4t = Armv4T
5E = Armv5E

6M or 6Mx = ArmvoM (6MXx is built with
--no_literal_pool)

7M or 7Mx = Armv7M (7MXx is built with
--no_literal_pool)

75x = Armv7-A and Armv7-R, built with
--no_literal_pool

4as = Generic Armv4, built with bounds-checking

7as = Generic Armv7, built with bounds-checking

8a = Armv8-A

mode Specifies the default processor/execution mode:

a = Arm mode
t = Thumb mode
x = 64-bit mode

endian Specifies the byte order:

1 = little-endian
b = big-endian

lib-config Specifies the library configuration:
n = Normal
£ =Full
rwpi Specifies whether the library supports RWPI:

s = RWPI supported
not present = no RWPI support

fp Specifies how floating-point operations are implemented:

v = VFP
s = VFP for single precision only
not present = software implementation

IAR C/C++ Development Guide
142 Compiling and Linking for Arm

The DLIB runtime environment ___¢

abi Specifies the data model in 64-bit mode:
44 =1LP32 (4-byte 1long, 4-byte pointers)
88 = LP64 (8-byte long, 8-byte pointers)
not present = the library is for use in 32-bit mode

debug-interface Specifies a semihosting mechanism:
s=SVC
b =BKPT

i = [AR-breakpoint
You can find the library object files in the directory arm\1ib\ and the library
configuration files in the directory arm\inc\.

Groups of library files

The libraries are delivered in groups of library functions:

Library files for C library functions

These are the functions defined by Standard C, for example, functions like printf and
scanf. Note that this library does not include math functions.

The names of the library files are constructed in the following way:
dl{arch}_{mode}{endian}{lib-config} [rwpi] [abi].a
which more specifically means

dl{4t|5E|6M|6Mx|7M|7Mx|7Sx|8A}_{a|t|x}{1|b}{n|f}[s][44]88].a

Library files for C++ library functions
These are the functions defined by C++, compiled with support for Standard C++.

There are separate libraries for the Dinkumware C++14 library (d1pp) and the Libc++
C++17 library (d11ibcpp).

The names of the library files are constructed in the following way:

dlpp{arch}_{mode}{endian}{fp}_{lib-configl}clrwpi] [abi].a
dllibcpp{arch}_{mode}{endian}{fp}_fclrwpi] [abi].a

which more specifically means:

dlpp{4t|5E|6M|6Mx|7M|7Mx|7Sx|4as|7as|8A)}_{a|t|x}{1l|b}{v]|s|}_{n]|£f}
cl[s][44]88].a
dllibecpp{4t|5E|6M|6Mx|7M|7Mx | 7Sx|4as|7as|8A}_{a|t|x}{1l|b}{v]|s|}_£
cls][44]88].a

143

Additional information on the runtime environment

Library files for C++ runtime library functions

These are the runtime functions needed for C++, used for both the Libc++ and the DLIB
C++ libraries.

The names of the library files are constructed in the following way:
dlpprt{arch}_{mode}{endian}_{lib-config}c|[rwpi] [ababii].a

which more specifically means
dlpprt{4t|5E|6M|6Mx|7M|7Mx|7Sx|4as|7as|8A}_{a|t|x}{1l|b}_{n|flc[s]
[44]88].a

Library files for math functions

These are the functions for floating-point arithmetic and functions with a floating-point
type in its signature as defined by Standard C, for example, functions like sqrt.

The names of the library files are constructed in the following way:
m{arch}_{mode}{endian} [fp] [abi] .a
which more specifically means

m{4t|5E|6M|6Mx|7M|7Mx|7Sx|8A}_{a|t|x}{1]|b}[v]|s][44]88].a

Library files for thread support functions

These are the functions for thread support.

The names of the library files are constructed in the following way:
th{arch}_{mode}{endian}{lib-config}[abi].a

which more specifically means

th{4t|5E|6M|6Mx|7M|7Mx|7Sx|8A}_{a|t|x}{1|b}{n|f}[44]88].a

Library files for timezone and daylight saving time support functions

These are the functions with support for timezone and daylight saving time
functionality.

The names of the library files are constructed in the following way:
tz{arch}_{mode}{endian} [rwpi] [abi] .a
which more specifically means

tz{4t|5E|6M|6Mx|7M|7Mx|7Sx|8A}_{a|t|x}{1l|b}[s][44]|88].a

IAR C/C++ Development Guide
144 Compiling and Linking for Arm

The DLIB runtime environment ___¢

Library files for runtime support functions

These are functions for system startup, initialization, non floating-point AEABI support
routines, and some of the functions that are part of Standard C and C++.

The names of the library files are constructed in the following way:
rt{arch}_{mode}{endian} [abi] .a
which more specifically means

rt{4t|5E|6M|6Mx|7M|7Mx|7Sx|8A}_{a|t|x}{1|b}[44]|88].a

Library files for debug support functions

These are functions for debug support for the semihosting interface. The names of the
library files are constructed in the following way:

sh{debug-interface}_{endian}.a
or

sh{arch}_{endian}[abi].a

which more specifically means
sh{s|b|i}_{1]|b}.a

or

sh{6Mx|7Mx|7Sx|8A}_{1|b}[44]88].a

FORMATTERS FOR PRINTF

The printf£ function uses a formatter called _print£. The full version is quite large,
and provides facilities not required in many embedded applications. To reduce the
memory consumption, three smaller, alternative versions are also provided. Note that
the wprintf variants are not affected.

145

Additional information on the runtime environment

This table summarizes the capabilities of the different formatters:

Formatting capabilities Tiny Smalll Large/ Full
SmallNoMbt} LargeNoMbt} FullNoMbt
Basic specifiers ¢, d, 1, 0,p, 5,1, X, x,and $ Yes Yes Yes Yes
Multibyte support No Yes/No Yes/No Yes/No
Floating-point specifiers a, and A No No No Yes
Floating-point specifiers e, E, f, F, g, and G No No Yes Yes
Conversion specifier n No No Yes Yes
Format flag +, -, #, 0, and space No Yes Yes Yes
Length modifiers h, 1, L, s, t,and Z No Yes Yes Yes
Field width and precision, including * No Yes Yes Yes
long long support No No Yes Yes
wchar_t support No No No Yes

Table 7: Formatters for printf
T NoMb means without multibytes.

The compiler can automatically detect which formatting capabilities are needed in a
direct call to printf, if the formatting string is a string literal. This information is
passed to the linker, which combines the information from all modules to select a
suitable formatter for the application. However, if the formatting string is a variable, or
if the call is indirect through a function pointer, the compiler cannot perform the
analysis, forcing the linker to select the Full formatter. In this case, you might want to
override the automatically selected print £ formatter.

To override the automatically selected printf formatter in the IDE:

I Choose Project>Options>General Options to open the Options dialog box.
2 On the Library Options page, select the appropriate formatter.

To override the automatically selected printf formatter from the command
line:

I Use one of these ILINK command line options:

--redirect _Printf=_PrintfFull
--redirect _Printf=_PrintfFullNoMb
--redirect _Printf=_PrintfLarge
--redirect _Printf=_PrintfLargeNoMb
--redirect _Printf=_PrintfSmall
--redirect _Printf=_PrintfSmallNoMb
--redirect _Printf=_PrintfTiny
--redirect _Printf=_PrintfTinyNoMb

IAR C/C++ Development Guide
146 Compiling and Linking for Arm

B E

The DLIB runtime environment ___¢

If the compiler does not recognize multibyte support, you can enable it:

Select Project>Options>General Options>Library Options 1>Enable multibyte
support.

Use the linker option --printf _multibytes.

FORMATTERS FOR SCANF

In a similar way to the print£ function, scanf uses a common formatter, called
_Scant. The full version is quite large, and provides facilities that are not required in
many embedded applications. To reduce the memory consumption, two smaller,
alternative versions are also provided. Note that the wscanf versions are not affected.

This table summarizes the capabilities of the different formatters:

Small/ Large/ Full/

Formatting capabilities
SmallNoMbt LargeNoMbi FullNoMbt

Basic specifiers ¢, 4, 1, 0, p, s, U, X, X, and % Yes Yes Yes
Multibyte support Yes/No Yes/No Yes/No
Floating-point specifiers a, and A No No Yes
Floating-point specifiers e, E, £, F, g, and G No No Yes
Conversion specifier n No No Yes
Scanset [and] No Yes Yes
Assignment suppressing * No Yes Yes
long long support No No Yes
wchar_t support No No Yes

Table 8: Formatters for scanf
T NoMb means without multibytes.

The compiler can automatically detect which formatting capabilities are needed in a
direct call to scanf, if the formatting string is a string literal. This information is passed
to the linker, which combines the information from all modules to select a suitable
formatter for the application. However, if the formatting string is a variable, or if the call
is indirect through a function pointer, the compiler cannot perform the analysis, forcing
the linker to select the full formatter. In this case, you might want to override the
automatically selected scanf formatter.

To manually specify the scanf formatter in the IDE:

Choose Project>Options>General Options to open the Options dialog box.

2 On the Library Options page, select the appropriate formatter.

147

Additional information on the runtime environment

To manually specify the scanf formatter from the command line:
I Use one of these ILINK command line options:

--redirect _Scanf=_ScanfFull
--redirect _Scanf=_ScanfFullNoMb
--redirect _Scanf=_ScanflLarge
--redirect _Scanf=_ScanfLargeNoMb
--redirect _Scanf=_ScanfSmall
--redirect _Scanf=_ScanfSmallNoMb

If the compiler does not recognize multibyte support, you can enable it:

Select Project>Options>General Options>Library Options 1>Enable multibyte
support.

Use the linker option --scanf_multibytes.

THE C-SPY EMULATED 1/O MECHANISM

1 The debugger will detect the presence of the function __DebugBreak, which will
be part of the application if you linked it with the linker option for C-SPY emulated
/0.

2 In this case, the debugger will automatically set a breakpoint at the __DebugBreak
function.

3 When your application calls a function in the DLIB low-level I/O interface, for
example, open, the __DebugBreak function is called, which will cause the
application to stop at the breakpoint and perform the necessary services.

4 The execution will then resume.

See also Briefly about C-SPY emulated I/0, page 154.

THE SEMIHOSTING MECHANISM

C-SPY emulated I/O is compatible with the semihosting interface provided by Arm
Limited. When an application invokes a semihosting call, the execution stops at a
debugger breakpoint. The debugger then handles the call, performs any necessary
actions on the host computer and then resumes the execution.

There are three variants of semihosting mechanisms available:

e For Cortex-M, the interface uses BKPT instructions to perform semihosting calls

e For other Arm cores, SVC instructions are used for the semihosting calls in 32-bit
mode

o In 64-bit mode, HLT instructions are used for the semihosting calls

® AR breakpoint, which is an IAR-specific alternative to semihosting that uses SVC.

IAR C/C++ Development Guide
148 Compiling and Linking for Arm

The DLIB runtime environment ___¢

To support semihosting via SVC, the debugger must set its semihosting breakpoint on
the Supervisor Call vector to catch SVC calls. If your application uses SVC calls for
other purposes than semihosting, the handling of this breakpoint will cause a severe
performance penalty for each such call. IAR breakpoint is a way to get around this. By
using a special function call instead of an SVC instruction to perform semihosting, the
semihosting breakpoint can be set on that special function instead. This means that
semihosting will not interfere with other uses of the Supervisor Call vector.

Note: IAR breakpoint is an IAR-specific extension of the semihosting standard. If you
link your application with libraries built with toolchains from other vendors than IAR
and use IAR breakpoint, semihosting calls made from code in those libraries will not
work.

MATH FUNCTIONS

Some C/C++ standard library math functions are available in different versions:

o The default versions
o Smaller versions (but less accurate)

o More accurate versions (but larger).

Smaller versions

The functions cos, exp, 1og, log2, 1ogl0, pow, sin, and tan exist in additional,
smaller versions in the library. They are about 20% smaller and about 20% faster than
the default versions. The functions handle INF and NaN values. The drawbacks are that
they almost always lose some precision and they do not have the same input range as the
default versions.

The names of the functions are constructed like:
__iar_xxx_small<f|1l>

where f is used for float variants, 1 is used for long double variants, and no suffix
is used for double variants.

To specify smaller math functions on the command line:
Specify the command line option --small_math to the linker.

Link your application and the complete set will be used.

More accurate versions

The functions cos, pow, sin, and tan existin versions in the library that are more exact
and can handle larger argument ranges. The drawback is that they are larger and slower
than the default versions.

149

Additional information on the runtime environment

The names of the functions are constructed like:
__lar_xxx_accurate<f|1l>

where f is used for float variants, 1 is used for long double variants, and no suffix
is used for double variants.

To specify more accurate math functions on the command line:
I Specify the command line option --accurate_math to the linker.

2 Link your application and the complete set will be used.

SYSTEM STARTUP AND TERMINATION

This section describes the runtime environment actions performed during startup and
termination of your application.

The code for handling startup and termination is located in the source files
cstartup.s, cmain.s, cexit.s located in the arm\src\lib\arm,
arm\src\1lib\thumb (for Cortex-M), or arm\src\lib\a64 directory, and
low_level_init.c located in the arm\src\lib\runtime directory.

Note: To install some of these files, you must extract the IAR Library Source package.
For information about how to customize the system startup code, see System
initialization, page 176.

System startup

During system startup, an initialization sequence is executed before the main function
is entered. This sequence performs initializations required for the target hardware and
the C/C++ environment.

IAR C/C++ Development Guide
150 Compiling and Linking for Arm

The DLIB runtime environment ___¢

For the hardware initialization, it looks like this:

Library User Application
Start label: __low_level_init()
Hardware User hardware

Setup setup
(returns C/C++
static

[initialization flag)

Initialization

o When the CPU is reset it will start executing at the program entry label
__iar_program_start in the system startup code. Note that in 64-bit mode, it is
setup by the linker symbol __Reset_address.

o In 64-bit mode, the program is traversed from the exception level entered at hard
reset to exception level 1.

o The stack pointer is initialized to the end of the CSTACK block

e For Arm7/9/11, Cortex-A, and Cortex-R devices, exception stack pointers are
initialized to the end of each corresponding section

o The function __low_level_init is called if you defined it, giving the application
a chance to perform early initializations.

151

Additional information on the runtime environment

For the C/C++ initialization, it looks like this:

Library User application
Static C/C++ User hardware
initialization setup

i
Dynamic C++ main()
initialization
T User code
Return from
main
exit()

e Static and global variables are initialized. That is, zero-initialized variables are
cleared and the values of other initialized variables are copied from ROM to RAM
memory. This step is skipped if __low_level_init returns zero. For more
information, see Initialization at system startup, page 116.

e Static C++ objects are constructed
o The main function is called, which starts the application.

For information about the initialization phase, see Application execution—an overview,
page 68.

IAR C/C++ Development Guide
152 Compiling and Linking for Arm

The DLIB runtime environment ___¢

System termination

This illustration shows the different ways an embedded application can terminate in a
controlled way:

Return from main via library

Library User application
exit()
Explicit call
|
_exit
Dynamic C++ abort(
and atexit code Explicit call
_Exit()
Explicit call
| P
__exit
Application
terminates

An application can terminate normally in two different ways:

o Return from the main function

o Call the exit function.

Because the C standard states that the two methods should be equivalent, the system
startup code calls the exit function if main returns. The parameter passed to the exit
function is the return value of main.

The default exi t function is written in C. It calls a small assembler function _exi t that
will:

e Call functions registered to be executed when the application ends. This includes
C++ destructors for static and global variables, and functions registered with the
standard function atexit. See also Setting up the atexit limit, page 136.

o Close all open files

o Call __exit

o When __exit is reached, stop the system.

An application can also exit by calling the abort, the _Exit, or the quick_exit
function. The abort function just calls __exit to halt the system, and does not perform
any type of cleanup. The _Exi t function is equivalent to the abort function, except for
the fact that _Exit takes an argument for passing exit status information. The

quick_exit function is equivalent to the _Exit function, except that it calls each
function passed to at_quick_exit before calling __exit.

153

Additional information on the runtime environment

If you want your application to do anything extra at exit, for example, resetting the
system (and if using atexit is not sufficient), you can write your own implementation
of the __exit (int) function.

The library files that you can override with your own versions are located in the
arm\src\1lib directory. See Overriding library modules, page 159.

C-SPY debugging support for system termination

If you have enabled C-SPY emulated I/O during linking, the normal __exit function
is replaced with a special one. C-SPY will then recognize when this function is called
and can take appropriate actions to emulate program termination. For more information,
see Briefly about C-SPY emulated 1/0, page 154.

SYSTEM INITIALIZATION

Itis likely that you need to adapt the system initialization. For example, your application
might need to initialize memory-mapped special function registers (SFRs), or omit the
default initialization of data sections performed by the system startup code.

You can do this by implementing your own version of the routine __low_level_init,
which is called from the cmain. s file before the data sections are initialized. Modifying
the cmain. s file directly should be avoided.

The code for handling system startup is located in the source files cstartup.s and
low_level_init.c.cstartup.s is located in the arm\src\lib\arm,
arm\src\1lib\thumb (for Cortex-M), or arm\src\1lib\a64 directory, and
low_level_init.cis located in the arm\src\lib\runtime directory.

Note that normally, you do not need to customize either of the files cmain. s or

cexit.s.

Note: Regardless of whether you implement your own versionof __low_level_init
or the file cstartup.s, you do not have to rebuild the library.

Customizing __low_level_init

A skeleton low-level initialization file is supplied with the product—
low_level_init.c.

Note: Static initialized variables cannot be used within the file, because variable
initialization has not been performed at this point.

The value returned by __low_level init determines whether or not data sections
should be initialized by the system startup code. If the function returns 0, the data
sections will not be initialized.

IAR C/C++ Development Guide
154 Compiling and Linking for Arm

The DLIB runtime environment ___¢

Modifying the cstartup file

As noted earlier, you should not modify the cstartup. s file if implementing your own
version of __low_level_init is enough for your needs. However, if you do need to
modify the cstartup. s file, we recommend that you follow the general procedure for
creating a modified copy of the file and adding it to your project, see Overriding library
modules, page 159.

Note: You must make sure that the linker uses the start label used in your version of
cstartup.s. For information about how to change the start label used by the linker, see
--entry, page 407.

For Cortex-M, you must create a modified copy of cstartup_M.s or cstartup_M.c
to use interrupts or other exception handlers.

THE DLIB LOW-LEVEL 1/O INTERFACE

The runtime library uses a set of low-level functions—which are referred to as the DLIB
low-level I/O interface—to communicate with the target system. Most of the low-level
functions have no implementation.

For more information, see Briefly about input and output (I/0), page 152.
These are the functions in the DLIB low-level I/O interface:

® abort

® __aeabi_assert
® clock

® _ _close

® __exit

® getenv

® __getzone

® __lseek

® __open

® raise

® __read

® remove

® rename

® signal

® system

® __time32, __time64d
[]

__write

155

Additional information on the runtime environment

abort

Source file

Declared in
Description

C-SPY debug action
Default implementation

See also

___aeabi_assert

Source file
Declared in
Description

C-SPY debug action

Default implementation

IAR C/C++ Development Guide
Compiling and Linking for Arm

Note: You should normally not use the low-level functions prefixed with __ directly in
your application. Instead you should use the standard library functions that use these
functions. For example, to write to stdout, you should use standard library functions
like printf or puts, which in turn calls the low-level function __write. If you have
forgot to implement a low-level function and your application calls that function via a
standard library function, the linker issues an error when you link in release build
configuration.

Note: If you implement your own variants of the functions in this interface, your
variants will be used even though you have enabled C-SPY emulated /O, see Briefly
about C-SPY emulated I/O, page 154.

arm\src\lib\runtime\abort.c

stdlib.h

Standard C library function that aborts execution.
Exits the application.

Calls __exit (EXIT_FAILURE).

Briefly about retargeting, page 154

System termination, page 175.

arm\src\lib\runtime\assert.c

assert.h

Low-level function that handles a failed assert.

Notifies the C-SPY debugger about the failed assert.

Failed asserts are reported by the function __aeabi_assert. By default, it prints an

error message and calls abort. If this is not the behavior you require, you can
implement your own version of the function.

See also

clock

Source file
Declared in

Description

C-SPY debug action
Default implementation

See also

__close

Source file

Declared in
Description

C-SPY debug action
Default implementation

See also

The DLIB runtime environment ___¢

The assert macro is defined in the header file assert.h. To turn off assertions, define
the symbol NDEBUG.

In the IDE, the symbol NDEBUG is by default defined in a Release project and not defined
in a Debug project. If you build from the command line, you must explicitly define the
symbol according to your needs. See NDEBUG, page 580.

Briefly about retargeting, page 154.

arm\src\lib\time\clock.c
time.h

Standard C library function that accesses the processor time.

It is assumed that c1lock counts seconds. If this is not the case, and CLOCKS_PER_SEC
is used, CLOCKS_PER_SEC should be set to the actual number of ticks per second prior
to using time. h. The C++ header chrono uses CLOCKS_PER_SEC when implementing
the function now ().

Returns the clock on the host computer.

Returns -1 to indicate that processor time is not available.

Briefly about retargeting, page 154.

arm\src\lib\file\close.c
LowLevelIOInterface.h

Low-level function that closes a file.

Closes the associated host file on the host computer.
None.

Briefly about retargeting, page 154.

157

Additional information on the runtime environment

158

___exit

Source file

Declared in
Description

C-SPY debug action
Default implementation

See also

getenv

Source file

Declared in
C-SPY debug action

Default implementation

IAR C/C++ Development Guide
Compiling and Linking for Arm

arm\src\lib\runtime\xxexit.c
LowLevelIOInterface.h

Low-level function that halts execution.

Notifies that the end of the application was reached.
Loops forever.

Briefly about retargeting, page 154

System termination, page 175.

arm\src\lib\runtime\getenv.c
arm\src\lib\runtime\environ.c

Stdlib.h and LowLevelIOInterface.h
Accesses the host environment.

The getenv function in the library searches the string pointed to by the global variable
__environ, for the key that was passed as argument. If the key is found, the value of it
is returned, otherwise 0 (zero) is returned. By default, the string is empty.

To create or edit keys in the string, you must create a sequence of null-terminated strings
where each string has the format:

key=value\0

End the string with an extra null character (if you use a C string, this is added
automatically). Assign the created sequence of strings to the __environ variable.

For example:

const char MyEnv[] = "Key=Value\OKey2=Value2\0";
__environ = MyEnv;

If you need a more sophisticated environment variable handling, you should implement
your own getenv, and possibly putenv function.

Note: The putenv function is not required by the standard, and the library does not
provide an implementation of it.

The DLIB runtime environment ___¢

See also Briefly about retargeting, page 154.
__getzone
Source file arm\src\lib\time\getzone.c
Declared in LowLevelIOInterface.h
Description Low-level function that returns the current time zone.

Note: You must enable the time zone functionality in the library by using the linker
option --timezone_lib.

C-SPY debug action Not applicable.
Default implementation ~ Returns " : ".

See also Briefly about retargeting, page 154 and --timezone_lib, page 430.

For more information, see the source file getzone.c.

__lIseek
Source file arm\src\lib\file\lseek.c
Declared in LowLevelIOInterface.h
Description Low-level function for changing the location of the next access in an open file.
C-SPY debug action Searches in the associated host file on the host computer.

Default implementation ~ None.

See also Briefly about retargeting, page 154.
__open

Source file arm\src\lib\file\open.c

Declared in LowLevelIOInterface.h

Description Low-level function that opens a file.

159

Additional information on the runtime environment

160

C-SPY debug action
Default implementation

See also

raise

Source file
Declared in
Description

C-SPY debug action

Default implementation

See also

__read

Source file
Declared in
Description

C-SPY debug action

Default implementation

IAR C/C++ Development Guide
Compiling and Linking for Arm

Opens a file on the host computer.
None.

Briefly about retargeting, page 154.

arm\src\lib\runtime\raise.c
signal.h

Standard C library function that raises a signal.
Not applicable.

Calls the signal handler for the raised signal, or terminates with call to
__exit (EXIT_FAILURE).

Briefly about retargeting, page 154.

arm\src\lib\file\read.c
LowLevelIOInterface.h

Low-level function that reads characters from stdin and from files.

Directs stdin to the Terminal I/0O window. All other files will read the associated host

file.

None.

The DLIB runtime environment ___¢

Example The code in this example uses memory-mapped I/O to read from a keyboard, whose port
is assumed to be located at 0x1000:

#include <stddef.h>
#include <LowLevelIOInterface.h>

__no_init volatile unsigned char kbIO @ 0x1000;

size_t __read(int handle,
unsigned char *buf,
size_t bufSize)

size_t nChars = 0;

/* Check for stdin

(only necessary if FILE descriptors are enabled) */
if (handle != 0)
{

return -1;

for (/*Empty*/; bufSize > 0; --bufSize)
{
unsigned char c¢ = kbIO;
if (¢ == 0)
break;

*buf++ = c;
++nChars;

return nChars;

}

For information about the handles associated with the streams, see Retargeting—
Adapting for your target system, page 157.

For information about the @ operator, see Controlling data and function placement in
memory, page 286.

See also Briefly about retargeting, page 154.

161

Additional information on the runtime environment

remove

Source file

Declared in
Description

C-SPY debug action
Default implementation

See also

rename

Source file

Declared in
Description

C-SPY debug action
Default implementation

See also

signal

Source file
Declared in
Description

C-SPY debug action

Default implementation

See also

IAR C/C++ Development Guide
Compiling and Linking for Arm

arm\src\lib\file\remove.c

stdio.h

Standard C library function that removes a file.

Removes a file on the host computer.

Returns 0 to indicate success, but without removing a file.

Briefly about retargeting, page 154.

arm\src\lib\file\rename.c

stdio.h

Standard C library function that renames a file.
Renames a file on the host computer.

Returns -1 to indicate failure.

Briefly about retargeting, page 154.

arm\src\lib\runtime\signal.c
signal.h
Standard C library function that changes signal handlers.

Not applicable.

As specified by Standard C. You might want to modify this behavior if the environment

supports some kind of asynchronous signals.

Briefly about retargeting, page 154.

system

Source file
Declared in
Description

C-SPY debug action

Default implementation

See also

__time32, __timeb4

Source file

Declared in
Description

C-SPY debug action
Default implementation

See also

___Write

Source file
Declared in
Description

C-SPY debug action

The DLIB runtime environment ___¢

arm\src\lib\runtime\system.c

stdlib.h

Standard C library function that executes commands.

Notifies the C-SPY debugger that system has been called and then returns -1.

The system function available in the library returns 0 if a null pointer is passed to it to
indicate that there is no command processor, otherwise it returns -1 to indicate failure.
If this is not the functionality that you require, you can implement your own version.

This does not require that you rebuild the library.

Briefly about retargeting, page 154.

arm\src\lib\time\time.c
arm\src\lib\time\time64.c

time.h

Low-level functions that return the current calendar time.
Returns the time on the host computer.

Returns -1 to indicate that calendar time is not available.

Briefly about retargeting, page 154.

arm\src\lib\file\write.c
LowLevelIOInterface.h
Low-level function that writes to stdout, stderr, or a file.

Directs stdout and stderr to the Terminal I/O window. All other files will write to
the associated host file.

163

Additional information on the runtime environment

Default implementation None.

Example The code in this example uses memory-mapped I/O to write to an LCD display, whose
port is assumed to be located at address 0x1000:

#include <stddef.h>
#include <LowLevelIOInterface.h>

__no_init volatile unsigned char 1cdIO @ 0x1000;

size_t __write(int handle,
const unsigned char *buf,
size_t bufSize)

size_t nChars = 0;

/* Check for the command to flush all handles */
if (handle == -1)
{

return 0;

/* Check for stdout and stderr

(only necessary if FILE descriptors are enabled.) */
if (handle != 1 && handle != 2)
{

return -1;

for (/* Empty */; bufSize > 0; --bufSize)
{

1lcdIO = *buf;

++buf;

++nChars;

return nChars;

}

For information about the handles associated with the streams, see Retargeting—
Adapting for your target system, page 157.

See also Briefly about retargeting, page 154.

IAR C/C++ Development Guide
164 Compiling and Linking for Arm

B Z

The DLIB runtime environment ___¢

CONFIGURATION SYMBOLS FOR FILE INPUT AND OUTPUT

File I/O is only supported by libraries with the Full library configuration, see Runtime
library configurations, page 162, or in a customized library when the configuration
symbol __DLIB_FILE_DESCRIPTOR is defined. If this symbol is not defined, functions
taking a FILE * argument cannot be used.

To customize your library and rebuild it, see Customizing and building your own
runtime library, page 160.

LOCALE

Locale is a part of the C language that allows language and country-specific settings for
several areas, such as currency symbols, date and time, and multibyte character
encoding.

Depending on which library configuration you are using, you get different levels of
locale support. However, the more locale support, the larger your code will get. It is
therefore necessary to consider what level of support your application needs. See
Runtime library configurations, page 162.

The DLIB runtime library can be used in two main modes:

o Using a full library configuration that has a locale interface, which makes it possible
to switch between different locales during runtime

The application starts with the C locale. To use another locale, you must call the
setlocale function or use the corresponding mechanisms in C++. The locales that
the application can use are set up at linkage.

e Using a normal library configuration that does not have a locale interface, where the
C locale is hardwired into the application.

Note: If multibytes are to be printed, you must make sure that the implementation of
__write in the DLIB low-level I/O interface can handle them.
Specifying which locales that should be available in your application

Choose Project>Options>General Options>Library Options 2>Locale support.

Use the linker option --keep with the tag of the locale as the parameter, for example:
--keep _Locale_cs_CZ_is08859_2

The available locales are listed in the file SupportedlLocales. json in the
arm\config directory, for example:

['Czech language locale for Czech Republic', 'iso8859-2',
'cs_CZ.1is08859-2"', '_Locale_cs_CZ_iso8859_2'],

165

Managing a multithreaded environment

166

The line contains the full locale name, the encoding for the locale, the abbreviated locale
name, and the tag to be used as parameter to the linker option --keep.

Changing locales at runtime

The standard library function setlocale is used for selecting the appropriate portion
of the application’s locale when the application is running.

The setlocale function takes two arguments. The first one is a locale category that is
constructed after the pattern LC_CATEGORY. The second argument is a string that
describes the locale. It can either be a string previously returned by setlocale, or it
can be a string constructed after the pattern:

lang_ REGION
or
lang REGION.encoding

The lang part specifies the language code, and the REGION part specifies a region
qualifier, and encoding specifies the multibyte character encoding that should be used.
The available encodings are ISO-8859-1, ISO-8859-2, ISO-8859-4, ISO-8859-5,
ISO-8859-7, ISO-8859-8, ISO-8859-9, ISO-8859-15, CP932, and UTF-8.

For a complete list of the available locales and their respective encoding, see the file
SupportedLocales.json in the arm\config directory.
Example

This example sets the locale configuration symbols to Swedish to be used in Finland and
UTF8 multibyte character encoding:

setlocale (LC_ALL, "sv_FI.UTF8");

Managing a multithreaded environment

IAR C/C++ Development Guide
Compiling and Linking for Arm

This section contains information about:

® Multithread support in the DLIB runtime environment, page 189

® Enabling multithread support, page 190

o C++ exceptions in threads, page 190

e Setting up thread-local storage (TLS), page 190

In a multithreaded environment, the standard library must treat all library objects
according to whether they are global or local to a thread. If an object is a true global
object, any updates of its state must be guarded by a locking mechanism to make sure
that only one thread can update it at any given time. If an object is local to a thread, the

The DLIB runtime environment ___¢

static variables containing the object state must reside in a variable area local to that
thread. This area is commonly named thread-local storage (TLS).

The low-level implementations of locks and TLS are system-specific, and is not
included in the DLIB runtime environment. If you are using an RTOS, check if it
provides some or all of the required functions. Otherwise, you must provide your own.

MULTITHREAD SUPPORT IN THE DLIB RUNTIME
ENVIRONMENT

The DLIB runtime environment uses two kinds of locks—system locks and file stream
locks. The file stream locks are used as guards when the state of a file stream is updated,
and are only needed in the Full library configuration. The following objects are guarded
with system locks:

o The heap (in other words when malloc, new, free, delete, realloc, or calloc
is used).

o The C file system (only available in the Full library configuration), but not the file
streams themselves. The file system is updated when a stream is opened or closed,
in other words when fopen, fclose, fdopen, fflush, or freopen is used.

The signal system (in other words when signal is used).

The temporary file system (in other words when tmpnam is used).

C++ dynamically initialized function-local objects with static storage duration.
C++ locale facet handling

C++ regular expression handling

C++ terminate and unexpected handling

These library objects use TLS:

Library objects using TLS When these functions are used
Error functions errno, strerror
C++ exception engine Not applicable

Table 9: Library objects using TLS

Note: If you are using printf/scanf (or any variants) with formatters, each individual
formatter will be guarded, but the complete printf/scanf invocation will not be
guarded.

If C++ is used in a runtime environment with multithread support, the compiler option
--guard_calls must be used to make sure that function-static variables with dynamic
initializers are not initialized simultaneously by several threads.

167

Managing a multithreaded environment

168

IAR C/C++ Development Guide
Compiling and Linking for Arm

ENABLING MULTITHREAD SUPPORT

To configure multithread support for use with threaded applications:

To enable multithread support:
On the command line, use the linker option --threaded_1lib.

If C++ is used, the compiler option --guard_calls should be used as well to make
sure that function-static variables with dynamic initializers are not initialized
simultaneously by several threads.

In the IDE, choose Project>Options>General Options>Library
Configuration>Enable thread support in the library. This will invoke the linker
option --threaded_1ib and if C++ is used, the IDE will automatically use the
compiler option --guard_calls to make sure that function-static variables with
dynamic initializers are not initialized simultaneously by several threads.

To complement the built-in multithread support in the runtime library, you must also:

e Implement code for the library’s system locks interface.
e If file streams are used, implement code for the library’s file stream locks interface.

o Implement code that handles thread creation, thread destruction, and TLS access
methods for the library.

You can find the required declaration of functions in the DLib_Threads.h file. There
you will also find more information.

Build your project.

Note: If you are using a third-party RTOS, check their guidelines for how to enable
multithread support with IAR tools.

C++ EXCEPTIONS IN THREADS

Using exceptions in threads works as long as the main function for the thread has the
noexcept exception specification. Otherwise non-caught exceptions will not correctly
terminate the application.

SETTING UP THREAD-LOCAL STORAGE (TLS)

Thread-local storage (TLS) is supported in both C (via the _Thread_local type
specifier introduced in C11) and C++ (via the thread_local type specifier introduced
in C++11). TLS variables reside in the thread-local storage area, a memory area that
must be set up when the thread is created. Any resources used must be returned when
the thread is destroyed. In a C++ environment, any TLS object must be created after the
thread-local storage area has been set up, and destroyed before the thread-local storage
area is destroyed.

The DLIB runtime environment ___¢

If you are using an operating system, refer to the relevant TLS documentation.
Additional information can be found in the IAR library header file DLib_Threads.h.
Information from such specific sources takes precedence over this general overview.

The main thread

If the linker option --threaded_1ib has been specified, TLS is active. The regular
system startup handles the initialization of the main thread’s thread-local storage area.
The initialized TLS variables in the main thread are placed in the linker section . tdata
and the zero-initialized TLS variables are placed in the section . tbss. All other threads
must set up their thread-local storage area when they are created. If --threaded_1ib
was not specified, content in the . tdata and . tbss sections is handled as if they were
.data and .bss. However, accesses to such variables are still TLS accesses.

Acquiring memory for TLS

TLS variables must be placed in memory. Exactly how this is handled does not matter
as long as the memory remains available for the duration of the thread’s lifetime. The
size of the thread-local storage area can be obtained by calling the function
__iar_tls_size (declared in DLib_Threads.h).

Some options for acquiring memory for TLS are:

o Acquire memory from the OS

o Allocate heap memory

o Use space on the stack of a function that does not return until the thread is done
o Use space in a dedicated section.

Initializing TLS memory

To initialize the TLS memory, call the function __iar_tls_init (declared in
DLib_Threads.h) with a pointer to the memory area.

The initialization function copies the contents of the linker section

__iar_ tls$$INIT DATA to the memory, and then zero-initializes the remaining
memory up to the size of the section __iar_t1s$$DATA. In a C++ environment, the
function __iar_call_tls_ctors is also called—it executes all constructors in the
section __iar_ tlsSSPREINIT_ARRAY. When the initialization has been performed,
the thread-local storage area is ready to use, all TLS variables have their initial values,
and in a C++ environment all thread-local objects have been constructed.

Deallocating TLS memory

When it is time to destroy the thread, the thread-local storage area must also be handled.
In a C++ environment, the thread-local objects must be destroyed before the memory

169

Managing a multithreaded environment

170

IAR C/C++ Development Guide
Compiling and Linking for Arm

itself is processed. This is achieved by calling the function __call_thread dtors
(declared in DLib_Threads.h). If the memory was acquired from a handler (like the
heap or the OS), that memory must be returned.

As an example, this code snippet allocates the thread-local storage area on the heap. tp
is a pointer to a thread-control object:

/* creating a new thread */

/* initialize TLS */

void * tls_mem = malloc(__iar_tls_size()); /* get memory */

__dar_tls_init(tls_mem) ; /* init TLS in the */
/* new memory */

tp->tls_area = tls_mem; /* set the thread’s */

/* TLS area to the new memory */
/* destroying a thread */
/* destroy the TLS area */

__call_thread_dtors(); /* only if C++ is used */
free(tp->tls_area) ; /* return memory */

Assembler language
interface

Mixing C and assembler

Calling assembler routines from C
e Calling assembler routines from C++
e Calling convention

o Call frame information

Mixing C and assembler

The IAR C/C++ Compiler for Arm provides several ways to access low-level resources:

o Modules written entirely in assembler
o Intrinsic functions (the C alternative)

e Inline assembler.

It might be tempting to use simple inline assembler. However, you should carefully
choose which method to use.

INTRINSIC FUNCTIONS

The compiler provides a few predefined functions that allow direct access to low-level
processor operations without having to use the assembler language. These functions are
known as intrinsic functions. They can be useful in, for example, time-critical routines.

An intrinsic function looks like a normal function call, but it is really a built-in function
that the compiler recognizes. The intrinsic functions compile into inline code, either as
a single instruction, or as a short sequence of instructions.

For more information about the available intrinsic functions, see the chapter /ntrinsic
functions.

MIXING C AND ASSEMBLER MODULES

It is possible to write parts of your application in assembler and mix them with your C
or C++ modules.

171

Mixing C and assembler

172

IAR C/C++ Development Guide
Compiling and Linking for Arm

This causes some overhead in the form of function call and return instruction sequences,
and the compiler will regard some registers as scratch registers. In many cases, the
overhead of the extra instructions can be removed by the optimizer.

An important advantage is that you will have a well-defined interface between what the
compiler produces and what you write in assembler. When using inline assembler, you
will not have any guarantees that your inline assembler lines do not interfere with the
compiler generated code.

When an application is written partly in assembler language and partly in C or C++, you
are faced with several questions:
e How should the assembler code be written so that it can be called from C?
o Where does the assembler code find its parameters, and how is the return value
passed back to the caller?
e How should assembler code call functions written in C?
How are global C variables accessed from code written in assembler language?

Why does not the debugger display the call stack when assembler code is being
debugged?

The first question is discussed in the section Calling assembler routines from C, page
182. The following two are covered in the section Calling convention, page 185.

The answer to the final question is that the call stack can be displayed when you run
assembler code in the debugger. However, the debugger requires information about the
call frame, which must be supplied as annotations in the assembler source file. For more
information, see Call frame information, page 195.

The recommended method for mixing C or C++ and assembler modules is described in
Calling assembler routines from C, page 182, and Calling assembler routines from
C++, page 185, respectively.

INLINE ASSEMBLER

Inline assembler can be used for inserting assembler instructions directly into a C or
C++ function. Typically, this can be useful if you need to:

@ Access hardware resources that are not accessible in C (in other words, when there
is no definition for an SFR or there is no suitable intrinsic function available).

o Manually write a time-critical sequence of code that if written in C will not have the
right timing.

o Manually write a speed-critical sequence of code that if written in C will be too

slow.

An inline assembler statement is similar to a C function in that it can take input
arguments (input operands), have return values (output operands), and read or write to

Assembler language interface __¢

C symbols (via the operands). An inline assembler statement can also declare clobbered
resources, that is, values in registers and memory that have been overwritten.

Limitations

Most things you can to do in normal assembler language are also possible with inline
assembler, with the following differences:

e Alignment cannot be controlled—this means, for example, that bc32 directives
might be misaligned.

o The only accepted register synonyms in 32-bit mode are Sp (for R13), LR (for R14),
and pc (for R15).

o The only accepted register synonyms in 64-bit mode are 10 (for x16), 1p1 (for
x17), FP (for x29), and LR (for x30).

e In general, assembler directives will cause errors or have no meaning. However,
data definition directives will work as expected.

o Resources used (registers, memory, etc) that are also used by the C compiler must
be declared as operands or clobbered resources.

e If you do not want to risk that the inline assembler statement to be optimized away
by the compiler, you must declare it volatile.

o Accessing a C symbol or using a constant expression requires the use of operands.
Dependencies between the expressions for the operands might result in an error.

The pseudo-instruction LDR Rd, =expr is not available from inline assembler.

Risks with inline assembler

Without operands and clobbered resources, inline assembler statements have no
interface with the surrounding C source code. This makes the inline assembler code
fragile, and might also become a maintenance problem if you update the compiler in the
future. There are also several limitations to using inline assembler without operands and
clobbered resources:

o The compiler’s various optimizations will disregard any effects of the inline
statements, which will not be optimized at all.

e Inlining of functions with assembler statements without declared side-effects will
not be done.

o The inline assembler statement will be volatile and clobbered memory is not
implied. This means that the compiler will not remove the assembler statement. It
will simply be inserted at the given location in the program flow. The consequences
or side-effects that the insertion might have on the surrounding code are not taken
into consideration. If, for example, registers or memory locations are altered, they

173

Mixing C and assembler

174

Reference information

Syntax

IAR C/C++ Development Guide
Compiling and Linking for Arm

might have to be restored within the sequence of inline assembler instructions for
the rest of the code to work properly.

The following example—for Arm mode—demonstrates the risks of using the asm
keyword without operands and clobbers:

int Add(int terml, int term2)
{
asm("adds r0,r0,xrl1l");
return terml;

}
In this example:

o The function Add assumes that values are passed and returned in registers in a way
that they might not always be, for example, if the function is inlined.

o The s in the adds instruction implies that the condition flags are updated, which
you specify using the cc clobber operand. Otherwise, the compiler will assume that
the condition flags are not modified.

Inline assembler without using operands or clobbered resources is therefore often best
avoided. The compiler will issue a remark for them.

for inline assembler

The asmand __asm keywords both insert inline assembler instructions. However, when
you compile C source code, the asm keyword is not available when the option
--strictisused. The __asmkeyword is always available.

The syntax of an inline assembler statement is (similar to the one used by GNU GCC):

asm [volatile] (string [assembler-interfacel])

A string can contain one or more operations, separated by \n. Each operation can be
a valid assembler instruction or a data definition assembler directive prefixed by an
optional label. There can be no whitespace before the label and it must be followed by :.

For example:

asm("label:nop\n"
"b label");

Note: Any labels you define in the inline assembler statement will be local to that
statement. You can use this for loops or conditional code.

If you define a label in an inline assembler statement using two colons—for example,
"label:: nop\n"—instead of one, the label will be public, not only in the inline
assembler statement, but in the module as well. This feature is intended for testing only.

Operands

Syntax of operands

Operand constraints

Assembler language interface __¢

An assembler statement without declared side-effects will be treated as a volatile
assembler statement, which means it cannot be optimized at all. The compiler will issue
a remark for such an assembler statement.

assembler-interfaceis:

comma-separated list of output operands /* optional */
comma-separated list of input operands /* optional */
comma-separated list of clobbered resources /* optional */

An inline assembler statement can have one input and one output comma-separated list
of operands. Each operand consists of an optional symbolic name in brackets, a quoted
constraint, followed by a C expression in parentheses.

[[symbolic-name 1] "[modifiers]constraint" (expr)

For example:

int Add(int terml, int term2)
{

int sum;

asm("add %0,%1,%2"
Ny (sum)
"r" (terml), "r" (term2));

return sum;

}

In this example, the assembler instruction uses one output operand, sum, two input
operands, terml and term2, and no clobbered resources.

It is possible to omit any list by leaving it empty. For example:

int matrix([M] [N];

void MatrixPreloadRow (int row)

{
asm volatile ("pld [%0]" : : "r" (&matrix([row][0]));

The operand constraints define how to pass an operand between inline assembler code
and the surrounding C or C++ code.

175

Mixing C and assembler

176

IAR C/C++ Development Guide
Compiling and Linking for Arm

These are the constraint codes in 32-bit mode:

Constraint Description

r Uses a general purpose register for the expression:
R0-R12, R14 (for Arm and Thumb?2)

RO-R7 (for Thumbl)

1 RO-R7 (only valid for Thumbl)

Rp Uses a pair of general purpose registers, for example RO, R1.

Te Uses an even-numbered general purpose register for the expression.

To Uses an odd-numbered general purpose register for the expression.

i An immediate integer operand with a constant value. Symbolic
constants are allowed.

Jj A 16-bit constant suitable for a MOVW instruction (valid for Arm and
Thumb?2).

n An immediate operand, alias for i.

I A constant valid for a data processing instruction (for Arm and
Thumb?2), or a constant in the range 0 to 255 (for Thumbl).

J An immediate constant in the range -4095 to 4095 (for Arm and
Thumb?2), or a constant in the range -255 to -1 (for Thumbl).

K An immediate constant that satisfies the I constraint if inverted (for
Arm and Thumb?2), or a constant that satisfies the I constraint
multiplied by any power of 2 (for Thumbl).

L An immediate constant that satisfies the I constraint if negated (for
Arm and Thumb?2), or a constant in the range -7 to 7 (for Thumbl).

M An immediate constant that is a multiple of 4 in the range 0 to 1020
(only valid for Thumbl).

N An immediate constant in the range 0 to 31 (only valid for Thumbl).

¢) An immediate constant that is a multiple of 4 in the range -508 to 508
(only valid for Thumbl).

t An S register.

w A D register.

A Q register.

Dv A 32-bit floating-point immediate constant for the VMOV .F32
instruction.

Dy A 64-bit floating-point immediate constant for the VMOV . F64

instruction.

Table 10: Inline assembler operand constraints in 32-bit mode

Assembler language interface __¢

Constraint Description

v2S ... v4Q A vector of 2, 3, or 4 consecutive S, D, or Q registers. For example,
v4Q is a vector of four Q registers. The vectors do not overlap, so the
available v4Q register vectors are Q0-Q3, Q4-Q7, 08-Q11, and
012-015.

digit The input must be in the same location as the output operand digit.

The first output operand is 0, the second 1, etc. (Not valid as output)

Table 10: Inline assembler operand constraints in 32-bit mode (Continued)

These are the constraint codes in 64-bit mode:

Constraint Description

r Uses a 64-bit general purpose register for the expression: X0-X30.
If you want the compiler to use the 32-bit general purpose registers
WO0-W31 instead, use the w operand modifier.

i An immediate integer operand with a constant value. Symbolic
constants are allowed.

n An immediate operand, alias for i.

A constant in the range 0—4095, with an optional left shift by 12. The
range that the ADD and SUB instructions accept.

J A constant in the range —4095 to 0, with an optional left shift by 12.

K An immediate constant that is valid for 32-bit logical instructions. For
example, AND, ORR, EOR.

L An immediate constant that is valid for 64-bit logical instructions. For
example, AND, ORR, EOR.

M An immediate constant that is valid for a MOV instruction with a
destination of a 32-bit register. Valid values are all values that the K
constraint accepts, plus the values that the MOVZ, MOVN, and MOVK
instructions accept.

N An immediate constant that is valid for a MOV instruction with a
destination of a 64-bit register. Valid values are all values that the L
constraint accepts, plus the values that the MOVZ, MOVN, and MOVK
instructions accept.

w Uses a SIMD or floating-point register, VO-V31.

The b, h, s, d, and g operand modifiers can override this behavior.

x The operand must be a 128-bit vector type. The compiler uses a low
SIMD register, VO-V15.

digit The input must be in the same location as the output operand digit.

The first output operand is 0, the second 1, etc. (Not valid as output)

Table 11: Inline assembler operand constraints in 64-bit mode

177

Mixing C and assembler

178

Constraint modifiers

Referring to operands

Input operands

Output operands

IAR C/C++ Development Guide
Compiling and Linking for Arm

Constraint modifiers can be used together with a constraint to modify its meaning. This
table lists the supported constraint modifiers:

Modifier Description

= Write-only operand
+ Read-write operand

& Early clobber output operand which is written to before the instruction
has processed all the input operands.

Table 12: Supported constraint modifiers

Assembler instructions refer to operands by prefixing their order number with %. The
first operand has order number 0 and is referred to by %0.

If the operand has a symbolic name, you can refer to it using the syntax

% [operand.name]. Symbolic operand names are in a separate namespace from C/C++
code and can be the same as a C/C++ variable names. Each operand name must however
be unique in each assembler statement. For example:

int Add(int terml, int term2)
{

int sum;

asm("add %[RdA],%[Rn],%$[Rm]"
[RA] "=r" (sum)
[Rn]"r" (terml), [Rm]"r" (term2));

return sum;

Input operands cannot have any constraint modifiers, but they can have any valid C
expression as long as the type of the expression fits the register.

The C expression will be evaluated just before any of the assembler instructions in the
inline assembler statement and assigned to the constraint, for example, a register.

Output operands must have = as a constraint modifier and the C expression must be an
1-value and specify a writable location. For example, =r for a write-only general purpose
register. The constraint will be assigned to the evaluated C expression (as an l-value)

immediately after the last assembler instruction in the inline assembler statement. Input
operands are assumed to be consumed before output is produced and the compiler may
use the same register for an input and output operand. To prohibit this, prefix the output
constraint with & to make it an early clobber resource, for example, =&r. This will ensure
that the output operand will be allocated in a different register than the input operands.

Input/output operands

Clobbered resources

Assembler language interface __¢

An operand that should be used both for input and output must be listed as an output
operand and have the + modifier. The C expression must be an l-value and specify a
writable location. The location will be read immediately before any assembler
instructions and it will be written to right after the last assembler instruction.

This is an example of using a read-write operand:

int Double(int value)

{

asm("add %0,%0,%0" : "+r"(value));

return value;

}

In the example above, the input value for value will be placed in a general purpose
register. After the assembler statement, the result from the ADD instruction will be placed
in the same register.

An inline assembler statement can have a list of clobbered resources.

"resourcel", "resourcel",

Specify clobbered resources to inform the compiler about which resources the inline
assembler statement destroys. Any value that resides in a clobbered resource and that is
needed after the inline assembler statement will be reloaded.

Clobbered resources will not be used as input or output operands.
This is an example of how to use clobbered resources:

int Add(int terml, int term2)
{

int sum;

asm("adds %0,%1,%2"
"=r" (sum)
"r" (terml), "r" (term2)
"CC");

return sum;

}

In this example, the condition codes will be modified by the ADDS instruction.
Therefore, "cc" must be listed in the clobber list.

179

Mixing C and assembler

180

Operand modifiers

IAR C/C++ Development Guide
Compiling and Linking for Arm

This table lists valid clobbered resources:

Clobber Description

R0-R12, R14 for Arm mode and Thumb2 General purpose registers
RO-R7,R12, R14 for Thumbl
X0-X30, WO-W30 for Aé4

S0-S31, D0-D31, Q0-Q15 for Arm mode and Thumb2 Floating-point registers
v0-v31, B0-B31, HO-H31, S0-S31, D0-D31, Q0-

031 for A64
cc The condition flags (N, Z, V, and C)
memory To be used if the instructions modify

any memory. This will avoid keeping
memory values cached in registers
across the inline assembler
statement.

Table 13: List of valid clobbers

An operand modifier is a single letter between the % and the operand number, which is
used for transforming the operand.

In the example below, the modifiers L and H are used for accessing the least and most
significant 16 bits, respectively, of an immediate operand:

int Mov32()
{
int a;
asm("movw %0,%L1 \n"
"movt %0,%H1 \n" : "=r"(a) : "i"(0x12345678UL)) ;
return a;

}

Some operand modifiers can be combined, in which case each letter will transform the
result from the previous modifier.

This table describes the transformation performed by each valid modifier in 32-bit
mode:

Modifier Description

L The lowest-numbered register of a register pair, or the low 16 bits of an
immediate constant.

H The highest-numbered register of a register pair, or the high 16 bits of
an immediate constant.

Table 14: Operand modifiers and transformations in 32-bit mode

Assembler language interface __¢

Modifier Description

c For an immediate operand, an integer or symbol address without a
preceding # sign. Cannot be transformed by additional operand
modifiers.

B For an immediate operand, the bitwise inverse of integer or symbol

without a preceding # sign. Cannot be transformed by additional
operand modifiers.

0 The least significant register of a register pair.
The most significant register of a register pair.

For a register or a register pair, the register list suitable for 1dm or
stm. Cannot be transformed by additional operand modifiers.

a Transforms a register Rn into a memory operand [Rn, #0] suitable
for pld.

b The low S register part of a D register.

P The high S register part of a D register.

e The low D register part of a Q register, or the low register in a vector of

Neon registers.

£ The high D register part of a Q register, or the high register in a vector
of Neon registers.

h For a (vector of) D or Q registers, the corresponding list of D registers

within curly braces. For example, Q0 becomes {D0, D1}. Cannot be
transformed by additional operand modifiers.

v S register as indexed D register, for example S7 becomes D3 [1].
Cannot be transformed by additional operand modifiers.

Table 14: Operand modifiers and transformations in 32-bit mode (Continued)

This table describes the transformation performed by each valid modifier in 64-bit
mode:

Modifier Description

c For an immediate operand, an integer, or symbol address without a
preceding # sign. Cannot be transformed by additional operand
modifiers.

a The operand constraint must be r. Prints the register name

surrounded by square brackets. Suitable for use as a memory operand.

n For an immediate operand. Prints the arithmetic negation of the value
without a preceding #.

Table 15: Operand modifiers and transformations in 64-bit mode

181

Calling assembler routines from C

Modifier Description

\ The operand constraint must be r. Prints the register using its 32-bit W
name.

x The operand constraint must be r. Prints the register using its 64-bit X
name.

b The operand constraint must be w or x. Prints the register using its
8-bit B name.

h The operand constraint must be w or x. Prints the register using its
16-bit H name.

s The operand constraint must be w or x. Prints the register using its
32-bit S name.

d The operand constraint must be w or x. Prints the register using its
64-bit D name.

q The operand constraint must be w or x. Prints the register using its
128-bit Q name.

Table 15: Operand modifiers and transformations in 64-bit mode (Continued)

AN EXAMPLE OF HOW TO USE CLOBBERED MEMORY

int StoreExclusive(unsigned long * location, unsigned long value)

{
int failed;

asm("strex %0,%2, [$1]"
"=&r" (failed)
"r" (location), "r"(value)
"memory") ;

/* Note: 'strex' requires Armvé6 (Arm) or Armv6T2 (THUMB) */

return failed;

Calling assembler routines from C

An assembler routine that will be called from C must:

o Conform to the calling convention
Have a PUBLIC entry-point label

Be declared as external before any call, to allow type checking and optional
promotion of parameters, as in these examples:

extern int foo(void);

IAR C/C++ Development Guide
182 Compiling and Linking for Arm

Assembler language interface __¢

or

extern int foo(int i, int j);

One way of fulfilling these requirements is to create skeleton code in C, compile it, and
study the assembler list file.

CREATING SKELETON CODE

The recommended way to create an assembler language routine with the correct
interface is to start with an assembler language source file created by the C compiler.

Note: You must create skeleton code for each function prototype.

The following example shows how to create skeleton code to which you can easily add
the functional body of the routine. The skeleton source code only needs to declare the
variables required and perform simple accesses to them. In this example, the assembler
routine takes an int and a char, and then returns an int:

extern int gInt;
extern char gChar;

int Func(int argl, char arg2)
{

int locInt = argl;

gInt = argl;

gChar = arg2;

return locInt;

}

int main()

{
int locInt = gInt;
gInt = Func(locInt, gChar);
return 0;

}

Note: In this example, we use a low optimization level when compiling the code to show
local and global variable access. If a higher level of optimization is used, the required
references to local variables could be removed during the optimization. The actual
function declaration is not changed by the optimization level.

COMPILING THE SKELETON CODE

In the IDE, specify list options on file level. Select the file in the workspace window.
Then choose Project>Options. In the C/C++ Compiler category, select Override
inherited settings. On the List page, deselect Output list file, and instead select the
Output assembler file option and its suboption Include source. Also, be sure to specify
a low level of optimization.

183

Calling assembler routines from C

184

IAR C/C++ Development Guide
Compiling and Linking for Arm

Use these options to compile the skeleton code:
iccarm skeleton.c -1A . -On -e

The -1a option creates an assembler language output file including C or C++ source
lines as assembler comments. The . (period) specifies that the assembler file should be
named in the same way as the C or C++ module (skeleton), but with the filename
extension s. The -0n option means that no optimization will be used and -e enables
language extensions. In addition, make sure to use relevant compiler options, usually the
same as you use for other C or C++ source files in your project.

The result is the assembler source output file skeleton.s.

Note: The -1a option creates a list file containing call frame information (CFI)
directives, which can be useful if you intend to study these directives and how they are
used. If you only want to study the calling convention, you can exclude the CFI
directives from the list file.

In the IDE, to exclude the cFI directives from the list file, choose
Project>Options>C/C++ Compiler>List and deselect the suboption Include call
frame information.

On the command line, to exclude the CFI directives from the list file, use the option -1B
instead of -1A.

Note: cFI information must be included in the source code to make the C-SPY Call
Stack window work.

The output file
The output file contains the following important information:

The calling convention
The return values

The global variables
The function parameters

How to create space on the stack (auto variables)

Call frame information (CFI).

The cF1 directives describe the call frame information needed by the Call Stack
window in the debugger. For more information, see Call frame information, page 195.

Assembler language interface __¢

Calling assembler routines from C++

The C calling convention does not apply to C++ functions. Most importantly, a function
name is not sufficient to identify a C++ function. The scope and the type of the function
are also required to guarantee type-safe linkage, and to resolve overloading.

Another difference is that non-static member functions get an extra, hidden argument,
the this pointer.

However, when using C linkage, the calling convention conforms to the C calling
convention. An assembler routine can therefore be called from C++ when declared in
this manner:

extern "C"
{
int MyRoutine (int) ;

}

The following example shows how to achieve the equivalent to a non-static member
function, which means that the implicit this pointer must be made explicit. It is also
possible to “wrap” the call to the assembler routine in a member function. Use an inline
member function to remove the overhead of the extra call—this assumes that function
inlining is enabled:

class MyClass;

extern "C"

{
void DoIt(MyClass *ptr, int arg);

class MyClass
{
public:
inline void DoIt (int arg)
{
::DoIt(this, arg);

Calling convention
A calling convention is the way a function in a program calls another function. The
compiler handles this automatically, but, if a function is written in assembler language,
you must know where and how its parameters can be found, how to return to the program
location from where it was called, and how to return the resulting value.

185

Calling convention

186

IAR C/C++ Development Guide
Compiling and Linking for Arm

It is also important to know which registers an assembler-level routine must preserve. If
the program preserves too many registers, the program might be ineffective. If it
preserves too few registers, the result would be an incorrect program.

This section describes the calling convention used by the compiler. These items are
examined:

Function declarations

Using C linkage in C++ source code

Preserved versus scratch registers

Function entrance

Function exit

32-bit mode—Return address handling

At the end of the section, some examples are shown to describe the calling convention
in practice.

The calling convention used by the compiler adheres to the Procedure Call Standard for
the Arm architecture, AAPCS, a part of AEABI, see AEABI compliance, page 234.
AAPCS is not fully described here. For example, the use of floating-point coprocessor
registers when using the VFP calling convention is not covered.

FUNCTION DECLARATIONS

In C, a function must be declared in order for the compiler to know how to call it. A
declaration could look as follows:

int MyFunction(int first, char * second);

This means that the function takes two parameters: an integer and a pointer to a
character. The function returns a value, an integer.

In the general case, this is the only knowledge that the compiler has about a function.
Therefore, it must be able to deduce the calling convention from this information.

USING C LINKAGE IN C++ SOURCE CODE

In C++, a function can have either C or C++ linkage. To call assembler routines from
C++, it is easiest if you make the C++ function have C linkage.

This is an example of a declaration of a function with C linkage:

extern "C"
{

int F(int);
}

Assembler language interface __¢

It is often practical to share header files between C and C++. This is an example of a
declaration that declares a function with C linkage in both C and C++:

#ifdef cplusplus

extern "C"
{
#endif

int F(int);

#ifdef __cplusplus
}
#endif

PRESERVED VERSUS SCRATCH REGISTERS

The general Arm CPU registers are divided into three separate sets, which are described
in this section.

Scratch registers

Any function is permitted to destroy the contents of a scratch register. If a function needs
the register value after a call to another function, it must store it during the call, for
example, on the stack.

In 32-bit mode, any of the registers RO to R3, and R12, can be used as a scratch register
by the function. In 64-bit mode, the registers that can be used as scratch registers are
the registers X0 to X15.

Note: In 32-bit mode, R12, and in 64-bit mode, x16 and X17, are also scratch registers
when calling between assembler functions because of automatically inserted
instructions for veneers.

Preserved registers

Preserved registers, on the other hand, are preserved across function calls. The called
function can use the register for other purposes, but must save the value before using the
register and restore it at the exit of the function.

In 32-bit mode, the registers R4 through to R11 are preserved registers. They are
preserved by the called function. In 64-bit mode, the registers X18 to x30 are preserved
registers.

187

Calling convention

188

IAR C/C++ Development Guide
Compiling and Linking for Arm

Special registers in 32-bit mode
For these 32-bit mode registers, you must consider these prerequisites:

e The stack pointer register, R13/SP, must at all times point to or below the last
element on the stack. In the eventuality of an interrupt, everything below the point
the stack pointer points to, can be destroyed. At function entry and exit, the stack
pointer must be 8-byte aligned. In the function, the stack pointer must always be
word aligned. At exit, SP must have the same value as it had at the entry.

The register R15/PC is dedicated for the Program Counter.

The link register, R14 /LR, holds the return address at the entrance of the function.

Special registers in 64-bit mode
For these 64-bit mode registers, you must consider certain prerequisites:

o The stack pointer register, SP, must at all times point to or below the last element on
the stack. In the eventuality of an interrupt, everything below the point the stack
pointer points to, can be destroyed. At function entry and exit, the stack pointer
must be 16-byte aligned. In the function, the stack pointer must always be word
aligned. At exit, SP must have the same value that it had at entry.

e The link register, LR/X30, holds the return address at the entrance of the function.

FUNCTION ENTRANCE
Parameters can be passed to a function using one of these basic methods:

o In registers

o On the stack

It is much more efficient to use registers than to take a detour via memory, so the calling
convention is designed to use registers as much as possible. Only a limited number of
registers can be used for passing parameters—when no more registers are available, the
remaining parameters are passed on the stack. These exceptions to the rules apply:

e Interrupt functions cannot take any parameters, except software interrupt functions
that accept parameters and have return values

e Software interrupt functions cannot use the stack in the same way as ordinary
functions. When an sSvcC instruction is executed, the processor switches to
supervisor mode where the supervisor stack is used. Arguments can therefore not be
passed on the stack if your application is not running in supervisor mode previous to
the interrupt.

Assembler language interface __¢

Hidden parameters

In addition to the parameters visible in a function declaration and definition, there can
be hidden parameters:

e If the function returns a structure larger than 32 bits, the memory location where the
structure is to be stored is passed as an extra parameter. Notice that it is always
treated as the first parameter.

o If the function is a non-static C++ member function, then the this pointer is passed
as the first parameter (but placed after the return structure pointer, if there is one).
For more information, see Calling assembler routines from C, page 182.

Register parameters in 32-bit mode

The registers available in 32-bit mode for passing parameters are:

Parameters Passed in registers

Scalar and floating-point values no larger than 32 bits, Passed using the first free register:

and single-precision (32-bits) floating-point values RO-R3

long long and double-precision (64-bit) values Passed in the first available register pair:
RO:R1 or R2:R3

Table 16: Registers used in 32-bit mode for passing parameters

The assignment of registers to parameters is a straightforward process. Traversing the
parameters from left to right, the first parameter is assigned to the available register or
registers. Should there be no more available registers, the parameter is passed on the
stack in reverse order.

When functions that have parameters smaller than 32 bits are called, the values are sign
or zero extended to ensure that the unused bits have consistent values. Whether the
values will be sign or zero extended depends on their type—signed or unsigned.

189

Calling convention

190

IAR C/C++ Development Guide
Compiling and Linking for Arm

Register parameters in 64-bit mode

The registers available in 64-bit mode for passing parameters are:

Parameters Passed in registers

Integers, pointers, small structures (up to 8 bytes) Passed using the first free register:
X0-X7

Small structures (9—16 bytes) Passed using the first free register pair:
X0-X7

Floating-point values Passed using the first free register:
vOo-v7

Table 17: Registers used in 64-bit mode for passing parameters
Homogeneous structures (I—4 elements of the same Passed using the first free registers:
floating-point or vector type) V0-V7 (one element in each register)

Large structures Pointer is passed using the first free
register: X0-X7

The assignment of registers to parameters is a straightforward process. Traversing the
parameters from left to right, the first parameter is assigned to the available register or
registers. Should there be no more available registers, the parameter is passed on the
stack in reverse order.

In 64-bit mode, only the bits that are consistent with a parameter’s size can be accessed.
Therefore, the called function normally sign- or zero-extends parameters that have a size
smaller than 32 bits.

Stack parameters and layout

Stack parameters are stored in memory, starting at the location pointed to by the stack
pointer. Below the stack pointer (towards low memory) there is free space that the called
function can use. The first stack parameter is stored at the location pointed to by the
stack pointer. The next one is stored at the next location on the stack that is divisible by
four, etc. It is the responsibility of the caller to clean the stack after the called function
has returned.

Assembler language interface __¢

This figure illustrates how parameters are stored on the stack:

High
address
The caller’s stack frame
Parameter n
Parameter 1
Return address
Low
address Free stack memory

FUNCTION EXIT

A function can return a value to the function or program that called it, or it can have the
return type void.

The return value of a function, if any, can be scalar (such as integers and pointers),
floating-point, or a structure.

Registers used in 32-bit mode for returning values

The registers available in 32-bit mode for returning values are RO and RO : R1.

Return values Passed in registers

Scalar and structure return values no larger RO
than 32 bits, and single-precision (32-bit)
floating-point return values

The memory address of a structure return RO
value larger than 32 bits

long long and double-precision (64-bit) RO:R1
return values

Table 18: Registers used in 32-bit mode for returning values

If the returned value is smaller than 32 bits, the value is sign or zero-extended to 32 bits.

191

Calling convention

192

IAR C/C++ Development Guide
Compiling and Linking for Arm

Registers used in 64-bit mode for returning values

Return values Passed in registers
Integers, pointers, small structures (up to 8 X0

bytes)

Small structures (9—16 bytes) X0-X1
Floating-point values Vo0

Homogeneous structures (I—4 elements of the V0-V3 (one element in each register)
same floating-point or vector type)

Large structures Pointer is passed by caller in X8

Table 19: Registers used in 64-bit mode for returning values

Only the bits of the return value that are consistent with the size of the return value can
be accessed.

Stack layout at function exit

It is the responsibility of the caller to clean the stack after the called function has
returned.

32-bit mode—Return address handling

A function written in assembler language should, when finished, return to the caller, by
jumping to the address pointed to by the register LR.

At function entry, non-scratch registers and the LR register can be pushed with one
instruction. At function exit, all these registers can be popped with one instruction. The
return address can be popped directly to pC.

The following example shows what this can look like:

name call
section .text:CODE
extern func

push {r4-r6,1r} ; Preserve stack alignment 8
bl func

; Do something here.
pop {rd4-r6,pc} ; return

end

Assembler language interface __¢

64-bit mode—Return address handling

A function written in assembler language should, when finished, return to the caller, by
jumping to the address pointed to by the register LR.

At function entry, non-scratch registers and the LR register can be pushed on the stack.
At function exit, all these registers must be restored from the stack.

The following example shows what this can look like:

name call
section .text:CODE
extern func

strp x9, 1lr, [sp, #16]! ; Preserve stack alignment 16
bl func

; Do something here.

ldrp x9, x7, [sp, #16]
ret

end

EXAMPLES

The following section shows a series of declaration examples and the corresponding
calling conventions. The complexity of the examples increases toward the end.

Example |
Assume this function declaration:
int addl (int) ;

In 32-bit mode, this function takes one parameter in the register R0, and the return value
is passed back to its caller in the register RO.

This assembler routine is compatible with the declaration—it will return a value that is
one number higher than the value of its parameter:

name return
section .text:CODE
add r0, r0, #1
bx 1r

end

193

Calling convention

194

IAR C/C++ Development Guide
Compiling and Linking for Arm

In 64-bit mode, the function takes one parameter in register X0, and the return value is
passed back to its caller in register X0. A corresponding assembler routine that is
compatible with the declaration looks like this:

name return
section .text:CODE
add x0, x0, #1
ret

end

Example 2
This example shows how structures are passed on the stack. Assume these declarations:

struct MyStruct
{
short a;
short b;
short c;
short d;
short e;

Y

int MyFunction (struct MyStruct x, int vy);

In 32-bit mode, the values of the structure members a, b, ¢, and d are passed in registers
RO-R3. The last structure member e and the integer parameter y are passed on the stack.
The calling function must reserve eight bytes on the top of the stack and copy the
contents of the two stack parameters to that location. The return value is passed back to
its caller in the register RO.

In 64-bit mode, the value of x is passed in X0 and X1, and y is passed in x2. The return
value is passed in x0.

Example 3
The function below will return a structure of type struct MyStruct.

struct MyStruct
{

int mA[20];
}i

struct MyStruct MyFunction(int x);

It is the responsibility of the calling function to allocate a memory location for the return
value and pass a pointer to it as a hidden first parameter. In 32-bit mode, the pointer to
the location where the return value should be stored is passed in R0. The parameter x is

Assembler language interface __¢

passed in R1. In 64-bit mode, the pointer to the location where the return value should
be stored is passed in x8. The parameter x is passed in X0.

Assume that the function instead was declared to return a pointer to the structure:
struct MyStruct *MyFunction (int x);

In this case, the return value is a scalar, so there is no hidden parameter. In 32-bit mode,
the parameter x is passed in R0, and the return value is returned in R0. In 64-bit mode,
the parameter x is passed in X0, and the return value is returned in x0.

Call frame information

When you debug an application using C-SPY, you can view the call stack, that is, the
chain of functions that called the current function. To make this possible, the compiler
supplies debug information that describes the layout of the call frame, in particular
information about where the return address is stored.

If you want the call stack to be available when debugging a routine written in assembler
language, you must supply equivalent debug information in your assembler source using
the assembler directive CFI. This directive is described in detail in the /4R Assembler
User Guide for Arm.

CFI DIRECTIVES

The CFI directives provide C-SPY with information about the state of the calling
function(s). Most important of this is the return address, and the value of the stack
pointer at the entry of the function or assembler routine. Given this information, C-SPY
can reconstruct the state for the calling function, and thereby unwind the stack.

A full description about the calling convention might require extensive call frame
information. In many cases, a more limited approach will suffice.

When describing the call frame information, the following three components must be
present:

® A names block describing the available resources to be tracked

® A common block corresponding to the calling convention

® A data block describing the changes that are performed on the call frame. This
typically includes information about when the stack pointer is changed, and when
permanent registers are stored or restored on the stack.

195

Call frame information

196

IAR C/C++ Development Guide
Compiling and Linking for Arm

32-bit mode call frame information resources:

Resource Description

CFA R13 The call frames of the stack

RO-R12 Processor general-purpose 32-bit registers

R13 Stack pointer, SP

R14 Link register, LR

D0-D31 Vector Floating Point (VFP) 64-bit coprocessor register
CPSR Current program status register

SPSR Saved program status register

Table 20: 32-bit mode call frame information resources defined in a names block

64-bit mode call frame information resources:

Resource Description

X0-X29 Processor general-purpose 64-bit registers

X30 Link register, LR

SP Stack pointer

CFA SP The call frames of the stack

ELR_mode Exception level

Vv0-V31 Vector Floating Point (VFP) 64-bit registers (in reality, they are

128 bits, but the ABI cannot handle this)

Table 21: 64-bit mode call frame information resources defined in a names block

CREATING ASSEMBLER SOURCE WITH CFI SUPPORT

The recommended way to create an assembler language routine that handles call frame
information correctly is to start with an assembler language source file created by the
compiler.

Start with suitable C source code, for example:

int F(int);
int cfiExample (int i)
{

return 1 + F(1i);

}

Compile the C source code, and make sure to create a list file that contains call frame
information—the CFI directives.

On the command line, use the option -1A.

Assembler language interface __¢

m In the IDE, choose Project>Options>C/C++ Compiler>List and make sure the
[I:E suboption Include call frame information is selected.

For the source code in this example, the list file in 32-bit mode looks like this.

R6:32,

R13:32,

NAME Cfi
RTMODEL "__SystemLibrary", "DLib"
EXTERN F

PUBLIC cfiExample

CFI Names cfiNamesO
CFI StackFrame CFA R13 DATA

CFI Resource R0:32, R1:32, R2:32, R3:32, R4:32, R5:32,

R7:32

CFI Resource R8:32, R9:32, R10:32, R11:32, R12:32,
R14:32

CFI EndNames cfiNames0

CFI Common cfiCommon0 Using cfiNamesO
CFI CodeAlign 4

CFI DataAlign 4

CFI ReturnAddress R14 CODE
CFI CFA R13+0

CFI RO Undefined

CFI R1 Undefined

CFI R2 Undefined

CFI R3 Undefined

CFI R4 SameValue

CFI R5 SameValue

CFI R6 SameValue

CFI R7 SameValue

CFI R8 SameValue

CFI R9 SameValue

CFI R10 SameValue

CFI R11 SameValue

CFI R12 Undefined

CFI R14 SameValue

CFI EndCommon cfiCommon0

SECTION " .text’ :CODE:NOROOT (2)

CFI Block cfiBlock0 Using cfiCommonO
CFI Function cfiExample

ARM

197

Call frame information

cfiExample:
PUSH {R4,LR}
CFI R14 Frame (CFA, -4)
CFI R4 Frame(CFA, -8)
CFI CFA R13+8

MOVS R4,RO

MOVS RO,R4

BL F

ADDS RO,R0O,R4

POP {R4,PC} ;5 return

CFI EndBlock cfiBlock0

END

Note: The header file Common. i contains the macros CFI_NAMES_BLOCK,
CFI_COMMON_ARM, and CFI_COMMON_Thumb, which declare a typical names block and
a typical common block. These two macros declare several resources, both concrete and
virtual.

IAR C/C++ Development Guide
198 Compiling and Linking for Arm

Using C

e C language overview
e Extensions overview

e |AR C language extensions

C language overview

The IAR C/C++ Compiler for Arm supports the INCITS/ISO/IEC 9899:2018 standard,
also known as C18. C18 addresses defects in C11 (INCITS/ISO/IEC 9899:2012)
without introducing any new language features. This means that the C11 standard is also
supported. In this guide, the C18 standard is referred to as Standard C and is the default
standard used in the compiler. This standard is stricter than C89.

The compiler will accept source code written in the C18 standard or a superset thereof.

In addition, the compiler also supports the ISO 9899:1990 standard (including all
technical corrigenda and addenda), also known as C94, C90, C89, and ANSI C. In this
guide, this standard is referred to as C89. Use the --c89 compiler option to enable this
standard.

With Standard C enabled, the IAR C/C++ Compiler for Arm can compile all C18/C11
source code files, except for those that depend on thread-related system header files.

The floating-point standard that Standard C binds to is IEC 60559—known as
ISO/IEC/IEEE 60559—which is nearly identical to the IEEE 754 format.

Annex K (Bounds-checking interfaces) of the C standard is supported. See Bounds
checking functionality, page 162.

For an overview of the differences between the various versions of the C standard, see
the Wikipedia articles C18 (C standard revision), C11 (C standard revision), or C99.

Extensions overview

The compiler offers the features of Standard C and a wide set of extensions, ranging
from features specifically tailored for efficient programming in the embedded industry
to the relaxation of some minor standards issues.

199

Extensions overview

This is an overview of the available extensions:

o [AR C language extensions

For information about available language extensions, see I4AR C language extensions,
page 229. For more information about the extended keywords, see the chapter
Extended keywords. For information about C++, the two levels of support for the
language, and C++ language extensions, see the chapter Using C++.

® Pragma directives

The #pragma directive is defined by Standard C and is a mechanism for using
vendor-specific extensions in a controlled way to make sure that the source code is
still portable.

The compiler provides a set of predefined pragma directives, which can be used for
controlling the behavior of the compiler, for example, how it allocates memory,
whether it allows extended keywords, and whether it outputs warning messages.
Most pragma directives are preprocessed, which means that macros are substituted
in a pragma directive. The pragma directives are always enabled in the compiler. For
several of them there is also a corresponding C/C++ language extension. For
information about available pragma directives, see the chapter Pragma directives.

® Preprocessor extensions

The preprocessor of the compiler adheres to Standard C. The compiler also makes
several preprocessor-related extensions available to you. For more information, see
the chapter The preprocessor.

® Intrinsic functions

The intrinsic functions provide direct access to low-level processor operations and
can be useful in, for example, time-critical routines. The intrinsic functions compile
into inline code, either as a single instruction or as a short sequence of instructions.
For more information about using intrinsic functions, see Mixing C and assembler,
page 193. For information about available functions, see the chapter Intrinsic
functions.

e Library functions

The DLIB runtime environment provides the C and C++ library definitions in the
C/C++ standard library that apply to embedded systems. For more information, see
DLIB runtime environment—implementation details, page 585.

Note: Any use of these extensions, except for the pragma directives, makes your source
code inconsistent with Standard C.

IAR C/C++ Development Guide
200 Compiling and Linking for Arm

UsingC __4

ENABLING LANGUAGE EXTENSIONS
You can choose different levels of language conformance by means of project options:

Command line IDE* Description

--strict Strict All lAR C language extensions are disabled—
errors are issued for anything that is not part
of Standard C.

None Standard All relaxations to Standard C are enabled, but no
extensions for embedded systems programming.
For information about extensions, see IAR C
language extensions, page 229.

-e Standard with IAR All IAR C language extensions are enabled.
extensions

Table 22: Language extensions

* In the IDE, choose Project>Options>C/C++ Compiler>Language 1>Language
conformance and select the appropriate option. Note that language extensions are
enabled by default.

IAR C language extensions
The compiler provides a wide set of C language extensions. To help you to find the
extensions required by your application, they are grouped like this in this section:

® [Extensions for embedded systems programming—extensions specifically tailored
for efficient embedded programming for the specific core you are using, typically to
meet memory restrictions

® Relaxations to Standard C—that is, the relaxation of some minor Standard C issues
and also some useful but minor syntax extensions, see Relaxations to Standard C,
page 231.

EXTENSIONS FOR EMBEDDED SYSTEMS PROGRAMMING

The following language extensions are available both in the C and the C++
programming languages and they are well suited for embedded systems programming:
o Type attributes and object attributes

For information about the related concepts, the general syntax rules, and for
reference information, see the chapter Extended keywords.

® Placement at an absolute address or in a named section

The e operator or the directive #pragma location can be used for placing global
and static variables at absolute addresses, or placing a variable or function in a named

201

IAR C language extensions

202

IAR C/C++ Development Guide
Compiling and Linking for Arm

section. For more information about using these features, see Controlling data and
function placement in memory, page 286, and location, page 498.

o Alignment control

Each data type has its own alignment. For more information, see Alignment, page
445. If you want to change the alignment, the __packed data type attribute, the
#pragma pack directive, and the #pragma data_alignment directive are
available. If you want to check the alignment of an object, use the __ALIGNOF__ ()
operator.

The __ALIGNOF__ operator is used for accessing the alignment of an object. It takes

one of two forms:
® __ALIGNOF__ (type)
® _ _ALIGNOF__ (expression)
In the second form, the expression is not evaluated.
See also the Standard C file stdalign.h.
® Bitfields and non-standard types

In Standard C, a bitfield must be of the type int or unsigned int. Using IAR C

language extensions, any integer type or enumeration can be used. The advantage is
that the struct will sometimes be smaller. For more information, see Bitfields, page
448.

Dedicated section operators

The compiler supports getting the start address, end address, and size for a section with
these built-in section operators:

__section_begin Returns the address of the first byte of the named section or
block.

__section_end Returns the address of the first byte affer the named section
or block.

__section_size Returns the size of the named section or block in bytes.

Note: The aliases __segment_begin/__sfb segment_end/__sfe, and

__segment_size/__sfs can also be used.

[J—

The operators can be used on named sections or on named blocks defined in the linker
configuration file.

These operators behave syntactically as if declared like:

void * __section_begin(char const * section)
void * __section_end(char const * section)
size_t __section_size(char const * section)

UsingC __4

When you use the @ operator or the #pragma location directive to place a data object
or a function in a user-defined section, or when you use named blocks in the linker
configuration file, the section operators can be used for getting the start and end address
of the memory range where the sections or blocks were placed.

The named section must be a string literal and it must have been declared earlier with
the #pragma section directive. The type of the __section_begin operator is a
pointer to void. Note that you must enable language extensions to use these operators.

The operators are implemented in terms of symbols with dedicated names, and will
appear in the linker map file under these names:

Operator Symbol
__section_begin (sec) sec$$Base
__section_end(sec) sec$SLimit
__section_size(sec) secsSLength

Table 23: Section operators and their symbols

Note: The linker will not necessarily place sections with the same name consecutively
when these operators are not used. Using one of these operators (or the equivalent
symbols) will cause the linker to behave as if the sections were in a named block. This
is to assure that the sections are placed consecutively, so that the operators can be
assigned meaningful values. If this is in conflict with the section placement as specified
in the linker configuration file, the linker will issue an error.

Example

In this example, the type of the __section_begin operator is void *.

#pragma section="MYSECTION"

section_start_address = __section_begin ("MYSECTION") ;

See also section, page 506, and location, page 498.

RELAXATIONS TO STANDARD C

This section lists and briefly describes the relaxation of some Standard C issues and also
some useful but minor syntax extensions:
e Arrays of incomplete types

An array can have an incomplete struct, union, or enum type as its element type.
The types must be completed before the array is used (if it is), or by the end of the
compilation unit (if it is not).

203

IAR C language extensions

204

IAR C/C++ Development Guide
Compiling and Linking for Arm

Forward declaration of enum types

The extensions allow you to first declare the name of an enum and later resolve it by
specifying the brace-enclosed list.

Accepting missing semicolon at the end of a struct or union specifier

A warning—instead of an error—is issued if the semicolon at the end of a struct
or union specifier is missing.

Null and void

In operations on pointers, a pointer to void is always implicitly converted to another
type if necessary, and a null pointer constant is always implicitly converted to a null
pointer of the right type if necessary. In Standard C, some operators allow this kind
of behavior, while others do not allow it.

Casting pointers to integers in static initializers

In an initializer, a pointer constant value can be cast to an integral type if the integral
type is large enough to contain it. For more information about casting pointers, see
Casting, page 456.

Taking the address of a register variable

In Standard C, it is illegal to take the address of a variable specified as a register
variable. The compiler allows this, but a warning is issued.

long float means double

The type Llong float is accepted as a synonym for double.
Binary integer literals (0b...) are supported.

Repeated typedef declarations

Redeclarations of typedef that occur in the same scope are allowed, but a warning
is issued.

Mixing pointer types

Assignment and pointer difference is allowed between pointers to types that are
interchangeable but not identical, for example, unsigned char * and char *. This
includes pointers to integral types of the same size. A warning is issued.

Assignment of a string constant to a pointer to any kind of character is allowed, and
no warning is issued.

Non-lvalue arrays

A non-lvalue array expression is converted to a pointer to the first element of the
array when it is used.

Comments at the end of preprocessor directives

This extension, which makes it legal to place text after preprocessor directives, is
enabled unless the strict Standard C mode is used. The purpose of this language

UsingC __4

extension is to support compilation of legacy code—we do not recommend that you
write new code in this fashion.

An extra comma at the end of enum lists

Placing an extra comma is allowed at the end of an enum list. In strict Standard C
mode, a warning is issued.

A label preceding a }

In Standard C, a label must be followed by at least one statement. Therefore, it is
illegal to place the label at the end of a block. The compiler allows this, but issues a
warning. Note that this also applies to the labels of switch statements.

Empty declarations

An empty declaration (a semicolon by itself) is allowed, but a remark is issued
(provided that remarks are enabled).

Single-value initialization

Standard C requires that all initializer expressions of static arrays, structs, and unions
are enclosed in braces.

Single-value initializers are allowed to appear without braces, but a warning is
issued. The compiler accepts this expression:

struct str

{
int a;
} x = 10;

Declarations in other scopes

External and static declarations in other scopes are visible. In the following example,
the variable y can be used at the end of the function, even though it should only be
visible in the body of the i £ statement. A warning is issued.

int test(int x)

{
if (x)

extern int y;
y = 1;

return y;

}
Static functions in function and block scopes

Static functions may be declared in function and block scopes. Their declarations are
moved to the file scope.

205

IAR C language extensions

206

IAR C/C++ Development Guide
Compiling and Linking for Arm

Numbers scanned according to the syntax for numbers

Numbers are scanned according to the syntax for numbers rather than the
pp-number syntax. Therefore, 0x123e+1 is scanned as three tokens instead of one
valid token. (If the --strict option is used, the pp-number syntax is used instead.)

Empty translation unit
A translation unit (input file) might be empty of declarations.
Assignment of pointer types

Assignment of pointer types is allowed in cases where the destination type has added
type qualifiers that are not at the top level, for example, int ** to const int **.
Comparisons and pointer difference of such pairs of pointer types are also allowed.
A warning is issued.

Pointers to different function types

Pointers to different function types might be assigned or compared for equality (==)
or inequality (! =) without an explicit type cast. A warning is issued. This extension
is not allowed in C++ mode.

Assembler statements

Assembler statements are accepted. This is disabled in strict C mode because it
conflicts with the C standard for a call to the implicitly declared asm function.

#include_next

The non-standard preprocessing directive #include_next is supported. This is a
variant of the #include directive. It searches for the named file only in the
directories on the search path that follow the directory in which the current source
file (the one containing the #include_next directive) is found. This is an extension
found in the GNU C compiler.

#warning

The non-standard preprocessing directive #warning is supported. It is similar to the
#error directive, but results in a warning instead of a catastrophic error when
processed. This directive is not recognized in strict mode. This is an extension found
in the GNU C compiler.

Concatenating strings
Mixed string concatenations are accepted.
wchar_t * str="a" L "b";

GNU style statement expressions (a sequence of statements enclosed by braces) are
accepted.

GNU style case ranges are accepted (case 1..5:).
GNU style designated initializer ranges are accepted.
Example: int widths[] = {[0...9] = 1, [10...99] =2, [100] = 3};

UsingC __4

® typeof
The non-standard operator typeof is supported when IAR extensions are enabled,
as a way of referring to the type of an expression. The syntax is like that of sizeof,
but it behaves semantically like a type name defined with typede£. This is an
extension found in the GNU C compiler.

® _ auto_type
The non-standard keyword __auto_type is supported when IAR extensions are
enabled. Declaring a variable with the __auto_type keyword automatically causes
its type to be derived based on the type of its initializer. __auto_type is similar to
the auto keyword in C++11, but more limited in when it can be used. This is an
extension found in the GNU C compiler.

207

IAR C language extensions

IAR C/C++ Development Guide
208 Compiling and Linking for Arm

Using C++

e Overview—Standard C++

e Enabling support for C++

e C++ feature descriptions

e C++ language extensions

e Migrating from the DLIB C++ library to the Libc++ C++ library

e Porting code from EC++ or EEC++

Overview—Standard C++
The IAR C++ implementation fully complies with the ISO/IEC 14882:2014 C++
(“C++14”) or 14882:2017 C++ (“C++17”) standard, except for source code that
depends on thread-related system headers, or the £i1lesystemheader. In this guide, the
ISO/IEC 14882:2017 C++ standard is referred to as Standard C++.

Atomic operations are available for cores where the instruction set supports them. See
Atomic operations, page 592.

The IAR C/C++ compiler accepts source code written in the C++17 standard or a
superset thereof.

o When using the DLIB C++14 library, those features of C++17 that require library
support are not available.

® When using the Libc++ C++17 library, all features of C++17 are available, unless
otherwise noted.

For an overview of the differences between the various versions of the C++ standard, see
the Wikipedia articles C++17, C++14, C++11, or C++ (for information about C++98).

Note: There is also a set of C++ Standard Template Library (STL) headers from an older
version of the DLIB library (DLIBS). They have fewer features, but can in some cases
result in significantly smaller code for map/set and vector. See the documentation in
the file arm/doc/HelpDLIBS.html.

209

Overview—Standard C++

210

IAR C/C++ Development Guide
Compiling and Linking for Arm

MODES FOR EXCEPTIONS AND RTTI SUPPORT

Both exceptions and runtime type information result in increased code size simply by
being included in your application. You might want to disable either or both of these
features to avoid this increase:

e Support for runtime type information constructs can be disabled by using the
compiler option --no_rtti
o Support for exceptions can be disabled by using the compiler option

--no_exceptions

Even if support is enabled while compiling, the linker can avoid including the extra code
and tables in the final application. If no part of your application actually throws an
exception, the code and tables supporting the use of exceptions are not included in the
application code image. Also, if dynamic runtime type information constructs
(dynamic_cast/typeid) are not used with polymorphic types, the objects needed to
support them are not included in the application code image. To control this behavior,
use the linker options --no_exceptions, --force_exceptions, and
--no_dynamic_rtti_elimination.

Disabling exception support

When you use the compiler option --no_exceptions, the following will generate a
compiler error:

® throw expressions
® try-catch statements

o Exception specifications on function definitions.

In addition, the extra code and tables needed to handle destruction of objects with auto
storage duration when an exception is propagated through a function will not be
generated when the compiler option --no_exceptions is used.

All functionality in system header files not directly involving exceptions is supported
when the compiler option --no_exceptions is used.

The linker will produce an error if you try to link C++ modules compiled with exception
support with modules compiled without exception support

For more information, see --no_exceptions, page 355.

Disabling RTTI support

When you use the compiler option --no_rtti, the following will generate a compiler
error:

o The typeid operator

Using C++ ___ 4

o The dynamic_cast operator.

Note: If --no_rtti is used but exception support is enabled, most RTTI support is still
included in the compiler output object file because it is needed for exceptions to work.

For more information, see --no_rtti, page 358.

EXCEPTION HANDLING
Exception handling can be divided into three parts:

® FException raise mechanisms—in C++ they are the throw and rethrow
expressions.

® Exception catch mechanisms—in C++ they are the try—catch statements, the
exception specifications for a function, and the implicit catch to prevent an
exception leaking out from main.

e [nformation about currently active functions—if they have try—catch statements
and the set of auto objects whose destructors need to be run if an exception is
propagated through the function.

When an exception is raised, the function call stack is unwound, function by function,
block by block. For each function or block, the destructors of auto objects that need
destruction are run, and a check is made whether there is a catch handler for the
exception. If there is, the execution will continue from that catch handler.

An application that mixes C++ code with assembler and C code, and that throws
exceptions from one C++ function to another via assembler routines and C functions
must use the linker option --exception_tables with the argument unwind.

The implementation of exceptions

Exceptions are implemented using a table method. For each function, the tables
describe:

e How to unwind the function, that is, how to find its caller on the stack and restore
registers that need restoring

o Which catch handlers that exist in the function

o Whether the function has an exception specification and which exceptions it allows
to propagate

o The set of auto objects whose destructors must be run.

When an exception is raised, the runtime will proceed in two phases. The first phase will

use the exception tables to search the stack for a function invocation containing a catch

handler or exception specification that would cause stack unwinding to halt at that point.

Once this point is found, the second phase is entered, doing the actual unwinding, and
running the destructors of auto objects where that is needed.

211

Enabling support for C++

212

The table method results in virtually no overhead in execution time or RAM usage when
an exception is not actually thrown. It does incur a significant penalty in read-only
memory usage for the tables and the extra code, and throwing and catching an exception
is a relatively expensive operation.

The destruction of auto objects when the stack is being unwound as a result of an
exception is implemented in code separated from the code that handles the normal
operation of a function. This code, together with the code in catch handlers, is placed in
a separate section (. exc . text) from the normal code (normally placed in . text). In
some cases, for instance when there is fast and slow ROM memory, it can be
advantageous to select on this difference when placing sections in the linker
configuration file.

Enabling support for C++

In the compiler, the default language is C.

To compile files written in Standard C++, use the —--c++ compiler option. See --c++,
page 337.

To enable C++ in the IDE, choose
Project>Options>C/C++ Compiler>Language 1>Language>C++.

C++ feature descriptions

IAR C/C++ Development Guide
Compiling and Linking for Arm

When you write C++ source code for the IAR C/C++ Compiler for Arm, you must be
aware of some benefits and some possible quirks when mixing C++ features—such as
classes, and class members—with IAR language extensions, such as IAR-specific
attributes.

USING IAR ATTRIBUTES WITH CLASSES

Static data members of C++ classes are treated the same way global variables are, and
can have any applicable IAR type and object attribute.

Member functions are in general treated the same way free functions are, and can have
any applicable IAR type and object attributes. Virtual member functions can only have
attributes that are compatible with default function pointers, and constructors and
destructors cannot have any such attributes.

The location operator @ and the #pragma location directive can be used on static data
members and with all member functions.

Using C++ ___ 4

TEMPLATES

C++ supports templates according to the C++ standard. The implementation uses a
two-phase lookup which means that the keyword typename must be inserted wherever
needed. Furthermore, at each use of a template, the definitions of all possible templates
must be visible. This means that the definitions of all templates must be in include files
or in the actual source file.

FUNCTION TYPES

A function type with extern "C" linkage is compatible with a function that has C++
linkage.

Example

extern "C"

{

typedef void (*FpC) (void) ; // A C function typedef
}
typedef void (*FpCpp) (void) ; // A C++ function typedef
FpC F1;
FpCpp F2;

void MyF (FpC) ;

void MyG ()
{
MyF (F1) ; // Always works
MyF (F2) ; // FpCpp is compatible with FpC

USING STATIC CLASS OBJECTS IN INTERRUPTS

If interrupt functions use static class objects that need to be constructed (using
constructors) or destroyed (using destructors), your application will not work properly
if the interrupt occurs before the objects are constructed, or, during or after the objects
are destroyed.

To avoid this, make sure that these interrupts are not enabled until the static objects have
been constructed, and are disabled when returning from main or calling exit. For
information about system startup, see System startup and termination, page 172.

Function local static class objects are constructed the first time execution passes through
their declaration, and are destroyed when returning from main or when calling exit.

213

C++ feature descriptions

214

IAR C/C++ Development Guide
Compiling and Linking for Arm

USING NEW HANDLERS

To handle memory exhaustion, you can use the set_new_handler function.

New handlers in Standard C++ with exceptions enabled

If you do not call set_new_handler, or call it with a NULL new handler, and
operator new fails to allocate enough memory, operator new will throw

std: :bad_alloc if exceptions are enabled. If exceptions are not enabled, operator
new will instead call abort.

If you call set_new_handler with a non-NULL new handler, the provided new
handler will be called by operator new if the operator new fails to allocate enough
memory. The new handler must then make more memory available and return, or abort
execution in some manner. If exceptions are enabled, the new handler can also throw a
std: :bad_alloc exception. The nothrow variant of operator new will only return
NULL in the presence of a new handler if exceptions are enabled and the new handler
throws std: :bad_alloc.

New handlers in Standard C++ with exceptions disabled

If you do not call set_new_handler, or call it with a NULL new handler, and
operator new fails to allocate enough memory, it will call abort. The nothrow
variant of the new operator will instead return NULL.

If you call set_new_handler with a non-NULL new handler, the provided new
handler will be called by operator new if operator new fails to allocate memory. The
new handler must then make more memory available and return, or abort execution in
some manner. The nothrow variant of operator new will never return NULL in the
presence of a new handler.

This is the same behavior as using the nothrow variants of new.

DEBUG SUPPORT IN C-SPY

The C-SPY debugger has built-in display support for the STL containers. The logical
structure of containers is presented in the watch views in a comprehensive way that is
easy to understand and follow.

Using C++, you can make C-SPY stop at a throw statement or if a raised exception does
not have any corresponding catch statement.

For more information, see the C-SPY® Debugging Guide for Arm.

Using C++ ___ 4

C++ language extensions

When you use the compiler in C++ mode and enable IAR language extensions, the
following C++ language extensions are available in the compiler:

In a friend declaration of a class, the class keyword can be omitted, for example:

class B;
class A
{
friend B; //Possible when using IAR language
//extensions
friend class B; //According to the standard

Yi
In the declaration of a class member, a qualified name can be used, for example:
struct A
{
int A::F(); // Possible when using IAR language extensions
int G(); // According to the standard
Yi

It is permitted to use an implicit type conversion between a pointer to a function

with C linkage (extern "C") and a pointer to a function with C++ linkage

(extern "C++"), for example:

extern "C" void F(); // Function with C linkage

void (*PF) () // PF points to a function with C++ linkage
= &F; // Implicit conversion of function pointer.

According to the standard, the pointer must be explicitly converted.

If the second or third operands in a construction that contains the ? operator are
string literals or wide string literals—which in C++ are constants—the operands can
be implicitly converted to char * or wchar_t *, for example:

bool X;

char *P1 = X ? "abc" : "def"; //Possible when using IAR
//language extensions

char const *P2 = X ? "abc" : "def";//According to the standard

Default arguments can be specified for function parameters not only in the top-level
function declaration, which is according to the standard, but also in typedef
declarations, in pointer-to-function function declarations, and in pointer-to-member
function declarations.

In a function that contains a non-static local variable and a class that contains a
non-evaluated expression—for example a sizeof expression—the expression can
reference the non-static local variable. However, a warning is issued.

215

C++ language extensions

216

IAR C/C++ Development Guide
Compiling and Linking for Arm

o An anonymous union can be introduced into a containing class by a typedef name.

It is not necessary to first declare the union. For example:

typedef union
{
int 1i,3;
} U; // U identifies a reusable anonymous union.

class A
{
public:

U; // OK -- references to A::i and A::j are allowed.
Yi
In addition, this extension also permits anonymous classes and anonymous structs,
as long as they have no C++ features—for example, no static data members or
member functions, and no non-public members—and have no nested types other
than other anonymous classes, structs, or unions. For example:

struct A
{

struct

{

int 1i,3;

}; // OK -- references to A::1 and A::j are allowed.
Yi
The friend class syntax allows non-class types as well as class types expressed
through a typedef without an elaborated type name. For example:

typedef struct S ST;

class C

{

public:
friend S; // Okay (requires S to be in scope)
friend ST; // Okay (same as "friend S;")
// friend S const; // Error, cv-qualifiers cannot

// appear directly
}i

Using C++ ___ 4

e Itis allowed to specify an array with no size or size 0 as the last member of a struct.
For example:

typedef struct
{

int 1i;

char ir[0]; // Zero-length array
Y

typedef struct
{
int i;
char ir([]; // Zero-length array
Y
e Arrays of incomplete types

An array can have an incomplete struct, union, enum, or class type as its element
type. The types must be completed before the array is used—if it is— or by the end
of the compilation unit—if it is not.

o Concatenating strings
Mixed string literal concatenations are accepted.
wchar_t * str = "a" L "b";

o Trailing comma

A trailing comma in the definition of an enumeration type is silently accepted.
Except where noted, all of the extensions described for C are also allowed in C++ mode.

Note: If you use any of these constructions without first enabling language extensions,
errors are issued.

Migrating from the DLIB C++ library to the Libc++ C++ library

There is no Normal configuration of the Libc++ library. Support for locale, file
descriptors, etc, is always included.

The Libc++ library is a C++17 library. In C++17, some functionality that was
deprecated in C++14 is now removed. Examples include std: :auto_ptr,

std: :random_shuffle,and std: :mem_fun. You candefine the preprocessor symbol
_LIBCPP_ENABLE_CXX17_REMOVED_FEATURES to enable support for these features
when using the Libc++ library.

Note: Some system headers from the DLIB C++14 library are not supported in Libc++,
and vice versa, see the descriptions in C++ header files, page 587.

217

Porting code from EC++ or EEC++

Porting code from EC++ or EEC++
Apart from the fact that Standard C++ is a much larger language than EC++ or EEC++,
there are two issues that might prevent EC++ and EEC++ code from compiling:
e The library is placed in namespace std.
There are two remedy options:
o Prefix each used library symbol with std: :.

o Insertusing namespace std; after the last include directive for a C++ system
header file.

o Some library symbols have changed names or parameter passing.

To resolve this, look up the new names and parameter passing.

IAR C/C++ Development Guide
218 Compiling and Linking for Arm

Application-related
considerations

e Output format considerations

e Stack considerations

e Heap considerations

o Interaction between the tools and your application
e Checksum calculation for verifying image integrity
e AEABI compliance

o CMSIS integration (32-bit mode)

e Arm TrustZone®

e Branch protection (PACBTI) — 32-bit mode only

e Patching symbol definitions using $Super$$ and $Sub$$

Output format considerations

The linker produces an absolute executable image in the ELF/DWARF object file
format.

You can use the IAR ELF Tool—ielftool— to convert an absolute ELF image to a
format more suitable for loading directly to memory, or burning to a PROM or flash
memory etc.

ielftool can produce these output formats:

e Plain binary
e Motorola S-records

o Intel hex.

For a complete list of supported output formats, run ielftool without options.

219

Stack considerations

220

Note: ielftool can also be used for other types of transformations, such as filling and
calculating checksums in the absolute image.

The source code for ielftool is provided in the arm/src directory. For more
information about ielftool, see The AR ELF Tool—ielftool, page 661.

Stack considerations

IAR C/C++ Development Guide
Compiling and Linking for Arm

To make your application use stack memory efficiently, there are some considerations
to be made.

STACK SIZE CONSIDERATIONS

The required stack size depends heavily on the application’s behavior. If the given stack
size is too large, RAM will be wasted. If the given stack size is too small, one of two
things can happen, depending on where in memory you located your stack:

e Variable storage will be overwritten, leading to undefined behavior
o The stack will fall outside of the memory area, leading to an abnormal termination
of your application.

Both alternatives are likely to result in application failure. Because the second
alternative is easier to detect, you should consider placing your stack so that it grows
toward the end of the memory.

For more information about the stack size, see Setting up stack memory, page 136, and
Saving stack space and RAM memory, page 297.
STACK ALIGNMENT

In 32-bit mode, the default cstartup code automatically initializes all stacks to an
8-byte aligned address.

In 64-bit mode, the default cstartup code automatically initializes all stacks to a
16-byte aligned address.

For more information about aligning the stack, see Calling convention, page 207 and
more specifically Special registers in 32-bit mode, page 210 and Stack parameters and
layout, page 212.

EXCEPTION STACK

64-bit Arm cores and Cortex-M do not have individual exception stacks. By default, all
exception stacks are placed in the CSTACK section.

Application-related considerations __¢

The Arm7/9/11, Cortex-A, and Cortex-R devices support five exception modes which
are entered when different exceptions occur. Each exception mode has its own stack to
avoid corrupting the System/User mode stack.

The table shows proposed stack names for the various exception stacks, but any name

can be used:

Processor mode Proposed stack section name Description

Supervisor SVC_STACK Operation system stack.

IRQ IRQ_STACK Stack for general-purpose (IRQ)
interrupt handlers.

FIQ FIQ_STACK Stack for high-speed (FIQ)
interrupt handlers.

Undefined UND_STACK Stack for undefined instruction
interrupts. Supports software
emulation of hardware
coprocessors and instruction set
extensions.

Abort ABT_STACK Stack for instruction fetch and data
access memory abort interrupt
handlers.

Table 24: Exception stacks for Arm7/9/11, Cortex-A, and Cortex-R

For each processor mode where a stack is needed, a separate stack pointer must be
initialized in your startup code, and section placement should be done in the linker
configuration file. The IRQ and FIQ stacks are the only exception stacks which are
preconfigured in the supplied cstartup.s and 1nkarm. icf files, but other exception
stacks can easily be added.

m To view any of these stacks in the Stack window available in the IDE, these
preconfigured section names must be used instead of user-defined section names.

Heap considerations

The heap contains dynamic data allocated by use of the C function malloc (or a
corresponding function) or the C++ operator new.

If your application uses dynamic memory allocation, you should be familiar with:

o The use of basic, advanced, and no-free heap memory allocation
o Linker sections used for the heap

o Allocating the heap size, see Setting up heap memory, page 136.

221

Heap considerations

222

IAR C/C++ Development Guide
Compiling and Linking for Arm

HEAP MEMORY HANDLERS

The system library contains three separate heap memory handlers—the basic, the
advanced, and the no-free heap handler.

e If there are calls to heap memory allocation routines in your application, but no calls
to heap deallocation routines, the linker automatically chooses the no-free heap.

o If there are calls to heap memory allocation routines in your application, the linker
automatically chooses the advanced heap.

e If there are calls to heap memory allocation routines in, for example, the library, the
linker automatically chooses the basic heap.

Note: If your product has a size-limited KickStart license, the basic heap is
automatically chosen.

You can use a linker option to explicitly specify which handler you want to use:

o The basic heap (--basic_heap) is a simple heap allocator, suitable for use in
applications that do not use the heap very much. In particular, it can be used in
applications that only allocate heap memory and never free it. The basic heap is not
particularly speedy, and using it in applications that repeatedly free memory is quite
likely to lead to unneeded fragmentation of the heap. The code for the basic heap is
significantly smaller than that for the advanced heap. See --basic_heap, page 398.

o The advanced heap (--advanced_heap) provides efficient memory management
for applications that use the heap extensively. In particular, applications that
repeatedly allocate and free memory will likely get less overhead in both space and
time. The code for the advanced heap is significantly larger than that for the basic
heap. See --advanced heap, page 398. For information about the definition, see
iar_dlmalloc.h, page 593.

o The no-free heap (--no_free_heap) is the smallest possible heap implementation.
This heap does not support free or realloc. See --no_free_heap, page 420.

HEAP SIZE AND STANDARD 1/O

If you excluded FILE descriptors from the DLIB runtime environment, as in the Normal
configuration, there are no input and output buffers at all. Otherwise, as in the Full
configuration, be aware that the size of the input and output buffers is set to 512 bytes
in the stdio library header file. If the heap is too small, I/O will not be buffered, which
is considerably slower than when I/O is buffered. If you execute the application using
the simulator driver of the IAR C-SPY® Debugger, you are not likely to notice the speed
penalty, but it is quite noticeable when the application runs on an Arm core. If you use
the standard I/O library, you should set the heap size to a value which accommodates the
needs of the standard I/O buftfer.

Application-related considerations __¢

HEAP ALIGNMENT
In 32-bit mode, the heap is aligned to an 8-byte aligned address.
In 64-bit mode, the heap is aligned to a 16-byte aligned address.

For more information about aligning the heap, see Setting up heap memory, page 136.

Interaction between the tools and your application

The linking process and the application can interact symbolically in four ways:

o Creating a symbol by using the linker command line option --define_symbol.
The linker will create a public absolute constant symbol that the application can use
as a label, as a size, as setup for a debugger, etc.

o Creating an exported configuration symbol by using the command line option
--config_def or the configuration directive define symbol, and exporting the
symbol using the export symbol directive. ILINK will create a public absolute
constant symbol that the application can use as a label, as a size, as setup for a
debugger, etc.

One advantage of this symbol definition is that this symbol can also be used in
expressions in the configuration file, for example, to control the placement of
sections into memory ranges.

o Using the compiler operators __section_begin, __section_end, or
__section_size, or the assembler operators SFB, SFE, or SIZEOF on a named
section or block. These operators provide access to the start address, end address,
and size of a contiguous sequence of sections with the same name, or of a linker
block specified in the linker configuration file.

o The command line option --entry informs the linker about the start label of the
application. It is used by the linker as a root symbol and to inform the debugger
where to start execution.

The following lines illustrate how to use -D to create a symbol. If you need to use this
mechanism, add these options to your command line like this:

--define_symbol NrOfElements=10
--config_def MY_HEAP_SIZE=1024

223

Interaction between the tools and your application

The linker configuration file can look like this:

define memory Mem with size = 4G;
define region ROM = Mem: [from 0x00000 size 0x100007;
define region RAM = Mem: [from 0x20000 size 0x10000];

/* Export of symbol */
export symbol MY_HEAP_SIZE;

/* Setup a heap area with a size defined by an ILINK option */
define block MyHEAP with size = MY_HEAP_SIZE, alignment = 8 {};

place in RAM { block MyHEAP };
Add these lines to your application source code:

#include <stdlib.h>

/* Use symbol defined by ILINK option to dynamically allocate an
array of elements with specified size. The value takes the form
of a label.

*/
extern int NrOfElements;

typedef char Elements;
Elements *GetElementArray ()
{
return malloc (sizeof (Elements) * (long) &NrOfElements) ;

/* Use a symbol defined by ILINK option, a symbol that in the
* configuration file was made available to the application.
*/

extern char MY HEAP_SIZE;

IAR C/C++ Development Guide
224 Compiling and Linking for Arm

Application-related considerations __¢

/* Declare the section that contains the heap. */
#pragma section = "MYHEAP"

char *MyHeap ()

{
/* First get start of statically allocated section, */
char *p = __section_begin ("MYHEAP") ;

/* ...then we zero it, using the imported size. */
for (int i = 0; i < (int) &MY_HEAP_SIZE; ++1i)
{
pli]l = 0;
}

return p;

Checksum calculation for verifying image integrity
This section contains information about checksum calculation:

e Briefly about checksum calculation
o Calculating and verifying a checksum

o Troubleshooting checksum calculation

For more information, see also The IAR ELF Tool—ielftool, page 661.

BRIEFLY ABOUT CHECKSUM CALCULATION

You can use a checksum to verify that the image is the same at runtime as when the
image’s original checksum was generated. In other words, to verify that the image has
not been corrupted.

This works as follows:

® You need an initial checksum.

You can either use the IAR ELF Tool—iel ftool—to generate an initial checksum
or you might have a third-party checksum available.

® You must generate a second checksum during runtime.

You can either add specific code to your application source code for calculating a
checksum during runtime or you can use some dedicated hardware on your device
for calculating a checksum during runtime.

® You must add specific code to your application source code for comparing the two
checksums and take an appropriate action if they differ.

225

Checksum calculation for verifying image integrity

If the two checksums have been calculated in the same way, and if there are no errors
in the image, the checksums should be identical. If not, you should first suspect that
the two checksums were not generated in the same way.

No matter which solutions you use for generating the two checksum, you must make
sure that both checksums are calculated in the exact same way. If you use ielftool for
the initial checksum and use a software-based calculation during runtime, you have full
control of the generation for both checksums. However, if you are using a third-party
checksum for the initial checksum or some hardware support for the checksum
calculation during runtime, there might be additional requirements that you must
consider.

For the two checksums, there are some choices that you must always consider and there
are some choices to make only if there are additional requirements. Still, all of the details
must be the same for both checksums.

Always consider:

o Checksum range

The memory range (or ranges) that you want to verify by means of checksums.
Typically, you might want to calculate a checksum for all ROM memory. However,
you might want to calculate a checksum only for specific ranges. Remember that:

e Itis OK to have several ranges for one checksum.

o The checksum must be calculated from the lowest to the highest address for
every memory range.

e FEach memory range must be verified in the same order as defined, for example,
0x100-0x1FF,0x400-0x4FF is not the same as 0x400-0x4FF,0x100-0x1FF.

e If several checksums are used, you should place them in sections with unique
names and use unique symbol names.

® A checksum should never be calculated on a memory range that contains a
checksum or a software breakpoint.

o Algorithm and size of checksum

You should consider which algorithm is most suitable in your case. There are two
basic choices, Sum—a simple arithmetic algorithm—or CRC—which is the most
commonly used algorithm. For CRC there are different sizes to choose for the
checksum, 2, 4, or 8 bytes where the predefined polynomials are wide enough to suit
the size, for more error detecting power. The predefined polynomials work well for
most, but possibly not for all data sets. If not, you can specity your own polynomial.
If you just want a decent error detecting mechanism, use the predefined CRC
algorithm for your checksum size, typically CRC16 or CRC32.

IAR C/C++ Development Guide
226 Compiling and Linking for Arm

Application-related considerations __¢

Note: For an n-bit polynomial, the n:th bit is always considered to be set. For a 16-bit
polynomial—for example, CRC16—this means that 0x11021 is the same as
0x1021.

For more information about selecting an appropriate polynomial for data sets with
non-uniform distribution, see for example section 3.5.3 in Tannenbaum, A.S.,
Computer Networks, Prentice Hall 1981, ISBN: 0131646990.

e Fill
Every byte in the checksum range must have a well-defined value before the
checksum can be calculated. Typically, bytes with unknown values are pad bytes that
have been added for alignment. This means that you must specify which fill pattern
to be used during calculation, typically 0xFF or 0x00.

o [nitial value

The checksum must always have an explicit initial value.

In addition to these mandatory details, there might be other details to consider.
Typically, this might happen when you have a third-party checksum, you want the
checksum be compliant with the Rocksoft™ checksum model, or when you use
hardware support for generating a checksum during runtime. ielftool also provides
support for controlling alignment, complement, bit order, byte order within words, and
checksum unit size.

CALCULATING AND VERIFYING A CHECKSUM

In this example procedure, a checksum is calculated for ROM memory from 0x8002 up
to 0x8FFF and the 2-byte calculated checksum is placed at 0x8000.

If you are using ielftool from the command line, you must first allocate a memory
location for the calculated checksum.

Note: If you instead are using the IDE (and not the command line), the __checksum,
__checksum_begin, and __checksum_end symbols, and the . checksum section are
automatically allocated when you calculate the checksum, which means that you can
skip this step.

You can allocate the memory location in two ways:

o By creating a global C/C++ or assembler constant symbol with a proper size,
residing in a specific section—in this example, . checksum

o By using the linker option --place_holder.

For example, to allocate a 2-byte space for the symbol __ checksum in the section
.checksum, with alignment 4, specify:

--place_holder __checksum, 2, .checksum, 4

227

Checksum calculation for verifying image integrity

2 The .checksum section will only be included in your application if the section appears
to be needed. If the checksum is not needed by the application itself, use the linker
option --keep=__checksum (or the linker directive keep) to force the section to be
included.

Alternatively, choose Project>Options>Linker>Input and specify __checksum:

Options for node "projectd”

Categony: Factary Setting

General Options

Static Analysis

Runtime Checking
C/C++ Compiler | Config | Library | Input | Optimizations | Advanced | Output [List
Assembler
Qutput Converter
Custom Build __checksum
Build Actions
Linker
Debugger

Simulator

Keep symbols: (one per ling)

Raw binary image
File: Symbol: Section:

3 To control the placement of the . checksum section, you must modify the linker
configuration file. For example, it can look like this (note the handling of the block
CHECKSUM):

define block CHECKSUM { ro section .checksum };
place in ROM_region { ro, first block CHECKSUM };

Note: It is possible to skip this step, but in that case the . checksum section will
automatically be placed with other read-only data.

4 When configuring ielftool to calculate a checksum, there are some basic choices to
make:
o Checksum algorithm

Choose which checksum algorithm you want to use. In this example, the CRC16
algorithm is used.

e Memory range

Using the IDE, you can specify one memory range for which the checksum should
be calculated. From the command line, you can specify any ranges.

e Fill pattern

Specity afill pattern—typically 0xFF or 0x00—for bytes with unknown values. The
fill pattern will be used in all checksum ranges.

IAR C/C++ Development Guide
228 Compiling and Linking for Arm

TF

5

[IH

Application-related considerations __¢

For more information, see Briefly about checksum calculation, page 257.

To run ielftool from the IDE, choose Project>Options>Linker>Checksum and
make your settings, for example:

Checksum

Fill unused code memary

Fill pattem: k00
Start address: 8002 End address: (x8FFF
Generate checksum

Checksum size: Alignment: 1
Algorithm: CRC16 > | |E11021

Result in full size

Initial value
Complement: |Asis 0
Bit order: MSE first * | [Useasinput
[Reverse byte order within word

Checksum unit size:

I

In the simplest case, you can ignore (or leave with default settings) these options:
Complement, Bit order, Reverse byte order within word, and Checksum unit size.

Torun ielftool from the command line, specify the command, for example, like this:

ielftool --fill=0x00;0x8002-0x8FFF
--checksum=__checksum:2, crcl6; 0x8002-0x8FFF sourceFile.out
destinationFile.out

Note: ielftool needs an unstripped input ELF image. If you use the linker option
--strip, remove it and use the ielftooloption --strip instead.

The checksum will be created later on when you build your project and will be
automatically placed in the specified symbol __checksum in the section . checksum.

You can specify several ranges instead of only one range.
If you are using the IDE, perform these steps:
o Choose Project>Options>Linker>Checksum and make sure to deselect Fill

unused code memory.

o Choose Project>Options>Build Actions and specify the ranges together with the
rest of the required commands in the Post-build command line text field, for
example like this:
$TOOLKIT_DIR$\bin\ielftool "$TARGET_PATH$" "$TARGET_PATHS"
--fill 0x00;0x0-0x3FF;0x8002-0x8FFF
--checksum=__checksum:2, crcl6; 0x0-0x3FF; 0x8002-0x8FFF

229

Checksum calculation for verifying image integrity

230

IAR C/C++ Development Guide
Compiling and Linking for Arm

In your example, replace output. out with the name of your output file.

Category:

Options for node "projectd”

General Options

Static Analysis

Runtime Checking
C/C++ Compiler
Assembler
Qutput Converter
Custom Build
Build Actions
Linker
Debugger

Simulator

Build Actions Configuration

Pre-build command line:

Post-build command line:
STOOLKIT_DIRS \bin‘iefftool ill (e00; (e0-Ie3FF: (xeB8002-(eBFFF —t |

If you are using the command line, specify the ranges, for example like this:

ielftool output.out output.out
--fill 0x00;0x0-0x3FF;0x8002-0x8FFF
--checksum=__checksum:2,crcl6; 0x0-0x3FF; 0x8002-0x8FFF

In your example, replace output. out with the name of your output file.

Application-related considerations __¢

6 Add a function for checksum calculation to your source code. Make sure that the
function uses the same algorithm and settings as for the checksum calculated by
ielftool. For example, a variant of the crc16 algorithm with small memory footprint
(in contrast to the fast variant that uses more memory):

unsigned short SmallCrclé (uintlé6_t

sum,

unsigned char *p,
unsigned int len)

while (len--)

{

}

int 1i;

unsigned char byte = * (p++);

for (1 = 0; 1 < 8; ++1i)
{
unsigned long oSum = sum;
sum <<= 1;
if (byte & 0x80)
sum |= 1;
if (oSum & 0x8000)
sum = 0x1021;
byte <<= 1;

return sum;

}

You can find the source code for this checksum algorithm in the arm\src\linker
directory of your product installation.

231

Checksum calculation for verifying image integrity

7 Make sure that your application also contains a call to the function that calculates the
checksum, compares the two checksums, and takes appropriate action if the checksum
values do not match.

This code gives an example of how the checksum can be calculated for your application
and to be compared with the ielftool generated checksum:

/* The calculated checksum */

/* Linker generated symbols */

extern unsigned short const __checksum;
extern int __checksum_begin;

extern int __ checksum_end;

void TestChecksum/()

{
unsigned short calc = 0;
unsigned char zeros[2] = {0, 0};

/* Run the checksum algorithm */
calc = SmallCrclé6 (0,
(unsigned char *) &__ checksum_begin,
((unsigned char *) &__checksum_end -
((unsigned char *) &__ checksum_begin)+1));

/* Fill the end of the byte sequence with zeros. */
calc = SmallCrclé6(calc, zeros, 2);

/* Test the checksum */

if (calc != __checksum)

{
printf ("Incorrect checksum!\n");
abort () ; /* Failure */

/* Checksum is correct */

}
8 Build your application project and download it.

During the build, ielftool creates a checksum and places it in the specified symbol
__checksum in the section . checksum.

9 Choose Download and Debug to start the C-SPY Debugger.

During execution, the checksum calculated by ielftool and the checksum calculated
by your application should be identical.

IAR C/C++ Development Guide
232 Compiling and Linking for Arm

Application-related considerations __¢

TROUBLESHOOTING CHECKSUM CALCULATION

If the two checksums do not match, there are several possible causes. These are some
troubleshooting hints:

e If possible, start with a small example when trying to get the checksums to match.

e Verify that the exact same memory range or ranges are used in both checksum
calculations.

To help you do this, ielftool lists the ranges for which the checksum is calculated
on stdout about the exact addresses that were used and the order in which they were
accessed.

o Make sure that all checksum symbols are excluded from all checksum calculations.

Compare the checksum placement with the checksum range and make sure they do
not overlap. You can find information in the Build message window after ielftool
has generated a checksum.

e Verify that the checksum calculations use the same polynomial.

e Verify that the bits in the bytes are processed in the same order in both checksum
calculations, from the least to the most significant bit or the other way around. You
control this with the Bit order option (or from the command line, the -m parameter
of the --checksum option).

e If you are using the small variant of CRC, check whether you need to feed
additional bytes into the algorithm.

The number of zeros to add at the end of the byte sequence must match the size of
the checksum, in other words, one zero for a 1-byte checksum, two zeros for a 2-byte
checksum, four zeros for a 4-byte checksum, and eight zeros for an 8-byte checksum.

o Any breakpoints in flash memory change the content of the flash. This means that
the checksum which is calculated by your application will no longer match the
initial checksum calculated by ielftool. To make the two checksums match
again, you must disable all your breakpoints in flash and any breakpoints set in flash
by C-SPY internally. The stack plugin and the debugger option Run to both require
C-SPY to set breakpoints. Read more about possible breakpoint consumers in the
C-SPY® Debugging Guide for Arm.

o By default, a symbol that you have allocated in memory by using the linker option
--place_holder is considered by C-SPY to be of the type int. If the size of the
checksum is different than the size of an int, you can change the display format of
the checksum symbol to match its size.

In the C-SPY Watch window, select the symbol and choose Show As from the
context menu. Choose the display format that matches the size of the checksum
symbol.

233

AEABI compliance

234

AEABI compliance

IAR C/C++ Development Guide
Compiling and Linking for Arm

The IAR build tools for Arm support the Embedded Application Binary Interface for
Arm, AEABI, defined by Arm Limited. This interface is based on the Intel IA64 ABI
interface. The advantage of adhering to AEABI is that any such module can be linked
with any other AEABI-compliant module, even modules produced by tools provided by
other vendors.

The IAR build tools for Arm support the following parts of the AEABI:

AAPCS Procedure Call Standard for the 32-bit Arm architecture

CPPABI C++ ABI for the 32-bit Arm architecture

AAELF ELF for the 32-bit Arm architecture

AADWARF DWARE for the 32-bit Arm architecture

RTABI Runtime ABI for the 32-bit Arm architecture

CLIBABI C library ABI for the 32-bit Arm architecture

AAPCS64 Procedure Call Standard for the 64-bit Arm architecture

VFABIA64 Vector function application binary interface
specification for the 64-bit Arm architecture

ELF64 ELF for the 64-bit Arm architecture

DWARF64 DWARE for the 64-bit Arm architecture

CPPABI64 C++ ABI for the 64-bit Arm architecture

The IAR build tools only support a bare metal platform, that is a ROM-based system
that lacks an explicit operating system.

Note:

The AEABI is specified for C89 only

The AEABI does not specify C++ library compatibility

Neither the size of an enum or of wchar_t is constant in the AEABI.

64-bit Arm has no runtime ABI or a C ABI. Therefore, the compiler option
--aeabi has no effect in 64-bit mode.

If AEABI compliance is enabled, certain preprocessor constants become real constant
variables instead.

Application-related considerations __¢

LINKING AEABI-COMPLIANT MODULES USING THE IARILINK
LINKER

When building an application using the IAR ILINK Linker, the following types of
modules can be combined:

o Modules produced using IAR build tools, both AEABI-compliant modules as well
as modules that are not AEABI-compliant
o AEABI-compliant modules produced using build tools from another vendor.

Note: To link a module produced by a compiler from another vendor, extra support
libraries from that vendor might be required.

The IAR ILINK Linker automatically chooses the appropriate standard C/C++ libraries

to use based on attributes from the object files. Imported object files might not have all

these attributes. Therefore, you might need to help ILINK choose the standard library

by verifying one or more of the following details:

o Include at least one module built with the IAR C/C++ Compiler for Arm.

o The used CPU by specifying the --cpu linker option

e If full I/O is needed, make sure to link with a Full library configuration in the
standard library

Potential incompatibilities include but are not limited to:

o The size of enum

® The size of wchar_t

e The calling convention
o The instruction set used.

When linking AEABI-compliant modules, also consider the information in the chapters
Linking using ILINK and Linking your application.

LINKING AEABI-COMPLIANT MODULES USING A
THIRD-PARTY LINKER

If you have a module produced using the IAR C/C++ Compiler and you plan to link that
module using a linker from a different vendor, that module must be AEABI-compliant,
see Enabling AEABI compliance in the compiler, page 268.

In addition, if that module uses any of the IAR-specific compiler extensions, you must
make sure that those features are also supported by the tools from the other vendor. Note
specifically:

e Support for the following extensions must be verified: #pragma pack,

__no_init root, and __ramfunc

FJ—

235

CMSIS integration (32-bit mode)

236

B E

o The following extensions are harmless to use: #pragma location/@, __arm,
__thumb, __svc, __irqg,__fig,and __nested.

ENABLING AEABI COMPLIANCE IN THE COMPILER

You can enable AEABI compliance in the compiler by setting the --aeabi option. In
this case, you must also use the --guard_calls option.

In the IDE, use the Project>Options>C/C++ Compiler>Extra Options page to
specify the --aeabi and --guard_calls options.

On the command line, use the options --aeabi and --guard_calls to enable AEABI
support in the compiler.

Alternatively, to enable support for AEABI for a specific system header file, you must
define the preprocessor symbol _AEABI_PORTABILITY_LEVEL t0 nOn-zero prior to
including a system header file, and make sure that the symbol AEABI_PORTABLE is set
to non-zero after the inclusion of the header file:

#define _AEABI_PORTABILITY_LEVEL 1
#undef _AEABI_PORTABLE

#include <header.h>

#ifndef _AEABI_PORTABLE

#error "header.h not AEABI compatible"
#endif

CMSIS integration (32-bit mode)

IAR C/C++ Development Guide
Compiling and Linking for Arm

This mechanism is deprecated and might be removed in future versions. To set up new
projects with CMSIS support, use the CMSIS-Pack Manager.

The arm\cMSIs subdirectory contains CMSIS (Cortex Microcontroller Software
Interface Standard) and CMSIS DSP header and library files, and documentation. For
more information, see developer.arm.com/tools-and-software/embedded/cmsis.

The special header file inc\c\cmsis_iar.his provided as a CMSIS adaptation of the
current version of the IAR C/C++ Compiler.

Note: CMSIS is not supported in 64-bit mode.

CMSIS DSP LIBRARY

IAR Embedded Workbench comes with prebuilt CMSIS DSP libraries in the
arm\CMSIS\Lib\IAR directory.

The names of the library files for Armv7-M MCUs are constructed in this way:

iar_cortexM{0|3|4|7}{1|b}[s|f]l_math.a

Application-related considerations __¢

where {0]3 |47} selects the Cortex-M variant, {1|b} selects the byte order, and
[s| £] indicates that the library is built for a single/double precision FPU (Cortex-M4
and Cortex-M7 only).

The names of the library files for Armv8-M MCUs are constructed in this way:
iar_McUl[d] [fsp|fdp]_math.a

where mcU selects MCU variant (ARMv8MBL (M23) or ARMv8MML (M33/M35P), 1
indicates little-endian, [d] selects support for DSP instructions, and [£fsp | £dp]
indicates that the library is built for a single/double precision FPU.

Note: The Armv81 (M55) MCU is not supported by this mechanism.

CUSTOMIZING THE CMSIS DSP LIBRARY

The source code of the CMSIS DSP library is provided in the
arm\CMSIS\DSP_Lib\Source directory. You can find an IAR Embedded Workbench
project which is prepared for building a customized DSP library in the
arm\CMSIS\DSP_Lib\Source\IAR directory.

BUILDING WITH CMSIS ON THE COMMAND LINE

This section contains examples of how to build your CMSIS-compatible application on
the command line.

CMSIS only (that is without the DSP library)

iccarm -I $EW_DIRS\arm\CMSIS\Include

Wi ith the DSP library, for Cortex-M4, little-endian, and with FPU

iccarm --endian=little --cpu=Cortex-M4 --fpu=VFPv4_sp -I
SEW_DIRS\arm\CMSIS\Include SEW_DIRS\arm\CMSIS\DSP\Include -D
ARM_MATH_CM4

ilinkarm EW_DIRS\arm\CMSIS\Lib\IAR\iar_cortexM31_math.a

BUILDING WITH CMSIS IN THE IDE

Choose Project>Options>General Options>Library Configuration to enable
CMSIS support.

When enabled, CMSIS include paths and the DSP library will automatically be used.
For more information, see the IDE Project Management and Building Guide for Arm.

237

Arm TrustZone®

238

Arm TrustZone®

IAR C/C++ Development Guide
Compiling and Linking for Arm

The Arm TrustZone® technology is a System on Chip (SOC) and CPU system-wide
approach to security.

Arm TrustZone was introduced in Armv6KZ and is supported also in Armv7-A and
Armv8-A. It does not require any specific tool support. Similar capabilities were
introduced for Cortex-M as Arm TrustZone for Armv8-M, also known as CMSE
(Cortex-M Security Extension). CMSE does require tool support, and there is a standard
interface for development tools that target CMSE. This extension includes two modes
of execution—secure and non-secure. It also adds memory protection and instructions
for validating memory access and controlled transition between the two modes.

IN 32-BIT MODE

To use TrustZone for Armv8-M, build two separate images—one for secure mode and
one for non-secure mode. The secure image can export function entries that can be used
by the non-secure image.

The IAR build tools support TrustZone by means of intrinsic functions, linker options,
compiler options, predefined preprocessor symbols, extended keywords, and the section
Veneer$SCMSE.

You can find the data types and utility functions needed for working with TrustZone in
the header file arm_cmse.h.

The function type attributes __cmse_nonsecure_call and
__cmse_nonsecure_entry add code to clear the used registers when calling from
secure code to non-secure code.

The IAR build tools follow the standard interface for development tools targeting
Cortex-M Security Extensions (CMSE), with the following exceptions:
e Variadic secure entry functions are not allowed.

o Secure entry functions with parameters or return values that do not fit in registers
are not allowed.

o Non-secure calls with parameters or return values that do not fit in registers are not
allowed.

Non-secure calls with parameters or return values in floating-point registers.

The compiler option --cmse requires the architecture Armv8-M with security
extensions, and is not supported when building ROPI (read-only
position-independent) images or RWPI (read-write position-independent) images.

For more information about Arm TrustZone, see Www.arm.com.

Application-related considerations __¢

An example using the Armv8-M Security Extensions (CMSE)

In the arm\src\ARMv8M_Secure directory, you can find an example project that
demonstrates the use of Arm TrustZone and CMSE.

The example consists of two projects:

® hello_s: The secure part of the application

® hello_ns: The non-secure part of the application
Note: You must build the secure project before building the non-secure project.

There are two entry functions in hello_s, available to hello_ns via secure gateways
in a non-secure callable region:

® secure_hello: Prints a greeting, in the style of the classic Hello world
example.

® register_secure_goodbye: A callback that returns a string printed on exiting
the secure part.

The linker will automatically generate the code for the needed secure gateways and
place them in the section Veneers$$CMSE.

To set up and build the example:

Open the example workspace hello_s.eww located in
arm\src\ARMv8M_Secure\Hello_Secure

Set up the project hello_s to run in secure mode by choosing
Project>Options>General Options>32-bit and then selecting the options TrustZone
and Mode: Secure.

Set up the project hello_ns to run in non-secure mode by choosing
Project>Options>General Options>32-bit and then selecting the options TrustZone
and Mode: Non-secure.

The non-secure part must populate a small vector at 0x200000 with addresses to the
initialization routine, non-secure top of stack, and non-secure main. This vector is used
by the secure part to set up and interact with the non-secure part. In this example, this is
done with the following code in nonsecure_hello.c:

/* Interface towards the secure part */
#pragma location=NON_SECURE_ENTRY_TABLE
__root const non_secure_init_t init_table =

{

__iar_data_init3, /* initialization function */
__section_end("CSTACK"), /* non-secure stack */
main_ns /* non-secure main */

Y

239

Arm TrustZone®

240

IAR C/C++ Development Guide
Compiling and Linking for Arm

VO 0 N o0 n

When the secure project is built, the linker will automatically generate an import
library file for the non-secure part that only includes references to functions in the
secure part that can be called from the non-secure part. Specify this file by using
Project>Options>Linker>Output>TrustZone import library.

Build the secure project.

Include the TrustZone import library file manually in the project hello_ns by
specifying an additional library: Project>Options>Linker>Library>Additional
libraries.

Build the non-secure project.

The secure project must specify the non-secure project output file as an extra image
that should be loaded by the debugger. To do this, use
Project>Options>Debugger>Images>Download extra images.

To debug the example:

To debug in the simulator, set the hello_s project as the active project by
right-clicking on the project and choosing Set as Active.

Choose Project>Options>Debugger>Driver and select Simulator.

Choose Simulator>Memory Configuration. Make sure that the option Use ranges
based on is deselected.

Select Use manual ranges and add the following new ranges:

Access type Start address End address

RAM 0x0000'0000 0x003F'FFFF
RAM 0x2000'0000 0x203F'FFFF
SFR 0x4000'0000 O0x5FFF'FFFF
SFR 0xE000'0000 OxEOQF'FFFF

Table 25: Memory ranges for TrustZone example

Click OK to close the Memory Configuration dialog box.
Start C-SPY by choosing Project>Download and Debug.
Choose View>Terminal I/O to open the Terminal I/O window.
Choose Debug>Go to start the execution.

The Terminal I/0 window should now print this text:

Hello from secure World!
Hello from non-secure World!
Goodbye, for now.

Application-related considerations __¢

IN 64-BIT MODE

TrustZone support is automatic in 64-bit mode.

Branch protection (PACBTI) — 32-bit mode only

IAR Embedded Workbench for Arm supports branch protection—the Pointer
Authentication and Branch Target Identification extension (PACBTI) for Armv8.1-M—
for cores and devices that support it. To enable branch protection, use the compiler
option --branch protection, see --branch_protection, page 333.

m In the IDE, use the Project>Options>General Options>32-bit>Pointer
authentication (PACBTI) page to enable branch protection.

PACBTI protects against two types of security exploits, called Return-Oriented
Programming (ROP) and Jump-Oriented Programming (JOP). Both these attacks use
existing pieces of code in the user application. The attacker takes control of the call stack
using, for example, stack smashing, and then overwrites the pointers stored on the stack
to point to existing vulnerable pieces of code the attacker has identified as useful. The
attacker can use this to increase the operating privileges and take full control of the
system.

Pointer authentication creates a cryptographic signature of a pointer and stores it in a
register separate from the pointer. The return address is then authenticated using this
signature before returning.

The second type of attack, Jump-Oriented Programming (JOP), works in a similar
fashion. In an ROP attack, the attacker scans the software stack for pieces of code to
exploit, looking for sequences that end in a function return. JOP, on the other hand,
attacks target code sequences that end in other forms of indirect branches, like function
pointers, exploiting the fact that BL or B instructions can target any executable address,
and not just the addresses you have defined as entry points.

To protect against JOP attacks, the instruction set includes Branch Target Identification
instructions (BTIs). If the target of an indirect branch is not a BTI instruction, a Branch
Target Exception is generated.

Note: PACBTI is designed to catch common exploitable software errors, but it requires
good software development practices to be effective.
USING BRANCH PROTECTION IN YOUR APPLICATION

To use branch protection, you must make a couple of small modifications to the
application startup code. You can also control how the linker checks that all linked
application modules support branch protection.

241

Branch protection (PACBTI) — 32-bit mode only

Branch Target Identification

To use Branch Target Identification (BTI), you must compile your application with
--branch_protection=bti or--branch_protection=bti+pac-ret, and enable
BTI in the startup code by setting the BTI_EN bit in the processor CONTROL register. If
you are using the cstartup. s file, the best way of implementing this is by defining the
function __low_level_init. For more information about cstartup.s and
__low_level_init, see System startup and termination, page 172.

#include <arm_acle.h>

void __low_level_init (void)

{
unsigned int old_ctrl = __arm_rsr ("CONTROL") ;
__arm_wsr ("CONTROL", old_ctrl | 0x10);
// Enables BTI by setting bit #4 in CONTROL

Pointer Authentication

To use Pointer Authentication (PAC), you must compile your application with
--branch_protection=pac-ret Or --branch_protection=bti+pac-ret, and
initialize an authentication key and enable PAC in the startup code. If you are using the
cstartup. s file, the best way of implementing this is by defining the function
__low_level_init. For more information about cstartup.s and
__low_level_init, see System startup and termination, page 172.

void __low_level_init (void)
{
// Set up a 128-bit key in 4 parts:
__arm_wsr ("PAC_KEY_P_0", key[0]);
__arm_wsr ("PAC_KEY_P_1", keyI[l]);
__arm_wsr ("PAC_KEY_P_2", keyl[2]);
__arm_wsr ("PAC_KEY_P_3", keyI[3]);
unsigned int old_ctrl = __arm_rsr ("CONTROL") ;
__arm_wsr ("CONTROL", old_ctrl | 0x40);
// Enables PAC by setting bit #6 in CONTROL

Linking

To ensure that all modules of the application use PAC, BT, or both, you can use one or
more of these options to control how the linker checks the modules at link time:

® --library_security, see --library_security, page 414

® --require_bti, see --require bti, page 426

® --require_pac, see --require_pac, page 427

IAR C/C++ Development Guide
242 Compiling and Linking for Arm

Application-related considerations __¢

Patching symbol definitions using $Super$$ and $Sub$$

Using the $subs$$ and $Supers$$ special patterns, you can patch existing symbol
definitions in situations where you would otherwise not be able to modify the symbol,
for example, when a symbol is located in an external library or in ROM code.

The $super$s$ special pattern identifies the original unpatched function used for calling
the original function directly.

The subs special pattern identifies the new function that is called instead of the
original function. You can use the $Sub$$ special pattern to add processing before or
after the original function.

AN EXAMPLE USING THE $SUPER$$ AND $SUB$$ PATTERNS

The following example shows how to use the $Super$$ and $Sub$$ patterns to insert
a call to the function ExtraFunc () before the call to the legacy function foo ().

extern void ExtraFunc (void) ;
extern void $Super$$foo(void) ;

/* this function is called instead of the original foo() */
void $Sub$$foo(void)
{

ExtraFunc () ; /* does some extra setup work */

SSupers$sfoo(); /* calls the original foo() function */
/* To avoid calling the original foo() function
* omit the $Super$$foo(); function call.
*/

243

Patching symbol definitions using $Super$$ and $Sub$$

IAR C/C++ Development Guide
244 Compiling and Linking for Arm

Efficient coding for
embedded applications

e Selecting data types
e Controlling data and function placement in memory
e Controlling compiler optimizations

e Facilitating good code generation

Selecting data types

For efficient treatment of data, you should consider the data types used and the most
efficient placement of the variables.

USING EFFICIENT DATA TYPES

The data types you use should be considered carefully, because this can have a large
impact on code size and code speed.

o Use int or long instead of char or short whenever possible, to avoid sign
extension or zero extension. In particular, loop indexes should always be int or
long to minimize code generation. Also, in Thumb mode, accesses through the
stack pointer (SP) is restricted to 32-bit data types, which further emphasizes the
benefits of using one of these data types.

o Use unsigned data types, unless your application really requires signed values.

o In 32-bit mode, be aware of the costs of using 64-bit data types, such as double
and long long.

e Bitfields and packed structures generate large and slow code.

o Using floating-point types on a microprocessor without a math co-processor is
inefficient, both in terms of code size and execution speed.

o Declaring a pointer to const data tells the calling function that the data pointed to
will not change, which opens for better optimizations.

For information about representation of supported data types, pointers, and structures
types, see the chapter Data representation.

245

Selecting data types

246

IAR C/C++ Development Guide
Compiling and Linking for Arm

FLOATING-POINT TYPES

Using floating-point types on a microprocessor without a math coprocessor is
inefficient, both in terms of code size and execution speed. Therefore, you should
consider replacing code that uses floating-point operations with code that uses integers,
because these are more efficient.

The compiler supports three floating-point formats—16, 32, and 64 bits. The 32-bit
floating-point type £1loat is more efficient in terms of code size and execution speed.
The 64-bit format double supports higher precision and larger numbers. The 16-bit
format is mainly useful for some specific situations.

In the compiler, the floating-point type £loat always uses the 32-bit format, and the
type double always uses the 64-bit format.

Unless the application requires the extra precision that 64-bit floating-point numbers
give, we recommend using 32-bit floating-point numbers instead.

By default, a floating-point constant in the source code is treated as being of the type
double. This can cause innocent-looking expressions to be evaluated in double
precision. In the example below a is converted from a f1loat to a double, the double
constant 1.0 is added and the result is converted back to a float:

double Test (float a)
{

return a + 1.0;

}

To treat a floating-point constant as a £1oat rather than as a double, add the suffix £
to it, for example:

double Test (float a)
{

return a + 1.0f;

}

For more information about floating-point types, see Basic data types—floating-point
types, page 453.

ALIGNMENT OF ELEMENTS IN A STRUCTURE

Some Arm cores require that when accessing data in memory, the data must be aligned.
Each element in a structure must be aligned according to its specified type requirements.
This means that the compiler might need to insert pad bytes to keep the alignment
correct.

Efficient coding for embedded applications ___¢

There are situations when this can be a problem:

o There are external demands, for example, network communication protocols are
usually specified in terms of data types with no padding in between

® You need to save data memory.
For information about alignment requirements, see Alignment, page 445.

Use the #pragma pack directive or the __packed data type attribute for a tighter
layout of the structure. The drawback is that each access to an unaligned element in the
structure will use more code.

Alternatively, write your own customized functions for packing and unpacking
structures. This is a more portable way, which will not produce any more code apart
from your functions. The drawback is the need for two views on the structure data—
packed and unpacked.

For more information about the #pragma pack directive, see pack, page 503.

ANONYMOUS STRUCTS AND UNIONS

When a structure or union is declared without a name, it becomes anonymous. The effect
is that its members will only be seen in the surrounding scope.

Example

In this example, the members in the anonymous union can be accessed, in function F,
without explicitly specifying the union name:

struct S
{
char mTag;

union
{
long mL;
float mF;
Y
} st;

void F(void)
{
St.mL = 5;

247

Controlling data and function placement in memory

The member names must be unique in the surrounding scope. Having an anonymous
struct or union at file scope, as a global, external, or static variable is also allowed.
This could for instance be used for declaring I/O registers, as in this example:

__no_init volatile
union
{
unsigned char IOPORT;
struct
{
unsigned char way: 1;
unsigned char out: 1;
Y
} @ 0x1000;

/* The variables are used here. */
void Test (void)
{
IOPORT = 0;
way = 1;
out = 1;
}

This declares an I/0 register byte TOPORT at address 0x1000. The I/O register has 2 bits
declared, way and out—both the inner structure and the outer union are anonymous.

Anonymous structures and unions are implemented in terms of objects named after the
first field, with a prefix _a_ to place the name in the implementation part of the
namespace. In this example, the anonymous union will be implemented through an
object named _A_TOPORT.

Controlling data and function placement in memory

The compiler provides different mechanisms for controlling placement of functions and
data objects in memory. To use memory efficiently, you should be familiar with these
mechanisms and know which one is best suited for different situations. You can use:

o The @ operator and the #pragma location directive for absolute placement.

Using the @ operator or the #pragma location directive, you can place individual
global and static variables at absolute addresses. Note that it is not possible to use this
notation for absolute placement of individual functions. For more information, see

Data placement at an absolute location, page 287.

IAR C/C++ Development Guide
248 Compiling and Linking for Arm

Efficient coding for embedded applications ___¢

o The @ operator and the #pragma location directive for section placement.

Using the @ operator or the #pragma location directive, you can place individual
functions, variables, and constants in named sections. The placement of these
sections can then be controlled by linker directives. For more information, see Data
and function placement in sections, page 288.

o The @ operator and the #pragma location directive for register placement

Use the @ operator or the #pragma location directive to place individual global
and static variables in registers. The variables must be declared __no_init. This is
useful for individual data objects that must be located in a specific register.

o Using the --section option, you can set the default segment for functions,
variables, and constants in a particular module. For more information, see --section,
page 370.

DATA PLACEMENT AT AN ABSOLUTE LOCATION

The @ operator, alternatively the #pragma location directive, can be used for placing
global and static variables at absolute addresses.

To place a variable at an absolute address, the argument to the @ operator and the
#pragma location directive should be a literal number, representing the actual
address. The absolute location must fulfill the alignment requirement for the variable
that should be located.

Note: All declarations of __no_init variables placed at an absolute address are
tentative definitions. Tentatively defined variables are only kept in the output from the
compiler if they are needed in the module being compiled. Such variables will be
defined in all modules in which they are used, which will work as long as they are
defined in the same way. The recommendation is to place all such declarations in header
files that are included in all modules that use the variables.

Other variables placed at an absolute address use the normal distinction between
declaration and definition. For these variables, you must provide the definition in only
one module, normally with an initializer. Other modules can refer to the variable by
using an extern declaration, with or without an explicit address.

Examples

In this example, a __no_init declared variable is placed at an absolute address. This
is useful for interfacing between multiple processes, applications, etc:

__no_init volatile char alpha @ OxFF2000;/* OK */

The next example contains two const declared objects. The first one is not initialized,
and the second one is initialized to a specific value. (The first case is useful for
configuration parameters, because they are accessible from an external interface.) Both

249

Controlling data and function placement in memory

objects are placed in ROM. Note that in the second case, the compiler is not obliged to
actually read from the variable, because the value is known.

#pragma location=0xFF2002
__no_init const int beta; /* OK */
const int gamma @ OxFF2004 = 3; /* OK */

In the first case, the value is not initialized by the compiler—the value must be set by
other means. The typical use is for configurations where the values are loaded to ROM
separately, or for special function registers that are read-only.

__no_init int epsilon @ 0xXFF2007; /* Error, misaligned. */

C++ considerations

In C++, module scoped const variables are static (module local), whereas in C they are
global. This means that each module that declares a certain const variable will contain
a separate variable with this name. If you link an application with several such modules
all containing (via a header file), for instance, the declaration:

volatile const __no_init int x @ 0x100; /* Bad in C++ */
the linker will report that more than one variable is located at address 0x100.

To avoid this problem and make the process the same in C and C++, you should declare
these variables extern, for example:

/* The extern keyword makes x public. */
extern volatile const __no_init int x @ 0x100;

Note: C++ static member variables can be placed at an absolute address just like any
other static variable.

DATA AND FUNCTION PLACEMENT IN SECTIONS

The following method can be used for placing data or functions in named sections other
than default:

o The @ operator, alternatively the #pragma location directive, can be used for
placing individual variables or individual functions in named sections. The named
section can either be a predefined section, or a user-defined section.

® The --section option can be used for placing variables and functions, which are
parts of the whole compilation unit, in named sections.

C++ static member variables can be placed in named sections just like any other static
variable.

If you use your own sections, in addition to the predefined sections, the sections must
also be defined in the linker configuration file.

IAR C/C++ Development Guide
250 Compiling and Linking for Arm

Efficient coding for embedded applications ___¢

Note: Take care when explicitly placing a variable or function in a predefined section
other than the one used by default. This is useful in some situations, but incorrect
placement can result in anything from error messages during compilation and linking to
a malfunctioning application. Carefully consider the circumstances—there might be
strict requirements on the declaration and use of the function or variable.

The location of the sections can be controlled from the linker configuration file.

For more information about sections, see the chapter Section reference.

Examples of placing variables in named sections

In the following examples, a data object is placed in a user-defined section. Note that
you must as always ensure that the section is placed in the appropriate memory area
when linking.

__no_init int alpha @ "MY_NOINIT"; /* OK */

#pragma location="MY_CONSTANTS"

const int beta = 42; /* OK */
const int gamma @ "MY_CONSTANTS" = 17; /* OK */
int theta @ "MY_ZEROS"; /* OK */
int phi @ "MY_INITED" = 4711; /* OK */

The linker will normally arrange for the correct type of initialization for each variable.
If you want to control or suppress automatic initialization, you can use the initialize
and do not initialize directives in the linker configuration file.

Examples of placing functions in named sections

void f(void) @ "MY_FUNCTIONS";

void g(void) @ "MY_FUNCTIONS"
{
}

#pragma location="MY_ FUNCTIONS"
void h(void) ;

DATA PLACEMENT IN REGISTERS (32-BIT MODE)

In 32-bit mode, the @ operator, alternatively the #pragma location directive, can be
used for placing global and static variables in a register.

To place a variable in a register, the argument to the @ operator and the #pragma
location directive should be an identifier that corresponds to an Arm core register in

251

Controlling compiler optimizations

252

the range R4-R11 (R9 cannot be specified in combination with the --rwpi command
line option).

A variable can be placed in a register only if it is declared as __no_init, has file scope,
and its size is four bytes. A variable placed in a register does not have a memory address,
so the address operator & cannot be used.

Within a module where a variable is placed in a register, the specified register will only
be used for accessing that variable. The value of the variable is preserved across function
calls to other modules because the registers R4-R11 are callee saved, and as such they
are restored when execution returns. However, the value of a variable placed in aregister
is not always preserved as expected:

e In an exception handler or library callback routine (such as the comparator function
passed to gsort) the value might not be preserved. The value will be preserved if
the command line option --1lock_regs is used for locking the register in all
modules of the application, including library modules.

o In a fast interrupt handler, the value of a variable in R8-R11 is not preserved from
outside the handler, because these registers are banked.

o The longjmp function and C++ exceptions might restore variables placed in
registers to old values, unlike other variables with static storage duration which are
not restored.

The linker does not prevent modules from placing different variables in the same
register. Variables in different modules can be placed in the same register, and another
module could use the register for other purposes.

Note: A variable placed in a register should be defined in an include file, to be included
in every module that uses the variable. An unused definition in a module will cause the
register to not be used in that module.

Controlling compiler optimizations

IAR C/C++ Development Guide
Compiling and Linking for Arm

The compiler performs many transformations on your application to generate the best
possible code. Examples of such transformations are storing values in registers instead
of memory, removing superfluous code, reordering computations in a more efficient
order, and replacing arithmetic operations by cheaper operations.

The linker should also be considered an integral part of the compilation system, because
some optimizations are performed by the linker. For instance, all unused functions and
variables are removed and not included in the final output.

Efficient coding for embedded applications ___¢

SCOPE FOR PERFORMED OPTIMIZATIONS

You can decide whether optimizations should be performed on your whole application
or on individual files. By default, the same types of optimizations are used for an entire
project, but you should consider using different optimization settings for individual files.
For example, put code that must execute quickly into a separate file and compile it for
minimal execution time, and the rest of the code for minimal code size. This will give a
small program, which is still fast enough where it matters.

You can also exclude individual functions from the performed optimizations. The
#pragma optimize directive allows you to either lower the optimization level, or
specify another type of optimization to be performed. See optimize, page 501, for
information about the pragma directive.

MULTI-FILE COMPILATION UNITS

In addition to applying different optimizations to different source files or even functions,
you can also decide what a compilation unit consists of—one or several source code
files.

By default, a compilation unit consists of one source file, but you can also use multi-file
compilation to make several source files in a compilation unit. The advantage is that
interprocedural optimizations such as inlining and cross jump have more source code to
work on. Ideally, the whole application should be compiled as one compilation unit.
However, for large applications this is not practical because of resource restrictions on
the host computer. For more information, see --mfc, page 352.

Note: Only one object file is generated, and therefore all symbols will be part of that
object file.

If the whole application is compiled as one compilation unit, it is useful to make the
compiler also discard unused public functions and variables before the interprocedural
optimizations are performed. Doing this limits the scope of the optimizations to
functions and variables that are actually used. For more information, see
--discard_unused_publics, page 342.

253

Controlling compiler optimizations

254

IAR C/C++ Development Guide
Compiling and Linking for Arm

OPTIMIZATION LEVELS

The compiler supports different levels of optimizations. This table lists optimizations
that are typically performed on each level:

Optimization level Description

None (Best debug support) Variables live through their entire scope
Dead code elimination
Redundant label elimination
Redundant branch elimination

Low Same as above but variables only live for as long as they are
needed, not necessarily through their entire scope

Medium Same as above, and:
Live-dead analysis and optimization
Dead code elimination
Redundant label elimination
Redundant branch elimination
Code hoisting
Peephole optimization
Some register content analysis and optimization
Common subexpression elimination
Code motion
Static clustering

High (Balanced) Same as above, and:
Instruction scheduling
Cross jumping
Advanced register content analysis and optimization
Loop unrolling
Function inlining
Type-based alias analysis

Table 26: Compiler optimization levels

Note: Some of the performed optimizations can be individually enabled or disabled. For
more information, see Fine-tuning enabled transformations, page 293.

A high level of optimization might result in increased compile time, and will also most
likely make debugging more difficult, because it is less clear how the generated code
relates to the source code. For example, at the low, medium, and high optimization
levels, variables do not live through their entire scope, which means processor registers
used for storing variables can be reused immediately after they were last used. Due to
this, the C-SPY Watch window might not be able to display the value of the variable
throughout its scope, or even occasionally display an incorrect value. At any time, if you
experience difficulties when debugging your code, try lowering the optimization level.

Efficient coding for embedded applications ___¢

SPEED VERSUS SIZE

At the high optimization level, the compiler balances between size and speed
optimizations. However, it is possible to fine-tune the optimizations explicitly for either
size or speed. They only differ in what thresholds that are used—speed will trade size
for speed, whereas size will trade speed for size.

If you use the optimization level High speed, the --no_size_constraints compiler
option relaxes the normal restrictions for code size expansion and enables more
aggressive optimizations.

You can choose an optimization goal for each module, or even individual functions,
using command line options and pragma directives (see -O, page 363 and optimize, page
501). For a small embedded application, this makes it possible to achieve acceptable
speed performance while minimizing the code size—Typically, only a few places in the
application need to be fast, such as the most frequently executed inner loops, or the
interrupt handlers.

Rather than compiling the whole application with High (Balanced) optimization, you
can use High (Size) in general, but override this to get High (Speed) optimization only
for those functions where the application needs to be fast.

Note: Because of the unpredictable way in which different optimizations interact, where
one optimization can enable other optimizations, sometimes a function becomes smaller
when compiled with High (Speed) optimization than if High (Size) is used. Also, using
multi-file compilation (see --mfc, page 352) can enable many optimizations to improve
both speed and size performance. It is recommended that you experiment with different
optimization settings so that you can pick the best ones for your project.

FINE-TUNING ENABLED TRANSFORMATIONS

At each optimization level you can disable some of the transformations individually. To
disable a transformation, use either the appropriate option, for instance the command
line option --no_inline, alternatively its equivalent in the IDE Function inlining, or
the #pragma optimize directive. These transformations can be disabled individually:
Common subexpression elimination

Loop unrolling

Function inlining

Code motion

Type-based alias analysis

Static clustering

Instruction scheduling

Vectorization

255

Controlling compiler optimizations

256

IAR C/C++ Development Guide
Compiling and Linking for Arm

Common subexpression elimination

Redundant re-evaluation of common subexpressions is by default eliminated at
optimization levels Medium and High. This optimization normally reduces both code
size and execution time. However, the resulting code might be difficult to debug.

Note: This option has no effect at optimization levels None and Low.

For more information about the command line option, see --no_cse, page 354.

Loop unrolling

Loop unrolling means that the code body of a loop, whose number of iterations can be
determined at compile time, is duplicated. Loop unrolling reduces the loop overhead by
amortizing it over several iterations.

This optimization is most efficient for smaller loops, where the loop overhead can be a
substantial part of the total loop body.

Loop unrolling, which can be performed at optimization level High, normally reduces
execution time, but increases code size. The resulting code might also be difficult to
debug.

The compiler heuristically decides which loops to unroll. Only relatively small loops
where the loop overhead reduction is noticeable will be unrolled. Different heuristics are
used when optimizing for speed, size, or when balancing between size and speed.

Note: This option has no effect at optimization levels None, Low, and Medium.

To disable loop unrolling, use the command line option --no_unroll, see --no_unroll,
page 362.

Function inlining

Function inlining means that a function, whose definition is known at compile time, is
integrated into the body of its caller to eliminate the overhead of the call. This
optimization normally reduces execution time, but might increase the code size.

For more information, see Inlining functions, page 100.

To disable function inlining, use the command line option --no_inline, see
--no_inline, page 356.

Code motion

Evaluation of loop-invariant expressions and common subexpressions are moved to
avoid redundant re-evaluation. This optimization, which is performed at optimization
level Medium and above, normally reduces code size and execution time. The resulting
code might however be difficult to debug.

Efficient coding for embedded applications ___¢

Note: This option has no effect at optimization levels below Medium.

For more information about the command line option, see --no_code_motion, page 354.

Type-based alias analysis

When two or more pointers reference the same memory location, these pointers are said
to be aliases for each other. The existence of aliases makes optimization more difficult
because it is not necessarily known at compile time whether a particular value is being
changed.

Type-based alias analysis optimization assumes that all accesses to an object are
performed using its declared type or as a char type. This assumption lets the compiler
detect whether pointers can reference the same memory location or not.

Type-based alias analysis is performed at optimization level High. For application code
conforming to standard C or C++ application code, this optimization can reduce code
size and execution time. However, non-standard C or C++ code might result in the
compiler producing code that leads to unexpected behavior. Therefore, it is possible to
turn this optimization off.

Note: This option has no effect at optimization levels None, Low, and Medium.

For more information about the command line option, see --no_tbaa, page 360.

Example

short F(short *pl, long *p2)
{

*p2 = 0;

*pl = 1;

return *p2;

}

With type-based alias analysis, it is assumed that a write access to the short pointed to
by p1 cannot affect the 1ong value that p2 points to. Therefore, it is known at compile
time that this function returns 0. However, in non-standard-conforming C or C++ code
these pointers could overlap each other by being part of the same union. If you use
explicit casts, you can also force pointers of different pointer types to point to the same
memory location.

Static clustering

When static clustering is enabled, static and global variables that are defined within the
same module are arranged so that variables that are accessed in the same function are
stored close to each other. This makes it possible for the compiler to use the same base
pointer for several accesses.

257

Facilitating good code generation

258

Note: This option has no effect at optimization levels None and Low.

For more information about the command line option, see --no_clustering, page 353.

Instruction scheduling

The compiler features an instruction scheduler to increase the performance of the
generated code. To achieve that goal, the scheduler rearranges the instructions to
minimize the number of pipeline stalls emanating from resource conflicts within the
Microprocessor.

For more information about the command line option, see --no_scheduling, page 359.

Vectorization

Vectorization transforms sequential loops into NEON vector operations, without the
need to write assembler code or use intrinsic functions. This enhances portability. Loops
will only be vectorized if the target processor has NEON capability and
auto-vectorization is enabled. Auto-vectorization is not supported in 64-bit mode.

Vectorization, which can be performed at optimization level High, favoring Speed,
normally reduces execution time, but increases code size. The resulting code might also
be difficult to debug.

Note: This option has no effect at optimization levels None, Low, and Medium, or for
High Balanced or High Size. To disable vectorization for individual functions, use one
of the pragma directives optimize or vectorize, see optimize, page 501 and
vectorize, page 510.

For information about the command line option, see --vectorize, page 376.

Facilitating good code generation

IAR C/C++ Development Guide
Compiling and Linking for Arm

This section contains hints on how to help the compiler generate good code:

Writing optimization-friendly source code
Saving stack space and RAM memory
Function prototypes

Integer types and bit negation

Protecting simultaneously accessed variables
Accessing special function registers

Passing values between C and assembler objects

Non-initialized variables

Efficient coding for embedded applications ___¢

WRITING OPTIMIZATION-FRIENDLY SOURCE CODE

The following is a list of programming techniques that will, when followed, enable the
compiler to better optimize the application.

o Local variables—auto variables and parameters—are preferred over static or global
variables. The reason is that the optimizer must assume, for example, that called
functions can modify non-local variables. When the life spans for local variables
end, the previously occupied memory can then be reused. Globally declared
variables will occupy data memory during the whole program execution.

o Avoid taking the address of local variables using the & operator. This is inefficient
for two main reasons. First, the variable must be placed in memory, and therefore
cannot be placed in a processor register. This results in larger and slower code.
Second, the optimizer can no longer assume that the local variable is unaffected
over function calls.

® Module-local variables—variables that are declared static—are preferred over
global variables (non-static). Also, avoid taking the address of frequently accessed
static variables.

o The compiler is capable of inlining functions, see Function inlining, page 294. To
maximize the effect of the inlining transformation, it is good practice to place the
definitions of small functions called from more than one module in the header file
rather than in the implementation file. Alternatively, you can use multi-file
compilation. For more information, see Multi-file compilation units, page 291.

e Avoid using inline assembler without operands and clobbered resources. Instead,
use SFRs or intrinsic functions if available. Otherwise, use inline assembler with
operands and clobbered resources or write a separate module in assembler
language. For more information, see Mixing C and assembler, page 193.

SAVING STACK SPACE AND RAM MEMORY

The following is a list of programming techniques that save memory and stack space:

e If stack space is limited, avoid long call chains and recursive functions.

o Avoid using large non-scalar types, such as structures, as parameters or return type.
To save stack space, you should instead pass them as pointers or, in C++, as
references.

FUNCTION PROTOTYPES
It is possible to declare and define functions using one of two different styles:

o Prototyped
e Kernighan & Ritchie C (K&R C)

259

Facilitating good code generation

260

IAR C/C++ Development Guide
Compiling and Linking for Arm

Both styles are valid C, however it is strongly recommended to use the prototyped style,
and provide a prototype declaration for each public function in a header that is included
both in the compilation unit defining the function and in all compilation units using it.

The compiler will not perform type checking on parameters passed to functions declared
using K&R style. Using prototype declarations will also result in more efficient code in
some cases, as there is no need for type promotion for these functions.

To make the compiler require that all function definitions use the prototyped style, and
that all public functions have been declared before being defined, use the
Project>Options>C/C++ Compiler>Language 1>Require prototypes compiler
option (--require_prototypes).

Prototyped style
In prototyped function declarations, the type for each parameter must be specified.

int Test(char, int); /* Declaration */

int Test (char ch, int i) /* Definition */
{
return i + ch;

}

Kernighan & Ritchie style

In K&R style—pre-Standard C—it is not possible to declare a function prototyped.
Instead, an empty parameter list is used in the function declaration. Also, the definition
looks different.

For example:

int Test(); /* Declaration */

int Test(ch, i) /* Definition */
char ch;
int i;
{
return 1 + ch;

}

INTEGER TYPES AND BIT NEGATION

In some situations, the rules for integer types and their conversion lead to possibly
confusing behavior. Things to look out for are assignments or conditionals (test
expressions) involving types with different size, and logical operations, especially bit
negation. Here, types also includes types of constants.

Efficient coding for embedded applications ___¢

In some cases there might be warnings—for example, for constant conditional or
pointless comparison—in others just a different result than what is expected. Under
certain circumstances the compiler might warn only at higher optimizations, for
example, if the compiler relies on optimizations to identify some instances of constant
conditionals. In this example, an 8-bit character, a 32-bit integer, and two’s complement
is assumed:

void F1 (unsigned char cl)
{
if (cl == ~0x80)

}

Here, the test is always false. On the right hand side, 0x80 is 0x00000080, and
~0x00000080 becomes 0xFFFFFF7F. On the left hand side, c1 is an 8-bit unsigned
character in the range 0-255, which can never be equal to 0xFFFFFF7F. Furthermore,
it cannot be negative, which means that the integral promoted value can never have the
topmost 24 bits set.

PROTECTING SIMULTANEOUSLY ACCESSED VARIABLES

Variables that are accessed asynchronously, for example, by interrupt routines or by
code executing in separate threads, must be properly marked and have adequate
protection. The only exception to this is a variable that is always read-only.

To mark a variable properly, use the volatile keyword. This informs the compiler,
among other things, that the variable can be changed from other threads. The compiler
will then avoid optimizing on the variable—for example, keeping track of the variable
in registers—will not delay writes to it, and be careful accessing the variable only the
number of times given in the source code.

For more information about the volatile type qualifier and the rules for accessing
volatile objects, see Declaring objects volatile, page 458.
ACCESSING SPECIAL FUNCTION REGISTERS

Specific header files for several Arm devices are included in the IAR product
installation. The header files are named iodevice.h and define the processor-specific
special function registers (SFRs).

Note: Each header file contains one section used by the compiler, and one section used
by the assembler.

261

Facilitating good code generation

262

IAR C/C++ Development Guide
Compiling and Linking for Arm

SFRs with bitfields are declared in the header file. This example is from
ioks32c5000a.h:

__no_init volatile union
{
unsigned short mwctl2;
struct
{
unsigned short edr: 1;
unsigned short edw: 1;
unsigned short lee: 2;
unsigned short lemd: 2;
unsigned short lepl: 2;
} mwctl2bit;
} @ 0x1000;

/* By including the appropriate include file in your code,

* it is possible to access either the whole register or any
* individual bit (or bitfields) from C code as follows.

*/

void Test ()

{
/* Whole register access */
mwctl2 = 0x1234;

/* Bitfield accesses */
mwctl2bit.edw = 1;
mwctl2bit.lepl = 3;

}

You can also use the header files as templates when you create new header files for other
Arm devices.

Efficient coding for embedded applications ___¢

PASSING VALUES BETWEEN C AND ASSEMBLER OBJECTS

The following example shows how you in your C source code can use inline assembler
to set and get values from a special purpose register:

static unsigned long get_APSR(void)

{
unsigned long value;
asm volatile("MRS %0, APSR" : "=r"(value));
return value;

}

static void set_APSR(unsigned long value)

{
asm volatile("MSR APSR, %0" :: "r"(value));

}

The general purpose register is used for getting and setting the value of the special
purpose register APSR. The same method can also be used for accessing other special
purpose registers and specific instructions.

To read more about inline assembler, see Inline assembler, page 194.

NON-INITIALIZED VARIABLES

Normally, the runtime environment will initialize all global and static variables when the
application is started.

The compiler supports the declaration of variables that will not be initialized, using the
__no_init type modifier. They can be specified either as a keyword or using the
#pragma object_attribute directive. The compiler places such variables in a
separate section.

For __no_init, the const keyword implies that an object is read-only, rather than that
the object is stored in read-only memory. It is not possible to give a__no_init object
an initial value.

Variables declared using the __no_init keyword could, for example, be large input
buffers or mapped to special RAM that keeps its content even when the application is
turned off.

For more information, see __no_init, page 471.

Note: To use this keyword, language extensions must be enabled, see -e, page 344. For
more information, see object_attribute, page 500.

263

Facilitating good code generation

IAR C/C++ Development Guide
264 Compiling and Linking for Arm

Part 2. Reference
information

This part of the IAR C/C++ Development Guide for Arm contains these

chapters:

e External interface details

e Compiler options

e Linker options

e Data representation

e Extended keywords

e Pragma directives

e Intrinsic functions

e The preprocessor

o C/C++ standard library functions

e The linker configuration file

o Section reference

e The stack usage control file

o |AR utilities

o Implementation-defined behavior for Standard C++
e Implementation-defined behavior for Standard C

e Implementation-defined behavior for C89

.hmuiuhhhi

265

AAARRIE

266

External interface details

e Invocation syntax

e Include file search procedure
e Compiler output

e Linker output

e Text encodings

e Reserved identifiers

e Diagnostics

Invocation syntax

You can use the compiler and linker either from the IDE or from the command line. See
the IDE Project Management and Building Guide for Arm for information about using
the build tools from the IDE.

COMPILER INVOCATION SYNTAX
The invocation syntax for the compiler is:
iccarm [options] [sourcefile] [options]

For example, when compiling the source file prog. ¢, use this command to generate an
object file with debug information:

iccarm prog.c --debug

The source file can be a C or C++ file, typically with the filename extension c or cpp,
respectively. If no filename extension is specified, the file to be compiled must have the
extension c.

Generally, the order of options on the command line, both relative to each other and to
the source filename, is not significant. There is, however, one exception: when you use
the -I option, the directories are searched in the same order as they are specified on the
command line.

267

Invocation syntax

268

IAR C/C++ Development Guide
Compiling and Linking for Arm

If you run the compiler from the command line without any arguments, the compiler
version number and all available options including brief descriptions are directed to
stdout and displayed on the screen.

LINKER INVOCATION SYNTAX

The invocation syntax for the linker is:

ilinkarm [arguments]

Each argument is either a command line option, an object file, or a library.
For example, when linking the object file prog. o, use this command:
ilinkarm prog.o --config configfile

If no filename extension is specified for the linker configuration file, the configuration
file must have the extension icf.

Generally, the order of arguments on the command line is not significant. There is,
however, one exception: when you supply several libraries, the libraries are searched in
the same order that they are specified on the command line. Any default libraries are
always searched last.

The output executable image will be placed in a file named a . out, unless the linker
option --output or -o is used.

If you run ILINK from the command line without any arguments, the ILINK version
number and all available options including brief descriptions are directed to stdout and
displayed on the screen.

PASSING OPTIONS
There are three different ways of passing options to the compiler and linker:

o Directly from the command line

Specify the options on the command line after the iccarmor ilinkarm commands,
see Invocation syntax, page 311.

o Via environment variables

The compiler or linker automatically appends the value of the environment variables
to every command line, see Environment variables, page 313.

e Via a text file, using the - £ option, see -f, page 346.
For general guidelines for the options syntax, an options summary, and a detailed

description of each option, see Compiler options, page 323 and Linker options, page
393.

External interface details ___¢

ENVIRONMENT VARIABLES
These environment variables can be used with the compiler:

Environment variable Description

C_INCLUDE Specifies directories to search for include files, for example:
C_INCLUDE=c:\my_programs\embedded
workbench 9.n\arm\inc;c:\headers

QCCARM Specifies command line options, for example: QCCARM=-1A
asm.lst

Table 27: Compiler environment variables

This environment variable can be used with ILINK:

Environment variable Description

ILINKARM_CMD_LINE Specifies command line options, for example:
ILINKARM_CMD_LINE=--config full.icf
--silent

Table 28: ILINK environment variables

Include file search procedure
This is a detailed description of the compiler’s #include file search procedure:
o The string found between the " " and <> in the #include directive is used verbatim
as a source file name.

o If the name of the #include file is an absolute path specified in angle brackets or
double quotes, that file is opened.

e If the compiler encounters the name of an #include file in angle brackets, such as:
#include <stdio.h>
it searches these directories for the file to include:
1 The directories specified with the -I option, in the order that they were
specified, see -/, page 349.
2 The directories specified using the C_INCLUDE environment variable, if any, see

Environment variables, page 313.

3 The automatically set up library system include directories. See --dlib_config,
page 342.

e If the compiler encounters the name of an #include file in double quotes, for
example:

#include "vars.h"

269

Compiler output

270

it searches the directory of the source file in which the #include statement occurs,
and then performs the same sequence as for angle-bracketed filenames.

If there are nested #include files, the compiler starts searching the directory of the file
that was last included, iterating upwards for each included file, searching the source file
directory last. For example:

src.c in directory dir\src
#include "src.h"

src.h in directory dir\include
#include "config.h"

When dir\exe is the current directory, use this command for compilation:
iccarm ..\src\src.c -I..\include -I..\debugconfig

Then the following directories are searched in the order listed below for the file
config.h, which in this example is located in the dir\debugconfig directory:

dir\include Current file is src.h.

dir\src File including current file (sxc.c).
dir\include As specified with the first - I option.
dir\debugconfig As specified with the second -I option.

Use angle brackets for standard header files, like stdio.h, and double quotes for files
that are part of your application.

Note: Both \ and / can be used as directory delimiters.

For more information, see Overview of the preprocessor, page 563.

Compiler output

IAR C/C++ Development Guide
Compiling and Linking for Arm

The compiler can produce the following output:

e A linkable object file

The object files produced by the compiler use the industry-standard format ELF. By
default, the object file has the filename extension o.

o Optional list files

Various kinds of list files can be specified using the compiler option -1, see -/, page
349. By default, these files will have the filename extension 1st.

External interface details ___¢

o Optional preprocessor output files

A preprocessor output file is produced when you use the --preprocess option. The
file will have the filename extension i, by default.

e Diagnostic messages

Diagnostic messages are directed to the standard error stream and displayed on the
screen, and printed in an optional list file. For more information about diagnostic
messages, see Diagnostics, page 318.

o Error return codes

These codes provide status information to the operating system which can be tested
in a batch file, see Error return codes, page 320.

o Size information

Information about the generated amount of bytes for functions and data for each
memory is directed to the standard output stream and displayed on the screen. Some
of the bytes might be reported as shared.

Shared objects are functions or data objects that are shared between modules. If any
of these occur in more than one module, only one copy is retained. For example, in
some cases inline functions are not inlined, which means that they are marked as
shared, because only one instance of each function will be included in the final
application. This mechanism is sometimes also used for compiler-generated code or
data not directly associated with a particular function or variable, and when only one
instance is required in the final application.

Linker output

The linker can produce the following output:

e An absolute executable image

The final output produced by the linker is an absolute object file containing the
executable image that can be put into an EPROM, downloaded to a hardware
emulator, or executed on your PC using the IAR C-SPY Debugger Simulator. By
default, the file has the filename extension out. The output format is always in ELF,
which optionally includes debug information in the DWARF format.

e Optional logging information

During operation, the linker logs its decisions on stdout, and optionally to a file.
For example, if a library is searched, whether a required symbol is found in a library
module, or whether a module will be part of the output. Timing information for each
ILINK subsystem is also logged.

271

Text encodings

272

Optional map files

A linker map file—containing summaries of linkage, runtime attributes, memory,
and placement, as well as an entry list— can be generated by the linker option --map,
see --map, page 417. By default, the map file has the filename extension map.

Diagnostic messages

Diagnostic messages are directed to stderr and displayed on the screen, as well as
printed in the optional map file. For more information about diagnostic messages, see
Diagnostics, page 318.

Error return codes

The linker returns status information to the operating system which can be tested in
a batch file, see Error return codes, page 320.

Size information about used memory and amount of time

Information about the generated number of bytes for functions and data for each
memory is directed to stdout and displayed on the screen.

An import library for use when building a non-secure image, a relocatable ELF
object module containing symbols and their addresses. See the linker option
--import_cmse_lib_out, page 413.

Text encodings

IAR C/C++ Development Guide
Compiling and Linking for Arm

Text files read or written by IAR tools can use a variety of text encodings:

Raw

This is a backward-compatibility mode for C/C++ source files. Only 7-bit ASCII
characters can be used in symbol names. Other characters can only be used in
comments, literals, etc. This is the default source file encoding if there is no Byte
Order Mark (BOM).

The system default locale

The locale that you have configured your Windows OS to use.

UTEF-8

Unicode encoded as a sequence of 8-bit bytes, with or without a Byte Order Mark.
UTF-16

Unicode encoded as a sequence of 16-bit words using a big-endian or little-endian
representation. These files always start with a Byte Order Mark.

In any encoding other than Raw, you can use Unicode characters of the appropriate kind
(alphabetic, numeric, etc) in the names of symbols.

When an IAR tool reads a text file with a Byte Order Mark, it will use the appropriate
Unicode encoding, regardless of the any options set for input file encoding.

External interface details ___¢

For source files without a Byte Order Mark, the compiler will use the Raw encoding,
unless you specify the compiler option --source_encoding. See --source_encoding,
page 372.

For source files without a Byte Order Mark, the assembler will use the Raw encoding
unless you specify the assembler option --source_encoding.

For other text input files, like the extended command line (.xc1 files), without a Byte
Order Mark, the IAR tools will use the system default locale unless you specify the
compiler option --ut£8_text_in, in which case UTF-8 will be used. See

--utf8 text in, page 375.

For compiler list files and preprocessor output, the same encoding as the main source
file will be used by default. Other tools that generate text output will use the UTF-8
encoding by default. You can change this by using the compiler options --text_out
and --no_bom. See --text out, page 373 and --no_bom, page 353.

CHARACTERS AND STRING LITERALS

When you compile source code, characters (x) and string literals (xx) are handled as

follows:

'x', xx" Characters in untyped character and string literals are copied
verbatim, using the same encoding as in the source file.

ug " xx" Characters in UTF-8 string literals are converted to UTF-8.

u'x', u"xx" Characters in UTF-16 character and string literals are converted
to UTF-16.

U'x', U'xx" Characters in UTF-32 character and string literals are converted
to UTF-32.

L'x', L"xx" Characters in wide character and string literals are converted to
UTEF-32.

Reserved identifiers

Some identifiers are reserved for use by the implementation. Some of the more
important identifiers that the C/C++ standards reserve for any use are:

o Identifiers that contain a double underscore (__)

o Identifiers that begin with an underscore followed by an uppercase letter
In addition to this, the IAR tools reserve for any use:

o Identifiers that contain a double dollar sign ($3)

273

Diagnostics

274

o Identifiers that contain a question mark (?)

More specific reservations are in effect in particular circumstances, see the C/C++
standards for more information.

Diagnostics

IAR C/C++ Development Guide
Compiling and Linking for Arm

This section describes the format of the diagnostic messages and explains how
diagnostic messages are divided into different levels of severity.
MESSAGE FORMAT FOR THE COMPILER

All diagnostic messages are issued as complete, self-explanatory messages. A typical
diagnostic message from the compiler is produced in the form:

filename, linenumber levell[tag]: message

with these elements:

filename The name of the source file in which the issue was encountered
linenumber The line number at which the compiler detected the issue
level The level of seriousness of the issue

tag A unique tag that identifies the diagnostic message

message An explanation, possibly several lines long

Diagnostic messages are displayed on the screen, as well as printed in the optional list
file.

Use the option --diagnostics_tables to list all possible compiler diagnostic
messages.
MESSAGE FORMAT FOR THE LINKER

All diagnostic messages are issued as complete, self-explanatory messages. A typical
diagnostic message from ILINK is produced in the form:

level[tag]: message

External interface details ___¢

with these elements:

level The level of seriousness of the issue
tag A unique tag that identifies the diagnostic message
message An explanation, possibly several lines long

Diagnostic messages are displayed on the screen and printed in the optional map file.

Use the option --diagnostics_tables to list all possible linker diagnostic messages.

SEVERITY LEVELS

The diagnostic messages are divided into different levels of severity:

Remark

A diagnostic message that is produced when the compiler or linker finds a construct that
can possibly lead to erroneous behavior in the generated code. Remarks are by default
not issued, but can be enabled, see --remarks, page 367.

Woarning

A diagnostic message that is produced when the compiler or linker finds a potential
problem which is of concern, but which does not prevent completion of the compilation
or linking. Warnings can be disabled by use of the command line option

--no_warnings.

Error

A diagnostic message that is produced when the compiler or linker finds a serious error.
An error will produce a non-zero exit code.

Fatal error

A diagnostic message produced when the compiler or linker finds a condition that not
only prevents code generation, but also makes further processing pointless. After the
message is issued, compilation or linking terminates. A fatal error will produce a
non-zero exit code.

SETTING THE SEVERITY LEVEL

The diagnostic messages can be suppressed or the severity level can be changed for all
diagnostics messages, except for fatal errors and some of the regular errors.

For information about the compiler options that are available for setting severity levels,
see the chapter Compiler options.

275

Diagnostics

276

IAR C/C++ Development Guide
Compiling and Linking for Arm

For information about the pragma directives that are available for setting severity levels
for the compiler, see the chapter Pragma directives.

INTERNAL ERROR

An internal error is a diagnostic message that signals that there was a serious and
unexpected failure due to a fault in the compiler or linker. It is produced using this form:

Internal error: message

where message is an explanatory message. If internal errors occur, they should be
reported to your software distributor or IAR Technical Support. Include enough
information to reproduce the problem, typically:

The product name

The version number of the compiler or linker, which can be seen in the header of the
list or map files generated by the compiler or linker, respectively

Your license number
The exact internal error message text

The files involved of the application that generated the internal error

A list of the options that were used when the internal error occurred.

ERROR RETURN CODES

The compiler and linker return status information to the operating system that can be
tested in a batch file.

These command line error codes are supported:

Code Description

0 Compilation or linking successful, but there might have been warnings.

| Woarnings were produced and the option
--warnings_affect_exit_code was used.

2 Errors occurred.
3 Fatal errors occurred, making the tool abort.
4 Internal errors occurred, making the tool abort.

Table 29: Error return codes

Compiler options

e Options syntax
e Summary of compiler options

e Descriptions of compiler options

Options syntax

Compiler options are parameters you can specify to change the default behavior of the
compiler. You can specify options from the command line—which is described in more
detail in this section—and from within the IDE.

See the online help system for information about the compiler options available in the
IDE and how to set them.

TYPES OF OPTIONS

There are two types of names for command line options, short names and /ong names.
Some options have both.

e A short option name consists of one character, and it can have parameters. You
specify it with a single dash, for example -e

o A long option name consists of one or several words joined by underscores, and it
can have parameters. You specify it with double dashes, for example
--char_is_signed.

For information about the different methods for passing options, see Passing options,
page 312.
RULES FOR SPECIFYING PARAMETERS

There are some general syntax rules for specifying option parameters. First, the rules
depending on whether the parameter is optional or mandatory, and whether the option
has a short or a long name, are described. Then, the rules for specifying filenames and
directories are listed. Finally, the remaining rules are listed.

Rules for optional parameters

For options with a short name and an optional parameter, any parameter should be
specified without a preceding space, for example:

-0 or -Oh

277

Options syntax

278

IAR C/C++ Development Guide
Compiling and Linking for Arm

For options with a long name and an optional parameter, any parameter should be
specified with a preceding equal sign (=), like this:

--example_option=value

Rules for mandatory parameters

For options with a short name and a mandatory parameter, the parameter can be
specified either with or without a preceding space, for example:

-I..\srcor-I ..\src\

For options with a long name and a mandatory parameter, the parameter can be specified
either with a preceding equal sign (=) or with a preceding space, for example:

--diagnostics_tables=MyDiagnostics.lst
or

--diagnostics_tables MyDiagnostics.lst

Rules for options with both optional and mandatory parameters

For options taking both optional and mandatory parameters, the rules for specifying the
parameters are:

e For short options, optional parameters are specified without a preceding space
e For long options, optional parameters are specified with a preceding equal sign (=)

e For short and long options, mandatory parameters are specified with a preceding
space.

For example, a short option with an optional parameter followed by a mandatory
parameter:

-1A MyList.lst

For example, a long option with an optional parameter followed by a mandatory
parameter:

--preprocess=n PreprocOutput.lst

Rules for specifying a filename or directory as parameters
These rules apply for options taking a filename or directory as parameters:

o Options that take a filename as a parameter can optionally take a file path. The path
can be relative or absolute. For example, to generate a listing to the file List.1st
in the directory . .\listings\:

iccarm prog.c -1 ..\listings\List.lst

Compiler options °

e For options that take a filename as the destination for output, the parameter can be
specified as a path without a specified filename. The compiler stores the output in
that directory, in a file with an extension according to the option. The filename will
be the same as the name of the compiled source file, unless a different name was
specified with the option -o, in which case that name is used. For example:

iccarm prog.c -1 ..\listings\

The produced list file will have the default name . .\1listings\prog.lst
o The current directory is specified with a period (.). For example:

iccarm prog.c -1

/ can be used instead of \ as the directory delimiter.

o By specifying -, input files and output files can be redirected to the standard input
and output stream, respectively. For example:

iccarm prog.c -1 -

Additional rules
These rules also apply:

e When an option takes a parameter, the parameter cannot start with a dash (-)
followed by another character. Instead, you can prefix the parameter with two
dashes—this example will create a list file called -r:

iccarm prog.c -1 ---r

e For options that accept multiple arguments of the same type, the arguments can be
provided as a comma-separated list (without a space), for example:
--diag_warning=Be0001,Be0002
Alternatively, the option can be repeated for each argument, for example:

--diag_warning=Be0001
--diag_warning=Be0002

Summary of compiler options

This table summarizes the compiler command line options:

Command line option Description

--aapcs Specifies the calling convention

--aarché64 Generates code using the A64 instruction set
--abi Specifies a data model for generating code using

the A64 instruction set

--aeabi Enables AEABI-compliant code generation

Table 30: Compiler options summary

279

Summary of compiler options

280

IAR C/C++ Development Guide
Compiling and Linking for Arm

Command line option

Description

--align_sp_on_irqg

——arm

--branch__protection

--c89
--char_is_signed
--char_is_unsigned
--cmse

--cpu

--cpu_mode

—-—Cc++

-D

--debug

--dependencies

--deprecated_feature_warnings

--diag_error
--diag_remark
--diag_suppress
--diag_warning

--diagnostics_tables

--discard_unused_publics

--dlib_config

--do_explicit_zero_opt_in_nam

ed_sections

-e

--enable_hardware_workaround

--enable_restrict

--endian

--enum_is_int

Generates code to align SP on entry to __irqg
functions

Sets the default function mode to Arm

Generates code with support for branch
protection using BTI, PAC, or both

Specifies the C89 dialect

Treats char as signed

Treats char as unsigned

Enables CMSE secure object generation
Specifies a processor variant

Specifies the default CPU mode for functions
Specifies Standard C++

Defines preprocessor symbols

Generates debug information

Lists file dependencies

Enables/disables warnings for deprecated features
Treats these as errors

Treats these as remarks

Suppresses these diagnostics

Treats these as warnings

Lists all diagnostic messages

Discards unused public symbols

Uses the system include files for the DLIB library
and determines which configuration of the library
to use

For user-named sections, treats explicit
initializations to zero as zero initializations

Enables language extensions
Enables a specific hardware workaround
Enables the Standard C keyword restrict

Specifies the byte order of the generated code and
data

Sets the minimum size on enumeration types

Table 30: Compiler options summary (Continued)

Command line option

Compiler options °

Description

-—error_limit

-f
—-f

--fpu

--generate_entries_without_bo
unds

--guard_calls

--header_context
-I
--ignore_uninstrumented_point

ers

-1

--libc++

--lock_regs

--macro_positions_in_diagnost

ics

--make_all_definitions_weak

--max_cost_constexpr_call

--max_depth_constexpr_call

--mfc

--no_alignment_reduction

--no_bom

--no_call_frame_info

Specifies the allowed number of errors before
compilation stops

Extends the command line

Extends the command line, optionally with a
dependency.

Selects the type of floating-point unit

Generates extra functions for use from
non-instrumented code. See the C-RUN
documentation in the C-SPY® Debugging Guide for
Arm.

Enables guards for function static variable
initialization

Lists all referred source files and header files
Specifies include file path

Disables checking of accesses via pointers from
non-instrumented code. See the C-RUN
documentation in the C-SPY® Debugging Guide for
Arm.

Creates a list file
Makes the compiler and linker use the Libc++
library.

Prevents the compiler from using specified
registers

Obtains positions inside macros in diagnostic
messages

Turns all variable and function definitions into
weak definitions.

Specifies the limit for constexpr evaluation cost

Specifies the limit for constexpr recursion
depth

Enables multi-file compilation

Disables alignment reduction for simple Thumb
functions

Omits the Byte Order Mark for UTF-8 output files

Disables output of call frame information

Table 30: Compiler options summary (Continued)

281

Summary of compiler options

282

IAR C/C++ Development Guide
Compiling and Linking for Arm

Command line option

Description

--no_clustering
--no_code_motion
--no_const_align
--no_cse

--no_default_fp_contract

--no_exceptions
--no_fragments
--no_inline

--no_literal_pool

--no_loop_align

--no_mem_idioms

--no_normalize_file_macros

--no_path_in_file_macros

--no_rtti
--no_rw_dynamic_init
--no_scheduling

--no_size_constraints

--no_static_destruction

--no_system_include

--no_tbaa
--no_typedefs_in_diagnostics
--no_unaligned_access

--no_uniform_attribute_syntax

--no_unroll

Disables static clustering optimizations

Disables code motion optimization

Disables the alignment optimization for constants.
Disables common subexpression elimination

Sets the default value for STDC FP_CONTRACT
to OFF.

Disables C++ exception support
Disables section fragment handling
Disables function inlining

Generates code that should run from a memory
region where it is not allowed to read data, only to
execute code

Disables the alignment of labels in loops

Makes the compiler not optimize certain memory
access patterns

Disables normalization of paths in the symbols
__FILE__and __BASE_FILE__

Removes the path from the return value of the
symbols __FILE__ and __BASE_FILE__

Disables C++ RTTI support
Disables runtime initialization of static C variables.
Disables the instruction scheduler

Relaxes the normal restrictions for code size
expansion when optimizing for speed.

Disables destruction of C++ static variables at
program exit

Disables the automatic search for system include
files

Disables type-based alias analysis
Disables the use of typedef names in diagnostics
Avoids unaligned accesses

Specifies the default syntax rules for IAR type
attributes

Disables loop unrolling

Table 30: Compiler options summary (Continued)

Command line option

Compiler options °

Description

--no_var_align

--no_warnings
--no_wrap_diagnostics

--nonportable_path_warnings

-0

-o
--only_stdout
—--output

--pending_instantiations

--predef_macros

--preinclude

--preprocess
--public_equ
-r

--relaxed_fp

--remarks

--require_prototypes

--ropi

--ropi_cb

--runtime_checking

--rwpi

Aligns variable objects based on the alignment of
their type.

Disables all warnings
Disables wrapping of diagnostic messages

Generates a warning when the path used for
opening a source header file is not in the same
case as the path in the file system.

Sets the optimization level

Sets the object filename. Alias for --output.
Uses standard output only

Sets the object filename

Sets the maximum number of instantiations of a
given C++ template.

Lists the predefined symbols.

Includes an include file before reading the source
file

Generates preprocessor output

Defines a global named assembler label

Generates debug information. Alias for --debug.
Relaxes the rules for optimizing floating-point
expressions

Enables remarks

Verifies that functions are declared before they are
defined

Generates code that uses PC-relative references
to address code and read-only data.
Makes all accesses to constant data,

base-addressed relative to the register R8

Enables runtime error checking. See the C-RUN
documentation in the C-SPY® Debugging Guide for
Arm.

Generates code that uses an offset from the static
base register to address-writable data.

Table 30: Compiler options summary (Continued)

283

Summary of compiler options

284

IAR C/C++ Development Guide
Compiling and Linking for Arm

Command line option

Description

--rwpi_near

--section
--section_prefix
--silent
--source_encoding
--stack_protection

--strict

--system_include_dir
--text_out
--thumb

--uniform_attribute_syntax

--use_c++_inline
--use_paths_as_written

--use_unix_directory_separato

rs
--utf8_text_in
--vectorize

--version

--vla

--warn_about_c_style_casts

--warn_about_incomplete_const
ructors

--warn_about_missing_field_in

itializers
--warnings_affect_exit_code

--warnings_are_errors

Generates code that uses an offset from the static
base register to address-writable data. Addresses
max 64 Kbytes of memory.

Changes a section name

Adds a prefix to section names

Sets silent operation

Specifies the encoding for source files
Enables stack protection

Checks for strict compliance with Standard
C/C++

Specifies the path for system include files
Specifies the encoding for text output files
Sets default function mode to Thumb

Specifies the same syntax rules for IAR type
attributes as for const and volatile

Use C++ inline semantics in C
Use paths as written in debug information

Uses / as directory separator in paths

Uses the UTF-8 encoding for text input files
Enables generation of NEON vector instructions

Sends compiler output to the console and then
exits.

Enables VLA support

Makes the compiler warn when C-style casts are
used in C++ source code

Makes the compiler warn about constructors that
do not initialize all members

Makes the compiler warn about fields without
explicit initializers
Warnings affect exit code

Warnings are treated as errors

Table 30: Compiler options summary (Continued)

Compiler options °

Descriptions of compiler options
The following section gives detailed reference information about each compiler option.
If you use the options page Extra Options to specify specific command line options,

the IDE does not perform an instant check for consistency problems like conflicting
options, duplication of options, or use of irrelevant options.

--aapcs
Syntax aapcs={std|vfp}
Parameters
std Processor registers are used for floating-point parameters and
return values in function calls according to standard AAPCS.
std is the default when the software FPU is selected.
vEp VFP registers are used for floating-point parameters and
return values. The generated code is not compatible with
AEABI code. vfp is the default when a VFP unit is used.
Description Use this option to specify the floating-point calling convention. In 64-bit mode, this
option has no effect.
To set this option, use Project>Options>C/C++ Compiler>Extra Options.
--aarch64
Syntax --aarché64
Description Use this option to generate code using the A64 instruction set in the AArch64 state for
the assembler directive CODE.
Note: This option has the same effect as the --cpu_mode=aarch64 option.
See also --abi, page 332 and --cpu_mode, page 336.

To set this option, use Project>Options>General Options>Target>Execution mode

285

Descriptions of compiler options

--abi

Syntax --abi={ilp32|1p64}

Parameters
ilp32 Generates A64 code for the ILP32 data model. Defines the

symbol __T1rpP32__
1p64 Generates A64 code for the LP64 data model. Defines the
symbol __LpP64__.

Description Use this option to specify a data model for the generation of code using the A64
instruction set in the AArch64 state.

See also --aarch64, page 331 and --cpu_mode, page 336.

To set related options, choose:
Project>Options>General Options>Target>Execution mode
and
Project>Options>General Options>64-bit>Data model
--aeabi

Syntax --aeabi

Description Use this option to generate AEABI-compliant object code. In 64-bit mode, this option
has no effect.
Note: This option must be used together with the --guard_calls option.
Note: This option cannot be used together with C++ header files.

See also AEABI compliance, page 266 and --guard_calls, page 348.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

IAR C/C++ Development Guide
286 Compiling and Linking for Arm

Compiler options _o

--align_sp_on_irq
Syntax --align_sp_on_irqg
Description Use this option to align the stack pointer (SP) on entry to __irg declared functions. In
64-bit mode, this option has no effect.

This is especially useful for nested interrupts, where the interrupted code uses the same
SP as the interrupt handler. This means that the stack might only have 4-byte alignment,
instead of the 8-byte alignment required by AEABI (and some instructions generated by
the compiler for some cores).

See also __irg, page 468.
To set this option, use Project>Options>C/C++ Compiler>Extra Options.

=-=arm
Syntax --arm
Description Use this option to set default function mode to Arm (A32 in 32-bit mode). In 64-bit

mode, this option has no effect.
Note: This option has the same effect as the --cpu_mode=arm option.

Project>Options>C/C++ Compiler>Code>Processor mode>Arm

--branch_protection

Syntax --branch_protection={bti|pac-ret|bti+pac-ret}
Parameters
bti Enables branch protection using Branch Target
Identification.
pac-ret Enables branch protection using Pointer Authentication for

function return addresses.

bti+pac-ret Enables branch protection using both Branch Target
Identification and Pointer Authentication.

287

Descriptions of compiler options

Description

See also

--c89

Syntax
Description

See also

--char_is_signed

Syntax

Description

--char_is_unsigned

Syntax

Description

IAR C/C++ Development Guide
288 Compiling and Linking for Arm

Use this option to make the compiler generate code with support for branch protection
using Branch Target Identification (BTI), Pointer Authentication (PAC), or both
(PACBTI). In 64-bit mode, this option has no effect.

Branch protection (PACBTI) — 32-bit mode only, page 273.

Project>Options>General Options>32-bit>Pointer authentication (PACBTI)

--c89
Use this option to enable the C89 C dialect instead of Standard C.

C language overview, page 227.

Project>Options>C/C++ Compiler>Language 1>C dialect>C89

--char_is_signed

By default, the compiler interprets the plain char type as unsigned. Use this option to
make the compiler interpret the plain char type as signed instead. This can be useful
when you, for example, want to maintain compatibility with another compiler.

Note: The runtime library is compiled without the --char_is_signed option and
cannot be used with code that is compiled with this option.

Project>Options>C/C++ Compiler>Language 2>Plain ‘char’ is

--char_is_unsigned

Use this option to make the compiler interpret the plain char type as unsigned. This is
the default interpretation of the plain char type.

Project>Options>C/C++ Compiler>Language 2>Plain ‘char’ is

-=cmse

--cpu

Syntax

Description

See also

Syntax

Parameters

Description

Compiler options _o

——-Ccmse

This option enables language extensions for TrustZone for Armv8-M. In 64-bit mode,
this option has no effect. Use this option for object files that are to be linked in a secure
image. The option allows the use of instructions, keywords, and types that are not
available for non-secure code:

o The function attributes _cmse_nonsecure_call and _cmse_nonsecure_entry.

o The functions for CMSE have names with the prefix cmse_, and are defined in the
header file arm_cmse.h.

Note: To use this option, you must first select the option Project>Options>General
Options>32-bit>TrustZone.

Arm TrustZone®, page 270 and ARMVS-M Security Extensions: Requirements on
Development Tools (ARM-ECM-0359818).

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--cpu={core|list}

core Specifies a specific processor variant

list Lists all supported values for the option --cpu

Use this option to select the architecture or processor variant for which the code is to be
generated.

The default core is Cortex-M3.

In 32-bit mode: Some of the supported values for the --cpu option are:

6-M 7-A TE-M

7-M 7-R 7-5
8-A.AArch32 8-M.baseline 8-M.mainline
8-R.AArch32 Cortex-A5 Cortex-A7
Cortex-A8 Cortex-A9 Cortex-Al2

289

Descriptions of compiler options

290

See also

--cpu_mode

Syntax

Parameters

IAR C/C++ Development Guide
Compiling and Linking for Arm

Cortex-Al5

Cortex-MO+

Cortex-M3

Cortex-M33.fp

(floating-point unit with
support for single
precision)

Cortex-M4F
Cortex-M7.fp.dp

(floating-point unit with
support for double
precision)

Cortex-R5
Cortex-R7

Cortex-A32.no_neon

Cortex-Al7

Cortex-M23

Cortex-M33

Cortex-M33.no_se

(core without support for
TrustZone)

Cortex-M55
Cortex-M7.fp.sp

(floating-point unit with
support for single
precision)

Cortex-R52

Cortex-A32

Cortex-M0O
Cortex-M23.no_se

(core without support for
TrustZone)

Cortex-M33.no_dsp

(core without integer DSP
extension)

Cortex-M4

Cortex-M7

Cortex-R4

Cortex-R52.no_neon

Cortex-A32.no_crypto

In 64-bit mode: Some of the supported values for the --cpu option are:

8-a.AArch64

Cortex-AS55

Cortex-A35

Cortex-A57

Processor variant, page 74.

Cortex-A53

Cortex-A72

Project>Options>General Options>Target>Processor variant

--cpu_mode={arm|a|thumb|t|a64}

arm, a (default)

Selects the A32 instruction set in 32-bit mode.

Compiler options °

thumb, t Selects the T32 or T instruction set in 32-bit mode.
a64 Selects the A64 instruction set in 64-bit mode.
Description Use this option to select the default mode for functions.
See also --aarch64, page 331.

Project>Options>General Options>Target>Processor variant

-=Cc++
Syntax ——Cc++
Description By default, the language supported by the compiler is C. If you use Standard C++, you
must use this option to set the language the compiler uses to C++.
See also Using C++, page 237.
Project>Options>C/C++ Compiler>Language 1>C++
-D
Syntax -D symbol[=value]
Parameters
symbol The name of the preprocessor symbol
value The value of the preprocessor symbol
Description Use this option to define a preprocessor symbol. If no value is specified, 1 is used. This

option can be used one or more times on the command line.

The option -D has the same effect as a #define statement at the top of the source file:
-Dsymbol

is equivalent to:

#define symbol 1

291

Descriptions of compiler options

292

--debug, -r

Syntax

Description

--dependencies

Syntax

Parameters

IAR C/C++ Development Guide
Compiling and Linking for Arm

To get the equivalence of:

#define FOO

specify the = sign but nothing after, for example:
-DFO0=

Project>Options>C/C++ Compiler>Preprocessor>Defined symbols

--debug
-r

Use the --debug or -r option to make the compiler include information in the object
modules required by the IAR C-SPY® Debugger and other symbolic debuggers.
Note: Including debug information will make the object files larger than otherwise.

Project>Options>C/C++ Compiler>Output>Generate debug information

--dependencies[=[1i|m|n][s][1|w][bl] {filename|directory|+}

i (default) Lists only the names of files

m Lists in makefile style (multiple rules)

n Lists in makefile style (one rule)

s Suppresses system files

1 Uses the locale encoding instead of UTF-8

w Uses little-endian UTF-16 instead of UTF-8

b Uses a Byte Order Mark (BOM) in UTF-8 output

+ Gives the same output as -o, but with the filename extension d

See also Rules for specifying a filename or directory as parameters, page 324.

Compiler options °

Description Use this option to make the compiler list the names of all source and header files opened
for input into a file with the default filename extension i.

Example If --dependencies or --dependencies=i is used, the name of each opened input
file, including the full path, if available, is output on a separate line. For example:

c:\iar\product\include\stdio.h
d:\myproject\include\foo.h

If --dependencies=mis used, the output is in makefile style. For each input file, one
line containing a makefile dependency rule is produced. Each line consists of the name
of the object file, a colon, a space, and the name of an input file. For example:

foo.o0: c:\iar\product\include\stdio.h
foo.o: d:\myproject\include\foo.h

An example of using --dependencies with a popular make utility, such as GMake
(GNU make):

I Set up the rule for compiling files to be something like:

%.0 : %.C
$(ICC) S$(ICCFLAGS) $< --dependencies=m $*.d

That is, in addition to producing an object file, the command also produces a
dependency file in makefile style—in this example, using the extension . d.

2 Include all the dependency files in the makefile using, for example:
-include $(sources:.c=.d)
Because of the dash (-) it works the first time, when the . d files do not yet exist.

mm This option is not available in the IDE.

--deprecated_feature_warnings

Syntax --deprecated_feature_warnings=[+|-]featurel, [+|-] feature, ...]
Parameters
feature A feature can be attribute_syntax or
segment_pragmas

293

Descriptions of compiler options

Description

--diag_error

Syntax

Parameters

Description

--diag_remark

Syntax

Parameters

IAR C/C++ Development Guide
294 Compiling and Linking for Arm

Use this option to disable or enable warnings for the use of a deprecated feature. The
deprecated features are:
® attribute_syntax

See --uniform_attribute syntax, page 374, --no_uniform_attribute_syntax, page
361, and Syntax for type attributes used on data objects, page 462.

® segment_pragmas
See the pragma directives dataseg, constseg, and memory. Use the #pragma

location and #pragma default_variable_attributes directives instead.

Because the deprecated features will be removed in a future version of the IAR C/C++
compiler, it is prudent to remove the use of them in your source code. To do this, enable
warnings for a deprecated feature. For each warning, rewrite your code so that the
deprecated feature is no longer used.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--diag_error=tagl, tag, ...]

tag The number of a diagnostic message, for example, the
message number Pell7

Use this option to reclassify certain diagnostic messages as errors. An error indicates a
violation of the C or C++ language rules, of such severity that object code will not be
generated. The exit code will be non-zero. This option may be used more than once on
the command line.

Project>Options>C/C++ Compiler>Diagnostics>Treat these as errors

--diag_remark=tagl, tag, ...]

tag The number of a diagnostic message, for example, the
message number Pel77

Compiler options °

Description Use this option to reclassify certain diagnostic messages as remarks. A remark is the
least severe type of diagnostic message and indicates a source code construction that
may cause strange behavior in the generated code. This option may be used more than
once on the command line.

Note: By default, remarks are not displayed—use the --remarks option to display
them.

Project>Options>C/C++ Compiler>Diagnostics>Treat these as remarks

--diag_suppress

Syntax --diag_suppress=tagl, tag, ...]
Parameters

tag The number of a diagnostic message, for example, the
message number Pell7

Description Use this option to suppress certain diagnostic messages. These messages will not be
displayed. This option may be used more than once on the command line.

Project>Options>C/C++ Compiler>Diagnostics>Suppress these diagnostics

--diag_warning
Syntax --diag_warning=tagl, tag, ...]
Parameters
tag The number of a diagnostic message, for example, the
message number Pe826
Description Use this option to reclassify certain diagnostic messages as warnings. A warning

indicates an error or omission that is of concern, but which will not cause the compiler
to stop before compilation is completed. This option may be used more than once on the
command line.

Project>Options>C/C++ Compiler>Diagnostics>Treat these as warnings

295

Descriptions of compiler options

--diagnostics_tables

Syntax
Parameters

Description

--diagnostics_tables {filename|directory}
See Rules for specifying a filename or directory as parameters, page 324.

Use this option to list all possible diagnostic messages to a named file. This can be
convenient, for example, if you have used a pragma directive to suppress or change the
severity level of any diagnostic messages, but forgot to document why.

Typically, this option cannot be given together with other options.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--discard_unused_publics

Syntax

Description

See also

--dlib_config

Syntax

Parameters

IAR C/C++ Development Guide
296 Compiling and Linking for Arm

--discard_unused_publics
Use this option to discard unused public functions and variables when compiling with
the --mfc compiler option.

Note: Do not use this option only on parts of the application, as necessary symbols
might be removed from the generated output. Use the object attribute __root to keep
symbols that are used from outside the compilation unit, for example, interrupt handlers.
If the symbol does not have the __ root attribute and is defined in the library, the library
definition will be used instead.

--mfc, page 352 and Multi-file compilation units, page 291.

Project>Options>C/C++ Compiler>Discard unused publics

--dlib_config filename.h|config

filename A DLIB configuration header file, see below the table.

Description

Compiler options _o

config The default configuration file for the specified configuration
will be used. Choose between:

none, no configuration will be used

normal, the normal library configuration will be used
(default)

full, the full library configuration will be used.

See also Rules for specifying a filename or directory as parameters, page 324.

Use this option to specify which library configuration to use, either by specifying an
explicit file or by specifying a library configuration—in which case the default file for
that library configuration will be used. Make sure that you specify a configuration that
corresponds to the library you are using. If you do not specity this option, the default
library configuration file will be used.

Note: This option cannot be used if the compiler option --1ibc++ has been specified.

You can find the library object files in the directory arm\1ib and the library
configuration files in the directory arm\inc\c. For examples and information about
prebuilt runtime libraries, see Prebuilt runtime libraries, page 163.

If you build your own customized runtime library, you can also create a corresponding
customized library configuration file to specify to the compiler. For more information,
see Customizing and building your own runtime library, page 160.

To set related options, choose:

Project>Options>General Options>Library Configuration

--do_explicit_zero_opt_in_named_sections

Syntax

Description

--do_explicit_zero_opt_in_named_sections

By default, the compiler treats static initialization of variables explicitly and implicitly
initialized to zero the same, except for variables which are to be placed in user-named
sections. For these variables, an explicit zero initialization is treated as a copy
initialization, that is the same way as variables statically initialized to something other
than zero.

Use this option to disable the exception for variables in user-named sections, and thus
treat explicit initializations to zero as zero initializations, not copy initializations.

297

Descriptions of compiler options

Example

Syntax

Description

See also

int varl; // Implicit zero init -> zero inited
int var2 = 0; // Explicit zero init -> zero inited
int var3 = 7; // Not zero init -> copy inited
int var4 @ "MYDATA"; // Implicit zero init -> zero inited
int var5 @ "MYDATA" = 0; // Explicit zero init -> copy inited

// If option specified, then zero inited

int var6 @ "MYDATA" 7; // Not zero init -> copy inited

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

In the command line version of the compiler, language extensions are disabled by
default. If you use language extensions such as extended keywords and anonymous
structs and unions in your source code, you must use this option to enable them.

Note: The -e option and the --strict option cannot be used at the same time.

Enabling language extensions, page 229.
Project>Options>C/C++ Compiler>Language 1>Standard with IAR extensions

Note: By default, this option is selected in the IDE.

--enable_hardware_workaround

Syntax

Parameters

Description

See also

IAR C/C++ Development Guide
298 Compiling and Linking for Arm

--enable_hardware_workaround=waid[,waid. . .]

waid The ID number of the workaround to enable. For a list of
available workarounds to enable, see the release notes.

Use this option to make the compiler generate a workaround for a specific hardware
problem.

The release notes for the compiler for a list of available parameters.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--enable_restrict

Syntax

Description

--endian

Syntax

Parameters

Description

See also

--enum_is_int

Syntax

Description

See also

Compiler options _o

--enable_restrict

Enables the Standard C keyword restrict in C89 and C++. By default, restrict is
recognized in Standard C and __restrict is always recognized.

This option can be useful for improving analysis precision during optimization.

To set this option, use Project>Options>C/C++ Compiler>Extra options

--endian={big|b|little|1}

big, b Specifies big-endian as the default byte order. (This byte

order cannot be used in 64-bit mode.)

little, 1 (default) Specifies little-endian as the default byte order.

Use this option to specify the byte order of the generated code and data. By default, the
compiler generates code in little-endian byte order. In 64-bit mode, this is the only byte
order you can specify.

Byte order (32-bit mode only), page 446.
Project>Options>General Options>32-bit>Byte order

--enum_is_int

Use this option to force the size of all enumeration types to be at least 4 bytes. If you use
this option when you compile a source file that uses a specific enum type, each source
file that uses that enum type must be compiled using this option.

Note: This option will not consider the fact that an enum type can be larger than an
integer type.

The enum type, page 448.

299

Descriptions of compiler options

--error_limit

Syntax

Parameters

Description

Syntax
Parameters

Description

See also

IAR C/C++ Development Guide
300 Compiling and Linking for Arm

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

-—error_limit=n

n The number of errors before the compiler stops the
compilation. n must be a positive integer. 0 indicates no
limit.

Use the --error_limit option to specify the number of errors allowed before the

compiler stops the compilation. By default, 100 errors are allowed.

This option is not available in the IDE.

-f filename
See Rules for specifying a filename or directory as parameters, page 324.
Use this option to make the compiler read command line options from the named file,

with the default filename extension xc1.

In the command file, you format the items exactly as if they were on the command line
itself, except that you may use multiple lines, because the newline character acts just as
a space or tab character.

Both C and C++ style comments are allowed in the file. Double quotes behave in the
same way as in the Microsoft Windows command line environment.

If you use the compiler option --dependencies, extended command line files
specified using - £ will not generate a dependency, but those specified using --£ will
generate a dependency.

--dependencies, page 338 and --f, page 347.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--fpu

Syntax
Parameters

Description

See also

Syntax

Parameters

Description

Compiler options °

--f filename
See Rules for specifying a filename or directory as parameters, page 324.
Use this option to make the compiler read command line options from the named file,

with the default filename extension xc1.

In the command file, you format the items exactly as if they were on the command line
itself, except that you may use multiple lines, because the newline character acts just as
a space or tab character.

Both C and C++ style comments are allowed in the file. Double quotes behave in the
same way as in the Microsoft Windows command line environment.

If you use the compiler option --dependencies, extended command line files
specified using --£ will generate a dependency, but those specified using - £ will not
generate a dependency.

--dependencies, page 338 and -f, page 346.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--fpu={name|list|none}

name The target FPU architecture.
list Lists all supported values for the --fpu option.
none (default) No FPU.

Use this option to generate code that performs floating-point operations using a Floating
Point Unit (FPU). By selecting an FPU, you will override the use of the software
floating-point library for all supported floating-point operations.

The name of a target FPU is constructed in one of these ways:

o none: No FPU (default)
® fp-architecture: Base variant of the specified architecture

® fp-architecture-SP: Single-precision variant

301

Descriptions of compiler options

® fp-architecture_D16: Variant with 16 D registers

® fp_architecture Fplé6: Variant with half-precision extensions
The available combinations include:

{VFPV2 |VFPV3 |VFPv4 | VFPv5}

{VFPv3 |VFPv4 |VFPv5}_D16

{VFPV4 |VFPV5}-SP

VFPv3_Fpl6

VFPv3_Dl6_Fpl6

Note: In 64-bit mode, and when a 64-bit device is used in 32-bit mode, this option has
no effect.

See also VFP and floating-point arithmetic, page 74.
m Project>Options>General Options>32-bit>Floating-point settings

--guard_calls

Syntax --guard_calls

Description Use this option to enable guards for function static variable initialization. This option
should be used in a threaded C++ environment.

See also Managing a multithreaded environment, page 188.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--header_context

Syntax --header_context

Description Occasionally, to find the cause of a problem it is necessary to know which header file
that was included from which source line. Use this option to list, for each diagnostic
message, not only the source position of the problem, but also the entire include stack at
that point.

This option is not available in the IDE.

IAR C/C++ Development Guide
302 Compiling and Linking for Arm

Syntax

Parameters

Description

See also

Syntax

Parameters

-I path

path

Compiler options °

The search path for #include files

Use this option to specify the search paths for #include files. This option can be used
more than once on the command line.

Include file search procedure, page 313.

Project>Options>C/C++ Compiler>Preprocessor>Additional include directories

-1[a|A|b|B|c|C|D][N][H] {filename|directory}

(@]

(default)

Assembler list file
Assembler list file with C or C++ source as comments

Basic assembler list file. This file has the same contents as a
list file produced with -1a, except that no extra
compiler-generated information (runtime model attributes,
call frame information, frame size information) is included *

Basic assembler list file. This file has the same contents as a
list file produced with -1a, except that no extra compiler
generated information (runtime model attributes, call frame
information, frame size information) is included *

C or C++ list file
C or C++ list file with assembler source as comments

C or C++ list file with assembler source as comments, but
without instruction offsets and hexadecimal byte values

No diagnostics in file

Include source lines from header files in output. Without this
option, only source lines from the primary source file are
included

303

Descriptions of compiler options

Description

--libc++

Syntax

Description

See also

--lock_regs

Syntax

Parameters

Description

IAR C/C++ Development Guide
304 Compiling and Linking for Arm

* This makes the list file less useful as input to the assembler, but more useful for reading
by a human.

See also Rules for specifying a filename or directory as parameters, page 324.

Use this option to generate an assembler or C/C++ listing to a file.
Note: This option can be used one or more times on the command line.
To set related options, choose:

Project>Options>C/C++ Compiler>List

--libc++

Use this option to make the compiler use Libc++ system headers and to make the linker
use the Libc++ library, with support for C++17. A Full library configuration will be used
and the header file DLib_Config_Full.h will be referenced.

Note: This option cannot be used together with the compiler option --dlib_config.

Overview—Standard C++, page 237.

Project>Options>General Options>Library Configuration>Library>Libc++

--lock_regs=register

registers A comma-separated list of register names and register
intervals to be locked.

In 32-bit mode: registers in the range R4-R11.

In 64-bit mode: registers in the ranges Xx9-x15and X18-X29.

Use this option to prevent the compiler from generating code that uses the specified
registers.

Example

Compiler options _o

--lock_regs=R4
--lock_regs=R8—R11
--lock_regs=R4,R8—R11

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--macro_positions_in_diagnostics

Syntax

Description

--macro_positions_in_diagnostics

Use this option to obtain position references inside macros in diagnostic messages. This
is useful for detecting incorrect source code constructs in macros.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--make_all_definitions_weak

Syntax

Description

See also

--make_all_definitions_weak

Turns all variable and function definitions in the compilation unit into weak definitions.

Note: Normally, it is better to use extended keywords or pragma directives to turn
individual variable and function definitions into weak definitions.

__weak, page 477.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--max_cost_constexpr_call

Syntax

Parameters

Description

--max_cost_constexpr_call=1imit

limit The number of calls and loop iterations. The default is 2000000.

Use this option to specify an upper limit for the cost for folding a top-level constexpr
call (function or constructor). The cost is a combination of the number of calls
interpreted and the number of loop iterations preformed during the interpretation of a
top-level call.

305

Descriptions of compiler options

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--max_depth_constexpr_call

Syntax --max_depth_constexpr_call=1imit
Parameters
limit The depth of recursion. The default is 1000.
Description Use this option to specify the maximum depth of recursion for folding a top-level

constexpr call (function or constructor).

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--mfc

Syntax --mfc

Description Use this option to enable multi-file compilation. This means that the compiler compiles
one or several source files specified on the command line as one unit, which enhances
interprocedural optimizations.

Note: The compiler will generate one object file per input source code file, where the
first object file contains all relevant data and the other ones are empty. If you want only
the first file to be produced, use the -o compiler option and specify a certain output file.

Example iccarm myfilel.c myfile2.c myfile3.c --mfc

See also --discard_unused_publics, page 342, --output, -0, page 364, and Multi-file compilation
units, page 291.

Project>Options>C/C++ Compiler>Multi-file compilation

--no_alignment_reduction

Syntax --no_alignment_reduction

Description Some simple Thumb/Thumb?2 functions can be 2-byte aligned. Use this option to keep
those functions 4-byte aligned.

IAR C/C++ Development Guide
306 Compiling and Linking for Arm

--no_bom

Syntax

Description

See also

--no_call frame_info

Syntax

Description

See also

--no_clustering

Syntax

Description

See also

Compiler options °

This option has no effect when compiling for Arm mode.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--no_bom

Use this option to omit the Byte Order Mark (BOM) when generating a UTF-8 output
file.

--text_out, page 373, and Text encodings, page 316.

Project>Options>C/C++ Compiler>Encodings>Text output file encoding

--no_call_frame_info
Normally, the compiler always generates call frame information in the output, to enable
the debugger to display the call stack even in code from modules with no debug

information. Use this option to disable the generation of call frame information.

Call frame information, page 217.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--no_clustering

Use this option to disable static clustering optimizations.

Note: This option has no effect at optimization levels below Medium.

Static clustering, page 295.

Project>Options>C/C++ Compiler>Optimizations>Enable
transformations>Static clustering

307

Descriptions of compiler options

308

--no_code_motion

Syntax

Description

See also

--no_const_align

Syntax

Description

See also

=--NO_cCse

Syntax
Description

See also

IAR C/C++ Development Guide
Compiling and Linking for Arm

--no_code_motion

Use this option to disable code motion optimizations.

Note: This option has no effect at optimization levels below Medium.

Code motion, page 294.

Project>Options>C/C++ Compiler>Optimizations>Enable
transformations>Code motion

--no_const_align

By default, the compiler uses alignment 4 for objects with a size of 4 bytes or more. Use
this option to make the compiler align const objects based on the alignment of their

type.

For example, a string literal will get alignment 1, because it is an array with elements of
the type const char which has alignment 1. Using this option might save ROM space,
possibly at the expense of processing speed.

Alignment, page 445.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

——-no_cse
Use this option to disable common subexpression elimination.

Common subexpression elimination, page 294.

Project>Options>C/C++ Compiler>Optimizations>Enable
transformations>Common subexpression elimination

Compiler options _o

--no_default_fp_contract

Syntax

Description

See also

--no_exceptions

Syntax

Description

See also

--no_fragments

Syntax

Description

See also

--no_default_fp_contract

The pragma directive STDC FP_CONTRACT specifies whether the compiler is allowed to
contract floating-point expressions. The default for this pragma directive is ON (allowing
contraction). Use this option to change the default to OFF (disallowing contraction).

STDC FP_CONTRACT, page 508.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--no_exceptions

Use this option to disable exception support in the C++ language. Exception statements
like throw and try—catch, and exception specifications on function definitions will
generate an error message. Exception specifications on function declarations are
ignored. The option is only valid when used together with the --c++ compiler option.

If exceptions are not used in your application, it is recommended to disable support for
them by using this option, because exceptions cause a rather large increase in code size.

Exception handling, page 239 and _ EXCEPTIONS, page 575.
Project>Options>C/C++ Compiler>Language 1>C++
and deselect

Project>Options>C/C++ Compiler>Language 1>C++ options>Enable exceptions

--no_fragments

Use this option to disable section fragment handling. Normally, the toolset uses IAR
proprietary information for transferring section fragment information to the linker. The
linker uses this information to remove unused code and data, and further minimize the
size of the executable image. When you use this option, this information is not output in
the object files.

Keeping symbols and sections, page 135.

309

Descriptions of compiler options

To set this option, use Project>Options>C/C++ Compiler>Extra Options

--no_inline

Syntax --no_inline
Description Use this option to disable function inlining.
See also Inlining functions, page 100.

m Project>Options>C/C++ Compiler>Optimizations>Enable
transformations>Function inlining

--no_literal_pool

Syntax --no_literal_pool

Description Use this option to generate code that should run from a memory region where it is not
allowed to read data, only to execute code. In 64-bit mode, this option has no effect.

When this option is used, the compiler will construct addresses and large constants with
the Mov32 pseudo instruction instead of using a literal pool: switch statements are no
longer translated using tables, and constant data is placed in the . rodata section.

This option also affects the automatic library selection performed by the linker. An
IAR-specific ELF attribute is used for determining whether libraries compiled with this
option should be used.

This option is only allowed for Armv6-M and Armv7 cores, and can be combined with
the options --ropi or --rwpi only for Armv7 cores (includes Armv8-M, Armv8.1-M,
Armv8-A, and Armv8-R cores).

Note: For the M architecture profile (Cortex-M cores), this option is only available
when you use the little-endian byte order.

See also --no_literal pool, page 421.

Project>Options>C/C++ Compiler>Code>No data reads in code memory

IAR C/C++ Development Guide
310 Compiling and Linking for Arm

--no_loop_align

Syntax

Description

See also

--no_mem_idioms

Syntax

Description

Compiler options °

--no_loop_align
Use this option to disable the 4-byte alignment of labels in loops. This option is only
useful in Thumb2 mode.

In Arm/Thumb1 mode, this option is enabled but does not perform anything.

Alignment, page 445.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--no_mem_idioms

Use this option to make the compiler not optimize code sequences that clear, set, or copy
amemory region. These memory access patterns (idioms) can otherwise be aggressively
optimized, in some cases using calls to the runtime library. In principle, the
transformation can involve more than a library call.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--no_normalize_file_macros

Syntax
Description
Example

See also

--no_normalize_file_macros

Normally, apparently unneeded uses of . . and . components are collapsed in the paths
returned by the predefined preprocessor symbols __FILE _and__BASE_FILE_ _.Use
this option to prevent this.

The path "D:\foo\ . .\bar\baz.c" will be returned as "D: \bar\baz.c" by the
symbols __FILE__ and __BASE_FILE__ unless this option is used.

Description of predefined preprocessor symbols, page 564.

This option is not available in the IDE.

Descriptions of compiler options

312

--no_path_in_file_macros

Syntax

Description

See also

--no_rtti

Syntax

Description

See also

--no_rw_dynamic_init
Syntax

Description

See also

IAR C/C++ Development Guide
Compiling and Linking for Arm

--no_path_in_file_macros

Use this option to exclude the path from the return value of the predefined preprocessor
symbols __FILE__ and __BASE_FILE _.
Description of predefined preprocessor symbols, page 564.

This option is not available in the IDE.

--no_rtti

Use this option to disable the runtime type information (RTTI) support in the C++
language. RTTI statements like dynamic_cast and typeid will generate an error
message. This option is only valid when used together with the --c++ compiler option.
Using C++, page 237 and __ RTTI , page 577.

Project>Options>C/C++ Compiler>Language 1>C++

and deselect

Project>Options>C/C++ Compiler>Language 1>C++ options>Enable RTTI

--no_rw_dynamic_init

Use this option to disable runtime initialization of static C variables.

C source code that is compiled with --ropi or --rwpi cannot have static pointer
variables and constants initialized to addresses of objects that do not have a known
address at link time. To solve this for writable static variables, the compiler generates
code that performs the initialization at program startup (in the same way as dynamic
initialization in C++).

--ropi, page 368 and --rwpi, page 369.

Project>Options>C/C++ Compiler>Code>No dynamic read/write/initialization

--no_scheduling

Syntax

Description

See also

--no_size_constraints

Syntax

Description

See also

--no_static_destruction

Syntax

Description

See also

Compiler options _o

--no_scheduling

Use this option to disable the instruction scheduler.

Note: This option has no effect at optimization levels below High.

Instruction scheduling, page 296.

Project>Options>C/C++ Compiler>Optimizations>Enable
transformations>Instruction scheduling

--no_size_constraints

Use this option to relax the normal restrictions for code size expansion when optimizing
for high speed.

Note: This option has no effect unless used with -Ohs.

Speed versus size, page 293.

Project>Options>C/C++ Compiler>Optimizations>Enable transformations>No
size constraints

--no_static_destruction

Normally, the compiler emits code to destroy C++ static variables that require
destruction at program exit. Sometimes, such destruction is not needed.

Use this option to suppress the emission of such code.

Setting up the atexit limit, page 136.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

313

Descriptions of compiler options

314

--no_system_include

Syntax

Description

See also

--no_tbaa

Syntax

Description

See also

--no_system_include

By default, the compiler automatically locates the system include files. Use this option
to disable the automatic search for system include files. In this case, you might need to
set up the search path by using the -1 compiler option.

--dlib_config, page 342, and --system_include_dir, page 373.

Project>Options>C/C++ Compiler>Preprocessor>Ignore standard include
directories

--no_tbaa

Use this option to disable type-based alias analysis.

Note: This option has no effect at optimization levels below High.

Type-based alias analysis, page 295.

Project>Options>C/C++ Compiler>Optimizations>Enable
transformations>Type-based alias analysis

--no_typedefs_in_diagnostics

Syntax

Description

Example

IAR C/C++ Development Guide
Compiling and Linking for Arm

--no_typedefs_in_diagnostics

Use this option to disable the use of typedef names in diagnostics. Normally, when a
type is mentioned in a message from the compiler, most commonly in a diagnostic
message of some kind, the typedef names that were used in the original declaration are
used whenever they make the resulting text shorter.

typedef int (*MyPtr) (char const *);
MyPtr p = "My text string";
will give an error message like this:

Error[Peldd]: a value of type "char *" cannot be used to
initialize an entity of type "MyPtr"

Compiler options °

Ifthe --no_typedefs_in_diagnostics optionis used, the error message will be like
this:

Error[Peldd]: a value of type "char *" cannot be used to
initialize an entity of type "int (*) (char const *)"

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--no_unaligned_access

Swwax --no_unaligned_access

Description Use this option to make the compiler avoid unaligned accesses. Data accesses are
usually performed aligned for improved performance. However, some accesses, most
notably when reading from or writing to packed data structures, might be unaligned.
When using this option, all such accesses will be performed using a smaller data size to
avoid any unaligned accesses. This option is only useful for Armv6 architectures and
higher.

For the architectures Armv7-M, Armv8-A, and Armv8-M.mainline, the hardware
support for unaligned access can be controlled by software. There are variants of library
routines for these architectures that are faster when unaligned access is supported in
hardware (symbols with the prefix __iar_unaligned_). The IAR linker will not use
these variants if any of the input modules does not allow unaligned access.

See also Alignment, page 445.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--no_uniform_attribute_syntax

Syntax --no_uniform_attribute_syntax

Description Use this option to apply the default syntax rules to IAR type attributes specified before
a type specifier.

See also --uniform_attribute_syntax, page 374 and Syntax for type attributes used on data
objects, page 462.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

315

Descriptions of compiler options

316

--no_unroll

Syntax

Description

See also

--no_var_align

Syntax

Description

See also

--no_warnings

Syntax

Description

IAR C/C++ Development Guide
Compiling and Linking for Arm

--no_unroll

Use this option to disable loop unrolling.

Note: This option has no effect at optimization levels below High.

Loop unrolling, page 294.

Project>Options>C/C++ Compiler>Optimizations>Enable
transformations>Loop unrolling

--no_var_align

By default, the compiler uses alignment 4 for variable objects with a size of 4 bytes or
more. Use this option to make the compiler align variable objects based on the alignment
of their type.

For example, a char array will get alignment 1, because its elements of the type char
have alignment 1. Using this option might save RAM space, possibly at the expense of
processing speed.

Alignment, page 445 and --no_const_align, page 354.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--no_warnings

By default, the compiler issues warning messages. Use this option to disable all warning
messages.

This option is not available in the IDE.

--no_wrap_diagnostics

Syntax

Description

Compiler options _o

--no_wrap_diagnostics

By default, long lines in diagnostic messages are broken into several lines to make the
message easier to read. Use this option to disable line wrapping of diagnostic messages.

This option is not available in the IDE.

--nonportable_path_warnings

Syntax

Description

Syntax

Parameters

Description

--nonportable_path_warnings

Use this option to make the compiler generate a warning when characters in the path
used for opening a source file or header file are lower case instead of upper case, or vice
versa, compared with the path in the file system.

This option is not available in the IDE.

-0[n|1l|m|h|hs|hz]

n None* (Best debug support)
1 (default) Low*

m Medium

h High, balanced

hs High, favoring speed

hz High, favoring size

*All optimizations performed at level Low will be performed also at None. The only
difference is that at level None, all non-static variables will live during their entire scope.

Use this option to set the optimization level to be used by the compiler when optimizing
the code. If no optimization option is specified, the optimization level Low is used by
default. If only -0 is used without any parameter, the optimization level High balanced
is used.

317

Descriptions of compiler options

See also

--only_stdout

Syntax

Description

--output, -o

Syntax

Parameters

Description

IAR C/C++ Development Guide
318 Compiling and Linking for Arm

A low level of optimization makes it relatively easy to follow the program flow in the
debugger, and, conversely, a high level of optimization makes it relatively hard.

At high optimization levels, when favoring speed or size (-Ohs or -Ohz), the compiler
will emit AEABI attributes indicating the requested optimization goal. This information
can be used by the linker to select smaller or faster variants of DLIB library functions.

e If a module referencing a function is compiled with -0Ohs, and the DLIB library
contains a fast variant, that variant is used.

e If all modules referencing a function are compiled with -Ohz, and the DLIB library
contains a small variant, that variant is used.

For example, using -0Ohz for Cortex-MO0 will result in the use of a smaller AEABI
library routine for integer division.
Controlling compiler optimizations, page 290.

Project>Options>C/C++ Compiler>Optimizations

--only_stdout
Use this option to make the compiler use the standard output stream (stdout), and
messages that are normally directed to the error output stream (stderr).

This option is not available in the IDE.

--output {filename|directory}
-0 {filename|directory}

See Rules for specifying a filename or directory as parameters, page 324.

By default, the object code output produced by the compiler is located in a file with the
same name as the source file, but with the extension o. Use this option to explicitly
specify a different output filename for the object code output.

This option is not available in the IDE.

Compiler options _o

--pending_instantiations

Syntax --pending_instantiations number

Parameters
number An integer that specifies the limit, where 64 is default. If 0
is used, there is no limit.

Description Use this option to specify the maximum number of instantiations of a given C++
template that is allowed to be in process of being instantiated at a given time. This is
used for detecting recursive instantiations.

m Project>Options>C/C++ Compiler>Extra Options

--predef_macros

Syntax --predef_macros {filename|directory}
Parameters See Rules for specifying a filename or directory as parameters, page 324.
Description Use this option to list all symbols defined by the compiler or on the command line.

(Symbols defined in the source code are not listed.) When using this option, make sure
to also use the same options as for the rest of your project.

If a filename is specified, the compiler stores the output in that file. If a directory is
specified, the compiler stores the output in that directory, in a file with the predef
filename extension.

Note: This option requires that you specify a source file on the command line.

This option is not available in the IDE.

--preinclude
Syntax --preinclude includefile
Parameters See Rules for specifying a filename or directory as parameters, page 324.
Description Use this option to make the compiler read the specified include file before it starts to

read the source file. This is useful if you want to change something in the source code
for the entire application, for instance if you want to define a new symbol.

319

Descriptions of compiler options

Project>Options>C/C++ Compiler>Preprocessor>Preinclude file

--preprocess
Syntax --preprocess[=[c][n][s]] {filename|directory}
Parameters
c Include comments
n Preprocess only
s Suppress #1ine directives
See also Rules for specifying a filename or directory as parameters, page 324.
Description Use this option to generate preprocessed output to a named file.

Project>Options>C/C++ Compiler>Preprocessor>Preprocessor output to file

--public_equ

Syntax --public_equ symboll[=value]
Parameters
symbol The name of the assembler symbol to be defined
value An optional value of the defined assembler symbol
Description This option is equivalent to defining a label in assembler language using the EQU

directive and exporting it using the PUBLIC directive. This option can be used more than
once on the command line.

This option is not available in the IDE.

IAR C/C++ Development Guide
320 Compiling and Linking for Arm

--relaxed_fp

Syntax

Description

Example

--remarks

Syntax

Description

See also

Compiler options °

--relaxed_fp

Use this option to allow the compiler to relax the language rules and perform more
aggressive optimization of floating-point expressions. This option improves
performance for floating-point expressions that fulfill these conditions:

o The expression consists of both single and double-precision values

o The double-precision values can be converted to single precision without loss of
accuracy

o The result of the expression is converted to single precision.
Note: Performing the calculation in single precision instead of double precision might

cause a loss of accuracy.

float F(float a, float b)
{
return a + b * 3.0;

}

The C standard states that 3 . 0 in this example has the type double and therefore the
whole expression should be evaluated in double precision. However, when the
--relaxed_fp optionis used, 3.0 will be converted to £1oat and the whole expression
can be evaluated in f1loat precision.

To set related options, choose:

Project>Options>C/C++ Compiler>Language 2>Floating-point semantics

--remarks

The least severe diagnostic messages are called remarks. A remark indicates a source
code construct that may cause strange behavior in the generated code. By default, the
compiler does not generate remarks. Use this option to make the compiler generate
remarks.

Severity levels, page 319.

Project>Options>C/C++ Compiler>Diagnostics>Enable remarks

321

Descriptions of compiler options

--require_prototypes

Syntax

Description

--ropi
Syntax

Description

See also

IAR C/C++ Development Guide
322 Compiling and Linking for Arm

--require_prototypes

Use this option to force the compiler to verify that all functions have proper prototypes.
Using this option means that code containing any of the following will generate an error:

e A function call of a function with no declaration, or with a Kernighan & Ritchie
C declaration

e A function definition of a public function with no previous prototype declaration

e An indirect function call through a function pointer with a type that does not include
a prototype.

Project>Options>C/C++ Compiler>Language 1>Require prototypes

--ropi

Use this option to make the compiler generate code that uses pC-relative references to
address code and read-only data. In 64-bit mode, this option has no effect.

When this option is used, these limitations apply:
o C++ constructions cannot be used

e The object attribute __ramfunc cannot be used

e Pointer constants cannot be initialized with the address of another constant, a string
literal, or a function. However, writable variables can be initialized to constant
addresses at runtime.

Consider using movable blocks in the linker configuration file. See define block
directive, page 609.

--no_rw_dynamic_init, page 358, and Description of predefined preprocessor symbols,
page 564.

Project>Options>C/C++ Compiler>Code>Code and read-only data (ropi)

--ropi_cb

Syntax

Description

--rwpi
Syntax

Description

See also

Compiler options °

--ropi_cb
Use this option to make all accesses to constant data, base-addressed relative to the
register R8. In 64-bit mode, this option has no effect.

Use --ropi_cb together with --ropi to activate a variant of ROPI that uses the Arm
core register R8 as the base address for read-only data, instead of using the pc. This is
useful, for example, when using ROPI in code that runs from execute-only memory,
which is enabled if you compile and link with --no_literal_pool.

Note:

o The use of --ropi_cb is not AEABI-compliant.

o There is no provided setup of the register R8. This must be handled by your
application.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--rwpi

Use this option to make the compiler generate code that uses the offset from the static
base register (R9) to address-writable data. In 64-bit mode, this option has no effect.
When this option is used, these limitations apply:

o The object attribute __ramfunc cannot be used

o Pointer constants cannot be initialized with the address of a writable variable.
However, static writable variables can be initialized to writable addresses at
runtime.

Consider using movable blocks in the linker configuration file. See define block
directive, page 609.

--no_rw_dynamic_init, page 358, and Description of predefined preprocessor symbols,
page 564.

Project>Options>C/C++ Compiler>Code>Read/write data (rwpi)

323

Descriptions of compiler options

--rwpi_near
Syntax --rwpi_near
Description Use this option to make the compiler generate code that uses the offset from the static
base register (R9) to address-writable data. In 64-bit mode, this option has no effect.
When this option is used, these limitations apply

o The object attribute __ramfunc cannot be used.

o Pointer constants cannot be initialized with the address of a writable variable.
However, static writable variables can be initialized to writable addresses at
runtime.

o A maximum of 64 Kbytes of read/write memory can be addressed.

See also --no_rw_dynamic_init, page 358 and Description of predefined preprocessor symbols,
page 564.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--section

Syntax --section OldName=NewName

Description The compiler places functions and data objects into named sections which are referred
to by the IAR ILINK Linker. Use this option to change the name of the section 01dnName
to NewName.
This is useful if you want to place your code or data in different address ranges and you
find the @ notation, alternatively the #pragma location directive, insufficient.
Note: Any changes to the section names require corresponding modifications in the
linker configuration file.

Example To place functions in the section MyText, use:
--section .text=MyText

See also Controlling data and function placement in memory, page 286.

Project>Options>C/C++ Compiler>Output>Code section name

IAR C/C++ Development Guide
324 Compiling and Linking for Arm

--section_prefix

Syntax

Description

Example

See also

--silent

Syntax

Description

Compiler options °

--section_prefix=prefix

The compiler places functions and data objects into named sections which are referred
to by the IAR ILINK Linker. Use this option to change the name of sections that are not
explicitly named using the @ notation or the #pragma location directive.

This option creates section names by putting a prefix before the default name for the
section type. This makes it possible to use different section-selectors for different
purposes. You can use tcm. * in the example below to match the prefix or, for example,
* . bss to match sections with zero-initialized data.

Note: Any changes to the section names require corresponding modifications in the
linker configuration file.

Specifying --section_prefix=tcm places:

code in tcm. text instead of . text

read-only data in tcm. rodata instead of . rodata

zero-initialized data in tcm.bss instead of .bss

other initialized data in tcm.data instead of .data

Controlling data and function placement in memory, page 286.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--silent

By default, the compiler issues introductory messages and a final statistics report. Use
this option to make the compiler operate without sending these messages to the standard
output stream (normally the screen).

This option does not affect the display of error and warning messages.

This option is not available in the IDE.

325

Descriptions of compiler options

--source_encoding

Syntax

Parameters

Description

See also

--stack_protection

Syntax
Description

See also

-=strict

Syntax

Description

See also

IAR C/C++ Development Guide
326 Compiling and Linking for Arm

--source_encoding {locale|utf8}

locale The default source encoding is the system locale encoding.

utfs The default source encoding is the UTF-8 encoding.

When reading a source file with no Byte Order Mark (BOM), use this option to specify
the encoding. If this option is not specified and the source file does not have a BOM, the
Raw encoding will be used.

Text encodings, page 316.

Project>Options>C/C++ Compiler>Encodings>Default source file encoding

--stack_protection
Use this option to enable stack protection for the functions that are considered to need it.

Stack protection, page 102.

Project>Options>C/C++ Compiler>Code>Stack protection

--strict

By default, the compiler accepts a relaxed superset of Standard C and C++. Use this
option to ensure that the source code of your application instead conforms to strict
Standard C and C++.

Note: The -e option and the --strict option cannot be used at the same time.

Enabling language extensions, page 229.

Project>Options>C/C++ Compiler>Language 1>Language conformance>Strict

--system_include_dir

Syntax

Parameters

Description

See also

--text_out

Syntax

Parameters

Description

See also

Compiler options °

--system_include_dir path

To specity the path to the system include files, see Rules for specifying a filename or
directory as parameters, page 324.

By default, the compiler automatically locates the system include files. Use this option
to explicitly specify a different path to the system include files. This might be useful if
you have not installed IAR Embedded Workbench in the default location.

--dlib_config, page 342, and --no_system_include, page 360.

This option is not available in the IDE.

--text_out {utf8|utfléle|utflbbe]|locale}

utfs Uses the UTF-8 encoding

utfléle Uses the UTF-16 little-endian encoding
utflébe Uses the UTF-16 big-endian encoding
locale Uses the system locale encoding

Use this option to specify the encoding to be used when generating a text output file.

The default for the compiler list files is to use the same encoding as the main source file.
The default for all other text files is UTF-8 with a Byte Order Mark (BOM).

If you want text output in UTF-8 encoding without a BOM, use the option --no_bom.

--no_bom, page 353 and Text encodings, page 316.

Project>Options>C/C++ Compiler>Encodings>Text output file encoding

327

Descriptions of compiler options

--thumb
Syntax --thumb
Description Use this option to set default function mode to Thumb (T32 or T in 32-bit mode).

Note: This option has the same effect as the --cpu_mode=thumb option.

Project>Options>C/C++ Compiler>Code>Processor mode>Thumb

--uniform_attribute_syntax

Syntax --uniform_attribute_syntax

Description By default, an IAR type attribute specified before the type specifier applies to the object
or typedef itself, and not to the type specifier, as const and volatile do. If you specify
this option, IAR type attributes obey the same syntax rules as const and volatile.

The default for IAR type attributes is to not use uniform attribute syntax.

See also --no_uniform_attribute_syntax, page 361 and Syntax for type attributes used on data
objects, page 462.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--use_c++_inline

Syntax --use_c++_inline

Description Standard C uses slightly different semantics for the inline keyword than C++ does.
Use this option if you want C++ semantics when you are using C.

See also Inlining functions, page 100.

Project>Options>C/C++ Compiler>Language 1>C dialect>C++ inline semantics

IAR C/C++ Development Guide
328 Compiling and Linking for Arm

Compiler options _o

--use_paths_as_written

Syntax --use_paths_as_written
Description By default, the compiler ensures that all paths in the debug information are absolute,
even if not originally specified that way.

If you use this option, paths that were originally specified as relative will be relative in
the debug information.

The paths affected by this option are:

e the paths to source files

o the paths to header files that are found using an include path that was specified as
relative

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--use_unix_directory_separators

Syntax --use_unix_directory_separators

Description Use this option to make DWARF debug information use / (instead of \) as directory
separators in file paths.

This option can be useful if you have a debugger that requires directory separators in
UNIX style.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--utf8 text_in

Syntax --utf8_text_in

Description Use this option to specify that the compiler shall use UTF-8 encoding when reading a
text input file with no Byte Order Mark (BOM).

Note: This option does not apply to source files.

See also Text encodings, page 316.

Project>Options>C/C++ Compiler>Encodings>Default input file encoding

329

Descriptions of compiler options

--vectorize

Syntax

Description

--version

Syntax

Description

--via

Syntax

Description

See also

IAR C/C++ Development Guide
330 Compiling and Linking for Arm

--vectorize

Use this option to enable generation of NEON vector instructions in 32-bit mode.

Loops will only be vectorized if the target processor has NEON capability and the
optimization level is -Ohs. Auto-vectorization is not supported in 64-bit mode.

Project>Options>C/C++ Compiler>Optimizations>Enable
transformations>Vectorize

--version
Use this option to make the compiler send version information to the console and then
exit.

This option is not available in the IDE.

--vla

Use this option to enable support for variable length arrays in C code. Such arrays are
located on the heap. This option requires Standard C and cannot be used together with
the --c89 compiler option.

Note: --v1a should not be used together with the 1ongjmp library function, as that can
lead to memory leakages.
C language overview, page 227.

Project>Options>C/C++ Compiler>Language 1>C dialect>Allow VLA

Compiler options _o

--warn_about_c_style_casts

Syntax --warn_about_c_style_casts
Description Use this option to make the compiler warn when C-style casts are used in C++ source
code.

This option is not available in the IDE.

--warn_about_incomplete_constructors

Syntax --warn_about_incomplete_constructors
Description Use this option to make the compiler warn if a constructor does not provide an initializer
for each data member.

This option is not available in the IDE.

--warn_about_missing_field_initializers
Syntax --warn_about_missing field initializers
Description Use this option to make the compiler warn if the initializer for a structure does not
provide explicit initializers for all fields in the structure.

No warning is emitted for the universal zero initializer { 0 }, or—in C++—for the
empty initializer {}.

In C, initializers that use one or more designated initializers are not checked.

In Standard C++17, designated initializers are not available. When language extensions
are enabled (by using -e or #pragma language) they are supported, but, as in C++20,
only if the designated initializers are in field order. In this case, the structure is checked
for missing initializers.

This option is not available in the IDE.

331

Descriptions of compiler options

332

--warnings_affect_exit_code

Syntax

Description

--warnings_are_errors

Syntax

Description

See also

IAR C/C++ Development Guide
Compiling and Linking for Arm

--warnings_affect_exit_code
By default, the exit code is not affected by warnings, because only errors produce a
non-zero exit code. With this option, warnings will also generate a non-zero exit code.

This option is not available in the IDE.

--warnings_are_errors

Use this option to make the compiler treat all warnings as errors. If the compiler
encounters an error, no object code is generated. Warnings that have been changed into
remarks are not treated as errors.

Note: Any diagnostic messages that have been reclassified as warnings by the option
--diag_warning or the #pragma diag_warning directive will also be treated as
errors when --warnings_are_errors is used.

--diag warning, page 341.

Project>Options>C/C++ Compiler>Diagnostics>Treat all warnings as errors

Linker options

e Summary of linker options

e Descriptions of linker options

For general syntax rules, see Options syntax, page 323.

Summary of linker options

This table summarizes the linker options:

Command line option

Description

--abi
--accurate_math
--advanced_heap
--basic_heap
--BES8

--BE32

--bounds_table_size

--call_graph

--config

--config_def

--config_search

--cpp_init_routine

--cpu

--debug_heap

--default_to_complex_ranges

Specifies which data model to link for
Uses more accurate math functions
Uses an advanced heap

Uses a basic heap

Uses the big-endian format BE8

Uses the big-endian format BE32

Specifies the size of the global bounds table. See
the C-RUN documentation in the C-SPY®
Debugging Guide for Arm.

Produces a call graph file in XML format

Specifies the linker configuration file to be used by
the linker
Defines symbols for the configuration file

Specifies more directories to search for linker
configuration files

Specifies a user-defined C++ dynamic initialization
routine

Specifies a processor variant
Uses the checked heap. See the C-RUN

documentation in the C-SPY® Debugging Guide for
Arm.

Makes complex ranges the default
decompressor in initialize directives

Table 31: Linker options summary

333

Summary of linker options

334

IAR C/C++ Development Guide
Compiling and Linking for Arm

Command line option

Description

--define_symbol

--dependencies

--diag_error

--diag_remark
--diag_suppress
--diag_warning
--diagnostics_tables
--do_segment_pad
--enable_hardware_workaround
--enable_stack_usage

--entry

--entry_list_in_address_order

--—error_limit

--exception_tables
--export_builtin_config

--extra_init

-f
—-f

--force_exceptions
--force_output
--fpu

--ignore_uninstrumented_point

ers

--image_input

--import_cmse_lib_in

Defines symbols that can be used by the
application

Lists file dependencies

Treats these message tags as errors

Treats these message tags as remarks
Suppresses these diagnostic messages
Treats these message tags as warnings
Lists all diagnostic messages

Pads each ELF segment to n-byte alignment
Enables specified hardware workaround
Enables stack usage analysis

Treats the symbol as a root symbol and as the
start of the application

Generates an additional entry list in the map file
sorted in address order

Specifies the allowed number of errors before
linking stops

Generates exception tables for C code

Produces an icf file for the default configuration

Specifies an extra initialization routine that will be
called if it is defined

Extends the command line

Extends the command line, optionally with a
dependency

Always includes exception runtime code
Produces an output file even if errors occurred
Selects the FPU to link your application for

Disables checking of accessing via pointers in
memory for which no bounds have been set. See
the C-RUN documentation in the C-SPY®
Debugging Guide for Arm.

Puts an image file in a section

Reads previous version of import library for
building a non-secure image

Table 31: Linker options summary (Continued)

Linker options °

Command line option Description

--import_cmse_lib_out Produces an import library, for building a
non-secure image

--inline Inlines small routines
--keep Forces a symbol to be included in the application
-L Specifies more directories to search for object and

library files. Alias for --search.

--library_security Forces the linker to select a runtime library with
or without support for PACBTI

--log Enables log output for selected topics
--log_file Directs the log to a file
--mangled_names_in_messages Adds mangled names in messages

--manual_dynamic_initializati Suppresses automatic initialization during system

on startup

--map Produces a map file

--merge_duplicate_sections Merges equivalent read-only sections

--no_bom Omits the Byte Order Mark from UTF-8 output
files

--no_dynamic_rtti_elimination Includes dynamic runtime type information even
when it is not needed

--no_entry Sets the entry point to zero
--no_exceptions Generates an error if exceptions are used
--no_fragments Disables section fragment handling
--no_free_heap Uses the smallest possible heap implementation
--no_inline Excludes functions from small function inlining
--no_library_search Disables automatic runtime library search
--no_literal_pool Generates code that should run from a memory

region where it is not allowed to read data, only to
execute code

--no_Jlocals Removes local symbols from the ELF executable
image

--no_range_reservations Disables range reservations for absolute symbols

--no_remove Disables removal of unused sections

--no_vfe Disables Virtual Function Elimination

--no_warnings Disables generation of warnings

Table 31: Linker options summary (Continued)

335

Summary of linker options

336

IAR C/C++ Development Guide
Compiling and Linking for Arm

Command line option

Description

--no_wrap_diagnostics
-o

--only_stdout
--output

--pi_veneers

--place_holder

--preconfig

--printf_multibytes

--redirect

--remarks

--require_bti

--require_pac

--scanf_multibytes

--search

--semihosting
--silent

--small_math
--stack_usage_control

--strip

--text_out

--threaded_1lib

--timezone_1lib

--treat_rvct_modules_as_softf

p

Does not wrap long lines in diagnostic messages
Alias for --output

Uses standard output only

Sets the object filename

Generates position independent veneers

Reserve a place in ROM to be filled by some other
tool, for example, a checksum calculated by
ielftool

Reads the specified file before reading the linker
configuration file

Makes the printf formatter support multibytes

Redirects a reference to a symbol to another
symbol

Enables remarks

Generate an error if modules do not have the
same support for BTI

Generate a warning if modules do not have the
same support for PAC

Makes the scanf formatter support multibytes

Specifies more directories to search for object and
library files

Links with debug interface

Sets silent operation

Uses smaller math functions

Specifies a stack usage control file

Removes debug information from the executable
image

Specifies the encoding for text output files

Configures the runtime library for use with
threads

Enables the time zone and daylight savings time
functionality in the library

Treats all modules generated by RVCT as using the
standard (non-VFP) calling convention

Table 31: Linker options summary (Continued)

Linker options °

Command line option Description

--use_full_std_template_names Enables full names for standard C++ templates

--use_optimized_variants Controls the use of optimized variants of DLIB
library functions

--utf8_text_in Uses the UTF-8 encoding for text input files
--version Sends version information to the console and then
exits

--vfe Controls Virtual Function Elimination
--warnings_affect_exit_code Warnings affects exit code
--warnings_are_errors Woarnings are treated as errors
--whole_archive Treats every object file in the archive as if it was

specified on the command line

Table 31: Linker options summary (Continued)

Descriptions of linker options

--abi

Syntax

Parameters

Description

See also

The following section gives detailed reference information about each linker option.

If you use the options page Extra Options to specify specific command line options,
the IDE does not perform an instant check for consistency problems like conflicting
options, duplication of options, or use of irrelevant options.

--abi {ilp32|1p64}

ilp32 Links A64 code for the ILP32 data model
1p64 Links A64 code for the LP64 data model

When linking for the A64 instruction set, the linker detects the data model from
attributes in the object files. If you use this option to specify the intended data model,
the linker issues an error if an object file does not have the expected attribute.
--aarch64, page 331 and --cpu_mode, page 336.

To set related options, choose:

Project>Options>General Options>Target>Execution mode

and

337

Descriptions of linker options

--accurate_math

Syntax

Description

See also

--advanced_heap

Syntax
Description

See also

--basic_heap

Syntax
Description

See also

IAR C/C++ Development Guide
338 Compiling and Linking for Arm

Project>Options>General Options>64-bit>Data model

--accurate_math

Use this option to use math library versions designed to provide better accuracy (but
which are larger) than the default versions.

Math functions, page 171.
Project>Options>General Options>Library Options 1>Math functions

This option is not available in the IDE.

--advanced_heap
Use this option to use an advanced heap.

Heap memory handlers, page 254.

Project>Options>General Options>Library options 2>Heap selection

--basic_heap
Use this option to use the basic heap handler.

Heap memory handlers, page 254.

Project>Options>General Options>Library options 2>Heap selection

--BE8

Syntax

Description

See also

--BE32

Syntax

Description

See also

--call_graph

Syntax

Parameters

Linker options °

--BES
Use this option to specify the Byte Invariant Addressing mode. In 64-bit mode, this
option has no effect.

This means that the linker reverses the byte order of the instructions, resulting in
little-endian code and big-endian data. This is the default byte addressing mode for
Armv6 big-endian images. This is the only mode available for Arm v6M and Arm v7
with big-endian images.

Byte Invariant Addressing mode is only available on Arm processors that support
Armv6, Arm v6M, and Arm v7.

Byte order, page 74, Byte order (32-bit mode only), page 446, --BE32, page 399, and
--endian, page 345.

Project>Options>General Options>32-bit>Byte order

--BE32

Use this option to specify the legacy big-endian mode. In 64-bit mode, this option has
no effect.

This produces big-endian code and data. This is the only byte-addressing mode for all
big-endian images prior to Armv6. This mode is also available for Arm v6 with
big-endian, but not for Arm v6M or Arm v7.

Byte order, page 74, Byte order (32-bit mode only), page 446, --BES, page 399, and
--endian, page 345.

Project>Options>General Options>32-bit>Byte order

--call_graph {filename| directory}

See Rules for specifying a filename or directory as parameters, page 324.

339

Descriptions of linker options

Description

See also

--config

Syntax
Parameters

Description

See also

--config_def

Syntax

Parameters

Description

See also

IAR C/C++ Development Guide
340 Compiling and Linking for Arm

Use this option to produce a call graph file. If no filename extension is specified, the
extension cgx is used. This option can only be used once on the command line.

Using this option enables stack usage analysis in the linker.

Stack usage analysis, page 119

Project>Options>Linker>Advanced>Enable stack usage analysis>Call graph
output (XML)

--config filename
See Rules for specifying a filename or directory as parameters, page 324.

Use this option to specify the configuration file to be used by the linker (the default
filename extension is ic£). If no configuration file is specified, a default configuration
is used. This option can only be used once on the command line.

The chapter The linker configuration file.

Project>Options>Linker>Config>Linker configuration file

--config_def symbol=constant_value
symbol The name of the symbol to be used in the configuration file.

constant_value The constant value of the configuration symbol.

Use this option to define a constant configuration symbol to be used in the configuration
file. This option has the same effect as the define symbol directive in the linker
configuration file. This option can be used more than once on the command line.

--define_symbol, page 402 and Interaction between ILINK and the application, page
140.

Project>Options>Linker>Config>Defined symbols for configuration file

--config_search

Syntax

Parameters

Description

See also

--cpp_init_routine

Syntax

Parameters

Description

[1H

Linker options °

--config_search path

path A path to a directory where the linker should search for
linker configuration include files.

Use this option to specify more directories to search for files when processing an
include directive in a linker configuration file.

By default, the linker searches for configuration include files only in the system
configuration directory. To specify more than one search directory, use this option for
each path.

include directive, page 636.

To set this option, use Project>Options>Linker>Extra Options.

--cpp_1init_routine routine

routine A user-defined C++ dynamic initialization routine.

When using the IAR C/C++ compiler and the standard library, C++ dynamic
initialization is handled automatically. In other cases you might need to use this option.

If any sections with the section type INIT_ARRAY or PREINIT_ARRAY are included in
your application, the C++ dynamic initialization routine is considered to be needed. By
default, this routine isnamed __iar_cstart_call_ctors andis called by the startup
code in the standard library. Use this option if you require another routine to handle the
initialization, for instance if you are not using the standard library.

To set this option, use Project>Options>Linker>Extra Options.

341

Descriptions of linker options

--cpu
Syntax

Parameters

Description

See also

[IH

--cpu=core|list

core Specifies a specific processor variant

list Lists all supported values for the option --cpu

Use this option to select the processor variant to link your application for. The default is
to use a processor or architecture compatible with the object file attributes.

--cpu, page 335

Project>Options>General Options>Target>Processor variant

--default_to_complex_ranges

Syntax

Description

See also

--define_symbol

Syntax

Parameters

IAR C/C++ Development Guide
342 Compiling and Linking for Arm

--default_to_complex_ranges

Normally, if initializedirectivesinalinker configuration file do not specify simple
ranges Or complex ranges, the linker uses simple ranges if the associated
section placement directives use single range regions.

Use this option to make the linker always use complex ranges by default. This was
the behavior of the linker before the introduction of simple ranges and complex
ranges.

initialize directive, page 615.

To set this option, use Project>Options>Linker>Extra Options

--define_symbol symbol=constant_value

symbol The name of the constant symbol that can be used by the
application.
constant_value The constant value of the symbol.

Linker options °

Description Use this option to define a constant symbol, that is a label, that can be used by your
application. This option can be used more than once on the command line.

Note: This option is different from the define symbol directive.

See also --config_def, page 400 and Interaction between ILINK and the application, page 140.
Project>Options>Linker>#define>Defined symbols

--dependencies
Syntax --dependencies[=[1i|m|n][s][1|w][b]l] {filename|directory|+}
Parameters
i (default) Lists only the names of files
m Lists in makefile style (multiple rules)
n Lists in makefile style (one rule)
s Suppresses system files
1 Uses the locale encoding instead of UTF-8
w Uses little-endian UTF-16 instead of UTF-8
b Uses a Byte Order Mark (BOM) in UTF-8 output
+ Gives the same output as -o, but with the filename extension d
See also Rules for specifying a filename or directory as parameters, page 324.
Description Use this option to make the linker list the names of the linker configuration, object, and
library files opened for input into a file with the default filename extension i.
Example If --dependencies or --dependencies=i is used, the name of each opened input

file, including the full path, if available, is output on a separate line. For example:

c:\myproject\foo.o
d:\myproject\bar.o

If --dependencies=mis used, the output is in makefile style. For each input file, one
line containing a makefile dependency rule is produced. Each line consists of the name
of the output file, a colon, a space, and the name of an input file. For example:

a.out: c:\myproject\foo.o
a.out: d:\myproject\bar.o

343

Descriptions of linker options

--diag_error

Syntax

Parameters

Description

--diag_remark

Syntax

Parameters

Description

IAR C/C++ Development Guide
344 Compiling and Linking for Arm

This option is not available in the IDE.

--diag_error=tagl, tag, ...]

tag The number of a diagnostic message, for example, the
message number Pell7

Use this option to reclassify certain diagnostic messages as errors. An error indicates a
problem of such severity that an executable image will not be generated. The exit code
will be non-zero. This option may be used more than once on the command line.

Project>Options>Linker>Diagnostics>Treat these as errors

--diag_remark=tagl, tag, ...]

tag The number of a diagnostic message, for example, the
message number Go109

Use this option to reclassify certain diagnostic messages as remarks. A remark is the
least severe type of diagnostic message and indicates a construction that may cause
strange behavior in the executable image.

Note: Not all diagnostic messages can be reclassified. This option may be used more
than once on the command line.

Note: By default, remarks are not displayed—use the --remarks option to display
them.

Project>Options>Linker>Diagnostics>Treat these as remarks

--diag_suppress

Syntax

Parameters

Description

--diag_warning
Syntax

Parameters

Description

--diagnostics_tables

Syntax
Parameters

Description

Linker options °

--diag_suppress=tagl, tag, ...]

tag The number of a diagnostic message, for example, the
message number Pal180

Use this option to suppress certain diagnostic messages. These messages will not be
displayed. This option may be used more than once on the command line.

Note: Not all diagnostic messages can be reclassified.

Project>Options>Linker>Diagnostics>Suppress these diagnostics

--diag_warning=tagl, tag, ...]

tag The number of a diagnostic message, for example, the
message number Li004

Use this option to reclassify certain diagnostic messages as warnings. A warning
indicates an error or omission that is of concern, but which will not cause the linker to
stop before linking is completed. This option may be used more than once on the
command line.

Note: Not all diagnostic messages can be reclassified.

Project>Options>Linker>Diagnostics>Treat these as warnings

--diagnostics_tables {filename | directory}
See Rules for specifying a filename or directory as parameters, page 324.
Use this option to list all possible diagnostic messages in a named file. This can be

convenient, for example, if you have used a pragma directive to suppress or change the
severity level of any diagnostic messages, but forgot to document why.

345

Descriptions of linker options

This option cannot be given together with other options.

This option is not available in the IDE.

--do_segment_pad

Syntax --do_segment_pad

Description Use this option to extend each ELF segment in the executable file with content, to make
it an even multiple of 4 bytes long (if possible). Some runtime library routines might
access memory in units of 4 bytes, and might, if the right data object is placed last in an
ELF segment, access memory outside the strict bounds of the segment. If you are
executing in an environment where this is a problem, you can use this option to extend
the ELF segments appropriately so that this is not a problem.

This option is not available in the IDE.

--enable_hardware_workaround

Syntax --enable_hardware_workaround=waid[waid[...]]

Parameters
waid The ID number of the workaround that you want to
enable. For a list of available workarounds, see the release
notes available in the Information Center.

Description Use this option to make the linker generate a workaround for a specific hardware
problem.
See also The release notes for the linker for a list of available parameters.

To set this option, use Project>Options>Linker>Extra Options.

--enable_stack_usage

Syntax --enable_stack_usage

Description Use this option to enable stack usage analysis. If a linker map file is produced, a stack
usage chapter is included in the map file.

IAR C/C++ Development Guide
346 Compiling and Linking for Arm

See also

--entry

Syntax

Parameters

Description

See also

Linker options °

Note: If you use at least one of the --stack_usage_control or --call_graph
options, stack usage analysis is automatically enabled.
Stack usage analysis, page 119.

Project>Options>Linker>Advanced>Enable stack usage analysis

--entry symbol

symbol The name of the symbol to be treated as a root symbol and
start label

Use this option to make a symbol be treated as a root symbol and the start label of the
application. This is useful for loaders. If this option is not used, the default start symbol
is__iar_program_start. A root symbol is kept whether or not it is referenced from
the rest of the application, provided its module is included. A module in an object file is
always included but a module part of a library is only included if needed.

Note: The label referred to must be available in your application. You must also make
sure that the reset vector refers to the new start label, for example --redirect
__ilar program_start=_myStartLabel.

--no_entry, page 419.

Project>Options>Linker>Library>Override default program entry

--entry_list_in_address_order

Syntax

Description

--entry_list_in_address_order

Use this option to generate an additional entry list in the map file. This entry list will be
sorted in address order.

To set this option, use Project>Options>Linker>Extra Options

347

Descriptions of linker options

--error_limit

Syntax

Parameters

Description

--exception_tables

Syntax

Parameters

Description

See also

IAR C/C++ Development Guide
348 Compiling and Linking for Arm

--error_limit=n

n The number of errors before the linker stops linking. n must
be a positive integer. 0 indicates no limit.

Use the --error_limit option to specify the number of errors allowed before the
linker stops the linking. By default, 100 errors are allowed.

This option is not available in the IDE.

--exception_tables={nocreate|unwind|cantunwind}

nocreate (default) Does not generate entries. Uses the least amount of memory,
but the result is undefined if an exception is propagated
through a function without exception information.

unwind Generates unwind entries that enable an exception to be
correctly propagated through functions without exception
information.

cantunwind Generates no-unwind entries so that any attempt to

propagate an exception through the function will result in a
call to terminate.

Use this option to determine what the linker should do with functions that do not have
exception information but which do have correct call frame information.

The compiler ensures that C functions get correct call frame information. For functions
written in assembler language you need to use assembler directives to generate call
frame information.

Using C++, page 237.

To set this option, use Project>Options>Linker>Extra Options.

--export_builtin_config

Syntax
Parameters

Description

--extra_init
Syntax

Parameters

Description

Syntax
Parameters

Description

Linker options °

--export_builtin_config filename
See Rules for specifying a filename or directory as parameters, page 324.

Exports the configuration used by default to a file.

This option is not available in the IDE.

--extra_init routine

routine A user-defined initialization routine.

Use this option to make the linker add an entry for the specified routine at the end of the
initialization table. The routine will be called during system startup, after other
initialization routines have been called and before main is called. No entry is added if
the routine is not defined.

Note: The routine must preserve the value passed to it in register RO. For this reason, it
is safest to write it in assembler language.

To set this option, use Project>Options>Linker>Extra Options.

-f filename
See Rules for specifying a filename or directory as parameters, page 324.
Use this option to make the linker read command line options from the named file, with

the default filename extension xc1.

In the command file, you format the items exactly as if they were on the command line
itself, except that you may use multiple lines, because the newline character acts just as
a space or tab character.

Both C and C++ style comments are allowed in the file. Double quotes behave in the
same way as in the Microsoft Windows command line environment.

349

Descriptions of linker options

350

See also

Syntax
Parameters

Description

See also

--force_exceptions

Syntax

Description

IAR C/C++ Development Guide
Compiling and Linking for Arm

--f, page 410.

To set this option, use Project>Options>Linker>Extra Options.

--f filename
See Rules for specifying a filename or directory as parameters, page 324.

Use this option to make the linker read command line options from the named file, with
the default filename extension xc1.

In the command file, you format the items exactly as if they were on the command line
itself, except that you may use multiple lines, because the newline character acts just as
a space or tab character.

Both C and C++ style comments are allowed in the file. Double quotes behave in the
same way as in the Microsoft Windows command line environment.

If you use the linker option --dependencies, extended command line files specified
using -- £ will generate a dependency, but those specified using - £ will not generate a
dependency.

--dependencies, page 403 and -f, page 409.

To set this option, use Project>Options>Linker>Extra Options.

--force_exceptions

Use this option to make the linker include exception tables and exception code even
when the linker heuristics indicate that exceptions are not used.

The linker considers exceptions to be used if there is a throw expression that is not a
rethrow in the included code. If there is no such throw expression in the rest of the
code, the linker arranges for operator new, dynamic_cast, and typeid to call
abort instead of throwing an exception on failure. If you need to catch exceptions from
these constructs but your code contains no other throws, you might need to use this
option.

Linker options °

See also Using C++, page 237.
Project>Options>Linker>Advanced>Allow C++ exceptions>Always include

--force_output

Syntax --force_output

Description Use this option to produce an output executable image regardless of any non-fatal
linking errors.

To set this option, use Project>Options>Linker>Extra Options

--fpu

Syntax --fpu={name|none}

Parameters
name The target FPU architecture.
none No FPU.

Description By default, the linker links your application for the FPU compatible with the object file
attribute. Use this option to explicitly specify an FPU to link your application for.
Note: In 64-bit mode, and when a 64-bit device is used in 32-bit mode, this option has
no effect.

See also --fpu, page 347

Project>Options>General Options>32-bit>FPU

351

Descriptions of linker options

352

--image_input
Syntax

Parameters

Description

Example

See also

--import_cmse_lib_in
Syntax

Parameters

IAR C/C++ Development Guide
Compiling and Linking for Arm

--image_input filenamel[, symboll[,section[,alignment]]]

filename The pure binary file containing the raw image you want to
link. See Rules for specifying a filename or directory as
parameters, page 324.

symbol The symbol which the binary data can be referenced with.

section The section where the binary data will be placed. The default
is . text.

alignment The alignment of the section. The default is 1.

Use this option to link pure binary files in addition to the ordinary input files. The file’s
entire contents are placed in the section, which means it can only contain pure binary
data.

Note: Just as for sections from object files, sections created by using the
--image_input option are not included unless actually needed. You can either specify
a symbol in the option and reference this symbol in your application (or use a --keep
option), or you can specify a section name and use the keep directive in a linker
configuration file to ensure that the section is included.

--image_input bootstrap.abs,Bootstrap, CSTARTUPCODE, 4

The contents of the pure binary file bootstrap.abs are placed in the section
CcSTARTUPCODE. The section where the contents are placed is 4-byte aligned and will
only be included if your application (or the command line option --keep) includes a
reference to the symbol Bootstrap.

--keep, page 414.

Project>Options>Linker>Input>Raw binary image

--import_cmse_lib_in filename

See Rules for specifying a filename or directory as parameters, page 324.

Description

See also

--import_cmse_lib_out

Syntax
Parameters

Description

See also

Description

See also

Linker options °

Reads a previous version of the import library and creates gateway veneers with the
same address as given in the import library. Use this option to create a secure image
where each entry function that exists in the provided import library is placed at the same
address in the output import library.

Note: In 64-bit mode, this option has no effect.

--cmse, page 335 and --import_cmse_lib_out, page 413

To set this option, use Project>Options>Linker>Extra Options.

--import_cmse_lib_out filename|directory
See Rules for specifying a filename or directory as parameters, page 324.

Use this option when building a secure image to automatically create an import library
for use in a corresponding non-secure image. The import library consists of a relocatable
ELF object module that contains only a symbol table. Each symbol specifies an absolute
address of a secure gateway for an entry in the section Veneer$$CMSE.

Note: In 64-bit mode, this option has no effect.

--cmse, page 335 and --import_cmse_lib_in, page 412

To set this option, use Project>Options>Linker>Extra Options.

--inline
Some routines are so small that they can fit in the space of the instruction that calls the
routine. Use this option to make the linker replace the call of a routine with the body of

the routine, where applicable.

Small function inlining, page 145.

Project>Options>Linker>Optimizations>Inline small routines

353

Descriptions of linker options

--keep

Syntax

Parameters

Description

--library_security

Syntax

Parameters

Description

See also

IAR C/C++ Development Guide
354 Compiling and Linking for Arm

--keep symboll[,symboll,...]

symbol The name of the global symbols to be treated as root
symbols.

Normally, the linker keeps a symbol only if it is needed by your application. Use this
option to make global symbols always be included in the final application.

Project>Options>Linker>Input>Keep symbols

——library_security:{none|pacbti—m}

none Uses a runtime library without PACBTI security features.
pacbti-m Uses a runtime library compiled with support for both PAC
and BTL

Use this option to force the linker to select a library that has the specified security
profile. Using this option disables the linker checks for mixing PAC/BTI support.

In 64-bit mode, this option has no effect.

Branch protection (PACBTI) — 32-bit mode only, page 273.

This option is not available in the IDE.

--log

Syntax

Parameters

--log topicl, topic, ..

topic can be one of:

call_graph

crt_routine_select

ion

demangle

fragment_info

initialization

inlining

libraries

merging

modules

redirects

sections

Linker options °

-1

Lists the call graph as seen by stack usage analysis.

Lists details of the selection process for runtime routines—
what definitions were available, what the requirements were,
and which decision the process resulted in.

Uses demangled names instead of mangled names for
C/C++ symbols in the log output, for example,
void h(int, char) instead of _z1lhic

Lists all fragments by number. The information contains the
section they correspond to (name, section number and file)
and the fragment size.

Lists copy batches and the compression selected for each
batch.

Lists the functions that were inlined, and which sections
(name, section number and file) they were inlined in. Note
that inlining in the linker must be enabled by the --inline
linker option. See --inline, page 413.

Lists all decisions made by the automatic library selector.
This might include extra symbols needed (--keep),
redirections (--redirect), as well as which runtime
libraries that were selected.

Lists the sections (name, section number and file) that were
merged and which symbol redirections this resulted in. Note
that section merging must be enabled by the
--merge_duplicate_sections linker option. See
--merge_duplicate sections, page 418.

Lists the modules that were selected for inclusion in the
application, and which symbol that caused them to be
included.

Lists redirected symbols.

Lists the symbols and section fragments that were selected
for inclusion in the application, and the dependence that
caused them to be included.

355

Descriptions of linker options

Description

See also

--log_file

Syntax
Parameters
Description

See also

veneers Lists some veneer creation and usage statistics.

unused_fragments Lists those section fragments that were not included in the
application.

Use this option to make the linker log information to stdout. The log information can
be useful for understanding why an executable image became the way it is.

--log_file, page 416.

Project>Options>Linker>List>Generate log

--log_file filename
See Rules for specifying a filename or directory as parameters, page 324.
Use this option to direct the log output to the specified file.

--log, page 415.

Project>Options>Linker>List>Generate log

--mangled_names_in_messages

Syntax

Description

IAR C/C++ Development Guide
356 Compiling and Linking for Arm

--mangled_names_in_messages

Use this option to produce both mangled and demangled names for C/C++ symbols in
messages. Mangling is a technique used for mapping a complex C name or a C++
name—for example, for overloading—into a simple name. For example, void h(int,
char) becomes _zlhic.

This option is not available in the IDE.

Linker options °

--manual_dynamic_initialization

Syntax

Description

--map

Syntax

Parameters

Description

--manual_dynamic_initialization

Normally, dynamic initialization (typically initialization of C++ objects with static
storage duration) is performed automatically during application startup. If you use
--manual_dynamic_initialization, you must call
__iar_dynamic_initialization at some later point for this initialization to be
done.

The function __iar_ dynamic_initialization is declared in the header file
iar_dynamic_init.h.

In a threaded application, --manual_dynamic_initialization also suppresses the
automatic initialization of thread-local variables for the main thread. In that case, you
mustcall __iar_cstart_tls_init (NULL) before using any thread-local variables,
andbeﬁﬁeCﬁ“ng__jar_dynamic_initialization

The function __iar_ cstart_tls_init is declared in the header file
DLib_Threads.h.

To set this option use Project>Options>Linker>Extra Options.

--map {filename|directory|-|+}

- Sends the entire linker memory map to stdout.

+ Generates a map file in the same directory as the output file and
with the same name as the output file, but with the filename
extension .map

See also Rules for specifying a filename or directory as parameters, page 324.

Use this option to produce a linker memory map file. The map file has the default
filename extension map. The map file contains:

e Linking summary in the map file header which lists the version of the linker, the
current date and time, and the command line that was used.
Runtime attribute summary which lists runtime attributes.

Placement summary which lists each section/block in address order, sorted by
placement directives.

357

Descriptions of linker options

358

e Initialization table layout which lists the data ranges, packing methods, and
compression ratios.

o Module summary which lists contributions from each module to the image, sorted
by directory and library.

o Entry list which lists all public and some local symbols in alphabetical order,
indicating which module they came from.

o Some of the bytes might be reported as shared.

Shared objects are functions or data objects that are shared between modules. If any
of these occur in more than one module, only one copy is retained. For example, in
some cases inline functions are not inlined, which means that they are marked as
shared, because only one instance of each function will be included in the final
application. This mechanism is also sometimes used for compiler-generated code or
data not directly associated with a particular function or variable, and when only one
instance is required in the final application.

This option can only be used once on the command line.

Project>Options>Linker>List>Generate linker map file

--merge_duplicate_sections

Syntax

Description

See also

--no_bom

Syntax

Description

IAR C/C++ Development Guide
Compiling and Linking for Arm

--merge_duplicate_sections

Use this option to keep only one copy of equivalent read-only sections.

Note: This can cause different functions or constants to have the same address, so an
application that depends on the addresses being different will not work correctly with
this option enabled.

Duplicate section merging, page 146.

Project>Options>Linker>Optimizations>Merge duplicate sections

--no_bom

Use this option to omit the Byte Order Mark (BOM) when generating a UTF-8 output
file.

See also

Linker options °

--text_out, page 429 and Text encodings, page 316.

Project>Options>Linker>Encodings>Text output file encoding

--no_dynamic_rtti_elimination

Syntax

Description

See also

--no_entry

Syntax
Description

See also

--no_dynamic_rtti_elimination

Use this option to make the linker include dynamic (polymorphic) runtime type
information (RTTI) data in the application image even when the linker heuristics
indicate that it is not needed.

The linker considers dynamic runtime type information to be needed if there is a
typeid or dynamic_cast expression for a polymorphic type in the included code. By
default, if the linker detects no such expression, RTTI data will not be included just to
make dynamic RTTI requests work.

Note: A typeid expression for a non-polymorphic type results in a direct reference to
a particular RTTI object and will not cause the linker to include any potentially
unneeded objects.

Using C++, page 237.

To set this option, use Project>Options>Linker>Extra Options.

--no_entry
Use this option to set the entry point field to zero for produced ELF files.

--entry, page 407.

Project>Options>Linker>Library>Override default program entry

359

Descriptions of linker options

360

--no_exceptions

Syntax

Description

See also

--no_fragments

Syntax

Description

See also

--no_free_heap

Syntax

Description

See also

IAR C/C++ Development Guide
Compiling and Linking for Arm

--no_exceptions

Use this option to make the linker generate an error if there is a throw in the included
code. This option is useful for making sure that your application does not use
exceptions.

Using C++, page 237.

To set related options, choose:

Project>Options>Linker>Advanced>Allow C++ exceptions

--no_fragments

Use this option to disable section fragment handling. Normally, the toolset uses IAR
proprietary information for transferring section fragment information to the linker. The
linker uses this information to remove unused code and data, and further minimize the
size of the executable image. Use this option to disable the removal of fragments of
sections, instead including or not including each section in its entirety, usually resulting
in a larger application.

Keeping symbols and sections, page 135.

To set this option, use Project>Options>Linker>Extra Options

--no_free_heap

Use this option to use the smallest possible heap implementation. Because this heap
does not support free or realloc, it is only suitable for applications that in the startup
phase allocate heap memory for various buffers, etc, and for applications that never
deallocate memory.

Heap memory handlers, page 254

Project>Options>General Options>Library Options 2>Heap selection

--no_inline

Syntax

Parameters

Description

See also

--no_library_search

Syntax

Description

--no_literal_pool

Syntax

Description

Linker options °

--no_inline func|, func...]

func The name of a function symbol

Use this option to exclude some functions from small function inlining.

--inline, page 413.

To set this option, use Project>Options>Linker>Extra Options.

--no_Jlibrary_ search

Use this option to disable the automatic runtime library search. This option turns off the
automatic inclusion of the correct standard libraries. This is useful, for example, if the
application needs a user-built standard library, etc.

Note: The option disables all steps of the automatic library selection, some of which
might need to be reproduced if you are using the standard libraries. Use the

--log libraries linker option together with automatic library selection enabled to
determine which the steps are.

Project>Options>Linker>Library>Automatic runtime library selection

--no_literal_pool
Use this option for code that should run from a memory region where it is not allowed
to read data, only to execute code.

When this option is used, the linker will use the MOV32 pseudo instruction in a
mode-changing veneer, to avoid using the data bus to load the destination address. The
option also means that libraries compiled with this option will be used.

The option --no_literal_pool is only allowed for Armv6-M and Armv7-M cores
(includes Armv8-M, Armv8.1-M, Armv8-A and Armv8-R cores).

361

Descriptions of linker options

362

See also

--no_locals

Syntax

Description

--no_literal pool, page 356.

To set this option, use Project>Options>Linker>Extra Options.

--no_locals

Use this option to remove all local symbols from the ELF executable image.

Note: This option does not remove any local symbols from the DWARF information in
the executable image.

Project>Options>Linker>Output

--no_range_reservations

Syntax

Description

=-=No_remove

Syntax

Description

See also

IAR C/C++ Development Guide
Compiling and Linking for Arm

--no_range_reservations

Normally, the linker reserves any ranges used by absolute symbols with a non-zero size,
excluding them from consideration for place in commands.

When this option is used, these reservations are disabled, and the linker is free to place
sections in such a way as to overlap the extent of absolute symbols.

To set this option, use Project>Options>Linker>Extra Options.

—-—-no_remove

When this option is used, unused sections are not removed. In other words, each module
that is included in the executable image contains all its original sections.

Keeping symbols and sections, page 135.

To set this option, use Project>Options>Linker>Extra Options.

--no_vfe

Syntax

Description

See also

--no_warnings

Syntax

Description

--no_wrap_diagnostics

Syntax

Description

--only_stdout

Syntax

Description

Linker options °

--no_vfe

Use this option to disable the Virtual Function Elimination optimization. All virtual
functions in all classes with at least one instance will be kept, and Runtime Type
Information data will be kept for all polymorphic classes. Also, no warning message will
be issued for modules that lack VFE information.

--vfe, page 433 and Virtual function elimination, page 145.

To set related options, choose:

Project>Options>Linker>Optimizations>Perform C++ Virtual Function
Elimination

--no_warnings

By default, the linker issues warning messages. Use this option to disable all warning
messages.

This option is not available in the IDE.

--no_wrap_diagnostics

By default, long lines in diagnostic messages are broken into several lines to make the
message easier to read. Use this option to disable line wrapping of diagnostic messages.

This option is not available in the IDE.

--only_stdout

Use this option to make the linker use the standard output stream (stdout) for messages
that are normally directed to the error output stream (stderr).

363

Descriptions of linker options

--output, -o

Syntax

Parameters

Description

--pi_veneers

Syntax

Description

See also

--place_holder

Syntax

Parameters

IAR C/C++ Development Guide
364 Compiling and Linking for Arm

This option is not available in the IDE.

--output {filename|directory}
-o {filename|directory}

See Rules for specifying a filename or directory as parameters, page 324.
By default, the object executable image produced by the linker is located in a file with

the name aout . out. Use this option to explicitly specify a different output filename,
which by default will have the filename extension out.

Project>Options>Linker>Output>Output file

--pi_veneers

Use this option to make the linker generate position-independent veneers. Note that this
type of veneer is larger and slower than normal veneers.

Veneers, page 141.

To set this option, use Project>Options>Linker>Extra Options.

--place_holder symbol[,sizel,section|,alignment]]]

symbol The name of the symbol to create
size Size in ROM. Default is 4 bytes
section Section name to use. Default is . text
alignment Alignment of section. Default is 1

Description

See also

--preconfig

Syntax
Parameters

Description

--printf_multibytes

Syntax

Description

--redirect

Syntax

Parameters

Linker options °

Use this option to reserve a place in ROM to be filled by some other tool, for example,
a checksum calculated by ielftool. Each use of this linker option results in a section
with the specified name, size, and alignment. The symbol can be used by your
application to refer to the section.

Note: Like any other section, sections created by the --place_holder option will only
be included in your application if the section appears to be needed. The --keep linker
option, or the keep linker directive can be used for forcing such section to be included.

IAR utilities, page 657.

To set this option, use Project>Options>Linker>Extra Options

--preconfig filename
See Rules for specifying a filename or directory as parameters, page 324.

Use this option to make the linker read the specified file before reading the linker
configuration file.

To set this option, use Project>Options>Linker>Extra Options.

--printf_multibytes

Use this option to make the linker automatically select a print £ formatter that supports
multibytes.

Project>Options>General Options>Library options 1>Printf formatter

--redirect from symbol=to_symbol

from_symbol The name of the source symbol

365

Descriptions of linker options

Description

--remarks

Syntax

Description

See also

--require_bti

Syntax

Description

See also

IAR C/C++ Development Guide
366 Compiling and Linking for Arm

to_symbol The name of the destination symbol

Use this option to change references to an external symbol so that they refer to another
symbol.

Note: Redirection will normally not affect references within a module.

To set this option, use Project>Options>Linker>Extra Options

--remarks

The least severe diagnostic messages are called remarks. A remark indicates a source
code construct that may cause strange behavior in the generated code. By default, the
linker does not generate remarks. Use this option to make the linker generate remarks.
Severity levels, page 319.

Project>Options>Linker>Diagnostics>Enable remarks

--require_bti

By default, the linker generates a warning if two or more modules do not have the same
level of support for BTI (Branch Target Identification). Use this option to make the
linker generate an error instead.

In 64-bit mode, this option has no effect.

Note: If the option --1ibrary_security is used, no diagnostic message at all is
generated.

Branch protection (PACBTI) — 32-bit mode only, page 273 and --library_security, page
414.

This option is not available in the IDE.

Linker options °

--require_pac
Syntax --require_pac
Description Use this option to make the linker generate a warning if two or more modules do not

have the same level of support for PAC (Pointer Authentication). In 64-bit mode, this
option has no effect.

Note: If the option --1ibrary_security is used, no warning is generated.

See also Branch protection (PACBTI) — 32-bit mode only, page 273 and --library_security, page
414.

This option is not available in the IDE.

--scanf_multibytes

Syntax --scanf_multibytes
Description Use this option to make the linker automatically select a scanf formatter that supports
multibytes.

Project>Options>General Options>Library options 1>Scanf formatter

--search, -L

Syntax --search path
-L path
Parameters
path A path to a directory where the linker should search for
object and library files.
Description Use this option to specify more directories for the linker to search for object and library
files in.

By default, the linker searches for object and library files only in the working directory.
Each use of this option on the command line adds another search directory.

See also The linking process in detail, page 111.

367

Descriptions of linker options

--semihosting

Syntax

Parameters

Description

See also

--silent

Syntax

Description

--small_math

Syntax

Description

See also

IAR C/C++ Development Guide
368 Compiling and Linking for Arm

This option is not available in the IDE.

--semihosting[=iar_breakpoint]

iar_breakpoint The IAR-specific mechanism can be used when
debugging applications that use SVC extensively.

Use this option to include the debug interface—breakpoint mechanism—in the output
image. If no parameter is specified, the behavior is as described in The semihosting
mechanism, page 170.

The semihosting mechanism, page 170.

Project>Options>General Options>Library Configuration>Semihosted

--silent

By default, the linker issues introductory messages and a final statistics report. Use this
option to make the linker operate without sending these messages to the standard output
stream (normally stdout).

This option does not affect the display of error and warning messages.

This option is not available in the IDE.

--small_math

Use this option to use smaller versions of the math libraries (but less accurate) than the
default versions.

Math functions, page 171.

--stack_usage_control

Syntax
Parameters

Description

See also

--strip
Syntax

Description

--text_out

Syntax

Parameters

Linker options °

Project>Options>General Options>Library Options 1>Math functions

This option is not available in the IDE.

--stack_usage_control=filename
See Rules for specifying a filename or directory as parameters, page 324.

Use this option to specify a stack usage control file. This file controls stack usage
analysis, or provides more stack usage information for modules or functions. You can
use this option multiple times to specify multiple stack usage control files. If no filename
extension is specified, the extension suc is used.

Using this option enables stack usage analysis in the linker.

Stack usage analysis, page 119.

Project>Options>Linker>Advanced>Enable stack usage analysis>Control file

--strip

By default, the linker retains the debug information from the input object files in the
output executable image. Use this option to remove that information.

To set related options, choose:

Project>Options>Linker>Output>Include debug information in output

--text_out{utf8|utfléle|utflébe|locale}

utfs Uses the UTF-8 encoding
utfléle Uses the UTF-16 little-endian encoding
utflébe Uses the UTF-16 big-endian encoding

369

Descriptions of linker options

Description

See also

--threaded_lib

Syntax

Description

--timezone_lib

Syntax

Description

See also

IAR C/C++ Development Guide
370 Compiling and Linking for Arm

locale Uses the system locale encoding

Use this option to specify the encoding to be used when generating a text output file.

The default for the linker list files is to use the same encoding as the main source file.
The default for all other text files is UTF-8 with a Byte Order Mark (BOM).

If you want text output in UTF-8 encoding without BOM, you can use the option
--no_bom as well.
--no_bom, page 418 and Text encodings, page 316.

Project>Options>Linker>Encodings>Text output file encoding

--threaded_1lib

Use this option to automatically configure the runtime library for use with threads.

When this option is used, the linker creates the sections __iar_tls$$DATA and
__iar_ tlsSSINIT_DATA, and the sections . tdata and . tbss will continue to use the
names . tdata and . tbss. If the option --threaded_1ib is not used, the contents of
the section . tdata will be handled as if they resided in .data and the contents of the
section . tbss will be handled as if they resided in .bss.

Project>Options>General Options>Library Configuration>Enable thread
support in library

--timezone_lib

Use this option to enable the time zone and daylight savings time functionality in the
DLIB library.

Note: You must implement the time zone functionality yourself.

__getzone, page 181.

To set this option, use Project>Options>Linker>Extra Options.

Linker options °

--treat_rvct_modules_as_softfp

Swﬂax --treat_rvct_modules_as_softfp

Description Use this option to treat all modules generated by RVCT as using the standard (non-VFP)
calling convention.

To set this option, use Project>Options>Linker>Extra Options.

--use_full_std_template_names

Syntax --use_full_std_template_names

Description In the demangled names of C++ entities, the linker by default uses shorter names for
some classes. For example, "std: :string" instead of
"std: :basic_string<char,
std::char_traits<char>, std::allocator<char>>". Use this option to make
the linker instead use the full, unabbreviated names.

This option is not available in the IDE.

--use_optimized_variants

Syntax --use_optimized_variants={no|auto|small|fast}

Parameters
no Always uses the default variant with standard optimizations.
auto Uses variants based on AEABI attributes that indicate the

requested optimization goal:

If a module is compiled with -0hs, and the DLIB library contains
a fast variant of a function that is referenced in the module,
that variant is used.

If all modules referencing a function are compiled with -Ohz, and
the DLIB library contains a small variant of that function, that
variant is used.

This is the default behavior of the linker.

small Always uses a small variant (balances code size and execution
speed, favoring size) if there is one in the DLIB library.

371

Descriptions of linker options

Description

--utf8_ text_in

Syntax

Description

See also

--version

Syntax

Description

IAR C/C++ Development Guide
372 Compiling and Linking for Arm

fast Always uses a fast variant (maximum execution speed) if there is
one in the DLIB library.

Use this option to control the use of optimized variants of some DLIB library functions.
(Some DLIB libraries delivered with the product contain optimized variants, such as a
small integer division routing for Cortex-MO, or a fast strcpy implementation for cores
that support the Thumb-2 ISA architecture.)

To see which variants that this option selected, inspect the list of redirects in the linker
map file.

To set this option, use Project>Options>Linker>Extra Options.

--utf8_text_in

Use this option to specify that the linker shall use the UTF-8 encoding when reading a
text input file with no Byte Order Mark (BOM).

Note: This option does not apply to source files.

Text encodings, page 316.

Project>Options>Linker>Encodings>Default input file encoding

--version

Use this option to make the linker send version information to the console and then exit.

This option is not available in the IDE.

--vfe

Syntax

Parameters

Description

See also

--warnings_affect_exit_

Syntax

Description

--warnings_are_errors

Syntax

Description

Linker options °

--vie[=forced]

forced Performs Virtual Function Elimination even if one or more
modules lack the needed virtual function elimination
information.

By default, Virtual Function Elimination is always performed but requires that all object
files contain the necessary virtual function elimination information. Use
--vfe=forced to perform Virtual Function Elimination even if one or more modules
do not have the necessary information.

Forcing the use of Virtual Function Elimination can be unsafe if some of the modules
that lack the needed information perform virtual function calls or use dynamic Runtime
Type Information.

--no_vfe, page 423 and Virtual function elimination, page 145.

To set related options, choose:

Project>Options>Linker>Optimizations>Perform C++ Virtual Function
Elimination

code

--warnings_affect_exit_code

By default, the exit code is not affected by warnings, because only errors produce a
non-zero exit code. With this option, warnings will also generate a non-zero exit code.

This option is not available in the IDE.

--warnings_are_errors
Use this option to make the linker treat all warnings as errors. If the linker encounters

an error, no executable image is generated. Warnings that have been changed into
remarks are not treated as errors.

373

Descriptions of linker options

374

See also

--whole_archive

Syntax
Parameters

Description

Example

See also

IAR C/C++ Development Guide
Compiling and Linking for Arm

Note: Any diagnostic messages that have been reclassified as warnings by the option
--diag_warning will also be treated as errors when --warnings_are_errors is
used.

--diag warning, page 341 and --diag warning, page 405.

Project>Options>Linker>Diagnostics>Treat all warnings as errors

--whole_archive filename
See Rules for specifying a filename or directory as parameters, page 324.

Use this option to make the linker treat every object file in the archive as if it was
specified on the command line. This is useful when an archive contains root content that
is always included from an object file (filename extension o), but only included from an
archive if some entry from the module is referred to.

If archive.a contains the object files filel.o, file2.0,and £ile3.o, using
--whole_archive archive.a is equivalent to specifying filel.o file2.o
file3.o.

Keeping modules, page 135.

To set this option, use Project>Options>Linker>Extra Options

Data representation

e Alignment

e Byte order (32-bit mode only)

e Basic data types—integer types

e Basic data types—floating-point types
e Pointer types

e Structure types

e Type qualifiers

e Data types in C++

See the chapter Efficient coding for embedded applications for information about
which data types provide the most efficient code for your application.

Alignment

Every C data object has an alignment that controls how the object can be stored in
memory. Should an object have an alignment of, for example, 4, it must be stored on an
address that is divisible by 4.

The reason for the concept of alignment is that some processors have hardware
limitations for how the memory can be accessed.

Assume that a processor can read 4 bytes of memory using one instruction, but only
when the memory read is placed on an address divisible by 4. Then, 4-byte objects, such
as long integers, will have alignment 4.

Another processor might only be able to read 2 bytes at a time—in that environment, the
alignment for a 4-byte 1long integer might be 2.

A structure type will have the same alignment as the structure member with the strictest
alignment. To decrease the alignment requirements on the structure and its members,
use #pragma pack or the __packed data type attribute.

375

Byte order (32-bit mode only)

376

All data types must have a size that is a multiple of their alignment. Otherwise, only the
first element of an array would be guaranteed to be placed in accordance with the
alignment requirements. This means that the compiler might add pad bytes at the end of
the structure. For more information about pad bytes, see Packed structure types, page
457.

Note: With the #pragma data_alignment directive, you can increase the alignment
demands on specific variables.

See also the Standard C file stdalign.h.

ALIGNMENT ON THE ARM CORE

The alignment of a data object controls how it can be stored in memory. The reason for
using alignment is that the Arm core can access 4-byte objects more efficiently when the
object is stored at an address divisible by 4.

Objects with alignment 4 must be stored at an address divisible by 4, while objects with
alignment 2 must be stored at addresses divisible by 2.

The compiler ensures this by assigning an alignment to every data type, ensuring that
the Arm core will be able to read the data.

For related information, see --align_sp_on_irq, page 333 and --no_const_align, page
354.

Byte order (32-bit mode only)

IAR C/C++ Development Guide
Compiling and Linking for Arm

In the little-endian byte order, which is default, the /east significant byte is stored at the
lowest address in memory. The most significant byte is stored at the highest address.

In the big-endian byte order (can only be selected in 32-bit mode), the mos¢ significant
byte is stored at the lowest address in memory. The least significant byte is stored at the
highest address. If you use the big-endian byte order, it might be necessary to use the
#pragma bitfields=reversed directive to be compatible with code for other
compilers and I/O register definitions of some devices, see Bitfields, page 448.

Note: There are two variants of the big-endian mode, BE8 and BE32, which you specify
at link time. In BES8 data is big-endian and code is little-endian. In BE32 both data and
code are big-endian. In architectures before v6, the BE32 endian mode is used, and after
v6 the BES mode is used. In the v6 (Arm11) architecture, both big-endian modes are
supported.

Data representation °

Basic data types—integer types

The compiler supports both all Standard C basic data types and some additional types.
These topics are covered:

Integer types—an overview
Bool

The enum type

The char type

The wchar_t type

The charl6_t type

The char32_t type

Bitfields

INTEGER TYPES—AN OVERVIEW

This table gives the size and range of each integer data type:

Data type Size Range Alignment
bool 8 bits Oto | |
char 8 bits 0 to 255 |
signed char 8 bits -128 to 127 |
unsigned char 8 bits 0 to 255 |
signed short 16 bits -32768 to 32767 2
unsigned short 16 bits 0 to 65535 2
signed int 32 bits 230 23 4
unsigned int 32 bits 01to 23| 4
signed long 4
32-bit mode and ILP32 in 64-bit mode 32 bits 23023

LP64 in 64-bit mode 64 bits 23 10 283
unsigned long 4
32-bit mode and ILP32 in 64-bit mode 32 bits 0to 232

LP64 in 64-bit mode 64 bits 0 to 264

signed long long 64 bits 263 10283)
unsigned long long 64 bits 0 to 2641

Table 32: Integer types

Signed variables are represented using the two’s complement form.

377

Basic data types—integer types

378

IAR C/C++ Development Guide
Compiling and Linking for Arm

BOOL

The bool data type is supported by default in the C++ language. If you have enabled
language extensions, the boo1l type can also be used in C source code if you include the
file stdbool.h. This will also enable the boolean values false and true.

THE ENUM TYPE

The compiler will use the smallest type required to hold enum constants, preferring
signed rather than unsigned.

When IAR language extensions are enabled, and in C++, the enum constants and types
can also be of the type 1long, unsigned long, long long, or unsigned long long.

To make the compiler use a larger type than it would automatically use, define an enum
constant with a large enough value. For example:

/* Disables usage of the char type for enum */
enum Cards{Spadel, Spade2,
DontUseChar=257};

See also the C++ enum struct syntax.

For related information, see --enum_is_int, page 345.

THE CHAR TYPE

The char type is by default unsigned in the compiler, but the --char_is_signed
compiler option allows you to make it signed.

Note: The library is compiled with the char type as unsigned.

THE WCHAR_T TYPE
The wchar_t data type is 4 bytes and the encoding used for it is UTF-32.

THE CHARI6_T TYPE
The char16_t data type is 2 bytes and the encoding used for it is UTF-16.

THE CHAR32_T TYPE

The char32_t data type is 4 bytes and the encoding used for it is UTF-32.

BITFIELDS

In Standard C, int, signed int, and unsigned int can be used as the base type for
integer bitfields. In standard C++, and in C when language extensions are enabled in the
compiler, any integer or enumeration type can be used as the base type. It is

Data representation °

implementation defined whether a plain integer type (char, short, int, etc) results in
a signed or unsigned bitfield.

In the IAR C/C++ Compiler for Arm, plain integer types are treated as unsigned.

Bitfields in expressions are treated as int if int can represent all values of the bitfield.
Otherwise, they are treated as the bitfield base type.

Each bitfield is placed in the next suitably aligned container of its base type that has
enough available bits to accommodate the bitfield. Within each container, the bitfield is
placed in the first available byte or bytes, taking the byte order into account. Note that
containers can overlap if needed, as long as they are suitably aligned for their type.

In addition, the compiler supports an alternative bitfield allocation strategy (disjoint
types), where bitfield containers of different types are not allowed to overlap. Using this
allocation strategy, each bitfield is placed in a new container if its type is different from
that of the previous bitfield, or if the bitfield does not fit in the same container as the
previous bitfield. Within each container, the bitfield is placed from the least significant
bit to the most significant bit (disjoint types) or from the most significant bit to the least
significant bit (reverse disjoint types). This allocation strategy will never use less space
than the default allocation strategy (joined types), and can use significantly more space
when mixing bitfield types.

Use the #pragma bitfields directive to choose which bitfield allocation strategy to
use, see bitfields, page 488.

Assume this example:

struct BitfieldExample

{
uint32_t a : 12;
uintlé_t b : 3;
uintlé_t c : 7;
uint8_t d;

}s

The example in the joined types bitfield allocation strategy

To place the first bitfield, a, the compiler allocates a 32-bit container at offset 0 and puts
a into the first and second bytes of the container.

For the second bitfield, b, a 16-bit container is needed and because there are still four
bits free at offset 0, the bitfield is placed there.

For the third bitfield, c, as there is now only one bit left in the first 16-bit container, a
new container is allocated at offset 2, and c is placed in the first byte of this container.

The fourth member, d, can be placed in the next available full byte, which is the byte at
offset 3.

379

Basic data types—integer types

In little-endian mode, each bitfield is allocated starting from the least significant free bit
of its container to ensure that it is placed into bytes from left to right.

MSB LSB
uint32_t a = padding
MSE LSB MsB LSB MsB LSB MSB LSB
a b |a c d
0 [2 3
\MsB Lse/ \MsB LSB,
uintlé6_t | |b c

In big-endian mode, each bitfield is allocated starting from the most significant free bit
of its container to ensure that it is placed into bytes from left to right.

MSB LSB

uint32_t a = padding

MSE LSB MsB LSB MsB LSB MSB LSB

a a |b c d
0 | 2 3
\MsB Lse/ \ Mse LSB,
uintlé_t b c

The example in the disjoint types bitfield allocation strategy

To place the first bitfield, a, the compiler allocates a 32-bit container at offset 0 and puts
a into the least significant 12 bits of the container.

To place the second bitfield, b, a new container is allocated at offset 4, because the type
of the bitfield is not the same as that of the previous one. b is placed into the least
significant three bits of this container.

The third bitfield, c, has the same type as b and fits into the same container.

IAR C/C++ Development Guide
380 Compiling and Linking for Arm

Data representation °

The fourth member, d, is allocated into the byte at offset 6. d cannot be placed into the
same container as b and c because it is not a bitfield, it is not of the same type, and it
would not fit.

When using reverse order (reverse disjoint types), each bitfield is instead placed starting
from the most significant bit of its container.

This is the layout of bitfield_example in little-endian mode:

MSB LSB MSB LsB
uint32_t a uintl6_t c |b = padding
MSE LSB MSB LSB MSB LS8 MSB LSB MsB LSB MSB LB MsB LSB
a a c b [d
0 | 2 3 4 5 6
MSB LSB MSB LSB MSB LSB MSB LSB MSB LSB MSB LSB MSB LSB
a a c b c d reversed

uint32_t a uintlé6_t | b| ¢

_MsB LB~ \ MsB LsB/

381

Basic data types—integer types

382

IAR C/C++ Development Guide
Compiling and Linking for Arm

This is the layout of bitfield example in big-endian mode:

MSB LSB MSB LSB
uint32_t a uintl6_t c |b = padding
MSE LSB MsB LSB MSB LS8 MSB LSB MsB LSB MSB LS8 MSB LSB
a a c c b d
| 2 3 4 5 6
MSB LSB MSB LSB MSB LSB MSB LSB MSB LSB MSB LB MSB LSB
a b c c d reversed

uin32. ¢ | a uintlét |b| c

S MsB LSB,;""

Padding

Padding is usually added to the end of structures to accommodate reading/writing an
entire bitfield container when accessing bitfields, as shown above. However, when bits
are allocated from low to high addresses, padding is only added if it is needed to
accommodate the alignment of the field.

Example:
struct X { uint32_t x1 : 5; };

When the alignment of the uint32_t bitfield is 4, the size of struct Xis 4, to enable
reading/writing the entire bitfield container (uint32_t) at its natural alignment.
However, if the alignment of the field is lower (for example, by using #pragma pack),
and bits are allocated from low addresses, the size of struct X is also correspondingly
less.

Data representation °

Basic data types—floating-point types

In the IAR C/C++ Compiler for Arm, floating-point values are represented in standard
IEC 60559 format. The sizes for the different floating-point types are:

Type Size Range (+/-) Decimals Exponent Mantissa Alignment
__fplé6 16 bits *2E-14 to 65504 3 5 bits Il bits 2

float 32 bits *1.18E-38 to £3.40E+38 7 8 bits 23 bits 4
double 64 bits +2.23E-308 to +1.79E+308 |5 I'l bits 52 bits 8

long 64 bits +2.23E-308 to +1.79E+308 |5 I'l bits 52 bits 8
double

Table 33: Floating-point types

For Cortex-MO and Cortex-M1, the compiler does not support subnormal numbers. All
operations that should produce subnormal numbers will instead generate zero. For
information about the representation of subnormal numbers for other cores, see
Representation of special floating-point numbers, page 454.

The __ fp16 floating-point type is only a storage type. All numerical operations will
operate on values promoted to £1oat. There is also a standard type _Floatl6, which
is layout-compatible with __fp16. Some cores support numerical operations directly on
_Float16 values. For other cores, it is a storage-only type.

Note: The C/C++ standard library does not support the _Float16 type. If you want to
use any of the standard library functions on the _Float16 type, you must cast the
_Float16 value to single-precision or double-precision, and then use the appropriate
library function. Because there is no string format specifier for the _Float16 type, an
explicit cast is required.

FLOATING-POINT ENVIRONMENT

Exception flags for floating-point values are supported for devices with a VFP unit, and
they are defined in the fenv . h file. For devices without a VFP unit, the functions
defined in the fenv.h file exist but have no functionality.

The feraiseexcept function does not raise an inexact floating-point exception
when called with FE_OVERFLOW or FE_UNDERFLOW.

32-BIT FLOATING-POINT FORMAT

The representation of a 32-bit floating-point number as an integer is:

3l 30 23 12 0

S | Exponent Mantissa

383

Basic data types—floating-point types

384

IAR C/C++ Development Guide
Compiling and Linking for Arm

The exponent is 8 bits, and the mantissa is 23 bits.
The value of the number is:
(-1)S * 2(Exponent-127) « | Mantissa
The range of the number is at least:

+1.18E-38 to *3.39E+38

The precision of the float operators (+, -, *, and /) is approximately 7 decimal digits.

64-BIT FLOATING-POINT FORMAT

The representation of a 64-bit floating-point number as an integer is:

63 62 52 51 v}

s Exponeant Mantissa

The exponent is 11 bits, and the mantissa is 52 bits.
The value of the number is:

(-1)8 * o(Exponent-1023) « 1 Mantissa

The range of the number is at least:
+2.23E-308 to *1.79E+308

The precision of the float operators (+, -, *, and /) is approximately 15 decimal digits.

REPRESENTATION OF SPECIAL FLOATING-POINT NUMBERS
This list describes the representation of special floating-point numbers:

e Zero is represented by zero mantissa and exponent. The sign bit signifies positive or
negative zero.

e Infinity is represented by setting the exponent to the highest value and the mantissa
to zero. The sign bit signifies positive or negative infinity.

e Not a number (NaN) is represented by setting the exponent to the highest positive
value and the most significant bit in the mantissa to 1. The value of the sign bit is
ignored.

o Subnormal numbers are used for representing values smaller than what can be
represented by normal values. The drawback is that the precision will decrease with
smaller values. The exponent is set to O to signify that the number is subnormal,
even though the number is treated as if the exponent was 1. Unlike normal numbers,
subnormal numbers do not have an implicit 1 as the most significant bit (the MSB)
of the mantissa. The value of a subnormal number is:

(-1)8 » 2(1-BIAS) % o Mantissa

Data representation °

where BIAS is 127 and 1023 for 32-bit and 64-bit floating-point values, respectively.

Pointer types

The compiler has two basic types of pointers: function pointers and data pointers.

FUNCTION POINTERS

The function pointers have these properties:

Execution mode Data model Pointer size Address range

32-bit n/a 32 bits 0-OxXFFFF'FFFF

64-bit ILP32 32 bits 0-0xXFFFF'FFFF

64-bit LPé64 64 bits 0-0xFFFF'FFFF'FFFF'FFFF

Table 34: Function pointers

Note: In the ILP32 data model, the representation of a pointer in a register is always
64-bit. A 32-bit pointer is zero-extended when it is loaded into a register, and a store
operation only stores the lowest 32 bits.

When function pointer types are declared, attributes are inserted before the * sign, for
example:

typedef void (__thumb * IntHandler) (void);
This can be rewritten using #pragma directives:

#pragma type_attribute=__thumb
typedef void IntHandler_function(void) ;
typedef IntHandler_function *IntHandler;

DATA POINTERS

There is one data pointer available. It has these properties:

Execution mode Data model Pointer size Address range

32-bit n/a 32 bits 0-0xXFFFF'FFFF

64-bit ILP32 32 bits 0-0xFFFF'FFFF

64-bit LP64 64 bits 0-OXFFFF'FFFF'FFFF'FFFF

Table 35: Data pointers

Note: In the ILP32 data model, the representation of a pointer in a register is always
64-bit. A 32-bit pointer is zero-extended when it is loaded into a register, and a store
operation only stores the lowest 32 bits.

385

Structure types

386

CASTING

Casts between pointers have these characteristics:

o Casting a value of an integer type to a pointer of a smaller type is performed by
truncation

Casting a pointer type to a smaller integer type is performed by truncation
Casting a pointer type to a larger integer type is performed by zero extension
Casting a data pointer to a function pointer and vice versa is illegal

Casting a function pointer to an integer type gives an undefined result

Casting a value of an unsigned integer type to a pointer of a larger type is performed
by zero extension

size t

size_tisthe unsigned integer type of the result of the sizeof operator. In 32-bit mode
and when using the ILP32 data model in 64-bit mode, the type used for size_t is
unsigned int.Inthe LP64 data model, the type used for size_t iSunsigned long.

ptrdiff_t

ptrdiff_t is the signed integer type of the result of subtracting two pointers. In 32-bit
mode and when using the ILP32 data model in 64-bit mode, the type used for
ptrdiff_t is the signed integer variant of the size_t type. In the LP64 data model,
the type used for ptrdiff_t is signed long.

intptr_t

intptr_t is a signed integer type large enough to contain a void *. In the IAR C/C++
Compiler for Arm, the type used for intptr_t is signed long int.

uintptr_t

uintptr_t is equivalent to intptr_t, with the exception that it is unsigned.

Structure types

IAR C/C++ Development Guide
Compiling and Linking for Arm

The members of a struct are stored sequentially in the order in which they are
declared—the first member has the lowest memory address.

ALIGNMENT OF STRUCTURE TYPES

The struct and union types have the same alignment as the member with the highest
alignment requirement—this alignment requirement also applies to a member that is a

Data representation °

structure. To allow arrays of aligned structure objects, the size of a struct is adjusted
to an even multiple of the alignment.

GENERAL LAYOUT

Members of a struct are always allocated in the order specified in the declaration.
Each member is placed in the struct according to the specified alignment (offsets).

struct First
{
char c¢;
short s;
} os;

This diagram shows the layout in memory:

c pad s

0 | 2 3

The alignment of the structure is 2 bytes, and a pad byte must be inserted to give
short s the correct alignment.

PACKED STRUCTURE TYPES

The __packed data type attribute or the #pragma pack directive is used for relaxing
the alignment requirements of the members of a structure. This changes the layout of the
structure. The members are placed in the same order as when declared, but there might
be less pad space between members.

Note: Accessing an object that is not correctly aligned requires code that is both larger
and slower. If such structure members are accessed many times, it is usually better to
construct the correct values in a struct that is not packed, and access this struct
instead.

Special care is also needed when creating and using pointers to misaligned members.
For direct access to misaligned members in a packed struct, the compiler will emit the
correct (but slower and larger) code when needed. However, when a misaligned member
is accessed through a pointer to the member, the normal (smaller and faster) code is
used. In the general case, this will not work, because the normal code might depend on
the alignment being correct.

387

Type qualifiers

388

This example declares a packed structure:

#pragma pack (1)
struct S
{
char c;
short s;
Y

#pragma pack()

The structure s has this memory layout:

c S

0 | 2

The next example declares a new non-packed structure, S2, that contains the structure s
declared in the previous example:

struct S2

{
struct S s;
long 1;

}i

The structure S2 has this memory layout

The structure s will use the memory layout, size, and alignment described in the
previous example. The alignment of the member 1 is 4, which means that alignment of
the structure s2 will become 4.

For more information, see Alignment of elements in a structure, page 284.

Type qualifiers

IAR C/C++ Development Guide
Compiling and Linking for Arm

According to the C standard, volatile and const are type qualifiers.

DECLARING OBJECTS VOLATILE

By declaring an object volatile, the compiler is informed that the value of the object
can change beyond the compiler’s control. The compiler must also assume that any

Data representation °

accesses can have side effects—therefore all accesses to the volatile object must be
preserved.

There are three main reasons for declaring an object volatile:
e Shared access—the object is shared between several tasks in a multitasking
environment

o Trigger access—as for a memory-mapped SFR where the fact that an access occurs
has an effect

o Modified access—where the contents of the object can change in ways not known to
the compiler.

Definition of access to volatile objects

The C standard defines an abstract machine, which governs the behavior of accesses to
volatile declared objects. In general and in accordance to the abstract machine:

o The compiler considers each read and write access to an object declared volatile
as an access

o The unit for the access is either the entire object or, for accesses to an element in a
composite object—such as an array, struct, class, or union—the element. For
example:

char volatile a;
a=>5; /* A write access */
a += 6; /* First a read then a write access */

An access to a bitfield is treated as an access to the underlying type

Adding a const qualifier to a volatile object will make write accesses to the
object impossible. However, the object will be placed in RAM as specified by the C
standard.

However, these rules are not detailed enough to handle the hardware-related
requirements. The rules specific to the IAR C/C++ Compiler for Arm are described
below.

Rules for accesses

In the IAR C/C++ Compiler for Arm, accesses to volatile declared objects are subject
to these rules:

o All accesses are preserved

o All accesses are complete, that is, the whole object is accessed

o All accesses are performed in the same order as given in the abstract machine
°

All accesses are atomic, that is, they cannot be interrupted.

389

Data types in C++

390

The compiler adheres to these rules for accesses to all 8-, 16-, and 32-bit scalar types,
except for accesses to unaligned 16- and 32-bit fields in packed structures.

For all combinations of object types not listed, only the rule that states that all accesses
are preserved applies.

DECLARING OBJECTS VOLATILE AND CONST

If you declare a volatile object const, it will be write-protected but it will still be
stored in RAM memory as the C standard specifies.

To store the object in read-only memory instead, but still make it possible to access it as
a const volatile object, declare it with the __ro_placement attribute. See
__ro_placement, page 474.

DECLARING OBJECTS CONST

The const type qualifier is used for indicating that a data object, accessed directly or
via a pointer, is non-writable. A pointer to const declared data can point to both
constant and non-constant objects. It is good programming practice to use const
declared pointers whenever possible because this improves the compiler’s possibilities
to optimize the generated code and reduces the risk of application failure due to
erroneously modified data.

Static and global objects declared const are allocated in ROM.

In C++, objects that require runtime initialization cannot be placed in ROM.

Data types in C++

IAR C/C++ Development Guide
Compiling and Linking for Arm

In C++, all plain C data types are represented in the same way as described earlier in this
chapter. However, if any C++ features are used for a type, no assumptions can be made
concerning the data representation. This means, for example, that it is not supported to
write assembler code that accesses class members.

Extended keywords

o General syntax rules for extended keywords
e Summary of extended keywords
e Descriptions of extended keywords

e Supported GCC attributes

General syntax rules for extended keywords

E E

The compiler provides a set of attributes that can be used on functions or data objects to
support specific features of the Arm core. There are two types of attributes—type
attributes and object attributes:

o Type attributes affect the external functionality of the data object or function

o Object attributes affect the internal functionality of the data object or function.

The syntax for the keywords differs slightly depending on whether it is a type attribute
or an object attribute, and whether it is applied to a data object or a function.

For more information about each attribute, see Descriptions of extended keywords, page
465.

Note: The extended keywords are only available when language extensions are enabled
in the compiler.

In the IDE, language extensions are enabled by default.

Use the -e compiler option to enable language extensions. See -e, page 344.

TYPE ATTRIBUTES

Type attributes define how a function is called, or how a data object is accessed. This
means that if you use a type attribute, it must be specified both when a function or data
object is defined and when it is declared.

You can either place the type attributes explicitly in your declarations, or use the pragma
directive #pragma type_attribute.

391

General syntax rules for extended keywords

392

IAR C/C++ Development Guide
Compiling and Linking for Arm

General type attributes
Available function type attributes (affect how the function should be called):

arm, __cmse_nonsecure_call, __exception fiqg, __interwork, __irq,

task, and __thumb.

J— s ——

svc swi__no_scratch

J— EJp— ——

Available data type attributes:

__big_endian little_endian, and __packed.

 ——

You can specify as many type attributes as required for each level of pointer indirection.

Note: Data type attributes (except __packed) are not allowed on structure type fields.

Syntax for type attributes used on data objects

If you select the uniform attribute syntax, data type attributes use the same syntax rules
as the type qualifiers const and volatile.

If not, data t