
UEW-8:1

IAR Embedded Workbench®
IDE

User Guide

UEW-8:1

COPYRIGHT NOTICE
Copyright © 1996–2009 IAR Systems AB.

No part of this document may be reproduced without the prior written consent of IAR
Systems AB. The software described in this document is furnished under a license and
may only be used or copied in accordance with the terms of such a license.

DISCLAIMER
The information in this document is subject to change without notice and does not
represent a commitment on any part of IAR Systems. While the information contained
herein is assumed to be accurate, IAR Systems assumes no responsibility for any errors
or omissions.

In no event shall IAR Systems, its employees, its contractors, or the authors of this
document be liable for special, direct, indirect, or consequential damage, losses, costs,
charges, claims, demands, claim for lost profits, fees, or expenses of any nature or kind.

TRADEMARKS
IAR Systems, IAR Embedded Workbench, C-SPY, visualSTATE, From Idea To Target,
IAR KickStart Kit, IAR PowerPac, IAR YellowSuite, IAR Advanced Development Kit,
IAR, and the IAR Systems logotype are trademarks or registered trademarks owned by
IAR Systems AB. J-Link is a trademark licensed to IAR Systems AB.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

Adobe and Acrobat Reader are registered trademarks of Adobe Systems Incorporated.
CodeWright is a registered trademark of Starbase Corporation.

All other product names are trademarks or registered trademarks of their respective
owners.

EDITION NOTICE
Eighth edition: March 2009

Part number: UEW-8

Internal reference: 5.4.x. tut2009.1, ISUD.

Brief contents
Tables ... xxiii

Figures .. xxvii

Preface .. xxxv

Part 1. Product overview ... 1

Product introduction .. 3

Installed files .. 15

Part 2. Tutorials .. 23

Welcome to the tutorials ... 25

Creating an application project ... 29

Debugging using the IAR C-SPY® Debugger 39

Mixing C and assembler modules .. 49

Using C++ .. 53

Simulating an interrupt .. 59

Creating and using libraries ... 69

Part 3. Project management and building 73

The development environment ... 75

Managing projects ... 81

Building ... 91

Editing ... 99

Part 4. Debugging .. 109
UEW-8:1

iii

iv
The IAR C-SPY® Debugger ... 111

Executing your application ... 119

Working with variables and expressions .. 125

Using breakpoints ... 133

Monitoring memory and registers .. 141

Using the C-SPY® macro system .. 145

Analyzing your application ... 153

Part 5. The C-SPY® Simulator ... 159

Simulator-specific debugging ... 161

Simulating interrupts ... 179

Part 6. Reference information ... 191

IAR Embedded Workbench® IDE reference 193

C-SPY® reference .. 273

General options .. 311

Compiler options ... 317

Assembler options ... 331

Custom build options ... 337

Build actions options .. 339

Linker options .. 341

Library builder options .. 355

Debugger options ... 357

The C-SPY Command Line Utility—cspybat 361

C-SPY® macros reference .. 369
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Brief contents
Glossary .. 395

Index ... 409
UEW-8:1

v

vi
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Contents
Tables ... xxiii

Figures .. xxvii

Preface .. xxxv

Who should read this guide ... xxxv

How to use this guide ... xxxv

What this guide contains .. xxxvi

Other documentation ..xxxix

Document conventions ...xxxix

Typographic conventions ..xxxix

Naming conventions ...xl

Part 1. Product overview ... 1

Product introduction .. 3

The IAR Embedded Workbench IDE .. 3

An extensible and modular environment ... 3

Features .. 4

Documentation ... 5

IAR C-SPY Debugger .. 5

The C-SPY driver ... 6

General C-SPY debugger features ... 6

C-SPY plugin modules ... 8

RTOS awareness .. 8

IAR C-SPY Simulator .. 9

Documentation ... 9

IAR C/C++ Compiler ... 9

Features .. 10

Runtime environment ... 10

Documentation ... 11
UEW-8:1

vii

viii
IAR Assembler ... 11

Features .. 11

Documentation ... 11

IAR XLINK Linker .. 12

Features .. 12

Documentation ... 12

IAR XAR Library Builder and IAR XLIB Librarian 13

Features .. 13

Documentation ... 13

Installed files .. 15

Directory structure .. 15

Root directory .. 15

The CPUNAME directory .. 15

The common directory ... 17

The install-info directory ... 17

File types ... 17

Files with non-default filename extensions 19

Documentation .. 20

The user and reference guides .. 20

Online help ... 21

IAR Systems on the web .. 21

Part 2. Tutorials .. 23

Welcome to the tutorials ... 25

Tutorials overview ... 25

Creating an application project .. 25

Debugging using the IAR C-SPY® Debugger 25

Mixing C and assembler modules .. 26

Using C++ .. 26

Simulating an interrupt ... 26

Creating and using libraries ... 26

Getting started .. 27
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Contents
Creating an application project ... 29

Setting up a new project ... 29

Creating a Workspace .. 29

Creating the new project .. 30

Adding files to the project .. 32

Setting project options ... 33

Compiling and linking the application ... 34

Compiling the source files ... 34

Viewing the list file .. 35

Linking the application .. 37

Viewing the map file .. 38

Debugging using the IAR C-SPY® Debugger 39

Debugging the application .. 39

Starting the debugger ... 39

Organizing the windows .. 39

Inspecting source statements .. 40

Inspecting variables ... 42

Setting and monitoring breakpoints ... 44

Monitoring registers ... 46

Monitoring memory ... 46

Viewing terminal I/O ... 47

Reaching program exit ... 47

Mixing C and assembler modules .. 49

Examining the calling convention .. 49

Adding an assembler module to the project 51

Setting up the project ... 51

Using C++ .. 53

Creating a C++ application ... 53

Compiling and linking the C++ application 53

Setting a breakpoint and executing to it ... 54

Printing the Fibonacci numbers ... 56
UEW-8:1

ix

x

Simulating an interrupt .. 59

Adding an interrupt handler .. 59

The application—a brief description .. 59

Writing an interrupt handler ... 60

Setting up the project ... 60

Setting up the simulation environment .. 60

Defining a C-SPY setup macro file .. 61

Setting C-SPY options ... 62

Building the project .. 63

Starting the simulator ... 64

Specifying a simulated interrupt ... 64

Setting an immediate breakpoint .. 65

Simulating the interrupt .. 66

Executing the application ... 66

Using macros for interrupts and breakpoints 67

Creating and using libraries ... 69

Using libraries .. 69

Creating a new project ... 70

Creating a library project ... 70

Using the library in your application project 71

Part 3. Project management and building 73

The development environment ... 75

The IAR Embedded Workbench IDE .. 75

The tool chain ... 75

Running the IDE ... 76

Exiting .. 77

Customizing the environment .. 77

Organizing the windows on the screen .. 77

Customizing the IDE .. 78

Invoking external tools ... 79
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Contents
Managing projects ... 81

The project model .. 81

How projects are organized .. 81

Creating and managing workspaces ... 83

Navigating project files .. 85

Viewing the workspace .. 86

Displaying browse information .. 87

Source code control .. 88

Interacting with source code control systems 88

Building ... 91

Building your application ... 91

Setting options .. 91

Building a project ... 93

Building multiple configurations in a batch 93

Using pre- and post-build actions .. 94

Correcting errors found during build ... 94

Building from the command line ... 95

Extending the tool chain .. 95

Tools that can be added to the tool chain ... 96

Adding an external tool .. 96

Editing ... 99

Using the IAR Embedded Workbench editor 99

Editing a file ... 99

Using and adding code templates ... 103

Navigating in and between files ... 105

Searching .. 106

Customizing the editor environment .. 106

Using an external editor ... 106
UEW-8:1

xi

xii
Part 4. Debugging .. 109

The IAR C-SPY® Debugger ... 111

Debugger concepts .. 111

C-SPY and target systems .. 111

Debugger .. 112

Target system ... 112

User application ... 112

C-SPY Debugger systems .. 112

ROM-monitor program .. 113

Third-party debuggers .. 113

The C-SPY environment ... 113

An integrated environment ... 113

Setting up C-SPY .. 114

Choosing a debug driver .. 114

Executing from reset ... 115

Using a setup macro file ... 115

Selecting a device description file ... 115

Loading plugin modules ... 116

Starting C-SPY ... 116

Executable files built outside of the IDE ... 117

Loading multiple debug files ... 117

Redirecting debugger output to a file ... 117

Executing your application ... 119

Source and disassembly mode debugging 119

Executing .. 119

Step ... 120

Go ... 122

Run to Cursor ... 122

Highlighting ... 122

Using breakpoints to stop ... 122

Using the Break button to stop ... 123

Stop at program exit ... 123
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Contents
Call stack information .. 123

Terminal input and output ... 124

Working with variables and expressions .. 125

C-SPY expressions ... 125

C symbols ... 125

Assembler symbols .. 126

Macro functions .. 126

Macro variables .. 127

Limitations on variable information ... 127

Effects of optimizations ... 127

Viewing variables and expressions .. 128

Working with the windows .. 128

Using the trace system ... 129

Viewing assembler variables ... 130

Using breakpoints ... 133

The breakpoint system .. 133

Defining breakpoints ... 133

Breakpoint icons .. 134

Different ways to set a breakpoint ... 134

Toggling a simple code breakpoint .. 135

Defining breakpoints using the dialog box 135

Setting a data breakpoint in the Memory window 136

Defining breakpoints using system macros 137

Useful breakpoint tips .. 137

Viewing all breakpoints .. 138

Using the Breakpoint Usage dialog box .. 139

Breakpoint consumers .. 140

Monitoring memory and registers .. 141

Memory addressing .. 141

Windows for monitoring memory and registers 141

Using the Stack window .. 142

Working with registers ... 143
UEW-8:1

xiii

xiv
Using the C-SPY® macro system .. 145

The macro system .. 145

The macro language ... 146

The macro file .. 146

Setup macro functions .. 147

Using C-SPY macros ... 147

Using the Macro Configuration dialog box 148

Registering and executing using setup macros and setup files 149

Executing macros using Quick Watch .. 150

Executing a macro by connecting it to a breakpoint 151

Analyzing your application ... 153

Function-level profiling .. 153

Using the profiler ... 153

Code coverage ... 155

Using Code Coverage .. 155

Part 5. The C-SPY® Simulator ... 159

Simulator-specific debugging ... 161

The C-SPY Simulator introduction .. 161

Features .. 161

Selecting the simulator driver .. 161

Simulator-specific menus .. 162

Simulator menu .. 162

Using the trace system in the simulator 163

Trace window ... 163

Function Trace window ... 164

Trace Expressions window .. 166

Find In Trace window .. 167

Find in Trace dialog box .. 167

Memory access checking ... 169

Memory Access setup dialog box .. 169

Edit Memory Access dialog box .. 172
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Contents
Using breakpoints in the simulator .. 173

Data breakpoints .. 173

Immediate breakpoints ... 176

Breakpoint Usage dialog box ... 178

Simulating interrupts ... 179

The C-SPY interrupt simulation system 179

Interrupt characteristics .. 180

Interrupt simulation states .. 180

Using the interrupt simulation system 182

Target-adapting the interrupt simulation system 182

Interrupt Setup dialog box .. 183

Edit Interrupt dialog box .. 184

Forced interrupt window .. 185

C-SPY system macros for interrupts .. 186

Interrupt Log window .. 187

Simulating a simple interrupt ... 189

Part 6. Reference information ... 191

IAR Embedded Workbench® IDE reference 193

Windows ... 193

IAR Embedded Workbench IDE window 194

Workspace window .. 196

Editor window .. 204

Source Browser window .. 210

Breakpoints window .. 213

Build window ... 219

Find in Files window .. 219

Tool Output window .. 220

Debug Log window .. 221

Menus ... 222

File menu .. 222

Edit menu ... 225
UEW-8:1

xv

xvi
View menu ... 233

Project menu .. 235

Tools menu ... 244

Common fonts options ... 245

Key Bindings options ... 246

Language options ... 247

Editor options ... 248

Configure Auto Indent dialog box ... 250

External Editor options .. 251

Editor Setup Files options .. 253

Editor Colors and Fonts options ... 254

Messages options ... 255

Project options .. 257

Source Code Control options ... 258

Debugger options ... 259

Stack options .. 261

Register Filter options .. 263

Terminal I/O options .. 264

Configure Tools dialog box ... 265

Filename Extensions dialog box .. 267

Filename Extension Overrides dialog box 268

Edit Filename Extensions dialog box ... 268

Configure Viewers dialog box .. 269

Edit Viewer Extensions dialog box ... 269

Window menu .. 270

Help menu .. 271

Embedded Workbench Startup dialog box 271

C-SPY® reference .. 273

C-SPY windows .. 273

Editing in C-SPY windows .. 274

C-SPY Debugger main window ... 274

Disassembly window ... 275

Memory window .. 278
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Contents
Fill dialog box .. 282

Memory Save dialog box ... 283

Memory Restore dialog box ... 284

Symbolic Memory window .. 284

Register window .. 286

Watch window ... 287

Locals window ... 289

Auto window .. 289

Live Watch window ... 290

Quick Watch window ... 291

Statics window ... 291

Select Statics dialog box .. 293

Call Stack window ... 294

Terminal I/O window ... 295

Code Coverage window ... 296

Profiling window .. 298

Stack window ... 300

Symbols window .. 303

C-SPY menus .. 304

Debug menu ... 305

General options .. 311

Target .. 311

Output ... 311

Output file .. 312

Output directories ... 312

Library Configuration ... 313

Library .. 313

Library file ... 313

Configuration file ... 313

Library Options ... 314

Printf formatter ... 314

Scanf formatter ... 314

Stack/Heap .. 315
UEW-8:1

xvii

xvi
Compiler options ... 317

Multi-file compilation .. 317

Language .. 318

Language .. 318

Require prototypes ... 319

Language conformance .. 319

Plain 'char' is ... 319

Enable multibyte support ... 320

Enable IAR migration preprocessor extensions 320

Code ... 320

Optimizations ... 321

Optimizations ... 321

Output ... 322

Module type ... 323

Generate debug information ... 323

List ... 323

Output list file .. 324

Output assembler file ... 324

Preprocessor ... 325

Ignore standard include directories .. 325

Additional include directories .. 325

Preinclude file .. 326

Defined symbols .. 326

Preprocessor output to file ... 326

Diagnostics .. 326

Enable remarks ... 327

Suppress these diagnostics ... 327

Treat these as remarks .. 327

Treat these as warnings .. 328

Treat these as errors .. 328

Treat all warnings as errors .. 328

Extra Options ... 328

Use command line options ... 329
UEW-8:1

ii
IAR Embedded Workbench® IDE
User Guide

Contents
Assembler options ... 331

Language .. 331

User symbols are case sensitive ... 331

Enable multibyte support .. 331

Allow mnemonics in first column .. 331

Allow directives in first column ... 331

Macro quote characters .. 332

Output ... 332

Generate debug information ... 333

List ... 333

Preprocessor ... 333

Ignore standard include directories .. 333

Additional include directories ... 333

Defined symbols .. 334

Preprocessor output to file ... 334

Diagnostics .. 335

Extra Options ... 335

Use command line options ... 335

Custom build options ... 337

Custom Tool Configuration ... 337

Build actions options .. 339

Build Actions Configuration .. 339

Pre-build command line ... 339

Post-build command line ... 339

Linker options .. 341

Output ... 341

Output file ... 341

Format .. 342

Extra Output .. 344

#define ... 345

Define symbol ... 345
UEW-8:1

xix

xx
Diagnostics .. 346

Always generate output .. 346

Segment overlap warnings ... 346

No global type checking .. 346

Range checks .. 347

Warnings/Errors ... 347

List ... 348

Generate linker listing .. 348

Config ... 350

Linker command file ... 350

Command file configuration tool ... 350

Override default program entry .. 350

Search paths ... 351

Raw binary image .. 351

Processing .. 352

Fill unused code memory ... 352

Extra Options ... 354

Use command line options ... 354

Library builder options .. 355

Output ... 355

Debugger options ... 357

Setup .. 357

Driver ... 357

Run to .. 358

Setup macros ... 358

Device description file .. 358

Download ... 358

Extra Options ... 359

Use command line options ... 359

Plugins ... 359
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Contents
The C-SPY Command Line Utility—cspybat 361

Using C-SPY in batch mode ... 361

Invocation syntax ... 361

Output ... 362

Using an automatically generated batch file 362

C-SPY command line options ... 363

General cspybat options ... 363

Options available for all C-SPY drivers .. 363

Options available for the simulator driver 363

Options available for the C-SPY hardware driver 363

Descriptions of C-SPY command line options 364

C-SPY® macros reference .. 369

The macro language .. 369

Macro functions ... 369

Predefined system macro functions ... 369

Macro variables .. 370

Macro statements ... 371

Formatted output .. 372

Setup macro functions summary .. 374

C-SPY system macros summary ... 375

Description of C-SPY system macros .. 376

Glossary .. 395

Index ... 409
UEW-8:1

xxi

xxi
UEW-8:1

i
IAR Embedded Workbench® IDE
User Guide

Tables
1: Typographic conventions used in this guide .. xxxix

2: Naming conventions used in this guide ... xl

3: The CPUNAME directory ... 15

4: The common directory .. 17

5: File types ... 17

6: Compiler options for project2 ... 50

7: Interrupts dialog box ... 64

8: Breakpoints dialog box ... 65

9: General options for a library project ... 70

10: Command shells .. 80

11: iarbuild.exe command line options ... 95

12: C-SPY assembler symbols expressions .. 126

13: Handling name conflicts between hardware registers and assembler labels 126

14: Project options for enabling profiling ... 153

15: Project options for enabling code coverage .. 156

16: Description of Simulator menu commands ... 162

17: Trace toolbar commands ... 163

18: Trace window columns ... 164

19: Function Trace window columns .. 165

20: Toolbar buttons in the Trace Expressions window ... 166

21: Trace Expressions window columns ... 166

22: Function buttons in the Memory Access Setup dialog box 171

23: Example of costs for accessing memory entities .. 173

24: Memory Access types ... 175

25: Breakpoint conditions ... 175

26: Memory Access types ... 177

27: Interrupt statuses ... 181

28: Characteristics of a forced interrupt .. 186

29: Description of the Interrupt Log window .. 188

30: Timer interrupt settings ... 190

31: IDE menu bar .. 194
UEW-8:1

xxiii

xxi
32: Workspace window context menu commands .. 198

33: Description of source code control commands ... 199

34: Description of source code control states .. 200

35: Description of commands on the editor window tab context menu 205

36: Description of commands on the editor window context menu 206

37: Editor keyboard commands for insertion point navigation 208

38: Editor keyboard commands for scrolling .. 209

39: Editor keyboard commands for selecting text ... 209

40: Columns in Source Browser window .. 210

41: Information in Source Browser window ... 211

42: Source Browser window context menu commands .. 212

43: Breakpoints window context menu commands ... 213

44: Breakpoint conditions ... 216

45: Log breakpoint conditions ... 217

46: Location types ... 218

47: File menu commands .. 223

48: Edit menu commands .. 225

49: Find dialog box options ... 228

50: Replace dialog box options ... 229

51: Incremental Search function buttons ... 232

52: View menu commands .. 233

53: Project menu commands ... 235

54: Argument variables ... 237

55: Configurations for project dialog box options .. 238

56: New Configuration dialog box options ... 239

57: Description of Create New Project dialog box ... 240

58: Project option categories ... 240

59: Description of the Batch Build dialog box .. 242

60: Description of the Edit Batch Build dialog box .. 243

61: Tools menu commands ... 244

62: Project IDE options ... 257

63: Register Filter options ... 263

64: Configure Tools dialog box options .. 265

65: Command shells .. 267
UEW-8:1

v
IAR Embedded Workbench® IDE
User Guide

Tables
66: Window menu commands ... 270

67: Editing in C-SPY windows ... 274

68: Disassembly window toolbar .. 276

69: Disassembly context menu commands ... 277

70: Memory window operations ... 279

71: Commands on the memory window context menu ... 281

72: Fill dialog box options .. 282

73: Memory fill operations .. 282

74: Symbolic Memory window toolbar .. 285

75: Symbolic memory window columns ... 285

76: Commands on the Symbolic Memory window context menu 286

77: Watch window context menu commands ... 288

78: Effects of display format setting on different types of expressions 288

79: Symbolic memory window columns ... 292

80: Statics window context menu commands ... 293

81: Code Coverage window toolbar .. 297

82: Code Coverage window context menu commands ... 298

83: Profiling window columns .. 300

84: Stack window columns ... 302

85: Symbols window columns .. 303

86: Commands on the Symbols window context menu .. 304

87: Debug menu commands .. 305

88: Log file options ... 308

89: XLINK range check options ... 347

90: XLINK list file options ... 348

91: XLINK list file format options .. 349

92: Linker checksum algorithms ... 353

93: cspybat parameters .. 361

94: Examples of C-SPY macro variables .. 370

95: C-SPY setup macros ... 374

96: Summary of system macros .. 375

97: __cancelInterrupt return values ... 377

98: __disableInterrupts return values .. 378

99: __driverType return values ... 378
UEW-8:1

xxv

xxv
100: __enableInterrupts return values ... 379

101: __evaluate return values ... 379

102: __loadModule return values ... 380

103: __openFile return values ... 381

104: __readFile return values ... 383

105: __setCodeBreak return values .. 386

106: __setDataBreak return values ... 387

107: __setSimBreak return values .. 388

108: __sourcePosition return values ... 389
UEW-8:1

i
IAR Embedded Workbench® IDE
User Guide

Figures
1: Create New Project dialog box ... 30

2: Workspace window ... 31

3: New Workspace dialog box .. 31

4: Adding files to project1 ... 32

5: Setting compiler options ... 33

6: Compilation message .. 34

7: Workspace window after compilation .. 35

8: Setting the option Scan for Changed Files .. 36

9: The C-SPY Debugger main window ... 40

10: Stepping in C-SPY .. 41

11: Using Step Into in C-SPY ... 42

12: Inspecting variables in the Auto window .. 43

13: Watching variables in the Watch window .. 44

14: Setting breakpoints .. 45

15: Register window .. 46

16: Output from the I/O operations ... 47

17: Reaching program exit in C-SPY .. 48

18: Setting a breakpoint in CPPtutor.cpp .. 54

19: Setting breakpoint with skip count .. 55

20: Inspecting the function calls .. 56

21: Printing Fibonacci sequences .. 57

22: Specifying setup macro file ... 63

23: Inspecting the interrupt settings .. 65

24: Printing the Fibonacci values in the Terminal I/O window 67

25: IAR Embedded Workbench IDE window ... 76

26: Configure Tools dialog box .. 79

27: Customized Tools menu .. 80

28: Examples of workspaces and projects ... 82

29: Displaying a project in the Workspace window ... 86

30: Workspace window—an overview ... 87

31: General options ... 92
UEW-8:1

xxvii

xxv
32: Editor window ... 100

33: Parentheses matching in editor window .. 103

34: Editor window status bar ... 103

35: Editor window code template menu .. 104

36: Specifying external command line editor ... 107

37: External editor DDE settings .. 108

38: C-SPY and target systems ... 112

39: C-SPY highlighting source location .. 122

40: Viewing assembler variables in the Watch window ... 131

41: Breakpoint icons .. 134

42: Setting breakpoints via the context menu ... 136

43: Breakpoint Usage dialog box .. 139

44: Stack window .. 142

45: Register window .. 143

46: Register Filter page ... 144

47: Macro Configuration dialog box ... 149

48: Quick Watch window .. 151

49: Profiling window ... 154

50: Graphs in Profiling window .. 154

51: Function details window ... 155

52: Code Coverage window .. 156

53: Simulator menu ... 162

54: Trace window .. 163

55: Function Trace window ... 165

56: Trace Expressions window ... 166

57: Find In Trace window ... 167

58: Find in Trace dialog box ... 168

59: Memory Access Setup dialog box ... 170

60: Edit Memory Access dialog box ... 172

61: Data breakpoints dialog box .. 174

62: Immediate breakpoints page ... 177

63: Breakpoint Usage dialog box .. 178

64: Simulated interrupt configuration ... 180

65: Simulation states - example 1 ... 181
UEW-8:1

iii
IAR Embedded Workbench® IDE
User Guide

Figures
66: Simulation states - example 2 ... 182

67: Interrupt Setup dialog box ... 183

68: Edit Interrupt dialog box ... 184

69: Forced Interrupt window ... 185

70: Interrupt Log window ... 188

71: IAR Embedded Workbench IDE window ... 194

72: IDE toolbar .. 195

73: IAR Embedded Workbench IDE window status bar .. 196

74: Workspace window ... 196

75: Workspace window context menu .. 198

76: Source Code Control menu ... 199

77: Select Source Code Control Provider dialog box ... 201

78: Check In Files dialog box ... 202

79: Check Out Files dialog box ... 203

80: Editor window ... 204

81: Editor window tab context menu .. 205

82: Editor window context menu .. 206

83: Source Browser window ... 210

84: Source Browser window context menu ... 212

85: Breakpoints window .. 213

86: Breakpoints window context menu ... 213

87: Code breakpoints page .. 215

88: Log breakpoints page .. 216

89: Enter Location dialog box ... 218

90: Build window (message window) ... 219

91: Build window context menu ... 219

92: Find in Files window (message window) .. 220

93: Find in Files window context menu .. 220

94: Tool Output window (message window) .. 221

95: Tool Output window context menu ... 221

96: Debug Log window (message window) .. 221

97: Debug Log window context menu .. 222

98: File menu ... 223

99: Edit menu .. 225
UEW-8:1

xxix

xxx
100: Find in Files dialog box ... 229

101: Incremental Search dialog box .. 231

102: Template dialog box .. 232

103: View menu .. 233

104: Project menu .. 235

105: Configurations for project dialog box ... 238

106: New Configuration dialog box .. 239

107: Create New Project dialog box ... 240

108: Batch Build dialog box .. 242

109: Edit Batch Build dialog box .. 243

110: Tools menu .. 244

111: Common Fonts options ... 245

112: Key Bindings options .. 246

113: Language options .. 247

114: Editor options .. 248

115: Configure Auto Indent dialog box .. 250

116: External Editor options ... 251

117: Editor Setup Files options ... 253

118: Editor Colors and Fonts options .. 254

119: Messages option .. 255

120: Message dialog box containing a Don’t show again option 256

121: Project options ... 257

122: Source Code Control options .. 258

123: Debugger options .. 259

124: Stack options ... 261

125: Register Filter options ... 263

126: Terminal I/O options ... 264

127: Configure Tools dialog box .. 265

128: Customized Tools menu .. 266

129: Filename Extensions dialog box ... 267

130: Filename Extension Overrides dialog box .. 268

131: Edit Filename Extensions dialog box .. 268

132: Configure Viewers dialog box .. 269

133: Edit Viewer Extensions dialog box ... 269
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Figures
134: Window menu ... 270

135: Embedded Workbench Startup dialog box ... 271

136: C-SPY debug toolbar .. 275

137: C-SPY Disassembly window .. 275

138: Disassembly window context menu .. 277

139: Memory window ... 279

140: Memory window context menu .. 280

141: Fill dialog box ... 282

142: Memory Save dialog box .. 283

143: Memory Restore dialog box .. 284

144: Symbolic Memory window ... 285

145: Symbolic Memory window context menu .. 286

146: Register window .. 287

147: Watch window .. 287

148: Watch window context menu .. 288

149: Locals window .. 289

150: Auto window ... 289

151: Live Watch window .. 290

152: Quick Watch window .. 291

153: Statics window .. 292

154: Statics window context menu .. 292

155: Select Statics dialog box ... 293

156: Call Stack window .. 294

157: Call Stack window context menu .. 294

158: Terminal I/O window .. 295

159: Ctrl codes menu ... 295

160: Input Mode dialog box .. 296

161: Code Coverage window .. 296

162: Code coverage context menu .. 298

163: Profiling window ... 299

164: Profiling context menu .. 299

165: Stack window .. 301

166: Stack window context menu ... 302

167: Symbols window ... 303
UEW-8:1

xxxi

xxx
168: Symbols window context menu .. 304

169: Debug menu .. 305

170: Autostep settings dialog box ... 306

171: Macro Configuration dialog box ... 307

172: Log File dialog box ... 308

173: Terminal I/O Log File dialog box ... 309

174: Output options ... 311

175: Library Configuration options ... 313

176: Library Options page ... 314

177: Multi-file Compilation .. 317

178: Compiler language options ... 318

179: Compiler optimizations options .. 321

180: Compiler output options .. 322

181: Compiler list file options ... 323

182: Compiler preprocessor options ... 325

183: Compiler diagnostics options .. 327

184: Extra Options page for the compiler ... 328

185: Choosing macro quote characters ... 332

186: Assembler output options .. 332

187: Assembler preprocessor options ... 333

188: Extra Options page for the assembler ... 335

189: Custom tool options .. 337

190: Build actions options ... 339

191: XLINK output file options .. 341

192: XLINK extra output file options ... 344

193: Linker defined symbols options .. 345

194: Linker diagnostics options .. 346

195: Linker list file options ... 348

196: Linker config options .. 350

197: Linker processing options ... 352

198: Extra Options page for the linker .. 354

199: Library builder output options .. 355

200: Generic C-SPY options ... 357

201: Extra Options page for C-SPY .. 359
UEW-8:1

ii
IAR Embedded Workbench® IDE
User Guide

Figures
202: C-SPY plugin options ... 360
UEW-8:1

xxxiii

xxx
UEW-8:1

iv
IAR Embedded Workbench® IDE
User Guide

Preface
Welcome to the IAR Embedded Workbench® IDE User Guide. The purpose of
this guide is to help you fully use the features in IAR Embedded Workbench
with its integrated Windows development tools. The IAR Embedded
Workbench IDE is a very powerful Integrated Development Environment that
allows you to develop and manage a complete embedded application project.

The user guide includes product overviews and reference information, as well
as tutorials that will help you get started. It also describes the processes of
editing, project managing, building, and debugging.

Note: Some descriptions in this guide only apply to certain versions of the
IAR Embedded Workbench® IDE. For example, not all versions support C++.

Who should read this guide
Read this guide if you want to get the most out of the features and tools available in the
IDE. In addition, you should have working knowledge of:

● The C or C++ programming language

● Application development for embedded systems

● The architecture and instruction set of the processor (refer to the chip
manufacturer's documentation)

● The operating system of your host computer.

Refer to the IAR C/C++ Compiler Reference Guide, IAR Assembler Reference Guide,
and IAR Linker and Library Tools Reference Guide for more information about the other
development tools incorporated in the IDE.

How to use this guide
If you are new to using this product, we suggest that you first read Part 1. Product
overview for an overview of the tools and the features that the IDE offers.

If you already have had some experience using IAR Embedded Workbench, but need
refreshing on how to work with the IAR Systems development tools, Part 2. Tutorials
is a good place to begin. The process of managing projects and building, as well as
UEW-8:1

xxxv

xxx

What this guide contains
editing, is described in Part 3. Project management and building, page 73, whereas
information about how to use C-SPY is described in Part 4. Debugging, page 109.

If you are an experienced user and need this guide only for reference information, see
the reference chapters in Part 6. Reference information and the online help system
available from the IAR Embedded Workbench IDE Help menu.

Finally, we recommend the Glossary if you should encounter any unfamiliar terms in
the IAR Systems user and reference guides.

What this guide contains
This is a brief outline and summary of the chapters in this guide. Some chapters only
apply to certain versions of the IAR Embedded Workbench® IDE, partly or in their
entirety.

Part 1. Product overview

This section provides a general overview of all the IAR Systems development tools so
that you can become familiar with them:

● Product introduction provides a brief summary and lists the features offered in each
of the IAR Systems development tools—IAR Embedded Workbench® IDE, IAR
C/C++ Compiler, IAR Assembler, IAR XLINK Linker, IAR XAR Library Builder,
IAR XLIB Librarian, and IAR C-SPY Debugger.

● Installed files describes the directory structure and the types of files it contains. The
chapter also includes an overview of the documentation supplied with the IAR
Systems development tools.

Part 2. Tutorials

The tutorials give you hands-on training to help you get started with using the tools:

● Welcome to the tutorials gives you an overview of the tutorial projects.

● Creating an application project guides you through setting up a new project,
compiling your application, examining the list file, and linking your application.
The tutorial demonstrates a typical development cycle, which is continued with
debugging in the next chapter.

● Debugging using the IAR C-SPY® Debugger explores the basic facilities of the
debugger.

● Mixing C and assembler modules demonstrates how you can easily combine source
modules written in C with assembler modules. The chapter also demonstrates how
to use the compiler for examining the calling convention.
UEW-8:1

vi
IAR Embedded Workbench® IDE
User Guide

Preface
● Using C++ shows how to create a C++ class, which creates two independent
objects. The application is then built and debugged. This chapter only applies to
product versions with C++ support.

● Simulating an interrupt shows how to add an interrupt handler to the project and
how to simulate this interrupt, using C-SPY facilities for simulated interrupts,
breakpoints, and macros.

● Creating and using libraries demonstrates how to create library modules.

Part 3. Project management and building

This section describes the process of editing and building your application:

● The development environment introduces you to the IAR Embedded Workbench
development environment. The chapter also demonstrates the facilities available for
customizing the environment to meet your requirements.

● Managing projects describes how you can create workspaces with multiple projects,
build configurations, groups, source files, and options that helps you handle
different versions of your applications.

● Building discusses the process of building your application.

● Editing contains detailed descriptions about the IAR Embedded Workbench editor,
how to use it, and the facilities related to its usage. The final section also contains
information about how to integrate an external editor of your choice.

Part 4. Debugging

This section gives conceptual information about C-SPY functionality and how to use it:

● The IAR C-SPY® Debugger introduces some of the concepts that are related to
debugging in general and to the IAR C-SPY Debugger in particular. It also
introduces you to the C-SPY environment and how to setup, start, and configure the
debugger to reflect the target hardware.

● Executing your application describes how you initialize C-SPY, the conceptual
differences between source and disassembly mode debugging, the facilities for
executing your application, and finally, how you can handle terminal input and
output.

● Working with variables and expressions defines the syntax of the expressions and
variables used in C-SPY, as well as the limitations on variable information. The
chapter also demonstrates the various methods for monitoring variables and
expressions.

● Using breakpoints describes the breakpoint system and the various ways to define
breakpoints.
UEW-8:1

xxxvii

xxx

What this guide contains
● Monitoring memory and registers shows how you can examine memory and
registers.

● Using the C-SPY® macro system describes the C-SPY macro system, its features,
the purposes of these features, and how to use them.

● Analyzing your application presents facilities for analyzing your application.

Part 5. The C-SPY® Simulator

● Simulator-specific debugging describes the functionality specific to the simulator.

● Simulating interrupts contains detailed information about the C-SPY interrupt
simulation system and how to configure the simulated interrupts to make them
reflect the interrupts of your target hardware.

Part 6. Reference information

● IAR Embedded Workbench® IDE reference contains detailed reference information
about the development environment, such as details about the graphical user
interface.

● C-SPY® reference provides detailed reference information about the graphical user
interface of the IAR C-SPY Debugger.

● General options specifies the target, output, library, heap, and stack options.

● Compiler options specifies compiler options for language, optimizations, output, list
file, preprocessor, and diagnostics.

● Assembler options describes the assembler options for language, output, list,
preprocessor, and diagnostics.

● Custom build options describes the options available for custom tool configuration.

● Build actions options describes the options available for pre-build and post-build
actions.

● Linker options describes the XLINK options for output, defining symbols,
diagnostics, list generation, setting up the include paths, input, and processing.

● Library builder options describes the XAR options available in the Embedded
Workbench.

● Debugger options gives reference information about generic C-SPY options.

● The C-SPY Command Line Utility—cspybat describes how to use the debugger in
batch mode.

● C-SPY® macros reference gives reference information about C-SPY macros, such
as a syntax description of the macro language, summaries of the available setup
macro functions, and pre-defined system macros. Finally, a description of each
system macro is provided.
UEW-8:1

vii
IAR Embedded Workbench® IDE
User Guide

Preface
Other documentation
The complete set of IAR Systems development tools are described in a series of guides.
For information about:

● Programming for the IAR C/C++ Compiler, refer to the IAR C/C++ Compiler
Reference Guide

● Programming for the IAR Assembler, refer to the IAR Assembler Reference Guide
● Using the IAR XLINK Linker, the IAR XAR Library Builder, and the IAR XLIB

Librarian, refer to the IAR Linker and Library Tools Reference Guide

All of these guides are delivered in hypertext PDF or HTML format on the installation
media. Some of them are also delivered as printed books. Note that additional
documentation might be available on the Help menu depending on your product
installation.

Recommended web sites:

● The chip manufacturer web site contains information and news about the
microcontroller.

● The IAR Systems web site, www.iar.com, holds application notes and other
product information.

● Finally, the Embedded C++ Technical Committee web site,
www.caravan.net/ec2plus, contains information about the Embedded C++
standard.

Document conventions
When, in this text, we refer to the programming language C, the text also applies to C++,
unless otherwise stated.

When referring to a directory in your product installation, for example cpuname\doc,
the full path to the location is assumed, for example c:\Program Files\IAR
Systems\Embedded Workbench 5.n\cpuname\doc.

TYPOGRAPHIC CONVENTIONS

This guide uses the following typographic conventions:

Style Used for

computer • Source code examples and file paths.
• Text on the command line.
• Binary, hexadecimal, and octal numbers.

Table 1: Typographic conventions used in this guide
UEW-8:1

xxxix

xl

Document conventions
NAMING CONVENTIONS

The following naming conventions are used for the products and tools from IAR
Systems® referred to in this guide:

parameter A placeholder for an actual value used as a parameter, for example
filename.h where filename represents the name of the file. Note
that this style is also used for cpuname, configfile,
libraryfile, and other labels representing your product, as well as
for the numeric part of filename extensions—xx.

[option] An optional part of a command.

a|b|c Alternatives in a command.

{a|b|c} A mandatory part of a command with alternatives.

bold Names of menus, menu commands, buttons, and dialog boxes that
appear on the screen.

italic • A cross-reference within this guide or to another guide.
• Emphasis.

… An ellipsis indicates that the previous item can be repeated an arbitrary
number of times.

Identifies instructions specific to the IAR Embedded Workbench® IDE
interface.

Identifies instructions specific to the command line interface.

Identifies helpful tips and programming hints.

Identifies warnings.

Brand name Generic term

IAR Embedded Workbench® IAR Embedded Workbench®

IAR Embedded Workbench® IDE the IDE

IAR C-SPY® Debugger C-SPY, the debugger

IAR C-SPY® Simulator the simulator

IAR C/C++ Compiler™ the compiler

IAR Assembler™ the assembler

IAR XLINK™ Linker XLINK, the linker

IAR XAR Library builder™ the library builder

Table 2: Naming conventions used in this guide

Style Used for

Table 1: Typographic conventions used in this guide (Continued)
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Preface
IAR XLIB Librarian™ the librarian

Brand name Generic term

Table 2: Naming conventions used in this guide (Continued)
UEW-8:1

xli

xlii

Document conventions
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Part 1. Product overview
This part of the IAR Embedded Workbench® IDE User Guide includes the
following chapters:

● Product introduction

● Installed files.
UEW-8:1

1

2

UEW-8:1

Product introduction
The IAR Embedded Workbench® IDE is a very powerful Integrated
Development Environment, that allows you to develop and manage complete
embedded application projects. It is a development platform, with all the
features you would expect to find in your everyday working place.

This chapter describes the IDE and provides a general overview of all the tools
that are integrated in this product.

The IAR Embedded Workbench IDE
The IDE is the framework where all necessary tools are seamlessly integrated:

● The highly optimizing IAR C/C++ Compiler

● The IAR Assembler

● The versatile IAR XLINK Linker

● The IAR XAR Library Builder and the IAR XLIB Librarian

● A powerful editor

● A project manager

● A command line build utility

● The IAR C-SPY® Debugger, a state-of-the-art high-level language debugger.

IAR Embedded Workbench is available for many microprocessors and microcontrollers
in the 8-, 16-, and 32-bit segments, allowing you to stay within a well-known
development environment also for your next project. It provides an easy-to-learn and
highly efficient development environment with maximum code inheritance capabilities,
comprehensive and specific target support. IAR Embedded Workbench promotes a
useful working methodology, and you can reduce your development time significantly
by using the IAR Systems tools.

If you want detailed information about supported target processors, contact your
software distributor or your IAR Systems representative, or visit the IAR Systems web
site www.iar.com for information about recent product releases.

AN EXTENSIBLE AND MODULAR ENVIRONMENT

Although the IDE provides all the features required for a successful project, we also
recognize the need to integrate other tools. Therefore the IDE is easily adapted to work
with your favorite editor and source code control system. The IAR XLINK Linker can
UEW-8:1

Part 1. Product overview 3

4

The IAR Embedded Workbench IDE
produce many output formats, allowing for debugging on most third-party emulators.
Support for RTOS-aware debugging and high-level debugging of state machines can
also be added to the product.

The compiler, assembler, and linker can also be run from a command line environment,
if you want to use them as external tools in an already established project environment.

FEATURES

The IDE is a flexible integrated development environment, allowing you to develop
applications for a variety of target processors. It provides a convenient Windows
interface for rapid development and debugging.

Project management

The IDE comes with functions that will help you to stay in control of all project
modules, for example, C or C++ source code files, assembler files, include files, and
other related modules. You create workspaces and let them contain one or several
projects. Files can be grouped, and options can be set on all levels—project, group, or
file. Changes are tracked so that a request for rebuild will retranslate all required
modules, making sure that no executable files contain out-of-date modules. This list
shows some additional features:

● Project templates to create a project that can be built and executed out of the box for
a smooth development startup

● Hierarchical project representation

● Source browser with an hierarchical symbol presentation

● Options can be set globally, on groups of source files, or on individual source files

● The Make command automatically detects changes and performs only the required
operations

● Text-based project files

● Custom Build utility to expand the standard tool chain in an easy way

● Command line build with the project file as input.

Source code control

Source code control (SCC)—or revision control—is useful for keeping track of different
versions of your source code. IAR Embedded Workbench can identify and access any
third-party source code control system that conforms to the SCC interface published by
Microsoft.
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Product introduction
Window management

To give you full and convenient control of the placement of the windows, each window
is dockable and you can optionally organize the windows in tab groups. The system of
dockable windows also provides a space-saving way to keep many windows open at the
same time. It also makes it easy to rearrange the size of the windows.

The text editor

The integrated text editor allows editing of multiple files in parallel, and provides all
basic editing features expected from a modern editor, including unlimited undo/redo and
automatic completion. In addition, it provides functions specific to software
development, like coloring of keywords (C/C++, assembler, and user-defined), block
indent, and function navigation within source files. It also recognizes C language
elements like matching brackets. This list shows some additional features:

● Context-sensitive help system that can display reference information for DLIB
library functions

● Syntax of C or C++ programs and assembler directives shown using text styles and
colors

● Powerful search and replace commands, including multi-file search

● Direct jump to context from error listing

● Multibyte character support

● Parenthesis matching

● Automatic indentation

● Bookmarks

● Unlimited undo and redo for each window.

DOCUMENTATION

The IDE is documented in the IAR Embedded Workbench® IDE User Guide (this
guide). Help and hypertext PDF versions of the user documentation are available online.

IAR C-SPY Debugger
The IAR C-SPY Debugger is a high-level-language debugger for embedded
applications. It is designed for use with the IAR Systems compilers and assemblers, and
UEW-8:1

Part 1. Product overview 5

6

IAR C-SPY Debugger
it is completely integrated in the IDE, providing seamless switching between
development and debugging. This will give you possibilities such as:

● Editing while debugging. During a debug session, you can make corrections directly
into the same source code window that is used to control the debugging. Changes
will be included in the next project rebuild.

● Setting source code breakpoints before starting the debugger. Breakpoints in source
code will be associated with the same piece of source code even if additional code is
inserted.

THE C-SPY DRIVER

C-SPY consists both of a general part which provides a basic set of debugger features,
and of a driver. The C-SPY driver is the part that provides communication with and
control of the target system. The driver also provides a user interface—special menus,
windows, and dialog boxes—to the features that the target system provides, for instance,
special breakpoints.

Contact your software distributor or IAR Systems representative for information about
available C-SPY drivers. You can also find information on the IAR Systems website,
www.iar.com.

Depending on your product installation, C-SPY is available with a simulator driver and
optional drivers for hardware debugger systems. For information about hardware
debugger systems, see the online help system available from the Help menu.

GENERAL C-SPY DEBUGGER FEATURES

Because IAR Systems provides an entire tool chain, the output from the compiler and
linker can include extensive debug information for the debugger, resulting in good
debugging possibilities for you. C-SPY offers the general features described in this
section.

Source and disassembly level debugging

C-SPY allows you to switch between source and disassembly debugging as required, for
both C or C++ and assembler source code.

Debugging the C or C++ source code provides the quickest and easiest way of verifying
the program logic of your application whereas disassembly debugging lets you focus on
the critical sections of your application, and provides you with precise control over the
hardware. In Mixed-Mode display, the debugger also displays the corresponding C/C++
source code interleaved with the disassembly listing.
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Product introduction
Single-stepping on a function call level

Compared to traditional debuggers, where the finest granularity for source level
stepping is line by line, C-SPY provides a finer level of control by identifying every
statement and function call as a step point. This means that each function call—inside
expressions, and function calls that are part of parameter lists to other functions—can
be single-stepped. The latter is especially useful when debugging C++ code, where
numerous extra function calls are made, for example to object constructors.

The debug information also presents inlined functions as if a call was made, making the
source code of the inlined function available.

Code and data breakpoints

The C-SPY breakpoint system lets you set breakpoints of various kinds in the
application being debugged, allowing you to stop at locations of particular interest. You
can set a code breakpoint to investigate whether your program logic is correct. You can
also set a data breakpoint, to investigate how and when the data changes. Finally, you
can add conditions and connect actions to your breakpoints.

Monitoring variables and expressions

When you work with variables and expressions you are presented with a wide choice of
facilities. Any variable and expression can be evaluated in one-shot views. You can
easily both monitor and log values of a defined set of expressions during a longer period
of time. You have instant control over local variables, and real-time data is displayed
non-intrusively. Finally, the last referred variables are displayed automatically.

Container awareness

When you run your application in C-SPY, you can view the elements of library data
types such as STL lists and vectors. This gives you a very good overview and premium
debugging opportunities when you work with C++ STL containers.

Call stack information

The compiler generates extensive call stack information. This allows the debugger to
show, without any runtime penalty, the complete stack of function calls wherever the
program counter is. You can select any function in the call stack, and for each function
you get valid information for local variables and registers available.

Powerful macro system

C-SPY includes a powerful internal macro system, to allow you to define complex sets
of actions to be performed. C-SPY macros can be used solely or in conjunction with
UEW-8:1

Part 1. Product overview 7

8

IAR C-SPY Debugger
complex breakpoints and—if you are using the simulator—the interrupt simulation
system to perform a wide variety of tasks.

Additional general C-SPY debugger features

This list shows some additional features:

● A modular and extensible architecture allowing third-party extensions to the
debugger, for example, real-time operating systems, peripheral simulation modules,
and emulator drivers

● Threaded execution keeps the IDE responsive while running the target application

● Automatic stepping

● Source browser provides easy navigation to functions, types and variables

● Extensive type recognition of variables

● Configurable registers (CPU and peripherals) and memory windows

● Dedicated Stack window

● Support for code coverage and function level profiling

● The target application can access files on host PC using file I/O

● Optional terminal I/O emulation

● UBROF, Intel-extended, and Motorola input formats supported.

C-SPY PLUGIN MODULES

C-SPY is designed as a modular architecture with an open SDK that can be used for
implementing additional functionality to the debugger in the form of plugin modules.
These modules can be seamlessly integrated in the IDE.

Plugin modules are provided by IAR Systems, and can be supplied by third-party
vendors. Examples of such modules are:

● Code Coverage, Profiling, and the Stack window, all well-integrated in the IDE.

● The various C-SPY drivers for debugging using certain debug systems.

● RTOS plugin modules for support for real-time OS awareness debugging.

● C-SPYLink that bridges IAR visualSTATE and IAR Embedded Workbench to make
true high-level state machine debugging possible directly in C-SPY, in addition to
the normal C level symbolic debugging. For more information, refer to the
documentation provided with IAR visualSTATE.

For more information about the C-SPY SDK, contact IAR Systems.

RTOS AWARENESS

C-SPY supports real-time OS awareness debugging.
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Product introduction
RTOS plugin modules can be provided by IAR Systems, and by third-party suppliers.
Contact your software distributor or IAR Systems representative, alternatively visit the
IAR Systems web site, for information about supported RTOS modules.

IAR C-SPY SIMULATOR

The C-SPY simulator driver simulates the functions of the target processor entirely in
software. With this driver, you can debug the program logic long before any hardware is
available. Because no hardware is required, it is also the most cost-effective solution for
many applications.

Features

In addition to the general features of C-SPY, the simulator driver also provides:

● Instruction-level simulation

● Memory configuration and validation

● Interrupt simulation

● Peripheral simulation, using the C-SPY macro system in conjunction with
immediate breakpoints.

For additional information about the IAR C-SPY Simulator, refer to Part 5. The
C-SPY® Simulator in this guide.

DOCUMENTATION

C-SPY is documented in the IAR Embedded Workbench® IDE User Guide (this guide).
Generic debugger features are described in Part 4. Debugging, whereas features specific
to each debugger driver are described in Part 5. The C-SPY® Simulator. Features
specific to supported hardware debugger systems are described in the online help system
available from the Help menu.

IAR C/C++ Compiler
The IAR C/C++ Compiler is a state-of-the-art compiler that offers the standard features
of the C or C++ languages, plus many extensions designed to take advantage of the
target-specific facilities.

The compiler is integrated with other IAR Systems software in the IDE.
UEW-8:1

Part 1. Product overview 9

10

IAR C/C++ Compiler
FEATURES

The compiler provides the following features:

Code generation

● Generic and target-specific optimization techniques produce very efficient machine
code

● Comprehensive output options, including relocatable object code, assembler source
code, and list files with optional assembler mnemonics

● The object code can be linked together with assembler routines

● Generation of extensive debug information.

Language facilities

● Support for the C and C++ programming languages (some product packages do not
support C++)

● Support for IAR Extended EC++ with features such as full template support,
namespace support, the cast operators static_cast, const_cast, and
reinterpret_cast, as well as the Standard Template Library (STL). Applies
only to product versions that support C++.

● Placement of classes in various memory types (depends on your product package)

● Conformance to the ISO/ANSI C standard for a free-standing environment

● Target-specific language extensions, such as special function types, extended
keywords, pragma directives, predefined symbols, intrinsic functions, absolute
allocation, and inline assembler

● Standard library of functions applicable to embedded systems

● IEEE-compatible floating-point arithmetic

● Interrupt functions can be written in C or C++.

Type checking

● Extensive type checking at compile time

● External references are type checked at link time

● Link-time inter-module consistency checking of the application.

RUNTIME ENVIRONMENT

Several mechanisms for customizing the runtime environment and the runtime libraries
are available. For further information about the runtime environment, see the IAR
C/C++ Compiler Reference Guide.
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Product introduction
DOCUMENTATION

The compiler is documented in the IAR C/C++ Compiler Reference Guide.

IAR Assembler
The IAR Assembler is integrated with the other IAR Systems software tools. It is a
powerful relocating macro assembler (supporting the Intel/Motorola style) with a
versatile set of directives and expression operators. The assembler features a built-in C
language preprocessor.

FEATURES

The IAR Assembler provides these features:

● C preprocessor

● List file with extensive cross-reference output

● Number of symbols and program size limited only by available memory

● Support for complex expressions with external references

● Up to 65536 relocatable segments per module

● 255 significant characters in symbol names.

DOCUMENTATION

The assembler is documented in the IAR Assembler Reference Guide.
UEW-8:1

Part 1. Product overview 11

12

IAR XLINK Linker
IAR XLINK Linker
The IAR XLINK Linker links one or more relocatable object files produced by the IAR
Assembler or IAR C/C++ Compiler to produce machine code for the processor you are
using. It is equally well suited for linking small, single-file, absolute assembler
applications as for linking large, relocatable, multi-module, C/C++, or mixed C/C++
and assembler applications.

It can generate one out of more than 30 industry-standard loader formats, in addition to
the IAR Systems proprietary debug format used by the IAR C-SPY Debugger—UBROF
(Universal Binary Relocatable Object Format). An application can be made up of any
number of UBROF relocatable files, in any combination of assembler and C or C++
applications.

The final output from the IAR XLINK Linker is an absolute, target-executable object
file that can be downloaded to the processor or to a hardware emulator. Optionally, the
output file might or might not contain debug information depending on the output
format you choose.

The IAR XLINK Linker supports user libraries, and will load only those modules that
are actually needed by the application you are linking. Before linking, the IAR XLINK
Linker performs a full C-level type checking across all modules as well as a full
dependency resolution of all symbols in all input files, independent of input order. It also
checks for consistent compiler settings for all modules and makes sure that the correct
version and variant of the C or C++ runtime library is used.

FEATURES

● Full inter-module type checking

● Simple override of library modules

● Flexible segment commands allow detailed control of code and data placement

● Link-time symbol definition enables flexible configuration control

● Optional code checksum generation for runtime checking

● Removes unused code and data.

DOCUMENTATION

The IAR XLINK Linker is documented in the IAR Linker and Library Tools Reference
Guide.
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Product introduction
IAR XAR Library Builder and IAR XLIB Librarian
A library is a single file that contains several relocatable object modules, each of which
can be loaded independently from other modules in the file as it is needed. The IAR
XAR Library Builder assists you to build libraries easily. In addition the IAR XLIB
Librarian enables you to manipulate the relocatable library object files produced by the
IAR Systems assembler and compiler.

A library file is no different from any other relocatable object file produced by the
assembler or compiler, except that it includes several modules of the LIBRARY type. All
C or C++ applications make use of libraries, and the compiler is supplied with several
standard library files.

FEATURES

The IAR XAR Library Builder and IAR XLIB Librarian both provide these features:

● Modules can be combined into a library file

● Interactive or batch mode operation.

The IAR XLIB Librarian provides the following additional features:

● Modules can be listed, added, inserted, replaced, or removed

● Modules can be changed between program and library type

● Segments can be listed

● Symbols can be listed.

DOCUMENTATION

The IAR XLIB Librarian and the IAR XAR Library Builder are documented in the IAR
Linker and Library Tools Reference Guide, a PDF document available from the IDE
Help menu.
UEW-8:1

Part 1. Product overview 13

14

IAR XAR Library Builder and IAR XLIB Librarian
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Installed files
This chapter describes which directories are created during installation and
what file types are used. At the end of the chapter, there is a section that
describes what information you can find in the various guides and online
documentation.

Refer to the QuickStart Card and the Installation and Licensing Guide, which are
delivered with the product, for system requirements and information about
how to install and register the IAR Systems products.

Directory structure
The installation procedure creates several directories to contain the various types of files
used with the IAR Systems development tools. The following sections give a description
of the files contained by default in each directory.

ROOT DIRECTORY

The root directory created by the default installation procedure is the
x:\Program Files\IAR Systems\Embedded Workbench 5.n\ directory where x
is the drive where Microsoft Windows is installed and 5.n is the version number of the
IDE.

In the root directory there are two subdirectories—common and one named after the
processor you are using. The latter directory will hereafter be referred to as cpuname.

THE CPUNAME DIRECTORY

The cpuname directory contains all product-specific subdirectories.

Directory Description

cpuname\bin The cpuname\bin subdirectory contains executable files for
target-specific components, such as the compiler, the assembler, the
linker and the library tools, and the C-SPY® drivers.

Table 3: The CPUNAME directory
UEW-8:1

Part 1. Product overview 15

16

Directory structure
cpuname\config The cpuname\config subdirectory contains files used for configuring
the development environment and projects, for example:
• Linker command files (*.xcl)
• Special function register description files (*.sfr)
• C-SPY device description files (*.ddf)
• Device selection files (*.ixx, *.menu)
• Flash loader applications for various devices (*.dxx), depends on your
product package
• Syntax coloring configuration files (*.cfg)
• Project templates for both application and library projects (*.ewp),
and for the library projects, the corresponding library configuration files.

cpuname\doc The cpuname\doc subdirectory contains release notes with recent
additional information about the tools. We recommend that you read all
of these files. The directory also contains online versions in hypertext
PDF format of this user guide, and of the reference guides, as well as
online help files (*.chm).

cpuname\drivers The cpuname\drivers subdirectory contains low-level device
drivers, typically USB drivers, required by the C-SPY drivers.

cpuname\examplesThe cpuname\examples subdirectory contains files related to
example projects, which can be opened from the Startup Screen
dialog box.

cpuname\inc The cpuname\inc subdirectory holds include files, such as the header
files for the standard C or C++ library. There are also specific header
files that define special function registers (SFRs); these files are used by
both the compiler and the assembler.

cpuname\lib The cpuname\lib subdirectory holds prebuilt libraries and the
corresponding library configuration files, used by the compiler.

cpuname\plugins The cpuname\plugins subdirectory contains executable files and
description files for components that can be loaded as plugin modules.

cpuname\powerpacThe cpuname\powerpac subdirectory contains files related to the
add-on product IAR PowerPac. This directory is only available if you have
installed IAR PowerPac.

cpuname\src The cpuname\src subdirectory holds source files for some
configurable library functions. This directory also holds the library
source code.
The directory also contains source files for components common to all
IAR Embedded Workbench products, such as a sample reader of the IAR
XLINK Linker output format SIMPLE.

Directory Description

Table 3: The CPUNAME directory (Continued)
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Installed files
THE COMMON DIRECTORY

The common directory contains subdirectories for components shared by all IAR
Embedded Workbench products.

THE INSTALL-INFO DIRECTORY

The install-info directory contains metadata (version number, name, etc.) about the
installed product components. Do not modify these files.

File types
The versions of the IAR Systems development tools use the following default filename
extensions to identify the produced files and other recognized file types:

cpuname\tutor The cpuname\tutor subdirectory contains the files used for the
tutorials in this guide.

Directory Description

common\bin The common\bin subdirectory contains executable files for
components common to all IAR Embedded Workbench products, such
as the editor and the graphical user interface components. The
executable file for the IDE is also located here.

common\config The common\config subdirectory contains files used by the IDE for
holding settings in the development environment.

common\doc The common\doc subdirectory contains release notes with recent
additional information about the components common to all IAR
Embedded Workbench products, such as the linker and library tools. We
recommend that you read these files. The directory also contains an
online version in PDF format of the IAR Linker and Library Tools Reference
Guide.

common\plugins The common\plugins subdirectory contains executable files and
description files for components that can be loaded as plugin modules,
for example modules for Code coverage and Profiling.

Table 4: The common directory

Directory Description

Table 3: The CPUNAME directory (Continued)

Ext. Type of file Output from Input to

axx Target application XLINK EPROM, C-SPY, etc.

asm Assembler source code Text editor Assembler

Table 5: File types
UEW-8:1

Part 1. Product overview 17

18

File types
bat Windows command batch file C-SPY Windows

c C source code Text editor Compiler

cfg Syntax coloring configuration Text editor IDE

chm Online help system -- IDE

cpp C++ source code Text editor Compiler

dxx Target application with debug information XLINK C-SPY and other
symbolic debuggers

dat Macros for formatting of STL containers IDE IDE

dbg Target application with debug information XLINK C-SPY and other
symbolic debuggers

dbgt Debugger desktop settings C-SPY C-SPY

ddf Device description file Text editor C-SPY

dep Dependency information IDE IDE

dni Debugger initialization file C-SPY C-SPY

ewd Project settings for C-SPY IDE IDE

ewp IAR Embedded Workbench project
(current version)

DE IDE

ewplugin IDE description file for plugin modules -- IDE

eww Workspace file IDE IDE

fmt Formatting information for the Locals and
Watch windows

IDE IDE

h C/C++ or assembler header source Text editor Compiler or
assembler
#include

helpfiles Help menu configuration file Text editor IDE

html, htm HTML document Text editor IDE

i Preprocessed source Compiler Compiler

ixx Device selection file Text editor IDE

inc Assembler header source Text editor Assembler
#include

ini Project configuration IDE –

log Log information IDE –

lst List output Compiler and
assembler

–

Ext. Type of file Output from Input to

Table 5: File types (Continued)
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Installed files
Note: The notation xx stands for two digits, which form an identifier for the processor
you are using.

When you run the IDE, some files are created and located in dedicated directories under
your project directory, by default $PROJ_DIR$\Debug, $PROJ_DIR$\Release,
$PROJ_DIR$\settings, and the file *.dep under the installation directory. None of
these directories or files affect the execution of the IDE, which means you can safely
remove them if required.

FILES WITH NON-DEFAULT FILENAME EXTENSIONS

In the IDE you can increase the number of recognized filename extensions using the
Filename Extensions dialog box, available from the Tools menu. You can also connect

mac C-SPY macro definition Text editor C-SPY

map List output XLINK –

menu Device selection file Text editor IDE

par Parameter file IDE XLINK setup utility

pbd Source browse information IDE IDE

pbi Source browse information IDE IDE

pew IAR Embedded Workbench project (old
project format)

IDE IDE

prj IAR Embedded Workbench project (old
project format)

IDE IDE

rxx Object module Compiler and
assembler

XLINK, XAR, and
XLIB

sxx Assembler source code Text editor Assembler

sfr Special function register definitions Text editor C-SPY

tcl XLINK template command file Text editor XLINK setup utility

vsp visualSTATE project files IAR visualSTATE
Designer

IAR visualSTATE
Designer and IAR
Embedded
Workbench IDE

wsdt Workspace desktop settings IDE IDE

xcl Extended command line Text editor Assembler, compiler,
linker

xlb Extended librarian batch command Text editor XLIB

Ext. Type of file Output from Input to

Table 5: File types (Continued)
UEW-8:1

Part 1. Product overview 19

20

Documentation
your filename extension to a specific tool in the tool chain. See Filename Extensions
dialog box, page 267.

To override the default filename extension from the command line, include an explicit
extension when you specify a filename.

Note: If you run the tools from the command line, the XLINK listings (map files) will,
by default, have the extension lst, which might overwrite the list file generated by the
compiler. Therefore, we recommend that you name XLINK map files explicitly, for
example project1.map.

Documentation
This section briefly describes the information that is available in the user and reference
guides, in the online help, and on the Internet.

You can access the online documentation from the Help menu in the IDE. Help is also
available via the F1 key in the IDE.

We recommend that you read the file readme.htm for recent information that might not
be included in the user guides. It is located in the cpuname\doc directory.

Note: Additional documentation might be available depending on your product
installation.

THE USER AND REFERENCE GUIDES

The user and reference guides provided with IAR Embedded Workbench are as follows:

IAR Embedded Workbench® IDE User Guide

This guide. For a brief overview, see What this guide contains, page xxxvi.

IAR C/C++ Compiler Reference Guide

This guide provides reference information about the IAR C/C++ Compiler. Refer to this
guide for information about:

● How to configure the compiler to suit your target processor and application
requirements

● How to write efficient code for your target processor

● The assembler language interface and the calling convention

● The available data types

● The runtime libraries

● The IAR Systems language extensions.
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Installed files
IAR Assembler Reference Guide

This guide provides reference information about the IAR Assembler, including details
of the assembler source format, and reference information about the assembler
operators, directives, mnemonics, and diagnostics.

IAR Linker and Library Tools Reference Guide

This online PDF guide provides reference information about the IAR Systems linker and
library tools:

● The IAR XLINK Linker reference sections provide information about XLINK
options, output formats, environment variables, and diagnostics.

● The IAR XAR Library Builder reference sections provide information about XAR
options and output.

● The IAR XLIB Librarian reference sections provide information about XLIB
commands, environment variables, and diagnostics.

ONLINE HELP

The context-sensitive online help contains reference information about the menus and
dialog boxes in the IDE. It also contains keyword reference information for specific
functions. To obtain reference information for a function, select the function name in the
editor window and press F1.

IAR SYSTEMS ON THE WEB

You can find the latest news from IAR Systems at the web site www.iar.com, available
from the Help menu in the IDE. Visit it for information about:

● Product announcements

● Updates and news about current versions

● Special offerings

● Evaluation copies of the IAR Systems products

● Technical Support, including technical notes

● Application notes

● Links to chip manufacturers and other interesting sites

● Distributors; the names and addresses of distributors in each country.
UEW-8:1

Part 1. Product overview 21

http://www.iar.com

22

Documentation
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Part 2. Tutorials
This part of the IAR Embedded Workbench® IDE User Guide contains the
following chapters:

● Welcome to the tutorials

● Creating an application project

● Debugging using the IAR C-SPY® Debugger

● Mixing C and assembler modules

● Using C++

● Simulating an interrupt

● Creating and using libraries.
UEW-8:1

23

24
UEW-8:1

Welcome to the tutorials
The tutorials give you hands-on training to help you get started using the IAR
Embedded Workbench IDE and its tools.

Below you will get an overview of the tutorials.

Tutorials overview
The tutorials are divided into different parts. You can work through all tutorials as a suite
or you can choose to go through the tutorials individually.

Note: The tutorials call the printf library function, which calls the low-level write
function part of the DLIB library or the putchar function part of the CLIB library. This
works in the C-SPY simulator, but if you want to run the tutorials in a release
configuration on real hardware, you must provide your own version of these functions
(depending on the library that you are using), adapted to your hardware.

CREATING AN APPLICATION PROJECT

This tutorial guides you through how to set up a new project, compiling your
application, examining the list file, and linking your application. These are the related
files:

DEBUGGING USING THE IAR C-SPY® DEBUGGER

This tutorial explores the basic facilities of the debugger while debugging the
application used in project1. These are the related files:

Workspace: tutorials.eww

Project files: project1.ewp

Source files: Tutor.c, Tutor.h, Utilities.c, and Utilities.h

Workspace: tutorials.eww

Project files: project1.ewp

Source files: Tutor.c, Tutor.h, Utilities.c, and Utilities.h
UEW-8:1

Part 2. Tutorials 25

26

Tutorials overview
MIXING C AND ASSEMBLER MODULES

This tutorial demonstrates how you can easily combine source modules written in C
with assembler modules. The chapter also demonstrates how to use the compiler for
examining the compiler calling convention. These are the related files:

USING C++

This tutorial demonstrates how to create a C++ class, which creates two independent
objects. The application is then built and debugged. This chapter only applies to product
versions with C++ support. These are the related files:

SIMULATING AN INTERRUPT

This tutorial demonstrates how you add an interrupt handler to the project and how you
simulate this interrupt, using C-SPY facilities for simulated interrupts, breakpoints, and
macros. These are the related files:

CREATING AND USING LIBRARIES

This tutorial demonstrates how to create library modules. These are the related files:

Workspace: tutorials.eww

Project files: project2.ewp

Source files: Tutor.c, Tutor.h, Utilities.c, Utilities.h, and
Utilities.sxx

Workspace: tutorials.eww

Project files: project3.ewp

Source files: CppTutor.cpp, Fibonacci.cpp, and Fibonacci.h

Workspace: tutorials.eww

Project files: project4.ewp

Source files: Interrupt.c, Utilities.c, and Utilities.h

Workspace: tutorials.eww

Project files: project5.ewp and tutor_library.ewp

Source files: Main.sxx, MaxMin.sxx, and Utilities.h
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Welcome to the tutorials
GETTING STARTED

Before you start, we recommend that you create a specific directory where you can store
all your project files. In this tutorial we call the directory projects. You can find all
the files needed for the tutorials in the cpuname\tutor directory. Make a copy of the
tutor directory in your projects directory.

Alternatively, you can access the tutorials from the Startup Screen available from the
Help menu in the IDE. In this case, click Example Applications and select Tutorials.
This will create a copy of the workspace and its associated project files. You can also
open the workspace with Open Existing workspace, but then you will be working with
the original files instead of a copy of the workspace.

Note: It is possible to customize the amount of information to be displayed in the Build
messages window. In the tutorial projects, the default setting is not used. Thus, the
contents of the Build messages window on your screen might differ from the screen
shots in the text.

Now you can start with the first tutorial project: Creating an application project, page
29.
UEW-8:1

Part 2. Tutorials 27

28

Tutorials overview
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Creating an application
project
This chapter introduces you to the IAR Embedded Workbench® integrated
development environment (IDE). The tutorial demonstrates a typical
development cycle and shows how you use the compiler and the linker to
create a small application for your device. For instance, creating a workspace,
setting up a project with C source files, and compiling and linking your
application.

For a short overview of all tutorials and their related files, see Tutorials
overview, page 25.

Setting up a new project
Using the IDE, you can design advanced project models. You create a workspace to
which you add one or several projects. There are ready-made project templates for both
application and library projects. Each project can contain a hierarchy of groups in which
you collect your source files. For each project you can define one or several build
configurations. For more details about designing project models, see the chapter
Managing projects in this guide.

Because the application in this tutorial is a simple application with very few files, the
tutorial does not need an advanced project model.

Before you can create your project you must first create a workspace.

CREATING A WORKSPACE

The first step is to create a new workspace for the tutorial application. When you start
the IDE for the first time, there is already a ready-made workspace, which you can use
for the tutorial projects. If you are using that workspace, you can ignore the first step.

Choose File>New>Workspace. Now you are ready to create a project and add it to the
workspace.
UEW-8:1

Part 2. Tutorials 29

30

Setting up a new project
CREATING THE NEW PROJECT

1 To create a new project, choose Project>Create New Project. The Create New
Project dialog box appears, which lets you base your new project on a project
template.

Figure 1: Create New Project dialog box

2 From the Tool chain drop-down list, choose the tool chain you are using and click OK.

3 For this tutorial, select the project template Empty project, which simply creates an
empty project that uses default project settings.

4 In the standard Save As dialog box that appears, specify where you want to place your
project file, that is, in your newly created projects directory. Type project1 in the
File name box, and click Save to create the new project.

Note: If you copied all files from the cpuname\tutor dierctory before you started
with the tutorials, a project file will already be available in your projects directory.
You can use that ready-made file, or create your own file.
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Creating an application project
The project will appear in the Workspace window.

Figure 2: Workspace window

By default, two build configurations are created: Debug and Release. In this tutorial only
Debug will be used. You choose the build configuration from the drop-down menu at the
top of the window. The asterisk in the project name indicates that there are changes that
have not been saved.

A project file—with the filename extension ewp—will be created in the projects
directory, not immediately, but later on when you save the workspace. This file contains
information about your project-specific settings, such as build options.

5 Before you add any files to your project, you should save the workspace. Choose
File>Save Workspace and specify where you want to place your workspace file. In
this tutorial, you should place it in your newly created projects directory. Type
tutorials in the File name box, and click Save to create the new workspace.

Figure 3: New Workspace dialog box
UEW-8:1

Part 2. Tutorials 31

32

Setting up a new project
A workspace file—with the filename extension eww—has now been created in the
projects directory. This file lists all projects that you will add to the workspace.
Information related to the current session, such as the placement of windows and
breakpoints is located in the files created in the projects\settings directory.

ADDING FILES TO THE PROJECT

This tutorial uses the source files Tutor.c and Utilities.c.

● The Tutor.c application is a simple program using only standard features of the C
language. It initializes an array with the ten first Fibonacci numbers and prints the
result to stdout.

● The Utilities.c application contains utility routines for the Fibonacci
calculations.

Creating several groups is a possibility for you to organize your source files logically
according to your project needs. However, because this project only contains two files,
you do not need to create a group. For more information about how to create complex
project structures, see the chapter Managing projects.

1 In the Workspace window, select the destination to which you want to add a source file;
a group or, as in this case, directly to the project.

2 Choose Project>Add Files to open a standard browse dialog box. Locate the files
Tutor.c and Utilities.c, select them in the file selection list, and click Open to
add them to the project1 project.

Figure 4: Adding files to project1
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Creating an application project
SETTING PROJECT OPTIONS

Now you will set the project options. For application projects, options can be set on all
levels of nodes. First you will set the general options to suit the processor configuration
in this tutorial. Because these options must be the same for the whole build
configuration, they must be set on the project node.

1 Select the project folder icon project1 - Debug in the Workspace window and choose
Project>Options. In this tutorial you should use the default settings. Then set the
compiler options for the project.

2 Select C/C++ Compiler in the Category list to display the compiler option pages.

Figure 5: Setting compiler options

3 Verify that default settings are used. In addition to the default settings, click the List
tab, and select the options Output list file and Assembler mnemonics. Click OK to
set the options you have specified.

The project is now ready to be built.
UEW-8:1

Part 2. Tutorials 33

34

Compiling and linking the application
Compiling and linking the application
You can now compile and link the application. You will also view the compiler list file
and the linker map file.

COMPILING THE SOURCE FILES

1 To compile the file Utilities.c, select it in the Workspace window.

2 Choose Project>Compile.

Alternatively, click the Compile button in the toolbar or choose the Compile command
from the context menu that appears when you right-click on the selected file in the
Workspace window.

The progress is displayed in the Build messages window.

Figure 6: Compilation message

3 Compile the file Tutor.c in the same manner.

The IDE has now created new directories in your project directory. Because you are
using the build configuration Debug, a Debug directory has been created containing the
directories List, Obj, and Exe:

● The List directory is the destination directory for the list files. The list files have
the extension lst.

● The Obj directory is the destination directory for the object files from the compiler
and the assembler. These files have the extension rxx and are used as input to the
IAR XLINK Linker.

● The Exe directory is the destination directory for the executable file. It has the
extension dxx and is used as input to the IAR C-SPY® Debugger. Note that this
directory is empty until you have linked the object files.

Click on the plus signs in the Workspace window to expand the view. As you can see,
the IDE has also created an output folder icon in the Workspace window containing any
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Creating an application project
generated output files. All included header files are displayed as well, showing the
dependencies between the files.

Figure 7: Workspace window after compilation

VIEWING THE LIST FILE

Now examine the compiler list file and notice how it is automatically updated when you,
as in this case, will investigate how different optimization levels affect the generated
code size.

1 Open the list file Utilities.lst by double-clicking it in the Workspace window.
Examine the list file, which contains the following information:

● The header shows the product version, information about when the file was created,
and the command line version of the compiler options that were used

● The body of the list file shows the assembler code and binary code generated for
each statement. It also shows how the variables are assigned to segments

● The end of the list file shows the amount of stack, code, and data memory required,
and contains information about error and warning messages that might have been
generated.

Notice the amount of generated code at the end of the file and keep the file open.
UEW-8:1

Part 2. Tutorials 35

36

Compiling and linking the application
2 Choose Tools>Options to open the IDE Options dialog box and click the Editor tab.
Select the option Scan for Changed Files. This option turns on the automatic update
of any file open in an editor window, such as a list file.

Figure 8: Setting the option Scan for Changed Files

Click the OK button.

3 Select the file Utilities.c in the Workspace window, right click and choose
Options from the context menu to open the C/C++ Compiler options dialog box.
Select the Override inherited settings option. Click the Optimizations tab and
choose High level of optimization. Click OK.

Notice that the options override on the file node is indicated with a red dot in the
Workspace window.

4 Compile the file Utilities.c. Now you will notice two things. First, note the
automatic updating of the open list file due to the selected option Scan for Changed
Files. Second, look at the end of the list file and notice the effect on the code size due
to the increased optimization.

5 For this tutorial, the optimization level None should be used, so before linking the
application, restore the default optimization level. Open the C/C++ Compiler options
dialog box by right-clicking on the selected file in the Workspace window. Deselect the
Override inherited settings option and click OK. Recompile the file Utilities.c.
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Creating an application project
LINKING THE APPLICATION

Now you should set up the options for the IAR XLINK Linker.

1 Select the project folder icon project1 - Debug in the Workspace window and choose
Project>Options, or right click and choose Options from the context menu. Then
select Linker in the Category list to display the linker option pages.

For this tutorial, default factory settings are used. However, pay attention to the choice
of output format and linker command file.

Output format

It is important to choose the output format that suits your purpose. You might want to
load it to a debugger—which means that you need output with debug information. In this
tutorial you will use the default output options suitable for C-SPY—Debug
information for C-SPY, With runtime control modules, and With I/O emulation
modules—which means that some low-level routines will be linked that direct stdin
and stdout to the Terminal I/O window in the C-SPY Debugger. You find these options
on the Output page.

Alternatively, in your real application project, you might want to load the output to a
PROM programmer—in which case you need an output format without debug
information, such as Intel-hex or Motorola S-records.

Linker command file

In the linker command file (filename extension xcl), the XLINK command line options
for segment control are used for placing segments. It is important to be familiar with the
linker command file and placement of segments. Read more about this in the IAR
C/C++ Compiler Reference Guide.

Note: In the simulator, you can use the linker command file templates supplied with the
product as they are, but when you use them for your target system you might have to
adapt them to your actual hardware memory layout. You can find supplied linker
command files in the config directory.

In this tutorial you will use the default linker command file, which you can see on the
Config page.

If you want to examine the linker command file, use a suitable text editor, such as the
IAR Embedded Workbench editor, or print a copy of the file, and verify that the
definitions match your requirements.

Linker map file

By default, no linker map file is generated. To generate a linker map file, click the List
tab and select the options Generate linker listing, Segment map, and Module map.
UEW-8:1

Part 2. Tutorials 37

38

Compiling and linking the application
2 Click OK to save the linker options.

Now you should link the object file, to generate code that can be debugged.

3 Choose Project>Make. The progress will as usual be displayed in the Build messages
window. The result of the linking is a code file project1.dxx with debug information
located in the Debug\Exe directory and a map file project1.map located in the
Debug\List directory.

VIEWING THE MAP FILE

Examine the file project1.map to see how the segment definitions and code were
placed in memory. These are the main points of interest in a map file:

● The header includes the options used for linking.

● The CROSS REFERENCE section shows the address of the program entry.

● The RUNTIME MODEL section shows the runtime model attributes that are used.

● The MODULE MAP shows the files that are linked. For each file, information about the
modules that were loaded as part of your application, including segments and global
symbols declared within each segment, is displayed.

● The SEGMENTS IN ADDRESS ORDER section lists all the segments that constitute
your application.

The project1.dxx application is now ready to be run in C-SPY.
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Debugging using the IAR
C-SPY® Debugger
This chapter continues the development cycle started in the previous chapter
and explores the basic features of C-SPY.

Note that, depending on what IAR Systems product package you have
installed, C-SPY might or might not be included. The tutorials assume that you
are using the C-SPY Simulator.

For a short overview of all tutorials and their related files, see Tutorials
overview, page 25.

Debugging the application
The project1.dxx application, created in the previous chapter, is now ready to be run
in C-SPY where you can watch variables, set breakpoints, view code in disassembly
mode, monitor registers and memory, and print the program output in the Terminal I/O
window, etc.

STARTING THE DEBUGGER

Before starting C-SPY, you must set a few options.

1 Choose Project>Options and then the Debugger category. On the Setup page, make
sure that you have chosen Simulator from the Driver drop-down list and that Run to
main is selected. Click OK.

2 Choose Project>Download and Debug. Alternatively, click the Download and
Debug button in the toolbar. C-SPY starts with the project1.dxx application loaded.
In addition to the windows already opened in the IDE, a set of C-SPY-specific
windows are now available.

ORGANIZING THE WINDOWS

In the IDE, you can dock windows at specific places, and organize them in tab groups.
You can also make a window floating, which means it is always on top of other
windows. If you change the size or position of a floating window, other currently open
windows are not affected.
UEW-8:1

Part 2. Tutorials 39

40

Debugging the application
The status bar, located at the bottom of the Embedded Workbench main window,
contains useful help about how to arrange windows. For further details, see Organizing
the windows on the screen, page 77.

Make sure the following windows and window contents are open and visible on the
screen: the Workspace window with the active build configuration tutorials – project1,
the editor window with the source files Tutor.c and Utilities.c, and the Debug Log
window.

Figure 9: The C-SPY Debugger main window

Note: Depending on the tool chain you are using, the current position—indicated by a
green arrow—might now be main or callCount.

INSPECTING SOURCE STATEMENTS

1 To inspect the source statements, double-click the file Tutor.c in the Workspace
window.
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Debugging using the IAR C-SPY® Debugger
2 With the file Tutor.c displayed in the editor window, first step over with the
Debug>Step Over command.

Alternatively, click the Step Over button on the toolbar.

Step until the call to the InitFib function.

Figure 10: Stepping in C-SPY

3 Choose Debug>Step Into to step into the function InitFib.

Alternatively, click the Step Into button on the toolbar.

At source level, the Step Over and Step Into commands allow you to execute your
application a statement at a time. Step Into continues stepping inside function or
subroutine calls, whereas Step Over executes each function call in a single step. For
further details, see Step, page 120.

When Step Into is executed you will notice that the active window changes to
Utilities.c as the function InitFib is located in this file.
UEW-8:1

Part 2. Tutorials 41

42

Debugging the application
4 Use the Step Into command until you reach the for loop.

Figure 11: Using Step Into in C-SPY

5 Use Step Over until you are back in the header of the for loop. Notice that the step
points are on a function call level, not on a statement level.

You can also step on a statement level. Choose Debug>Next statement to execute one
statement at a time. Alternatively, click the Next statement button on the toolbar.

Notice how this command differs from the Step Over and the Step Into commands.

6 Debugging with C-SPY is usually quicker and more straightforward in C/C++ source
mode. However, if you want to have full control over low-level routines, you can debug
in disassembly mode where each step corresponds to one assembler instruction. C-SPY
lets you switch freely between the two modes.

Choose View>Disassembly to open the Disassembly window, if it is not already
open.You will see the assembler code corresponding to the current C statement.

Try the step commands also in the Disassembly window.

INSPECTING VARIABLES

C-SPY allows you to watch variables or expressions in the source code, so that you can
keep track of their values as you execute your application. You can look at a variable in
several ways. For example, point at it in the source window with the mouse pointer, or
open one of the Auto, Locals, Live Watch, Statics, or Watch windows. In this tutorial,
we will look into some of these methods. For more information about inspecting
variables, see the chapter Working with variables and expressions.

Note: When optimization level None is used, all non-static variables will live during
their entire scope and thus, the variables are fully debuggable. When higher levels of
optimizations are used, variables might not be fully debuggable.
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Debugging using the IAR C-SPY® Debugger
Using the Auto window

1 Choose View>Auto to open the Auto window.

The Auto window will show the current value of recently modified expressions.

Figure 12: Inspecting variables in the Auto window

2 Keep stepping to see how the values change.

Setting a watchpoint

Next you will use the Watch window to inspect variables.

3 Choose View>Watch to open the Watch window. Notice that it is, by default, grouped
together with the currently open Auto window; the windows are located as a tab group.

4 Set a watchpoint on the variable i using this procedure: Click the dotted rectangle in
the Watch window. In the entry field that appears, type i and press the Enter key.

You can also drag a variable from the editor window to the Watch window.

5 Select the Fib array in the InitFib function, then drag it to the Watch window.
UEW-8:1

Part 2. Tutorials 43

44

Debugging the application
The Watch window will show the current value of i and Fib. You can expand the Fib
array to watch it in more detail.

Figure 13: Watching variables in the Watch window

6 Execute some more steps to see how the values of i and Fib change.

7 To remove a variable from the Watch window, select it and press Delete.

SETTING AND MONITORING BREAKPOINTS

C-SPY contains a powerful breakpoint system with many features. For detailed
information about the breakpoints, see The breakpoint system, page 133.

The most convenient way is usually to set breakpoints interactively, simply by
positioning the insertion point in or near a statement and then choosing the Toggle
Breakpoint command.

1 Set a breakpoint on the function call GetFib(i) using this procedure: First, click the
Utilities.c tab in the editor window and click in the statement to position the
insertion point. Then choose Edit>Toggle Breakpoint.

Alternatively, click the Toggle Breakpoint button on the toolbar.
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Debugging using the IAR C-SPY® Debugger
A breakpoint will be set at this function call. The function call will be highlighted and
there will be a red dot in the margin to show that there is a breakpoint there.

Figure 14: Setting breakpoints

To view all defined breakpoints, choose View>Breakpoints to open the Breakpoints
window. You can find information about the breakpoint execution in the Debug Log
window.

Executing up to a breakpoint

2 To execute your application until it reaches the breakpoint, choose Debug>Go.

Alternatively, click the Go button on the toolbar.

The application will execute up to the breakpoint you set. The Watch window will
display the value of the Fib expression and the Debug Log window will contain
information about the breakpoint.

3 Select the breakpoint, right click and choose Toggle Breakpoint (Code) from the
context menu, alternatively choose Toggle Breakpoint from the Edit menu to remove
the breakpoint.
UEW-8:1

Part 2. Tutorials 45

46

Debugging the application
MONITORING REGISTERS

The Register window lets you monitor and modify the contents of the processor
registers.

1 Choose View>Register to open the Register window.

Figure 15: Register window

2 Step Over to execute the next instructions, and watch how the values change in the
Register window.

3 Close the Register window.

MONITORING MEMORY

The Memory window lets you monitor selected areas of memory. In the following
example, the memory corresponding to the array Fib will be monitored.

1 Choose View>Memory to open the Memory window.

2 Make the Utilities.c window active and select Fib. Then drag it from the C source
window to the Memory window.

The memory contents in the Memory window corresponding to Fib will be selected.

If not all of the memory units have been initialized by the InitFib function of the C
application yet, continue to step over and you will notice how the memory contents are
updated.

To change the memory contents, edit the values in the Memory window. Just place the
insertion point at the memory content that you want to edit and type the desired value.

Close the Memory window.
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Debugging using the IAR C-SPY® Debugger
VIEWING TERMINAL I/O

Sometimes you might have to debug constructions in your application that make use of
stdin and stdout without the possibility of having hardware support. C-SPY lets you
simulate stdin and stdout by using the Terminal I/O window.

Note: The Terminal I/O window is only available in C-SPY if you have linked your
project using the output option With I/O emulation modules. This means that some
low-level routines are linked that direct stdin and stdout to the Terminal I/O window,
see Linking the application, page 37.

1 Choose View>Terminal I/O to display the output from the I/O operations.

Figure 16: Output from the I/O operations

The contents of the window depends on how far you have executed the application.

REACHING PROGRAM EXIT

1 To complete the execution of your application, choose Debug>Go.

Alternatively, click the Go button on the toolbar.
UEW-8:1

Part 2. Tutorials 47

48

Debugging the application
As no more breakpoints are encountered, C-SPY reaches the end of the application and
a Program exit reached message is printed in the Debug Log window.

Figure 17: Reaching program exit in C-SPY

All output from the application has now been displayed in the Terminal I/O window.

If you want to start again with the existing application, choose Debug>Reset, or click
the Reset button on the toolbar.

2 To exit from C-SPY, choose Debug>Stop Debugging. Alternatively, click the Stop
Debugging button on the toolbar. The Embedded Workbench workspace is displayed.

C-SPY also provides many other debugging facilities. Some of these—for example
macros and interrupt simulation—are described in the following tutorial chapters.

For further details about how to use C-SPY, see Part 4. Debugging. For reference
information about the features of C-SPY, see Part 6. Reference information and the
online help system.
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Mixing C and assembler
modules
In some projects it might be necessary to write certain pieces of source code
in assembler language. The chapter first demonstrates how the compiler can
be helpful in examining the calling convention, which you must be familiar with
when calling assembler modules from C/C++ modules or vice versa.
Furthermore, this chapter demonstrates how you can easily combine source
modules written in C with assembler modules, but the procedure is applicable
to projects containing source modules written in C++, too, if your product
version supports C++.

This tutorial assumes that you are familiar with the basics of the IAR
Embedded Workbench® IDE described in the previous tutorial chapters.

For a short overview of all tutorials and their related files, see Tutorials
overview, page 25.

Examining the calling convention
When you write an assembler routine that is called from a C routine, you must be aware
of the calling convention that the compiler uses. If you create skeleton code in C and let
the compiler produce an assembler output file from it, you can study the produced
assembler output file and find the details of the calling convention.

In this example you will make the compiler create an assembler output file from the file
Utilities.c.

1 Create a new project in the same workspace tutorials as used in the previous
tutorial project, and name the project project2.

2 Add the files Tutor.c and Utilities.c to the project.

To display an overview of the workspace, click the Overview tab available at the bottom
of the Workspace window. To view only the newly created project, click the project2
tab. For now, the project2 view should be visible.

3 To set options, choose Project>Options, and select the General Options category. On
project level, default factory settings should be used in this tutorial. Click OK.
UEW-8:1

Part 2. Tutorials 49

50

Examining the calling convention
4 To set options on file level node, in the Workspace window, select the file
Utilities.c.

Choose Project>Options. You will notice that only the C/C++ Compiler and Custom
Build categories are available.

5 In the C/C++ Compiler category, select Override inherited settings and verify these
settings:

Note: In this example you must use a low optimization level when you compile the
code, to show local and global variable accesses. If you use a higher level of
optimization, the required references to local variables might be removed. However, the
actual function declaration is not changed by the optimization level.

6 Click OK and return to the Workspace window.

7 Compile the file Utilities.c. You can find the output file Utilities.sxx in the
subdirectory projects\debug\list.

8 To examine the calling convention and to see how the C or C++ code is represented in
assembler language, open the file Utilities.sxx.

You can now study where and how parameters are passed, how to return to the program
location from where a function was called, and how to return a resulting value. You can
also see which registers an assembler-level routine must preserve.

Note: The generated assembler source file might contain compiler internal
information, for example CFI directives. These directives are available for debugging
purpose and you should ignore these details.

To obtain the correct interface for your own application functions, you should create
skeleton code for each function that you need.

For more information about the calling convention used in the compiler, see the IAR
C/C++ Compiler Reference Guide.

Page Option

Optimizations Level: None (Best debug support)

List Output assembler file
 Include source
 Include call frame information (must be deselected).

Table 6: Compiler options for project2
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Mixing C and assembler modules
Adding an assembler module to the project
This tutorial demonstrates how you can easily create a project containing both assembler
modules and C modules. You will also compile the project and view the assembler
output list file.

SETTING UP THE PROJECT

1 Modify project2 by adding the Utilities.sxx file that you just created and
removing the Utilities.c file.

Note: To view assembler files in the Add files dialog box, choose Project>Add Files
and choose Assembler Files from the Files of type drop-down list.

2 Select the project level node in the Workspace window, choose Project>Options. Use
the default settings in the General Options, C/C++ Compiler, and Linker categories.
Select the Assembler category, click the List tab, and select the option Output list file

Click OK.

3 Select the file Utilities.sxx in the Workspace window and choose
Project>Compile to assemble it.

Assuming that the source file was assembled successfully, the file Utilities.rxx is
created, containing the linkable object code.

Viewing the assembler list file

4 Open the list file by double-clicking the file Utilities.lst available in the Output
folder icon in the Workspace window.

The end of the file contains a summary of errors and warnings that were generated.

For further details of the list file format, see the IAR Assembler Reference Guide.

5 Choose Project>Make to relink project2.

6 Start C-SPY to run the project2.dxx application and see that it behaves like the
application in the previous tutorial.

Exit the debugger when you are done.
UEW-8:1

Part 2. Tutorials 51

52

Adding an assembler module to the project
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Using C++
In this chapter, C++ is used to create a C++ class. The class is then used for
creating two independent objects, and the application is built and debugged.
We also show an example of how to set a conditional breakpoint.

This tutorial assumes that you are familiar with the basics of the IAR
Embedded Workbench® IDE described in the previous tutorial chapters.

Note that, depending on what IAR Systems product package you have
installed, support for C++ might or might not be included. This tutorial
assumes that the product supports C++.

For a short overview of all tutorials and their related files, see Tutorials
overview, page 25.

Creating a C++ application
This tutorial demonstrates how to use the C++ features. The tutorial consists of two files:

● Fibonacci.h and Fibonacci.cpp define a class Fibonacci that can be used to
extract a series of Fibonacci numbers

● CppTutor.cpp creates two objects, fib1 and fib2, from the class Fibonacci
and extracts two sequences of Fibonacci numbers using the Fibonacci class.

To demonstrate that the two objects are independent of each other, the numbers are
extracted at different speeds. A number is extracted from fib1 each turn in the loop
while a number is extracted from fib2 only every second turn.

The object fib1 is created using the default constructor while the definition of fib2
uses the constructor that takes an integer as its argument.

COMPILING AND LINKING THE C++ APPLICATION

1 In the workspace tutorials used in the previous chapters, create a new project,
project3.

2 Add the files Fibonacci.cpp and CppTutor.cpp to project3.

3 Choose Project>Options and make sure default factory settings are used.
UEW-8:1

Part 2. Tutorials 53

54

Creating a C++ application
Note: For this application, the default stack size might be too small. For further
information about the required settings, see the CppTutor.cpp file.

In addition to the default settings, you must switch to the C++ programming language,
which is supported by the IAR DLIB Library. To use a DLIB library, choose the General
Options category and click the Library Configuration tab. From the Library
drop-down list, choose Normal DLIB.

To switch to the C++ programming language, choose the C/C++ Compiler category
and click the Language tab. Choose Embedded C++ and press Ok.

To read more about the IAR DLIB Library and the C++ support, see the IAR C/C++
Compiler Reference Guide.

4 Choose Project>Make to compile and link your application.

Alternatively, click the Make button on the toolbar. The Make command compiles and
links those files that have been modified.

5 Choose Project>Debug to start C-SPY.

SETTING A BREAKPOINT AND EXECUTING TO IT

1 Open the CppTutor.cpp window if it is not already open.

2 To see how the object is constructed, set a breakpoint on the C++ object fib1 on this
line:

Fibonacci fib1;

Figure 18: Setting a breakpoint in CPPtutor.cpp
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Using C++
3 Choose Debug>Go, or click the Go button on the toolbar.

The cursor should now be placed at the breakpoint.

4 To step into the constructor, choose Debug>Step Into or click the Step Into button in
the toolbar. Then click Step Out again.

5 Step Over until the line:

cout << fib1.next();

Step Into until you are in the function next in the file Fibonacci.cpp.

6 Use the Go to function button in the lower left corner of the editor window and
double-click the function name nth to find and go to the function. Set a breakpoint on
the function call nth(n-1)at the line

value = nth(n-1) + nth(n-2);

7 It can be interesting to backtrace the function calls a few levels down and to examine
the value of the parameter for each function call. If you add a condition to the
breakpoint, the break will not be triggered until the condition is true, and you will be
able to see each function call in the Call Stack window.

To open the Breakpoints window, choose View>Breakpoints. Select the breakpoint in
the Breakpoints window, right-click to open the context menu, and choose Edit to open
the Edit Breakpoints dialog box.

Figure 19: Setting breakpoint with skip count

Set the value in the Skip count text box to 4 and click OK.
UEW-8:1

Part 2. Tutorials 55

56

Creating a C++ application
Looking at the function calls

8 Choose Debug>Go to execute the application until the breakpoint condition is
fulfilled.

9 When C-SPY stops at the breakpoint, choose View>Call Stack to open the Call Stack
window.

Figure 20: Inspecting the function calls

Five instances of the function nth are displayed on the call stack. Because the Call Stack
window displays the values of the function parameters, you can see the different values
of n in the different function instances.

You can also open the Register window to see how it is updated as you trace the function
calls by double-clicking on the function instances.

PRINTING THE FIBONACCI NUMBERS

1 Open the Terminal I/O window from the View menu.
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Using C++
2 Remove the breakpoints and run the application to the end and verify the Fibonacci
sequences being printed.

Figure 21: Printing Fibonacci sequences
UEW-8:1

Part 2. Tutorials 57

58

Creating a C++ application
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Simulating an interrupt
In this tutorial an interrupt handler for a serial port is added to the project.
The Fibonacci numbers are read from an on-chip communication peripheral
device (UART).

This tutorial will show how the compiler interrupt keyword and the #pragma
vector directive can be used. The tutorial will also show how to simulate an
interrupt, using the features that support interrupts, breakpoints, and macros.
Notice that this example does not describe an exact simulation; the purpose
is to illustrate a situation where C-SPY® macros, breakpoints, and the
interrupt system can be useful to simulate hardware.

This tutorial assumes that you are familiar with the basics of the IAR
Embedded Workbench® IDE described in the previous tutorial chapters.

Note that interrupt simulation is possible only when you are using the IAR
C-SPY Simulator.

For a short overview of all tutorials and their related files, see Tutorials
overview, page 25.

Adding an interrupt handler
This section will demonstrate how to write an interrupt in an easy way. It starts with a
brief description of the application used in this project, followed by a description of how
to set up the project.

THE APPLICATION—A BRIEF DESCRIPTION

The interrupt handler will read values from the serial communication port receive
register (UART), RBUF. It will then print the value. The main program enables interrupts
and starts printing periods (.) in the foreground process while waiting for interrupts.

Note: In this tutorial, the serial communication port UART and the receive buffer
register RBUF are symbolic names. To follow this tutorial and simulate the interrupt in
the C-SPY Simulator, you should instead use names that are suitable for your target
system. See the Interrupt.c file in the cpuname\tutor directory.
UEW-8:1

Part 2. Tutorials 59

60

Setting up the simulation environment
WRITING AN INTERRUPT HANDLER

The following lines define the interrupt handler used in this tutorial (the complete source
code can be found in the file Interrupt.c in project4 supplied in the
cpuname\tutor directory):

/* Defines an interrupt handler. */
#pragma vector=UARTR_VECTOR
__interrupt __root void UartReceiveHandler(void)

The #pragma vector directive is used for specifying the interrupt vector address—in
this case the interrupt vector for the UART receive interrupt—and the keyword
__interrupt is used for directing the compiler to use the calling convention needed
for an interrupt function.

Note: In this tutorial, the name of the vector is symbolic. To follow this tutorial and
simulate the interrupt in the C-SPY Simulator, you should instead use a name that is
suitable for your target system. See the Interrupt.c file in the cpuname\tutor
directory.

For detailed information about the extended keywords and pragma directives used in
this tutorial, see the IAR C/C++ Compiler Reference Guide.

SETTING UP THE PROJECT

1 Add a new project—project4—to the workspace tutorials used in previous
tutorials.

2 Add the files Utilities.c and Interrupt.c to it.

3 In the Workspace window, select the project level node and choose
Project>Options. Make sure default factory settings are used in the General
Options, C/C++ Compiler, and Linker categories.

Note: The file Interrupt.c might specify any specific settings required.

Next you will set up the simulation environment.

Setting up the simulation environment
The C-SPY interrupt system is based on the cycle counter. You can specify the amount
of cycles to pass before C-SPY generates an interrupt.

To simulate the input to UART, values are read from the file InputData.txt, which
contains the Fibonacci series. You will set an immediate read breakpoint on the UART
receive register, RBUF, and connect a user-defined macro function to it (in this example
the Access macro function). The macro reads the Fibonacci values from the text file.
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Simulating an interrupt
Whenever an interrupt is generated, the interrupt routine reads RBUF and the breakpoint
is triggered, the Access macro function is executed and the Fibonacci values are fed
into the UART receive register.

The immediate read breakpoint will trigger the break before the processor reads the
RBUF register, allowing the macro to store a new value in the register that is immediately
read by the instruction.

This section will demonstrate the steps involved in setting up the simulator for
simulating a serial port interrupt. The steps involved are:

● Defining a C-SPY setup file which will open the file InputData.txt and define
the Access macro function

● Specifying debugger options

● Building the project

● Starting the simulator

● Specifying the interrupt request

● Setting the breakpoint and associating the Access macro function to it.

Note: For a simple example of a system timer interrupt simulation, see Simulating a
simple interrupt, page 189.

DEFINING A C-SPY SETUP MACRO FILE

In C-SPY, you can define setup macros that will be registered during the C-SPY startup
sequence. In this tutorial you will use the C-SPY macro file SetupSimple.mac,
available in the cpuname\tutor directory. It is structured as follows:

First the setup macro function execUserSetup is defined, which is automatically
executed during C-SPY setup. Thus, it can be used to set up the simulation environment
automatically. A message is printed in the Log window to confirm that this macro has
been executed:

execUserSetup()
{
 __message "execUserSetup() called\n";

Then the file InputData.txt, which contains the Fibonacci series to be fed into
UART, is opened:

 _fileHandle = __openFile(
"PROJ_DIR$\\InputData.txt", "r");
UEW-8:1

Part 2. Tutorials 61

62

Setting up the simulation environment
After that, the macro function Access is defined. It will read the Fibonacci values from
the file InputData.txt, and assign them to the receive register address:

Access()
{
 __message "Access() called\n";
 __var _fibValue;
 if(0 == __readFile(_fileHandle, &_fibValue))
 {
 RBUF = _fibValue;
 }
}

You must connect the Access macro to an immediate read breakpoint. However, this
will be done at a later stage in this tutorial.

Finally, the file contains two macro functions for managing correct file handling at reset
and exit.

For detailed information about macros, see the chapters Using the C-SPY® macro
system and C-SPY® macros reference.

Next you will specify the macro file and set the other debugger options needed.

SETTING C-SPY OPTIONS

1 To set debugger options, choose Project>Options. In the Debugger category, click the
Setup tab.

2 Use the Use macro file browse button to specify the macro file to be used:

SetupSimple.mac
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Simulating an interrupt
Alternatively, use an argument variable to specify the path:

$TOOLKIT_DIR$\tutor\SetupSimple.mac

See Argument variables summary, page 237, for details.

Figure 22: Specifying setup macro file

3 The C-SPY interrupt system requires some interrupt definitions, provided by the device
description files. With the Device description file option you can specify the
appropriate file. See the Interrupt.c file in the cpuname\tutor directory for
information about which device description file to be used in this tutorial.

4 Select Run to main and click OK. This will ensure that the debug session will start by
running to the main function.

The project is now ready to be built.

BUILDING THE PROJECT

1 Compile and link the project by choosing Project>Make.

Alternatively, click the Make button on the toolbar. The Make command compiles and
links those files that have been modified.
UEW-8:1

Part 2. Tutorials 63

64

Setting up the simulation environment
STARTING THE SIMULATOR

1 Start C-SPY to run the project4 project.

The Interrupt.c window is displayed (among other windows). Click in it to make it the
active window.

2 Examine the Log window. Note that the macro file has been loaded and that the
execUserSetup function has been called.

SPECIFYING A SIMULATED INTERRUPT

Now you will specify your interrupt to make it simulate an interrupt every 2000 cycles.

1 Choose Simulator>Interrupt Setup to display the Interrupt Setup dialog box. Click
New to display the Edit Interrupt dialog box and make these settings for your
interrupt:

Setting Value Description

Interrupt UARTR_VECTOR Specifies which interrupt to use.

Description As is The interrupt definition that the simulator uses to be
able to simulate the interrupt correctly.

First activation 4000 Specifies the first activation moment for the
interrupt. The interrupt is activated when the cycle
counter has passed this value.

Repeat Interval 2000 Specifies the repeat interval for the interrupt,
measured in clock cycles.

Hold time Infinite Hold time, not used here.

Probability % 100 Specifies probability. 100% specifies that the
interrupt will occur at the given frequency. Another
percentage might be used for simulating a more
random interrupt behavior.

Variance % 0 Time variance, not used here.

Table 7: Interrupts dialog box
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Simulating an interrupt
Figure 23: Inspecting the interrupt settings

During execution, C-SPY will wait until the cycle counter has passed the activation
time. When the current assembler instruction is executed, C-SPY will generate an
interrupt which is repeated approximately every 2000 cycles.

2 When you have specified the settings, click OK to close the Edit Interrupt dialog box,
and then click OK to close the Interrupt Setup dialog box.

For information about how you can use the system macro __orderInterrupt in a
C-SPY setup file to automate the procedure of defining the interrupt, see Using macros
for interrupts and breakpoints, page 67.

SETTING AN IMMEDIATE BREAKPOINT

By defining a macro and connecting it to an immediate breakpoint, you can make the
macro simulate the behavior of a hardware device, for instance an I/O port, as in this
tutorial. The immediate breakpoint will not halt the execution, only temporarily suspend
it to check the conditions and execute any connected macro.

In this example, the input to the UART is simulated by setting an immediate read
breakpoint on the RBUF address and connecting the defined Access macro to it. The
macro will simulate the input to the UART. These are the steps involved:

1 Choose View>Breakpoints to open the Breakpoints window, right-click to open the
context menu, choose New Breakpoint>Immediate to open the Immediate tab.

2 Add these parameters for your breakpoint.

Setting Value Description

Break at RBUF Receive buffer address.

Access Type Read The breakpoint type (Read or Write)

Table 8: Breakpoints dialog box
UEW-8:1

Part 2. Tutorials 65

66

Simulating the interrupt
During execution, when C-SPY detects a read access from the RBUF address, C-SPY
will temporarily suspend the simulation and execute the Access macro. The macro will
read a value from the file InputData.txt and write it to RBUF. C-SPY will then
resume the simulation by reading the receive buffer value in RBUF.

3 Click OK to close the breakpoints dialog box.

For information about how you can use the system macro __setSimBreak in a C-SPY
setup file to automate the breakpoint setting, see Using macros for interrupts and
breakpoints, page 67.

Simulating the interrupt
In this section you will execute your application and simulate the serial port interrupt.

EXECUTING THE APPLICATION

1 In the Interrupt.c source window, step through the application and stop when it reaches
the while loop, where the application waits for input.

2 In the Interrupt.c source window, locate the function UartReceiveHandler.

3 Place the insertion point on the ++callCount; statement in this function and set a
breakpoint by choosing Edit>Toggle Breakpoint, or click the Toggle Breakpoint
button on the toolbar. Alternatively, use the context menu.

If you want to inspect the details of the breakpoint, choose View>Breakpoints.

4 Open the Terminal I/O window and run your application by choosing Debug>Go or
clicking the Go button on the toolbar.

The application should stop in the interrupt function.

5 Click Go again to see the next number being printed in the Terminal I/O window.

Because the main program has an upper limit on the Fibonacci value counter, the tutorial
application will soon reach the exit label and stop.

Action Access() The macro connected to the breakpoint.

Setting Value Description

Table 8: Breakpoints dialog box (Continued)
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Simulating an interrupt
The Terminal I/O window will display the Fibonacci series.

Figure 24: Printing the Fibonacci values in the Terminal I/O window

Using macros for interrupts and breakpoints
To automate the setting of breakpoints and the procedure of defining interrupts, the
system macros __setSimBreak and __orderInterrupt, respectively, can be
executed by the setup macro execUserSetup.

The file SetupAdvanced.mac is extended with system macro calls for setting the
breakpoint and specifying the interrupt:

simulationSetup()
{...
 _interruptID = __orderInterrupt("UARTR_VECTOR", 4000,
 2000, 0, 1, 0, 100);

 if(-1 == _interruptID)
 {
 __message "ERROR: failed to order interrupt";
 }

 _breakID = __setSimBreak("RBUF", "R", "Access()");

}

If you replace the file SetupSimple.mac, used in the previous tutorial, with the file
SetupAdvanced.mac, C-SPY will automatically set the breakpoint and define the
interrupt at startup. Thus, you do not need to start the simulation by manually filling in
the values in the Interrupts and Breakpoints dialog boxes.
UEW-8:1

Part 2. Tutorials 67

68

Using macros for interrupts and breakpoints
Note: Before you load the file SetupAdvanced.mac you should remove the
previously defined breakpoint and interrupt.
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Creating and using
libraries
This tutorial demonstrates how to create a library project and how you can
combine it with an application project.

This tutorial assumes that you are familiar with the basics of the IAR
Embedded Workbench® IDE described in the previous tutorial chapters.

For a short overview of all tutorials and their related files, see Tutorials
overview, page 25.

Using libraries
If you are working on a large project, you will soon accumulate a collection of useful
modules that contain one or more routines to be used by several of your applications. To
avoid having to assemble or compile a module each time it is needed, you can store such
modules as object files, that is, assembled or compiled but not linked.

You can collect many modules in a single object file which then is referred to as a
library. It is recommended that you use library files to create collections of related
routines, such as a device driver.

Use the IAR XAR Library Builder to build libraries.

The Main.sxx program

The Main.sxx program uses a routine called max to set the contents of one register to
the maximum value of two other registers. The EXTERN directive declares max as an
external symbol, to be resolved at link time.

A copy of the program is provided in the cpuname\tutor directory.

The library routines

The two library routines will form a separately assembled library. It consists of the max
routine called by main, and a corresponding min routine, both of which operate on the
contents of the registers used in the Main.sxx program. The Maxmin.sxx file contains
these library routines and a copy is provided in the cpuname\tutor directory.
UEW-8:1

Part 2. Tutorials 69

70

Using libraries
The routines are defined as library modules by the MODULE directive, which instructs the
IAR XLINK Linker to include the modules only if they are referenced by another
module.

The PUBLIC directive makes the max and min symbols public to other modules.

For detailed information about the MODULE and PUBLIC directives, see the IAR
Assembler Reference Guide.

CREATING A NEW PROJECT

1 In the workspace tutorials used in previous chapters, add a new project called
project5.

2 Add the file Main.sxx to the new project.

3 To set options, choose Project>Options. Select the General Options category and
click the Library Configuration tab. Choose None from the Library drop-down list,
which means that a standard C/C++ library will not be linked.

The default options are used for the other option categories.

4 To assemble the file Main.sxx, choose Project>Compile.

You can also click the Compile button on the toolbar.

CREATING A LIBRARY PROJECT

Now you are ready to create a library project.

1 In the same workspace tutorials, add a new project called tutor_library.

2 Add the file Maxmin.sxx to the project.

3 To set options, choose Project>Options. In the General Options category, verify
these settings:

Note that Library Builder appears in the list of categories, which means that the IAR
XAR Library Builder is added to the build tool chain. You do not have to set any
XAR-specific options for this tutorial.

Click OK.

4 Choose Project>Make.

Page Option

Output Output file: Library

Library Configuration Library: None

Table 9: General options for a library project
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Creating and using libraries
The library output file tutor_library.rxx has now been created in the
projects\Debug\Exe directory.

USING THE LIBRARY IN YOUR APPLICATION PROJECT

Now add your library containing the maxmin routine to project5.

1 In the Workspace window, click the project5 tab. Choose Project>Add Files and add
the file tutor_library.rxx located in the projects\Debug\Exe directory. Click
Open.

2 Click Make to build your project.

3 You have now combined a library with an executable project, and the application is
ready to be executed. For information about how to manipulate the library, see the IAR
Linker and Library Tools Reference Guide.
UEW-8:1

Part 2. Tutorials 71

72

Using libraries
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Part 3. Project
management and building
This part of the IAR Embedded Workbench® IDE User Guide contains the
following chapters:

● The development environment

● Managing projects

● Building

● Editing.
UEW-8:1

73

74
UEW-8:1

The development
environment
This chapter introduces you to the IAR Embedded Workbench® development
environment (IDE). The chapter also demonstrates how you can customize
the environment to suit your requirements.

The IAR Embedded Workbench IDE
THE TOOL CHAIN

The IDE is the framework where all necessary tools—the tool chain—are seamlessly
integrated: a C/C++ compiler, an assembler, the IAR XLINK Linker, the IAR XAR
Library Builder, the IAR XLIB Librarian, an editor, a project manager with Make utility,
and the IAR C-SPY® Debugger, which is a high-level language debugger. The tools
used specifically for building your source code are referred to as the build tools.

The tool chain that comes with your product installation is adapted for a certain
microcontroller. However, the IDE can simultaneously manage multiple tool chains for
various microcontrollers.

You can also add IAR visualSTATE to the tool chain, which means that you can add state
machine diagrams directly to your project in the IDE.

You can use the Custom Build mechanism to incorporate also other tools to the tool
chain, see Extending the tool chain, page 95.

The compiler, assembler, and linker can also be run from a command line environment,
if you want to use them as external tools in an already established project environment.
UEW-8:1

Part 3. Project management and building 75

76

The IAR Embedded Workbench IDE
This illustration shows the IAR Embedded Workbench IDE window with various
components.

Figure 25: IAR Embedded Workbench IDE window

The window might look different depending on what additional tools you are using.

RUNNING THE IDE

Click the Start button on the taskbar and choose All Programs>IAR Systems>IAR
Embedded Workbench for chip manufacturer CPUNAME>IAR Embedded
Workbench.

The file IarIdePm.exe is located in the common\bin directory under your IAR
Systems installation, in case you want to start the program from the command line or
from within Windows Explorer.

Toolbar
Menu bar

Workspace
window

Messages
windows

Editor
window

Status bar
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

The development environment
Double-clicking the workspace filename

The workspace file has the filename extension eww. If you double-click a workspace
filename, the IDE starts. If you have several versions of IAR Embedded Workbench
installed, the workspace file is opened by the most recently used version of your IAR
Embedded Workbench that uses that file type.

EXITING

To exit the IDE, choose File>Exit. You will be asked whether you want to save any
changes to editor windows, the projects, and the workspace before closing them.

Customizing the environment
The IDE is a highly customizable environment. This section demonstrates how you can
work with and organize the windows on the screen, the possibilities for customizing the
IDE, and how you can set up the environment to communicate with external tools.

ORGANIZING THE WINDOWS ON THE SCREEN

In the IDE, you can position the windows and arrange a layout according to your
preferences. You can dock windows at specific places, and organize them in tab groups.
You can also make a window floating, which means it is always on top of other
windows. If you change the size or position of a floating window, other currently open
windows are not affected.

Each time you open a previously saved workspace, the same windows are open, and they
have the same sizes and positions.

For every project that is executed in the C-SPY environment, a separate layout is saved.
In addition to the information saved for the workspace, information about all open
debugger-specific windows is also saved.

Using docked versus floating windows

Each window that you open has a default location, which depends on other currently
open windows. To give you full and convenient control of window placement, each
window can either be docked or floating.

A docked window is locked to a specific area in the Embedded Workbench main
window, which you can decide. To keep many windows open at the same time, you can
organize the windows in tab groups. This means one area of the screen is used for several
concurrently open windows. The system also makes it easy to rearrange the size of the
windows. If you rearrange the size of one docked window, the sizes of any other docked
windows are adjusted accordingly.
UEW-8:1

Part 3. Project management and building 77

78

Customizing the environment
A floating window is always on top of other windows. Its location and size does not
affect other currently open windows. You can move a floating window to any place on
your screen, also outside of the IAR Embedded Workbench IDE main window.

Note: The editor window is always docked. When you open the editor window, its
placement is decided automatically depending on other currently open windows. For
more information about how to work with the editor window, see Using the IAR
Embedded Workbench editor, page 99.

Organizing windows

To place a window as a separate window, drag it next to another open window.

To place a window in the same tab group as another open window, drag the window you
want to locate to the middle of the area and drop the window.

To make a window floating, double-click on the window’s title bar.

The status bar, located at the bottom of the IAR Embedded Workbench IDE main
window, contains useful help about how to arrange windows.

CUSTOMIZING THE IDE

To customize the IDE, choose Tools>Options to get access to a vide variety of
commands for:

● Configuring the editor

● Configuring the editor colors and fonts

● Configuring the project build command

● Organizing the windows in C-SPY

● Using an external editor

● Changing common fonts

● Changing key bindings

● Configuring the amount of output to the Messages window.

In addition, you can increase the number of recognized filename extensions. By default,
each tool in the build tool chain accepts a set of standard filename extensions. If you
have source files with a different filename extension, you can modify the set of accepted
filename extensions. Choose Tools>Filename Extensions to get access to the necessary
commands.

For reference information about the commands for customizing the IDE, see Tools
menu, page 244. You can also find further information related to customizing the editor
in the section Customizing the editor environment, page 106. For further information
about customizations related to C-SPY, see Part 4. Debugging.
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

The development environment
INVOKING EXTERNAL TOOLS

The Tools menu is a configurable menu to which you can add external tools for
convenient access to these tools from within the IDE. For this reason, the menu might
look different depending on which tools you have preconfigured to appear as menu
commands.

To add an external tool to the menu, choose Tools>Configure Tools to open the
Configure Tools dialog box.

Figure 26: Configure Tools dialog box

For reference information about this dialog box, see Configure Tools dialog box, page
265.

Note: You cannot use the Configure Tools dialog box to extend the tool chain in the
IDE, see The tool chain, page 75.
UEW-8:1

Part 3. Project management and building 79

80

Customizing the environment
After you have entered the appropriate information and clicked OK, the menu command
you have specified is displayed on the Tools menu.

Figure 27: Customized Tools menu

Note: If you intend to add an external tool to the standard build tool chain, see
Extending the tool chain, page 95.

Adding command line commands

Command line commands and calls to batch files must be run from a command shell.
You can add command line commands to the Tools menu and execute them from there.

1 To add commands to the Tools menu, you must specify an appropriate command shell.

Type one of these command shells in the Command text box:

2 Specify the command line command or batch file name in the Argument text box.

The Argument text should be specified as:

/C name

where name is the name of the command or batch file you want to run.

The /C option terminates the shell after execution, to allow the IDE to detect when the
tool has finished.

Example

To add the command Backup to the Tools menu to make a copy of the entire project
directory to a network drive, you would specify Command either as command.cmd or
as cmd.exe depending on your host environment, and Argument as:

/C copy c:\project*.* F:

Alternatively, to use a variable for the argument to allow relocatable paths:

/C copy $PROJ_DIR$*.* F:

Command shell System

cmd.exe (recommended) or command.com Windows 2000/XP/Vista

Table 10: Command shells
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Managing projects
This chapter discusses the project model used by the IAR Embedded
Workbench IDE. It covers how projects are organized and how you can specify
workspaces with multiple projects, build configurations, groups, source files,
and options that help you handle different versions of your applications. The
chapter also describes the steps involved in interacting with an external
third-party source code control system.

The project model
In a large-scale development project, with hundreds of files, you must be able to
organize the files in a structure that is easily navigated and maintained by perhaps
several engineers involved.

The IDE is a flexible environment for developing projects also with several different
target processors in the same project, and a selection of tools for each target processor.

HOW PROJECTS ARE ORGANIZED

The IDE has been designed to suit the way that software development projects are
typically organized. For example, perhaps you need to develop related versions of an
application for different versions of the target hardware, and you might also want to
include debugging routines into the early versions, but not in the final application.

Versions of your applications for different target hardware will often have source files
in common, and you might want to be able to maintain only one unique copy of these
files, so that improvements are automatically carried through to each version of the
application. Perhaps you also have source files that differ between different versions of
the application, such as those dealing with hardware-dependent aspects of the
application.

The IDE allows you to organize projects in a hierarchical tree structure showing the
logical structure at a glance. In the following sections the various levels of the hierarchy
are described.

Projects and workspaces

Typically you create a project which contains the source files needed for your embedded
systems application. If you have several related projects, you can access and work with
them simultaneously. To achieve this, you can organize related projects in workspaces.
UEW-8:1

Part 3. Project management and building 81

82

The project model
Each workspace you define can contain one or more projects, and each project must be
part of at least one workspace.

Consider this example: two related applications—for instance A and B—are developed,
requiring one development team each (team A and B). Because the two applications are
related, they can share parts of the source code between them. The following project
model can be applied:

● Three projects—one for each application, and one for the common source code

● Two workspaces—one for team A and one for team B.

Collecting the common sources in a library project (compiled but not linked object code)
is both convenient and efficient, to avoid having to compile it unnecessarily.

Figure 28: Examples of workspaces and projects

For an example where a library project has been combined with an application project,
see the chapter Creating and using libraries in Part 2. Tutorials.

Projects and build configurations

Often, you need to build several versions of your project. The Embedded Workbench
lets you define multiple build configurations for each project. In a simple case, you
might need just two, called Debug and Release, where the only differences are the
options used for optimization, debug information, and output format. In the Release
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Managing projects
configuration, the preprocessor symbol NDEBUG is defined, which means the application
will not contain any asserts.

Additional build configurations might be useful, for instance, if you intend to use the
application on different target devices. The application is the same, but hardware-related
parts of the code differ. Thus, depending on which target device you intend to build for,
you can exclude some source files from the build configuration. These build
configurations might fulfil these requirements for Project A:

● Project A - Device 1:Release

● Project A - Device 1:Debug

● Project A - Device 2:Release

● Project A - Device 2:Debug

Groups

Normally, projects contain hundreds of files that are logically related. You can define
each project to contain one or more groups, in which you can collect related source files.
You can also define multiple levels of subgroups to achieve a logical hierarchy. By
default, each group is present in all build configurations of the project, but you can also
specify a group to be excluded from a particular build configuration.

Source files

Source files can be located directly under the project node or in a hierarchy of groups.
The latter is convenient if the amount of files makes the project difficult to survey. By
default, each file is present in all build configurations of the project, but you can also
specify a file to be excluded from a particular build configuration.

Only the files that are part of a build configuration will actually be built and linked into
the output code.

Once a project has been successfully built, all include files and output files are displayed
in the structure below the source file that included or generated them.

Note: The settings for a build configuration can affect which include files that are used
during the compilation of a source file. This means that the set of include files associated
with the source file after compilation can differ between the build configurations.

CREATING AND MANAGING WORKSPACES

This section describes the overall procedure for creating the workspace, projects,
groups, files, and build configurations. The File menu provides the commands for
creating workspaces. The Project menu provides commands for creating projects,
adding files to a project, creating groups, specifying project options, and running the
IAR Systems development tools on the current projects.
UEW-8:1

Part 3. Project management and building 83

84

The project model
For reference information about these menus, menu commands, and dialog boxes, see
the chapter IAR Embedded Workbench® IDE reference.

The steps involved for creating and managing a workspace and its contents are:

● Creating a workspace.

An empty Workspace window appears, which is the place where you can view your
projects, groups, and files.

● Adding new or existing projects to the workspace.

When creating a new project, you can base it on a template project with
preconfigured project settings. Template projects are available for C applications,
C++ applications, assembler applications, and library projects.

● Creating groups.

A group can be added either to the project’s top node or to another group within the
project.

● Adding files to the project.

A file can be added either to the project’s top node or to a group within the project.

● Creating new build configurations.

By default, each project you add to a workspace will have two build configurations
called Debug and Release.

You can base a new configuration on an already existing configuration. Alternatively,
you can choose to create a default build configuration.

Note that you do not have to use the same tool chain for the new build configuration
as for other build configurations in the same project.

● Excluding groups and files from a build configuration.

Note that the icon indicating the excluded group or file will change to white in the
Workspace window.

● Removing items from a project.

For a detailed example, see Creating an application project, page 29.

Note: It might not be necessary for you to perform all of these steps.

Drag and drop

You can easily drag individual source files and project files from the Windows file
explorer to the Workspace window. Source files dropped on a group are added to that
group. Source files dropped outside the project tree—on the Workspace window
background—are added to the active project.
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Managing projects
Source file paths

The IDE supports relative source file paths to a certain degree, for:

● Project file

Paths to files part of the project file is relative if they are located on the same drive.
The path is relative either to $PROJ_DIR$ or EW_DIR. The argument variable
EW_DIR is only used if the path refers to a file located in subdirectory to EW_DIR
and the distance from EW_DIR is shorter than the distance from $PROJ_DIR$.

Paths to files that are part of the project file are absolute if the files are located on
different drives.

● Workspace file

For files located on the same drive as the workspace file, the path is relative to
$PROJ_DIR$.

For files located on another drive as the workspace file, the path is absolute.

● Debug files

The path is absolute if the file is built with IAR Systems compilation tools.

Navigating project files
There are two main different ways to navigate your project files: using the Workspace
window or the Source Browser window. The Workspace window displays an
hierarchical view of the source files, dependency files, and output files and how they are
logically grouped. The Source Browser window, on the other hand, displays information
about the build configuration that is currently active in the Workspace window. For that
configuration, the Source Browser window displays a hierarchical view of all globally
defined symbols, such as variables, functions, and type definitions. For classes,
information about any base classes is also displayed.
UEW-8:1

Part 3. Project management and building 85

86

Navigating project files
VIEWING THE WORKSPACE

The Workspace window is where you access your projects and files during the
application development.

1 To choose which project you want to view, click its tab at the bottom of the Workspace
window.

Figure 29: Displaying a project in the Workspace window

For each file that has been built, an Output folder icon appears, containing generated
files, such as object files and list files. The latter is generated only if the list file option
is enabled. There is also an Output folder related to the project node that contains
generated files related to the whole project, such as the executable file and the linker
map file (if the list file option is enabled).

Also, any included header files will appear, showing dependencies at a glance.

2 To display the project with a different build configuration, choose that build
configuration from the drop-down list at the top of the Workspace window.

The project and build configuration you have selected are displayed highlighted in the
Workspace window. It is the project and build configuration that you select from the
drop-down list that is built when you build your application.

Configuration
drop-down menu

Indicator for
option overrides

on file node

Tabs for choosing
workspace display

Indicates that the file
will be rebuilt next

time the project is built
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Managing projects
3 To display an overview of all projects in the workspace, click the Overview tab at the
bottom of the Workspace window.

An overview of all project members is displayed.

Figure 30: Workspace window—an overview

The current selection in the Build Configuration drop-down list is also highlighted
when an overview of the workspace is displayed.

DISPLAYING BROWSE INFORMATION

To display browse information in the Source Browser window, choose
Tools>Options>Project and select the option Generate browse information.

To open the Source Browser window, choose View>Source Browser. The Source
Browser window is, by default, docked with the Workspace window. Source browse
information is displayed for the active build configuration. For reference information,
see Source Browser window, page 210.

Note that you can choose a file filter and a type filter from the context menu that appears
when you right-click in the top pane of the window.

To see the definition of a global symbol or a function, you can use three alternative
methods:

● In the Source Browser window, right-click on a symbol, or function, and choose the
Go to definition command from the context menu that appears

● In the Source Browser window, double-click on a row

● In the editor window, right-click on a symbol, or function, and choose the Go to
definition command from the context menu that appears.

Indicates current selection
in the configuration

drop-down list
UEW-8:1

Part 3. Project management and building 87

88

Source code control
The definition of the symbol or function is displayed in the editor window.

The source browse information is continuously updated in the background. While you
are editing source files, or when you open a new project, there will be a short delay
before the information is up-to-date.

Source code control
IAR Embedded Workbench can identify and access any installed third-party source code
control (SCC) system that conforms to the SCC interface published by Microsoft
corporation. From within the IDE you can connect an IAR Embedded Workbench
project to an external SCC project, and perform some of the most commonly used
operations.

To connect your IAR Embedded Workbench project to a source code control system you
should be familiar with the source code control client application you are using. Note
that some of the windows and dialog boxes that appear when you work with source code
control in the IAR Embedded Workbench IDE originate from the SCC system and are
not described in the documentation from IAR Systems. For information about details in
the client application, refer to the documentation supplied with that application.

Note: Different SCC systems use very different terminology even for some of the most
basic concepts involved. You must keep this in mind when you read the following
description.

INTERACTING WITH SOURCE CODE CONTROL SYSTEMS

In any SCC system, you use a client application to maintain a central archive. In this
archive you keep the working copies of the files of your project. The SCC integration in
IAR Embedded Workbench allows you to conveniently perform a few of the most
common SCC operations directly from within the IDE. However, several tasks must still
be performed in the client application.

To connect an IAR Embedded Workbench project to a source code control system, you
should:

● In the SCC client application, set up an SCC project

● In IAR Embedded Workbench, connect your project to the SCC project.

Setting up an SCC project in the SCC client application

Use your SCC client tools to set up a working directory for the files in your IAR
Embedded Workbench project that you want to control using your SCC system. The
files can be placed in one or more nested subdirectories, all located under a common
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Managing projects
root. Specifically, all the source files must reside in the same directory as the ewp project
file, or nested in subdirectories of this directory.

For information about the steps involved, refer to the documentation supplied with the
SCC client application.

Connecting projects in IAR Embedded Workbench

In IAR Embedded Workbench, connect your application project to the SCC project.

1 In the Workspace window, select the project for which you have created an SCC
project. From the Project menu, choose Source Code Control>Add Project To
Source Control. This command is also available from the context menu that appears
when you right-click in the Workspace window.

Note: The commands on the Source Code Control submenu are available when at
least one SCC client application is available.

2 If you have source code control systems from different vendors installed, a dialog box
will appear to let you choose which system you want to connect to.

3 An SCC-specific dialog box will appear where you can navigate to the proper SCC
project that you have set up.

Viewing the SCC states

When your IAR Embedded Workbench project has been connected to the SCC project,
a column that contains status information for source code control will appear in the
Workspace window. Different icons are displayed depending on whether:

● a file is checked out to you

● a file is checked out to someone else

● a file is checked in

● a file has been modified

● a new version of a file is in the archive.

There are also icons for some combinations of these states. Note that the interpretation
of these states depends on the SCC client application you are using. For reference
information about the icons and the different states they represent, see Source code
control states, page 200.

For reference information about the commands available for accessing the SCC system,
see Source Code Control menu, page 199.
UEW-8:1

Part 3. Project management and building 89

90

Source code control
Configuring the source code control system

To customize the source code control system, choose Tools>Options and click the
Source Code Control tab. For reference information about the available commands, see
Terminal I/O options, page 264.
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Building
This chapter briefly discusses the process of building your application, and
describes how you can extend the chain of build tools with tools from
third-party suppliers.

Building your application
The building process consists of these steps:

● Setting project options

● Building the project

● Correcting any errors detected during the build procedure.

To make the build process more efficient, you can use the Batch Build command. This
gives you the possibility to perform several builds in one operation. If necessary, you can
also specify pre-build and post-build actions.

In addition to using the IAR Embedded Workbench IDE to build projects, you can also
use the command line utility iarbuild.exe.

For examples of building application and library projects, see Part 2. Tutorials in this
guide. For further information about building library projects, see the IAR C/C++
Compiler Reference Guide.

SETTING OPTIONS

To specify how your application should be built, you must define one or several build
configurations. Every build configuration has its own settings, which are independent of
the other configurations. All settings are indicated in a separate column in the
Workspace window.

For example, a configuration that is used for debugging would not be highly optimized,
and would produce output that suits the debugging. Conversely, a configuration for
building the final application would be highly optimized, and produce output that suits
a flash or PROM programmer.

For each build configuration, you can set options on the project level, group level, and
file level. Many options can only be set on the project level because they affect the entire
build configuration. Examples of such options are General Options, linker settings, and
debug settings. Other options, such as compiler and assembler options, that you set on
project level are default for the entire build configuration.
UEW-8:1

Part 3. Project management and building 91

92

Building your application
To override project level settings, select the required item—for instance a specific group
of files—and then select the option Override inherited settings. The new settings will
affect all members of that group, that is, files and any groups of files. To restore all
settings to the default factory settings, click the Factory Settings button.

Note: There is one important restriction on setting options. If you set an option on
group or file level (group or file level override), no options on higher levels that operate
on files will affect that group or file.

Using the Options dialog box

The Options dialog box—available by choosing Project>Options—provides options
for the building tools. You set these options for the selected item in the Workspace
window. Options in the General Options, Linker, and Debugger categories can only
be set for the entire build configuration, and not for individual groups and files.
However, the options in the other categories can be set for the entire build configuration,
a group of files, or an individual file.

Figure 31: General options

The Category list allows you to select which building tool to set options for. The tools
available in the Category list depends on which tools are included in your product. If
you select Library as output file on the Output page, Linker is replaced by Library
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Building
Builder in the category list. When you select a category, one or more pages containing
options for that component are displayed.

Click the tab corresponding to the type of options you want to view or change. To restore
all settings to the default factory settings, click the Factory Settings button, which is
available for all categories except General Options and Custom Build. Note that two
sets of factory settings are available: Debug and Release. Which one that is used depends
on your build configuration; see New Configuration dialog box, page 239.

For information about each option and how to set options, see the chapters General
options, Compiler options, Assembler options, Linker options, Library builder options,
Custom build options, and Debugger options in Part 6. Reference information in this
guide. For information about options specific to the C-SPY driver you are using, see the
part of this book that corresponds to your driver.

Note: If you add to your project a source file with a non-recognized filename extension,
you cannot set options on that source file. However, you can add support for additional
filename extensions. For reference information, see Filename Extensions dialog box,
page 267.

BUILDING A PROJECT

You have access to the build commands both from the Project menu and from the
context menu that appears if you right-click an item in the Workspace window.

The three build commands Make, Compile, and Rebuild All run in the background, so
you can continue editing or working with the IDE while your project is being built.

For further reference information, see Project menu, page 235.

BUILDING MULTIPLE CONFIGURATIONS IN A BATCH

Use the batch build feature when you want to build more than one configuration at once.
A batch is an ordered list of build configurations. The Batch Build dialog
box—available from the Project menu—lets you create, modify, and build batches of
configurations.

For workspaces that contain several configurations, it is convenient to define one or
more different batches. Instead of building the entire workspace, you can build only the
appropriate build configurations, for instance Release or Debug configurations.

For detailed information about the Batch Build dialog box, see Batch Build dialog box,
page 242.
UEW-8:1

Part 3. Project management and building 93

94

Building your application
USING PRE- AND POST-BUILD ACTIONS

If necessary, you can specify pre-build and post-build actions that you want to occur
before or after the build. The Build Actions dialog box—available from the Project
menu—lets you specify the actions required.

For detailed information about the Build Actions dialog box, see Build actions options,
page 339.

Using pre-build actions for time stamping

You can use pre-build actions to embed a time stamp for the build in the resulting binary
file. Follow these steps:

1 Create a dedicated time stamp file, for example, timestamp.c and add it to your
project.

2 In this source file, use the preprocessor macros __TIME__ and __DATE__ to initialize
a string variable.

3 Choose Project>Options>Build Actions to open the Build Actions dialog box.

4 In the Pre-build command line text field, specify for example this pre-build action:

"touch $PROJ_DIR$\timestamp.c"

You can use the open source command line utility touch for this purpose or any other
suitable utility which updates the modification time of the source file.

5 If the project is not entirely up-to-date, the next time you use the Make command, the
pre-build action will be invoked before the regular build process. The regular build
process then always must recompile timestamp.c and the correct timestamp will end
up in the binary file.

If the project already is up-to-date, the pre-build action will not be invoked. This means
that nothing is built, and the binary file still contains the timestamp for when it was last
built.

CORRECTING ERRORS FOUND DURING BUILD

The compiler, assembler, and debugger are fully integrated with the development
environment. If your source code contains errors, you can jump directly to the correct
position in the appropriate source file by double-clicking the error message in the error
listing in the Build message window, or selecting the error and pressing Enter.

After you have resolved any problems reported during the build process and rebuilt the
project, you can directly start debugging the resulting code at the source level.

To specify the level of output to the Build message window, choose Tools>Options to
open the IDE Options dialog box. Click the Messages tab and select the level of output
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Building
in the Show build messages drop-down list. Alternatively, you can right-click in the
Build Messages window and select Options from the context menu.

For reference information about the Build messages window, see Build window, page
219.

BUILDING FROM THE COMMAND LINE

To build the project from the command line, use the IAR Command Line Build Utility
(iarbuild.exe) located in the common\bin directory. As input you use the project
file, and the invocation syntax is:

iarbuild project.ewp [-clean|-build|-make] <configuration>
[-log errors|warnings|info|all]

If you run the application from a command shell without specifying a project file, you
will get a sign-on message describing available parameters and their syntax.

Extending the tool chain
IAR Embedded Workbench provides a feature—Custom Build—which lets you extend
the standard tool chain. This feature is used for executing external tools (not provided

Parameter Description

project.ewp Your IAR Embedded Workbench project file.

-clean Removes any intermediate and output files.

-build Rebuilds and relinks all files in the current build configuration.

-make Brings the current build configuration up to date by compiling,
assembling, and linking only the files that have changed since the last
build.

configuration The name of the configuration you want to build, which can either be
one of the predefined configurations Debug or Release, or a name that
you define yourself. For more information about build configurations, see
Projects and build configurations, page 82.

-log errors Displays build error messages.

-log warnings Displays build warning and error messages.

-log info Displays build warning and error messages, and messages issued by the
#pragma message preprocessor directive.

-log all Displays all messages generated from the build, for example compiler
sign-on information and the full command line.

Table 11: iarbuild.exe command line options
UEW-8:1

Part 3. Project management and building 95

96

Extending the tool chain
by IAR Systems). You can make these tools execute each time specific files in your
project have changed.

If you specify custom build options on the Custom tool configuration page, the build
commands treat the external tool and its associated files in the same way as the standard
tools within the IAR Embedded Workbench IDE and their associated files. The relation
between the external tool and its input files and generated output files is similar to the
relation between the C/C++ Compiler, c files, h files, and rxx files. See Custom build
options, page 337, for details about available custom build options.

You specify filename extensions of the files used as input to the external tool. If the input
file has changed since you last built your project, the external tool is executed; just as
the compiler executes if a c file has changed. In the same way, any changes in additional
input files (for instance include files) are detected.

You must specify the name of the external tool. You can also specify any necessary
command line options needed by the external tool, and the name of the output files
generated by the external tool. Note that you can use argument variables for substituting
file paths.

For some of the file information, you can use argument variables.

You can specify custom build options to any level in the project tree. The options you
specify are inherited by any sublevel in the project tree.

TOOLS THAT CAN BE ADDED TO THE TOOL CHAIN

Some examples of external tools, or types of tools, that you can add to the IAR
Embedded Workbench tool chain are:

● Tools that generate files from a specification, such as Lex and YACC

● Tools that convert binary files—for example files that contain bitmap images or
audio data—to a table of data in an assembler or C source file. This data can then be
compiled and linked together with the rest of your application.

ADDING AN EXTERNAL TOOL

The following example demonstrates how to add the tool Flex to the tool chain. The
same procedure can be used also for other tools.

In the example, Flex takes the file foo.lex as input. The two files foo.c and foo.h
are generated as output.

1 Add the file you want to work with to your project, for example foo.lex.

2 Select this file in the Workspace window and choose Project>Options. Select Custom
Build from the list of categories.
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Building
3 In the Filename extensions field, type the filename extension .lex. Remember to
specify the leading period (.).

4 In the Command line field, type the command line for executing the external tool, for
example

flex $FILE_PATH$ -o$FILE_BPATH$.c

During the build process, this command line is expanded to:

flex foo.lex -ofoo.c

Note the usage of argument variables. For further details of these variables, see
Argument variables summary, page 237.

Take special note of the use of $FILE_BNAME$ which gives the base name of the input
file, in this example appended with the c extension to provide a C source file in the same
directory as the input file foo.lex.

5 In the Output files field, describe the output files that are relevant for the build. In this
example, the tool Flex would generate two files—one source file and one header file.
The text in the Output files text box for these two files would look like this:

$FILE_BPATH$.c
$FILE_BPATH$.h

6 If the external tool uses any additional files during the build, these should be added in
the Additional input files field: for instance:

$TOOLKIT_DIR$\inc\stdio.h

This is important, because if the dependency files change, the conditions will no longer
be the same and the need for a rebuild is detected.

7 Click OK.

8 To build your application, choose Project>Make.
UEW-8:1

Part 3. Project management and building 97

98

Extending the tool chain
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Editing
This chapter describes in detail how to use the IAR Embedded Workbench
editor. The final section describes how to customize the editor and how to
use an external editor of your choice.

Using the IAR Embedded Workbench editor
The integrated text editor allows editing of multiple files in parallel, and provides all
basic editing features expected from a modern editor. In addition, it provides features
specific to software development. It also recognizes C or C++ language elements.

EDITING A FILE

The editor window is where you write, view, and modify your source code. You can
open one or several text files, either from the File menu, or by double-clicking a file in
the Workspace window. If you open several files, they are organized in a tab group.
Several editor windows can be open at the same time.
UEW-8:1

Part 3. Project management and building 99

100

Using the IAR Embedded Workbench editor
Click the tab for the file that you want to display. All open files are also available from
the drop-down menu at the upper right corner of the editor window.

Figure 32: Editor window

The name of the open source file is displayed on the tab. If a file is read-only, a padlock
is visible at the bottom left corner of the editor window. If a file has been modified after
it was last saved, an asterisk appears on the tab after the filename, for example
Utilities.c *.

The commands on the Window menu allow you to split the editor window into panes.
On the Window menu you also find commands for opening multiple editor windows,
and commands for moving files between editor windows. For reference information
about each command on the menu, see Window menu, page 270. For reference
information about the editor window, see Editor window, page 204.

Note: When you want to print a source file, it can be useful to enable the option Show
line numbers—available by choosing Tools>Options>Editor.

Accessing reference information for DLIB library functions

When you need to know the syntax for any C or Embedded C++ library function, select
the function name in the editor window and press F1. The library documentation for the
selected function appears in a help window.

Window tabs

Breakpoint icon

Bracket matching

Bookmark

Splitter
control

Drop-down menu
listing all open files

Splitter control Go to function

Tooltip information

Right margin indicating
limit of printing area
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Editing
Using and customizing editor commands and shortcut keys

The Edit menu provides commands for editing and searching in editor windows, for
instance, unlimited undo/redo (the Edit>Undo and Edit>Redo commands,
respectively). You can also find some of these commands on the context menu that
appears when you right-click in the editor window. For reference information about each
command, see Edit menu, page 225.

There are also editor shortcut keys for:

● moving the insertion point

● scrolling text

● selecting text.

For detailed information about these shortcut keys, see Editor key summary, page 208.

To change the default shortcut key bindings, choose Tools>Options, and click the Key
Bindings tab. For further details, see Key Bindings options, page 246.

Splitting the editor window into panes

You can split the editor window horizontally or vertically into multiple panes, to look at
different parts of the same source file at once, or to move text between two different
panes.

To split the window, double-click the appropriate splitter bar, or drag it to the middle of
the window. Alternatively, you can split a window into panes using the Window>Split
command.

To revert to a single pane, double-click the splitter control or drag it back to the end of
the scroll bar.

Dragging and dropping of text

You can easily move text within an editor window or between editor windows. Select
the text and drag it to the new location.

Syntax coloring

If the Tools>Options>Editor>Syntax highlighting option is enabled, the IAR
Embedded Workbench editor automatically recognizes the syntax of:

● C and C++ keywords

● C and C++ comments

● Assembler directives and comments

● Preprocessor directives

● Strings.
UEW-8:1

Part 3. Project management and building 101

102

Using the IAR Embedded Workbench editor
The different parts of source code are displayed in different text styles.

To change these styles, choose Tools>Options, and use the Editor>Colors and Fonts
options. For additional information, see Editor Colors and Fonts options, page 254.

In addition, you can define your own set of keywords that should be syntax-colored
automatically:

1 In a text file, list all the keywords that you want to be automatically syntax-colored.
Separate each keyword with either a space or a new line.

2 Choose Tools>Options and select Editor>Setup Files.

3 Select the Use Custom Keyword File option and specify your newly created text file.
A browse button is available for your convenience.

4 Select Edit>Colors and Fonts and choose User Keyword from the Syntax Coloring
list. Specify the font, color, and type style of your choice. For additional information,
see Editor Colors and Fonts options, page 254.

5 In the editor window, type any of the keywords you listed in your keyword file; see
how the keyword is syntax-colored according to your specification.

Automatic text indentation

The text editor can perform various kinds of indentation. For assembler source files and
normal text files, the editor automatically indents a line to match the previous line. If
you want to indent several lines, select the lines and press the Tab key. Press Shift-Tab
to move a whole block of lines to the left.

For C/C++ source files, the editor indents lines according to the syntax of the C/C++
source code. This is performed whenever you:

● Press the Return key

● Type any of the special characters {, }, :, and #

● Have selected one or several lines, and choose the Edit>Auto Indent command.

To enable or disable the indentation:

1 Choose Tools>Options and select Editor.

2 Select or deselect the Auto indent option.

To customize the C/C++ automatic indentation, click the Configure button.

For additional information, see Configure Auto Indent dialog box, page 250.
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Editing
Matching brackets and parentheses

When the insertion point is located next to a parenthesis, the matching parenthesis is
highlighted with a light gray color:

Figure 33: Parentheses matching in editor window

The highlight remains in place as long as the insertion point is located next to the
parenthesis.

To select all text between the brackets surrounding the insertion point, choose
Edit>Match Brackets. Every time you choose Match Brackets after that, the selection
will increase to the next hierarchic pair of brackets.

Note: Both of these functions—automatic matching of corresponding parentheses and
selection of text between brackets—apply to (), [], and {}.

Displaying status information

As you are editing, the status bar—available by choosing View>Status Bar— shows
the current line and column number containing the insertion point, and the Caps Lock,
Num Lock, and Overwrite status:

Figure 34: Editor window status bar

USING AND ADDING CODE TEMPLATES

Code templates is a method for conveniently inserting frequently used source code
sequences, for example for loops and if statements. The code templates are defined in
a normal text file. By default, a few example templates are provided. In addition, you
can easily add your own code templates.

Enabling code templates

By default, code templates are enabled. To enable and disable the use of code templates:

1 Choose Tools>Options.

2 Go to the Editor Setup Files page.
UEW-8:1

Part 3. Project management and building 103

104

Using the IAR Embedded Workbench editor
3 Select or deselect the Use Code Templates option.

4 In the text field, specify which template file you want to use; either the default file or
one of your own template files. A browse button is available for your convenience.

Inserting a code template in your source code

To insert a code template in your source code, place the insertion point at the location
where you want the template to be inserted and choose Edit>Insert Template. This
command displays a list in the editor window from which you can choose a code
template.

Figure 35: Editor window code template menu

If the code template you choose requires any type of field input, as in the for loop
example which needs an end value and a count variable, an input dialog box appears.

Adding your own code templates

The source code templates are defined in a normal text file. The original template file
CodeTemplates.txt is located in the common\config installation directory. The first
time you use IAR Embedded Workbench, the original template file is copied to a
directory for local settings, and this is the file that is used by default if code templates
are enabled. To use your own template file, follow the procedure described in Enabling
code templates, page 103.

To open the template file and define your own code templates, choose Edit>Code
Templates>Edit Templates.

The syntax for defining templates is described in the default template file.

Selecting the correct language version of the code template file

When you start the IAR Embedded Workbench IDE for the very first time, you are asked
to select a language version. This only applies if you are using an IDE that is available
in other languages than English.
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Editing
Selecting a language creates a corresponding language version of the default code
template file in the Application Data\IAR Embedded Workbench subdirectory of
the current Windows user (for example CodeTemplates.ENU.txt for English and
CodeTemplates.JPN.txt for Japanese). The default code template file does not
change automatically if you change the language version of the IDE afterwards.

To change the code template:

1 Choose Tools>Options>IDE Options>Editor>Setup Files.

2 Click the browse button of the Use Code Templates option and select a different
template file.

If the code template file you want to select is not in the browsed directory, you must:

3 Delete the file name in the Use Code Templates text box.

4 Deselect the Use Code Templates option and click OK.

5 Restart the IAR Embedded Workbench IDE.

6 Then choose Tools>Options>IDE Options>Editor>Setup Files again.

The default code template file for the selected language version of the IDE should now
be displayed in the Use Code Templates text box. Select the check box to enable the
template.

NAVIGATING IN AND BETWEEN FILES

The editor provides several functions for easy navigation within the files and between
files:

● Switching between source and header files

If the insertion point is located on an #include line, you can choose the Open
"header.h" command from the context menu, which opens the header file in an
editor window. You can also choose the command Open Header/Source File, which
opens the header or source file that corresponds to the current file, or activates it if it
is already open. This command is available if the insertion point is located on any
line except an #include line.

● Function navigation

Click the Go to function button in the bottom left corner in an editor window to list
all functions defined in the source file displayed in the window. You can then choose
to go directly to one of the functions by double-clicking it in the list.

● Adding bookmarks

Use the Edit>Navigate>Toggle Bookmark command to add and remove
bookmarks. To switch between the marked locations, choose Edit>Navigate>Go to
Bookmark.
UEW-8:1

Part 3. Project management and building 105

106

Customizing the editor environment
SEARCHING

There are several standard search functions available in the editor:

● Quick search text box

● Find dialog box

● Replace dialog box

● Find in files dialog box

● Incremental Search dialog box.

To use the Quick search text box on the toolbar, type the text you want to search for and
press Enter. Press Esc to cancel the search. This is a quick method for searching for text
in the active editor window.

To use the Find, Replace, Find in Files, and Incremental Search functions, choose the
corresponding command from the Edit menu. For reference information about each
search function, see Edit menu, page 225.

Customizing the editor environment
The IDE editor can be configured on the IDE Options pages Editor and Editor Colors
and Fonts. Choose Tools>Options to access the pages.

For details about these pages, see Tools menu, page 244.

USING AN EXTERNAL EDITOR

The External Editor options—available by choosing Tools>Options>Editor—let you
specify an external editor of your choice.

Note: While debugging using C-SPY, C-SPY will not use the external editor for
displaying the current debug state. Instead, the built-in editor will be used.

To specify an external editor of your choice, follow this procedure:

1 Select the option Use External Editor.

2 An external editor can be called in one of two ways, using the Type drop-down menu.

Command Line calls the external editor by passing command line parameters.

DDE calls the external editor by using DDE (Windows Dynamic Data Exchange).

3 If you use the command line, specify the command line to pass to the editor, that is, the
name of the editor and its path, for instance:

C:\WINNT\NOTEPAD.EXE.
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Editing
To send an argument to the external editor, type the argument in the Arguments field.
For example, type $FILE_PATH$ to start the editor with the active file (in editor, project,
or Messages window).

Figure 36: Specifying external command line editor

4 If you use DDE, specify the editor’s DDE service name in the Service field. In the
Command field, specify a sequence of command strings to send to the editor.

The service name and command strings depend on the external editor that you are using.
Refer to the user documentation of your external editor to find the appropriate settings.

The command strings should be entered as:

DDE-Topic CommandString
DDE-Topic CommandString
UEW-8:1

Part 3. Project management and building 107

108

Customizing the editor environment
as in this example, which applies to Codewright®:

Figure 37: External editor DDE settings

The command strings used in this example will open the external editor with a dedicated
file activated. The cursor will be located on the current line as defined in the context
from where the file is open, for instance when searching for a string in a file, or when
double-clicking an error message in the Message window.

5 Click OK.

When you double-click a file in the Workspace window, the file is opened by the
external editor.

Variables can be used in the arguments. For more information about the argument
variables that are available, see Argument variables summary, page 237.
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Part 4. Debugging
This part of the IAR Embedded Workbench® IDE User Guide contains the
following chapters:

● The IAR C-SPY® Debugger

● Executing your application

● Working with variables and expressions

● Using breakpoints

● Monitoring memory and registers

● Using the C-SPY® macro system

● Analyzing your application.
UEW-8:1

109

110
UEW-8:1

The IAR C-SPY®
Debugger
This chapter introduces you to the IAR C-SPY Debugger. First some of the
concepts are introduced that are related to debugging in general and to C-SPY
in particular. Then C-SPY environment is presented, followed by a description
of how to setup, start, and finally adapt C-SPY to target hardware.

Debugger concepts
This section introduces some of the concepts that are related to debugging in general and
to C-SPY in particular. This section does not contain specific conceptual information
related to the functionality of C-SPY. Instead, you will find such information in each
chapter of this part of the guide. The IAR Systems user documentation uses the
following terms when referring to these concepts.

C-SPY AND TARGET SYSTEMS

You can use C-SPY to debug either a software target system or a hardware target system.
UEW-8:1

Part 4. Debugging 111

112

Debugger concepts
This figure shows an overview of C-SPY and possible target systems.

Figure 38: C-SPY and target systems

DEBUGGER

The debugger, for instance C-SPY, is the program that you use for debugging your
applications on a target system.

TARGET SYSTEM

The target system is the system on which you execute your application when you are
debugging it. The target system can consist of hardware, either an evaluation board or
your own hardware design. It can also be completely or partially simulated by software.
Each type of target system needs a dedicated C-SPY driver.

USER APPLICATION

A user application is the software you have developed and which you want to debug
using C-SPY.

C-SPY DEBUGGER SYSTEMS

C-SPY consists of both a general part which provides a basic set of debugger features,
and a driver. The C-SPY driver is the part that provides communication with and control
of the target system. The driver also provides the user interface—menus, windows, and
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

The IAR C-SPY® Debugger
dialog boxes—to the functions provided by the target system, for instance, special
breakpoints. There are three main types of C-SPY drivers:

● Simulator driver

● ROM-monitor driver

● Emulator driver

If you have more than one C-SPY driver installed on your computer, you can switch
between them from within the IDE.

For an overview of the general features of C-SPY, see IAR C-SPY Debugger, page 5.
For an overview of the functionality provided by each driver, see the online help system
available from the Help menu. There might also be a driver guide in hypertext PDF
format available in the doc directory. Contact your software distributor or IAR Systems
representative for information about available C-SPY drivers. You can also find
information on the IAR Systems website, www.iar.com.

ROM-MONITOR PROGRAM

The ROM-monitor program is a piece of firmware that is loaded to non-volatile memory
on your target hardware; it runs in parallel with your application. The ROM-monitor
communicates with the debugger and provides services needed for debugging the
application, for instance stepping and breakpoints.

THIRD-PARTY DEBUGGERS

You can use a third-party debugger together with the IAR Systems tool chain as long as
the third-party debugger can read any of the output formats provided by XLINK, such
as UBROF, ELF/DWARF, COFF, Intel-extended, Motorola, or any other available
format. For information about which format to use with third-party debuggers, see the
user documentation supplied with that tool.

The C-SPY environment
AN INTEGRATED ENVIRONMENT

C-SPY is a high-level-language debugger for embedded applications. It is designed for
use with the IAR Systems compiler and assembler, and is completely integrated in the
IDE, providing development and debugging within the same application.

All windows that are open in the Embedded Workbench workspace will stay open when
you start the C-SPY Debugger. In addition, a set of C-SPY-specific windows are opened.
UEW-8:1

Part 4. Debugging 113

114

Setting up C-SPY
You can modify your source code in an editor window during the debug session, but
changes will not take effect until you exit from the debugger and rebuild your
application.

The integration also makes it possible to set breakpoints in the text editor at any point
during the development cycle. You can inspect and modify breakpoint definitions also
when the debugger is not running, and breakpoint definitions flow with the text as you
edit. Your debug settings, such as watch properties, window layouts, and register groups
will remain between your debug sessions. When the debugger is running, breakpoints
are highlighted in the editor windows.

In addition to the features available in the IDE, the C-SPY environment consists of a set
of C-SPY-specific items, such as a debugging toolbar, menus, windows, and dialog
boxes.

For reference information about each item specific to C-SPY, see the chapter C-SPY®
reference, page 273.

For specific information about a C-SPY driver, see the part of the book corresponding
to the driver.

Setting up C-SPY
Before you start C-SPY, you should set options to set up the debugger system. These
options are available on the Setup page of the Debugger category, available with the
Project>Options command. On the Plugins page you can find options for loading
plug-in modules.

In addition to the options for setting up the debugger system, you can also set
debugger-specific IDE options. These options are available with the Tools>Options
command. For further information about these options, see Debugger options, page 259.

CHOOSING A DEBUG DRIVER

Before starting C-SPY, you must choose a driver for the debugger system from the
Driver drop-down list on the Setup page. The contents of the drop-down list depend on
your product installation; drivers for hardware debugger systems might, or might not be
available. If you choose a driver for a hardware debugger system, you must also set
hardware-specific options. For information about these options, see the online help
system available from the Help menu.

If you choose a driver for a hardware debugger system, you must also set
hardware-specific options. For information about these options, see the online help
system available from the Help menu and Part 6. Reference information in this guide.

Note: You can only choose a driver you have installed on your computer.
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

The IAR C-SPY® Debugger
EXECUTING FROM RESET

Using the Run to option, you can specify a location you want C-SPY to run to when you
start the debugger as well as after each reset. C-SPY will place a breakpoint at this
location and all code up to this point is executed before stopping at the location.

The default location to run to is the main function. Type the name of the location if you
want C-SPY to run to a different location. You can specify assembler labels or whatever
can be evaluated to such, for instance function names.

If you leave the check box empty, the program counter will then contain the regular
hardware reset address at each reset.

If no breakpoints are available when C-SPY starts, a warning message notifies you that
single stepping will be required and that this is time consuming. You can then continue
execution in single step mode or stop at the first instruction. If you choose to stop at the
first instruction, the debugger starts executing with the PC (program counter) at the
default reset location instead of the location you typed in the Run to box.

Note: This message will never be displayed in the C-SPY Simulator, where
breakpoints are not limited.

For driver-specific information about breakpoints, see the online help system available
from the Help menu.

USING A SETUP MACRO FILE

A setup macro file is a standard macro file that you choose to load automatically when
C-SPY starts. You can define the setup macro file to perform actions according to your
needs, using setup macro functions and system macros. Thus, if you load a setup macro
file you can initialize C-SPY to perform actions automatically.

To register a setup macro file, select Use macro file and type the path and name of your
setup macro file, for example Setup.mac. If you do not type a filename extension, the
extension mac is assumed. A browse button is available for your convenience.

For detailed information about setup macro files and functions, see The macro file, page
146. For an example about how to use a setup macro file, see the chapter Simulating an
interrupt in Part 2. Tutorials.

SELECTING A DEVICE DESCRIPTION FILE

C-SPY uses device description files to handle several of the target-specific adaptations.
They contain device-specific information about for example, definitions of peripheral
units and CPU registers, and groups of these.

If you want to use the device-specific information provided in the device description file
during your debug session, you must select the appropriate device description file.
UEW-8:1

Part 4. Debugging 115

116

Starting C-SPY
Device description files are provided in the cpuname\config directory and they have
the filename extension ddf.

To load a device description file that suits your device, you must, before you start
C-SPY, choose Project>Options and select the Debugger category. On the Setup page,
enable the use of a description file and select a file using the Device description file
browse button.

For an example about how to use a setup macro file, see Simulating an interrupt in Part
2. Tutorials.

LOADING PLUGIN MODULES

On the Plugins page you can specify C-SPY plugin modules that are to be loaded and
made available during debug sessions. Plugin modules can be provided by IAR Systems,
and by third-party suppliers. Contact your software distributor or IAR Systems
representative, or visit the IAR Systems web site, for information about available
modules.

For information about how to load plugin modules, see Plugins, page 359.

The C-SPY RTOS awareness plugin modules

Provided that one or more real-time operating systems plugin modules is supported for
the IAR Embedded Workbench version you are using, you can load one for use with
C-SPY. C-SPY RTOS awareness plugin modules give you a high level of control and
visibility over an application built on top of a real-time operating system. It displays
RTOS-specific items like task lists, queues, semaphores, mailboxes and various RTOS
system variables. Task-specific breakpoints and task-specific stepping make it easier to
debug tasks.

A loaded plugin will add its own set of windows and buttons when a debug session is
started (provided that the RTOS is linked with the application). For information about
other RTOS awareness plugin modules, refer to the manufacturer of the plugin module.

Starting C-SPY
When you have set up the debugger, you are ready to start a debug session.

To start C-SPY and load the current project, click the Download and Debug button.
Alternatively, choose Project>Download and Debug.

To start C-SPY without reloading the current project, click the Debug without
Downloading button. Alternatively, choose Project>Debug without Downloading.

For information about how to execute your application and how to use the C-SPY
features, see the remaining chapters in Part 4. Debugging.
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

The IAR C-SPY® Debugger
EXECUTABLE FILES BUILT OUTSIDE OF THE IDE

You can also load C-SPY with a project that was built outside the IDE, for example
projects built on the command line. To be able to set debugger options for the externally
built project, you must create a project within the IDE.

To load an externally built executable file, you must first create a project for it in your
workspace. Choose Project>Create New Project, and specify a project name. To add
the executable file to the project, choose Project>Add Files and make sure to choose
All Files in the Files of type drop-down list. Locate the executable file (filename
extension dxx). To start the executable file, select the project in the Workspace window
and click the Debug button. The project can be reused whenever you rebuild your
executable file.

The only project options that are meaningful to set for this kind of project are options in
the General Options and Debugger categories. Make sure to set up the general project
options in the same way as when the executable file was built.

To flash an externally generated application, a corresponding sim file must be available
in the same directory as the dxx file.

LOADING MULTIPLE DEBUG FILES

Normally, a debuggable application consists of exactly one file that you debug.
However, it is also possible to load additional debug files after a debug session has
started. This means that the complete program consists of several debug files.

Typically, this is useful if you want to debug your application in combination with a
prebuilt ROM image that contains an additional library for some platform-provided
features. The ROM image and the application are built using separate projects in the
IAR Embedded Workbench IDE and generate separate output files. Normally, you will
only have access to debug information for the debug file of the active project.

To load an additional debug file, use the __loadModule system macro. For more
information, see __loadModule, page 380.

REDIRECTING DEBUGGER OUTPUT TO A FILE

The Debug Log window—available from the View menu—displays debugger output,
such as diagnostic messages and trace information. It can sometimes be convenient to
log the information to a file where you can easily inspect it. The Log Files dialog
box—available from the Debug menu—allows you to log output from C-SPY to a file.
The two main advantages are:

● The file can be opened in another tool, for instance an editor, so you can navigate
and search within the file for particularly interesting parts
UEW-8:1

Part 4. Debugging 117

118

Starting C-SPY
● The file provides history about how you have controlled the execution, for instance,
what breakpoints have been triggered etc.

By default, the information printed in the file is the same as the information listed in the
Log window. However, you can choose what you want to log in the file: errors,
warnings, system information, user messages, or all of these. For reference information
about the Log File options, see Log File dialog box, page 308.
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Executing your application
The IAR C-SPY® Debugger provides a flexible range of facilities for executing
your application during debugging. This chapter contains information about:

● The conceptual differences between source mode and disassembly mode
debugging

● Executing your application

● The call stack

● Handling terminal input and output.

Source and disassembly mode debugging
C-SPY allows you to switch seamlessly between source mode and disassembly mode
debugging as required.

Source debugging provides the fastest and easiest way of developing your application,
without having to worry about how the compiler or assembler has implemented the
code. In the editor windows you can execute the application one statement at a time
while monitoring the values of variables and data structures.

Disassembly mode debugging lets you focus on the critical sections of your application,
and provides you with precise control over the hardware. You can open a disassembly
window which displays a mnemonic assembler listing of your application based on
actual memory contents rather than source code, and lets you execute the application
exactly one instruction at a time. In Mixed-Mode display, the debugger also displays the
corresponding C/C++ source code interleaved with the disassembly listing.

Regardless of which mode you are debugging in, you can display registers and memory,
and change their contents.

For an example of a debug session both in C source mode and disassembly mode, see
Debugging the application, page 39.

Executing
C-SPY provides a flexible range of features for executing your application. You can find
commands for executing on the Debug menu and on the toolbar.
UEW-8:1

Part 4. Debugging 119

120

Executing
STEP

C-SPY allows more stepping precision than most other debuggers because it is not
line-oriented but statement-oriented. The compiler generates detailed stepping
information in the form of step points at each statement, and at each function call. That
is, source code locations where you might consider whether to execute a step into or a
step over command. Because the step points are located not only at each statement but
also at each function call, the step functionality allows a finer granularity than just
stepping on statements. There are four step commands:

● Step Into

● Step Over

● Next Statement

● Step Out

Consider this example and assume that the previous step has taken you to the f(i)
function call (highlighted):

int f(int n)
{
 value = f(n-1) + f(n-2) + f(n-3);
 return value;
}
...
f(i);
value ++;

While stepping, you typically consider whether to step into a function and continue
stepping inside the function or subroutine. The Step Into command takes you to the first
step point within the subroutine, f(n-1):

int f(int n)
{
 value = f(n-1) + f(n-2) + f(n-3);
 return value;
}
...
f(i);
value ++;

The Step Into command executes to the next step point in the normal flow of control,
regardless of whether it is in the same or another function.

The Step Over command executes to the next step point in the same function, without
stopping inside called functions. The command would take you to the f(n-2) function
call, which is not a statement on its own but part of the same statement as f(n-1). Thus,
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Executing your application
you can skip uninteresting calls which are parts of statements and instead focus on
critical parts:

int f(int n)
{
 value = f(n-1) + f(n-2) + f(n-3);
 return value;
}
...
f(i);
value ++;

The Next Statement command executes directly to the next statement return value,
allowing faster stepping:

int f(int n)
{
 value = f(n-1) + f(n-2) + f(n-3);
 return value;
}
...
f(i);
value ++;

When inside the function, you can—if you wish—use the Step Out command to step
out of it before it reaches the exit. This will take you directly to the statement
immediately after the function call:

int f(int n)
{
 value = f(n-1) + f(n-2) f(n-3);
 return value;
 ...
}
...
f(i);
value ++;

The possibility of stepping into an individual function that is part of a more complex
statement is particularly useful when you use C code containing many nested function
calls. It is also very useful for Embedded C++, which tends to have many implicit
function calls, such as constructors, destructors, assignment operators, and other
user-defined operators.

This detailed stepping can in some circumstances be either invaluable or unnecessarily
slow. For this reason, you can also step only on statements, which means faster stepping.
UEW-8:1

Part 4. Debugging 121

122

Executing
GO

The Go command continues execution from the current position until a breakpoint or
program exit is reached.

RUN TO CURSOR

The Run to Cursor command executes to the position in the source code where you
have placed the cursor. The Run to Cursor command also works in the Disassembly
window and in the Call Stack window.

HIGHLIGHTING

At each stop, C-SPY highlights the corresponding C or C++ source or instruction with
a green color, in the editor and the Disassembly window respectively. In addition, a
green arrow appears in the editor window when you step on C or C++ source level, and
in the Disassembly window when you step on disassembly level. This is determined by
which of the windows is the active window. If none of the windows are active, it is
determined by which of the window is currently placed over the other window.

Figure 39: C-SPY highlighting source location

For simple statements without function calls, the whole statement is typically
highlighted. When stopping at a statement with function calls, C-SPY highlights the first
call because this illustrates more clearly what Step Into and Step Over would mean at
that time.

Occasionally, you will notice that a statement in the source window is highlighted using
a pale variant of the normal highlight color. This happens when the program counter is
at an assembler instruction which is part of a source statement but not exactly at a step
point. This is often the case when stepping in the Disassembly window. Only when the
program counter is at the first instruction of the source statement, the ordinary highlight
color is used.

USING BREAKPOINTS TO STOP

You can set breakpoints in the application to stop at locations of particular interest.
These locations can be either at code sections where you want to investigate whether
your program logic is correct, or at data accesses to investigate when and how the data
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Executing your application
is changed. Depending on which debugger system you are using you might also have
access to additional types of breakpoints. For instance, if you are using the C-SPY
Simulator, a special kind of breakpoint facilitates simulation of simple hardware
devices. See the chapter Simulator-specific debugging for further details.

For a more advanced simulation, you can stop under certain conditions, which you
specify. You can also connect a C-SPY macro to the breakpoint. The macro can be
defined to perform actions, which for instance can simulate specific hardware behavior.

All these possibilities provide you with a flexible tool for investigating the status of, for
example, variables and registers at different stages during the application execution.

For detailed information about the breakpoint system and how to use the breakpoint
types, see the chapter Using breakpoints.

USING THE BREAK BUTTON TO STOP

While your application is executing, the Break button on the debug toolbar is
highlighted in red. To stop the execution, click the Break button or choose the
Debug>Break command.

STOP AT PROGRAM EXIT

Typically, the execution of an embedded application is not intended to end, which means
that the application will not make use of a traditional exit. However, in some situations
a controlled exit is necessary, such as during debug sessions. You can link your
application with a special library that contains an exit label. A breakpoint will be
automatically set on that label to stop execution when it gets there. Before you start
C-SPY, choose Project>Options, and select the Linker category. On the Output page,
select the option With runtime control modules (-r).

Call stack information
The compiler generates extensive backtrace information. This allows C-SPY to show,
without any runtime penalty, the complete call chain at any time.

Typically, this is useful for two purposes:

● Determining in what context the current function has been called

● Tracing the origin of incorrect values in variables and incorrect values in
parameters, thus locating the function in the call chain where the problem occurred.

The Call Stack window—available from the View menu—shows a list of function calls,
with the current function at the top. When you inspect a function in the call chain, by
double-clicking on any function call frame, the contents of all affected windows are
updated to display the state of that particular call frame. This includes the editor, Locals,
UEW-8:1

Part 4. Debugging 123

124

Terminal input and output
Register, Watch and Disassembly windows. A function would normally not make use of
all registers, so these registers might have undefined states and be displayed as dashes
(---). For reference information about the Call Stack window, see Call Stack window,
page 294.

In the editor and Disassembly windows, a green highlight indicates the topmost, or
current, call frame; a yellow highlight is used when inspecting other frames.

For your convenience, it is possible to select a function in the call stack and click the
Run to Cursor command—available on the Debug menu, or alternatively on the
context menu—to execute to that function.

Assembler source code does not automatically contain any backtrace information. To be
able to see the call chain also for your assembler modules, you can add the appropriate
CFI assembler directives to the source code. For further information, see the IAR
Assembler Reference Guide.

Terminal input and output
Sometimes you might have to debug constructions in your application that use stdin
and stdout without an actual hardware device for input and output. The Terminal I/O
window—available on the View menu—lets you enter input to your application, and
display output from it.

This facility is useful in two different contexts:

● If your application uses stdin and stdout

● For producing debug trace printouts.

To use this window, you must link your application with the option With I/O emulation
modules. C-SPY will then direct stdin, stdout, and stderr to this window.

For reference information, see Terminal I/O window, page 295.

Directing stdin and stdout to a file

You can also direct stdin and stdout directly to a file. You can then open the file in
another tool, for instance an editor, to navigate and search within the file for particularly
interesting parts. The Terminal I/O Log Files dialog box—available by choosing
Debug>Logging—allows you to select a destination log file, and to log terminal I/O
input and output from C-SPY to this file.

For reference information, see Terminal I/O Log File dialog box, page 309.
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Working with variables
and expressions
This chapter defines the variables and expressions used in C-SPY®. It also
demonstrates the methods for examining variables and expressions.

C-SPY expressions
C-SPY lets you examine the C variables, C expressions, and assembler symbols that you
have defined in your application code. In addition, C-SPY allows you to define C-SPY
macro variables and macro functions and use them when evaluating expressions.
Expressions that are built with these components are called C-SPY expressions and
there are several methods for monitoring these in C-SPY.

C-SPY expressions can include any type of C expression, except function calls. The
following types of symbols can be used in expressions:

● C/C++ symbols

● Assembler symbols (register names and assembler labels)

● C-SPY macro functions

● C-SPY macro variables

Examples of valid C-SPY expressions are:

i + j
i = 42
#asm_label
#R2
#PC
my_macro_func(19)

C SYMBOLS

C symbols are symbols that you have defined in the C source code of your application,
for instance variables, constants, and functions. C symbols can be referenced by their
names.
UEW-8:1

Part 4. Debugging 125

126

C-SPY expressions
Using sizeof

According to the ISO/ANSI C standard, there are two syntactical forms of sizeof:

sizeof(type)
sizeof expr

The former is for types and the latter for expressions.

In C-SPY, do not use parentheses around an expression when you use the sizeof
operator. For example, use sizeof x+2 instead of sizeof (x+2).

ASSEMBLER SYMBOLS

Assembler symbols can be assembler labels or register names. That is, general purpose
registers and special purpose registers, such as the program counter and the status
register. If a device description file is used, all memory-mapped peripheral units, such
as I/O ports, can also be used as assembler symbols in the same way as the CPU
registers. See Selecting a device description file, page 115.

Assembler symbols can be used in C-SPY expressions if they are prefixed by #.

In case of a name conflict between a hardware register and an assembler label, hardware
registers have a higher precedence. To refer to an assembler label in such a case, you
must enclose the label in back quotes ` (ASCII character 0x60). For example:

Which processor-specific symbols are available by default can be seen in the Register
window, using the CPU Registers register group. See Register groups, page 143.

MACRO FUNCTIONS

Macro functions consist of C-SPY variable definitions and macro statements which are
executed when the macro is called.

For details of C-SPY macro functions and how to use them, see The macro language,
page 146.

Example What it does

#pc++ Increments the value of the program counter.

myptr = #label7 Sets myptr to the integral address of label7 within its zone.

Table 12: C-SPY assembler symbols expressions

Example What it does

#pc Refers to the program counter.

#`pc` Refers to the assembler label pc.

Table 13: Handling name conflicts between hardware registers and assembler labels
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Working with variables and expressions
MACRO VARIABLES

Macro variables are defined and allocated outside your application, and can be used in
a C-SPY expression. In case of a name conflict between a C symbol and a C-SPY macro
variable, the C-SPY macro variable will have a higher precedence than the C variable.
Assignments to a macro variable assigns both its value and type.

For details of C-SPY macro variables and how to use them, see The macro language,
page 369.

Limitations on variable information
The value of a C variable is valid only on step points, that is, the first instruction of a
statement and on function calls. This is indicated in the editor window with a bright
green highlight color. In practice the value of the variable is accessible and correct more
often than that.

When the program counter is inside a statement, but not at a step point, the statement or
part of the statement is highlighted with a pale variant of the ordinary highlight color.

EFFECTS OF OPTIMIZATIONS

The compiler is free to optimize the application software as much as possible, as long
as the expected behavior remains. Depending on your project settings, a high level of
optimization results in smaller or faster code, but also in increased compile time.
Debugging might be more difficult because it will be less clear how the generated code
relates to the source code. Typically, using a high optimization level can affect the code
in a way that will not allow you to view a value of a variable as expected.

Consider this example:

foo()
{
 int i = 42;
 ...
 x = bar(i); //Not until here the value of i is known to C-SPY
 ...
}

From the point where the variable i is declared until it is actually used, the compiler
does not need to waste stack or register space on it. The compiler can optimize the code,
which means C-SPY will not be able to display the value until it is actually used. If you
try to view a value of a variable that is temporarily unavailable, C-SPY will display the
text:

Unavailable
UEW-8:1

Part 4. Debugging 127

128

Viewing variables and expressions
If you need full information about values of variables during your debugging session,
you should make sure to use the lowest optimization level during compilation, that is,
None.

Viewing variables and expressions
There are several methods for looking at variables and calculating their values:

● Tooltip watch—in the editor window—provides the simplest way of viewing the
value of a variable or more complex expressions. Just point at the variable with the
pointer. The value is displayed next to the variable.

● The Auto window—available from the View menu—automatically displays a
useful selection of variables and expressions in, or near, the current statement.

● The Locals window—available from the View menu—automatically displays the
local variables, that is, auto variables and function parameters for the active
function.

● The Watch window—available from the View menu—allows you to monitor the
values of C-SPY expressions and variables.

● The Live Watch window—available from the View menu—repeatedly samples and
displays the value of expressions while your application is executing. Variables in
the expressions must be statically located, such as global variables.

● The Statics window—available from the View menu—automatically displays the
values of variables with static storage duration.

● The Quick Watch window, see Using the Quick Watch window, page 129.

● The Trace system, see Using the trace system, page 129.

For text that is too wide to fit in a column—in any of the these windows, except the Trace
window—and thus is truncated, just point at the text with the mouse pointer and tooltip
information is displayed.

For reference information about the windows, see C-SPY windows, page 273.

WORKING WITH THE WINDOWS

All the windows are easy to use. You can add, modify, and remove expressions, and
change the display format.

A context menu containing useful commands is available in all windows if you
right-click in each window. Convenient drag-and-drop between windows is supported,
except for in the Locals window and the Quick Watch window where it is not applicable.
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Working with variables and expressions
To add a value you can also click in the dotted rectangle and type the expression you
want to examine. To modify the value of an expression, click in the Value field and
modify its content. To remove an expression, select it and press the Delete key.

Using the Quick Watch window

The Quick Watch window—available from the View menu—lets you watch the value
of a variable or expression and evaluate expressions.

The Quick Watch window is different from the Watch window in the following ways:

● The Quick Watch window offers a fast method for inspecting and evaluating
expressions. Right-click on the expression you want to examine and choose Quick
Watch from the context menu that appears. The expression will automatically
appear in the Quick Watch window.

● In contrast to the Watch window, the Quick Watch window gives you precise control
over when to evaluate the expression. For single variables this might not be
necessary, but for expressions with side effects, such as assignments and C-SPY
macro functions, it allows you to perform evaluations under controlled conditions.

USING THE TRACE SYSTEM

A trace is a recorded sequence of events in the target system, typically executed machine
instructions. Depending on what C-SPY driver you are using, additional types of trace
data can be recorded. For example, read and write accesses to memory, and the values
of C-SPY expressions.

By using the trace system, you can trace the program flow up to a specific state, for
instance an application crash, and use the trace information to locate the origin of the
problem. Trace information can be useful for locating programming errors that have
irregular symptoms and occur sporadically. Trace information can also be useful as test
documentation.

The trace system is not supported by all C-SPY drivers. For detailed information about
the trace system and the components provided by the C-SPY driver you are using, see
the corresponding driver documentation.

Which trace system functionality that is provided depends on the C-SPY driver you are
using. However, for all C-SPY drivers that support the trace system, the Trace window,
the Find in Trace window, and the Find in Trace dialog box are always available. You
can save the trace information to a file to be analyzed later.

The Trace window and its browse mode

The type of information that is displayed in the Trace window depends on the C-SPY
driver you are using. The various types of trace data are displayed in separate columns,
UEW-8:1

Part 4. Debugging 129

130

Viewing variables and expressions
but the Trace column is always available if the driver you are using supports the trace
system. The corresponding source code can also be shown.

To follow the execution history, simply look and scroll in the Trace window.
Alternatively, you can enter browse mode. To enter browse mode, double-click an item
in the Trace window, or click the Browse toolbar button. The selected item turns yellow
and the source and disassembly windows will highlight the corresponding location. You
can now move around in the Trace window using the up and down arrow keys, or by
scrolling and clicking; the source and Disassembly windows will be updated to show the
corresponding location. Double-click again to leave browse mode.

Searching in the trace data

You can perform advanced searches in the recorded trace data. You specify the search
criteria in the Find in Trace dialog box and view the result in the Find in Trace window.

The Find in Trace window is very similar to the Trace window, showing the same
columns and data, but only those rows that match the specified search criteria.
Double-clicking an item in the Find in Trace window brings up the same item in the
Trace window.

VIEWING ASSEMBLER VARIABLES

An assembler label does not convey any type information at all, which means C-SPY
cannot easily display data located at that label without getting extra information. To
view data conveniently, C-SPY treats, by default, all data located at assembler labels as
variables of type int. However, in the Watch, Quick Watch, and Live Watch windows,
you can select a different interpretation to better suit the declaration of the variables.
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Working with variables and expressions
In this figure, you can see four variables in the Watch window and their corresponding
declarations in the assembler source file to the left:

Figure 40: Viewing assembler variables in the Watch window

Note that asmvar4 is displayed as an int, although the original assembler declaration
probably intended for it to be a single byte quantity. From the context menu you can
make C-SPY display the variable as, for example, an 8-bit unsigned variable. This has
already been specified for the asmvar3 variable.
UEW-8:1

Part 4. Debugging 131

132

Viewing variables and expressions
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Using breakpoints
This chapter describes the breakpoint system and various ways to create and
monitor breakpoints. The chapter also gives some useful breakpoint tips and
information about breakpoint consumers.

The breakpoint system
The C-SPY® breakpoint system lets you set various kinds of breakpoints in the
application you are debugging, allowing you to stop at locations of particular interest.
You can set a breakpoint at a code location to investigate whether your program logic is
correct, or to get trace printouts. In addition to code breakpoints, and depending on what
C-SPY driver you are using, additional breakpoint types might be available. For
example, you might be able to set a data breakpoint, to investigate how and when the
data changes. If you are using the simulator driver you can also set immediate
breakpoints. C-SPY also provides several ways of defining the breakpoints.

All your breakpoints are listed in the Breakpoints window where you can conveniently
monitor, enable, and disable them.

You can let the execution stop only under certain conditions, which you specify. You can
also let the breakpoint trigger a side effect, for instance executing a C-SPY macro
function, without stopping the execution. The macro function can be defined to perform
a wide variety of actions, for instance, simulating hardware behavior.

You can set breakpoints while you edit your code even if no debug session is active. The
breakpoints will then be validated when the debug session starts. Breakpoints are
preserved between debug sessions.

All these possibilities provide you with a flexible tool for investigating the status of your
application.

Defining breakpoints
You can set breakpoints in many various ways and the breakpoints you define will
appear in the Breakpoints window. From this window you can conveniently view all
breakpoints, enable and disable breakpoints, and open a dialog box for defining new
breakpoints.

Breakpoints are set with a higher precision than single lines, using the same mechanism
as when stepping; for more details about the precision, see Step, page 120.
UEW-8:1

Part 4. Debugging 133

134

Defining breakpoints
For reference information about code and log breakpoints, see Code breakpoints dialog
box, page 214 and Log breakpoints dialog box, page 216, respectively. For details about
any additional breakpoint types, see the driver-specific documentation.

BREAKPOINT ICONS

A breakpoint is marked with an icon in the left margin of the editor window, and the icon
is different for code and for log breakpoints:

Figure 41: Breakpoint icons

If the breakpoint icon does not appear, make sure the option Show bookmarks is
selected, see Editor options, page 248.

Just point at the breakpoint icon with the mouse pointer to get detailed tooltip
information about all breakpoints set on the same location. The first row gives user
breakpoint information, the following rows describe the physical breakpoints used for
implementing the user breakpoint. The latter information can also be seen in the
Breakpoint Usage dialog box.

Note: The breakpoint icons might look different for the C-SPY driver you are using.
For more information about breakpoint icons, see the driver-specific documentation.

DIFFERENT WAYS TO SET A BREAKPOINT

You can set a breakpoint in various ways:

● Using the Toggle Breakpoint command toggles a code breakpoint. This command
is available both from the Tools menu and from the context menus in the editor
window and in the Disassembly window

● Right-clicking in the left side margin of the editor window or the Disassembly
window toggles a code breakpoint.

● Using the New Breakpoints dialog box and the Edit Breakpoints dialog box
available from the context menus in the editor window, Breakpoints window, and in

Code breakpoint

Log breakpoint

Tooltip information

Disabled code
breakpoint
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Using breakpoints
the Disassembly window. The dialog boxes give you access to all breakpoint
options.

● Setting a data breakpoint on a memory area directly in the Memory window.

● Using predefined system macros for setting breakpoints, which allows automation.

The different methods allow different levels of simplicity, complexity, and automation.

TOGGLING A SIMPLE CODE BREAKPOINT

Toggling a code breakpoint is a quick method of setting a breakpoint. The following
methods are available both in the editor window and in the Disassembly window:

● Double-click in the gray left-side margin of the window

● Place the insertion point in the C source statement or assembler instruction where
you want the breakpoint, and click the Toggle Breakpoint button in the toolbar

● Choose Edit>Toggle Breakpoint
● Right-click and choose Toggle Breakpoint from the context menu.

DEFINING BREAKPOINTS USING THE DIALOG BOX

The advantage of using a breakpoint dialog box is that it provides you with a graphical
interface where you can interactively fine-tune the characteristics of the breakpoints.
You can set the options and quickly test whether the breakpoint works according to your
intentions.

All breakpoints you define using a breakpoint dialog box are preserved between debug
sessions.

You can open the dialog box from the context menu available in the editor window,
Breakpoints window, and in the Disassembly window.

To define a new breakpoint

1 Choose View>Breakpoints to open the Breakpoints window.

2 In the Breakpoints window, right-click to open the context menu.

3 On the context menu, choose New Breakpoint.

4 On the submenu, choose the breakpoint type you want to set. Depending on the C-SPY
driver you are using, different breakpoint types might be available.
UEW-8:1

Part 4. Debugging 135

136

Defining breakpoints
A breakpoint dialog box appears. Specify the breakpoint settings and click OK. The
breakpoint is displayed in the Breakpoints window, see Viewing all breakpoints, page
138.

To modify an existing breakpoint

1 In the Breakpoints window, editor window, or in the Disassembly window, select the
breakpoint you want to modify and right-click to open the context menu.

Figure 42: Setting breakpoints via the context menu

If there are several breakpoints on the same line, they will be listed on a submenu.

2 On the context menu, choose the appropriate command.

A breakpoint dialog box appears. Specify the breakpoint settings and click OK. The
breakpoint is displayed in the Breakpoints window, see Viewing all breakpoints, page
138.

SETTING A DATA BREAKPOINT IN THE MEMORY WINDOW

You can set breakpoints directly on a memory location in the Memory window.
Right-click in the window and choose the breakpoint command from the context menu
that appears. To set the breakpoint on a range, select a portion of the memory contents.

The breakpoint is not highlighted; you can see, edit, and remove it in the Breakpoints
window, which is available from the View menu. The breakpoints you set in this window
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Using breakpoints
will be triggered for both read and write accesses. All breakpoints defined in the
Memory window are preserved between debug sessions.

Setting different types of breakpoints in the Memory window is only supported if the
driver you use supports these types of breakpoints.

DEFINING BREAKPOINTS USING SYSTEM MACROS

You can define breakpoints not only in the breakpoint dialog box but also by using
built-in C-SPY system macros. When you use macros for defining breakpoints, the
breakpoint characteristics are specified as function parameters.

Macros are useful when you have already specified your breakpoints so that they fully
meet your requirements. You can define your breakpoints in a macro file, using built-in
system macros, and execute the file at C-SPY startup. The breakpoints will then be set
automatically each time you start C-SPY. Another advantage is that the debug session
will be documented, and that several engineers involved in the development project can
share the macro files.

If you use system macros for setting breakpoints, you can still view and modify them in
the Breakpoints window. In contrast to using the dialog box for defining breakpoints, all
breakpoints that are defined using system macros are removed when you exit the debug
session.

These breakpoint macros are available:

__setCodeBreak
__setDataBreak
__setSimBreak
__clearBreak

For details of each breakpoint macro, see the chapter C-SPY® macros reference.

Defining breakpoints at C-SPY startup using a setup macro file

You can use a setup macro file to define breakpoints at C-SPY startup. Follow the
procedure described in Registering and executing using setup macros and setup files,
page 149.

USEFUL BREAKPOINT TIPS

Below comes some useful tips related to setting breakpoints.

Tracing incorrect function arguments

If a function with a pointer argument is sometimes incorrectly called with a NULL
argument, it is useful to put a breakpoint on the first line of the function with a condition
UEW-8:1

Part 4. Debugging 137

138

Viewing all breakpoints
that is true only when the parameter is 0. The breakpoint will then not be triggered until
the problematic situation actually occurs.

Performing a task with or without stopping execution

You can perform a task when a breakpoint is triggered with or without stopping the
execution.

You can use the Action text box to associate an action with the breakpoint, for instance
a C-SPY macro function. When the breakpoint is triggered and the execution of your
application has stopped, the macro function will be executed.

If you instead want to perform a task without stopping the execution, you can set a
condition which returns 0 (false). When the breakpoint is triggered, the condition is
evaluated and because it is not true, execution continues.

Consider this example where the C-SPY macro function performs a simple task:

__var my_counter;

count()
{
 my_counter += 1;
 return 0;
}

To use this function as a condition for the breakpoint, type count() in the Expression
text box under Conditions. The task will then be performed when the breakpoint is
triggered. Because the macro function count returns 0, the condition is false and the
execution of the program will resume automatically, without any stop.

Viewing all breakpoints
To view breakpoints, you can use the Breakpoints window and the Breakpoints Usage
dialog box.

For information about the Breakpoints window, see Breakpoints window, page 213.
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Using breakpoints
USING THE BREAKPOINT USAGE DIALOG BOX

The Breakpoint Usage dialog box—available from C-SPY driver-specific menus, for
example the Simulator menu—lists all active breakpoints.

Figure 43: Breakpoint Usage dialog box

The Breakpoint Usage dialog box lists all breakpoints currently set in the target system,
both the ones you have defined and the ones used internally by C-SPY. For each
breakpoint in the list, the address and access type are shown. Each breakpoint can also
be expanded to show its originator. The format of the items in this dialog box depends
on which C-SPY driver you are using.

The dialog box gives a low-level view of all breakpoints, related but not identical to the
list of breakpoints shown in the breakpoint dialog box.

Exceeding the number of available low-level breakpoints will cause the debugger to
single step. This will significantly reduce the execution speed. Therefore, in a debugger
system with a limited amount of breakpoints, you can use the Breakpoint Usage dialog
box for:

● Identifying all consumers of breakpoints

● Checking that the number of active breakpoints is supported by the target system

● Configuring the debugger to use the available breakpoints in a better way, if
possible.

For information about the available number of breakpoints in the debugger system you
are using and how to use the available breakpoints in a better way, see the section about
breakpoints in the part of this book that corresponds to the debugger system you are
using.
UEW-8:1

Part 4. Debugging 139

140

Viewing all breakpoints
BREAKPOINT CONSUMERS

A debugger system includes several consumers of breakpoints.

User breakpoints—the breakpoints you define in the breakpoint dialog box or by
toggling breakpoints in the editor window—often consume one low-level breakpoint
each, but this can vary greatly. Some user breakpoints consume several low-level
breakpoints and conversely, several user breakpoints can share one low-level
breakpoint. User breakpoints are displayed in the same way both in the Breakpoint
Usage dialog box and in the Breakpoints window, for example Data @[R]
callCount.

C-SPY itself also consumes breakpoints. C-SPY will set a breakpoint if:

● the debugger option Run to has been selected, and any step command is used.
These are temporary breakpoints which are only set when the debugger system is
running. This means that they are not visible in the Breakpoint Usage window.

● the linker options With I/O emulation modules has been selected.

These types of breakpoint consumers are displayed in the Breakpoint Usage dialog
box, for example, C-SPY Terminal I/O & libsupport module.

C-SPY plugin modules, for example modules for real-time operating systems, can
consume additional breakpoints. Specifically, by default, the Stack window consumes a
breakpoint. To disable the breakpoint used by the Stack window:

● Choose Tools>Options>Stack.

● Deselect the Stack pointer(s) not valid until program reaches: label option.
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Monitoring memory and
registers
This chapter describes how to use the features available in the IAR C-SPY®
Debugger for examining memory and registers.

Memory addressing
In C-SPY, the term zone is used for a named memory area. A memory address, or
location, is a combination of a zone and a numerical offset into that zone.

Memory zones are used in several contexts, perhaps most importantly in the Memory
and Disassembly windows. The Zone box in these windows allows you to choose which
memory zone to display.

Memory zones are defined in the device description files. For further information, see
Selecting a device description file, page 115.

Windows for monitoring memory and registers
C-SPY provides many windows for monitoring memory and registers, each of them
available from the View menu:

● The Memory window

Gives an up-to-date display of a specified area of memory—a memory zone—and
allows you to edit it. Different colors are used for indicating data coverage along with
execution of your application. You can fill specified areas with specific values and
you can set breakpoints directly on a memory location or range. You can open several
instances of this window, to monitor different memory areas. For more information,
see Memory window, page 278. See also Setting a data breakpoint in the Memory
window, page 136.

● The Symbolic memory window

Displays how variables with static storage duration are laid out in memory. This can
be useful for better understanding memory usage or for investigating problems
caused by variables being overwritten, for example by buffer overruns.

● The Stack window

Displays the contents of the stack, including how stack variables are laid out in
memory. In addition, some integrity checks of the stack can be performed to detect

UEW-8:1

Part 4. Debugging 141

142

Windows for monitoring memory and registers
and warn about problems with stack overflow. For example, the Stack window is
useful for determining the optimal size of the stack.

● The Register window

Gives an up-to-date display of the contents of the processor registers and SFRs, and
allows you to edit them.

To view the memory contents for a specific variable, simply drag the variable to the
Memory window or the Symbolic memory window. The memory area where the
variable is located will appear.

USING THE STACK WINDOW

Before you can open the Stack window you must make sure it is enabled; Choose
Project>Options>Debugger>Plugins and select Stack from the list of plugins. In
C-SPY, you can then open a Stack window by choosing View>Stack. You can open
several instances of the Stack window, each showing a different stack—if several stacks
are available—or the same stack with different display settings.

Figure 44: Stack window

For detailed reference information about the Stack window, and the method used for
computing the stack usage and its limitations, see Stack window, page 300. For reference
information about the options specific to the window, see Stack options, page 261.

Place the mouse pointer over the stack bar to get tool tip information about stack usage.

Detecting stack overflows

If you have selected the option Enable stack checks, available by choosing
Tools>Options>Stack, you have also enabled the functionality needed to detect stack
overflows. This means that C-SPY can issue warnings for stack overflow when the
application stops executing. Warnings are issued either when the stack usage exceeds a

Current stack
pointer

Unused stack memory,
in light gray

Current stack
pointer Used stack memory,

in dark gray
Stack view

The graphical stack bar
with tooltip information
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Monitoring memory and registers
threshold that you can specify, or when the stack pointer is outside the stack memory
range.

Viewing the stack contents

The display area of the Stack window shows the contents of the stack, which can be
useful in many contexts. Some examples are:

● Investigating the stack usage when assembler modules are called from C modules
and vice versa

● Investigating whether the correct elements are located on the stack

● Investigating whether the stack is restored properly.

WORKING WITH REGISTERS

The Register window gives an up-to-date display of the contents of the processor
registers and special function registers, and allows you to edit them.

Figure 45: Register window

Every time C-SPY stops, a value that has changed since the last stop is highlighted. To
edit the contents of a register, click it, and modify the value. You can expand some
registers to show individual bits or subgroups of bits.

To change the display format, change the Base setting on the Register Filter
page—available by choosing Tools>Options.

Register groups

Due to the large amount of registers—memory-mapped peripheral unit registers and
CPU registers—it is inconvenient to show all registers concurrently in the Register
window. Instead you can divide registers into register groups. By default, there is only
one register group in the debugger: CPU Registers.
UEW-8:1

Part 4. Debugging 143

144

Windows for monitoring memory and registers
In addition to the CPU Registers, additional register groups are predefined in the device
description files—available in the cpuname\config directory—that make all SFR
registers available in the register window. The device description file contains a section
that defines the special function registers and their groups.

You can select which register group to display in the Register window using the
drop-down list. You can conveniently keep track of different register groups
simultaneously, as you can open several instances of the Register window.

Enabling predefined register groups

To use any of the predefined register groups, select a device description file that suits
your device, see Selecting a device description file, page 115.

The available register groups are listed on the Register Filter page, available if you
choose the Tools>Options command when C-SPY is running.

Defining application-specific groups

In addition to the predefined register groups, you can create your own register groups
that better suit the use of registers in your application.

To define new register groups, choose Tools>Options and click the Register Filter tab.
This page is only available when the debugger is running.

Figure 46: Register Filter page

For reference information about this dialog box, see Register Filter options, page 263.
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Using the C-SPY® macro
system
C-SPY includes a comprehensive macro system which allows you to automate
the debugging process and to simulate peripheral devices. Macros can be used
in conjunction with complex breakpoints and interrupt simulation to perform
a wide variety of tasks.

This chapter describes the macro system, its features, for what purpose these
features can be used, and how to use them.

The macro system
You can use C-SPY macros either by themselves or in conjunction with complex
breakpoints and interrupt simulation to perform a wide variety of tasks. Some examples
where macros can be useful:

● Automating the debug session, for instance with trace printouts, printing values of
variables, and setting breakpoints.

● Hardware configuring, such as initializing hardware registers.

● Developing small debug utility functions, for instance calculating the stack depth.

● Simulating peripheral devices, see the chapter Simulating interrupts. This only
applies if you are using the simulator driver.

The macro system has several features:

● The similarity between the macro language and the C language, which lets you
write your own macro functions.

● Predefined system macros which perform useful tasks such as opening and closing
files, setting breakpoints and defining simulated interrupts.

● Reserved setup macro functions which can be used for defining at which stage the
macro function should be executed. You define the function yourself, in a setup
macro file.

● The option of collecting your macro functions in one or several macro files.
● A dialog box where you can view, register, and edit your macro functions and files.

Alternatively, you can register and execute your macro files and functions using
either the setup functionality or system macros.
UEW-8:1

Part 4. Debugging 145

146

The macro system
Many C-SPY tasks can be performed either in a dialog box or by using macro functions.
The advantage of using a dialog box is that it provides you with a graphical interface
where you can interactively fine-tune the characteristics of the task you want to perform,
for instance setting a breakpoint. You can add parameters and quickly test whether the
breakpoint works according to your intentions.

Macros, on the other hand, are useful when you already have specified your breakpoints
so that they fully meet your requirements. To set up your simulator environment
automatically, write a macro file and execute it, for instance, when you start C-SPY.
Another advantage is that the debug session will be documented, and if several
engineers are involved in the development project, you can share the macro files within
the group.

THE MACRO LANGUAGE

The syntax of the macro language is very similar to the C language. There are macro
statements, which are similar to C statements. You can define macro functions, with or
without parameters and return values. You can use built-in system macros, similar to C
library functions. Finally, you can define global and local macro variables. For a
detailed description of the macro language components, see The macro language, page
369.

Example

Consider this example of a macro function which illustrates the various components of
the macro language:

CheckLatest(value)
{
 oldvalue;
 if (oldvalue != value)
 {
 __message "Message: Changed from ", oldvalue, " to ", value;
 oldvalue = value;
 }
}

Note: Reserved macro words begin with double underscores to prevent name conflicts.

THE MACRO FILE

You collect your macro variables and functions in one or several macro files. To define
a macro variable or macro function, first create a text file containing the definition. You
can use any suitable text editor, such as the editor supplied with the IDE. Save the file
with a suitable name using the filename extension mac.
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Using the C-SPY® macro system
Setup macro file

You can load a macro file at C-SPY startup; such a file is called a setup macro file. This
is especially convenient if you want to make C-SPY perform actions before you load
your application software, for instance to initialize some CPU registers or
memory-mapped peripheral units. Other reasons might be if you want to automate the
initialization of C-SPY, or if you want to register multiple setup macro files. You will
find an example of a C-SPY setup macro file, SetupSimple.mac, in the
cpuname\tutor directory.

For information about how to load a setup macro file, see Registering and executing
using setup macros and setup files, page 149. For an example of how to use setup macro
files, see the chapter Simulating an interrupt in Part 2. Tutorials.

SETUP MACRO FUNCTIONS

The setup macro functions are reserved macro function names that are called by C-SPY
at specific stages during execution. The stages to choose between are:

● After communication with the target system has been established but before
downloading the application software

● Once after your application software has been downloaded

● Each time the reset command is issued

● Once when the debug session ends.

To define a macro function to be called at a specific stage, you should define and register
a macro function with the name of a setup macro function. For instance, if you want to
clear a specific memory area before you load your application software, the macro setup
function execUserPreload is suitable. This function is also suitable if you want to
initialize some CPU registers or memory mapped peripheral units before you load your
application software. For detailed information about each setup macro function, see
Setup macro functions summary, page 374.

As with any macro function, you collect your setup macro functions in a macro file.
Because many of the setup macro functions execute before main is reached, you should
define these functions in a setup macro file.

Using C-SPY macros
If you decide to use C-SPY macros, you must first create a macro file in which you
define your macro functions. C-SPY must know that you intend to use your defined
macro functions, and thus you must register (load) your macro file. During the debug
session, you might have to list all available macro functions and execute them.
UEW-8:1

Part 4. Debugging 147

148

Using C-SPY macros
To list the registered macro functions, you can use the Macro Configuration dialog
box. There are various ways to both register and execute macro functions:

● You can register a macro interactively in the Macro Configuration dialog box.

● You can register and execute macro functions at the C-SPY startup sequence by
defining setup macro functions in a setup macro file.

● You can register a file containing macro function definitions, using the system
macro __registerMacroFile. This means that you can dynamically select
which macro files to register, depending on the runtime conditions. Using the
system macro also lets you register multiple files at the same moment. For details
about the system macro, see __registerMacroFile, page 385.

● The Quick Watch window lets you evaluate expressions, and can thus be used for
executing macro functions.

● A macro can be connected to a breakpoint; when the breakpoint is triggered the
macro is executed.

USING THE MACRO CONFIGURATION DIALOG BOX

The Macro Configuration dialog box—available by choosing Debug>Macros—lets
you list, register, and edit your macro files and functions. The dialog box offers you an
interactive interface for registering your macro functions which is convenient when you
develop macro functions and continuously want to load and test them.
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Using the C-SPY® macro system
Macro functions that have been registered using the dialog box are deactivated when you
exit the debug session, and will not automatically be registered at the next debug session.

Figure 47: Macro Configuration dialog box

For reference information about this dialog box, see Macro Configuration dialog box,
page 307.

REGISTERING AND EXECUTING USING SETUP MACROS AND
SETUP FILES

It can be convenient to register a macro file during the C-SPY startup sequence,
especially if you have several ready-made macro functions. C-SPY can then execute the
macros before main is reached. To do this, specify a macro file which you load before
starting the debugger. Your macro functions will be automatically registered each time
you start C-SPY.

If you use the setup macro function names to define the macro functions, you can define
exactly at which stage you want the macro function to be executed.
UEW-8:1

Part 4. Debugging 149

150

Using C-SPY macros
Follow these steps:

1 Create a new text file where you can define your macro function.

For example:

execUserSetup()
{
 ...
 __registerMacroFile("MyMacroUtils.mac");
 __registerMacroFile("MyDeviceSimulation.mac");

}

This macro function registers the macro files MyMacroUtils.mac and
MyDeviceSimulation.mac. Because the macro function is defined with the
execUserSetup function name, it will be executed directly after your application has
been downloaded.

2 Save the file using the filename extension mac.

3 Before you start C-SPY, choose Project>Options and click the Setup tab in the
Debugger category. Select the check box Use Setup file and choose the macro file you
just created.

The interrupt macro will now be loaded during the C-SPY startup sequence.

EXECUTING MACROS USING QUICK WATCH

The Quick Watch window—available from the View menu—lets you watch the value
of any variables or expressions and evaluate them. For macros, the Quick Watch window
is especially useful because it is a method which lets you dynamically choose when to
execute a macro function.

Consider this simple macro function which checks the status of a watchdog timer
interrupt enable bit:

WDTstatus()
{
 if (#WDreg & 0x01 != 0) /* Checks the status of WDTIE */
 return "Timer enabled"; /* C-SPY macro string used */
 else
 return "Timer disabled"; /* C-SPY macro string used */
}

1 Save the macro function using the filename extension mac. Keep the file open.

2 To register the macro file, choose Debug>Macros. The Macro Configuration dialog
box appears. Locate the file, click Add and then Register. The macro function appears
in the list of registered macros.
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Using the C-SPY® macro system
3 In the macro file editor window, select the macro function name WDTstatus.
Right-click, and choose Quick Watch from the context menu that appears.

Figure 48: Quick Watch window

The macro will automatically be displayed in the Quick Watch window.

Click Close to close the window.

EXECUTING A MACRO BY CONNECTING IT TO A
BREAKPOINT

You can connect a macro to a breakpoint. The macro will then be executed at the time
when the breakpoint is triggered. The advantage is that you can stop the execution at
locations of particular interest and perform specific actions there.

For instance, you can easily produce log reports containing information such as how the
values of variables, symbols, or registers changes. To do this you might set a breakpoint
on a suspicious location and connect a log macro to the breakpoint. After the execution
you can study how the values of the registers have changed.

For an example of how to create a log macro and connect it to a breakpoint, follow these
steps:

1 Assume this skeleton of a C function in your application source code:

int fact(int x)
{
 ...
}

2 Create a simple log macro function like this example:

logfact()
{
 __message "fact(" ,x, ")";
}

The __message statement will log messages to the Log window.

Save the macro function in a macro file, with the filename extension mac.
UEW-8:1

Part 4. Debugging 151

152

Using C-SPY macros
3 Before you can execute the macro it must be registered. Open the Macro
Configuration dialog box—available by choosing Debug>Macros—and add your
macro file to the list Selected Macro Files. Click Register and your macro function
will appear in the list Registered Macros. Close the dialog box.

4 Next, you should toggle a code breakpoint—using the Toggle Breakpoint button—on
the first statement within the function fact in your application source code. Open the
Breakpoint dialog box—available by choosing Edit>Breakpoints—your breakpoint
will appear in the list of breakpoints at the bottom of the dialog box. Select the
breakpoint.

5 Connect the log macro function to the breakpoint by typing the name of the macro
function, logfact(), in the Action field and clicking Apply. Close the dialog box.

6 Now you can execute your application source code. When the breakpoint has been
triggered, the macro function will be executed. You can see the result in the Log
window.

You can easily enhance the log macro function by, for instance, using the __fmessage
statement instead, which will print the log information to a file. For information about
the __fmessage statement, see Formatted output, page 372.

For a complete example where a serial port input buffer is simulated using the method
of connecting a macro to a breakpoint, see the chapter Simulating an interrupt in Part
2. Tutorials.
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Analyzing your application
It is important to locate an application’s bottle-necks and to verify that all parts
of an application have been tested. This chapter presents facilities available in
the IAR C-SPY® Debugger for analyzing your application so that you can
efficiently spend time and effort on optimizations.

Function-level profiling
The profiler will help you find the functions where most time is spent during execution,
for a given stimulus. Those functions are the parts you should focus on when spending
time and effort on optimizing your code. A simple method of optimizing a function is to
compile it using speed optimization. Alternatively, you can move the function into the
memory which uses the most efficient addressing mode. For detailed information about
efficient memory usage, see the IAR C/C++ Compiler Reference Guide.

The Profiling window displays profiling information, that is, timing information for the
functions in an application. Profiling must be turned on explicitly using a button on the
window’s toolbar, and will stay active until it is turned off.

The profiler measures the time between the entry and return of a function. This means
that time consumed in a function is not added until the function returns or another
function is called. You will only notice this if you are stepping into a function.

For reference information about the Profiling window, see Profiling window, page 298.

USING THE PROFILER

Before you can use the Profiling window, you must build your application using these
options:

1 After you have built your application and started C-SPY, choose View>Profiling to
open the window, and click the Activate button to turn on the profiler.

2 Click the Clear button, alternatively use the context menu available when you
right-click in the window, when you want to start a new sampling.

Category Setting

C/C++ Compiler Output>Generate debug information

Linker Format>Debug information for C-SPY

Debugger Plugins>Profiling

Table 14: Project options for enabling profiling
UEW-8:1

Part 4. Debugging 153

154

Function-level profiling
3 Start the execution. When the execution stops, for instance because the program exit is
reached or a breakpoint is triggered, click the Refresh button.

Figure 49: Profiling window

Profiling information is displayed in the window.

Viewing the figures

Clicking on a column header sorts the entire list according to that column.

A dimmed item in the list indicates that the function has been called by a function which
does not contain source code (compiled without debug information). When a function
is called by functions that do not have their source code available, such as library
functions, no measurement in time is made.

There is always an item in the list called Outside main. This is time that cannot be placed
in any of the functions in the list. That is, code compiled without debug information, for
instance, all startup and exit code, and C/C++ library code.

Clicking the Graph button toggles the percentage columns to be displayed either as
numbers or as bar charts.

Figure 50: Graphs in Profiling window
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Analyzing your application
Clicking the Show details button displays more detailed information about the function
selected in the list. A window is opened showing information about callers and callees
for the selected function:

Figure 51: Function details window

Producing reports

To produce a report, right-click in the window and choose the Save As command on the
context menu. The contents of the Profiling window are saved to a file.

Code coverage
The code coverage functionality helps you verify whether all parts of your code have
been executed. This is useful when you design your test procedure to make sure that all
parts of the code have been executed. It also helps you identify parts of your code that
are not reachable.

USING CODE COVERAGE

The Code Coverage window—available from the View menu—reports the status of the
current code coverage analysis, that is, what parts of the code have been executed at least
once since the start of the analysis. The compiler generates detailed stepping
information in the form of step points at each statement, and at each function call. The
report includes information about all modules and functions. It reports the amount of all
step points, in percentage, that have been executed and lists all step points that have not
been executed up to the point where the application has been stopped. The coverage will
continue until turned off.
UEW-8:1

Part 4. Debugging 155

156

Code coverage
For reference information about the Code Coverage window, see Code Coverage
window, page 296.

Before using the Code Coverage window you must build your application using these
options:

1 After you have built your application and started C-SPY, choose View>Code
Coverage to open the Code Coverage window. This window is displayed:

Figure 52: Code Coverage window

2 Click the Activate button, alternatively choose Activate from the context menu, to
switch on the code coverage analyzer.

3 Start the execution. When the execution stops, for instance because the program exit is
reached or a breakpoint is triggered, click the Refresh button to view the code
coverage information.

Viewing the figures

The code coverage information is displayed in a tree structure, showing the program,
module, function and step point levels. The plus sign and minus sign icons allow you to
expand and collapse the structure.

These icons are used to give you an overview of the current status on all levels:

● A red diamond signifies that 0% of the code has been executed

Category Setting

C/C++ Compiler Output>Generate debug information

Linker Format>Debug information for C-SPY

Debugger Plugins>Code Coverage

Table 15: Project options for enabling code coverage
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Analyzing your application
● A green diamond signifies that 100% of the code has been executed

● A red and green diamond signifies that some of the code has been executed

● A yellow diamond signifies a step point that has not been executed.

The percentage displayed at the end of every program, module and function line shows
the amount of code that has been covered so far, that is, the number of executed step
points divided with the total number of step points.

For step point lines, the information displayed is the column number range and the row
number of the step point in the source window, followed by the address of the step point.

<column start>-<column end>:row.

A step point is considered to be executed when one of its instructions has been executed.
When a step point has been executed, it is removed from the window.

Double-clicking a step point or a function in the Code Coverage window displays that
step point or function as the current position in the source window, which becomes the
active window. Double-clicking a module on the program level expands or collapses the
tree structure.

An asterisk (*) in the title bar indicates that C-SPY has continued to execute, and that
the Code Coverage window must be refreshed because the displayed information is no
longer up to date. To update the information, use the Refresh command.

What parts of the code are displayed?

The window displays only statements that were compiled with debug information. Thus,
startup code, exit code and library code are not displayed in the window. Furthermore,
coverage information for statements in inlined functions is not displayed. Only the
statement containing the inlined function call is marked as executed.

Producing reports

To produce a report, right-click in the window and choose the Save As command on the
context menu. The contents of the Code Coverage window are saved to a file.
UEW-8:1

Part 4. Debugging 157

158

Code coverage
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Part 5. The C-SPY®
Simulator
This part of the IAR Embedded Workbench® IDE User Guide contains the
following chapters:

● Simulator-specific debugging

● Simulating interrupts.
UEW-8:1

159

160
UEW-8:1

Simulator-specific
debugging
In addition to the general C-SPY® features, the C-SPY Simulator provides
some simulator-specific features, which are described in this chapter.

You will get reference information, and information about driver-specific
characteristics, such as memory access checking and breakpoints.

The C-SPY Simulator introduction
The C-SPY Simulator simulates the functions of the target processor entirely in
software, which means that you can debug the program logic long before any hardware
is available. Because no hardware is required, it is also the most cost-effective solution
for many applications.

FEATURES

In addition to the general features listed in the chapter Product introduction, the C-SPY
Simulator also provides:

● Instruction-accurate simulated execution

● Memory configuration and validation

● Interrupt simulation

● Immediate breakpoints with resume functionality

● Peripheral simulation (using the C-SPY macro system).

SELECTING THE SIMULATOR DRIVER

Before starting C-SPY, you must choose the simulator driver. In the IDE, choose
Project>Options and click the Setup tab in the Debugger category. Choose Simulator
from the Driver drop-down list.

Depending on your product package, the list might or might not contain hardware
drivers. You can only choose a driver you have installed on your computer.
UEW-8:1

Part 5. IAR C-SPY Simulator 161

162

Simulator-specific menus
Simulator-specific menus
When you use the simulator driver, the Simulator menu is added in the menu bar.

SIMULATOR MENU

Figure 53: Simulator menu

The Simulator menu contains these commands:

Menu command Description

Interrupt Setup Displays a dialog box to allow you to configure C-SPY interrupt
simulation; see Interrupt Setup dialog box, page 183.

Forced Interrupts Displays a window from which you can trigger an interrupt; see Forced
interrupt window, page 185.

Interrupt Log Displays a window which shows the status of all defined interrupts; see
Interrupt Log window, page 187.

Memory Access Setup Displays a dialog box to simulate memory access checking by specifying
memory areas with different access types; see Memory Access setup dialog
box, page 169.

Trace Opens the Trace window which displays the recorded trace data; see
Trace window, page 163.

Function Trace Opens the Function Trace window which displays the trace data for
which functions were called or returned from; see Function Trace window,
page 164.

Breakpoint Usage Displays the Breakpoint Usage dialog box which lists all active
breakpoints; see Breakpoint Usage dialog box, page 178.

Table 16: Description of Simulator menu commands
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Simulator-specific debugging
Using the trace system in the simulator
In C-SPY, a trace is a recorded sequence of executed machine instructions. In addition,
you can record the values of C-SPY expressions by selecting the expressions in the
Trace Expressions window. The Function Trace window only shows trace data
corresponding to calls to and returns from functions, whereas the Trace window displays
all instructions.

For more detailed information about using the common features in the trace system, see
Using the trace system, page 129.

TRACE WINDOW

The Trace window—available from the Simulator menu—displays a recorded
sequence of executed machine instructions. In addition, the window can display trace
data for expressions.

Figure 54: Trace window

C-SPY generates trace information based on the location of the program counter.

Trace toolbar

The Trace toolbar at the top of the Trace window and in the Function trace window
provides these toolbar buttons:

Toolbar button Description

Enable/Disable Enables and disables tracing. This button is not available in the
Function trace window.

Clear trace data Clears the trace buffer. Both the Trace window and the Function
trace window are cleared.

Table 17: Trace toolbar commands
UEW-8:1

Part 5. IAR C-SPY Simulator 163

164

Using the trace system in the simulator
The display area

The display area displays trace information in these columns:

FUNCTION TRACE WINDOW

The Function Trace window—available from the Simulator menu—displays a subset
of the trace data displayed in the Trace window. Instead of displaying all rows, the

Toggle Source Toggles the Trace column between showing only disassembly or
disassembly together with corresponding source code.

Browse Toggles browse mode on and off for a selected item in the Trace
window. For more information about browse mode, see The Trace
window and its browse mode, page 129.

Find Opens the Find In Trace dialog box where you can perform a
search; see Find in Trace dialog box, page 167.

Save Opens a standard Save As dialog box where you can save the
recorded trace information to a text file, with tab-separated
columns.

Edit Settings This button is not enabled in the C-SPY Simulator.

Edit Expressions Opens the Trace Expressions window; see Trace Expressions
window, page 166.

Trace window column Description

A serial number for each row in the trace buffer. Simplifies the
navigation within the buffer.

Trace The recorded sequence of executed machine instructions.
Optionally, the corresponding source code can also be displayed.

Expression Each expression you have defined to be displayed appears in a
separate column. Each entry in the expression column displays the
value after executing the instruction on the same row. You specify
the expressions for which you want to record trace information in
the Trace Expressions window; see Trace Expressions window, page
166.

Table 18: Trace window columns

Toolbar button Description

Table 17: Trace toolbar commands (Continued)
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Simulator-specific debugging
Function Trace window only shows trace data corresponding to calls to and returns from
functions.

Figure 55: Function Trace window

Toolbar

For information about the toolbar, see Trace toolbar, page 163.

The display area

The display area displays trace information in these columns:

Trace window column Description

A serial number for each row in the trace buffer. Simplifies the
navigation within the buffer.

Trace The address and name of the function.

Expression Each expression you have defined to be displayed appears in a
separate column. Each entry in the expression column displays the
value after executing the instruction on the same row. You specify
the expressions for which you want to record trace information in
the Trace Expressions window; see Trace Expressions window, page
166.

Table 19: Function Trace window columns
UEW-8:1

Part 5. IAR C-SPY Simulator 165

166

Using the trace system in the simulator
TRACE EXPRESSIONS WINDOW

In the Trace Expressions window—available from the Trace window toolbar—you can
specify specific expressions for which you want to record trace information.

Figure 56: Trace Expressions window

Toolbar

Use the toolbar buttons to change the order between the expressions:

The display area

In the display area you can specify expressions for which you want to record trace
information:

Each row in this window will appear as an extra column in the Trace window.

Toolbar button Description

Arrow up Moves the selected row up.

Arrow down Moves the selected row down.

Table 20: Toolbar buttons in the Trace Expressions window

Column Description

Expression Specify any expression that you want to be recorded. You can specify any
expression that can be evaluated, such as variables and registers.

Format Shows which display format that is used for each expression.

Table 21: Trace Expressions window columns
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Simulator-specific debugging
FIND IN TRACE WINDOW

The Find In Trace window—available from the View>Messages menu—displays the
result of searches in the trace data.

Figure 57: Find In Trace window

The Find in Trace window looks like the Trace window and shows the same columns
and data, but only those rows that match the specified search criteria. Double-click an
item in the Find in Trace window to bring up the same item in the Trace window.

You specify the search criteria in the Find In Trace dialog box. For information about
how to open this dialog box, see Find in Trace dialog box, page 167.

FIND IN TRACE DIALOG BOX

Use the Find in Trace dialog box—available by choosing Edit>Find and
Replace>Find or from the Trace window toolbar—to specify the search criteria for
advanced searches in the trace data. Note that the Edit>Find and Replace>Find
command is context-dependent. It displays the Find in Trace dialog box if the Trace
UEW-8:1

Part 5. IAR C-SPY Simulator 167

168

Using the trace system in the simulator
window is the current window or the Find dialog box if the editor window is the current
window.

Figure 58: Find in Trace dialog box

The search results are displayed in the Find In Trace window—available by choosing
the View>Messages command, see Find In Trace window, page 167.

In the Find in Trace dialog box, you specify the search criteria with the following
settings:

Text search

A text field where you type the string you want to search for. Use these options to
fine-tune the search:

Address Range

Use the text fields to specify an address range. The trace data within the address range
is displayed. If you also have specied a text string in the Text search field, the text string
is searched for within the address range.

Match Case Searches only for occurrences that exactly match the case of the
specified text. Otherwise specifying int will also find INT and Int.

Match whole word Searches only for the string when it occurs as a separate word.
Otherwise int will also find print, sprintf and so on.

Only search in one
column

Searches only in the column you selected from the drop-down menu.
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Simulator-specific debugging
Memory access checking
C-SPY can simulate various memory access types of the target hardware and detect
illegal accesses, for example a read access to write-only memory. If a memory access
occurs that does not agree with the access type specified for the specific memory area,
C-SPY will regard this as an illegal access. The purpose of memory access checking is
to help you to identify any memory access violations.

The memory areas can either be the zones predefined in the device description file, or
memory areas based on the segment information available in the debug file. In addition
to these, you can define your own memory areas. The access type can be read and write,
read only, or write only. You cannot map two different access types to the same memory
area. You can choose between checking access type violation or checking accesses to
unspecified ranges. Any violations are logged in the Debug Log window. You can also
choose to have the execution halted.

In addition, you can specify the cost—in cycles—associated with accessing a byte in the
memory during execution. The costs for read and write accesses are specified separately,
because they can differ. These costs are added to the cycle counter whenever a byte is
accessed.

In addition, you can specify the cost—in cycles—associated with accessing a memory
entity during execution. The size of the memory entity depends on the bus width. The
costs for read and write accesses are specified separately, because they can differ. You
can also specify costs separately for sequential and non-sequential memory accesses.
These costs are added to the cycle counter whenever a byte is accessed. These additional
features related to specifying the cost might, or might not, be included in your product
package.

Choose Simulator>Memory Access Setup to open the Memory Access Setup dialog
box.

MEMORY ACCESS SETUP DIALOG BOX

The Memory Access Setup dialog box—available from the Simulator menu—lists all
defined memory areas, where each column in the list specifies the properties of the area.
UEW-8:1

Part 5. IAR C-SPY Simulator 169

170

Memory access checking
In other words, the dialog box displays the memory access setup that will be used during
the simulation.

Figure 59: Memory Access Setup dialog box

Note: If you enable both the Use ranges based on and the Use manual ranges option,
memory accesses are checked for all defined ranges.

For information about the columns and the properties displayed, see Edit Memory
Access dialog box, page 172.

Use ranges based on

Use the Use ranges based on option to choose any of the predefined alternatives for the
memory access setup. You can choose between:

● Device description file, which means the properties are loaded from the device
description file

● Debug file segment information, which means the properties are based on the
segment information available in the debug file. This information is only available
while debugging. The advantage of using this option, is that the simulator can catch
memory accesses outside the linked application.
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Simulator-specific debugging
Use manual ranges

Use the Use manual ranges option to specify your own ranges manually via the Edit
Memory Access dialog box. To open this dialog box, choose New to specify a new
memory range, or select a memory zone and choose Edit to modify it. For more details,
see Edit Memory Access dialog box, page 172.

The ranges you define manually are saved between debug sessions.

Memory access checking

Use the Check for options to specify what to check for. Choose between:

● Access type violation

● Access to unspecified ranges.

Use the Action options to specify the action to be performed if an access violation
occurs. Choose between:

● Log violations

● Log and stop execution.

Any violations are logged in the Debug Log window.

Buttons

The Memory Access Setup dialog box contains these buttons:

Note: Except for the OK and Cancel buttons, buttons are only available when the
option Use manual ranges is selected.

Button Description

OK Standard OK.

Cancel Standard Cancel.

New Opens the Edit Memory Access dialog box, where you can specify a
new memory range and attach an access type to it; see Edit Memory
Access dialog box, page 172.

Edit Opens the Edit Memory Access dialog box, where you can edit the
selected memory area. See Edit Memory Access dialog box, page 172.

Delete Deletes the selected memory area definition.

Delete All Deletes all defined memory area definitions.

Table 22: Function buttons in the Memory Access Setup dialog box
UEW-8:1

Part 5. IAR C-SPY Simulator 171

172

Memory access checking
EDIT MEMORY ACCESS DIALOG BOX

In the Edit Memory Access dialog box—available from the Memory Access Setup
dialog box—you can specify the memory ranges, and assign an access type to each
memory range, for which you want to detect illegal accesses during the simulation.

Figure 60: Edit Memory Access dialog box

For each memory range you can define the following properties:

Memory range

Use these settings to define the memory area for which you want to check the memory
accesses:

Access type

Use one of these options to assign an access type to the memory range; the access type
can be one of Read and write, Read only, or Write only. You cannot assign two
different access types to the same memory area.

Cycle costs

Use the Read and Write text fields to specify the number of cycles used for accessing
the memory range. The cycle cost can be specified individually for read and write
accesses, because it can differ.

This feature is only included if your product package supports it.

Zone The memory zone; see Memory addressing, page 141.

Start address The start address for the address range, in hexadecimal notation.

End address The end address for the address range, in hexadecimal notation.
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Simulator-specific debugging
Cycle costs

Use these settings to specify the cost—in cycles—associated with accessing a memory
entity during execution:

This feature is only included if your product package supports it.

Example

If the cost is specified as 1 cycle, a word access (16 bits) will cost 2 cycles with an 8-bit
bus width, and 1 cycle with a 16-bit or 32-bit bus width:

Using breakpoints in the simulator
Using the C-SPY Simulator, you can set an unlimited amount of breakpoints. For code
and data breakpoints you can define a size attribute, that is, you can set the breakpoint
on a range. You can also set immediate breakpoints.

For information about the breakpoint system, see the chapter Using breakpoints in this
guide. For detailed information about code breakpoints, see Code breakpoints dialog
box, page 214.

DATA BREAKPOINTS

Data breakpoints are triggered when data is accessed at the specified location. Data
breakpoints are primarily useful for variables that have a fixed address in memory. If you
set a breakpoint on an accessible local variable, the breakpoint is set on the
corresponding memory location. The validity of this location is only guaranteed for

Bus width The size of the memory entity depends on the bus width, which can
be specified as 8, 16, or 32 bits. For examples about how this affects
the cost, see Table 23, Example of costs for accessing memory entities.

Sequential The cost for sequential accesses to the memory area; the cycle cost
can be specified individually for read and write accesses, because it
can differ.

Non-sequential The cost for non-sequential accesses to the memory area; the cycle
cost can be specified individually for read and write accesses, because
it can differ.

Memory entity 8-bit bus 16-bit bus 32-bit bus

Word entities (16 bits) 2 1 1

Long entities (32 bits) 4 2 1

Table 23: Example of costs for accessing memory entities
UEW-8:1

Part 5. IAR C-SPY Simulator 173

174

Using breakpoints in the simulator
small parts of the code. The execution will usually stop directly after the instruction that
accessed the data has been executed.

You can set a data breakpoint in various ways, using:

● A dialog box, see Data breakpoints dialog box, page 174

● A system macro, see __setDataBreak, page 387

● The Memory window, see Setting a data breakpoint in the Memory window, page
136

● The editor window, see Editor window, page 204.

Data breakpoints dialog box

The options for setting data breakpoints are available from the context menu that
appears when you right-click in the Breakpoints window. On the context menu, choose
New Breakpoint>Data to set a new breakpoint. Alternatively, to modify an existing
breakpoint, select a breakpoint in the Breakpoint window and choose Edit on the
context menu.

The Data breakpoints dialog box appears.

Figure 61: Data breakpoints dialog box

Break At

Specify the location for the breakpoint in the Break At text box. Alternatively, click the
Edit browse button to open the Enter Location dialog box; see Enter Location dialog
box, page 218.
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Simulator-specific debugging
Access Type

Use the options in the Access Type area to specify the type of memory access that
triggers data or immediate breakpoints.

Note: Data breakpoints never stop execution within a single instruction. They are
recorded and reported after the instruction is executed. (Immediate breakpoints do not
stop execution at all, they only suspend it temporarily. See Immediate breakpoints, page
176.)

Size

Optionally, you can specify a size—in practice, a range of locations. Each read and write
access to the specified memory range will trigger the breakpoint. For data breakpoints,
this can be useful if you want the breakpoint to be triggered on accesses to data
structures, such as arrays, structs, and unions.

There are two different ways to specify the size:

● Auto, the size will automatically be based on the type of expression the breakpoint
is set on. For example, if you set the breakpoint on a 12-byte structure, the size of
the breakpoint will be 12 bytes

● Manual, you specify the size of the breakpoint manually in the Size text box.

Action

You can optionally connect an action to a breakpoint. You specify an expression, for
instance a C-SPY macro function, which is evaluated when the breakpoint is triggered
and the condition is true.

Conditions

You can specify simple and complex conditions.

Memory Access type Description

Read/Write Read or write from location.

Read Read from location.

Write Write to location.

Table 24: Memory Access types

Conditions Description

Expression A valid expression conforming to the C-SPY expression syntax.

Condition true The breakpoint is triggered if the value of the expression is true.

Table 25: Breakpoint conditions
UEW-8:1

Part 5. IAR C-SPY Simulator 175

176

Using breakpoints in the simulator
IMMEDIATE BREAKPOINTS

In addition to generic breakpoints, the C-SPY Simulator lets you set immediate
breakpoints, which will halt instruction execution only temporarily. This allows a
C-SPY macro function to be called when the processor is about to read data from a
location or immediately after it has written data. Instruction execution will resume after
the action.

This type of breakpoint is useful for simulating memory-mapped devices of various
kinds (for instance serial ports and timers). When the processor reads at a
memory-mapped location, a C-SPY macro function can intervene and supply
appropriate data. Conversely, when the processor writes to a memory-mapped location,
a C-SPY macro function can act on the value that was written.

The two different methods of setting an immediate breakpoint are by using:

● A dialog box, see Immediate breakpoints dialog box, page 176

● A system macro, see __setSimBreak, page 388.

Immediate breakpoints dialog box

The options for setting immediate breakpoints are available from the context menu that
appears when you right-click in the Breakpoints window. On the context menu, choose
New Breakpoint>Immediate to set a new breakpoint. Alternatively, to modify an
existing breakpoint, select a breakpoint in the Breakpoint window and choose Edit on
the context menu.

Condition changed The breakpoint is triggered if the value of the expression has changed
since it was last evaluated.

Skip count The number of times that the breakpoint must be fulfilled before a break
occurs (integer).

Conditions Description

Table 25: Breakpoint conditions (Continued)
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Simulator-specific debugging
The Immediate breakpoints dialog box appears.

Figure 62: Immediate breakpoints page

Break At

Specify the location for the breakpoint in the Break At text box. Alternatively, click the
Edit browse button to open the Enter Location dialog box; see Enter Location dialog
box, page 218.

Access Type

Use the options in the Access Type area to specify the type of memory access that
triggers data or immediate breakpoints.

Note: Immediate breakpoints do not stop execution at all; they only suspend it
temporarily. See Using breakpoints in the simulator, page 173.

Action

You should connect an action to the breakpoint. Specify an expression, for instance a
C-SPY macro function, which is evaluated when the breakpoint is triggered and the
condition is true.

Memory Access type Description

Read Read from location.

Write Write to location.

Table 26: Memory Access types
UEW-8:1

Part 5. IAR C-SPY Simulator 177

178

Using breakpoints in the simulator
BREAKPOINT USAGE DIALOG BOX

The Breakpoint Usage dialog box—available from the Simulator menu—lists all
active breakpoints.

Figure 63: Breakpoint Usage dialog box

In addition to listing all breakpoints that you have defined, this dialog box also lists the
internal breakpoints that the debugger is using.

For each breakpoint in the list the address and access type are shown. Each breakpoint
in the list can also be expanded to show its originator.

For more information, see Viewing all breakpoints, page 138.
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Simulating interrupts
By being able to simulate interrupts, you can debug the program logic long
before any hardware is available. This chapter contains detailed information
about the C-SPY® interrupt simulation system and how to configure the
simulated interrupts to make them reflect the interrupts of your target
hardware. Finally, reference information about each interrupt system macro is
provided.

For information about the interrupt-specific facilities useful when writing
interrupt service routines, see the IAR C/C++ Compiler Reference Guide.

The C-SPY interrupt simulation system
The C-SPY Simulator includes an interrupt simulation system that allows you to
simulate the execution of interrupts during debugging. You can configure the interrupt
simulation system so that it resembles your hardware interrupt system. If you use
simulated interrupts in conjunction with C-SPY macros and breakpoints, you can
compose a complex simulation of, for instance, interrupt-driven peripheral devices.
Simulated interrupts also let you test the logic of your interrupt service routines.

The interrupt system has the following features:

● Simulated interrupt support for the microcontroller

● Single-occasion or periodical interrupts based on the cycle counter

● Predefined interrupts for various devices

● Configuration of hold time, probability, and timing variation

● State information for locating timing problems

● Two interfaces for configuring the simulated interrupts—a dialog box and a C-SPY
system macro—that is, one interactive and one automating interface

● Activation of interrupts either instantly or based on parameters you define

● A log window which continuously displays the status for each defined interrupt.

The interrupt system is activated, by default, but if it is not required you can turn it off
to speed up the simulation. You can turn the interrupt system on or off as required either
in the Interrupt Setup dialog box, or using a system macro. Defined interrupts will be
preserved until you remove them. All interrupts you define using the Interrupt Setup
dialog box are preserved between debug sessions.
UEW-8:1

Part 5. IAR C-SPY Simulator 179

180

The C-SPY interrupt simulation system
INTERRUPT CHARACTERISTICS

The simulated interrupts consist of a set of characteristics which lets you fine-tune each
interrupt to make it resemble the real interrupt on your target hardware. You can specify
a first activation time, a repeat interval, a hold time, and a variance.

Figure 64: Simulated interrupt configuration

The interrupt simulation system uses the cycle counter as a clock to determine when an
interrupt should be raised in the simulator. You specify the first activation time, which
is based on the cycle counter. C-SPY will generate an interrupt when the cycle counter
has passed the specified activation time. However, interrupts can only be raised between
instructions, which means that a full assembler instruction must have been executed
before the interrupt is generated, regardless of how many cycles an instruction takes.

To define the periodicity of the interrupt generation you can specify the repeat interval
which defines the amount of cycles after which a new interrupt should be generated. In
addition to the repeat interval, the periodicity depends on the two options
probability—the probability, in percent, that the interrupt will actually appear in a
period—and variance—a time variation range as a percentage of the repeat interval.
These options make it possible to randomize the interrupt simulation. You can also
specify a hold time which describes how long the interrupt remains pending until
removed if it has not been processed. If the hold time is set to infinite, the corresponding
pending bit will be set until the interrupt is acknowledged or removed.

INTERRUPT SIMULATION STATES

The interrupt simulation system contains status information that you can use for locating
timing problems in your application. The Interrupt Setup dialog box displays the
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Simulating interrupts
available status information. For an interrupt, these statuses can be displayed: Idle,
Pending, Executing, Executed, Removed, or Expired.

For a repeatable interrupt that has a specified repeat interval which is longer than the
execution time, the status information at different times can look like this:

Figure 65: Simulation states - example 1

Note: The interrupt activation signal—also known as the pending bit—is automatically
deactivated the moment the interrupt is acknowledged by the interrupt handler.

Status Description

Idle Interrupt activation signal is low (deactivated).

Pending Interrupt activation signal is active, but the interrupt has not been
acknowledged yet by the interrupt handler.

Executing The interrupt is currently being serviced, that is the interrupt handler
function is executing.

Executed This is a single-occasion interrupt and it has been serviced.

Removed The interrupt has been removed by the user, but because the interrupt is
currently executing it is visible in the Interrupt Setup dialog box until
it is finished.

Expired This is a single-occasion interrupt which was not serviced while the
interrupt activation signal was active.

Table 27: Interrupt statuses
UEW-8:1

Part 5. IAR C-SPY Simulator 181

182

Using the interrupt simulation system
If the interrupt repeat interval is shorter than the execution time, and the interrupt is
re-entrant (or non-maskable), the status information at different times can look like this:

Figure 66: Simulation states - example 2

In this case, the execution time of the interrupt handler is too long compared to the repeat
interval, which might indicate that you should rewrite your interrupt handler and make
it faster, or that you should specify a longer repeat interval for the interrupt simulation
system.

Using the interrupt simulation system
The interrupt simulation system is easy to use. However, to take full advantage of the
interrupt simulation system you should be familiar with how to adapt it for the processor
you are using, and know how to use:

● The Forced Interrupt window

● The Interrupts and Interrupt Setup dialog boxes

● The C-SPY system macros for interrupts

● The Interrupt Log window.

TARGET-ADAPTING THE INTERRUPT SIMULATION SYSTEM

The interrupt simulation has the same behavior as the hardware. This means that the
execution of an interrupt is dependent on the status of the global interrupt enable bit. The
execution of maskable interrupts is also dependent on the status of the individual
interrupt enable bits.
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Simulating interrupts
To be able to perform these actions for various derivatives, the interrupt system must
have detailed information about each available interrupt. Except for default settings, this
information is provided in the device description files.You can find preconfigured ddf
files in the cpuname\config directory. The default settings are used if no device
description file has been specified.

1 To load a device description file before you start C-SPY, choose Project>Options and
click the Setup tab of the Debugger category.

2 Choose a device description file that suits your target.

Note: In case you do not find a preconfigured device description file that resembles
your device, you can define one according to your needs. For details of device
description files, see Selecting a device description file, page 115.

INTERRUPT SETUP DIALOG BOX

The Interrupt Setup dialog box—available by choosing Simulator>Interrupt
Setup—lists all defined interrupts.

Figure 67: Interrupt Setup dialog box

The option Enable interrupt simulation enables or disables interrupt simulation. If the
interrupt simulation is disabled, the definitions remain but no interrupts are generated.
You can also enable and disable installed interrupts individually by using the check box
to the left of the interrupt name in the list of installed interrupts.

The columns contain this information:

Interrupt Lists all interrupts.

Type Shows the type of the interrupt. The type can be Forced, Single,
or Repeat.
UEW-8:1

Part 5. IAR C-SPY Simulator 183

184

Using the interrupt simulation system
Note: For repeatable interrupts there might be additional information in the Type
column about how many interrupts of the same type that is simultaneously executing
(n executing). If n is larger than one, there is a reentrant interrupt in your interrupt
simulation system that never finishes executing, which might indicate that there is a
problem in your application.

You can only edit or remove non-forced interrupts.

Click New or Edit to open the Edit Interrupt dialog box.

EDIT INTERRUPT DIALOG BOX

Use the Edit Interrupt dialog box—available from the Interrupt Setup dialog box—to
add and modify interrupts. This dialog box provides you with a graphical interface
where you can interactively fine-tune the interrupt simulation parameters. You can add
the parameters and quickly test that the interrupt is generated according to your needs.

Figure 68: Edit Interrupt dialog box

For each interrupt you can set these options:

Status Shows the status of the interrupt. The status can be Idle, Removed,
Pending, Executing, or Expired.

Next Activation Shows the next activation time in cycles.

Interrupt A drop-down list containing all available interrupts. Your
selection will automatically update the Description box. The
list is populated with entries from the device description file
that you have selected.
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Simulating interrupts
FORCED INTERRUPT WINDOW

From the Forced Interrupt window—available from the Simulator menu—you can
force an interrupt instantly. This is useful when you want to check your interrupt
logistics and interrupt routines.

Figure 69: Forced Interrupt window

Description Contains the description of the selected interrupt, if available.
The description is retrieved from the selected device
description file. For interrupts specified using the system
macro __orderInterrupt, the Description box is empty.

First activation The value of the cycle counter after which the specified type
of interrupt will be generated.

Repeat interval The periodicity of the interrupt in cycles.

Variance % A timing variation range, as a percentage of the repeat
interval, in which the interrupt might occur for a period. For
example, if the repeat interval is 100 and the variance 5%, the
interrupt might occur anywhere between T=95 and T=105, to
simulate a variation in the timing.

Hold time Describes how long, in cycles, the interrupt remains pending
until removed if it has not been processed. If you select
Infinite, the corresponding pending bit will be set until the
interrupt is acknowledged or removed.

Probability % The probability, in percent, that the interrupt will actually
occur within the specified period.
UEW-8:1

Part 5. IAR C-SPY Simulator 185

186

Using the interrupt simulation system
To force an interrupt, the interrupt simulation system must be enabled. To enable the
interrupt simulation system, see Interrupt Setup dialog box, page 183.

The Forced Interrupt window lists all available interrupts and their definitions. The
description field is editable and the information is retrieved from the selected device
description file.

If you select an interrupt and click the Trigger button, an interrupt of the selected type
is generated.

A triggered interrupt will have these characteristics:

C-SPY SYSTEM MACROS FOR INTERRUPTS

Macros are useful when you already have sorted out the details of the simulated interrupt
so that it fully meets your requirements. If you write a macro function containing
definitions for the simulated interrupts, you can execute the functions automatically
when C-SPY starts. Another advantage is that your simulated interrupt definitions will
be documented if you use macro files, and if you are several engineers involved in the
development project you can share the macro files within the group.

The C-SPY Simulator provides a set of predefined system macros for the interrupt
simulation system. The advantage of using the system macros for specifying the
simulated interrupts is that it lets you automate the procedure.

These are the available system macros related to interrupts:

__enableInterrupts

__disableInterrupts

__orderInterrupt

__cancelInterrupt

__cancelAllInterrupts

__popSimulatorInterruptExecutingStack

Characteristics Settings

First Activation As soon as possible (0)

Repeat interval 0

Hold time Infinite

Variance 0%

Probability 100%

Table 28: Characteristics of a forced interrupt
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Simulating interrupts
The parameters of the first five macros correspond to the equivalent entries of the
Interrupts dialog box. To read more about how to use the
__popSimulatorInterruptExecutingStack macro, see Interrupt simulation in a
multi-task system, page 187.

For detailed reference information about each macro, see Description of C-SPY system
macros, page 376.

Defining simulated interrupts at C-SPY startup using a setup file

If you want to use a setup file to define simulated interrupts at C-SPY startup, follow the
procedure described in Registering and executing using setup macros and setup files,
page 149.

Interrupt simulation in a multi-task system

If you are using interrupts in such a way that the normal instruction used for returning
from an interrupt handler is not used, for example in an operating system with
task-switching, the simulator cannot automatically detect that the interrupt has finished
executing. The interrupt simulation system will work correctly, but the status
information in the Interrupt Setup dialog box might not look as you expect. If too
many interrupts are executing simultaneously, a warning might be issued.

To avoid these problems, you can use the
__popSimulatorInterruptExecutingStack macro to inform the interrupt
simulation system that the interrupt handler has finished executing, as if the normal
instruction used for returning from an interrupt handler was executed. You can use this
procedure:

1 Set a code breakpoint on the instruction that returns from the interrupt function.

2 Specify the __popSimulatorInterruptExecutingStack macro as a condition to
the breakpoint.

When the breakpoint is triggered, the macro is executed and then the application
continues to execute automatically.

INTERRUPT LOG WINDOW

The Interrupt Log window—available from the Simulator menu—displays runtime
information about the interrupts that you have activated in the Interrupts dialog box or
UEW-8:1

Part 5. IAR C-SPY Simulator 187

188

Using the interrupt simulation system
forced via the Forced Interrupt window. The information is useful for debugging the
interrupt handling in the target system.

Figure 70: Interrupt Log window

The columns contain this information:

When the Interrupt Log window is open it is updated continuously during runtime.

Note: If the window becomes full of entries, the first entries are erased.

Column Description

Cycles The point in time, measured in cycles, when the event occurred.

PC The value of the program counter when the event occurred.

Interrupt The interrupt as defined in the device description file.

Number A unique number assigned to the interrupt. The number is used for
distinguishing between different interrupts of the same type.

Status Shows the status of the interrupt: Triggered, Forced, Executing, Finished,
or Expired.
• Triggered: The interrupt has passed its activation time.
• Forced: The same as Triggered, but the interrupt has been forced from
the Forced Interrupt window.
• Executing: The interrupt is currently executing.
• Finished: The interrupt has been executed.
• Expired: The interrupt hold time has expired without the interrupt
being executed.

Table 29: Description of the Interrupt Log window
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Simulating interrupts
Simulating a simple interrupt
This example demonstrates the method for simulating a timer interrupt. However, the
procedure can also be used for other types of interrupts.

This simple application contains an interrupt service routine for a timer, which
increments a tick variable. The main function sets the necessary status registers. The
application exits when 100 interrupts have been generated.

#include "iocpuname.h"
#include <intrinsics.h>

volatile int ticks = 0;
void main (void)
{
 /* Enter your timer setup code here */

 __enable_interrupt(); /* Enable interrupts */

 while (ticks < 100); /* Endless loop */
 printf("Done\n");
}

/* Timer interrupt service routine */
#pragma vector = TIMER_VECTOR
__interrupt void basic_timer(void)
{
 ticks += 1;
}

To simulate and debug an interrupt, do these steps:

1 Add your interrupt service routine to your application source code and add the file to
your project.

2 C-SPY needs information about the interrupt to be able to simulate it. This information
is provided in the device description files. To select a device description file, choose
Project>Options, and click the Setup tab in the Debugger category. Use the Use
device description file browse button to locate the file ddf file.

3 Build your project and start the simulator.
UEW-8:1

Part 5. IAR C-SPY Simulator 189

190

Simulating a simple interrupt
4 Choose Simulator>Interrupt Setup to open the Interrupts Setup dialog box. Select
the Enable interrupt simulation option to enable interrupt simulation. Click New to
open the Edit Interrupt dialog box. The following table lists the options and suggests
some settings. For your interrupt, verify the options according to your requirements:

Click OK.

5 Execute your application. If you have enabled the interrupt properly in your application
source code, C-SPY will:

● Generate an interrupt when the cycle counter has passed 4000

● Continuously repeat the interrupt after approximately 2000 cycles.

To watch the interrupt in action, open the Interrupt Log window by choosing
Simulator>Interrupt Log.

Option Settings

Interrupt TIMER_VECTOR

First Activation 4000

Repeat interval 2000

Hold time 0

Probability % 100

Variance % 0

Table 30: Timer interrupt settings
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Part 6. Reference
information
This part of the IAR Embedded Workbench® IDE User Guide contains the
following chapters:

● IAR Embedded Workbench® IDE reference

● C-SPY® reference

● General options

● Compiler options

● Assembler options

● Custom build options

● Build actions options

● Linker options

● Library builder options

● Debugger options

● The C-SPY Command Line Utility—cspybat

● C-SPY® macros reference.
UEW-8:1

191

192
UEW-8:1

IAR Embedded
Workbench® IDE
reference
This chapter contains reference information about the windows, menus, menu
commands, and the corresponding components that are found in the IDE. For
information about how to best use the IDE for your purposes, see parts 3 to
5 in this guide. This chapter contains the following sections:

● Windows, page 193

● Menus, page 222.

The IDE is a modular application. Which menus are available depends on
which components are installed.

Windows
The available windows are:

● IAR Embedded Workbench IDE window

● Workspace window

● Editor window

● Source Browser window

● Breakpoints window

● Message windows.

In addition, a set of C-SPY®-specific windows becomes available when you start the
debugger. For reference information about these windows, see the chapter C-SPY®
reference in this guide.
UEW-8:1

Part 6. Reference information 193

194

Windows
IAR EMBEDDED WORKBENCH IDE WINDOW

The figure shows the main window of the IDE and its various components. The window
might look different depending on which plugin modules you are using.

Figure 71: IAR Embedded Workbench IDE window

Each window item is explained in greater detail in the following sections.

Menu bar

Gives access to the IDE menus.

Toolbar
Menu bar

Workspace
window

Messages
windows

Editor
window

Status bar

Menu Description

File The File menu provides commands for opening source and project files, saving
and printing, and exiting from the IDE.

Table 31: IDE menu bar
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

IAR Embedded Workbench® IDE reference
For reference information for each menu, see Menus, page 222.

Toolbar

The IDE toolbar—available from the View menu—provides buttons for the most useful
commands on the IDE menus, and a text box for typing a string to do a quick search.

For a description of any button, point to it with the mouse button. When a command is
not available, the corresponding toolbar button is dimmed, and you will not be able to
click it.

This figure shows the menu commands corresponding to each of the toolbar buttons:

Figure 72: IDE toolbar

Note: When you start C-SPY, the Download and Debug button will change to a Make
and Debug button and the Debug without Downloading will change to a Restart
Debugger button.

Edit The Edit menu provides commands for editing and searching in editor windows
and for enabling and disabling breakpoints in C-SPY.

View Use the commands on the View menu to open windows and decide which
toolbars to display.

Project The Project menu provides commands for adding files to a project, creating
groups, and running the IAR Systems tools on the current project.

Tools The Tools menu is a user-configurable menu to which you can add tools for use
with the IDE.

Window With the commands on the Window menu you can manipulate the IDE windows
and change their arrangement on the screen.

Help The commands on the Help menu provide help about the IDE.

Menu Description

Table 31: IDE menu bar (Continued)

New Document

Save

Cut

Paste

Quick Search text box

Find Next

Replace

Open

Print

Copy

Redo

Undo

Find Stop Build

Make

DebugFind Previous

Save All

Toggle Bookmark

Go to
Bookmark

Navigate Backward

Navigate Forward Toggle
Breakpoint

Compile

Go To

Debug without
Downloading
UEW-8:1

Part 6. Reference information 195

196

Windows
Status bar

The Status bar at the bottom of the window displays the number of errors and warnings
generated during a build, the position of the insertion point in the editor window, and the
state of the modifier keys. The Status bar is available from the View menu.

As you are editing, the status bar shows the current line and column number containing
the insertion point, and the Caps Lock, Num Lock, and Overwrite status.

Figure 73: IAR Embedded Workbench IDE window status bar

WORKSPACE WINDOW

The Workspace window, available from the View menu, is where you can access your
projects and files during the application development.

Figure 74: Workspace window

Toolbar

At the top of the window there is a drop-down list where you can choose a build
configuration to display in the window for a specific project.

Configuration
drop-down menu

Tabs for choosing
workspace display

Indicates that the file
will be rebuilt next

time the project is built

Column containing
source code control

status information

Column containing
status information

about option overrides

Project icon (currently
indicates multi-file
compilation
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

IAR Embedded Workbench® IDE reference
The display area

The display area is divided in different columns.

The Files column displays the name of the current workspace and a tree representation
of the projects, groups and files included in the workspace.

The column that contains status information about option overrides can have one of
three icons for each level in the project:

The column that contains build status information can have one of three icons for each
file in the project:

For details about the various source code control icons, see Source code control states,
page 200.

At the bottom of the window you can choose which project to display. Alternatively, you
can choose to display an overview of the entire workspace.

For more information about project management and using the Workspace window, see
the chapter Managing projects in Part 3. Project management and building in this
guide.

Blank There are no settings/overrides for this file/group

Black check mark There are local settings/overrides for this file/group

Red check mark There are local settings/overrides for this file/group, but they are either
identical to the inherited settings or they are ignored because you use of
multi-file compilation, which means that the overrides are not needed.

Blank The file will not be rebuilt next time the project is built

Red star The file will be rebuilt next time the project is built

Gearwheel The file is being rebuilt.
UEW-8:1

Part 6. Reference information 197

198

Windows
Workspace window context menu

Clicking the right mouse button in the Workspace window displays a context menu
which gives you convenient access to several commands.

Figure 75: Workspace window context menu

These commands are available on the context menu:

Menu command Description

Options Displays a dialog box where you can set options for each build tool on
the selected item in the Workspace window. You can set options on the
entire project, on a group of files, or on an individual file.

Make Brings the current target up to date by compiling, assembling, and linking
only the files that have changed since the last build.

Compile Compiles or assembles the currently active file as appropriate. You can
choose the file either by selecting it in the Workspace window, or by
selecting the editor window containing the file you want to compile.

Rebuild All Recompiles and relinks all files in the selected build configuration.

Clean Deletes intermediate files.

Stop Build Stops the current build operation.

Add>Add Files Opens a dialog box where you can add files to the project.

Add>Add "filename" Adds the indicated file to the project. This command is only available if
there is an open file in the editor.

Add>Add Group Opens a dialog box where you can add new groups to the project.

Remove Removes selected items from the Workspace window.

Source Code Control Opens a submenu with commands for source code control, see Source
Code Control menu, page 199.

Table 32: Workspace window context menu commands
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

IAR Embedded Workbench® IDE reference
Source Code Control menu

The Source Code Control menu is available from the Project menu and from the
context menu in the Workspace window. This menu contains some of the most
commonly used commands of external, third-party source code control systems.

Figure 76: Source Code Control menu

For more information about interacting with an external source code control system, see
Source code control, page 88.

These commands are available on the submenu:

File Properties Opens a standard File Properties dialog box for the selected file.

Set as Active Sets the selected project in the overview display to be the active project.
It is the active project that will be built when the Make command is
executed.

Menu command Description

Check In Opens the Check In Files dialog box where you can check in the
selected files; see Check In Files dialog box, page 202. Any changes you
have made in the files will be stored in the archive. This command is
enabled when currently checked-out files are selected in the Workspace
window.

Check Out Checks out the selected file or files. Depending on the SCC system you
are using, a dialog box might appear; see Check Out Files dialog box, page
203. This means you get a local copy of the file(s), which you can edit.
This command is enabled when currently checked-in files are selected in
the Workspace window.

Table 33: Description of source code control commands

Menu command Description

Table 32: Workspace window context menu commands (Continued)
UEW-8:1

Part 6. Reference information 199

200

Windows
Source code control states

Each source code-controlled file can be in one of several states.

Undo Check out The selected files revert to the latest archived version; the files are no
longer checked-out. Any changes you have made to the files will be lost.
This command is enabled when currently checked-out files are selected
in the Workspace window.

Get Latest Version Replaces the selected files with the latest archived version.

Compare Displays—in a SCC-specific window—the differences between the local
version and the most recent archived version.

History Displays SCC-specific information about the revision history of the
selected file.

Properties Displays information available in the SCC system for the selected file.

Refresh Updates the SCC display status for all the files that are part of the
project. This command is always enabled for all projects under SCC.

Connect Project to
SCC Project

Opens a dialog box, which originates from the SCC client application, to
let you create a connection between the selected IAR Embedded
Workbench project and an SCC project; the IAR Embedded Workbench
project will then be an SCC-controlled project. After creating this
connection, a special column that contains status information will appear
in the Workspace window.

Disconnect Project
From SCC Project

Removes the connection between the selected IAR Embedded
Workbench project and an SCC project; your project will no longer be a
SCC-controlled project. The column in the Workspace window that
contains SCC status information will no longer be visible for that project.

SCC state Description

Checked out to you. The file is editable.

Checked out to you. The file is editable and you have modified the file.

(grey padlock) Checked in. In many SCC systems this means that the file is
write-protected.

(grey padlock) Checked in. A new version is available in the archive.

Table 34: Description of source code control states

Menu command Description

Table 33: Description of source code control commands (Continued)
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

IAR Embedded Workbench® IDE reference
Note: The source code control in IAR Embedded Workbench depends on the
information provided by the SCC system. If the SCC system provides incorrect or
incomplete information about the states, IAR Embedded Workbench might display
incorrect symbols.

Select Source Code Control Provider dialog box

The Select Source Code Control Provider dialog box is displayed if several SCC
systems from different vendors are available. Use this dialog box to choose the SCC
system you want to use.

Figure 77: Select Source Code Control Provider dialog box

(red padlock) Checked out exclusively to another user. In many SCC systems this
means that you cannot check out the file.

(red padlock) Checked out exclusively to another user. A new version is available in
the archive. In many SCC systems this means that you cannot check out
the file.

SCC state Description

Table 34: Description of source code control states (Continued)
UEW-8:1

Part 6. Reference information 201

202

Windows
Check In Files dialog box

The Check In Files dialog box is available by choosing the Project>Source Code
Control>Check In command, alternatively available from the Workspace window
context menu.

Figure 78: Check In Files dialog box

Comment

A text box in which you can write a comment—typically a description of your
changes—that will be stored in the archive together with the file revision. This text box
is only enabled if the SCC system supports the adding of comments at check-in.

Keep checked out

The file(s) will continue to be checked out after they have been checked in. Typically,
this is useful if you want to make your modifications available to other members in your
project team, without stopping your own work with the file.

Advanced

Opens a dialog box, originating from the SCC client application, that contains advanced
options. This button is only available if the SCC system supports setting advanced
options at check in.

Files

A list of the files that will be checked in. The list will contain all files that were selected
in the Workspace window when this dialog box was opened.
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

IAR Embedded Workbench® IDE reference
Check Out Files dialog box

The Check Out File dialog box is available by choosing the Project>Source Code
Control>Check Out command, alternatively available from the Workspace window
context menu. However, this dialog box is only available if the SCC system supports
adding comments at check-out or advanced options.

Figure 79: Check Out Files dialog box

Comment

A text field in which you can write a comment—typically the reason why the file is
checked out—that will be placed in the archive together with the file revision. This text
box is only enabled if the SCC system supports the adding of comments at check-out.

Advanced

Opens a dialog box, originating from the SCC client application, that contains advanced
options. This button is only available if the SCC system supports setting advanced
options at check out.

Files

A list of files that will be checked out. The list will contain all files that were selected in
the Workspace window when this dialog box was opened.
UEW-8:1

Part 6. Reference information 203

204

Windows
EDITOR WINDOW

Source code files and HTML files are displayed in editor windows. You can have one or
several editor windows open at the same time. The editor window is always docked, and
its size and position depends on other currently open windows.

Figure 80: Editor window

The name of the open file is displayed on the tab. If a file is read-only, a padlock icon is
visible at the bottom left corner of the editor window. If a file has been modified after it
was last saved, an asterisk appears after the filename on the tab, for example
Utilities.c *. All open files are available from the drop-down menu in the upper
right corner of the editor window.

For information about using the editor, see the chapter Editing, page 99.

HTML files

Use the File>Open command to open HTML documents in the editor window. From an
open HTML document you can navigate to other documents using hyperlinks:

● A link to an html or htm file works like in normal web browsing

● A link to an eww workspace file opens the workspace in the IDE, and closes any
currently open workspace and the open HTML document.

Window tabs

Breakpoint icon

Bracket matching

Bookmark

Splitter
control

Drop-down menu
listing all open files

Splitter control Go to function

Tooltip information

Right margin indicating
limit of printing area
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

IAR Embedded Workbench® IDE reference
Split commands

Use the Window>Split command—or the Splitter controls—to split the editor window
horizontally or vertically into multiple panes.

On the Window menu you also find commands for opening multiple editor windows,
and commands for moving files between the editor windows.

Go to function

With the Go to function button in the bottom left-hand corner of the editor window you
can display all functions in the C or C++ editor window. You can then choose to go
directly to one of them.

Editor window tab context menu

This is the context menu that appears if you right-click on a tab in the editor window:

Figure 81: Editor window tab context menu

The context menu provides these commands:

Menu command Description

Save file Saves the file.

Close Closes the file.

File Properties Displays a standard file properties dialog box.

Table 35: Description of commands on the editor window tab context menu
UEW-8:1

Part 6. Reference information 205

206

Windows
Editor window context menu

The context menu available in the editor window provides convenient access to several
commands.

Figure 82: Editor window context menu

Note: The contents of this menu are dynamic, which means it might contain other
commands than in this figure. All available commands are described in Table 36,
Description of commands on the editor window context menu.

These commands are available on the editor window context menu:

Menu command Description

Cut, Copy, Paste Standard window commands.

Complete Attempts to complete the word you have begun to type, basing the
guess on the contents of the rest of the editor document.

Match Brackets Selects all text between the brackets immediately surrounding the
insertion point, increases the selection to the next hierarchic pair of
brackets, or beeps if there is no higher bracket hierarchy.

Table 36: Description of commands on the editor window context menu
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

IAR Embedded Workbench® IDE reference
Insert Template Displays a list in the editor window from which you can choose a code
template to be inserted at the location of the insertion point. If the
code template you choose requires any field input, the Template
dialog box appears; for information about this dialog box, see Template
dialog box, page 232. For information about using code templates, see
Using and adding code templates, page 103.

Open "header.h" Opens the header file "header.h" in an editor window. This menu
command is only available if the insertion point is located on an
#include line when you open the context menu.

Open Header/Source
File

Jumps from the current file to the corresponding header or source file.
If the destination file is not open when performing the command, the
file will first be opened. This menu command is only available if the
insertion point is located on any line except an #include line when
you open the context menu. This command is also available from the
File>Open menu.

Go to definition of
symbol

Shows the declaration of the symbol where the insertion point is
placed.

Check In
Check Out
Undo Checkout

Commands for source code control; for more details, see Source Code
Control menu, page 199. These menu commands are only available if the
current source file in the editor window is SCC-controlled. The file
must also be a member of the current project.

Toggle Breakpoint (Code) Toggles a code breakpoint at the statement or instruction containing or
close to the cursor in the source window. For information about code
breakpoints, see Code breakpoints dialog box, page 214.

Toggle Breakpoint
(Log)

Toggles a log breakpoint at the statement or instruction containing or
close to the cursor in the source window. For information about log
breakpoints, see Log breakpoints dialog box, page 216.

Enable/disable
Breakpoint

Toggles a breakpoint between being disabled, but not actually
removed—making it available for future use—and being enabled again.

Set Data Breakpoint
for variable

Toggles a data breakpoint on variables with static storage duration.
Requires support in the C-SPY driver you are using.

Edit Breakpoint Displays the Edit Breakpoint dialog box to let you edit the currently
selected breakpoint. If there are more than one breakpoint on the
selected line, a submenu is displayed that lists all available breakpoints
on that line.

Set Next Statement Sets the PC directly to the selected statement or instruction without
executing any code. Use this menu command with care. This menu
command is only available when you are using the debugger.

Menu command Description

Table 36: Description of commands on the editor window context menu (Continued)
UEW-8:1

Part 6. Reference information 207

208

Windows
Source file paths

The IDE supports relative source file paths to a certain degree.

If a source file is located in the project file directory or in any subdirectory of the project
file directory, the IDE will use a path relative to the project file when accessing the
source file.

Editor key summary

The following tables summarize the editor’s keyboard commands.

Use these keys and key combinations for moving the insertion point:

Quick Watch Opens the Quick Watch window, see Quick Watch window, page 291.
This menu command is only available when you are using the debugger.

Add to Watch Adds the selected symbol to the Watch window. This menu command
is only available when you are using the debugger.

Move to PC Moves the insertion point to the current PC position in the editor
window. This menu command is only available when you are using the
debugger.

Run to Cursor Executes from the current statement or instruction up to a selected
statement or instruction. This menu command is only available when
you are using the debugger.

Options Displays the IDE Options dialog box, see Tools menu, page 244.

To move the insertion point Press

One character left Arrow left

One character right Arrow right

One word left Ctrl+Arrow left

One word right Ctrl+Arrow right

One line up Arrow up

One line down Arrow down

To the start of the line Home

To the end of the line End

To the first line in the file Ctrl+Home

To the last line in the file Ctrl+End

Table 37: Editor keyboard commands for insertion point navigation

Menu command Description

Table 36: Description of commands on the editor window context menu (Continued)
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

IAR Embedded Workbench® IDE reference
Use these keys and key combinations for scrolling text:

Use these key combinations for selecting text:

To scroll Press

Up one line Ctrl+Arrow up

Down one line Ctrl+Arrow down

Up one page Page Up

Down one page Page Down

Table 38: Editor keyboard commands for scrolling

To select Press

The character to the left Shift+Arrow left

The character to the right Shift+Arrow right

One word to the left Shift+Ctrl+Arrow left

One word to the right Shift+Ctrl+Arrow right

To the same position on the previous line Shift+Arrow up

To the same position on the next line Shift+Arrow down

To the start of the line Shift+Home

To the end of the line Shift+End

One screen up Shift+Page Up

One screen down Shift+Page Down

To the beginning of the file Shift+Ctrl+Home

To the end of the file Shift+Ctrl+End

Table 39: Editor keyboard commands for selecting text
UEW-8:1

Part 6. Reference information 209

210

Windows
SOURCE BROWSER WINDOW

The Source Browser window—available from the View menu—displays an hierarchical
view in alphabetical order of all symbols defined in the active build configuration.

Figure 83: Source Browser window

The window consists of two separate display areas.

The upper display area

The upper display area contains two columns:

If you click in the window header, you can sort the symbols either by name or by symbol
type.

In the upper display area you can also access a context menu; see Source Browser
window context menu, page 212.

Column Description

Icons An icon that corresponds to the Symbol type classification, see Icons used
for the symbol types, page 211.

Name The names of global symbols and functions defined in the project.

Table 40: Columns in Source Browser window

UEW-8:1

IAR Embedded Workbench® IDE
User Guide

IAR Embedded Workbench® IDE reference
The lower display area

For a symbol selected in the upper display area, the lower area displays its properties:

Icons used for the symbol types

These are the icons used:

Usage

For further details about how to use the Source Browser window, see Displaying browse
information, page 87.

Property Description

Full name Displays the unique name of each element, for instance
classname::membername.

Symbol type Displays the symbol type for each element, see Icons used for the symbol
types, page 211.

Filename Specifies the path to the file in which the element is defined.

Table 41: Information in Source Browser window

Base class

Class

Configuration

Enumeration

Enumeration constant

 (Yellow rhomb) Field of a struct

 (Purple rhomb) Function

Macro

Namespace

Template class

Template function

Type definition

Union

 (Yellow rhomb) Variable
UEW-8:1

Part 6. Reference information 211

212

Windows
Source Browser window context menu

This is the context menu available in the upper display area:

Figure 84: Source Browser window context menu

These commands are available on the context menu:

Menu command Description

Go to Definition The editor window will display the definition of the selected item.

Move to Parent If the selected element is a member of a class, struct, union,
enumeration, or namespace, this menu command can be used for
moving to its enclosing element.

All Symbols Type filter; all global symbols and functions defined in the project will
be displayed.

All Functions & Variables Type filter; all functions and variables defined in the project will be
displayed.

Non-Member Functions
& Variables

Type filter; all functions and variables that are not members of a class
will be displayed

Types Type filter; all types such as structures and classes defined in the
project will be displayed.

Constants & Macros Type filter; all constants and macros defined in the project will be
displayed.

All Files File filter; symbols from all files that you have explicitly added to your
project and all files included by them will be displayed.

Exclude System Includes File filter; symbols from all files that you have explicitly added to your
project and all files included by them will be displayed, except the
include files in the IAR Embedded Workbench installation directory.

Only Project Members File filter; symbols from all files that you have explicitly added to your
project will be displayed, but no include files.

Table 42: Source Browser window context menu commands
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

IAR Embedded Workbench® IDE reference
BREAKPOINTS WINDOW

The Breakpoints window—available from the View menu—lists all breakpoints. From
the window you can conveniently monitor, enable, and disable breakpoints; you can also
define new breakpoints and modify existing breakpoints.

Figure 85: Breakpoints window

All breakpoints you define are displayed in the Breakpoints window.

For more information about the breakpoint system and how to set breakpoints, see the
chapter Using breakpoints in Part 4. Debugging.

Breakpoints window context menu

Right-clicking in the Breakpoints window displays a context menu with several
commands.

Figure 86: Breakpoints window context menu

These commands are available on the context menu:

Menu command Description

Go to Source Moves the insertion point to the location of the breakpoint, if the
breakpoint has a source location. Double-click a breakpoint in the
Breakpoints window to perform the same command.

Edit Opens the Edit Breakpoint dialog box for the selected breakpoint.

Table 43: Breakpoints window context menu commands
UEW-8:1

Part 6. Reference information 213

214

Windows
Code breakpoints dialog box

Code breakpoints are triggered when an instruction is fetched from the specified
location. If you have set the breakpoint on a specific machine instruction, the breakpoint
will be triggered and the execution will stop, before the instruction is executed.

To set a code breakpoint, right-click in the Breakpoints window and choose New
Breakpoint>Code on the context menu. To modify an existing breakpoint, select it in
the Breakpoints window and choose Edit on the context menu.

Delete Deletes the selected breakpoint. Press the Delete key to perform the
same command.

Enable Enables the selected breakpoint. The check box at the beginning of the
line will be selected. You can also perform the command by manually
selecting the check box. This command is only available if the selected
breakpoint is disabled.

Disable Disables the selected breakpoint. The check box at the beginning of the
line will be cleared. You can also perform this command by manually
deselecting the check box.This command is only available if the selected
breakpoint is enabled.

Enable All Enables all defined breakpoints.

Disable All Disables all defined breakpoints.

New Breakpoint Displays a submenu where you can open the New Breakpoint dialog
box for the available breakpoint types. All breakpoints you define using
the New Breakpoint dialog box are preserved between debug
sessions. In addition to code and log breakpoints—see Code breakpoints
dialog box, page 214 and —other types of breakpoints might be available
depending on the C-SPY driver you are using. For information about
driver-specific breakpoint types, see the driver-specific debugger
documentation.

Menu command Description

Table 43: Breakpoints window context menu commands (Continued)
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

IAR Embedded Workbench® IDE reference
The Code breakpoints dialog box appears.

Figure 87: Code breakpoints page

Break At

Specify the location of the breakpoint in the Break At text box. Alternatively, click the
Edit browse button to open the Enter Location dialog box; see Enter Location dialog
box, page 218.

Size

Optionally, you can specify a size—in practice, a range—of locations. Each fetch access
to the specified memory range will trigger the breakpoint. There are two different ways
to specify the size:

● Auto, the size will be set automatically, typically to 1

● Manual, you specify the size of the breakpoint range manually in the Size text box.

Action

You can optionally connect an action to a breakpoint. Specify an expression, for instance
a C-SPY macro function, which is evaluated when the breakpoint is triggered and the
condition is true.
UEW-8:1

Part 6. Reference information 215

216

Windows
Conditions

You can specify simple and complex conditions.

Log breakpoints dialog box

Log breakpoints are triggered when an instruction is fetched from the specified location.
If you have set the breakpoint on a specific machine instruction, the breakpoint will be
triggered and the execution will temporarily halt and print the specified message in the
C-SPY Debug Log window. This is a convenient way to add trace printouts during the
execution of your application, without having to add any code to the application source
code.

To set a log breakpoint, right-click in the Breakpoints window and choose New
Breakpoint>Log on the context menu. To modify an existing breakpoint, select it in the
Breakpoints window and choose Edit on the context menu.

The Log breakpoints dialog box appears.

Figure 88: Log breakpoints page

Conditions Description

Expression A valid expression conforming to the C-SPY expression syntax.

Condition true The breakpoint is triggered if the value of the expression is true.

Condition changed The breakpoint is triggered if the value of the expression has changed
since it was last evaluated.

Skip count The number of times that the breakpoint must be fulfilled before a break
occurs (integer).

Table 44: Breakpoint conditions
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

IAR Embedded Workbench® IDE reference
The quickest—and typical—way to set a log breakpoint is by choosing Toggle
Breakpoint (Log) from the context menu available when you right-click in either the
editor or the Disassembly window. For more information about how to set breakpoints,
see Defining breakpoints, page 133.

Break At

Specify the location of the breakpoint in the Break At text box. Alternatively, click the
Edit button to open the Enter Location dialog box; see Enter Location dialog box, page
218.

Message

Specify the message you want to be displayed in the C-SPY Debug Log window. The
message can either be plain text, or—if you also select the option C-SPY macro
"__message" style—a comma-separated list of arguments.

C-SPY macro "__message" style

Select this option to make a comma-separated list of arguments specified in the Message
text box be treated exactly as the arguments to the C-SPY macro language statement
__message, see Formatted output, page 372.

Conditions

You can specify simple and complex conditions.

Conditions Description

Expression A valid expression conforming to the C-SPY expression syntax.

Condition true The breakpoint is triggered if the value of the expression is true.

Condition changed The breakpoint is triggered if the value of the expression has changed
since it was last evaluated.

Table 45: Log breakpoint conditions
UEW-8:1

Part 6. Reference information 217

218

Windows
Enter Location dialog box

Use the Enter Location dialog box—available from a breakpoints dialog box—to
specify the location of the breakpoint.

Figure 89: Enter Location dialog box

You can choose between these locations and their possible settings:

Location type Description/Examples

Expression Any expression that evaluates to a valid address, such as a function or
variable name. Code breakpoints are set on functions and data
breakpoints are set on variable names. For example, my_var refers to
the location of the variable my_var, and arr[3] refers to the third
element of the array arr.

Absolute Address An absolute location on the form zone:hexaddress or simply
hexaddress. Zone specifies in which memory the address belongs.
For example Memory:0x42.
If you enter a combination of a zone and address that is not valid, C-SPY
will indicate the mismatch.

Source Location A location in the C source code using the syntax:
{file path}.row.column. File specifies the filename and full path.
Row specifies the row in which you want the breakpoint. Column specifies
the column in which you want the breakpoint. Note that the Source
Location type is usually meaningful only for code breakpoints.
For example, {C:\my_projects\Utilities.c}.22.3
sets a breakpoint on the third character position on line 22 in the source
file Utilities.c.

Table 46: Location types
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

IAR Embedded Workbench® IDE reference
BUILD WINDOW

The Build window—available by choosing View>Messages—displays the messages
generated when building a build configuration. When opened, this window is, by
default, grouped together with the other message windows, see Windows, page 193.

Figure 90: Build window (message window)

Double-clicking a message in the Build window opens the appropriate file for editing,
with the insertion point at the correct position.

Right-clicking in the Build window displays a context menu which allows you to copy,
select, and clear the contents of the window.

Figure 91: Build window context menu

The Options command opens the Messages page of the IDE options dialog box. On
this page you can set options related to messages; see Messages options, page 255.

FIND IN FILES WINDOW

The Find in Files window—available by choosing View>Messages—displays the
output from the Edit>Find and Replace>Find in Files command. When opened, this
UEW-8:1

Part 6. Reference information 219

220

Windows
window is, by default, grouped together with the other message windows, see Windows,
page 193.

Figure 92: Find in Files window (message window)

Double-clicking an entry in the page opens the appropriate file with the insertion point
positioned at the correct location.

Right-clicking in the Find in Files window displays a context menu which allows you to
copy, select, and clear the contents of the window.

Figure 93: Find in Files window context menu

TOOL OUTPUT WINDOW

The Tool Output window—available by choosing View>Messages—displays any
messages output by user-defined tools in the Tools menu, provided that you have
selected the option Redirect to Output Window in the Configure Tools dialog box;
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

IAR Embedded Workbench® IDE reference
see Configure Tools dialog box, page 265. When opened, this window is, by default,
grouped together with the other message windows, see Windows, page 193.

Figure 94: Tool Output window (message window)

Right-clicking in the Tool Output window displays a context menu which allows you to
copy, select, and clear the contents of the window.

Figure 95: Tool Output window context menu

DEBUG LOG WINDOW

The Debug Log window—available by choosing View>Messages—displays debugger
output, such as diagnostic messages and trace information. This output is only available
when C-SPY is running. When opened, this window is, by default, grouped together
with the other message windows, see Windows, page 193.

Figure 96: Debug Log window (message window)
UEW-8:1

Part 6. Reference information 221

222

Menus
Right-clicking in the Tool Output window displays a context menu which allows you to
copy, select, and clear the contents of the window.

Figure 97: Debug Log window context menu

Menus
These menus are available in the IDE:

● File menu

● Edit menu

● View menu

● Project menu

● Tools menu

● Window menu

● Help menu.

In addition, a set of C-SPY-specific menus become available when you start the
debugger. For reference information about these menus, see the chapter C-SPY®
reference, page 273.

FILE MENU

The File menu provides commands for opening workspaces and source files, saving and
printing, and exiting from the IDE.
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

IAR Embedded Workbench® IDE reference
The menu also includes a numbered list of the most recently opened files and
workspaces. To open one of them, choose it from the menu.

Figure 98: File menu

These commands are available on the File menu:

Menu command Shortcut Description

New CTRL+N Displays a submenu with commands for creating a new
workspace, or a new text file.

Open>File CTRL+O Displays a submenu from which you can select a text file or an
HTML document to open.

Open>
Workspace

Displays a submenu from which you can select a workspace file
to open. Before a new workspace is opened you will be
prompted to save and close any currently open workspaces.

Open>
Header/Source File

CTRL+
SHIFT+H

Opens the header file or source file that corresponds to the
current file, and jumps from the current file to the newly
opened file. This command is also available from the context
menu available from the editor window.

Close Closes the active window. You will be given the opportunity to
save any files that have been modified before closing.

Open Workspace Displays a dialog box where you can open a workspace file.
You will be given the opportunity to save and close any
currently open workspace file that has been modified before
opening a new workspace.

Save Workspace Saves the current workspace file.

Close Workspace Closes the current workspace file.

Table 47: File menu commands
UEW-8:1

Part 6. Reference information 223

224

Menus
Save CTRL+S Saves the current text file or workspace file.

Save As Displays a dialog box where you can save the current file with a
new name.

Save All Saves all open text documents and workspace files.

Page Setup Displays a dialog box where you can set printer options.

Print CTRL+P Displays a dialog box where you can print a text document.

Recent Files Displays a submenu where you can quickly open the most
recently opened text documents.

Recent Workspaces Displays a submenu where you can quickly open the most
recently opened workspace files.

Exit Exits from the IDE. You will be asked whether to save any
changes to text windows before closing them. Changes to the
project are saved automatically.

Menu command Shortcut Description

Table 47: File menu commands (Continued)
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

IAR Embedded Workbench® IDE reference
EDIT MENU

The Edit menu provides several commands for editing and searching.

Figure 99: Edit menu

Menu command Shortcut Description

Undo CTRL+Z Undoes the last edit made to the current editor window.

Redo CTRL+Y Redoes the last Undo in the current editor window.
You can undo and redo an unlimited number of edits
independently in each editor window.

Cut CTRL+X The standard Windows command for cutting text in editor
windows and text boxes.

Copy CTRL+C The standard Windows command for copying text in editor
windows and text boxes.

Paste CTRL+V The standard Windows command for pasting text in editor
windows and text boxes.

Paste Special Provides you with a choice of the most recent contents of the
clipboard to choose from when pasting in editor documents.

Select All CTRL+A Selects all text in the active editor window.

Table 48: Edit menu commands
UEW-8:1

Part 6. Reference information 225

226

Menus
Find and Replace>FindCTRL+F Displays the Find dialog box where you can search for text
within the current editor window. Note that if the insertion
point is located in the Memory window when you choose the
Find command, the dialog box will contain a different set of
options than it would otherwise do. If the insertion point is
located in the Trace window when you choose the Find
command, the Find in Trace dialog box is opened; the
contents of this dialog box depend on the C-SPY driver you
are using, see the driver documentation for more
information.

Find and Replace>
Find Next

F3 Finds the next occurrence of the specified string.

Find and Replace>
Find Previous

SHIFT+F3 Finds the previous occurrence of the specified string.

Find and Replace>
Find Next (Selected)

CTRL+F3 Searches for the next occurrence of the currently selected
text or the word currently surrounding the insertion point.

Find and Replace>
Find Previous
(Selected)

CTRL+
SHIFT+F3

Searches for the previous occurrence of the currently
selected text or the word currently surrounding the insertion
point.

Find and Replace>
Replace

CTRL+H Displays a dialog box where you can search for a specified
string and replace each occurrence with another string. Note
that if the insertion point is located in the Memory window
when you choose the Replace command, the dialog box will
contain a different set of options than it would otherwise do.

Find and Replace>
Find in Files

Displays a dialog box where you can search for a specified
string in multiple text files; see Find in Files dialog box, page
229.

Find and Replace>
Incremental Search

CTRL+I Displays a dialog box where you can gradually fine-tune or
expand the search by continuously changing the search string.

Navigate>Go To CTRL+G Displays the Go to Line dialog box where you can move the
insertion point to a specified line and column in the current
editor window.

Navigate>
Toggle Bookmark

CTRL+F2 Toggles a bookmark at the line where the insertion point is
located in the active editor window.

Navigate>
Go to Bookmark

F2 Moves the insertion point to the next bookmark that has
been defined with the Toggle Bookmark command.

Menu command Shortcut Description

Table 48: Edit menu commands (Continued)
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

IAR Embedded Workbench® IDE reference
Navigate>
Navigate Backward

ALT+Left
arrow

Navigates backward in the insertion point history. The
current position of the insertion point is added to the history
by actions like Go to definition and clicking on a result from
the Find in Files command.

Navigate>
Navigate Forward

ALT+Right
arrow

Navigates forward in the insertion point history. The current
position of the insertion point is added to the history by
actions like Go to definition and clicking on a result from
the Find in Files command.

Navigate>
Go to Definition

F12 Shows the declaration of the selected symbol or the symbol
where the insertion point is placed. This menu command is
available when browse information has been enabled, see
Project options, page 257.

Code Templates>
Insert Template

CTRL+
SHIFT+
SPACE

Displays a list in the editor window from which you can
choose a code template to be inserted at the location of the
insertion point. If the code template you choose requires any
field input, the Template dialog box appears; for
information about this dialog box, see Template dialog box,
page 232. For information about using code templates, see
Using and adding code templates, page 103.

Code Templates>
Edit Templates

Opens the current code template file, where you can modify
existing code templates and add your own code templates.
For information about using code templates, see Using and
adding code templates, page 103.

Next Error/Tag F4 If the Messages window contains a list of error messages or
the results from a Find in Files search, this command will
display the next item from that list in the editor window.

Previous Error/Tag SHIFT+F4 If the Messages window contains a list of error messages or
the results from a Find in Files search, this command will
display the previous item from that list in the editor window.

Complete CTRL+
SPACE

Attempts to complete the word you have begun to type,
basing the guess on the contents of the rest of the editor
document.

Match Brackets Selects all text between the brackets immediately
surrounding the insertion point, increases the selection to the
next hierarchic pair of brackets, or beeps if there is no higher
bracket hierarchy.

Menu command Shortcut Description

Table 48: Edit menu commands (Continued)
UEW-8:1

Part 6. Reference information 227

228

Menus
Find dialog box

The Find dialog box is available from the Edit menu. Note that the contents of this
dialog box look different if you search in an editor window compared to if you search
in the Memory window.

Auto Indent CTRL+T Indents one or several lines you have selected in a C/C++
source file. To configure the indentation, see Configure Auto
Indent dialog box, page 250.

Block Comment CTRL+K Places the C++ comment character sequence // at the
beginning of the selected lines.

Block Uncomment CTRL+K Removes the C++ comment character sequence // from
the beginning of the selected lines.

Toggle Breakpoint F9 Toggles a breakpoint at the statement or instruction that
contains or is located near the cursor in the source window.
This command is also available as an icon button in the debug
bar.

Enable/Disable
Breakpoint

CTRL+F9 Toggles a breakpoint between being disabled, but not actually
removed—making it available for future use—and being
enabled again.

Option Description

Find what Selects the text to search for.

Match case Searches only occurrences that exactly match the case of the
specified text. Otherwise specifying int will also find INT and Int.
This option is only available when you search in an editor window.

Match whole word Searches the specified text only if it occurs as a separate word.
Otherwise specifying int will also find print, sprintf etc. This
option is only available when you search in an editor window.

Search as hex Searches for the specified hexadecimal value. This option is only
available when you search in the Memory window.

Find next Finds the next occurrence of the selected text.

Find previous Finds the previous occurrence of the selected text.

Stop Stops an ongoing search. This button is only available during a search
in the Memory window.

Table 49: Find dialog box options

Menu command Shortcut Description

Table 48: Edit menu commands (Continued)
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

IAR Embedded Workbench® IDE reference
Replace dialog box

The Replace dialog box is available from the Edit menu.

Find in Files dialog box

Use the Find in Files dialog box—available from the Edit menu—to search for a string
in files.

Figure 100: Find in Files dialog box

Option Description

Find what Selects the text to search for.

Replace with Selects the text to replace each found occurrence in the Replace
With box.

Match whole word Searches the specified text only if it occurs as a separate word.
Otherwise int will also find print, sprintf etc. This checkbox
is not available when you perform the search in the Memory window.

Search as hex Searches for the specified hexadecimal value. This checkbox is only
available when you perform the search in the Memory window.

Find next Searches the next occurrence of the text you have specified.

Replace Replaces the searched text with the specified text.

Replace all Replaces all occurrences of the searched text in the current editor
window.

Table 50: Replace dialog box options
UEW-8:1

Part 6. Reference information 229

230

Menus
The result of the search appears in the Find in Files messages window—available from
the View menu. You can then go to each occurrence by choosing the Edit>Next
Error/Tag command, alternatively by double-clicking the messages in the Find in Files
messages window. This opens the corresponding file in an editor window with the
insertion point positioned at the start of the specified text. A blue flag in the left-most
margin indicates the line.

In the Find in Files dialog box, you specify the search criteria with the following
settings.

Find what:

A text field in which you type the string you want to search for (short cut &n). There are
two options for fine-tuning the search:

Look in

The options in the Look in area lets you specify which files you want to search in for a
specified string. Choose between:

Match case Searches only for occurrences that exactly match the case of the
specified text. Otherwise specifying int will also find INT and Int.

Match whole word Searches only for the string when it occurs as a separate word (short cut
&w). Otherwise int will also find print, sprintf and so on.

Project files The search is performed in all files that you have explicitly added to your
project.

Project files and user
include files

The search is performed in all files that you have explicitly added to your
project and all files that they include, except the include files in the IAR
Embedded Workbench installation directory.

Project files and all
include files

The search is performed in all project files that you have explicitly added
to your project and all files that they include.

Directory The search is performed in the directory that you specify. Recent search
locations are saved in the drop-down list. Locate the directory using the
browse button.

Look in
subdirectories

The search is performed in the directory that you have specified and all
its subdirectories.
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

IAR Embedded Workbench® IDE reference
File types

This is a filter for choosing which type of files to search; the filter applies to all options
in the Look in area. Choose the appropriate filter from the drop-down list. Note that the
File types text field is editable, which means that you can add your own filters. Use the
* character to indicate zero or more unknown characters of the filters, and the ?
character to indicate one unknown character.

Stop

Stops an ongoing search. This function button is only available during an ongoing
search.

Incremental Search dialog box

The Incremental Search dialog box—available from the Edit menu—lets you
gradually fine-tune or expand the search string.

Figure 101: Incremental Search dialog box

Find What

Type the string to search for. The search is performed from the location of the insertion
point—the start point. Gradually incrementing the search string will gradually expand
the search criteria. Backspace will remove a character from the search string; the search
is performed on the remaining string and will start from the start point.

If a word in the editor window is selected when you open the Incremental Search
dialog box, this word will be displayed in the Find What text box.

Match Case

Use this option to find only occurrences that exactly match the case of the specified text.
Otherwise searching for int will also find INT and Int.
UEW-8:1

Part 6. Reference information 231

232

Menus
Function buttons

Template dialog box

Use the Template dialog box to specify any field input that is required by the source
code template you insert. This dialog box appears when you insert a code template that
requires any field input.

Figure 102: Template dialog box

Note: This figure reflects the default code template that can be used for automatically
inserting code for a for loop.

The contents of this dialog box match the code template. In other words, which fields
that appear depends on how the code template is defined.

At the bottom of the dialog box, the code that would result from the code template is
displayed.

For more information about using code templates, see Using and adding code templates,
page 103.

Function button Description

Find Next Searches for the next occurrence of the current search string. If the
Find What text box is empty when you click the Find Next button, a
string to search for will automatically be selected from the drop-down
list. To search for this string, click Find Next.

Close Closes this dialog box.

Table 51: Incremental Search function buttons
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

IAR Embedded Workbench® IDE reference
VIEW MENU

With the commands on the View menu you can choose what to display in the IAR
Embedded Workbench IDE. During a debug session you can also open
debugger-specific windows from the View menu.

Figure 103: View menu

Menu command Description

Messages Opens a submenu which gives access to the message windows—Build,
Find in Files, Tool Output, Debug Log—that display messages and text
output from the IAR Embedded Workbench commands. If the window
you choose from the menu is already open, it becomes the active
window.

Workspace Opens the current Workspace window.

Source Browser Opens the Source Browser window.

Breakpoints Opens the Breakpoints window.

Toolbars The options Main and Debug toggle the two toolbars on and off.

Status bar Toggles the status bar on and off.

Table 52: View menu commands
UEW-8:1

Part 6. Reference information 233

234

Menus
Debugger windows During a debugging session, the various debugging windows are also
available from the View menu:
Disassembly window
Memory window
Symbolic Memory window
Register window
Watch window
Locals window
Statics window
Auto window
Live Watch window
Quick Watch window
Call Stack window
Terminal I/O window
Code Coverage window
Profiling window
Stack window
For descriptions of these windows, see C-SPY windows, page 273.

Menu command Description

Table 52: View menu commands (Continued)
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

IAR Embedded Workbench® IDE reference
PROJECT MENU

The Project menu provides commands for working with workspaces, projects, groups,
and files, and for specifying options for the build tools, and running the tools on the
current project.

Figure 104: Project menu

Menu Command Description

Add Files Displays a dialog box that where you can select which files to include
to the current project.

Add Group Displays a dialog box where you can create a new group. The Group
Name text box specifies the name of the new group. The Add to
Target list selects the targets to which the new group should be
added. By default, the group is added to all targets.

Import File List Displays a standard Open dialog box where you can import
information about files and groups from projects created using
another IAR Systems tool chain.
To import information from project files which have one of the older
filename extensions pew or prj you must first have exported the
information using the context menu command Export File List
available in your own IAR Embedded Workbench.

Table 53: Project menu commands
UEW-8:1

Part 6. Reference information 235

236

Menus
Edit Configurations Displays the Configurations for project dialog box, where you can
define new or remove existing build configurations.

Remove In the Workspace window, removes the selected item from the
workspace.

Create New Project Displays a dialog box where you can create a new project and add it
to the workspace.

Add Existing Project Displays a dialog box where you can add an existing project to the
workspace.

Options (Alt+F7) Displays the Options for node dialog box, where you can set
options for the build tools on the selected item in the Workspace
window. You can set options on the entire project, on a group of files,
or on an individual file.

Source Code Control Opens a submenu with commands for source code control, see Source
Code Control menu, page 199.

Make (F7) Brings the current build configuration up to date by compiling,
assembling, and linking only the files that have changed since the last
build.

Compile (Ctrl+F7) Compiles or assembles the currently selected file, files, or group.
One or more files can be selected in the Workspace window—all files
in the same project, but not necessarily in the same group. You can
also select the editor window containing the file you want to compile.
The Compile command is only enabled if every file in the selection is
individually suitable for the command.
You can also select a group, in which case the command is applied to
each file in the group (including inside nested groups) that can be
compiled, even if the group contains files that cannot be compiled,
such as header files.
If the selected file is part of a multi-file compilation group, the
command will still only affect the selected file.

Rebuild All Rebuilds and relinks all files in the current target.

Clean Removes any intermediate files.

Batch Build (F8) Displays a dialog box where you can configure named batch build
configurations, and build a named batch.

Stop Build (Ctrl+Break) Stops the current build operation.

Menu Command Description

Table 53: Project menu commands (Continued)
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

IAR Embedded Workbench® IDE reference
Argument variables summary

You can use these argument variables for paths and arguments:

Download and Debug
(Ctrl+D)

Downloads the application and starts C-SPY so that you can debug
the project object file. If necessary, a make will be performed before
running C-SPY to ensure the project is up to date. This command is
not available during debugging.

Debug without
Downloading

Starts C-SPY so that you can debug the project object file. This menu
command is a short cut for the Suppress Download option
available on the Download page. This command is not available
during debugging.

Make & Restart Debugger Stops C-SPY, makes the active build configuration, and starts the
debugger again; all in a single command. This command is only
available during debugging.

Restart Debugger Stops C-SPY and starts the debugger again; all in a single command.
This command is only available during debugging.

Variable Description

CUR_DIR Current directory

CUR_LINE Current line

$CONFIG_NAME$ The name of the current build configuration, for example Debug or
Release.

EW_DIR Top directory of IAR Embedded Workbench, for example
c:\program files\iar systems\embedded workbench
5.n

EXE_DIR Directory for executable output

$FILE_BNAME$ Filename without extension

$FILE_BPATH$ Full path without extension

$FILE_DIR$ Directory of active file, no filename

$FILE_FNAME$ Filename of active file without path

$FILE_PATH$ Full path of active file (in Editor, Project, or Message window)

$LIST_DIR$ Directory for list output

OBJ_DIR Directory for object output

$PROJ_DIR$ Project directory

Table 54: Argument variables

Menu Command Description

Table 53: Project menu commands (Continued)
UEW-8:1

Part 6. Reference information 237

238

Menus
Configurations for project dialog box

In the Configuration for project dialog box—available by choosing Project>Edit
Configurations—you can define new build configurations for the selected project;
either entirely new, or based on a previous project.

Figure 105: Configurations for project dialog box

The dialog box contains the following:

$PROJ_FNAME$ Project file name without path

$PROJ_PATH$ Full path of project file

$TARGET_DIR$ Directory of primary output file

$TARGET_BNAME$ Filename without path of primary output file and without extension

$TARGET_BPATH$ Full path of primary output file without extension

$TARGET_FNAME$ Filename without path of primary output file

$TARGET_PATH$ Full path of primary output file

$TOOLKIT_DIR$ Directory of the active product, for example c:\program
files\iar systems\embedded workbench 5.n\cpuname

$_ENVVAR_$ The environment variable ENVVAR. Any name within $_ and _$ will
be expanded to that system environment variable.

Operation Description

Configurations Lists existing configurations, which can be used as templates for new
configurations.

New Opens a dialog box where you can define new build configurations.

Remove Removes the configuration that is selected in the Configurations list.

Table 55: Configurations for project dialog box options

Variable Description

Table 54: Argument variables (Continued)
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

IAR Embedded Workbench® IDE reference
New Configuration dialog box

In the New Configuration dialog box—available by clicking New in the
Configurations for project dialog box—you can define new build configurations;
either entirely new, or based on any currently defined configuration.

Figure 106: New Configuration dialog box

The dialog box contains the following:

Create New Project dialog box

The Create New Project dialog box is available from the Project menu, and lets you
create a new project based on a template project. Template projects are available for

Item Description

Name The name of the build configuration.

Tool chain The target to build for. If you have several versions of IAR Embedded
Workbench for different targets installed on your host computer, the
drop-down list can contain these targets.

Based on configuration A currently defined build configuration that you want the new
configuration to be based on. The new configuration will inherit the
project settings and information about the factory settings from the old
configuration. If you select None, the new configuration will have default
factory settings and not be based on an already defined configuration.

Factory settings Specifies the default factory settings—either Debug or Release—that
you want to apply to your new build configuration. These factory
settings will be used by your project if you press the Factory Settings
button in the Options dialog box.

Table 56: New Configuration dialog box options
UEW-8:1

Part 6. Reference information 239

240

Menus
C/C++ applications, assembler applications, and library projects. You can also create
your own template projects.

Figure 107: Create New Project dialog box

The dialog box contains the following:

Options dialog box

The Options dialog box is available from the Project menu.

In the Category list you can select the build tool for which you want to set options. The
options available in the Category list will depend on the tools installed in your IAR
Embedded Workbench IDE, and will typically include these options:

Item Description

Tool chain The target to build for. If you have several versions of IAR Embedded
Workbench for different targets installed on your host computer, the
drop-down list can contain these targets.

Project templates Lists all available template projects that you can base a new project on.

Table 57: Description of Create New Project dialog box

Category Description

General Options General options

C/C++ Compiler IAR C/C++ Compiler options

Assembler IAR Assembler options

Table 58: Project option categories
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

IAR Embedded Workbench® IDE reference
Note: Additional debugger categories might be available depending on the debugger
drivers installed.

Selecting a category displays one or more pages of options for that component of the
IDE.

For detailed information about each option, see the option reference chapters:

● General options
● Compiler options
● Assembler options
● Custom build options
● Build actions options
● Linker options
● Library builder options
● Debugger options.

For information about the options related to available hardware debugger systems, see
the online help system.

Custom Build Options for extending the tool chain

Build Actions Options for pre-build and post-build actions

Linker IAR XLINK Linker options. This category is available for
application projects.

Library Builder IAR XAR Library Builder options. This category is available for
library projects.

Debugger IAR C-SPY Debugger options

Simulator Simulator-specific options

Category Description

Table 58: Project option categories (Continued)
UEW-8:1

Part 6. Reference information 241

242

Menus
Batch Build dialog box

The Batch Build dialog box—available by choosing Project>Batch build—lists all
defined batches of build configurations.

Figure 108: Batch Build dialog box

The dialog box contains the following:

Item Description

Batches Lists all currently defined batches of build configurations.

New Displays the Edit Batch Build dialog box, where you can define new
batches of build configurations.

Remove Removes the selected batch.

Edit Displays the Edit Batch Build dialog box, where you can modify
already defined batches.

Build Consists of the three build commands Make, Clean, and Rebuild All.

Table 59: Description of the Batch Build dialog box
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

IAR Embedded Workbench® IDE reference
Edit Batch Build dialog box

In the Edit Batch Build dialog box—available from the Batch Build dialog box—you
can create new batches of build configurations, and edit already existing batches.

Figure 109: Edit Batch Build dialog box

The dialog box contains the following:

To move appropriate build configurations from the Available configurations list to the
Configurations to build list, use the arrow buttons. Note also that you can drag the
build configurations in the Configurations to build field to specify the order between
the build configurations.

Item Description

Name The name of the batch.

Available configurations Lists all build configurations that are part of the workspace.

Configurations to build Lists all the build configurations you select to be part of a named
batch.

Table 60: Description of the Edit Batch Build dialog box
UEW-8:1

Part 6. Reference information 243

244

Menus
TOOLS MENU

The Tools menu provides commands for customizing the environment, such as changing
common fonts and shortcut keys.

It is a user-configurable menu to which you can add tools for use with IAR Embedded
Workbench. Thus, it might look different depending on which tools have been
preconfigured to appear as menu items. See Configure Tools dialog box, page 265.

Figure 110: Tools menu

Tools menu commands

Menu command Description

Options Displays the IDE Options dialog box where you can customize the IDE.
In the left side of the dialog box, select a category and the corresponding
options are displayed in the right side of the dialog box. Which
categories that are available in this dialog box depends on your IDE
configuration, and whether the IDE is in a debugging session or not.

Configure Tools Displays a dialog box where you can set up the interface to use external
tools.

Filename Extensions Displays a set of dialog boxes where you can define the filename
extensions to be accepted by the build tools.

Configure Viewers Displays a dialog box where you can configure viewer applications to
open documents with.

Notepad User-configured. This is an example of a user-configured addition to the
Tools menu.

Table 61: Tools menu commands
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

IAR Embedded Workbench® IDE reference
COMMON FONTS OPTIONS

Use the Common Fonts options—available by choosing Tools>Options—for
configuring the fonts used for all project windows except the editor windows.

Figure 111: Common Fonts options

With the Font buttons you can change the fixed and proportional width fonts,
respectively.

Any changes to the Fixed Width Font options will apply to the Disassembly, Register,
and Memory windows. Any changes to the Proportional Width Font options will
apply to all other windows.

None of the settings made on this page apply to the editor windows. For information
about how to change the font in the editor windows, see Editor Colors and Fonts
options, page 254.
UEW-8:1

Part 6. Reference information 245

246

Menus
KEY BINDINGS OPTIONS

Use the Key Bindings options—available by choosing Tools>Options—to customize
the shortcut keys used for the IDE menu commands.

Figure 112: Key Bindings options

Menu

Use the drop-down list to choose the menu you want to edit. Any currently defined
shortcut keys are shown in the scroll list under the drop-down list.

Command

All commands available on the selected menu are listed in the Commands column.
Select the menu command for which you want to configure your own shortcut keys.

Press shortcut key

Use the text field to type the key combination you want to use as shortcut key. You
cannot set or add a shortcut if it is already used by another command.

Primary

The shortcut key will be displayed next to the command on the menu. Click the Set
button to set the combination for the selected command, or the Clear button to delete
the shortcut.
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

IAR Embedded Workbench® IDE reference
Alias

The shortcut key will work but not be displayed on the menu. Click either the Add
button to make the key take effect for the selected command, or the Clear button to
delete the shortcut.

Reset All

Reverts all command shortcut keys to the factory settings.

LANGUAGE OPTIONS

Use the Language options—available by choosing Tools>Options—to specify the
language to be used in windows, menus, dialog boxes, etc.

Figure 113: Language options

Language

Use the drop-down list to choose the language to be used. The available languages
depend on your product version.

Note: If you have IAR Embedded Workbench IDE installed for several different tool
chains in the same directory, the IDE might be in mixed languages if the tool chains are
available in different languages.
UEW-8:1

Part 6. Reference information 247

248

Menus
EDITOR OPTIONS

Use the Editor options—available by choosing Tools>Options—to configure the
editor.

Figure 114: Editor options

For more information about the IAR Embedded Workbench IDE Editor and how to use
it, see Editing, page 99.

Tab Size

Use this option to specify the number of character spaces corresponding to each tab.

Indent Size

Use this option to specify the number of character spaces to be used for indentation.

Tab Key Function

Use this option to specify how the Tab key is used. Choose between:

● Insert tab
● Indent with spaces.
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

IAR Embedded Workbench® IDE reference
EOL character

Use this option to select the line break character to be used when editor documents are
saved. Choose between:

Show right margin

The area of the editor window outside the right-side margin is displayed as a light gray
field. You can choose to set the size of the text field between the left-side margin and the
right-side margin. Choose to set the size based on:

Syntax Highlighting

Use this option to make the editor display the syntax of C or C++ applications in
different text styles.

To read more about syntax highlighting, see Editor Colors and Fonts options, page 254,
and Syntax coloring, page 101.

Auto Indent

Use this option to ensure that when you press Return, the new line is indented
automatically. For C/C++ source files, indentation is performed as configured in the
Configure Auto Indent dialog box. Click the Configure button to open the dialog box
where you can configure the automatic indentation; see Configure Auto Indent dialog
box, page 250. For all other text files, the new line will have the same indentation as the
previous line.

Show Line Numbers

Use this option to display line numbers in the editor window.

PC (default) Windows and DOS end of line characters. The PC format is used by
default.

Unix UNIX end of line characters.

Preserve The same end of line character as the file had when it was opened,
either PC or UNIX. If both types or neither type are present in the
opened file, PC end of line characters are used.

Printing edge Size based on the printable area which is based on general printer
settings.

Columns Size based on number of columns.
UEW-8:1

Part 6. Reference information 249

250

Menus
Scan for Changed Files

Use this option to check if files have been modified by some other tool. In that case the
files are automatically reloaded. If a file has been modified in the IDE, you will be
prompted first.

Show Bookmarks

Use this option to display a column on the left side in the editor window, with icons for
compiler errors and warnings, Find in Files results, user bookmarks and breakpoints.

Enable Virtual Space

Use this option to allow the insertion point to move outside the text area.

Remove trailing blanks

Use this option to remove trailing blanks from files when they are saved to disk. Trailing
blanks are blank spaces between the last non-blank character and the end of line
character.

CONFIGURE AUTO INDENT DIALOG BOX

Use the Configure Auto Indent dialog box to configure the automatic indentation
performed by the editor for C/C++ source code. To open the dialog box:

1 Choose Tools>Options.

2 Click the Editor tab.

3 Select the Auto indent option.

4 Click the Configure button.

Figure 115: Configure Auto Indent dialog box
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

IAR Embedded Workbench® IDE reference
To read more about indentation, see Automatic text indentation, page 102.

Opening Brace (a)

Use the text box to type the number of spaces used for indenting an opening brace.

Body (b)

Use the text box to type the number of additional spaces used for indenting code after
an opening brace, or a statement that continues onto a second line.

Label (c)

Use the text box to type the number of additional spaces used for indenting a label,
including case labels.

Sample code

This area reflects the settings made in the text boxes for indentation. All indentations are
relative to the preceding line, statement, or other syntactic structures.

EXTERNAL EDITOR OPTIONS

Use the External Editor options—available by choosing Tools>Options—to specify
an external editor of your choice.

Figure 116: External Editor options

Note: The appearance of this dialog box depends on the setting of the Type option.

See also Using an external editor, page 106.
UEW-8:1

Part 6. Reference information 251

252

Menus
Use External Editor

Use this option to enable the use of an external editor.

Type

Use the drop-down list to select the type of interface. Choose between:

● Command Line
● DDE (Windows Dynamic Data Exchange).

Editor

Use the text field to specify the filename and path of your external editor. A browse
button is available for your convenience.

Arguments

Use the text field to specify any arguments to pass to the editor. Only applicable if you
have selected Command Line as the interface type, see Type, page 252.

Service

Use the text field to specify the DDE service name used by the editor. Only applicable
if you have selected DDE as the interface type, see Type, page 252.

The service name depends on the external editor that you are using. Refer to the user
documentation of your external editor to find the appropriate settings.

Command

Use the text field to specify a sequence of command strings to send to the editor. The
command strings should be typed as:

DDE-Topic CommandString
DDE-Topic CommandString

Only applicable if you have selected DDE as the interface type, see Type, page 252.

The command strings depend on the external editor that you are using. Refer to the user
documentation of your external editor to find the appropriate settings.

Note: You can use variables in arguments. See Argument variables summary, page
237, for information about available argument variables.
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

IAR Embedded Workbench® IDE reference
EDITOR SETUP FILES OPTIONS

Use the Editor Setup Files options—available by choosing Tools>Options—to
specify setup files for the editor.

Figure 117: Editor Setup Files options

Use Custom Keyword File

Use this option to specify a text file containing keywords that you want the editor to
highlight. For information about syntax coloring, see Syntax coloring, page 101.

Use Code Templates

Use this option to specify a text file with code templates that you can use for inserting
frequently used code in your source file. For information about using code templates,
see Using and adding code templates, page 103.
UEW-8:1

Part 6. Reference information 253

254

Menus
EDITOR COLORS AND FONTS OPTIONS

Use the Editor Colors and Fonts options—available by choosing Tools>Options—to
specify the colors and fonts used for text in the editor windows.

Figure 118: Editor Colors and Fonts options

Editor Font

Press the Font button to open the standard Font dialog box where you can choose the
font and its size to be used in editor windows.

Syntax Coloring

Use the Syntax Coloring options to choose color and type style for selected elements.
The elements you can customize are: C or C++, compiler keywords, assembler
keywords, and user-defined keywords. Use these options:

Scroll-bar list Lists the possible items for which you can specify font and style of
syntax.

Color Provides a list of colors to choose from for the selected element.

Type Style Provides a list of type styles to choose from.

Sample Displays the current setting.
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

IAR Embedded Workbench® IDE reference
The keywords controlling syntax highlighting for assembler and C or C++ source code
are specified in the files syntax_icc.cfg and syntax_asm.cfg, respectively. These
files are located in the config directory.

MESSAGES OPTIONS

Use the Messages options—available by choosing Tools>Options—to choose the
amount of output in the Build messages window.

Figure 119: Messages option

Show build messages

Use this drop-down menu to specify the amount of output in the Build messages
window. Choose between:

Background Color Provides a list of background colors to choose from for the editor
window.

All Shows all messages, including compiler and linker information.

Messages Shows messages, warnings, and errors.

Warnings Shows warnings and errors.

Errors Shows errors only.
UEW-8:1

Part 6. Reference information 255

256

Menus
Log File

Use these options to write build messages to a log file. To enable the options, select the
Enable build log file option. Choose between:

Type the filename you want to use in the text box. A browse button is available for your
convenience.

Enable All Dialogs

The Enable All Dialogs button enables all suppressed dialog boxes.

You can suppress some dialog boxes by selecting a Don’t show again check box, for
example:

Figure 120: Message dialog box containing a Don’t show again option

Append to end of file Appends the messages at the end of the specified file.

Overwrite old file Replaces the contents in the file you specify.
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

IAR Embedded Workbench® IDE reference
PROJECT OPTIONS

Use the Project options—available by choosing Tools>Options—to set options for the
Make and Build commands.

Figure 121: Project options

These options are available:

Option Description

Stop build operation on Specifies when the build operation should stop.
Never: Do not stop.
Warnings: Stop on warnings and errors.
Errors: Stop on errors.

Save editor windows before
building

Always: Always save before Make or Build.
Ask: Prompt before saving.
Never: Do not save.

Save workspace and projects
before building

Always: Always save before Make or Build.
Ask: Prompt before saving.
Never: Do not save.

Make before debugging Always: Always perform the Make command before
debugging.
Ask: Always prompt before performing the Make command.
Never: Do not perform the Make command before
debugging.

Table 62: Project IDE options
UEW-8:1

Part 6. Reference information 257

258

Menus
SOURCE CODE CONTROL OPTIONS

Use the Source Code Control options—available by choosing Tools>Options—to
configure the interaction between an IAR Embedded Workbench project and an SCC
project.

Figure 122: Source Code Control options

Keep items checked out when checking in

Determines the default setting for the option Keep Checked Out in the Check In Files
dialog box; see Check In Files dialog box, page 202.

Reload last workspace at startup Select this option if you want the last active workspace to
load automatically the next time you start IAR Embedded
Workbench.

Play a sound after build operations Plays a sound when the build operations are finished.

Generate browse information Enables the use of the Source Browser window, see Source
Browser window, page 210.

Option Description

Table 62: Project IDE options (Continued)
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

IAR Embedded Workbench® IDE reference
Save editor windows before performing source code control
commands

Specifies whether editor windows should be saved before you perform any source code
control commands. Choose between:

DEBUGGER OPTIONS

Use the Debugger options—available by choosing Tools>Options—for configuring
the debugger environment.

Figure 123: Debugger options

When source resolves to multiple function instances

Some source code corresponds to multiple code instances, for example template code.
When specifying a source location in such code, for example when setting a source
breakpoint, you can make C-SPY act on all instances or a subset of instances. Use the

Ask When you perform any source code control commands, you will be asked
about saving editor windows first.

Never Editor windows will never be saved first when you perform any source
code control commands.

Always Editor windows will always be saved first when you perform any source
code control commands.
UEW-8:1

Part 6. Reference information 259

260

Menus
Automatically choose all instances option to let C-SPY act on all instances without
asking first.

Source code color in Disassembly window

Use the Color button to select the color of the source code in the Disassembly window.

Step into functions

Use this option to control the behavior of the Step Into command. Choose between:

STL container expansion

The Depth value decides how many elements that are shown initially when a container
value is expanded in, for example, the Watch window. To show additional elements,
click the expansion arrow.

Update intervals

The Update intervals options specify how often the contents of the Live Watch window
and the Memory window are updated.

These options are available if the C-SPY driver you are using has access to the target
system memory while executing your application.

Default integer format

Use the drop-down list to set the default integer format in the Watch, Locals, and related
windows.

All functions The debugger will step into all functions.

Functions with source only The debugger will only step into functions for which the
source code is known. This helps you avoid stepping into
library functions or entering disassembly mode debugging.
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

IAR Embedded Workbench® IDE reference
STACK OPTIONS

Use the Stack options—available by choosing Tools>Options or from the context
menu in the Memory window—to set options specific to the Stack window.

Figure 124: Stack options

Enable graphical stack display and stack usage tracking

Use this option to enable the graphical stack bar available at the top of the Stack window.
At the same time, it enables the functionality needed to detect stack overflows. To read
more about the stack bar and the information it provides, see The graphical stack bar,
page 301.

% stack usage threshold

Use this text field to specify the percentage of stack usage above which C-SPY should
issue a warning for stack overflow.
UEW-8:1

Part 6. Reference information 261

262

Menus
Warn when exceeding stack threshold

Use this option to make C-SPY issue a warning when the stack usage exceeds the
threshold specified in the % stack usage threshold option.

Warn when stack pointer is out of bounds

Use this option to make C-SPY issue a warning when the stack pointer is outside the
stack memory range.

Stack pointer(s) not valid until reaching

Use this option to specify a location in your application code from where you want the
stack display and verification to occur. The Stack window will not display any
information about stack usage until execution has reached this location. By default,
C-SPY will not track the stack usage before the main function. If your application does
not have a main function, for example, if it is an assembler-only project, you should
specify your own start label. If this option is used, after each reset C-SPY keeps a
breakpoint on the given location until it is reached.

Typically, the stack pointer is set up in the system initialization code cstartup, but not
necessarily from the very first instruction. If you use this option, you can avoid incorrect
warnings or misleading stack display for this part of the application.

Warnings

You can choose to issue warnings using one of these options:

Limit stack display to

Use this option to limit the amount of memory displayed in the Stack window by
specifying a number, counting from the stack pointer. This can be useful if you have a
big stack or if you are only interested in the topmost part of the stack. Using this option
can improve the Stack window performance, especially if reading memory from the
target system is slow. By default, the Stack window shows the whole stack, or in other
words, from the stack pointer to the bottom of the stack. If the debugger cannot
determine the memory range for the stack, the byte limit is used even if the option is not
selected.

Log Warnings are issued in the Debug Log window

Log and alert Warnings are issued in the Debug Log window and as alert dialog
boxes.
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

IAR Embedded Workbench® IDE reference
Note: The Stack window does not affect the execution performance of your
application, but it might read a large amount of data to update the displayed information
when the execution stops.

REGISTER FILTER OPTIONS

Use the Register Filter options—available by choosing Tools>Options when the
debugger is running—to display registers in the Register window in groups you have
created yourself. For more information about register groups, see Register groups, page
143.

Figure 125: Register Filter options

These options are available:

Option Description

Use register filter Enables the usage of register filters.

Filter Files Displays a dialog box where you can select or create a new filter file.

Groups Lists available groups in the register filter file, alternatively displays the
new register group.

New Group The name for the new register group.

Group members Lists the registers selected from the register scroll bar window.

Base Changes the default integer base.

Table 63: Register Filter options
UEW-8:1

Part 6. Reference information 263

264

Menus
TERMINAL I/O OPTIONS

Use the Terminal I/O options—available by choosing Tools>Options when the
debugger is running—to configure the C-SPY terminal I/O functionality.

Figure 126: Terminal I/O options

Keyboard

Use the Keyboard option to make the input characters be read from the keyboard.
Choose between:

File

Use the File option to make the input characters be read from a file. A browse button is
available for locating the file. Choose between:

Input Echoing

Input characters can be echoed either in a log file, or in the C-SPY Terminal I/O window.
To echo input in a file requires that you have enabled the option
Debug>Logging>Enable log file.

Buffered Input characters are buffered.

Direct Input characters are not buffered.

Text Input characters are read from a text file.

Binary Input characters are read from a binary file.
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

IAR Embedded Workbench® IDE reference
Show target reset in Terminal I/O window

When the target resets, a message is displayed in the C-SPY Terminal I/O window.

CONFIGURE TOOLS DIALOG BOX

In the Configure Tools dialog box—available from the Tools menu—you can specify
a user-defined tool to add to the Tools menu.

Figure 127: Configure Tools dialog box

Note: If you intend to add an external tool to the standard build tool chain, see
Extending the tool chain, page 95.

These options are available:

Option Description

Menu Content Lists all available user defined menu commands.

Menu Text Specifies the text for the menu command. If you add the sign &,
the following letter, N in this example, will appear as the mnemonic
key for this command. The text you type in this field will be
reflected in the Menu Content field.

Table 64: Configure Tools dialog box options
UEW-8:1

Part 6. Reference information 265

266

Menus
Note: You can use variables in the arguments, which allows you to set up useful tools
such as interfacing to a command line revision control system, or running an external
tool on the selected file.

To remove a command from the Tools menu, select it in this list and click Remove.

Click OK to confirm the changes you have made to the Tools menu.

The menu items you have specified will then be displayed on the Tools menu.

Figure 128: Customized Tools menu

Command Specifies the command, and its path, to be run when you choose
the command from the menu. A browse button is available for
your convenience.

Argument Optionally type an argument for the command.

Initial Directory Specifies an initial working directory for the tool.

Redirect to Output window Specifies any console output from the tool to the Tool Output
page in the Messages window. Tools that are launched with this
option cannot receive any user input, for instance input from the
keyboard.
Tools that require user input or make special assumptions regarding
the console that they execute in, will not work at all if launched
with this option.

Prompt for Command Line Displays a prompt for the command line argument when the
command is chosen from the Tools menu.

Tool Available Specifies in which context the tool should be available, only when
debugging or only when not debugging.

Option Description

Table 64: Configure Tools dialog box options (Continued)
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

IAR Embedded Workbench® IDE reference
Specifying command line commands or batch files

Command line commands or batch files must be run from a command shell, so to add
these to the Tools menu you can specify an appropriate command shell in the
Command text box. These are the command shells that you can enter as commands:

For an example, see Adding command line commands, page 80.

FILENAME EXTENSIONS DIALOG BOX

In the Filename Extensions dialog box—available from the Tools menu—you can
customize the filename extensions recognized by the build tools. This is useful if you
have many source files that have a different filename extension.

If you have an IAR Embedded Workbench for a different microprocessor installed on
your host computer, it can appear in the Tool Chain box. In that case you should select
the tool chain you want to customize.

Figure 129: Filename Extensions dialog box

Note the * sign which indicates user-defined overrides. If there is no * sign, factory
settings are used.

Click Edit to open the Filename Extension Overrides dialog box.

Command shell System

cmd.exe (recommended) or command.com Windows 2000/XP/Vista

Table 65: Command shells
UEW-8:1

Part 6. Reference information 267

268

Menus
FILENAME EXTENSION OVERRIDES DIALOG BOX

The Filename Extension Overrides dialog box—available by clicking Edit in the
Filename Extensions dialog box—lists the available tools in the build chain, their
factory settings for filename extensions, and any defined overrides.

Figure 130: Filename Extension Overrides dialog box

Select the tool for which you want to define more recognized filename extensions, and
click Edit to open the Edit Filename Extensions dialog box.

EDIT FILENAME EXTENSIONS DIALOG BOX

The Edit File Extensions dialog box—available by clicking Edit in the Filename
Extension Overrides dialog box—lists the filename extensions accepted by default,
and you can also define new filename extensions.

Figure 131: Edit Filename Extensions dialog box

Click Override and type the new filename extension you want to be recognized.
Extensions can be separated by commas or semicolons, and should include the leading
period.
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

IAR Embedded Workbench® IDE reference
CONFIGURE VIEWERS DIALOG BOX

The Configure Viewers dialog box—available from the Tools menu—lists the
filename extensions of document formats that IAR Embedded Workbench can handle,
and which viewer application that are used for opening the document type. Explorer
Default in the Action column means that the default application associated with the
specified type in Windows Explorer is used for opening the document type.

Figure 132: Configure Viewers dialog box

To specify how to open a new document type or editing the setting for an existing
document type, click New or Edit to open the Edit Viewer Extensions dialog box.

EDIT VIEWER EXTENSIONS DIALOG BOX

Type the filename extension for the document type—including the separating
period (.)—in the Filename extensions box.

Figure 133: Edit Viewer Extensions dialog box

Then choose one of the Action options:

● Built-in text editor—select this option to open all documents of the specified type
with the IAR Embedded Workbench text editor.

● Use file explorer associations—select this option to open all documents with the
default application associated with the specified type in Windows Explorer.
UEW-8:1

Part 6. Reference information 269

270

Menus
● Command line—select this option and type or browse your way to the viewer
application, and give any command line options you would like to the tool.

WINDOW MENU

Use the commands on the Window menu to manipulate the IDE windows and change
their arrangement on the screen.

The last section of the Window menu lists the windows currently open on the screen.
Choose the window you want to switch to.

Figure 134: Window menu

These commands are available on the Window menu:

Menu command Description

Close Tab Closes the active tab.

Close Window CTRL+F4 Closes the active editor window.

Split Splits an editor window horizontally or vertically into two,
or four panes, to allow you to see more parts of a file
simultaneously.

New Vertical Editor
Window

Opens a new empty window next to current editor
window.

New Horizontal Editor
Window

Opens a new empty window under current editor window.

Move Tabs To Next
Window

Moves all tabs in current window to next window.

Move Tabs To Previous
Window

Moves all tabs in current window to previous window.

Close All Tabs Except
Active

Closes all the tabs except the active tab.

Close All Editor Tabs Closes all tabs currently available in editor windows.

Table 66: Window menu commands
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

IAR Embedded Workbench® IDE reference
HELP MENU

The Help menu provides help about IAR Embedded Workbench and displays the
version numbers of the user interface and of the IDE.

EMBEDDED WORKBENCH STARTUP DIALOG BOX

The Embedded Workbench Startup dialog box—available from the Help
menu—provides easy access to ready-made example workspaces that you can build and
execute out of the box for a smooth development startup.

Figure 135: Embedded Workbench Startup dialog box

Create new project in current workspace

Use this option to create a new project in your current workspace.

Add existing project to current workspace

Use this option to add an existing project to your current workspace.

Open existing workspace

Use this option to open an existing workspace.
UEW-8:1

Part 6. Reference information 271

272

Menus
Note: Do not use this option to open an existing workspace which is part of your
product installation, because that might overwrite the original files. Instead, use the
option Example applications.

Example applications

Use this option to open the Example Applications dialog box. In this dialog box you
can choose an example application which is part of your product installation. Click
Open to first choose a destination directory for the project and then to open it. Select Do
not prompt for working copy directory if you do not want to be prompted for a
destination directory. In this case, the example application will be copied to the My
Documents\IAR Embedded Workbench\cpuname\Example Applications
directory.

Recent workspace

In the list of workspaces, select a recently used workspace and click Open to open it. If
this is the first time you open your IAR Embedded Workbench, the list is empty.

Do not show this window at startup

Use this option if you do no want the Embedded Workbench Startup dialog box to be
automatically displayed when you start IAR Embedded Workbench. If you have
selected this option, you can still open the dialog box from the Help menu.
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

C-SPY® reference
This chapter contains reference information about the windows, menus, menu
commands, and the corresponding components that are specific for the IAR
C-SPY Debugger. This chapter contains the following sections:

● C-SPY windows, page 273

● C-SPY menus, page 304.

C-SPY windows
The following windows specific to C-SPY are available:

● C-SPY Debugger main window

● Disassembly window

● Memory window

● Symbolic Memory window

● Register window

● Watch window

● Locals window

● Auto window

● Live Watch window

● Quick Watch window

● Statics window

● Call Stack window

● Terminal I/O window

● Code Coverage window

● Profiling window

● Stack window

● Symbols window.

Additional windows are available depending on which C-SPY driver you are using. For
information about driver-specific windows, see the driver-specific documentation.
UEW-8:1

Part 6. Reference information 273

274

C-SPY windows
EDITING IN C-SPY WINDOWS

You can edit the contents of the Memory, Symbolic Memory, Register, Auto, Watch,
Locals, Statics, Live Watch, and Quick Watch windows.

Use these keyboard keys to edit the contents of these windows:

C-SPY DEBUGGER MAIN WINDOW

When you start the debugger, these debugger-specific items appear in the main IAR
Embedded Workbench IDE window:

● A dedicated debug menu with commands for executing and debugging your
application

● Depending on the C-SPY driver you are using, a driver-specific menu. Typically,
this menu contains menu commands for opening driver-specific windows and dialog
boxes. See the driver-specific documentation for more information

● A special debug toolbar

● Several windows and dialog boxes specific to C-SPY.

The window might look different depending on which components you are using.

Each window item is explained in greater detail in the following sections.

Menu bar

In addition to the menus available in the development environment, the Debug menu is
available when C-SPY is running. The Debug menu provides commands for executing
and debugging the source application. Most of the commands are also available as icon
buttons on the debug toolbar.

Additional menus might be available, depending on which debugger drivers have been
installed; for information, see the driver-specific documentation.

Debug toolbar

The debug toolbar provides buttons for the most frequently-used commands on the
Debug menu.

For a description of any button, point to it with the mouse pointer. When a command is
not available the corresponding button is dimmed and you will not be able to select it.

Key Description

Enter Makes an item editable and saves the new value.

Esc Cancels a new value.

Table 67: Editing in C-SPY windows
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

C-SPY® reference
This diagram shows the command corresponding to each button:

Figure 136: C-SPY debug toolbar

DISASSEMBLY WINDOW

The C-SPY Disassembly window—available from the View menu—shows the
application being debugged as disassembled application code.

Figure 137: C-SPY Disassembly window

Reset

Break

Step Over

Step Into

Step Out

Next
Statement

Run To
Cursor

Go

Stop
Debugging

Go to memory
address

Current position

Breakpoint

Zone display Toggle embedded source mode

Code coverage
information
UEW-8:1

Part 6. Reference information 275

276

C-SPY windows
Toolbar

At toolbar at the top of the window provides these toolbar buttons:

The display area

The current position—highlighted in green—indicates the next assembler instruction to
be executed. To move the cursor to any line in the Disassembly window, click on the
line. Alternatively, move the cursor using the navigation keys. Double-click in the gray
left-side margin of the window to set a breakpoint, which is indicated in red. Code that
has been executed—code coverage—is indicated with a green diamond.

If instruction profiling has been enabled from the context menu, an extra column in the
left-side margin appears with information about how many times each instruction has
been executed.

To change the default color of the source code in the Disassembly window, choose
Tools>Options>Debugger. Set the default color using the Set source code coloring in
Disassembly window option.

To view the corresponding assembler code for a function, you can select it in the editor
window and drag it to the Disassembly window.

Toolbar button Description

Go to The location you want to view. This can be a memory address, or the
name of a variable, function, or label.

Zone display Lists the available memory zones to display. Read more about Zones in
the section Memory addressing, page 141.

Toggle Mixed-Mode Toggles between showing only disassembled code or disassembled code
together with the corresponding source code. Source code requires that
the corresponding source file has been compiled with debug information.

Table 68: Disassembly window toolbar
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

C-SPY® reference
Disassembly context menu

This is the context menu available in the Disassembly window:

Figure 138: Disassembly window context menu

Note: The contents of this menu are dynamic, which means it might contain other
commands than in this figure. All available commands are described in Table 69,
Disassembly context menu commands.

These commands are available on the menu:

Menu command Description

Move to PC Displays code at the current program counter location.

Run to Cursor Executes the application from the current position up to the line
containing the cursor.

Code Coverage Opens a submenu that provides commands for controlling code
coverage. This command is only enabled if the driver you are using
supports it.
Enable, toggles code coverage on and off.
Show, toggles the display of code coverage. Executed code is
indicated by a green diamond.
Clear, clears all code coverage information.

Instruction Profiling Opens a submenu that provides commands for controlling
instruction profiling. This command is only enabled if the driver you
are using supports it.
Enable, toggles instruction profiling on and off.
Show, toggles the display of instruction profiling. For each
instruction, the left-side margin displays how many times the
instruction has been executed.
Clear, clears all instruction profiling information.

Table 69: Disassembly context menu commands
UEW-8:1

Part 6. Reference information 277

278

C-SPY windows
MEMORY WINDOW

The Memory window—available from the View menu—gives an up-to-date display of
a specified area of memory and allows you to edit it. You can open several instances of

Toggle Breakpoint (Code) Toggles a code breakpoint. Assembler instructions at which code
breakpoints have been set are highlighted in red. For information
about code breakpoints, see Code breakpoints dialog box, page 214.

Toggle Breakpoint (Log) Toggles a log breakpoint for trace printouts. Assembler instructions
at which log breakpoints have been set are highlighted in red. For
information about log breakpoints, see Log breakpoints dialog box, page
216.

Enable/Disable Breakpoint Enables and Disables a breakpoint.

Edit Breakpoint Displays the Edit Breakpoint dialog box to let you edit the
currently selected breakpoint. If there are more than one breakpoint
on the selected line, a submenu is displayed that lists all available
breakpoints on that line.

Set Next Statement Sets program counter to the location of the insertion point.

Copy Window Contents Copies the selected contents of the Disassembly window to the
clipboard.

Mixed-Mode Toggles between showing only disassembled code or disassembled
code together with the corresponding source code. Source code
requires that the corresponding source file has been compiled with
debug information.

Menu command Description

Table 69: Disassembly context menu commands (Continued)
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

C-SPY® reference
this window, which is very convenient if you want to keep track of several memory or
register zones, or monitor different parts of the memory.

Figure 139: Memory window

Toolbar

The toolbar at the top of the window provides these commands:

Available zones

Memory addresses

Context menu buttonMemory contents

Data coverage
information

Go to location

Memory contents in ASCII format

Operation Description

Go to The location you want to view. This can be a memory address, or the
name of a variable, function, or label.

Zone display Lists the available memory zones to display. Read more about Zones in
Memory addressing, page 141.

Context menu button Displays the context menu, see Memory window context menu, page 280.

Update Now Updates the content of the Memory window while your application is
executing. This button is only enabled if the C-SPY driver you are using
has access to the target system memory while your application is
executing.

Table 70: Memory window operations
UEW-8:1

Part 6. Reference information 279

280

C-SPY windows
The display area

The display area shows the addresses currently being viewed, the memory contents in
the format you have chosen, and the memory contents in ASCII format. You can edit the
contents of the Memory window, both in the hexadecimal part and the ASCII part of the
window.

Data coverage is displayed with these colors:

● Yellow indicates data that has been read

● Blue indicates data that has been written

● Green indicates data that has been both read and written.

Note: Data coverage is not supported by all C-SPY drivers. Data coverage is supported
by the C-SPY Simulator.

To view the memory corresponding to a variable, you can select it in the editor window
and drag it to the Memory window.

Memory window context menu

This context menu is available in the Memory window:

Figure 140: Memory window context menu

Live Update Updates the contents of the Memory window regularly while your
application is executing. This button is only enabled if the C-SPY driver
you are using has access to the target system memory while your
application is executing. To set the update frequency, specify an
appropriate frequency in the IDE Options>Debugger dialog box.

Operation Description

Table 70: Memory window operations (Continued)
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

C-SPY® reference
These commands are available on the menu:

Menu command Description

Copy, Paste Standard editing commands.

Zone Lists the available memory zones to display. Read more about Zones in
Memory addressing, page 141.

x1, x2, x4 Units Switches between displaying the memory contents in units of 8, 16, or 32
bits

Little Endian
Big Endian

Switches between displaying the contents in big-endian or little-endian
order.

Data Coverage
Enable
Show
Clear

Enable toggles data coverage on and off.
Show toggles between showing and hiding data coverage.
Clear clears all data coverage information.

Memory Fill Displays the Fill dialog box, where you can fill a specified area with a
value, see Fill dialog box, page 282.

Memory Save Displays the Memory Save dialog box, where you can save the
contents of a specified memory area to a file, see Memory Save dialog box,
page 283.

Memory Restore Displays the Memory Restore dialog box, where you can load the
contents of a file in Intex-hex or Motorola s-record format to a specified
memory zone, see Memory Restore dialog box, page 284.

Set Data Breakpoint Sets breakpoints directly in the Memory window. The breakpoint is not
highlighted; you can see, edit, and remove it in the Breakpoints dialog
box. The breakpoints you set in this window will be triggered for both
read and write access.

Table 71: Commands on the memory window context menu
UEW-8:1

Part 6. Reference information 281

282

C-SPY windows
FILL DIALOG BOX

In the Fill dialog box—available from the context menu in the Memory window—you
can fill a specified area of memory with a value.

Figure 141: Fill dialog box

Options

These are the available memory fill operations:

Option Description

Start Address Type the start address—in binary, octal, decimal, or hexadecimal
notation.

Length Type the length—in binary, octal, decimal, or hexadecimal notation.

Zone Select memory zone.

Value Type the 8-bit value to be used for filling each memory location.

Table 72: Fill dialog box options

Operation Description

Copy The Value will be copied to the specified memory area.

AND An AND operation will be performed between the Value and the
existing contents of memory before writing the result to memory.

XOR An XOR operation will be performed between the Value and the
existing contents of memory before writing the result to memory.

OR An OR operation will be performed between the Value and the existing
contents of memory before writing the result to memory.

Table 73: Memory fill operations
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

C-SPY® reference
MEMORY SAVE DIALOG BOX

Use the Memory Save dialog box—available by choosing Debug>Memory>Save or
from the context menu in the Memory window—to save the contents of a specified
memory area to a file.

Figure 142: Memory Save dialog box

Zone

The available memory zones.

Start address

The start address of the memory range to be saved.

Stop address

The stop address of the memory range to be saved.

File format

The file format to be used, which is Intel-extended by default.

Filename

The destination file to be used; a browse button is available for your convenience.

Save

Saves the selected range of the memory zone to the specified file.
UEW-8:1

Part 6. Reference information 283

284

C-SPY windows
MEMORY RESTORE DIALOG BOX

Use the Memory Restore dialog box—available by choosing Debug>Memory>Save
or from the context menu in the Memory window—to load the contents of a file in
Intel-extended or Motorola S-record format to a specified memory zone.

Figure 143: Memory Restore dialog box

Zone

The available memory zones.

Filename

The file to be read; a browse button is available for your convenience.

Restore

Loads the contents of the specified file to the selected memory zone.

SYMBOLIC MEMORY WINDOW

The Symbolic Memory window—available from the View menu when the debugger is
running—displays how variables with static storage duration, typically variables with
file scope but also static variables in functions and classes, are laid out in memory. This
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

C-SPY® reference
can be useful for spotting alignment holes or for understanding problems caused by
buffers being overwritten.

Figure 144: Symbolic Memory window

Toolbar

The toolbar at the top of the window provides these toolbar buttons:

The display area

The display area displays the memory space, where information is provided in these
columns:

Operation Description

Go to The memory location or symbol you want to view.

Zone display Lists the available memory zones to display. To read more about zones,
see Memory addressing, page 141.

Previous Jumps to the previous symbol.

Next Jumps to the next symbol.

Table 74: Symbolic Memory window toolbar

Column Description

Location The memory address.

Data The memory contents in hexadecimal format. The data is grouped
according to the size of the symbol. This column is editable.

Variable The variable name; requires that the variable has a fixed memory
location. Local variables are not displayed.

Table 75: Symbolic memory window columns
UEW-8:1

Part 6. Reference information 285

286

C-SPY windows
There are several different ways to navigate within the memory space:

● Text that is dropped in the window is interpreted as symbols

● The scroll bar at the right-side of the window

● The toolbar buttons Next and Previous
● The toolbar list box Go to can be used for locating specific locations or symbols.

Note: Rows are marked in red when the corresponding value has changed.

Symbolic Memory window context menu

This context menu is available in the Symbolic Memory window:

Figure 145: Symbolic Memory window context menu

These commands are available on the context menu:

REGISTER WINDOW

The Register window—available from the View menu—gives an up-to-date display of
the contents of the processor registers, and allows you to edit them. When a value
changes it becomes highlighted. Some registers are expandable, which means that the
register contains interesting bits or sub-groups of bits.

Value The value of the variable. This column is editable.

Type The type of the variable.

Menu command Description

Next Symbol Jumps to the next symbol.

Previous Symbol Jumps to the previous symbol.

x1, x2, x4 Units Switches between displaying the memory contents in units of 8, 16,
or 32 bits. This applies only to rows which do not contain a variable.

Add to Watch Window Adds the selected symbol to the Watch window.

Table 76: Commands on the Symbolic Memory window context menu

Column Description

Table 75: Symbolic memory window columns (Continued)
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

C-SPY® reference
You can open several instances of this window, which is very convenient if you want to
keep track of different register groups.

Figure 146: Register window

Use the drop-down list to select which register group to display in the Register window.
To define application-specific register groups, see Defining application-specific groups,
page 144.

WATCH WINDOW

The Watch window—available from the View menu—allows you to monitor the values
of C-SPY expressions or variables. You can view, add, modify, and remove expressions
in the Watch window. Tree structures of arrays, structs, and unions are expandable,
which means that you can study each item of these.

Figure 147: Watch window
UEW-8:1

Part 6. Reference information 287

288

C-SPY windows
Every time execution in C-SPY stops, a value that has changed since the last stop is
highlighted. In fact, every time memory changes, the values in the Watch window are
recomputed, including updating the red highlights.

Watch window context menu

This context menu is available in the Watch window:

Figure 148: Watch window context menu

The menu contains these commands:

The display format setting affects different types of expressions in different ways:

Menu command Description

Add, Remove Adds or removes the selected expression.

Default Format,
Binary Format,
Octal Format,
Decimal Format,
Hexadecimal Format,
Char Format

Changes the display format of expressions. The display format setting
affects different types of expressions in different ways, see Table 78,
Effects of display format setting on different types of expressions. Your
selection of display format is saved between debug sessions.

Show As Provides a submenu with commands for changing the default type
interpretation of variables. The commands on this submenu are mainly
useful for assembler variables—data at assembler labels—because these
are, by default, displayed as integers. For more information, see Viewing
assembler variables, page 130.

Table 77: Watch window context menu commands

Type of expressions Effects of display format setting

Variable The display setting affects only the selected variable, not other variables.

Array element The display setting affects the complete array, that is, same display format
is used for each array element.

Table 78: Effects of display format setting on different types of expressions
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

C-SPY® reference
LOCALS WINDOW

The Locals window—available from the View menu—automatically displays the local
variables and function parameters.

Figure 149: Locals window

Locals window context menu

The context menu available in the Locals window provides commands for changing the
display format of expressions; for information about these commands, see Watch
window context menu, page 288.

AUTO WINDOW

The Auto window—available from the View menu—automatically displays a useful
selection of variables and expressions in, or near, the current statement.

Figure 150: Auto window

Structure field All elements with the same definition—the same field name and C
declaration type—are affected by the display setting.

Type of expressions Effects of display format setting

Table 78: Effects of display format setting on different types of expressions (Continued)
UEW-8:1

Part 6. Reference information 289

290

C-SPY windows
Auto window context menu

The context menu available in the Auto window provides commands for changing the
display format of expressions; for information about these commands, see Watch
window context menu, page 288.

LIVE WATCH WINDOW

The Live Watch window—available from the View menu—repeatedly samples and
displays the value of expressions while your application is executing. Variables in the
expressions must be statically located, such as global variables.

Figure 151: Live Watch window

Typically, this window is useful for hardware target systems supporting this feature.

Live Watch window context menu

The context menu available in the Live Watch window provides commands for adding
and removing expressions, changing the display format of expressions, and commands
for changing the default type interpretation of variables. For information about these
commands, see Watch window context menu, page 288.

In addition, the menu contains the Options command, which opens the Debugger
dialog box where you can set the Update interval option. The default value of this
option is 1000 milliseconds, which means the Live Watch window will be updated once
every second during program execution.
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

C-SPY® reference
QUICK WATCH WINDOW

In the Quick Watch window—available from the View menu—you can watch the value
of a variable or expression and evaluate expressions.

Figure 152: Quick Watch window

Type the expression you want to examine in the Expressions text box. Click the
Recalculate button to calculate the value of the expression. For examples about how to
use the Quick Watch window, see Using the Quick Watch window, page 129 and
Executing macros using Quick Watch, page 150.

Quick Watch window context menu

The context menu available in the Quick Watch window provides commands for
changing the display format of expressions, and commands for changing the default type
interpretation of variables. For information about these commands, see Watch window
context menu, page 288.

In addition, the menu contains the Add to Watch window command, which adds the
selected expression to the Watch window.

STATICS WINDOW

The Statics window—available from the View menu—displays the values of variables
with static storage duration, typically that is variables with file scope but also static
UEW-8:1

Part 6. Reference information 291

292

C-SPY windows
variables in functions and classes. Note that volatile declared variables with static
storage duration will not be displayed.

Figure 153: Statics window

The display area

The display area shows the values of variables with static storage duration, where
information is provided in these columns:

Statics window context menu

This context menu is available in the Statics window:

Figure 154: Statics window context menu

Column Description

Expression The name of the variable. The base name of the variable is followed by
the full name, which includes module, class, or function scope. This
column is not editable.

Value The value of the variable. Values that have changed are highlighted in red.
This column is editable.

Location The location in memory where this variable is stored.

Type The data type of the variable.

Table 79: Symbolic memory window columns
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

C-SPY® reference
The menu contains these commands:

SELECT STATICS DIALOG BOX

Use the Select Statics dialog box—available from the context menu in the Statics
window—to select which variables should be displayed in the Statics window.

Figure 155: Select Statics dialog box

Show all variables with static storage duration

Use this option to make all variables be displayed in the Statics window, including new
variables that are added to your application between debug sessions.

Show selected variables only

Use this option to select which variables you want to be displayed in the Statics window.
Note that in this case if you add a new variable to your application between two debug

Menu command Description

Default Format,
Binary Format,
Octal Format,
Decimal Format,
Hexadecimal Format,
Char Format

Changes the display format of expressions. The display format
setting affects different types of expressions in different ways, see
Table 78, Effects of display format setting on different types of
expressions. Your selection of display format is saved between
debug sessions.

Select Statics Displays a dialog box where you can select a subset of variables to
be displayed in the Statics window, see Select Statics dialog box,
page 293.

Table 80: Statics window context menu commands
UEW-8:1

Part 6. Reference information 293

294

C-SPY windows
sessions, this variable will not automatically be displayed in the Statics window. If the
checkbox next to a variable is selected, the variable will be displayed.

CALL STACK WINDOW

The Call stack window—available from the View menu—displays the C function call
stack with the current function at the top. To inspect a function call, double-click it.
C-SPY now focuses on that call frame instead.

Figure 156: Call Stack window

Each entry has the format:

function(values)

where (values) is a list of the current value of the parameters, or empty if the function
does not take any parameters.

If the Step Into command steps into a function call, the name of the function is
displayed in the grey bar at the top of the window. This is especially useful for implicit
function calls, such as C++ constructors, destructors, and operators.

Call Stack window context menu

The context menu available when you right-click in the Call Stack window provides
these commands:

Figure 157: Call Stack window context menu

Destination for Step
Into
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

C-SPY® reference
Commands

TERMINAL I/O WINDOW

In the Terminal I/O window—available from the View menu—you can enter input to
the application, and display output from it. To use this window, you must link the
application with the option Debug info with terminal I/O. C-SPY will then direct
stdin, stdout and stderr to this window. If the Terminal I/O window is closed,
C-SPY will open it automatically when input is required, but not for output.

Figure 158: Terminal I/O window

Clicking the Ctrl codes button opens a menu with submenus for input of special
characters, such as EOF (end of file) and NUL.

Figure 159: Ctrl codes menu

Go to Source Displays the selected functions in the Disassembly or editor
windows.

Show Arguments Shows function arguments.

Run to Cursor Executes to the function selected in the call stack.

Toggle Breakpoint (Code) Toggles a code breakpoint.

Toggle Breakpoint (Log) Toggles a log breakpoint.

Enable/Disable Breakpoint Enables or disables the selected breakpoint.
UEW-8:1

Part 6. Reference information 295

296

C-SPY windows
Clicking the Input Mode button opens the Input Mode dialog box where you choose
whether to input data from the keyboard or from a file.

Figure 160: Input Mode dialog box

For reference information about the options available in the dialog box, see Terminal I/O
options, page 264.

CODE COVERAGE WINDOW

The Code Coverage window—available from the View menu—reports the status of the
current code coverage analysis, that is, what parts of the code that have been executed
at least once since the start of the analysis. The compiler generates detailed stepping
information in the form of step points at each statement, and at each function call. The
report includes information about all modules and functions. It reports the amount of all
step points, in percentage, that have been executed and lists all step points that have not
been executed up to the point where the application has been stopped. The coverage will
continue until turned off.

Figure 161: Code Coverage window
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

C-SPY® reference
Note: You can enable the Code Coverage plugin module on the Debugger>Plugins
page available in the Options dialog box.

Code coverage is not supported by all C-SPY drivers. For information about whether the
C-SPY driver you are using supports code coverage, see the driver-specific
documentation in the online help system available from the Help menu. Code coverage
is supported by the C-SPY Simulator.

Toolbar

The toolbar at the top of the window provides these buttons:

The display area

These icons are used to give you an overview of the current status on all levels:

● A red diamond signifies that 0% of the code has been executed

● A green diamond signifies that 100% of the code has been executed

● A red and green diamond signifies that some of the code has been executed

● A yellow diamond signifies a step point that has not been executed.

For step point lines, the information displayed is the column number range and the row
number of the step point in the source window, followed by the address of the step point.

<column start>-<column end>:<row>.

Toolbar button Description

Activate Switches code coverage on and off during execution.

Clear Clears the code coverage information. All step points are marked as not
executed.

Refresh Updates the code coverage information and refreshes the window. All
step points that have been executed since the last refresh are removed
from the tree.

Auto-refresh Toggles the automatic reload of code coverage information on and off.
When turned on, the code coverage information is reloaded
automatically when C-SPY stops at a breakpoint, at a step point, and at
program exit.

Save As Saves the current code coverage result in a text file.

Save session Saves your code coverage session data to a *.dat file.

Restore session Restores previously saved code coverage session data.

Table 81: Code Coverage window toolbar
UEW-8:1

Part 6. Reference information 297

298

C-SPY windows
Code Coverage window context menu

This context menu is available in the Code Coverage window:

Figure 162: Code coverage context menu

These commands are available on the menu:

PROFILING WINDOW

The Profiling window—available from the View menu—displays profiling information,
that is, timing information for the functions in an application. Profiling must be turned
on explicitly using a button in the window’s toolbar, and will stay active until it is turned
off.

Menu command Description

Activate Switches code coverage on and off during execution.

Clear Clears the code coverage information. All step points are marked as not
executed.

Refresh Updates the code coverage information and refreshes the window. All
step points that has been executed since the last refresh are removed
from the tree.

Auto-refresh Toggles the automatic reload of code coverage information on and off.
When turned on, the code coverage information is reloaded
automatically when C-SPY stops at a breakpoint, at a step point, and at
program exit.

Save As Saves the current code coverage result in a text file.

Table 82: Code Coverage window context menu commands
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

C-SPY® reference
The profiler measures time at the entry and return of a function. This means that time
consumed in a function is not added until the function returns or another function is
called. You will only notice this if you are stepping into a function.

Figure 163: Profiling window

Note: You can enable the Profiling plugin module on the Debugger>Plugins page
available in the Options dialog box.

Profiling is not supported by all C-SPY drivers. For information about whether the
C-SPY driver you are using supports profiling, see the driver-specific documentation in
the online help system available from the Help menu. Profiling is supported by the
C-SPY Simulator.

Profiling commands

In addition to the toolbar buttons, the context menu available in the Profiling window
gives you access to these and some extra commands:

Figure 164: Profiling context menu

You can find these commands on the menu:

Activate Toggles profiling on and off during execution.

New measurement Starts a new measurement. To reset the displayed values to zero, click
the button.

Graph Displays the percentage information for Flat Time and Accumulated
Time as graphs (bar charts) or numbers.
UEW-8:1

Part 6. Reference information 299

300

C-SPY windows
Profiling columns

The Profiling window contains these columns:

There is always an item in the list called Outside main. This is time that cannot be
placed in any of the functions in the list. That is, code compiled without debug
information, for instance, all startup and exit code, and C/C++ library code.

STACK WINDOW

The Stack window is a memory window that displays the contents of the stack. In
addition, some integrity checks of the stack can be performed to detect and warn about
problems with stack overflow. For example, the Stack window is useful for determining
the optimal size of the stack.

Before you can open the Stack window you must make sure it is enabled: choose
Project>Options>Debugger>Plugins and select Stack from the list of plugins. In
C-SPY, you can then open a Stack window by choosing View>Stack. You can open

Show details Shows more detailed information about the function selected in the list.
A window is opened showing information about callers and callees for
the selected function.

Refresh Updates the profiling information and refreshes the window.

Auto refresh Toggles the automatic update of profiling information on and off. When
turned on, the profiling information is updated automatically when
C-SPY stops at a breakpoint, at a step point, and at program exit.

Save As Saves the current profiling information in a text file.

Column Description

Function The name of each function.

Calls The number of times each function has been called.

Flat Time The total time spent in each function in cycles or as a percentage of the
total number of cycles, excluding all function calls made from that
function.

Accumulated Time Time spent in each function in cycles or as a percentage of the total
number of cycles, including all function calls made from that function.

Table 83: Profiling window columns
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

C-SPY® reference
several Stack windows, each showing a different stack—if several stacks are
available—or the same stack with different display settings.

Figure 165: Stack window

The stack drop-down menu

If the microcontroller you are using has multiple stacks, you can use the stack
drop-down menu at the top of the window to select which stack to view.

The graphical stack bar

At the top of the window, a stack bar displays the state of the stack graphically. To view
the stack bar you must make sure it is enabled: choose Tools>Options>Stack and select
the option Enable graphical stack display and stack usage tracking.

The left end of the stack bar represents the bottom of the stack, in other words, the
position of the stack pointer when the stack is empty. The right end represents the end
of the memory space reserved for the stack. A green line represents the current value of
the stack pointer. The part of the stack memory that has been used during execution is
displayed in a dark gray color, and the unused part in a light gray color. The graphical
stack bar turns red when the stack usage exceeds a threshold that you can specify.

When your application is first loaded, and upon each reset, the memory for the stack area
is filled with the dedicated byte value 0xCD before the application starts executing.
Whenever execution stops, the stack memory is searched from the end of the stack until
a byte with a value different from 0xCD is found, which is assumed to be how far the
stack has been used. Although this is a reasonably reliable way to track stack usage,
there is no guarantee that a stack overflow is detected. For example, a stack can
incorrectly grow outside its bounds, and even modify memory outside the stack range,
without actually modifying any of the bytes near the stack range. Likewise, your
application might modify memory within the stack range by mistake. Furthermore, the
Stack window cannot detect a stack overflow when it happens, but can only detect the
signs it leaves behind.
UEW-8:1

Part 6. Reference information 301

302

C-SPY windows
Note: The size and location of the stack is retrieved from the definition of the segment
holding the stack, typically CSTACK, made in the linker command file. If you, for some
reason, modify the stack initialization made in the system startup code, cstartup, you
should also change the segment definition in the linker command file accordingly;
otherwise the Stack window cannot track the stack usage. To read more about this, see
the IAR C/C++ Compiler Reference Guide.

When the stack bar is enabled, the functionality needed to detect and warn about stack
overflows is also enabled, see Stack options, page 261.

The Stack window columns

The main part of the window displays the contents of stack memory in these columns:

The Stack window context menu

This context menu is available if you right-click in the Stack window:

Figure 166: Stack window context menu

Column Description

Location Displays the location in memory. The addresses are displayed in
increasing order. If your target system has a stack that grows toward high
addresses, the top of the stack will consequently be located at the
bottom of the window. The address referenced by the stack pointer, in
other words the top of the stack, is highlighted in a green color.

Data Displays the contents of the memory unit at the given location. From the
Stack window context menu, you can select how the data should be
displayed; as a 1-, 2-, or 4-byte group of data.

Variable Displays the name of a variable, if there is a local variable at the given
location. Variables are only displayed if they are declared locally in a
function, and located on the stack and not in registers.

Value Displays the value of the variable that is displayed in the Variable
column.

Frame Displays the name of the function the call frame corresponds to.

Table 84: Stack window columns
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

C-SPY® reference
These commands are available on the context menu:

SYMBOLS WINDOW

The Symbols window—available from the View menu—displays all symbols with a
static location, that is, C/C++ functions, assembler labels, and variables with static
storage duration, including symbols from the runtime library.

Figure 167: Symbols window

The display area

The display area lists the symbols, where information is provided in these columns:

Show variables Separate columns named Variables, Value, and Frame are
displayed in the Stack window. Variables located at memory
addresses listed in the Stack window are displayed in these
columns.

Show offsets When this option is selected, locations in the Location column are
displayed as offsets from the stack pointer. When deselected,
locations are displayed as absolute addresses.

1x Units The data in the Data column is displayed as single bytes.

2x Units The data in the Data column is displayed as 2-byte groups.

4x Units The data in the Data column is displayed as 4-byte groups.

Options Opens the IDE Options dialog box where you can set options
specific to the Stack window, see Stack options, page 261.

Column Description

Symbol The symbol name.

Location The memory address.

Table 85: Symbols window columns
UEW-8:1

Part 6. Reference information 303

304

C-SPY menus
Click on the column headers to sort the list by name, location, or full name.

Symbols window context menu

This context menu is available in the Symbols window:

Figure 168: Symbols window context menu

These commands are available on the menu:

C-SPY menus
In addition to the menus available in the development environment, the Debug menu is
available when C-SPY is running.

Additional menus are available depending on which C-SPY driver you are using. For
information about driver-specific menus, see the online help system available from the
Help menu for information about driver-specific documentation.

Full Name The symbol name; often the same as the contents of the Symbol column
but differs for example for C++ member functions.

Menu command Description

Function Toggles the display of function symbols in the list.

Variables Toggles the display of variables in the list.

Labels Toggles the display of labels in the list.

Table 86: Commands on the Symbols window context menu

Column Description

Table 85: Symbols window columns (Continued)
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

C-SPY® reference
DEBUG MENU

The Debug menu provides commands for executing and debugging your application.
Most of the commands are also available as toolbar buttons.

Figure 169: Debug menu

Menu Command Description

Go F5 Executes from the current statement or instruction until a
breakpoint or program exit is reached.

Break Stops the application execution.

Reset Resets the target processor.

Stop Debugging Ctrl+Shift+D Stops the debugging session and returns you to the project
manager.

Step Over F10 Executes the next statement, function call, or instruction,
without entering C or C++ functions or assembler
subroutines.

Step Into F11 Executes the next statement or instruction, entering C or C++
functions or assembler subroutines.

Step Out Shift+F11 Executes from the current statement up to the statement after
the call to the current function.

Next Statement Executes directly to the next statement without stopping at
individual function calls.

Run to Cursor Executes from the current statement or instruction up to a
selected statement or instruction.

Table 87: Debug menu commands
UEW-8:1

Part 6. Reference information 305

306

C-SPY menus
Autostep settings dialog box

In the Autostep settings dialog box—available from the Debug menu—you can
customize autostepping.

Figure 170: Autostep settings dialog box

Autostep Displays the Autostep settings dialog box which lets you
customize and perform autostepping.

Set Next Statement Moves the program counter directly to where the cursor is,
without executing any source code. Note, however, that this
creates an anomaly in the program flow and might have
unexpected effects.

Memory>Save Displays the Memory Save dialog box, where you can save
the contents of a specified memory area to a file, see Memory
Save dialog box, page 283.

Memory>Restore Displays the Memory Restore dialog box, where you can
load the contents of a file in Intex-extended or Motorola
s-record format to a specified memory zone, see Memory
Restore dialog box, page 284.

Refresh Refreshes the contents of all debugger windows. Because
window updates are automatic, this is needed only in unusual
situations, such as when target memory is modified in ways
C-SPY cannot detect. It is also useful if code that is displayed in
the Disassembly window is changed.

Macros Displays the Macro Configuration dialog box to allow you to
list, register, and edit your macro files and functions.

Logging>Set Log file Displays a dialog box to allow you to log input and output from
C-SPY to a file. You can select the type and the location of the
log file. You can choose what you want to log: errors, warnings,
system information, user messages, or all of these.

Logging>
Set Terminal I/O Log file

Displays a dialog box to allow you to log terminal input and
output from C-SPY to a file. You can select the destination of
the log file.

Menu Command Description

Table 87: Debug menu commands (Continued)
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

C-SPY® reference
The drop-down menu lists the available step commands.

The Delay text box lets you specify the delay between each step.

Macro Configuration dialog box

In the Macro Configuration dialog box—available by choosing Debug>Macros—you
can list, register, and edit your macro files and functions.

Macro functions that have been registered using the dialog box will be deactivated when
you exit the debug session, and will not automatically be registered at the next debug
session.

Figure 171: Macro Configuration dialog box

Registering macro files

Select the macro files you want to register in the file selection list, and click Add or Add
All to add them to the Selected Macro Files list. Conversely, you can remove files from
the Selected Macro Files list using Remove or Remove All.
UEW-8:1

Part 6. Reference information 307

308

C-SPY menus
Once you have selected the macro files you want to use click Register to register them,
replacing any previously defined macro functions or variables. Registered macro
functions are displayed in the scroll window under Registered Macros. Note that
system macros cannot be removed from the list, they are always registered.

Listing macro functions

Selecting All displays all macro functions, selecting User displays all user-defined
macros, and selecting System displays all system macros.

Clicking on either Name or File under Registered Macros displays the column
contents sorted by macro names or by file. Clicking a second time sorts the contents in
the reverse order.

Modifying macro files

Double-clicking a user-defined macro function in the Name column automatically
opens the file in which the function is defined, allowing you to modify it, if needed.

Log File dialog box

The Log File dialog box—available by choosing Debug>Logging>Set Log File
—allows you to log output from C-SPY to a file.

Figure 172: Log File dialog box

Enable or disable logging to the file with the Enable Log file check box.

The information printed in the file is, by default, the same as the information listed in
the Log window. To change the information logged, use the Include options:

Option Description

Errors C-SPY has failed to perform an operation.

Warnings A suspected error.

Table 88: Log file options
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

C-SPY® reference
Click the browse button, to override the default file type and location of the log file.
Click Save to select the specified file—the default filename extension is log.

Terminal I/O Log File dialog box

The Terminal I/O Log Files dialog box—available by choosing
Debug>Logging—allows you to select a destination log file, and to log terminal I/O
input and output from C-SPY to this file.

Figure 173: Terminal I/O Log File dialog box

Click the browse button to open a standard Save As dialog box. Click Save to select the
specified file—the default filename extension is log.

Info Progress information about actions C-SPY has performed.

User Printouts from C-SPY macros, that is, your printouts using the
__message statement.

Option Description

Table 88: Log file options (Continued)
UEW-8:1

Part 6. Reference information 309

310

C-SPY menus
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

General options
This chapter describes the general options in the IAR Embedded
Workbench® IDE.

For information about how to set options, see Setting options, page 91.

Target
For information about the Target options, see the online help system available from the
Help menu.

Output
With the Output options you can specify the type of output file—Executable or
Library. You can also specify the destination directories for executable files, object
files, and list files.

Figure 174: Output options
UEW-8:1

Part 6. Reference information 311

312

Output
OUTPUT FILE

Use these options to choose the type of output file. Choose between:

OUTPUT DIRECTORIES

Use these options to specify paths to destination directories. Note that incomplete paths
are relative to your project directory. You can specify the paths to these destination
directories:

Executable
(default)

As a result of the build process, the linker will create an application (an
executable output file). When this option is selected, linker options will be
available in the Options dialog box. Before you create the output you
should set the appropriate linker options.

Library As a result of the build process, the library builder will create a library file.
When this option is selected, library builder options will be available in the
Options dialog box, and Linker will disappear from the list of categories.
Before you create the library you can set the options.

Executables/libraries Use this option to override the default directory for executable or
library files. Type the name of the directory where you want to save
executable files for the project.

Object files Use this option to override the default directory for object files. Type
the name of the directory where you want to save object files for the
project.

List files Use this option to override the default directory for list files. Type the
name of the directory where you want to save list files for the project.
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

General options
Library Configuration
With the Library Configuration options you can specify which library to use.

Figure 175: Library Configuration options

For information about the runtime library, library configurations, the runtime
environment they provide, and the possible customizations, see IAR C/C++ Compiler
Reference Guide.

LIBRARY

In the Library drop-down list you choose which runtime library to use. For information
about available libraries, see the IAR C/C++ Compiler Reference Guide.

The names of the library object file and library configuration file that actually will be
used are displayed in the Library file and Configuration file text boxes, respectively.

LIBRARY FILE

The Library file text box displays the library object file that will be used. A library
object file is automatically chosen depending on some of your settings, see the IAR
C/C++ Compiler Reference Guide.

If you have chosen Custom library in the Library drop-down list, you must specify
your own library object file.

CONFIGURATION FILE

The Configuration file text box displays the library configuration file that will be used.
A library configuration file is chosen automatically depending on the project settings. If
you have chosen Custom DLIB in the Library drop-down list, you must specify your
own library configuration file.
UEW-8:1

Part 6. Reference information 313

314

Library Options
Note: A library configuration file is only required for the DLIB library, but note that
not all product versions support the DLIB library.

Library Options
With the options on the Library Options page you can choose printf and scanf
formatters.

Figure 176: Library Options page

See the IAR C/C++ Compiler Reference Guide for more information about the
formatting capabilities.

PRINTF FORMATTER

The full formatter version is memory-consuming, and provides facilities that are not
required in many embedded applications.

For information about available printf formatters, see the IAR C/C++ Compiler
Reference Guide.

SCANF FORMATTER

The full formatter version is memory-consuming, and provides facilities that are not
required in many embedded applications.

For information about available scanf formatters, see the IAR C/C++ Compiler
Reference Guide.
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

General options
Stack/Heap
With the options on the Stack/Heap page you can customize the heap and stack sizes.
For more information, see the online help system available from the Help menu.

For more information about using the stacks and heaps, see the IAR C/C++ Compiler
Reference Guide.
UEW-8:1

Part 6. Reference information 315

316

Stack/Heap
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Compiler options
This chapter describes the compiler options available in the IAR Embedded
Workbench® IDE.

For information about how to set options, see Setting options, page 91.

Multi-file compilation
Before you set specific compiler options, you can decide if you want to use multi-file
compilation, which is an optimization technique. If the compiler is allowed to compile
multiple source files in one invocation, it can in many cases optimize more efficiently.

You can use this option for the entire project or for individual groups of files. All C/C++
source files in such a group are compiled together using one invocation of the compiler.

In the Options dialog box, select Multi-file Compilation to enable multi-file
compilation for the group of project files that you have selected in the workspace
window. Use Discard Unused Publics to discard any unused public functions and
variables from the compilation unit.

Figure 177: Multi-file Compilation

If you use this option, all files included in the selected group are compiled using the
compiler options which have been set on the group or nearest higher enclosing node
which has any options set. Any overriding compiler options on one or more files are
ignored when building, because a group compilation must use exactly one set of options.

For information about how multi-file compilation is displayed in the workspace
window, see Workspace window, page 196.

Note: If your product version does not support multi-file compilation, the Multi-file
Compilation option is not available.

For more information about multi-file compilation and discarding unused public
functions, see the IAR C/C++ Compiler Reference Guide.
UEW-8:1

Part 6. Reference information 317

318

Language
Language
The Language options enable the use of target-dependent extensions to the C or C++
language.

Figure 178: Compiler language options

LANGUAGE

With the Language options you can specify the language support you need.

For information about Embedded C++ and Extended Embedded C++, see the IAR
C/C++ Compiler Reference Guide. (Note that not all product packages support C++.)

C

By default, the IAR C/C++ Compiler runs in ISO/ANSI C mode, in which features
specific to Embedded C++ and Extended Embedded C++ cannot be used.

Embedded C++

In Embedded C++ mode, the compiler treats the source code as Embedded C++. This
means that features specific to Embedded C++, such as classes and overloading, can be
used.

Embedded C++ requires that a DLIB library (C/C++ library) is used.

Extended Embedded C++

In Extended Embedded C++ mode, you can take advantage of features like namespaces
or the standard template library in your source code.

Extended Embedded C++ requires that a DLIB library (C/C++ library) is used.
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Compiler options
Automatic

If you select Automatic, language support is decided automatically depending on the
filename extension of the file being compiled:

● Files with the filename extension c will be compiled as C source files

● Files with the filename extension cpp will be compiled as Extended Embedded C++
source files.

This option requires that a DLIB library (C/C++ library) is used.

Note: Not all product packages support C++. For products without C++ support, the
Language options will not be available.

REQUIRE PROTOTYPES

This option forces the compiler to verify that all functions have proper prototypes. Using
this option means that code containing any of the following will generate an error:

● A function call of a function with no declaration, or with a Kernighan & Ritchie
C declaration

● A function definition of a public function with no previous prototype declaration

● An indirect function call through a function pointer with a type that does not include
a prototype.

LANGUAGE CONFORMANCE

Language extensions must be enabled for the compiler to be able to accept
target-specific keywords as extensions to the standard C or C++ language. In the IDE,
the option Allow IAR extensions is enabled by default.

The option Relaxed ISO/ANSI disables IAR Systems extensions, but does not adhere
to strict ISO/ANSI.

Select the option Strict ISO/ANSI to adhere to the strict ISO/ANSI C standard.

For details about language extensions, see the IAR C/C++ Compiler Reference Guide.

PLAIN 'CHAR' IS

Normally, the compiler interprets the char type as unsigned char. Use this option to
make the compiler interpret the char type as signed char instead, for example for
compatibility with another compiler.

Note: The runtime library is compiled with unsigned plain characters. If you select the
Signed option, you might get type mismatch warnings from the linker as the library uses
unsigned char.
UEW-8:1

Part 6. Reference information 319

320

Code
ENABLE MULTIBYTE SUPPORT

By default, multibyte characters cannot be used in C or Embedded C++ source code. If
you use this option, multibyte characters in the source code are interpreted according to
the host computer’s default setting for multibyte support.

Multibyte characters are allowed in C and C++ style comments, in string literals, and in
character constants. They are transferred untouched to the generated code.

ENABLE IAR MIGRATION PREPROCESSOR EXTENSIONS

Migration preprocessor extensions extend the preprocessor, to ease migration of code
from earlier IAR Systems compilers. If you need to migrate code from an earlier IAR C
or C++ compiler, you might want to use this option. Note that, depending on your
product installation, this option might not be available.

Note: If you use this option, not only will the compiler accept code that is not standard
conformant, but it will also reject some code that does conform to standard.

Important! Do not depend on these extensions in newly written code. Support for them
might be removed in future compiler versions.

Code
With the options on the Code page you can customize the code generation. For more
information, see the online help system available from the Help menu. Note that,
depending on your product installation, this page might not be available.
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Compiler options
Optimizations
The Optimizations options determine the type and level of optimization for generation
of object code.

Figure 179: Compiler optimizations options

OPTIMIZATIONS

The compiler supports various levels of optimizations, and for the highest level you can
fine-tune the optimizations explicitly for an optimization goal—size or speed. Choose
between:

● None (best debug support)

● Low
● Medium
● High, balanced (balancing between speed and size)

● High, speed (favors speed)

● High, size (favors size).

By default, a debug project will have a size optimization that is fully debuggable, while
a release project will have a high balanced optimization that generates small code
without sacrificing speed.

For a list of optimizations performed at each optimization level, see the IAR C/C++
Compiler Reference Guide.
UEW-8:1

Part 6. Reference information 321

322

Output
Enabled transformations

These transformations are available on different level of optimizations:

● Common subexpression elimination

● Loop unrolling

● Function inlining

● Code motion

● Type-based alias analysis.

Note: Depending on your product package, there might be additional transformations
available.

When a transformation is available, you can enable or disable it by selecting its check
box.

In a debug project the transformations are, by default, disabled. In a release project the
transformations are, by default, enabled.

For a brief description of the transformations that can be individually disabled, see the
IAR C/C++ Compiler Reference Guide.

Output
The Output options determine the output format of the compiled file, including the level
of debugging information in the object code.

Figure 180: Compiler output options
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Compiler options
MODULE TYPE

By default, the compiler generates program modules. Use this option to make a library
module that will only be included if it is referenced in your application. Select the
Override default check box and choose one of:

For information about program and library modules, and working with libraries, see the
XLIB and XAR chapters in the IAR Linker and Library Tools Reference Guide, available
from the Help menu.

GENERATE DEBUG INFORMATION

This option causes the compiler to include additional information in the object modules
that is required by C-SPY® and other symbolic debuggers.

The Generate debug information option is selected by default. Deselect this option if
you do not want the compiler to generate debug information.

Note: The included debug information increases the size of the object files.

List
The List options determine whether a list file is produced, and the information is
included in the list file.

Figure 181: Compiler list file options

Program Module The object file will be treated as a program module rather than as
a library module.

Library Module The object file will be treated as a library module rather than as a
program module.
UEW-8:1

Part 6. Reference information 323

324

List
Normally, the compiler does not generate a list file. Select any of the following options
to generate a list file or an assembler file. The list file will be saved in the List directory,
and its filename will consist of the source filename, plus the filename extension lst.
You can open the output files directly from the Output folder which is available in the
Workspace window.

OUTPUT LIST FILE

Select the Output list file option and choose the type of information to include in the
list file:

OUTPUT ASSEMBLER FILE

Select the Output assembler file option and choose the type of information to include
in the list file:

Assembler mnemonics Includes assembler mnemonics in the list file.

Diagnostics Includes diagnostic information in the list file.

Include source Includes source code in the assembler file.

Include call frame information Includes compiler-generated information for runtime
model attributes, call frame information, and frame size
information.
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Compiler options
Preprocessor
The Preprocessor options allow you to define symbols and include paths for use by the
compiler.

Figure 182: Compiler preprocessor options

IGNORE STANDARD INCLUDE DIRECTORIES

If you select this option, the standard include files will not be used when the project is
built.

ADDITIONAL INCLUDE DIRECTORIES

The Additional include directories option adds a path to the list of #include file
paths. The paths required by the product are specified automatically based on your
choice of runtime library.

Type the full file path of your #include files.

Note: Any additional directories specified using this option are searched before the
standard include directories.

To make your project more portable, use the argument variable $TOOLKIT_DIR$ for the
subdirectories of the active product and $PROJ_DIR$ for the directory of the current
project. For an overview of the argument variables, see Argument variables summary,
page 237.
UEW-8:1

Part 6. Reference information 325

326

Diagnostics
PREINCLUDE FILE

Use this option to make the compiler include the specified include file before it starts to
read the source file. This is useful if you want to change something in the source code
for the entire application, for instance if you want to define a new symbol.

DEFINED SYMBOLS

The Defined symbols option is useful for conveniently specifying a value or choice that
would otherwise be specified in the source file.

Type the symbols that you want to define for the project, for example:

TESTVER=1

Note that there should be no space around the equal sign.

The Defined symbols option has the same effect as a #define statement at the top of
the source file.

For example, you might arrange your source to produce either the test or production
version of your application depending on whether the symbol TESTVER was defined. To
do this you would use include sections such as:

#ifdef TESTVER
... ; additional code lines for test version only

#endif

You would then define the symbol TESTVER in the Debug target but not in the Release
target.

PREPROCESSOR OUTPUT TO FILE

By default, the compiler does not generate preprocessor output.

Select the Preprocessor output to file option if you want to generate preprocessor
output. You can also choose to preserve comments and/or to generate #line directives.

Diagnostics
The Diagnostics options determine how diagnostics are classified and displayed. Use
the diagnostics options to override the default classification of the specified diagnostics.
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Compiler options
Note: The diagnostics cannot be suppressed for fatal errors, and fatal errors cannot be
reclassified.

Figure 183: Compiler diagnostics options

ENABLE REMARKS

The least severe diagnostic messages are called remarks. A remark indicates a source
code construct that might cause strange behavior in the generated code.

By default, remarks are not issued. Select the Enable remarks option if you want the
compiler to generate remarks.

SUPPRESS THESE DIAGNOSTICS

This option suppresses the output of diagnostics for the tags that you specify.

For example, to suppress the warnings Pe117 and Pe177, type:

Pe117,Pe177

TREAT THESE AS REMARKS

A remark is the least severe type of diagnostic message. It indicates a source code
construct that might cause strange behavior in the generated code. Use this option to
classify diagnostics as remarks.

For example, to classify the warning Pe177 as a remark, type:

Pe177
UEW-8:1

Part 6. Reference information 327

328

Extra Options
TREAT THESE AS WARNINGS

A warning indicates an error or omission that is of concern, but which will not cause the
compiler to stop before compilation is completed. Use this option to classify diagnostic
messages as warnings.

For example, to classify the remark Pe826 as a warning, type:

Pe826

TREAT THESE AS ERRORS

An error indicates a violation of the C or C++ language rules, of such severity that object
code will not be generated, and the exit code will be non-zero. Use this option to classify
diagnostic messages as errors.

For example, to classify the warning Pe117 as an error, type:

Pe117

TREAT ALL WARNINGS AS ERRORS

Use this option to make the compiler treat all warnings as errors. If the compiler
encounters an error, object code is not generated.

Extra Options
The Extra Options page provides you with a command line interface to the compiler.

Figure 184: Extra Options page for the compiler
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Compiler options
USE COMMAND LINE OPTIONS

Additional command line arguments for the compiler (not supported by the GUI) can be
specified here.
UEW-8:1

Part 6. Reference information 329

330

Extra Options
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Assembler options
This chapter describes the assembler options available in the IAR Embedded
Workbench® IDE.

For information about how to set options, see Setting options, page 91.

Language
The Language options control the code generation of the assembler.

Note: Some of the options described here might not be available in the product package
you are using.

USER SYMBOLS ARE CASE SENSITIVE

By default, case sensitivity is on. This means that, for example, LABEL and label refer
to different symbols. You can deselect User symbols are case sensitive to turn case
sensitivity off, in which case LABEL and label will refer to the same symbol.

ENABLE MULTIBYTE SUPPORT

By default, multibyte characters cannot be used in assembler source code. If you use this
option, multibyte characters in the source code are interpreted according to the host
computer’s default setting for multibyte support.

Multibyte characters are allowed in comments, in string literals, and in character
constants. They are transferred untouched to the generated code.

ALLOW MNEMONICS IN FIRST COLUMN

The default behavior of the assembler is to treat all identifiers starting in the first column
as labels.

Use this option to make mnemonics names (without a trailing colon) starting in the first
column to be recognized as mnemonics.

ALLOW DIRECTIVES IN FIRST COLUMN

The default behavior of the assembler is to treat all identifiers starting in the first column
as labels.

Use this option to make directive names (without a trailing colon) that start in the first
column to be recognized as directives.
UEW-8:1

Part 6. Reference information 331

332
MACRO QUOTE CHARACTERS

The Macro quote characters option sets the characters used for the left and right quotes
of each macro argument.

By default, the characters are < and >. This option allows you to change the quote
characters to suit an alternative convention or simply to allow a macro argument to
contain < or >.

From the drop-down list, choose one of four types of brackets to be used as macro quote
characters:

Figure 185: Choosing macro quote characters

Output
The Output options allow you to generate information to be used by a debugger such
as the IAR C-SPY® Debugger.

Figure 186: Assembler output options
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Assembler options
GENERATE DEBUG INFORMATION

The Generate debug information option must be selected if you want to use a
debugger with your application. By default, this option is selected in a Debug project,
but not in a Release project.

List
The List options are used for making the assembler generate a list file and for selecting
the list file contents. For reference information about each option, see the online help
system available from the Help menu.

Preprocessor
The Preprocessor options allow you to define include paths and symbols in the
assembler.

Figure 187: Assembler preprocessor options

IGNORE STANDARD INCLUDE DIRECTORIES

If you select this option, the standard include files will not be used when the project is
built.

ADDITIONAL INCLUDE DIRECTORIES

The Additional include directories option adds paths to the list of #include file paths.
The path required by the product is specified automatically.

Type the full path of the directories that you want the assembler to search for #include
files.
UEW-8:1

Part 6. Reference information 333

334
To make your project more portable, use the argument variable $TOOLKIT_DIR$ for the
subdirectories of the active product and $PROJ_DIR$ for the directory of the current
project. For an overview of the argument variables, see Table 54, Argument variables,
page 237.

See the IAR Assembler Reference Guide for information about the #include directive.

Note: By default, the assembler also searches for #include files in the paths specified
in the ACPUNAME_INC environment variable. We do not, however, recommend that you
use environment variables in the IDE.

DEFINED SYMBOLS

This option provides a convenient way of specifying a value or choice that you would
otherwise have to specify in the source file.

Type the symbols you want to define, one per line.

● For example, you might arrange your source to produce either the test or production
version of your application depending on whether the symbol TESTVER was
defined. To do this you would use include sections such as:

#ifdef TESTVER
... ; additional code lines for test version only
#endif

You would then define the symbol TESTVER in the Debug target but not in the
Release target.

● Alternatively, your source might use a variable that you need to change often, for
example FRAMERATE. You would leave the variable undefined in the source and use
this option to specify a value for the project, for example FRAMERATE=3.

To delete a user-defined symbol, select in the Defined symbols list and press the Delete
key.

PREPROCESSOR OUTPUT TO FILE

By default, the assembler does not generate preprocessor output.

Select the Preprocessor output to file option if you want to generate preprocessor
output. You can also choose to preserve comments and/or to generate #line directives.

Note: This option might not be available in the product package you are using.
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Assembler options
Diagnostics
The Diagnostics options determine how diagnostics are classified and displayed. Use
the diagnostics options to override the default classification of the specified diagnostics.

For reference information about each option, see the online help system available from
the Help menu.

Extra Options
The Extra Options page provides you with a command line interface to the assembler.

Figure 188: Extra Options page for the assembler

USE COMMAND LINE OPTIONS

Additional command line arguments for the assembler (not supported by the GUI) can
be specified here.
UEW-8:1

Part 6. Reference information 335

336
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Custom build options
This chapter describes the Custom Build options available in the IAR
Embedded Workbench® IDE.

For information about how to set options, see Setting options, page 91.

Custom Tool Configuration
To set custom build options in the IDE, choose Project>Options to display the Options
dialog box. Then select Custom Build in the Category list to display the Custom Tool
Configuration page:

Figure 189: Custom tool options

In the Filename extensions text box, specify the filename extensions for the types of
files that are to be processed by this custom tool. You can enter several filename
extensions. Use commas, semicolons, or blank spaces as separators. For example:

.htm; .html

In the Command line text box, type the command line for executing the external tool.

In the Output files text box, enter the output files from the external tool.

If any additional files are used by the external tool during the building process, these
files should be added in the Additional input files text box. If these additional input
files, dependency files, are modified, the need for a rebuild is detected.

For an example, see Extending the tool chain, page 95.
UEW-8:1

Part 6. Reference information 337

338

Custom Tool Configuration
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Build actions options
This chapter describes the options for pre-build and post-build actions
available in the IAR Embedded Workbench® IDE.

For information about how to set options, see Setting options, page 91.

Build Actions Configuration
To set options for pre-build and post-build actions in the IDE, choose Project>Options
to display the Options dialog box. Then select Build Actions in the Category list to
display the Build Actions Configuration page.

These options apply to the whole build configuration, and cannot be set on groups or
files.

Figure 190: Build actions options

PRE-BUILD COMMAND LINE

Type a command line to be executed directly before a build; a browse button for locating
an extended command line file is available for your convenience. The commands will
not be executed if the configuration is already up-to-date.

POST-BUILD COMMAND LINE

Type a command line to be executed directly after each successful build; a browse button
is available for your convenience. The commands will not be executed if the
UEW-8:1

Part 6. Reference information 339

340

Build Actions Configuration
configuration was up-to-date. This is useful for copying or post-processing the output
file.
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Linker options
This chapter describes the XLINK options available in the IAR Embedded
Workbench® IDE.

For information about how to set options, see Setting options, page 91.

Note that the XLINK command line options that are used for defining
segments in a linker command file are described in the IAR Linker and Library
Tools Reference Guide.

Output
The Output options are used for specifying the output format and the level of debugging
information included in the output file.

Figure 191: XLINK output file options

OUTPUT FILE

Use Output file to specify the name of the XLINK output file. If a name is not specified,
the linker will use the project name with a filename extension. The filename extension
depends on which output format you choose. If you choose Debug information for
C-SPY, the output file will have the filename extension dxx.

Note: If you select a format that generates two output files, the file type that you specify
will only affect the primary output file (first format).
UEW-8:1

Part 6. Reference information 341

342

Output
Override default

Use this option to specify a filename or filename extension other than the default.

FORMAT

The output options determine the format of the output file generated by the IAR XLINK
Linker. The output file is used as input to either a debugger or as input for programming
the target system. The IAR Systems proprietary output format is called UBROF,
Universal Binary Relocatable Object Format.

The default output settings are:

● In a debug project, Debug information for C-SPY, With runtime control
modules, and With I/O emulation modules are selected by default

● In a release project, an output format suitable for target download is selected
automatically.

Note: For debuggers other than C-SPY®, check the user documentation supplied with
that debugger for information about which format/variant should be used.

Debug information for C-SPY

This option creates a UBROF output file, with a dxx filename extension, to be used with
C-SPY.

With runtime control modules

This option produces the same output as the Debug information for C-SPY option, but
also includes debugger support for handling program abort, exit, and assertions. Special
C-SPY variants for the corresponding library functions are linked with your application.
For more information about the debugger runtime interface, see the IAR C/C++
Compiler Reference Guide.

With I/O emulation modules

This option produces the same output as the Debug information for C-SPY and With
runtime control modules options, but also includes debugger support for I/O handling,
which means that stdin and stdout are redirected to the Terminal I/O window, and
that you can access files on the host computer during debugging.

For more information about the debugger runtime interface, see the IAR C/C++
Compiler Reference Guide.
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Linker options
Buffered terminal output

During program execution in C-SPY, instead of instantly printing each new character to
the C-SPY Terminal I/O window, this option will buffer the output. This option is useful
when using debugger systems that have slow communication.

Allow C-SPY-specific extra output file

Use this option to enable the options available on the Extra Output page.

If you choose any of the options With runtime control modules or With I/O
emulation modules, the generated output file will contain dummy implementations for
certain library functions, such as putchar, and extra debug information required by
C-SPY to handle those functions. In this case, the options available on the Extra Output
page are disabled, which means you cannot generate an extra output file. The reason is
that the extra output file would still contain the dummy functions, but would lack the
required extra debug information, and would therefore normally be useless.

However, for some debugger systems, two output files from the same build process are
required—one with the required debug information, and one that you can burn to your
hardware before debugging. This is useful when you want to debug code that is located
in non-volatile memory. In this case, you must choose the Allow C-SPY-specific extra
output file option to make it possible to generate an extra output file.

Other

Use this option to generate output other than those generated by the options Debug
information for C-SPY, With runtime control modules, and With I/O emulation
modules.

Use the Output format drop-down list to select the appropriate output. If applicable,
use Format variant to select variants available for some of the output formats. The
alternatives depend on the output format chosen.

When you specify the Other>Output format option as either debug (ubrof), or ubrof,
a UBROF output file with the filename extension dbg is created. The generated output
file will not contain debugging information for simulating facilities such as stop at
program exit, long jump instructions, and terminal I/O. If you need support for these
facilities during debugging, use the Debug information for C-SPY, With runtime
control modules, and With I/O emulation modules options, respectively.

For more information, see the IAR Linker and Library Tools Reference Guide.

Module-local symbols

Use this option to specify whether local (non-public) symbols in the input modules
should be included or not by the IAR XLINK Linker. If suppressed, the local symbols
UEW-8:1

Part 6. Reference information 343

344

Extra Output
will not appear in the listing cross-reference and they will not be passed on to the output
file.

You can choose to ignore just the compiler-generated local symbols, such as jump or
constant labels. Usually these are only of interest when debugging at assembler level.

Note: Local symbols are only included in files if they were compiled or assembled with
the appropriate option to specify this.

Extra Output
The Extra Output options are used for generating an extra output file and for specifying
its format.

Note: If you have chosen any of the options With runtime control modules or With
I/O emulation modules available on the Output page, you must also choose the option
Allow C-SPY-specific extra output file to enable the Extra Output options.

Figure 192: XLINK extra output file options

Use the Generate extra output file option to generate an additional output file from the
build process.

Use the Override default option to override the default file name. If a name is not
specified, the linker will use the project name and a filename extension which depends
on the output format you choose.

Note: If you select a format that generates two output files, the file type that you specify
will only affect the primary output file (first format).

Use the Output format drop-down list to select the appropriate output. If applicable,
use Format variant to select variants available for some of the output formats. The
alternatives depend on the output format you have chosen.
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Linker options
When you specify the Output format option as either debug (ubrof), or ubrof, a
UBROF output file with the filename extension dbg is created.

#define
You can define symbols with the #define option.

Figure 193: Linker defined symbols options

DEFINE SYMBOL

Use Define symbol to define absolute symbols at link time. This is especially useful for
configuration purposes.

Type the symbols that you want to define for the project, for example:

TESTVER=1

Note that there should be no space around the equal sign.

Any number of symbols can be defined in a linker command file. The symbol(s) defined
in this manner will be located in a special module called ?ABS_ENTRY_MOD, which is
generated by the linker.

The linker will display an error message if you attempt to redefine an existing symbol.
UEW-8:1

Part 6. Reference information 345

346

Diagnostics
Diagnostics
The Diagnostics options determine the error and warning messages generated by the
IAR XLINK Linker.

Figure 194: Linker diagnostics options

ALWAYS GENERATE OUTPUT

Use Always generate output to generate an output file even if a non-fatal error was
encountered during the linking process, such as a missing global entry or a duplicate
declaration. Normally, XLINK will not generate an output file if an error is encountered.

Note: XLINK always aborts on fatal errors, even when this option is used.

The Always generate output option allows missing entries to be patched in later in the
absolute output image.

SEGMENT OVERLAP WARNINGS

Use Segment overlap warnings to reduce segment overlap errors to warnings, making
it possible to produce cross-reference maps, etc.

NO GLOBAL TYPE CHECKING

Use No global type checking to disable type checking at link time. While a well-written
application should not need this option, there might be occasions where it is helpful.

By default, XLINK performs link-time type checking between modules by comparing
the external references to an entry with the PUBLIC entry (if the information exists in the
object modules involved). A warning is generated if there are mismatches.
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Linker options
RANGE CHECKS

Use Range checks to specify the address range check. This table shows the range check
options in the IDE:

If an address is relocated outside address range of the target CPU —code, external data,
or internal data address—an error message is generated. This usually indicates an error
in an assembler language module or in the segment placement.

WARNINGS/ERRORS

By default, the IAR XLINK Linker generates a warning when it detects that something
might be wrong, although the generated code might still be correct. The
Warnings/Errors options allow you to suppress or enable all warnings, and to change
the severity classification of errors and warnings.

Refer to the IAR Linker and Library Tools Reference Guide for information about the
various warning and error messages.

Use these options to control the generation of warning and error messages:

Suppress all warnings

Use this option to suppress all warnings.

Suppress these diagnostics

This option suppresses the output of diagnostics for the tags that you specify.

For example, to suppress the warnings w117 and w177, type w117,w177.

Treat these as warnings

Use this option to specify errors that should be treated as warnings instead. For example,
to make error 106 become treated as a warning, type e106.

Treat these as errors

Use this option to specify warnings that should be treated as errors instead. For example,
to make warning 26 become treated as an error, type w26.

Option Description

Generate errors An error message is generated

Generate warnings Range errors are treated as warnings

Disabled Disables the address range checking

Table 89: XLINK range check options
UEW-8:1

Part 6. Reference information 347

348

List
List
The List options determine the generation of an XLINK cross-reference listing.

Figure 195: Linker list file options

GENERATE LINKER LISTING

Causes the linker to generate a listing and send it to the file projectname.map.

Segment map

Use Segment map to include a segment map in the XLINK listing file. The segment
map will contain a list of all the segments in dump order.

Symbols

These options are available:

Option Description

None Symbols are excluded from the linker listing.

Symbol listing An abbreviated list of every entry (global symbol) in every module. This
entry map is useful for quickly finding the address of a routine or data
element.

Module map A list of all segments, local symbols, and entries (public symbols) for
every module in the application.

Table 90: XLINK list file options
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Linker options
Module summary

Use the Module summary option to generate a summary of the contributions to the total
memory use from each module.

Only modules with a contribution to memory use are listed.

Include suppressed entries

Use this option to include all segment parts in a linked module in the list file, not just the
segment parts that were included in the output. This makes it possible to determine
exactly which entries that were not needed.

Static overlay map

If the compiler uses static overlay, this option includes a listing of the static overlay
system in the list file. Read more about static overlay maps in the IAR Linker and
Library Tools Reference Guide.

File format

These options are available:

Lines/page

Sets the number of lines per page for the XLINK listings to lines, which must be in
the range 10 to 150.

Option Description

Text Plain text file

HTML HTML format, with hyperlinks

Table 91: XLINK list file format options
UEW-8:1

Part 6. Reference information 349

350

Config
Config
With the Config options you can specify the path and name of the linker command file,
override the default program entry, and specify the library search path.

Figure 196: Linker config options

LINKER COMMAND FILE

A default linker command file is selected automatically for the chosen Target settings
in the General Options category. To override this, select the Override default option
and specify an alternative file.

The argument variables $TOOLKIT_DIR$ or $PROJ_DIR$ can be used here too, to
specify a project-specific or predefined linker command file.

COMMAND FILE CONFIGURATION TOOL

You can override the default linker command file and click Command file
configuration tool to configure a linker command file yourself. For more information
about the options related to the configuration tool, see the online help system available
from the Help menu. Note that this option might not be available in your product
version.

For information about the command file configuration tool, see Processing, page 352.

OVERRIDE DEFAULT PROGRAM ENTRY

By default, the program entry is the label __program_start. The linker will make sure
that a module containing the program entry label is included, and that the segment part
containing the label is not discarded.
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Linker options
To override the default program handling, select Override default program entry.

Selecting the option Entry label will make it possible to specify a label other than
__program_start to use for the program entry.

Selecting the option Defined by application disables the use of a start label. The linker
will, as always, include all program modules, and enough library modules to satisfy all
symbol references, keeping all segment parts that are marked with the root attribute or
that are referenced, directly or indirectly, from such a segment part.

SEARCH PATHS

The Search paths option specifies the names of the directories which XLINK will
search if it fails to find the object files to be linked in the current working directory. Add
the full paths of any further directories that you want XLINK to search.

The paths required by the product are specified automatically based on your choice of
runtime library. If the box is left empty, XLINK searches for object files only in the
current working directory.

Type the full file path of your #include files. To make your project more portable, use
the argument variable $TOOLKIT_DIR$ for the subdirectories of the active product and
$PROJ_DIR$ for the directory of the current project. For an overview of the argument
variables, see Argument variables summary, page 237.

RAW BINARY IMAGE

Use the Raw binary image options to link pure binary files in addition to the ordinary
input files. Use the text boxes to specify these parameters:

The entire contents of the file are placed in the segment you specify, which means it can
only contain pure binary data, for example, the raw-binary output format. The segment
part where the contents of the specified file is placed, is only included if the specified
symbol is required by your application. Use the -g linker option if you want to force a
reference to the symbol. Read more about single output files and the -g option in the
IAR Linker and Library Tools Reference Guide.

File The pure binary file you want to link.

Symbol The symbol defined by the segment part where the binary data is placed.

Segment The segment where the binary data is placed.

Align The alignment of the segment part where the binary data is placed.
UEW-8:1

Part 6. Reference information 351

352

Processing
Processing
With the Processing options you can specify details about how the code is generated.

Figure 197: Linker processing options

FILL UNUSED CODE MEMORY

Use Fill unused code memory to fill all gaps between segment parts introduced by the
linker with the value you enter. The linker can introduce gaps either because of
alignment restrictions, or at the end of ranges given in segment placement options.

The default behavior, when this option is not used, is that these gaps are not given a value
in the output file.

Fill pattern

Use this option to specify size, in hexadecimal notation, of the filler to be used in gaps
between segment parts.

Generate checksum

Use Generate checksum to checksum all generated raw data bytes. This option can
only be used if the Fill unused code memory option has been specified.

Size

Size specifies the number of bytes in the checksum, which can be 1, 2, or 4.
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Linker options
Algorithms

One of the following algorithms can be used:

Complement

Use the Complement drop-down list to specify the one’s complement or two’s
complement.

Bit order

By default it is the most significant 1, 2, or 4 bytes (MSB) of the result that will be
output, in the natural byte order for the processor. Choose LSB from the Bit order
drop-down list if you want the least significant bytes to be output.

Alignment

Use this option to specify an optional alignment for the checksum. If you do not specify
an alignment explicitly, an alignment of 2 is used.

Initial value

Use this option to specify the initial value of the checksum. This is useful if the
microcontroller you are using has its own checksum calculation and you want that
calculation to correspond to the calculation performed by the linker.

Algorithms Description

Arithmetic sum Simple arithmetic sum. The result is truncated to one byte.

CRC16 CRC16, generating polynomial 0x11021 (default)

CRC32 CRC32, generating polynomial 0x104C11DB7

Crc polynomial CRC with a generating polynomial of the value you enter

Table 92: Linker checksum algorithms
UEW-8:1

Part 6. Reference information 353

354

Extra Options
Extra Options
The Extra Options page provides you with a command line interface to the linker.

Figure 198: Extra Options page for the linker

USE COMMAND LINE OPTIONS

Additional command line arguments for the linker (not supported by the GUI) can be
specified here.
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Library builder options
This chapter describes the library builder options available in the IAR
Embedded Workbench® IDE.

For information about how to set options, see Setting options, page 91.

Output
Options for the library builder are not available by default. Before you can set these
options in the IDE, you must add the library builder tool to the list of categories. Choose
Project>Options to display the Options dialog box, and select the General Options
category. On the Output page, select the Library option.

If you select the Library option, Library Builder appears as a category in the Options
dialog box. As a result of the build process, the library builder will create a library output
file. Before you create the library you can set output options.

To set options, select Library Builder from the category list to display the options.

Figure 199: Library builder output options
UEW-8:1

Part 6. Reference information 355

356

Output
To restore all settings to the default factory settings, click the Factory Settings button.

The Output file option overrides the default name of the output file. Enter a new name
in the Override default text box.
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Debugger options
This chapter describes the C-SPY® options available in the IAR Embedded
Workbench® IDE.

For information about how to set options, see Setting options, page 91.

In addition, for information about options specific to the C-SPY hardware
debugger systems, see the online help system available from the Help menu.

Setup
To set C-SPY options in the IDE, choose Project>Options to display the Options
dialog box. Then select Debugger in the Category list. The Setup page contains the
generic C-SPY options.

Figure 200: Generic C-SPY options

To restore all settings to the default factory settings, click the Factory Settings button.

The Setup options specify the C-SPY driver, the setup macro file, and device
description file to be used, and which default source code location to run to.

DRIVER

Selects the appropriate driver for use with C-SPY, for example a simulator or an
emulator.
UEW-8:1

Part 6. Reference information 357

358

Setup
Contact your distributor or IAR Systems representative, or visit the IAR Systems web
site at www.iar.com for the most recent information about the available C-SPY drivers.

RUN TO

Use this option to specify a location you want C-SPY to run to when you start the
debugger and after a reset.

The default location to run to is the main function. Type the name of the location if you
want C-SPY to run to a different location. You can specify assembler labels or whatever
can be evaluated to such, for example function names.

If the option is deselected, the program counter will contain the regular hardware reset
address at each reset.

SETUP MACROS

To register the contents of a setup macro file in the C-SPY startup sequence, select Use
macro file and enter the path and name of the setup file, for example
SetupSimple.mac. If no extension is specified, the extension mac is assumed. A
browse button is available for your convenience.

DEVICE DESCRIPTION FILE

Use this option to load a device description file that contains device-specific
information.

For details about the device description file, see Selecting a device description file, page
115.

Device description files are provided in the directory cpuname\config and have the
filename extension ddf.

Download
Options specific to the C-SPY drivers are described in the online help system available
from the Help menu.
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Debugger options
Extra Options
The Extra Options page provides you with a command line interface to C-SPY.

Figure 201: Extra Options page for C-SPY

USE COMMAND LINE OPTIONS

Additional command line arguments for C-SPY (not supported by the GUI) can be
specified here.

Plugins
On the Plugins page you can specify C-SPY plugin modules to be loaded and made
available during debug sessions. Plugin modules can be provided by IAR Systems, and
by third-party suppliers. Contact your software distributor or IAR Systems
UEW-8:1

Part 6. Reference information 359

360

Plugins
representative, or visit the IAR Systems web site, for information about available
modules.

Figure 202: C-SPY plugin options

By default, Select plugins to load lists the plugin modules delivered with the product
installation.

If you have any C-SPY plugin modules delivered by any third-party vendor, these will
also appear in the list.

The common\plugins directory is intended for generic plugin modules. The
cpuname\plugins directory is intended for target-specific plugin modules.
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

The C-SPY Command
Line Utility—cspybat
You can execute the IAR C-SPY Debugger in batch mode, using the C-SPY
Command Line Utility—cspybat.exe—which is described in this chapter.

Using C-SPY in batch mode
You can execute C-SPY in batch mode if you use the command line utility cspybat,
installed in the directory common\bin.

INVOCATION SYNTAX

The invocation syntax for cspybat is:

cspybat processor_DLL driver_DLL debug_file [cspybat_options]
 --backend driver_options

Note: In those cases where a filename is required—including the DLL files—you are
recommended to give a full path to the filename.

Parameters

The parameters are:

Parameter Description

processor_DLL The processor-specific DLL file; available in cpuname\bin.

driver_DLL The C-SPY driver DLL file; available in cpuname\bin.

debug_file The object file that you want to debug (filename extension dxx).

cspybat_options The command line options that you want to pass to cspybat. Note
that these options are optional. For information about each option, see
Descriptions of C-SPY command line options, page 364.

--backend Marks the beginning of the parameters to the C-SPY driver; all options
that follow will be sent to the driver. Note that this option is
mandatory.

driver_options The command line options that you want to pass to the C-SPY driver.
Note that some of these options are mandatory and some are
optional. For information about each option, see Descriptions of C-SPY
command line options, page 364.

Table 93: cspybat parameters
UEW-8:1

Part 6. Reference information 361

362

Using C-SPY in batch mode
Example

This example starts cspybat using the simulator driver:

EW_DIR\common\bin\cspybat EW_DIR\cpuname\bin\cpunameproc.dll
EW_DIR\cpuname\bin\cpunamesim.dll PROJ_DIR\myproject.dxx --plugin
EW_DIR\cpuname\bin\cpunamebat.dll --backend -d sim -B -p
EW_DIR\cpuname\bin\config\devicedescription.ddf

where EW_DIR is the full path of the directory where you have installed IAR Embedded
Workbench

and where PROJ_DIR is the path of your project directory.

For a complete example, see the online help system available from the Help menu,
alternatively the file HelpCPUNAMEIDE2.chm available in the cpuname\doc directory.

OUTPUT

When you run cspybat, these types of output can be produced:

● Terminal output from cspybat itself

All such terminal output is directed to stderr. Note that if you run cspybat from
the command line without any arguments, the cspybat version number and all
available options including brief descriptions are directed to stdout and displayed
on your screen.

● Terminal output from the application you are debugging

All such terminal output is directed to stdout.

● Error return codes

cspybat return status information to the host operating system that can be tested in
a batch file. For successful, the value int 0 is returned, and for unsuccessful the value
int 1 is returned.

USING AN AUTOMATICALLY GENERATED BATCH FILE

When you use C-SPY in the IDE, C-SPY generates a batch file
projectname.cspy.bat every time C-SPY is initialized. You can find the file in the
directory $PROJ_DIR$\settings. This batch file contains the same settings as in the
IDE, and with minimal modifications, you can use it from the command line to start
cspybat. The file also contains information about required modifications.
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

The C-SPY Command Line Utility—cspybat
C-SPY command line options
GENERAL CSPYBAT OPTIONS

OPTIONS AVAILABLE FOR ALL C-SPY DRIVERS

Note that there might be additional target-specific options available. For a list of
available options, see the online help system available from the Help menu, alternatively
the file HelpCPUNAMEIDE2.chm available in the cpuname\doc directory.

OPTIONS AVAILABLE FOR THE SIMULATOR DRIVER

For a list of available options, see the online help system available from the Help menu,
alternatively the file HelpCPUNAMEIDE2.chm available in the cpuname\doc directory.

OPTIONS AVAILABLE FOR THE C-SPY HARDWARE DRIVER

For a list of available options, see the online help system available from the Help menu,
alternatively the HelpCPUNAMEHW.chm file available in the cpuname\doc directory.

--backend Marks the beginning of the parameters to be sent to the C-SPY
driver (mandatory).

--cycles Specifies the maximum number of cycles to run.

--flash_loader Specifies a flash loader specification XML file. Applies only to
product packages that support flash loaders.

--macro Specifies a macro file to be used.

--plugin Specifies a plugin file to be used.

--silent Omits the sign-on message.

-B Enables batch mode (mandatory).

-d Specifies the C-SPY driver to be used.

-p Specifies the device description file to be used.

--mapu Activates memory access checking.
UEW-8:1

Part 6. Reference information 363

364

Descriptions of C-SPY command line options
Descriptions of C-SPY command line options
This section gives detailed reference information about each cspybat option and each
option available to the C-SPY drivers.

-B

Syntax -B

Applicability All C-SPY drivers.

Description Use this option to enable batch mode.

--backend

Syntax --backend {driver options}

Parameters

Applicability Sent to cspybat (mandatory).

Description Use this option to send options to the C-SPY driver. All options that follow --backend
will be passed to the C-SPY driver, and will not be processed by cspybat itself.

--cycles

Syntax --cycles cycles

Parameters

Applicability Sent to cspybat.

Description Use this option to specify the maximum number of cycles to run. If the target program
executes longer than the number of cycles specified, the target program will be aborted.
Using this option requires that the C-SPY driver you are using supports a cycle counter,
and that it can be sampled while executing.

driver options Any option available to the C-SPY driver you are using.

cycles The number of cycles to run.
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

The C-SPY Command Line Utility—cspybat
-d

Syntax -d {driver1|driver2}

Parameters

Applicability All C-SPY drivers.

Description Use this option to specify the C-SPY driver to be used.

--flash_loader

Syntax --flash_loader filename

Parameters

Applicability Sent to cspybat.

Description Use this option to specify a flash loader specification xml file which contains all relevant
information about the flash loading. There can be more than one such argument, in
which case each argument will be processed in the specified order, resulting in several
flash programming passes.

See also The IAR Embedded Workbench flash loader User Guide.

--macro

Syntax --macro filename

Parameters

Applicability Sent to cspybat.

Description Use this option to specify a C-SPY macro file to be loaded before executing the target
application. This option can be used more than once on the command line.

See also The macro file, page 146.

driver1|driver2 Specifies the C-SPY driver to be used.

filename The flash loader specification XML file.

filename The C-SPY macro file to be used (filename extension mac).
UEW-8:1

Part 6. Reference information 365

366

Descriptions of C-SPY command line options
--mapu

Syntax --mapu

Applicability Sent to C-SPY simulator driver.

Description Specify this option to use the segment information in the debug file for memory access
checking. During the execution, the simulator will then check for accesses to
unspecified ranges. If any such access is found, a message will be printed on stdout
and the execution will stop.

See also The IAR Embedded Workbench® IDE User Guide for more information about memory
access checking.

To set related options, choose:

Simulator>Memory Access Setup

-p

Syntax -p filename

Parameters

Applicability All C-SPY drivers.

Description Use this option to specify the device description file to be used.

See also Selecting a device description file, page 115

--plugin

Syntax --plugin filename

Parameters

Applicability Sent to cspybat.

Description Certain C/C++ standard library functions, for example printf, can be supported by
C-SPY—for example, the C-SPY Terminal I/O window—instead of by real hardware

filename The device description file to be used.

filename The plugin file to be used (filename extension dll).
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

The C-SPY Command Line Utility—cspybat
devices. To enable such support in cspybat, a dedicated plugin module called
cpunameLibSupport.dll or cpunamebat.dll located in the cpuname\bin
directory must be used.

Use this option to include this plugin during the debug session. This option can be used
more than once on the command line.

Note: You can use this option to include also other plugin modules, but in that case the
module must be able to work with cspybat specifically. This means that the C-SPY
plugin modules located in the common\plugin directory cannot normally be used with
cspybat.

--silent

Syntax --silent

Applicability Sent to cspybat.

Description Use this option to omit the sign-on message.
UEW-8:1

Part 6. Reference information 367

368

Descriptions of C-SPY command line options
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

C-SPY® macros reference
This chapter gives reference information about the C-SPY macros. First a
syntax description of the macro language is provided. Then, the available setup
macro functions and the pre-defined system macros are summarized. Finally,
each system macro is described in detail.

The macro language
The syntax of the macro language is very similar to the C language. There are macro
statements, which are similar to C statements. You can define macro functions, with or
without parameters and return value. You can use built-in system macros, similar to C
library functions. Finally, you can define global and local macro variables. You can
collect your macro functions in a macro file (filename extension mac).

MACRO FUNCTIONS

C-SPY macro functions consist of C-SPY variable definitions and macro statements
which are executed when the macro is called. An unlimited number of parameters can
be passed to a macro function, and macro functions can return a value on exit.

A C-SPY macro has this form:

macroName (parameterList)
{
 macroBody
}

where parameterList is a list of macro parameters separated by commas, and
macroBody is any series of C-SPY variable definitions and C-SPY statements.

Type checking is neither performed on the values passed to the macro functions nor on
the return value.

PREDEFINED SYSTEM MACRO FUNCTIONS

The macro language also includes a wide set of predefined system macro functions
(built-in functions), similar to C library functions. For detailed information about each
system macro, see Description of C-SPY system macros, page 376.
UEW-8:1

Part 6. Reference information 369

370

The macro language
MACRO VARIABLES

A macro variable is a variable defined and allocated outside your application space. It
can then be used in a C-SPY expression. For detailed information about C-SPY
expressions, see the chapter C-SPY expressions, page 125.

The syntax for defining one or more macro variables is:

__var nameList;

where nameList is a list of C-SPY variable names separated by commas.

A macro variable defined outside a macro body has global scope, and it exists
throughout the whole debugging session. A macro variable defined within a macro body
is created when its definition is executed and destroyed on return from the macro.

By default, macro variables are treated as signed integers and initialized to 0. When a
C-SPY variable is assigned a value in an expression, it also acquires the type of that
expression. For example:

In case of a name conflict between a C symbol and a C-SPY macro variable, C-SPY
macro variables have a higher precedence than C variables. Note that macro variables
are allocated on the debugger host and do not affect your application.

Macro strings

In addition to C types, macro variables can hold values of macro strings. Note that
macro strings differ from C language strings.

When you write a string literal, such as "Hello!", in a C-SPY expression, the value is
a macro string. It is not a C-style character pointer char*, because char* must point to
a sequence of characters in target memory and C-SPY cannot expect any string literal to
actually exist in target memory.

You can manipulate a macro string using a few built-in macro functions, for example
__strFind or __subString. The result can be a new macro string. You can
concatenate macro strings using the + operator, for example str + "tail". You can
also access individual characters using subscription, for example str[3]. You can get
the length of a string using sizeof(str). Note that a macro string is not
NULL-terminated.

Expression What it means

myvar = 3.5; myvar is now type float, value 3.5.

myvar = (int*)i; myvar is now type pointer to int, and the value is the same as i.

Table 94: Examples of C-SPY macro variables
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

C-SPY® macros reference
The macro function __toString is used for converting from a NULL-terminated C
string in your application (char* or char[]) to a macro string. For example, assume
this definition of a C string in your application:

char const *cstr = "Hello";

Then examine these examples:

__var str; /* A macro variable */
str = cstr /* str is now just a pointer to char */
sizeof str /* same as sizeof (char*), typically 2 or 4 */
str = __toString(cstr,512) /* str is now a macro string */
sizeof str /* 5, the length of the string */
str[1] /* 101, the ASCII code for 'e' */
str += " World!" /* str is now "Hello World!" */

See also Formatted output, page 372.

MACRO STATEMENTS

Statements are expected to behave in the same way as the corresponding C statements
would do. The following C-SPY macro statements are accepted:

Expressions

expression;

For detailed information about C-SPY expressions, see C-SPY expressions, page 125.

Conditional statements

if (expression)
 statement

if (expression)
 statement
else
 statement

Loop statements

for (init_expression; cond_expression; update_expression)
 statement

while (expression)
 statement

do
 statement
UEW-8:1

Part 6. Reference information 371

372

The macro language
while (expression);

Return statements

return;

return expression;

If the return value is not explicitly set, signed int 0 is returned by default.

Blocks

Statements can be grouped in blocks.

{
 statement1
 statement2
 .
 .
 .
 statementN
}

FORMATTED OUTPUT

C-SPY provides various methods for producing formatted output:

where argList is a comma-separated list of C-SPY expressions or strings, and file is
the result of the __openFile system macro, see __openFile, page 381.

Examples

Use the __message statement, as in this example:

var1 = 42;
var2 = 37;
__message "This line prints the values ", var1, " and ", var2,
" in the Log window.";

This should produce this message in the Log window:

This line prints the values 42 and 37 in the Log window.

__message argList; Prints the output to the Debug Log window.

__fmessage file, argList; Prints the output to the designated file.

__smessage argList; Returns a string containing the formatted output.
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

C-SPY® macros reference
Use __fmessage to write the output to the designated file, for example:

__fmessage myfile, "Result is ", res, "!\n";

Finally, use __smessage to produce strings, for example:

myMacroVar = __smessage 42, " is the answer.";

myMacroVar now contains the string "42 is the answer".

Specifying display format of arguments

To override the default display format of a scalar argument (number or pointer) in
argList, suffix it with a : followed by a format specifier. Available specifiers are %b
for binary, %o for octal, %d for decimal, %x for hexadecimal and %c for character. These
match the formats available in the Watch and Locals windows, but number prefixes and
quotes around strings and characters are not printed. Another example:

__message "The character '", cvar:%c, "' has the decimal value
", cvar;

This might produce:

The character 'A' has the decimal value 65

Note: A character enclosed in single quotes (a character literal) is an integer constant
and is not automatically formatted as a character. For example:

__message 'A', " is the numeric value of the character ",
'A':%c;

would produce:

65 is the numeric value of the character A

Note: The default format for certain types is primarily designed to be useful in the
Watch window and other related windows. For example, a value of type char is
formatted as 'A' (0x41), while a pointer to a character (potentially a C string) is
formatted as 0x8102 "Hello", where the string part shows the beginning of the string
(currently up to 60 characters).

When printing a value of type char*, use the %x format specifier to print just the pointer
value in hexadecimal notation, or use the system macro __toString to get the full
string value.
UEW-8:1

Part 6. Reference information 373

374

Setup macro functions summary
Setup macro functions summary
This table summarizes the available setup macro functions:

Note: If you define interrupts or breakpoints in a macro file that is executed at system
start (using execUserSetup) we strongly recommend that you also make sure that they
are removed at system shutdown (using execUserExit). An example is available in
SetupSimple.mac, see Simulating an interrupt, page 59.

The reason for this is that the simulator saves interrupt settings between sessions and if
they are not removed they will get duplicated every time execUserSetup is executed
again. This seriously affects the execution speed.

Macro Description

execUserPreload Called after communication with the target system is established
but before downloading the target application.
Implement this macro to initialize memory locations and/or
registers which are vital for loading data properly.

execUserFlashInit Called once before the flash loader is downloaded to RAM.
Implement this macro typically for setting up the memory map
required by the flash loader. This macro is only called when you are
programming flash, and it should only be used for flash loader
functionality. Applies only to product versions that support using
flash loaders.

execUserSetup Called once after the target application is downloaded.
Implement this macro to set up the memory map, breakpoints,
interrupts, register macro files, etc.

execUserFlashReset Called once after the flash loader is downloaded to RAM, but
before execution of the flash loader. This macro is only called when
you are programming flash, and it should only be used for flash
loader functionality. Applies only to product versions that support
using flash loaders.

execUserReset Called each time the reset command is issued.
Implement this macro to set up and restore data.

execUserExit Called once when the debug session ends.
Implement this macro to save status data etc.

execUserFlashExit Called once when the debug session ends.
Implement this macro to save status data etc. This macro is useful
for flash loader functionality. Applies only to product versions that
support using flash loaders.

Table 95: C-SPY setup macros
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

C-SPY® macros reference
C-SPY system macros summary
This table summarizes the pre-defined system macros:

Macro Description

__cancelAllInterrupts Cancels all ordered interrupts

__cancelInterrupt Cancels an interrupt

__clearBreak Clears a breakpoint

__closeFile Closes a file that was opened by __openFile

__disableInterrupts Disables generation of interrupts

__driverType Verifies the driver type

__enableInterrupts Enables generation of interrupts

__evaluate Interprets the input string as an expression and
evaluates it.

__loadModule Loads a debug file.

__openFile Opens a file for I/O operations

__orderInterrupt Generates an interrupt

__popSimulatorInterruptExecu

tingStack

Informs the interrupt simulation system that an
interrupt handler has finished executing

__readFile Reads from the specified file

__readFileByte Reads one byte from the specified file

__readMemory8,

__readMemoryByte

Reads one byte from the specified memory location

__readMemory16 Reads two bytes from the specified memory location

__readMemory32 Reads four bytes from the specified memory location

__registerMacroFile Registers macros from the specified file

__resetFile Rewinds a file opened by __openFile

__setCodeBreak Sets a code breakpoint

__setDataBreak Sets a data breakpoint

__setSimBreak Sets a simulation breakpoint

__sourcePosition Returns the file name and source location if the
current execution location corresponds to a source
location

__strFind Searches a given string for the occurrence of another
string

__subString Extracts a substring from another string

Table 96: Summary of system macros
UEW-8:1

Part 6. Reference information 375

376

Description of C-SPY system macros
Description of C-SPY system macros
This section gives reference information about each of the C-SPY system macros.

__cancelAllInterrupts

Syntax __cancelAllInterrupts()

Return value int 0

Description Cancels all ordered interrupts.

Applicability This system macro is only available in the C-SPY Simulator.

__toLower Returns a copy of the parameter string where all the
characters have been converted to lower case

__toString Prints strings

__toUpper Returns a copy of the parameter string where all the
characters have been converted to upper case

__writeFile Writes to the specified file

__writeFileByte Writes one byte to the specified file

__writeMemory8,

__writeMemoryByte,

__writeMemory8,

__writeMemoryByte

Writes one byte to the specified memory location

__writeMemory16 Writes a two-byte word to the specified memory
location

__writeMemory32 Writes a four-byte word to the specified memory
location

Macro Description

Table 96: Summary of system macros (Continued)
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

C-SPY® macros reference
__cancelInterrupt

Syntax __cancelInterrupt(interrupt_id)

Parameter

Return value

Description Cancels the specified interrupt.

Applicability This system macro is only available in the C-SPY Simulator.

__clearBreak

Syntax __clearBreak(break_id)

Parameter

Return value int 0

Description Clears a user-defined breakpoint.

See also Defining breakpoints, page 133.

__closeFile

Syntax __closeFile(filehandle)

Parameter

Return value int 0

Description Closes a file previously opened by __openFile.

interrupt_id The value returned by the corresponding
__orderInterrupt macro call (unsigned long)

Result Value

Successful int 0

Unsuccessful Non-zero error number

Table 97: __cancelInterrupt return values

break_id The value returned by any of the set breakpoint macros

filehandle The macro variable used as filehandle by the __openFile macro
UEW-8:1

Part 6. Reference information 377

378

Description of C-SPY system macros
__disableInterrupts

Syntax __disableInterrupts()

Return value

Description Disables the generation of interrupts.

Applicability This system macro is only available in the C-SPY Simulator.

__driverType

Syntax __driverType(driver_id)

Parameter

Return value

Description Checks to see if the current C-SPY driver is identical to the driver type of the
driver_id parameter.

Example __driverType("sim")

If a simulator is the current driver, the value 1 is returned. Otherwise 0 is returned.

Result Value

Successful int 0

Unsuccessful Non-zero error number

Table 98: __disableInterrupts return values

driver_id A string corresponding to the driver you want to check for. For a
list of supported strings, see the online help system available from
the Help menu

Result Value

Successful 1

Unsuccessful 0

Table 99: __driverType return values
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

C-SPY® macros reference
__enableInterrupts

Syntax __enableInterrupts()

Return value

Description Enables the generation of interrupts.

Applicability This system macro is only available in the C-SPY Simulator.

__evaluate

Syntax __evaluate(string, valuePtr)

Parameter

Return value

Description This macro interprets the input string as an expression and evaluates it. The result is
stored in a variable pointed to by valuePtr.

Example This example assumes that the variable i is defined and has the value 5:

__evaluate("i + 3", &myVar)

The macro variable myVar is assigned the value 8.

Result Value

Successful int 0

Unsuccessful Non-zero error number

Table 100: __enableInterrupts return values

string Expression string

valuePtr Pointer to a macro variable storing the result

Result Value

Successful int 0

Unsuccessful int 1

Table 101: __evaluate return values
UEW-8:1

Part 6. Reference information 379

380

Description of C-SPY system macros
__loadModule

Syntax __loadModule(path, suppressDownload)

Parameter

Return value

Description Loads a debug file.

Example 1 Your system consists of a ROM library and an application. The application is your active
project, but you have a debug file corresponding to the library. In this case you can add
this macro call in the execUserSetup macro in a C-SPY macro file associated with
your project:

__loadModule(ROMfile, 1);

This macro call loads the debug information for the ROM library ROMfile without
downloading its contents (because it is presumably already in ROM). Then you can
debug your application together with the library.

Example 2 Your system consists of a ROM library and an application, but your main concern is the
library. The library needs to be programmed into flash memory before a debug session.
While you are developing the library, the library project must be the active project in the
IDE. In this case you can add this macro call in the execUserSetup macro in a C-SPY
macro file associated with your project:

__loadModule(ApplicationFile, 0);

This macro call loads the debug information for the application and downloads its
contents (presumably into RAM). Then you can debug your library together with the
application.

See also Loading multiple debug files, page 117.

path The path to the debug file.

suppressDownload A non-zero value if no code or data should be downloaded to the
target system, which means that C-SPY will only read the debug
information from the debug file. Or, 0 (zero) for download.

Value Result

Non-zero integer number A unique module identification.

int 0 Loading failed.

Table 102: __loadModule return values
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

C-SPY® macros reference
__openFile

Syntax __openFile(file, access)

Parameters

Return value

Description Opens a file for I/O operations. The default base directory of this macro is where the
currently open project file (*.pew or *.prj) is located. The argument to __openFile
can specify a location relative to this directory. In addition, you can use argument
variables such as $PROJ_DIR$ and $TOOLKIT_DIR$ in the path argument.

Example __var filehandle; /* The macro variable to contain */
 /* the file handle */
filehandle = __openFile("Debug\\Exe\\test.tst", "r");
if (filehandle)
{
 /* successful opening */
}

See also Argument variables summary, page 237.

file The filename as a string

access The access type (string).
These are mandatory but mutually exclusive:
"a" append, new data will be appended at the end of the open file
"r" read
"w" write
These are optional and mutually exclusive:
"b" binary, opens the file in binary mode
"t" ASCII text, opens the file in text mode
This access type is optional:
"+" together with r, w, or a; r+ or w+ is read and write, while a+ is read
 and append

Result Value

Successful The file handle

Unsuccessful An invalid file handle, which tests as False

Table 103: __openFile return values
UEW-8:1

Part 6. Reference information 381

382

Description of C-SPY system macros
__orderInterrupt

Syntax __orderInterrupt(specification, first_activation,
 repeat_interval, variance, infinite_hold_time,
 hold_time, probability)

Parameters

Return value The macro returns an interrupt identifier (unsigned long).

If the syntax of specification is incorrect, it returns -1.

Description Generates an interrupt.

Applicability This system macro is only available in the C-SPY Simulator.

Example This example generates a repeating interrupt using an infinite hold time first activated
after 4000 cycles:

__orderInterrupt("USARTR_VECTOR", 4000, 2000, 0, 1, 0, 100);

__popSimulatorInterruptExecutingStack

Syntax __popSimulatorInterruptExecutingStack(void)

Return value This macro has no return value.

Description Informs the interrupt simulation system that an interrupt handler has finished executing,
as if the normal instruction used for returning from an interrupt handler was executed.

specification The interrupt (string). The specification can either be the full
specification used in the device description file (ddf) or only the
name. In the latter case the interrupt system will automatically get
the description from the device description file.

first_activation The first activation time in cycles (integer)

repeat_interval The periodicity in cycles (integer)

variance The timing variation range in percent (integer between 0 and 100)

infinite_hold_time 1 if infinite, otherwise 0.

hold_time The hold time (integer)

probability The probability in percent (integer between 0 and 100)
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

C-SPY® macros reference
This is useful if you are using interrupts in such a way that the normal instruction for
returning from an interrupt handler is not used, for example in an operating system with
task-switching. In this case, the interrupt simulation system cannot automatically detect
that the interrupt has finished executing.

Applicability This system macro is only available in the C-SPY Simulator.

__readFile

Syntax __readFile(file, valuePtr)

Parameters

Return value

Description Reads a sequence of hexadecimal digits from the given file and converts them to an
unsigned long which is assigned to the value parameter, which should be a pointer
to a macro variable.

Example __var number;
if (__readFile(myFile, &number) == 0)
{
 // Do something with number
}

__readFileByte

Syntax __readFileByte(file)

Parameter

Return value -1 upon error or end-of-file, otherwise a value between 0 and 255.

Description Reads one byte from the file file.

file A file handle

valuePtr A pointer to a variable

Result Value

Successful 0

Unsuccessful Non-zero error number

Table 104: __readFile return values

file A file handle
UEW-8:1

Part 6. Reference information 383

384

Description of C-SPY system macros
Example __var byte;
while ((byte = __readFileByte(myFile)) != -1)
{
 // Do something with byte
}

__readMemory8, __readMemoryByte

Syntax __readMemory8(address, zone)
__readMemoryByte(address, zone)

Parameters

Return value The macro returns the value from memory.

Description Reads one byte from a given memory location.

Example __readMemory8(0x0108, "Memory");

__readMemory16

Syntax __readMemory16(address, zone)

Parameters

Return value The macro returns the value from memory.

Description Reads a two-byte word from a given memory location.

Example __readMemory16(0x0108, "Memory");

address The memory address (integer)

zone The memory zone name (string); see the online help
system available from the Help menu

address The memory address (integer)

zone The memory zone name (string); see the online help
system available from the Help menu
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

C-SPY® macros reference
__readMemory32

Syntax __readMemory32(address, zone)

Parameters

Return value The macro returns the value from memory.

Description Reads a four-byte word from a given memory location.

Example __readMemory32(0x0108, "Memory");

__registerMacroFile

Syntax __registerMacroFile(filename)

Parameter

Return value int 0

Description Registers macros from a setup macro file. With this function you can register multiple
macro files during C-SPY startup.

Example __registerMacroFile("c:\\testdir\\macro.mac");

See also Registering and executing using setup macros and setup files, page 149.

__resetFile

Syntax __resetFile(filehandle)

Parameter

Return value int 0

address The memory address (integer)

zone The memory zone name (string); see the online help
system available from the Help menu

filename A file containing the macros to be registered (string)

filehandle The macro variable used as filehandle by the __openFile
macro
UEW-8:1

Part 6. Reference information 385

386

Description of C-SPY system macros
Description Rewinds a file previously opened by __openFile.

__setCodeBreak

Syntax __setCodeBreak(location, count, condition, cond_type, action)

Parameters

Return value

Description Sets a code breakpoint, that is, a breakpoint which is triggered just before the processor
fetches an instruction at the specified location.

Examples __setCodeBreak("{D:\\src\\prog.c}.12.9", 3, "d>16", "TRUE",
"ActionCode()");

This example sets a code breakpoint on the label main in your source:

__setCodeBreak("main", 0, "1", "TRUE", "");

See also Defining breakpoints, page 133.

location A string with a location description. This can be either:
A source location on the form {filename}.line.col (for
example {D:\\src\\prog.c}.12.9)
An absolute location on the form zone:hexaddress or simply
hexaddress (for example Memory:0x42)
An expression whose value designates a location (for example main)

count The number of times that a breakpoint condition must be fulfilled
before a break occurs (integer)

condition The breakpoint condition (string)

cond_type The condition type; either “CHANGED” or “TRUE” (string)

action An expression, typically a call to a macro, which is evaluated when
the breakpoint is detected

Result Value

Successful An unsigned integer uniquely identifying the breakpoint. This value
must be used to clear the breakpoint.

Unsuccessful 0

Table 105: __setCodeBreak return values
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

C-SPY® macros reference
 __setDataBreak

Syntax __setDataBreak(location, count, condition, cond_type, access,
 action)

Parameters

Return value

Description Sets a data breakpoint, that is, a breakpoint which is triggered directly after the processor
has read or written data at the specified location.

Applicability This system macro is only available in the C-SPY Simulator.

Example __var brk;
brk = __setDataBreak("Memory:0x4710", 3, "d>6", "TRUE",
 "W", "ActionData()");
...

location A string with a location description. This can be either:
A source location on the form {filename}.line.col (for
example {D:\\src\\prog.c}.12.9), although this is not
very useful for data breakpoints

An absolute location on the form zone:hexaddress or simply
hexaddress (for example Memory:0x42)

An expression whose value designates a location (for example
my_global_variable).

count The number of times that a breakpoint condition must be fulfilled
before a break occurs (integer)

condition The breakpoint condition (string)

cond_type The condition type; either “CHANGED” or “TRUE” (string)

access The memory access type: "R" for read, "W" for write, or "RW"
for read/write

action An expression, typically a call to a macro, which is evaluated when
the breakpoint is detected

Result Value

Successful An unsigned integer uniquely identifying the breakpoint. This value
must be used to clear the breakpoint.

Unsuccessful 0

Table 106: __setDataBreak return values
UEW-8:1

Part 6. Reference information 387

388

Description of C-SPY system macros
__clearBreak(brk);

See also Defining breakpoints, page 133.

 __setSimBreak

Syntax __setSimBreak(location, access, action)

Parameters

Return value

Description Use this system macro to set immediate breakpoints, which will halt instruction
execution only temporarily. This allows a C-SPY macro function to be called when the
processor is about to read data from a location or immediately after it has written data.
Instruction execution will resume after the action.

This type of breakpoint is useful for simulating memory-mapped devices of various
kinds (for instance serial ports and timers). When the processor reads at a
memory-mapped location, a C-SPY macro function can intervene and supply the
appropriate data. Conversely, when the processor writes to a memory-mapped location,
a C-SPY macro function can act on the value that was written.

Applicability This system macro is only available in the C-SPY Simulator.

location A string with a location description. This can be either:
A source location on the form {filename}.line.col (for
example {D:\\src\\prog.c}.12.9), although this is not
very useful for simulation breakpoints.
An absolute location on the form zone:hexaddress or simply
hexaddress (for example Memory:0xE01E).
An expression whose value designates a location (for example
my_global_variable).

access The memory access type: "R" for read or "W" for write

action An expression, typically a call to a macro function, which is
evaluated when the breakpoint is detected

Result Value

Successful An unsigned integer uniquely identifying the breakpoint. This value
must be used to clear the breakpoint.

Unsuccessful 0

Table 107: __setSimBreak return values
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

C-SPY® macros reference
 __sourcePosition

Syntax __sourcePosition(linePtr, colPtr)

Parameters

Return value

Description If the current execution location corresponds to a source location, this macro returns the
filename as a string. It also sets the value of the variables, pointed to by the parameters,
to the line and column numbers of the source location.

__strFind

Syntax __strFind(macroString, pattern, position)

Parameters

Return value The position where the pattern was found or -1 if the string is not found.

Description This macro searches a given string for the occurrence of another string.

Example __strFind("Compiler", "pile", 0) = 3
__strFind("Compiler", "foo", 0) = -1

See also Macro strings, page 370.

linePtr Pointer to the variable storing the line number

colPtr Pointer to the variable storing the column number

Result Value

Successful Filename string

Unsuccessful Empty ("") string

Table 108: __sourcePosition return values

macroString The macro string to search in

pattern The string pattern to search for

position The position where to start the search. The first position is 0
UEW-8:1

Part 6. Reference information 389

390

Description of C-SPY system macros
__subString

Syntax __subString(macroString, position, length)

Parameters

Return value A substring extracted from the given macro string.

Description This macro extracts a substring from another string.

Example __subString("Compiler", 0, 2)

The resulting macro string contains Co.

__subString("Compiler", 3, 4)

The resulting macro string contains pile.

See also Macro strings, page 370.

__toLower

Syntax __toLower(macroString)

Parameter macroString is any macro string.

Return value The converted macro string.

Description This macro returns a copy of the parameter string where all the characters have been
converted to lower case.

Example __toLower("IAR")

The resulting macro string contains iar.

__toLower("Mix42")

The resulting macro string contains mix42.

See also Macro strings, page 370.

macroString The macro string from which to extract a substring

position The start position of the substring. The first position is 0.

length The length of the substring
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

C-SPY® macros reference
__toString

Syntax __toString(C_string, maxlength)

Parameter

Return value Macro string.

Description This macro is used for converting C strings (char* or char[]) into macro strings.

Example Assuming your application contains this definition:

char const * hptr = "Hello World!";

this macro call:

__toString(hptr, 5)

would return the macro string containing Hello.

See also Macro strings, page 370.

__toUpper

Syntax __toUpper(macroString)

Parameter macroString is any macro string.

Return value The converted string.

Description This macro returns a copy of the parameter macroString where all the characters have
been converted to upper case.

Example __toUpper("string")

The resulting macro string contains STRING.

See also Macro strings, page 370.

string Any null-terminated C string

maxlength The maximum length of the returned macro string
UEW-8:1

Part 6. Reference information 391

392

Description of C-SPY system macros
__writeFile

Syntax __writeFile(file, value)

Parameters

Return value int 0

Description Prints the integer value in hexadecimal format (with a trailing space) to the file file.

Note: The __fmessage statement can do the same thing. The __writeFile macro is
provided for symmetry with __readFile.

__writeFileByte

Syntax __writeFileByte(file, value)

Parameters

Return value int 0

Description Writes one byte to the file file.

__writeMemory8, __writeMemoryByte

Syntax __writeMemory8(value, address, zone)
__writeMemoryByte(value, address, zone)

Parameters

Return value int 0

file A file handle

value An integer

file A file handle

value An integer in the range 0-255

value The value to be written (integer)

address The memory address (integer)

zone The memory zone name (string); see the online help system
available from the Help menu
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

C-SPY® macros reference
Description Writes one byte to a given memory location.

Example __writeMemory8(0x2F, 0x8020, "Memory");

__writeMemory16

Syntax __writeMemory16(value, address, zone)

Parameters

Return value int 0

Description Writes two bytes to a given memory location.

Example __writeMemory16(0x2FFF, 0x8020, "Memory");

__writeMemory32

Syntax __writeMemory32(value, address, zone)

Parameters

Return value int 0

Description Writes four bytes to a given memory location.

Example

__writeMemory32(0x5555FFFF, 0x8020, "Memory");

value The value to be written (integer)

address The memory address (integer)

zone The memory zone name (string); see the online help system
available from the Help menu

value The value to be written (integer)

address The memory address (integer)

zone The memory zone name (string); see the online help system
available from the Help menu
UEW-8:1

Part 6. Reference information 393

394

Description of C-SPY system macros
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Glossary
Glossary
This is a general glossary for terms relevant to embedded
systems programming. Some of the terms do not apply to the
IAR Embedded Workbench® version that you are using.

A
Absolute location
A specific memory address for an object specified in the
source code, as opposed to the object being assigned a location
by the IAR XLINK Linker.

Absolute segments
Segments that have fixed locations in memory before linking.

Address expression
An expression which has an address as its value.

Application
The program developed by the user of the IAR Systems toolkit
and which will be run as an embedded application on a target
processor.

Architecture
A term used by computer designers to designate the structure
of complex information-processing systems. It includes the
kinds of instructions and data used, the memory organization
and addressing, and the methods by which the system is
implemented. The two main architecture types used in
processor design are Harvard architecture and von Neumann
architecture.

Assembler directives
The set of commands that control how the assembler operates.

Assembler options
Parameters you can specify to change the default behavior of
the assembler.

Assembler language
A machine-specific set of mnemonics used to specify
operations to the target processor and input or output registers
or data areas. Assembler language might sometimes be
preferred over C/C++ to save memory or to enhance the
execution speed of the application.

Auto variables
The term refers to the fact that each time the function in which
the variable is declared is called, a new instance of the variable
is created automatically. This can be compared with the
behavior of local variables in systems using static overlay,
where a local variable only exists in one instance, even if the
function is called recursively. Also called local variables.
Compare Register variables.

B
Backtrace
Information that allows the IAR C-SPY® Debugger to show,
without any runtime penalty, the complete stack of function
calls wherever the program counter is, provided that the code
comes from compiled C functions.

Bank
See Memory bank.

Bank switching
Switching between different sets of memory banks. This
software technique increases a computer's usable memory by
allowing different pieces of memory to occupy the same
address space.

Banked code
Code that is distributed over several banks of memory. Each
function must reside in only one bank.

Banked data
Data that is distributed over several banks of memory. Each
data object must fit inside one memory bank.

Banked memory
Has multiple storage locations for the same address. See also
Memory bank.
UEW-8:1

395

396
Bank-switching routines
Code that selects a memory bank.

Batch files
A text file containing operating system commands which are
executed by the command line interpreter. In Unix, this is
called a “shell script” because it is the Unix shell which
includes the command line interpreter. Batch files can be used
as a simple way to combine existing commands into new
commands.

Bitfield
A group of bits considered as a unit.

Breakpoint
1. Code breakpoint. A point in a program that, when reached,
triggers some special behavior useful to the process of
debugging. Generally, breakpoints are used for stopping
program execution or dumping the values of some or all of the
program variables. Breakpoints can be part of the program
itself, or they can be set by the programmer as part of an
interactive session with a debugging tool for scrutinizing the
program's execution.

2. Data breakpoint. A point in memory that, when accessed,
triggers some special behavior useful to the process of
debugging. Generally, data breakpoints are used to stop
program execution when an address location is accessed either
by a read operation or a write operation.

3. Immediate breakpoint. A point in memory that, when
accessed, trigger some special behavior useful in the process of
debugging. Immediate breakpoints are generally used for
halting the program execution in the middle of a memory
access instruction (before or after the actual memory access
depending on the access type) while performing some
user-specified action. The execution is then resumed. This
feature is only available in the simulator version of C-SPY.

C
Calling convention
A calling convention describes the way one function in a
program calls another function. This includes how register
parameters are handled, how the return value is returned, and
which registers that will be preserved by the called function.
The compiler handles this automatically for all C and C++
functions. All code written in assembler language must
conform to the rules in the calling convention to be callable
from C or C++, or to be able to call C and C++ functions. The
C calling convention and the C++ calling conventions are not
necessarily the same.

Cheap
As in cheap memory access. A cheap memory access either
requires few cycles to perform, or few bytes of code to
implement. A cheap memory access is said to have a low cost.
See Memory access cost.

Checksum
A computed value which depends on the ROM content of the
whole or parts of the application, and which is stored along
with the application to detect corruption of the data. The
checksum is produced by the linker to be verified with the
application. Several algorithms are supported. Compare CRC
(cyclic redundancy checking).

Code banking
See Banked code.

Code model
The code model controls how code is generated for an
application. Typically, the code model controls behavior such
as how functions are called and in which code segment
functions will be located. All object files of an application
must be compiled using the same code model.

Code pointers
A code pointer is a function pointer. As many microcontrollers
allow several different methods of calling a function,
compilers for embedded systems usually provide the users
with the ability to use all these methods.
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Glossary
Do not confuse code pointers with data pointers.

Compilation unit
See Translation unit.

Compiler function directives
The compiler function directives are generated by the compiler
to pass information about functions and function calls to the
IAR XLINK Linker. To view these directives, you must create
an assembler list file. These directives are primarily intended
for compilers that support static overlay, a feature which is
useful in smaller microcontrollers.

Compiler options
Parameters you can specify to change the default behavior of
the compiler.

Cost
See Memory access cost.

CRC (cyclic redundancy checking)
A number derived from, and stored with, a block of data to
detect corruption. A CRC is based on polynomials and is a
more advanced way of detecting errors than a simple
arithmetic checksum. Compare Checksum.

C-SPY options
Parameters you can specify to change the default behavior of
the IAR C-SPY Debugger.

Cstartup
Code that sets up the system before the application starts
executing.

C-style preprocessor
A preprocessor is either a stand-alone application or an
integrated part of a compiler, that performs preprocessing of
the input stream before the actual compilation occurs. A
C-style preprocessor follows the rules set up in the ANSI
specification of the C language and implements commands
like #define, #if, and #include, which are used to handle
textual macro substitution, conditional compilation, and
inclusion of other files.

D
Data banking
See Banked data.

Data model
The data model specifies the default memory type. This means
that the data model typically controls one or more of the
following: The method used and the code generated to access
static and global variables, dynamically allocated data, and the
runtime stack. It also controls the default pointer type and in
which data segments static and global variables will be
located. A project can only use one data model at a time, and
the same model must be used by all user modules and all
library modules in the project.

Data pointers
Many microcontrollers have different addressing modes to
access different memory types or address spaces. Compilers
for embedded systems usually have a set of different data
pointer types so they can access the available memory
efficiently.

Data representation
How different data types are laid out in memory and what
value ranges they represent.

Declaration
A specification to the compiler that an object, a variable or
function, exists. The object itself must be defined in exactly
one translation unit (source file). An object must either be
declared or defined before it is used. Normally an object that is
used in many files is defined in one source file. A declaration
is normally placed in a header file that is included by the files
that use the object.

For example:

/* Variable "a" exists somewhere. Function
 "b" takes two int parameters and returns an
 int. */

extern int a;
int b(int, int);
UEW-8:1

397

398
Definition
The variable or function itself. Only one definition can exist
for each variable or function in an application. See also
Tentative definition.

For example:

int a;
int b(int x, int y)
{
 return x + y;
}

Derivative
One of two or more processor variants in a series or family of
microprocessors or microcontrollers.

Device description file
A file used by C-SPY that contains various device-specific
information such as I/O registers (SFR) definitions, interrupt
vectors, and control register definitions.

Device driver
Software that provides a high-level programming interface to
a particular peripheral device.

Digital signal processor (DSP)
A device that is similar to a microprocessor, except that the
internal CPU is optimized for use in applications involving
discrete-time signal processing. In addition to standard
microprocessor instructions, digital signal processors usually
support a set of complex instructions to perform common
signal-processing computations quickly.

Disassembly window
A C-SPY window that shows the memory contents
disassembled as machine instructions, interspersed with the
corresponding C source code (if available).

DWARF
An industry-standard debugging format which supports source
level debugging. This is the format used by the IAR ILINK
Linker for representing debug information in an object.

Dynamic initialization
Variables in a program written in C are initialized during the
initial phase of execution, before the main function is called.
These variables are always initialized with a static value,
which is determined either at compile time or at link time. This
is called static initialization. In C++, variables might require
initialization to be performed by executing code, for example,
running the constructor of global objects, or performing
dynamic memory allocation.

Dynamic memory allocation
There are two main strategies for storing variables: statically at
link time, or dynamically at runtime. Dynamic memory
allocation is often performed from the heap and it is the size of
the heap that determines how much memory that can be used
for dynamic objects and variables. The advantage of dynamic
memory allocation is that several variables or objects that are
not active at the same time can be stored in the same memory,
thus reducing the memory requirements of an application. See
also Heap memory.

Dynamic object
An object that is allocated, created, destroyed, and released at
runtime. Dynamic objects are almost always stored in memory
that is dynamically allocated. Compare Static object.

E
EEPROM
Electrically Erasable, Programmable Read-Only Memory. A
type of ROM that can be erased electronically, and then be
re-programmed.

ELF
Executable and Linking Format, an industry-standard object
file format. This is the format used by the IAR ILINK Linker.
The debug information is formatted using DWARF.

EPROM
Erasable, Programmable Read-Only Memory. A type of ROM
that can be erased by exposing it to ultraviolet light, and then
be re-programmed.
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Glossary
Embedded C++
A subset of the C++ programming language, which is intended
for embedded systems programming. The fact that
performance and portability are particularly important in
embedded systems development was considered when
defining the language.

Embedded system
A combination of hardware and software, designed for a
specific purpose. Embedded systems are often part of a larger
system or product.

Emulator
An emulator is a hardware device that performs emulation of
one or more derivatives of a processor family. An emulator can
often be used instead of the actual microcontroller and
connects directly to the printed circuit board—where the
microcontroller would have been connected—via a connecting
device. An emulator always behaves exactly as the processor it
emulates, and is used when debugging requires all systems
actuators, or when debugging device drivers.

Enumeration
A type which includes in its definition an exhaustive list of
possible values for variables of that type. Common examples
include Boolean, which takes values from the list [true, false],
and day-of-week which takes values [Sunday, Monday,
Tuesday, Wednesday, Thursday, Friday, Saturday].
Enumerated types are a feature of typed languages, including
C and Ada.

Characters, (fixed-size) integers, and even floating-point types
might be (but are not usually) considered to be (large)
enumerated types.

Executable image
Contains the executable image; the result of linking several
relocatable object files and libraries. The file format used for
an object file is UBROF.

Exceptions
An exception is an interrupt initiated by the processor
hardware, or hardware that is tightly coupled with the
processor, for instance, a memory management unit (MMU).
The exception signals a violation of the rules of the
architecture (access to protected memory), or an extreme error
condition (division by zero).

Do not confuse this use of the word exception with the term
exception used in the C++ language (but not in Embedded
C++).

Expensive
As in expensive memory access. An expensive memory access
either requires many cycles to perform, or many bytes of code
to implement. An expensive memory access is said to have a
high cost. See Memory access cost.

Extended keywords
Non-standard keywords in C and C++. These usually control
the definition and declaration of objects (that is, data and
functions). See also Keywords.

F
Filling
How to fill up bytes—with a specific fill pattern—that exists
between the segments in an executable image. These bytes
exist because of the alignment demands on the segments.

Format specifiers
Used to specify the format of strings sent by library functions
such as printf. In the following example, the function call
contains one format string with one format specifier, %c, that
prints the value of a as a single ASCII character:

printf("a = %c", a);

G
General options
Parameters you can specify to change the default behavior of
all tools that are included in the IDE.
UEW-8:1

399

400
Generic pointers
Pointers that have the ability to point to all different memory
types in, for example, a microcontroller based on the Harvard
architecture.

H
Harvard architecture
A microcontroller based on the Harvard architecture has
separate data and instruction buses. This allows execution to
occur in parallel. As an instruction is being fetched, the current
instruction is executing on the data bus. Once the current
instruction is complete, the next instruction is ready to go. This
theoretically allows for much faster execution than a von
Neumann architecture, but adds some silicon complexity.
Compare von Neumann architecture.

Heap memory
The heap is a pool of memory in a system that is reserved for
dynamic memory allocation. An application can request parts
of the heap for its own use; once memory is allocated from the
heap it remains valid until it is explicitly released back to the
heap by the application. This type of memory is useful when
the number of objects is not known until the application
executes. Note that this type of memory is risky to use in
systems with a limited amount of memory or systems that are
expected to run for a very long time.

Heap size
Total size of memory that can be dynamically allocated.

Host
The computer that communicates with the target processor.
The term is used to distinguish the computer on which the
debugger is running from the microcontroller the embedded
application you develop runs on.

I
IDE (integrated development environment)
A programming environment with all necessary tools
integrated into one single application.

ILINK
The IAR ILINK Linker which produces absolute output in the
ELF/DWARF format.

Include file
A text file which is included into a source file. This is often
done by the preprocessor.

Inline assembler
Assembler language code that is inserted directly between C
statements.

Inlining
An optimization that replaces function calls with the body of
the called function. This optimization increases the execution
speed and can even reduce the size of the generated code.

Instruction mnemonics
A word or acronym used in assembler language to represent a
machine instruction. Different processors have different
instruction sets and therefore use a different set of mnemonics
to represent them, such as, ADD, BR (branch), BLT (branch if
less than), MOVE, LDR (load register).

Interrupt vector
A small piece of code that will be executed, or a pointer that
points to code that will be executed when an interrupt occurs.

Interrupt vector table
A table containing interrupt vectors, indexed by interrupt type.
This table contains the processor's mapping between interrupts
and interrupt service routines and must be initialized by the
programmer.

Interrupts
In embedded systems, the use of interrupts is a method of
detecting external events immediately, for example a timer
overflow or the pressing of a button.

Interrupts are asynchronous events that suspend normal
processing and temporarily divert the flow of control through
an “interrupt handler” routine. Interrupts can be caused by both
hardware (I/O, timer, machine check) and software
(supervisor, system call or trap instruction). Compare Trap.
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Glossary
Intrinsic
An adjective describing native compiler objects, properties,
events, and methods.

Intrinsic functions
1. Function calls that are directly expanded into specific
sequences of machine code. 2. Functions called by the
compiler for internal purposes (that is, floating point
arithmetic etc.).

K
Key bindings
Key shortcuts for menu commands used in the IDE.

Keywords
A fixed set of symbols built into the syntax of a programming
language. All keywords used in a language are reserved—they
cannot be used as identifiers (in other words, user-defined
objects such as variables or procedures). See also Extended
keywords.

L
L-value
A value that can be found on the left side of an assignment and
thus be changed. This includes plain variables and
de-referenced pointers. Expressions like (x + 10) cannot be
assigned a new value and are therefore not L-values.

Language extensions
Target-specific extensions to the C language.

Library
See Runtime library.

Library configuration file
A file that contains a configuration of the runtime library. The
file contains information about what functionality is part of the
runtime environment. The file is used for tailoring a build of a
runtime library. See also Runtime library.

Linker command file
A file used by the IAR XLINK Linker. It contains command
line options which specify the locations where the memory
segments can be placed, thereby assuring that your application
fits on the target chip.

Because many of the chip-specific details are specified in the
linker command file and not in the source code, the linker
command file also helps to make the code portable.

In particular, the linker specifies the placement of segments,
the stack size, and the heap size.

Local variable
See Auto variables.

Location counter
See Program location counter (PLC).

Logical address
See Virtual address (logical address).

M
MAC (Multiply and accumulate)
A special instruction, or on-chip device, that performs a
multiplication together with an addition. This is very useful
when performing signal processing where many filters and
transforms have the form:

The accumulator of the MAC usually has a higher precision
(more bits) than normal registers. See also Digital signal
processor (DSP).

Macro
1. Assembler macros are user-defined sets of assembler lines
that can be expanded later in the source file by referring to the
given macro name. Parameters will be substituted if referred
to.
UEW-8:1

401

402
2. C macro. A text substitution mechanism used during
preprocessing of source files. Macros are defined using the
#define preprocessing directive. The replacement text of
each macro is then substituted for any occurrences of the
macro name in the rest of the translation unit.

3. C-SPY macros are programs that you can write to enhance
the functionality of C-SPY. A typical application of C-SPY
macros is to associate them with breakpoints; when such a
breakpoint is hit, the macro is run and can for example be used
to simulate peripheral devices, to evaluate complex conditions,
or to output a trace.

The C-SPY macro language is like a simple dialect of C, but is
less strict with types.

Mailbox
A mailbox in an RTOS is a point of communication between
two or more tasks. One task can send messages to another task
by placing the message in the mailbox of the other task.
Mailboxes are also known as message queues or message
ports.

Memory access cost
The cost of a memory access can be in clock cycles, or in the
number of bytes of code needed to perform the access. A
memory which requires large instructions or many instructions
is said to have a higher access cost than a memory which can
be accessed with few, or small instructions.

Memory area
A region of the memory.

Memory bank
The smallest unit of continuous memory in banked memory.
One memory bank at a time is visible in a microcontroller’s
physical address space.

Memory map
A map of the different memory areas available to the
microcontroller.

Memory model
Specifies the memory hierarchy and how much memory the
system can handle. Your application must use only one
memory model at a time, and the same model must be used by
all user modules and all library modules.

Microcontroller
A microprocessor on a single integrated circuit intended to
operate as an embedded system. In addition to a CPU, a
microcontroller typically includes small amounts of RAM,
PROM, timers, and I/O ports.

Microprocessor
A CPU contained on one (or a few) integrated circuits. A
single-chip microprocessor can include other components
such as memory, memory management, caches, floating-point
unit, I/O ports and timers. Such devices are also known as
microcontrollers.

Multi-file compilation
A technique which means that the compiler compiles several
source files as one compilation unit, which enables for
interprocedural optimizations such as inlining, cross call, and
cross jump on multiple source files in a compilation unit.

Module
An object. An object file contains a module and library
contains one or more objects. The basic unit of linking. A
module contains definitions for symbols (exports) and
references to external symbols (imports). When you compile
C/C++, each translation unit produces one module. In
assembler, each source file can produce more than one module.

N
Nested interrupts
A system where an interrupt can be interrupted by another
interrupt is said to have nested interrupts.

Non-banked memory
Has a single storage location for each memory address in a
microcontroller’s physical address space.
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Glossary
Non-initialized memory
Memory that can contain any value at reset, or in the case of a
soft reset, can remember the value it had before the reset.

Non-volatile storage
Memory devices such as battery-backed RAM, ROM,
magnetic tape and magnetic disks that can retain data when
electric power is shut off. Compare Volatile storage.

NOP
No operation. This is an instruction that does not do anything,
but is used to create a delay. In pipelined architectures, the NOP
instruction can be used for synchronizing the pipeline. See also
Pipeline.

O
Object
An object file or a library member.

Object file, absolute
See Executable image.

Object file, relocatable
The result of compiling or assembling a source file. The file
format used for an object file is UBROF.

Operator
A symbol used as a function, with infix syntax if it has two
arguments (+, for example) or prefix syntax if it has only one
(for instance, bitwise negation, ~). Many languages use
operators for built-in functions such as arithmetic and logic.

Operator precedence
Each operator has a precedence number assigned to it that
determines the order in which the operator and its operands are
evaluated. The highest precedence operators are evaluated
first. Use parentheses to group operators and operands to
control the order in which the expressions are evaluated.

Output image
The resulting application after linking. This term is equivalent
to executable image, which is the term used in the IAR
Systems user documentation.

P
Parameter passing
See Calling convention.

Peripheral unit
A hardware component other than the processor, for example
memory or an I/O device.

Pipeline
A structure that consists of a sequence of stages through which
a computation flows. New operations can be initiated at the
start of the pipeline even though other operations are already
in progress through the pipeline.

Pointer
An object that contains an address to another object of a
specified type.

#pragma
During compilation of a C/C++ program, the #pragma
preprocessing directive causes the compiler to behave in an
implementation-defined manner. This can include, for
example, producing output on the console, changing the
declaration of a subsequent object, changing the optimization
level, or enabling/disabling language extensions.

Pre-emptive multitasking
An RTOS task is allowed to run until a higher priority process
is activated. The higher priority task might become active as
the result of an interrupt. The term preemptive indicates that
although a task is allotted to run a given length of time (a
timeslice), it might lose the processor at any time. Each time
an interrupt occurs, the task scheduler looks for the highest
priority task that is active and switches to that task. If the
located task is different from the task that was executing before
the interrupt, the previous task is suspended at the point of
interruption.

Compare Round Robin.

Preprocessing directives
A set of directives that are executed before the parsing of the
actual code is started.
UEW-8:1

403

404
Preprocessor
See C-style preprocessor.

Processor variant
The different chip setups that the compiler supports. See
Derivative.

Program counter (PC)
A special processor register that is used to address instructions.
Compare Program location counter (PLC).

Program location counter (PLC)
Used in the IAR Assembler to denote the code address of the
current instruction. The PLC is represented by a special symbol
(typically $) that can be used in arithmetic expressions. Also
called simply location counter (LC).

PROM
Programmable Read-Only Memory. A type of ROM that can
be programmed only once.

Project
The user application development project.

Project options
General options that apply to an entire project, for example the
target processor that the application will run on.

Q
Qualifiers
See Type qualifiers.

R
R-value
A value that can be found on the right side of an assignment.
This is just a plain value. See also L-value.

Real-time operating system (RTOS)
An operating system which guarantees the latency between an
interrupt being triggered and the interrupt handler starting, and
how tasks are scheduled. An RTOS is typically much smaller
than a normal desktop operating system. Compare Real-time
system.

Real-time system
A computer system whose processes are time-sensitive.
Compare Real-time operating system (RTOS).

Register constant
A register constant is a value that is loaded into a dedicated
processor register when the system is initialized. The compiler
can then generate code that assumes that the constants are
present in the dedicated registers.

Register
A small on-chip memory unit, usually just one or a few bytes
in size, which is particularly efficient to access and therefore
often reserved as a temporary storage area during program
execution.

Register locking
Register locking means that the compiler can be instructed that
some processor registers shall not be used during normal code
generation. This is useful in many situations. For example,
some parts of a system might be written in assembler language
to gain speed. These parts might be given dedicated processor
registers. Or the register might be used by an operating system,
or by other third-party software.

Register variables
Typically, register variables are local variables that are placed
in registers instead of on the (stack) frame of the function.
Register variables are much more efficient than other variables
because they do not require memory accesses, so the compiler
can use shorter/faster instructions when working with them.
See also Auto variables.

Relocatable segments
Segments that have no fixed location in memory before
linking.
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Glossary
Reset
A reset is a restart from the initial state of a system. A reset can
originate from hardware (hard reset), or from software (soft
reset). A hard reset can usually not be distinguished from the
power-on condition, which a soft reset can be.

ROM-monitor
A piece of embedded software designed specifically for use as
a debugging tool. It resides in the ROM of the evaluation board
chip and communicates with a debugger via a serial port or
network connection. The ROM-monitor provides a set of
primitive commands to view and modify memory locations
and registers, create and remove breakpoints, and execute your
application. The debugger combines these primitives to fulfill
higher-level requests like program download and single-step.

Round Robin
Task scheduling in an operating system, where all tasks have
the same priority level and are executed in turn, one after the
other. Compare Pre-emptive multitasking.

RTOS
See Real-time operating system (RTOS).

Runtime library
A collection of relocatable object files that will be included in
the executable image only if referred to from an object file, in
other words conditionally linked.

Runtime model attributes
A mechanism that is designed to prevent modules that are not
compatible to be linked into an application. A runtime attribute
is a pair constituted of a named key and its corresponding
value.

Two modules can only be linked together if they have the same
value for each key that they both define.

S
Saturation arithmetics
Most, if not all, C and C++ implementations use mod–2N
2-complement-based arithmetics where an overflow wraps the
value in the value domain, that is, (127 + 1) = -128. Saturation
arithmetics, on the other hand, does not allow wrapping in the
value domain, for instance, (127 + 1) = 127, if 127 is the upper
limit. Saturation arithmetics is often used in signal processing,
where an overflow condition would have been fatal if value
wrapping had been allowed.

Scheduler
The part of an RTOS that performs task-switching. It is also
responsible for selecting which task that should be allowed to
run. Many scheduling algorithms exist, but most of them are
either based on static scheduling (performed at compile-time),
or on dynamic scheduling (where the actual choice of which
task to run next is taken at runtime, depending on the state of
the system at the time of the task-switch). Most real-time
systems use static scheduling, because it makes it possible to
prove that the system will not violate the real-time
requirements.

Scope
The section of an application where a function or a variable can
be referenced by name. The scope of an item can be limited to
file, function, or block.

Segment
A chunk of data or code that should be mapped to a physical
location in memory. The segment can either be placed in RAM
(read-and-writeable memory) or in ROM (read-only memory).

Segment map
A set of segments and their locations.

Semaphore
A semaphore is a type of flag that is used for guaranteeing
exclusive access to resources. The resource can be a hardware
port, a configuration memory, or a set of variables. If several
tasks must access the same resource, the parts of the code (the
critical sections) that access the resource must be made
exclusive for every task. This is done by obtaining the
UEW-8:1

405

406
semaphore that protects that resource, thus blocking all other
tasks from it. If another task wishes to use the resource, it also
must obtain the semaphore. If the semaphore is already in use,
the second task must wait until the semaphore is released.
After the semaphore is released, the second task is allowed to
execute and can obtain the semaphore for its own exclusive
access.

Severity level
The level of seriousness of the diagnostic response from the
assembler, compiler, or debugger, when it notices that
something is wrong. Typical severity levels are remarks,
warnings, errors, and fatal errors. A remark just points to a
possible problem, while a fatal error means that the
programming tool exits without finishing.

Short addressing
Many microcontrollers have special addressing modes for
efficient access to internal RAM and memory mapped I/O.
Short addressing is therefore provided as an extended feature
by many compilers for embedded systems. See also Data
pointers.

Side effect
An expression in C or C++ is said to have a side-effect if it
changes the state of the system. Examples are assignments to
a variable, or using a variable with the post-increment operator.
The C and C++ standards state that a variable that is subject to
a side-effect should not be used more that once in an
expression. As an example, this statement violates that rule:

*d++ = *d;

Signal
Signals provide event-based communication between tasks. A
task can wait for one or more signals from other tasks. Once a
task receives a signal it waits for, execution continues. A task
in an RTOS that waits for a signal does not use any processing
time, which allows other tasks to execute.

Simulator
A debugging tool that runs on the host and behaves as similar
to the target processor as possible. A simulator is used to debug
the application when the hardware is unavailable, or not
needed for proper debugging. A simulator is usually not
connected to any physical peripheral devices. A simulated
processor is often slower, or even much slower, than the real
hardware.

Single stepping
Executing one instruction or one C statement at a time in the
debugger.

Skeleton code
An incomplete code framework that allows the user to
specialize the code.

Special function register (SFR)
A register that is used to read and write to the hardware
components of the microcontroller.

Stack frames
Data structures containing data objects like preserved
registers, local variables, and other data objects that must be
stored temporary for a particular scope (usually a function).

Earlier compilers usually had a fixed size and layout on a stack
frame throughout a complete function, while modern
compilers might have a very dynamic layout and size that can
change anywhere and anytime in a function.

Stack segments
The segment or segments that reserve space for the stack(s).
Most processors use the same stack for calls and parameters,
but some have separate stacks.

Standard libraries
The C and C++ library functions as specified by the C and C++
standard, and support routines for the compiler, like
floating-point routines.
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Glossary
Statically allocated memory
This kind of memory is allocated once and for all at link-time,
and remains valid all through the execution of the application.
Variables that are either global or declared static are
allocated this way.

Static object
An object whose memory is allocated at link-time and is
created during system startup (or at first use). Compare
Dynamic object.

Static overlay
Instead of using a dynamic allocation scheme for parameters
and auto variables, the linker allocates space for parameters
and auto variables at link time. This generates a worst-case
scenario of stack usage, but might be preferable for small chips
with expensive stack access or no stack access at all.

Structure value
A collecting names for structs and unions. A struct is a
collection of data object placed sequentially in memory
(possibly with pad bytes between them). A union is a
collection of data sharing the same memory location.

Symbol
A name that represents a register, an absolute value, or a
memory address (relative or absolute).

Symbolic location
A location that uses a symbolic name because the exact
address is unknown.

T
Target
1. An architecture. 2. A piece of hardware. The particular
embedded system you are developing the application for. The
term is usually used to distinguish the system from the host
system.

Task (thread)
A task is an execution thread in a system. Systems that contain
many tasks that execute in parallel are called multitasking
systems. Because a processor only executes one instruction
stream at the time, most systems implement some sort of
task-switch mechanism (often called context switch) so that all
tasks get their share of processing time. The process of
determining which task that should be allowed to run next is
called scheduling. Two common scheduling methods are
Pre-emptive multitasking and Round Robin.

Tentative definition
A variable that can be defined in multiple files, provided that
the definition is identical and that it is an absolute variable.

Terminal I/O
A simulated terminal window in C-SPY.

Timeslice
The (longest) time an RTOS allows a task to run without
running the task-scheduling algorithm. A task might be
allowed to execute during several consecutive timeslices
before being switched out. A task might also not be allowed to
use its entire time slice, for example if, in a preemptive system,
a higher priority task is activated by an interrupt.

Timer
A peripheral that counts independent of the program
execution.

Translation unit
A source file together with all the header files and source files
included via the preprocessor directive #include, except for
the lines skipped by conditional preprocessor directives such
as #if and #ifdef.

Trap
A trap is an interrupt initiated by inserting a special instruction
into the instruction stream. Many systems use traps to call
operating system functions. Another name for trap is software
interrupt.
UEW-8:1

407

408
Type qualifiers
In standard C/C++, const or volatile. IAR Systems
compilers usually add target-specific type qualifiers for
memory and other type attributes.

U
UBROF (Universal Binary Relocatable Object
Format)
File format produced by some of the IAR Systems
programming tools.

V
Virtual address (logical address)
An address that must be translated by the compiler, linker or
the runtime system into a physical memory address before it is
used. The virtual address is the address seen by the application,
which can be different from the address seen by other parts of
the system.

Virtual space
An IAR Embedded Workbench Editor feature which allows
you to place the insertion point outside of the area where there
are actual characters.

Volatile storage
Data stored in a volatile storage device is not retained when the
power to the device is turned off. To preserve data during a
power-down cycle, you should store it in non-volatile storage.
This should not be confused with the C keyword volatile.
Compare Non-volatile storage.

von Neumann architecture
A computer architecture where both instructions and data are
transferred over a common data channel. Compare Harvard
architecture.

W
Watchpoints
Watchpoints keep track of the values of C variables or
expressions in the C-SPY Watch window as the application is
being executed.

X
XAR options
The set of commands that control how the IAR XAR Library
Builder operates.

XLIB options
The set of commands that control how the IAR XLIB Librarian
operates.

XLINK
The IAR XLINK Linker which uses the UBROF output
format.

XLINK options
Parameters you can specify to change the default behavior of
the IAR XLINK Linker.

Z
Zero-overhead loop
A loop in which the loop condition, including branching back
to the beginning of the loop, does not take any time at all. This
is usually implemented as a special hardware feature of the
processor and is not available in all architectures.

Zone
Different processors have widely differing memory
architectures. Zone is the term C-SPY uses for a named
memory area. For example, on processors with separately
addressable code and data memory there would be at least two
zones. A processor with an intricate banked memory scheme
might have several zones.
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Index

Index
A
absolute location

definition of . 395
specifying for a breakpoint . 218

absolute segments, definition of . 395
Access Type (Breakpoints dialog box)

data breakpoint. 175
immediate breakpoint. 177

Action (Breakpoints dialog box)
code breakpoint . 215
data breakpoint. 175
immediate breakpoint. 177

Add existing project to current workspace
(Startup option). 271
Additional include directories (assembler option). 333
Additional include directories (compiler option) 325
address expression, definition of . 395
address range check, specifying in linker 347
Alias (Key bindings option) . 247
Allow C-SPY-specific output file (linker option) 343
Allow directives in first column (assembler option) 331
Allow mnemonics in first column (assembler option). . . . 331
Always generate output (linker option) 346
application

built outside the IDE . 117
definition of . 395
testing . 94, 153

architecture, definition of . 395
argument variables . 266

environment variables . 238
in #include file paths

assembler . 334
compiler . 325
linker. 351

summary . 237
Arguments (External editor option) 252
asm (filename extension) . 17

assembler
command line version . 75
documentation . 21
features . 11

assembler comments, text style in editor. 101
assembler directives . 70

definition of . 395
text style in editor . 101

assembler labels, viewing . 130
assembler language, definition of 395
assembler list files

compiler call frame information
format . 51
generating . 333

Assembler mnemonics (compiler option) 324
assembler options . 331

Diagnostics . 335
Language . 331
List. 333
Output . 332
Preprocessor. 333

assembler options, definition of . 395
assembler output, including debug information 332
assembler preprocessor . 333
assembler symbols

defining . 334
using in C-SPY expressions . 126

assembler variables, viewing. 130
assert, in built applications . 83
assumptions, programming experience xxxv
Auto indent (editor option) . 249
Auto window . 289

context menu . 290
Automatic (compiler option). 319
Autostep settings dialog box (Debug menu) 306
axx (filename extension). 17
UEW-8:1

409

410
B
-B (C-SPY command line option). 364
--backend (C-SPY command line option) 364
Background color (IDE Tools option). 255
backtrace information

definition of . 395
generated by compiler . 123
viewing in Call Stack window 294

bank switching, definition of. 395
banked code, definition of. 395
banked data, definition of . 395
banked memory, definition of . 395
bank-switching routines, definition of. 396
Base (Register filter option) . 263
bat (filename extension) . 18
Batch Build. 93
Batch Build Configuration dialog box (Project menu) . . . 243
Batch Build dialog box (Project menu) 242
batch files

definition of . 396
specifying from the Tools menu. 80

batch mode, using C-SPY in . 361
bin (subdirectory) . 15
bin, common (subdirectory) . 17
bitfield, definition of . 396
blocks, in C-SPY macros . 372
Body (b) (Configure auto indent option). 251
bold style, in this guide . xl
bookmarks

adding . 105
showing in editor . 250

Break (button). 123, 275
breakpoint condition, example 137–138
breakpoint icons . 134
Breakpoint Usage dialog box (Simulator menu) 178

using . 139
breakpoints . 122

code, example . 386

conditional, example . 65
connecting a C-SPY macro . 151
consumers . 140
data . 173–174

example. 387
immediate . 176

example. 65
in Memory window . 136
in the simulator . 173
listing all . 139
setting

in memory window . 136
using system macros . 137
using the dialog box . 135

settings. 239
single-stepping if not available. 115
system, description of . 133
toggling . 135
useful tips. 137
viewing . 138

Breakpoints dialog box
Code . 214
Data . 174
Immediate . 176
Log . 216

Breakpoints window (View menu) 213
breakpoints, definition of . 396
Buffered terminal output (linker option) 343
-build (iarbuild command line option) 95
Build Actions . 94
Build Actions Configuration (Build Actions options) 339
build configuration

creating . 84
definition of . 82

Build window context menu . 219
Build window (View menu) . 219
building

commands for . 93
from the command line . 95
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Index
options . 257
pre- and post-actions . 94
the process . 91

C
C comments, text style in editor . 101
C compiler. See compiler
C function information, in C-SPY. 123
C keywords, text style in editor. 101
C symbols, using in C-SPY expressions 125
C variables, using in C-SPY expressions 125
c (filename extension). 18
call chain, displaying in C-SPY . 123
call frame information

including in assembler list file 324
call frame information See also backtrace information
Call stack information. 123
Call Stack window . 294

context menu . 294
example . 64
for backtrace information. 123

calling convention
definition of . 396
examining . 49

__cancelAllInterrupts (C-SPY system macro) 376
__cancelInterrupt (C-SPY system macro). 377
category, in Options dialog box. 92, 240
cfg (filename extension) . 18
characters, in assembler macro quotes 332
cheap memory access, definition of 396
Check In Files dialog box . 202
Check Out Files dialog box. 203
checksum

definition of . 396
generating . 352

Checksum (linker options) . 352
chm (filename extension) . 18
-clean (iarbuild command line option) 95

__clearBreak (C-SPY system macro) 377
Close Workspace (File menu) . 223
__closeFile (C-SPY system macro) 377
code

banked, definition of . 395
skeleton, definition of . 406
testing . 94

code coverage
using . 155
viewing . 156

Code Coverage window . 296
context menu . 298

code generation
assembler . 331
compiler, features. 10

code integrity . 88
code memory, filling unused . 352
code model, definition of . 396
Code page (compiler options) . 320
code pointers, definition of . 396
code templates, using in editor . 103
Command file configuration tool (XLINK option) 350
command line options

specifying from the Tools menu. 80
typographic convention . xl

command prompt icon, in this guide xl
Command (External editor option) 252
Common Fonts (IDE Options dialog box) 245
common (directory) . 17
compiler

command line version . 4, 75
documentation . 11, 20
features . 9

compiler diagnostics . 324
suppressing . 327

compiler function directives, definition of 397
compiler list files

assembler mnemonics, including 324
example . 35
UEW-8:1

411

412
generating . 324
source code, including . 324

compiler options . 317
definition of . 397
setting in Embedded Workbench, example 33
Code . 320
Diagnostics . 326
Language . 318
List. 323
Optimizations. 321
Output . 322
Preprocessor. 325

compiler output
including debug information . 323
program or library . 323

compiler preprocessor. 325
compiler symbols, defining. 326
computer style, typographic convention xxxix
conditional breakpoints, example . 65
conditional statements, in C-SPY macros 371
Conditions (Breakpoints dialog box)

code breakpoint . 216
data breakpoint. 175

Config (linker options) . 350
config (subdirectory). 16
Configuration file (general option) 313
configuration tool . 350
Configurations for project dialog box (Project menu) 238
Configure Auto Indent (IDE Options dialog box) 250
Configure Tools (Tools menu) . 265
Configure Viewers dialog box (Tools menu). 269
config, common (subdirectory) . 17
$CONFIG_NAME$ (argument variable) 237
context menu, in windows. 128
conventions, used in this guide xxxix
Copy (button) . 195
copyright. ii
cost. See memory access cost
cpp (filename extension) . 18

CPU registers, definitions in ddf file 115
CPU variant, definition of . 398
CRC, definition of. 397
Create New Project dialog box (Project menu) 239
Create new project in current workspace (Startup option). 271
cross-references, in map files . 38
cspybat . 361
cstartup (system startup code)

definition of . 397
stack pointers not valid until reaching 262

current position, in C-SPY Disassembly window 276
cursor, in C-SPY Disassembly window. 276
CUR_DIR (argument variable) 237
CUR_LINE (argument variable) 237
custom build . 95

using . 96
custom tool configuration . 96
Custom Tool Configuration (Custom Build options). 337
--cycles (C-SPY command line option) 364
C++ comments, text style in editor 101
C++ keywords, text style in editor 101
C++ terminology. xxxix
C++ tutorial . 53
C-SPY

batch mode, using in . 361
command line options . 364
debugger systems

overview . 112
environment overview . 113
IDE reference information . 273
overview . 5
plugin modules, loading. 116
setting up . 114
Simulator . 161
starting the debugger . 116

C-SPY drivers . 6
list of available. 6
simulator . 161
specifying . 357
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Index
C-SPY expressions . 125
evaluating. 129
in C-SPY macros . 371
Quick Watch, using . 129
Tooltip watch, using. 128
Watch window, using . 128

C-SPY macros . 145, 369
blocks. 372
conditional statements . 371
C-SPY expressions . 371
dialog box . 307

using . 148
examples . 146

checking status of register. 150
checking the status of WDT 150
creating a log macro . 151
execUserSetup . 61, 67

executing . 147
connecting to a breakpoint 151
using Quick Watch . 150
using setup macro and setup file 149

functions . 126, 369
loop statements . 371
macro statements . 371
setup macro file

definition of . 147
executing. 149

setup macro function
definition of . 147
summary . 374

system macros, summary of. 375
using . 145
variables. 127, 370

C-SPY options . 357
Extra Options. 359
for the simulator. 161
in Options dialog box. 241
Plugins . 359
Setup . 357

C-SPY options, definition of. 397
C-SPYLink . 8
C-style preprocessor, definition of 397
C/C++ syntax styles, options . 254

D
-d (C-SPY command line option) 365
dat (filename extension) . 18
data breakpoints . 173
data coverage, in Memory window 280
data model, definition of . 397
data pointers, definition of . 397
data representation, definition of. 397
dbg (filename extension). 18
dbgt (filename extension) . 18
ddf (filename extension) . 18

selecting device description file 116
Debug info with terminal I/O (linker option) 295
debug information

generating in assembler . 333
in compiler, generating . 323

Debug information for C-SPY (linker option). 342
Debug Log window context menu 222
Debug Log window (View menu) 221
Debug menu . 305
Debug without downloading text box 195
debugger concepts, definitions of 111
debugger drivers See C-SPY drivers
debugger system overview . 112
Debugger (IDE Options dialog box) 259
debugging projects

externally built applications . 117
in disassembly mode, example. 42
loading multiple . 117

debugging, RTOS awareness. 8
declaration, definition of . 397
default installation path. 15
Default integer format (IDE option) 260
UEW-8:1

413

414
#define options (linker options) . 345
#define statement, in compiler . 326
Define symbol (linker option) . 345
define (linker options). 345
Defined symbols (assembler option) 334
Defined symbols (compiler option). 326
definition, definition of . 398
dep (filename extension) . 18
derivative, definition of . 398
description (interrupt property) . 185
development environment, introduction 75
Device description file (C-SPY option). 358
device description files . 16, 116

definition of . 398
specifying interrupts . 382

device driver, definition of . 398
device selection files . 16
diagnostics

compiler
including in list file . 324
suppressing . 327

linker, suppressing . 347
Diagnostics (assembler options) . 335
Diagnostics (compiler options) . 326
Diagnostics (linker options) . 346
digital signal processor, definition of 398
directories . 15

assembler, ignore standard include. 333
common . 17
compiler, ignore standard include 325
root . 15

directory structure. 15
Disable language extensions (compiler option). 319
__disableInterrupts (C-SPY system macro) 378
disassembly mode debugging, example 42
Disassembly window . 275

context menu . 277
Disassembly window, definition of 398
Discard Unused Publics (compiler option) 317

disclaimer . ii
DLIB library functions, reference information 100
dni (filename extension) . 18
Do not show this window at startup (startup option) 272
do (macro statement) . 371
doc (subdirectory) . 16
dockable windows. 77
document conventions. xxxix
documentation . 15

assembler . 11
compiler. 11
linker . 12
online . 16–17
other guides . xxxix
overview . xxxvi
product. 20
this guide . xxxv
XLIB . 13

doc, common (subdirectory) . 17
drag-and-drop

of files in Workspace window . 84
text in editor window . 101

Driver (C-SPY option) . 357
drivers (subdirectory) . 16
__driverType (C-SPY system macro) 378
DSP. See digital signal processor
DWARF, definition of . 398
dxx (filename extension). 18
Dynamic Data Exchange (DDE). 106

calling external editor . 252
dynamic initialization

definition of . 398
dynamic memory allocation, definition of 398
dynamic object, definition of . 398

E
Edit Filename Extensions dialog box (Tools menu) 268
Edit Interrupt dialog box (Simulator menu) 184
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Index
Edit Memory Access dialog box . 172
Edit menu . 225
editing source files . 99
edition, user guide. ii
editor

code templates . 103
commands . 101
customizing the environment . 106
external . 106
features . 5
HTML files . 204
indentation . 102
keyboard commands . 208
matching parentheses and brackets 103
options . 248
shortcut to functions. 105, 205
splitter controls . 205
status bar, using in . 103
using . 99

Editor Colors and Fonts (IDE Options dialog box) 254
Editor Font (Editor colors and fonts option) 254
Editor Setup Files (IDE Options dialog box) 253
editor setup files, options . 253
Editor window . 204

context menu . 206
tab, context menu. 205

Editor (External editor option) . 252
Editor (IDE Options dialog box). 248
EEC++ syntax (compiler option) 318
EEPROM, definition of. 398
Elf, definition of . 398
Embedded C++

definition of . 399
syntax, enabling in compiler . 318

Embedded C++ Technical Committee xxxix
Embedded C++ (compiler option) 318
embedded system, definition of . 399
Embedded Workbench

editor . 99

exiting from . 77
layout . 77
main window . 76, 194
reference information. 193
running. 76
version number, displaying . 271

Embedded Workbench Startup dialog box (Help menu) . . 271
emulator (C-SPY driver)

definition of . 399
third-party . 4

Enable graphical stack display and stack usage
tracking (Stack option) . 261
Enable multibyte support (assembler option) 331
Enable multibyte support (compiler option) 320
Enable remarks (compiler option). 327
Enable Virtual Space (editor option) 250
enabled transformations, in compiler 322
__enableInterrupts (C-SPY system macro) 379
Enter Location (Breakpoints dialog box) 218
enumeration, definition of. 399
environment variables, as argument variables 238
EOL character (editor option) . 249
EPROM, definition of . 398
error messages

compiler. 328
linker . 347

__evaluate (C-SPY system macro) 379
ewd (filename extension) . 18
ewp (filename extension) . 18
ewplugin (filename extension) . 18
eww (filename extension) . 18

the workspace file . 77
EW_DIR (argument variable) . 237
Example applications (Startup option) 272
examples

breakpoints . 44
executing up to . 45
setting

using dialog box. 65
using macro . 67
UEW-8:1

415

416
calling convention, examining . 49
compiling. 34
C-SPY macros . 146
C/C++ and assembler, mixing . 51
ddf file, using . 63
debugging a program . 39
disassembly mode debugging. 42
function calls, displaying in C-SPY 64
interrupts

timer . 189
using macro. 67

linking
a compiler program. 37
viewing the map file . 38

macros
checking status of register. 150
checking status of WDT . 150
creating a log macro . 151
for interrupts and breakpoints 67
using Quick Watch . 150

Memory window, using . 46
memory, monitoring. 46
mixing C and assembler. 49
performing tasks without stopping execution. 138
project

adding files . 32
creating . 29–30

reaching program exit . 47
registers, monitoring . 46
Scan for Changed Files (editor option), using 36
setting project options . 33
stepping . 41
Terminal I/O, displaying . 47
tracing incorrect function arguments 137
using libraries . 69
variables

setting a watch point . 43
watching in C-SPY . 42

viewing assembler list file . 51

viewing compiler list files . 35
workspace, creating a new . 29

examples (subdirectory) . 16
exceptions, definition of . 399
execUserExit (C-SPY setup macro) 374
execUserFlashExit (C-SPY setup macro) 374
execUserFlashInit (C-SPY setup macro). 374
execUserFlashReset (C-SPY setup macro) 374
execUserPreload (C-SPY setup macro). 374
execUserReset (C-SPY setup macro) 374
execUserSetup (C-SPY setup macro) 374

example . 61, 67
executable image, definition of . 399
Executable (output directory) . 312
executing a program up to a breakpoint 45
execution history, tracing . 130
execution time, reducing . 153
EXE_DIR (argument variable) 237
Exit (File menu) . 77
exit, of user application. 123
expensive memory access, definition of 399
expressions. See C-SPY expressions
extended command line file . 19

specifying for pre- and post-build actions 339
Extended Embedded C++ syntax, enabling in compiler . . 318
extended keywords

definition of . 399
example of using __interrupt . 60

extensions. See filename extensions or language extensions
External Editor (IDE Options dialog box). 251
external editor, using. 106
Extra Options

for assembler . 335
for compiler . 328
for C-SPY . 359
for linker . 354

Extra Output (linker options) . 344
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Index
F
factory settings

linker . 356
restoring default settings . 93

features
assembler . 11
compiler. 9
editor . 5
librarian . 13
source code control . 4

file extensions. See filename extensions
File menu . 222
file types

device description . 16
specifying in Embedded Workbench. 116

device selection . 16
documentation . 16
drivers . 16
extended command line . 19
flash loader applications . 16
header . 16
include . 16
library . 16
linker command file templates . 16
macro . 115, 358
map . 348
project templates . 16
readme . 16–17
special function registers description files 16
syntax coloring configuration. 16

filename extensions. 17
cfg, syntax highlighting . 255
ddf, selecting device description file 116
eww, the workspace file . 77
mac

the macro file . 146
using macro file . 115

map, linker listing . 20

other than default . 19
xcl, linker command file . 37

Filename Extensions dialog box (Tools menu) 267
Filename Extensions Overrides dialog box (Tools menu) . 268
files

adding to a project . 32
checking in and out . 89
compiling, example . 34
editing . 99
navigating among. 85
readme.htm . 20

$FILE_DIR$ (argument variable) 237
$FILE_FNAME$ (argument variable) 237
$FILE_PATH$ (argument variable) 237
Fill dialog box (Memory window) 282
Fill pattern (linker option). 352
Fill unused code memory (linker option) 352
filling, definition of. 399
Filter Files (Register filter option). 263
Find dialog box (Edit menu) . 228
Find in Files dialog box (Edit menu) 229
Find in Files window (View menu) 219

context menu . 220
Find in Trace dialog box . 167
Find in Trace window . 167
Find Next (button) . 195
Find Previous (button) . 195
Find (button) . 195
first activation time (interrupt property) 185

definition of . 180
Fixed width font (IDE option). 245
flash loader applications . 16
flash memory

load library module to . 380
loading externally built applications to 117

--flash_loader (C-SPY command line option). 365
floating windows . 77
fmt (filename extension) . 18
UEW-8:1

417

418
font
Editor . 254
Fixed width . 245
Proportional width . 245

for (macro statement) . 371
Forced Interrupt window (Simulator menu) 185
format specifiers, definition of . 399
Format (linker option). 342
formats

assembler list file . 51
compiler list file . 35
C-SPY input. 8
linker output

default, overriding. 343–344
specifying . 342

function calls, displaying in C-SPY 64
function level profiling . 153
Function Trace (C-SPY window) 164
function trace, definition of. 163
functions

C-SPY running to when starting 115, 358
intrinsic, definition of. 401
shortcut to in editor windows. 105, 205

G
general options . 311

specifying, example . 33
Library Configuration . 313
Library Options . 314
Output . 311
Stack/Heap options . 315
Target . 311

general options, definition of . 399
Generate browse information (IDE Project options) 258
Generate checksum (linker option) 352
Generate debug info (assembler option) 333
Generate debug information (compiler option) 323
Generate extra output file (linker option) 344

Generate linker listing (linker option) 348
generating extra output file . 343
generic pointers, definition of . 400
glossary. 395
Go to Bookmark (button) . 195
Go to function (editor button) 105, 205
Go to Line dialog box . 226
Go To (button) . 195
Go (button) . 275
Go (Debug menu) . 122
Group members (Register filter option) 263
Groups (Register filter option) . 263
groups, definition of . 83

H
h (filename extension). 18
Harvard architecture, definition of 400
header files . 16

quick access to . 105
heap memory, definition of . 400
heap size

definition of . 400
specifying from IDE . 315

Help menu . 271
helpfiles (filename extension) . 18
highlighting, in C-SPY . 122
hold time (interrupt property) . 185

definition of . 180
host, definition of . 400
htm (filename extension) . 18
html (filename extension) . 18

I
i (filename extension) . 18
IAR Assembler Reference Guide . 21
IAR Compiler Reference Guide . 20
IAR Linker and Library Tools Reference Guide 21
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Index
IAR Systems web site . 21
iarbuild, building from the command line 95
IarIdePm.exe. 76
icons, in this guide . xl
IDE . 3–4

definition of . 400
if else (macro statement) . 371
if (macro statement) . 371
Ignore standard include directories (assembler option) . . . 333
Ignore standard include directories (compiler option). . . . 325
ILINK

definition of . 400
See linker

illegal memory accesses, checking for 169
immediate breakpoints . 176
inc (filename extension) . 18
inc (subdirectory) . 16
Include compiler call frame
information (compiler option). 324
include files. 16

assembler, specifying path . 333
compiler, specifying path . 325
definition of . 400
linker, specifying path . 351

Include source (compiler option) 324
Include suppressed entries (linker option). 349
Incremental Search dialog box (Edit menu) 231
Indent Size (editor option) . 248
indentation, in editor . 102
information, product . 20
inherited settings, overriding. 92
ini (filename extension) . 18
inline assembler

definition of . 400
language facilities in compiler . 10

inlining, definition of . 400
input

redirecting to Terminal I/O window 295
special characters in Terminal I/O window 295

input formats, C-SPY . 8

Input Mode dialog box . 296
insertion point, shortcut key for moving 101
installation path, default . 15
installed files. 15

documentation . 16–17
executable . 17
include . 16
library . 16

instruction mnemonics, definition of. 400
Integrated Development Environment (IDE). 3–4

definition of . 400
Intel-extended, C-SPY input format 8, 113
Internet, IAR Systems web site . 21
Interrupt Log window (Simulator menu). 187
Interrupt Setup dialog box (Simulator menu) 183
interrupt system, using device description file 183
interrupt vector

definition of . 400
specifying address for, example 60

interrupt vector table, definition of 400
interrupts

adapting C-SPY system for target hardware 182
definition of . 400
nested, definition of . 402
options . 184
simulated, definition of . 179
timer example . 189
using system macros . 186

intrinsic functions
definition of . 401
language facilities in compiler . 10

intrinsic, definition of . 401
ISO/ANSI C

making compiler adhering to . 319
sizeof operator in C-SPY . 126

italic style, in this guide . xl
ixx (filename extension) . 18
UEW-8:1

419

420
K
Key bindings (IDE Options dialog box) 246
key bindings, definition of . 401
key summary, editor . 208
keywords, definition of . 401

L
Label (c) (Configure auto indent option). 251
labels (assembler), viewing. 130
Language conformance (compiler option) 319
language extensions

definition of . 401
disabling in compiler . 319

language facilities, in compiler . 10
Language (assembler options). 331
Language (compiler options) . 318
Language (IDE Options dialog box) 247
Language (Language option) . 247
layout, of Embedded Workbench . 77
lib (subdirectory) . 16
librarian

documentation . 21
features . 13
overview . 13

library
creating a project for . 70
runtime. 10

library builder
documentation . 21
output options . 355
overview . 13
using for building libraries . 69

library configuration file
definition of . 401
specifying from IDE . 313

Library Configuration (general options) 313
Library file (general option) . 313

library files . 13, 16
library functions

configurable . 16
reference information. 100

library modules
example . 69
specifying in compiler . 323
using . 69

Library Options (general options) 314
Library (general option) . 313
library, definition of . 405
lightbulb icon, in this guide. xl
#line directives, generating

in assembler . 334
in compiler. 326

Lines/page (linker option). 349
linker

command line version . 75
diagnostics, suppressing. 347
documentation . 21
overriding default output 343–344
overview . 12

linker command file . 37
definition of . 401
overriding default. 350
path, specifying . 351
specifying in linker . 350
templates . 16

Linker command file configuration tool 350
Linker command file (linker option) 350
linker list files

generating . 348
including segment map . 348
specifying lines per page . 349

linker options . 341
factory settings. 356
Config . 350
define . 345
Diagnostics . 346
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Index
Extra Options. 354
Extra Output . 344
List. 348
Output . 341
With I/O emulation modules . 342

linker symbols, defining . 345
linking, example . 37
list files

assembler . 51
compiler runtime information

compiler
assembler mnemonics, including 324
example. 35
generating . 324
source code, including . 324

linker
generating . 348
including segment map . 348
specifying lines per page. 349

option for specifying destination 312
List (assembler options) . 333
List (compiler options) . 323
List (linker options) . 348
$LIST_DIR$ (argument variable) 237
Live Watch window . 290

context menu . 290–291
loading multiple debug files . 117
__loadModule(C-SPY system macro). 380
Locals window . 289

context menu . 289
location counter, definition of . 404
-log (iarbuild command line option) 95
Log File dialog box (Debug menu) 308
log (filename extension) . 18
logical address, definition of . 408
loop statements, in C-SPY macros 371
lst (filename extension). 18
L-value, definition of . 401

M
mac (filename extension) . 19

the macro file . 146
using a macro file. 115

--macro (C-SPY command line option) 365
Macro Configuration dialog box (Debug menu) 307
macro files, specifying . 115, 358
Macro quote characters (assembler option). 332
macro statements . 371
macros

definition of . 401
executing . 147
system . 369
using . 145

MAC, definition of . 401
mailbox (RTOS), definition of . 402
main function, C-SPY running to when starting 115, 358
main.sxx (assembler tutorial file) . 69
-make (iarbuild command line option) 95
Make before debugging (IDE Project options) 257
managing projects . 4
map files . 348

example . 38
viewing . 38

map (filename extension) . 19
linker listing. 20

--mapu (C-SPY command line option) 366
maxmin.sxx (assembler tutorial file). 69
memory

filling unused . 352
monitoring, example . 46

memory access checking. 169, 171
memory access cost, definition of 402
Memory Access Setup dialog box (Simulator menu) 169
memory accesses, illegal. 169
memory area, definition of . 402
memory bank, definition of. 402
UEW-8:1

421

422
memory map . 169
definition of . 402

memory model, definition of. 402
Memory Restore dialog box . 284
Memory Save dialog box . 283
memory usage, summary of . 349
Memory window. 278

context menu . 280
memory zones. 141
menu bar . 194

C-SPY-specific. 274
menu (filename extension) . 19
Menu (Key bindings option) . 246
menus . 222

specific to C-SPY. 304
Messages window, amount of output 255
Messages (IDE Options dialog box) 255
metadata (subdirectory) . 17
microcontroller, definition of . 402
microprocessor, definition of . 402
migration, from earlier IAR compilers 320
module map, in map files . 38
Module summary (linker option) 349
Module type (compiler option) . 323
MODULE (assembler directive) . 70
modules

definition of . 402
including local symbols in input 343

Module-local symbols (linker option). 343
Motorola, C-SPY input format 8, 113
Multiply and accumulate, definition of 401
multitasking, definition of. 403
multi-file compilation

definition of . 402
specifying options for . 317

N
naming conventions . xl

Navigate Backward (button) . 195
NDEBUG, preprocessor symbol . 83
nested interrupts, definition of . 402
New Configuration dialog box (Project menu) 239
New Document (button) . 195
New Group (Register filter option) 263
Next Statement (button) . 275
No global type checking (linker option) 346
non-banked memory, definition of 402
non-initialized memory, definition of 403
non-volatile storage, definition of 403
NOP, definition of . 403

O
object file (absolute), definition of 403
object file (relocatable), definition of 403
object files, specifying output directory for. 312
object, definition of. 403
OBJ_DIR (argument variable) 237
online documentation

available from Help menu . 271
common, in directory. 17
target-specific, in directory . 16

online help . 21
Open existing workspace (Startup option) 271
Open Workspace (File menu) . 223
__openFile (C-SPY system macro). 381
Opening Brace (a) (Configure auto indent option) 251
operator precedence, definition of. 403
operators

definition of . 403
sizeof in C-SPY . 126

optimization levels . 321
Optimizations page (compiler options) 321
Optimizations (compiler option) . 321
optimizations, effects on variables 127
options

assembler . 331
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Index
build actions. 339
compiler. 317
custom build . 337
C-SPY . 357
C-SPY command line . 364
editor . 248
general . 311

specifying . 33
library builder . 355
linker . 341
setup files for editor . 253

Options dialog box (Project menu) 240
using . 92

__orderInterrupt (C-SPY system macro). 382
output

assembler
including debug information 332
preprocessor, generating . 334

compiler
including debug information 323
preprocessor, generating . 326

formats. 342
debug (ubrof) . 342

from C-SPY, redirecting to a file 117
generating extra file . 343
linker

generating . 346
specifying filename. 341
specifying filename on extra output 344

Output assembler file (compiler option) 324
Output file (linker option) . 341
Output format (linker option) 343–344
Output list file (compiler option) 324
Output (assembler option). 332
Output (compiler options). 322
Output (general options) . 311
Output (library builder options) . 355
Output (linker options) . 341

P
-p (C-SPY command line option) 366
par (filename extension) . 19
parameters, typographic convention xl
parentheses and brackets, matching (in editor) 103
part number, of user guide . ii
Paste (button) . 195
paths

assembler include files . 333
compiler include files. 325
linker include files . 351
relative, in Embedded Workbench 85, 208
source files . 208

pbd (filename extension). 19
pbi (filename extension) . 19
peripheral units

definition of . 403
definitions in ddf file . 115

pew (filename extension) . 19
pipeline, definition of . 403
Plain ‘char’ is (compiler option) . 319
Play a sound after build operations (IDE Project options). 258
--plugin (C-SPY command line option) 366
plugin modules (C-SPY). 8

loading . 116
Plugins (C-SPY options). 359
plugins (subdirectory) . 16
plugins, common (subdirectory) . 17
pointers

definition of . 403
for stack is outside of memory range 143
warn when stack pointer is out of range 262

__popSimulatorInterruptExecutingStack (C-SPY
system macro). 382
powerpac (subdirectory) . 16
#pragma directive, definition of . 403
precedence, definition of. 403
preemptive multitasking, definition of 403
UEW-8:1

423

424
Preinclude file (compiler option) 326
preprocessor

definition of. See C-style preprocessor
enable migration extensions for 320
specifying output to file . 326

preprocessor directives
definition of . 403
text style in editor . 101

Preprocessor output to file (assembler option) 334
Preprocessor output to file (compiler option) 326
Preprocessor (assembler option) . 333
Preprocessor (compiler options) . 325
prerequisites, programming experience. xxxv
Press shortcut key (Key bindings option) 246
Primary (Key bindings option) . 246
Printf formatter (general option) . 314
prj (filename extension) . 19
probability (interrupt property) . 185

definition of . 180
processor variant, definition of . 404
product overview

assembler . 11
compiler. 9
C-SPY Debugger . 5
directory structure . 15
documentation . 20
file types . 17
IAR Embedded Workbench IDE 3
librarian . 13
library builder . 13
linker . 12

profiling information. 153
Profiling window . 298

using . 153
program counter, definition of. 404
program execution, in C-SPY . 119
program location counter, definition of 404
programming experience. xxxv
Project Make, options . 257

Project menu. 235
project model . 81
project options, definition of . 404
Project page (IDE Options dialog box) 257
projects

adding files to . 84, 235
example. 32

build configuration, creating . 84
building . 93

in batches . 93
compiling, example . 34
creating . 30, 84

example. 70
definition of . 81, 404
excluding groups and files . 84
files

checking in and out . 89
moving . 84

for debugging externally built applications 117
groups, creating . 84
managing . 4, 81
organization . 81
removing items . 84
setting options . 91
source code control . 88
testing . 94
version control systems . 88
workspace, creating . 84

$PROJ_DIR$ (argument variable) 237
$PROJ_FNAME$ (argument variable) 238
$PROJ_PATH$ (argument variable) 238
PROM, definition of . 404
Proportional width font (IDE option) 245
PUBLIC (assembler directive) . 70

Q
qualifiers, definition of. See type qualifiers
Quick Search text box. 195
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Index
Quick Watch window . 291
executing C-SPY macros . 150
using . 129

R
Range checks (linker option) . 347
Raw binary image (linker option) 351
__readFile (C-SPY system macro) 383
__readFileByte (C-SPY system macro) 383
reading guidelines. xxxv
readme files. 16

See release notes
__readMemoryByte (C-SPY system macro) 384
__readMemory8 (C-SPY system macro) 384
__readMemory16 (C-SPY system macro) 384
__readMemory32 (C-SPY system macro) 385
real-time operating system, definition of. 404
real-time system, definition of . 404
Recent workspace (Startup option) 272
Redo (button) . 195
reference information, typographic convention. xl
register constant, definition of. 404
Register Filter (IDE Options dialog box) 263
register groups . 143

application-specific, defining . 144
predefined, enabling. 144

register locking, definition of . 404
register variables, definition of . 404
Register window . 286

example . 46
using . 143

registered trademarks . ii
__registerMacroFile (C-SPY system macro). 385
registers

definition of . 404
displayed in Register window 143

relative paths. 85, 208
Relaxed ISO/ANSI (compiler option) 319

release notes . 17
readme.htm . 20

Reload last workspace at startup (IDE Project options) . . 258
relocatable segments, definition of 404
remarks, compiler diagnostics. 327
Remove trailing blanks (editor option) 250
repeat interval (interrupt property) 185

definition of . 180
Replace dialog box (Edit menu) . 229
Replace (button) . 195
Require prototypes (compiler option) 319
Reset All (Key bindings option) . 247
Reset (button) . 275
Reset (Debug menu), example . 48
__resetFile (C-SPY system macro) 385
reset, definition of . 405
restoring default factory settings . 93
return (macro statement) . 372
ROM-monitor, definition of 113, 405
root directory . 15
Round Robin, definition of . 405
RTOS awareness debugging . 8
RTOS awareness (C-SPY plugin module). 116
RTOS, definition of. 404
Run to Cursor

button on debug toolbar . 275
command for executing . 122
on the Debug menu . 305

Run to (C-SPY option) . 115, 358
runtime libraries . 10

definition of . 405
runtime model attributes

definition of . 405
in map files . 38

rxx (filename extension) . 19
R-value, definition of . 404
UEW-8:1

425

426
S
saturation arithmetics, definition of. 405
Save All (button). 195
Save All (File menu). 224
Save As (File menu) . 224
Save editor windows before building (IDE Project
options). 257
Save workspace and projects before building (IDE
Project options). 257
Save Workspace (File menu). 223
Save (button). 195
Save (File menu). 224
Scan for Changed Files (editor option) 250

using . 36
Scanf formatter (general option) . 314
SCC. See source code control systems
scheduler (RTOS), definition of . 405
scope, definition of . 405
scrolling, shortcut key for . 101
Search paths (linker option) . 351
searching in editor windows . 106
segment map

definition of . 405
example of producing . 37

Segment map (linker option). 348
Segment overlap warnings (linker option). 346
segment parts, including all in list file. 349
segments

definition of . 405
overlap errors, reducing . 346
range checks, controlling . 347
section in map files . 38

Select SCC Provider dialog box (Project menu) 201
Select Statics dialog box (Statics window) 293
selecting text, shortcut key for . 101
semaphores, definition of . 405
Service (External editor option) . 252
Set Log file dialog box (Debug menu) 306

__setCodeBreak (C-SPY system macro). 386
__setDataBreak (C-SPY system macro) 387
__setSimBreak (C-SPY system macro) 388
settings (directory) . 19
Setup macros (C-SPY option). 358
setup macros, in C-SPY. See C-SPY macros
Setup (C-SPY options) . 357
severity level, definition of . 406
SFR

definition of . 406
in header files. 16
in Register window . 144

sfr (filename extension) . 19
short addressing, definition of. 406
shortcut keys . 101
Show Bookmarks (editor option) 250
Show Line Number (editor option) 249
Show right margin (editor option). 249
side-effect, definition of . 406
signals, definition of . 406
--silent (C-SPY command line option) 367
simulating interrupts, enabling/disabling 183
simulator

definition of . 406
features . 9
introduction . 161

Simulator menu. 162
size optimization. 321
Size (Breakpoints dialog) . 175, 215
sizeof . 126
skeleton code, definition of . 406
Source Browser window . 210

context menu . 212
using . 87

source code
including in compiler list file . 324
templates . 103

Source code color in Disassembly window (IDE option) . 260
Source Code Control context menu. 199
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Index
source code control systems . 88
Source Code Control (IDE Options dialog box) 258
source code control, features. 4
source file paths . 85, 208
source files

adding to a project . 32
editing . 99
managing in projects . 83

__sourcePosition (C-SPY system macro) 389
special function registers (SFR)

definition of . 406
description files . 16
in header files. 16
using as assembler symbols . 126

speed optimization . 321
src (subdirectory) . 16
stack frames, definition of. 406
stack segment, definition of . 406
Stack window . 300

using . 142
Stack (IDE Options dialog box) . 261
Stack/Heap (general options) . 315
standard libraries, definition of . 406
static objects, definition of . 407
Static overlay map (linker option). 349
static overlay, definition of . 407
statically allocated memory, definition of 407
Statics window . 291

context menu . 292
status bar. 196
stdin and stdout

redirecting to C-SPY window 124
redirecting to file . 124

Step Into . 275
description . 120
example of . 42

Step into functions (IDE option) . 260
Step Out . 275

description . 121

Step Over . 275
description . 120

step points, definition of . 120
stepping . 120

example . 41
stepping, definition of . 406
STL container expansion (IDE option) 260
Stop build operation on (IDE Project options) 257
Stop Debugging (button). 275
__strFind (C-SPY system macro) 389
Strict ISO/ANSI (compiler option) 319
strings, text style in editor . 101
structure value, definition of . 407
__subString (C-SPY system macro) 390
support, technical . 21
Suppress all warnings (linker option) 347
Suppress download (C-SPY option) 161
Suppress these diagnostics (compiler option) 327
Suppress these diagnostics (linker option) 347
sxx (filename extension) . 19
symbolic location, definition of . 407
Symbolic Memory window. 284

context menu . 286
toolbar . 285

symbols
See also user symbols
defining in assembler . 334
defining in compiler . 326
defining in linker . 345
definition of . 407
in input modules . 343
using in C-SPY expressions . 125

Symbols window . 303
context menu . 304

syntax coloring
configuration files . 16
in editor . 101

Syntax Coloring (Editor colors and fonts option) 254
Syntax Highlighting (editor option) 249
UEW-8:1

427

428
syntax highlighting, in editor window. 102
system macros. 369

T
Tab Key Function (editor option) 248
Tab Size (editor option). 248
Target options, specifying . 311
target system, definition of . 112
Target (general options) . 311
target, definition of . 407
$TARGET_BNAME$ (argument variable) 238
$TARGET_BPATH$ (argument variable) 238
$TARGET_DIR$ (argument variable) 238
$TARGET_FNAME$ (argument variable) 238
$TARGET_PATH$ (argument variable) 238
task, definition of . 407
tcl (filename extension). 19
technical support. 21
Template dialog box (Edit menu) 232
tentative definition, definition of . 407
terminal I/O

definition of . 407
simulating . 342

Terminal I/O Log File . 124
Terminal I/O Log File dialog box (Debug menu) 309
Terminal I/O window . 124, 295

example of using . 47
Terminal I/O (IDE Options dialog box) 264
terminology. xxxix, 395
testing, of code . 94
thread, definition of. 407
timer, definition of . 407
timeslice, definition of . 407
Toggle Bookmark (button) . 195
Toggle Breakpoint (button) . 195
toggle breakpoint, example . 44, 66
__toLower (C-SPY system macro) 390

tool chain
extending . 95
specifying . 30

Tool Output window . 220
context menu . 221

toolbar
debug . 274
IDE . 195
Trace . 163

$TOOLKIT_DIR$ (argument variable) 238
tools icon, in this guide . xl
Tools menu . 244
tools, user-configured . 265
__toString (C-SPY system macro) 391
touch, open-source command line utility 94
__toUpper (C-SPY system macro) 391
Trace Expressions window . 166
Trace window . 163

toolbar . 163
trace, definition of. 129
trademarks . ii
transformations, enabled in compiler 322
translation unit, definition of. 407
trap, definition of . 407
Treat all warnings as errors (compiler option). 328
Treat these as errors (compiler option) 328
Treat these as errors (linker option). 347
Treat these as remarks (compiler option) 327
Treat these as warnings (compiler option). 328
Treat these as warnings (linker option) 347
tutor (subdirectory) . 17
type qualifiers, definition of . 408
Type (External editor option) . 252
type-checking . 10, 12

disabling at link time . 346
typographic conventions . xxxix
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Index
U
UBROF. 8, 12

definition of . 408
Undo (button) . 195
Universal Binary Relocatable Object Format. See UBROF
Update intervals (IDE option) . 260
Use Code Templates (editor option) 253
Use Custom Keyword File (editor option) 253
Use External Editor (External editor option). 252
Use register filter (Register filter option) 263
user application, definition of . 112
User symbols are case sensitive (assembler option) 331

V
variables

effects of optimizations . 127
information, limitation on . 127
using in arguments . 266
using in C-SPY expressions . 125
watching in C-SPY . 128

example. 42
variance (interrupt property) . 185

definition of . 180
version control systems. 88
version number, of Embedded Workbench 271
View menu . 233
virtual address, definition of . 408
virtual space, definition of . 408
visualSTATE

C-SPY plugin module for . 8
part of the tool chain . 75
project file . 19

volatile storage, definition of . 408
von Neumann architecture, definition of 408
vsp (filename extension) . 19

W
Warn when exceeding stack threshold (Stack option) 262
Warn when stack pointer is out of bounds (Stack option) . 262
warnings

compiler. 328
linker . 347

warnings icon, in this guide . xl
Warnings/Errors (linker option) . 347
Watch window . 287

context menu . 288
using . 128

watchpoints
definition of . 408
setting . 42

web sites, recommended . xxxix
web site, IAR Systems . 21
When source resolves to multiple function instances 259
while (macro statement) . 371
Window menu. 270
windows . 193

organizing on the screen . 77
specific to C-SPY. 273

With I/O emulation modules (linker option) 342
using . 124

With runtime control modules (linker option). 342
Workspace window. 196

context menu . 198, 213
drag-and-drop of files . 84
example . 31

workspaces
creating . 29, 84
using . 83

__writeFile (C-SPY system macro) 392
__writeFileByte (C-SPY system macro) 392
__writeMemoryByte (C-SPY system macro) 392
__writeMemory8 (C-SPY system macro) 392
__writeMemory16 (C-SPY system macro) 393
__writeMemory32 (C-SPY system macro) 393
UEW-8:1

429

430
wsdt (filename extension) . 19
www.iar.com. 21

X
XAR options, definition of . 408
XAR See library builder
xcl (filename extension) . 19
xlb (filename extension) . 19
XLIB options, definition of. 408
XLIB See librarian
XLINK options

definition of . 408
Command file configuration tool 350

XLINK See linker
XLINK, definition of . 408

Z
zero-overhead loop, definition of 408
zone

definition of . 408
in C-SPY . 141

Symbols
#define options (linker options) . 345
#define statement, in compiler . 326
#line directives, generating in assembler. 334
#line directives, generating in compiler 326
#pragma directive, definition of . 403
$CONFIG_NAME$ (argument variable) 237
CUR_DIR (argument variable) 237
CUR_LINE (argument variable) 237
EW_DIR (argument variable) . 237
EXE_DIR (argument variable) 237
$FILE_DIR$ (argument variable) 237
$FILE_FNAME$ (argument variable) 237
$FILE_PATH$ (argument variable) 237

$LIST_DIR$ (argument variable) 237
OBJ_DIR (argument variable) 237
$PROJ_DIR$ (argument variable) 237
$PROJ_FNAME$ (argument variable) 238
$PROJ_PATH$ (argument variable) 238
$TARGET_BNAME$ (argument variable) 238
$TARGET_BPATH$ (argument variable) 238
$TARGET_DIR$ (argument variable) 238
$TARGET_FNAME$ (argument variable) 238
$TARGET_PATH$ (argument variable) 238
$TOOLKIT_DIR$ (argument variable) 238
% stack usage threshold (Stack option). 261
-B (C-SPY command line option). 364
-d (C-SPY command line option) 365
-p (C-SPY command line option) 366
--backend (C-SPY command line option) 364
--cycles (C-SPY command line option) 364
--flash_loader (C-SPY command line option). 365
--macro (C-SPY command line option) 365
--mapu (C-SPY command line option) 366
--plugin (C-SPY command line option) 366
--silent (C-SPY command line option) 367
__cancelAllInterrupts (C-SPY system macro) 376
__cancelInterrupt (C-SPY system macro). 377
__clearBreak (C-SPY system macro) 377
__closeFile (C-SPY system macro) 377
__disableInterrupts (C-SPY system macro) 378
__driverType (C-SPY system macro) 378
__enableInterrupts (C-SPY system macro) 379
__evaluate (C-SPY system macro) 379
__fmessage (C-SPY macro statement) 372
__loadModule (C-SPY system macro) 380
__message (C-SPY macro statement) 372
__openFile (C-SPY system macro). 381
__orderInterrupt (C-SPY system macro). 382
__popSimulatorInterruptExecutingStack (C-SPY
system macro). 382
__readFile (C-SPY system macro) 383
__readFileByte (C-SPY system macro) 383
__readMemoryByte (C-SPY system macro) 384
UEW-8:1

IAR Embedded Workbench® IDE
User Guide

Index
__readMemory8 (C-SPY system macro) 384
__readMemory16 (C-SPY system macro) 384
__readMemory32 (C-SPY system macro) 385
__registerMacroFile (C-SPY system macro). 385
__resetFile (C-SPY system macro) 385
__setCodeBreak (C-SPY system macro). 386
__setDataBreak (C-SPY system macro) 387
__setSimBreak (C-SPY system macro) 388
__smessage (C-SPY macro statement) 372
__sourcePosition (C-SPY system macro) 389
__strFind (C-SPY system macro) 389
__subString (C-SPY system macro) 390
__toLower (C-SPY system macro) 390
__toString (C-SPY system macro) 391
__toUpper (C-SPY system macro) 391
__writeFile (C-SPY system macro) 392
__writeFileByte (C-SPY system macro) 392
__writeMemoryByte (C-SPY system macro) 392
__writeMemory8 (C-SPY system macro) 392
__writeMemory16 (C-SPY system macro) 393
__writeMemory32 (C-SPY system macro) 393
UEW-8:1

431

	Brief contents
	Contents
	Tables
	Figures
	Preface
	Who should read this guide
	How to use this guide
	What this guide contains
	Part 1. Product overview
	Part 2. Tutorials
	Part 3. Project management and building
	Part 4. Debugging
	Part 5. The C-SPY® Simulator
	Part 6. Reference information

	Other documentation
	Document conventions
	Typographic conventions
	Naming conventions

	Part 1. Product overview
	Product introduction
	The IAR Embedded Workbench IDE
	An extensible and modular environment
	Features
	Project management
	Source code control
	Window management
	The text editor

	Documentation

	IAR C-SPY Debugger
	The C-SPY driver
	General C-SPY debugger features
	Source and disassembly level debugging
	Single-stepping on a function call level
	Code and data breakpoints
	Monitoring variables and expressions
	Container awareness
	Call stack information
	Powerful macro system
	Additional general C-SPY debugger features

	C-SPY plugin modules
	RTOS awareness
	IAR C-SPY Simulator
	Features

	Documentation

	IAR C/C++ Compiler
	Features
	Code generation
	Language facilities
	Type checking

	Runtime environment
	Documentation

	IAR Assembler
	Features
	Documentation

	IAR XLINK Linker
	Features
	Documentation

	IAR XAR Library Builder and IAR XLIB Librarian
	Features
	Documentation

	Installed files
	Directory structure
	Root directory
	The CPUNAME directory
	The common directory
	The install-info directory

	File types
	files with non-default filename extensions

	Documentation
	The user and reference guides
	IAR Embedded Workbench® IDE User Guide
	IAR C/C++ Compiler Reference Guide
	IAR Assembler Reference Guide
	IAR Linker and Library Tools Reference Guide

	Online help
	IAR Systems on the web

	Part 2. Tutorials
	Welcome to the tutorials
	Tutorials overview

	Creating an application project
	Setting up a new project
	Compiling and linking the application
	Output format
	Linker command file
	Linker map file

	Debugging using the IAR C-SPY® Debugger
	Debugging the application
	Using the Auto window
	Setting a watchpoint
	Executing up to a breakpoint

	Mixing C and assembler modules
	Examining the calling convention
	Adding an assembler module to the project
	Viewing the assembler list file

	Using C++
	Creating a C++ application
	Looking at the function calls

	Simulating an interrupt
	Adding an interrupt handler
	Setting up the simulation environment
	Simulating the interrupt
	Using macros for interrupts and breakpoints

	Creating and using libraries
	Using libraries
	The Main.sxx program
	The library routines

	Part 3. Project management and building
	The development environment
	The IAR Embedded Workbench IDE
	The tool chain
	Running the IDE
	Double-clicking the workspace filename

	Exiting

	Customizing the environment
	Organizing the windows on the screen
	Using docked versus floating windows
	Organizing windows

	Customizing the IDE
	Invoking external tools
	Adding command line commands

	Managing projects
	The project model
	How projects are organized
	Projects and workspaces
	Projects and build configurations
	Groups
	Source files

	Creating and managing workspaces
	Drag and drop
	Source file paths

	Navigating project files
	Viewing the workspace
	Displaying browse information

	Source code control
	Interacting with source code control systems
	Setting up an SCC project in the SCC client application
	Connecting projects in IAR Embedded Workbench
	Viewing the SCC states
	Configuring the source code control system

	Building
	Building your application
	Setting options
	Using the Options dialog box

	Building a project
	Building multiple configurations in a batch
	Using pre- and post-build actions
	Using pre-build actions for time stamping

	Correcting errors found during build
	Building from the command line

	Extending the tool chain
	Tools that can be added to the tool chain
	Adding an external tool

	Editing
	Using the IAR Embedded Workbench editor
	Editing a file
	Accessing reference information for DLIB library functions
	Using and customizing editor commands and shortcut keys
	Splitting the editor window into panes
	Dragging and dropping of text
	Syntax coloring
	Automatic text indentation
	Matching brackets and parentheses
	Displaying status information

	Using and adding code templates
	Enabling code templates
	Inserting a code template in your source code
	Adding your own code templates
	Selecting the correct language version of the code template file

	Navigating in and between files
	Searching

	Customizing the editor environment
	Using an external editor

	Part 4. Debugging
	The IAR C-SPY® Debugger
	Debugger concepts
	C-SPY and target systems
	Debugger
	Target system
	User application
	C-SPY Debugger systems
	ROM-monitor program
	Third-party debuggers

	The C-SPY environment
	An integrated environment

	Setting up C-SPY
	Choosing a debug driver
	Executing from reset
	Using a setup macro file
	Selecting a device description file
	Loading plugin modules
	The C-SPY RTOS awareness plugin modules

	Starting C-SPY
	Executable files built outside of the IDE
	Loading multiple debug files
	Redirecting debugger output to a file

	Executing your application
	Source and disassembly mode debugging
	Executing
	Step
	Go
	Run to Cursor
	Highlighting
	Using breakpoints to stop
	Using the Break button to stop
	Stop at program exit

	Call stack information
	Terminal input and output
	Directing stdin and stdout to a file

	Working with variables and expressions
	C-SPY expressions
	C symbols
	Using sizeof

	Assembler symbols
	Macro functions
	Macro variables

	Limitations on variable information
	Effects of optimizations

	Viewing variables and expressions
	Working with the windows
	Using the Quick Watch window

	Using the trace system
	The Trace window and its browse mode
	Searching in the trace data

	Viewing assembler variables

	Using breakpoints
	The breakpoint system
	Defining breakpoints
	Breakpoint icons
	Different ways to set a breakpoint
	Toggling a simple code breakpoint
	Defining breakpoints using the dialog box
	To define a new breakpoint
	To modify an existing breakpoint

	Setting a data breakpoint in the Memory window
	Defining breakpoints using system macros
	Defining breakpoints at C-SPY startup using a setup macro file

	Useful breakpoint tips
	Tracing incorrect function arguments
	Performing a task with or without stopping execution

	Viewing all breakpoints
	Using the Breakpoint Usage dialog box
	Breakpoint consumers

	Monitoring memory and registers
	Memory addressing
	Windows for monitoring memory and registers
	Using the Stack window
	Detecting stack overflows
	Viewing the stack contents

	Working with registers
	Register groups
	Enabling predefined register groups
	Defining application-specific groups

	Using the C-SPY® macro system
	The macro system
	The macro language
	Example

	The macro file
	Setup macro file

	Setup macro functions

	Using C-SPY macros
	Using the Macro Configuration dialog box
	Registering and executing using setup macros and setup files
	Executing macros using Quick Watch
	Executing a macro by connecting it to a breakpoint

	Analyzing your application
	Function-level profiling
	Using the profiler
	Profiling information is displayed in the window.
	Viewing the figures
	Producing reports

	Code coverage
	Using Code Coverage
	Viewing the figures
	What parts of the code are displayed?
	Producing reports

	Part 5. The C-SPY® Simulator
	Simulator-specific debugging
	Simulator-specific menus
	Using the trace system in the simulator
	Trace window
	Trace toolbar
	The display area

	Function Trace window
	Toolbar
	The display area

	Trace Expressions window
	Toolbar
	The display area

	Find In Trace window
	Find in Trace dialog box

	Memory access checking
	Memory Access setup dialog box
	Use ranges based on
	Use manual ranges
	Memory access checking
	Buttons

	Edit Memory Access dialog box
	Memory range
	Access type
	Cycle costs
	Cycle costs

	Using breakpoints in the simulator
	Data breakpoints
	Data breakpoints dialog box

	Immediate breakpoints
	Immediate breakpoints dialog box

	Breakpoint Usage dialog box

	Simulating interrupts
	The C-SPY interrupt simulation system
	Using the interrupt simulation system
	Target-adapting the interrupt simulation system
	Interrupt Setup dialog box
	Edit Interrupt dialog box
	Forced interrupt window
	C-SPY system macros for interrupts
	Defining simulated interrupts at C-SPY startup using a setup file
	Interrupt simulation in a multi-task system

	Interrupt Log window

	Simulating a simple interrupt

	Part 6. Reference information
	IAR Embedded Workbench® IDE reference
	Windows
	IAR Embedded Workbench IDE window
	Menu bar
	Toolbar
	Status bar

	Workspace window
	Toolbar
	The display area
	Workspace window context menu
	Source Code Control menu
	Source code control states

	Editor window
	HTML files
	Split commands
	Go to function
	Editor window tab context menu
	Editor window context menu
	Source file paths
	Editor key summary

	Source Browser window
	The upper display area
	The lower display area
	Icons used for the symbol types
	Usage
	Source Browser window context menu

	Breakpoints window
	Breakpoints window context menu

	Build window
	Find in Files window
	Tool Output window
	Debug Log window

	Menus
	File menu
	Edit menu
	View menu
	Project menu
	Argument variables summary

	Tools menu
	Tools menu commands

	Common fonts options
	Key Bindings options
	Menu
	Command
	Press shortcut key
	Primary
	Alias
	Reset All

	Language options
	Language

	Editor options
	Tab Size
	Indent Size
	Tab Key Function
	EOL character
	Show right margin
	Syntax Highlighting
	Auto Indent
	Show Line Numbers
	Scan for Changed Files
	Show Bookmarks
	Enable Virtual Space
	Remove trailing blanks

	Configure Auto Indent dialog box
	Opening Brace (a)
	Body (b)
	Label (c)
	Sample code

	External Editor options
	Use External Editor
	Type
	Editor
	Arguments
	Service
	Command

	Editor Setup Files options
	Use Custom Keyword File
	Use Code Templates

	Editor Colors and Fonts options
	Editor Font
	Syntax Coloring

	Messages options
	Show build messages
	Log File
	Enable All Dialogs

	Project options
	Source Code Control options
	Keep items checked out when checking in
	Save editor windows before performing source code control commands

	Debugger options
	When source resolves to multiple function instances
	Source code color in Disassembly window
	Step into functions
	STL container expansion
	Update intervals
	Default integer format

	Stack options
	Enable graphical stack display and stack usage tracking
	% stack usage threshold
	Warn when exceeding stack threshold
	Warn when stack pointer is out of bounds
	Stack pointer(s) not valid until reaching
	Warnings
	Limit stack display to

	Register Filter options
	Terminal I/O options
	Keyboard
	File
	Input Echoing
	Show target reset in Terminal I/O window

	Configure Tools dialog box
	Specifying command line commands or batch files

	Filename Extensions dialog box
	Filename Extension Overrides dialog box
	Edit Filename Extensions dialog box
	Configure Viewers dialog box
	Edit Viewer Extensions dialog box
	Window menu
	Help menu
	Embedded Workbench Startup dialog box
	Create new project in current workspace
	Add existing project to current workspace
	Open existing workspace
	Example applications
	Recent workspace
	Do not show this window at startup

	C-SPY® reference
	C-SPY windows
	Editing in C-SPY windows
	C-SPY Debugger main window
	Menu bar
	Debug toolbar

	Disassembly window
	Toolbar
	The display area
	Disassembly context menu

	Memory window
	Toolbar
	The display area
	Memory window context menu

	Fill dialog box
	Memory Save dialog box
	Zone
	Start address
	Stop address
	File format
	Filename
	Save

	Memory Restore dialog box
	Zone
	Filename
	Restore

	Symbolic Memory window
	Toolbar
	The display area
	There are several different ways to navigate within the memory space:
	Symbolic Memory window context menu

	Register window
	Watch window
	Watch window context menu

	Locals window
	Locals window context menu

	Auto window
	Auto window context menu

	Live Watch window
	Live Watch window context menu

	Quick Watch window
	Quick Watch window context menu

	Statics window
	The display area
	Statics window context menu

	Select Statics dialog box
	Show all variables with static storage duration
	Show selected variables only

	Call Stack window
	Call Stack window context menu

	Terminal I/O window
	Code Coverage window
	Toolbar
	T he display area
	Code Coverage window context menu

	Profiling window
	Profiling commands
	Profiling columns

	Stack window
	The stack drop-down menu
	The graphical stack bar
	The Stack window columns
	The Stack window context menu

	Symbols window
	The display area
	Symbols window context menu

	C-SPY menus
	Debug menu

	General options
	Target
	Output
	Library Configuration
	Library Options
	Stack/Heap

	Compiler options
	Multi-file compilation
	Language
	C
	Embedded C++
	Extended Embedded C++
	Automatic

	Code
	Optimizations
	Output
	List
	Preprocessor
	Diagnostics
	Extra Options

	Assembler options
	Language
	Output
	List
	Preprocessor
	Diagnostics
	Extra Options

	Custom build options
	Custom Tool Configuration

	Build actions options
	Build Actions Configuration

	Linker options
	Output
	Override default
	Debug information for C-SPY
	With runtime control modules
	With I/O emulation modules
	Buffered terminal output
	Allow C-SPY-specific extra output file
	Other
	Module-local symbols

	Extra Output
	#define
	Diagnostics
	Suppress all warnings
	Suppress these diagnostics
	Treat these as warnings
	Treat these as errors

	List
	Segment map
	Symbols
	Module summary
	Include suppressed entries
	Static overlay map
	File format
	Lines/page

	Config
	Processing
	Fill pattern
	Generate checksum

	Extra Options

	Library builder options
	Output

	Debugger options
	Setup
	Extra Options
	Plugins

	The C-SPY Command Line Utility-cspybat
	Using C-SPY in batch mode
	Parameters
	Example

	C-SPY command line options
	General cspybat options
	Options available for the simulator driver
	Options available for the C-SPY hardware driver

	Descriptions of C-SPY command line options

	C-SPY® macros reference
	The macro language
	Macro functions
	Predefined system macro functions
	Macro variables
	Macro strings

	Macro statements
	Expressions
	Conditional statements
	Loop statements
	Return statements
	Blocks

	Formatted output

	Setup macro functions summary
	C-SPY system macros summary
	Description of C-SPY system macros

	Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z
	Symbols

