ColdFire® IAR C/C++
Compiler
Reference Guide

for Freescale’s
ColdFire Microcontroller Family

COPYRIGHT NOTICE
© Copyright 2008 IAR Systems. All rights reserved.

No part of this document may be reproduced without the prior written consent of AR
Systems. The software described in this document is furnished under a license and may
only be used or copied in accordance with the terms of such a license.

DISCLAIMER

The information in this document is subject to change without notice and does not
represent a commitment on any part of IAR Systems. While the information contained
herein is assumed to be accurate, IAR Systems assumes no responsibility for any errors
or omissions.

In no event shall IAR Systems, its employees, its contractors, or the authors of this
document be liable for special, direct, indirect, or consequential damage, losses, costs,
charges, claims, demands, claim for lost profits, fees, or expenses of any nature or kind.

TRADEMARKS

IAR Systems, IAR Embedded Workbench, C-SPY, visualSTATE, From Idea To Target,
IAR KickStart Kit, IAR PowerPac, IAR YellowSuite, IAR Advanced Development Kit,
IAR, and the IAR Systems logotype are trademarks or registered trademarks owned by
IAR Systems AB. J-Link is a trademark licensed to IAR Systems AB.

Microsoft and Windows are registered trademarks of Microsoft Corporation.
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.

All other product names are trademarks or registered trademarks of their respective
owners.

EDITION NOTICE

Second edition: January 2008

Part number: CCF-2

This guide applies to version 1.x of ColdFire IAR Embedded Workbench®.

Internal reference: ISUD.

Brief contents

TABIES ..o xvii
Preface ..o Xix
Part 1. Using the compiler ... 1
Getting STArted ...t 3
Data STOrage ...t 11
FUNCLIONS ... essssssssss s 21
Placing code and data ... 27
The DLIB runtime enviroNmMeNt ... 41
Assembler language interface ..., 69
USING CH e 85
Efficient coding for embedded applications ..., 91
Part 2. Reference information ... 107
External interface details ... 109
ComPpiler OPLIONS ... 115
Data repreSentation ... 141
Compiler @XLENSIONS ... 151
Extended keywords ... 161
Pragma dir€Ctives ... 171
INtriNSiC FUNCEIONScooooii e 185
The PreProCESSOL ... 189
Library fUNCLIONS ... 195

iv

ColdFire® IAR C/C++ Compiler
Reference Guide

Contents

TADIES ...ooo s Xvii
PrEface ... Xix
Who should read this guide ... Xix

How to use this guide ... Xix
What this guide contains ..o, XX
Other documentation ... Xxi
Further readingc.cooeeeriiiiieieeeeeeeeeete e XXi

Document conventions ... xxii
Typographic CONVENTIONSccevuerueererrieieiieiieieienienesie s sieeeeeeneene xxii

Part 1. Using the compiler ... 1
Getting STArted ... 3
IAR language OVErVIEW ...
Supported ColdFire devices
Building applications—an overview ... 4
COMPILING ..ottt s 4
LINKING oottt ettt st 5
Basic settings for project configuration "5
Processor configurationc..coeeeverereeienienienineneneeceeeeeee e 6
Code modelccoiviiiiiiiiiiii 7
Data modelccoooiiiiiiiiii 7
Optimization for speed and S1Zec..ceceeveeeeierienenenineneneeeeeeene 7
Runtime environmentc..cccoeeeeieieieienienieneneeeneeeenenenesnenaenne 8
Special support for embedded systems .9
Extended KEYWOIdSccevveruerininininieeeieieeceee et 9
Pragma dir€CtivVescooeeviiiierierieiieieece ettt 10
Predefined Symbolsccccocevireninininieiiieieicceesene e 10
Special function YPescocevererereririeieieieteteesesese e

Accessing low-level features

vi

Data SOrage ...t 11

INtroduction ... 11
Data models ..o 11
Specifying a data modelc..coccvevirinininininiececceee e 12
MEMOKY LYPES ..o s 13
INEAT ittt 13
INEAT TELATIVE ...oovviiviiiiiiieienteierer ettt st 13
Far oo 14
Using data memory attribUtesceceevveerierierieenieneeneesieeieeeeennes 14
Structures and MEMOTY LYPES ...cevververuerverrerrirrereerieriereteteressenrenienne 15

More examples

CH++ and MeMOFKY tyPes ...t 16
The stack and auto variablesccococooviiiiie 17
Dynamic memory on the heap ..., 18
FUNCLIONS ... 21
Function-related extensionsccocooovviiiiecececeeee 21

Code models and memory attributes for function storage 21
Using function memory attributescocceveeeevvevierienenenieneneneneene 22

Primitives for interrupts, concurrency, and OS-related

PrOZFaAMIMING ..ottt 22
INterrupt fUNCHONSeovviviiriiniiriiriieieeeecc e

MONItOr fUNCHIONSeocuviiiiieiiie et eeieeeteeeeee ettt et e et eae e e v e enes

C++ and special function types

Placing code and data ... 27
Segments and MEMIOTY ..ot 27

What is @ SEZMENL? ...c.eoviiiiiriiniiriieiieeeeetee et 27

Placing segments in memory ... 28
Customizing the linker command filec..cecceveveiriiiiincncncninennene 28

Data SEZMENTES ..o 30

Static MEMOTY SEZMENLS ..c..evvereereerieriierieieieiertenteiesrestesiesiesieeseeseens 31

The Stackoooviiiiiii 33

The REAP .eveviiiiieiee e 35

ColdFire® IAR C/C++ Compiler
Reference Guide

Contents °

Code SEZMENLS ..o 36
SEArTUP COAR ..eniiiniiiiiiiiciie sttt et st 36
NOrmal Codeccoiiiiiiiiiiiiic e 36
INEEITUPE VECTOTS c.euiiiiiieeiieitetetertetete sttt 37

C++ dynamic initialization ...

INItHAlIZALION ..eviiieiiieiiiecie ettt e

Destruction and atexit() handling

Verifying the linked result of code and data placement 38
Segment too long errors and range eITOrSccceevevrerrerererierienenne 38

Linker map file ...c.ccoceeiiiieiiiniiiieeeeee e 38

The DLIB runtime enViroNMEeNt ... 41
Introduction to the runtime environment ... 41

Runtime environment functionality

Library SEleCtioncccceeeerereninininiireeitetet et
Situations that require library buildingceccecevievieiienenienienenene 43
Library configurationsccccceceeverienieneenieneeneeseeee e 43
Debug support in the runtime libraryc..ccccecevevenencncnenenennne 43
Using a prebuilt library ... 44
Customizing a prebuilt library without rebuildingc.ccccceeeneeneee 45
Choosing formatters for printf and scanf ... 46
Choosing printf fOrmatterecceceeeeierierienieneneneseseseseeeeeeeenen 46
Choosing scanf formatterccccoeceveereenerieniienieneene e 47
Overriding library modules ..., 48
Building and using a customized library ... 50
Setting up a library projectecceeceveeerveerienienieneenieeieeeeeeeeee s 50
Modifying the library functionalitycc.cccceveveriieiieniencncnenencnnene 50
Using a customized IDrarycceceeeeveeinineeienienienieseseneseeeeneen 51
System startup and termination ... 51
SYSIEIM STATTUD .ttt sttt sttt ettt ettt ettt saeseesae e
System termination
Customizing system initialization ... 54
_JoW_Ievel TNt ..o 55
Modifying the file cStartup.s68cccocceverereririieieiereneneseseeen 55

vii

viii

ColdFire® IAR C/C++ Compiler
Reference Guide

Standard streams for input and output ... 55

Implementing low-level character input and outputc..c.cceevveeeeee 56
Configuration symbols for printf and scanf 57

Customizing formatting capabilitiesccccevevververeeieriencnenenennens 58
File input and ouUtpUL ...,

LOCALE ... s
Locale support in prebuilt libraries

Customizing the 1ocale SUPPOITcc.eevueerieeriirrieriienieniereeeeee e
Changing locales at TUNTMEccevvevverrenrenerenieieeeieeneie e 61
Environment interaction ... 61

C-SPY Debugger runtime interface ... 64

Low-level debugger runtime interfacecocceceeveeveerienenenenenenncns 64

The debugger terminal I/O Windowcccceevieriiinieniieneeneenieneeee, 65

Checking module consistencycccoenenineniencenennes 65

Runtime model attributescccoceeeeerieirinieierierieese e 66

Using runtime model attributescccceceeveriieriieriienieneeneeneeeene 66

Assembler language interface ... 69
Mixing C and assembler ...,

INtrinsic fUNCHONSc.oooiiiiiiieciie e e

Mixing C and assembler modules

Inline assembler ...
Calling assembler routines from C ... 72
Creating Skeleton COAecovieririiriiniinenirieieeeeteeeee e 72
Compiling the COAEcc.oovviiiiriiiriiiieeeeee e 73
Calling assembler routines from C++ ... 74
Calling convention ... 75
Function declarations ..o 76
Using C linkage in C++ Source codeovevererveneeieniencnenenennens 76
Preserved versus SCratCh registersocceveeerverienenieneneneneneeeenean 76

Contents °

Function entrance

FUNCHON EXIt ..ooiiiiiiiiiiiiiccececceecee e

EXQAMPIES ...ceviiiiiriinieniinetceeetcectee et

FUunction dir€Ctivescouevuererenenenineniieiee et 81
Calling fuNCtioNsccocccoiiiiiiciccccc e 81
Memory access methods ... 82

Call frame information

USING CHr s 85
OVEIVIEW ...ttt 85
Standard Embedded C4++ccooiiiiiiiiiiiii 85
Extended Embedded CH+ocooiiiiiiiiiiciccccceeee e 86
Enabling CH+ SUPPOIT ..cveeuieuieiiriieiieiieiieietetesiesee et seeeie e 87
Feature descriptions ..., 87
CIASSES ...ttt 87
FUNCHONS ...ttt 88
TEMPIALES .eeeneieiiieiieeteete ettt sttt et 88
Variants of CaStScooeiouiiriciiiieiee e 88
MULADIE ...ttt
Namespace
The STD NAMESPACEeeveeveeeieiieiieieieieniererie ettt 89
Using interrupts and EC++ destructorscccoecevevveencincnneennenes 89
C++ language eXtensions ... 89
Efficient coding for embedded applications ... 91
Selecting data types ...
Using efficient data types
Floating-poOint tYPESccceveeeeriereerieriiniinieeteeieeie ettt seesee e s seesaeas
Alignment of elements in @ StIUCLUTEccceeeeeevevevrenrenienenenenenne 92
Anonymous Structs and UNIONScc.eeeeeeeeieeenienienieneneneneneneeenens 93
Controlling data and function placement in memory 94
Data placement at an absolute 10Cationcccceeveeverencnicnienicnenenne 95
Data and function placement in SEZMENLSccceeeveereereeneereenenennens 97
Controlling compiler optimizations ... 98
Scope for performed OptimiZationscoceeeeeeeeievesierienenenenenne 98

Optimization levels

SPEEA VEISUS SIZE ..eouveruiiiieriieiieieeieeieet ettt et ettt sane s
Fine-tuning enabled transformationsc..cccceceeveevevevienenenicnienenne 99
Wrriting efficient code ... 102
Saving stack space and RAM memoryccccoccevvevierveneeneeneene. 102
FUNCHION PIOLOLYPES ..vevenviirinieiiieieetitei ettt

Integer types and bit negation

Protecting simultaneously accessed variablesccoccevervueeriennene 104

Accessing special function registersccoceveveerrerenenereeeennennenne 104
Non-initialized variablesccccoeeeeeeieieiienineneneneneeeeeeeeene 105

Part 2. Reference information ... 107
External interface details ... 109
INVOCation SYNtaX ... 109
Compiler iInVOCAtION SYNEAX ...ecvevueerierienieerieeieneeetesieesieesieesee e 109

Passing OPtIONSccoeeverieriinininieeieeiietet et 109

Environment variablesccccooereririnininieieieeee e 110
Include file search procedure ... 110
Compiler OULPUL ..o
DiIagnoStiCs ..o s

MeSSAZE FOIMAL ...c.veeuveriieiiiiieiieieeeete ettt

SEVETILY IEVELS ..eouieiieiiiieieniererer et

Setting the severity level

Internal eIrorcccocoiiiiiiiiiiiiii
ComPIler OPLIONS ... 115
OPLIONS SYNTAX ..ottt 115
TYPES Of OPLIONS ...ttt 115
Rules for specifying parameterscoceeeeeeeeierieniesienenenenenenne 115
Compiler options SUMMArYy ... 118
Descriptions of options
-=Char_is_SigNnedccooeverineniriee e
--code_MOdel ..o

ColdFire® IAR C/C++ Compiler
Reference Guide

Contents °

“=IAZ_ETTOT .nviiiiiiieiiciieitet ettt
--diag_remark

“=QIAZ_SUPPIESS .eeuvieurerniieierieeniterteete et st siee st et ettt sine st e seee b enees 124
==dIaZ_WATNINE ..eovvevieiriiitenienenener ettt eee 124
-~diagnOSHCS_tADIES ..c..evvereeriiriiiiiiieieiceteec e 125
==dlID_CONTIZ oot 125
S€ ettt ettt ettt 126
FmBCH T et 126
SmBECHT ettt s 126
-—enable_MUItIDYLESccccoeviririniiiiieieeccccce e 127
==@ITOT_LIME ©eevetietietieiieiieteteer ettt 127

--misrac

—=ITNSTAC_VEIDOSE ..evvviiiiieiiieeeceeee ettt ettt e e e 131
--MOdUule_NAMEccccoeviiiiiniiniiiiiiiic e 131
=-N0_COE_IMOLION ...eeviriiriiriirieeiieiieiteitetetetetetetesresre b sreeenenne 132
STTIO_CSC euteutentertestesiesteete et e e bt et et ettt et b e bbbt b e bt h e bt et eat st et enee
--no_div

--no_inline

--no_path_in_file_mMacrosc.cceceveeieienienienieneneseseeeeeeiceeeenes 133
SN0_thAA et 133
--no_typedefs_in_diagnostiCscc.ceceevueruerueruinrenreneneneneneneenenns 134
B ATO XY 111 ¢ o) | KSR RRTRRORORRTRRIN 134

Xi

Xii

ColdFire® IAR C/C++ Compiler
Reference Guide

20, mmOULPUL eetitietietieiieitete ettt e st sttt e st e e bbb b e b sbesbeebeens 136

“mOMUE_EYPES evenvientieieeieeiteeiteettesitesteentee bt estesibesatesae e st enaeenbeenseebeenne 136
==ONLY_SEAOUL ..eeiiniiiiiiiirerereccrte et 137
--output, -0
--preinclude
SoPIEPIOCESS wonveaviriereeieeurenrenretestentessessesseestestemeeseensessessensensessessesseenns 138
“=PUDLIC_@QU ittt 138
Ty m=EDUZ oo 138
SmTETNATKS ettt 139
“~TEQUITE_PIOLOLYPES evevirieieurenienteierierieniesiesieeseeseestensensensessessessennes 139
SmSIIBNE ot 139
“=SETACT_AMNST oottt ettt ettt s 140
--warnings_affect_exit_codecccverererieneineniinienieeeecee 140
“=WANINZS_ATE_EITOTS ..ecuverurerrerurerseerieenseeruerseensessesseessenseesseensesses 140
Data representation ... 141
Alignment
Alignment on the ColdFire microcontrollerc..cocvvererveeeeneene 142
Basic data types ... 142
TNEEEZET LYPES .ottt st 142
Floating-point tyPESccevverueererueeieieiieieieieneniesie s eseeseeeeeens 145
POINtEr tYPES ... s 146
FUNCHON POINLETS ..ottt ettt 146
Data POINLETS ...coveiuieiinieieriiieeieeteeieeteettet ettt seeneene
CASHINE .ottt sttt ettt ettt ettt sbe st sbesbesbe e e eneeneens
SErUCLUNE tYPES ...ttt
ALGNIMENT <.ttt s sbe e neene
General layout
Packed StrUCtUre tYPES ...ccveevveeruierierienieniienieenieeieeteeieeee st siee e 148
Type qualifiers ... 149
Declaring objects volatilec.cccoeeieieneineiinienieincinceceeeees 149

Contents °

Declaring objects CONSEecueeueeuirieieieiiieieneneseseneee et 150
Data types in CH+ ..o 150
Compiler @XENSIONS ... 151
Compiler extensions overview ...
Enabling language eXtensionsc..cocceereeueeeeneenienreneneneneneeeenns
C language extensionsccocoiirnniennneee s
Important language extensions ...
Useful language eXtenSioNnscoceeeeeeeeeinienienienrenenenreneneneenenns
Minor 1anguage eXteNnSIONSceeeeeeeiererierierierereseresesieseeneens
Extended keyWwords ... 161
General syntax rules for extended keywords 161

Type attributes

_IDERITUPE ettt
_intrinsic ...

_ _monitor

Pragma dir€CtiVes ... 171
Summary of pragma directives ..o 171
Descriptions of pragma directivescccoooovniinninnnnes 172

DIFICIAS ...

data_alignment ...

diag_defaultc.ccoooiririni e

xiii

Xiv

diag_error

diag_TeMArKcceoviiiiiiiiiieeeee et 174
AIAZ_SUPPIESS vttt ettt sttt eens 174
AIAZ. WATTINE ..eveiiiiieiieieee sttt 174
Include_aliasc..coevviriiriiniiniiieicicicccce e 175
ININE Lottt sttt
language
location
message
ODJECT_AUTTDULE ...eevveneiniiiiiieiieieeieeeeee et 177
OPLITIIZE ..veonveiiieeiieeiieeteri ettt et ettt ettt et e st et satesieesaeenaeens 178
PACK ettt s 179
TEQUITEA ..einvintititieteeteeteet ettt ettt ettt sbe bt e et e e e eens 181
ItMOAE] ..ot 181
SEEIMCIIL ..veuvinienreierienteeeteiteueetestentetesebess st ebeebee st eseennesnenennesaesaenne 182
EYPE_AUTIDULE ..covviniiniiniiieiinteeteetcee ettt 183
INtrinSiC FUNCEIONS ... 185
Intrinsic functions summary ...

Descriptions of intrinsic functions
__diSable_INteITUPL ..coeeveieieriinienieriereetetetete et

__eNAbIe_INLETTUPL .eveeuieiieiieieieiestesieeie ettt ettt

The PreProCESSOL ... 189
Overview of the preprocessorconnoencencnnnns
Descriptions of predefined preprocessor symbols
Descriptions of miscellaneous preprocessor extensions192

NDEBUGccooiiiiiiiiiiicce e 192

ColdFire® IAR C/C++ Compiler
Reference Guide

Contents °

_Pragma()

HWAINING MESSAZE .veenveenrernrerreriienterieesteerieereesesresteseesseesseesseensens 193
VA ARGS e 193

Library fUNCLIONS ... 195

INtroduction ...
Header filescoooiiiiiiieieeee e
Library object files
REENIIANCY ...ooiviiiiiiiiiiiiecccce e

IAR DLIB Library ...
C header filesc.coiviviniiiiiiniciice e
CH+ header filescccoveririririnieieieeceeee et

Library functions as intrinsic functionsccceeceeevverierenieneneene 200
Added C functionality

Segment reference ... 203
Summary of SEEMENLS ... 203
Descriptions of segments ... 204

CODE ...ttt ettt st

CSTACK
DIFUNCT

AATAYNEKIE .eeuiinieiitititeeteet ettt ettt sttt sttt 208
INTVEC ..ottt 208
NEAR_AN ..ottt sttt 208
NEAR_C oottt ettt 208
NEAR T oottt 209

Xv

xvi

ColdFire® IAR C/C++ Compiler
Reference Guide

NEAR_ID

NEAR N ottt
NEAR_Z oottt et
NEARPID_I
NEARPID_ID ..ottt 210
NEARPID_N .ottt 211
NEARPID_Z
PIDBASE ..ottt
RCODE ...ttt
Implementation-defined behavior ... 213
Descriptions of implementation-defined behavior 213
Translationc.ooeverereninieeeeete et 213
ENVvIronmentc.cceouevieviiniininiinieieieieieiererererere e 214
TAENLIIETS ..evveieiieiieiietetec e 214
CRATACTETSveueeiienieteierte ettt ettt ettt sttt sbe bt eseeseeneene 214
TIEEEETS .ttt ettt s 216
FLoAting POINT ..cc.eeiiriiiiniiniiniieiieieeeeetetet ettt 216
ATTays aNd POINLETS ..c..eeuieuieieriirienieetietieieeitettete e see st sie et eeeeeeens 217
Registers
Structures, unions, enumerations, and bitfieldsccceovevrinnnn. 217
QUALITIETS .vveviiiieiieieeie ettt ettt e ea e et sbe e e e teess e e s e esaees 218
DeClaratorscccovevuiriiriiniinieieierccreeee e 218
STALETNEIILS ..veuveeiierieeiieiteectetetete ettt ettt ettt et s see e sae i ne

Preprocessing directives
TIAR DLIB Library functionsc.ccceceereeneeniernenieenieenienieneeseenne 220

Tables

1: Typographic conventions used in this UIAEc..coceveeverrierirnieneninirccncene, xxii
2: Command line options for specifying library and dependency files 9
3: Data model CharaCteriStiCScoereerieieniiniiiiniiniirieieeee ettt et 12
4: Memory types and their corresponding memory attributesc.coccevveveereennenne. 14
5: Code models

6: Function memory attribULESccccoeviriririrrieieieieiententene ettt neens 22
7: XLINK $egment MEMOTY LYPES ...ecoverueruerrerrenrenrenriereestetetessessensessessessessesesseeneens 28
8: Memory layout of a target system (eXample)ccccoeeveerreniereneceneneenieeneenes 29
9: Segment NAME SUFTIXES ...ccvevvirriririiiiieieteeceesee ettt 31
10: Library CONfigUIAtiONScceeertererenieneeieietentetent et s sttt ssenenaenee 43
11: Levels of debugging support in runtime librariesccccecevvenieenerseeneninenne 44
12: Customizable items

13: Formatters for printf

14: Formatters for scanf

15: Descriptions of printf configuration Symbolsc.ccccceerininininiiecieiiencnienenne 57
16: Descriptions of scanf configuration Symbolscccceceeeeerienieiienencnenienenene 58
17: LoW-1evel IO fIlesc.coviviiiiniiniiiiiiiiiicicictctctcreec e e 59
18: Functions with special meanings when linked with debug infocc.ccccoe.e 64
19: Example of runtime model attributesccecveveererenininenenieieeecienenenee 66
20: Registers used fOr passing Parametersecceceeeerveruerreseseseseeuessersessessensens 78
21: Registers used for returning valuesc..ccccoceeveevievierienenenenenenteieieneeneesennens 79
22: Call frame information resources defined in a names block 83
23: Compiler optimization I€VEIScccoceevieriiiniiniiiienieeteeeesteeesee e 98
24: Compiler environment variablesc..ccocoeevereninininiininieereeerene e

25: EITOT TEHUIN COUES ...ttt s

26: Compiler OPtioNS SUIMIMATY ..c...ovueerrierieerieerieriereenttesitenieeteeteesessestesseesseesseens

27: INEZET LYPES eevreueeurenieientinienteetteit ettt ettt sbe sttt ettt esaestesaesaesaeeneene

28: Floating-POINt LYPES ..eoverueruieuierreienierierienteriteieesteteeesessessessessesseeseessensensenseneenee

29: VOlatile ACCESSESooviiiiiriiniiriiniieiiiieieeet ettt sr e s ere e

30: Type of volatile accesses treated in a special way ..

31: Extended keywords SUIMMATYccccoererereneninieieieienieneesesiesieeeeneeeeneennes

xvii

xviii

ColdFire® IAR C/C++ Compiler
Reference Guide

32:
33:
34:
35:
36:
37:
38:
39:
40:
41:

Pragma directives summary

Intrinsic functions summary

Predefined SYmMDOISccooiviiiniriiiciiiciccnrere s
Traditional standard C header files—DLIBcccccocevininininiinieicicncnenee 197
Embedded C++ header filesccccoeviiiiiiiiiiiiniiiiiciciciciciecicesene e 198
Additional Embedded C++ header files—DLIBcccccccovenirininincnincnnenne. 198
Standard template library header files

New standard C header files—DLIB
SEZMENE SUMMATY ..uveririeririieiieiieiteretentesteste sttt ettt et steee b sresbesbesbesaeeas
Message returned by strerror()—IAR DLIB Libraryccccccceeevenencnenenenne 223

Preface

Welcome to the ColdFire® IAR C/C++ Compiler Reference Guide. The
purpose of this guide is to provide you with detailed reference information
that can help you to use the ColdFire IAR C/C++ Compiler to best suit your
application requirements. This guide also gives you suggestions on coding
techniques so that you can develop applications with maximum efficiency.

Who should read this guide

You should read this guide if you plan to develop an application using the C or C++
language for the ColdFire microcontroller and need to get detailed reference
information on how to use the ColdFire IAR C/C++ Compiler. In addition, you should
have a working knowledge of the following:

o The architecture and instruction set of the ColdFire microcontroller. Refer to the
documentation from Freescale for information about the ColdFire microcontroller

o The C or C++ programming language

e Application development for embedded systems

o The operating system of your host computer.

How to use this guide

When you start using the ColdFire IAR C/C++ Compiler, you should read Part 1. Using
the compiler in this guide.

When you are familiar with the compiler and have already configured your project, you
can focus more on Part 2. Reference information.

If you are new to using the IAR Systems build tools, we recommend that you first study
the |AR Embedded Workbench® IDE User Guide. This guide contains a product
overview, tutorials that can help you get started, conceptual and user information about
the IAR Embedded Workbench IDE and the IAR C-SPY® Debugger, and
corresponding reference information.

Xix

What this guide contains

XX

What this guide contains

Below is a brief outline and summary of the chapters in this guide.

ColdFire® IAR C/C++ Compiler
Reference Guide

Part I. Using the compiler

Getting started gives the information you need to get started using the ColdFire IAR
C/C++ Compiler for efficiently developing your application.

Data storage describes how data can be stored in memory, with emphasis on the
different data memory type attributes.

Functions gives a brief overview of function-related extensions—mechanisms for
controlling functions—and describes some of these mechanisms in more detail.

Placing code and data describes the concept of segments, introduces the linker
command file, and describes how code and data are placed in memory.

The DLIB runtime environment describes the runtime environment in which an
application executes. It covers how you can modify it by setting options, overriding
default library modules, or building your own library. The chapter also describes
system initialization and introduces the file cstartup, as well as how to use
modules for locale, and file 1/0.

Assembler language interface contains information required when parts of an
application are written in assembler language. This includes the calling convention.
Using C++ gives an overview of the two levels of C++ support: The
industry-standard EC++ and IAR Extended EC++.

Efficient coding for embedded applications gives hints about how to write code that
compiles to efficient code for an embedded application.

Part 2. Reference information

External interface details provides reference information about how the compiler
interacts with its environment—the invocation syntax, methods for passing options
to the compiler, environment variables, the include file search procedure, and the
different types of compiler output. The chapter also describes how the compiler’s
diagnostic system works.

Compiler options explains how to set options, gives a summary of the options, and
contains detailed reference information for each compiler option.

Data representation describes the available data types, pointers, and structure types.
This chapter also gives information about type and object attributes.

Compiler extensions gives a brief overview of the compiler extensions to the
ISO/ANSI C standard. More specifically the chapter describes the available C
language extensions.

Preface __4

e Extended keywords gives reference information about each of the ColdFire-specific
keywords that are extensions to the standard C/C++ language.

e Pragma directives gives reference information about the pragma directives.
e Intrinsic functions gives reference information about the functions that can be used
for accessing ColdFire-specific low-level features.

e The preprocessor gives a brief overview of the preprocessor, including reference
information about the different preprocessor directives, symbols, and other related
information.

e Library functions gives an introduction to the C or C++ library functions, and
summarizes the header files.

e Sagment reference gives reference information about the compiler’s use of
segments.

e |mplementation-defined behavior describes how the ColdFire IAR C/C++
Compiler. handles the implementation-defined areas of the C language standard.

Other documentation
The complete set of IAR Systems development tools for the ColdFire microcontroller is
described in a series of guides. For information about:

e Using the IAR Embedded Workbench® IDE with the IAR C-SPY Debugger®, refer
to the | AR Embedded Workbench® IDE User Guide

e Programming for the ColdFire IAR Assembler, refer to the ColdFire® 1AR
Assembler Reference Guide

e Using the IAR XLINK Linker, the IAR XAR Library Builder, and the IAR XLIB
Librarian, refer to the IAR Linker and Library Tools Reference Guide

e Using the IAR DLIB Library functions, refer to the online help system

o Developing safety-critical applications using the MISRA C guidelines, refer to the
AR Embedded Workbench® MISRA C Reference Guide.

All of these guides are delivered in hypertext PDF or HTML format on the installation
media. Some of them are also delivered as printed books.
FURTHER READING

The following books may be of interest to you when using the IAR Systems
development tools:

e Barr, Michael, and Andy Oram, ed. Programming Embedded Systemsin C and
C++. O’Reilly & Associates.

XXi

Document conventions

e Harbison, Samuel P. and Guy L. Steele (contributor). C: A Reference Manual.
Prentice Hall.

e Kernighan, Brian W. and Dennis M. Ritchie. The C Programming Language.
Prentice Hall. [The later editions describe the ANSI C standard.]

e Labrosse, Jean J. Embedded Systems Building Blocks: Complete and Ready-To-Use
Modulesin C. R&D Books.

e Lippman, Stanley B. and Josée Lajoie. C++ Primer. Addison-Wesley.

e Mann, Bernhard. C fur Mikrocontroller. Franzis-Verlag. [Written in German.]

e Stroustrup, Bjarne. The C++ Programming Language. Addison-Wesley.

We recommend that you visit the following web sites:

o The Freescale web site, www.fr eescale.com, contains information and news about
the ColdFire microcontrollers.

e The IAR Systems web site, www.iar.com, holds application notes and other
product information.

e Finally, the Embedded C++ Technical Committee web site,
www.car avan.net/ec2plus, contains information about the Embedded C++
standard.

Document conventions

When, in this text, we refer to the programming language C, the text also applies to C++,
unless otherwise stated.

TYPOGRAPHIC CONVENTIONS

This guide uses the following typographic conventions:

Style Used for

computer Text that you enter or that appears on the screen.

parameter A label representing the actual value you should enter as part of a
command.

[option] An optional part of a command.

{option} A mandatory part of a command.

alblc Alternatives in a command.

bold Names of menus, menu commands, buttons, and dialog boxes that

appear on the screen.

reference A cross-reference within this guide or to another guide.

Table 1: Typographic conventions used in this guide

ColdFire® IAR C/C++ Compiler
xxii Reference Guide

Preface __4

Style Used for

An ellipsis indicates that the previous item can be repeated an arbitrary
number of times.

Identifies instructions specific to the IAR Embedded Workbench
interface.

Identifies instructions specific to the command line interface.

Identifies helpful tips and programming hints.

Table 1: Typographic conventions used in this guide (Continued)

xxiii

Document conventions

ColdFire® IAR C/C++ Compiler
xxiv Reference Guide

Part |. Using the compiler

This part of the ColdFire® IAR C/C++ Compiler Reference Guide includes
the following chapters:

e Getting started

e Data storage

e Functions

e Placing code and data

e The DLIB runtime environment
e Assembler language interface

e Using C++

e Efficient coding for embedded applications.

- .hmuiuhhhi

AARAre

Getting started

This chapter gives the information you need to get started using the ColdFire
IAR C/C++ Compiler for efficiently developing your application.

First you will get an overview of the supported programming languages,
followed by a description of the steps involved for compiling and linking an
application.

Next, the compiler is introduced. You will get an overview of the basic settings
needed for a project setup, including an overview of the techniques that enable
applications to take full advantage of the ColdFire microcontroller. In the
following chapters, these techniques will be studied in more detail.

IAR language overview

There are two high-level programming languages you can use with the ColdFire AR
C/C++ Compiler:

o C, the most widely used high-level programming language used in the embedded
systems industry. Using the ColdFire IAR C/C++ Compiler, you can build
freestanding applications that follow the standard ISO 9899:1990. This standard is
commonly known as ANSI C.

o C++, a modern object-oriented programming language with a full-featured library
well suited for modular programming. IAR Systems supports two levels of the
C++ language:

o Embedded C++ (EC++), a subset of the C++ programming standard, which is
intended for embedded systems programming. It is defined by an industry
consortium, the Embedded C++ Technical committee. See the chapter Using
C++.

o AR Extended Embedded C++, with additional features such as full template
support, multiple inheritance, namespace support, the new cast operators, as well
as the Standard Template Library (STL).

Each of the supported languages can be used in strict or relaxed mode, or relaxed with
IAR extensions enabled. The strict mode adheres to the standard, whereas the relaxed
mode allows some deviations from the standard. For more details, see the chapter
Compiler extensions.

Part |. Using the compiler

Supported ColdFire devices

It is also possible to implement parts of the application, or the whole application, in
assembler language. See the ColdFire® 1AR Assembler Reference Guide.

For more information about the Embedded C++ language and Extended Embedded
C++, see the chapter Using C++.

Supported ColdFire devices

The ColdFire IAR C/C++ Compiler supports all families based on the Freescale
ColdFire V1 and V2 cores. The object code that the compiler generates is binary
compatible between the cores as long as the same instruction set architecture is used.
For more details, see Processor configuration, page 6.

Building applications—an overview

ColdFire® IAR C/C++ Compiler
4 Reference Guide

A typical application is built from a number of source files and libraries. The source files
can be written in C, C++, or assembler language, and can be compiled into object files
by the ColdFire IAR C/C++ Compiler or the ColdFire IAR Assembler.

Alibrary is a collection of object files that are added at link time only if they are needed.
A typical example of a library is the compiler library containing the runtime
environment and the C/C++ standard library. Libraries can also be built using the IAR
XAR Library Builder, the IAR XLIB Librarian, or be provided by external suppliers.

The IAR XLINK Linker is used for building the final application. XLINK normally uses
a linker command file, which describes the available resources of the target system.

Below, the process for building an application on the command line is described. For
information about how to build an application using the IAR Embedded Workbench
IDE, see the |AR Embedded Workbench® IDE User Guide.

COMPILING

In the command line interface, the following line compiles the source file myfile.c
into the object file myfile.r68 using the default settings:

icccf myfile.c

In addition, you need to specify some critical options, see Basic settings for project
configuration, page 5.

Getting started ___o

LINKING

The IAR XLINK Linker is used for building the final application. Normally, XLINK
requires the following information as input:

e A number of object files and possibly certain libraries

o The standard library containing the runtime environment and the standard language
functions

® A program start label

e A linker command file that describes the placement of code and data into the
memory of the target system

e Information about the output format.
On the command line, the following line can be used for starting XLINK:

xlink myfile.r68 myfile2.r68 -s __program_start -f 1nkM5213.xcl
dlcfaffn.r68 -o aout.a68 -r

In this example, myfile.r68 and myfile2.r68 are object files, InkM5213 . xc1 is
the linker command file, and dlcfaffn.r68 is the runtime library. The option -s
specifies the label where the application starts. The option -o specifies the name of the
output file, and the option -r is used for specitying the output format UBROF, which
can be used for debugging in C-SPY®.

The IAR XLINK Linker produces output according to your specifications. Choose the
output format that suits your purpose. You might want to load the output to a
debugger—which means that you need output with debug information. Alternatively,
you might want to load the output to a flash loader or a PROM programmer—in which
case you need output without debug information, such as Intel-hex or Motorola
S-records. The option -F can be used for specifying the output format. (The default
output format is motorola.)

Basic settings for project configuration

This section gives an overview of the basic settings for the project setup that are needed
to make the compiler generate the best code for the ColdFire device you are using. You
can specify the options either from the command line interface or in the IAR Embedded
Workbench IDE.

The basic settings are:

e® Processor configuration, which includes core, instruction set architecture, division
instructions

o Code model

e Data model

Part |. Using the compiler 5

Basic settings for project configuration

ColdFire® IAR C/C++ Compiler
6 Reference Guide

o Optimization settings

e Runtime environment.

In addition to these settings, there are many other options and settings available for
fine-tuning the result even further. For details about how to set options and for a list of

all available options, see the chapters Compiler options and the |AR Embedded
Workbench® IDE User Guide, respectively.

PROCESSOR CONFIGURATION

To make the compiler generate optimum code, you should configure it for the ColdFire
microcontroller you are using.

Core

The ColdFire IAR C/C++ Compiler supports the ColdFire V1 and V2 cores. The object
code that the compiler generates is binary compatible between the cores as long as the
same instruction set architecture is used. Therefore it is crucial to specify a core option
to the compiler.

In the TAR Embedded Workbench IDE, choose Project>Options>General
Options>Target>Device.

Use the --core={v1|v2} option to select the core for which the code is to be
optimized.

The --core option for example controls speed optimizations.

Instruction set architecture

The ColdFire IAR C/C++ Compiler supports the isa_a, isa_a+, isa_b, and the isa_c
instruction set architectures.

In the TAR Embedded Workbench IDE, choose Project>Options>General
Options>Target>| SA variant.

Use the --isa={isa_a|isa_a+|isa_b|isa_c} option to select the instruction set
for which the code is to be generated.

Division instructions

Some ColdFire devices do not support the DIVS/DIVU and REMS/REMU instructions, for
example V1 devices. If you are using such a device, you must specify to the compiler
not to generate code that uses these instructions.

In the TAR Embedded Workbench IDE, choose Project>Options>General
Options>Target>No DIV/REM instruction.

Getting started ___o

@ Use the --no_div option to disable support for division instructions.

CODE MODEL

The ColdFire IAR C/C++ Compiler supports code models that you can set on file- or
function-level to control which function calls are generated, which determines where in
memory functions are placed. The following code models are available:

o The Near code model has an upper limit of 32 Kbytes

o The Far code model can access the entire 32-bit address space.

For detailed information about the code models, see the chapter Functions.

DATA MODEL

One of the characteristics of the ColdFire microcontroller is that there is a trade-off
regarding the way memory is accessed, between the range from cheap access to small
memory areas, up to more expensive access methods that can access any location.

In the ColdFire IAR C/C++ Compiler, you can set a default memory access method by
selecting a data model. The following data models are supported:

e The Near relative data model places objects in a position-independent 64-Kbyte
memory block that can be placed anywhere in the entire memory area

o The Far data model can access the entire memory area.

Note that it is possible to override the default access method for each individual variable.
The chapter Data storage covers data models in greater detail. The chapter also covers
how to fine-tune the access method for individual variables.

OPTIMIZATION FOR SPEED AND SIZE

The ColdFire IAR C/C++ Compiler is a state-of-the-art compiler with an optimizer that
performs, among other things, dead-code elimination, constant propagation, inlining,
and common sub-expression elimination. It also performs loop optimizations, such as
unrolling and induction variable elimination.

You can decide between several optimization levels and for the highest level you can
choose between different optimization goals—size, speed, or balanced. Most
optimizations will make the application both smaller and faster. However, when this is
not the case, the compiler uses the selected optimization goal to decide how to perform
the optimization.

The optimization level and goal can be specified for the entire application, for individual
files, and for individual functions. In addition, some individual optimizations, such as
function inlining, can be disabled.

Part |. Using the compiler 7

Basic settings for project configuration

ColdFire® IAR C/C++ Compiler
8 Reference Guide

For details about compiler optimizations and for more information about efficient
coding techniques, see the chapter Efficient coding for embedded applications.

RUNTIME ENVIRONMENT

To create the required runtime environment you should choose a runtime library and set
library options. You may also need to override certain library modules with your own
customized versions.

The runtime library provided is the IAR DLIB Library, which supports ISO/ANSI C and
C++. This library also supports floating-point numbers in IEEE 754 format and it can
be configured to include different levels of support for locale, file descriptors, multibyte
characters, et cetera.

The runtime library you choose can be one of the prebuilt libraries, or a library that you
have customized and built yourself. The IAR Embedded Workbench IDE provides a
library project template, that you can use for building your own library version. This
gives you full control of the runtime environment. If your project only contains
assembler source code, there is no need to choose a runtime library.

For detailed information about the runtime environment, see the chapter The DLIB
runtime environment.

The way you set up a runtime environment and locate all the related files differs
depending on which build interface you are using—the IAR Embedded Workbench IDE
or the command line.

Choosing a runtime library in the IAR Embedded Workbench IDE

To choose a library, choose Project>Options, and click the Library Configuration tab
in the General Options category. Choose the appropriate library from the Library
drop-down menu.

Note that for the DLIB library there are different configurations—Normal and
Full—which include different levels of support for locale, file descriptors, multibyte
characters, et cetera. See Library configurations, page 43, for more information.

Based on which library configuration you choose and your other project settings, the
correct library file is used automatically. For the device-specific include files, a correct
include path is set up.

Getting started ___o

[Choosing runtime environment from the command line

Use the following command line options to specify the library and the dependency files:

Command line Description

-I cflinc Specifies the include paths
libraryfile.r68 Specifies the library object file
--dlib_config Specifies the library configuration file

C:\...\configfile.h

Table 2: Command line options for specifying library and dependency files

For more information about prebuilt library object files for the IAR DLIB Library, see
Using a prebuilt library, page 44. Make sure to use the object file that matches your
other project options.

Setting library and runtime environment options
You can set certain options to reduce the library and runtime environment size:

o The formatters used by the functions print£, scanf, and their variants, see
Choosing formatters for printf and scanf, page 46.

e The size of the stack and the heap, see The stack, page 33, and The heap, page 35,
respectively.

Special support for embedded systems

This section briefly describes the extensions provided by the ColdFire IAR C/C++
Compiler to support specific features of the ColdFire microcontroller.

EXTENDED KEYWORDS

The ColdFire IAR C/C++ Compiler provides a set of keywords that can be used for
configuring how the code is generated. For example, there are keywords for controlling
the memory type for individual variables as well as for declaring special function types.

By default, language extensions are enabled in the IAR Embedded Workbench IDE.

The command line option -e makes the extended keywords available, and reserves them
so that they cannot be used as variable names. See, -€, page 126 for additional
information.

For detailed descriptions of the extended keywords, see the chapter Extended keywords.

Part |. Using the compiler 9

Special support for embedded systems

10

ColdFire® IAR C/C++ Compiler
Reference Guide

PRAGMA DIRECTIVES

The pragma directives control the behavior of the compiler, for example how it allocates
memory, whether it allows extended keywords, and whether it issues warning messages.

The pragma directives are always enabled in the ColdFire IAR C/C++ Compiler. They
are consistent with ISO/ANSI C, and are very useful when you want to make sure that
the source code is portable.

For detailed descriptions of the pragma directives, see the chapter Pragma directives.

PREDEFINED SYMBOLS

With the predefined preprocessor symbols, you can inspect your compile-time
environment, for example time of compilation and the code model.

For detailed descriptions of the predefined symbols, see the chapter The preprocessor.

SPECIAL FUNCTION TYPES

The special hardware features of the ColdFire microcontroller are supported by the
compiler’s special function types: interrupt and monitor. You can write a complete
application without having to write any of these functions in assembler language.

For detailed information, see Primitives for interrupts, concurrency, and OS-related
programming, page 22.

ACCESSING LOW-LEVEL FEATURES

For hardware-related parts of your application, accessing low-level features is essential.
The ColdFire IAR C/C++ Compiler supports several ways of doing this: intrinsic
functions, mixing C and assembler modules, and inline assembler. For information
about the different methods, see Mixing C and assembler, page 69.

Data storage

This chapter gives a brief introduction to the memory layout of the ColdFire
microcontroller and the fundamental ways data can be stored in memory: on
the stack, in static (global) memory, or in heap memory. For efficient memory
usage, ColdFire IAR C/C++ Compiler provides a set of data memory
attributes, allowing you to fine-tune the access methods, resulting in smaller
code size. The concepts of memory types are described in relation to
pointers, structures, Embedded C++ class objects, and non-initialized
memory. Finally, detailed information about data storage on the stack and the
heap is provided.

Introduction

The ColdFire IAR C/C++ Compiler has one continuous 4-Gbyte memory space. The
memory for the ColdFire microcontroller is divided into different memory areas,
depending on access method. To read more about this, see Memory types, page 13.

In a typical application, data can be stored in memory in three different ways:

e On the stack. This is memory space that can be used by a function as long as it is
executing. When the function returns to its caller, the memory space is no longer
valid.

e Static memory. This kind of memory is allocated once and for all; it remains valid
through the entire execution of the application. Variables that are either global or
declared static are placed in this type of memory. The word static in this context
means that the amount of memory allocated for this type of variable does not
change while the application is running.

o On the heap. Once memory has been allocated on the heap, it remains valid until it
is explicitly released back to the system by the application. This type of memory is
useful when the number of objects is not known until the application executes. Note
that there are potential risks connected with using the heap in systems with a limited
amount of memory, or systems that are expected to run for a long time.

Data models

The ColdFire IAR C/C++ Compiler supports data models for applications with different
data requirements.

Part |. Using the compiler I

Data models

12

ColdFire® IAR C/C++ Compiler
Reference Guide

Technically, the data model specifies the default memory type. This means that the data
model controls the default placement of static and global variables. It is possible to
override this for individual variables and pointers. For information about how to specify
a memory type for individual objects, see Using data memory attributes, page 14.

SPECIFYING A DATA MODEL

Two data models are implemented: Near relative and Far. These models are controlled
by the --data_model option. If you do not specify a data model option, the compiler
will use the Far data model.

The following table summarizes the different data models:

Default memory Default pointer
Data model name . . Placement of data
attribute attribute

Near relative __near_rel __far A 64-Kbyte memory area that
can be placed anywhere in
memory.

Far __far __far The entire 4-Gbyte memory

Table 3: Data model characteristics

Your project can only use one data model at a time, and the same model must be used
by all user modules and all library modules. However, you can override the default
memory type for individual data objects by explicitly specifying a memory attribute,
using either keywords or the #pragma type_attribute directive.

See the | AR Embedded Workbench® IDE User Guide for information about setting
options in the IAR Embedded Workbench IDE.

Use the --data_model option to specify the data model for your project; see
--data_model, page 213.
The Near relative data model

The Near relative data model uses near relative addressing by default, which means that
objects are placed in a position-independent 64-Kbyte memory area that can be placed
anywhere in memory. The advantage is that the compiler can generate more compact
code in most cases.

The Far data model

The Far data model places objects anywhere in the entire 4-Gbyte of memory and in
contrast with the Near relative data model, there is no object size limitation.

Data storage °

Memory types

This section describes the concept of memory types used for accessing data by the
ColdFire IAR C/C++ Compiler. It also discusses pointers in the presence of multiple
memory types. For each memory type, the capabilities and limitations are discussed.

The ColdFire IAR C/C++ Compiler uses different memory types to access data that is
placed in different areas of the memory. There are different methods for reaching
memory areas, and they have different costs when it comes to code space, execution
speed, and register usage. The access methods range from generic methods that can
access the full memory space, to cheap methods that can access limited memory areas.
Each memory type corresponds to one memory access method. By mapping different
memories—or part of memories—to memory types, the compiler can generate code that
can access data efficiently.

For example, the memory accessible using the near memory access method is called
memory of near type, or simply near memory.

It is possible to specify—for individual variables—different memory types. This makes
it possible to create an application that can contain a large amount of data, and at the
same time make sure that variables that are used often are placed in memory that can be
efficiently accessed.

For more information about memory access methods, see Memory access methods, page
82.

NEAR

The near memory consists of the low and high 32 Kbytes of memory. In hexadecimal
notation this is the addresses 0x00000000—0x00007FFF and
0XFFFF8000—0xXFFFFFFFF.

This combination of memory ranges may at first sight seem odd. The explanation,
however, is that when an address expression becomes negative, the calculation wraps
around. Because the address space on the ColdFire microcontroller is 32 bits, the
address below O can be seen as 0xFFFFFFFF. Hence, an alternative way to see the
memory range in the memory accessible is simply +32 Kbytes around address 0.

Accessing near memory is more efficient considering size.

NEAR RELATIVE

The Near relative memory type refers to memory that uses relative addressing, which
means a 64-Kbyte area of the memory can be accessed. This area can be placed at any
location in memory. The advantage is that the compiler can generate more compact code
in most cases.

Part |. Using the compiler 13

Memory types

14

ColdFire® IAR C/C++ Compiler
Reference Guide

FAR

The ColdFire microcontroller has an address space of up to 4 Gbytes. Using the far
memory type, the data objects can be placed anywhere in memory. Also, unlike near
relative memory, there is no limitation on the size of the objects that can be placed in far
memory. The drawback of far memory is that the code generated to access the memory
is larger than for near memory. The far memory is the default memory.

USING DATA MEMORY ATTRIBUTES

The ColdFire IAR C/C++ Compiler provides a set of extended keywords, which can be
used as data memory attributes. These keywords let you override the default memory
type for individual data objects, which means that you can place data objects in other
memory areas than the default memory. This also means that you can fine-tune the
access method for each individual data object, which results in smaller code size.

The following table summarizes the available memory types and their corresponding
keywords:

Memory type Keyword Pointer size Placement of data
Near _ _near 32 bits Low 32 Kbytes or high 32 Kbytes.
Near relative __near_rel 32 bits A 64-Kbyte memory area that can be placed

anywhere in memory.

Far (default) __far 32 bits The entire 4 Gbytes of memory.

Table 4: Memory types and their corresponding memory attributes
If no memory type is specified, the far memory type is used as default memory.

The keywords are only available if language extensions are enabled in the ColdFire IAR
C/C++ Compiler.

In the IAR Embedded Workbench IDE, language extensions are enabled by default.

Use the -e compiler option to enable language extensions. See -e, page 126 for
additional information.

For reference information about each keyword, see Descriptions of extended keywords,
page 165.

Syntax

The keywords follow the same syntax as the type qualifiers const and volatile. The
memory attributes are type attributes and therefore they must be specified both when
variables are defined and in the declaration, see General syntax rules for extended
keywords, page 161.

Data storage °

The following declarations place the variable i and j in near memory. The variables k
and 1 will also be placed in near memory. The position of the keyword does not have
any effect in this case:

__near int i, j;
int __near k, 1;

Note that the keyword affects both identifiers.

In addition to the rules presented here—to place the keyword directly in the code—the
directive #pragma type_attribute can be used for specifying the memory attributes.
The advantage of using pragma directives for specifying keywords is that it offers you
a method to make sure that the source code is portable. Refer to the chapter Pragma
directives for details about how to use the extended keywords together with pragma
directives.

Type definitions

Storage can also be specified using type definitions. The following two declarations are
equivalent:

typedef char __near Byte;
typedef Byte *BytePtr;
Byte b;

BytePtr bp;
and

__near char b;
char __near *bp;

STRUCTURES AND MEMORY TYPES

For structures, the entire object is placed in the same memory type. It is not possible to
place individual structure members in different memory types.

In the example below, the variable gamma is a structure placed in near memory.

struct MyStruct
{
int alpha;
int beta;
}i
__near struct MyStruct gamma;

Part |. Using the compiler 15

C++ and memory types

16

The following declaration is incorrect:

struct MySecondStruct
{
int blue;
__near int green; /* Brror! */

}i

MORE EXAMPLES

The following is a series of examples with descriptions. First, some integer variables are
defined and then pointer variables are introduced. To read the following examples, start
from the left and add one qualifier at each step

int a; A variable defined in default memory.

int __near b; A variable in near memory.

__far int c; A variable in far memory.

int * d; A pointer stored in default memory. The pointer

points to an integer in default memory.

C++ and memory types

ColdFire® IAR C/C++ Compiler
Reference Guide

A C++ class object is placed in one memory type, in the same way as for normal C
structures. However, the class members that are considered to be part of the object are
the non-static member variables. The static member variables can be placed individually
in any kind of memory.

Remember, in C++ there is only one instance of each static member variable, regardless
of the number of class objects.

Example

In the example below, an object, named delta, of the type MyClass is defined in near
memory. The class contains a static member variable that is stored in far memory.

// The class declaration (placed in a header file):
class MyClass
{
public:
int alpha;
int beta;

__far static int gamma;
}i

Data storage °

// Definitions needed (should be placed in a source file):
__far int MyClass::gamma;

// A variable definition:
__near MyClass delta;

The stack and auto variables

Variables that are defined inside a function—not declared static—are named auto
variables by the C standard. A small number of these variables are placed in processor
registers; the rest are placed on the stack. From a semantic point of view, this is
equivalent. The main differences are that accessing registers is faster, and that less
memory is required compared to when variables are located on the stack.

Auto variables can only live as long as the function executes; when the function returns,
the memory allocated on the stack is released.

The stack can contain:
Local variables and parameters not stored in registers
Temporary results of expressions

The return value of a function (unless it is passed in registers)

Processor state during interrupts

Processor registers that should be restored before the function returns (callee-save
registers).

The stack is a fixed block of memory, divided into two parts. The first part contains
allocated memory used by the function that called the current function, and the function
that called it, etc. The second part contains free memory that can be allocated. The
borderline between the two areas is called the top of stack and is represented by the stack
pointer, which is a dedicated processor register. Memory is allocated on the stack by
moving the stack pointer.

A function should never refer to the memory in the area of the stack that contains free
memory. The reason is that if an interrupt occurs, the called interrupt function can
allocate, modify, and—of course—deallocate memory on the stack.

Advantages

The main advantage of the stack is that functions in different parts of the program can
use the same memory space to store their data. Unlike a heap, a stack will never become
fragmented or suffer from memory leaks.

It is possible for a function to call itself—a so-called recursive function—and each
invocation can store its own data on the stack.

Part |. Using the compiler 17

Dynamic memory on the heap

18

Potential problems

The way the stack works makes it impossible to store data that is supposed to live after
the function has returned. The following function demonstrates a common
programming mistake. It returns a pointer to the variable x, a variable that ceases to exist
when the function returns.

int * MyFunction()
{
int x;
do something
return &x;

}

Another problem is the risk of running out of stack. This will happen when one function
calls another, which in turn calls a third, etc., and the sum of the stack usage of each
function is larger than the size of the stack. The risk is higher if large data objects are
stored on the stack, or when recursive functions—functions that call themselves either
directly or indirectly—are used.

Dynamic memory on the heap

ColdFire® IAR C/C++ Compiler
Reference Guide

Memory for objects allocated on the heap will live until the objects are explicitly
released. This type of memory storage is very useful for applications where the amount
of data is not known until runtime.

In C, memory is allocated using the standard library function malloc, or one of the
related functions calloc and realloc. The memory is released again using free.

In C++, there is a special keyword, new, designed to allocate memory and run
constructors. Memory allocated with new must be released using the keyword delete.

Potential problems

Applications that are using heap-allocated objects must be designed very carefully,
because it is easy to end up in a situation where it is not possible to allocate objects on
the heap.

The heap can become exhausted if your application uses too much memory. It can also
become full if memory that no longer is in use has not been released.

For each allocated memory block, a few bytes of data for administrative purposes is
required. For applications that allocate a large number of small blocks, this
administrative overhead can be substantial.

There is also the matter of fragmentation; this means a heap where small sections of free
memory is separated by memory used by allocated objects. It is not possible to allocate

Data storage °

anew object if there is no piece of free memory that is large enough for the object, even
though the sum of the sizes of the free memory exceeds the size of the object.

Unfortunately, fragmentation tends to increase as memory is allocated and released. For
this reason, applications that are designed to run for a long time should try to avoid using
memory allocated on the heap.

Part |. Using the compiler

19

Dynamic memory on the heap

ColdFire® IAR C/C++ Compiler
20 Reference Guide

Functions

This chapter contains information about functions. It gives a brief overview of
function-related extensions—mechanisms for controlling functions—and
describes some of these mechanisms in more detail.

Function-related extensions
In addition to the ISO/ANSI C standard, the ColdFire IAR C/C++ Compiler provides
several extensions for writing functions in C. Using these, you can:
o Control the storage of functions in memory
o Use primitives for interrupts, concurrency, and OS-related programming
e Facilitate function optimization
e Access hardware features.

The compiler supports this by means of compiler options, extended keywords, pragma
directives, and intrinsic functions.

For more information about optimizations, see Writing efficient code, page 102. For
information about the available intrinsic functions for accessing hardware operations,
see the chapter Intrinsic functions.

Code models and memory attributes for function storage
By means of code models, the ColdFire IAR C/C++ Compiler supports placing
functions in a default part of memory, or in other words, use a default size of the function
address. Technically, the code models control the following:
o The default memory range for storing the function
o The maximum module size
o The maximum application size
o The default memory attribute.
The compiler supports two code models—Near and Far. If you do not specify a code
model, the compiler will use the Far code model as default. Your project can only use

one code model at a time, and the same model must be used by all user modules and all
library modules.

Part |. Using the compiler

Primitives for interrupts, concurrency, and OS-related programming

22

The following table summarizes the different code models:

Code model name Default function type (memory attributes)
Near __near_func
Far (default) __far_ func

Table 5: Code models

For more information about the function memory attributes, see Table 6, Function memory at-
tributes.

See the | AR Embedded Workbench® IDE User Guide for information about specifying
a code model in the AR Embedded Workbench IDE.

Use the --code_model option to specify the code model for your project; see
--code_model, page 120.

USING FUNCTION MEMORY ATTRIBUTES

It is possible to override the default placement for individual functions. You specify this
by using the appropriate function memory attribute. The following attributes are

available:
Function memory Default in
Address range Pointer size Description
attribute code model
__near_func O0xFFFF8000- 4 bytes Near The function can be called
0x00007FFF from anywhere in memory.
__far_ func 0-O0xXFFFFFFFF 4 bytes Far The function can be called

from anywhere in memory.

Table 6: Function memory attributes

Pointers with function memory attributes have restrictions in implicit and explicit casts
between pointers and between pointers and integer types. For details about the
restrictions, see Casting, page 146.

For detailed syntax information and for detailed information about each attribute the
chapter Extended keywords.

Primitives for interrupts, concurrency, and OS-related programming

The ColdFire IAR C/C++ Compiler provides the following primitives related to writing
interrupt functions, concurrent functions, and OS-related functions:

o The extended keywords __interrupt and __monitor

ColdFire® IAR C/C++ Compiler
Reference Guide

Functions °

o The intrinsic functions __disable_interrupt, __get_status_register, and
__set_status_register.

INTERRUPT FUNCTIONS

In embedded systems, using interrupts is a method for handling external events
immediately; for example, detecting that a button has been pressed.

In general, when an interrupt occurs in the code, the microcontroller simply stops
executing the code it runs, and starts executing an interrupt routine instead. It is
extremely important that the environment of the interrupted function is restored after the
interrupt has been handled; this includes the values of processor registers and the
processor status register. This makes it possible to continue the execution of the original
code when the code that handled the interrupt has been executed.

The ColdFire microcontroller supports many interrupt sources. For each interrupt
source, an interrupt routine can be written. Each interrupt routine is associated with a
vector number, which is specified in the ColdFire microcontroller documentation from
the chip manufacturer. The interrupt vector is the offset into the interrupt vector table.
For the ColdFire microcontroller, the interrupt vector table start address is
device-specific.

The header file iodevice.h, where device corresponds to the selected device,
contains predefined names for the existing exception vectors.

To define an interrupt function, the __interrupt keyword is used. For example:

__interrupt void my_interrupt_routine(void)
{
/* Do something */

}

Note: An interrupt function must have the return type void, and it cannot specify any
parameters.

To specify an interrupt vector to your interrupt routine, you can write a small assembler
routine, for example:

PUBLIC exampleVector
EXTERN my_interrupt_routine
COMMON INTVEC:CODE (2)

ORG 0x120 /* Offset in vector table */
exampleVector:

DC32 my_interrupt_routine

END

See the chip manufacturer’s ColdFire microcontroller documentation for more
information about the interrupt vector table.

Part |. Using the compiler 23

Primitives for interrupts, concurrency, and OS-related programming

24

ColdFire® IAR C/C++ Compiler
Reference Guide

MONITOR FUNCTIONS

A monitor function causes interrupts to be disabled during execution of the function. At
function entry, the status register is saved and interrupts are disabled. At function exit,
the original status register is restored, and thereby the interrupt status that existed before
the function call is also restored.

To define a monitor function, you can use the __monitor keyword. For reference
information, see __monitor, page 167.

Avoid using the __monitor keyword on large functions, since the interrupt will
otherwise be turned off for too long.

Example of implementing a semaphore in C

In the following example, a semaphore is implemented using one static variable and two
monitor functions. A semaphore can be locked by one process, and is used for
preventing processes from simultaneously using resources that can only be used by one
process at a time, for example a USART. The __monitor keyword assures that the lock
operation is atomic; in other words it cannot be interrupted.

/* When the_lock is non-zero, someone owns the lock. */
static volatile unsigned int the_lock = 0;

/* get_lock -- Try to lock the lock.
* Return 1 on success and 0 on failure. */

__monitor int get_lock(void)
{

if (the_lock == 0)

{

/* Success, we managed to lock the lock. */
the_lock = 1;

return 1;
}
else
{
/* Failure, someone else has locked the lock. */
return O;
}
}
/* release_lock -- Unlock the lock. */

__monitor void release_lock(void)

{
the_lock = 0;

Functions °

}

The following is an example of a program fragment that uses the semaphore:

void my_program(void)
{
if (get_lock())

{

/* ... Do something ... */

/* When done, release the lock. */
release_lock() ;

C++ AND SPECIAL FUNCTION TYPES

C++ member functions can be declared using special function types. Interrupt member
functions must be static. When calling a non-static member function, it must be applied
to an object. When an interrupt occurs and the interrupt function is called, there is no
such object available.

Part |. Using the compiler

25

Primitives for interrupts, concurrency, and OS-related programming

ColdFire® IAR C/C++ Compiler
26 Reference Guide

Placing code and data

This chapter introduces the concept of segments, and describes the different
segment groups and segment types. It also describes how they correspond to
the memory and function types, and how they interact with the runtime
environment. The methods for placing segments in memory, which means
customizing a linker command file, are described.

The intended readers of this chapter are the system designers that are
responsible for mapping the segments of the application to appropriate
memory areas of the hardware system.

Segments and memory

In an embedded system, there are many different types of physical memory. Also, it is
often critical where parts of your code and data are located in the physical memory. For
this reason it is important that the development tools meet these requirements.

WHAT IS A SEGMENT?

A segment is a logical entity containing a piece of data or code that should be mapped
to a physical location in memory. Each segment consists of many segment parts.
Normally, each function or variable with static storage duration is placed in a segment
part. A segment part is the smallest linkable unit, which allows the linker to include only
those units that are referred to. The segment could be placed either in RAM or in ROM.
Segments that are placed in RAM do not have any content, they only occupy space.

The ColdFire IAR C/C++ Compiler has a number of predefined segments for different
purposes. Each segment has a name that describes the contents of the segment, and a
segment memory type that denotes the type of content. In addition to the predefined
segments, you can define your own segments.

At compile time, the compiler assigns each segment its contents. The IAR XLINK
Linker is responsible for placing the segments in the physical memory range, in
accordance with the rules specified in the linker command file. There are supplied linker
command files, but, if necessary, they can be easily modified according to the
requirements of your target system and application. It is important to remember that,
from the linker's point of view, all segments are equal; they are simply named parts of
memory.

For detailed information about individual segments, see the chapter Segment reference.

Part |. Using the compiler

27

Placing segments in memory

28

Segment memory type

XLINK assigns a segment memory type to each of the segments. In some cases, the
individual segments may have the same name as the segment memory type they belong
to, for example CODE. Make sure not to confuse the individual segment names with the
segment memory types in those cases.

By default, the ColdFire IAR C/C++ Compiler uses only the following XLINK segment
memory types:

Segment memory type Description

CODE For executable code
CONST For data placed in ROM
DATA For data placed in RAM

Table 7: XLINK segment memory types

XLINK supports a number of other segment memory types than the ones described
above. However, they exist to support other types of microcontrollers.

For more details about segments, see the chapter Segment reference.

Placing segments in memory

ColdFire® IAR C/C++ Compiler
Reference Guide

The placement of segments in memory is performed by the IAR XLINK Linker. It uses
a linker command file that contains command line options which specify the locations
where the segments can be placed, thereby assuring that your application fits on the
target chip. You can use the same source code with different derivatives just by
rebuilding the code with the appropriate linker command file.

In particular, the linker command file specifies:

e The placement of segments in memory

o The maximum stack size

o The maximum heap size.

This section describes the methods for placing the segments in memory, which means

that you have to customize the linker command file to suit the memory layout of your
target system. For showing the methods, fictitious examples are used.

CUSTOMIZING THE LINKER COMMAND FILE

The config directory contains many ready-made linker command files (filename
extension xc1). The files contain the information required by the linker, and is ready to
be used.The only change you will normally have to make to the supplied linker
command file is to customize it so it fits the target system memory map. If, for example,

Placing code and data __4

your application uses additional external RAM, you need to add details about the
external RAM memory area.

As an example, we can assume that the target system has the following memory layout:

Range Type
0x0000-0x3FFFF ROM
0x20000000-0x20008000 RAM

Table 8: Memory layout of a target system (example)

The ROM can be used for storing CONST and CODE segment memory types. The RAM
memory can contain segments of DATA type. The main purpose of customizing the linker
command file is to verify that your application code and data do not cross the memory
range boundaries, which would lead to application failure.

Remember not to change the original file. We recommend that you make a copy in the
working directory, and modify the copy instead.

The contents of the linker command file

Among other things, the linker command file contains three different types of XLINK

command line options:

o The CPU used:
-ccf
This specifies your target microcontroller.

e Definitions of constants used later in the file. These are defined using the XLINK
option -D.

o The placement directives (the largest part of the linker command file). Segments can
be placed using the -z and -P options. The former will place the segment parts in
the order they are found, while the latter will try to rearrange them to make better

use of the memory. The -P option is useful when the memory where the segment
should be placed is not continuous.

In the linker command file, all numbers are specified in hexadecimal format. However,
neither the prefix 0x nor the suffix h is used.

Note: The supplied linker command file includes comments explaining the contents.

See the IAR Linker and Library Tools Reference Guide for more details.

Using the -Z command for sequential placement

Use the -Z command when you need to keep a segment in one consecutive chunk, when
you need to preserve the order of segment parts in a segment, or, more unlikely, when
you need to put segments in a specific order.

Part |. Using the compiler 29

Data segments

30

The following illustrates how to use the -z command to place the segment MY SEGMENTA
followed by the segment MYSEGMENTB in CONST memory (that is, ROM) in memory:

-Z (CONST)MYSEGMENTA , MYSEGMENTB=0-3FFFF

Two segments of different types can be placed in the same memory area by not
specifying a range for the second segment. In the following example, the MYSEGMENTA
segment is first located in memory. Then, the rest of the memory range could be used by
MYCODE.

-Z (CONST)MYSEGMENTA=0-3FFFF
-Z (CODE) MYCODE

Two memory ranges may overlap. This allows segments with different placement
requirements to share parts of the memory space; for example:

-Z (CONST)MYSMALLSEGMENT=0-FFFF
-Z (CONST)MYLARGESEGMENT=0-3FFFF

Even though it is not strictly required, make sure to always specify the end of each
memory range. If you do this, the IAR XLINK Linker will alert you if your segments do
not fit.

Using the -P command for packed placement

The -p command differs from -z in that it does not necessarily place the segments (or
segment parts) sequentially. With - P it is possible to put segment parts into holes left by
earlier placements.

The following example illustrates how the XLINK -P option can be used for making
efficient use of the memory area. The command will place the data segment MYDATA in
DATA memory (that is, in RAM) in a fictitious memory range:

-P (DATA)MYDATA=0-1FFF,10000-11FFF

If your application has an additional RAM area in the memory range 0xF000-0xF7FF,
you just add that to the original definition:

-P (DATA)MYDATA=0-1FFF,FO000-F7FF,10000-11FFF

Data segments

ColdFire® IAR C/C++ Compiler
Reference Guide

This section contains descriptions of the segments used for storing the different types of
data: static, stack, heap, and located.

To get a clear understanding about how the data segments work, you must be familiar
with the different memory types available in the ColdFire IAR C/C++ Compiler. If you
need to refresh these details, see the chapter Data storage.

Placing code and data __4

STATIC MEMORY SEGMENTS

Static memory is memory that contains variables that are global or declared static, as
described in the chapter Data storage. Declared static variables can be divided into the
following categories:

Variables that are initialized to a non-zero value

Variables that are initialized to zero

Variables that are declared as const and therefore can be stored in ROM

Variables defined with the __no_init keyword, meaning that they should not be
initialized at all.

For the static memory segments it is important to be familiar with:

The segment naming

How the memory types correspond to segment groups and the segments that are part
of the segment groups

Restrictions for segments holding initialized data

The placement and size limitation of the segments of each group of static memory
segments.

Segment naming

The names of the segments consist of two parts—the segment group name and a
suffix—for instance, NEAR_Z. The names of the segment groups are derived from the
memory type and the corresponding keyword, for example NEAR and __near.

There is a segment group for each memory type, where each segment group holds
different categories of declared data.

Some of the declared data is placed in non-volatile memory, for example ROM, and
some of the data is placed in RAM. For this reason, it is also important to know the
XLINK segment memory type of each segment. For more details about segment
memory types, see Segment memory type, page 28.

The following table summarizes the different suffixes, which XLINK segment memory
type they are, and which category of declared data they denote:

Categories of declared data Segment memory type Suffix
Non-initialized data DATA N
Zero-initialized data DATA Z
Non-zero initialized data DATA I
Initializers for the above CONST ID

Table 9: Segment name suffixes

Part |. Using the compiler 31

Data segments

32

ColdFire® IAR C/C++ Compiler
Reference Guide

Categories of declared data Segment memory type Suffix

Constants CONST c

Table 9: Segment name suffixes (Continued)
For a summary of all supported segments, see Summary of segments, page 203.

Examples

Assume the following examples:

__near int j; The near variables that are to be initialized to zero
__near int i = 0; when the system starts will be placed in the segment
NEAR_Z.

__no_init __near int j; The nearnon-initialized variables will be placed in the
segment NEAR_N.

__near int j = 4; The near non-zero initialized variables will be placed
in the segment NEAR_ T, and initializer data in segment
NEAR_ID.

Initialized data

When an application is started, the system startup code initializes static and global
variables in the following steps:

It clears the memory of the variables that should be initialized to zero.

It initializes the non-zero variables by copying a block of ROM to the location of the
variables in RAM. This means that the data in the ROM segment with the suffix ID is
copied to the corresponding I segment.

This works when both segments are placed in continuous memory. However, if one of
the segments is divided into smaller pieces, it is important that:

o The other segment is divided in exactly the same way

e Itis legal to read and write the memory that represents the gaps in the sequence.

Placing code and data __4

For example, if the segments are assigned the following ranges, the copy will fail:
NEAR_I 0x1000-0x10FF and 0x1200-0x12FF
NEAR_ID 0x4000-0x41FF

However, in the following example, the linker will place the content of the segments in
identical order, which means that the copy will work appropriately:

NEAR_| 0x1000-0x10FF and 0x1200-0x12FF
NEAR_ID 0x4000-0x40FF and 0x4200-0x42FF
The ID segment can, for all segment groups, be placed anywhere in memory, because it

is not accessed using the corresponding access method. Note that the gap between the
ranges will also be copied.

Finally, global C++ objects are constructed, if any.

Data segments for static memory in the default linker command file

The default linker command file contains the following directives to place the static data
segments:

//First, the segments to be placed in ROM are defined:
-Z (CONST)NEAR_C=2000-7FFF

-Z (CONST)FAR_C=20000-3FFFFF

-Z (CONST) FAR_ID,NEARPID_ID,NEAR_ID

//Then, the RAM data segments are placed in memory:

-Z (DATA)NEAR_I,NEAR_Z,NEAR_N=0-7FFF

-Z (DATA) PIDBASE, NEARPID_TI,NEARPID_Z,NEARPID_N=20000-2FFFF
-Z (DATA)FAR_I,FAR_Z,FAR_N=10000-11FFF

All the data segments are placed in the area used by on-chip RAM.

THE STACK

The stack is used by functions to store variables and other information that is used
locally by functions, as described in the chapter Data storage. It is a continuous block
of memory pointed to by the processor stack pointer register A7 (SP).

The data segment used for holding the stack is called cSTACK. The system startup code
initializes the stack pointer to the end of the stack segment.

Allocating a memory area for the stack is done differently when you use the command
line interface compared to when you use the IAR Embedded Workbench IDE.

Part |. Using the compiler 33

Data segments

34

ColdFire® IAR C/C++ Compiler
Reference Guide

Stack size allocation in the IAR Embedded Workbench IDE
Select Project>Options. In the General Options category, click the Stack/Heap tab.
Add the required stack size in the User stack size text box.

If the supervisor stack is to be used, enable the Use supervisor stack option and add the
required stack size in the Supervisor stack size text box.

Stack size allocation from the command line
The size of the cSTACK segment is defined in the linker command file.

The default linker file sets up a constant representing the size of the stack, at the
beginning of the linker file:

-D_CSTACK_SIZE=size

Note: Normally, this line is prefixed with the comment character //. To make the
directive take effect, remove the comment character.

Specify an appropriate size for your application. Note that the size is written
hexadecimally without the 0x notation.

Placement of stack segment

Further down in the linker file, the actual stack segment is defined in the memory area
available for the stack:

-7 (DATA) CSTACK+_CSTACK_SIZE#20000000-20008000
Note:

o This range does not specify the size of the stack; it specifies the range of the
available memory

o The # allocates the CSTACK segment at the end of the memory area. In practice,
this means that the stack will get all remaining memory at the same time as it is
guaranteed that it will be at least _CSTACK_SIZE bytes.

Stack size considerations

The compiler uses the internal data stack, CSTACK, for a variety of user program
operations, and the required stack size depends heavily on the details of these
operations. If the given stack size is too large, RAM will be wasted. If the given stack
size is too small, there are two things that can happen, depending on where in memory
you have located your stack. Both alternatives are likely to result in application failure.
Either variable storage will be overwritten, leading to undefined behavior, or the stack
will fall outside of the memory area, leading to an abnormal termination of your

Placing code and data __4

application. Because the second alternative is easier to detect, you should consider
placing your stack so that it grows towards the end of the memory.
THE HEAP

The heap contains dynamic data allocated by use of the C function malloc (or one of
its relatives) or the C++ operator new.

If your application uses dynamic memory allocation, you should be familiar with the
following:

e Linker segment used for the heap

o Allocating the heap size, which differs depending on which build interface you are
using

e Placing the heap segments in memory.

The memory allocated to the heap is placed in the segment HEAP, which is only included

in the application if dynamic memory allocation is actually used.

Heap size allocation in the IAR Embedded Workbench IDE

Select Project>Options. In the General Options category, click the Stack/Heap tab.

Add the required heap size in the Heap size text box.

Heap size allocation from the command line
The size of the heap segment is defined in the linker command file.

The default linker file sets up a constant, representing the size of the heap, at the
beginning of the linker file:

-D_HEAP_SIZE=size

Note: Normally, this line is prefixed with the comment character / /. To make the
directive take effect, remove the comment character.

Specify the appropriate size for your application.

Placement of heap segment
The actual heap segment is allocated in the memory area available for the heap:
—-Z (DATA) HEAP+_HEAP_SIZE=20000000-20008000

Note: This range does not specify the size of the heap; it specifies the range of the
available memory.

Part |. Using the compiler 35

Code segments

36

Heap size and standard 1/O

If you have excluded FILE descriptors from the DLIB runtime environment, as in the
normal configuration, there are no input and output buffers at all. Otherwise, as in the
full configuration, be aware that the size of the input and output buffers is set to 512
bytes in the stdio library header file. If the heap is too small, I/O will not be buffered,
which is considerably slower than when I/O is buffered. If you execute the application
using the simulator driver of the IAR C-SPY® Debugger, you are not likely to notice the
speed penalty, but it is quite noticeable when the application runs on an ColdFire
microcontroller. If you use the standard I/O library, you should set the heap size to a
value which accommodates the needs of the standard I/O buffer.

Code segments

ColdFire® IAR C/C++ Compiler
Reference Guide

This section contains descriptions of the segments used for storing code, and the
interrupt vector table. For a complete list of all segments, see Summary of segments,
page 203.

STARTUP CODE

The segment RCODE contains code used during system startup (cstartup), system
termination (cexit), and other assembler routines. The system startup code can be
placed anywhere. In addition, the segments must be placed into one continuous memory
space, which means the -P segment directive cannot be used.

In the default linker command file, the following line will place the RCODE segment at
the address 0x1000:

-Z (CODE) RCODE=1000

NORMAL CODE

Functions declared without a memory type attribute are placed in different segments,
depending on which code model you are using.

If you use the Near code model, or if the function is explicitly declared __near_func, the
code is placed in CODE segment. If you use the Far code model, or if the function is
explicitly declared __far_func, the code is placed in FCODE segment. Again, this is a
simple operation in the linker command file:

-Z (CODE) CODE=0-7FFF
-Z (CODE) FCODE=0-FFFFFFFF

Placing code and data __4

INTERRUPT VECTORS

The interrupt vector table contains pointers to interrupt routines, including the reset
routine. The table should be placed in the segment INTVEC. For the ColdFire
microcontroller, the interrupt vector table can be mapped to even 1-Mbyte aligned base
addresses. To place the INTVEC segment in the memory range 0-3FF, the linker
directive looks like this:

-Z (CONST) INTVEC=_VBR_ADDRESS:+400

where _VBR_ADDRESS is the symbol holding the vector base address (by default set to
0) and 400 is the length of the area.

C++ dynamic initialization
INITIALIZATION

In C++, all global objects will be created before the main function is called. The creation
of objects can involve the execution of a constructor.

The DIFUNCT and EARLYDIFUNCT segments contain a vector of addresses that point to
initialization code. All entries in the vector will be called when the system is initialized.

For example:
-Z (CONST) EARLYDIFUNCT, DIFUNCT=0000-1FFFF

For additional information, see DIFUNCT, page 205 and EARLYDIFUNCT, page 205.

DESTRUCTION AND ATEXIT() HANDLING

Information about C++ objects to be destructed and the result of calls to atexit are
allocated in the . iar.dynexit segment. The segment needs an entry for each
dynamically initialized C++ object with a static life span and an entry for each call to
atexit performed by your application.

The default linker command file sets up a symbol, representing the number of elements,
at the beginning of the linker file:

-D_DYNEXIT_ELEMENTS=number_ of_ elements

You should specify the number appropriately depending on your application
requirements.

In the linker command file, the segment is then allocated in the memory area available
for it, for example:

-Z (DATA) ..., .lar.dynexit+ ((_DYNEXIT_ELEMENTS+14)*C)=20000000

Part |. Using the compiler 37

Verifying the linked result of code and data placement

By default, the linker command file adds 20 entries (14 in hexadecimal notation)
required internally by the compilation system. The size of each entry is 12 bytes (C in
hexadecimal notation).

If there are no more available entries in the . iar.dynexit segment when a new entry
is required at runtime, either when initializing a C++ object with a static life span that
also needs destruction, or due to a call to the atexit function, the program will
terminate by calling the abort function.

Verifying the linked result of code and data placement

The linker has several features that help you to manage code and data placement, for
example, messages at link time and the linker map file.

SEGMENT TOO LONG ERRORS AND RANGE ERRORS

All code or data that is placed in relocatable segments will have its absolute addresses
resolved at link time. It is also at link time it is known whether all segments will fit in

the reserved memory ranges. If the contents of a segment do not fit in the address range
defined in the linker command file, XLINK will issue a segment too long error.

Some instructions do not work unless a certain condition holds after linking, for
example that a branch must be within a certain distance or that an address must be even.
XLINK verifies that the conditions hold when the files are linked. If a condition is not
satistied, XLINK generates a range error or warning and prints a description of the
error.

For further information about these types of errors, see the |AR Linker and Library Tools
Reference Guide.

LINKER MAP FILE

XLINK can produce an extensive cross-reference listing, which can optionally contain
the following information:
o A segment map which lists all segments in dump order

o A module map which lists all segments, local symbols, and entries (public symbols)
for every module in the program. All symbols not included in the output can also be
listed

o Module summary which lists the contribution (in bytes) from each module

e A symbol list which contains every entry (global symbol) in every module.

Use the option Generate linker listing in the IAR Embedded Workbench IDE, or the
option -x on the command line, and one of their suboptions to generate a linker listing.

ColdFire® IAR C/C++ Compiler
38 Reference Guide

Placing code and data __4

Normally, XLINK will not generate an output file if there are any errors, such as range
errors, during the linking process. Use the option Range checks disabled in the IAR
Embedded Workbench IDE, or the option -r on the command line, to generate an output
file even if a range error was encountered.

For further information about the listing options and the linker listing, see the |AR Linker
and Library Tools Reference Guide, and the | AR Embedded Workbench® IDE User
Guide.

Part |. Using the compiler 39

Verifying the linked result of code and data placement

ColdFire® IAR C/C++ Compiler
40 Reference Guide

The DLIB runtime
environment

This chapter describes the runtime environment in which an application
executes. In particular, the chapter covers the DLIB runtime library and how
you can modify it—setting options, overriding default library modules, or
building your own library—to optimize it for your application.

The chapter also covers system initialization and termination; how an
application can control what happens before the function main is called, and
how you can customize the initialization.

The chapter then describes how to configure functionality like locale and file
I/O, how to get C-SPY® runtime support, and how to prevent incompatible
modules from being linked together.

Introduction to the runtime environment

The runtime environment is the environment in which your application executes. The
runtime environment depends on the target hardware, the software environment, and the
application code. The IAR DLIB runtime environment can be used as is together with
the IAR C-SPY Debugger. However, to be able to run the application on hardware, you
must adapt the runtime environment.

This section gives an overview of:

o The runtime environment and its components

e Library selection.

RUNTIME ENVIRONMENT FUNCTIONALITY

The runtime environment supports ISO/ANSI C and C++ including the standard
template library. The runtime environment consists of the runtime library, which
contains the functions defined by these standards, and include files that define the library
interface.

The runtime library is delivered both as prebuilt libraries and as source files, and you
can find them in the product subdirectories c£\1ib and c£\src\1ib, respectively.

Part |. Using the compiler 41

Introduction to the runtime environment

42

ColdFire® IAR C/C++ Compiler
Reference Guide

The runtime environment also consists of a part with specific support for the target
system, which includes:
o Support for hardware features:

e Direct access to low-level processor operations by means of intrinsic functions,
such as functions for register handling

Peripheral unit registers and interrupt definitions in include files

Target-specific arithmetic support modules like hardware multipliers or
floating-point coprocessors.
e Runtime environment support, that is, startup and exit code and low-level interface
to some library functions.
e® Special compiler support for some functions, for instance functions for
floating-point arithmetics.

The runtime environment support as well as the size of the heap must be tailored for the
specific hardware and application requirements.

For further information about the library, see the chapter Library functions.

LIBRARY SELECTION

To configure the most code-efficient runtime environment, you must determine your
application and hardware requirements. The more functionality you need, the larger
your code will become.

IAR Embedded Workbench comes with a set of prebuilt runtime libraries. To get the
required runtime environment, you can customize it by:

e Setting library options, for example, for choosing scanf input and print £ output
formatters, and for specifying the size of the stack and the heap

o Overriding certain library functions, for example cstartup.s68, with your own
customized versions

o Choosing the level of support for certain standard library functionality, for example,
locale, file descriptors, and multibyte characters, by choosing a library
configuration: normal or full.

In addition, you can also make your own library configuration, but that requires that you
rebuild the library. This allows you to get full control of the runtime environment.

Note: Your application project must be able to locate the library, include files, and the
library configuration file.

The DLIB runtime environment ___¢

SITUATIONS THAT REQUIRE LIBRARY BUILDING

Building a customized library is complex. You should therefore carefully consider
whether it is really necessary.

You must build your own library when:

o There is no prebuilt library for the required combination of compiler options or
hardware support

e You want to define your own library configuration with support for locale, file

descriptors, multibyte characters, et cetera.

For information about how to build a customized library, see Building and using a
customized library, page 50.

LIBRARY CONFIGURATIONS

It is possible to configure the level of support for, for example, locale, file descriptors,
multibyte characters. The runtime library configuration is defined in the library
configuration file. It contains information about what functionality is part of the runtime
environment. The configuration file is used for tailoring a build of a runtime library, as
well as tailoring the system header files used when compiling your application. The less
functionality you need in the runtime environment, the smaller it is.

The following DLIB library configurations are available:

Library configuration Description

Normal DLIB No locale interface, C locale, no file descriptor support, no multibyte
characters in printf and scanf, and no hex floats in strtod.

Full DLIB Full locale interface, C locale, file descriptor support, multibyte
characters in printf and scanf, and hex floats in strtod.

Table 10: Library configurations

In addition to these configurations, you can define your own configurations, which

means that you must modify the configuration file. Note that the library configuration
file describes how a library was built and thus cannot be changed unless you rebuild the
library. For further information, see Building and using a customized library, page 50.

The prebuilt libraries are based on the default configurations, see Using a prebuilt
library, page 44. There is also a ready-made library project template that you can use if
you want to rebuild the runtime library.

DEBUG SUPPORT IN THE RUNTIME LIBRARY

You can make the library provide different levels of debugging support—basic, runtime,
and I/O debugging.

Part |. Using the compiler 43

Using a prebuilt library

The following table describes the different levels of debugging support:

Debugging Linker option in Linker command L.
Description
support IDE line option
Basic debugging Debug information -Fubrof Debug support for C-SPY without any
for C-SPY runtime support
Runtime debugging With runtime -r The same as -Fubrof, but also
control modules includes debugger support for
handling program abort, exit, and
assertions.
I/O debugging With I/O emulation -rt The same as -, but also includes
modules debugger support for /O handling,

which means that stdin and
stdout are redirected to the C-SPY
Terminal /O window, and that it is
possible to access files on the host
computer during debugging.

Table 11: Levels of debugging support in runtime libraries

If you build your application project with the XLINK options With runtime control
modulesor With I/O emulation modules, certain functions in the library will be
replaced by functions that communicate with the IAR C-SPY Debugger. For further
information, see C-SPY Debugger runtime interface, page 64.

To set linker options for debug support in the IAR Embedded Workbench IDE, choose
Project>0Options and select the Linker category. On the Output page, select the
appropriate Format option.

Using a prebuilt library

ColdFire® IAR C/C++ Compiler
44 Reference Guide

The prebuilt runtime libraries are configured for different combinations of the following
features:

Instruction set architecture

Code model

Data model

Division instructions

Library configuration—Normal or Full.
The names of the libraries are constructed in the following way:

<type><target><isa><code_model><data_model><div><lib_config>.r68

The DLIB runtime environment ___¢

where

® <type>is dl for the IAR DLIB runtime environment

® <target>is cf for ColdFire

® <isa>isoneof a, ap, b, or c, forisa_a, isa_a+, isa_b, and isa_c, respectively

® <code_model> is one of n or £ for Near and Far code model, respectively

® <data_model> is one of n or £ for Near relative and Far data model, respectively
°

<div> is d when no DIV/REM instructions are used and empty when they are not
used

® <I1ib_config>isone of nor £ for normal and full, respectively.
Note: The library configuration file has the same base name as the library.

The IAR Embedded Workbench IDE will include the correct library object file and
library configuration file based on the options you select. See the | AR Embedded
Workbench® IDE User Guide for additional information.

@ If you build your application from the command line, you must specify the following

items to get the required runtime library:

e Specify which library object file to use on the XLINK command line, for instance:
dlcfcffn.r68

e Specify the include paths for the compiler and assembler:
-I cflinc

e Specify the library configuration file for the compiler:
--dlib_config C:\...\dlcfcffn.h

Note: All modules in the library have a name that starts with the character 2 (question
mark).

You can find the library object files and the library configuration files in the subdirectory
cf\lib.

CUSTOMIZING A PREBUILT LIBRARY WITHOUT REBUILDING

The prebuilt libraries delivered with the ColdFire IAR C/C++ Compiler can be used as
is. However, it is possible to customize parts of a library without rebuilding it. There are
two different methods:
e Setting options for:

o Formatters used by printf and scanf

o The sizes of the heap and the stack

o Overriding library modules with your own customized versions.

Part |. Using the compiler 45

Choosing formatters for printf and scanf

46

The following items can be customized:

Items that can be customized Described in

Formatters for printf and scanf Choosing formatters for printf and scanf, page 46
Startup and termination code System startup and termination, page 51
Low-level input and output Standard streams for input and output, page 55
File input and output File input and output, page 58

Low-level environment functions Environment interaction, page 61

Low-level signal functions Signal and raise, page 62

Low-level time functions Time, page 63

Size of heaps, stacks, and segments Placing code and data, page 27

Table 12: Customizableitems

For a description about how to override library modules, see Overriding library
modules, page 48.

Choosing formatters for printf and scanf

ColdFire® IAR C/C++ Compiler
Reference Guide

To override the default formatter for all the printf- and scanf-related functions,
except for wprintf and wscanf variants, you simply set the appropriate library
options. This section describes the different options available.

Note: If you rebuild the library, it is possible to optimize these functions even further,
see Configuration symbols for printf and scanf, page 57.

CHOOSING PRINTF FORMATTER

The print£ function uses a formatter called _pPrint£. The default version is quite
large, and provides facilities not required in many embedded applications. To reduce the
memory consumption, three smaller, alternative versions are also provided in the
standard C/EC++ library.

The DLIB runtime environment ___¢

The following table summarizes the capabilities of the different formatters:

Formatting capabilities _PrintfFull _PrintfLarge _PrintfSmall _PrintfTiny
Basic specifiers ¢, d, 1, 0,p, s, u, X, Yes Yes Yes Yes
x,and %

Multibyte support t t t No
Floating-point specifiers a, and A Yes No No No
Floating-point specifiers e, E, £, F, g, Yes Yes No No
and G

Conversion specifier n Yes Yes No No
Format flag space, +, -, #, and 0 Yes Yes Yes No
Length modifiers h, 1, L, s, t,and Z Yes Yes Yes No
Field width and precision, including * Yes Yes Yes No
long long support Yes Yes No No

Table 13: Formatters for printf
T Depends on the library configuration that is used.

For information about how to fine-tune the formatting capabilities even further, see
Configuration symbols for printf and scanf, page 57.

Specifying the print formatter in the IAR Embedded Workbench
IDE

To use any other formatter than the default (Small), choose Proj ect>Options and select
the General Options category. Select the appropriate option on the Library options

page.

@ Specifying printf formatter from the command line

To use any other formatter than the default (_Print£fFull), add one of the following
lines in the linker command file you are using:

-e_PrintfLarge=_Printf
—-e_PrintfSmall=_Printf
-e_PrintfTiny=_Printf

CHOOSING SCANF FORMATTER

In a similar way to the printf function, scanf uses a common formatter, called
_Scanft. The default version is very large, and provides facilities that are not required
in many embedded applications. To reduce the memory consumption, two smaller,
alternative versions are also provided in the standard C/C++ library.

Part |. Using the compiler 47

Overriding library modules

48

The following table summarizes the capabilities of the different formatters:

Formatting capabilities _ScanfFull _ScanflLarge _ScanfSmall
Basic specifiers ¢, d, 1,0, p, s, U, X, Yes Yes Yes
x,and %

Multibyte support t t T
Floating-point specifiers a, and A Yes No No
Floating-point specifiers e, E, £, F, g, Yes No No
and G

Conversion specifier n Yes No No
Scan set [and] Yes Yes No
Assignment suppressing * Yes Yes No
long long support Yes No No

Table 14: Formatters for scanf
U Depends on the library configuration that is used.

For information about how to fine-tune the formatting capabilities even further, see
Configuration symbols for printf and scanf, page 57.

Specifying scanf formatter in the IAR Embedded Workbench IDE

To use any other formatter than the default (Small), choose Project>Optionsand select
the General Options category. Select the appropriate option on the Library options

page.
Specifying scanf formatter from the command line

To use any other variant than the default (_ScanfFull), add one of the following lines
in the linker command file you are using:

-e_ScanflLarge=_Scanf
-e_ScanfSmall=_Scanf

Overriding library modules

ColdFire® IAR C/C++ Compiler
Reference Guide

The library contains modules which you probably need to override with your own
customized modules, for example functions for character-based I/O and cstartup.
This can be done without rebuilding the entire library. This section describes the
procedure for including your version of the module in the application project build
process. The library files that you can override with your own versions are located in the
cf\src\lib directory.

The DLIB runtime environment ___¢

Note: If you override a default I/O library module with your own module, C-SPY
support for the module is turned off. For example, if you replace the module __write
with your own version, the C-SPY Terminal I/O window will not be supported.

Overriding library modules using the IAR Embedded Workbench
IDE

This procedure is applicable to any source file in the library, which means that
library_module.c in this example can be any module in the library.

I Copy the appropriate 1ibrary._module.c file to your project directory.

2 Make the required additions to the file (or create your own routine, using the default
file as a model), and make sure that it has the same module name as the original
module. The easiest way to achieve this is to save the new file under the same name as
the original file.

Add the customized file to your project.

Rebuild your project.

[Overriding library modules from the command line

This procedure is applicable to any source file in the library, which means that
library_module.c in this example can be any module in the library.

I Copy the appropriate 1ibrary._module.c to your project directory.

2 Make the required additions to the file (or create your own routine, using the default
file as a model), and make sure that it has the same module name as the original
module. The easiest way to achieve this is to save the new file under the same name as
the original file.

3 Compile the modified file using the same options as for the rest of the project:
icccf library _module
This creates a replacement object module file named 1ibrary _module.r68.
Note: Make sure to use a library that matches the settings of the rest of your application.

4 Add 1ibrary_module.r68 to the XLINK command line, either directly or by using
an extended linker command file, for example:

xlink Iibrary module dlcflcfn.r68

Make sure that 1ibrary_module is placed before the library on the command line.
This ensures that your module is used instead of the one in the library.

Run XLINK to rebuild your application.

Part |. Using the compiler 49

Building and using a customized library

50

This will use your version of 1ibrary _module.r68, instead of the one in the library.
For information about the XLINK options, see the AR Linker and Library Tools
Reference Guide.

Building and using a customized library

ColdFire® IAR C/C++ Compiler
Reference Guide

In some situations, see Stuationsthat require library building, page 43, it is necessary
to rebuild the library. In those cases you need to:

Set up a library project
Make the required library modifications

°
.
e Build your customized library
°

Finally, make sure your application project will use the customized library.

Information about the build process is described in the | AR Embedded Workbench® IDE
User Guide.

Note: It is possible to build IAR Embedded Workbench projects from the command
line by using the [AR Command Line Build Utility (iarbuild.exe). However, no
make or batch files for building the library from the command line are provided.

SETTING UP A LIBRARY PROJECT

The IAR Embedded Workbench IDE provides a library project template which can be
used for customizing the runtime environment configuration. This library template has
full library configuration, see Table 10, Library configurations, page 43.

In the IAR Embedded Workbench IDE, modify the generic options in the created library
project to suit your application, see Basic settings for project configuration, page 5.

Note: There is one important restriction on setting options. If you set an option on file
level (file level override), no options on higher levels that operate on files will affect that
file.

MODIFYING THE LIBRARY FUNCTIONALITY

You must modify the library configuration file and build your own library if you want
to modify support for, for example, locale, file descriptors, and multibyte characters.
This will include or exclude certain parts of the runtime environment.

The library functionality is determined by a set of configuration symbols. The default
values of these symbols are defined in the file D1ib_defaults.h. This read-only file
describes the configuration possibilities. In addition, your library has its own library
configuration file d1cfCustom.h, which sets up that specific library with full library
configuration. For more information, see Table 12, Customizable items, page 46.

The DLIB runtime environment ___¢

The library configuration file is used for tailoring a build of the runtime library, as well
as tailoring the system header files.
Modifying the library configuration file

In your library project, open the file d1c£Custom.h and customize it by setting the
values of the configuration symbols according to the application requirements.

When you are finished, build your library project with the appropriate project options.

USING A CUSTOMIZED LIBRARY

After you have built your library, you must make sure to use it in your application
project.

In the IAR Embedded Workbench IDE you must perform the following steps:

Choose Project>Options and click the Library Configuration tab in the General
Options category.

2 Choose Custom DLIB from the Library drop-down menu.
3 Inthe Library filetext box, locate your library file.

4 1In the Configuration file text box, locate your library configuration file.

System startup and termination

This section describes the runtime environment actions performed during startup and
termination of applications.The code for handling startup and termination is located in
the source files cstartup.s68, cexit.s68, and low_level_init.c located in the
cf\src\1lib directory.

In addition, for device-specific initializations, the cstartdevice.s68 file must be
included to your project. The files are located in the cf\src directory. In the IAR

Part |. Using the compiler 51

System startup and termination

52

ColdFire® IAR C/C++ Compiler
Reference Guide

Embedded Workbench IDE, the appropriate file is automatically included if you create
your project based on a template project.
SYSTEM STARTUP

During system startup, an initialization sequence is executed before the main function
is entered. This sequence performs intitializations required for the target hardware and
the C/C++ environment.

For the hardware intialization, it looks like this:

Library User Application
Start label: __low_level_init()
Hardware User hardware

Setup setup
(returns C/C++
static

[initialization flag)

|

Initialization
Figure 1: Target hardware initialization phase

o When the CPU is reset it will jump directly to the program entry label
__program_start in the cstartdevice. s68 file, if that file is available in your
project. In that case, device-specific intitializations are performed, such as enabling
flash and RAM areas, and setting up the vector base address and the SFR base
addresses. Then, execution falls in to the cstartup.s68 file.

If the cstartdevice. s68 file is not available in your project, the CPU will at reset
jump directly to the program entry label __program_start in the cstartup.s68
file.

The stack pointer is initialized to the end of the CSTACK segment.

The function __low_level_init is called if you have defined it, giving the
application a chance to perform early initializations.

The DLIB runtime environment ___¢

For the C/C++ initialization, it looks like this:

Library User application
Static C/C++ User hardware
initialization setup

i
Dynamic C++ main()
initialization
T User code
Return from
main
exit()

Figure 2: C/C++ initialization phase

e Static variables are initialized; this includes clearing zero-initialized memory and
copying the ROM image of the RAM memory of the rest of the initialized variables
depending on the return value of __low_level_init. For more details, see
Initialized data, page 32

Static C++ objects are constructed

The main function is called, which starts the application.

SYSTEM TERMINATION

If your embedded application terminates, there are different ways it can terminate in a
controlled way:

Return from main via library

Library User application
exit()
Explicit call
|
_exit
Dynamic C++ abort()
and atexit code Explicit call
_Exit()
Explicit call
| P
__exit
Application
terminates

Figure 3: System termination phase

Part |. Using the compiler 53

Customizing system initialization

54

An application can terminate normally in two different ways:

o Return from the main function

o Call the exit function.

As the ISO/ANSI C standard states that the two methods should be equivalent, the
system startup code calls the exi t function if main returns. The parameter passed to the
exit function is the return value of main.

The default exi t function is written in C. It calls a small assembler function _exi t that
will perform the following operations:

e Call functions registered to be executed when the application ends. This includes
C++ destructors for static and global variables, and functions registered with the
standard C function atexit

e Close all open files
o Call__exit

® When __exit is reached, stop the system.

An application can also exit by calling the abort or the _Exit function. The abort
function just calls __exit to halt the system, and does not perform any type of cleanup.
The _Exit function is equivalent to the abort function, except for the fact that _Exit
takes an argument for passing exit status information.

If you want your application to perform anything extra at exit, for example resetting the
system, you can write your own implementation of the __exit (int) function.

C-SPY interface to system termination

If your project is linked with the XLINK options With runtime contr ol modules or
With 1/0 emulation modules, the normal __exit and abort functions are replaced
with special ones. C-SPY will then recognize when those functions are called and can
take appropriate actions to simulate program termination. For more information, see
C-SPY Debugger runtime interface, page 64.

Customizing system initialization

ColdFire® IAR C/C++ Compiler
Reference Guide

It is likely that you need to customize the code for system initialization. For example,
your application might need to initialize memory-mapped special function registers
(SFRs), or omit the default initialization of data segments performed by cstartup.

You can do this by providing a customized version of the routine __low_level_ init,
which is called from cstartup.s68 before the data segments are initialized.
Modifying the file cstartup directly should be avoided.

The DLIB runtime environment ___¢

The code for handling system startup is located in the source files cstartup.s68 and
low_level_init.c, located in the cf\src\1lib directory.

Note: Normally, there is no need for customizing either of the files cmain.s68 or
cexit.s68.

If you intend to rebuild the library, the source files are available in the template library
project, see Building and using a customized library, page 50.

Note: Regardless of whether you modify the routine __low_level_init or the file
cstartup.s68, you do not have to rebuild the library.

__LOW_LEVEL_INIT

Two skeleton low-level initialization files are supplied with the product: a C source file,
low_level_init.c. The latter is part of the prebuilt runtime environment. The only
limitation using the C source version is that static initialized variables cannot be used
within the file, as variable initialization has not been performed at this point.

The value returned by __low_level_init determines whether or not data segments
should be initialized by the system startup code. If the function returns 0, the data
segments will not be initialized.

MODIFYING THE FILE CSTARTUP.Sé68

As noted earlier, you should not modify the file cstartup. s68 if a customized version
of __low_level_init is enough for your needs. However, if you do need to modify
the file cstartup.s68, we recommend that you follow the general procedure for
creating a modified copy of the file and adding it to your project, see Overriding library
modules, page 48.

Standard streams for input and output

There are three standard communication channels (streams)—stdin, stdout, and
stderr—which are defined in stdio.h. If any of these streams are used by your
application, for example by the functions printf and scanf, you need to customize the
low-level functionality to suit your hardware.

There are primitive I/O functions, which are the fundamental functions through which
C and C++ performs all character-based I/O. For any character-based I/0 to be available,
you must provide definitions for these functions using whatever facilities the hardware
environment provides.

Part |. Using the compiler 55

Standard streams for input and output

56

ColdFire® IAR C/C++ Compiler
Reference Guide

IMPLEMENTING LOW-LEVEL CHARACTER INPUT AND
OUTPUT

To implement low-level functionality of the stdin and stdout streams, you must write
the functions __read and __write, respectively. You can find template source code for
these functions in the c£\src\1ib directory.

If you intend to rebuild the library, the source files are available in the template library
project, see Building and using a customized library, page 50. Note that customizing the
low-level routines for input and output does not require you to rebuild the library.

Note: If you write your own variants of __read or __write, special considerations
for the C-SPY runtime interface are needed, see C-SPY Debugger runtime interface,
page 64.

Example of using __write and __read

The code in the following examples use memory-mapped I/O to write to an LCD
display:

__no_init volatile unsigned char LCD_IO @ address;

size_t __write(int Handle, const unsigned char * Buf,
size_t Bufsize)

size_t nChars = 0;
/* Check for stdout and stderr
(only necessary if FILE descriptors are enabled.) */
if (Handle != 1 && Handle != 2)
{

return -1;

}
for (/*Empty */; Bufsize > 0; --Bufsize)

LCD_IO = * Buf++;
++nChars;
}

return nChars;

}
The code in the following example uses memory-mapped I/O to read from a keyboard:

__no_init volatile unsigned char KB_IO @ address;

size_t __read(int Handle, unsigned char *Buf, size_t BufSize)
{
size_t nChars = 0;
/* Check for stdin
(only necessary if FILE descriptors are enabled) */

if (Handle != 0)
{
return -1;

}

The DLIB runtime environment ___¢

for (/*Empty*/; BufSize > 0; --BufSize)

{

unsigned char ¢ = KB_IO;

if (¢ == 0)
break;
*Buf++ = c;

++nChars;

}
return nChars;

}

For information about the @ operator, see Controlling data and function placement in

memory, page 94.

Configuration symbols for printf and scanf

‘When you set up your application project, you typically need to consider what print £
and scanf formatting capabilities your application requires, see Choosing formatters

for printf and scanf, page 46.

If the provided formatters do not meet your requirements, you can customize the full
formatters. However, that means you need to rebuild the runtime library.

The default behavior of the printf and scanf formatters are defined by configuration

symbols in the file DLIB_Defaults.h.

The following configuration symbols determine what capabilities the function printf

should have:

Printf configuration symbols

Includes support for

_DLIB_PRINTF_MULTIBYTE
_DLIB_PRINTF_LONG_LONG
_DLIB_PRINTF_SPECIFIER_FLOAT
_DLIB_PRINTF_SPECIFIER_A
_DLIB_PRINTF_SPECIFIER_N
_DLIB_PRINTF_QUALIFIERS
_DLIB_PRINTF_FLAGS

_DLIB_PRINTF_WIDTH_AND_PRECISION

Multibyte characters

Long long (11 qualifier)
Floating-point numbers
Hexadecimal floats

Output count (%1n)
Qualifiers h, 1, L, v, t, and z
Flags -, +, #, and 0

Width and precision

Table 15: Descriptions of printf configuration symbols

Part |. Using the compiler 57

File input and output

58

Printf configuration symbols Includes support for

_DLIB_PRINTF_CHAR_BY_ CHAR Output char by char or buffered

Table 15: Descriptions of printf configuration symbols (Continued)

When you build a library, the following configurations determine what capabilities the
function scanf should have:

Scanf configuration symbols Includes support for
_DLIB_SCANF_MULTIBYTE Multibyte characters
_DLIB_SCANF_LONG_LONG Long long (11 qualifier)
_DLIB_SCANF_SPECIFIER_FLOAT Floating-point numbers
_DLIB_SCANF_SPECIFIER_N Output count (%1n)
_DLIB_SCANF_QUALIFIERS Qualifiers h, j, 1, t, z,and L
_DLIB_SCANF_SCANSET Scanset ([*])
_DLIB_SCANF_WIDTH Width

_DLIB_SCANF_ASSIGNMENT_ SUPPRESSING Assignment suppressing ([*])

Table 16: Descriptions of scanf configuration symbols

CUSTOMIZING FORMATTING CAPABILITIES

To customize the formatting capabilities, you need to set up a library project, see
Building and using a customized library, page 50. Define the configuration symbols
according to your application requirements.

File input and output

ColdFire® IAR C/C++ Compiler
Reference Guide

The library contains a large number of powerful functions for file I/O operations. If you
use any of these functions you need to customize them to suit your hardware. In order
to simplify adaptation to specific hardware, all I/O functions call a small set of primitive
functions, each designed to accomplish one particular task; for example, __open opens
afile, and __write outputs a number of characters.

CJ—

Note that file I/O capability in the library is only supported by libraries with full library
configuration, see Library configurations, page 43. In other words, file I/O is supported
when the configuration symbol __DLIB_FILE DESCRIPTOR is enabled. If not enabled,
functions taking a FILE * argument cannot be used.

The DLIB runtime environment ___¢

Template code for the following 1/O files are included in the product:

1/O function File Description

__close close.c Closes a file.

__lseek lseek.c Sets the file position indicator.
__open open.c Openis a file.

__read read.c Reads a character buffer.
__write write.c Writes a character buffer.
remove remove.c Removes a file.

rename rename.c Renames a file.

Table 17: Low-level /O files

The primitive functions identify I/O streams, such as an open file, with a file descriptor
that is a unique integer. The I/O streams normally associated with stdin, stdout, and
stderr have the file descriptors 0, 1, and 2, respectively.

Note: If you link your library with I/O debugging support, C-SPY variants of the
low-level I/0 functions will be linked for interaction with C-SPY. For more
information, see Debug support in the runtime library, page 43.

Locale

Localeis a part of the C language that allows language- and country-specific settings for
a number of areas, such as currency symbols, date and time, and multibyte character
encoding.

Depending on what runtime library you are using you get different level of locale
support. However, the more locale support, the larger your code will get. It is therefore
necessary to consider what level of support your application needs.

The DLIB library can be used in two main modes:

e With locale interface, which makes it possible to switch between different locales
during runtime

e Without locale interface, where one selected locale is hardwired into the
application.

LOCALE SUPPORT IN PREBUILT LIBRARIES
The level of locale support in the prebuilt libraries depends on the library configuration.

o All prebuilt libraries support the C locale only

Part |. Using the compiler 59

Locale

60

ColdFire® IAR C/C++ Compiler
Reference Guide

e All libraries with full library configuration have support for the locale interface. For
prebuilt libraries with locale interface, it is by default only supported to switch
multibyte character encoding during runtime.

e Libraries with normal library configuration do not have support for the locale
interface.

If your application requires a different locale support, you need to rebuild the library.

CUSTOMIZING THE LOCALE SUPPORT
If you decide to rebuild the library, you can choose between the following locales:
o The standard C locale

e The POSIX locale

o A wide range of European locales.

Locale configuration symbols

The configuration symbol _DLIB_FULL_LOCALE_SUPPORT, which is defined in the
library configuration file, determines whether a library has support for a locale interface
or not. The locale configuration symbols _LOCALE_USE_LANG_REGION and
_ENCODING_USE_ENCODING define all the supported locales and encodings:

#define _DLIB_FULL_LOCALE_SUPPORT 1

#define _LOCALE_USE_C /* C locale */
#define _LOCALE_USE_EN_US /* US english */
#define _LOCALE_USE_EN_GB /* UK english */
#define _LOCALE_USE_SV_SE /* Swedish swedish */

See DLib_Defaults.h for a list of supported locale and encoding settings.

If you want to customize the locale support, you simply define the locale configuration
symbols required by your application. For more information, see Building and using a
customized library, page 50.

Note: If you use multibyte characters in your C or assembler source code, make sure
that you select the correct locale symbol (the local host locale).

Building a library without support for locale interface

The locale interface is not included if the configuration symbol
_DLIB_FULL_LOCALE_SUPPORT is set to O (zero). This means that a hardwired locale
is used—by default the standard C locale—but you can choose one of the supported
locale configuration symbols. The setlocale function is not available and can
therefore not be used for changing locales at runtime.

The DLIB runtime environment ___¢

Building a library with support for locale interface

Support for the locale interface is obtained if the configuration symbol
_DLIB_FULL_LOCALE_SUPPORT is set to 1. By default, the standard C locale is used,
but you can define as many configuration symbols as required. Because the setlocale
function will be available in your application, it will be possible to switch locales at
runtime.

CHANGING LOCALES AT RUNTIME

The standard library function setlocale is used for selecting the appropriate portion
of the application’s locale when the application is running.

The setlocale function takes two arguments. The first one is a locale category that is
constructed after the pattern LC_CATEGORY. The second argument is a string that
describes the locale. It can either be a string previously returned by setlocale, or it
can be a string constructed after the pattern:

lang REGION
or
lang REGION.encoding

The 1ang part specifies the language code, and the REGTON part specifies a region
qualifier, and encoding specifies the multibyte character encoding that should be used.

The lang REGION part matches the _LOCALE_USE_LANG_REGION preprocessor
symbols that can be specified in the library configuration file.

Example

This example sets the locale configuration symbols to Swedish to be used in Finland and
UTF8 multibyte character encoding:

setlocale (LC_ALL, "sv_FI.Utf8");

Environment interaction
According to the C standard, your application can interact with the environment using
the functions getenv and system.

Note: The putenv function is not required by the standard, and the library does not
provide an implementation of it.

The getenv function searches the string, pointed to by the global variable __environ,
for the key that was passed as argument. If the key is found, the value of it is returned,
otherwise 0 (zero) is returned. By default, the string is empty.

Part |. Using the compiler 61

Signal and raise

62

To create or edit keys in the string, you must create a sequence of null terminated strings
where each string has the format:

key=value\0

The last string must be empty. Assign the created sequence of strings to the __environ
variable.

For example:

const char MyEnv[] = "Key=Value\OKey2=Value2\0”;
__environ = MyEnv;

If you need a more sophisticated environment variable handling, you should implement
your own getenv, and possibly putenv function. This does not require that you rebuild
the library. You can find source templates in the files getenv.c and environ.c in the
cf\src\1lib directory. For information about overriding default library modules, see
Overriding library modules, page 48.

If you need to use the system function, you need to implement it yourself. The system
function available in the library simply returns -1.

If you decide to rebuild the library, you can find source templates in the library project
template. For further information, see Building and using a customized library, page 50.

Note: If you link your application with support for I/O debugging, the functions
getenv and system will be replaced by C-SPY variants. For further information, see
Debug support in the runtime library, page 43.

Signal and raise

ColdFire® IAR C/C++ Compiler
Reference Guide

There are default implementations of the functions signal and raise available. If
these functions do not provide the functionality that you need, you can implement your
Own versions.

This does not require that you rebuild the library. You can find source templates in the
files signal.c and raise.c in the cf\src\1lib directory. For information about
overriding default library modules, see Overriding library modules, page 48.

If you decide to rebuild the library, you can find source templates in the library project
template. For further information, see Building and using a customized library, page 50.

The DLIB runtime environment ___¢

To make the time and date functions work, you must implement the three functions
clock, time, and __getzone.

This does not require that you rebuild the library. You can find source templates in the
files clock.c and time.c, and getzone.c in the cf\src\1ib directory. For
information about overriding default library modules, see Overriding library modules,
page 48.

If you decide to rebuild the library, you can find source templates in the library project
template. For further information, see Building and using a customized library, page 50.

The default implementation of __getzone specifies UTC as the time zone.

Note: If you link your application with support for I/O debugging, the functions clock
and time will be replaced by C-SPY variants that return the host clock and time
respectively. For further information, see C-SPY Debugger runtime interface, page 64.

Strtod

The function strtod does not accept hexadecimal floating-point strings in libraries
with the normal library configuration. To make a library do so, you need to rebuild the
library, see Building and using a customized library, page 50. Enable the configuration
symbol _DLIB_STRTOD_HEX_FLOAT in the library configuration file.

Assert

If you have linked your application with support for runtime debugging, C-SPY will be
notified about failed asserts. If this is not the behavior you require, you must add the
source file xreportassert.c to your application project. Alternatively, you can
rebuild the library. The __Reportassert function generates the assert notification.
You can find template code in the c£\src\1ib directory. For further information, see
Building and using a customized library, page 50. To turn off assertions, you must define
the symbol NDEBUG.

In the IAR Embedded Workbench IDE, this symbol NDEBUG is by default defined in a
Release project and not defined in a Debug project. If you build from the command line,
you must explicitly define the symbol according to your needs.

Part |. Using the compiler 63

C-SPY Debugger runtime interface

C-SPY Debugger runtime interface

To include support for runtime and I/O debugging, you must link your application
with the XLINK options With runtime control modules or With I/O emulation
modules, see Debug support in the runtime library, page 43.

In this case, C-SPY variants of the following library functions will be linked to the

application:

Function Description

abort C-SPY notifies that the application has called abort *

clock Returns the clock on the host computer

__close Closes the associated host file on the host computer

__exit C-SPY notifies that the end of the application has been reached *

__open Opens a file on the host computer

__read stdin, stdout, and stderr will be directed to the Terminal /O
window; all other files will read the associated host file

remove Werites a message to the Debug Log window and returns -1

rename Werites a message to the Debug Log window and returns -1

_ReportAssert Handles failed asserts *

__seek Seeks in the associated host file on the host computer

system Werites a message to the Debug Log window and returns -1

time Returns the time on the host computer

__write stdin, stdout, and stderr will be directed to the Terminal /O

window, all other files will write to the associated host file

Table 18: Functions with special meanings when linked with debug info

* The linker option With I/O emulation modules is not required for these functions.

LOW-LEVEL DEBUGGER RUNTIME INTERFACE

The low-level debugger runtime interface is used for communication between the
application being debugged and the debugger itself. The debugger provides runtime
services to the application via this interface; services that allow capabilities like file and
terminal I/O to be performed on the host computer.

These capabilities can be valuable during the early development of an application, for
example in an application using file I/O before any flash file system I/O drivers have
been implemented. Or, if you need to debug constructions in your application that use
stdin and stdout without the actual hardware device for input and output being
available. Another debugging purpose can be to produce debug trace printouts.

ColdFire® IAR C/C++ Compiler
64 Reference Guide

The DLIB runtime environment ___¢

The mechanism used for implementing this feature works as follows:

The debugger will detect the presence of the function __DebugBreak, which will be
part of the application if you have linked it with the XLINK options for C-SPY runtime
interface. In this case, the debugger will automatically set a breakpoint at the
__DebugBreak function. When the application calls, for example open, the
__DebugBreak function is called, which will cause the application to break and
perform the necessary services. The execution will then resume.

THE DEBUGGER TERMINAL I/O WINDOW

To make the Terminal I/O window available, the application must be linked with
support for I/O debugging, see Debug support in the runtime library, page 43. This
means that when the functions __read or __write are called to perform I/O
operations on the streams stdin, stdout, or stderr, data will be sent to or read
from the C-SPY Terminal I/O window.

Note: The Terminal I/O window is not opened automatically just because __read or
__write is called; you must open it manually.

See the | AR Embedded Workbench® IDE User Guide for more information about the
Terminal I/O window.

Speeding up terminal output

On some systems, terminal output might be slow because the host computer and the
target hardware must communicate for each character.

For this reason, a replacement for the __write function called __write_buffered
has been included in the DLIB library. This module buffers the output and sends it to the
debugger one line at a time, speeding up the output. Note that this function uses about
80 bytes of RAM memory.

To use this feature you can either choose Project>Options>L inker>Output and select
the option Buffered terminal output in the Embedded Workbench IDE, or add the
following to the linker command line:

-e__write_buffered=__write

Checking module consistency
This section introduces the concept of runtime model attributes, a mechanism used by
the IAR compiler, assembler, and linker to ensure module consistency.

When developing an application, it is important to ensure that incompatible modules are
not used together. For example, if you have a UART that can run in two modes, you can
specify a runtime model attribute, for example vart. For each mode, specify a value,

Part |. Using the compiler 65

Checking module consistency

66

ColdFire® IAR C/C++ Compiler
Reference Guide

for example model and mode2. You should declare this in each module that assumes
that the UART is in a particular mode.

The tools provided by IAR Systems use a set of predefined runtime model attributes to
automatically ensure module consistency.

RUNTIME MODEL ATTRIBUTES

A runtime attribute is a pair constituted of a named key and its corresponding value. In
general, two modules can only be linked together if they have the same value for each
key that they both define.

There is one exception: if the value of an attribute is *, then that attribute matches any
value. The reason for this is that you can specify this in a module to show that you have
considered a consistency property, and this ensures that the module does not rely on that

property.

Example

In the following table, the object files could (but do not have to) define the two runtime
attributes color and taste. In this case, £ilel cannot be linked with any of the other
files, since the runtime attribute color does not match. Also, £ile4 and £ile5 cannot
be linked together, because the taste runtime attribute does not match.

On the other hand, file2 and file3 can be linked with each other, and with either
file4 or fileb5, but not with both.

Obiject file Color Taste
filel blue not defined
file2 red not defined
file3 red *

filed red spicy
file5 red lean

Table 19: Example of runtime model attributes

USING RUNTIME MODEL ATTRIBUTES

Runtime model attributes can be specified in your C/C++ source code to ensure module
consistency with other object files by using the #pragma rtmodel directive. For
example:

#pragma rtmodel="uart", "model"

For detailed syntax information, see rtmodel, page 181.

The DLIB runtime environment ___¢

Runtime model attributes can also be specified in your assembler source code by using
the RTMODEL assembler directive. For example:

RTMODEL "color", "red"
For detailed syntax information, see the ColdFire® |AR Assembler Reference Guide.

At link time, the IAR XLINK Linker checks module consistency by ensuring that
modules with conflicting runtime attributes will not be used together. If conflicts are
detected, an error is issued.

Part |. Using the compiler 67

Checking module consistency

ColdFire® IAR C/C++ Compiler
68 Reference Guide

Assembler language
interface

When you develop an application for an embedded system, there may be
situations where you will find it necessary to write parts of the code in
assembler, for example when using mechanisms in the ColdFire

microcontroller that require precise timing and special instruction sequences.

This chapter describes the available methods for this, as well as some C
alternatives, with their advantages and disadvantages. It also describes how to
write functions in assembler language that work together with an application
written in C or C++.

Finally, the chapter covers how functions are called in the different code
models, the different memory access methods corresponding to the
supported memory types, and how you can implement support for call frame
information in your assembler routines for use in the C-SPY® Call Stack
window.

Mixing C and assembler

The ColdFire IAR C/C++ Compiler provides several ways to mix C or C++ and
assembler:

o Modules written entirely in assembler

e Intrinsic functions (the C alternative)

e Inline assembler.

It might be tempting to use simple inline assembler. However, you should carefully
choose which method to use.

INTRINSIC FUNCTIONS

The compiler provides a small number of predefined functions that allow direct access
to low-level processor operations without having to use the assembler language. These
functions are known as intrinsic functions. They can be very useful in, for example,
time-critical routines.

Part |. Using the compiler

69

Mixing C and assembler

70

ColdFire® IAR C/C++ Compiler
Reference Guide

An intrinsic function looks like a normal function call, but it is really a built-in function
that the compiler recognizes. The intrinsic functions compile into inline code, either as
a single instruction, or as a short sequence of instructions.

The advantage of an intrinsic function compared to using inline assembler is that the
compiler has all necessary information to interface the sequence properly with register
allocation and variables. The compiler also knows how to optimize functions with such
sequences; something the compiler is unable to do with inline assembler sequences. The
result is that you get the desired sequence properly integrated in your code, and that the
compiler can optimize the result.

For detailed information about the available intrinsic functions, see the chapter Intrinsic
functions.

MIXING C AND ASSEMBLER MODULES

It is possible to write parts of your application in assembler and mix them with your C
or C++ modules. There are several benefits with this compared to using inline
assembler:

o The function call mechanism is well-defined

o The code will be easy to read

o The optimizer can work with the C or C++ functions.

There will be some overhead in the form of a function call and return instruction
sequences, and the compiler will regard some registers as scratch registers. However, the
compiler will also assume that all scratch registers are destroyed by an inline assembler

instruction. In many cases, the overhead of the extra instructions is compensated by the
work of the optimizer.

On the other hand, you will have a well-defined interface between what the compiler
performs and what you write in assembler. When using inline assembler, you will not
have any guarantees that your inline assembler lines do not interfere with the compiler
generated code.

When an application is written partly in assembler language and partly in C or C++, you
are faced with a number of questions:
e How should the assembler code be written so that it can be called from C?

o Where does the assembler code find its parameters, and how is the return value
passed back to the caller?

e How should assembler code call functions written in C?
How are global C variables accessed from code written in assembler language?

Why does not the debugger display the call stack when assembler code is being
debugged?

Assembler language interface ___4

The first issue is discussed in the section Calling assembler routines from C, page 72.
The following two are covered in the section Calling convention, page 75.

The section on memory access methods, page 82, covers how data in memory is
accessed.

The answer to the final question is that the call stack can be displayed when you run
assembler code in the debugger. However, the debugger requires information about the
call frame, which must be supplied as annotations in the assembler source file. For more
information, see Call frame information, page 82.

The recommended method for mixing C or C++ and assembler modules is described in
Calling assembler routinesfromC, page 72, and Calling assembler routinesfrom C++,
page 74, respectively.

INLINE ASSEMBLER

It is possible to insert assembler code directly into a C or C++ function. The asm
keyword assembles and inserts the supplied assembler statement in-line. The following
example shows how to use inline assembler to insert assembler instructions directly in
the C source code. This example also shows the risks of using inline assembler.

bool flag;

void foo()
{
while (!flag)
{
asm("MOVE.B (0x1000).w, DO \n");
asm("MOVE.B DO, (flag).L");

}

In this example, the assignment of £1ag is not noticed by the compiler, which means the
surrounding code cannot be expected to rely on the inline assembler statement.

The inline assembler instruction will simply be inserted at the given location in the
program flow. The consequences or side-effects the insertion may have on the
surrounding code have not been taken into consideration. If, for example, registers or
memory locations are altered, they may have to be restored within the sequence of inline
assembler instructions for the rest of the code to work properly.

Inline assembler sequences have no well-defined interface with the surrounding code
generated from your C or C++ code. This makes the inline assembler code fragile, and

Part |. Using the compiler 71

Calling assembler routines from C

72

will possibly also become a maintenance problem if you upgrade the compiler in the
future. In addition, there are several limitations to using inline assembler:

o The compiler’s various optimizations will disregard any effects of the inline
sequences, which will not be optimized at all

e In general, assembler directives will cause errors or have no meaning. Data
definition directives will work as expected

e Alignment cannot be controlled; this means, for example, that DC32 directives
may be misaligned

e Auto variables cannot be accessed.

Inline assembler is therefore often best avoided. If there is no suitable intrinsic function
available, we recommend the use of modules written in assembler language instead of
inline assembler, because the function call to an assembler routine normally causes less
performance reduction.

Calling assembler routines from C

ColdFire® IAR C/C++ Compiler
Reference Guide

An assembler routine that is to be called from C must:

Conform to the calling convention
Have a PUBLIC entry-point label

o Be declared as external before any call, to allow type checking and optional
promotion of parameters, as in the following examples:

extern int foo(void);
or
extern int foo(int i, int j);

One way of fulfilling these requirements is to create skeleton code in C, compile it, and
study the assembler list file.

CREATING SKELETON CODE

The recommended way to create an assembler language routine with the correct
interface is to start with an assembler language source file created by the C compiler.
Note that you must create skeleton code for each function prototype.

The following example shows how to create skeleton code to which you can easily add
the functional body of the routine. The skeleton source code only needs to declare the
variables required and perform simple accesses to them. In this example, the assembler
routine takes an int and a double, and then returns an int:

extern int gInt;
extern double gDouble;

Assembler language interface ___4

int func(int argl, double arg2)
{

int locInt = argl;

gInt = argl;

gbhouble = arg2;

return locInt;

}

int main()

{
int locInt = gInt;
gInt = func(locInt, gDouble) ;
return 0;

}

Note: In this example we use a low optimization level when compiling the code to
show local and global variable access. If a higher level of optimization is used, the
required references to local variables could be removed during the optimization. The
actual function declaration is not changed by the optimization level.

COMPILING THE CODE

In the IAR Embedded Workbench IDE, specify list options on file level. Select the file
in the workspace window. Then choose Project>Options. In the C/C++ Compiler
category, select Overrideinherited settings. On the List page, deselect Output list
file, and instead select the Output assembler file option and its suboption I nclude
source. Also, be sure to specify a low level of optimization.

[Use the following options to compile the skeleton code:
icccf skeleton -1A .

The -1A option creates an assembler language output file including C or C++ source
lines as assembler comments. The . (period) specifies that the assembler file should be
named in the same way as the C or C++ module (skeleton), but with the filename
extension s68. Also remember to specify the code model you are using as well as a low
level of optimization and -e for enabling language extensions.

The result is the assembler source output file skeleton.s68.

Note: The -1A option creates a list file containing call frame information (CFI)
directives, which can be useful if you intend to study these directives and how they are
used. If you only want to study the calling convention, you can exclude the CFI
directives from the list file. In the IAR Embedded Workbench IDE, select
Project>Options>C/C++ Compiler>List and deselect the suboption Include
compiler runtime information. On the command line, use the option -1B instead of

Part |. Using the compiler 73

Calling assembler routines from C++

74

-1A. Note that CFT information must be included in the source code to make the C-SPY
Call Stack window work.

The output file
The output file contains the following important information:

The calling convention
The return values

The global variables
The function parameters

How to create space on the stack (auto variables)

Call frame information (CFI).

The cF1 directives describe the call frame information needed by the Call Stack window
in the IAR C-SPY Debugger.

Calling assembler routines from C++

ColdFire® IAR C/C++ Compiler
Reference Guide

The C calling convention does not apply to C++ functions. Most importantly, a function
name is not sufficient to identify a C++ function. The scope and the type of the function
are also required to guarantee type-safe linkage, and to resolve overloading.

Another difference is that non-static member functions get an extra, hidden argument,
the this pointer.

However, when using C linkage, the calling convention conforms to the C calling
convention. An assembler routine may therefore be called from C++ when declared in
the following manner:

extern "C"
{
int my_routine (int x);

}

Memory access layout of non-PODs (“plain old data structures”) is not defined, and may
change between compiler versions. Therefore, we do not recommend that you access
non-PODs from assembler routines.

Assembler language interface ___4

To achieve the equivalent to a non-static member function, the implicit this pointer has
to be made explicit:

class X;

extern "C"

{
void doit (X *ptr, int arg);
}

It is possible to “wrap” the call to the assembler routine in a member function. Using an
inline member function removes the overhead of the extra call—provided that function
inlining is enabled:

class X
{
public:
inline void doit(int arg) { ::doit(this, arg); }
}i

Note: Support for C++ names from assembler code is extremely limited. This means
that:

o Assembler list files resulting from compiling C++ files cannot, in general, be passed
through the assembler.

It is not possible to refer to or define C++ functions that do not have C linkage in
assembler.

Calling convention

A calling convention is the way a function in a program calls another function. The
compiler handles this automatically, but, if a function is written in assembler language,
you must know where and how its parameters can be found, how to return to the program
location from where it was called, and how to return the resulting value.

It is also important to know which registers an assembler-level routine must preserve. If
the program preserves too many registers, the program might be ineffective. If it
preserves too few registers, the result would be an incorrect program.

This section describes the calling conventions used by the ColdFire IAR C/C++
Compiler. The following items are examined:

Function declarations
C and C++ linkage

°
.
e Preserved versus scratch registers
°

Function entrance

Part |. Using the compiler 75

Calling convention

76

ColdFire® IAR C/C++ Compiler
Reference Guide

e Function exit

e Return address handling.

At the end of the section, some examples are shown to describe the calling convention
in practice.

FUNCTION DECLARATIONS

In C, a function must be declared in order for the compiler to know how to call it. A
declaration could look as follows:

int a_function(int first, char * second);

This means that the function takes two parameters: an integer and a pointer to a
character. The function returns a value, an integer.

In the general case, this is the only knowledge that the compiler has about a function.
Therefore, it must be able to deduce the calling convention from this information.

USING C LINKAGE IN C++ SOURCE CODE

In C++, a function can have either C or C++ linkage. To call assembler routines from
C++, it is easiest if you make the C++ function have C linkage.

The following is an example of a declaration of a function with C linkage:

extern "C"

{
int f(int);
}

It is often practical to share header files between C and C++. The following is an
example of a declaration that declares a function with C linkage in both C and C++:

#ifdef cplusplus

extern "C"

{
#endif

int f(int);
#ifdef __cplusplus

}
#endif

PRESERVED VERSUS SCRATCH REGISTERS

The general ColdFire CPU registers are divided into three separate sets, which are
described in this section.

Assembler language interface ___4

Scratch registers

Any function is permitted to destroy the contents of a scratch register. If a function needs
the register value after a call to another function, it must store it during the call, for
example on the stack.

Any of the registers DO, D1, D2, A0, and Al can be used as a scratch register by the
function.

Preserved registers

Preserved registers, on the other hand, are preserved across function calls. Any function
may use the register for other purposes, but must save the value prior to use and restore
it at the exit of the function.

The registers D3 through to D7, as well as A2 through to A6 are preserved registers.

Special registers

The stack pointer register must at all times point to or below the last element on the
stack. In the eventuality of an interrupt, everything below the point the stack pointer
points to, will be destroyed.

FUNCTION ENTRANCE

Parameters can be passed to a function using one of two basic methods: in registers or
on the stack. It is much more efficient to use registers than to take a detour via memory,
so the calling convention is designed to utilize registers as much as possible. There is
only a limited number of registers that can be used for passing parameters; when no
more registers are available, the remaining parameters are passed on the stack. In
addition, the parameters are passed on the stack in the following cases:

e Structure types: struct, union, and classes. If the structure only has one member,
the structure is passed in the same way as its member.

o The data type long long and double (64-bit floating-point numbers), unless an
FPU is available

e Unnamed parameters to variable length functions; in other words, functions
declared as foo(parami, .. .), for example printf.

All char and short declared objects are cast to int at function entrance.

Note: Interrupt functions cannot take any parameters.

Part |. Using the compiler 77

Calling convention

78

ColdFire® IAR C/C++ Compiler
Reference Guide

Hidden parameters

In addition to the parameters visible in a function declaration and definition, there can
be hidden parameters:

If the function returns a structure, the memory location where the structure is to be
stored is passed in the register as a hidden parameter, depending on the size of the
structure and its members, see Registers used for returning values, page 79.

Register parameters

The registers available for passing parameters are DO, D1, D2, A0, and Al.

Parameters Passed in registers

char and short D0-D2, extended to a 32-bit value
long DO

pointers A0

Table 20: Registers used for passing parameters

The assignment of registers to parameters is a straightforward process. Traversing the
parameters in strict order from left to right, the first parameter is assigned to the
available register or registers. Should there be no suitable register available, the
parameter is passed on the stack.

Stack parameters and layout

Stack parameters are stored in the main memory, starting at the location pointed to by
the stack pointer. Below the stack pointer (towards low memory) there is free space that
the called function can use. The first stack parameter is stored at the location pointed to

Assembler language interface ___4

by the stack pointer. The next one is stored at the next location on the stack that is
divisible by four, etc.

High
address
The caller’s stack frame
Parameter n
Parameter 1
Return address
Low
address Free stack memory

Figure 4: Sack image after the function call

FUNCTION EXIT

A function can return a value to the function or program that called it, or it can have the
return type void.

The return value of a function, if any, can be scalar (such as integers and pointers),
floating-point, or a structure.

For structures that only has one member, the structure is returned in the same way as its
member. Otherwise, it is returned via a pointer.
Registers used for returning values

The registers available for returning values are D0, DO : D1, and A0.

Return values Passed in registers

char and short DO, extended to a 32-bit value
long and int DO

long long and double D0:D1

pointers A0

Table 21: Registers used for returning values

Values larger than 8 bytes are returned on the stack instead of in registers.

Part |. Using the compiler 79

Calling convention

80

ColdFire® IAR C/C++ Compiler
Reference Guide

Stack layout

It is the responsibility of the caller to clean the stack after the called function has
returned.

Return address handling

A function written in assembler language should, when finished, return to the caller. At
a function call, the return address is stored on the stack.

Typically, a function returns by using the RTS instruction.

EXAMPLES

The following section shows a series of declaration examples and the corresponding
calling conventions. The complexity of the examples increases towards the end.

Example |
Assume that we have the following function declaration:

int addl (int) ;

This function takes one parameter in the register DO, and the return value is passed back
to its caller in the register DO.

The following assembler routine is compatible with the declaration; it will return a value
that is one number higher than the value of its parameter:

ADDQ.L #1,D0
RTS
Example 2

This example shows how structures are passed on the stack. Assume that we have the
following declarations:

struct a_struct { char a; char b; };
int a_function(struct a_struct x, int vy);

The calling function must reserve 4 bytes on the top of the stack and copy the contents
of the struct to that location. The integer parameter y is passed in the register D0. The
return value is passed back to its caller in the register DO.

Example 3

The function below will return a struct.

struct a_struct { char a; char b; };
struct a_struct a_function(int x);

Assembler language interface ___4

Itis the responsibility of the calling function to allocate a memory location for the return
value and pass a pointer to it as a hidden first parameter. The pointer to the location
where the return value should be stored is passed in A0. The parameter x is passed in DO.
A pointer is returned in A0.

Assume that the function instead would have been declared to return a pointer to the
structure:

struct a_struct * a_function(int x);

In this case, the return value is a scalar, so there is no hidden parameter. The parameter
x is passed in DO, and the return value is returned in AQ.

FUNCTION DIRECTIVES

Note: This type of directive is primarily intended to support static overlay, a feature
which is useful in some smaller microcontrollers. The ColdFire IAR C/C++ Compiler
does not use static overlay, because it has no use for it.

The function directives FUNCTION, ARGFRAME, LOCFRAME, and FUNCALL are generated
by the ColdFire IAR C/C++ Compiler to pass information about functions and function
calls to the IAR XLINK Linker. These directives can be seen if you use the compiler
option Assembler file (-1a) to create an assembler list file.

For reference information about the function directives, see the ColdFire® 1AR
Assembler Reference Guide.

Calling functions

In this section, we describe how functions are called in the different code models.
The normal function calling instruction is the jump-to-subroutine instruction:
JSR <ea>

The location that the called function should return to (that is, the location immediately
after this instruction) is pushed on the stack.

In the Near code model, a direct call is simply:
JSR (label).W

In the Far code model, a direct call is simply:
JSR (label) .L

Calls via a function pointer reach the whole 32-bit address space.

Part |. Using the compiler 8l

Memory access methods

82

Memory access methods

This section describes the different memory types presented in the chapter Data storage.
For near memory, a direct memory access is simply:

MOVE.L DO, (var) .W

For far memory, a direct memory access is simply:

MOVE.L DO, (var) .L

Data pointers reach the whole 32-bit address space.

Call frame information

ColdFire® IAR C/C++ Compiler
Reference Guide

When debugging an application using C-SPY, it is possible to view the call stack, that
is, the chain of functions that have called the current function. The compiler makes this
possible by supplying debug information that describes the layout of the call frame, in
particular information about where the return address is stored.

If you want the call stack to be available when debugging a routine written in assembler
language, you must supply equivalent debug information in your assembler source using
the assembler directive CFI. This directive is described in detail in the ColdFire® 1AR
Assembler Reference Guide.

The CFI directives will provide C-SPY with information about the state of the calling
function(s). Most important of this is the return address, and the value of the stack
pointer at the entry of the function or assembler routine. Given this information, C-SPY
can reconstruct the state for the calling function, and thereby unwind the stack.

A full description about the calling convention may require extensive call frame
information. In many cases, a more limited approach will suffice.

When describing the call frame information, the following three components must be
present:

e A names block describing the available resources to be tracked

e A common block corresponding to the calling convention

e A data block describing the changes that are performed on the call frame. This
typically includes information about when the stack pointer is changed, and when
permanent registers are stored or restored on the stack.

Assembler language interface ___4

The following table lists all the resources defined in the names block used by the
compiler:

Resource Description

A0-A6 Address registers
D0-D7 Data registers
FPO-FP7 Floating-point registers
SP The stack pointer
?RET The return address

Table 22: Call frame information resources defined in a names block

Example

The following is an example of an assembler routine that stores a permanent register, as
well as the return register, to the stack:

NAME test
RSEG CSTACK:DATA:NOROOT (2)

PUBLIC test

FUNCTION test,0203H
ARGFRAME CSTACK, 0, STACK
LOCFRAME CSTACK, 4, STACK

CFI Names cfiNamesO

CFI StackFrame CFA SP DATA

CFI Resource A0:32, Al:32, A2:32, A3:32, A4:32, A5:32,
A6:32,
D0:32

CFI Resource D1:32, D2:32, D3:32, D4:32, D5:32, D6:32,
D7:32

CFI Resource SP:32

CFI VirtualResource ?RET:32

CFI EndNames cfiNamesO

CFI Common cfiCommon0O Using cfiNamesO
CFI CodeAlign 2

CFI DataAlign 1

CFI ReturnAddress ?RET CODE

CFI CFA SP+4

CFI A0 Undefined

CFI Al Undefined

CFI A2 SameValue

CFI A3 SameValue

Part |. Using the compiler 83

Call frame information

CFI A4 SameValue

CFI A5 SameValue

CFI A6 SameValue

CFI DO Undefined

CFI D1 Undefined

CFI D2 Undefined

CFI D3 SameValue

CFI D4 SameValue

CFI D5 SameValue

CFI D6 SameValue

CFI D7 SameValue

CFI ?RET Frame (CFA, -4)
CFI EndCommon cfiCommon0

EXTERN printf
FUNCTION printf, 0202H

RSEG CODE:CODE:NOROOT (1)
test:
CFI Block cfiBlock0 Using cfiCommonO
CFI Function test
MOVE.L DO, -(A7)
CFI CFA SP+8
MOVEA.L #' ?<Constant "%d\\n">', A0

JSR (printf) .L
ADDQ.L #4, A7

CFI CFA SP+4

RTS

CFI EndBlock cfiBlock0

RSEG FAR_C:CONST:REORDER:NOROOT (0) "?<Constant "$d\\n">":
DC8 "%d\01l2"

END

ColdFire® IAR C/C++ Compiler
84 Reference Guide

Using C++

IAR Systems supports two levels of the C++ language: The industry-standard
Embedded C++ and IAR Extended Embedded C++. They are described in this
chapter.

Overview

Embedded C++ is a subset of the C++ programming language which is intended for
embedded systems programming. It was defined by an industry consortium, the
Embedded C++ Technical Committee. Performance and portability are particularly
important in embedded systems development, which was considered when defining the
language.

STANDARD EMBEDDED C++
The following C++ features are supported:

o Classes, which are user-defined types that incorporate both data structure and
behavior; the essential feature of inheritance allows data structure and behavior to
be shared among classes

e Polymorphism, which means that an operation can behave differently on different
classes, is provided by virtual functions

o Overloading of operators and function names, which allows several operators or
functions with the same name, provided that there is a sufficient difference in their
argument lists

o Type-safe memory management using the operators new and delete

e Inline functions, which are indicated as particularly suitable for inline expansion.
C++ features which have been excluded are those that introduce overhead in execution
time or code size that are beyond the control of the programmer. Also excluded are
recent additions to the ISO/ANSI C++ standard. This is because they represent potential
portability problems, due to the fact that few development tools support the standard.

Embedded C++ thus offers a subset of C++ which is efficient and fully supported by
existing development tools.

Standard Embedded C++ lacks the following features of C++:

e Templates
e Multiple and virtual inheritance

e Exception handling

Part |. Using the compiler

85

Overview

86

ColdFire® IAR C/C++ Compiler
Reference Guide

e Runtime type information

o New cast syntax (the operators dynamic_cast, static_cast,
reinterpret_cast, and const_cast)

o Namespaces

o The mutable attribute.

The exclusion of these language features makes the runtime library significantly more
efficient. The Embedded C++ library furthermore differs from the full C++ library in

that:

o The standard template library (STL) is excluded

e Streams, strings, and complex numbers are supported without the use of templates
e Library features which relate to exception handling and runtime type information

(the headers except, stdexcept, and typeinfo) are excluded.

Note: The library is not in the std namespace, because Embedded C++ does not
support namespaces.

EXTENDED EMBEDDED C++
IAR Systems’ Extended EC++ is a slightly larger subset of C++ which adds the

following features to the standard EC++:
Full template support

Multiple and virtual inheritance
Namespace support

The mutable attribute

The cast operators static_cast, const_cast, and reinterpret_cast.
All these added features conform to the C++ standard.

To support Extended EC++, this product includes a version of the standard template
library (STL), in other words, the C++ standard chapters utilities, containers, iterators,
algorithms, and some numerics. This STL has been tailored for use with the Extended
EC++ language, which means that there are no exceptions, no multiple inheritance, and
no support for runtime type information (rtti). Moreover, the library is not in the std
namespace.

Note: A module compiled with Extended EC++ enabled is fully link-compatible with
a module compiled without Extended EC++ enabled.

Using C++ ___4

ENABLING C++ SUPPORT

In the ColdFire IAR C/C++ Compiler, the default language is C. To be able to compile
files written in Embedded C++, you must use the - -ec++ compiler option. See --ec++,
page 126.

To take advantage of Extended Embedded C++ features in your source code, you must
use the --eec++ compiler option. See --eec++, page 126.

To set the equivalent option in the IAR Embedded Workbench IDE, select
Proj ect>Options>C/C++ Compiler>L anguage.

Feature descriptions

When writing C++ source code for the ColdFire IAR C/C++ Compiler, there are some
benefits and some possible quirks that you need to be aware of when mixing C++
features—such as classes, and class members—with IAR language extensions, such as
IAR-specific attributes.

CLASSES

A class type class and struct in C++ can have static and non-static data members,
and static and non-static function members. The non-static function members can be
further divided into virtual function members, non-virtual function members,
constructors, and destructors. For the static data members, static function members, and
non-static non-virtual function members the same rules apply as for statically linked
symbols outside of a class. In other words, they can have any applicable IAR-specific
type, memory, and object attribute.

The non-static virtual function members can have any applicable IAR-specific type,
memory, and object attribute as long as a pointer to the member function can be
implicitly converted to the default function pointer type. The constructors, destructors,
and non-static data members cannot have any IAR attributes.

The location operator @ can be used on static data members and on any type of function
members.

For further information about attributes, see Type qualifiers, page 149.

Example
class A {
public:
static __near __no_init int i; //Located in near memory
static __near_func void f(); //Located in nearfunc memory
__near_func void g(); //Located in nearfunc memory
virtual __near_func void h();//Located in nearfunc memory

Part |. Using the compiler 87

Feature descriptions

88

ColdFire® IAR C/C++ Compiler
Reference Guide

};
virtual void m() const volatile @ "SPECIAL" = 0; //m() placed in
SPECIAL

FUNCTIONS

A function with extern "C" linkage is compatible with a function that has C++ linkage.

Example

extern "C" {
typedef void (*fpC) (void); // A C function typedef
}

void (*fpCpp) (void) ; // A C++ function typedef

fpC £1;

fpCpp £2;

void f (fpC) ;

f(£fl); // Always works

f(£2); // fpCpp is compatible with fpC
TEMPLATES

Extended EC++ supports templates according to the C++ standard, except for the
support of the export keyword. The implementation uses a two-phase lookup which
means that the keyword typename has to be inserted wherever needed. Furthermore, at
each use of a template, the definitions of all possible templates must be visible. This
means that the definitions of all templates have to be in include files or in the actual
source file.

The standard template library

The STL (standard template library) delivered with the product is tailored for Extended
EC++, as described in Extended Embedded C++, page 86.

STL and the IAR C-SPY® Debugger
C-SPY has built-in display support for the STL containers.

VARIANTS OF CASTS
In Extended EC++ the following additional C++ cast variants can be used:

const_cast<t2>(t), static_cast<t2>(t), reinterpret_cast<t2>(t).

Using C++ ___4

MUTABLE

The mutable attribute is supported in Extended EC++. A mutable symbol can be
changed even though the whole class object is const.

NAMESPACE

The namespace feature is only supported in Extended EC++. This means that you can
use namespaces to partition your code. Note, however, that the library itself is not placed
in the std namespace.

THE STD NAMESPACE

The std namespace is not used in either standard EC++ or in Extended EC++. If you
have code that refers to symbols in the std namespace, simply define std as nothing;
for example:

#define std // Nothing here

USING INTERRUPTS AND EC++ DESTRUCTORS

If interrupts are enabled and the interrupt functions use class objects that have
destructors, there may be problems if the program exits either by using exit or by
returning from main. If an interrupt occurs after an object has been destroyed, there is
no guarantee that the program will work properly.

To avoid this, make sure that interrupts are disabled when returning from main or when
calling exit or abort.

To avoid interrupts, place a call to the intrinsic function __disable_interrupt before
the call to _exit.

C++ language extensions

When you use the compiler in C++ mode and have enabled IAR language extensions,
the following C++ language extensions are available in the compiler:

o Ina friend declaration of a class, the class keyword may be omitted, for
example:

class B;
class A
{
friend B; //Possible when using IAR language
//extensions
friend class B; //According to standard

Part |. Using the compiler 89

C++ language extensions

90

ColdFire® IAR C/C++ Compiler
Reference Guide

e Constants of a scalar type may be defined within classes, for example:
class A {
const int size = 10;//Possible when using IAR language
//extensions
int alsize];
Yi
According to the standard, initialized static data members should be used instead.
o In the declaration of a class member, a qualified name may be used, for example:
struct A {
int A::f(); //Possible when using IAR language extensions
int f£(); //According to standard
Yi
e Itis permitted to use an implicit type conversion between a pointer to a function
with C linkage (extern "C") and a pointer to a function with C++ linkage
(extern "c++"), for example:
extern "C" void f();//Function with C linkage
void (*pf) () //pf points to a function with C++ linkage
= &f; //Implicit conversion of pointer.

According to the standard, the pointer must be explicitly converted.

e If the second or third operands in a construction that contains the » operator are
string literals or wide string literals (which in C++ are constants), the operands may
be implicitly converted to char * or wchar_t *, for example:

char *P = x ? "abc" : "def"; //Possible when using IAR
//language extensions
char const *P = x ? "abc" : "def"; //According to standard

o Default arguments may be specified for function parameters not only in the
top-level function declaration, which is according to the standard, but also in
typedef declarations, in pointer-to-function function declarations, and in
pointer-to-member function declarations.

o In a function that contains a non-static local variable and a class that contains a
non-evaluated expression (for example a sizeof expression), the expression may
reference the non-static local variable. However, a warning is issued.

Note: If you use any of these constructions without first enabling language extensions,
errors are issued.

Efficient coding for
embedded applications

For embedded systems, the size of the generated code and data is very
important, because using smaller external memory or on-chip memory can
significantly decrease the cost and power consumption of a system.

The topics discussed are:

e Selecting data types

e Controlling data and function placement in memory
e Controlling compiler optimizations

e Writing efficient code.

As a part of this, the chapter also demonstrates some of the more common
mistakes and how to avoid them, and gives a catalog of good coding
techniques.

Selecting data types

For efficient treatment of data, you should consider the data types used and the most
efficient placement of the variables.

USING EFFICIENT DATA TYPES

The data types you use should be considered carefully, because this can have a large
impact on code size and code speed.
e Try to avoid 64-bit data types, such as double and long long.

e Bitfields with sizes other than 1 bit should be avoided because they will result in
inefficient code compared to bit operations.

o Using floating-point types on a microprocessor without a math co-processor is very
inefficient, both in terms of code size and execution speed.

e Declaring a pointer to const data tells the calling function that the data pointed to
will not change, which opens for better optimizations.

Part |. Using the compiler

91

Selecting data types

92

ColdFire® IAR C/C++ Compiler
Reference Guide

For details about representation of supported data types, pointers, and structures types,
see the chapter Data representation.

FLOATING-POINT TYPES

Using floating-point types on a microprocessor without a math coprocessor is very
inefficient, both in terms of code size and execution speed. The ColdFire IAR C/C++
Compiler supports two floating-point formats—32 and 64 bits. The 32-bit floating-point
type £loat is more efficient in terms of code size and execution speed. However, the
64-bit format double supports higher precision and larger numbers.

Unless the application requires the extra precision that 64-bit floating-point numbers
give, we recommend using 32-bit floats instead. Also consider replacing code using
floating-point operations with code using integers since these are more efficient.

Note that a floating-point constant in the source code is treated as being of the type
double. This can cause innocent-looking expressions to be evaluated in double
precision. In the example below a is converted from a £1loat to a double, 1 is added
and the result is converted back to a f1loat:

float test(float a)
{

return a + 1.0;

}

To treat a floating-point constant as a £1oat rather than as a double, add an £ to it, for
example:

float test(float a)
{

return a + 1.0f;

ALIGNMENT OF ELEMENTS IN A STRUCTURE

The ColdFire microcontroller accesses data more efficiently if data in memory is
aligned. Each element in a structure needs to be aligned according to its specified type
requirements. This means that the compiler might need to insert pad bytes to keep the
alignment correct.

There are two reasons why this can be considered a problem:

e External demands, for example, network communication protocols are usually
specified in terms of data types with no padding in between

o There is a need to save data memory.

For information about alignment requirements, see Alignment, page 141.

Efficient coding for embedded applications ___¢

There are two ways to solve the problem:

o Use the #pragma pack directive to get a tighter layout of the structure. The
drawback is that each access to an unaligned element in the structure will cause
speed penalties.

o Write your own customized functions for packing and unpacking structures. This is
a more portable way, which will not produce any more code apart from your
functions. The drawback is the need for two views on the structure data—packed
and unpacked.

For further details about the #pragma pack directive, see pack, page 179.

ANONYMOUS STRUCTS AND UNIONS

‘When a structure or union is declared without a name, it becomes anonymous. The effect
is that its members will only be seen in the surrounding scope.

Anonymous structures are part of the C++ language; however, they are not part of the C
standard. In the ColdFire IAR C/C++ Compiler they can be used in C if language
extensions are enabled.

In the IAR Embedded Workbench IDE, language extensions are enabled by default.

Use the -e compiler option to enable language extensions. See -€, page 126, for
additional information.

Example

In the following example, the members in the anonymous union can be accessed, in
function £, without explicitly specifying the union name:

struct s
{
char tag;
union
{
long 1;
float £f;
}i
} st;

void f (void)
{

st.1l = 5;
}

Part |. Using the compiler 93

Controlling data and function placement in memory

The member names must be unique in the surrounding scope. Having an anonymous
struct or union at file scope, as a global, external, or static variable is also allowed.
This could for instance be used for declaring I/O registers, as in the following example:

__no_init volatile
union
{
unsigned char IOPORT;
struct

{
unsigned char way: 1;
unsigned char out: 1;
Y
}@ address;
This declares an I/O register byte TOPORT at address. The I/O register has 2 bits
declared, way and out. Note that both the inner structure and the outer union are
anonymous.

The following example illustrates how variables declared this way can be used:

void test (void)

{

TIOPORT = 0;
way = 1;
out = 1;

}

Anonymous structures and unions are implemented in terms of objects named after the
first field, with a prefix _a_ to place the name in the implementation part of the
namespace. In this example, the anonymous union will be implemented through an
object named _A_TOPORT.

Controlling data and function placement in memory
The compiler provides different mechanisms for controlling placement of functions and
data objects in memory. To use memory efficiently, you should be familiar with these
mechanisms to know which one is best suited for different situations. You can use:

o Code models
Use the compiler option for code models to take advantage of the different addressing
modes available for the microcontroller and thereby also place functions in different
parts of memory. To read more about code models, see Code models and memory
attributes for function storage, page 21.

ColdFire® IAR C/C++ Compiler
94 Reference Guide

Efficient coding for embedded applications ___¢

e Memory attributes

Use memory attributes to override the default addressing mode and placement of
individual functions and data objects. To read more about memory attributes for data
and functions, see Using data memory attributes, page 14, and Using function
memory attributes, page 22, respectively.

e The @ operator and the #pragma location directive for absolute placement

Use the @ operator or the #pragma location directive to place individual global
and static variables at absolute addresses. The variables must be declared
__no_init. This is useful for individual data objects that must be located at a fixed
address, for example variables with external requirements. Note that it is not possible
to use this notation for absolute placement of individual functions.

o The @ operator and the #pragma location directive for segment placement

Use the @ operator or the #pragma location directive to place groups of functions
or global and static variables in named segments, without having explicit control of
each object. The segments can, for example, be placed in specific areas of memory,
or initialized or copied in controlled ways using the segment begin and end operators.
This is also useful if you want an interface between separately linked units, for
example an application project and a boot loader project. Use named segments when
absolute control over the placement of individual variables is not needed, or not
useful.

At compile time, data and functions are placed in different segments as described in
Data segments, page 30, and Code segments, page 36, respectively. At link time, one of
the most important functions of the linker is to assign load addresses to the various
segments used by the application. All segments, except for the segments holding
absolute located data, are automatically allocated to memory according to the
specifications of memory ranges in the linker command file, as described in Placing
segments in memory, page 28.

DATA PLACEMENT AT AN ABSOLUTE LOCATION

The @ operator, alternatively the #pragma location directive, can be used for placing
global and static variables at absolute addresses. The variables must be declared using
one of the following combinations of keywords:

® _ _no_init

® _ _no_init and const (without initializers)

To place a variable at an absolute address, the argument to the @ operator and the

#pragma location directive should be a literal number, representing the actual
address.

Note: A variable placed in an absolute location should be defined in an include file, to
be included in every module that uses the variable. An unused definition in a module

Part |. Using the compiler 95

Controlling data and function placement in memory

will be ignored. A normal extern declaration—one that does not use an absolute
placement directive—can refer to a variable at an absolute address; however,
optimizations based on the knowledge of the absolute address cannot be performed.

Examples

In this example, a __no_init declared variable is placed at an absolute address. This
is useful for interfacing between multiple processes, applications, etc:

__no_init volatile char alpha @ O0xFF2000;/* OK */

In the following example, there is a const declared object, which is not initialized. The
object is placed in ROM. This is useful for configuration parameters, which are
accessible from an external interface.

#pragma location=0xFF2002
__no_init const int beta; /* OK */

The actual value must be set by other means. The typical use is for configurations where
the values are loaded to ROM separately, or for special function registers that are
read-only.

The following examples show incorrect usage:

int delta @ OxFF2006; /* Error, not __no_init */

C++ considerations

In C++, module scoped const variables are static (module local), whereas in C they are
global. This means that each module that declares a certain const variable will contain
a separate variable with this name. If you link an application with several such modules
all containing (via a header file), for instance, the declaration:

volatile const __no_init int x @ 0x100; /* Bad in C++ */
the linker will report that there are more than one variable located at address 0x100.

To avoid this problem and make the process the same in C and C++, you should declare
these variables extern, for example:

extern volatile const __no_init int x @ 0x100; /* the extern
/* keyword makes x public */

Note: C++ static member variables can be placed at an absolute address just like any
other static variable.

ColdFire® IAR C/C++ Compiler
96 Reference Guide

Efficient coding for embedded applications ___¢

DATA AND FUNCTION PLACEMENT IN SEGMENTS

The following methods can be used for placing data or functions in named segments
other than default:

o The @ operator, alternatively the #pragma location directive, can be used for
placing individual variables or individual functions in named segments. The named
segment can either be a predefined segment, or a user-defined segment.

C++ static member variables can be placed in named segments just like any other static
variable.

If you use your own segments, in addition to the predefined segments, the segments
must also be defined in the linker command file using the -z or the -P segment control
directives.

Note: Take care when explicitly placing a variable or function in a predefined segment
other than the one used by default. This is useful in some situations, but incorrect
placement can result in anything from error messages during compilation and linking to
amalfunctioning application. Carefully consider the circumstances; there might be strict
requirements on the declaration and use of the function or variable.

For more information about segments, see the chapter Segment reference.

Examples of placing variables in named segments
In the following three examples, a data object is placed in a user-defined segment.

__no_init int alpha @ "NOINIT"; /* OK */

#pragma location="CONSTANTS"
const int beta; /* OK */

To override the default segment allocation, you can explicitly specify a memory attribute
other than the default, for example:

__far __no_init int alpha @ "NOINIT";/* Placed in far */

Examples of placing functions in named segments

void f(void) @ "FUNCTIONS";
void g(void) @ "FUNCTIONS"
{
}

#pragma location="FUNCTIONS"
void h(void) ;

Part |. Using the compiler 97

Controlling compiler optimizations

98

To override the default segment allocation, you can explicitly specify a memory attribute
other than the default, for example:

__far void f(void) @ "FUNCTIONS";

Controlling compiler optimizations

ColdFire® IAR C/C++ Compiler
Reference Guide

The compiler performs many transformations on your application in order to generate
the best possible code. Examples of such transformations are storing values in registers
instead of memory, removing superfluous code, reordering computations in a more
efficient order, and replacing arithmetic operations by cheaper operations.

The linker should also be considered an integral part of the compilation system, because
there are some optimizations that are performed by the linker. For instance, all unused
functions and variables are removed and not included in the final output.

SCOPE FOR PERFORMED OPTIMIZATIONS

You can decide whether optimizations should be performed on your whole application
or on individual files. By default, the same types of optimizations are used for an entire
project, but you should consider using different optimization settings for individual files.
For example, put code that must execute very quickly into a separate file and compile it
for minimal execution time, and the rest of the code for minimal code size. This will give
a small program, which is still fast enough where it matters.

In addition, you can exclude individual functions from the performed optimizations. The
#pragma optimize directive allows you to either lower the optimization level, or
specify another type of optimization to be performed. Refer to optimize, page 295, for
information about the pragma directive.

OPTIMIZATION LEVELS

The ColdFire IAR C/C++ Compiler supports different levels of optimizations. The
following table lists the optimizations that are performed on each level:

Optimization level Description

None (Best debug support) Variables live through their entire scope
Redundant label elimination
Redundant branch elimination

Low Same as above but variables only live for as long as they are
needed, not necessarily through their entire scope
Dead code elimination
Live-dead analysis and optimization

Table 23: Compiler optimization levels

Efficient coding for embedded applications ___¢

Optimization level Description

Medium Same as above
Code hoisting
Register content analysis and optimization
Common subexpression elimination

High (Balanced) Same as above
Peephole optimization
Instruction scheduling (when optimizing for speed)
Cross jumping
Loop unrolling
Function inlining
Code motion
Type-based alias analysis

Table 23: Compiler optimization levels (Continued)

Note: Some of the performed optimizations can be individually enabled or disabled.
For more information about these, see Fine-tuning enabled transformations, page 99.

A high level of optimization might result in increased compile time, and will most likely
also make debugging more difficult, because it will be less clear how the generated code
relates to the source code. For example, at the low, medium, and high optimization
levels, variables do not live through their entire scope, which means processor registers
used for storing variables can be reused immediately after they were last used. Due to
this, the C-SPY Watch window might not be able to display the value of the variable
throughout its scope. At any time, if you experience difficulties when debugging your
code, try lowering the optimization level.

SPEED VERSUS SIZE

At the high optimization level, the compiler balances between size and speed
optimizations. However, it is possible to fine-tune the optimizations explicitly for either
size or speed. They only differ in what thresholds that are used; speed will trade size for
speed, whereas size will trade speed for size. Note that one optimization sometimes
enables other optimizations to be performed, and an application may in some cases
become smaller even when optimizing for speed rather than size.

FINE-TUNING ENABLED TRANSFORMATIONS

At each optimization level you can disable some of the transformations individually. To
disable a transformation, use either the appropriate option, for instance the command
line option --no_inline, alternatively its equivalent in the IAR Embedded Workbench
IDE Function inlining, or the #pragma optimize directive. The following
transformations can be disabled:

e Common subexpression elimination

Part |. Using the compiler 99

Controlling compiler optimizations

100

ColdFire® IAR C/C++ Compiler
Reference Guide

Loop unrolling
Function inlining

°
°
o Code motion
°

Type-based alias analysis.

Common subexpression elimination

Redundant re-evaluation of common subexpressions is by default eliminated at
optimization levels M edium and High. This optimization normally reduces both code
size and execution time. However, the resulting code might be difficult to debug.

Note: This option has no effect at optimization levels None and L ow.

To read more about the command line option, see --N0_cse, page 132.

Loop unrolling

It is possible to duplicate the loop body of a small loop, whose number of iterations can
be determined at compile time, to reduce the loop overhead.

This optimization, which can be performed at optimization level High, normally
reduces execution time, but increases code size. The resulting code might also be
difficult to debug.

The compiler heuristically decides which loops to unroll. Different heuristics are used
when optimizing for speed, size, or when balancing between size and speed.

Note: This option has no effect at optimization levels None, L ow, and Medium.

To read more about the command line option, see --no_unroll, page 134.

Function inlining

Function inlining means that a simple function, whose definition is known at compile
time, is integrated into the body of its caller to eliminate the overhead of the call. This
optimization, which is performed at optimization level High, normally reduces
execution time, but increases code size. The resulting code might also be difficult to
debug.

The compiler decides which functions to inline. Different heuristics are used when
optimizing for speed, size, or when balancing between size and speed.

Note: This option has no effect at optimization levels None, L ow, and Medium.

To read more about the command line option, see --no_inline, page 133.

Efficient coding for embedded applications ___¢

Code motion

Evaluation of loop-invariant expressions and common subexpressions are moved to
avoid redundant re-evaluation. This optimization, which is performed at optimization
level High, normally reduces code size and execution time. The resulting code might
however be difficult to debug.

Note: This option has no effect at optimization levels None, and L ow.

Type-based alias analysis

‘When two or more pointers reference the same memory location, these pointers are said
to be aliases for each other. The existence of aliases makes optimization more difficult
because it is not necessarily known at compile time whether a particular value is being
changed.

Type-based alias analysis optimization assumes that all accesses to an object will take
place using its declared type or as a char type. This assumption lets the compiler detect
whether pointers may reference the same memory location or not.

Type-based alias analysis is performed at optimization level High. For ISO/ANSI
standard-conforming C or C++ application code, this optimization can reduce code size
and execution time. However, non-standard-conforming C or C++ code might result in
the compiler producing code that leads to unexpected behavior. Therefore, it is possible
to turn this optimization off.

Note: This option has no effect at optimization levels None, L ow, and M edium.

To read more about the command line option, see --n0_tbaa, page 133.

Example

short f(short * pl, long * p2)
{

*p2 = 0;

*pl = 1;

return *p2;

}

With type-based alias analysis, it is assumed that a write access to the short pointed to
by p1 cannot affect the 1ong value that p2 points to. Thus, it is known at compile time
that this function returns 0. However, in non-standard-conforming C or C++ code these
pointers could overlap each other by being part of the same union. By using explicit
casts, you can also force pointers of different pointer types to point to the same memory
location.

Part |. Using the compiler 101

Writing efficient code

102

Writing efficient code

ColdFire® IAR C/C++ Compiler
Reference Guide

This section contains general programming hints on how to implement functions to
make your applications robust, but at the same time facilitate compiler optimizations.

The following is a list of programming techniques that will, when followed, enable the
compiler to better optimize the application.

Local variables—auto variables and parameters—are preferred over static or global
variables. The reason is that the optimizer must assume, for example, that called
functions may modify non-local variables. When the life spans for local variables
end, the previously occupied memory can then be reused. Globally declared
variables will occupy data memory during the whole program execution.

Avoid taking the address of local variables using the & operator. There are two main
reasons why this is inefficient. First, the variable must be placed in memory, and
thus cannot be placed in a processor register. This results in larger and slower code.
Second, the optimizer can no longer assume that the local variable is unaffected
over function calls.

Module-local variables—variables that are declared static—are preferred over
global variables. Also avoid taking the address of frequently accessed static
variables.

The compiler is capable of inlining functions. This means that instead of calling a
function, the compiler inserts the content of the function at the location where the
function was called. The result is a faster, but often larger, application. Also,
inlining may enable further optimizations. The compiler often inlines small
functions declared static. The use of the #pragma inline directive and the C++
keyword inline gives you fine-grained control, and it is the preferred method
compared to the traditional way of using preprocessor macros. This feature can be
disabled using the --no_inline command line option; see --no_inline, page 133.

Avoid using inline assembler. Instead, try writing the code in C or C++, use intrinsic
functions, or write a separate module in assembler language. For more details, see
Mixing C and assembler, page 69.

SAVING STACK SPACE AND RAM MEMORY

The following is a list of programming techniques that will, when followed, save
memory and stack space:

If stack space is limited, avoid long call chains and recursive functions.

Avoid using large non-scalar types, such as structures, as parameters or return type;
in order to save stack space, you should instead pass them as pointers or, in C++, as
references.

Efficient coding for embedded applications ___¢

FUNCTION PROTOTYPES
It is possible to declare and define functions using one of two different styles:

e Prototyped

e Kernighan & Ritchie C (K&R C)

Both styles are included in the C standard; however, it is recommended to use the
prototyped style, since it makes it easier for the compiler to find problems in the code.
In addition, using the prototyped style will make it possible to generate more efficient
code, since type promotion (implicit casting) is not needed. The K&R style is only
supported for compatibility reasons.

To make the compiler verify that all functions have proper prototypes, use the compiler
option Require prototypes (--require_prototypes).
Prototyped style

In prototyped function declarations, the type for each parameter must be specified.

int test (char, int); /* declaration */
int test(char a, int b) /* definition */
{
}

Kernighan & Ritchie style

In K&R style—traditional pre-ISO/ANSI C—it is not possible to declare a function
prototyped. Instead, an empty parameter list is used in the function declaration. Also,
the definition looks different.

int test(); /* old declaration */
int test(a,b) /* old definition */
char a;

int b;

{

INTEGER TYPES AND BIT NEGATION

There are situations when the rules for integer types and their conversion lead to
possibly confusing behavior. Things to look out for are assignments or conditionals (test
expressions) involving types with different size and logical operations, especially bit
negation. Here, types also includes types of constants.

In some cases there may be warnings (for example, constant conditional or pointless
comparison), in others just a different result than what is expected. Under certain

Part |. Using the compiler 103

Writing efficient code

104

ColdFire® IAR C/C++ Compiler
Reference Guide

circumstances the compiler might warn only at higher optimizations, for example, if the
compiler relies on optimizations to identify some instances of constant conditionals. In
the following example an 8-bit character, a 16-bit integer, and two’s complement is
assumed:

void f1 (unsigned char cl)
{
if (¢l == ~0x80)

}

Here, the test is always false. On the right hand side, 0x80 is 0x0080, and ~0x0080
becomes 0xFF7F. On the left hand side, c1 is an 8-bit unsigned character, so it cannot
be larger than 255. It also cannot be negative, which means that the integral promoted
value can never have the topmost 8 bits set.

PROTECTING SIMULTANEOUSLY ACCESSED VARIABLES

Variables that are accessed asynchronously, for example by interrupt routines or by code
executing in separate threads, must be properly marked and have adequate protection.
The only exception to this is a variable that is always read-only.

To mark a variable properly, use the volatile keyword. This informs the compiler,
among other things, that the variable can be changed from other threads. The compiler
will then avoid optimizing on the variable (for example, keeping track of the variable in
registers), will not delay writes to it, and be careful accessing the variable only the
number of times given in the source code. To read more about the volatile type
qualifier, see Declaring objects volatile, page 149.

A sequence that accesses a volatile declared variable must also not be interrupted.
This can be achieved by using the __monitor keyword in interruptible code. This must
be done for both write and read sequences, otherwise you might end up reading a
partially updated variable. This is true for all variables of all sizes. Accessing a
small-sized variable can be an atomic operation, but this is not guaranteed and you
should not rely on it unless you continuously study the compiler output. It is safer to use
the __monitor keyword to ensure that the sequence is an atomic operation.

ACCESSING SPECIAL FUNCTION REGISTERS

Specific header files for a number of ColdFire devices are included in the ColdFire IAR
C/C++ product installation. The header files are named iodevice.h and define the
processor-specific special function registers (SFRs).

See the appropriate header file for further details. You can also use the header files as
templates when you create new header files for other ColdFire devices.

Efficient coding for embedded applications ___¢

NON-INITIALIZED VARIABLES

Normally, the runtime environment will initialize all global and static variables when the
application is started.

The compiler supports the declaration of variables that will not be initialized, using the
__no_init type modifier. They can be specified either as a keyword or using the
#pragma object_attribute directive. The compiler places such variables in
separate segment, according to the specified memory attribute. See the chapter Placing
code and data for more information.

For __no_init, the const keyword implies that an object is read-only, rather than that
the object is stored in read-only memory. It is not possible to give a__no_init object
an initial value.

Variables declared using the __no_init keyword could, for example, be large input
buffers or mapped to special RAM that keeps its content even when the application is
turned off.

For information about the __no_init keyword, see page 168. Note that to use this
keyword, language extensions must be enabled; see -€, page 126. For information about
the #pragma object_attribute, see page 177.

Part |. Using the compiler 105

Writing efficient code

ColdFire® IAR C/C++ Compiler
106 Reference Guide

Part 2. Reference

information

This part of the ColdFire® IAR C/C++ Compiler Reference Guide contains

the following chapters:

e External interface details
e Compiler options

o Data representation

e Compiler extensions

e Extended keywords

e Pragma directives

e Intrinsic functions

e The preprocessor

e Library functions

e Segment reference

e Implementation-defined behavior-.

.hmuiuhhhi

107

ARARAIed

108

External interface details

This chapter provides reference information about how the compiler interacts
with its environment. The chapter briefly lists and describes the invocation
syntax, methods for passing options to the tools, environment variables, the

include file search procedure, and finally the different types of compiler output.

Invocation syntax

You can use the compiler either from the IAR Embedded Workbench IDE or from the
command line. Refer to the | AR Embedded Workbench® IDE User Guide for
information about using the compiler from the IAR Embedded Workbench IDE.

COMPILER INVOCATION SYNTAX
The invocation syntax for the compiler is:
icccf [options] [sourcefile] [options]

For example, when compiling the source file prog. c, use the following command to
generate an object file with debug information:

icccf prog --debug

The source file can be a C or C++ file, typically with the filename extension c or cpp,
respectively. If no filename extension is specified, the file to be compiled must have the
extension c.

Generally, the order of options on the command line, both relative to each other and to
the source filename, is not significant. There is, however, one exception: when you use
the -T option, the directories are searched in the same order that they are specified on the
command line.

If you run the compiler from the command line without any arguments, the compiler
version number and all available options including brief descriptions are directed to
stdout and displayed on the screen.

PASSING OPTIONS

There are three different ways of passing options to the compiler:

e Directly from the command line

Specify the options on the command line after the icccf command, either before or
after the source filename; see Invocation syntax, page 109.

Part 2. Compiler reference

109

Include file search procedure

110

Via environment variables

The compiler automatically appends the value of the environment variables to every
command line; see Environment variables, page 110.

Via a text file by using the -f option; see -f, page 127.

For general guidelines for the option syntax, an options summary, and a detailed
description of each option, see the Compiler options chapter.

ENVIRONMENT VARIABLES

The following environment variables can be used with the ColdFire IAR C/C++
Compiler:

Environment variable Description

C_INCLUDE Specifies directories to search for include files; for example:

C_INCLUDE=c: \program files\iar systems\embedded
workbench 4.n\cf\inc;c:\headers

QCCCF Specifies command line options; for example: QCCCF=-1A asm.lst

Table 24: Compiler environment variables

Include file search procedure

This is a detailed description of the compiler’s #include file search procedure:

ColdFire® IAR C/C++ Compiler
Reference Guide

If the name of the #include file is an absolute path, that file is opened.

If the compiler encounters the name of an #include file in angle brackets, such as:
#include <stdio.h>

it searches the following directories for the file to include:

1 The directories specified with the -I option, in the order that they were
specified, see -1, page 128.

2 The directories specified using the C_INCLUDE environment variable, if any, see
Environment variables, page 110.

If the compiler encounters the name of an #include file in double quotes, for
example:
#include "vars.h"

it searches the directory of the source file in which the #include statement occurs,
and then performs the same sequence as for angle-bracketed filenames.

External interface details ___¢

If there are nested #include files, the compiler starts searching the directory of the
file that was last included, iterating upwards for each included file, searching the
source file directory last. For example:

src.c in directory dir\src
#include "src.h"

src.h in directory dir\include
#include "config.h"

When dir\exe is the current directory, use the following command for compilation:
icccf ..\src\src.c -I..\include -I..\debugconfig

Then the following directories are searched in the order listed below for the file
config.h, which in this example is located in the dir\debugconfig directory:

dir\include Current file is src.h.

dir\src File including current file (src.c).
dir\include As specified with the first -I option.
dir\debugconfig As specified with the second -T option.

Use angle brackets for standard header files, like stdio.h, and double quotes for files
that are part of your application.

Note: Both \ and / can be used as directory delimiters.

Compiler output

The compiler can produce the following output:

e A linkable object file

The object files produced by the compiler use a proprietary format called UBROF,
which stands for Universal Binary Relocatable Object Format. By default, the object
file has the filename extension r68.

e Optional list files

Different types of list files can be specified using the compiler option -1, see -I, page
129. By default, these files will have the filename extension 1st.

o Optional preprocessor output files

A preprocessor output file is produced when you use the --preprocess option; by
default, the file will have the filename extension i.

Part 2. Compiler reference 111

Diagnostics

112

e Diagnostic messages

Diagnostic messages are directed to stderr and displayed on the screen, as well as
printed in an optional list file. To read more about diagnostic messages, see
Diagnostics, page 112.

Error return codes

These codes provide status information to the operating system which can be tested
in a batch file, see Error return codes, page 112.

Size information

Information about the generated amount of bytes for functions and data for each
memory is directed to stdout and displayed on the screen. Some of the bytes might
be reported as shared.

Shared objects are functions or data objects that are shared between modules. If any
of these occur in more than one module, only one copy will be retained. For example,
in some cases inline functions are not inlined, which means that they are marked as
shared, because only one instance of each function will be included in the final
application. This mechanism is sometimes also used for compiler-generated code or
data not directly associated with a particular function or variable, and when only one
instance is required in the final application.

Error return codes

The ColdFire IAR C/C++ Compiler returns status information to the operating system
that can be tested in a batch file.

The following command line error codes are supported:

Code Description

0
|

2
3
4

Compilation successful, but there may have been warnings.

There were warnings and the option --warnings_affect_exit_code was
used.

There were errors.
There were fatal errors making the compiler abort.

There were internal errors making the compiler abort.

Table 25: Error return codes

Diagnostics

ColdFire® IAR C/C++ Compiler
Reference Guide

This section describes the format of the diagnostic messages and explains how
diagnostic messages are divided into different levels of severity.

External interface details ___¢

MESSAGE FORMAT

All diagnostic messages are issued as complete, self-explanatory messages. A typical
diagnostic message from the compiler is produced in the form:

filename, linenumber levell[tag]: message

with the following elements:

filename The name of the source file in which the issue was encountered
linenumber The line number at which the compiler detected the issue
level The level of seriousness of the issue

tag A unique tag that identifies the diagnostic message

message An explanation, possibly several lines long

Diagnostic messages are displayed on the screen, as well as printed in the optional list
file.

Use the option --diagnostics_tables to list all possible compiler diagnostic
messages.

SEVERITY LEVELS

The diagnostic messages are divided into different levels of severity:

Remark

A diagnostic message that is produced when the compiler finds a source code
construction that can possibly lead to erroneous behavior in the generated code.
Remarks are by default not issued, but can be enabled, see --remarks, page 139.

Warning

A diagnostic message that is produced when the compiler finds a programming error or
omission which is of concern, but not so severe as to prevent the completion of
compilation. Warnings can be disabled by use of the command line option
--no_warnings, see page 135.

Error

A diagnostic message that is produced when the compiler has found a construction
which clearly violates the C or C++ language rules, such that code cannot be produced.
An error will produce a non-zero exit code.

Part 2. Compiler reference 113

Diagnostics

114

ColdFire® IAR C/C++ Compiler
Reference Guide

Fatal error

A diagnostic message that is produced when the compiler has found a condition that not
only prevents code generation, but which makes further processing of the source code
pointless. After the message has been issued, compilation terminates. A fatal error will
produce a non-zero exit code.

SETTING THE SEVERITY LEVEL

The diagnostic messages can be suppressed or the severity level can be changed for all
diagnostics messages, except for fatal errors and some of the regular errors.

See Compiler options summary, page 118, for a description of the compiler options that
are available for setting severity levels.

See the chapter Pragma directives, for a description of the pragma directives that are
available for setting severity levels.

INTERNAL ERROR

An internal error is a diagnostic message that signals that there has been a serious and
unexpected failure due to a fault in the compiler. It is produced using the following form:

Internal error: message

where message is an explanatory message. If internal errors occur, they should be
reported to your software distributor or IAR Systems Technical Support. Include enough
information to reproduce the problem, typically:

o The product name

o The version number of the compiler, which can be seen in the header of the list files
generated by the compiler

Your license number
The exact internal error message text

The source file of the application that generated the internal error

A list of the options that were used when the internal error occurred.

Compiler options

This chapter describes the syntax of compiler options and the general syntax
rules for specifying option parameters, and gives detailed reference
information about each option.

Options syntax

Compiler options are parameters you can specify to change the default behavior of the
compiler. You can specify options from the command line—which is described in more
detail in this section—and from within the IAR Embedded Workbench IDE.

Refer to the | AR Embedded Workbench® IDE User Guide for information about the

compiler options available in the JAR Embedded Workbench IDE and how to set them.

TYPES OF OPTIONS

There are two types of nhames for command line options, short names and long names.
Some options have both.

® A short option name consists of one character, and it may have parameters. You
specify it with a single dash, for example -e

e A long option name consists of one or several words joined by underscores, and it
may have parameters. You specify it with double dashes, for example
--char_is_signed.

For information about the different methods for passing options, see Passing options,
page 109.
RULES FOR SPECIFYING PARAMETERS

There are some general syntax rules for specifying option parameters. First, the rules
depending on whether the parameter is optional or mandatory, and whether the option
has a short or a long name, are described. Then, the rules for specifying filenames and
directories are listed. Finally, the remaining rules are listed.

Rules for optional parameters

For options with a short name and an optional parameter, any parameter should be
specified without a preceding space, for example:

-0 or -Oh

Part 2. Compiler reference

115

Options syntax

116

ColdFire® IAR C/C++ Compiler
Reference Guide

For options with a long name and an optional parameter, any parameter should be
specified with a preceding equal sign (=), for example:

--misrac=n

Rules for mandatory parameters

For options with a short name and a mandatory parameter, the parameter can be
specified either with or without a preceding space, for example:

-I..\srcor-I ..\src\

For options with a long name and a mandatory parameter, the parameter can be specified
either with a preceding equal sign (=) or with a preceding space, for example:

--diagnostics_tables=filename
or

--diagnostics_tables filename

Rules for options with both optional and mandatory parameters

For options taking both optional and mandatory parameters, the rules for specifying the
parameters are:

e For short options, optional parameters are specified without a preceding space
e For long options, optional parameters are specified with a preceding equal sign (=)

e For short and long options, mandatory parameters are specified with a preceding
space.

For example, a short option with an optional parameter followed by a mandatory
parameter:

-1A filename

For example, a long option with an optional parameter followed by a mandatory
parameter:

--preprocess=n filename

Rules for specifying a fillename or directory as parameters
The following rules apply for options taking a filename or directory as parameters:

e Options that take a filename as a parameter can optionally also take a path. The path
can be relative or absolute. For example, to generate a listing to the file 1ist.1st
in the directory . .\listings\:

icccf prog -1 ..\listings\list.lst

Compiler options °

e For options that take a filename as the destination for output, the parameter can be
specified as a path without a specified filename. The compiler stores the output in
that directory, in a file with an extension according to the option. The filename will
be the same as the name of the compiled source file, unless a different name has
been specified with the option -o, in which case that name will be used. For
example:

icccf prog -1 ..\listings\

The produced list file will have the default name . .\1istings\prog.lst
e The current directory is specified with a period (.). For example:

icccf prog -1

/ can be used instead of \ as the directory delimiter.

By specifying -, input files and output files can be redirected to stdin and stdout,
respectively. For example:

icccf prog -1 -

Additional rules
In addition, the following rules apply:

o When an option takes a parameter, the parameter cannot start with a dash (-)
followed by another character. Instead, you can prefix the parameter with two
dashes; the following example will create a list file called -r:

icccf prog -1 ---r

e For options that accept multiple arguments of the same type, the arguments can be
provided as a comma-separated list (without a space), for example:

--diag_warning=Be0001,Be0002

Alternatively, the option may be repeated for each argument, for example:

--diag_warning=Be0001
--diag_warning=Be0002

Part 2. Compiler reference 117

Compiler options summary

118

Compiler options summary

The following table summarizes the compiler command line options:

ColdFire® IAR C/C++ Compiler
Reference Guide

Command line option

Description

--char_is_signed
—--code_model
--core

-D

--data_model
--debug
--dependencies
--diag_error
--diag_remark
--diag_suppress
--diag_warning
--diagnostics_tables
--dlib_config

-e

-—ec++

-—eec++

--enable_multibytes

——error_limit

-f
--header_context
-T

--isa

-1
--library_module
--mac

--misrac
--misrac_verbose

--module_name

Treats char as signed
Specifies the code model
Specifies a CPU core

Defines preprocessor symbols
Specifies the data model
Generates debug information
Lists file dependencies

Treats these as errors

Treats these as remarks
Suppresses these diagnostics
Treats these as warnings

Lists all diagnostic messages
Determines the library configuration file
Enables language extensions
Enables Embedded C++ syntax

Enables Extended Embedded C++ syntax

Enables support for multibyte characters in source

files

Specifies the allowed number of errors before
compilation stops

Extends the command line

Lists all referred source files and header files
Specifies include file path

Selects instruction set for architecture version
Creates a list file

Creates a library module

Enables support for multiply-accumulate (MAC)
Enables MISRA C-specific error messages
Enables verbose logging of MISRA C checking

Sets the object module name

Table 26: Compiler options summary

Command line option

Compiler options °

Description

—--no_code_motion
--no_cse

—--no_div

--no_inline

--no_path_in_file_macros

--no_tbaa
--no_typedefs_in_diagnostics
--no_unroll

--no_warnings
--no_wrap_diagnostics

-0

-o

--omit_types

--only stdout

--output

--preinclude

--preprocess
--public_equ
-r

--remarks

--require_prototypes

--silent
--strict_ansi
--warnings_affect_exit_code

--warnings_are_errors

Disables code motion optimization
Disables common subexpression elimination

Disables support for DIVS/DIVU and REMS/REMU
instructions

Disables function inlining

Removes the path from the return value of the
symbols __FILE__ and __BASE_FILE__

Disables type-based alias analysis

Disables the use of typedef names in diagnostics
Disables loop unrolling

Disables all warnings

Disables wrapping of diagnostic messages

Sets the optimization level

Sets the object filename

Excludes type information

Uses standard output only

Sets the object filename

Includes an include file before reading the source
file

Generates preprocessor output
Defines a global named assembler label
Generates debug information

Enables remarks

Verifies that functions are declared before they are
defined

Sets silent operation
Checks for strict compliance with ISO/ANSI C
Warnings affects exit code

Warnings are treated as errors

Table 26: Compiler options summary (Continued)

Part 2. Compiler reference 119

Descriptions of options

Descriptions of options

--char_is_signed

Syntax

Description

--code_model

Syntax

Parameters

Description

See also

ColdFire® IAR C/C++ Compiler
120 Reference Guide

The following section gives detailed reference information about each compiler option.

Note that if you use the options page Extra Optionsto specify specific command line
options, the IAR Embedded Workbench IDE does not perform an instant check for
consistency problems like conflicting options, duplication of options, or use of
irrelevant options.

--char_is_signed

By default, the compiler interprets the char type as unsigned. Use this option to make
the compiler interpret the char type as signed instead. This can be useful when you, for
example, want to maintain compatibility with another compiler.

Note: The runtime library is compiled without the --char_is_signed option. If you
use this option, you may get type mismatch warnings from the linker, because the library
uses unsigned char.

Project>Options>C/C++ Compiler>Language>Plain ‘char’ is

--code_model={n|near|f|far}

n|near Supports the address range 0xFFFF8000-0x00007FFF

f| far (default) Supports the entire address range 0x0000000-0XFFFFFFFF

Use this option to select the code model for which the code is to be generated. If you do
not choose a code model option, the compiler uses the default code model. Note that all
modules of your application must use the same code model.

Code models and memory attributes for function storage, page 21.

Project>Options>General Options>Tar get>Code model

-=-Core

-D

Syntax

Description

Syntax

Parameters

Description

Compiler options °

--core={vl|v2|v3|v4}

Use this option to select the processor core for which the code is to be generated, V1,
V2, V3, or V4. If you do not use the option to specify a core, the compiler uses the V2
core as default.

The compiler supports the different ColdFire microcontroller cores and devices based
on these cores. The object code that the compiler generates for the different cores is
binary compatible if the same instruction set architecture is used.

Note: The v3 and v4 parameters are available for future compatibility.

Project>Options>General Options>Target>Core

-D symbol[=valuel]

symbol The name of the preprocessor symbol

value The value of the preprocessor symbol

Use this option to define a preprocessor symbol. If no value is specified, 1 is used. This
option can be used one or more times on the command line.

The option -D has the same effect as a #define statement at the top of the source file:
-Dsymbol

is equivalent to:

#define symbol 1

In order to get the equivalence of:

#define FOO

specify the = sign but nothing after, for example:

-DFO0=

Pr oj ect>0Options>C/C++ Compiler>Pr eprocessor >Defined symbols

Part 2. Compiler reference 121

Descriptions of options

--data_model

Syntax

Parameters

Description

See also

--debug, -r

Syntax

Description

--dependencies

Syntax

Parameters

ColdFire® IAR C/C++ Compiler
122 Reference Guide

--data_model={near_rel|far}

near_rel Specifies the Near relative data model, which means objects will be
located in a position-independent 64-Kbyte data block that can be

placed anywhere in memory.

far (default) Specifies the far data model, which means objects can be located
anywhere in memory.

Use this option to select the data model for which the code is to be generated. If you do
not choose a data model option, the compiler uses the default data model. Note that all
modules of your application must use the same data model.

Data models, page 11.

Project>Options>General Options>Tar get>Data model

--debug
-r

Use the --debug or -r option to make the compiler include information in the object
modules required by the IAR C-SPY® Debugger and other symbolic debuggers.

Note: Including debug information will make the object files larger than otherwise.

Pr oj ect>Options>C/C++ Compiler >Output>Generate debug information

--dependencies[=[1i|m]] {filename|directory}

i (default) Lists only the names of files

m Lists in makefile style

For information about specifying a filename or a directory, see Rules for specifying a
filename or directory as parameters, page 116.

Description

Example

--diag_error

Syntax

Parameters

Description

Compiler options °

Use this option to make the compiler list all source and header files opened by the
compilation into a file with the default filename extension i.

If --dependencies or --dependencies=i is used, the name of each opened source
file, including the full path, if available, is output on a separate line. For example:

c:\iar\product\include\stdio.h
d:\myproject\include\foo.h

If --dependencies=mis used, the output uses makefile style. For each source file, one
line containing a makefile dependency rule is produced. Each line consists of the name
of the object file, a colon, a space, and the name of a source file. For example:

foo.r68: c:\iar\product\include\stdio.h
foo.r68: d:\myproject\include\foo.h

An example of using --dependencies with a popular make utility, such as gmake
(GNU make):

Set up the rule for compiling files to be something like:

%.r68 : %.cC
$(ICC) $(ICCFLAGS) $< --dependencies=m $*.d

That is, in addition to producing an object file, the command also produces a
dependency file in makefile style (in this example, using the extension . d).

Include all the dependency files in the makefile using, for example:
-include $(sources:.c=.d)

Because of the dash (-) it works the first time, when the .4 files do not yet exist.

This option is not available in the JAR Embedded Workbench IDE.

--diag_error=tagl, tag, ...]

tag The number of a diagnostic message, for example the message
number Pel17

Use this option to reclassify certain diagnostic messages as errors. An error indicates a
violation of the C or C++ language rules, of such severity that object code will not be
generated. The exit code will be non-zero. This option may be used more than once on
the command line.

Part 2. Compiler reference 123

Descriptions of options

--diag_remark

Syntax

Parameters

Description

--diag_suppress

Syntax

Parameters

Description

--diag_warning
Syntax

Parameters

ColdFire® IAR C/C++ Compiler
124 Reference Guide

Project>Options>C/C++ Compiler>Diagnostics>Treat theseaserrors

--diag_remark=tagl, tag, ...]

tag The number of a diagnostic message, for example the message
number Pel77

Use this option to reclassify certain diagnostic messages as remarks. A remark is the
least severe type of diagnostic message and indicates a source code construction that
may cause strange behavior in the generated code. This option may be used more than
once on the command line.

Note: By default, remarks are not displayed; use the --remarks option to display
them.

Project>0Options>C/C++ Compiler>Diagnostics>Treat these asremarks

--diag_suppress=tagl, tag, ...]

tag The number of a diagnostic message, for example the message
number Pel17

Use this option to suppress certain diagnostic messages. These messages will not be
displayed. This option may be used more than once on the command line.

Proj ect>Options>C/C++ Compiler >Diagnostics>Suppr ess these diagnostics

--diag_warning=tagl, tag, ...]

tag The number of a diagnostic message, for example the message
number Pe826

Description

--diagnostics_tables

Syntax

Parameters

Description

--dlib_config

Syntax

Parameters

Description

Compiler options °

Use this option to reclassify certain diagnostic messages as warnings. A warning
indicates an error or omission that is of concern, but which will not cause the compiler
to stop before compilation is completed. This option may be used more than once on the
command line.

Proj ect>Options>C/C++ Compiler>Diagnostics>Treat these as war nings

--diagnostics_tables {filename\ directory}

For information about specifying a filename or a directory, see Rules for specifying a
filename or directory as parameters, page 116.

Use this option to list all possible diagnostic messages in a named file. This can be
convenient, for example if you have used a pragma directive to suppress or change the
severity level of any diagnostic messages, but forgot to document why.

This option cannot be given together with other options.

This option is not available in the IAR Embedded Workbench IDE.

--dlib_config filename

For information about specifying a filename, see Rules for specifying a filename or
directory as parameters, page 116.

Each runtime library has a corresponding library configuration file. Use this option to
specify the library configuration file for the compiler. Make sure that you specify a
configuration file that corresponds to the library you are using.

All prebuilt runtime libraries are delivered with corresponding configuration files. You
can find the library object files and the library configuration files in the directory
cf\1ib. For examples and a list of prebuilt runtime libraries, see Using a prebuilt
library, page 44.

If you build your own customized runtime library, you should also create a
corresponding customized library configuration file, which must be specified to the
compiler. For more information, see Building and using a customized library, page 50.

Part 2. Compiler reference 125

Descriptions of options

Syntax

Description

See also

-=ec++

Syntax

Description

--eect+

Syntax

Description

See also

ColdFire® IAR C/C++ Compiler

126 Reference Guide

To set related options, choose:

Project>Options>General Options>Library Configuration

In the command line version of the ColdFire IAR C/C++ Compiler, language extensions
are disabled by default. If you use language extensions such as extended keywords and
anonymous structs and unions in your source code, you must enable them by using this
option.

Note: The -e option and the --strict_ansi option cannot be used at the same time.
The chapter Compiler extensions.

Proj ect>Options>C/C++ Compiler>L anguage>Allow | AR extensions

Note: By default, this option is enabled in the IAR Embedded Workbench IDE.

—-ec++

In the ColdFire IAR C/C++ Compiler, the default language is C. If you use Embedded
C++, you must use this option to set the language the compiler uses to Embedded C++.

Proj ect>Options>C/C++ Compiler>L anguage>Embedded C++

—-—eec++

In the ColdFire IAR C/C++ Compiler, the default language is C. If you take advantage
of Extended Embedded C++ features like namespaces or the standard template library
in your source code, you must use this option to set the language the compiler uses to
Extended Embedded C++.

Extended Embedded C++, page 86.

Pr oj ect>Options>C/C++ Compiler >L anguage>Extended Embedded C++

--enable_multibytes

Syntax

Description

--error_limit

Syntax

Parameters

Description

Syntax

Parameters

Descriptions

Compiler options °

--enable_multibytes

By default, multibyte characters cannot be used in C or C++ source code. Use this option
to make multibyte characters in the source code be interpreted according to the host
computer’s default setting for multibyte support.

Multibyte characters are allowed in C and C++ style comments, in string literals, and in

character constants. They are transferred untouched to the generated code.

Proj ect>Options>C/C++ Compiler >L anguage>Enable multibyte support

--error_limit=n

n The number of errors before the compiler stops the compilation. n
must be a positive integer; 0 indicates no limit.

Use the --error_limit option to specify the number of errors allowed before the
compiler stops the compilation. By default, 100 errors are allowed.

This option is not available in the IAR Embedded Workbench IDE.

-f filename

For information about specifying a filename, see Rules for specifying a filename or
directory as parameters, page 116.

Use this option to make the compilerread command line options from the named file,
with the default filename extension xc1.

In the command file, you format the items exactly as if they were on the command line
itself, except that you may use multiple lines, because the newline character acts just as
a space or tab character.

Both C and C++ style comments are allowed in the file. Double quotes behave in the
same way as in the Microsoft Windows command line environment.

Part 2. Compiler reference 127

Descriptions of options

128

--header_context

Syntax

Description

Syntax

Parameters

Description

See also

Syntax

Description

See also

ColdFire® IAR C/C++ Compiler
Reference Guide

To set this option, use Project>Options>C/C++ Compiler >Extra Options.

--header_context

Occasionally, to find the cause of a problem it is necessary to know which header file
that was included from which source line. Use this option to list, for each diagnostic
message, not only the source position of the problem, but also the entire include stack at

that point.

This option is not available in the IAR Embedded Workbench IDE.

-I path

path The search path for #include files

Use this option to specify the search paths for #include files. This option may be used
more than once on the command line.

Include file search procedure, page 110.

Proj ect>Options>C/C++ Compiler >Preprocessor >Additional include directories

--isa={isa_a|isa_a+|isa_b|isa_c}

Use this option to select the instruction set architecture version to be used. If you do not
use the option to specify what instruction set to use, the compiler uses the isa_a
instruction set as default.

The device documentation delivered from the chip manufacturer.

Project>Options>General Options>Tar get>| SA variant

Syntax

Parameters

Description

Compiler options °

-1lla|Aa|b|B|c|C|D][N][H] {filename|directory}

(@]

(default)

Assembler list file
Assembler list file with C or C++ source as comments

Basic assembler list file. This file has the same contents as a list file
produced with -1a, except that no extra compiler-generated
information (runtime model attributes, call frame information, frame
size information) is included *

Basic assembler list file. This file has the same contents as a list file
produced with -12, except that no extra compiler generated
information (runtime model attributes, call frame information, frame
size information) is included *

C or C++ list file
C or C++ list file with assembler source as comments

C or C++ list file with assembler source as comments, but without
instruction offsets and hexadecimal byte values

No diagnostics in file

Include source lines from header files in output. Without this
option, only source lines from the primary source file are included

* This makes the list file less useful as input to the assembler, but more useful for reading by a
human.

For information about specifying a filename or a directory, see Rules for specifying a
filename or directory as parameters, page 116.

Use this option to generate an assembler or C/C++ listing to a file. Note that this option
can be used one or more times on the command line.

To set related options, choose:

Project>Options>C/C++ Compiler>List

Part 2. Compiler reference

129

Descriptions of options

--library_module

Syntax

Description

=-=mac

Syntax

Description

See also

--misrac

Syntax

Parameters

Description

ColdFire® IAR C/C++ Compiler
130 Reference Guide

--library_module
Use this option to make the compiler generate a library module rather than a program
module. A program module is always included during linking. A library module will

only be included if it is referenced in your program.

Proj ect>Options>C/C++ Compiler>Output>M odule type>Library Module

--mac={mac |emac | emac_b}
Use this option to enable support for the multiply-accumulate instructions. If you do not

use the option to specify what instruction set to use, the compiler does not support MAC
instructions.

Note: This option does not currently have any effect.
The device documentation delivered from the chip manufacturer.

Project>Options>General Options>Target>MAC variant

--misrac[={n, o-p,..|]all|required}]

--misrac=n Enables checking for the MISRA C rule with number n

--misrac=o,n Enables checking for the MISRA C rules with numbers o and n

--misrac=o-p Enables checking for all MISRA C rules with numbers from o to p

--misrac=m, n, o-p Enables checking for MISRA C rules with numbers m, n, and from o
top

--misrac=all Enables checking for all MISRA C rules

--misrac=required Enables checking for all MISRA C rules categorized as required

Use this option to enable the compiler to check for deviations from the rules described
in the MISRA Guidelines for the Use of the C Language in \ehicle Based Software
(1998). By using one or more arguments with the option, you can restrict the checking

--misrac_verbose

Syntax

Description

--module_name

Syntax

Parameters

Description

Compiler options °

to a specific subset of the MISRA C rules. If the compiler is unable to check for a rule,
specifying the option for that rule has no effect. For instance, MISRA C rule 15 is a
documentation issue, and the rule is not checked by the compiler. As a consequence,
specifying --misrac=15 has no effect.

To set related options, choose:

Project>Options>General Options>MISRA C or Project>Options>C/C++
Compiler>MISRA C

--misrac_verbose

Use this option to generate a MISRA C log during compilation. This is a list of the rules
that are enabled—but not necessarily checked—and a list of rules that are actually
checked.

If this option is enabled, the compiler display a text at sign-on that shows both enabled
and checked MISRA C rules.

Project>Options>General Options>MISRA C>Log MISRA C Settings

--module_name=name

name An explicit object module name

Normally, the internal name of the object module is the name of the source file, without
a directory name or extension. Use this option to specify an object module name
explicitly.

This option is useful when several modules have the same filename, because the
resulting duplicate module name would normally cause a linker error; for example,
when the source file is a temporary file generated by a preprocessor.

Proj ect>Options>C/C++ Compiler >Output>Object module name

Part 2. Compiler reference 131

Descriptions of options

--no_code_motion

Syntax --no_code_motion

Description Use this option to disable code motion optimizations. These optimizations, which are
performed at optimization levels Medium and High, normally reduce code size and
execution time. However, the resulting code may be difficult to debug.

Note: This option has no effect at optimization levels below Medium.

Project>Options>C/C++ Compiler >Optimizations>Enable
transfor mations>Code motion

--NO_cCse
Syntax --no_cse
Description Use this option to disable common subexpression elimination. At optimization levels
Medium and High, the compiler avoids calculating the same expression more than once.
This optimization normally reduces both code size and execution time. However, the
resulting code may be difficult to debug.
Note: This option has no effect at optimization levels below Medium.
Pr oj ect>Options>C/C++ Compiler>Optimizations>Enable
transfor mations>Common subexpression elimination
--no_div
Syntax --no_div
Description Use this option to disable support for the DIVS/DIVU and REMS/REMU instructions.
See also Division instructions, page 6 and the device documentation delivered from the chip

manufacturer.

Project>Options>General Options>Target>No DIV/REM instruction

ColdFire® IAR C/C++ Compiler
132 Reference Guide

--no_inline

Syntax

Description

Compiler options °

--no_inline

Use this option to disable function inlining. Function inlining means that a simple
function, whose definition is known at compile time, is integrated into the body of its
caller to eliminate the overhead of the call.

This optimization, which is performed at optimization level High, normally reduces
execution time and increases code size. The resulting code may also be difficult to
debug.

The compiler heuristically decides which functions to inline. Different heuristics are
used when optimizing for speed than for size.

Note: This option has no effect at optimization levels below High.

Project>Options>C/C++ Compiler >Optimizations>Enable
transfor mations>Function inlining

--no_path_in_file_macros

Syntax

Description

See also

--no_tbaa

Syntax

Description

See also

--no_path_in_file_macros

Use this option to exclude the path from the return value of the predefined preprocessor
symbols __FILE__ and __BASE FILE__.

Descriptions of predefined preprocessor symbols, page 190.

This option is not available in the IAR Embedded Workbench IDE.

--no_tbaa

Use this option to disable type-based alias analysis. When this options is not used, the
compiler is free to assume that objects are only accessed through the declared type or
through unsigned char.

Type-based alias analysis, page 101.

Proj ect>Options>C/C++ Compiler>Optimizations>Enable
transformations>Type-based alias analysis

Part 2. Compiler reference 133

Descriptions of options

134

--no_typedefs_in_diagnostics

Syntax

Description

Example

--no_unroll

Syntax

Description

ColdFire® IAR C/C++ Compiler
Reference Guide

--no_typedefs_in_diagnostics

Use this option to disable the use of typedef names in diagnostics. Normally, when a
type is mentioned in a message from the compiler, most commonly in a diagnostic
message of some kind, the typedef names that were used in the original declaration are
used whenever they make the resulting text shorter.

typedef int (*MyPtr) (char const *);
MyPtr p = "foo";
will give an error message like the following:

Error[Peldd]: a value of type "char *" cannot be used to
initialize an entity of type "MyPtr"

Ifthe --no_typedefs_in_diagnostics optionis used, the error message will be like
this:

Error[Peldd]: a value of type "char *" cannot be used to
initialize an entity of type "int (*) (char const *)"

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--no_unroll

Use this option to disable loop unrolling. The code body of a small loop, whose number
of iterations can be determined at compile time, is duplicated to reduce the loop
overhead.

For small loops, the overhead required to perform the looping can be large compared
with the work performed in the loop body.

The loop unrolling optimization duplicates the body several times, reducing the loop
overhead. The unrolled body also opens up for other optimization opportunities.

This optimization, which is performed at optimization level High, normally reduces
execution time, but increases code size. The resulting code may also be difficult to
debug.

The compiler heuristically decides which loops to unroll. Different heuristics are used
when optimizing for speed and size.

--no_warnings

--no_wrap_diagnostics

Syntax

Description

Syntax

Description

Syntax

Parameters

Compiler options °

Note: This option has no effect at optimization levels below High.

Pr oj ect>Options>C/C++ Compiler>Optimizations>Enable
transformations>L oop unrolling

--no_warnings

By default, the compiler issues warning messages. Use this option to disable all warning
messages.

This option is not available in the IAR Embedded Workbench IDE.

--no_wrap_diagnostics

By default, long lines in diagnostic messages are broken into several lines to make the
message easier to read. Use this option to disable line wrapping of diagnostic messages.

This option is not available in the JAR Embedded Workbench IDE.

-0[n|1l|m|h|hs|hz]

n None* (Best debug support)
1 (default) Low*

m Medium

h High, balanced

hs High, favoring speed

hz High, favoring size

*The most important difference between None and Low is that at None, all non-static variables
will live during their entire scope.

Part 2. Compiler reference 135

Descriptions of options

Description

See also

-0, --output

Syntax

Parameters

Description

--omit_types

Syntax

Description

ColdFire® IAR C/C++ Compiler
136 Reference Guide

Use this option to set the optimization level to be used by the compiler when optimizing
the code. If no optimization option is specified, the optimization level Low is used by
default. If only -0 is used without any parameter, the optimization level High balanced
is used.

A low level of optimization makes it relatively easy to follow the program flow in the
debugger, and, conversely, a high level of optimization makes it relatively hard.

Controlling compiler optimizations, page 98.

Proj ect>Options>C/C++ Compiler >Optimizations

-0 {filename|directory}
--output {filename| directory}

For information about specifying a filename or a directory, see Rules for specifying a
filename or directory as parameters, page 116.

By default, the object code output produced by the compiler is located in a file with the
same name as the source file, but with the extension r68. Use this option to explicitly
specity a different output filename for the object code output.

This option is not available in the IAR Embedded Workbench IDE.

--omit_types

By default, the compiler includes type information about variables and functions in the
object output. Use this option if you do not want the compiler to include this type
information in the output, which is useful when you build a library that should not
contain type information. The object file will then only contain type information that is
a part of a symbol’s name. This means that the linker cannot check symbol references
for type correctness.

To set this option, use Project>Options>C/C++ Compiler >Extra Options.

--only_stdout

Syntax

Description

--output, -o

Syntax

Parameters

Description

--preinclude

Syntax

Parameters

Description

Compiler options °

--only_stdout

Use this option to make the compiler use the standard output stream (stdout) also for
messages that are normally directed to the error output stream (stderr).

This option is not available in the IAR Embedded Workbench IDE.

--output {filename| directory}
-0 {filename|directory}

For information about specifying a filename or a directory, see Rules for specifying a
filename or directory as parameters, page 116.

By default, the object code output produced by the compiler is located in a file with the
same name as the source file, but with the extension r68. Use this option to explicitly

specify a different output filename for the object code output.

This option is not available in the IAR Embedded Workbench IDE.

--preinclude includefile

For information about specifying a filename, see Rules for specifying a filename or
directory as parameters, page 116.

Use this option to make the compiler include the specified include file before it starts to
read the source file. This is useful if you want to change something in the source code

for the entire application, for instance if you want to define a new symbol.

Proj ect>Options>C/C++ Compiler>Pr eprocessor >Preinclude file

Part 2. Compiler reference 137

Descriptions of options

--preprocess

Syntax

Parameters

Description

--public_equ
Syntax

Parameters

Description

-r, --debug

Syntax

Description

ColdFire® IAR C/C++ Compiler

138 Reference Guide

--preprocess[=[c][n][1]] {filename|directory}
c Preserve comments

n Preprocess only

1 Generate #1ine directives

For information about specifying a filename or a directory, see Rules for specifying a
filename or directory as parameters, page 116.

Use this option to generate preprocessed output to a named file.

Proj ect>0Options>C/C++ Compiler>Pr eprocessor >Pr epr ocessor output to file

--public_equ symbol[=value]

symbol The name of the assembler symbol to be defined

value An optional value of the defined assembler symbol

This option is equivalent to defining a label in assembler language using the EQU
directive and exporting it using the PUBLIC directive. This option may be used more
than once on the command line.

This option is not available in the IAR Embedded Workbench IDE.

-r
--debug

Use the -r or the --debug option to make the compiler include information in the
object modules required by the IAR C-SPY Debugger and other symbolic debuggers.

Note: Including debug information will make the object files larger than otherwise.

Proj ect>Options>C/C++ Compiler >Output>Generate debug information

--remarks

Syntax

Description

See also

--require_prototypes

Syntax

Description

--silent

Syntax

Description

Compiler options °

--remarks

The least severe diagnostic messages are called remarks. A remark indicates a source
code construct that may cause strange behavior in the generated code. By default, the
compiler does not generate remarks. Use this option to make the compiler generate
remarks.

Severity levels, page 113.

Project>Options>C/C++ Compiler >Diagnostics>Enable remarks

--require_prototypes
Use this option to force the compiler to verify that all functions have proper prototypes.
Using this option means that code containing any of the following will generate an error:

e A function call of a function with no declaration, or with a Kernighan & Ritchie
C declaration

e A function definition of a public function with no previous prototype declaration

e An indirect function call through a function pointer with a type that does not include
a prototype.

Note: This option only applies to functions in the C standard library.

Proj ect>Options>C/C++ Compiler >L anguage>Requir e prototypes

--silent

By default, the compiler issues introductory messages and a final statistics report. Use
this option to make the compiler operate without sending these messages to the standard
output stream (normally the screen).

This option does not affect the display of error and warning messages.

This option is not available in the IAR Embedded Workbench IDE.

Part 2. Compiler reference 139

Descriptions of options

--strict_ansi

Syntax

Description

--warnings_affect_exit_

Syntax

Description

2B
\.

--warnings_are_errors

Syntax

Description

See also

ColdFire® IAR C/C++ Compiler
140 Reference Guide

--strict_ansi

By default, the compiler accepts a relaxed superset of ISO/ANSI C/C++, see Minor
language extensions, page 158. Use this option to ensure that the program conforms to
the ISO/ANSI C/C++ standard.

Note: The -e option and the --strict_ansi option cannot be used at the same time.

Project>Options>C/C++ Compiler >L anguage>L anguage confor mances>Strict
1SO/ANSI

code

--warnings_affect_exit_code

By default, the exit code is not affected by warnings, because only errors produce a
non-zero exit code. With this option, warnings will also generate a non-zero exit code.

This option is not available in the IAR Embedded Workbench IDE.

--warnings_are_errors

Use this option to make the compiler treat all warnings as errors. If the compiler
encounters an error, no object code is generated. Warnings that have been changed into
remarks are not treated as errors.

Note: Any diagnostic messages that have been reclassified as warnings by the option
--diag_warning or the #pragma diag_warning directive will also be treated as
errors when --warnings_are_errors is used.

diag_warning, page 174.

Proj ect>Options>C/C++ Compiler>Diagnostics>Treat all warningsaserrors

Data representation

This chapter describes the data types, pointers, and structure types supported
by the ColdFire IAR C/C++ Compiler.

See the chapter Efficient coding for embedded applications for information about
which data types and pointers provide the most efficient code for your
application.

Alignment

Every C data object has an alignment that controls how the object can be stored in
memory. Should an object have an alignment of, for example, 4, it must be stored on an
address that is divisible by 4.

The reason for the concept of alignment is that some processors have hardware
limitations for how the memory can be accessed.

Assume that a processor can read 4 bytes of memory using one instruction, but only
when the memory read is placed on an address divisible by 4. Then, 4-byte objects, such
as long integers, will have alignment 4.

Another processor might only be able to read 2 bytes at a time; in that environment, the
alignment for a 4-byte 1ong integer might be 2.

A structure type will have the same alignment as the structure member with the most
strict alignment. To lower the alignment requirements on the structure and its members,
use #pragma pack

All data types must have a size that is a multiple of the alignment. Otherwise, only the
first element of an array would be placed in accordance with the alignment
requirements.

Note that with the #pragma data_alignment directive you can raise the alignment
demands on specific variables.

In the following example, the alignment of the structure is 4, under the assumption that
long has alignment 4. Its size is 8, even though only 5 bytes are effectively used.

struct str {
long a;
char b;

}i

In standard C, the size of an object can be determined by using the sizeof operator.

Part 2. Compiler reference

141

Basic data types

ALIGNMENT ON THE COLDFIRE MICROCONTROLLER

The ColdFire microcontroller can access memory using 8-, 16-, and 32-bit operations.
However, when a 16- or 32-bit access is performed, the data should be 2- and 4-byte
aligned, respectively. Misaligned accesses work, but is slower. The ColdFire IAR
C/C++ Compiler ensures this by assigning an alignment to every data type, ensuring that
the ColdFire microcontroller will be able to read the data efficiently.

Basic data types
The compiler supports both all ISO/ANSI C basic data types and some additional types.

INTEGER TYPES

The following table gives the size and range of each integer data type:
Data type Size Range Alignment
bool 8 bits Oto | |

char 8 bits 0 to 255 |
signed char 8 bits -128 to 127 |
unsigned char 8 bits 0 to 255 |
signed short 16 bits -32768 to 32767 2
unsigned short 16 bits 0 to 65535 2
signed int 32bits 230 23! 4
unsigned int 32 bits 0 to 2%2- 4
signed long 32 bits 23 10 23111 4
unsigned long 32bits 0to 232 4
signed long long 64 bits 283 10 263 4
unsigned long long 64 bits 0to 2541 4

Table 27: Integer types

Signed variables are represented using the two’s complement form.

Bool

The bool data type is supported by default in the C++ language. If you have enabled
language extensions, the bool type can also be used in C source code if you include the
file stdbool.h. This will also enable the boolean values false and true.

ColdFire® IAR C/C++ Compiler
142 Reference Guide

Data representation °

The enum type

The compiler will use the smallest type required to hold enum constants, preferring
signed rather than unsigned.

When IAR Systems language extensions are enabled, and in C++, the enum constants
and types can also be of the type 1ong, unsigned long, long long, Or unsigned
long long.

To make the compiler use a larger type than it would automatically use, define an enum
constant with a large enough value. For example,

/* Disables usage of the char type for enum */
enum Cards{Spadel, Spade2,
DontUseChar=257};

The char type

The char type is by default unsigned in the compiler, but the --char_is_signed
compiler option allows you to make it signed. Note, however, that the library is compiled
with the char type as unsigned.

The wchar_t type

The wchar_t data type is an integer type whose range of values can represent distinct
codes for all members of the largest extended character set specified among the
supported locals.

The wchar_t data type is supported by default in the C++ language. To use the
wchar_t type also in C source code, you must include the file stddef . h from the
runtime library.

Bitfields

InISO/ANSIC, int, signed int, and unsigned int can be used as the base type for
integer bitfields. It is implementation defined whether the type specified by int is the
same as signed int orunsigned int. In the ColdFire IAR C/C++ Compiler,
bitfields declared as int are treated as signed int. Furthermore, any integer type can
be used as the base type when language extensions are enabled. Bitfields in expressions
will have the same data type as the integer base type.

Part 2. Compiler reference 143

Basic data types

144

ColdFire® IAR C/C++ Compiler
Reference Guide

By default, the compiler places bitfield members from the most significant to the least
significant bit in the container type. A bitfield is assigned to the last available container
of its base type which has enough unassigned bits to contain the entire bitfield.

This means that bitfield containers can overlap other structure members as long as the
order of the fields in the structure is preserved, for example:

struct example
{
char a;
short b : 10;
int c : 6;
}i

Here the first declaration creates an unsigned character which is allocated to bits 24
through 31. The second declaration creates a signed short integer member of size 10 bits.
This member is allocated to bits 15 through 6 as it will not fit in the remaining 8 bits of
the first short integer container. The last bitfield member declared is placed in the bits 0
through 5. If seen as a 32-bit value, the structure looks like this in memory:

7 07 015 65 0

a pad b C

0 1 2 3

Figure 5: Layout of bitfield members

By using the directive #pragma bitfields=reversed_disjoint_types, the
bitfield containers are forced to be disjoint, or in other words, to not overlap. The layout
of the above example structure would then become:

7 07 015 65 0312625 0

a pad b pad C pad

0 1 2 3 4 5 6 7
Figure 6: Layout of bitfield members forced to be digoint

By using the directive #pragma bitfields=disjoint_types, the bitfield members
are placed from the least significant bit to the most significant bit in non-overlapping
storage containers.

Data representation °

FLOATING-POINT TYPES

In the ColdFire IAR C/C++ Compiler, floating-point values are represented in standard
IEEE 754 format. The sizes for the different floating-point types are:

Type Size

float 32 bits
double 64 bits
long double 64 bits

Table 28: Floating-point types

The compiler does not support subnormal numbers. All operations that should produce
subnormal numbers will instead generate zero.

Exception flags according to the IEEE 754 standard are not supported. The alignment
for the f1loat type is 4, and for the 1ong double type it is 4.
32-bit floating-point format

The representation of a 32-bit floating-point number as an integer is:

31 30 2322 0
‘ S ‘ Exponent Mantissa

The exponent is 8 bits, and the mantissa is 23 bits.
The value of the number is:
(-1)S * p(Exponent-127) « 1 Mantissa
The range of the number is:

+1.18E-38 to *#3.39E+38

The precision of the float operators (+, -, *, and /) is approximately 7 decimal digits.

64-bit floating-point format

The representation of a 64-bit floating-point number as an integer is:

63 62 5251 0
| S | Exponent Mantissa

The exponent is 11 bits, and the mantissa is 52 bits.

Part 2. Compiler reference 145

Pointer types

146

The value of the number is:
(_l)s * 2(Exponent—1023) * 1 _.Mantissa
The range of the number is:

+2.23E-308 to *1.79E+308

The precision of the float operators (+, -, *, and /) is approximately 15 decimal digits.

Representation of special floating-point numbers

The following list describes the representation of special floating-point numbers:

e Zero is represented by zero mantissa and exponent. The sign bit signifies positive or
negative zero.

e Infinity is represented by setting the exponent to the highest value and the mantissa
to zero. The sign bit signifies positive or negative infinity.

e Not a number (NaN) is represented by setting the exponent to the highest positive
value and the mantissa to a non-zero value. The value of the sign bit is ignored.

Pointer types

ColdFire® IAR C/C++ Compiler
Reference Guide

The ColdFire IAR C/C++ Compiler has two basic types of pointers: function pointers
and data pointers.

FUNCTION POINTERS

The size of function pointers is always 32 bits, and they can address the entire memory.

DATA POINTERS

The size of data pointers is always 32 bits, and they can address the entire memory.

CASTING

Casts between pointers have the following characteristics:

e Casting a value of an integer type to a pointer of a smaller type is performed by
truncation

e Casting a value of an integer type to a pointer of a larger type is performed by zero
extension

e Casting a pointer type to a smaller integer type is performed by truncation

e Castinga__near or __near_func pointer to a larger integer type is performed by
first sign extending itto a __far or __far_func pointer. Casting a __far or
__far_func pointer to a larger integer type is performed by zero extension.

Data representation °

e Casting a data pointer to a function pointer and vice versa is illegal

e Casting a function pointer to an integer type gives an undefined result

size t

size_t is the unsigned integer type required to hold the maximum size of an object. In
the ColdFire IAR C/C++ Compiler, the size of size_t is 32 bits.

ptrdiff_t

ptrdiff_tisthe type of the signed integer required to hold the difference between two
pointers to elements of the same array. In the ColdFire IAR C/C++ Compiler, the size
of ptrdiff_t is 32 bits.

Note: Subtracting the start address of an object from the end address can yield a
negative value, because the object can be larger than what the ptrdi ££_t can represent.
See this example:

char buff[60000]; /* Assuming ptrdiff_t is a 16-bit */
char *pl = buff; /* signed integer type. */

char *p2 = buff + 60000;

ptrdiff_t diff = p2 - pl;

intptr_t

intptr_t is a signed integer type large enough to contain a void *. In the ColdFire
IAR C/C++ Compiler, the size of intptr_t is 32 bits.

uintptr_t

uintptr_t is equivalent to intptr_t, with the exception that it is unsigned.

Structure types

The members of a struct are stored sequentially in the order in which they are
declared: the first member has the lowest memory address.

ALIGNMENT

The struct and union types inherit the alignment requirements of their members. In
addition, the size of a struct is adjusted to allow arrays of aligned structure objects.

GENERAL LAYOUT

Members of a struct (fields) are always allocated in the order given in the declaration.
The members are placed in memory according to the given alignment (offsets).

Part 2. Compiler reference 147

Structure types

148

ColdFire® IAR C/C++ Compiler
Reference Guide

Example

struct {
short s; /* stored in byte 0 and 1 */
char c; /* stored in byte 2 */

long 1; /* stored in byte 4, 5, 6, and 7 */
char c2; /* stored in byte 8 */
} s;

The following diagram shows the layout in memory:

s.s s.c pad s s.c2 pad
2 bytes | byte | byte 4 bytes | byte | 3 byte

The alignment of the structure is 4 bytes, and its size is 12 bytes.

PACKED STRUCTURE TYPES

The #pragma pack directive is used for relaxing the alignment requirements of the
members of a structure. This will change the way the layout of the structure is
performed. The members will be placed in the same order as when declared, but there
might be less pad space between members.

Note: This can result in significantly larger and slower code when accessing members
of the structure.

Example

#pragma pack (1)
struct {
short s;
char c;
long 1;
char c2;
} s;

will be placed:

s C t 2

o 1 2 3 4 5 6 7

For more information, see Alignment of elementsin a structure, page 92.

Data representation °

Type qualifiers

According to the ISO/ANSI C standard, volatile and const are type qualifiers.

DECLARING OBJECTS VOLATILE

There are three main reasons for declaring an object volatile:

e Shared access; the object is shared between several tasks in a multitasking
environment

o Trigger access; as for a memory-mapped SFR where the fact that an access occurs
has an effect

o Modified access; where the contents of the object can change in ways not known to
the compiler.

Definition of access to volatile objects

The ISO/ANSI standard defines an abstract machine, which governs the behavior of
accesses to volatile declared objects. In general and in accordance to the abstract
machine, the compiler:

o Considers each read and write access to an object that has been declared volatile
as an access

o The unit for the access is either the entire object or, for accesses to an element in a
composite object—such as an array, struct, class, or union—the element. For

example:

char volatile a;

a=>5; /* A write access */

a += 6; /* First a read then a write access */

e An access to a bitfield is treated as an access to the underlaying type.

However, these rules are not detailed enough to handle the hardware-related
requirements. The rules specific to the ColdFire IAR C/C++ Compiler are described
below.

Rules for accesses

In the ColdFire IAR C/C++ Compiler, accesses to volatile declared objects are
subject to the following rules:

All accesses are preserved
All accesses are complete, that is, the whole object is accessed

.
°
e All accesses are performed in the same order as given in the abstract machine
.

All accesses are atomic, that is, they cannot be interrupted.

Part 2. Compiler reference 149

Data types in C++

150

The ColdFire IAR C/C++ Compiler adheres to these rules for the following
combinations of memory types and data types:

Data type Treated as
8-, 16-, and 32-bit values All accesses are preserved in the original order
64-bit values Preserved

Table 29: \olatile accesses

The following object types are treated in a special way:

Type of object Treated as
Global register variables Treated as non-triggering volatiles
|-bit bitfields Preserved

Table 30: Type of volatile accesses treated in a special way

For all combinations of object types not listed, only the rule that states that all accesses
are preserved applies.

DECLARING OBJECTS CONST

The const type qualifier is used for indicating that a data object, accessed directly or
via a pointer, is non-writable. A pointer to const declared data can point to both
constant and non-constant objects. It is good programming practice to use const
declared pointers whenever possible because this improves the compiler’s possibilities
to optimize the generated code and reduces the risk of application failure due to
erroneously modified data.

Static and global objects declared const are allocated in ROM.

In C++, objects that require runtime initialization cannot be placed in ROM.

Data types in C++

ColdFire® IAR C/C++ Compiler
Reference Guide

In C++, all plain C data types are represented in the same way as described earlier in this
chapter. However, if any Embedded C++ features are used for a type, no assumptions
can be made concerning the data representation. This means, for example, that it is not
legal to write assembler code that accesses class members.

Compiler extensions

This chapter gives a brief overview of the ColdFire IAR C/C++ Compiler
extensions to the ISO/ANSI C standard. All extensions can also be used for
the C++ programming language. More specifically the chapter describes the
available C language extensions.

Compiler extensions overview

The compiler offers the standard features of ISO/ANSI C as well as a wide set of
extensions, ranging from features specifically tailored for efficient programming in the
embedded industry to the relaxation of some minor standards issues.

You can find the extensions available as:

o C/C++ language extensions

For a summary of available language extensions, see C language extensions, page
152. For reference information about the extended keywords, see the chapter
Extended keywords. For information about C++, the two levels of support for the
language, and C++ language extensions; see the chapter Using C++.

e Pragma directives

The #pragma directive is defined by the ISO/ANSI C standard and is a mechanism
for using vendor-specific extensions in a controlled way to make sure that the source
code is still portable.

The compiler provides a set of predefined pragma directives, which can be used for
controlling the behavior of the compiler, for example how it allocates memory,
whether it allows extended keywords, and whether it outputs warning messages.
Most pragma directives are preprocessed, which means that macros are substituted
in a pragma directive. The pragma directives are always enabled in the compiler and
many of them have an equivalent C/C++ language extensions. For a list of available
pragma directives, see the chapter Pragma directives.

e Preprocessor extensions

The preprocessor of the compiler adheres to the ISO/ANSI standard. In addition, the
compiler also makes a number of preprocessor-related extensions available to you.
For more information, see the chapter The preprocessor.

e Intrinsic functions
The intrinsic functions provide direct access to low-level processor operations and
can be very useful in, for example, time-critical routines. The intrinsic functions
compile into inline code, either as a single instruction or as a short sequence of

Part 2. Compiler reference

151

C language extensions

152

instructions. To read more about using intrinsic functions, see Mixing C and
assembler, page 69. For a list of available functions, see the chapter Intrinsic
functions.

e Library functions
The IAR DLIB Library provides most of the important C and C++ library definitions
that apply to embedded systems. In addition, the library also provides some
extensions, partly taken from the C99 standard. For more information, see |IARDLIB
Library, page 196.

Note: Any use of these extensions, except for the pragma directives, makes your
application inconsistent with the ISO/ANSI C standard.

ENABLING LANGUAGE EXTENSIONS
In the IAR Embedded Workbench® IDE, language extensions are enabled by default.

For information about how to enable and disable language extensions from the
command line, see the compiler options -€, page 126, and --strict_ansi, page 140.

C language extensions

ColdFire® IAR C/C++ Compiler
Reference Guide

This section gives a brief overview of the C language extensions available in the
ColdFire IAR C/C++ Compiler. The compiler provides a wide set of extensions, so to
help you to find the extensions required by your application, the extensions have been
grouped according to their expected usefulness. In short, this means:

e Important language extensions—extensions specifically tailored for efficient
embedded programming, typically to meet memory restrictions

e Useful language extensions—features considered useful and typically taken from
related standards, such as C99 and C++

e Minor language extensions, that is, the relaxation of some minor standards issues
and also some useful but minor syntax extensions.

IMPORTANT LANGUAGE EXTENSIONS

The following language extensions available both in the C and the C++ programming
languages are well suited for embedded systems programming:
e Memory attributes, type attributes, and object attributes

For information about the related concepts, the general syntax rules, and for
reference information, see the chapter Extended keywords.

Compiler extensions ___4

Placement at an absolute address or in a named segment

The @ operator or the directive #pragma location can be used for placing global
and static variables at absolute addresses, or placing a variable or function in a named
segment. For more information about using these primitives, see Controlling data
and function placement in memory, page 94, and location, page 176.

Alignment

Each data type has its own alignment, for more details, see Alignment, page 141. If
you want to change the alignment, the #pragma pack and #pragma
data_alignment directives are available. If you want to check the alignment of an
object, use the __ALIGNOF__ () operator.

The __ALIGNOF__ operator is used for accessing the alignment of an object. It takes
one of two forms:

® __ ALIGNOF__ (type)

® _ _ALIGNOF__ (expression)

In the second form, the expression is not evaluated.
Anonymous structs and unions

C++ includes a feature named anonymous unions. The compiler allows a similar
feature for both structs and unions in the C programming language. For more
information, see Anonymous structs and unions, page 93.

Bitfields and non-standard types

In ISO/ANSI C, a bitfield must be of type int or unsigned int. Using IAR
Systems language extensions, any integer type or enum may be used. The advantage
is that the struct will sometimes be smaller. This matches G.5.8 in the appendix of
the ISO standard, 1SO Portability I ssues. For more information, see Bitfields, page
143.

Dedicated segment operators __segment_begin and __segment_end
The syntax for these operators is:

void * __ segment_begin (segment)

void * _ segment_end (segment)
These operators return the address of the first byte of the named segment and the
first byte after the named segment, respectively. This can be useful if you have used
the @ operator or the #pragma location directive to place a data object or a function
in a user-defined segment.

The named segment must be a string literal that has been declared earlier with the
#pragma segment directive. If the segment was declared with a memory attribute
memattr,the type of the __segment_begin operatoris a pointer to memattrvoid.
Otherwise, the type is a default pointer to void. Note that you must have enabled
language extensions to use these operators.

Part 2. Compiler reference 153

C language extensions

In the following example, the type of the __segment_begin operator is void

__near *.

#pragma segment="MYSEGMENT" _ _near

segment_start_address = __segment_begin ("MYSECTION") ;

See also segment, page 182, and location, page 176.

USEFUL LANGUAGE EXTENSIONS

This section lists and briefly describes useful extensions, that is, useful features typically
taken from related standards, such as C99 and C++:

Inline functions

The #pragma inline directive, alternatively the inline keyword, advises the
compiler that the function whose declaration follows immediately after the directive
should be inlined. This is similar to the C++ keyword inline. For more information,
see inline, page 175.

Mixing declarations and statements

It is possible to mix declarations and statements within the same scope. This feature
is part of the C99 standard and C++.

Declaration in for loops

It is possible to have a declaration in the initialization expression of a for loop, for
example:

for (int i = 0; i < 10; ++1i)

{...}

This feature is part of the C99 standard and C++.
The bool data type

To use the bool type in C source code, you must include the file stdbool .h. This
feature is part of the C99 standard and C++. (The bool data type is supported by
default in C++.)

C++ style comments

C++ style comments are accepted. A C++ style comment starts with the character
sequence // and continues to the end of the line. For example:

// The length of the bar, in centimeters.
int length;

This feature is copied from the C99 standard and C++.

Inline assembler

Inline assembler can be used for inserting assembler instructions in the generated
function. This feature is part of the C99 standard and C++.

ColdFire® IAR C/C++ Compiler
154 Reference Guide

Compiler extensions ___4

The asmand __asm extended keywords both insert an assembler instruction. However,
when compiling C source code, the asm keyword is not available when the option
--strict_ansi is used. The __asm keyword is always available.

Note: Not all assembler directives or operators can be inserted using this keyword.
The syntax is:
asm ("string");

The string can be a valid assembler instruction or a data definition assembler directive,
but not a comment. You can write several consecutive inline assembler instructions, for
example:

asm ("Label: nop\n"
" bra.b Label");

where \n (new line) separates each new assembler instruction. Note that you can define
and use local labels in inline assembler instructions.

For more information about inline assembler, see Mixing C and assembler, page 69.

Compound literals
To create compound literals you can use the following syntax:

/* Create a pointer to an anonymous array */

int *p = (int [1) {1,2,3};

/* Create a pointer to an anonymous structX */

structX *px = &(structX) {5,6,7};

Note:
o A compound literal can be modified unless it is declared const
e Compound literals are not supported in Embedded C++ and Extended EC++.
o This feature is part of the C99 standard.

Incomplete arrays at end of structs

The last element of a struct may be an incomplete array. This is useful because one
chunk of memory can be allocated for the struct itself and for the array, regardless of
the size of the array.

Note: The array cannot be the only member of the struct. If that was the case, then
the size of the struct would be zero, which is not allowed in ISO/ANSI C.

Part 2. Compiler reference 155

C language extensions

156

ColdFire® IAR C/C++ Compiler
Reference Guide

Example

struct str
{

char a;

unsigned long bl[];
};

struct str * GetAStr(int size)
{
return malloc(sizeof (struct str) +
sizeof (unsigned long) * size);

void UseStr(struct str * s)

{
s->b[10] = 0;
}

The struct will inherit the alignment requirements from all elements, including the
alignment of the incomplete array. The array itself will not be included in the size of the
struct. However, the alignment requirements will ensure that the struct will end exactly
at the beginning of the array; this is known as padding.

In the example, the alignment of struct str will be 4 and the size is also 4. (Assuming
a processor where the alignment of unsigned long is 4.)

The memory layout of struct str is described in the following figure.

a pad b[0] b[1]

This feature is part of the C99 standard.

Hexadecimal floating-point constants

Floating-point constants can be given in hexadecimal style. The syntax is

0xMANTp{+ |-} EXPE, where MANT is the mantissa in hexadecimal digits, including an
optional . (decimal point), and ExPis the exponent with decimal digits, representing an
exponent of 2. This feature is part of the C99 standard.

Examples

0x1p0is 1

0xA.8p2 s 10.5%272

Compiler extensions ___4

Designated initializers in structures and arrays

Any initialization of either a structure (struct or union) or an array can have a
designation. A designation consists of one or more designators followed by an
initializer. A designator for a structure is specified as . elementname and for an array
[constant index expression].Using designated initializers is not supported in
C++.

Examples

The following definition shows a struct and its initialization using designators:

struct{
int i;
int j;
int k;
int 1;
short array[10];
}u={
.1 =6, /* initialize 1 to 6 */
.j =6, /* initialize j to 6 */
8, /* initialize k to 8 */
.arrayl[7] = 2, /* initialize element 7 to 2 */
.array[3] = 2, /* initialize element 3 to 2 */
5, /* arrayl[4] = 5 */
k=4 /* reinitialize k to 4 */
};

Note that a designator specifies the destination element of the initialization. Note also
that if one element is initialized more than once, it is the last initialization that will be
used.

To initialize an element in a union other than the first, do like this:
union{
int i;
float f£;
ty = {.£ = 5.0};
To set the size of an array by initializing the last element, do like this:

char arrayl[] = {[10] = ‘a’};

Part 2. Compiler reference 157

C language extensions

158

ColdFire® IAR C/C++ Compiler
Reference Guide

MINOR LANGUAGE EXTENSIONS

This section lists and briefly describes minor extensions, that is, the relaxation of some
standards issues and also some useful but minor syntax extensions:

Arrays of incomplete types

An array may have an incomplete struct, union, or enum type as its element type.
The types must be completed before the array is used (if it is), or by the end of the
compilation unit (if it is not).

Forward declaration of enum types

The IAR Systems language extensions allow that you first declare the name of an
enum and later resolve it by specifying the brace-enclosed list.

Missing semicolon at end of struct or union specifier

A warning is issued if the semicolon at the end of a struct or union specifier is
missing.

Null and void

In operations on pointers, a pointer to void is always implicitly converted to another
type if necessary, and a null pointer constant is always implicitly converted to a null
pointer of the right type if necessary. In ISO/ANSI C, some operators allow such
things, while others do not allow them.

Casting pointers to integers in static initializers

In an initializer, a pointer constant value may be cast to an integral type if the integral
type is large enough to contain it. For more information about casting pointers, see
Casting, page 146.

Taking the address of a register variable

In ISO/ANSI C, it is illegal to take the address of a variable specified as a register
variable. The compiler allows this, but a warning is issued.

Duplicated size and sign specifiers

Should the size or sign specifiers be duplicated (for example, short short or
unsigned unsigned), an error is issued.

long float means double

The type long float is accepted as a synonym for double.

Repeated typedef declarations

Redeclarations of typedef that occur in the same scope are allowed, but a warning
is issued.

Mixing pointer types

Assignment and pointer difference is allowed between pointers to types that are
interchangeable but not identical; for example, unsigned char * and char *. This
includes pointers to integral types of the same size. A warning is issued.

Compiler extensions ___4

Assignment of a string constant to a pointer to any kind of character is allowed, and
no warning will be issued.

e Non-top level const

Assignment of pointers is allowed in cases where the destination type has added type
qualifiers that are not at the top level (for example, int ** to int const **).
Comparing and taking the difference of such pointers is also allowed.

e Non-lvalue arrays

A non-lvalue array expression is converted to a pointer to the first element of the
array when it is used.

o Comments at the end of preprocessor directives

This extension, which makes it legal to place text after preprocessor directives, is
enabled, unless strict ISO/ANSI mode is used. The purpose of this language
extension is to support compilation of legacy code; we do not recommend that you
write new code in this fashion.

® An extra comma at the end of enum lists

Placing an extra comma is allowed at the end of an enum list. In strict ISO/ANSI
mode, a warning is issued.

o A label preceding a }

In ISO/ANSI C, a label must be followed by at least one statement. Therefore, it is
illegal to place the label at the end of a block. In the ColdFire IAR C/C++ Compiler,
a warning is issued.

Note: This also applies to the labels of switch statements.

e Empty declarations
An empty declaration (a semicolon by itself) is allowed, but a remark is issued
(provided that remarks are enabled).

e Single-value initialization
ISO/ANSI C requires that all initializer expressions of static arrays, structs, and
unions are enclosed in braces.
Single-value initializers are allowed to appear without braces, but a warning is
issued. In the ColdFire IAR C/C++ Compiler, the following expression is allowed:

struct str
{
int a;
} x = 10;
e Declarations in other scopes
External and static declarations in other scopes are visible. In the following example,
the variable y can be used at the end of the function, even though it should only be
visible in the body of the if statement. A warning is issued.

Part 2. Compiler reference 159

C language extensions

int test (int x)
{

if (x)

{

extern int y;
y = 1;

return y;

}
e Expanding function names into strings with the function as context

Use any of the symbols __func__ or __FUNCTION__ inside a function body to
make it expand into a string, with the function name as context. Use the symbol
__PRETTY_FUNCTION__ to also include the parameter types and return type. The
result might, for example, look like this if you use the __PRETTY_FUNCTION__

symbol:
"void func (char)"

These symbols are useful for assertions and other trace utilities and they require that
language extensions are enabled, see -€, page 126.

ColdFire® IAR C/C++ Compiler
160 Reference Guide

Extended keywords

This chapter describes the extended keywords that support specific features
of the ColdFire microcontroller and the general syntax rules for the keywords.
Finally the chapter gives a detailed description of each keyword.

For information about the address ranges of the different memory areas, see
the chapter Segment reference.

General syntax rules for extended keywords
To understand the syntax rules for the extended keywords, it is important to be familiar
with some related concepts.

The ColdFire IAR C/C++ Compiler provides a set of attributes that can be used on
functions or data objects to support specific features of the ColdFire microcontroller.
There are two types of attributes—type attributes and object attributes:

e Type attributes affect the external functionality of the data object or function
e Object attributes affect the internal functionality of the data object or function.

The syntax for the keywords differs slightly depending on whether it is a type attribute
or an object attribute, and whether it is applied to a data object or a function.

For information about how to use attributes to modify data, see the chapter Data storage.
For information about how to use attributes to modify functions, see the chapter
Functions. For detailed information about each attribute, see Descriptions of extended
keywords, page 165.

Note: The extended keywords are only available when language extensions are enabled
in the ColdFire IAR C/C++ Compiler.

In the IAR Embedded Workbench IDE, language extensions are enabled by default.

Use the -e compiler option to enable language extensions. See -€, page 126 for
additional information.

TYPE ATTRIBUTES

Type attributes define how a function is called, or how a data object is accessed. This
means that if you use a type attribute, it must be specified both when a function or data
object is defined and when it is declared.

Part 2. Compiler reference 161

General syntax rules for extended keywords

162

ColdFire® IAR C/C++ Compiler
Reference Guide

You can either place the type attributes directly in your source code, or use the pragma
directive #pragma type_attribute.

Type attributes can be further divided into memory attributes and general type
attributes.

Memory attributes

A memory attribute corresponds to a certain logical or physical memory in the
microcontroller.

e Auvailable function memory attributes: __near_func and __far_func
e Available data memory attributes: __near, __near_rel, and __far

Data objects, functions, and destinations of pointers or C++ references always have a
memory attribute. If no attribute is explicitly specified in the declaration or by the
pragma directive #pragma type_attribute, an appropriate default attribute is used.
You can only specify one memory attribute for each level of pointer indirection.

General type attributes

The following general type attributes are available:

e Function type attributes affect how the function should be called: __interrupt
and __monitor

e Datatypeattributes: const and volatile
You can specify as many type attributes as required for each level of pointer indirection.

To read more about the type qualifiers const and volatile, see Type qualifiers, page
149.

Syntax for type attributes used on data objects

In general, type attributes for data objects follow the same syntax as the type qualifiers
const and volatile.

The following declaration assigns the __near type attribute to the variables i and j; in
other words, the variable i and j is placed in near memory. The variables k and 1 behave
in the same way:

__near int i, j;
int __near k, 1;

Note that the attribute affects both identifiers.

Extended keywords °

The following declaration of i and j is equivalent with the previous one:

#pragma type_attribute=__near

int i, 3J;

The advantage of using pragma directives for specifying keywords is that it offers you a
method to make sure that the source code is portable. Note that the pragma directive has
no effect if a memory attribute is already explicitly declared.

For more examples of using memory attributes, see More examples, page 16.

An easier way of specifying storage is to use type definitions. The following two
declarations are equivalent:

typedef char __near Byte;
typedef Byte *BytePtr;
Byte b;

BytePtr bp;

and

__near char b;
char __near *bp;

Note that #pragma type_attribute can be used together with a typedef
declaration.
Syntax for type attributes on data pointers

The syntax for declaring pointers using type attributes follows the same syntax as the
type qualifiers const and volatile:

int __near * p; The int object is located in __near memory.
int * __near p; The pointer is located in __near memory.
__near int * p; The pointer is located in __near memory.

Syntax for type attributes on functions

The syntax for using type attributes on functions, differs slightly from the syntax of type
attributes on data objects. For functions, the attribute must be placed either in front of
the return type, alternatively in parentheses, for example:

__interrupt void my_handler (void) ;
or

void (__interrupt my_ handler) (void) ;

Part 2. Compiler reference 163

General syntax rules for extended keywords

164

ColdFire® IAR C/C++ Compiler
Reference Guide

The following declaration of my_handler is equivalent with the previous one:
#pragma type_attribute=__interrupt

void my_handler (void) ;

Syntax for type attributes on function pointers

To declare a function pointer, use the following syntax:

int (__far_func * fp) (double);

After this declaration, the function pointer £p points to farfunc memory.

An easier way of specifying storage is to use type definitions:

typedef __far_func void FUNC_TYPE (int) ;
typedef FUNC_TYPE *FUNC_PTR_TYPE;
FUNC_TYPE func();

FUNC_PTR_TYPE funcptr;

Note that #pragma type_attribute can be used together with a typedef
declaration.

OBJECT ATTRIBUTES

Object attributes affect the internal functionality of functions and data objects, but not
how the function is called or how the data is accessed. This means that an object attribute
does not need to be present in the declaration of an object.

The following object attributes are available:

Object attributes that can be used for variables: __no_init

Object attributes that can be used for functions and variables: location, @, and
_root

e Object attributes that can be used for functions: __intrinsic, and __noreturn.

You can specify as many object attributes as required for a specific function or data
object.

For more information about 1ocation and e, see Controlling data and function
placement in memory, page 94.
Syntax for object attributes

The object attribute must be placed in front of the type. For example, to place myarray
in memory that is not initialized at startup:

__no_init int myarray[10];

Extended keywords °

The #pragma object_attribute directive can also be used. The following
declaration is equivalent to the previous one:

#pragma object_attribute=__no_init

int myarray[10];

Note: Object attributes cannot be used in combination with the typedef keyword.

Summary of extended keywords

The following table summarizes the extended keywords:

Extended keyword

Description

__far
__far_func
__interrupt
__intrinsic
__monitor
__near
__near_rel
__near_func

__no_init

_noreturn

__root

Controls the storage of data objects
Controls the storage of functions
Supports interrupt functions

Reserved for compiler internal use only
Supports atomic execution of a function
Controls the storage of data objects
Controls the storage of data objects
Controls the storage of functions
Supports non-volatile memory

Informs the compiler that the declared function will not
return

Ensures that a function or variable is included in the object
code even if unused

Table 31: Extended keywords summary

Descriptions of extended keywords

The following sections give detailed information about each extended keyword.

__far
Syntax Follows the generic syntax rules for memory type attributes that can be used on data
objects, see Type attributes, page 161.
Description The __ far memory attribute explicitly places individual variables and constants in far

memory.

Part 2. Compiler reference 165

Descriptions of extended keywords

Storage information

Example

See also

__far _func

Syntax
Description

Storage information

Example

See also

__interrupt

Syntax

Description

Example

See also

___intrinsic

Description

ColdFire® IAR C/C++ Compiler
166 Reference Guide

o Address range: Anywhere in memory
e Maximum object size: 4 Gbytes

e Pointer size: 4 bytes
__far int x;

Memory types, page 13.

Follows the generic syntax rules for memory type attributes that can be used on
functions, see Type attributes, page 161.

The __far_func memory attribute overrides the default storage of functions given by
the selected code model and places individual functions in farfunc memory.

e Address range: Anywhere in memory
o Maximum size: 4 Gbytes

e Pointer size: 4 bytes
__far_ func void myfunction (void) ;

Code models and memory attributes for function storage, page 21.

Follows the generic syntax rules for type attributes that can be used on functions, see
Type attributes, page 161.

The __interrupt keyword specifies interrupt functions.

An interrupt function must have a void return type and cannot have any parameters.
__interrupt void my_interrupt_handler (void) ;

Interrupt functions, page 23 and INTVEC, page 208.

The __intrinsic keyword is reserved for compiler internal use only.

Extended keywords °

___monitor

Syntax Follows the generic syntax rules for type attributes that can be used on functions, see
Type attributes, page 161.

Description The __monitor keyword causes interrupts to be disabled during execution of the
function. This allows atomic operations to be performed, such as operations on
semaphores that control access to resources by multiple processes. A function declared
with the __monitor keyword is equivalent to any other function in all other respects.

Example __monitor int get_lock(void);

See also Monitor functions, page 24. Read also about the intrinsic functions __disable_interrupt,
page 186 __get_status register, page 186, and __set_status state, page 187.

___near

Syntax Follows the generic syntax rules for memory type attributes that can be used on data
objects, see Type attributes, page 161.

Description The __near memory attribute overrides the default storage of variables and places
individual variables and constants in near memory.

Storage information ® Address range: 0x0—07FFF and 0xFFFF8000—0xFFFFFFFF (64 Kbytes)

e Maximum object size: 32 Kbytes
e Pointer size: 4 bytes
Example __near int x;
See also Memory types, page 13.
__near_rel

Syntax Follows the generic syntax rules for memory type attributes that can be used on data
objects, see Type attributes, page 161.

Description The __near_rel memory attribute overrides the default storage of variables and places
individual variables and constants in a position-independent 64-Kbyte memory area.
Note that this keyword is only available in the Near relative data model.

Storage information o Address range: Anywhere in memory

Part 2. Compiler reference 167

Descriptions of extended keywords

Example

See also

__near_func

Syntax

Description

Storage information

Example

See also

_no_init

Syntax

Description

Example

__noreturn

Syntax

Description

ColdFire® IAR C/C++ Compiler
168 Reference Guide

o Maximum object size: 64 Kbytes—1 byte

e Pointer size: 4 bytes
__near_rel int x;

Memory types, page 13.

Follows the generic syntax rules for memory type attributes that can be used on
functions, see Type attributes, page 161.

The __near_func memory attribute overrides the default storage of functions given by
the selected code model and places individual functions in nearfunc memory.

® Address range: 0x0—07FFF and OxFFFF8000—0xFFFFFFFF (64 Kbytes)
o Maximum size: 32 Kbytes. A function cannot cross a 64-Kbyte boundary.

e Pointer size: 4 bytes
__near_func void myfunction (void) ;

Code models and memory attributes for function storage, page 21.

Follows the generic syntax rules for object attributes, see Object attributes, page 164.

Usethe __no_init keyword to place a data object in non-volatile memory. This means
that the initialization of the variable, for example at system startup, is suppressed.

__no_init int myarray[10];

Follows the generic syntax rules for object attributes, see Object attributes, page 164.

The __noreturn keyword can be used on a function to inform the compiler that the
function will not return. If you use this keyword on such functions, the compiler can
optimize more efficiently. Examples of functions that do not return are abort and exit.

Extended keywords °

Example __noreturn void terminate (void);

__root
Syntax Follows the generic syntax rules for object attributes, see Object attributes, page 164.
Description A function or variable with the __root attribute is kept whether or not it is referenced

from the rest of the application, provided its module is included. Program modules are
always included and library modules are only included if needed.

Example __root int myarrayl[10];

See also To read more about modules, segments, and the link process, see the | AR Linker and
Library Tools Reference Guide.

Part 2. Compiler reference 169

Descriptions of extended keywords

ColdFire® IAR C/C++ Compiler
170 Reference Guide

Pragma directives

This chapter describes the pragma directives of the ColdFire IAR C/C++
Compiler.

The #tpragma directive is defined by the ISO/ANSI C standard and is a
mechanism for using vendor-specific extensions in a controlled way to make
sure that the source code is still portable.

The pragma directives control the behavior of the compiler, for example how
it allocates memory for variables and functions, whether it allows extended
keywords, and whether it outputs warning messages.

The pragma directives are always enabled in the compiler.

Summary of pragma directives

The following table lists the pragma directives of the compiler that can be used either
with the #pragma preprocessor directive or the _Pragma () preprocessor operator:

Pragma directive Description

bitfields Controls the order of bitfield members
data_alignment Gives a variable a higher (more strict) alignment
diag_default Changes the severity level of diagnostic messages
diag_error Changes the severity level of diagnostic messages
diag_remark Changes the severity level of diagnostic messages
diag_suppress Suppresses diagnostic messages
diag_warning Changes the severity level of diagnostic messages
include_alias Specifies an alias for an include file

inline Inlines a function

language Controls the IAR Systems language extensions
location Specifies the absolute address of a variable, or places groups

of functions or variables in named segments
message Prints a message

object_attribute Changes the definition of a variable or a function

Table 32: Pragma directives summary

Part 2. Compiler reference 171

Descriptions of pragma directives

Pragma directive

Description

optimize
pack

required

rtmodel
segment

type_attribute

Specifies the type and level of an optimization
Specifies the alignment of structures and union members

Ensures that a symbol that is needed by another symbol is
included in the linked output

Adds a runtime model attribute to the module
Declares a segment name to be used by intrinsic functions

Changes the declaration and definitions of a variable or
function

Table 32: Pragma directives summary (Continued)

Note: For portability reasons, see also Recognized pragma directives (6.8.6), page 219

and.

Descriptions of pragma directives

This section gives detailed information about each pragma directive.

bitfields
Syntax #pragma bitfields=disjoint_types|joint_types|
reversed_disjoint_types|reversed|default|}
Parameters
disjoint_types Bitfield members are placed from the least significant bit to
the most significant bit. Storage containers of bitfields with
different base types may not overlap.
joint_types Bitfield members are placed depending on byte order, see
Bitfields, page 143. Storage containers of bitfields may overlap
other structure members.
reversed_disjoint_types Bitfield members are placed from the most significant bit to
the least significant bit. Storage containers of bitfields with
different base types may not overlap.
reversed This is an alias for reversed_disjoint_types.
default The default behavior for the ColdFire IAR C/C++ Compiler
is joint_types.
Description Use this pragma directive to control the layout of bitfield members.

ColdFire® IAR C/C++ Compiler
172 Reference Guide

See also

data_alignment

Syntax

Parameters

Description

diag default

Syntax

Parameters

Description

See also

diag error

Syntax

Parameters

Pragma directives °

Bitfields, page 143.

#pragma data_alignment=expression

expression A constant which must be a power of two (1, 2, 4, etc.).

Use this pragma directive to give a variable a higher (more strict) alignment than it
would otherwise have. It can be used on variables with static and automatic storage
duration.

When you use this directive on variables with automatic storage duration, there is an
upper limit on the allowed alignment for each function, determined by the calling
convention used.

#pragma diag_default=tagl, tag, ...]

tag The number of a diagnostic message, for example the message
number Pell7.

Use this pragma directive to change the severity level back to default, or to the severity
level defined on the command line by using any of the options --diag_error,
--diag_remark, --diag_suppress, Or --diag_warnings, for the diagnostic
messages specified with the tags.

Diagnostics, page 112.

#pragma diag_error=tagl, tag, ...]

tag The number of a diagnostic message, for example the message
number Pell7.

Part 2. Compiler reference 173

Descriptions of pragma directives

174

Description
See also

diag remark

Syntax

Parameters

Description
See also

diag suppress

Syntax

Parameters

Description

See also

diag_warning

Syntax

Parameters

Description

ColdFire® IAR C/C++ Compiler
Reference Guide

Use this pragma directive to change the severity level to error for the specified
diagnostics.

Diagnostics, page 112.

#pragma diag_remark=tagl, tag, ...]

tag The number of a diagnostic message, for example the message
number Pel77.

Use this pragma directive to change the severity level to remark for the specified
diagnostic messages.

Diagnostics, page 112.

#pragma diag_suppress=tagl, tag,...]

tag The number of a diagnostic message, for example the message
number Pell7.

Use this pragma directive to suppress the specified diagnostic messages.

Diagnostics, page 112.

#pragma diag_warning=tagl, tag, ...]

tag The number of a diagnostic message, for example the message
number Pe826.

Use this pragma directive to change the severity level to warning for the specified
diagnostic messages.

See also

include_alias

Syntax

Parameters

Description

Example

See also

inline
Syntax

Parameters

Description

Pragma directives °

Diagnostics, page 112.

#pragma include_alias "orig header" "subst_header"
#pragma include_alias <orig header> <subst_header>

orig_header The name of a header file for which you want to create an alias.

subst_header The alias for the original header file.

Use this pragma directive to provide an alias for a header file. This is useful for
substituting one header file with another, and for specifying an absolute path to a relative
file.

This pragma directive must appear before the corresponding #include directives and

subst_header must match its corresponding #include directive exactly.

#pragma include_alias <stdio.h> <C:\MyHeaders\stdio.h>
#include <stdio.h>

This example will substitute the relative file stdio.h with a counterpart located
according to the specified path.

Include file search procedure, page 110.

#pragma inline[=forced]

forced Disables the compiler’s heuristics and forces inlining.

Use this pragma directive to advise the compiler that the function whose declaration
follows immediately after the directive should be inlined—that is, expanded into the
body of the calling function. Whether the inlining actually takes place is subject to the
compiler’s heuristics.

This is similar to the C++ keyword inline, but has the advantage of being available in
C code.

Part 2. Compiler reference 175

Descriptions of pragma directives

language
Syntax

Parameters

Description

location

Syntax

Parameters

Description

Example

ColdFire® IAR C/C++ Compiler
176 Reference Guide

Specifying #pragma inline=forced disables the compiler’s heuristics and forces
inlining. If the inlining fails for some reason, for example if it cannot be used with the
function type in question (like print£), an error message is emitted.

Note: Because specifying #pragma inline=forced disables the compiler’s
heuristics, including the inlining heuristics, the function declared immediately after the
directive will not be inlined on optimization levels None or Low. No error or warning
message will be emitted.

#pragma language:{extended\default}

extended Turns on the IAR Systems language extensions and turns off the
--strict_ansi command line option.

default Uses the language settings specified by compiler options.

Use this pragma directive to enable the compiler language extensions or for using the
language settings specified on the command line.

#pragma location={address | NAME}

address The absolute address of the global or static variable for which you
want an absolute location.

NAME A user-defined segment name; cannot be a segment name
predefined for use by the compiler and linker.

Use this pragma directive to specify the location—the absolute address—of the global
or static variable whose declaration follows the pragma directive. The variable must be
declared __no_init. Alternatively, the directive can take a string specifying a segment
for placing either a variable or a function whose declaration follows the pragma
directive.

#pragma location=0xFF2000
__no_init volatile char PORT1; /* PORT1l is located at address
0xFF2000 */

See also

message

Syntax

Parameters

Description

Example:

object_attribute

Syntax

Parameters

Description

Example

See also

Pragma directives °

#pragma location="foo"
char PORT1; /* PORT1l is located in segment foo */

/* A better way is to use a corresponding mechanism */
#define FLASH _Pragma ("location=\"FLASH\"")

FLASH int i; /* 1 is placed in the FLASH segment */

Controlling data and function placement in memory, page 94.

#pragma message (message)

message The message that you want to direct to stdout.

Use this pragma directive to make the compiler print a message to stdout when the file
is compiled.

#ifdef TESTING
#pragma message ("Testing")
#endif

#pragma object_attribute=object_attributel,object_attribute, ...]

For a list of object attributes that can be used with this pragma directive, see Object
attributes, page 164.

Use this pragma directive to declare a variable or a function with an object attribute. This
directive affects the definition of the identifier that follows immediately after the
directive. The object is modified, not its type. Unlike the directive #pragma
type_attribute that specifies the storing and accessing of a variable or function, it is
not necessary to specify an object attribute in declarations.

#pragma object_attribute=__no_init
char bar;

General syntax rules for extended keywords, page 161.

Part 2. Compiler reference 177

Descriptions of pragma directives

optimize

Syntax #pragma optimize=param|[param...]

Parameters
balanced|size|speed Optimizes balanced between speed and size,

optimizes for size, or optimizes for speed

none | low|medium|high Specifies the level of optimization
no_code_motion Turns off code motion
no_cse Turns off common subexpression elimination
no_inline Turns off function inlining
no_tbaa Turns off type-based alias analysis
no_unroll Turns off loop unrolling

Description Use this pragma directive to decrease the optimization level, or to turn off some specific
optimizations. This pragma directive only affects the function that follows immediately
after the directive.
The parameters speed, size, and balanced only have effect on the high optimization
level and only one of them can be used as it is not possible to optimize for speed and
size at the same time. It is also not possible to use preprocessor macros embedded in this
pragma directive. Any such macro will not be expanded by the preprocessor.
Note: If you use the #pragma optimize directive to specify an optimization level that
is higher than the optimization level you specify using a compiler option, the pragma
directive is ignored.

Example #pragma optimize=speed

int small_and_used_often()

{

#pragma optimize=size no_inline
int big_and_seldom_used()

{

ColdFire® IAR C/C++ Compiler
178 Reference Guide

Pragma directives °

pack

Syntax #pragma pack (n)
#pragma pack()
#pragma pack ({push|pop}[,namel [,nl])

Parameters
n Sets an optional structure alignment; one of: 1, 2, 4, 8, or 16
Empty list Restores the structure alignment to default
push Sets a temporary structure alignment
pop Restores the structure alignment from a temporarily pushed

alignment

name An optional pushed or popped alignment label

Description Use this pragma directive to specify the alignment of structs and union members.

The #pragma pack directive affects declarations of structures following the pragma
directive to the next #pragma pack or end of file.

Note that accessing an object that is not aligned at its correct alignment requires code
that is both larger and slower than the code needed to access the same kind of object
when aligned correctly. If there are many accesses to such fields in the program, it is
usually better to construct the correct values in a struct that is not packed, and access this
instead.

Also, special care is needed when creating and using pointers to misaligned fields. For
direct access to misaligned fields in a packed struct, the compiler will emit the correct
(but slower and larger) code when needed. However, when a misaligned field is accessed
through a pointer to the field, the normal (smaller and faster) code for accessing the type
of the field is used. In the general case, this will not work.

Example | This example declares a structure without using the #pragma pack directive:

struct First
{
char alpha;
short beta;
}i

Part 2. Compiler reference 179

Descriptions of pragma directives

180

Example 2

Example 3

ColdFire® IAR C/C++ Compiler
Reference Guide

In this example, the structure First is not packed and has the following memory layout:

alpha beta

1 byte > 1 byte>| 2 bytes ——>|

Note that one pad byte has been added.

This example declares a similar structure using the #pragma pack directive:

#pragma pack(1l)

struct FirstPacked
{
char alpha;
short beta;
};

#pragma pack()

In this example, the structure FirstPacked is packed and has the following memory
layout:

alpha beta

1 byte — 2 bytes

This example declares a new structure, Second, that contains the structure
FirstPacked declared in the previous example. The declaration of Second is not
placed inside a #pragma pack block:

struct Second

{
struct FirstPacked first;
short gamma;

}i

required

Syntax

Parameters

Description

Example

rtmodel

Syntax

Parameters

Pragma directives °

The following memory layout is used:

first.alpha first.beta gamma

1 byte —> 2 bytes | 1byte—> 2 bytes I

Note that the structure FirstPacked will use the memory layout, size, and alignment
described in Example 2. The alignment of the member gamma is 2, which means that
alignment of the structure Second will become 2 and one pad byte will be added.

#pragma required=symbol

symbol Any statically linked function or variable.

Use this pragma directive to ensure that a symbol which is needed by a second symbol
is included in the linked output. The directive must be placed immediately before the
second symbol.

Use the directive if the requirement for a symbol is not otherwise visible in the
application, for example if a variable is only referenced indirectly through the segment
it resides in.

const char copyright[] = "Copyright by me";
#pragma required=copyright

int main[]

(...}

Even if the copyright string is not used by the application, it will still be included by the
linker and available in the output.

#pragma rtmodel="key", "value"

"key" A text string that specifies the runtime model attribute.

Part 2. Compiler reference 181

Descriptions of pragma directives

182

Description

Example

See also

segment

Syntax

Parameters

Description

ColdFire® IAR C/C++ Compiler
Reference Guide

"value" A text string that specifies the value of the runtime model attribute.
Using the special value * is equivalent to not defining the attribute at
all.

Use this pragma directive to add a runtime model attribute to a module, which can be
used by the linker to check consistency between modules.

This pragma directive is useful for enforcing consistency between modules. All modules
that are linked together and define the same runtime attribute key must have the same
value for the corresponding key, or the special value *. It can, however, be useful to state
explicitly that the module can handle any runtime model.

A module can have several runtime model definitions.

Note: The predefined compiler runtime model attributes start with a double underscore.
In order to avoid confusion, this style must not be used in the user-defined attributes.
#pragma rtmodel="I2C", "ENABLED"

The linker will generate an error if a module that contains this definition is linked with

a module that does not have the corresponding runtime model attributes defined.

Checking module consistency, page 65.

#pragma segment="NAME" [__memoryattribute] [align]

"NAME" The name of the segment

__memoryattribute An optional memory attribute identifying the memory the segment
will be placed in; if not specified, default memory is used.

align Specifies an alignment for the segment part. The value must be a
constant integer expression to the power of two.

Use this pragma directive to define a segment name that can be used by the segment
operators __segment_begin and __segment_end. All segment declarations for a
specific segment must have the same memory type attribute and alignment.

If an optional memory attribute is used, the return type of the segment operators
__segment_begin and __segment_end is:

void __memoryattribute *.

Pragma directives °

Example #pragma segment="MYHUGE" __near 4

See also Important language extensions, page 152. For more information about segments and
segment parts, see the chapter Placing code and data.

type_attribute

Syntax #pragma type_attribute=type_attributel, type_attribute,...]

Parameters For a list of type attributes that can be used with this pragma directive, see Type
attributes, page 161.

Description Use this pragma directive to specify IAR-specific type attributes, which are not part of
the ISO/ANSI C language standard. Note however, that a given type attribute may not
be applicable to all kind of objects.

This directive affects the declaration of the identifier, the next variable, or the next
function that follows immediately after the pragma directive.
Example In the following example, an int object with the memory attribute __near is defined:

#pragma type_attribute=__near
int x;

The following declaration, which uses extended keywords, is equivalent:

__near int x;

See also See the chapter Extended keywords for more details.

Part 2. Compiler reference 183

Descriptions of pragma directives

ColdFire® IAR C/C++ Compiler
184 Reference Guide

Intrinsic functions

This chapter gives reference information about the intrinsic functions, a

predefined set of functions available in the compiler.

The intrinsic functions provide direct access to low-level processor operations

and can be very useful in, for example, time-critical routines. The intrinsic

functions compile into inline code, either as a single instruction or as a short

sequence of instructions.

Intrinsic functions summary

To use intrinsic functions in an application, include the header file intrinsics.h.

Note that the intrinsic function names start with double underscores, for example:

__disable_interrupt

The following table summarizes the intrinsic functions:

Intrinsic function

Description

__disable_interrupt
__enable_interrupt
__get_status_register
__halt
__no_operation
__pulse
__set_status_register
__stop

__trap_false

Disables interrupts

Enables interrupts

Returns the status register including interrupt state
Inserts a HALT instruction

Inserts a NOP instruction

Inserts a PULSE instruction

Sets the status register including interrupt state
Inserts a STOP instruction

Inserts a TPF instruction

Table 33: Intrinsic functions summary

Part 2. Compiler reference

185

Descriptions of intrinsic functions

Descriptions of intrinsic functions

__disable_interrupt

Syntax

Description

__enable_interrupt

Syntax

Description

__get_status_register

Syntax

Description

Example

__halt

Syntax

Description

ColdFire® IAR C/C++ Compiler
186 Reference Guide

The following section gives reference information about each intrinsic function.

void __disable_interrupt (void) ;

Disables interrupts by setting the interrupt level to 7.

void __enable_interrupt (void) ;

Enables interrupts by inserting the zeroes in the interrupt priority mask of the status
register.

__listate_t __get_status_register (void) ;

Returns the status register which includes the interrupt level. The return value can be
used as an argument to the __set_status_register intrinsic function, which will
restore the interrupt state.

__istate_t s = __get_status_register();
__disable_interrupt();

/* Do something */

__set_status_register(s);

The advantage of using this sequence of code compared to using
__disable_interrupt and __enable_interrupt is that the code in this example
will not enable any interrupts disabled.

void __halt(void) ;

Inserts a HALT instruction.

Intrinsic functions __¢

__ho_operation

Syntax void __no_operation(void) ;

Description Inserts a NOP instruction.
__pulse

Syntax void __pulse(void);

Description Inserts a PULSE instruction.

___set_status_state

Syntax void __set_status_register(__istate_t);

Descriptions Restores the status register and interrupt level by setting the value returned by the
__get_status_register function.

For information about the __istate_t type, see __Qget_status register, page 186.

__stop
Syntax void __stop(unsigned short);
Description Inserts a STOP instruction.
__trap_false
Syntax void __trap_false(void);
Description Inserts a TPF instruction.

Part 2. Compiler reference 187

Descriptions of intrinsic functions

ColdFire® IAR C/C++ Compiler
188 Reference Guide

The preprocessor

This chapter gives a brief overview of the preprocessor, including reference

information about the different preprocessor directives, symbols, and other

related information.

Overview of the preprocessor

The preprocessor of the ColdFire IAR C/C++ Compiler adheres to the ISO/ANSI
standard. The compiler also makes the following preprocessor-related features available
to you:

Predefined preprocessor symbols

These symbols allow you to inspect the compile-time environment, for example the
time and date of compilation. For details, see Descriptions of predefined
preprocessor symbols, page 190.

User-defined preprocessor symbols defined using a compiler option

In addition to defining your own preprocessor symbols using the #define directive,
you can also use the option -D, see -D, page 121.

Preprocessor extensions

There are several preprocessor extensions, for example many pragma directives; for
more information, see the chapter Pragma directivesin this guide. Read also about
the corresponding _Pragma operator and the other extensions related to the

preprocessor, see Descriptions of miscellaneous preprocessor extensions, page 192.

Preprocessor output

Use the option --preprocess to direct preprocessor output to a named file, see
--preprocess, page 138.

Some parts listed by the ISO/ANSI standard are implementation-defined, for example
the character set used in the preprocessor directives and inclusion of bracketed and
quoted filenames. To read more about this, see Preprocessing directives, page 218.

Part 2. Compiler reference

189

Descriptions of predefined preprocessor symbols

Descriptions of predefined preprocessor symbols

The following table describes the predefined preprocessor symbols:

Predefined symbol Identifies

__BASE_FILE__ A string that identifies the name of the base source file (that is,
not the header file), being compiled. See also __ FILE _,
page 190, and —no_path_in_file_macros, page 133.

_ _BUILD_NUMBER_ _ A unique integer that identifies the build number of the
compiler currently in use. The build number does not
necessarily increase with a compiler that is released later.

__CODE_MODEL_ _ An integer that identifies the code model in use. The symbol
reflects the --code_model option and is defined to
__CODE_MODEL_NEAR__ or __CODE_MODEL_FAR_ _.
These symbolic names can be used when testing the
__CODE_MODEL_ _ symbol.

__cplusplus An integer which is defined when the compiler runs in any of
the C++ modes, otherwise it is undefined. When defined, its
value is 199711L. This symbol can be used with #ifdef to
detect whether the compiler accepts C++ code. It is
particularly useful when creating header files that are to be
shared by C and C++ code.”

__DATA_MODEL_ _ An integer that identifies the data model in use. The symbol
reflects the --data_model option and is defined to
__DATA_MODEL_NEAR_REL__ or
__DATA_MODEL_FAR_ _. These symbolic names can be
used when testing the __DATA_MODEL_ _ symbol.

__DATE_ _ A string that identifies the date of compilation, which is
returned in the form "Mmm dd yyyy", for example "Oct 30
*
2005".

_ _embedded_cplusplus An integer which is defined to 1 when the compiler runs in
any of the C++ modes, otherwise the symbol is undefined.
This symbol can be used with #ifdef to detect whether the
compiler accepts C++ code. It is particularly useful when
creating header files that are to be shared by C and C++
code.”

__FILE__ A string that identifies the name of the file being compiled,
which can be the base source file as well as any included
header file. See also __ BASE_FILE__, page 190, and
—-no_path_in_file_macros, page 1337

Table 34: Predefined symbols

ColdFire® IAR C/C++ Compiler
190 Reference Guide

The preprocessor PY

Predefined symbol Identifies

__func__ A string that identifies the name of the function in which the
symbol is used. This is useful for assertions and other trace
utilities. The symbol requires that language extensions are
enabled, see -e, page 126. See also
__PRETTY _FUNCTION__, page I91.

_ _FUNCTION_ _ A string that identifies the name of the function in which the
symbol is used. This is useful for assertions and other trace
utilities. The symbol requires that language extensions are
enabled, see -e, page 126. See also
__PRETTY_FUNCTION__, page |91l.

__IAR_SYSTEMS_ICC__ An integer that identifies the IAR compiler platform. The
current value is 6. Note that the number could be higher in a
future version of the product. This symbol can be tested with
#1ifdef to detect whether the code was compiled by a
compiler from IAR Systems.

__ICCCF__ An integer that is set to 1 when the code is compiled with the
ColdFire IAR C/C++ Compiler.

ISA An integer that identifies the code model in use. The symbol
reflects the -—isa option and is definedto __ISA_A__,
__ISA A _PLUS__,__TISA_B__,or__ISA_C__.These
symbolic names can be used when testing the __TISA__
symbol.

__LINE__ An integer that identifies the current source line number of
the file being compiled, which can be the base source file as
well as any included header file."

__LITTLE_ENDIAN__ An integer that identifies the byte order of the
microcontroller. For the ColdFire microcontroller families, the
value of this symbol is defined to 0 (FALSE), which means that
the byte order is big-endian.

__PRETTY_FUNCTION__ A string that identifies the function name, including parameter
types and return type, of the function in which the symbol is
used, for example "void func (char) ". This symbol is
useful for assertions and other trace utilities. The symbol
requires that language extensions are enabled, see -e, page
126. See also __ func__, page 191.

Table 34: Predefined symbols (Continued)

Part 2. Compiler reference 191

Descriptions of miscellaneous preprocessor extensions

Predefined symbol

Identifies

__STDC_ _

__STDC_VERSION_ _

__SUBVERSION_ _

__TIME__

VER

An integer that is set to 1, which means the compiler adheres
to the ISO/ANSI C standard. This symbol can be tested with
#ifdef to detect whether the compiler in use adheres to
ISO/ANSI C.

An integer that identifies the version of ISO/ANSI C standard
in use. The symbols expands to 199409L. This symbol does
not apply in EC++ mode.”

An integer that identifies the version letter of the compiler
version number, for example the C in 4.21C, as an ASCII
character.

A string that identifies the time of compilation in the form
"hh:mm:ss"."

An integer that identifies the version number of the IAR
compiler in use. The value of the number is calculated in the
following way: (100 * the major version number
+ the minor version number). For example, for
compiler version 3.34, 3 is the major version number and 34 is

the minor version number. Hence, the value of __VER_ _ is
334.

Table 34: Predefined symbols (Continued)
* This symbol is required by the ISO/ANSI standard.

Descriptions of miscellaneous preprocessor extensions

The following section gives reference information about the preprocessor extensions
that are available in addition to the predefined symbols, pragma directives, and

ISO/ANSI directives.

NDEBUG

Description This preprocessor symbol determines whether any assert macros you have written in
your application shall be included or not in the built application.

If this symbol is not defined, all assert macros are evaluated. If the symbol is defined,
all assert macros are excluded from the compilation. In other words, if the symbol is:

o defined, the assert code will not be included

e not defined, the assert code will be included

ColdFire® IAR C/C++ Compiler
192 Reference Guide

_Pragma()

Syntax

Description

Example

See also

#warning message

Syntax

Description

__VA_ARGS__

Syntax

The preprocessor PY

This means that if you have written any assert code and build your application, you
should define this symbol to exclude the assert code from the final application.

Note that the assert macro is defined in the assert .h standard include file.

In the IAR Embedded Workbench IDE, the NDEBUG symbol is automatically defined if
you build your application in the Release build configuration.

_Pragma ("string")

where string follows the syntax of the corresponding pragma directive.

This preprocessor operator is part of the C99 standard and can be used, for example, in
defines and has the equivalent effect of the #pragma directive.

Note: The -e option—enable language extensions—does not have to be specified.
#if NO_OPTIMIZE

#define NOOPT _Pragma ("optimize=2")
#else

#define NOOPT
#endif

See the chapter Pragma directives.

#warning message
where message can be any string.
Use this preprocessor directive to produce messages. Typically, this is useful for

assertions and other trace utilities, similar to the way the ISO/ANSI standard #error
directive is used.

#define P(...) __VA_ARGS_ _
#define P(x,y,...) X +y + __VA_ARGS_ _

__va_arGs__ will contain all variadic arguments concatenated, including the
separating commas.

Part 2. Compiler reference 193

Descriptions of miscellaneous preprocessor extensions

Description Variadic macros are the preprocessor macro equivalents of print £ style functions.
__VA_ARGS__ is part of the C99 standard.

Example #1if DEBUG
#define DEBUG_TRACE(S,...) printf(S,__VA_ARGS__)
#telse
#define DEBUG_TRACE(S,...)
#endif

DEBUG_TRACE ("The value is:%d\n",value);
will result in:

printf ("The value is:%d\n",value);

ColdFire® IAR C/C++ Compiler
194 Reference Guide

Library functions

This chapter gives an introduction to the C and C++ library functions. It also
lists the header files used for accessing library definitions.

For detailed reference information about the library functions, see the online
help system.

Introduction

The ColdFire IAR C/C++ Compiler comes with the IAR DLIB Library, which is a
complete ISO/ANSI C and C++ library. This library also supports floating-point
numbers in IEEE 754 format and it can be configured to include different levels of
support for locale, file descriptors, multibyte characters, et cetera.

For detailed information about the library functions, see the online documentation
supplied with the product. There is also keyword reference information for the DLIB
library functions. To obtain reference information for a function, select the function
name in the editor window and press F1.

For additional information about library functions, see the chapter
Implementation-defined behavior in this guide.

HEADER FILES

Your application program gains access to library definitions through header files, which
it incorporates using the #include directive. The definitions are divided into a number
of different header files, each covering a particular functional area, letting you include
just those that are required.

It is essential to include the appropriate header file before making any reference to its
definitions. Failure to do so can cause the call to fail during execution, or generate error
or warning messages at compile time or link time.

LIBRARY OBJECT FILES

Most of the library definitions can be used without modification, that is, directly from
the library object files that are supplied with the product. For information about how to
choose a runtime library, see Basic settingsfor project configuration, page 5. The linker
will include only those routines that are required—directly or indirectly—by your
application.

Part 2. Compiler reference

195

IAR DLIB Library

196

REENTRANCY

A function that can be simultaneously invoked in the main application and in any
number of interrupts is reentrant. A library function that uses statically allocated data is
therefore not reentrant.

Most parts of the DLIB library are reentrant, but the following functions and parts are
not reentrant as they need static data:

e Heap functions—malloc, free, realloc, calloc, as well as the C++ operators
new and delete
o Time functions—asctime, localtime, gmtime, mktime

o Multibyte functions—mbrlen, mbrtowc, mbsrtowc, wertomb, wesrtomb,
wctomb

o The miscellaneous functions setlocale, rand, atexit, strerror, strtok
e Functions that use files in some way. This includes printf, scanf, getchar, and
putchar. The functions sprintf and sscanf are not included.

In addition, some functions share the same storage for errno. These functions are not
reentrant, since an errno value resulting from one of these functions can be destroyed
by a subsequent use of the function before it has been read. Among these functions are:

exp, expl0, ldexp, log, logl0, pow, sqgrt, acos, asin, atan2,
cosh, sinh, strtod, strtol, strtoul

Remedies for this are:

e Do not use non-reentrant functions in interrupt service routines

o Guard calls to a non-reentrant function by a mutex, or a secure region, etc.

IAR DLIB Library

ColdFire® IAR C/C++ Compiler
Reference Guide

The IAR DLIB Library provides most of the important C and C++ library definitions
that apply to embedded systems. These are of the following types:

o Adherence to a free-standing implementation of the ISO/ANSI standard for the
programming language C. For additional information, see the chapter
Implementation-defined behavior in this guide.

e Standard C library definitions, for user programs.
Embedded C++ library definitions, for user programs.

CSTARTUP, the module containing the start-up code. It is described in the chapter
The DLIB runtime environment in this guide.

e Runtime support libraries; for example low-level floating-point routines.

Library functions ___4

e Intrinsic functions, allowing low-level use of ColdFire features. See the chapter

Intrinsic functions for more information.

In addition, the IAR DLIB Library includes some added C functionality, partly taken

from the C99 standard, see Added C functionality, page 200.

C HEADER FILES

This section lists the header files specific to the DLIB library C definitions. Header files
may additionally contain target-specific definitions; these are documented in the chapter

Compiler extensions.

The following table lists the C header files:

Header file Usage

assert.h Enforcing assertions when functions execute
ctype.h Classifying characters

errno.h Testing error codes reported by library functions
float.h Testing floating-point type properties
inttypes.h Defining formatters for all types defined in stdint.h
iso0646.h Using Amendment |—is0646.h standard header
limits.h Testing integer type properties

locale.h Adapting to different cultural conventions
math.h Computing common mathematical functions
setjmp.h Executing non-local goto statements

signal.h Controlling various exceptional conditions
stdarg.h Accessing a varying number of arguments
stdbool.h Adds support for the bool data type in C.
stddef.h Defining several useful types and macros
stdint.h Providing integer characteristics

stdio.h Performing input and output

stdlib.h Performing a variety of operations

string.h Manipulating several kinds of strings

time.h Converting between various time and date formats
wchar.h Support for wide characters

wctype.h Classifying wide characters

Table 35: Traditional standard C header files—DLIB

Part 2. Compiler reference 197

IAR DLIB Library

198

ColdFire® IAR C/C++ Compiler
Reference Guide

C++ HEADER FILES

This section lists the C++ header files.

Embedded C++
The following table lists the Embedded C++ header files:

Header file Usage

complex Defining a class that supports complex arithmetic

exception Defining several functions that control exception handling

fstream Defining several I/O stream classes that manipulate external files
iomanip Declaring several I/O stream manipulators that take an argument

ios Defining the class that serves as the base for many I/O streams classes
iosfwd Declaring several I/O stream classes before they are necessarily defined
iostream Declaring the 1/O stream objects that manipulate the standard streams
istream Defining the class that performs extractions

new Declaring several functions that allocate and free storage

ostream Defining the class that performs insertions

sstream Defining several I/O stream classes that manipulate string containers
stdexcept Defining several classes useful for reporting exceptions

streambuf Defining classes that buffer 1/O stream operations

string Defining a class that implements a string container

strstream Defining several /O stream classes that manipulate in-memory character

sequences

Table 36: Embedded C++ header files

The following table lists additional C++ header files:

Header file

Usage

fstream.h
iomanip.h
iostream.h

new.h

Defining several /O stream classes that manipulate external files
Declaring several I/O stream manipulators that take an argument
Declaring the 1/O stream objects that manipulate the standard streams

Declaring several functions that allocate and free storage

Table 37: Additional Embedded C++ header files—DLIB

Library functions ___4

Extended Embedded C++ standard template library

The following table lists the Extended EC++ standard template library (STL) header

files:

Header file Description

algorithm Defines several common operations on sequences
deque A deque sequence container

functional Defines several function objects

hash_map A map associative container, based on a hash algorithm
hash_set A set associative container, based on a hash algorithm
iterator Defines common iterators, and operations on iterators
list A doubly-linked list sequence container

map A map associative container

memory Defines facilities for managing memory

numeric Performs generalized numeric operations on sequences
queue A queue sequence container

set A set associative container

slist A singly-linked list sequence container

stack A stack sequence container

utility Defines several utility components

vector A vector sequence container

Table 38: Standard template library header files

Using standard C libraries in C++

The C++ library works in conjunction with 15 of the header files from the standard C
library, sometimes with small alterations. The header files come in two forms—new and
traditional—for example, cassert and assert.h.

The following table shows the new header files:

Header file Usage

cassert Enforcing assertions when functions execute

cctype Classifying characters

cerrno Testing error codes reported by library functions
cfloat Testing floating-point type properties

cinttypes Defining formatters for all types defined in stdint.h

Table 39: New standard C header files—DLIB

Part 2. Compiler reference 199

IAR DLIB Library

Header file Usage

climits Testing integer type properties

clocale Adapting to different cultural conventions
cmath Computing common mathematical functions
csetjmp Executing non-local goto statements
csignal Controlling various exceptional conditions
cstdarg Accessing a varying number of arguments
cstdbool.h Adds support for the bool data type in C.
cstddef Defining several useful types and macros
cstdint.h Providing integer characteristics

cstdio Performing input and output

cstdlib Performing a variety of operations
cstring Manipulating several kinds of strings

ctime Converting between various time and date formats
cwchar.h Support for wide characters

cwctype.h Classifying wide characters

Table 39: New standard C header files—DLIB (Continued)

LIBRARY FUNCTIONS AS INTRINSIC FUNCTIONS

Certain C library functions will under some circumstances be handled as intrinsic
functions and will generate inline code instead of an ordinary function call, for example
memcpy, memset, and strcat.

ADDED C FUNCTIONALITY

The IAR DLIB Library includes some added C functionality, partly taken from the C99
standard.

The following include files provide these features:

® ctype.h

® inttypes.h
® math.h

® stdbool.h
® stdint.h

® stdio.h

® stdlib.h

[

wchar.h

ColdFire® IAR C/C++ Compiler
200 Reference Guide

Library functions ___4

® wctype.h

ctype.h

In ctype.h, the C99 function isblank is defined.

inttypes.h

This include file defines the formatters for all types defined in stdint .h to be used by
the functions printf, scanf, and all their variants.

math.h

In math.h all functions exist in a float variant and a 1ong double variant, suffixed
by £ and 1 respectively. For example, sinf and sinl.

The following C99 macro symbols are defined:

HUGE_VALF, HUGE_VALL, INFINITY, NAN, FP_INFINITE, FP_NAN, FP_NORMAL,
FP_SUBNORMAL, FP_ZERO, MATH_ERRNO, MATH_ERREXCEPT, math_errhandling.

The following C99 macro functions are defined:

fpclassify, signbit,isfinite, isinf, isnan, isnormal, isgreater, isless,

islessequal, islessgreater, isunordered.
The following C99 type definitions are added:

float_t, double_t.

stdbool.h

This include file makes the boo1 type available if the Allow | AR extensions(-e) option
is used.

stdint.h

This include file provides integer characteristics.

stdio.h
In stdio.h, the following C99 functions are defined:
vscanf, viscanf, vsscanf, vsnprintf, snprintf

The functions printf, scanf, and all their variants have added functionality from the
C99 standard. For reference information about these functions, see the library reference
available from the Help menu.

Part 2. Compiler reference 201

IAR DLIB Library

202

ColdFire® IAR C/C++ Compiler
Reference Guide

The following functions providing I/O functionality for libraries built without FILE
support are definded:

__write_array Corresponds to fwrite on stdout.
__ungetchar Corresponds to ungetc on stdout.

__gets Corresponds to fgets on stdin.

stdlib.h
In stdlib.h, the following C99 functions are defined:
_Exit, llabs, 11div, strtoll, strtoull, atoll, strtof, strtold.

The function strtod has added functionality from the C99 standard. For reference
information about this functions, see the library reference available from the Help
menu.

The __gsortbbl function is defined; it provides sorting using a bubble sort algorithm.
This is useful for applications that have a limited stack.

wchar.h

In wchar . h, the following C99 functions are defined:

viwscanf, vswscanf, vwscanf, wcstof, wecstolb.

wctype.h

In wetype . h, the C99 function iswblank is defined.

Segment reference

The ColdFire IAR C/C++ Compiler places code and data into named

segments which are referred to by the IAR XLINK Linker. Details about the
segments are required for programming assembler language modules, and are

also useful when interpreting the assembler language output from the

compiler.

For more information about segments, see the chapter Placing code and data.

Summary of segments

The table below lists the segments that are available in the ColdFire IAR C/C++

Compiler:

Segment Description

CODE Holds the __near_func program code.

CSTACK Holds the stack used by C or C++ programs.

DIFUNCT Holds pointers to code, typically C++ constructors, that should be
executed by the system startup code before main is called.

EARLYDIFUNCT Holds the early dynamic initialization vector used by C++.

FAR_AN Holds __ far located uninitialized data.

FAR_C Holds __ far constant data.

FAR_T Holds __ far static and global initialized variables.

FAR_ID Holds initial values for __ far static and global variables in FAR_TI.

FAR_N Holds __no_init __ far static and global variables.

FAR_Z Holds zero-initialized __ far static and global variables.

FCODE Holds the __ far_func program code.

HEAP Holds the heap used for dynamically allocated data.

.lar.dynexit
INTVEC
NEAR_AN
NEAR_C

NEAR_T

Holds the atexit table.

Contains the reset and interrupt vectors.
Holds __near located uninitialized data.
Holds __near constant data.

Holds __near static and global initialized variables.

Table 40: Segment summary

Part 2. Compiler reference

203

Descriptions of segments

204

Segment Description

NEAR_ID Holds initial values for __near static and global variables in NEAR_T.

NEAR_N Holds __no_init __near static and global variables.

NEAR_Z Holds zero-initialized __near static and global variables.

NEARPID_I Holds __near_rel static and global initialized variables.

NEARPID_ID Holds initial values for __near_rel static and global variables in
NEARPID_T.

NEARPID_N Holds __no_init __near_rel static and global variables.

NEARPID_Z Holds zero-initialized __near_rel static and global variables.

PIDBASE Empty placeholder segment.

RCODE Holds the startup code and other assembler support routines.

Table 40: Segment summary (Continued)

Descriptions of segments

CODE

Description
Segment memory type

Memory placement

ColdFire® IAR C/C++ Compiler
Reference Guide

This section gives reference information about each segment.

The segments are placed in memory by using the segment placement linker directives
-z and -P, for sequential and packed placement, respectively. Some segments cannot
use packed placement, as their contents must be continuous.

In each description, the segment memory type—CODE, CONST, or DATA—indicates
whether the segment should be placed in ROM or RAM memory; see Table 7, XLINK
segment memory types, page 28.

For information about the -z and the - P directives, see the IAR Linker and Library Tools
Reference Guide.

For information about how to define segments in the linker command file, see
Customizing the linker command file, page 28.

For detailed information about the extended keywords mentioned here, see the chapter

Extended keywords.

Holds __near_func program code, except the code for system initialization.
CODE

This segment must be placed in one of the ranges 0x0-0x7FFF and
0XFFFF8000-0xFFFFFFFF.

Segment reference ___4

Access type Read-only

CSTACK
Description Holds the internal data stack.
Segment memory type DATA
Memory placement This segment can be placed anywhere in memory.
Access type Read/write
See also The stack, page 33.

DIFUNCT
Description Holds the dynamic initialization vector used by C++.
Segment memory type CONST
Memory placement This segment can be placed anywhere in memory.
Access type Read-only

EARLYDIFUNCT
Description Holds the early dynamic initialization vector used by C++.
Segment memory type CONST
Memory placement This segment can be placed anywhere in memory.
Access type Read-only

FAR_AN
Description Holds __no_init __far located data.

Segments containing located data need no further configuration because they have
already been assigned addresses prior to linking. Located means being placed at an
absolute location using the @ operator or the #pragma location directive.

Part 2. Compiler reference 205

Descriptions of segments

FAR_C
Description Holds __far constant data.
Segment memory type CONST
Memory placement This segment can be placed anywhere in memory.
Access type Read-only
FAR_I
Description Holds __ far static and global initialized variables initialized by copying from the
segment FAR_ID at application startup.
This segment cannot be placed in memory by using the -p directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker command file, the -z directive must be used.
Segment memory type DATA
Memory placement This segment can be placed anywhere in memory.
Access type Read/write
FAR_ID
Description Holds initial values for __ far static and global variables in the FAR_TI segment. These
values are copied from FAR_ID to FAR_T at application startup.
This segment cannot be placed in memory by using the -p directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker command file, the -z directive must be used.
Segment memory type CONST
Memory placement This segment can be placed anywhere in memory.
Access type Read-only

ColdFire® IAR C/C++ Compiler
206 Reference Guide

Segment reference ___4

FAR_N
Description Holds static and global __no_init __far variables.
Segment memory type DATA
Memory placement This segment can be placed anywhere in memory.
Access type Read/write
FAR Z
Description Holds zero-initialized __ far static and global variables.
This segment cannot be placed in memory by using the -p directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker command file, the -z directive must be used.
Segment memory type DATA
Memory placement This segment can be placed anywhere in memory.
Access type Read/write
FCODE
Description Holds __far_func program code, except the code for system initialization.
Segment memory type CODE
Memory placement This segment can be placed anywhere in memory.
Access type Read-only
HEAP
Description Holds the heap used for dynamically allocated data in memory, in other words data
allocated by malloc and free, and in C++, new and delete.
Segment memory type DATA

Part 2. Compiler reference 207

Descriptions of segments

Memory placement This segment must be placed in the first 64 Kbytes of memory.
Access type Read/write
See also The heap, page 35.
.iar.dynexit
Description Holds entries for each dynamically initialized C++ object with a static life span and en

entry for each call to the atexit function performed by your application.

Memory placement This segment can be placed anywhere in memory.
See also Destruction and atexit() handling, page 37.
INTVEC
Description Holds the interrupt vector table.
Segment memory type CODE
Memory placement This segment must be placed where the interrupt vector table is located.
Access type Read-only
NEAR_AN
Description Holds __no_init __near located data.

Segments containing located data need no further configuration because they have
already been assigned addresses prior to linking. Located means being placed at an
absolute location using the @ operator or the #pragma location directive.

NEAR_C
Description Holds __near constant data.
Segment memory type CONST
Memory placement This segment must be placed in one of the ranges 0x0-0x7FFF and

0xFFFF8000-0xFFFFFFFF.

ColdFire® IAR C/C++ Compiler
208 Reference Guide

Access type

NEAR I

Description

Segment memory type

Memory placement

Access type

NEAR_ID

Description

Segment memory type
Memory placement

Access type

NEAR_N

Description
Segment memory type

Memory placement

Segment reference ___4

Read-only

Holds __near static and global initialized variables initialized by copying from the
segment NEAR_ID at application startup.

This segment cannot be placed in memory by using the -p directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker command file, the -z directive must be used.

DATA

This segment must be placed in one of the ranges 0x0-0x7FFF and
0XFFFF8000-0xFFFFFFFF.

Read/write

Holds initial values for __near static and global variables in the NEAR_T segment.
These values are copied from NEAR_ID to NEAR_T at application startup.

This segment cannot be placed in memory by using the -p directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker command file, the -z directive must be used.

CONST

This segment can be placed anywhere in memory.

Read-only

Holds static and global __no_init __near variables.

DATA

This segment must be placed in one of the ranges 0x0-0x7FFF and
0XFFFF8000-0xFFFFFFFF.

Part 2. Compiler reference

209

Descriptions of segments

Access type

NEAR Z

Description

Segment memory type

Memory placement

Access type

NEARPID |

Description

Segment memory type

Memory placement

Access type

NEARPID_ID

Description

ColdFire® IAR C/C++ Compiler
210 Reference Guide

Read/write

Holds zero-initialized __near static and global variables.

This segment cannot be placed in memory by using the -p directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker command file, the -z directive must be used.

DATA

This segment must be placed in one of the ranges 0x0-0x7FFF and
0XFFFF8000-0xFFFFFFFF.

Read/write

Holds __near_rel static and global initialized variables initialized by copying from
the segment NEARPID_ID at application startup.

This segment cannot be placed in memory by using the -p directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker command file, the -z directive must be used.

DATA

This segment can be placed anywhere in memory, but the segment must be located in
the same 64-Kbyte memory block as the segments PIDBASE, NEARPID_N, and
NEARPID_Z.

Read/write

Holds initial values for __near_rel static and global variables in the NEARPID_I
segment. These values are copied from NEARPID_ID to NEARPID_I at application
startup.

Segment memory type
Memory placement

Access type

NEARPID_N

Description
Segment memory type

Memory placement

Access type

NEARPID_Z

Description

Segment memory type

Memory placement

Access type

Segment reference ___4

This segment cannot be placed in memory by using the -p directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker command file, the -z directive must be used.

CONST
This segment can be placed anywhere in memory.

Read-only

Holds static and global __no_init __near_rel variables.

DATA

This segment can be placed anywhere in memory, but the segment must be located in
the same 64-Kbyte memory block as the segments PIDBASE, NEARPID_T, and
NEARPID_Z.

Read/write

Holds zero-initialized __near_rel static and global variables.

This segment cannot be placed in memory by using the -p directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker command file, the -z directive must be used.

DATA
This segment can be placed anywhere in memory, but the segment must be located in
the same 64-Kbyte memory block as the segments PIDBASE, NEARPID_N, and

NEARPID_Z.

Read/write

Part 2. Compiler reference

211

Descriptions of segments

PIDBASE

Description

Segment memory type

Memory placement

Access type

RCODE

Description

Segment memory type
Memory placement

Access type

ColdFire® IAR C/C++ Compiler
212 Reference Guide

An empty placeholder segment that is needed in front of the NEARPID_suffix
segments.

Any type.

This segment can be placed anywhere in memory, but the segment must be located in
the same 64-Kbyte memory block as the segments NEARPID_I, NEARPID_N, and
NEARPID_Z. Note that the PIDBASE segment must be placed first in line of these

segments.

Read-only

Holds the startup code and other assembler support routines.

This segment cannot be placed in memory by using the -p directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker command file, the -z directive must be used.

CODE

This segment can be placed anywhere in memory.

Read-only

Implementation-defined
behavior

This chapter describes how the ColdFire IAR C/C++ Compiler handles the
implementation-defined areas of the C language.

ISO 9899:1990, the International Organization for Standardization standard -
Programming Languages - C (revision and redesign of ANSI X3.159-1989,
American National Standard), changed by the ISO Amendment |:1994,
Technical Corrigendum |, and Technical Corrigendum 2, contains an appendix
called Portability Issues. The ISO appendix lists areas of the C language that ISO
leaves open to each particular implementation.

Note: The ColdFire IAR C/C++ Compiler adheres to a freestanding
implementation of the ISO standard for the C programming language. This
means that parts of a standard library can be excluded in the implementation.

Descriptions of implementation-defined behavior

This section follows the same order as the ISO appendix. Each item covered includes
references to the ISO chapter and section (in parenthesis) that explains the
implementation-defined behavior.

TRANSLATION

Diagnostics (5.1.1.3)
Diagnostics are produced in the form:
filename, linenumber levell[tag]: message

where filename is the name of the source file in which the error was encountered,
linenumber is the line number at which the compiler detected the error, Ievel is the
level of seriousness of the message (remark, warning, error, or fatal error), tag is a
unique tag that identifies the message, and message is an explanatory message, possibly
several lines.

Part 2. Compiler reference 213

Descriptions of implementation-defined behavior

ENVIRONMENT

Arguments to main (5.1.2.2.2.1)

The function called at program startup is called main. There is no prototype declared for
main, and the only definition supported for main is:

int main(void)

To change this behavior for the TAR DLIB runtime environment, see Customizing
systeminitialization, page 54.

Interactive devices (5.1.2.3)

The streams stdin and stdout are treated as interactive devices.
IDENTIFIERS

Significant characters without external linkage (6.1.2)

The number of significant initial characters in an identifier without external linkage is
200.

Significant characters with external linkage (6.1.2)

The number of significant initial characters in an identifier with external linkage is 200.

Case distinctions are significant (6.1.2)

Identifiers with external linkage are treated as case-sensitive.
CHARACTERS

Source and execution character sets (5.2.1)

The source character set is the set of legal characters that can appear in source files. The
default source character set is the standard ASCII character set. However, if you use the
command line option --enable_multibytes, the source character set will be the host
computer’s default character set.

The execution character set is the set of legal characters that can appear in the execution
environment. The default execution character set is the standard ASCII character set.
However, if you use the command line option --enable_multibytes, the execution
character set will be the host computer’s default character set. The IAR DLIB Library
needs a multibyte character scanner to support a multibyte execution character set.

See Locale, page 59.

ColdFire® IAR C/C++ Compiler
214 Reference Guide

Implementation-defined behavior ___¢

Bits per character in execution character set (5.2.4.2.1)

The number of bits in a character is represented by the manifest constant CHAR_BIT. The
standard include file 1imits.h defines CHAR_BIT as 8.

Mapping of characters (6.1.3.4)

The mapping of members of the source character set (in character and string literals) to
members of the execution character set is made in a one-to-one way. In other words, the
same representation value is used for each member in the character sets except for the
escape sequences listed in the ISO standard.

Unrepresented character constants (6.1.3.4)

The value of an integer character constant that contains a character or escape sequence
not represented in the basic execution character set or in the extended character set for
a wide character constant generates a diagnostic message, and will be truncated to fit the
execution character set.

Character constant with more than one character (6.1.3.4)

An integer character constant that contains more than one character will be treated as an
integer constant. The value will be calculated by treating the leftmost character as the
most significant character, and the rightmost character as the least significant character,
in an integer constant. A diagnostic message will be issued if the value cannot be
represented in an integer constant.

A wide character constant that contains more than one multibyte character generates a
diagnostic message.
Converting multibyte characters (6.1.3.4)

The only locale supported—that is, the only locale supplied with the IAR C/C++
Compiler—is the ‘C’ locale. If you use the command line option
--enable_multibytes, the IAR DLIB Library will support multibyte characters if
you add a locale with multibyte support or a multibyte character scanner to the library.

See Locale, page 59.

Range of 'plain’ char (6.2.1.1)

A ‘plain’ char has the same range as an unsigned char.

Part 2. Compiler reference 215

Descriptions of implementation-defined behavior

INTEGERS

Range of integer values (6.1.2.5)

The representation of integer values are in the two's complement form. The most
significant bit holds the sign; 1 for negative, O for positive and zero.

See Basic data types, page 142, for information about the ranges for the different integer
types.

Demotion of integers (6.2.1.2)

Converting an integer to a shorter signed integer is made by truncation. If the value
cannot be represented when converting an unsigned integer to a signed integer of equal
length, the bit-pattern remains the same. In other words, a large enough value will be
converted into a negative value.

Signed bitwise operations (6.3)
Bitwise operations on signed integers work the same way as bitwise operations on
unsigned integers; in other words, the sign-bit will be treated as any other bit.

Sign of the remainder on integer division (6.3.5)

The sign of the remainder on integer division is the same as the sign of the dividend.

Negative valued signed right shifts (6.3.7)

The result of a right-shift of a negative-valued signed integral type preserves the sign-bit.
For example, shifting 0xFF00 down one step yields 0xFF80.

FLOATING POINT

Representation of floating-point values (6.1.2.5)

The representation and sets of the various floating-point numbers adheres to IEEE
854-1987. A typical floating-point number is built up of a sign-bit (s), a biased
exponent (e), and a mantissa ().

See Floating-point types, page 145, for information about the ranges and sizes for the
different floating-point types: £loat and double.
Converting integer values to floating-point values (6.2.1.3)

When an integral number is cast to a floating-point value that cannot exactly represent
the value, the value is rounded (up or down) to the nearest suitable value.

ColdFire® IAR C/C++ Compiler
216 Reference Guide

Implementation-defined behavior ___¢

Demoting floating-point values (6.2.1.4)

When a floating-point value is converted to a floating-point value of narrower type that
cannot exactly represent the value, the value is rounded (up or down) to the nearest
suitable value.

ARRAYS AND POINTERS

size_t (6.3.3.4, 7.1.1)

See size t, page 147, for information about size_t.

Conversion from/to pointers (6.3.4)

See Casting, page 146, for information about casting of data pointers and function
pointers.

ptrdiff_t (6.3.6, 7.1.1)

See ptrdiff_t, page 147, for information about the ptrdiff_t.
REGISTERS

Honoring the register keyword (6.5.1)

User requests for register variables are not honored.

STRUCTURES, UNIONS, ENUMERATIONS, AND BITFIELDS

Improper access to a union (6.3.2.3)

If a union gets its value stored through a member and is then accessed using a member
of a different type, the result is solely dependent on the internal storage of the first
member.

Padding and alignment of structure members (6.5.2.1)

See the section Basic data types, page 142, for information about the alignment
requirement for data objects.

Sign of 'plain’ bitfields (6.5.2.1)

A 'plain’ int bitfield is treated as a signed int bitfield. All integer types are allowed as
bitfields.

Part 2. Compiler reference 217

Descriptions of implementation-defined behavior

218

ColdFire® IAR C/C++ Compiler
Reference Guide

Allocation order of bitfields within a unit (6.5.2.1)

Bitfields are allocated within an integer from least-significant to most-significant bit.

Can bitfields straddle a storage-unit boundary (6.5.2.1)

Bitfields cannot straddle a storage-unit boundary for the chosen bitfield integer type.

Integer type chosen to represent enumeration types (6.5.2.2)

The chosen integer type for a specific enumeration type depends on the enumeration
constants defined for the enumeration type. The chosen integer type is the smallest
possible.

QUALIFIERS

Access to volatile objects (6.5.3)

Any reference to an object with volatile qualified type is an access.
DECLARATORS

Maximum numbers of declarators (6.5.4)
The number of declarators is not limited. The number is limited only by the available
memory.

STATEMENTS

Maximum number of case statements (6.6.4.2)
The number of case statements (case values) in a switch statement is not limited. The
number is limited only by the available memory.

PREPROCESSING DIRECTIVES

Character constants and conditional inclusion (6.8.1)

The character set used in the preprocessor directives is the same as the execution
character set. The preprocessor recognizes negative character values if a 'plain' character
is treated as a signed character.

Including bracketed filenames (6.8.2)

For file specifications enclosed in angle brackets, the preprocessor does not search
directories of the parent files. A parent file is the file that contains the #include

Implementation-defined behavior ___¢

directive. Instead, it begins by searching for the file in the directories specified on the
compiler command line.

Including quoted filenames (6.8.2)

For file specifications enclosed in quotes, the preprocessor directory search begins with
the directories of the parent file, then proceeds through the directories of any
grandparent files. Thus, searching begins relative to the directory containing the source
file currently being processed. If there is no grandparent file and the file has not been
found, the search continues as if the filename was enclosed in angle brackets.

Character sequences (6.8.2)

Preprocessor directives use the source character set, with the exception of escape
sequences. Thus, to specify a path for an include file, use only one backslash:

#include "mydirectory\myfile"
Within source code, two backslashes are necessary:

file = fopen("mydirectory\\myfile","rt");

Recognized pragma directives (6.8.6)

In addition to the pragma directives described in the chapter Pragma directives, the
following directives are recognized but will have no effect:
alignment

ARGSUSED

baseaddr

can_instantiate

codeseg

Cspy_support

define_type_info

do_not_instantiate

function

hdrstop

instantiate

keep_definition

memory

module_name

none

no_pch

NOTREACHED

Part 2. Compiler reference 219

Descriptions of implementation-defined behavior

once
__printf_args
public_equ

_scanf_args

section
system_include
VARARGS

warnings

Default __DATE__and __TIME__ (6.8.8)

The definitions for __TIME _ and __DATE_ _ are always available.

IAR DLIB LIBRARY FUNCTIONS

The information in this section is valid only if the runtime library configuration you have
chosen supports file descriptors. See the chapter The DLIB runtime environment for
more information about runtime library configurations.

NULL macro (7.1.6)

The NULL macro is defined to 0.

Diagnostic printed by the assert function (7.2)
The assert () function prints:
filename:linenr expression -- assertion failed

when the parameter evaluates to zero.

Domain errors (7.5.1)

NaN (Not a Number) will be returned by the mathematic functions on domain errors.

Underflow of floating-point values sets errno to ERANGE (7.5.1)
The mathematics functions set the integer expression errno to ERANGE (a macro in
errno.h) on underflow range errors.
fmod() functionality (7.5.6.4)

If the second argument to £fmod () is zero, the function returns NaN; errno is set to
EDOM.

ColdFire® IAR C/C++ Compiler
220 Reference Guide

Implementation-defined behavior ___¢

signal() (7.7.1.1)
The signal part of the library is not supported.

Note: Low-level interface functions exist in the library, but will not perform anything.
Use the template source code to implement application-specific signal handling. See
Sgnal and raise, page 62.

Terminating newline character (7.9.2)

stdout stream functions recognize either newline or end of file (EOF) as the
terminating character for a line.

Blank lines (7.9.2)

Space characters written to the stdout stream immediately before a newline character
are preserved. There is no way to read the line through the stdin stream that was
written through the stdout stream.

Null characters appended to data written to binary streams (7.9.2)

No null characters are appended to data written to binary streams.

Files (7.9.3)

Whether a write operation on a text stream causes the associated file to be truncated
beyond that point, depends on the application-specific implementation of the low-level
file routines. See File input and output, page 58.

remove() (7.9.4.1)

The effect of a remove operation on an open file depends on the application-specific
implementation of the low-level file routines. See File input and output, page 58.

rename() (7.9.4.2)

The effect of renaming a file to an already existing filename depends on the
application-specific implementation of the low-level file routines. See File input and
output, page 58.

%p in printf() (7.9.6.1)

The argument to a $p conversion specifier, print pointer, to print £ () is treated as
having the type void *. The value will be printed as a hexadecimal number, similar to
using the $x conversion specifier.

Part 2. Compiler reference 221

Descriptions of implementation-defined behavior

%p in scanf() (7.9.6.2)

The %p conversion specifier, scan pointer, to scanf () reads a hexadecimal number and
converts it into a value with the type void *.

Reading ranges in scanf() (7.9.6.2)

A - (dash) character is always treated as a range symbol.

File position errors (7.9.9.1, 7.9.9.4)

On file position errors, the functions fgetpos and ftell store EFPOS in errno.

Message generated by perror() (7.9.10.4)
The generated message is:

usersuppliedprefix: errormessage

Allocating zero bytes of memory (7.10.3)

The calloc(),malloc (), and realloc () functions accept zero as an argument.
Memory will be allocated, a valid pointer to that memory is returned, and the memory
block can be modified later by realloc.

Behavior of abort() (7.10.4.1)

The abort () function does not flush stream buffers, and it does not handle files,
because this is an unsupported feature.

Behavior of exit() (7.10.4.3)

The argument passed to the exit function will be the return value returned by the main
function to cstartup.

Environment (7.10.4.4)

The set of available environment names and the method for altering the environment list
is described in Environment interaction, page 61.

system() (7.10.4.5)

How the command processor works depends on how you have implemented the system
function. See Environment interaction, page 61.

ColdFire® IAR C/C++ Compiler
222 Reference Guide

Implementation-defined behavior ___¢

Message returned by strerror() (7.11.6.2)

The messages returned by strerror () depending on the argument is:

Argument Message

EZERO no error

EDOM domain error

ERANGE range error

EFPOS file positioning error
EILSEQ multi-byte encoding error
<0 || >99 unknown error

all others error nnn

Table 41: Message returned by strerror()— AR DLIB library

The time zone (7.12.1)

The local time zone and daylight savings time implementation is described in Time, page
63.

clock() (7.12.2.1)

From where the system clock starts counting depends on how you have implemented the
clock function. See Time, page 63.

Part 2. Compiler reference 223

Descriptions of implementation-defined behavior

ColdFire® IAR C/C++ Compiler
224 Reference Guide

A

abort
implementation-defined behavior (DLIB) 222
system termination (DLIB) 54
absolute location
data,placingat (@)cviiinininan... 95
language supportfor 153
#pragmalocation.oiiiiiian... 176
addressing. See memory types and code models
algorithm (STL header file) 199
alignment i 141
in structures (#pragmapack) 179
in structures, causing problems 92
of an object (_ ALIGNOF__) 153
ofdatatypes.ot 142
restrictions for inline assembler. 72
alignment (pragma directive) 219
__ALIGNOF_(0perator)c.oueueuenenan.. 153
ANONYMOUS SIIUCIUIES &+« v v vt et e e e e e eeeeeennn 93
anonymous symbols, creating. 155
application
building, overview of L 4
startup and termination (DLIB) 51
architecture, ColdFire 11
ARGFRAME (assembler directive) 81
ARGSUSED (pragma directive) 219
arrays
designated initializersin 157
implementation-defined behavior. 217
incomplete atend of structs 155
non-lvalue L i 159
of incomplete types 158
single-value initialization. 159
asm, __asm (language extension) 155
assembler code
callingfrom C L. 72
calling from CH++ 74
inline 71

Index °

assembler directives, in inline assembler code 72
assembler labels, making public (--public_equ) 138
assembler language interface 69
calling convention. See assembler code
assembler list file, generating 129
assembler outputfile............ 74
assembler,inline. 154
ASSEITS + v v v ettt e e e e 63
implementation-defined behavior of, (DLIB). 220
including in application 192
assert.h (DLIB headerfile) 197
atoll, C99 exXtensionouiiiiini.. 202
atoOMIC OPETALiONS . . o . vt vttt e e 24
CMONIEOT &« vt ettt et e 167
attributes
ODJECE . o ettt 164
17 51 161
autovariables L L 17
atfunctionentrancec.c. ... 77
programming hints for efficientcode. 102
using in inline assemblercode 72
Barr,Michael XX1
baseaddr (pragma directive) 219
_ BASE_FILE__ (predefined symbol)............... 190
binary streams (DLIB) 221
bitnegation.ouuiniiinnii. 103
bitfields
data representationof. 143
hints. 91
implementation-defined behaviorof 217
non-standard typesin.o ..., 153
bitfields (pragma directive). 172
bold style, inthis guide. XXii
bool (datatype).covvivi i 142
adding support forinDLIB 197, 200
making availableinCcode 201

225

226

bubble sort function, defined in stdlib.h 202

_ BUILD_NUMBER___ (predefined symbol) 190
byte order, identifying (__ LITTLE_ENDIAN_)....... 191
CandC++1linkage 76
C/C++ calling convention. See calling convention
Cheaderfilesc.o .. 197
call frame information 82

inassembler listfile............................ 73

in assembler list file (-1A) 129
call stack. 82
callee-save registers, stored onstack. 17
calling convention

C++, requiring C linkage 74

incompiler. 75
calloc (library function), 18

See also heap

implementation-defined behavior of (DLIB) 222
can_instantiate (pragma directive) 219
cassert (DLIB headerfile)......................... 199
cast operators

inExtended EC++....... 86

missing from Embedded C++ 86
casting of pointers and integers. 146
cctype (DLIB header file) 199
cerrno (DLIB headerfile) 199
cexit (system termination code)

inDLIB 51

placementinsegment., 36
CFI (assembler directive)covtiunon... 82
cfloat (DLIB headerfile). 199
char (datatype).covvvn et 142

changing default representation (--char_is_signed) . . . 120

signed and unsigned. 143
characters, implementation-defined behaviorof 214
character-based I/O

inDLIB 56

ColdFire® IAR C/C++ Compiler
Reference Guide

overriding in runtime library 48
--char_is_signed (compiler option). 120
cinttypes (DLIB headerfile)....................... 199
Classes. 87
climits (DLIB header file). 200
clocale (DLIB headerfile) 200
clock (DLIB library function),
implementation-defined behaviorof 223
clockc ... 63
__close (DLIB library function) 59
cmath (DLIB headerfile) 200
code

executionof L 7

interruption of execution 23

verifying linked result 38
codemodels i 21

calling functionsin. 81

configurationc.covniniii i 7

identifying (__ CODE_MODEL_) 190

specifying on command line (--code_model). 120
code motion (compiler transformation). 101

disabling (--no_code_motion) 132
code segments, used for placement. 36
CODE (SEgMEeNt) ovvtetnin e 204
codeseg (pragma directive) 219
_ CODE_MODEL__ (predefined symbol). 190
--code_model (compiler option) 120
ColdFire

TNETNOTY ACCESS. « « « v vt vt et ettt e e e e eeaeenen 7

memory layout. L L e 11

supported devices. 4
command line options

part of invocation Syntax 109

PASSING . . o vttt 109

Seealso compiler options
command prompt icon, in this guide. Xxiii
comments

after preprocessor directives. 159

C++style,usinginCcode. 154
common block (call frame information) 82

common subexpr elimination (compiler transformation) . 100

disabling (--n0_CS€) it i i 132
compilation date
exacttimeof (_TIME_)...................... 192
identifying (_DATE_) 190
compiler
environment variables, 110
INVOCAtioN SYNEAX . « . v vttt e 109
outputfrom i 111
compiler listing, generating (-1). 129
compiler object file
including debug information in (--debug, -r) 122
specifying filename of (-0). 136-137
compiler optimization levels. 98
compiler Optionso ottt 115
passingtocompiler 109
reading fromfile (-f) L. 127
SEHNG .« vttt 115
specifying parameters 117
SUMMATY « o v ovevee et et e e e et e eenn 118
SYMEAX. © o v vt ettt e e e e e 115
typographic convention XXii
S PP 73
--warnings_affect_exit_code 112
compiler platform, identifying 191
compiler subversion number. 192
compiler transformations 98
compiler versionnumber 192
compiling
from the commandline 4
SYIEAX. © o v vttt et et 109
complex numbers, supported in Embedded C++. 86
complex (library header file). 198
compound literals 155
computer style, typographic convention XXii
configuration
basic project settings it 5
_low level dnmit 55
configuration symbols, in library configuration files. 50

Index °

consistency, module 65
const, declaring objects. 150
const_cast (Cast OPerator)vuvenenenennn.. 86
contents, of thisguide XX
conventions, typographic XXil
copyrightnotice, ii
core
specifying on command line 121
SUPPOrtfor . . .o 6
--core (compileroption) oL 121
__cplusplus (predefined symbol) 190
csetjmp (DLIB headerfile) 200
csignal (DLIB headerfile) 200
cspy_support (pragma directive). 219
CSTACK (segment)
example 33
See also stack
cstartup (system startupcode).l 36
CUSTOMUIZING &« o vttt et et ene 55
overriding in runtime library 48
CStartup.sO8. . . . 51
cstartxxXxx.s68, for device-specific initializations. 51
cstdarg (DLIB headerfile) 200
cstdbool (DLIB headerfile) 200
cstddef (DLIB headerfile) 200
cstdio (DLIB headerfile) 200
cstdlib (DLIB headerfile). 200
cstring (DLIB header file). 200
ctime (DLIB headerfile). 200
ctype.h (library header file). 197
added C functionality. 201
cwcetype.h (library header file) 200
C++
See also Embedded C++ and Extended Embedded C++
absolute location 96-97
callingconventiont 74
dynamic initializationin 37
features excluded from EC++ 85
headerfiles. 198

227

228

language extensions.ttt 89

special function types. 25
static member variables 96-97
support for 3
terminology XXii
C++ names, in assemblercode 75
C++ objects, placing in memory type 16
C++-stylecomments.covovnenen i enen .. 154
C-SPY
low-levelinterface 64
STL container supportc.c.vuvuvenenen.. 88
C_INCLUDE (environment variable) 110
C99 standard, added functionality from 200
-D (compileroption)., 121
--data_model (compiler option) 122
data
alignmentof............. 141
located, declaringextern 96
placing. 94,203
at absolute location 95
representation of i 141
SEOTAZE « + v v v ettt ettt et e e e 11
verifying linked result 38
data block (call frame information). 82
data memory attributes, using. 14
datamodels. i 11
configuration 7
far . 12
identifying (_ DATA MODEL_) 190
nearrelative 12
data pointersvtn i 146
datasegmentst 30
data types . oot 142
floatingpoint, 145
INCH+ 150
INEEEEIS « vttt et e et et 142

ColdFire® IAR C/C++ Compiler
Reference Guide

data_alignment (pragma directive) 173
_ DATA_MODEL__ (predefined symbol) 190
_ DATE__ (predefined symbol).................... 190
date (library function), configuring support for.......... 63
DC32 (assembler directive). 72
--debug (compileroption) 122
debug information, including in object file 122, 138
declarations
CINPLY - o v ettt e e e e 159
inforloops....... ... o 154
Kernighan & Ritchie 103
offunctions oL 76
declarations and statements, mixing 154
declarators, implementation-defined behavior 218
define_type_info (pragma directive). 219
delete (keyword). 18
--dependencies (compiler option) 122
deque (STL headerfile) 199
destructors and interrupts, using 89
diagnostic MeSSAZES . .. v vttt e 112
classifyingaserrors 123
classifyingasremarks 124
classifying as warningsc........ 124
disabling warnings., 135
disabling wrapping of 135
enablingremarks L. 139
listingallused oo, 125
SUPPIESSING .« o v v tv ettt et et 124
--diagnostics_tables (compiler option) 125
diag_default (pragma directive) 173
--diag_error (compiler option) 123
diag_error (pragma directive) 173
--diag_remark (compiler option). 124
diag_remark (pragma directive) 174
--diag_suppress (compiler option) 124
diag_suppress (pragma directive) 174
--diag_warning (compiler option) 124
diag_warning (pragma directive) 174
DIFUNCT (segment)cuuueueunenenen.. 37,205

directives
function for staticoverlay 81
Pragma.ovee e 10, 171
directory, specifying as parameter. 116
__disable_interrupt (intrinsic function). 186
disclaimer.o e ii
dlcfCustom.h (library configuration file) 51
DLIB. ..ottt 8, 196
building customized library 43
configurations 43
configuring.c. i 42,125
debug support. 43
reference information. See the online help system. . . . 195
runtime environmentc.oeueuenennn .. 41
--dlib_config (compiler option). 125
Dlib_defaults.h (library configuration file) 50
document CONVENtions.o.vuvrnenenenenen .. XXii
documentation, library 195
domain errors, implementation-defined behavior 220
double (datatype)covuvrinininninn... 145
avoidingo 91
in parameter Passingoueeeenenenen... 77
double_t, C99 extensionc.oouuireunnnn. 201
do_not_instantiate (pragma directive)................ 219
dynamic initialization 51
INCH . 37
dynamic Mmemoryouiinininen 18
-e (compileroption)i ..., 126
EARLYDIFUNCT (segment)coveueen... 205
--ec++ (compileroption). 126
EC++headerfiles......... i, 198
edition, of thisguide ii
--eec++ (compileroption)., 126
Embedded C++. 85
differences from C++. L. 85
enabling 126

Index

function linkage L 76
language extensions vv it 85
OVEIVIEW ...ttt 85
Embedded C++ Technical Committee XXii
embedded systems, IAR special supportfor............. 9
__embedded_cplusplus (predefined symbol) 190
__enable_interrupt (intrinsic function) 186
--enable_multibytes (compiler option) 127
entry label, program oL 52
enumerations, implementation-defined behavior. 217
enums
data representation., 143
forward declarationsof 158
environment
implementation-defined behavior. 214
runtime (DLIB) 41
environment variables
C_INCLUDE.couiiiiiiiiniinennn.. 110
QCCCF . .t e e 110
EQU (assembler directive) 138
errno.h (library header file). 197
CITOT MESSAZES « - ¢ v e et et et e e ettt eeeens 113
classifying 123
CITOr TEtUrN COAES . . o\ vttt et ee e 112
--error_limit (compiler option) 127
exception handling, missing from Embedded C++. 85
EXCEPLION VECLOTS & . vttt ettt e e e eeeaene 37
exception (library header file). 198
_Exit (library function) 54
exit (library function) oL, 54
implementation-defined behavior. 222
_exit (library function), 54
__exit(library function), 54
export keyword, missing from Extended EC++ 88
extended command linefile 127
Extended Embedded C++. oL, 86
enabling. 126
standard template library (STL).................. 199

—e

229

230

extended keywords 161
enabling (-€).t 126
OVEIVIEW . ettt ettt e e e 9
SUMMATY .« o v v v vttt et e e e e e eenn 165
SYMEAX. « v e vt ettt e e e 14

objectattributes. 164
type attributes on data objects. 162
type attributes on data pointers 163
type attributes on function pointers............. 164
type attributes on functions. 163

extern "C" linkage. L., 88

-f (compiler option). i 127

__far (extended keyword), 165

Farcodemodel oii... 22

FAR_AN (segment)ooviniienenenennnn. 205

FAR_C(segment)............viviniienenenennnn. 206

__far_func (extended keyword) 166

FAR_I(segment).o.vuiinininenennnenan.. 206

FAR_ID (segment)vuuivininenenenenan.. 206

FAR_N (segment).ooitiiniienenenennn.. 207

FAR_Z (segment)ooutiiniienenanennnn. 207

fatal error messagesiiiiiii e 114

FCODE (segment)uuviminenenenenann. 207

fgetpos (library function), implementation-defined

behavior 222

__FILE__ (predefined symbol). 190

file dependencies, tracking 122

file paths, specifying for #include files 128

filename
ofobjectfile. 136-137
specifying as parameter 116

float (data type).o oot 145

floating-point constants
hexadecimal notation. 156
hints. 92

ColdFire® IAR C/C++ Compiler
Reference Guide

hints. ... 91-92
implementation-defined behavior. 216
special cases. 146
32-DItS o e 145
64-Dits . ..ot 145
float.h (library headerfile) 197
float_t, C99 extension.couuieinnnnnn.. 201
fmod (library function),
implementation-defined behavior 220
for loops, declarations in. 154
formats
floating-point values 145
standard IEEE (floating point) 145
_formatted_write (library function) 46
fpclassify, C99 extension 201
FP_INFINITE, C99 extension 201
FP_NAN, C99 extension.ououuieeinunnnn.. 201
FP_NORMAL, C99 extensionououuo... 201
FP_SUBNORMAL, C99 extension 201
FP_ZERO, C99 extension.c.uveiuunnnn... 201
fragmentation, of heap memory 18
free (library function). Seealsoheap 18
fstream (library header file) 198
fstream.h (library headerfile) 198
ftell (library function), implementation-defined behavior . 222
Full DLIB (library configuration) 43
__func__ (predefined symbol) 160, 191
FUNCALL (assembler directive) 81
__ FUNCTION__ (predefined symbol) 160, 191
function declarations, Kernighan & Ritchie 103
function directives for staticoverlay 81
function inlining (compiler transformation) 100
disabling i 133
function pointers.t 146
function prototypes.o v 103
enforcing 139
function return addresses 80
function type information, omitting in object output. 136
FUNCTION (assembler directive) 81

function (pragma directive). 219
functional (STL headerfile) 199
functions. 21
calling in different code models. 81
C++ and special function types 25
declared without attribute, placement. 36
declaring 76, 103
EXECULING . ¢ vttt et e 11
inlining. 100, 102, 154, 175
INEEITUPL . . o et 23-24
INMANSIC &+ v v vt e et e e e 69, 102
1001021 1170 o 24
omitting typeinfo 136
PATAMELETS « o o o v v ettt e 77
placinginmemory.............., 94,97
recursive
avoiding 102
storing dataonstack 17-18
reentrancy (DLIB) 196
related eXtensions.ttt 21
return values from L L L oL 79
special function types.c. ... 22
verifying linked result 38
getenv (library function), configuring support for. 61
getzone (library function), configuring support for. 63
GOLZOME.C. v v vt ettt ettt e et e e e 63
__get_status_register (intrinsic function) 186
global variables, initialization. 32
Guidelines for the Use of the
C Language in Vehicle Based Software 130
guidelines, reading, xix
__halt (intrinsic function) 186
HALT (assembler instruction). 186

Index °

Harbison, Samuel P. XX1i
hardware support in compiler 42
hash_map (STL headerfile) 199
hash_set (STL headerfile) 199
hdrstop (pragma directive) oo 219
header files
C o 197
o e 198
ECH+ . o 198
library 195
special function registers 104
STL . o 199
dlefCustom.h . ..o 51
Dlib_defaults.h. 50
intrinsics.h L 185
stdbool.h 142,197
stddef.h ... 143
--header_context (compiler option). 128
heap 18, 35
changing defaultsize 35
segmentfor 35
sizeandstandard /O 36
storing datai 11
HEAP (segment).ottt 35
hints, optimization, 102
huge memory oot 14
HUGE_VALF, C99 extension. 201
HUGE_VALL, C99extension. 201
-I (compiler option).t 128
IAR Command Line Build Utility. 50
IAR Systems Technical Support.................... 114
iarbuild.exe (utility) 50
dardynexit (segment) 208
__IAR_SYSTEMS_ICC__ (predefined symbol) 191
__ICCCF__ (predefined symbol) 191

231

icons

command Prompt.ouuieinnnenn... Xxiii
lightbulb. xxiii
tOOlS. ..o xxiii
identifiers, implementation-defined behavior 214
IEEE format, floating-point values 145
implementation-defined behavior 213
include files
including before source files 137
Specifying 110
include_alias (pragma directive). 175
infinity 146
INFINITY, C99 extension.oouveeununnnn. 201
inheritance, in Embedded C++ 85
initialization
dynamicC.vuit it e 51
single-value L i 159
initialized datasegments. 32
initializers, StatiC.o it 158
inline assembler 71, 154
avoidingo 102
See also assembler language interface
inline functions. i 154
incompiler. i 100
inline (pragma directive). 175
instantiate (pragma directive) 219
instruction set, identifying (__ISA_)................ 191
integer characteristics, adding. 201
INEEEETS « « v v e ettt e e e e et e e e e e e 142
CASHING oottt 146
implementation-defined behavior. 216
11017072 PN 147
ptediff t. .. 147
SIZE b ettt 147
UINEPIE . ottt 147
integral promotion.ouutntnten et 103
INternal eITor. . .. oo vttt e 114
__interrupt (extended keyword) 23,166

ColdFire® IAR C/C++ Compiler
Reference Guide

interrupt functions. 23
placementinmemory. 37
interrupt vector table. Lo 23
in linker command file. 37
interrupts
disabling i 167
during function execution 24
PrOCESSOT StALE . . . o vttt e e 17
using with EC++ destructors 89
INPtr_t (INtEEr tyPe) « . v v oot 147
__intrinsic (extended keyword). 166
intrinsic functions L L L i L. 102
OVEIVIEW ...ttt 69
SUMMATY « e v e v tete e et e e e e eeeeneaenen 185
intrinsics.h (header file) 185
inttypes.h (library header file). 197
inttypes.h, added C functionality 201
INTVEC (segment).covninenennnnenen.. 37, 208
INVOCALION SYNEAX . vttt ettt eeene 109
iomanip (library header file) 198
iomanip.h (library header file) 198
ios (library header file) 198
iosfwd (library header file) 198
iostream (library header file). 198
iostream.h (library header file) 198
__ISA__ (predefined symbol). 191
--isa (compileroption), 128
isblank, C99 extensioncouuuuu..n. 201
isfinite, C99 extensioncouuuur.n. 201
isgreater, C99 extension 201
isinf, C99 extensionouieiuuiinini.n. 201
islessequal, C99 extension 201
islessgreater, C99 extension 201
isless, C99 eXtension.o e i i i 201
isnan, C99 extension.t 201
isnormal, C99 extensionouiuinin .. 201
ISO/ANSI C
compiler eXtensionst 151
C++ features excluded from EC++ 85

specifying strict usage 140
is0646.h (library header file). 197
istream (library header file). 198
isunordered, C99 extension.ouuuun.. 201
iswblank, C99 extension.cvviiininnn.. 202
italic style, inthisguide XXii
iterator (STL headerfile) 199
1/0 debugging, supportfor 64
1/0 module, overriding in runtime library.............. 48
keep_definition (pragma directive) 219
Kernighan & Ritchie function declarations. 103

disallowing.ottt 139
Kernighan, Brian W......... XXii
keywords, extended. i 9
-1 (compileroption). it 73,129
labels. . ..o 159

assembler, making public. 138

_Program_sStart.o.iiii e 52
Labrosse,JeanJ.. Xxii
Lajoie, Joséeot xxii
language extensions

descriptionst 151

Embedded C++ 85

enabling. 176

enabling (-€).ot 126
language overviewl 3
language (pragma directive) 176
libraries

building DLIBo 43

definitionof L 4

TUNGIMC. « o v vt et ettt e e e e e e e e 44

standard template library 199

Index

library configuration files

dlefCustom.h o 51
DLIB ..ottt 43
Dlib_defaults.h. i 50
modifying 51
Specifying 125
library documentation.t 195
library features, missing from Embedded C++.......... 86
library functions i 195
reference information. XX1
summary, DLIB...... 197
library header files 195
library modules
CIEALING « o v v vttt e ettt 130
overriding.t 48
library objectfiles. 195
library options, Settingc.c.uuiiiunrenon. 9
library project template. 8,50
--library_module (compiler option) 130
lightbulb icon, in this guide. XXiii
limits.h (library header file) 197
__LINE__ (predefined symbol) 191
linkage, Cand C++.o 76
linker command files. 28
CUSTOMUZING .« o v oe ettt e et ens 28
usingthe-Pcommand 30
usingthe-Zcommand 29
linkermapfile. 38
linker segment. See segment
linking
from the commandline 5
required input. i 5
Lippman, Stanley B. XXii
list (STL header file). 199
listing, generatingt 129
literals, compound. 155
literature, recommended, XX1
__LITTLE_ENDIAN__ (predefined symbol).......... 191
llabs, C99 extensionouuiiiuneennn.n. 202

—e

233

234

11div, C99 extensionouuiiiiimnnnnn... 202
local variables. See auto variables
locale support

DLIB ..ot 59
adding. 61
changing atruntime. 61
TEMOVING. . o vttt e e et 60

locale.h (library header file) 197
located data, declaringextern 96
location (pragma directive) 95,176
LOCFRAME (assembler directive). 81
long double (datatype)...........cveieneninen... 145
long float (data type), synonym for double 158
long long (data type), avoiding 91
loop overhead, reducing 134
loop unrolling (compiler transformation) 100
disabling i 134
loop-invariant eXpressions.viiien... 101
low-level processor operations 151, 185
ACCESSING . v vttt e e 69
_dow_level imit. ... i 52
CUSEOMUZING .« . v\ttt ettt e 55
low_level dnit.c. ... 51
__Iseek (library function), 59
--mac (compileroption) 130
macros, variadic 194
main (function), definition 214
malloc (library function)
Seealsoheap ... 18
implementation-defined behavior. 222
Mann,Bernhard oL Xxii
map (STL headerfile). 199
map, linker 38
math.h (library header file) 197
math.h, added C functionality...................... 201
MATH_ERREXCEPT, C99 extension 201

ColdFire® IAR C/C++ Compiler
Reference Guide

math_errhandling, C99 extension 201
MATH_ERRNO, C99 extension. 201
MEMATTR_HEAP (segment) 207
memory
ACCESSINE .« o v v ettt e et 7,13
allocating in CH++. 18
dynamic.ot 18
heap 18
non-initialized L L 105
RAM,Savingooiiiin i 102
releasing in C++.ot 18
Stack. 17
SAVINE « . vttt et e 102
SLALIC ..o 11
used by executing functions. 11
used by global or static variables 11
memory layout, ColdFire 11
memory management, type-safe 85
memory placement
using pragma directive. 15
using type definitions. 15, 163
memory segment. See segment
MEMOTY EYPES - « e v et et e te et e e e e e e e eeaena 13
G 16
placing variablesin 16
Specifying 14
SEITUCTUIES &« + v v vt e e et et e e e et e e 15
SUMMATY &« e v oveov e et et e e e et e e e e e e 14
memory (pragma directive). 219
memory (STL header file). 199
message (pragma directive). 177
messages
disabling i 139
forcing 177
MISRA C rules
checking for adherenceto 131
logging. . .o vi e 131
--misrac (compiler option) 130
--misrac_verbose (compiler option) 131

module consistency.t 65

rtmodel. 182
module map, in linkermapfile................... ... 38
module name, specifying 131
module summary, in linker map file 38
--module_name (compiler option) 131
module_name (pragma directive) 219
__monitor (extended keyword) 104, 167
monitor functions 24,167
multibyte character support. 127
multiple inheritance

inExtended EC++..... 86

missing from Embedded C++ 85
mutable attribute, in Extended EC++ 86, 89
names block (call frame information)................. 82
namespace support

inExtended EC++.......................... 86, 89

missing from Embedded C++ 86
NAN, C99 extension.c.ueuvinnennenenn... 201
NDEBUG (preprocessor symbol) 192
__near (extended keyword). L 167
Nearcodemodel., 22
NEAT MEIMNOTY .+« v vt vt e e et e e et e e e e e ee e 13
near relative memory, 13
NEARPID_I(segment).covvuunenenennn.. 210
NEARPID_ID (segment)c.ooouvenenn... 210
NEARPID_N (segment)oouvenenenennn.. 211
NEARPID_Z (segment)oovienenenenan.. 211
NEAR_AN (segment).oounenninnennenenn... 208
NEAR_C(segment)vuvinininenenanennnn. 208
__near_func (extended keyword) 168
NEAR_I(segment).ouuuvininenenenennn.. 209
NEAR_ID (segment)cviuenenenennn.. 209
NEAR_N(segment)ouviiiienenenennn.. 209
__near_rel (extended keyword). 167
NEAR_Z (segment)ouunininenenenennnn. 210

Index °

new (keyword) 18
new (library headerfile) 198
new.h (library header file). 198
none (pragma directive)c.c.iuiiiin. 219
non-initialized variables, hintsfor. 105
non-scalar parameters, avoiding 102
NOP (assembler instruction). 187
__noreturn (extended keyword) 168
Normal DLIB (library configuration) 43
Notanumber (NaN)............... 146
NOTREACHED (pragma directive) 219
--no_code_motion (compiler option) 132
--no_cse (compileroption) 132
--no_div (compileroption) 132
__no_init (extended keyword) 105, 168
--no_inline (compileroption) 133
__no_operation (intrinsic function). 187
--no_path_in_file_macros (compiler option). 133
no_pch (pragma directive) 219
--no_tbaa (compileroption) 133
--no_typedefs_in_diagnostics (compiler option). 134
--no_unroll (compileroption) 134
--no_warnings (compiler option) 135
--no_wrap_diagnostics (compiler option) 135
NULL (macro), implementation-defined behavior 220
numeric (STL header file). 199
-O (compileroption)covuiriinnnnen... 135
-0 (compiler option) i 136
object attributes.iti i 164
object filename, specifying.................... 136-137
object module name, specifying 131
object_attribute (pragma directive) 105, 177
--omit_types (compiler option) 136
once (pragma directive)ovuiniiiin.. 220
--only_stdout (compileroption) 137
__open (library function) 59

235

236

optimization

code motion, disabling. 132
common sub-expression elimination, disabling 132
configuration i 7
disabling 99
function inlining, disabling 133
hints. 102
loop unrolling, disabling 134
specifying (-O).ot 135
SUMMATY « o v v v vttt et et e e e eee s 98
techniques 99
type-based alias analysis 101
using inline assemblercode 72
using pragma directive. L. 178
optimizationlevels 98
optimize (pragma directive) 178
OPHON PATAMELETS . .« v v v ove e e e et ee e e 115
options, compiler. See compiler options
Oram, Andyot XX1
ostream (library header file) 198
--output (compiler option). L. 137
output files, from XLINK 5
OULPUL (PIEPIOCESSOT) . o v v v v v e e e e e e e eeee 138
overhead, reducing 100
pack (pragma directive) 148, 179
packed Structure types.ovov v 148
parameters
function i 71
hidden 78
non-scalar, avoiding. 102
TEZISIET . v v vt ettt e e 77-78
rules for specifying a file or directory 116
Specifying 117
Stack. ... 77-78
typographic convention XXii
part number, of thisguide ii

ColdFire® IAR C/C++ Compiler
Reference Guide

Permanent registers.o v v vttt 77
perror (library function),
implementation-defined behavior 222
PIDBASE (segment).c.c.vueuennnnunenen .. 212
placement
codeanddata.............., 203
in named SEZMENtS. vt ittt 97
pointers
CASHING v v e vt ettt e 146
data ... 146
function 146
implementation-defined behavior. 217
mixing types of 158
polymorphism, in Embedded C++ 85
porting, code containing pragma directives. 172
_Pragma (predefined symbol). 193
pragma dir€Ctivesovvnnt i 10
SUMMATY « e v v v tete e et e e e e e e eeeneaenen 171
for absolute located data 95
list of all recognized. oL, 219
PacK . .. 148, 179
type_attribute, USing. 15
predefined symbols
OVEIVIEW ...ttt 10
SUMMATY « e v v v tete e et e e e e e e eeeneaenen 190
--preinclude (compiler option) 137
--preprocess (compiler option) 138
preprocessing directives
implementation-defined behavior 218
preprocessor
OULPUL. & v v et ettt e e et e e e e 138
OVEIVIEWt 189
preprocessor extensions
H#Warning mMessage . .« .o vv v v et e 193
_VA_ARGS__ 194
preprocessor symbols Lo 190
defining i i 121
preserved registersvei i 77
_ PRETTY_FUNCTION___ (predefined symbol). 191
primitives, for special functions 22

print formatter, selecting. 47
printf (library function). 46
choosing formatter. 46
configuration symbols 57
implementation-defined behavior. 221
processor configuration. L . 6
processor operations
ACCESSING . o vttt et 69
low-levelo i 151, 185
programentry label. L ... 52
programming hints 102
__program_start (label). 52
projects, basic settings for. Lo L. 5
prototypes, enforcing 139
ptrdiff_t (integer type).o oi i 147
PUBLIC (assembler directive) 138
publication date, of this guide. ii
--public_equ (compiler option) 138
public_equ (pragma directive) 220
__pulse (intrinsic function) L 187
PULSE (assembler instruction). 187
putenv (library function), absent from DLIB 61
QCCCEF (environment variable) 110
qualifiers, implementation-defined behavior. 218
queue (STL headerfile), 199
-r (compileroption). i 138
raise (library function), configuring support for 62
TAISE.C .o vttt et et et e e e e 62
RAM memory, saving.c.vuviiinn ... 102
range errors, inlinker L L. 38
RCODE (segment)c.uouvirnennennen.. 36,212
_read (library function). 59
CUStOMUZING « . ot v ettt e 56

Index

read formatter, selecting 48
reading guidelines. Xix
reading, recommended L. XX1
realloc (library function)
implementation-defined behavior. 222
Seealsoheapot 18
recursive functions
avoidingo v 102
storing dataonstack 17-18
reentrancy (DLIB). 196
reference information, typographic convention. XXil
TegISLer PAraAmMEters . . . oo vt e 77-78
registered trademarks oL ii
registers
assigning to parametersc.c.oeuenon... 78
callee-save, storedonstack 17
for functionreturns, 79
implementation-defined behavior. 217
in assembler-level routines. 75
Preserved oo i 77
scratch L 77
reinterpret_cast (cast Operator)o... 86
remark (diagnostic message)
classifying 124
enabling. 139
--remarks (compiler option) 139
remarks (diagnostic message), 113
remove (library function) 59
implementation-defined behavior. 221
rename (library function) 59
implementation-defined behavior. 221
__ReportAssert (library function). 63
required (pragma directive)., 181
--require_prototypes (compiler option). 139
return addressesi i e 80
return values, from functions 79
Ritchie, Dennis M. XXii
__root (extended keyword) L L. 169
routines, time-critical 69, 151, 185

—e

237

238

RTMODEL (assembler directive) 67

rtmodel (pragma directive) L. 181
rtti support, missing from STL 86
runtime environment
DLIB ..ot 41
SEHtNG OPLiONS « .« ot ottt 9
runtime libraries
ChooSINg. . ..ot 9
introductionc. i 195
DLIB ..ot 44
choosing 45
customizing without rebuilding. 45
Naming Conventioncveuen.. 44
overridingmodulesin........................ 48
runtime model attributes oL 65
runtime model definitions. 182

runtime type information, missing from Embedded C++ . .86

S

scanf (library function)

choosing formatter. 47
configuration symbols, 57
implementation-defined behavior. 222
scratch registers 77
section (pragma directive)., 220
SEZMENt GrOUP NAMC .+ « « . v v vv e e e et eee e e eeenns 31
segment map, in linkermap file 38
segment memory types, in XLINK 28
segment names, declaring. 182
segment (pragma directive)., 182
SCEIMEILS .« . vt et ettt ettt e e e 203
COAR . . vttt 36
data 30
definitionof L i 27
initializeddata L L 32
introduction i 27
NAMING .« o vttt et ettt et 31
packing in memoryoeviniininan... 30

ColdFire® IAR C/C++ Compiler
Reference Guide

placinginsequence 29
7218 (1115 1010) 1 AP 31
SUMMATY « « v v v tete e et e e e e e e eeneaenen 203
too long for addressrange 38
toolong,inlinker. L. 38
__segment_begin (extended operator). 153
__segment_end (extended operator) 153
semaphores
Cexample 24
OPETAtiONS ON .« . v\ vt et ettt et et e eeeenes 167
set (STL headerfile)............................. 199
setjmp.h (library header file). 197
setlocale (library function) 61
settings, basic for project configuration 5
__set_status_register (intrinsic function) 187
severity level, of diagnostic messages. 113
Specifying 114
SFR (special function registers) 104
declaring exXternveii i 96
shared object. i 112
short (datatype)ouvuiinn ... 142
signal (library function)
configuring supportfor 62
implementation-defined behavior. 221
SIgNAl.C ..o 62
signal.h (library header file) 197
signbit, C99 extension. 201
signed char (datatype)coouvnen .. 142-143
SPeCifying 120
signed int (data type).ot 142
signed long long (datatype)c.cvuna... 142
signed long (datatype), 142
signed short (datatype)., 142
--silent (compiler option) 139
silent operation, specifying............... 139
64-bits (floating-point format) 145
SIZe_t (INTEZET EYPE) - v v v vttt e e e e ee e 147

skeleton code, creating for assembler language interface . . 72
skeleton.s99 (assembler source output). 73

slist (STL headerfile) 199
snprintf, C99 extension.c.coeuinen... 201
source files, list all referred. 128
special function registers (SFR) 104
special function types i 22
OVEIVIEWttt 10
specifyingthe sizeof 37
sprintf (library function) 46
choosing formatter. 46
sscanf (library function), choosing formatter 47
sstream (library header file) 198
StACK .+ v e e 17,33
advantages and problems using 17
changing defaultsizeof 34
cleaning after functionreturn. 80
contentsof L L 17
functionusagel 11
internaldata............ 205
layout. .. .ot 78
SAVING SPACE. &« v ottt e e e e 102
SIZE. . ot 34
stack parameters 77-78
StaCK POINLErottt 17
stack pointer register, considerations. 77
stack segment, placing inmemory 34
stack (STL headerfile) 199
standard €rror 137
standard input. 56
standard outpUto 56
Specifying 137
standard template library (STL)
inExtended EC++.......... 86, 88, 199
missing from Embedded C++ 86
startup code
placementof i 36
See also CSTART
startup, system (DLIB), 52
statements, implementation-defined behavior. 218
static data, in linker command file 33

Index

StAtIC MEMOTY « .« ¢ v v ottt et e e e ens 11
static MemOry SEMENtS o.veven e e enennnnenn 31
staticoverlay. 81
static variables
initialization. L i 32
taking theaddressof 102
static_cast (Cast OPerator)cvvveenenenn . 86
std namespace, missing from EC++
and Extended EC++ L. 89
stdarg.h (library headerfile) 197
stdbool.h (library header file) 142,197
added C functionality. 201
STDC__ (predefined symbol).................... 192
STDC_VERSION__ (predefined symbol) 192
stddef.h (library header file) 143,197
StAeIT. « oot 59, 137
stdexcept (library header file) 198
SEAIN ..o 59
implementation-defined behavior. 221
stdint.h (library header file). 197, 200
stdint.h, added C functionality 201
stdio.h (library header file) 197
stdio.h, additional C functionality................... 201
stdlib.h (library header file). 197
stdlib.h, additional C functionality 202
SEAOUL « .t 59, 137
implementation-defined behavior. 221
Steele, Guy L.. XXii
STL. ettt 88
__stop (intrinsic function). L Lol 187
STOP (assembler instruction) 187
streambuf (library header file). 198
streams, supported in Embedded C++. 86
strerror (library function)
implementation-defined behavior 223
--strict_ansi (compiler option). 140
string (library headerfile) 198
strings, supported in Embedded C++ 86
string.h (library header file) 197
Stroustrup, Bjarne. o i XXii

—e

239

240

strstream (library header file) 198

strtod (library function), configuring support for 63
strtod, instdlib.h. 202
strtof, C99 extension.t 202
strtold, C99 extensionoviiiinnnn.... 202
strtoll, C99 extensionouiiiiinnnnn... 202
strtoull, C99 extensionviiiinnnn.... 202
SEIUCES .« o oottt et e e e 155
ANONYIMNOUS . « ¢ . et et et ettt et e e eeaenes 153
structure types
alignment. 147-148
layoutof. 147
packed 148
structures
aligning 179
ANONYIMNOUS. « « . et ettt et et e et e e e eeeaen e 93
implementation-defined behavior. 217
packing and unpacking 93
placing in memory type 15
subnormal numbers. L L. 145
__SUBVERSION__ (predefined symbol). 192
support, technical 114
symbols
AnoONYMmMOoUS, CTeatiNgovuver e e ennnnen.. 155
includinginoutput. 181
listing in linkermap file. 38
overview of predefined. 10
preprocessor, defining 121
syntax
compiler Options 115
extended keywords. 14, 162-164
system startup
CUSEOMUZING .« . vttt ettt e 54
DLIB ..ottt 52
system termination
C-SPY interface to..............ovivinenenan... 54
DLIB ..ottt 53

system (library function)
configuring supportfor 61

ColdFire® IAR C/C++ Compiler
Reference Guide

implementation-defined behavior. 222
system_include (pragma directive) 220
technical support, IAR Systems 114
template support

inExtended EC++.......................... 86, 88

missing from Embedded C++ 85
Terminal I/0O window, making available 65
terminal output, speeding up. 65
termination, of system (DLIB) 53
terminology. XXii
32-bits (floating-point format) 145
this (POINtEr) . . . oottt 74
__TIME__ (predefined symbol) 192
time zone (library function)
implementation-defined behavior 223
time (library function), configuring support for 63
time-critical routines. 69, 151, 185
HIME.C vt ettt et e e e e e e e e 63
time.h (library header file) 197
tips, Programming.vvuen e enenennenenen... 102
tools icon, inthisguide. xxiii
TPF (assembler instruction) 187
trademarks ii
transformations, compiler. 98
translation, implementation-defined behavior. 213
__trap_false (intrinsic function) 187
type attributes 161

SPecifying 183
type definitions, used for specifying memory storage . 15, 163
type information, omitting 136
type qualifiers, const and volatile 149
typedefs

excluding from diagnostics 134

repeated 158
type-based alias analysis (compiler transformation) 101

disabling 133

type-safe memory management 85
type_attribute (pragma directive) 15, 183
typographic conventions, .. xxii
uintptr_t (INteger type) . ..o v e et 147
underflow range errors,
implementation-defined behavior 220
unions
ANONYMOUS. . o vttt et ettt ettt 93, 153
implementation-defined behavior. 217
unsigned char (datatype) 142-143
changing to signedchar........................ 120
unsigned int (data type). 142
unsigned long long (datatype) 142
unsigned long (datatype)c. .. 142
unsigned short (datatype)., 142
utility (STL header file) 199
VARARGS (pragma directive) 220
variable type information, omitting in object output. 136
variables
AULO .« .ttt 17
defined inside afunction 17
global, placementinmemory. 11
hints for choosing 102
local. See auto variables
non-initialized o L. 105
omitting typeinfo o .. 136
placing at absolute addresses 97
placing in named segments 97
static
placementinmemoryc..... 11
taking the addressof 102
static and global, initializing 32
vector base address, changing valueof 37

Index °

vector (STL headerfile) 199
__VER__ (predefined symbol)..................... 192
version, IAR Embedded Workbench. il
version, of compiler oL 192
viscanf, C99 extensioncoviiinnnn... 201
viwscanf, C99 extension.uviunn... 202
VOid, POINEETS tO . o . v v et 158
volatile (keyword). L 104
volatile, declaring objects 149
vscanf, C99 extension., 201
vsnprintf, C99 extension. 201
vsscanf, C99 extensionoiii ... 201
vswscanf, C99 extension.iiiinn.. 202
vwscanf, C99 extensionuiiiinna.. 202
#warning message (preprocessor extension). 193
WAININEZS « « o v ottt et e e e e ettt 113

classifyingt 124

disabling i 135

EXItCOde. v vttt 140
warnings (pragma directive) 220
--warnings_affect_exit_code (compiler option) 112
--warnings_are_errors (compiler option) 140
wchar.h (library header file) 197, 200
wchar.h, added C functionality 202
wchar_t (data type), adding support forinC........... 143
westof, C99 extension. 202
westolb, C99 extension., 202
wctype.h (library header file) 197
wectype.h, added C functionality 202
web sites, recommended. XXii
__write (library function) 59

CUSTOMUZING &+ o v o e ettt et ettt ens 56

241

242

X

XLINK errors
TANZE CITOT « « v v v vt ettt e e et e e e e e 38
segmenttoolong, 38
XLINK outputfiles.coviiiiinnnn. 5
XLINK segment memory typesouoen.. 28
XEEPOTLASSEIE.Co v v v v vt et et e e e et e e e e eeenns 63

Symbols

#include files, specifying 110, 128
#warning message (preprocessor extension). 193
-D (compileroption). 121
-e (compileroption), 126
-f (compileroption). 127
-I (compileroption).c. i 128
-1 (compiler option). oL, 73,129
-O (compileroption)., 135
-0 (compiler option) i 136
-r (compiler option). 138
--char_is_signed (compiler option). 120
--code_model (compiler option) 120
--core (compileroption) 121
--data_model (compiler option) 122
--debug (compiler option) oL 122
--dependencies (compiler option) 122
--diagnostics_tables (compiler option) 125
--diag_error (compileroption) 123
--diag_remark (compiler option). 124
--diag_suppress (compiler option) 124
--diag_warning (compiler option). 124
--dlib_config (compiler option). 125
--ec++ (compileroption). oL 126
--eec++ (compileroption). L. 126
--enable_multibytes (compiler option) 127
--error_limit (compiler option) 127
--header_context (compiler option). 128
--isa (compileroption), 128

ColdFire® IAR C/C++ Compiler
Reference Guide

--library_module (compiler option) 130
--mac (compileroption) 130
--misrac (compiler option) 130
--misrac_verbose (compiler option) 131
--module_name (compiler option) 131
--no_code_motion (compiler option) 132
--no_cse (compileroption) 132
--no_div (compileroption) 132
--no_inline (compileroption) 133
--no_path_in_file_macros (compiler option). 133
--no_tbaa (compileroption) 133
--no_typedefs_in_diagnostics (compiler option). 134
--no_unroll (compileroption) 134
--no_warnings (compiler option) 135
--no_wrap_diagnostics (compiler option) 135
--omit_types (compiler option) 136
--only_stdout (compileroption) 137
--output (compiler option). 137
--preinclude (compiler option) 137
--preprocess (compiler option) 138
--remarks (compileroption) 139
--require_prototypes (compiler option). 139
--silent (compiler option) 139
--strict_ansi (compiler option). 140
--warnings_affect_exit_code (compiler option)112, 140
--warnings_are_errors (compiler option) 140
dar.dynexit (segment) 37,208
@ (OPETALOL) . . v o v et e e e e 95,153
_DYNEXIT_ELEMENTS (symbol).................. 37
_Exit (library function) 54
_exit (library function), 54
_Exit,C99extension. 202
_formatted_write (library function) 46
_Pragma (predefined symbol). 193
_VBR_ADDRESS, symbol for vector base address 37
__ALIGNOF__(operator)oueueuenen.. 153
__asm (language extension)o.... 155
__BASE_FILE__ (predefined symbol)............... 190
__BUILD_NUMBER___ (predefined symbol) 190

Index °

__close (library function) 59 __gsortbbl, C99 extension.c.covnin... 202
__CODE_MODEL__ (predefined symbol). 190 __read (library function). 59
__cplusplus (predefined symbol) 190 CUSTOMUIZING &« o vttt et et ene 56
_ DATA_MODEL__ (predefined symbol)............ 190 __ReportAssert (library function). 63
_ DATE__ (predefined symbol).................... 190 __root (extended keyword) Ll 169
__disable_interrupt (intrinsic function). 186 __scanf_args (pragma directive). 220
__embedded_cplusplus (predefined symbol) 190 __segment_begin (extended operator 153
__enable_interrupt (intrinsic function) 186 __segment_end (extended operators) 153
__exit(library function) 54 __set_status_register (intrinsic function) 187
_ far (extended keyword) L 165 __ STDC_VERSION___ (predefined symbol) 192
__far_func (extended keyword) 166 _ STDC__ (predefined symbol).................... 192
__FILE__ (predefined symbol)..................... 190 __stop (intrinsic function). L oL 187
__ FUNCTION__ (predefined symbol) 160, 191 __SUBVERSION__ (predefined symbol). 192
__func__ (predefined symbol) 160, 191 _ TIME__ (predefined symbol) 192
_gets,instdioh. ... 202 __trap_false (intrinsic function) 187
__get_status_register (intrinsic function) 186 _ungetchar,instdioh oL L 202
__halt (intrinsic function) 186 __VA_ARGS__ (preprocessor extension). 194
__ TAR_SYSTEMS_ICC__ (predefined symbol) 191 __VER__ (predefined symbol)..................... 192
__ICCCF__ (predefined symbol) 191 __write (library function), 59
__interrupt (extended keyword) 23,166 CUSTOMUIZING &« o vttt et et ene 56
__intrinsic (extended keyword). 166 __write_array,instdioh...... o Lt 202
__ISA__ (predefined symbol). 191 __write_buffered (DLIB library function). 65
__LINE__ (predefined symbol) 191

__LITTLE_ENDIAN__ (predefined symbol).......... 191 N ®

Cdow devel inmit. ... 52 u m e rl c s

—low_level_init, customizing 55 32-bits (floating-point format) 145
__Iseek (library function) 59 64-bit data types, avoiding, 91
—_monitor (extended keyword)................. 104, 167 64-bits (floating-point format) 145
__near (extended keyword). oL 167

__near_func (extended keyword) 168

__near_rel (extended keyword). 167

__noreturn (extended keyword) 168

__no_init (extended keyword) 105, 168

__no_operation (intrinsic function). 187

__open (library function) 59

_ PRETTY_FUNCTION__ (predefined symbol). 191

__printf_args (pragma directive). 220

__program_start (label). 52

__pulse (intrinsic function). L L. 187

243

	Brief contents
	Contents
	Tables
	Preface
	Who should read this guide
	How to use this guide
	What this guide contains
	Part 1. Using the compiler
	Part 2. Reference information

	Other documentation
	Further reading

	Document conventions
	Typographic conventions

	Part 1. Using the compiler
	Getting started
	IAR language overview
	Supported ColdFire devices
	Building applications-an overview
	Compiling
	Linking

	Basic settings for project configuration
	Processor configuration
	Core
	Instruction set architecture
	Division instructions

	Code model
	Data model
	Optimization for speed and size
	Runtime environment
	Choosing a runtime library in the IAR Embedded Workbench IDE
	Choosing runtime environment from the command line
	Setting library and runtime environment options

	Special support for embedded systems
	Extended keywords
	Pragma directives
	Predefined symbols
	Special function types
	Accessing low-level features

	Data storage
	Introduction
	Data models
	Specifying a data model
	The Near relative data model
	The Far data model

	Memory types
	Near
	Near relative
	Far
	Using data memory attributes
	Syntax
	Type definitions

	Structures and memory types
	More examples

	C++ and memory types
	The stack and auto variables
	Advantages
	Potential problems

	Dynamic memory on the heap
	Potential problems

	Functions
	Function-related extensions
	Code models and memory attributes for function storage
	Using function memory attributes

	Primitives for interrupts, concurrency, and OS-related programming
	Interrupt functions
	Monitor functions
	C++ and special function types

	Placing code and data
	Segments and memory
	What is a segment?
	Segment memory type

	Placing segments in memory
	Customizing the linker command file
	The contents of the linker command file
	Using the -Z command for sequential placement
	Using the -P command for packed placement

	Data segments
	Static memory segments
	Segment naming
	Initialized data
	Data segments for static memory in the default linker command file

	The stack
	Stack size allocation in the IAR Embedded Workbench IDE
	Stack size allocation from the command line
	Placement of stack segment
	Stack size considerations

	The heap
	Heap size allocation in the IAR Embedded Workbench IDE
	Heap size allocation from the command line
	Placement of heap segment
	Heap size and standard I/O

	Code segments
	Startup code
	Normal code
	Interrupt vectors

	C++ dynamic initialization
	Initialization
	Destruction and atexit() handling

	Verifying the linked result of code and data placement
	Segment too long errors and range errors
	Linker map file

	The DLIB runtime environment
	Introduction to the runtime environment
	Runtime environment functionality
	Library selection
	Situations that require library building
	Library configurations
	Debug support in the runtime library

	Using a prebuilt library
	Customizing a prebuilt library without rebuilding

	Choosing formatters for printf and scanf
	Choosing printf formatter
	Specifying the print formatter in the IAR Embedded Workbench IDE
	Specifying printf formatter from the command line

	Choosing scanf formatter
	Specifying scanf formatter in the IAR Embedded Workbench IDE
	Specifying scanf formatter from the command line

	Overriding library modules
	Overriding library modules using the IAR Embedded Workbench IDE
	Overriding library modules from the command line

	Building and using a customized library
	Setting up a library project
	Modifying the library functionality
	Modifying the library configuration file

	Using a customized library

	System startup and termination
	System startup
	System termination
	C-SPY interface to system termination

	Customizing system initialization
	_ _low_level_init
	Modifying the file cstartup.s68

	Standard streams for input and output
	Implementing low-level character input and output
	Example of using _ _write and _ _read

	Configuration symbols for printf and scanf
	Customizing formatting capabilities

	File input and output
	Locale
	Locale support in prebuilt libraries
	Customizing the locale support
	Locale configuration symbols
	Building a library without support for locale interface
	Building a library with support for locale interface

	Changing locales at runtime
	Example

	Environment interaction
	Signal and raise
	Time
	Strtod
	Assert
	C-SPY Debugger runtime interface
	Low-level debugger runtime interface
	The debugger terminal I/O window
	Speeding up terminal output

	Checking module consistency
	Runtime model attributes
	Using runtime model attributes

	Assembler language interface
	Mixing C and assembler
	Intrinsic functions
	Mixing C and assembler modules
	Inline assembler

	Calling assembler routines from C
	Creating skeleton code
	Compiling the code
	The output file

	Calling assembler routines from C++
	Calling convention
	Function declarations
	Using C linkage in C++ source code
	Preserved versus scratch registers
	Scratch registers
	Preserved registers
	Special registers

	Function entrance
	Hidden parameters
	Register parameters
	Stack parameters and layout

	Function exit
	Registers used for returning values
	Stack layout
	Return address handling

	Examples
	Function directives

	Calling functions
	Memory access methods
	Call frame information

	Using C++
	Overview
	Standard Embedded C++
	Extended Embedded C++
	Enabling C++ support

	Feature descriptions
	Classes
	Functions
	Templates
	The standard template library
	STL and the IAR C-SPY® Debugger

	Variants of casts
	Mutable
	Namespace
	The STD namespace
	Using interrupts and EC++ destructors

	C++ language extensions

	Efficient coding for embedded applications
	Selecting data types
	Using efficient data types
	Floating-point types
	Alignment of elements in a structure
	Anonymous structs and unions

	Controlling data and function placement in memory
	Data placement at an absolute location
	Examples
	C++ considerations

	Data and function placement in segments
	Examples of placing variables in named segments
	Examples of placing functions in named segments

	Controlling compiler optimizations
	Scope for performed optimizations
	Optimization levels
	Speed versus size
	Fine-tuning enabled transformations
	Common subexpression elimination
	Loop unrolling
	Function inlining
	Code motion
	Type-based alias analysis

	Writing efficient code
	Saving stack space and RAM memory
	Function prototypes
	Prototyped style
	Kernighan & Ritchie style

	Integer types and bit negation
	Protecting simultaneously accessed variables
	Accessing special function registers
	Non-initialized variables

	Part 2. Reference information
	External interface details
	Invocation syntax
	Compiler invocation syntax
	Passing options
	Environment variables

	Include file search procedure
	Compiler output
	Error return codes

	Diagnostics
	Message format
	Severity levels
	Remark
	Warning
	Error
	Fatal error

	Setting the severity level
	Internal error

	Compiler options
	Options syntax
	Types of options
	Rules for specifying parameters
	Rules for optional parameters
	Rules for mandatory parameters
	Rules for options with both optional and mandatory parameters
	Rules for specifying a filename or directory as parameters
	Additional rules

	Compiler options summary
	Descriptions of options
	--char_is_signed
	--code_model
	--core
	-D
	--data_model
	--debug, -r
	--dependencies
	--diag_error
	--diag_remark
	--diag_suppress
	--diag_warning
	--diagnostics_tables
	--dlib_config
	-e
	--ec++
	--eec++
	--enable_multibytes
	--error_limit
	-f
	--header_context
	-I
	--isa
	-l
	--library_module
	--mac
	--misrac
	--misrac_verbose
	--module_name
	--no_code_motion
	--no_cse
	--no_div
	--no_inline
	--no_path_in_file_macros
	--no_tbaa
	--no_typedefs_in_diagnostics
	--no_unroll
	--no_warnings
	--no_wrap_diagnostics
	-O
	-o, --output
	--omit_types
	--only_stdout
	--output, -o
	--preinclude
	--preprocess
	--public_equ
	-r, --debug
	--remarks
	--require_prototypes
	--silent
	--strict_ansi
	--warnings_affect_exit_code
	--warnings_are_errors

	Data representation
	Alignment
	Alignment on the ColdFire microcontroller

	Basic data types
	Integer types
	Bool
	The enum type
	The char type
	The wchar_t type
	Bitfields

	Floating-point types
	32-bit floating-point format
	64-bit floating-point format
	Representation of special floating-point numbers

	Pointer types
	Function pointers
	Data pointers
	Casting
	size_t
	ptrdiff_t
	intptr_t
	uintptr_t

	Structure types
	Alignment
	General layout
	Packed structure types

	Type qualifiers
	Declaring objects volatile
	Definition of access to volatile objects
	Rules for accesses

	Declaring objects const

	Data types in C++

	Compiler extensions
	Compiler extensions overview
	Enabling language extensions

	C language extensions
	Important language extensions
	Useful language extensions
	Inline assembler
	Compound literals
	Incomplete arrays at end of structs
	This feature is part of the C99 standard.
	Hexadecimal floating-point constants
	Designated initializers in structures and arrays

	Minor language extensions

	Extended keywords
	General syntax rules for extended keywords
	Type attributes
	Memory attributes
	General type attributes
	Syntax for type attributes used on data objects
	Syntax for type attributes on data pointers
	Syntax for type attributes on functions
	Syntax for type attributes on function pointers

	Object attributes
	Syntax for object attributes

	Summary of extended keywords
	Descriptions of extended keywords
	_ _far
	_ _far_func
	_ _interrupt
	_ _intrinsic
	_ _monitor
	_ _near
	_ _near_rel
	_ _near_func
	_ _no_init
	_ _noreturn
	_ _root

	Pragma directives
	Summary of pragma directives
	Descriptions of pragma directives
	bitfields
	data_alignment
	diag_default
	diag_error
	diag_remark
	diag_suppress
	diag_warning
	include_alias
	inline
	language
	location
	message
	object_attribute
	optimize
	pack
	required
	rtmodel
	segment
	type_attribute

	Intrinsic functions
	Intrinsic functions summary
	Descriptions of intrinsic functions
	_ _disable_interrupt
	_ _enable_interrupt
	_ _get_status_register
	_ _halt
	_ _no_operation
	_ _pulse
	_ _set_status_state
	_ _stop
	_ _trap_false

	The preprocessor
	Overview of the preprocessor
	Descriptions of predefined preprocessor symbols
	Descriptions of miscellaneous preprocessor extensions
	NDEBUG
	_Pragma()
	#warning message
	_ _VA_ARGS_ _

	Library functions
	Introduction
	Header files
	Library object files
	Reentrancy

	IAR DLIB Library
	C header files
	C++ header files
	Embedded C++
	Extended Embedded C++ standard template library
	Using standard C libraries in C++

	Library functions as intrinsic functions
	Added C functionality
	ctype.h
	inttypes.h
	math.h
	stdbool.h
	stdint.h
	stdio.h
	stdlib.h
	wchar.h
	wctype.h

	Segment reference
	Summary of segments
	Descriptions of segments
	CODE
	CSTACK
	DIFUNCT
	EARLYDIFUNCT
	FAR_AN
	FAR_C
	FAR_I
	FAR_ID
	FAR_N
	FAR_Z
	FCODE
	HEAP
	.iar.dynexit
	INTVEC
	NEAR_AN
	NEAR_C
	NEAR_I
	NEAR_ID
	NEAR_N
	NEAR_Z
	NEARPID_I
	NEARPID_ID
	NEARPID_N
	NEARPID_Z
	PIDBASE
	RCODE

	Implementation-defined behavior
	Descriptions of implementation-defined behavior
	Translation
	Diagnostics (5.1.1.3)

	Environment
	Arguments to main (5.1.2.2.2.1)
	Interactive devices (5.1.2.3)

	Identifiers
	Significant characters without external linkage (6.1.2)
	Significant characters with external linkage (6.1.2)
	Case distinctions are significant (6.1.2)

	Characters
	Source and execution character sets (5.2.1)
	Bits per character in execution character set (5.2.4.2.1)
	Mapping of characters (6.1.3.4)
	Unrepresented character constants (6.1.3.4)
	Character constant with more than one character (6.1.3.4)
	Converting multibyte characters (6.1.3.4)
	Range of 'plain' char (6.2.1.1)

	Integers
	Range of integer values (6.1.2.5)
	Demotion of integers (6.2.1.2)
	Signed bitwise operations (6.3)
	Sign of the remainder on integer division (6.3.5)
	Negative valued signed right shifts (6.3.7)

	Floating point
	Representation of floating-point values (6.1.2.5)
	Converting integer values to floating-point values (6.2.1.3)
	Demoting floating-point values (6.2.1.4)

	Arrays and pointers
	size_t (6.3.3.4, 7.1.1)
	Conversion from/to pointers (6.3.4)
	ptrdiff_t (6.3.6, 7.1.1)

	Registers
	Honoring the register keyword (6.5.1)

	Structures, unions, enumerations, and bitfields
	Improper access to a union (6.3.2.3)
	Padding and alignment of structure members (6.5.2.1)
	Sign of 'plain' bitfields (6.5.2.1)
	Allocation order of bitfields within a unit (6.5.2.1)
	Can bitfields straddle a storage-unit boundary (6.5.2.1)
	Integer type chosen to represent enumeration types (6.5.2.2)

	Qualifiers
	Access to volatile objects (6.5.3)

	Declarators
	Maximum numbers of declarators (6.5.4)

	Statements
	Maximum number of case statements (6.6.4.2)

	Preprocessing directives
	Character constants and conditional inclusion (6.8.1)
	Including bracketed filenames (6.8.2)
	Including quoted filenames (6.8.2)
	Character sequences (6.8.2)
	Recognized pragma directives (6.8.6)
	Default _ _DATE_ _ and _ _TIME_ _ (6.8.8)

	IAR DLIB Library functions
	NULL macro (7.1.6)
	Diagnostic printed by the assert function (7.2)
	Domain errors (7.5.1)
	Underflow of floating-point values sets errno to ERANGE (7.5.1)
	fmod() functionality (7.5.6.4)
	signal() (7.7.1.1)
	Terminating newline character (7.9.2)
	Blank lines (7.9.2)
	Null characters appended to data written to binary streams (7.9.2)
	Files (7.9.3)
	remove() (7.9.4.1)
	rename() (7.9.4.2)
	%p in printf() (7.9.6.1)
	%p in scanf() (7.9.6.2)
	Reading ranges in scanf() (7.9.6.2)
	File position errors (7.9.9.1, 7.9.9.4)
	Message generated by perror() (7.9.10.4)
	Allocating zero bytes of memory (7.10.3)
	Behavior of abort() (7.10.4.1)
	Behavior of exit() (7.10.4.3)
	Environment (7.10.4.4)
	system() (7.10.4.5)
	Message returned by strerror() (7.11.6.2)
	The time zone (7.12.1)
	clock() (7.12.2.1)

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Symbols
	Numerics

