IAR C/C++ Compiler

Reference Guide

for Renesas
MI16C/1X-3X, 5X-6X and R8C

Series of CPU cores

:

&
-
&

:

CMI6C-4

©IAR

SYSTEMS

COPYRIGHT NOTICE
Copyright © 1995-2010 IAR Systems AB.

No part of this document may be reproduced without the prior written consent of IAR
Systems AB. The software described in this document is furnished under a license and
may only be used or copied in accordance with the terms of such a license.

DISCLAIMER

The information in this document is subject to change without notice and does not
represent a commitment on any part of IAR Systems. While the information contained
herein is assumed to be accurate, IAR Systems assumes no responsibility for any errors
or omissions.

In no event shall IAR Systems, its employees, its contractors, or the authors of this
document be liable for special, direct, indirect, or consequential damage, losses, costs,
charges, claims, demands, claim for lost profits, fees, or expenses of any nature or kind.

TRADEMARKS

IAR Systems, IAR Embedded Workbench, C-SPY, visualSTATE, From Idea To Target,
IAR KickStart Kit, IAR PowerPac, IAR YellowSuite, IAR Advanced Development Kit,
IAR, and the IAR Systems logotype are trademarks or registered trademarks owned by
IAR Systems AB. J-Link is a trademark licensed to IAR Systems AB.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

Renesas is a registered trademark of Renesas Electronics Corporation. M16C/R8C
Series is a trademark of Renesas Electronics Corporation.

Adobe and Acrobat Reader are registered trademarks of Adobe Systems Incorporated.

All other product names are trademarks or registered trademarks of their respective
owners.

EDITION NOTICE
Fourth edition: June 2010
Part number: CM16C-4

This guide applies to version 3.5 of IAR Embedded Workbench® for Renesas
M16C/R8C Series of CPU cores.

Internal reference: RS, 5.5, IJOA.

Brief contents

TaABIES ... XXi
Preface ..o Xxiii
Part 1. Using the compiler ... 1
Getting STArted ..ot 3
Data STOrAZEcoooovvveeeciriie et 11
FUNCLIONS ... sssseseenens 23
Placing code and data ... 31
The DLIB runtime enviroNmMeNt ... 45
The CLIB runtime environment ... 77
Assembler language interface ... 87
USING CHr s 109
Efficient coding for embedded applications ... 123
Part 2. Reference information ... 143
External interface details ... 145
COoMPIlEr OPLIONS ... 151
Data represSentation ... 183
Compiler @XLENSIONS ... sessssesennenns 195
Extended keywords ... e 205
Pragma dir€CtiVes ... 217
INtriNSIC FUNCLIONS ... 231
The PreProCeSSOL ... 241

iv

IAR C/C++ Compiler
Reference Guide

Library fUNCLIONS ... 247

Segment reference ... 257
Implementation-defined behavior ... 273
INAEX oo 287

Contents

TaABIES ... XXi
Preface ..o Xxiii
Who should read this guide ... xxiii
How to use this guide ... xxiii
What this guide contains ... XXiv
Other documentation ... XXV
Further readingcooeveviiinieieieieeeee s XXVi
Document conventions ..., XXVi
Typographic CONVENTIONScc.coverververrenreninienieeieiierenieneeneesiesienienne XX Vil
Naming CONVENTONScoeeureruerierierienienterieeteereeteteeessessensesieseesaeene XXVil
Part |. Using the compiler ... 1
Getting STArted ...t 3
IAR language OVErVIEW ...t 3
Supported M16C/R8C Series devices ..o 4
Building applications—an overview ... 4
Compiling
LinKing ..ocvevveveninininieieeceeeseenenenesene
Basic settings for project configuration
CPU core
Data model
Size of double floating-Point tyPeceerveeeeeeienrenenienienenrenrenieeeenes 7
Optimization for speed and S1Z€cc..cevveereevieriieeiieniienieneeseeneeieenae 7
RUNtime enVIrONMENtco.eeverieieieniiniinieniinerieeeceeeeeee et 7
Special support for embedded systems ... 9
Extended KEYWOTdScooievieiriiiiiiiienierie et 9
Pragma dir€CtiVesccccovevierieninininiiniirteceteeeeetee e 9
Predefined SymDbOIScccoveririniriiiiieiceeeereseeeceeeee 10

Special funCtion tYPEScc.eevveevuerierieriieniienieeieeieeee et 10

Accessing low-level featurescc.cocevevvevievienienenicnincnieneneeeeene 10

vi

Daata STOrAZEccoovvvveiciei et 11

INErodUCtioN ..o e 11
Different ways to Store datacceceeveerieneenieenenieeieceeeeee e 11
Data models ... 12

Specifying a data modelc.ccocevereriniriieieiecceeeee 12
MeEMOKY tYPes ... 13
Datal3 oo 14
Datalo ..o 14
Far .o 14
Data20 ...oooviiriiiieiieiieeee e e
Using data memory attributes
Pointers and MemMOTrY tYPESeecveveerierieeniierieenieesienie et eiee e see e 16
Structures and MEMOTY LYPES .c.evververrerrereerieieeerererenrenienesenenenne 17
MOTE EXAMPIES ..ottt 17
C++ and MemMOry types ...t 18
Auto variables—on the stack ... 19
The SEACK ..eviiitiiieiieieeee e 19
Dynamic memory on the heap ..., 20
FUNCLIONS ... 23
Function-related extensions ... 23
Special page functions ... 23

Primitives for interrupts, concurrency, and OS-related

programming
INterrupt fUNCHONS ..c..evviviiriieiieieiciecceeceeee e 24
Register bank interrupt functionsceceeceeeeeeiienieneneneneneneenens 25
Monitor fUNCHONSc.ccoviiiiiiiiiiii s 25
C++ and special function typescccceeeeveeeevievienienenenienieneneeeeeene 28
Placing code and data ... 31
Segments and MEMOKY ... 31
WHhat is @ SEZMENL? ...c.eovuieiieiiiiieiieieieietee et 31
Placing segments in MemMOry ..., 32
Customizing the linker command filecccceeeverinennininnnncnnene 33

IAR C/C++ Compiler
Reference Guide

Contents °

Data SEZMENLScc.ooiiiiii s 35
Static MEMOTY SEZMENLS ..cc.veruririierieerieenteerierieeteeeestesieesieeseeenaeeneens 35
The StACK ...veviiiriiiieiieeeec s 38
ThE NEAP vttt s 40
Located datacoceeueveviiiniiiiiiicicicieeeseee e 41
User-defined SEZMENLSc.coeeueruerieieieieieienieneneseneseeieeeeeeneene 42

Code segments ...

Startup code

NOIMAL COE ...oviniiniiiiiiiiceeececee et 42
Tinyfunc-declared COdecccooeririninienininiceneeeseseeeeeen 42

EXCEPLION VECIOTS ..eouvieniiiiiiieiieeiie sttt sttt 43

C++ dynamic initialization ... 43
Verifying the linked result of code and data placement 43
Segment too long errors and range eIrorsc.ccceceevververeereeneeennenn 43

Linker map filecocooininininiiiiccieeccesencee e 44

The DLIB runtime environMeNtccoooocommrvmeriioenevsenevsessiennnnnns 45
Introduction to the runtime environmentc.......... 45
Runtime environment functionalityc..cccceceeeerenenenenieneneneenes 45

Library selection

Situations that require library buildingc.cceceevevvenieninicnennenncnnene 47
Library configurationscccceceeeeeeerieeieienieieneniese s 47
Debug support in the runtime libraryccoccoveeevieninienieneennene. 48
Using a prebuilt library ... 48

Customizing a prebuilt library without rebuildingc.cccceceeeenene 52
Choosing formatters for printf and scanf ... 53

Choosing printf fOrmattercoceevevierererenienienenenereneeeeeeeeeene 53

Choosing scanf fOrmattercccceoceverererierienieneneneneneeeeeeeeneene 54
Overriding library modules ..., 55
Building and using a customized library ... 57

Setting up a library project

Modifying the library functionalityc...cccceeeevvienienieneenieeneeneene. 57

Using a customized liDrarycc.cocceceeveeveeieiienenenienenenenceeeeeenes 58

vii

System startup and termination ... 58

SYSEM STATLUP c.vveevveeiieriieieeieenieet et ettt ettt et s sanesaeeneees 58
System termiNationccccecueveereerierienienenenieneneneneeeeeeeeseeseeeenens 60
Customizing system initialization ... 61
_1ow_Ievel NIt ...ooviviiniiiiiiiieiiece 61
Modifying the file cstartup.s34ccccoceeveevieiieniincninnneceeeceene
Standard streams for input and output
Implementing low-level character input and outputc.ccccceeneee. 62
Configuration symbols for printf and scanf ... 64
Customizing formatting capabilitiescc.ceceveevevenienienienienieneeeene 65
File input and output ... 65
LOCANE ... 66
Locale support in prebuilt librariesc..coccocevevenvencninnieneeeieneee 66
Customizing the locale SUPPOITccveerieerierieriienieneereeieeeeee e 67
Changing locales at TUNIME ...c..eoveeeeeemieieieienienienenenene e eeeeeneene 68
Environment interaction ... 68
Signal and raise ... 69
THIME oottt e 70
SO ... 70
BASSEIT ...ttt 70
HEAPS ... 71
C-SPY runtime interface ... 71
Low-level debugger runtime interfacec.cccocevvevieneeneeneeneenne. 72

The debugger terminal I/O window

Checking module consistency ...
Runtime model attributesccoceiiiiiiiiiiiii 73
Using runtime model attributesc.coceevvevvevvenenenienienieneneneeeenene

Predefined runtime attributescccoeveeeiieeieeeiieeeie e

User-defined runtime model attributes

The CLIB runtime enVirONMENTcocoooooieeeeeeeeeeeeeeeeeeeeeeeeseesees 77
Prebuilt lIBraries ...t 77

Input and OULPUL ..o 81
Character-based I/Ococvvviiiiuiiiieceiee e 81

IAR C/C++ Compiler
viii Reference Guide

Contents °

Formatters used by printf and sprintfccceveevnievienincncnenennne 82
Formatters used by scanf and sscanfc.ccooeeveeiiiiinninninnenienns 83
System startup and termination ... 83
SYSTEM STATTUD +.vvenvenveiineerienieriteieeitetetete sttt sttt sr st saesbe e ebeeneene 84
System tErMINALIONcc..evieriieriierieeieetenitesieeneeseeneeeseetesieeseresaeenaees 84
Overriding default library modules ..., 84
Customizing system initialization ... 84

C-SPY runtime interface

The debugger terminal I/O window

Terminationccccocciviiiiiiiniiiiii e 85

Checking module consistency ..., 85
Assembler language interface ... 87
Mixing C and assembler ... 87
Intrinsic funCtionscccoeeiiiniiiiiiii e 87

Mixing C and assembler modulescccceveverenenenenenieneeienienes 88

Inline assembler ... 89
Calling assembler routines from C ... 90
Creating skeleton Codecocoveririnieineninincireeeeseeesee e 90
Compiling the COecovviriiriiriiriiieeeee e 91
Calling assembler routines from C++ ... 92
Calling conveNntion ... 93
Choosing a calling CONVeNtioncccceeeereenieenierieenneenienieneeneeeeenn 94
Function declarationsc.cccoeouiiiiiinininincceceeeee e 94
Using C linkage in C++ S0ource codec.coccceverueencenuennecnneenenenns 94

Preserved versus scratch registersc.ooevererenenennieienienienennenne. 95
Function entrancec..cceeeeeeeeeieieieieienere e 96
FUNCHON EXIE .eiiiiiiiiiieieeieeeete e 98
EXAMPIES ..onveiiiiiieiiiieee e e 99
Function dir€CtiVesccceeeeeeieieieiiienieieneseneeeetee e 100
Calling funNctions ... 100
Assembler instructions used for calling functionsc.ccceeeevene 101
Memory access methods ...

The datal3 memory access method

The datal6 memory access method
The far memory access methodcoceevieviininiiniinienicceee
The data20 memory access method
Call frame information ...
CFL dIiFECHIVES ..cvvevviiiiiriiniiiiieiciteietetcte sttt

USING CHr s 109
OVEIVIEW ...ttt
Standard Embedded C++
Extended Embedded CH+ ..o 110
Enabling CA+ SUPPOTT ..cveeueeieiiieienienienienieeieeieeieeeeteteee e 110
Feature descriptions ... 111
Classes J111
FUNCHON LYPES ..onvinviiiiieiieiieieieeeeenereeeetet et 114
New and Delete OPEratorscceceevvevierierereneneeeeteienienieseeseenaens 115
TEMPLALES ...eeniiiniieieeieete ettt e 116
Variants of CaStScooeiriiiiiiiiieeiee e 119
MULADIE ...ttt
Namespace
The STD NAMESPACEeeueeuienieniiienienienienienienieeit ettt 120
Pointer to member funCtionsccccccevererereneeieenienienienenesenenn 120
Using interrupts and EC++ destructorsccoceeeeeveeneeneenieeniennnenne 120
C++ language eXteNnSIONS ..o 121
Efficient coding for embedded applications ... 123
Selecting data types ... 123
Using efficient data tyPescoeeeeeeieienienieneneneneeteeeeeie e 123
Floating-point tyPeSc..coveeueeeeeeienienienientiereereereeeereeressesresseseeseenne 124
Using different pointer tyPescoeeeeeeveruerierenereneneeneereeneenennens 125
Alignment of elements in a SIrUCtUIEccceveruerererenenieneenieeens 125
Anonymous Structs and UNIONSccceeverververrenreneneneneneererennenne 126

Controlling data and function placement in memory 127

Data placement at an absolute 10cationcc.cecceveevienienerenenennens 128

Data and function placement in SEZMENLScoeeveereeerrerecrenenenne 130

IAR C/C++ Compiler
Reference Guide

Contents °

Controlling compiler optimizations ... 131
Scope for performed OptimiZationscceeeeveerierrierienieeneeneennes 131
Optimization IeVELSc..coceeeriiieriiniiniiiiniereeeeeeeeecreesese e 132
SPEEA VEISUS SIZE ..evververiirieriereiieiieteteiest ettt ettt et saesae e e 133
Fine-tuning enabled transformationsccocceeceevernieeneriieniiennenne 133

Writing efficient code ..., 135
Memory types
Saving stack space and RAM mMemOrycccccoeceeveeneenenniennenniennns 138
FUNCHON PrOtOLYPESveuveverierieriiriiiitetctetetereeree et 138
Integer types and bit NEZALIONcc.evvevveruerieieieieerenerereeeeeeene 139
Protecting simultaneously accessed variablesccccoeceerieneennenn. 140
Accessing special function registerseeeveeveeeeecvecierenenienenenne 140
Non-initialized variablescc.coccevevenenienenenieeeeieneneneseeeeen 141

Part 2. Reference information ... 143
External interface details ... 145

INVOCAtion SYNtAX ..o 145
Compiler iNVOCAtION SYNEAX ..ccververierieniienieenieeeeeteeeenieenieensessseenne 145
Passing OPtIONScc.couevueriririeieieieieeseneeese ettt 145
Environment variablesccccoceeceiieiieninenenenenenteeeeeesee e 146

Include file search procedure ..o 146

Compiler OULPUL ..o 147

DiIagnostiCs ..o s 148
MeSSage FOIMAL ...c..eevueiiiiiiiieeieeteceteeee et 149
SeVETItY IEVEIS ueeviiriiriiriirieeieeeceeeece e 149
Setting the Severity IeVelccccooeviriireninininceeeeeeeeeeee 150
Internal ITorc.cceviiiiiiiiiiiiicc 150

COMPIlEr OPLIONS ... 151

OPLIONS SYNEAX ..o 151
TYPES OF OPLIONS ...veeeniinieniiieniieteeteeiteitet ettt 151
Rules for specifying parametersccceceeverererereneneneeneeneeneens 151

Summary of compiler options ... 153

xi

Xii

IAR C/C++ Compiler
Reference Guide

Descriptions of Options ... 156

==64bit_dOUDIEscccceiiiiiiiiii e 157
——aliZN_dAtA ..o et 157
=—AlIZN_TUNC .ot 157
--CalliNG_CONVENTION ..oviiiiiiiiiieiienierte ettt 158
-—Char_iS_SIZNEdcoceveririiiiiiiicieiccer e 158
--code_segment

--constant_data

—=d1ag_TeMATK ...eoviiiiiiiiiien e

--diag_suppress

--diag_warning

--diagnostics_tables

--discard_unused_publiCsccccereruerireniniieieieeteee e 164
~=AlID_CONTIG .ottt

--enable_multibytes

RS (0 gl 111 1V L SRR OT TR RRTRN

—library_module ..o
—mLOW_COMISES oevviiiiieiiieieeeeeee ettt et e e et e e e e saae e e s senaaes
SN e
--Migration_preprocessor_exXtensionsc....ccoeeveeveerienenenienens 170
—MOAUIE_NAIME ..ottt 170

Contents °

--no_code_motion

=-N0_CTOSS_CALL ..oiiiiiiiiiiiiiecie e e e

=NO_INTNE ittt
--no_path_in_file_mMacroscccceevuereimiineniiiinenieeeeseenceeeeieee 172

SNI0_DAA oot

--no_typedefs_in_diagnostics
--n0_UNTOll Lo
“SNO_WAIMINEZS .evververieeitenteitentetetetenseeseeseeseeseeseeseesessennennessessessessense

--NO_WIAP_dIaZNOSTICS ..eeueemeenriiiiitieiinienieeteeteeieetee ettt

20, mOULPUL evovnitieniiiietentet ettt enene
“=OTMHE_EYPES woevenrenreienierierienieeiteitentetetebe st b ebe e bt e st et entetesaeaeseeneenee
“=ONLY_SEAOUL ..oviiiiiiiiieiieiteee ettt
SmOULPUL, 0 oottt
—-predef_MACTOSccvevvirierierierieeieeitetetete ettt ettt
--preinclude
--preprocess

S PUDLIC_EQU weuveiiierieeiteitetete ettt ettt ettt

~=TEQUITE_PIOLOLYPES .eeveeueemeemeentetentententessesseeseeseeseeseessensessensensensessenee
SmSIIBIE it
--strict_ansi
—mUSE_ DIV et
--variable_data ...

--warnings_affect_exit_code

“=WAIMINZS_ATE_EITOTS ...veuvererverterrerierseeseeeetessessensessessessessesseesesenss
Data represSentation ... 183
AlIgNMENT ..o 183
Alignment on the M16C/R8C Series of CPU coresccccucuenene 183
Basic data types ... 184
TNEEEET LYPES vttt 184

xiii

Xiv

CASHIIIE cevevvereienierierieei ettt ettt ettt et e saesre e st
SErUCLUNE tYPESooiiiicece et
ATLZNMENT .ottt ettt et sie e s saeens
General 1ayoutc.cocceiiiiniiniiie e

Packed structure types

Type qUAlIfiers ... s
Declaring objects VOlatilec.cccccoeverinininininiieieieienicnenenenne 191
Declaring objects CONSEcocveuieierierienenineneeeeeceeteeeeeee e 192
Data types in CH+ ... 193
Compiler @XTENSIONS ... 195
Compiler extensions overview ... 195
Enabling language eXtensionsce.ceceevevverrenieriereneneneeneenueneens 196
C language exXtensioNns ... 196
Important language eXteNnSIONScceveerueereerrieriierienieneeneeneeneeens 196
Useful 1anguage eXtensionscccceeeerererereneenienieneeneensenenennens 198
Minor 1anguage eXteNSIONSc.ecererrererererereenieniertetesseseensennens 201
Extended keyWords ... 205

General syntax rules for extended keywords
Type attributes

IAR C/C++ Compiler
Reference Guide

Contents °

U TIO_ANIE eiieiiiieeiieerite et et e ettt e e ebe e s e ebeeebe e e taeenabeeentaeenaees 213
__NOTEIUITL o.evviieivieeiieeeiteeeteeeteeeereeseaeeeseeenteeessseeesseasnsesenseeesneessseeas 213
__1€DANK_INEEITUPE ..ottt 214

Pragma dir€CtiVes ... 217
Summary of pragma directives ..o 217
Descriptions of pragma directives ... 218

basic_template_matChingcccecevieveneneneniineceeteeere e 218
bitfields

COMSESEE ..eevvnrenrenrententeeueeseetteuteuteut et estebestesbesbesbeebeeseestetentenbeneenbennens 219
data_aligNmMENtccceeereriiiiiieieieee sttt 220
ALASEZ wnveenveerieteete ettt sttt et ettt st 220
diag_defaultc..coceviriiiiiii e 221
QIAZ_CITOT ettt ettt ettt s 221

diag_remark

dIAZ_SUPPIESS .eevververieeiieiieiteiietetete ettt ettt ettt ettt sae e 222
dIaZ_ WAIMING ..eovviviieieierieeieetetete ettt ettt s 222
Include_aliascocooeeiiiiieiiiiiiieii e 222
INJNE ..o

language ...

location
message
ODJECE_ALIITDULE ...evvenieeiiieiicitetetee et 225
OPLITIIZE ..eonveentientiniieeite sttt ettt ettt sttt et et e st e sate b e sbeenaeenne 225
PACK e ettt 226

__PUNEE QTS ittt 227
TEQUITEA .eiiniiiiiieiieeieeteete ettt ettt ettt et s saee e 227
TEMOAEL .ottt 228

_SCANT_ATES t.veviiiieeiieietete ettt ettt st st see et 228

XV

xvi

IAR C/C++ Compiler
Reference Guide

segment

EYPE_ATTDULE ..eeintiiniiiieeiieeiieeetet ettt 229

VECTOT ottt 230

INtriNSIC FUNCLIONS ... 231
Summary of intrinsic functions ... 231
Descriptions of intrinsic functions ... 232

_break

BTSTS ettt 233
__diSable_iNteITUPL ...cceevvereireieiieiieiieiieieietete sttt 233
__eNable_INTEITUPL ..oveviiriiiierierite sttt 233
88t FLIG_T@ZISIET ..cuveveviiieiieiieieicieicienieseeie ettt 233
__get_interrupt_I1eVelcccooeeirieiieieieeee e 233
__get_interrupt_state
__illegal_opCodecoceeiiieiiiiiie e
__NO_OPETALION .tiuvieiuieiieiieiteteteste e stestestestesie et et eteseestesbeneenaesneas

OVETTIOW oot

_TEQUITE ..ottt ettt ettt et et e b e bt ebe et et esbe st enaesaenaeee

RMPA_B oottt
__RMPA_B_INTO .
__RMPA_B_0VErflOW ...covuiriiriiniieiieiieiieicieiece et 235

RMPA_W ettt 236
__RMPA_W_INTOcciiiiiiiniiiniiiciniceeeeenieeeeeene s 236
__RMPA_W_0VEIflOW ...coeeuiiiiiiiiiiniininereneceeeeteeeeeeesee e 236
__segment_begin
__SEZMENE_ENA ..eoviiiiiiiiiiieieee et
__S€L_FLG_TEZISIET ..eveevevieuieiieiieicieiesiesiesieeieee ettt 237
__S€t_INTB_IEZISET .uveveeieiieiieiieieieieieeie sttt 237
__Set_Interrupt_levVelocooeiiiiiiiiiieee e 238
__SEL_INLEITUPL_STALE .evevevieeerienieiieiieiietetete sttt 238
__SMOVB_B
__SMOVB_W
__SMOVF_B
__SMOVF_W

Contents °

__software_interrupt

SSTR_B ..ot
SSTR_W o
_WaIt_fOT_INLETTUPL .eveviiiiintietieiieiietet ettt
The PrePrOCESSON ... 241
Overview of the preprocessorcoveieinvennncoenens 241
Descriptions of predefined preprocessor symbols 242
Descriptions of miscellaneous preprocessor extensions245
NDEBUG ..ottt 245
_Pragmal) cooeeeee e 245
HWAINING MESSAZE ...vvenvenrerinrinriereeteesietietestetensenteseeseesiessesseeeesseneens 246
VA _ARGS__ 246

Library functions

Introduction
Header files ..o 247
Library object flescccceiririririniiieicieiecesesene e 248
REENLIANCY ..ottt 248
IAR DLIB LiDBFrary ... 249
C header files
C+ header filesooeviririiiiiiieieeeeee e 250
Library functions as intrinsic functionsc.cceceeveevenenvererncnnns 252
Added C functionalityccceeceeeeeeieienienienieneneneseeeeeeeeseeseeeene 252
IAR CLIB Library ... 254
Library definitions SUMMATYc.ccoerveruinuinrinininineeierererrenennenne 255
Segment reference ... 257

Summary of segments

Descriptions of segments
BITVARS ..o

CSTACK
CSTART

xvii

xviii

IAR C/C++ Compiler
Reference Guide

DATAI13_AC

DATAI13_AN

DATATI3_C o
DATATL3_T s
DATA13_ID

DATATI3 N i
DATAI13_Z .
DATATG6_AC ..o 263
DATATO_AN ..o 263
DATATLO_C .o 263
DATAT6_HEAPcccooiiiiiiiiiiiiiiccc 263
DATATO_I .o 264
DATATO_ID ..o 264
DATATO_N ..o 264
DATATLO_Z ..o 265
DATA20_AC ... 265
DATA20_AN ..o 265
DATA20_C .
DATA20_HEAP ..ot 266
DATA20_T o 266
DATA20_ID ..ot 266
DATA20_N oottt 267
DATA20_Z ..o 267

DIFUNCT

Contents °

INTVEC
INTVECT .o 271
ISTACK ..ottt 272
TINYFUNC ..ottt eseste et esesesesseneaes 272
Implementation-defined behavior ... 273
Descriptions of implementation-defined behavior 273
Translation
ENVITONMENTovviiiiiniiiinieniiniectetecctceeeceeeeerc e 274
TAENtIETSeeiuieiiiieieeee e 274
Characlersoceiiiiiiiiiiiic e 274
TNEEEETS e
FLOAting POINE ...c.eovuiriiriieiieiieieieie ettt
Arrays and pointers ...
REGISTETS ..niniiiiieieeeceeet ettt
Structures, unions, enumerations, and bitfieldsccccoevvrrinnnns 277
QUALITIETS Loovviieiiiieiiieciee ettt et e b e eaaeenaae e e 278
DECIATAtOrSc.eeuiiiiiiiiiciceeeteee e 278
SEABIMENLS ..eouviiuiiiiieiieiieeiere ettt ettt sbeesbeeabeeaeesanenae 278
Preprocessing dir€CtiVEScceeueeuieuieuieieieienienienie e eneeeenennens 279
TAR DLIB Library functionsce.ceceeceeieienieneneneneneneeneeneeneens 280
TAR CLIB Library functionscccceceeeeieeesiesieneneneseseneeeeneens 283
INA@X et 287

Xix

IAR C/C++ Compiler
XX Reference Guide

Tables

1: Typographic conventions used in this gUidec.cccceverereninininenineeenee. XXVii
2: Naming conventions used in this gUIdecccceevirieriririininiieieieeeeneeeene XXVii
3: Command line options for specifying library and dependency filesc........ 8
4: Data model CharaCteriStiCsccevirueiririiirieiiieeeiecereeee et 13
5: Memory types and their corresponding memory attributes 15
6: XLINK segment MEMOTY tYPEScoeeverueeeemueienuenrinrensinrenreeseeeeeensensensensessesessenne 32
7: Memory layout of a target system (€Xample)c..coceeveereereenienieneneneneneneneenees 33
8: Memory types with corresponding SEZMENt EroUPScccevvereereererererierieneene 36
9: Segment NAME SUFTIXES ...ecvevuiruiiiiiiiiiiiicicrerecee e 37
10: Library CONfigUIAtiONScccoeeertereririieieieterteteniestesteete sttt eeeteseeseenaenee 47
11: Levels of debugging support in runtime librariescccceeceeververieeriieneeneenne 48
12: Prebuilt IIDraries ... 49
13: Customizable items53
14: Formatters for printf .. 54
15: Formatters for scanf ..o 55
16: Descriptions of printf configuration Symbolscccceceveverinrieiinencnenenenee 64
17: Descriptions of scanf configuration Symbolsccecevieveninirieiienieiieniesenene 65
18: Low-level IO files ..o 66
19: Heaps and MEMOTY tYPES ...coveeuerureieieienienienienienieeseestetetestessessestessessesiessessesseens 71
20: Functions with special meanings when linked with debug infoc...c..c..c..... 71
21: Example of runtime model attributesccccoevueruenininininiieieieieneneneneneene 74
22: Predefined runtime model attributes15
23: Runtime lDraries ... 78
24: Registers used for passing parameters in the normal calling convention 97
25: Registers used for returning Valuescc.ccceveeruerienininenenieieienenenenenenieene 98
26: Call frame information resources defined in a names blockc.ccceenneennee 105
27: Compiler optimization 1eVeLSc.cccoerinininininieieieiceresceeeeeee e 132
28: Compiler environment Variablescccccoeverererenernieieieneneeneseneeeeeeeenes 146
29: EITOr TEtUIN COAESvoiiiiiiiiiiiiiiiiicic s

30: Compiler options summary ...

311 INLEZET LYPES weeuveurenriienienieniieiteie ettt et st sttt b ettt ettt bbb bbb e

XXi

xXii

IAR C/C++ Compiler
Reference Guide

32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:

Floating-point types

Data POINLELS ...eeveiiiiiieiieeiie ettt ettt et ettt sane e
VOlatile ACCESSES ..uviviuiruiriiiiriiieitetertenerere sttt ettt sae bbb s eee
Extended Keywords SUMMATYc.ceceeereeieieitenienienienene st eeeeseeseesnennes 209
Pragma directives SUMMATYcocceevieeriiriiinienienteneenitenie et see e 217
Intrinsic fuNCtioNS SUMIMALYc.cccuevueriiruiniinrinienineneeretentete et eneenees 231
Predefined symbols

Traditional standard C header files—DLIBc..cccocvviiiiiniinininininieiee 249
Embedded C++ header filesccooveviinininininniiiicicccceceeee e 250
Additional Embedded C++ header files—DLIBccccocceviiviininineneneninne. 251
Standard template library header filesccccoveriiniiniiniinieeeeeceeee, 251
New standard C header files—DLIBcc.ccccocnininininiiiiieneeeneeeee 252
IAR CLIB Library header filesc..ccccocevierenenenienenineeieeeceseseneeeeee 255
SEZMENE SUMIMATY ...eouviriieriieriieniierieenteesteete et eiteetesitesatesbeesbeesaeesbeensessneesesanenas 257
Message returned by strerror()—IAR DLIB libraryc..ccccocvvvenccnvnncncenennee 283
Message returned by strerror()—IAR CLIB librarycccceceveeeninencniennne. 286

Preface

Welcome to the IAR C/C++ Compiler Reference Guide for M16C/R8C. The
purpose of this guide is to provide you with detailed reference information
that can help you to use the compiler to best suit your application
requirements. This guide also gives you suggestions on coding techniques so
that you can develop applications with maximum efficiency.

Who should read this guide

Read this guide if you plan to develop an application using the C or C++ language for
the M16C/R8C Series CPU core and need detailed reference information on how to use
the compiler. You should have working knowledge of:

o The architecture and instruction set of the M16C/R8C Series of CPU cores. Refer to
the documentation from Renesas for information about the M16C/R8C Series of
CPU cores

o The C or C++ programming language
e Application development for embedded systems

o The operating system of your host computer.

How to use this guide

When you start using the IAR C/C++ Compiler for M16C/R8C, you should read Part 1.
Using the compiler in this guide.

When you are familiar with the compiler and have already configured your project, you
can focus more on Part 2. Reference information.

If you are new to using the IAR Systems build tools, we recommend that you first study
the IJAR Embedded Workbench® IDE User Guide. This guide contains a product
overview, tutorials that can help you get started, conceptual and user information about
the IDE and the AR C-SPY® Debugger, and corresponding reference information.

xxXiii

What this guide contains

XXiv

What this guide contains

Below is a brief outline and summary of the chapters in this guide.

IAR C/C++ Compiler
Reference Guide

Part I. Using the compiler

Getting started gives the information you need to get started using the compiler for
efficiently developing your application.

Data storage describes how to store data in memory, focusing on the different data
models and data memory type attributes.

Functions gives a brief overview of function-related extensions—mechanisms for
controlling functions—and describes some of these mechanisms in more detail.

Placing code and data describes the concept of segments, introduces the linker
command file, and describes how code and data are placed in memory.

The DLIB runtime environment describes the DLIB runtime environment in which
an application executes. It covers how you can modify it by setting options,
overriding default library modules, or building your own library. The chapter also
describes system initialization introducing the file cstartup, how to use modules
for locale, and file 1/0.

The CLIB runtime environment gives an overview of the CLIB runtime libraries and
how to customize them. The chapter also describes system initialization and
introduces the file cstartup.

Assembler language interface contains information required when parts of an
application are written in assembler language. This includes the calling convention.

Using C++ gives an overview of the two levels of C++ support: The
industry-standard EC++ and IAR Extended EC++.

Efficient coding for embedded applications gives hints about how to write code that
compiles to efficient code for an embedded application.

Part 2. Reference information

External interface details provides reference information about how the compiler
interacts with its environment—the invocation syntax, methods for passing options
to the compiler, environment variables, the include file search procedure, and the
different types of compiler output. The chapter also describes how the compiler’s
diagnostic system works.

Compiler options explains how to set options, gives a summary of the options, and
contains detailed reference information for each compiler option.

Data representation describes the available data types, pointers, and structure types.
This chapter also gives information about type and object attributes.

Preface __4

o Compiler extensions gives a brief overview of the compiler extensions to the
ISO/ANSI C standard. More specifically the chapter describes the available C
language extensions.

® Extended keywords gives reference information about each of the
M16C/R8C-specific keywords that are extensions to the standard C/C++ language.

® Pragma directives gives reference information about the pragma directives.

e [ntrinsic functions gives reference information about functions to use for accessing
M16C/R8C-specific low-level features.

o The preprocessor gives a brief overview of the preprocessor, including reference
information about the different preprocessor directives, symbols, and other related
information.

® Library functions gives an introduction to the C or C++ library functions, and
summarizes the header files.

o Segment reference gives reference information about the compiler’s use of
segments.

o [mplementation-defined behavior describes how the compiler handles the
implementation-defined areas of the C language standard.

Other documentation

The complete set of IAR Systems development tools for the M16C/R8C Series CPU
core is described in a series of guides. For information about:

o Using the IDE and the IAR C-SPY Debugger®, refer to the [AR Embedded
Workbench® IDE User Guide

o Programming for the M16C/R8C IAR Assembler, refer to the M16C/R8C IAR
Assembler Reference Guide

o Using the IAR XLINK Linker, the IAR XAR Library Builder, and the IAR XLIB
Librarian, refer to the /AR Linker and Library Tools Reference Guide

o Using the IAR DLIB Library functions, refer to the online help system

o Using the IAR CLIB Library functions, refer to the /AR C Library Functions
Reference Guide, available from the online help system.

e Porting application code and projects created with a previous IAR Embedded
Workbench for M16C/R8C, refer to the M16C/R8C IAR Embedded Workbench®
Migration Guide

o Using the MISRA-C:1998 rules or the MISRA-C:2004 rules, refer to the /4R
Embedded Workbench® MISRA C:1998 Reference Guide or the IAR Embedded
Workbench® MISRA C:2004 Reference Guide, respectively.

XXV

Document conventions

XXVi

All of these guides are delivered in hypertext PDF or HTML format on the installation
media.

FURTHER READING

These books might be of interest to you when using the IAR Systems development tools:

Barr, Michael, and Andy Oram, ed. Programming Embedded Systems in C and
C++. O’Reilly & Associates.

Harbison, Samuel P. and Guy L. Steele (contributor). C: A Reference Manual.
Prentice Hall.

Kernighan, Brian W. and Dennis M. Ritchie. The C Programming Language.
Prentice Hall. [The later editions describe the ANSI C standard.]

Labrosse, Jean J. Embedded Systems Building Blocks: Complete and Ready-To-Use
Modules in C. R&D Books.

Lippman, Stanley B. and Josée Lajoie. C++ Primer. Addison-Wesley.
Mann, Bernhard. C fiir Mikrocontroller. Franzis-Verlag. [Written in German.]

Stroustrup, Bjarne. The C++ Programming Language. Addison-Wesley.

We recommend that you visit these web sites:

The Renesas web site, www.renesas.com, contains information and news about the
M16C/R8C Series of CPU cores.

The IAR Systems web site, www.iar.com, holds application notes and other
product information.

Finally, the Embedded C++ Technical Committee web site,
www.caravan.net/ec2plus, contains information about the Embedded C++
standard.

Document conventions

IAR C/C++ Compiler
Reference Guide

When, in this text, we refer to the programming language C, the text also applies to C++,
unless otherwise stated.

When referring to a directory in your product installation, for example m16c\doc, the
full path to the location is assumed, for example c: \Program Files\IAR
Systems\Embedded Workbench 6.n\ml6c\doc.

Preface __4

TYPOGRAPHIC CONVENTIONS
This guide uses the following typographic conventions:

Style Used for

computer * Source code examples and file paths.
* Text on the command line.
* Binary, hexadecimal, and octal numbers.

parameter A placeholder for an actual value used as a parameter, for example
filename.h where £ilename represents the name of the file.

[option] An optional part of a command.

[a|b]|c] An optional part of a command with alternatives.

{a|b|c} A mandatory part of a command with alternatives.

bold Names of menus, menu commands, buttons, and dialog boxes that

appear on the screen.

italic * A cross-reference within this guide or to another guide.
* Emphasis.

An ellipsis indicates that the previous item can be repeated an arbitrary
number of times.

Identifies instructions specific to the IAR Embedded Workbench® IDE
interface.

Identifies instructions specific to the command line interface.

Identifies helpful tips and programming hints.

Identifies warnings.

Table 1: Typographic conventions used in this guide

NAMING CONVENTIONS

The following naming conventions are used for the products and tools from IAR
Systems® referred to in this guide:

Brand name Generic term

IAR Embedded Workbench® for M16C/R8C IAR Embedded Workbench®
IAR Embedded Workbench® IDE for M16C/R8C the IDE

IAR C-SPY® Debugger for M16C/R8C C-SPY, the debugger

IAR C-SPY® Simulator the simulator

IAR C/C++ Compiler™ for M16C/R8C the compiler

Table 2: Naming conventions used in this guide

xxvii

Document conventions

xxviii

IAR C/C++ Compiler
Reference Guide

Brand name

Generic term

IAR Assembler™ for M16C/R8C
IAR XLINK Linker™

IAR XAR Library Builder™

IAR XLIB Librarian™

IAR DLIB Library™

IAR CLIB Library™

the assembler
XLINK, the linker
the library builder
the librarian

the DLIB library
the CLIB library

Table 2: Naming conventions used in this guide (Continued)

Part |. Using the compiler

This part of the IAR C/C++ Compiler Reference Guide for M16C/R8C includes

these chapters:

o Getting started

e Data storage

e Functions

o Placing code and data

e The DLIB runtime environment
e The CLIB runtime environment
o Assembler language interface

e Using C++

e Efficient coding for embedded applications.

- .hmuiuhhhi

AARArA

Getting started

This chapter gives the information you need to get started using the compiler
for efficiently developing your application.

First you will get an overview of the supported programming languages,
followed by a description of the steps involved for compiling and linking an
application.

Next, the compiler is introduced. You will get an overview of the basic settings
needed for a project setup, including an overview of the techniques that enable
applications to take full advantage of the MI6C/R8C Series of CPU cores. In
the following chapters, these techniques are studied in more detail.

IAR language overview

There are two high-level programming languages you can use with the IAR C/C++
Compiler for M16C/R8C:

o C, the most widely used high-level programming language in the embedded systems
industry. Using the IAR C/C++ Compiler for M16C/R8C, you can build
freestanding applications that follow the standard ISO 9899:1990. This standard is
commonly known as ANSI C.

o C++, a modern object-oriented programming language with a full-featured library
well suited for modular programming. IAR Systems supports two levels of the C++
language:

o Embedded C++ (EC++), a subset of the C++ programming standard, which is
intended for embedded systems programming. It is defined by an industry

consortium, the Embedded C++ Technical committee. See the chapter Using
C++.

o IAR Extended Embedded C++, with additional features such as full template

support, namespace support, the new cast operators, as well as the Standard
Template Library (STL).

Each of the supported languages can be used in strict or relaxed mode, or relaxed with
IAR extensions enabled. The strict mode adheres to the standard, whereas the relaxed
mode allows some deviations from the standard. For more details, see the chapter
Compiler extensions.

Part |. Using the compiler

Supported M16C/R8C Series devices

For information about how the compiler handles the implementation-defined areas of
the C language, see the chapter /mplementation-defined behavior.

It is also possible to implement parts of the application, or the whole application, in
assembler language. See the M16C/R8C IAR Assembler Reference Guide.

For more information about the Embedded C++ language and Extended Embedded
C++, see the chapter Using C++.

Supported M16C/R8C Series devices

The IAR C/C++ Compiler for M16C/R8C supports all devices based on Renesas
M16C/1X, 2X, 3X, 5X, 6X, and R8C Series of CPU cores, but not for the M16C/80
core. To compile code for the M16C/80 core, you need the IAR C/C++ Compiler for
M32C.

In this guide, all examples are made for the M16C/1X, 2X, 3X, 5X, and 6X Series of
CPU cores, but they are valid also for the R8C CPU core, unless otherwise stated.

Building applications—an overview

IAR C/C++ Compiler
4 Reference Guide

A typical application is built from several source files and libraries. The source files can
be written in C, C++, or assembler language, and can be compiled into object files by
the compiler or the assembler.

A library is a collection of object files that are added at link time only if they are needed.
A typical example of a library is the compiler library containing the runtime
environment and the C/C++ standard library. Libraries can also be built using the IAR
XAR Library Builder, the IAR XLIB Librarian, or be provided by external suppliers.

The IAR XLINK Linker is used for building the final application. XLINK normally uses
a linker command file, which describes the available resources of the target system.

Below, the process for building an application on the command line is described. For
information about how to build an application using the IDE, see the /AR Embedded
Workbench® IDE User Guide.

COMPILING

In the command line interface, the following line compiles the source file myfile.c
into the object file myfile.r34 using the default settings:

iccmléc myfile.c

You must also specify some critical options, see Basic settings for project configuration,
page 5.

Getting started ___o

LINKING

The IAR XLINK Linker is used for building the final application. Normally, XLINK
requires the following information as input:

o Several object files and possibly certain libraries

o The standard library containing the runtime environment and the standard language
functions

® A program start label

o A linker command file that describes the placement of code and data into the
memory of the target system

e Information about the output format.
On the command line, the following line can be used for starting XLINK:

xlink myfile.r34 myfile2.r34 -s __program_start -f lnkml6c.xcl
clmlécffffwc.r34 -o aout.al3d -r

In this example, myfile.r34 and myfile2.r34 are object files, Inkm16c.xcl is the
linker command file, and c1lml6cffffwc.r34 is the runtime library. The option -s
specifies the label where the application starts. The option -o specifies the name of the
output file, and the option -r is used for specifying the output format UBROF, which
can be used for debugging in C-SPY®.

The IAR XLINK Linker produces output according to your specifications. Choose the
output format that suits your purpose. You might want to load the output to a
debugger—which means that you need output with debug information. Alternatively,
you might want to load the output to a flash loader or a PROM programmer—in which
case you need output without debug information, such as Intel-hex or Motorola
S-records. The option -F can be used for specifying the output format. (The default
output format is intel-standard.)

Basic settings for project configuration

This section gives an overview of the basic settings for the project setup that are needed
to make the compiler generate the best code for the M16C/R8C Series device you are
using. You can specify the options either from the command line interface or in the IDE.

The basic settings are:

e CPU core

e Data model

e Size of double floating-point type
°

Optimization settings

Part |. Using the compiler 5

Basic settings for project configuration

IAR C/C++ Compiler
6 Reference Guide

o Runtime environment.

In addition to these settings, many other options and settings can fine-tune the result
even further. For details about how to set options and for a list of all available options,
see the chapters Compiler options and the JAR Embedded Workbench® IDE User
Guide, respectively.

CPU CORE

The compiler supports both the M16C/1X, 2X, 3X, 5X, and 6X Series of CPU cores and
the R8C Series of CPU cores. The compiler can be used in two different modes,
depending on for which CPU core you want code to be produced.

Use the --cpu={M16C|R8C} option to select the core for which the code will be
generated.

In the IDE, choose Project>Options>General Options>Target and choose an
appropriate device from the Device drop-down list.

Note: Device-specific configuration files for the linker and the debugger will be
automatically selected.

These compiler features are not supported if the compiler is used in R8C mode:

o The __tiny func keyword for making a function to be called with the instruction
jsrs via an entry in the special page area

e The FLIST segment holding the special page vector table.

DATA MODEL

One of the characteristics of the M16C/R8C Series of CPU cores is a trade-off in how
memory is accessed, between the range from cheap access to small memory areas, up to
more expensive access methods that can access any location.

In the compiler, you can set a default memory access method by selecting a data model.
These data models are supported:

® The near data model
o The far data model
o The huge data model.

Use the --data_model option to specify the data model for your project; see
--data_model, page 160.

In the IDE, choose Project>Options>General Options>Target and choose an
appropriate device from the Device drop-down list.

Getting started ___o

The chapter Data storage covers data models in greater detail. The chapter also covers
how to override the default access method for individual variables.

SIZE OF DOUBLE FLOATING-POINT TYPE

Floating-point values are represented by 32- and 64-bit numbers in standard IEEE 754
format. If you use the compiler option --64bit_doubles, you can choose whether
data declared as double should be represented with 32 bits or 64 bits. The data type
float is always represented using 32 bits.

OPTIMIZATION FOR SPEED AND SIZE

The compiler is a state-of-the-art compiler with an optimizer that performs, among other
things, dead-code elimination, constant propagation, inlining, common sub-expression
elimination, and precision reduction. It also performs loop optimizations, such as
unrolling and induction variable elimination.

You can decide between several optimization levels and for the highest level you can
choose between different optimization goals—syize, speed, or balanced. Most
optimizations will make the application both smaller and faster. However, when this is
not the case, the compiler uses the selected optimization goal to decide how to perform
the optimization.

The optimization level and goal can be specified for the entire application, for individual
files, and for individual functions. In addition, some individual optimizations, such as
function inlining, can be disabled.

For details about compiler optimizations and for more information about efficient
coding techniques, see the chapter Efficient coding for embedded applications.

RUNTIME ENVIRONMENT

To create the required runtime environment you should choose a runtime library and set
library options. You might also need to override certain library modules with your own
customized versions.

Two different sets of runtime libraries are provided:

e The IAR DLIB Library, which supports ISO/ANSI C and C++. This library also
supports floating-point numbers in IEEE 754 format and it can be configured to
include different levels of support for locale, file descriptors, multibyte characters,
et cetera. (This library is default for EC++ and EEC++.)

o The IAR CLIB Library is a light-weight library, which is not fully compliant with
ISO/ANSI C. Neither does it fully support floating-point numbers in IEEE 754
format or does it support Embedded C++. (This library is default for C).

Part |. Using the compiler 7

Basic settings for project configuration

IAR C/C++ Compiler
8 Reference Guide

The runtime library you choose can be one of the prebuilt libraries, or a library that you
customized and built yourself. The IDE provides a library project template for both
libraries, that you can use for building your own library version. This gives you full
control of the runtime environment. If your project only contains assembler source code,
you do not need to choose a runtime library.

For detailed information about the runtime environments, see the chapters The DLIB
runtime environment and The CLIB runtime environment, respectively.

The way you set up a runtime environment and locate all the related files differs
depending on which build interface you are using—the IDE or the command line.
Choosing a runtime library in the IDE

To choose a library, choose Project>Options, and click the Library Configuration tab
in the General Options category. Choose the appropriate library from the Library
drop-down menu.

Note that for the DLIB library there are different configurations—Normal and
Full—which include different levels of support for locale, file descriptors, multibyte
characters, et cetera. See Library configurations, page 47, for more information.

Based on which library configuration you choose and your other project settings, the
correct library file is used automatically. For the device-specific include files, a correct
include path is set up.

Choosing runtime environment from the command line

Use the following command line options to specify the library and the dependency files:

Command line Description
-I mléc\inc Specifies the include path to device-specific I/O definition
files.

-I ml6c\inc\{clib|dlib} Specifies the library-specific include path. Use c1ib or
dlib depending on which library you are using.

libraryfile.r34 Specifies the library object file
--dlib_config Specifies the library configuration file (for the IAR DLIB
C:\...\configfile.h Library only)

Table 3: Command line options for specifying library and dependency files

For a list of all prebuilt library object files for the IAR DLIB Library, see Prebuilt
libraries, page 49. The table also shows how the object files correspond to the dependent
project options, and the corresponding configuration files. Make sure to use the object
file that matches your other project options.

Getting started ___o

For a list of all prebuilt object files for the [AR CLIB Library, see Runtime libraries,
page 78. The table also shows how the object files correspond to the dependent project
options. Make sure to use the object file that matches your other project options.

Setting library and runtime environment options
You can set certain options to reduce the library and runtime environment size:

o The formatters used by the functions print£, scanf, and their variants, see
Choosing formatters for printf and scanf, page 53 (DLIB) and Input and output,
page 81 (CLIB).

o The size of the stack and the heap, see The stack, page 38, and The heap, page 40,
respectively.

Special support for embedded systems

This section briefly describes the extensions provided by the compiler to support
specific features of the M16C/R8C Series CPU core.

EXTENDED KEYWORDS

The compiler provides a set of keywords that can be used for configuring how the code
is generated. For example, there are keywords for controlling the memory type for
individual variables as well as for declaring special function types.

By default, language extensions are enabled in the IDE.

The command line option -e makes the extended keywords available, and reserves them
so that they cannot be used as variable names. See, -e, page 165 for additional
information.

For detailed descriptions of the extended keywords, see the chapter Extended keywords.

PRAGMA DIRECTIVES

The pragma directives control the behavior of the compiler, for example how it allocates
memory, whether it allows extended keywords, and whether it issues warning messages.

The pragma directives are always enabled in the compiler. They are consistent with
ISO/ANSI C, and are very useful when you want to make sure that the source code is
portable.

For detailed descriptions of the pragma directives, see the chapter Pragma directives.

Part |. Using the compiler 9

Special support for embedded systems

PREDEFINED SYMBOLS

With the predefined preprocessor symbols, you can inspect your compile-time
environment, for example time of compilation, and the code and data models.

For detailed descriptions of the predefined symbols, see the chapter The preprocessor.

SPECIAL FUNCTION TYPES

The special hardware features of the M16C/R8C Series of CPU cores are supported by
the compiler’s special function types: interrupt, register bank interrupt, monitor, and
special page. You can write a complete application without having to write any of these
functions in assembler language.

For detailed information, see Primitives for interrupts, concurrency, and OS-related
programming, page 24. For information about special page functions, see Special page
functions, page 23.

ACCESSING LOW-LEVEL FEATURES

For hardware-related parts of your application, accessing low-level features is essential.
The compiler supports several ways of doing this: intrinsic functions, mixing C and
assembler modules, and inline assembler. For information about the different methods,
see Mixing C and assembler, page 87.

IAR C/C++ Compiler
10 Reference Guide

Data storage

This chapter gives a brief introduction to the memory layout of the M16C/R8C
Series CPU core and the fundamental ways data can be stored in memory: on
the stack, in static (global) memory, or in heap memory. For efficient memory
usage, the compiler provides a set of data models and data memory attributes,
allowing you to fine-tune the access methods, resulting in smaller code size.
The concepts of data models and memory types are described in relation to
pointers, structures, Embedded C++ class objects, and non-initialized
memory. Finally, detailed information about data storage on the stack and the
heap is provided.

Introduction

The compiler supports the M16C/1X-3X, 5X—6X and R8C Series of CPU cores.
Different types of physical memory can be placed in the memory range. A typical
application will have both read-only memory (ROM) and read/write memory (RAM).
In addition, some parts of the memory range contain processor control registers and
peripheral units.

The compiler can access memory in different ways. The access methods range from
generic but expensive methods that can access the full memory space, to cheap methods
that can access limited memory areas. To read more about this, see Memory types, page
13.

DIFFERENT WAYS TO STORE DATA
In a typical application, data can be stored in memory in three different ways:

e Auto variables.

All variables that are local to a function, except those declared static, are stored on
the stack. These variables can be used as long as the function executes. When the
function returns to its caller, the memory space is no longer valid.

o Global variables and local variables declared static.

In this case, the memory is allocated once and for all. The word static in this context
means that the amount of memory allocated for this kind of variables does not change
while the application is running. For more information, see Data models, page 12 and
Memory types, page 13.

Part |. Using the compiler

Data models

12

o Dynamically allocated data.

An application can allocate data on the seap, where the data it remains valid until it
is explicitly released back to the system by the application. This type of memory is
useful when the number of objects is not known until the application executes. Note
that there are potential risks connected with using dynamically allocated data in
systems with a limited amount of memory, or systems that are expected to run for a
long time. For more information, see Dynamic memory on the heap, page 20.

Data models

IAR C/C++ Compiler
Reference Guide

Technically, the data model specifies the default memory type. This means that the data
model controls the following:

o The default placement of static and global variables, and constant literals

o Dynamically allocated data, for example data allocated with malloc, or, in C++,
the operator new

o The default pointer type.

The data model only specifies the default memory type. It is possible to override this for
individual variables and pointers. For information about how to specify a memory type
for individual objects, see Using data memory attributes, page 15.

SPECIFYING A DATA MODEL

Three data models are implemented: near, far, and huge. These models are controlled
by the --data_model option. Each model has a default memory type and a default
pointer size. If you do not specify a data model option, the compiler will use the near
data model.

Your project can only use one data model at a time, and the same model must be used
by all user modules and all library modules. However, you can override the default
memory type for individual data objects and pointers by explicitly specifying a memory
attribute, see Using data memory attributes, page 15.

Data storage °

This table summarizes the different data models:

Default variable Default constant Default pointer
Data model Placement of data
memory attribute memory attribute attribute
Near __datalé __datalé __dataleé Can address the entire
(default) I Mbyte of memory.

Variables are by default
placed in the first 64
Kbytes.

Far __dataleé __far __far Can address the entire
| Mbyte of memory.
Variables are by default
placed in the first 64

Kbytes.

Huge __datalé __data20 __data20 Can address the entire
| Mbyte of memory.
Variables are by default
placed in the first 64
Kbytes.

Table 4: Data model characteristics
See the AR Embedded Workbench® IDE User Guide for information about setting
options in the IDE.

Use the --data_model option to specify the data model for your project; see
--data_model, page 160.

For a description of the memory types that are used by default in each data model, see
Memory types, page 13.

Memory types

This section describes the concept of memory types used for accessing data by the
compiler. It also discusses pointers in the presence of multiple memory types. For each
memory type, the capabilities and limitations are discussed.

The compiler uses different memory types to access data that is placed in different areas
of the memory. There are different methods for reaching memory areas, and they have
different costs when it comes to code space, execution speed, and register usage. The
access methods range from generic but expensive methods that can access the full
memory space, to cheap methods that can access limited memory areas. Each memory
type corresponds to one memory access method. If you map different memories—or

Part |. Using the compiler

Memory types

14

IAR C/C++ Compiler
Reference Guide

part of memories—to memory types, the compiler can generate code that can access
data efficiently.

For example, the memory accessed using 16-bit addressing is called datal6 memory.

To choose a default memory type that your application will use, select a data model.
However, it is possible to specify—for individual variables or pointers—different
memory types. This makes it possible to create an application that can contain a large
amount of data, and at the same time make sure that variables that are used often are
placed in memory that can be efficiently accessed.

For more information about memory access methods, see Memory access methods, page
101.

DATAI3

The datal3 memory consists of the low 8 Kbytes of data memory. In hexadecimal
notation, this is the address range 0x0000-0x1FFF. The advantage of datal3 is that the
compiler can choose to use instructions with bit addressing on datal3 objects.

DATAIé6

Using this memory type, you can place the data objects in the range 0x0000-0xFFFF
in memory.

FAR

Using this memory type, you can place the data objects in the entire memory range
0x0000-0xFFFFF. However, the size of such an object is limited to 64 Kbytes-1, and it
cannot cross a 64-Kbyte physical segment boundary.

The drawback of the far memory type is that the code generated to access the memory
is larger and slower than that of datal3 and datal6. The code also uses more processor
registers, which might force local variables to be stored on the stack rather than being

allocated in registers.

DATA20

Using this memory type, you can place the data objects in the entire memory range
0x0000-0xFFFFF with no limitation on size and boundaries.

The drawback of the far memory type is that the code generated to access the memory
is larger and slower than that of datal3 and datal6. The code also uses more processor
registers, which might force local variables to be stored on the stack rather than being
allocated in registers.

Compared to the far memory type, operations using index-based addressing such as
array, struct and class accesses, will be slower and require more code.

Data storage °

USING DATA MEMORY ATTRIBUTES

The compiler provides a set of extended keywords, which can be used as data memory
attributes. These keywords let you override the default memory type for individual data
objects and pointers, which means that you can place data objects in other memory areas
than the default memory. This also means that you can fine-tune the access method for
each individual data object, which results in smaller code size.

This table summarizes the available memory types and their corresponding keywords:

X Default in data
Memory type Keyword Address range Pointer keyword

model
Datal3 __datal3 0x0-0x1FFF __datal6 -
Datal6é __datale 0x0-0xFFFF __dataleé Near
Far __far 0x0-0xFFFFF __far Far
Data20 __data20 0x0-0xFFFFF __data20 Huge

Table 5: Memory types and their corresponding memory attributes

* You cannot create a datal 3 pointer. However, a datal 6 pointer can pointer can point to a datal3
object.

The keywords are only available if language extensions are enabled in the compiler.

For backward compatibility, the keywords __near and __huge are available as aliases
for __datalé and __data20, respectively.

In the IDE, language extensions are enabled by default.

Use the -e compiler option to enable language extensions. See -e, page 165 for
additional information.

For reference information about each keyword, see Descriptions of extended keywords,
page 210. For more information about pointers, see Pointer types, page 187.

Syntax

The keywords follow the same syntax as the type qualifiers const and volatile. The
memory attributes are fype attributes and therefore they must be specified both when
variables are defined and in the declaration, see General syntax rules for extended
keywords, page 205.

The following declarations place the variable i and j in datal6 memory. The variables
k and 1 will also be placed in datal6 memory. The position of the keyword does not have
any effect in this case:

__datalé int i, 3j;
int __datal6 k, 1;

Part |. Using the compiler 15

Memory types

16

IAR C/C++ Compiler
Reference Guide

Note that the keyword affects both identifiers. If no memory type is specified, the default
memory type is used.

In addition to the rules presented here—to place the keyword directly in the code—the
directive #pragma type_attribute can be used for specifying the memory attributes.
The advantage of using pragma directives for specifying keywords is that it offers you a
method to make sure that the source code is portable. Refer to the chapter Pragma
directives for details about how to use the extended keywords together with pragma
directives.

Type definitions

Storage can also be specified using type definitions. These two declarations are
equivalent:

/* Defines via a typedef */
typedef char _ datal6 Byte;
typedef Byte *BytePtr;

Byte AByte;

BytePtr ABytePointer;

/* Defines directly */
_ _datal6 char AByte;
char _ _datal6 *ABytePointer;

POINTERS AND MEMORY TYPES

Pointers are used for referring to the location of data. In general, a pointer has a type.
For example, a pointer that has the type int * points to an integer.

In the compiler, a pointer also points to some type of memory. The memory type is
specified using a keyword before the asterisk. For example, a pointer that points to an
integer stored in datal6 memory is declared by:

int __datal6 * MyPtr;

Note that the location of the pointer variable MyPtr is not affected by the keyword. In
the following example, however, the pointer variable MyPtr2 is placed in datal6
memory. Like MyPtr, MyPtr2 points to a character in data2() memory.

char __data20 * __datal6 MyPtr2;

For example, the functions in the standard library are all declared without explicit
memory types.

If no memory type is specified, the default memory type is used.

Data storage °

Differences between pointer types

A pointer must contain information needed to specify a memory location of a certain
memory type. This means that the pointer sizes are different for different memory types.
For the IAR C/C++ Compiler for M16C/R8C, the size of the __datal6 pointers is 16
bits. The size of __data20 and __far pointers is 20 bits.

In the compiler, it is legal, with one exception, to convert pointers between different

types without explicit casts. The exception is when casting from a larger pointer type to
a smaller. Because the pointer size is the same for pointers to all memory types except
for the __datalé pointer, it is illegal to cast other pointer types to a __datalé pointer.

STRUCTURES AND MEMORY TYPES

For structures, the entire object is placed in the same memory type. It is not possible to
place individual structure members in different memory types.

In the example below, the variable Gamma is a structure placed in data20 memory.

struct MyStruct
{
int mAlpha;
int mBeta;
}s

_ data20 struct MyStruct Gamma;

This declaration is incorrect:

struct MyStruct
{

int mAlpha;

_ _data20 int mBeta; /* Incorrect */
Y

MORE EXAMPLES

The following is a series of examples with descriptions. First, some integer variables are
defined and then pointer variables are introduced. Finally, a function accepting a pointer
to an integer in datal6 memory is declared. The function returns a pointer to an integer
in data20 memory. To read the following examples, start from the left and add one
qualifier at each step

int MyA; A variable defined in default memory
determined by the data model in use.

int __datal6 MyB; A variable in datal6 memory.

__data20 int MyC; A variable in data20 memory.

Part |. Using the compiler 17

C++ and memory types

int * MyD; A pointer stored in default memory. The pointer
points to an integer in default memory.

int __datal6 * MyE; A pointer stored in default memory. The pointer
points to an integer in datal6 memory.

int __datal6é * __data20 MyF; A pointer stored in data20 memory pointing to
an integer stored in datal6 memory.

int __data20 * MyFunction/(A declaration of a function that takes a
int __datal6é *); parameter which is a pointer to an integer stored
in datal6 memory. The function returns a
pointer to an integer stored in data20 memory.

C++ and memory types

IAR C/C++ Compiler
Reference Guide

A C++ class object is placed in one memory type, in the same way as for normal C
structures. However, the class members that are considered to be part of the object are
the non-static member variables. The static member variables can be placed individually
in any kind of memory.

Remember, in C++ there is only one instance of each static member variable, regardless
of the number of class objects.

All restrictions that apply to the default pointer type also apply to the this pointer. This
means that it must be possible to convert a pointer to the object to the default pointer
type. Also note that for non-static member functions—unless class memory is used, see
Classes, page 111—the this pointer will be of the default data pointer type.

In the near data model, this means that objects of classes with a member function can
only be placed in the default memory type (__datals6).

Data storage °

Example

In the example below, an object, named delta, of the type MyClass is defined in datal6
memory. The class contains a static member variable that is stored in data20 memory.

// A class definition (may be placed in a header file)
class MyClass
{
public:
int mAlpha;
int mBeta;

__data20 static int mGamma;

Y

// Needed definitions (should be placed in a source file)
_ _data20 int MyClass::mGamma;

// An object of class type MyClass
__datalé MyClass Delta;

Auto variables—on the stack

Variables that are defined inside a function—and not declared static—are named auto
variables by the C standard. A few of these variables are placed in processor registers;
the rest are placed on the stack. From a semantic point of view, this is equivalent. The
main differences are that accessing registers is faster, and that less memory is required
compared to when variables are located on the stack.

Auto variables can only live as long as the function executes; when the function returns,
the memory allocated on the stack is released.

THE STACK

The stack can contain:

Local variables and parameters not stored in registers
Temporary results of expressions
The return value of a function (unless it is passed in registers)

Processor state during interrupts

Processor registers that should be restored before the function returns (callee-save
registers).

Part |. Using the compiler 19

Dynamic memory on the heap

The stack is a fixed block of memory, divided into two parts. The first part contains
allocated memory used by the function that called the current function, and the function
that called it, etc. The second part contains free memory that can be allocated. The
borderline between the two areas is called the fop of stack and is represented by the stack
pointer, which is a dedicated processor register. Memory is allocated on the stack by
moving the stack pointer.

A function should never refer to the memory in the area of the stack that contains free
memory. The reason is that if an interrupt occurs, the called interrupt function can
allocate, modify, and—of course—deallocate memory on the stack.

Advantages

The main advantage of the stack is that functions in different parts of the program can
use the same memory space to store their data. Unlike a heap, a stack will never become
fragmented or suffer from memory leaks.

Itis possible for a function to call itself—a recursive function—and each invocation can
store its own data on the stack.

Potential problems

The way the stack works makes it impossible to store data that is supposed to live after
the function returns. The following function demonstrates a common programming
mistake. It returns a pointer to the variable x, a variable that ceases to exist when the
function returns.

int *MyFunction ()

{
int x;
/* Do something here. */
return &x; /* Incorrect */

}

Another problem is the risk of running out of stack. This will happen when one function
calls another, which in turn calls a third, etc., and the sum of the stack usage of each
function is larger than the size of the stack. The risk is higher if large data objects are
stored on the stack, or when recursive functions—functions that call themselves either
directly or indirectly—are used.

Dynamic memory on the heap

IAR C/C++ Compiler

20 Reference Guide

Memory for objects allocated on the heap will live until the objects are explicitly
released. This type of memory storage is very useful for applications where the amount
of data is not known until runtime.

Data storage °

In C, memory is allocated using the standard library function malloc, or one of the
related functions calloc and realloc. The memory is released again using free.

In C++, a special keyword, new, allocates memory and runs constructors. Memory
allocated with new must be released using the keyword delete.

Potential problems

Applications that are using heap-allocated objects must be designed very carefully,
because it is easy to end up in a situation where it is not possible to allocate objects on
the heap.

The heap can become exhausted if your application uses too much memory. It can also
become full if memory that no longer is in use was not released.

For each allocated memory block, a few bytes of data for administrative purposes is
required. For applications that allocate a large number of small blocks, this
administrative overhead can be substantial.

There is also the matter of fragmentation; this means a heap where small sections of free
memory is separated by memory used by allocated objects. It is not possible to allocate
a new object if no piece of free memory is large enough for the object, even though the
sum of the sizes of the free memory exceeds the size of the object.

Unfortunately, fragmentation tends to increase as memory is allocated and released. For
this reason, applications that are designed to run for a long time should try to avoid using
memory allocated on the heap.

Part |. Using the compiler 21

Dynamic memory on the heap

IAR C/C++ Compiler
22 Reference Guide

Functions

This chapter contains information about functions. It gives a brief overview of
function-related extensions—mechanisms for controlling functions—and
describes some of these mechanisms in more detail.

Function-related extensions

In addition to the ISO/ANSI C standard, the compiler provides several extensions for
writing functions in C. Using these, you can:

o Control the storage and call sequence of functions in memory—special page
functions

o Use primitives for interrupts, concurrency, and OS-related programming

e Facilitate function optimization

® Access hardware features.

The compiler uses compiler options, extended keywords, pragma directives, and
intrinsic functions to support this.

For more information about optimizations, see Writing efficient code, page 135. For
information about the available intrinsic functions for accessing hardware operations,
see the chapter Intrinsic functions.

Special page functions

A special page function is declared using the __tiny_func keyword. It will be called
using the jsrs instruction (Jump SubRoutine Special page), which is shorter thana jsr
instruction. The jsrs instruction works by looking up the destination address in a table.
This will generate less code when the special page function is called from more than one
location. However, the table lookup will take extra cycles.

All __tiny func functions must be located within the address range
0xF0000-0xFFFFF, and the destination table will be located in a segment FLIST that
must be located at 0xFFE00-0xFFFDB.

For additional information about the __tiny func keyword,see _tiny func, page
215.

The __tiny func keyword and the FLIST segment are only available when the
compiler is used in M16C mode, that is when the option --cpu=M16C is used.

Part |. Using the compiler

23

Primitives for interrupts, concurrency, and OS-related programming

24

Primitives for interrupts, concurrency, and OS-related programming

IAR C/C++ Compiler
Reference Guide

The IAR C/C++ Compiler for M16C/R8C provides the following primitives related to
writing interrupt functions, concurrent functions, and OS-related functions:

o The extended keywords __interrupt
__task,and __monitor

regbank_interrupt simple,

y —— EI—

The pragma directive #pragma vector

The intrinsic functions __enable_interrupt disable_interrupt,

[J—

__get_interrupt_state, and __set_interrupt_state.

INTERRUPT FUNCTIONS

In embedded systems, using interrupts is a method for handling external events
immediately; for example, detecting that a button was pressed.

In general, when an interrupt occurs in the code, the CPU core simply stops executing
the code it runs, and starts executing an interrupt routine instead. It is extremely
important that the environment of the interrupted function is restored after the interrupt
is handled; this includes the values of processor registers and the processor status
register. This makes it possible to continue the execution of the original code after the
code that handled the interrupt was executed.

The M16C/R8C Series of CPU cores supports many interrupt sources. For each interrupt
source, an interrupt routine can be written. Each interrupt routine is associated with a
vector number, which is specified in the M16C/R8C Series of CPU cores documentation
from the chip manufacturer. If you want to handle several different interrupts using the
same interrupt function, you can specify several interrupt vectors.

The header file iodevice.h, where device corresponds to the selected device,
contains predefined names for the existing exception vectors.

To define an interrupt function, the __interrupt keyword and the #pragma vector
directive can be used. For example:

#pragma vector = TMRAO /* Symbol defined in I/0 header file */
__interrupt void MyTimerAOInterrupt (void)

~

/* Do something */

}

Note: An interrupt function must have the return type void, and it cannot specify any
parameters.

For the M16C/R8C Series of CPU cores, there are two types of interrupt vectors, fixed
and dynamic. The fixed interrupt vector, INTVEC1, is always located at address
0xFFFDC when you are using the compiler in M16C mode and 0xFFDC in R8C mode.

Functions __4

The dynamic interrupt vector, INTVEC, is pointed at by the INTB register. INTB is loaded
by cstartup.s34.

An interrupt function for the fixed interrupt vector must not have a vector number. The
name of the function must have one of eight predefined names. For a list of these names,
see INTVECI, page 271.

If a vector is specified in the definition of an interrupt function, the dynamic interrupt
vector table is populated. It is also possible to define an interrupt function without a
vector. This is useful if an application is capable of populating or changing the interrupt
vector table at runtime. See the chip manufacturer’s documentation for more
information about the interrupt vector table.

The chapter Assembler language interface in this guide contains more information
about the runtime environment used by interrupt routines.

REGISTER BANK INTERRUPT FUNCTIONS

A register bank interrupt function is declared using the __regbank_interrupt
keyword. It is a regular interrupt function that switches to register bank 1 on entry, then
back to bank 0 on exit, instead of saving and restoring registers. This can be very
efficient if the interrupt function uses many registers. For this to work, a register bank
interrupt function must not be interrupted by another register bank interrupt function,
and no switching between register banks should be performed by any code that can be
interrupted by a register bank interrupt function.

MONITOR FUNCTIONS

A monitor function causes interrupts to be disabled during execution of the function. At
function entry, the status register is saved and interrupts are disabled. At function exit,
the original status register is restored, and thereby the interrupt status that existed before
the function call is also restored.

To define a monitor function, you can use the __monitor keyword. For reference
information, see __monitor, page 213.

Avoid using the __monitor keyword on large functions, since the interrupt will
otherwise be turned off for too long.

Example of implementing a semaphore in C

In the following example, a binary semaphore—that is, a mutex—is implemented using
one static variable and two monitor functions. A monitor function works like a critical
region, that is no interrupt can occur and the process itself cannot be swapped out. A
semaphore can be locked by one process, and is used for preventing processes from
simultaneously using resources that can only be used by one process at a time, for

Part |. Using the compiler 25

Primitives for interrupts, concurrency, and OS-related programming

example a USART. The __monitor keyword assures that the lock operation is atomic;
in other words it cannot be interrupted.

/* This is the lock-variable. When non-zero, someone owns it. */
static volatile unsigned int sTheLock = 0;

/* Function to test whether the lock is open, and if so take it.
* Returns 1 on success and 0 on failure.
*/

_ _monitor int TryGetLock (void)

{

if (sTheLock == 0)

{
/* Success, nobody has the lock. */
sTheLock = 1;
return 1;

}

else

{

/* Failure, someone else has the lock. */

return 0;

/* Function to unlock the lock.
* It is only callable by one that has the lock.
*/

__monitor void ReleaseLock (void)
{
sTheLock = 0;

/* Function to take the lock. It will wait until it gets it. */

void GetLock (void)

{
while (!TryGetLock())
{

/* Normally a sleep instruction is used here. */

IAR C/C++ Compiler
26 Reference Guide

Functions __4

/* An example of using the semaphore. */

void MyProgram(void)
{
GetLock() ;

/* Do something here. */

ReleaseLock() ;

Example of implementing a semaphore in C++

In C++, it is common to implement small methods with the intention that they should be
inlined. However, the compiler does not support inlining of functions and methods that
are declared using the __monitor keyword.

In the following example in C++, an auto object is used for controlling the monitor
block, which uses intrinsic functions instead of the __monitor keyword.

#include <intrinsics.h>

/* Class for controlling critical blocks. */
class Mutex
{
public:
Mutex ()

{
// Get hold of current interrupt state.

mState = __ get_interrupt_state();

// Disable all interrupts.
_ _disable_interrupt () ;

~Mutex ()
{

// Restore the interrupt state.
__set_interrupt_state (mState) ;

private:
_ _istate_t mState;
Y

class Tick

Part |. Using the compiler 27

Primitives for interrupts, concurrency, and OS-related programming

{

public:
// Function to read the tick count safely.
static long GetTick()

{
long t;

// Enter a critical block.
{

Mutex m;

// Get the tick count safely,
t = smTickCount;
}

// and return it.
return t;

private:
static volatile long smTickCount;

Y
volatile long Tick::smTickCount = 0;
extern void DoStuff();

void MyMain ()
{
static long nextStop = 100;

if (Tick::GetTick() >= nextStop)
{

nextStop += 100;

DoStuff();

C++ AND SPECIAL FUNCTION TYPES

C++ member functions can be declared using special function types. However, this
restriction applies:

e Interrupt member functions must be static. When a non-static member function is
called, it must be applied to an object. When an interrupt occurs and the interrupt
function is called, there is no object available to apply the member function to.

IAR C/C++ Compiler
28 Reference Guide

Functions __4

Using interrupts and C++ destructors

If interrupts are enabled and the interrupt functions use class objects that have
destructors, there might be problems if the program exits either by using exit or by
returning from main. If an interrupt occurs after an object has been destroyed, there is
no guarantee that the program will work properly.

To avoid this, you must override the function exit (int).

The standard implementation of this function (located in the file exit . c) looks like this:

extern void _exit (int arg);
void exit (int arg)

{
_exit(arg) ;

}

_exit (int) is responsible for calling the destructors of global class objects before
ending the program.

To avoid interrupts, place a call to the intrinsic function __disable_interrupt ()
before the call to _exit ().

Part |. Using the compiler

29

Primitives for interrupts, concurrency, and OS-related programming

IAR C/C++ Compiler
30 Reference Guide

Placing code and data

This chapter describes how the linker handles memory and introduces the
concept of segments. It also describes how they correspond to the memory
and function types, and how they interact with the runtime environment. The
methods for placing segments in memory, which means customizing a linker
command file, are described.

The intended readers of this chapter are the system designers that are
responsible for mapping the segments of the application to appropriate
memory areas of the hardware system.

Segments and memory

In an embedded system, there are many different types of physical memory. Also, it is
often critical where parts of your code and data are located in the physical memory. For
this reason it is important that the development tools meet these requirements.

WHAT IS A SEGMENT?

A segment is a logical entity containing a piece of data or code that should be mapped
to a physical location in memory. Each segment consists of many segment parts.
Normally, each function or variable with static storage duration is placed in a segment
part. A segment part is the smallest linkable unit, which allows the linker to include only
those units that are referred to. The segment could be placed either in RAM or in ROM.
Segments that are placed in RAM do not have any content, they only occupy space.

Note: Here, ROM memory means all types of read-only memory including flash
memory.

The compiler has several predefined segments for different purposes. Each segment has
a name that describes the contents of the segment, and a segment memory type that
denotes the type of content. In addition to the predefined segments, you can define your
own segments.

At compile time, the compiler assigns each segment its contents. The IAR XLINK
Linker is responsible for placing the segments in the physical memory range, in
accordance with the rules specified in the linker command file. Ready-made linker
command files are provided, but, if necessary, they can be easily modified according to
the requirements of your target system and application. It is important to remember that,

Part |. Using the compiler

31

Placing segments in memory

32

from the linker's point of view, all segments are equal; they are simply named parts of
memory.

For detailed information about individual segments, see the chapter Segment reference.

Segment memory type

XLINK assigns a segment memory type to each of the segments. In some cases, the
individual segments have the same name as the segment memory type they belong to,
for example CODE. Make sure not to confuse the individual segment names with the
segment memory types in those cases.

By default, the compiler uses these XLINK segment memory types:

Segment memory type Description

BIT Bit memory, addresses are specified in bits, not in bytes.
CODE For executable code

CONST For data placed in ROM
FARCONST For data placed in far ROM
HUGECONST For data placed in data20 ROM
NEARCONST For data placed in datal6 ROM
DATA For data placed in RAM
FARDATA For data placed in far RAM
HUGEDATA For data placed in data20 RAM
NEARDATA For data placed in datal6 RAM

Table 6: XLINK segment memory types

XLINK supports several other segment memory types than the ones described above.
However, they exist to support other types of CPU cores.

For more details about segments, see the chapter Segment reference.

Placing segments in memory

IAR C/C++ Compiler
Reference Guide

The placement of segments in memory is performed by the IAR XLINK Linker. It uses
a linker command file that contains command line options which specify the locations
where the segments can be placed, thereby assuring that your application fits on the
target chip. To use the same source code with different derivatives, just rebuild the code
with the appropriate linker command file.

In particular, the linker command file specifies:

o The placement of segments in memory

Placing code and data ___4

o The maximum stack size

o The maximum heap size (only for the IAR DLIB runtime environment).

This section describes the methods for placing the segments in memory, which means
that you must customize the linker command file to suit the memory layout of your
target system. For showing the methods, fictitious examples are used.

CUSTOMIZING THE LINKER COMMAND FILE

The config directory contains ready-made linker command files for all supported
devices (filename extension xc1). The files contain the information required by the
linker, and are ready to be used. The only change you will normally have to make to the
supplied linker command file is to customize it so it fits the target system memory map.
If, for example, your application uses additional external RAM, you must add details
about the external RAM memory area.

As an example, we can assume that the target system has this memory layout:

Range Type
0x00400-0x7FFF RAM
0xF000-0xFFFF ROM
0xCO0000-0xFFFFF ROM

Table 7: Memory layout of a target system (example)

The ROM can be used for storing CONST and CODE segment memory types. The RAM
memory can contain segments of DATA type. The main purpose of customizing the linker
command file is to verify that your application code and data do not cross the memory
range boundaries, which would lead to application failure.

Remember not to change the original file. We recommend that you make a copy in the
working directory, and modify the copy instead.

The contents of the linker command file

Among other things, the linker command file contains three different types of XLINK
command line options:
o The CPU used:

-cM16C

This specifies your target CPU core. Note that the parameter should always be M16C,
also when you use the compiler in R8C mode, that is when you use the compiler
option --cpu=R8C.

e Definitions of constants used in the file. These are defined using the XLINK option
-D.

Part |. Using the compiler 33

Placing segments in memory

34

IAR C/C++ Compiler
Reference Guide

o The placement directives (the largest part of the linker command file). Segments can
be placed using the -z and -P options. The former will place the segment parts in
the order they are found, while the latter will try to rearrange them to make better
use of the memory. The - option is useful when the memory where the segment
should be placed is not continuous.

In the linker command file, all numbers are specified in hexadecimal format. However,
neither the prefix 0x nor the suffix h is used.

Note: The supplied linker command file includes comments explaining the contents.

See the IAR Linker and Library Tools Reference Guide for more details.

Using the -Z command for sequential placement

Use the -Z command when you must keep a segment in one consecutive chunk, when
you must preserve the order of segment parts in a segment, or, more unlikely, when you
must put segments in a specific order.

The following illustrates how to use the -z command to place the segment MYSEGMENTA
followed by the segment MYSEGMENTB in CONST memory (that is, ROM) in the memory
range 0x04000-0x0CFFF.

-Z (CONST)MYSEGMENTA, MYSEGMENTB=4000-CFFF

To place two segments of different types consecutively in the same memory area, do not
specify a range for the second segment. In the following example, the MYSEGMENTA
segment is first located in memory. Then, the rest of the memory range could be used by
MYCODE.

-Z (CONST)MYSEGMENTA=4000-CFFF
-Z (CODE) MYCODE

Two memory ranges can overlap. This allows segments with different placement
requirements to share parts of the memory space; for example:

-Z (CONST)MYSMALLSEGMENT=4000-20FF
-Z (CONST) MYLARGESEGMENT=4000-CFFF

Even though it is not strictly required, make sure to always specify the end of each
memory range. If you do this, the IAR XLINK Linker will alert you if your segments do
not fit in the available memory.

Using the -P command for packed placement

The -p command differs from -z in that it does not necessarily place the segments (or
segment parts) sequentially. With -p it is possible to put segment parts into holes left by
earlier placements.

Placing code and data ___4

The following example illustrates how the XLINK -P option can be used for making
efficient use of the memory area. This command will place the data segment MYDATA in
DATA memory (that is, in RAM) in a fictitious memory range:

-P (DATA)MYDATA=400-1FFF, 10000-11FFF

If your application has an additional RAM area in the memory range 0xF000-0xF7FF,
you can simply add that to the original definition:

-P(DATA)MYDATA=400-1FFF,F000-F7FF,10000-11FFF

The linker can then place some parts of the MYDATA segment in the first range, and some
parts in the second range. If you had used the -z command instead, the linker would
have to place all segment parts in the same range.

Note: Copy initialization segments—BASENAME_I and BASENAME_ID—must be
placed using -z.

Symbols for available memory areas

To make things easier, the start and end addresses of the memory areas available for your
application are defined as symbols in the linker command file.

Example

// Memory areas available for the application
-D_USER_RAM_BEGIN=400

-D_USER_RAM_END=7FF

-D_USER_ROM_BEGIN=FA000

-D_USER_ROM_END=FFFFF

Data segments

This section contains descriptions of the segments used for storing the different types of
data: static, stack, heap, and located.

To get a clear understanding about how the data segments work, you must be familiar
with the different memory types and the different data models available in the compiler.
If you need to refresh these details, see the chapter Data storage.

STATIC MEMORY SEGMENTS

Static memory is memory that contains variables that are global or declared static, as
described in the chapter Data storage. Variables declared static can be divided into these
categories:

@ Variables that are initialized to a non-zero value

Part |. Using the compiler 35

Data segments

36

IAR C/C++ Compiler
Reference Guide

Variables that are initialized to zero

Variables that are located by use of the @ operator or the #pragma location
directive

@ Variables that are declared as const and therefore can be stored in ROM
e Variables defined with the __no_init keyword, meaning that they should not be
initialized at all.

For the static memory segments it is important to be familiar with:

o The segment naming

o How the memory types correspond to segment groups and the segments that are part
of the segment groups

e Restrictions for segments holding initialized data

o The placement and size limitation of the segments of each group of static memory
segments.

Segment naming

The names of the segments consist of two parts—the segment group name and a
suffix—for instance, FAR_z. There is a segment group for each memory type, where
each segment in the group holds different categories of declared data. The names of the
segment groups are derived from the memory type and the corresponding keyword, for
example FAR and __ far. The following table summarizes the memory types and the
corresponding segment groups:

Memory type Segment group Memory range
Datal3 DATA13 0x0-0x1FFF
Datalé DATAL6 0x0-0xXFFFF
Far FAR 0x0-0xFFFFF
Data20 DATA20 0x0-0xFFFFF

Table 8: Memory types with corresponding segment groups

Some of the declared data is placed in non-volatile memory, for example ROM, and
some of the data is placed in RAM. For this reason, it is also important to know the
XLINK segment memory type of each segment. For more details about segment
memory types, see Segment memory type, page 32.

Placing code and data ___4

This table summarizes the different suffixes, which XLINK segment memory type they
are, and which category of declared data they denote:

Categories of declared data Suffix Segment memory type
Constant absolute addressed data AC CONST

Non-initialized absolute addressed data AN DATA

Zero-initialized data Z DATA

Non-zero initialized data I DATA

Initializers for the above ID CONST

Constants C CONST

Non-initialized data N DATA

Table 9: Segment name suffixes

For a list of all supported segments, see Summary of segments, page 257.

Examples

These examples demonstrate how declared data is assigned to specific segments:

__data20 int 3J; The data20 variables that are to be initialized to zero
__data20 int i = 0; when the system starts are placed in the segment
DATA20_Z.

__no_init __data20 int j;The data20 non-initialized variables are placed in the
segment DATA20_N.

__data20 int j = 4; The data20 non-zero initialized variables are placed in
the segment DATA20_T in RAM, and the
corresponding initializer data in the segment
DATA20_ID in ROM.

Initialized data

When an application is started, the system startup code initializes static and global
variables in these steps:

It clears the memory of the variables that should be initialized to zero.

It initializes the non-zero variables by copying a block of ROM to the location of the
variables in RAM. This means that the data in the ROM segment with the suffix 1D is
copied to the corresponding I segment.

Part |. Using the compiler 37

Data segments

38

IAR C/C++ Compiler
Reference Guide

This works when both segments are placed in continuous memory. However, if one of
the segments is divided into smaller pieces, it is important that:

o The other segment is divided in exactly the same way

e Itis legal to read and write the memory that represents the gaps in the sequence.

For example, if the segments are assigned these ranges, the copy will fail:
DATALG6_I 0x1000-0x10FF and 0x1200-0x12FF
DATAl6_1ID 0x4000-0x41FF

However, in the following example, the linker will place the content of the segments in
identical order, which means that the copy will work appropriately:

DATA16_TI 0x1000-0x10FF and 0x1200-0x12FF
DATA16_ID 0x4000-0x40FF and 0x4200-0x42FF
The 1D segment can, for all segment groups, be placed anywhere in memory, because it

is not accessed using the corresponding access method. Note that the gap between the
ranges will also be copied.

Finally, global C++ objects are constructed, if any.

Data segments for static memory in the default linker command file

The default linker command file contains these directives to place the static data
segments:

/* First, the segments to be placed in ROM are defined. */
-Z (CONST)DATA16_C=2000-_USER_ROM_END

-Z (CONST)DATA20_C=_USER_ROM_BEGIN-_USER_ROM_END

-Z (CONST)DATA1l6_ID,DATA20_ID

/* Then, the RAM data segments are placed in memory. */
-Z (DATA)DATAl6_I,DATAl16_Z,DATAl6_N=_USER_RAM BEGIN-_USER_RAM_END
-Z (DATA)DATA20_I,DATA20_Z,DATA20_N=10000-11FFF

All the data segments are placed in the area used by on-chip RAM.

THE STACK

The stack is used by functions to store variables and other information that is used
locally by functions, as described in the chapter Data storage. It is a continuous block
of memory pointed to by the processor stack pointer register SPb.

The data segment used for holding the stack is called csTACK. The system startup code
initializes the stack pointer to the end of the stack segment.

Placing code and data ___4

The 1sTACK segment holds the special stack used by interrupts and exceptions, see
ISTACK, page 272.

Allocating a memory area for the stack is done differently using the command line
interface as compared to when using the IDE.

Stack size allocation in the IDE
Choose Project>Options. In the General Options category, click the Stack/Heap tab.

Add the required stack size in the Stack size text box.

Stack size allocation from the command line
The size of the cSTACK segment is defined in the linker command file.

The default linker file sets up a constant representing the size of the stack, at the
beginning of the linker file:

-D_CSTACK_SIZE=size
-D_ISTACK_SIZE=size

Note: Normally, this line is prefixed with the comment character //. To make the
directive take effect, remove the comment character.

Specify an appropriate size for your application. Note that the size is written
hexadecimally without the 0x notation.

Placement of stack segment

Further down in the linker file, the actual stack segment is defined in the memory area
available for the stack:

-Z (DATA) CSTACK+_CSTACK_SIZE#_USER_RAM BEGIN-_USER_RAM_ END
-Z (DATA) ISTACK+_ISTACK_SIZE#_USER_RAM BEGIN-_USER_RAM_ END

Note:

o This range does not specify the size of the stack; it specifies the range of the
available memory

o The # allocates the CSTACK segment at the end of the memory area. In practice, this
means that the stack will get all remainig memory at the same time as it is
guaranteed that it will be at least _CSTACK_SIZE bytes in size.

Stack size considerations

The compiler uses the internal data stack, CSTACK, for a variety of user program
operations, and the required stack size depends heavily on the details of these
operations. If the given stack size is too large, RAM is wasted. If the given stack size is

Part |. Using the compiler 39

Data segments

40

IAR C/C++ Compiler
Reference Guide

too small, two things can happen, depending on where in memory you located your
stack. Both alternatives are likely to result in application failure. Either program
variables will be overwritten, leading to undefined behavior, or the stack will fall outside
of the memory area, leading to an abnormal termination of your application.

THE HEAP

The heap contains dynamic data allocated by the C function malloc (or one of its
relatives) or the C++ operator new.

If your application uses dynamic memory allocation, you should be familiar with:

o Linker segments used for the heap, which differs between the DLIB and the CLIB
runtime environment

o Allocating the heap size, which differs depending on which build interface you are
using

e Placing the heap segments in memory.

Heap segments in DLIB

If you use the compiler in M16C mode, that is, the option --cpu=M16C is used, you can
take advantage of the different memory types for allocating the heap. To access a heap
in a specific memory, use the appropriate memory attribute as a prefix to the standard
functions malloc, free, calloc, and realloc, for example:

__datal6_malloc

If you use any of the standard functions without a prefix, the function will be mapped to
the default memory type datal6.

Each heap will reside in a segment with the name _HEAP prefixed by a memory attribute,
for example DATA16_HEAP.

If you use the compiler in R8C mode, that is, the option - -cpu=R8C is used, the memory
allocated to the heap is placed in the segment DATA16_HEAP. This segment is only
included if dynamic memory allocation is actually used.

For information about available heaps, see Heaps, page 71.

Heap segments in the CLIB runtime environment

The memory allocated to the heap is placed in the segment HEAP, which is only included
in the application if dynamic memory allocation is actually used.

Heap size allocation in the IDE

Choose Project>Options. In the General Options category, click the Stack/Heap tab.

Placing code and data ___4

Add the required heap size in the Heap size text box.

Heap size allocation from the command line
The size of the heap segment is defined in the linker command file.

The default linker file sets up a constant, representing the size of the heap, at the
beginning of the linker file:

-D_DATAl6_HEAP_SIZE=size
-D_DATA20_HEAP_SIZE=size
-D_FAR_HEAP_SIZE=size

Note: Normally, these lines are prefixed with the comment character / /. To make the
directive take effect, remove the comment character.

Specify the appropriate size for your application.

Placement of heap segment
The actual heap segment is allocated in the memory area available for the heap:

-Z (DATA)DATAl6_HEAP+_DATAl6_HEAP_SIZE=USER_RAM BEGIN-USER_RAM END
-Z (DATA) FAR_HEAP+_FAR_HEAP_SIZE=USER_RAM BEGIN-USER_RAM END
-Z (DATA) DATA20_HEAP+_DATA20_HEAP_SIZE=USER_RAM_ BEGIN-USER_RAM_END

Note: This range does not specify the size of the heap; it specifies the range of the
available memory.

Heap size and standard I/O

If your DLIB runtime environment is configured to use FILE descriptors, as in the Full
configuration, input and output buffers for file handling will be allocated. In that case,
be aware that the size of the input and output buffers is set to 512 bytes in the stdio
library header file. If the heap is too small, I/O will not be buffered, which is
considerably slower than when I/0 is buffered. If you execute the application using the
simulator driver of the IAR C-SPY® Debugger, you are not likely to notice the speed
penalty, but it is quite noticeable when the application runs on an M16C/R8C Series of
CPU cores. If you use the standard I/O library, you should set the heap size to a value
which accommodates the needs of the standard 1/O buffer.

LOCATED DATA

A variable that is explicitly placed at an address, for example by using the #pragma
location directive or the @ operator, is placed in either the SEGMENTNAME_AC or the
SEGMENTNAME_AN segment. The former is used for constant-initialized data, and the
latter for items declared as __no_init. The individual segment part of the segment

Part |. Using the compiler 41

Code segments

42

knows its location in the memory space, and it does not have to be specified in the linker
command file.

USER-DEFINED SEGMENTS

If you create your own segments using the #pragma location directive or the @
operator, these segments must also be defined in the linker command file using the -z
or -P segment control directives.

Code segments

IAR C/C++ Compiler
Reference Guide

This section contains descriptions of the segments used for storing code, and the
interrupt vector table. For a complete list of all segments, see Summary of segments,
page 257.

STARTUP CODE

The segment CSTART contains code used during system setup (cstartup). The system
setup code should be placed at the location where the chip starts executing code after a
reset.

In this example, this line in the linker command file will place the CSTART segment at
the address 0xD0000:

-P (CODE) CSTART=D0000

NORMAL CODE

Code for normal functions is placed in the CODE segment. Again, this is a simple
operation in the linker command file:

-P (CODE) CODE=_USER_ROM_BEGIN-_USER_ROM_END

TINYFUNC-DECLARED CODE

All functions that you declare using the extended keyword __tiny func are located in
the segment TINYFUNC. This segment must be placed in the special page area
F0000-FFFFF, which means the linker directive would look like this:

-Z (CODE) TINYFUNC=F0000-FFDFF

The vector table for __tiny_func declared functions are located in the segment FLIST,
which must be placed in the special page vector area FFEQ0-FFFDB.

Placing code and data ___4

EXCEPTION VECTORS

The exception vectors are typically placed in the segments INTVEC and INTVEC1. The
location of INTVEC1 depends on the chip core and the location of INTVEC is
user-defined.

C++ dynamic initialization
In C++, all global objects are created before the main function is called. The creation of
objects can involve the execution of a constructor.

The DIFUNCT segment contains a vector of addresses that point to initialization code.
All entries in the vector are called when the system is initialized.

For example:
-Z (CONST) DIFUNCT=USER_ROM_BEGIN-USER_ROM_END

For additional information, see DIFUNCT, page 267.

Verifying the linked result of code and data placement

The linker has several features that help you to manage code and data placement, for
example, messages at link time and the linker map file.

SEGMENT TOO LONG ERRORS AND RANGE ERRORS

All code or data that is placed in relocatable segments will have its absolute addresses
resolved at link time. Note that it is not known until link time whether all segments will
fit in the reserved memory ranges. If the contents of a segment do not fit in the address
range defined in the linker command file, XLINK will issue a segment too long error.

Some instructions do not work unless a certain condition holds after linking, for
example that a branch must be within a certain distance or that an address must be even.
XLINK verifies that the conditions hold when the files are linked. If a condition is not
satisfied, XLINK generates a range error or warning and prints a description of the
error.

For further information about these types of errors, see the IAR Linker and Library Tools
Reference Guide.

Part |. Using the compiler 43

Verifying the linked result of code and data placement

LINKER MAP FILE

XLINK can produce an extensive cross-reference listing, which can optionally contain
the following information:

e A segment map which lists all segments in dump order

o A module map which lists all segments, local symbols, and entries (public symbols)
for every module in the program. All symbols not included in the output can also be
listed

o A module summary which lists the contribution (in bytes) from each module

o A symbol list which contains every entry (global symbol) in every module.

gx; @ Use the option Generate linker listing in the IDE, or the option -x on the command
line, and one of their suboptions to generate a linker listing.

Normally, XLINK will not generate an output file if any errors, such as range errors,
occur during the linking process. Use the option Range checks disabled in the IDE, or
the option -R on the command line, to generate an output file even if a range error was
encountered.

For further information about the listing options and the linker listing, see the /AR Linker
and Library Tools Reference Guide, and the IAR Embedded Workbench® IDE User
Guide.

IAR C/C++ Compiler
44 Reference Guide

The DLIB runtime
environment

This chapter describes the runtime environment in which an application
executes. In particular, the chapter covers the DLIB runtime library and how
you can modify it—setting options, overriding default library modules, or
building your own library—to optimize it for your application.

The chapter also covers system initialization and termination; how an
application can control what happens before the function main is called, and
how you can customize the initialization.

The chapter then describes how to configure functionality like locale and file
I/O, how to get C-SPY® runtime support, and how to prevent incompatible
modules from being linked together.

Note that the DLIB runtime environment is the default when you use the C++
language; DLIB can be used with both C and the C++ languages. CLIB on the
other hand can only be used with the C language. For information about the
CLIB runtime environment, see the chapter The CLIB runtime environment.

Introduction to the runtime environment

The runtime environment is the environment in which your application executes. The
runtime environment depends on the target hardware, the software environment, and the
application code. The IAR DLIB runtime environment can be used as is together with
the debugger. However, to be able to run the application on hardware, you must adapt
the runtime environment.

This section gives an overview of:

o The runtime environment and its components

e Library selection.

RUNTIME ENVIRONMENT FUNCTIONALITY

The runtime environment supports ISO/ANSI C and C++ including the standard
template library. The runtime environment consists of the runtime library, which

Part |. Using the compiler

45

Introduction to the runtime environment

contains the functions defined by these standards, and include files that define the library
interface.

The runtime library is delivered both as prebuilt libraries and (depending on your
product package) as source files, and you can find them in the product subdirectories
ml6c\lib and m16c\src\1lib, respectively.

The runtime environment also consists of a part with specific support for the target
system, which includes:
e Support for hardware features:

o Direct access to low-level processor operations by means of intrinsic functions,
such as functions for register handling

e Peripheral unit registers and interrupt definitions in include files

e Runtime environment support, that is, startup and exit code and low-level interface
to some library functions.

e Special compiler support for some functions, for instance functions for
floating-point arithmetics.

The runtime environment support and the size of the heaps must be tailored for the
specific hardware and application requirements.

For further information about the library, see the chapter Library functions.

LIBRARY SELECTION

To configure the most code-efficient runtime environment, you must determine your
application and hardware requirements. The more functionality you need, the larger
your code will become.

IAR Embedded Workbench comes with a set of prebuilt runtime libraries. To get the
required runtime environment, you can customize it by:

e Setting library options, for example, for choosing scanf input and print £ output
formatters, and for specifying the size of the stack and the heap

o Opverriding certain library functions, for example cstartup.s34, with your own
customized versions

e Choosing the level of support for certain standard library functionality, for example,

locale, file descriptors, and multibyte characters, by choosing a library
configuration: normal or full.

You can also make your own library configuration, but that requires that you rebuild the
library. This allows you to get full control of the runtime environment.

Note: Your application project must be able to locate the library, include files, and the
library configuration file.

IAR C/C++ Compiler
46 Reference Guide

The DLIB runtime environment __4

SITUATIONS THAT REQUIRE LIBRARY BUILDING

Building a customized library is complex. Therefore, consider carefully whether it is
really necessary.

You must build your own library when:

o There is no prebuilt library for the required combination of compiler options or
hardware support

o You want to define your own library configuration with support for locale, file

descriptors, multibyte characters, et cetera.

For information about how to build a customized library, see Building and using a
customized library, page 57.

LIBRARY CONFIGURATIONS

It is possible to configure the level of support for, for example, locale, file descriptors,
multibyte characters. The runtime library configuration is defined in the library
configuration file. It contains information about what functionality is part of the runtime
environment. The configuration file is used for tailoring a build of a runtime library, and
tailoring the system header files used when compiling your application. The less
functionality you need in the runtime environment, the smaller it is.

These DLIB library configurations are available:

Library configuration Description

Normal DLIB No locale interface, C locale, no file descriptor support, no multibyte
characters in print f and scanf, and no hexadecimal floating-point
numbers in strtod.

Full DLIB Full locale interface, C locale, file descriptor support, multibyte
characters in print f and scanf, and hexadecimal floating-point
numbers in strtod.

Table 10: Library configurations

You can also define your own configurations, which means that you must modity the
configuration file. Note that the library configuration file describes how a library was
built and thus cannot be changed unless you rebuild the library. For further information,
see Building and using a customized library, page 57.

The prebuilt libraries are based on the default configurations, see Prebuilt libraries,
page 49. There is also a ready-made library project template that you can use if you want
to rebuild the runtime library.

Part |. Using the compiler 47

Using a prebuilt library

48

DEBUG SUPPORT IN THE RUNTIME LIBRARY

You can make the library provide different levels of debugging support—basic, runtime,
and I/O debugging.

This table describes the different levels of debugging support:

Debugging Linker option in Linker command L.
) . Description
support IDE line option
Basic debugging Debug information -Fubrof Debug support for C-SPY without any
for C-SPY runtime support
Runtime debugging With runtime -r The same as -Fubrof, but also
control modules includes debugger support for
handling program abort, exit, and
assertions.
1/O debugging With I/O emulation -rt The same as -, but also includes
modules debugger support for I/O handling,

which means that stdin and
stdout are redirected to the C-SPY
Terminal I/O window, and that it is
possible to access files on the host
computer during debugging.

Table 11: Levels of debugging support in runtime libraries

If you build your application project with the XLINK options With runtime control
modules or With I/0 emulation modules, certain functions in the library are replaced
by functions that communicate with the IAR C-SPY Debugger. For further information,
see C-SPY runtime interface, page 71.

To set linker options for debug support in the IAR Embedded Workbench IDE, choose
Project>Options and select the Linker category. On the Output page, select the
appropriate Format option.

Using a prebuilt library

IAR C/C++ Compiler
Reference Guide

The prebuilt runtime libraries are configured for different combinations of these
features:

The runtime library—CLIB or DLIB

The CPU core—always M16C, regardless of selected CPU core

Data model

°
°
°
e® Variable data

The DLIB runtime environment __4

The placement of constants
Size of the double floating-point type
Data alignment

Copies constants to near

Library configuration—Normal or Full.

These prebuilt runtime libraries are available:

Copies

Library Data Variables Constants Size of Data constants Library
model area area doubles alignment ¢o near configuration
dlmlécfffdbcf.r34 Far Far Far 64 bits | byte no Full
dlmlé6cfffdbcn.r34 Far Far Far 64 bits | byte no Normal
dlmlécfffdwcf.r34 Far Far Far 64 bits 2 bytes no Full
dlmlécfffdwen.r34 Far Far Far 64 bits 2 bytes no Normal
dlmlé6cffffbcf.r34 Far Far Far 32 bits | byte no Full
dlmlécffffben.r34 Far Far Far 32 bits | byte no Normal
dlmlé6cffffwcf.r34 Far Far Far 32 bits 2bytes no Full
dlmlé6cffffwen.r34 Far Far Far 32 bits 2bytes no Normal
dlmlécfnfdbcf.r34 Far Near Far 64 bits | byte no Full
dlmlécfnfdben.r34 Far Near Far 64 bits | byte no Normal
dlml6cfnfdwcf.r34 Far Near Far 64 bits 2 bytes no Full
dlmlécfnfdwen.r34 Far Near Far 64 bits 2 bytes no Normal
dlmlé6cfnffbcf.r34 Far Near Far 32 bits | byte no Full
dlmlé6cfnffben.r34 Far Near Far 32 bits | byte no Normal
dlmlécfnffwcf.r34 Far Near Far 32 bits 2bytes no Full
dlmlécfnffwen.r34 Far Near Far 32 bits 2bytes no Normal
dlml6chhhdbcf.r34 Huge Huge Huge 64 bits | byte no Full
dlml6chhhdbcen.r34 Huge Huge Huge 64 bits | byte no Normal
dlml6échhhdwcf.r34 Huge Huge Huge 64 bits 2 bytes no Full
dlml6chhhdwen.r34 Huge Huge Huge 64 bits 2 bytes no Normal
dlml6chhhfbcf.r34 Huge Huge Huge 32 bits | byte no Full
dlml6échhhfbcn.r34 Huge Huge Huge 32 bits | byte no Normal
dlml6chhhfwcf.r34 Huge Huge Huge 32 bits 2bytes no Full
dlml6chhhfwen.r34 Huge Huge Huge 32 bits 2bytes no Normal

Table 12: Prebuilt libraries

Part |. Using the compiler 49

Using a prebuilt library

50

IAR C/C++ Compiler

Reference Guide

Copies
Library Data Variables Constants Size of Data constants Library
model area area doubles alignment to near configuration
dlml6échnhdbcf.r34 Huge Near Huge 64 bits | byte no Full
dlml6chhhdben.r34 Huge Huge Huge 64 bits | byte no Normal
dlml6chnhdwcf.r34 Huge Near Huge 64 bits 2 bytes no Full
dlml6chnhdwcn.r34 Huge Near Huge 64 bits 2 bytes no Normal
dlml6échnhfbcf.r34 Huge Near Huge 32 bits | byte no Full
dlml6chnhfben.r34 Huge Near Huge 32 bits | byte no Normal
dlml6chnhfwcf.r34 Huge Near Huge 32 bits 2bytes no Full
dlml6échnhfwen.r34 Huge Near Huge 32 bits 2bytes no Normal
dlml6écnnfdbcf.r34 Near Near Far 64 bits | byte no Full
dlml6cnnfdbcn.r34 Near Near Far 64 bits | byte no Normal
dlml6écnnfdwcf.r34 Near Near Far 64 bits 2 bytes no Full
dlml6cnnfdwen.r34 Near Near Far 64 bits 2 bytes no Normal
dlml6cnnffbcf.r34 Near Near Far 32 bits | byte no Full
dlml6écnnffben.r34 Near Near Far 32 bits | byte no Normal
dlml6écnnffwcf.r34 Near Near Far 32 bits 2bytes no Full
dlmlécnnffwen.r34 Near Near Far 32 bits 2bytes no Normal
dlml6cnnhdbcf.r34 Near Near Huge 64 bits | byte no Full
dlml6cnnhdben.r34 Near Near Huge 64 bits | byte no Normal
dlml6écnnhdwcf.r34 Near Near Huge 64 bits 2 bytes no Full
dlml6cnnhdwen.r34 Near Near Huge 64 bits 2 bytes no Normal
dlml6cnnhfbcef.r34 Near Near Huge 32 bits | byte no Full
dlmlécnnhfbcen.r34 Near Near Huge 32 bits | byte no Normal
dlml6écnnhfwcf.r34 Near Near Huge 32 bits 2bytes no Full
dlml6cnnhfwen.r34 Near Near Huge 32 bits 2bytes no Normal
dlml6cnnndbcf.r34 Near Near Near 64 bits | byte no Full
dlml6cnnndbcn.r34 Near Near Near 64 bits | byte no Normal
dlml6cnnndbwf.r34 Near Near Near 64 bits | byte yes Full
dlml6cnnndbwn.r34 Near Near Near 64 bits | byte yes Normal
dlml6écnnndwcf.r34 Near Near Near 64 bits 2 bytes no Full
dlml6cnnndwen.r34 Near Near Near 64 bits 2 bytes no Normal

Table 12: Prebuilt libraries

The DLIB runtime environment __4

Copies
. Data Variables Constants Size of Data Library
Library constants
model area area doubles alignment configuration

to near
dlml6cnnndwwf.r34 Near Near Near 64 bits 2 bytes yes Full
dlml6écnnndwwn.r34 Near Near Near 64 bits 2 bytes yes Normal
dlml6écnnnfbcf.r34 Near Near Near 32 bits | byte no Full
dlml6cnnnfben.r34 Near Near Near 32 bits | byte no Normal
dlml6écnnnfbwf.r34 Near Near Near 32 bits | byte yes Full
dlml6cnnnfbwn.r34 Near Near Near 32 bits | byte yes Normal
dlml6cnnnfwcf.r34 Near Near Near 32 bits 2bytes no Full
dlml6écnnnfwen.r34 Near Near Near 32 bits 2bytes no Normal
dlml6cnnnfwwf.r34 Near Near Near 32 bits 2 bytes yes Full
dlml6cnnnfwwn.r34 Near Near Near 32 bits 2 bytes yes Normal

Table 12: Prebuilt libraries
The names of the libraries are constructed in this way:

<library><cpu><data_model><variables><constants><doubles>
<data_alignment><constants_to_near><library config>.r34

where
<library> is dl for the IAR DLIB runtime environment

<cpu> is always m16c (regardless of M16C or R8C)

<data_model> is one of n, £, or h for near, far and huge data model, respectively

<variables> is one of n, £, or h, for placing data in near, far, and huge memory,
respectively

® <constants> is one of n, £, or h, for placing constant data in near, far, and huge
memory, respectively

® <doubles> is £ or d, depending on whether doubles are 32 (£) or 64 (d) bits

® <data_alignment> is w or b, depending on whether the data alignment is 2 bytes
(w) or 1 byte (b)

® <constants_to_near> is either w, which means that constants are copied to near
memory, or ¢, which means that they are not

® <library config> isone of nor £ for normal and full library configuration,
respectively.

Part |. Using the compiler 51

Using a prebuilt library

52

IAR C/C++ Compiler
Reference Guide

Examples

® dlmlé6chhhfwcf.r34 isan IAR DLIB library that uses the huge data model, places
both variable and constant data in huge memory and uses 32-bit doubles. It is
2-byte-aligned, does not copy constants to near memory, and it uses the full library
configuration.

® dlmlé6cfffdben.r34 is an IAR DLIB library that uses the far data model, places
both variable and constant data in far memory and uses 64-bit doubles. It is
1-byte-aligned, does not copy constants to near memory, and it uses the normal
library configuration.

® dlml6cnnnfbwf.r34 is an JAR DLIB library that uses the near data model, places
both variable and constant data in near memory, and uses 32-bit doubles. It is
1-byte-aligned, copies constants to near memory, and it uses the full library
configuration.

The IDE will include the correct library object file and library configuration file based
on the options you select. See the JAR Embedded Workbench® IDE User Guide for
additional information.

If you build your application from the command line, you must specify these items to
get the required runtime library:
o Specify which library object file to use on the XLINK command line, for instance:
dlmlécffffwc.r34
o Specify the include paths for the compiler and assembler:
-I mléc\inc\dlib
o Specify the library configuration file for the compiler:
--dlib_config C:\...\dlmlé6cffffwc.h

Note: All modules in the library have a name that starts with the character ? (question
mark).

You can find the library object files and the library configuration files in the subdirectory
mlé6c\lib.

CUSTOMIZING A PREBUILT LIBRARY WITHOUT REBUILDING

The prebuilt libraries delivered with the compiler can be used as is. However, it is
possible to customize parts of a library without rebuilding it. There are two different
methods:
e Setting options for:

o Formatters used by printf and scanf

o The sizes of the heap and the stack

The DLIB runtime environment __4

o Opverriding library modules with your own customized versions.

These items can be customized:

Items that can be customized Described in

Formatters for printf and scanf Choosing formatters for printf and scanf, page 53
Startup and termination code System startup and termination, page 58
Low-level input and output Standard streams for input and output, page 62
File input and output File input and output, page 65

Low-level environment functions Environment interaction, page 68

Low-level signal functions Signal and raise, page 69

Low-level time functions Time, page 70

Size of heaps, stacks, and segments Placing code and data, page 31

Table 13: Customizable items

For a description about how to override library modules, see Overriding library
modules, page 55.

Choosing formatters for printf and scanf
To override the default formatter for all the printf- and scanf-related functions,
except for wprint f and wscanf variants, you simply set the appropriate library
options. This section describes the different options available.

Note: If you rebuild the library, it is possible to optimize these functions even further,
see Configuration symbols for printf and scanf, page 64.
CHOOSING PRINTF FORMATTER

The printf£ function uses a formatter called _printf. The default version is quite
large, and provides facilities not required in many embedded applications. To reduce the
memory consumption, three smaller, alternative versions are also provided in the
standard C/EC++ library.

Part |. Using the compiler 53

Choosing formatters for printf and scanf

This table summarizes the capabilities of the different formatters:

Formatting capabilities _PrintfFull _PrintfLarge _PrintfSmall _PrintfTiny
Basic specifiers ¢, d, 1,0, p, s, U, X, Yes Yes Yes Yes
x,and %

Multibyte support T U t No
Floating-point specifiers a, and A Yes No No No
Floating-point specifiers e, E, £, F, g, Yes Yes No No
and G

Conversion specifier n Yes Yes No No
Format flag space, +, -, #, and 0 Yes Yes Yes No
Length modifiers h, 1, L, s, t,and Z Yes Yes Yes No
Field width and precision, including * Yes Yes Yes No
long long support Yes Yes No No

Table 14: Formatters for printf
T Depends on the library configuration that is used.

For information about how to fine-tune the formatting capabilities even further, see
Configuration symbols for printf and scanf, page 64.

Specifying the print formatter in the IDE

To use any other formatter than the default (_Print£fFull), choose Project>Options
and select the General Options category. Select the appropriate option on the Library
options page.

@ Specifying printf formatter from the command line

To use any other formatter than the default (_Print£fFull), add one of these lines in the
linker command file you are using:

-e_PrintfLarge=_Printf
-e_PrintfSmall=_Printf
-e_PrintfTiny=_Printf

CHOOSING SCANF FORMATTER

In a similar way to the print £ function, scanf uses a common formatter, called
_Scanf. The default version is very large, and provides facilities that are not required
in many embedded applications. To reduce the memory consumption, two smaller,
alternative versions are also provided in the standard C/C++ library.

IAR C/C++ Compiler
54 Reference Guide

The DLIB runtime environment __4

This table summarizes the capabilities of the different formatters:

Formatting capabilities _ScanfFull _ScanfLarge _ScanfSmall
Basic specifiers ¢, d, 1,0, p, s, u, X, Yes Yes Yes
x,and %

Multibyte support T U U
Floating-point specifiers a, and A Yes No No
Floating-point specifiers e, E, £, F, g, Yes No No
and G

Conversion specifier n Yes No No
Scan set [and] Yes Yes No
Assignment suppressing * Yes Yes No
long long support Yes No No

Table 15: Formatters for scanf
T Depends on the library configuration that is used.

For information about how to fine-tune the formatting capabilities even further, see
Configuration symbols for printf and scanf, page 64.

Specifying scanf formatter in the IDE

To use any other formatter than the default (_ScanfFull), choose Project>Options
and select the General Options category. Select the appropriate option on the Library
options page.

] Specifying scanf formatter from the command line

To use any other variant than the default (_ScanfFull), add one of these lines in the
linker command file you are using:

-e_ScanfLarge=_Scanf
-e_ScanfSmall=_Scanf

Overriding library modules

The library contains modules which you probably need to override with your own
customized modules, for example functions for character-based I/O and cstartup.
This can be done without rebuilding the entire library. This section describes the
procedure for including your version of the module in the application project build
process. The library files that you can override with your own versions are located in the
ml6c\src\lib directory.

Part |. Using the compiler 55

Overriding library modules

56

IAR C/C++ Compiler
Reference Guide

Note: If you override a default I/O library module with your own module, C-SPY
support for the module is turned off. For example, if you replace the module __write
with your own version, the C-SPY Terminal I/O window will not be supported.
Overriding library modules using the IDE

This procedure is applicable to any source file in the library, which means that
library_module.c in this example can be any module in the library.

Copy the appropriate 1ibrary module.c file to your project directory.

Make the required additions to the file (or create your own routine, using the default
file as a model), and make sure that it has the same module name as the original
module. The easiest way to achieve this is to save the new file under the same name as
the original file.

Add the customized file to your project.

Rebuild your project.

Overriding library modules from the command line

This procedure is applicable to any source file in the library, which means that
library_module.c in this example can be any module in the library.

Copy the appropriate 1ibrary module.c to your project directory.

Make the required additions to the file (or create your own routine, using the default
file as a model), and make sure that it has the same module name as the original
module. The easiest way to achieve this is to save the new file under the same name as
the original file.

Compile the modified file using the same options as for the rest of the project:
icemléc library. _module.c
This creates a replacement object module file named 1ibrary_module.r34.

Note: The library configuration file and some other project options must be the same
for 1ibrary_module as for the rest of your code. For a list of necessary project options,
see the release notes provided with the IAR product installation.

Add 1ibrary_module.r34 to the XLINK command line, either directly or by using
an extended linker command file, for example:

x1link Iibrary_module.r34 dlmléccffffwcn.r34

Make sure that 1ibrary _module.r34 is placed before the library on the command
line. This ensures that your module is used instead of the one in the library.

Run XLINK to rebuild your application.

The DLIB runtime environment __4

This will use your version of 1ibrary module.r34, instead of the one in the library.
For information about the XLINK options, see the [AR Linker and Library Tools
Reference Guide.

Building and using a customized library

In some situations, see Situations that require library building, page 47, it is necessary

to rebuild the library. In those cases you must:

o Set up a library project

o Make the required library modifications

e Build your customized library

e Finally, make sure your application project will use the customized library.
Note: To build IAR Embedded Workbench projects from the command line, use the
IAR Command Line Build Utility (iarbuild.exe). However, no make or batch files
for building the library from the command line are provided.

Information about the build process and the IAR Command Line Build Utility, see the
IAR Embedded Workbench® IDE User Guide.
SETTING UP A LIBRARY PROJECT

The IDE provides a library project template which can be used for customizing the
runtime environment configuration. This library template has full library configuration,
see Table 10, Library configurations, page 47.

In the IDE, modify the generic options in the created library project to suit your
application, see Basic settings for project configuration, page 5.

Note: There is one important restriction on setting options. If you set an option on file
level (file level override), no options on higher levels that operate on files will affect that
file.

MODIFYING THE LIBRARY FUNCTIONALITY

You must modify the library configuration file and build your own library if you want
to modify support for, for example, locale, file descriptors, and multibyte characters.
This will include or exclude certain parts of the runtime environment.

The library functionality is determined by a set of configuration symbols. The default
values of these symbols are defined in the file DLib_defaults.h. This read-only file
describes the configuration possibilities. Your library also has its own library
configuration file d1lm16ccustom.h, which sets up that specific library with full library
configuration. For more information, see Table 13, Customizable items, page 53.

Part |. Using the compiler 57

System startup and termination

58

The library configuration file is used for tailoring a build of the runtime library, and for
tailoring the system header files.
Modifying the library configuration file

In your library project, open the file d1ml6ccustom.h and customize it by setting the
values of the configuration symbols according to the application requirements.

When you are finished, build your library project with the appropriate project options.

USING A CUSTOMIZED LIBRARY
After you build your library, you must make sure to use it in your application project.
In the IDE you must do these steps:

Choose Project>Options and click the Library Configuration tab in the General
Options category.

Choose Custom DLIB from the Library drop-down menu.
In the Library file text box, locate your library file.

In the Configuration file text box, locate your library configuration file.

System startup and termination

IAR C/C++ Compiler
Reference Guide

This section describes the runtime environment actions performed during startup and
termination of your application.

The code for handling startup and termination is located in the source files
cstartup.s34, cexit.s34,and low_level_init.c located inthe ml16c\src\1lib
directory.

For information about how to customize the system startup code, see Customizing
system initialization, page 61.
SYSTEM STARTUP

During system startup, an initialization sequence is executed before the main function
is entered. This sequence performs initializations required for the target hardware and
the C/C++ environment.

For the hardware initialization, it looks like this:

Library User Application
Start label: __low_level_init()
Hardware User hardware

Setup setup
(returns C/C++
static
[initialization flag)
I
Initialization

Figure 1: Target hardware initialization phase

The DLIB runtime environment __4

o When the CPU is reset it will jump to the program entry label __program_start

in the system startup code.

The interrupt stack, ISTACK, is initialized.
The C stack, or user stack, CSTACK, is initialized.

The dynamic interrupt vector is initialized.

a chance to perform early initializations.

For the C/C++ initialization, it looks like this:

Library User application
Static C/C++ User hardware
initialization setup

i
Dynamic C++ main()
initialization

T User code

Return from

main

Figure 2: C/C++ initialization phase

exit()

The function __low_level_init is called if you defined it, giving the application

e Static and global variables are initialized. That is, zero-initialized variables are
cleared and the values of other initialized variables are copied from ROM to RAM

Part |. Using the compiler 59

System startup and termination

60

IAR C/C++ Compiler
Reference Guide

memory. This step is skipped if __low_level_ init returns zero. For more details,
see [nitialized data, page 37

Static C++ objects are constructed

The main function is called, which starts the application.

SYSTEM TERMINATION

This illustration shows the different ways an embedded application can terminate in a
controlled way:

Return from main via library

Library User application
exit()
Explicit call
|
_exit
Dynamic C++ abort()
and atexit code Explicit call
_Exit()
Explicit call
| P
__exit
Application
terminates

Figure 3: System termination phase
An application can terminate normally in two different ways:

o Return from the main function
o Call the exit function.
As the ISO/ANSI C standard states that the two methods should be equivalent, the

system startup code calls the exi t function if main returns. The parameter passed to the
exit function is the return value of main.

The default exi t function is written in C. It calls a small assembler function _exi t that
will perform these operations:

o Call functions registered to be executed when the application ends. This includes
C++ destructors for static and global variables, and functions registered with the
standard C function atexit

Close all open files
Call __exit

o When __exit is reached, stop the system.

The DLIB runtime environment __4

An application can also exit by calling the abort or the _Exit function. The abort
function just calls __exit to halt the system, and does not perform any type of cleanup.
The _Exit function is equivalent to the abort function, except for the fact that _Exit
takes an argument for passing exit status information.

If you want your application to do anything extra at exit, for example resetting the
system, you can write your own implementation of the __exit (int) function.

C-SPY interface to system termination

If your project is linked with the XLINK options With runtime control modules or
With I/O emulation modules, the normal __exit and abort functions are replaced
with special ones. C-SPY will then recognize when those functions are called and can
take appropriate actions to simulate program termination. For more information, see
C-SPY runtime interface, page 71.

Customizing system initialization

It is likely that you need to customize the code for system initialization. For example,
your application might need to initialize memory-mapped special function registers
(SFRs), or omit the default initialization of data segments performed by cstartup.

You can do this by providing a customized version of the routine __low_level_init,
which is called from cstartup. s34 before the data segments are initialized.

The code for handling system startup is located in the source files cstartup.s34 and
low_level_init.c, located in the ml16c\src\1ib directory.

Note: Normally, you do not need to customize cexit.s34.

If you intend to rebuild the library, the source files are available in the template library
project, see Building and using a customized library, page 57.

Note: Regardless of whether you modify the routine __low_level_init or the file
cstartup. s34, you do not have to rebuild the library.

__LOW_LEVEL_INIT

There is a skeleton low-level initialization file supplied with the product: the C source
file, low_level_init.c. The only limitation using a C source version is that static
initialized variables cannot be used within the file, as variable initialization has not been
performed at this point.

The value returned by __low_level_ init determines whether or not data segments
should be initialized by the system startup code. If the function returns 0, the data
segments will not be initialized.

Part |. Using the compiler 61

Standard streams for input and output

MODIFYING THE FILE CSTARTUP.S34

As noted earlier, you should not modify the file cstartup. s34 if a customized version
of __low_level_init is enough for your needs. However, if you do need to modify
the file cstartup. s34, we recommend that you follow the general procedure for
creating a modified copy of the file and adding it to your project, see Overriding library
modules, page 55.

Note that you must make sure that the linker uses the same start label as used in your
version of cstartup. s34. For information about how to change the start label used by
the linker, read about the -s option in the [AR Linker and Library Tools Reference
Guide.

Standard streams for input and output
Standard communication channels (streams) are defined in stdio.h. If any of these
streams are used by your application, for example by the functions print £ and scanf,
you must customize the low-level functionality to suit your hardware.

There are primitive I/O functions, which are the fundamental functions through which
C and C++ performs all character-based I/O. For any character-based I/O to be available,
you must provide definitions for these functions using whatever facilities the hardware
environment provides.

IMPLEMENTING LOW-LEVEL CHARACTER INPUT AND
OUTPUT

To implement low-level functionality of the stdin and stdout streams, you must write
the functions __read and __write, respectively. You can find template source code for
these functions in the m16c\src\1ib directory.

If you intend to rebuild the library, the source files are available in the template library
project, see Building and using a customized library, page 57. Note that customizing the
low-level routines for input and output does not require you to rebuild the library.

Note: If you write your own variants of __read or __write, special considerations
for the C-SPY runtime interface are needed, see C-SPY runtime interface, page 71.
Example of using __write

The code in this example uses memory-mapped I/O to write to an LCD display:

#include <stddef.h>

_ no_init volatile unsigned char 1cdIO @ 8;

IAR C/C++ Compiler
62 Reference Guide

The DLIB runtime environment __4

size_t _ write(int handle,
const unsigned char *buf,
size_t bufSize)

size_t nChars = 0;

/* Check for the command to flush all handles */
if (handle == -1)
{

return 0;

/* Check for stdout and stderr

(only necessary if FILE descriptors are enabled.) */
if (handle != 1 && handle != 2)
{

return -1;

for (/* Empty */; bufSize > 0; --bufSize)
{

1cdIO = *buf;

++buf;

++nChars;

return nChars;

}

Note: A call to __write where buf has the value NULL is a command to flush the
handle.

Example of using __read
The code in this example uses memory-mapped I/O to read from a keyboard:
#include <stddef.h>
__no_init volatile unsigned char kbIO @ 8;
size_t _ read(int handle,
unsigned char *buf,
size_t bufSize)

size_t nChars = 0;

/* Check for stdin
(only necessary if FILE descriptors are enabled) */

Part |. Using the compiler 63

Configuration symbols for printf and scanf

if (handle != 0)
{

return -1;

for (/*Empty*/; bufSize > 0; --bufSize)
{
unsigned char c¢ = kbIO;
if (c == 0)
break;

*buf++ = c;
++nChars;

return nChars;

}

For information about the @ operator, see Controlling data and function placement in
memory, page 127.

Configuration symbols for printf and scanf

When you set up your application project, you typically need to consider what printf
and scanf formatting capabilities your application requires, see Choosing formatters
for printf and scanf, page 53.

If the provided formatters do not meet your requirements, you can customize the full
formatters. However, that means you must rebuild the runtime library.

The default behavior of the printf and scanf formatters are defined by configuration
symbols in the file DLib_Defaults.h.

These configuration symbols determine what capabilities the function print £ should

have:

Printf configuration symbols Includes support for
_DLIB_PRINTF_MULTIBYTE Multibyte characters
_DLIB_PRINTF_LONG_LONG Long long (11 qualifier)
_DLIB_PRINTF_SPECIFIER_FLOAT Floating-point numbers
_DLIB_PRINTF_SPECIFIER_A Hexadecimal floating-point numbers
_DLIB_PRINTF_SPECIFIER N Output count (%)
_DLIB_PRINTF_QUALIFIERS Qualifiersh, 1, L, v, t, and z

Table 16: Descriptions of printf configuration symbols

IAR C/C++ Compiler
64 Reference Guide

Printf configuration symbols

The DLIB runtime environment __4

Includes support for

_DLIB_PRINTF_FLAGS

_DLIB_PRINTF_WIDTH_AND_PRECISION

_DLIB_PRINTF_CHAR_BY_CHAR

Flags -, +, #,and 0
Width and precision

Output char by char or buffered

Table 16: Descriptions of printf configuration symbols (Continued)

When you build a library, these configurations determine what capabilities the function

scanf should have:

Scanf configuration symbols

Includes support for

_DLIB_SCANF_MULTIBYTE
_DLIB_SCANF_LONG_LONG

_DLIB_SCANF_SPECIFIER_FLOAT

Multibyte characters
Long long (11 qualifier)

Floating-point numbers

_DLIB_SCANF_SPECTIFIER_N Output count (3n)

_DLIB_SCANF_QUALIFIERS Qualifiers h, 3,1, t, z,and L
_DLIB_SCANF_SCANSET Scanset ([*])
_DLIB_SCANF_WIDTH Width

_DLIB_SCANF_ASSIGNMENT_ SUPPRESSING Assignment suppressing ([*])

Table 17: Descriptions of scanf configuration symbols

CUSTOMIZING FORMATTING CAPABILITIES

To customize the formatting capabilities, you must set up a library project, see Building
and using a customized library, page 57. Define the configuration symbols according to
your application requirements.

File input and output

The library contains a large number of powerful functions for file I/O operations. If you
use any of these functions, you must customize them to suit your hardware. To simplify
adaptation to specific hardware, all I/O functions call a small set of primitive functions,
each designed to accomplish one particular task; for example, __open opens a file, and
__write outputs characters.

J—

Note that file I/O capability in the library is only supported by libraries with full library
configuration, see Library configurations, page 47. In other words, file I/O is supported
when the configuration symbol __DLIB_FILE_DESCRIPTOR is enabled. If not enabled,
functions taking a FILE * argument cannot be used.

Part |. Using the compiler

65

Locale

Template code for these I/O files are included in the product:

1/O function File Description

__close close.c Closes a file.

__lseek lseek.c Sets the file position indicator.
__open open.c Opens a file.

__read read.c Reads a character buffer.
__write write.c Writes a character buffer.
remove remove.c Removes a file.

rename rename.c Renames a file.

Table 18: Low-level /0 files

The primitive functions identify I/O streams, such as an open file, with a file descriptor
that is a unique integer. The I/O streams normally associated with stdin, stdout, and
stderr have the file descriptors 0, 1, and 2, respectively.

Note: If you link your library with I/O debugging support, C-SPY variants of the
low-level I/0 functions are linked for interaction with C-SPY. For more information,
see Debug support in the runtime library, page 48.

66

Locale

IAR C/C++ Compiler
Reference Guide

Locale is a part of the C language that allows language- and country-specific settings for
several areas, such as currency symbols, date and time, and multibyte character
encoding.

Depending on what runtime library you are using you get different level of locale
support. However, the more locale support, the larger your code will get. It is therefore
necessary to consider what level of support your application needs.

The DLIB library can be used in two main modes:

o With locale interface, which makes it possible to switch between different locales
during runtime

e Without locale interface, where one selected locale is hardwired into the
application.

LOCALE SUPPORT IN PREBUILT LIBRARIES
The level of locale support in the prebuilt libraries depends on the library configuration.

o All prebuilt libraries support the C locale only

The DLIB runtime environment __4

o All libraries with full library configuration have support for the locale interface. For
prebuilt libraries with locale interface, it is by default only supported to switch
multibyte character encoding during runtime.

e Libraries with normal library configuration do not have support for the locale
interface.

If your application requires a different locale support, you must rebuild the library.

CUSTOMIZING THE LOCALE SUPPORT
If you decide to rebuild the library, you can choose between these locales:
o The standard C locale

e The POSIX locale

o A wide range of European locales.

Locale configuration symbols

The configuration symbol _DLIB_FULL_LOCALE_SUPPORT, which is defined in the
library configuration file, determines whether a library has support for a locale interface
or not. The locale configuration symbols _LOCALE_USE_LANG_REGION and
ENCODING_USE_ENCODING define all the supported locales and encodings:

#define _DLIB_FULL_LOCALE_SUPPORT 1

#define _LOCALE_USE_C /* C locale */

#define _LOCALE_USE_EN_US /* American English */
#define _LOCALE_USE_EN_GB /* British English */
#define _LOCALE_USE_SV_SE /* Swedish in Sweden */

See DLib_Defaults.h for a list of supported locale and encoding settings.

If you want to customize the locale support, you simply define the locale configuration
symbols required by your application. For more information, see Building and using a
customized library, page 57.

Note: If you use multibyte characters in your C or assembler source code, make sure
that you select the correct locale symbol (the local host locale).

Building a library without support for locale interface

The locale interface is not included if the configuration symbol
_DLIB_FULL_LOCALE_SUPPORT is set to O (zero). This means that a hardwired locale
is used—by default the standard C locale—but you can choose one of the supported
locale configuration symbols. The setlocale function is not available and can
therefore not be used for changing locales at runtime.

Part |. Using the compiler 67

Environment interaction

68

Building a library with support for locale interface

Support for the locale interface is obtained if the configuration symbol
_DLIB_FULL_LOCALE_SUPPORT is set to 1. By default, the standard C locale is used,
but you can define as many configuration symbols as required. Because the setlocale
function will be available in your application, it will be possible to switch locales at
runtime.

CHANGING LOCALES AT RUNTIME

The standard library function setlocale is used for selecting the appropriate portion
of the application’s locale when the application is running.

The setlocale function takes two arguments. The first one is a locale category that is
constructed after the pattern LC_CATEGORY. The second argument is a string that
describes the locale. It can either be a string previously returned by setlocale, or it
can be a string constructed after the pattern:

lang REGION
or
lang REGION.encoding

The lang part specifies the language code, and the REGTON part specifies a region
qualifier, and encoding specifies the multibyte character encoding that should be used.

The lang REGION part matches the _LOCALE_USE_LANG_REGION Preprocessor
symbols that can be specified in the library configuration file.
Example

This example sets the locale configuration symbols to Swedish to be used in Finland and
UTF8 multibyte character encoding:

setlocale (LC_ALL, "sv_FI.Utf8");

Environment interaction

IAR C/C++ Compiler
Reference Guide

According to the C standard, your application can interact with the environment using
the functions getenv and system.

Note: The putenv function is not required by the standard, and the library does not
provide an implementation of it.

The getenv function searches the string, pointed to by the global variable __environ,
for the key that was passed as argument. If the key is found, the value of it is returned,
otherwise 0 (zero) is returned. By default, the string is empty.

The DLIB runtime environment __4

To create or edit keys in the string, you must create a sequence of null terminated strings
where each string has the format:

key=value\0

End the string with an extra null character (if you use a C string, this is added
automatically). Assign the created sequence of strings to the __environ variable.

For example:

const char MyEnv[] = ”"Key=Value\0Key2=Value2\0”;
__environ = MyEnv;

If you need a more sophisticated environment variable handling, you should implement
your own getenv, and possibly putenv function. This does not require that you rebuild
the library. You can find source templates in the files getenv.c and environ.c in the
ml6c\src\libdirectory. For information about overriding default library modules, see
Overriding library modules, page 55.

If you need to use the system function, you must implement it yourself. The system
function available in the library simply returns -1.

If you decide to rebuild the library, you can find source templates in the library project
template. For further information, see Building and using a customized library, page 57.

Note: If you link your application with support for I/O debugging, the functions
getenv and system are replaced by C-SPY variants. For further information, see
Debug support in the runtime library, page 48.

Signal and raise
Default implementations of the functions signal and raise are available. If these
functions do not provide the functionality that you need, you can implement your own
versions.

This does not require that you rebuild the library. You can find source templates in the
files signal.c and raise.c in the m16c\src\1ib directory. For information about
overriding default library modules, see Overriding library modules, page 55.

If you decide to rebuild the library, you can find source templates in the library project
template. For further information, see Building and using a customized library, page 57.

Part |. Using the compiler 69

Time

70

To make the time and date functions work, you must implement the three functions
clock, time, and __getzone.

This does not require that you rebuild the library. You can find source templates in the
files clock.c and time.c, and getzone.c in the m16c\src\1lib directory. For
information about overriding default library modules, see Overriding library modules,
page 55.

If you decide to rebuild the library, you can find source templates in the library project
template. For further information, see Building and using a customized library, page 57.

The default implementation of __getzone specifies UTC as the time zone.

Note: If you link your application with support for I/O debugging, the functions clock
and time are replaced by C-SPY variants that return the host clock and time
respectively. For further information, see C-SPY runtime interface, page 71.

Strtod

The function strtod does not accept hexadecimal floating-point strings in libraries
with the normal library configuration. To make a library do so, you must rebuild the
library, see Building and using a customized library, page 57. Enable the configuration
symbol _DLIB_STRTOD_HEX_FLOAT in the library configuration file.

Assert

IAR C/C++ Compiler
Reference Guide

If you linked your application with support for runtime debugging, C-SPY will be
notified about failed asserts. If this is not the behavior you require, you must add the
source file xreportassert.c to your application project. Alternatively, you can
rebuild the library. The __ReportAssert function generates the assert notification.
You can find template code in the m1 6c\src\1ib directory. For further information, see
Building and using a customized library, page 57. To turn off assertions, you must define
the symbol NDEBUG.

In the IDE, this symbol NDEBUG is by default defined in a Release project and not
defined in a Debug project. If you build from the command line, you must explicitly
define the symbol according to your needs.

The DLIB runtime environment __4

Heaps

The runtime environment supports heaps in these memory types:

Used by default in data

Memory type Segment name Memory attribute model
Datal6 DATA16_HEAP __datalé Near
Far FAR_HEAP __far Far
Data20 DATA20_HEAP __data20 Huge

Table 19: Heaps and memory types

See The heap, page 40 for information about how to set the size for each heap. To use a
specific heap, the prefix in the table is the memory attribute to use in front of malloc,
free, calloc, and realloc, for example __datal6_malloc. The default functions
will use one of the specific heap variants, depending on project settings such as data
model. For information about how to use a specific heap in C++, see New and Delete
operators, page 115.

C-SPY runtime interface

To include support for runtime and I/O debugging, you must link your application with
the XLINK options With runtime control modules or With I/O emulation modules,
see Debug support in the runtime library, page 48.

In this case, C-SPY variants of these library functions are linked to the application:

Function Description

abort C-SPY notifies that the application has called abort *

clock Returns the clock on the host computer

__close Closes the associated host file on the host computer

__exit C-SPY notifies that the end of the application was reached *
__open Opens a file on the host computer

__read stdin, stdout, and stderr will be directed to the Terminal I/O

window; all other files will read the associated host file
remove Writes a message to the Debug Log window and returns -1
rename Writes a message to the Debug Log window and returns -1
_ReportAssert Handles failed asserts *
__seek Seeks in the associated host file on the host computer

system Writes a message to the Debug Log window and returns -1

Table 20: Functions with special meanings when linked with debug info

Part |. Using the compiler 71

C-SPY runtime interface

72

IAR C/C++ Compiler
Reference Guide

Function Description
time Returns the time on the host computer
__write stdin, stdout, and stderr will be directed to the Terminal I/O

window, all other files will write to the associated host file

Table 20: Functions with special meanings when linked with debug info (Continued)

* The linker option With I/O emulation modaules is not required for these functions.

LOW-LEVEL DEBUGGER RUNTIME INTERFACE

The low-level debugger runtime interface is used for communication between the
application being debugged and the debugger itself. The debugger provides runtime
services to the application via this interface; services that allow capabilities like file and
terminal I/O to be performed on the host computer.

These capabilities can be valuable during the early development of an application, for
example in an application using file I/O before any flash file system I/O drivers are
implemented. Or, if you need to debug constructions in your application that use stdin
and stdout without the actual hardware device for input and output being available.
Another debugging purpose can be to produce debug trace printouts.

The mechanism used for implementing this feature works as follows:

The debugger will detect the presence of the function __DebugBreak, which will be
part of the application if you linked it with the XLINK options for C-SPY runtime
interface. In this case, the debugger will automatically set a breakpoint at the
__DebugBreak function. When the application calls, for example open, the
__DebugBreak function is called, which will cause the application to break and
perform the necessary services. The execution will then resume.

THE DEBUGGER TERMINAL 1/O WINDOW

To make the Terminal I/O window available, the application must be linked with support
for I/O debugging, see Debug support in the runtime library, page 48. This means that
when the functions __read or __write are called to perform I/O operations on the
streams stdin, stdout, or stderr, data will be sent to or read from the C-SPY
Terminal I/0O window.

Note: The Terminal I/O window is not opened automatically just because __read or
__write is called; you must open it manually.

See the IAR Embedded Workbench® IDE User Guide for more information about the
Terminal I/O window.

The DLIB runtime environment __4

Speeding up terminal output

On some systems, terminal output might be slow because the host computer and the
target hardware must communicate for each character.

For this reason, a replacement for the __write function called __write_bufferedis
included in the DLIB library. This module buffers the output and sends it to the debugger
one line at a time, speeding up the output. Note that this function uses about 80 bytes of
RAM memory.

To use this feature you can either choose Project>Options>Linker>Output and select
the option Buffered terminal output in the IDE, or add this to the linker command line:

-e__write_buffered=__write

Checking module consistency

This section introduces the concept of runtime model attributes, a mechanism used by
the IAR compiler, assembler, and linker to ensure that modules are built using
compatible settings.

When developing an application, it is important to ensure that incompatible modules are
not used together. For example, in the compiler, it is possible to specify the size of the
double floating-point type. If you write a routine that only works for 64-bit doubles, it
is possible to check that the routine is not used in an application built using 32-bit
doubles.

The tools provided by IAR Systems use a set of predefined runtime model attributes.
You can use these predefined attributes or define your own to perform any type of
consistency check.

RUNTIME MODEL ATTRIBUTES

A runtime attribute is a pair constituted of a named key and its corresponding value. Two
modules can only be linked together if they have the same value for each key that they
both define.

There is one exception: if the value of an attribute is *, then that attribute matches any
value. The reason for this is that you can specify this in a module to show that you have
considered a consistency property, and this ensures that the module does not rely on that

property.

Part |. Using the compiler 73

Checking module consistency

74

IAR C/C++ Compiler
Reference Guide

Example

In this table, the object files could (but do not have to) define the two runtime attributes
color and taste:

Object file Color Taste
filel blue not defined
file2 red not defined
file3 red *

filed red spicy
file5 red lean

Table 21: Example of runtime model attributes

In this case, £ilel cannot be linked with any of the other files, since the runtime
attribute color does not match. Also, file4 and £ile5 cannot be linked together,
because the taste runtime attribute does not match.

On the other hand, file2 and file3 can be linked with each other, and with either
file4 or £ile5, but not with both.

USING RUNTIME MODEL ATTRIBUTES

To ensure module consistency with other object files, use the #pragma rtmodel
directive to specify runtime model attributes in your C/C++ source code. For example:

#pragma rtmodel="__rt_version", "1"
For detailed syntax information, see rtmodel, page 228.

You can also use the rtmodel assembler directive to specify runtime model attributes
in your assembler source code. For example:

rtmodel "color", "red"
For detailed syntax information, see the M16C/R8C IAR Assembler Reference Guide.

Note: The predefined runtime attributes all start with two underscores. Any attribute
names you specify yourself should not contain two initial underscores in the name, to
eliminate any risk that they will conflict with future IAR runtime attribute names.

At link time, the IAR XLINK Linker checks module consistency by ensuring that
modules with conflicting runtime attributes will not be used together. If conflicts are
detected, an error is issued.

The DLIB runtime environment __4

PREDEFINED RUNTIME ATTRIBUTES

The table below shows the predefined runtime model attributes that are available for the
compiler. These can be included in assembler code or in mixed C/C++ and assembler

code.

Runtime model attribute Value Description

__rt_version n This runtime key is always present in all
modules generated by the compiler. If a
major change in the runtime
characteristics occurs, the value of this
key changes.

__processor M16C Note that this runtime attribute is always

__data_model

__variable_data

__constant_data

__data_alignment lor?2

__64bit_doubles Enabled or

Disabled

__calling_convention Simple or Normal

near, far or huge

near, far, or huge

near, far, or huge

M16C, also when the compiler is used in
R8C mode (that is, the option
--cpu=R8C is used).

Corresponds to the data model used in
the project.

Corresponds to where variable data is
placed, in near, far, or huge memory.

Corresponds to where constant data is
placed, in near, far, or huge memory.

Corresponds to the data alignment used
in the project.

Enabled when 6é4-bit doubles are used, or
disabled when 32-bit doubles are used.

Corresponds to the use of calling
convention, simple or normal

Table 22: Predefined runtime model attributes

The easiest way to find the proper settings of the RTMODEL directive is to compile a C or
C++ module to generate an assembler file, and then examine the file.

If you are using assembler routines in the C or C++ code, refer to the chapter Assembler
directives in the M16C/R8C IAR Assembler Reference Guide.

Examples

The following assembler source code provides a function that increases the register R4
to count the number of times it was called. The routine assumes that the application does
not use R4 for anything else, that is, the register is locked for usage. To ensure this, a
runtime module attribute, __reg_r4, is defined with a value counter. This definition

Part |. Using the compiler 75

Checking module consistency

76

IAR C/C++ Compiler
Reference Guide

will ensure that this specific module can only be linked with either other modules
containing the same definition, or with modules that do not set this attribute. Note that
the compiler sets this attribute to free, unless the register is locked.

module myCounter

public myCounter

section CODE : CODE

rtmodel " _reg_r4", "counter"
myCounter: add rd, rd, #1

mov pc, 1lr

end

If this module is used in an application that contains modules where the register R4 is
not locked, the linker issues an error:

Error[ell7]: Incompatible runtime models. Module myCounter
specifies that '__reg r4' must be 'counter', but module partl
has the value 'free'

USER-DEFINED RUNTIME MODEL ATTRIBUTES

In cases where the predefined runtime model attributes are not sufficient, you can use
the RTMODEL assembler directive to define your own attributes. For each property, select
a key and a set of values that describe the states of the property that are incompatible.
Note that key names that start with two underscores are reserved by the compiler.

For example, if you have a UART that can run in two modes, you can specify a runtime
model attribute, for example uart. For each mode, specify a value, for example model
and mode2. Declare this in each module that assumes that the UART is in a particular

mode. This is how it could look like in one of the modules:

#pragma rtmodel="uart", "model"

The CLIB runtime
environment

This chapter describes the runtime environment in which an application
executes. In particular, it covers the CLIB runtime library and how you can
optimize it for your application.

The standard library uses a small set of low-level input and output routines for
character-based I/O. This chapter describes how the low-level routines can be
replaced by your own version. The chapter also describes how you can choose
printf and scanf formatters.

The chapter then describes system initialization and termination. It presents
how an application can control what happens before the start function main is
called, and the method for how you can customize the initialization. Finally, the
C-SPY® runtime interface is covered.

Note that the legacy CLIB runtime environment is provided for backward
compatibility and should not be used for new application projects.

For information about migrating from CLIB to DLIB, see the M/6C/R8C IAR
Embedded Workbench® Migration Guide.

Prebuilt libraries

The CLIB runtime environment includes the C standard library. The linker will include
only those routines that are required—directly or indirectly—by your application. For
detailed reference information about the runtime libraries, see the chapter Library
functions.

The prebuilt runtime libraries are configured for different combinations of these
features:

o The runtime library—CLIB or DLIB
o The CPU core—always M16C, regardless of selected CPU core

e Data model

Part |. Using the compiler 77

Prebuilt libraries

78

IAR C/C++ Compiler
Reference Guide

Variable data

Constant data

Size of the double floating-point type
Data alignment

Copies constants to near

These prebuilt libraries are available:

Calling convention—normal or simple.

Library object file Data Variables Constants Size of Data f:r:)si:asnts Calling
model area area doubles alignment to near convention
clml6cfffdbc.r34 Far Far Far 64 bits | byte no normal
clml6cfffdbcs.r34 Far Far Far 64 bits | byte no simple
clmlécfffdwc.r34 Far Far Far 64 bits 2 bytes no normal
clml6cfffdwes.r34 Far Far Far 64 bits 2 bytes no simple
clmlécffffbc.r34 Far Far Far 32 bits | byte no normal
clmlécffffbcs.r34 Far Far Far 32 bits | byte no simple
clml6cffffwc.r34 Far Far Far 32 bits 2 bytes no normal
clmlécffffwes.r34 Far Far Far 32 bits 2bytes no simple
clmlécfnfdbc.r34 Far Near Far 64 bits | byte no normal
clmlécfnfdbes.r34 Far Near Far 64 bits | byte no simple
clmlécfnfdwc.r34 Far Near Far 64 bits 2bytes no normal
clmlécfnfdwecs.r34 Far Near Far 64 bits 2 bytes no simple
clml6cfnffbc.r34 Far Near Far 32 bits | byte no normal
clml6cfnffbes.r34 Far Near Far 32 bits | byte no simple
clmlécfnffwc.r34 Far Near Far 32 bits 2 bytes no normal
clmlécfnffwes.r34 Far Near Far 32 bits 2 bytes no simple
clml6chhhdbc.r34 Huge Huge Huge 64 bits | byte no normal
clml6échhhdbcs.r34 Huge Huge Huge 64 bits | byte no simple
clml6chhhdwc.r34 Huge Huge Huge 64 bits 2 bytes no normal
clml6chhhdwes.r34 Huge Huge Huge 64 bits 2 bytes no simple
clml6échhhfbc.r34 Huge Huge Huge 32 bits | byte no normal
clml6échhhfbes.r34 Huge Huge Huge 32 bits | byte no simple
clml6chhhfwc.r34 Huge Huge Huge 32 bits 2 bytes no normal

Table 23: Runtime libraries

The CLIB runtime environment __¢

Library object file Data Variables Constants Size of thta cc::si:asnts Calling '
model area area doubles alignment ¢o near convention
clml6échhhfwes.r34 Huge Huge Huge 32 bits 2 bytes no simple
clml6échnhdbc.r34 Huge Near Huge 64 bits | byte no normal
clml6échnhdwc.r34 Huge Near Huge 64 bits | byte no normal
clml6échnhfbc.r34 Huge Near Huge 32 bits | byte no normal
clml6échnhfwc.r34 Huge Near Huge 32 bits 2 bytes no normal
clml6écnnfdbc.r34 Near Near Far 64 bits | byte no normal
clml6écnnfdwc.r34 Near Near Far 64 bits 2 bytes no normal
clml6écnnffbc.r34 Near Near Far 32 bits | byte no normal
clml6écnnffwc.r34 Near Near Far 32 bits 2 bytes no normal
clml6écnnhdbc.r34 Near Near Huge 64 bits | byte no normal
clml6écnnhdwc.r34 Near Near Huge 64 bits | byte no normal
clml6écnnhfbc.r34 Near Near Huge 32 bits | byte no normal
clmlécnnhfwc.r34 Near Near Huge 32 bits 2 bytes no normal
clml6écnnndbc.r34 Near Near Near 64 bits | byte no normal
clml6écnnndbes.r34 Near Near Near 64 bits | byte no simple
clml6écnnndbw.r34 Near Near Near 64 bits | byte yes normal
clml6écnnndbws.r34 Near Near Near 64 bits | byte yes simple
clml6écnnndwc.r34 Near Near Near 64 bits 2 bytes no normal
clml6cnnndwes.r34 Near Near Near 64 bits 2 bytes no simple
clml6écnnndww.r34 Near Near Near 64 bits 2 bytes yes normal
clml6écnnndwws .r34 Near Near Near 64 bits 2 bytes yes simple
clml6écnnnfbc.r34 Near Near Near 32 bits | byte no normal
clml6écnnnfbes.r34 Near Near Near 32 bits | byte no simple
clml6écnnnfbw.r34 Near Near Near 32 bits | byte yes normal
clml6écnnnfbws.r34 Near Near Near 32 bits | byte yes simple
clml6écnnnfwc.r34 Near Near Near 32 bits 2 bytes no normal
clml6écnnnfwes.r34 Near Near Near 32 bits 2 bytes no simple
clmlécnnnfww.r34 Near Near Near 32 bits 2 bytes yes normal
clml6écnnnfwws.r34 Near Near Near 32 bits 2 bytes yes simple

Table 23: Runtime libraries (Continued)

Part |. Using the compiler 79

Prebuilt libraries

80

IAR C/C++ Compiler
Reference Guide

The names of the libraries are constructed in this way:

<library><cpu><data_model><variables><constants><doubles>
<data_alignment><constants_to_near><calling_convention>.r34

where

® <Ilibrary>is cl for the IAR CLIB runtime environment

® <cpu> is always m16c (regardless of M16C or R8C)

® <data_model>is one of n, £ or h for near, far and huge data model, respectively
® <variables> isone of n, £, or h, for placing data in near, far, and huge memory,

respectively

<constants> is one of n, £, or h, for placing constant data in near, far, and huge
memory, respectively

<doubles> is £ or d, depending on whether doubles are 32 (£) or 64 (d) bits

<data_alignment> is w or b, depending on whether the data alignment is 2 bytes
(w) or 1 byte (b)

<constants_to_near> is either w, which means that constants are copied to near
memory, or ¢, which means that they are not

<calling_convention> is s if the library uses the simple calling convention,
otherwise this position in the library name is empty.

Examples

clml6cffffwc.r34 is an IAR CLIB library that uses the far data model, places
both variable and constant data in far memory and uses 32-bit doubles. It is
2-byte-aligned, and it does not copy constants to near memory. It uses the normal
calling convention.

clml6cnnnfwc.r34 is an IAR CLIB library that uses the near data model, places
both variable and constant data in near memory and uses 32-bit doubles. It is
2-byte-aligned, and it does not copy constants to near memory. It uses the normal
calling convention.

clml6cnnndbes.r34 is an JAR CLIB library that uses the near data model, places
both variable and constant data in near memory, and uses 64-bit doubles. It is
1-byte-aligned, and it does not copy constants to near memory. It uses the simple
calling convention.

The IDE will include the correct library object file and library configuration file based
on the options you select. See the JAR Embedded Workbench® IDE User Guide for
additional information.

The CLIB runtime environment __¢

EI If you build your application from the command line, you must specify these items to
get the required runtime library:
o Specify which library object file to use on the XLINK command line, for instance:
clml6cffffwc.r34
o Specify the include paths for the compiler and assembler:
-I ml6c\inc\clib

Note: All modules in the library have a name that starts with the character ? (question
mark).

You can find the library object files in the subdirectory m16c\1ib.

Input and output
You can customize:
o The functions related to character-based I/O

o The formatters used by printf/sprintf and scanf/sscanf.

CHARACTER-BASED 1/O

The functions putchar and getchar are the fundamental C functions for
character-based I/O. For any character-based I/O to be available, you must provide
definitions for these two functions, using whatever facilities the hardware environment
provides.

The creation of new /O routines is based on these files:
® putchar.c, which serves as the low-level part of functions such as printf
® getchar.c, which serves as the low-level part of functions such as scanf.

The code example below shows how memory-mapped I/O could be used to write to a
memory-mapped I/O device:

_ no_init volatile unsigned char devIO @ 8;

int putchar (int outChar)
{
devIO = outChar;
return outChar;

}

The exact address is a design decision. For example, it can depend on the selected
processor variant.

Part |. Using the compiler 8l

Input and output

82

IAR C/C++ Compiler
Reference Guide

For information about how to include your own modified version of putchar and
getchar in your project build process, see Overriding library modules, page 55.

FORMATTERS USED BY PRINTF AND SPRINTF

The printf and sprintf functions use a common formatter, called
_formatted_write. The full version of _formatted write is very large, and
provides facilities not required in many embedded applications. To reduce the memory
consumption, two smaller, alternative versions are also provided in the standard C
library.

_medium_write

The _medium_write formatter has the same functions as _formatted_write, except
that floating-point numbers are not supported. Any attempt to use a $£, %g, %G, %e, Or
3E specifier will produce a runtime error:

FLOATS? wrong formatter installed!

_medium_write is considerably smaller than _formatted_write.

_small_write

The _small_write formatter works in the same way as _medium_write, except that
it supports only the %%, %d, %0, %c, %s, and %x specifiers for integer objects, and does
not support field width or precision arguments. The size of _small _writeis 10-15%
that of _formatted_write

Specifying the printf formatter in the IDE

Choose Project>Options and select the General Options category. Click the Library
options tab.

Select the appropriate Printf formatter option, which can be either Small, Medium,
or Large.
Specifying the printf formatter from the command line

Touse the _small_writeor _medium_ write formatter, add the corresponding line in
the linker command file:

-e_small_write=_formatted_write
or
-e_medium _write=_formatted_write

To use the full version, remove the line.

The CLIB runtime environment __¢

Customizing printf

For many embedded applications, sprint£ is not required, and even printf with
_small_write provides more facilities than are justified, considering the amount of
memory it consumes. Alternatively, a custom output routine might be required to
support particular formatting needs or non-standard output devices.

For such applications, a much reduced version of the print£ function (without
sprintf) is supplied in source form in the file intwri . c. This file can be modified to
meet your requirements, and the compiled module inserted into the library in place of
the original file; see Overriding library modules, page 55.

FORMATTERS USED BY SCANF AND SSCANF

Similar to the print £ and sprintf functions, scanf and sscanf use a common
formatter, called _formatted_read. The full version of _formatted_read is very
large, and provides facilities that are not required in many embedded applications. To
reduce the memory consumption, an alternative smaller version is also provided.

_medium_read

The _medium_read formatter has the same functions as the full version, except that
floating-point numbers are not supported. _medium_read is considerably smaller than
the full version.

Specifying the scanf formatter in the IDE

Choose Project>Options and select the General Options category. Click the Library
options tab.

2 Select the appropriate Scanf formatter option, which can be either Medium or Large.

[Specifying the read formatter from the command line
To use the _medium_read formatter, add this line in the linker command file:
-e_medium_read=_formatted_read

To use the full version, remove the line.

System startup and termination

This section describes the actions the runtime environment performs during startup and
termination of applications.

The code for handling startup and termination is located in the source files
cstartup.s34 and low_level_init.c located in the m16c\src\1ib directory.

Part |. Using the compiler 83

Overriding default library modules

SYSTEM STARTUP

When an application is initialized, several steps are performed:

o The custom function __low_level_ init is called if you defined it, giving the
application a chance to perform early initializations

e Static variables are initialized; this includes clearing zero-initialized memory and
copying the ROM image of the RAM memory of the remaining initialized variables

o The main function is called, which starts the application.

Note that the system startup code contains code for more steps than described here. The
other steps are applicable to the DLIB runtime environment.

SYSTEM TERMINATION
An application can terminate normally in two different ways:

o Return from the main function

o Call the exit function.

Because the ISO/ANSI C standard states that the two methods should be equivalent, the
cstartup code calls the exit function if main returns. The parameter passed to the
exit function is the return value of main. The default exit function is written in
assembler.

When the application is built in debug mode, C-SPY stops when it reaches the special
code label ?C_EXIT.

An application can also exit by calling the abort function. The default function just
calls __exit to halt the system, without performing any type of cleanup.

Overriding default library modules

The IAR CLIB Library contains modules which you probably need to override with
your own customized modules, for example for character-based I/O, without rebuilding
the entire library. For information about how to override default library modules, see
Overriding library modules, page 55, in the chapter The DLIB runtime environment.

Customizing system initialization

For information about how to customize system initialization, see Customizing system
initialization, page 61.

IAR C/C++ Compiler
84 Reference Guide

The CLIB runtime environment __¢

C-SPY runtime interface

The low-level debugger interface is used for communication between the application
being debugged and the debugger itself. The interface is simple: C-SPY will place
breakpoints on certain assembler labels in the application. When code located at the
special labels is about to be executed, C-SPY will be notified and can perform an action.

THE DEBUGGER TERMINAL 1/O0 WINDOW

When code at the labels ?C_PUTCHAR and ?C_GETCHAR is executed, data will be sent to
or read from the debugger window.

For the »C_PUTCHAR routine, one character is taken from the output stream and written.
If everything goes well, the character itself is returned, otherwise -1 is returned.

When the label ?C_GETCHAR is reached, C-SPY returns the next character in the input
field. If no input is given, C-SPY waits until the user types some input and presses the
Return key.

To make the Terminal I/O window available, the application must be linked with the
XLINK option With I/O emulation modules selected. See the /AR Embedded
Workbench® IDE User Guide.

TERMINATION

The debugger stops executing when it reaches the special label 2c_EXIT.

Checking module consistency

For information about how to check module consistency, see Checking module
consistency, page 73.

Part |. Using the compiler 85

Checking module consistency

IAR C/C++ Compiler
86 Reference Guide

Assembler language
interface

When you develop an application for an embedded system, there might be
situations where you will find it necessary to write parts of the code in
assembler, for example when using mechanisms in the M16C/R8C Series CPU
core that require precise timing and special instruction sequences.

This chapter describes the available methods for this and some C alternatives,
with their advantages and disadvantages. It also describes how to write
functions in assembler language that work together with an application written
in C or C++.

Finally, the chapter covers the different memory access methods
corresponding to the supported memory types, and how you can implement
support for call frame information in your assembler routines for use in the
C-SPY® Call Stack window.

Mixing C and assembler

The IAR C/C++ Compiler for M16C/R8C provides several ways to access low-level
resources:

o Modules written entirely in assembler

e Intrinsic functions (the C alternative)

e Inline assembler.

It might be tempting to use simple inline assembler. However, you should carefully
choose which method to use.

INTRINSIC FUNCTIONS

The compiler provides a few predefined functions that allow direct access to low-level
processor operations without having to use the assembler language. These functions are
known as intrinsic functions. They can be very useful in, for example, time-critical
routines.

Part |. Using the compiler

87

Mixing C and assembler

88

IAR C/C++ Compiler
Reference Guide

An intrinsic function looks like a normal function call, but it is really a built-in function
that the compiler recognizes. The intrinsic functions compile into inline code, either as
a single instruction, or as a short sequence of instructions.

The advantage of an intrinsic function compared to using inline assembler is that the
compiler has all necessary information to interface the sequence properly with register
allocation and variables. The compiler also knows how to optimize functions with such
sequences; something the compiler is unable to do with inline assembler sequences. The
result is that you get the desired sequence properly integrated in your code, and that the
compiler can optimize the result.

For detailed information about the available intrinsic functions, see the chapter Intrinsic
functions.

MIXING C AND ASSEMBLER MODULES

It is possible to write parts of your application in assembler and mix them with your C
or C++ modules. This gives several benefits compared to using inline assembler:

o The function call mechanism is well-defined

o The code will be easy to read

o The optimizer can work with the C or C++ functions.

This causes some overhead in the form of a function call and return instruction
sequences, and the compiler will regard some registers as scratch registers. However, the
compiler will also assume that all scratch registers are destroyed by an inline assembler

instruction. In many cases, the overhead of the extra instructions can be removed by the
optimizer.

An important advantage is that you will have a well-defined interface between what the
compiler produces and what you write in assembler. When using inline assembler, you
will not have any guarantees that your inline assembler lines do not interfere with the
compiler generated code.

When an application is written partly in assembler language and partly in C or C++, you
are faced with several questions:
How should the assembler code be written so that it can be called from C?

Where does the assembler code find its parameters, and how is the return value
passed back to the caller?

e How should assembler code call functions written in C?
How are global C variables accessed from code written in assembler language?

Why does not the debugger display the call stack when assembler code is being
debugged?

Assembler language interface ___4

The first issue is discussed in the section Calling assembler routines from C, page 90.
The following two are covered in the section Calling convention, page 93.

The section on memory access methods, page 101, covers how data in memory is
accessed.

The answer to the final question is that the call stack can be displayed when you run
assembler code in the debugger. However, the debugger requires information about the
call frame, which must be supplied as annotations in the assembler source file. For more
information, see Call frame information, page 104.

The recommended method for mixing C or C++ and assembler modules is described in
Calling assembler routines from C, page 90, and Calling assembler routines from C++,
page 92, respectively.

INLINE ASSEMBLER

It is possible to insert assembler code directly into a C or C++ function. The asm
keyword inserts the supplied assembler statement in-line. The following example
demonstrates the use of the asm keyword. This example also shows the risks of using
inline assembler.

static int sFlag;

void Foo (void)
{
while (!sFlag)
{
asm("MOV sFlag, PIND");

}

In this example, the assignment to the global variable sFlag is not noticed by the
compiler, which means the surrounding code cannot be expected to rely on the inline
assembler statement.

The inline assembler instruction will simply be inserted at the given location in the
program flow. The consequences or side-effects the insertion might have on the
surrounding code are not taken into consideration. If, for example, registers or memory
locations are altered, they might have to be restored within the sequence of inline
assembler instructions for the rest of the code to work properly.

Inline assembler sequences have no well-defined interface with the surrounding code
generated from your C or C++ code. This makes the inline assembler code fragile, and

Part |. Using the compiler 89

Calling assembler routines from C

90

will possibly also become a maintenance problem if you upgrade the compiler in the
future. There are also several limitations to using inline assembler:

o The compiler’s various optimizations will disregard any effects of the inline
sequences, which will not be optimized at all

e In general, assembler directives will cause errors or have no meaning. Data
definition directives will however work as expected

e Auto variables cannot be accessed.

Inline assembler is therefore often best avoided. If no suitable intrinsic function is
available, we recommend that you use modules written in assembler language instead
of inline assembler, because the function call to an assembler routine normally causes
less performance reduction.

Calling assembler routines from C

IAR C/C++ Compiler
Reference Guide

An assembler routine that will be called from C must:

Conform to the calling convention
Have a PUBLIC entry-point label

o Be declared as external before any call, to allow type checking and optional
promotion of parameters, as in these examples:

extern int foo(void);
or
extern int foo(int i, int j);

One way of fulfilling these requirements is to create skeleton code in C, compile it, and
study the assembler list file.

The compiler supports two different calling conventions, see Calling convention, page
93.

CREATING SKELETON CODE

The recommended way to create an assembler language routine with the correct
interface is to start with an assembler language source file created by the C compiler.
Note that you must create skeleton code for each function prototype.

The following example shows how to create skeleton code to which you can easily add
the functional body of the routine. The skeleton source code only needs to declare the

Assembler language interface ___4

variables required and perform simple accesses to them. In this example, the assembler
routine takes an int and a char, and then returns an int:

extern int gInt;
extern char gChar;

int Func (int argl, char arg2)
{

int locInt = argl;

gInt = argl;

gChar = arg2;

return locInt;

int main()

{
int locInt = gInt;
gInt = Func(locInt, gChar);
return O;

}

Note: In this example we use a low optimization level when compiling the code to
show local and global variable access. If a higher level of optimization is used, the
required references to local variables could be removed during the optimization. The
actual function declaration is not changed by the optimization level.

COMPILING THE CODE

In the IDE, specity list options on file level. Select the file in the workspace window.
Then choose Project>Options. In the C/C++ Compiler category, select Override
inherited settings. On the List page, deselect Qutput list file, and instead select the
Output assembler file option and its suboption Include source. Also, be sure to specify
a low level of optimization.

EI Use these options to compile the skeleton code:
iccmléc skeleton.c -1A .

The -1a option creates an assembler language output file including C or C++ source
lines as assembler comments. The . (period) specifies that the assembler file should be
named in the same way as the C or C++ module (skeleton), but with the filename
extension s34. Also remember to specify the data model you are using, a low level of
optimization, and -e for enabling language extensions.

The result is the assembler source output file skeleton.s34.

Note: The -1a option creates a list file containing call frame information (CFI)
directives, which can be useful if you intend to study these directives and how they are

Part |. Using the compiler 91

Calling assembler routines from C++

used. If you only want to study the calling convention, you can exclude the CFI
directives from the list file. In the IDE, choose Project>Options>C/C++
Compiler>List and deselect the suboption Include call frame information. On the
command line, use the option -1B instead of -1A. Note that CFI information must be
included in the source code to make the C-SPY Call Stack window work.

The output file
The output file contains the following important information:

The calling convention
The return values

The global variables
The function parameters

How to create space on the stack (auto variables)

Call frame information (CFI).

The cr1 directives describe the call frame information needed by the Call Stack window
in the debugger. For more information, see Call frame information, page 104.

Calling assembler routines from C++

The C calling convention does not apply to C++ functions. Most importantly, a function
name is not sufficient to identify a C++ function. The scope and the type of the function
are also required to guarantee type-safe linkage, and to resolve overloading.

Another difference is that non-static member functions get an extra, hidden argument,
the this pointer.

However, when using C linkage, the calling convention conforms to the C calling
convention. An assembler routine can therefore be called from C++ when declared in
this manner:

extern "C"
{
int MyRoutine (int) ;

}

Memory access layout of non-PODs (“plain old data structures”) is not defined, and
might change between compiler versions. Therefore, we do not recommend that you
access non-PODs from assembler routines.

The following example shows how to achieve the equivalent to a non-static member
function, which means that the implicit this pointer must be made explicit. It is also
possible to “wrap” the call to the assembler routine in a member function. Use an inline

IAR C/C++ Compiler
92 Reference Guide

Assembler language interface ___4

member function to remove the overhead of the extra call—this assumes that function
inlining is enabled:

class MyClass;

extern "C"

{
void DoIt (MyClass *ptr, int arg);

class MyClass
{
public:
inline void DoIt (int arg)
{
::DoIt(this, arg);
}
Y

Note: Support for C++ names from assembler code is extremely limited. This means
that:

o Assembler list files resulting from compiling C++ files cannot, in general, be passed
through the assembler.

e Itis not possible to refer to or define C++ functions that do not have C linkage in
assembler.

Calling convention

A calling convention is the way a function in a program calls another function. The
compiler handles this automatically, but, if a function is written in assembler language,
you must know where and how its parameters can be found, how to return to the program
location from where it was called, and how to return the resulting value.

It is also important to know which registers an assembler-level routine must preserve. If
the program preserves too many registers, the program might be ineffective. If it
preserves too few registers, the result would be an incorrect program.

The compiler provides two calling conventions—one normal, which is used by default,
and one simple. This section describes the calling conventions used by the compiler.
These items are examined:

o Choosing a calling convention
e Function declarations

o C and C++ linkage

°

Preserved versus scratch registers

Part |. Using the compiler 93

Calling convention

94

IAR C/C++ Compiler
Reference Guide

e Function entrance
o Function exit
o Return address handling.

At the end of the section, some examples are shown to describe the calling convention
in practice.

CHOOSING A CALLING CONVENTION

You can choose between two calling conventions:

o The Simple calling convention offers a simple assembler interface. It is compatible
with previous versions of the compiler. This calling convention is recommended for
use with assembler code as it will remain unchanged over time. For information
about the keyword __simple, see __simple, page 214.

o The Normal calling convention is the default and is used in all prebuilt DLIB
libraries. It is more efficient than the Simple calling convention, but also more
complex to understand and subject to change in later versions of the compiler.

The Normal calling convention is used by default. To specify the calling convention, use
the --calling_convention={simple|normal} command line option.

In the IDE, the calling convention option is located on the Project>Options>General
Options>Target page.
FUNCTION DECLARATIONS

In C, a function must be declared in order for the compiler to know how to call it. A
declaration could look as follows:

int MyFunction(int first, char * second) ;

This means that the function takes two parameters: an integer and a pointer to a
character. The function returns a value, an integer.

In the general case, this is the only knowledge that the compiler has about a function.
Therefore, it must be able to deduce the calling convention from this information.
USING C LINKAGE IN C++ SOURCE CODE

In C++, a function can have either C or C++ linkage. To call assembler routines from
C++, it is easiest if you make the C++ function have C linkage.

Assembler language interface ___4

This is an example of a declaration of a function with C linkage:

extern "C"

{
int F(int);
}

It is often practical to share header files between C and C++. This is an example of a
declaration that declares a function with C linkage in both C and C++:

#ifdef __cplusplus
extern "C"

{
#endif

int F(int);

#ifdef __ _cplusplus

}

#endif

PRESERVED VERSUS SCRATCH REGISTERS

The general M16C/R8C Series CPU registers are divided into three separate sets, which
are described in this section.

Scratch registers

Any function is permitted to destroy the contents of a scratch register. If a function needs
the register value after a call to another function, it must store it during the call, for
example on the stack.

In the normal calling convention, the registers R0, R2, and A0 are scratch registers. In the
simple calling convention, there are no scratch registers.
Preserved registers

Preserved registers, on the other hand, are preserved across function calls. The called
function can use the register for other purposes, but must save the value before using the
register and restore it at the exit of the function.

In the normal calling convention, the registers FB, R1, R3, Al, and SB are preserved
registers. In the simple calling convention, all registers are preserved.

Part |. Using the compiler 95

Calling convention

96

IAR C/C++ Compiler
Reference Guide

Special registers
For some registers, you must consider certain prerequisites:

o The stack pointer register must at all times point to or below the last element on the
stack. In the eventuality of an interrupt, everything below the point the stack pointer
points to, will be destroyed.

FUNCTION ENTRANCE

Parameters can be passed to a function using one of two basic methods: in registers or
on the stack. It is much more efficient to use registers than to take a detour via memory,
so the default calling convention is designed to use registers if possible. Only a limited
number of registers can be used for passing parameters; when no more registers are
available, the remaining parameters are passed on the stack. The parameters are also
passed on the stack in these cases:

e Structure types: struct, union, and classes
o The data type double (64-bit floating-point numbers)

o Unnamed parameters to variable length (variadic) functions; in other words,
functions declared as foo (parami, ...), for example printf.

Hidden parameters

In addition to the parameters visible in a function declaration and definition, there can
be hidden parameters:

o If the function returns a structure or a double, the memory location where the
structure will be stored is passed as a hidden first parameter, followed by a this
pointer, if there is one. Then come the visible parameters.

e If the function is a non-static C++ member function, then the this pointer is passed
as the first parameter (but placed after the return structure pointer, if there is one).
The reason for the requirement that the member function must be non-static is that
static member methods do not have a this pointer.

Register parameters

One and two-byte scalar parameters—for example, char, short, and pointers to datal6
memory—require one register. Larger scalar types and 32-bit floats require two.

The assignment of registers to parameters is a straightforward process. Traversing the
parameters in strict order from left to right, the first parameter is assigned to an available
register or register pair. Should there be no suitable register available, the parameter is
passed on the stack. In this case, and if the simple calling convention is used, any
remaining parameters will also be passed on the stack.

Assembler language interface ___4

The registers available for passing parameters differ for the normal and simple calling
convention.

The normal calling convention

The registers A0, RO, and R2 are used as much as possible to pass parameters. This
enables at most 6 bytes of parameters to be passed in registers. RO can be used as ROL
and ROH to pass two 8-bit parameters.

The compiler will scan the parameters from left to right and assign them to the first
available register in a priority order for each type of parameter as follows:

Parameters Passed in registers
8-bit values ROL if possible, otherwise ROH
16-bit non-pointer parameters RO if no byte-size register candidates are found

within the first 6 bytes of parameters; otherwise
in R2 if it is available or else in A0

16-bit pointer parameters AOQ if possible, otherwise like 16-bit non-pointer
parameters
32-bit values, including 20-bit pointers R2RO if it is available

Table 24: Registers used for passing parameters in the normal calling convention

Note: Parameters of a struct or class type will never be passed in registers.

The simple calling convention

Only the first paramater may be passed in a register, either in ROL, R0, Oor R2RO,
depending on the size of the first parameter.

Stack parameters and layout

Stack parameters are stored in the main memory, starting at the location pointed to by
the stack pointer. Below the stack pointer (toward low memory) there is free space that

Part |. Using the compiler 97

Calling convention

98

IAR C/C++ Compiler
Reference Guide

the called function can use. The first stack parameter is stored at the location pointed to
by the stack pointer. The next one is stored at the next location on the stack.

High
address
The caller’s stack frame
Parameter n
Parameter 2
Parameter | Stack pointer
Low
address Free stack memory

Figure 4: Stack image after the function call

FUNCTION EXIT

A function can return a value to the function or program that called it, or it can have the
return type void.

The return value of a function, if any, can be scalar (such as integers and pointers),
floating-point, or a structure. In the case of structures and classes, the return value is a
pointer, see Hidden parameters, page 96.

Registers used for returning values

The registers available for returning values are RO and R2R0.

Return values Passed in registers

8-bit scalar values ROL

16-bit scalar values RO

32-bit values including 20-bit pointers R2RO

64-bit values RO for the near data model and R2RO0 for

the other data models

Table 25: Registers used for returning values

Stack layout at function exit

It is the responsibility of the caller to clean the stack after the called function returns.

Assembler language interface ___4

Return address handling
A function written in assembler language should, when finished, return to the caller.

Typically, a function returns by using the rts instruction.

EXAMPLES

The following section shows a series of declaration examples and the corresponding
calling conventions. The complexity of the examples increases toward the end.
Example |

Assume this function declaration:

char addl (char) ;

This function takes one parameter in the register ROL, and the return value is passed back
to its caller in the same register.

This assembler routine is compatible with the declaration; it will return a value that is
one number higher than the value of its parameter:

PUBLIC addl

RSEG CODE:CODE: REORDER :NOROOT (0)

addl:
ADD.B #0x1, ROL
RTS
END

Example 2

This example shows how structures are passed on the stack. Assume these declarations:

struct MyStruct
{

int mA;
Y

int MyFunction (struct MyStruct x, int vy);

Following the normal calling convention, the calling function must reserve 2 bytes on
the top of the stack and copy the contents of the struct to that location. The integer
parameter vy is passed in the register R0. Following the simple calling convention, four
bytes are used on the stack, of which the top two are the first parameter.

Part |. Using the compiler 99

Calling functions

100

Example 3
The function below will return a structure of type struct.

struct MyStruct
{

int mA;
}s

struct MyStruct MyFunction(int x);

It is the responsibility of the calling function to allocate a memory location for the return
value and pass a pointer to it as a hidden first parameter. The pointer to the location
where the return value should be stored is passed in A0 in the near data model, and in
R2RO0 in the other models. The caller assumes that these registers remain untouched.
When using the normal calling convention, the parameter x is passed in RO in the near
data model, and in A0 in the other data models.

Assume that the function instead was declared to return a pointer to the structure:
struct MyStruct *MyFunction(int x);

In this case, the return value is a scalar, so there is no hidden parameter. The parameter
x is passed in RO, and the return value is returned in RO or (R2,R0), depending on the data
model.

FUNCTION DIRECTIVES

Note: This type of directive is primarily intended to support static overlay, a feature
which is useful in some smaller microcontrollers. The IAR C/C++ Compiler for
M16C/R8C does not use static overlay, because it has no use for it.

The function directives FUNCTION, ARGFRAME, LOCFRAME, and FUNCALL are generated
by the compiler to pass information about functions and function calls to the [AR
XLINK Linker. These directives can be seen if you use the compiler option Assembler
file (-12) to create an assembler list file.

For reference information about the function directives, see the M16C/R8C IAR
Assembler Reference Guide.

Calling functions

IAR C/C++ Compiler
Reference Guide

Functions can be called in two fundamentally different ways—directly or via a function
pointer. In this section we will discuss how both types of calls will be performed.

Assembler language interface ___4

ASSEMBLER INSTRUCTIONS USED FOR CALLING
FUNCTIONS

This section presents the assembler instructions that can be used for calling and
returning from functions on the M16C/R8C Series CPU core.

The normal function calling instruction is the jsr instruction:
jsr.a label

The location that the called function should return to (that is, the location immediately
after this instruction) is stored on the stack.

When a function call is made via a function pointer, this code will be generated:

jsri.a funcptr

Memory access methods

This section describes the different memory types presented in the chapter Data storage.
In addition to just presenting the assembler code used for accessing data, it will be used
for explaining the reason behind the different memory types.

You should be familiar with the M16C/R8C Series instruction set, in particular the
different addressing modes used by the instructions that can access memory.

For each of the access methods described in the following sections, there are three
examples:

® Accessing a global variable
® Accessing a global array using an unknown index

® Accessing a structure using a pointer.
These three examples can be illustrated by this C program:

char MyVar;
char MyArr([10];

struct MyStruct
{

long mA;

char mB;

}i

char Foo(int i, struct MyStruct *p)
{
return MyVar + MyArr[i] + p->mB;

}

Part |. Using the compiler 101

Memory access methods

IAR C/C++ Compiler
102 Reference Guide

THE DATAI3 MEMORY ACCESS METHOD

Datal3 memory is located in the first 8 Kbytes of memory. The datal3 memory access
method is very similar to the datal6 memory access method. In fact, there will be no
difference in code generated for our previous example when using datal3 memory. The
datal3 memory access method is strictly a bit access optimization: the M16C/R8C
Series has special bit addressing modes that makes accessing a single bit more efficient
if it is located in the first 8Kbytes of memory.

Examples

INT3IC_bit.POL = INT5IC_bit.POL;

Using the datal3 access method:

BTST 4,0x048 Load bit to C flag

BMC 4,0x044 Store C flag

Using the datal6 access method:

MOV.B 0x048,ROL
BTST 4,R0 Load bit to C flag

MOV.B 0x044,ROL
BMC 4,RO

MOV.B ROL Store C flag

THE DATAI16 MEMORY ACCESS METHOD

Datal6 memory is located in the first 64 Kbytes of memory. This is the only memory
type that can be accessed using 16-bit pointers and using a 16-bit index type. The
advantages are that a single 16-bit register can be used, instead of a register pair and that
most instructions can access this memory directly.

Examples

These examples access datal6 memory in different ways:

MOV.B x,ROL Access the global variable x
ADD.B y[A0],ROL Access an entry in the global array y
ADD.B 4[A0],ROL Accessing a member of a struct

Assembler language interface ___4

THE FAR MEMORY ACCESS METHOD

The far memory access method is a compromise between the datal6 and data20 access
methods. This method can access the entire memory range, assuming that no data
objects straddle a 64-Kbyte boundary. This means that although you must use register
pairs for pointers, single 16-bit registers can be used for indexing. As in the case of the
data20 access method, special instructions must be used for loading from and storing to
far memory, but pointer arithmetics will not generate any extra instructions.
Examples

These examples access far memory in different ways:

LDE.B x,ROL Access the global variable x

MOV.W #LWRD(y) , A0 Access an entry in the global array
MOV.W #HWRD(y),Al
ADD.W RO, A0

LDE.B [AlAO0], ROL

ADD.W #4,A0

LDE.B [A1lA0],ROL Accessing a member of a struct

THE DATA20 MEMORY ACCESS METHOD

The data20 memory access method can access the entire memory range. The drawbacks
of this access method are that register pairs must be used for both pointers and indexes,
special instructions must be used for loading from and storing to data20 memory, and
that pointer arithmetics will generate extra instructions. This can result in larger and
slower code when comparing to code accessing other types of data.

The pointer size is 20 bits and the index type has a size of 20 bits.

Part |. Using the compiler 103

Call frame information

104

Examples
These examples access data20 memory in different ways:

LDE.B x,ROL Access the global variable x

MOV.W #LWRD(y) ,A0 Access an array
MOV.W #HWRD (y),Al

ADD.W RO, A0

ADC.W R2,Al

LDE.B [Al1AO0],ROL

ADD.W #4,A0 Accessing a member of a struct
ADCF Al

LDE.B [AlAO0],ROL

Call frame information

IAR C/C++ Compiler
Reference Guide

When you debug an application using C-SPY, you can view the call stack, that is, the
chain of functions that called the current function. To make this possible, the compiler
supplies debug information that describes the layout of the call frame, in particular
information about where the return address is stored.

If you want the call stack to be available when debugging a routine written in assembler
language, you must supply equivalent debug information in your assembler source using
the assembler directive CFI. This directive is described in detail in the M16C/R8C IAR
Assembler Reference Guide.

CFI DIRECTIVES

The cF1I directives provide C-SPY with information about the state of the calling
function(s). Most important of this is the return address, and the value of the stack
pointer at the entry of the function or assembler routine. Given this information, C-SPY
can reconstruct the state for the calling function, and thereby unwind the stack.

A full description about the calling convention might require extensive call frame
information. In many cases, a more limited approach will suffice.

Assembler language interface ___4

When describing the call frame information, the following three components must be
present:

® A names block describing the available resources to be tracked

® A common block corresponding to the calling convention

® A data block describing the changes that are performed on the call frame. This
typically includes information about when the stack pointer is changed, and when
permanent registers are stored or restored on the stack.

This table lists all the resources defined in the names block used by the compiler:

Resource Description

CFA The call frame address

ROL, ROH, R1L, R1H, R2, Regular registers

R3, A0, Al

SP The stack pointer

FB The frame base register

SB The static base register

?RET The return address register

?RHI The 8 most significant bits of the return address
?RLO The 16 least significant bits of the return address

Table 26: Call frame information resources defined in a names block

CREATING ASSEMBLER SOURCE WITH CFl SUPPORT

The recommended way to create an assembler language routine that handles call frame
information correctly is to start with an assembler language source file created by the
compiler.

Start with suitable C source code, for example:

int F(int);
int cfiExample (int i)
{

return i + F(i);

}

Compile the C source code, and make sure to create a list file that contains call frame
information—the CFI directives.

On the command line, use the option -1A.

In the IDE, choose Project>Options>C/C++ Compiler>List and make sure the
suboption Include call frame information is selected.

Part |. Using the compiler 105

Call frame information

For the source code in this example, the list file looks like this:

NAME cfiexample

RTMODEL "__ 64bit_doubles", "Disabled"
RTMODEL "__calling_convention", "Normal"
RTMODEL "__constant_data", "near"
RTMODEL "__data_alignment", "2"

RTMODEL "__ data_model", "near"

RTMODEL "__processor", "MleC"

RTMODEL "__rt_version", "1"

RTMODEL "__ variable_data", "near"

RSEG CSTACK:NEARDATA: REORDER:NOROOT (0)

PUBLIC cfiExample
FUNCTION cfiExample, 021203H
ARGFRAME CSTACK, 0, STACK

CFI Names cfiNamesO

CFI StackFrame CFA SP NEARDATA

CFI Resource ROL:8, ROH:8, R1L:8, R1H:8, R2:16, R3:16,
A0:16, Al:16

CFI Resource FB:16, SB:16, SP:16

CFI VirtualResource ?RET:24, ?RHI:8, ?RLO:16

CFI ResourceParts ?RET ?RHI, ?RLO

CFI EndNames cfiNames0

CFI Common cfiCommon0 Using cfiNamesO
CFI CodeAlign 1

CFI DataAlign 1

CFI ReturnAddress ?RET NEARDATA
CFI CFA SP+3

CFI ROL Undefined

CFI ROH Undefined

CFI R1L SameValue

CFI R1H SameValue

CFI R2 Undefined

CFI R3 SameValue

CFI A0 Undefined

CFI Al SameValue

CFI FB SameValue

CFI SB SameValue

CFI ?RET Concat

CFI ?RHI Frame(CFA, -1)

CFI ?RLO Frame (CFA, -3)

CFI EndCommon cfiCommonO

IAR C/C++ Compiler
106 Reference Guide

Assembler language interface ___4

EXTERN F
FUNCTION F,0202H
ARGFRAME CSTACK, 0, STACK

RSEG CODE :CODE : REORDER : NOROOT (0)
cfiExample:

CFI Block cfiBlock0O Using cfiCommonO

CFI Function cfiExample

FUNCALL cfiExample, F

LOCFRAME CSTACK, 0, STACK

ARGFRAME CSTACK, 0, STACK

ADD.B #-0x1, SP

CFI CFA spP+4

PUSHM R1

CFI R1H Frame (CFA, -5)

CFI R1L Frame(CFA, -6)

CFI CFA SP+6

MOV.W RO, R1
MOV.W R1, RO
JSR.A F
ADD.W R1, RO
POPM R1

CFI R1L SameValue

CFI R1H SameValue

CFI CFA SpP+4

ADD.B #0x1, SP

CFI CFA SP+3

RTS

CFI EndBlock cfiBlock0

END

Note: The header file cfi.m34 contains the macros XCFI_NAMES and XCFI_COMMON,
which declare a typical names block and a typical common block. These two macros
declare several resources, both concrete and virtual.

Part |. Using the compiler 107

Call frame information

IAR C/C++ Compiler
108 Reference Guide

Using C++

IAR Systems supports two levels of the C++ language: The industry-standard
Embedded C++ and IAR Extended Embedded C++. They are described in this
chapter.

Overview

Embedded C++ is a subset of the C++ programming language which is intended for
embedded systems programming. It was defined by an industry consortium, the
Embedded C++ Technical Committee. Performance and portability are particularly
important in embedded systems development, which was considered when defining the
language.

STANDARD EMBEDDED C++
The following C++ features are supported:

o Classes, which are user-defined types that incorporate both data structure and
behavior; the essential feature of inheritance allows data structure and behavior to
be shared among classes

o Polymorphism, which means that an operation can behave differently on different
classes, is provided by virtual functions

o Opverloading of operators and function names, which allows several operators or
functions with the same name, provided that their argument lists are sufficiently
different

o Type-safe memory management using the operators new and delete

o Inline functions, which are indicated as particularly suitable for inline expansion.
C++ features that are excluded are those that introduce overhead in execution time or
code size that are beyond the control of the programmer. Also excluded are late
additions to the ISO/ANSI C++ standard. This is because they represent potential
portability problems, due to that few development tools support the standard. Embedded

C++ thus offers a subset of C++ which is efficient and fully supported by existing
development tools.

Standard Embedded C++ lacks these features of C++:

o Templates
o Multiple and virtual inheritance

o Exception handling

Part |. Using the compiler

109

Overview

110

IAR C/C++ Compiler
Reference Guide

o Runtime type information

o New cast syntax (the operators dynamic_cast, static_cast,
reinterpret_cast, and const_cast)

o Namespaces

o The mutable attribute.

The exclusion of these language features makes the runtime library significantly more
efficient. The Embedded C++ library furthermore differs from the full C++ library in

that:

o The standard template library (STL) is excluded

e Streams, strings, and complex numbers are supported without the use of templates
e Library features which relate to exception handling and runtime type information

(the headers except, stdexcept, and typeinfo) are excluded.

Note: The library is not in the std namespace, because Embedded C++ does not
support namespaces.

EXTENDED EMBEDDED C++

IAR Systems’ Extended EC++ is a slightly larger subset of C++ which adds these
features to the standard EC++:

e Full template support

e Namespace support

o The mutable attribute

o The cast operators static_cast, const_cast, and reinterpret_cast.
All these added features conform to the C++ standard.

To support Extended EC++, this product includes a version of the standard template
library (STL), in other words, the C++ standard chapters utilities, containers, iterators,
algorithms, and some numerics. This STL is tailored for use with the Extended EC++
language, which means no exceptions, and no support for runtime type information
(rtti). Moreover, the library is not in the std namespace.

Note: A module compiled with Extended EC++ enabled is fully link-compatible with
a module compiled without Extended EC++ enabled.

ENABLING C++ SUPPORT

In the compiler, the default language is C. To be able to compile files written in
Embedded C++, you must use the —--ec++ compiler option. See --ec++, page 166. You
must also use the IAR DLIB runtime library.

Using C++ ___ 4

To take advantage of Extended Embedded C++ features in your source code, you must
use the --eec++ compiler option. See --eec++, page 166.

To set the equivalent option in the IDE, choose Project>Options>C/C++
Compiler>Language.

Feature descriptions

When you write C++ source code for the IAR C/C++ Compiler for M16C/R8C, you
must be aware of some benefits and some possible quirks when mixing C++
features—such as classes, and class members—with IAR language extensions, such as
IAR-specific attributes.

CLASSES

A class type class and struct in C++ can have static and non-static data members,
and static and non-static function members. The non-static function members can be
further divided into virtual function members, non-virtual function members,
constructors, and destructors. For the static data members, static function members, and
non-static non-virtual function members the same rules apply as for statically linked
symbols outside of a class. In other words, they can have any applicable IAR-specific
type, memory, and object attribute.

The non-static virtual function members can have any applicable IAR-specific type,
memory, and object attribute as long as a pointer to the member function can be
implicitly converted to the default function pointer type. The constructors, destructors,
and non-static data members cannot have any IAR attributes.

The location operator @ can be used on static data members and on any type of function
members.

For further information about attributes, see Type qualifiers, page 191.

Example

class MyClass

{

public:
// Locate a static variable in _ datal6 memory at address 60
static __datal6é _ _no_init int mI @ 60;

// Locate a static function in _ tiny func memory
static __tiny func void F();

// Locate a function in _ tiny func memory
__tiny Func void G();

Part |. Using the compiler 111

Feature descriptions

// Locate a virtual function in __ tiny_ func memory
virtual __tiny_ func void H();

// Locate a virtual function into SPECIAL

virtual void M()

Y

The this pointer

const volatile @ "SPECIAL";

The this pointer used for referring to a class object or calling a member function of a
class object will by default have the data memory attribute for the default data pointer
type. This means that such a class object can only be defined to reside in memory from
which pointers can be implicitly converted to a default data pointer. This restriction

might also apply to objects residing on a stack, for example temporary objects and auto

objects.

Class memory

To compensate for this limitation, a class can be associated with a class memory type.
The class memory type changes:

e the this pointer type in all member functions, constructors, and destructors into a
pointer to class memory

e the default memory for static storage duration variables—that is, not auto
variables—of the class type, into the specified class memory

e the pointer type used for pointing to objects of the class type, into a pointer to class

memory.

Example

class __data20 C
{
public:

void MyF () ;

void MyF() const;

cQ);

C(C const &);

int mI;

IAR C/C++ Compiler
112 Reference Guide

/7
/7
/7
/7
/7
/7
/7
/7

Has a this pointer of type C _ _data20 *
Has a this pointer of type

C _ _data20 const *

Has a this pointer pointing into data20
memory

Takes a parameter of type C __data20
const & (also true of generated copy
constructor)

Using C++ ___ 4

C Ca; // Resides in data20 memory instead of the
// default memory
C __datal6 Cb; // Resides in datal6 memory, the 'this'

// pointer still points into data20 memory

void MyH()
{
C cd; // Resides on the stack
}
C *Cpl; // Creates a pointer to data20 memory
C __datal6 *Cp2; // Creates a pointer to datal6 memory

Whenever a class type associated with a class memory type, like ¢, must be declared,
the class memory type must be mentioned as well:

class __data20 C;

Also note that class types associated with different class memories are not compatible
types.

A built-in operator returns the class memory type associated with a class,
__memory_of (class). For instance, __memory_of (C) returns __data20.

When inheriting, the rule is that it must be possible to convert implicitly a pointer to a
subclass into a pointer to its base class. This means that a subclass can have a more
restrictive class memory than its base class, but not a /ess restrictive class memory.

class __data20 D : public C
{ // OK, same class memory
public:

void MyG() ;

int mJ;

Y

class __datal6 E : public C
{ // OK, datal6 memory is inside data20

public:
void MyG() // Has a this pointer pointing into datal6 memory
{
MyF () ; // Gets a this pointer into data20 memory
}
int mJ;

Part |. Using the compiler 113

Feature descriptions

114

IAR C/C++ Compiler
Reference Guide

class F : public C
{ // OK, will be associated with same class memory as C
public:
void MyG() ;
int mJ;
}i

A new expression on the class will allocate memory in the heap associated with the class
memory. A delete expression will naturally deallocate the memory back to the same
heap. To override the default new and delete operator for a class, declare

void *operator new(size_t);
void operator delete(void *);

as member functions, just like in ordinary C++.

For more information about memory types, see Memory types, page 13.

FUNCTION TYPES

A function type with extern "c" linkage is compatible with a function that has C++
linkage.

Example

extern "C"

{

typedef void (*FpC) (void) ; // A C function typedef
}
typedef void (*FpCpp) (void) ; // A C++ function typedef
FpC F1;
FpCpp F2;

void MyF (FpC) ;

void MyG ()
{
MyF (F1) ; // Always works
MyF (F2) ; // FpCpp is compatible with FpC

Using C++ ___ 4

NEW AND DELETE OPERATORS

There are operators for new and delete for each memory that can have a heap, that is,
datal6, data20, and far memory.

// Assumes that there is a heap in both _ datal6 and __data20

memory
void _ _data20 *operator new _ data20(__data20_size_t);
void _ _datalé *operator new _ datal6 (__datal6_size_t);

void operator delete(void __data20 *);
void operator delete(void _ datalé *);

// And correspondingly for array new and delete operators
void _ data20 *operator new[] _ data20(__data20_size_t);
void _ _datalé *operator new[] _ datal6 (__datal6_size_t);
void operator deletel] (void __data20 *);

void operator delete[] (void _ _datal6 *);

Use this syntax if you want to override both global and class-specific operator new
and operator delete for any data memory.

Note that there is a special syntax to name the operator new functions for each
memory, while the naming for the operator delete functions relies on normal
overloading.

New and delete expressions

A new expression calls the operator new function for the memory of the type given. If
a class, struct, or union type with a class memory is used, the class memory will
determine the operator new function called. For example,

void MyF ()

{
// Calls operator new __ datal6(__datal6_size_t)
int _ datal6 *p = new __ datal6 int;

// Calls operator new __ datal6(__datal6_size_t)
int _ datal6 *g = new int _ datalé6;

// Calls operator new[] _ datal6(__datal6_size_t)
int _ datal6é *r = new _ _datal6 int[10];

// Calls operator new __data20(__data20_size_t)
class __data20 S

{

Y

S *s = new S;

Part |. Using the compiler 115

Feature descriptions

116

IAR C/C++ Compiler
Reference Guide

// Calls operator delete(void _ datal6 *)
delete p;
// Calls operator delete(void __data20 *)
delete s;

int _ _data20 *t = new _ _datal6 int;
delete t; // Error: Causes a corrupt heap

}

Note that the pointer used in a delete expression must have the correct type, that is, the
same type as that returned by the new expression. If you use a pointer to the wrong
memory, the result might be a corrupt heap. For example,

TEMPLATES

Extended EC++ supports templates according to the C++ standard, except for the
support of the export keyword. The implementation uses a two-phase lookup which
means that the keyword typename must be inserted wherever needed. Furthermore, at
each use of a template, the definitions of all possible templates must be visible. This
means that the definitions of all templates must be in include files or in the actual source
file.

Templates and data memory attributes

For data memory attributes to work as expected in templates, two elements of the
standard C++ template handling were changed—class template partial specialization
matching and function template parameter deduction.

In Extended Embedded C++, the class template partial specialization matching
algorithm works like this:

When a pointer or reference type is matched against a pointer or reference to a template
parameter type, the template parameter type will be the type pointed to, stripped of any
data memory attributes, if the resulting pointer or reference type is the same.

Example

// We assume that _ data20 is the memory type of the default
// pointer.

template<typename> class Z {};

template<typename T> class Z<T *> {};

Z<int __datalé *> Zn; // T = int _ datalé
Z<int __data20 *> Zf; // T = int

7Z<int *> 7d; // T = int

Z<int __far *> Zzh; // T = int _ far

Using C++ ___ 4

In Extended Embedded C++, the function template parameter deduction algorithm
works like this:

When function template matching is performed and an argument is used for the
deduction, if that argument is a pointer to a memory that can be implicitly converted to
a default pointer, do the parameter deduction as if it was a default pointer.

When an argument is matched against a reference, do the deduction as if the argument
and the parameter were both pointers.

Example

// We assume that _ _data20 is the memory type of the default
// pointer.
template<typename T> void fun (T *);

void MyF ()
{
fun((int __datal6 *) 0); // T = int. The result is different
// than the analogous situation with
// class template specializations.

fun((int *) 0); // T = int
fun((int __data20 *) 0); // T = int
fun((int __far *) 0); // T = int __far

}

For templates that are matched using this modified algorithm, it is impossible to get
automatic generation of special code for pointers to small memory types. For large and
“other” memory types (memory that cannot be pointed to by a default pointer) it is
possible. To make it possible to write templates that are fully memory-aware—in the
rare cases where this is useful—use the #pragma basic_template_matching
directive in front of the template function declaration. That template function will then
match without the modifications described above.

Example

// We assume that _ _data20 is the memory type of the default
// pointer.

#pragma basic_template_matching

template<typename T> void fun (T *);

void MyF ()

{
fun((int __datalé *) 0); // T = int _ datalé

Part |. Using the compiler 117

Feature descriptions

118

IAR C/C++ Compiler
Reference Guide

Non-type template parameters

It is allowed to have a reference to a memory type as a template parameter, even if
pointers to that memory type are not allowed.

Example

extern int _ datal6SFR X;

template<_ _datal6SFR int &y>
void Foo()
{

y = 17;

void Bar ()
{

Foo<X> () ;

The standard template library

The STL (standard template library) delivered with the product is tailored for Extended
EC++, as described in Extended Embedded C++, page 110.

The containers in the STL, like vector and map, are memory attribute aware. This
means that a container can be declared to reside in a specific memory type which has the
following consequences:

o The container itself will reside in the chosen memory
o Allocations of elements in the container will use a heap for the chosen memory

o All references inside it use pointers to the chosen memory.

Example

#include <vector>

vector<int> D; // D placed in default memory,
// using the default heap,
// uses default pointers
vector<int _ datalé> _ datal6 X; // X placed in datal6 memory,
// heap allocation from
// datal6, uses pointers to
// datal6 memory
vector<int __ far> _ datalé Y; // Y placed in datal6 memory,
// heap allocation from far,
// uses pointers to far memory

Using C++ ___ 4

Note also that map<key, T>, multimap<key, T>, hash_map<key, T>, and
hash_multimap<key, T> all use the memory of T. This means that the value_type
of these collections will be pair<key, const T> mem where memis the memory type
of T. Supplying a key with a memory type is not useful.

Example

Note that two containers that only differ by the data memory attribute they use cannot
be assigned to each other. Instead, the templated assign member method must be used.

#include <vector>

vector<int __datal6> X;
vector<int __ far> Y;

void MyF ()

{
// The templated assign member method will work
X.assign(Y.begin(), Y.end());
Y.assign(X.begin(), X.end());

STL and the IAR C-SPY® Debugger

C-SPY has built-in display support for the STL containers.C-SPY has built-in display
support for the STL containers. The logical structure of containers is presented in the
watch views in a comprehensive way that is easy to understand and follow.

Note: To be able to watch STL containers with many elements in a comprehensive
way, the STL container expansion option—available by choosing
Tools>Options>Debugger—is set to display only a few items at first.
VARIANTS OF CASTS

In Extended EC++ these additional C++ cast variants can be used:

const_cast<t2>(t), static_cast<t2>(t), reinterpret_cast<t2>(t).

MUTABLE

The mutable attribute is supported in Extended EC++. A mutable symbol can be
changed even though the whole class object is const.

NAMESPACE

The namespace feature is only supported in Extended EC++. This means that you can
use namespaces to partition your code. Note, however, that the library itself is not placed
in the std namespace.

Part |. Using the compiler 119

Feature descriptions

120

IAR C/C++ Compiler
Reference Guide

THE STD NAMESPACE

The std namespace is not used in either standard EC++ or in Extended EC++. If you
have code that refers to symbols in the std namespace, simply define std as nothing;
for example:

#define std

You must make sure that identifiers in your application do not interfere with identifiers
in the runtime library.

POINTER TO MEMBER FUNCTIONS

A pointer to a member function can only contain a default function pointer, or a function
pointer that can implicitly be casted to a default function pointer. To use a pointer to a
member function, make sure that all functions that should be pointed to reside in the
default memory or a memory contained in the default memory.

Example

class X
{
public:
__tiny func void F();
Y

void (__tiny func X::*PMF) (void) = &X::F;

USING INTERRUPTS AND EC++ DESTRUCTORS

If interrupts are enabled and the interrupt functions use class objects that have
destructors, there might be problems if the program exits either by using exit or by
returning from main. If an interrupt occurs after an object was destroyed, there is no
guarantee that the program will work properly.

To avoid this, make sure that interrupts are disabled when returning from main or when
calling exit or abort.

To avoid interrupts, place a call to the intrinsic function __disable_interrupt before
the call to _exit.

Using C++ ___ 4

C++ language extensions

When you use the compiler in C++ mode and enable IAR language extensions, the
following C++ language extensions are available in the compiler:

In a friend declaration of a class, the class keyword can be omitted, for example:

class B;
class A
{
friend B; //Possible when using IAR language
//extensions
friend class B; //According to standard

Yi
Constants of a scalar type can be defined within classes, for example:
class A
{
const int mSize = 10; //Possible when using IAR language

//extensions
int mArr[mSize];
Y
According to the standard, initialized static data members should be used instead.

In the declaration of a class member, a qualified name can be used, for example:

struct A

{
int A::F(); // Possible when using IAR language extensions
int G(); // According to standard

}i

It is permitted to use an implicit type conversion between a pointer to a function

with C linkage (extern "C") and a pointer to a function with C++ linkage

(extern "C++"), for example:

extern "C" void F(); // Function with C linkage

void (*PF) () // PF points to a function with C++ linkage
= &F; // Implicit conversion of function pointer.

According to the standard, the pointer must be explicitly converted.

If the second or third operands in a construction that contains the ? operator are
string literals or wide string literals (which in C++ are constants), the operands can
be implicitly converted to char * or wchar_t *, for example:

bool X;

char *P1 = X ? "abc" : "def"; //Possible when using IAR
//language extensions

char const *P2 = X ? "abc" : "def"; //According to standard

Part |. Using the compiler 121

C++ language extensions

o Default arguments can be specified for function parameters not only in the top-level
function declaration, which is according to the standard, but also in typedef
declarations, in pointer-to-function function declarations, and in pointer-to-member
function declarations.

e In a function that contains a non-static local variable and a class that contains a
non-evaluated expression (for example a sizeof expression), the expression can
reference the non-static local variable. However, a warning is issued.

Note: If you use any of these constructions without first enabling language extensions,
errors are issued.

IAR C/C++ Compiler
122 Reference Guide

Efficient coding for
embedded applications

For embedded systems, the size of the generated code and data is very
important, because using smaller external memory or on-chip memory can
significantly decrease the cost and power consumption of a system.

The topics discussed are:

e Selecting data types

e Controlling data and function placement in memory
e Controlling compiler optimizations

o Writing efficient code.

As a part of this, the chapter also demonstrates some of the more common
mistakes and how to avoid them, and gives a catalog of good coding
techniques.

Selecting data types

For efficient treatment of data, you should consider the data types used and the most
efficient placement of the variables.

USING EFFICIENT DATA TYPES

The data types you use should be considered carefully, because this can have a large
impact on code size and code speed.

o Use small and unsigned data types, (unsigned char and unsigned short)
unless your application really requires signed values.

e Bitfields with sizes other than 1 bit should be avoided because they will result in
inefficient code compared to bit operations.

o When using arrays, it is more efficient if the type of the index expression matches
the index type of the memory of the array. For datal6 this is int, for far this is int,
and for data20 it is long.

Part |. Using the compiler

123

Selecting data types

124

IAR C/C++ Compiler
Reference Guide

o Using floating-point types is very inefficient, both in terms of code size and
execution speed.

e Declaring a pointer parameter to point to const data might open for better
optimizations in the calling function.

o Try to avoid 64-bit data types, such as double and long long.

For details about representation of supported data types, pointers, and structures types,
see the chapter Data representation.

FLOATING-POINT TYPES

Using floating-point types on a microprocessor without a math coprocessor is very
inefficient, both in terms of code size and execution speed. Thus, you should consider
replacing code that uses floating-point operations with code that uses integers, because
these are more efficient.

The compiler supports two floating-point formats—32 and 64 bits. The 32-bit
floating-point type £1loat is more efficient in terms of code size and execution speed.
However, the 64-bit format double supports higher precision and larger numbers.

In the compiler, the floating-point type £1oat always uses the 32-bit format. The format
used by the double floating-point type depends on the setting of the
--64bit_doubles compiler option.

Unless the application requires the extra precision that 64-bit floating-point numbers
give, we recommend using 32-bit floating-point numbers instead. Also consider
replacing code using floating-point operations with code using integers since these are
more efficient.

By default, a floating-point constant in the source code is treated as being of the type
double. This can cause innocent-looking expressions to be evaluated in double
precision. In the example below a is converted from a £1loat to a double, the double
constant 1.0 is added and the result is converted back to a £loat:

float Test(float a)
{

return a + 1.0;

}

To treat a floating-point constant as a £1oat rather than as a double, add the suffix £
to it, for example:

float Test(float a)
{

return a + 1.0f;

}

For more information about floating-point types, see Floating-point types, page 186.

Efficient coding for embedded applications __¢

USING DIFFERENT POINTER TYPES

Neither ANSI C or ANSI C++ supports the concept of different pointer sizes. This
means that whenever you use keywords or data models that construct pointers of
different sizes, your code is non-compliant.

For the IAR C/C++ Compiler for M16C/R8C, the most common use of different pointer
sizes is when you want to place constants in far or data20 memory, where M16C devices
have ROM, and variables in datal6 memory, where M16C devices have RAM.

When you do this, pointers to const declared objects will be 3-byte pointers and pointers
to non-const objects will be 2-byte pointers and casting between these pointer types
might not be possible.

For C, the most common problem is string literals, which are represented as const
char *,butitis allowed to assign this to a char * variable.

Example
char * str = “This will not work”;

For C++, the problem is larger because the use of const declared objects are much more
widespread. The compiler does not allow combinations of options that use different
sizes for default pointers. That is, if you use --data_model=£far, you also need to use
--variable_data=far.

In rare cases however, this is not enough. For some C++ constructs, the compiler might
be forced to create temporary objects on the stack, which will always be in datal6
memory and any pointers to these objects will be 2-byte pointers. This can cause errors
when using the far or data20 data models.

ALIGNMENT OF ELEMENTS IN A STRUCTURE

The M16C/R8C Series of CPU cores can access data on odd and even addresses.
However, when you access a 16-bit object on an odd address, there is a performance
penalty. For this reason, the compiler can align data on even addresses (for objects larger
than one byte) by using the command line option --align_data=2. In this case all
elements in a structure will also be aligned on even addresses. This means that the
compiler might need to insert pad bytes to keep the alignment correct. Also, to keep the
stack aligned, extra code at function entry and function exit might be needed.

If you want to change the alignment on individual structures, you can override the
command line option by using #pragma data_alignment and #pragma pack. For
further details about the #pragma data_alignment directive and the #pragma pack
directive, see data_alignment, page 220 and pack, page 226.

For information about alignment requirements, see Alignment, page 183.

Part |. Using the compiler 125

Selecting data types

126

IAR C/C++ Compiler

Reference Guide

ANONYMOUS STRUCTS AND UNIONS

When a structure or union is declared without a name, it becomes anonymous. The effect
is that its members will only be seen in the surrounding scope.

Anonymous structures are part of the C++ language; however, they are not part of the C
standard. In the IAR C/C++ Compiler for M16C/R8C they can be used in C if language
extensions are enabled.

In the IDE, language extensions are enabled by default.

Use the -e compiler option to enable language extensions. See -e, page 165, for
additional information.

Example

In this example, the members in the anonymous union can be accessed, in function £,
without explicitly specifying the union name:

struct S
{

char mTag;

union
{
long mL;
float mF;
Y
} St

void F(void)
{
St.mL = 5;

The member names must be unique in the surrounding scope. Having an anonymous
struct or union at file scope, as a global, external, or static variable is also allowed.
This could for instance be used for declaring I/O registers, as in this example:

_ _no_init volatile
union
{
unsigned char IOPORT;
struct
{
unsigned char Way: 1;
unsigned char Out: 1;
}i
} e 8;

Efficient coding for embedded applications __¢

/* Here the variables are used*/

void Test (void)
{
IOPORT = 0;
Way = 1;
Out = 1;
}

This declares an I/O register byte TOPORT at address 0. The I/O register has 2 bits
declared, way and out. Note that both the inner structure and the outer union are
anonymous.

Anonymous structures and unions are implemented in terms of objects named after the
first field, with a prefix _a_ to place the name in the implementation part of the
namespace. In this example, the anonymous union will be implemented through an
object named _A_TOPORT.

Controlling data and function placement in memory

The compiler provides different mechanisms for controlling placement of functions and
data objects in memory. To use memory efficiently, you should be familiar with these
mechanisms to know which one is best suited for different situations. You can use:

e Data models

Use the different compiler options for data models to take advantage of the different
addressing modes available for the CPU core and thereby also place functions and
data objects in different parts of memory. To read more about data models, see Data
models, page 12.

e Memory attributes

Use memory attributes to override the default addressing mode and placement of data
objects. To read more about memory attributes for data, see Using data memory
attributes, page 15.

o The @ operator and the #pragma location directive for absolute placement

Use the @ operator or the #pragma location directive to place individual global and
static variables at absolute addresses. The variables must be declared either
__no_init or const. This is useful for individual data objects that must be located
at a fixed address, for example variables with external requirements, or for
populating any hardware tables similar to interrupt vector tables. Note that it is not
possible to use this notation for absolute placement of individual functions.

Part |. Using the compiler 127

Controlling data and function placement in memory

o The @ operator and the #pragma location directive for segment placement

Use the @ operator or the #pragma location directive to place groups of functions
or global and static variables in named segments, without having explicit control of
each object. The variables must be declared either __no_init or const. The
segments can, for example, be placed in specific areas of memory, or initialized or
copied in controlled ways using the segment begin and end operators. This is also
useful if you want an interface between separately linked units, for example an
application project and a boot loader project. Use named segments when absolute
control over the placement of individual variables is not needed, or not useful.

® The --code_segment option

Use the --code_segment option to place functions in named segments, which is
useful, for example, if you want to direct them to different fast or slow memories. To
read more about the --code_segment option, see --code_segment, page 159.

At compile time, data and functions are placed in different segments as described in
Data segments, page 35, and Code segments, page 42, respectively. At link time, one of
the most important functions of the linker is to assign load addresses to the various
segments used by the application. All segments, except for the segments holding
absolute located data, are automatically allocated to memory according to the
specifications of memory ranges in the linker command file, as described in Placing
segments in memory, page 32.

DATA PLACEMENT AT AN ABSOLUTE LOCATION

The e operator, alternatively the #pragma location directive, can be used for placing
global and static variables at absolute addresses. The variables must be declared using
one of these combinations of keywords:

® _ _no_init
® __no_init and const (without initializers)

o const (with initializers).

To place a variable at an absolute address, the argument to the @ operator and the
#pragma location directive should be a literal number, representing the actual
address. The absolute location must fulfill the alignment requirement for the variable
that should be located.

Note: A variable placed in an absolute location should be defined in an include file, to
be included in every module that uses the variable. An unused definition in a module
will be ignored. A normal extern declaration—one that does not use an absolute
placement directive—can refer to a variable at an absolute address; however,
optimizations based on the knowledge of the absolute address cannot be performed.

IAR C/C++ Compiler
128 Reference Guide

Efficient coding for embedded applications __¢

Examples

In this example, a __no_init declared variable is placed at an absolute address. This
is useful for interfacing between multiple processes, applications, etc:

__no_init volatile char alpha @ 0x3D0;/* OK */

These examples contain two const declared objects. The first one is not initialized, and
the second one is initialized to a specific value. Both objects are placed in ROM. This is
useful for configuration parameters, which are accessible from an external interface.
Note that in the second case, the compiler is not obliged to actually read from the
variable, because the value is known.

#pragma location=0x3D2
__no_init const int beta; /* OK */

const int gamma @ 0x3D4 = 3; /* OK */

In the first case, the value is not initialized by the compiler; the value must be set by
other means. The typical use is for configurations where the values are loaded to ROM
separately, or for special function registers that are read-only.

These examples show incorrect usage:

int delta @ 0x3D6; /* Error, neither */
/* "__no_init" nor "const".*/
__no_init int epsilon @ 0x3D7; /* Error, misaligned. */

C++ considerations

In C++, module scoped const variables are static (module local), whereas in C they are
global. This means that each module that declares a certain const variable will contain
a separate variable with this name. If you link an application with several such modules
all containing (via a header file), for instance, the declaration:

volatile const __no_init int x @ 0x100; /* Bad in C++ */
the linker will report that more than one variable is located at address 0x100.

To avoid this problem and make the process the same in C and C++, you should declare
these variables extern, for example:

/* The extern keyword makes x public. */
extern volatile const __no_init int x @ 0x100;

Note: C++ static member variables can be placed at an absolute address just like any
other static variable.

Part |. Using the compiler 129

Controlling data and function placement in memory

DATA AND FUNCTION PLACEMENT IN SEGMENTS

The following method can be used for placing data or functions in named segments other
than default:

o The @ operator, alternatively the #pragma location directive, can be used for
placing individual variables or individual functions in named segments. The named
segment can either be a predefined segment, or a user-defined segment. The
variables must be declared either __no_init or const. If declared const, they
can have initializers.

C++ static member variables can be placed in named segments just like any other static
variable.

If you use your own segments, in addition to the predefined segments, the segments
must also be defined in the linker command file using the -z or the -P segment control
directives.

Note: Take care when explicitly placing a variable or function in a predefined segment
other than the one used by default. This is useful in some situations, but incorrect
placement can result in anything from error messages during compilation and linking to
amalfunctioning application. Carefully consider the circumstances; there might be strict
requirements on the declaration and use of the function or variable.

The location of the segments can be controlled from the linker command file.

For more information about segments, see the chapter Segment reference.

Examples of placing variables in named segments

In the following three examples, a data object is placed in a user-defined segment. The
segment will be allocated in default memory depending on the used data model.

__no_init int alpha @ "NOINIT"; /* OK */

#pragma location="CONSTANTS"
const int beta; /* OK */

const int gamma @ "CONSTANTS" = 3; /* OK */

To override the default segment allocation, you can explicitly specify a memory attribute
other than the default:

__data20 __no_init int alpha @ "NOINIT";/* Placed in data20%*/

This example shows incorrect usage:

int delta @ "NOINIT"; /* Error, neither */
/* "__no_init" nor "const" */

IAR C/C++ Compiler
130 Reference Guide

Efficient coding for embedded applications __¢

Examples of placing functions in named segments
void f(void) @ "FUNCTIONS";
void g(void) @ "FUNCTIONS"

{
}

#pragma location="FUNCTIONS"
void h(void) ;

To override the default segment allocation, you can explicitly specify a memory attribute
other than the default:

__data20 void f(void) @ "FUNCTIONS";

Controlling compiler optimizations

The compiler performs many transformations on your application to generate the best
possible code. Examples of such transformations are storing values in registers instead
of memory, removing superfluous code, reordering computations in a more efficient
order, and replacing arithmetic operations by cheaper operations.

The linker should also be considered an integral part of the compilation system, because
some optimizations are performed by the linker. For instance, all unused functions and
variables are removed and not included in the final output.

SCOPE FOR PERFORMED OPTIMIZATIONS

You can decide whether optimizations should be performed on your whole application
or on individual files. By default, the same types of optimizations are used for an entire
project, but you should consider using different optimization settings for individual files.
For example, put code that must execute very quickly into a separate file and compile it
for minimal execution time, and the rest of the code for minimal code size. This will give
a small program, which is still fast enough where it matters.

You can also exclude individual functions from the performed optimizations. The
#pragma optimize directive allows you to either lower the optimization level, or
specify another type of optimization to be performed. Refer to optimize, page 225, for
information about the pragma directive.

Multi-file compilation units

In addition to applying different optimizations to different source files or even functions,
you can also decide what a compilation unit consists of—one or several source code
files.

Part |. Using the compiler 131

Controlling compiler optimizations

IAR C/C++ Compiler
132 Reference Guide

By default, a compilation unit consists of one source file, but you can also use multi-file
compilation to make several source files in a compilation unit. The advantage is that
interprocedural optimizations such as inlining, cross call, and cross jump have more
source code to work on. Ideally, the whole application should be compiled as one
compilation unit. However, for large applications this is not practical because of
resource restrictions on the host computer. For more information, see --mfc, page 169.

If the whole application is compiled as one compilation unit, it is very useful to make
the compiler also discard unused public functions and variables before the
interprocedural optimizations are performed. Doing this limits the scope of the
optimizations to functions and variables that are actually used. For more information,
see --discard_unused publics, page 164.

OPTIMIZATION LEVELS

The compiler supports different levels of optimizations. This table lists the
optimizations that are performed on each level:

Optimization level Description
None (Best debug support) Variables live through their entire scope
Low Same as above but variables only live for as long as they are

needed, not necessarily through their entire scope
Dead code elimination

Redundant label elimination

Redundant branch elimination

Medium Same as above
Live-dead analysis and optimization
Code hoisting
Register content analysis and optimization
Common subexpression elimination

High (Balanced) Same as above
Peephole optimization
Cross jumping (when optimizing for size)
Cross call (when optimizing for size)
Loop unrolling (when optimizing for speed)
Function inlining
Code motion
Type-based alias analysis

Table 27: Compiler optimization levels

Note: Some of the performed optimizations can be individually enabled or disabled.
For more information about these, see Fine-tuning enabled transformations, page 133.

Efficient coding for embedded applications __¢

A high level of optimization might result in increased compile time, and will most likely
also make debugging more difficult, because it is less clear how the generated code
relates to the source code. For example, at the low, medium, and high optimization
levels, variables do not live through their entire scope, which means processor registers
used for storing variables can be reused immediately after they were last used. Due to
this, the C-SPY Watch window might not be able to display the value of the variable
throughout its scope. At any time, if you experience difficulties when debugging your
code, try lowering the optimization level.

SPEED VERSUS SIZE

At the high optimization level, the compiler balances between size and speed
optimizations. However, it is possible to fine-tune the optimizations explicitly for either
size or speed. They only differ in what thresholds that are used; speed will trade size for
speed, whereas size will trade speed for size. Note that one optimization sometimes
enables other optimizations to be performed, and an application might in some cases
become smaller even when optimizing for speed rather than size.

FINE-TUNING ENABLED TRANSFORMATIONS

At each optimization level you can disable some of the transformations individually. To
disable a transformation, use either the appropriate option, for instance the command
line option --no_inline, alternatively its equivalent in the IDE Function inlining, or
the #pragma optimize directive. These transformations can be disabled individually:
Common subexpression elimination

Loop unrolling

Function inlining

Code motion

Type-based alias analysis

Cross call.

Common subexpression elimination

Redundant re-evaluation of common subexpressions is by default eliminated at
optimization levels Medium and High. This optimization normally reduces both code
size and execution time. However, the resulting code might be difficult to debug.

Note: This option has no effect at optimization levels None and Low.

To read more about the command line option, see --no_cse, page 171.

Part |. Using the compiler 133

Controlling compiler optimizations

Loop unrolling

It is possible to duplicate the loop body of a small loop, whose number of iterations can
be determined at compile time, to reduce the loop overhead.

This optimization, which can be performed at optimization level High, normally
reduces execution time, but increases code size. The resulting code might also be
difficult to debug.

The compiler heuristically decides which loops to unroll. Different heuristics are used
when optimizing for speed, size, or when balancing between size and speed.

Note: This option has no effect at optimization levels None, Low, and Medium.

To read more about the command line option, see --no_unroll, page 174.

Function inlining

Function inlining means that a simple function, whose definition is known at compile
time, is integrated into the body of its caller to eliminate the overhead of the call. This
optimization, which is performed at optimization level High, normally reduces
execution time, but increases code size. The resulting code might also be difficult to
debug.

The compiler decides which functions to inline. Different heuristics are used when
optimizing for speed, size, or when balancing between size and speed.

Note: This option has no effect at optimization levels None, Low, and Medium.

To read more about the command line option, see --no_inline, page 172.

Code motion

Evaluation of loop-invariant expressions and common subexpressions are moved to
avoid redundant re-evaluation. This optimization, which is performed at optimization
level High, normally reduces code size and execution time. The resulting code might
however be difficult to debug.

Note: This option has no effect at optimization levels None, and Low.

Type-based alias analysis

When two or more pointers reference the same memory location, these pointers are said
to be aliases for each other. The existence of aliases makes optimization more difficult
because it is not necessarily known at compile time whether a particular value is being
changed.

IAR C/C++ Compiler
134 Reference Guide

Efficient coding for embedded applications __¢

Type-based alias analysis optimization assumes that all accesses to an object are
performed using its declared type or as a char type. This assumption lets the compiler
detect whether pointers can reference the same memory location or not.

Type-based alias analysis is performed at optimization level High. For ISO/ANSI
standard-conforming C or C++ application code, this optimization can reduce code size
and execution time. However, non-standard-conforming C or C++ code might result in
the compiler producing code that leads to unexpected behavior. Therefore, it is possible
to turn this optimization off.

Note: This option has no effect at optimization levels None, Low, and Medium.

To read more about the command line option, see --no_tbaa, page 173.

Example

short F(short *pl, long *p2)
{

*p2 = 0;

*pl = 1;

return *p2;

}

With type-based alias analysis, it is assumed that a write access to the short pointed to
by p1 cannot affect the 1ong value that p2 points to. Thus, it is known at compile time
that this function returns 0. However, in non-standard-conforming C or C++ code these
pointers could overlap each other by being part of the same union. If you use explicit
casts, you can also force pointers of different pointer types to point to the same memory
location.

Cross call

Common code sequences are extracted to local subroutines. This optimization, which is
performed at optimization level High, can reduce code size, sometimes dramatically, on
behalf of execution time and stack size. The resulting code might however be difficult

to debug. This optimization cannot be disabled using the #pragma optimize directive.

Writing efficient code

This section contains general programming hints on how to implement functions to
make your applications robust, but at the same time facilitate compiler optimizations.

The following is a list of programming techniques that will, when followed, enable the
compiler to better optimize the application.

o Local variables—auto variables and parameters—are preferred over static or global
variables. The reason is that the optimizer must assume, for example, that called

Part |. Using the compiler 135

Writing efficient code

136

IAR C/C++ Compiler
Reference Guide

functions can modify non-local variables. When the life spans for local variables
end, the previously occupied memory can then be reused. Globally declared
variables will occupy data memory during the whole program execution.

o Avoid taking the address of local variables using the & operator. This is inefficient
for two main reasons. First, the variable must be placed in memory, and thus cannot
be placed in a processor register. This results in larger and slower code. Second, the
optimizer can no longer assume that the local variable is unaffected over function
calls.

o Module-local variables—variables that are declared static—are preferred over
global variables. Also avoid taking the address of frequently accessed static
variables.

o The compiler is capable of inlining functions. This means that instead of calling a
function, the compiler inserts the content of the function at the location where the
function was called. The result is a faster, but often larger, application. Also,
inlining might enable further optimizations. The compiler often inlines small
functions declared static. The use of the #pragma inline directive and the C++
keyword inline gives you fine-grained control, and it is the preferred method
compared to the traditional way of using preprocessor macros. This feature can be
disabled using the --no_inline command line option; see --no_inline, page 172.

e Avoid using inline assembler. Instead, try writing the code in C or C++, use intrinsic
functions, or write a separate module in assembler language. For more details, see
Mixing C and assembler, page 87.

MEMORY TYPES
The compiler provides a range of different memory types.

For most applications it is sufficient to use the data model feature to specify the default
data type. However, for some applications it might be necessary to specify other
memory types in certain cases, for example:

o An application where some global variables are accessed in a large number of
locations. In this case they can be declared to be placed in datal6 memory (or
datal3, if it is a bit in a bitfield).

e An application where all data, with the exception of one large chunk of data, fits
into the region of one of the smaller memory types.

o Data that must be placed at a specific memory location.

Constants and variables in different parts of memory

Placing constants and variables in different parts of memory, for example constants in
far or data20 memory and variables in datal6 memory is not ISO/ANSI standard
compliant. These combinations are efficient to use for the IAR C/C++ Compiler for

Efficient coding for embedded applications __¢

M16C/R8C, and code written using them can be migrated to other ISO/ANSI C/C++
compilers.

However, some code written for other ISO/ANSI C/C++ compilers cannot be migrated
to the IAR C/C++ Compiler for M16C/R8C because:

o Default pointers cannot point to constant objects. (Only pointers that refer to a
const type object are capable of referring to constant objects). A special case of
this is the varargs argument; pointers here are handled as non-const objects even
though type-checking is limited.

e String literals are handled as const objects, which means that any function that has
a parameter of type char * cannot be called directly with a string literal. There are
two possible ways to solve this.

Solution 1: Define the parameter as const char * instead of char *:

/* Original function */
void my_func(char * str)
{
}
/* Rewritten function */
void my_func(const char * str)
{
}
/* Original function call can be used as is */
void main (void)
{
my_funcl ("Hello World") ;
}

If it is not possible to change the definition of the parameter, it might be possible to use
the second alternative instead.

Solution 2: Copy the string literal to a char * variable and call the function with the
variable:

/* Original function can be used as is */
void my_func(char * str)
{
}
/* Copy string literal to char * variable, and call
function with variable */
void main (void)
{
char my_string[] = "Hello World";
my_func (my_string) ;

Part I. Using the compiler 137

Writing efficient code

138

IAR C/C++ Compiler
Reference Guide

The standard print £ function allows the format string to be a string literal, but
varargs arguments must still be located in non-constant memory:

void main(void)

{
/* String copied to non-constant memory */
char success_var[] = "success";

/* String literal argument located in constant memory */
printf ("This will result in %s\n", "failure");

/* Variable string argument located in non-constant
memory */
printf ("This will result in %s\n", success_var) ;

Note that some of the standard C library functions have been altered to take const
char * parameters and return const char * instead of char * whenever possible.

SAVING STACK SPACE AND RAM MEMORY

The following is a list of programming techniques that will, when followed, save
memory and stack space:

e If stack space is limited, avoid long call chains and recursive functions.

e Avoid using large non-scalar types, such as structures, as parameters or return type.
To save stack space, you should instead pass them as pointers or, in C++, as
references.

FUNCTION PROTOTYPES
It is possible to declare and define functions using one of two different styles:

e Prototyped
e Kernighan & Ritchie C (K&R C)

Both styles are included in the C standard; however, it is recommended to use the
prototyped style, since it makes it easier for the compiler to find problems in the code.
Using the prototyped style will also make it possible to generate more efficient code,
since type promotion (implicit casting) is not needed. The K&R style is only supported
for compatibility reasons.

To make the compiler verify that all functions have proper prototypes, use the compiler
option Require prototypes (--require_prototypes).

Efficient coding for embedded applications __¢

Prototyped style
In prototyped function declarations, the type for each parameter must be specified.

int Test (char, int); /* Declaration */

int Test (char ch, int i) /* Definition */
{

return i1 + ch;

Kernighan & Ritchie style

In K&R style—traditional pre-ISO/ANSI C—it is not possible to declare a function
prototyped. Instead, an empty parameter list is used in the function declaration. Also,
the definition looks different.

For example:

int Test(); /* Declaration */

int Test(ch, i) /* Definition */
char ch;

int i;

{

return i1 + ch;

INTEGER TYPES AND BIT NEGATION

In some situations, the rules for integer types and their conversion lead to possibly
confusing behavior. Things to look out for are assignments or conditionals (test
expressions) involving types with different size, and logical operations, especially bit
negation. Here, #ypes also includes types of constants.

In some cases there might be warnings (for example, for constant conditional or
pointless comparison), in others just a different result than what is expected. Under
certain circumstances the compiler might warn only at higher optimizations, for
example, if the compiler relies on optimizations to identify some instances of constant
conditionals. In this example an 8-bit character, a 16-bit integer, and two’s complement
is assumed:

void F1 (unsigned char cl)

{
if (cl == ~0x80)

7

Part |. Using the compiler 139

Writing efficient code

140

IAR C/C++ Compiler
Reference Guide

Here, the test is always false. On the right hand side, 0x80 is 0x0080, and ~0x0080
becomes 0xFF7F. On the left hand side, c1 is an 8-bit unsigned character, so it cannot
be larger than 255. It also cannot be negative, which means that the integral promoted
value can never have the topmost 8 bits set.

PROTECTING SIMULTANEOUSLY ACCESSED VARIABLES

Variables that are accessed asynchronously, for example by interrupt routines or by code
executing in separate threads, must be properly marked and have adequate protection.
The only exception to this is a variable that is always read-only.

To mark a variable properly, use the volatile keyword. This informs the compiler,
among other things, that the variable can be changed from other threads. The compiler
will then avoid optimizing on the variable (for example, keeping track of the variable in
registers), will not delay writes to it, and be careful accessing the variable only the
number of times given in the source code. To read more about the volatile type
qualifier, see Declaring objects volatile, page 191.

A sequence that accesses a volatile declared variable must also not be interrupted.
Use the __monitor keyword in interruptible code to ensure this. This must be done for
both write and read sequences, otherwise you might end up reading a partially updated
variable. This is true for all variables of all sizes. Accessing a small-sized variable can
be an atomic operation, but this is not guaranteed and you should not rely on it unless
you continuously study the compiler output. It is safer to use the __monitor keyword
to ensure that the sequence is an atomic operation.

ACCESSING SPECIAL FUNCTION REGISTERS

Specific header files for several M16C/R8C Series devices are included in the IAR
product installation. The header files are named iodevice.h and define the
processor-specific special function registers (SFRs).

Note: Each header file contains one section used by the compiler, and one section used
by the assembler.

SFRs with bitfields are declared in the header file. This example is from iom16c62.h:

/* Timer B3,4,5 count start flag */
_ datal3 _ no_init volatile union
{
unsigned char TBSR;
struct
{
unsigned char
unsigned char TB3S
unsigned char TB4S
unsigned char TB5S

PR e W

Efficient coding for embedded applications __¢

} TBSR_bit;
} @ 0x340;

By including the appropriate include file in your code, it is possible to access either the
whole register or any individual bit (or bitfields) from C code as follows:

#define tbsr TBSR

#define tb3s TBSR_bit.TB3S
#define tbds TBSR_bit.TB4S
#define tbS5s TBSR_bit.TB5S

You can also use the header files as templates when you create new header files for other
M16C/R8C Series devices. For details about the @ operator, see Located data, page 41.

NON-INITIALIZED VARIABLES

Normally, the runtime environment will initialize all global and static variables when the
application is started.

The compiler supports the declaration of variables that will not be initialized, using the
__no_init type modifier. They can be specified either as a keyword or using the
#pragma object_attribute directive. The compiler places such variables in a
separate segment, according to the specified memory keyword. See the chapter Placing
code and data for more information.

For __no_init, the const keyword implies that an object is read-only, rather than that
the object is stored in read-only memory. It is not possible to give a __no_init object
an initial value.

Variables declared using the __no_init keyword could, for example, be large input
buffers or mapped to special RAM that keeps its content even when the application is
turned off.

For information about the __no_init keyword, see page 213. Note that to use this
keyword, language extensions must be enabled; see -e, page 165. For information about
the #pragma object_attribute, see page 225.

Part |. Using the compiler 141

Writing efficient code

IAR C/C++ Compiler
142 Reference Guide

Part 2. Reference

information

This part of the IAR C/C++ Compiler Reference Guide for M16C/R8C

contains these chapters:

e External interface details
e Compiler options

e Data representation

o Compiler extensions

e Extended keywords

e Pragma directives

e Intrinsic functions

e The preprocessor

e Library functions

e Segment reference

e Implementation-defined behavior.

.hmuhhhhi

143

AAARRIE

144

External interface details

This chapter provides reference information about how the compiler interacts
with its environment. The chapter briefly lists and describes the invocation
syntax, methods for passing options to the tools, environment variables, the

include file search procedure, and finally the different types of compiler output.

Invocation syntax

You can use the compiler either from the IDE or from the command line. Refer to the
IAR Embedded Workbench® IDE User Guide for information about using the compiler
from the IDE.

COMPILER INVOCATION SYNTAX
The invocation syntax for the compiler is:
iccmléc [options] [sourcefile] [options]

For example, when compiling the source file prog. c, use this command to generate an
object file with debug information:

icemléc prog.c --debug

The source file can be a C or C++ file, typically with the filename extension c or cpp,
respectively. If no filename extension is specified, the file to be compiled must have the
extension c.

Generally, the order of options on the command line, both relative to each other and to
the source filename, is not significant. There is, however, one exception: when you use
the - option, the directories are searched in the same order that they are specified on the
command line.

If you run the compiler from the command line without any arguments, the compiler
version number and all available options including brief descriptions are directed to
stdout and displayed on the screen.

PASSING OPTIONS

There are three different ways of passing options to the compiler:

e Directly from the command line

Specify the options on the command line after the iccml6c command, either before
or after the source filename; see Invocation syntax, page 145.

Part 2. Reference information

145

Include file search procedure

146

Via environment variables

The compiler automatically appends the value of the environment variables to every
command line; see Environment variables, page 146.

Via a text file, using the - £ option; see -f, page 167.

For general guidelines for the option syntax, an options summary, and a detailed
description of each option, see the Compiler options chapter.

ENVIRONMENT VARIABLES

These environment variables can be used with the compiler:

Environment variable Description

C_INCLUDE Specifies directories to search for include files; for example:

C_INCLUDE=c:\program files\iar systems\embedded
workbench 5.n\ml6c\inc;c:\headers

QCCMI6C Specifies command line options; for example: QCCM16C=-1A

asm.lst

Table 28: Compiler environment variables

Include file search procedure

This is a detailed description of the compiler’s #include file search procedure:

IAR C/C++ Compiler
Reference Guide

If the name of the #include file is an absolute path, that file is opened.

If the compiler encounters the name of an #include file in angle brackets, such as:
#include <stdio.h>

it searches these directories for the file to include:

1 The directories specified with the - option, in the order that they were
specified, see -/, page 167.

2 The directories specified using the C_INCLUDE environment variable, if any, see
Environment variables, page 146.

If the compiler encounters the name of an #include file in double quotes, for
example:
#include "vars.h"

it searches the directory of the source file in which the #include statement occurs,
and then performs the same sequence as for angle-bracketed filenames.

External interface details ___¢

If there are nested #include files, the compiler starts searching the directory of the
file that was last included, iterating upwards for each included file, searching the
source file directory last. For example:

src.c in directory dir\src
#include "src.h"

src.h in directory dir\include
#include "config.h"

When dir\exe is the current directory, use this command for compilation:
iccmlée ..\src\src.c -I..\include -I..\debugconfig

Then the following directories are searched in the order listed below for the file
config.h, which in this example is located in the dir\debugconfig directory:

dir\include Current file is src.h.

dir\src File including current file (src. c).
dir\include As specified with the first -I option.
dir\debugconfig As specified with the second -T option.

Use angle brackets for standard header files, like stdio.h, and double quotes for files
that are part of your application.

Note: Both \ and / can be used as directory delimiters.

Compiler output

The compiler can produce the following output:

o A linkable object file

The object files produced by the compiler use a proprietary format called UBROF,
which stands for Universal Binary Relocatable Object Format. By default, the object
file has the filename extension r34.

o Optional list files

Various kinds of list files can be specified using the compiler option -1, see -/, page
168. By default, these files will have the filename extension 1st.

o Optional preprocessor output files

A preprocessor output file is produced when you use the --preprocess option; by
default, the file will have the filename extension i.

Part 2. Reference information 147

Diagnostics

148

o Diagnostic messages

Diagnostic messages are directed to the standard error stream and displayed on the
screen, and printed in an optional list file. To read more about diagnostic messages,
see Diagnostics, page 148.

Error return codes

These codes provide status information to the operating system which can be tested
in a batch file, see Error return codes, page 148.

Size information

Information about the generated amount of bytes for functions and data for each
memory is directed to the standard output stream and displayed on the screen. Some
of the bytes might be reported as shared.

Shared objects are functions or data objects that are shared between modules. If any
of these occur in more than one module, only one copy is retained. For example, in
some cases inline functions are not inlined, which means that they are marked as
shared, because only one instance of each function will be included in the final
application. This mechanism is sometimes also used for compiler-generated code or
data not directly associated with a particular function or variable, and when only one
instance is required in the final application.

Error return codes

The compiler returns status information to the operating system that can be tested in a
batch file.

These command line error codes are supported:

Code Description

0
|

Compilation successful, but there might have been warnings.

Warnings were produced and the option --warnings_affect_exit_code was
used.

Errors occurred.
Fatal errors occurred, making the compiler abort.

Internal errors occurred, making the compiler abort.

Table 29: Error return codes

Diagnostics

IAR C/C++ Compiler
Reference Guide

This section describes the format of the diagnostic messages and explains how
diagnostic messages are divided into different levels of severity.

External interface details ___¢

MESSAGE FORMAT

All diagnostic messages are issued as complete, self-explanatory messages. A typical
diagnostic message from the compiler is produced in the form:

filename, linenumber levelltag]: message

with these elements:

filename The name of the source file in which the issue was encountered
linenumber The line number at which the compiler detected the issue
level The level of seriousness of the issue

tag A unique tag that identifies the diagnostic message

message An explanation, possibly several lines long

Diagnostic messages are displayed on the screen, as well as printed in the optional list
file.

Use the option --diagnostics_tables to list all possible compiler diagnostic
messages.

SEVERITY LEVELS

The diagnostic messages are divided into different levels of severity:

Remark

A diagnostic message that is produced when the compiler finds a source code
construction that can possibly lead to erroneous behavior in the generated code.
Remarks are by default not issued, but can be enabled, see --remarks, page 178.

Warning

A diagnostic message that is produced when the compiler finds a programming error or
omission which is of concern, but not so severe as to prevent the completion of
compilation. Warnings can be disabled by use of the command line option
--no_warnings, see page 174.

Error

A diagnostic message that is produced when the compiler finds a construction which
clearly violates the C or C++ language rules, such that code cannot be produced. An
error will produce a non-zero exit code.

Part 2. Reference information 149

Diagnostics

150

IAR C/C++ Compiler
Reference Guide

Fatal error

A diagnostic message that is produced when the compiler finds a condition that not only
prevents code generation, but which makes further processing of the source code
pointless. After the message is issued, compilation terminates. A fatal error will produce
a non-zero exit code.

SETTING THE SEVERITY LEVEL

The diagnostic messages can be suppressed or the severity level can be changed for all
diagnostics messages, except for fatal errors and some of the regular errors.

See Summary of compiler options, page 153, for a description of the compiler options
that are available for setting severity levels.

See the chapter Pragma directives, for a description of the pragma directives that are
available for setting severity levels.

INTERNAL ERROR

An internal error is a diagnostic message that signals that there was a serious and
unexpected failure due to a fault in the compiler. It is produced using this form:

Internal error: message

where message is an explanatory message. If internal errors occur, they should be
reported to your software distributor or IAR Systems Technical Support. Include enough
information to reproduce the problem, typically:

The product name

The version number of the compiler, which can be seen in the header of the list files
generated by the compiler

Your license number
The exact internal error message text

The source file of the application that generated the internal error

A list of the options that were used when the internal error occurred.

Compiler options

This chapter describes the syntax of compiler options and the general syntax
rules for specifying option parameters, and gives detailed reference
information about each option.

Options syntax

Compiler options are parameters you can specify to change the default behavior of the
compiler. You can specify options from the command line—which is described in more
detail in this section—and from within the IDE.

Refer to the /AR Embedded Workbench® IDE User Guide for information about the
compiler options available in the IDE and how to set them.

TYPES OF OPTIONS

There are two types of names for command line options, short names and /ong names.
Some options have both.

e A short option name consists of one character, and it can have parameters. You
specify it with a single dash, for example -e

e A long option name consists of one or several words joined by underscores, and it
can have parameters. You specify it with double dashes, for example
--char_is_signed.

For information about the different methods for passing options, see Passing options,
page 145.
RULES FOR SPECIFYING PARAMETERS

There are some general syntax rules for specifying option parameters. First, the rules
depending on whether the parameter is optional or mandatory, and whether the option
has a short or a long name, are described. Then, the rules for specifying filenames and
directories are listed. Finally, the remaining rules are listed.

Rules for optional parameters

For options with a short name and an optional parameter, any parameter should be
specified without a preceding space, for example:

-0 or -Oh

Part 2. Reference information

151

Options syntax

152

IAR C/C++ Compiler
Reference Guide

For options with a long name and an optional parameter, any parameter should be
specified with a preceding equal sign (=), for example:

--diag_suppress=n

Rules for mandatory parameters

For options with a short name and a mandatory parameter, the parameter can be
specified either with or without a preceding space, for example:

-I..\srcor-I ..\src\

For options with a long name and a mandatory parameter, the parameter can be specified
either with a preceding equal sign (=) or with a preceding space, for example:

--diagnostics_tables=MyDiagnostics.lst
or

--diagnostics_tables MyDiagnostics.lst

Rules for options with both optional and mandatory parameters

For options taking both optional and mandatory parameters, the rules for specifying the
parameters are:

e For short options, optional parameters are specified without a preceding space
e For long options, optional parameters are specified with a preceding equal sign (=)

e For short and long options, mandatory parameters are specified with a preceding
space.

For example, a short option with an optional parameter followed by a mandatory
parameter:

-1A MyList.lst

For example, a long option with an optional parameter followed by a mandatory
parameter:

--preprocess=n PreprocOutput.lst

Rules for specifying a filename or directory as parameters
These rules apply for options taking a filename or directory as parameters:

o Options that take a filename as a parameter can optionally also take a path. The path
can be relative or absolute. For example, to generate a listing to the file List.1st
in the directory . .\listings\:

iccmléc prog.c -1 ..\listings\List.lst

Compiler options °

For options that take a filename as the destination for output, the parameter can be
specified as a path without a specified filename. The compiler stores the output in
that directory, in a file with an extension according to the option. The filename will
be the same as the name of the compiled source file, unless a different name was
specified with the option -o, in which case that name is used. For example:

iccmléc prog.c -1 ..\listings\

The produced list file will have the default name . .\1istings\prog.lst
The current directory is specified with a period (.). For example:

iccmléc prog.c -1

/ can be used instead of \ as the directory delimiter.

By specifying -, input files and output files can be redirected to the standard input
and output stream, respectively. For example:

iccmlée prog.c -1 -

Additional rules

These rules also apply:

When an option takes a parameter, the parameter cannot start with a dash (-)
followed by another character. Instead, you can prefix the parameter with two
dashes; this example will create a list file called -r:

iccmlée prog.c -1 ---r

For options that accept multiple arguments of the same type, the arguments can be
provided as a comma-separated list (without a space), for example:
--diag_warning=Be0001,Be0002

Alternatively, the option can be repeated for each argument, for example:

--diag_warning=Be0001
--diag_warning=Be0002

Summary of compiler options

This table summarizes the compiler command line options:

Command line option Description

-2

An alias for --64bit_doubles, available for
backward compatibility.

--64bit_doubles Sets the the size of doubles to 64 bits

Table 30: Compiler options summary

Part 2. Reference information 153

Summary of compiler options

Command line option Description

--align_data Specifies byte alignment for data

--align_func Specifies byte alignment for functions

--calling_convention Specifies the calling convention

--char_is_signed Treats char as signed

--code_segment Places executable code in a specified segment

--constant_data Overrides the default placement of constants

--cpu Specifies a specific CPU core

-D Defines preprocessor symbols

--data_model Specifies the data model

--debug Generates debug information

--dependencies Lists file dependencies

--diag_error Treats these as errors

--diag_remark Treats these as remarks

--diag_suppress Suppresses these diagnostics

--diag_warning Treats these as warnings

--diagnostics_tables Lists all diagnostic messages

--discard_unused_publics Discards unused public symbols

--dlib_config Determines the library configuration file

-e Enables language extensions

--—ec++ Enables Embedded C++ syntax

--eec++ Enables Extended Embedded C++ syntax

--enable_multibytes Enables support for multibyte characters in source
files

--error_limit Specifies the allowed number of errors before

compilation stops

-f Extends the command line
--header_context Lists all referred source files and header files
-I Specifies include file path

-1 Creates a list file

--library_module Creates a library module

--low_consts Copies constants to near RAM

--mfc Enables multi-file compilation

Table 30: Compiler options summary (Continued)

IAR C/C++ Compiler
154 Reference Guide

Compiler options °

Command line option Description

--migration_preprocessor Extends the preprocessor

_extensions

--misrac Enables error messages specific to MISRA C:1998.

This option is a synonym of --misrac1998 and
is only available for backward compatibility.

--misracl998 Enables error messages specific to MISRA-C:1998.
See the IAR Embedded Workbench® MISRA C:1998
Reference Guide.

--misrac2004 Enables error messages specific to MISRA-C:2004.
See the IAR Embedded Workbench® MISRA C:2004
Reference Guide.

--misrac_verbose Enables verbose logging of MISRA C checking. See
the IAR Embedded Workbench® MISRA C:1998
Reference Guide or the IAR Embedded Workbench®
MISRA C:2004 Reference Guide.

--module_name Sets the object module name
--no_code_motion Disables code motion optimization
--no_cross_call Disables cross-call optimization

--no_cse Disables common subexpression elimination
--no_inline Disables function inlining
--no_path_in_file_macros Removes the path from the return value of the

symbols __FILE _ and __BASE_FILE__
--no_tbaa Disables type-based alias analysis

--no_typedefs_in diagnostics Disables the use of typedef names in diagnostics

--no_unroll Disables loop unrolling
--no_warnings Disables all warnings
--no_wrap_diagnostics Disables wrapping of diagnostic messages
-0 Sets the optimization level

-0 Sets the object filename
--omit_types Excludes type information
--only_stdout Uses standard output only

--output Sets the object filename
--predef_macros Lists the predefined symbols.

Table 30: Compiler options summary (Continued)

Part 2. Reference information 155

Descriptions of options

156

Command line option

Description

--preinclude

--preprocess
--public_equ

-R

-r
--remarks

--require_prototypes

--silent
--strict_ansi

-u

--use_DIV

--variable_data
--warnings_affect_exit_code
--warnings_are_errors

Y

Includes an include file before reading the source
file

Generates preprocessor output
Defines a global named assembler label

An alias for --code_segment, available for
backward compatibility.

Generates debug information
Enables remarks

Verifies that functions are declared before they are
defined

Optimizes for speed, available for backward
compatibility

Sets silent operation

Checks for strict compliance with ISO/ANSI C

An alias for --align_data, available for
backward compatibility.

Uses div and divu

Specifies an explicit location for variables
Warnings affects exit code

Warnings are treated as errors

An alias for --1ow_consts, available for
backward compatibility.

Optimizes for size, available for backward
compatibility

Table 30: Compiler options summary (Continued)

Descriptions of options

A

IAR C/C++ Compiler
Reference Guide

The following section gives detailed reference information about each compiler option.

Note that if you use the options page Extra Options to specify specific command line
options, the IDE does not perform an instant check for consistency problems like
conflicting options, duplication of options, or use of irrelevant options.

--64bit_doubles

Syntax

Description

See also

--align_data

Syntax

Parameters

Description

--align_func

Syntax

Parameters

Description

Compiler options _o

--64bit_doubles

By default, the compiler uses 32-bit doubles. Use this option to set the size of doubles
to 64 bits instead.

Floating-point types, page 186.

Project>Options>General Options>Target>Floating-point

--align_data={1]2}

1 Specifies byte alignment

2 (default) Specifies word alignment

By default, the compiler uses word alignment for data objects. Using word alignment
implies efficient memory accesses, but at the expense of wasted data memory for the
padded bytes. In some cases the code size is increased when using word alignment. If
space is a critical matter, choose byte alignment instead.

Project>Options>General Options>Target>Byte align objects

--align_func={1]2}

1 (default) Specifies byte alignment

2 Specifies word alignment

By default, the compiler uses byte alignment for function entries. Use
--align_func=2 to specify word alignment and force the compiler to align all
function entries to even addresses. Using --align_func=1 can save 1 byte of code
space, but execution speed might vary depending on whether the start address is odd or
even.

Part 2. Reference information 157

Descriptions of options

158

--calling_convention

Syntax

Parameters

Description

See also

--char_is_signed

Syntax

Description

IAR C/C++ Compiler
Reference Guide

The M16C/R8C Series of CPU cores accesses code faster on even addresses, which
means that a function might have a different execution performance if it starts on an odd
or an even address. If the execution speed of the function should not vary depending on
the size of other functions, you should use --align_func=2. However, the compiler
will add a pad byte on all functions with an odd size.

Project>Options>General Options>Target>Word align function entries

--calling_convention={simple|normal}

simple Specifies the simple calling convention

normal (default) Specifies the normal calling convention

Use this option to override the default calling convention.
Note: The --calling_convention option must be specified in the same way in all
modules.

Calling convention, page 93.

Project>Options>General Options>Target>Calling convention

--char_is_signed

By default, the compiler interprets the char type as unsigned. Use this option to make
the compiler interpret the char type as signed instead. This can be useful when you, for
example, want to maintain compatibility with another compiler.

Note: The runtime library is compiled without the --char_is_signed option. If you
use this option, you might get type mismatch warnings from the linker, because the
library uses unsigned char.

Project>Options>C/C++ Compiler>Language>Plain ‘char’ is

--code_segment

Syntax

Parameters

Description

--constant_data

Syntax

Parameters

Description

See also

--cpu
Syntax

Parameters

Compiler options _o

--code_segment=name

name Specifies the segment where code is to be placed

Normally, the compiler places executable code in the segment named CODE. If you want
to specify an explicit location for the code, use this option to specify a code segment
name, which you can then assign to a fixed address in memory by modifying the linker
command file.

Note: The segment name is case-sensitive.

Project>Options>C/C++ Compiler>Output>Code segment

--constant_data={near | far|huge}

near (default) Places constants in near memory

far Places constants in far memory

huge Places constants in huge memory

The default placement of constant data is determined by the used data model. Use this
option to override the default placement for constants.

Data models, page 12, --variable_data, page 180, and Constants and variables in
different parts of memory, page 136..

Project>Options>General Options>Target>Constants in:

—-—Cpu=core

core Specifies a specific CPU core; choose between M16C (default) and
R8C.

Part 2. Reference information 159

Descriptions of options

160

Description

Syntax

Parameters

Description

--data_model

Syntax

Parameters

IAR C/C++ Compiler
Reference Guide

The compiler supports different CPU cores. Use this option to select for which CPU core
the code will be generated.

Project>Options>General Options>Target>Device

-D symbol[=value]

symbol The name of the preprocessor symbol

value The value of the preprocessor symbol

Use this option to define a preprocessor symbol. If no value is specified, 1 is used. This
option can be used one or more times on the command line.

The option -D has the same effect as a #define statement at the top of the source file:
-Dsymbol

is equivalent to:

#define symbol 1

To get the equivalence of:

#define FOO

specify the = sign but nothing after, for example:

-DFO0=

Project>Options>C/C++ Compiler>Preprocessor>Defined symbols

--data_model={near|far|huge}

near (default) Specifies the near data model
far Specifies the far data model
huge Specifies the huge data model

Compiler options _o

Description Use this option to select the data model for which the code will be generated. If you do
not select a data model option, the compiler uses the default data model. Note that all
modules of your application must use the same data model.

See also Data models, page 12.

Project>Options>General Options>Target>Data model

--debug, -r

Syntax --debug
-r

Description Use the --debug or -r option to make the compiler include information in the object
modules required by the IAR C-SPY® Debugger and other symbolic debuggers.

Note: Including debug information will make the object files larger than otherwise.

Project>Options>C/C++ Compiler>Output>Generate debug information

--dependencies

Swﬁax ——dependencies[=[i|m]] {filename|directory}

Parameters
i (default) Lists only the names of files
m Lists in makefile style
For information about specifying a filename or a directory, see Rules for specifying a
filename or directory as parameters, page 152.

Description Use this option to make the compiler list all source and header files opened by the
compilation into a file with the default filename extension i.

Example If --dependencies or --dependencies=i is used, the name of each opened source

file, including the full path, if available, is output on a separate line. For example:

c:\iar\product\include\stdio.h
d:\myproject\include\foo.h

Part 2. Reference information 161

Descriptions of options

162

--diag_error

Syntax

Parameters

Description

IAR C/C++ Compiler
Reference Guide

If --dependencies=mis used, the output uses makefile style. For each source file, one
line containing a makefile dependency rule is produced. Each line consists of the name
of the object file, a colon, a space, and the name of a source file. For example:

foo.r34: c:\iar\product\include\stdio.h
foo.r34: d:\myproject\include\foo.h

An example of using --dependencies with a popular make utility, such as gmake
(GNU make):

Set up the rule for compiling files to be something like:

%$.r34 : %.cC
$(ICC) $(ICCFLAGS) $< --dependencies=m $*.d

That is, in addition to producing an object file, the command also produces a
dependency file in makefile style (in this example, using the extension . d).

Include all the dependency files in the makefile using, for example:
-include $(sources:.c=.d)

Because of the dash (-) it works the first time, when the . d files do not yet exist.

This option is not available in the IDE.

--diag_error=tagl, tag, ...]

tag The number of a diagnostic message, for example the message
number Pel17

Use this option to reclassify certain diagnostic messages as errors. An error indicates a
violation of the C or C++ language rules, of such severity that object code will not be
generated. The exit code will be non-zero. This option may be used more than once on
the command line.

Project>Options>C/C++ Compiler>Diagnostics>Treat these as errors

--diag_remark

Syntax

Parameters

Description

--diag_suppress

Syntax

Parameters

Description

--diag_warning

Syntax

Parameters

Description

Compiler options _o

--diag_remark=tagl, tag, ...]

tag The number of a diagnostic message, for example the message
number Pel77

Use this option to reclassify certain diagnostic messages as remarks. A remark is the
least severe type of diagnostic message and indicates a source code construction that
may cause strange behavior in the generated code. This option may be used more than
once on the command line.

Note: By default, remarks are not displayed; use the --remarks option to display
them.

Project>Options>C/C++ Compiler>Diagnostics>Treat these as remarks

--diag_suppress=tagl, tag, ...]

tag The number of a diagnostic message, for example the message
number Pel117

Use this option to suppress certain diagnostic messages. These messages will not be
displayed. This option may be used more than once on the command line.

Project>Options>C/C++ Compiler>Diagnostics>Suppress these diagnostics

--diag_warning=tagl, tag, ...]

tag The number of a diagnostic message, for example the message
number Pe826

Use this option to reclassify certain diagnostic messages as warnings. A warning
indicates an error or omission that is of concern, but which will not cause the compiler

Part 2. Reference information 163

Descriptions of options

--diagnostics_tables

Syntax

Parameters

Description

to stop before compilation is completed. This option may be used more than once on the
command line.

Project>Options>C/C++ Compiler>Diagnostics>Treat these as warnings

--diagnostics_tables {filename|directory}

For information about specifying a filename or a directory, see Rules for specifying a
filename or directory as parameters, page 214.

Use this option to list all possible diagnostic messages in a named file. This can be
convenient, for example, if you have used a pragma directive to suppress or change the
severity level of any diagnostic messages, but forgot to document why.

This option cannot be given together with other options.

This option is not available in the IDE.

--discard_unused_publics

Syntax

Description

See also

IAR C/C++ Compiler
164 Reference Guide

--discard_unused_publics

Use this option to discard unused public functions and variables from the compilation
unit. This enhances interprocedural optimizations such as inlining, cross call, and cross
jump by limiting their scope to public functions and variables that are actually used.

This option is only useful when a/l source files are compiled as one unit, which means
that the --mfc compiler option is used.

Note: Do not use this option only on parts of the application, as necessary symbols
might be removed from the generated output.

--mfc, page 169 and Multi-file compilation units, page 131.

Project>Options>C/C++ Compiler>Discard unused publics

--dlib_config

-e

Syntax

Parameters

Description

Syntax

Description

See also

Compiler options _o

--dlib_config filename

For information about specifying a filename, see Rules for specifying a filename or
directory as parameters, page 152.

Each runtime library has a corresponding library configuration file. Use this option to
specify the library configuration file for the compiler. Make sure that you specify a
configuration file that corresponds to the library you are using.

All prebuilt runtime libraries are delivered with corresponding configuration files. You
can find the library object files and the library configuration files in the directory
ml6c\1lib\dlib. For examples and a list of prebuilt runtime libraries, see Using a
prebuilt library, page 48.

If you build your own customized runtime library, you should also create a
corresponding customized library configuration file, which must be specified to the
compiler. For more information, see Building and using a customized library, page 57.

Note: This option only applies to the IAR DLIB runtime environment.

To set related options, choose:

Project>Options>General Options>Library Configuration

In the command line version of the compiler, language extensions are disabled by
default. If you use language extensions such as extended keywords and anonymous
structs and unions in your source code, you must use this option to enable them.

Note: The -e option and the --strict_ansi option cannot be used at the same time.
The chapter Compiler extensions.

Project>Options>C/C++ Compiler>Language>Allow IAR extensions

Note: By default, this option is enabled in the IDE.

Part 2. Reference information 165

Descriptions of options

-=@Cc++

Syntax

Description

-=cect++

Syntax

Description

See also

--enable_multibytes

Syntax

Description

--error_limit

Syntax

Parameters

IAR C/C++ Compiler
166 Reference Guide

--ec++

In the compiler, the default language is C. If you use Embedded C++, you must use this
option to set the language the compiler uses to Embedded C++.

Project>Options>C/C++ Compiler>Language>Embedded C++

--eec++
In the compiler, the default language is C. If you take advantage of Extended Embedded
C++ features like namespaces or the standard template library in your source code, you
must use this option to set the language the compiler uses to Extended Embedded C++.

Extended Embedded C++, page 110.

Project>Options>C/C++ Compiler>Language>Extended Embedded C++

--enable_multibytes

By default, multibyte characters cannot be used in C or C++ source code. Use this option
to make multibyte characters in the source code be interpreted according to the host
computer’s default setting for multibyte support.

Multibyte characters are allowed in C and C++ style comments, in string literals, and in
character constants. They are transferred untouched to the generated code.

Project>Options>C/C++ Compiler>Language>Enable multibyte support

-—error_limit=n

n The number of errors before the compiler stops the compilation. n
must be a positive integer; 0 indicates no limit.

Description

Syntax

Parameters

Descriptions

--header_context

Syntax

Description

-I
Syntax

Parameters

Compiler options _o

Use the --error_limit option to specify the number of errors allowed before the
compiler stops the compilation. By default, 100 errors are allowed.

This option is not available in the IDE.

-f filename

For information about specifying a filename, see Rules for specifying a filename or
directory as parameters, page 214.

Use this option to make the compiler read command line options from the named file,
with the default filename extension xc1.

In the command file, you format the items exactly as if they were on the command line
itself, except that you may use multiple lines, because the newline character acts just as
a space or tab character.

Both C and C++ style comments are allowed in the file. Double quotes behave in the
same way as in the Microsoft Windows command line environment.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--header_context

Occasionally, to find the cause of a problem it is necessary to know which header file
that was included from which source line. Use this option to list, for each diagnostic
message, not only the source position of the problem, but also the entire include stack at

that point.

This option is not available in the IDE.

-I path

path The search path for #include files

Part 2. Reference information 167

Descriptions of options

168

Description

See also

Syntax

Parameters

IAR C/C++ Compiler
Reference Guide

Use this option to specify the search paths for #include files. This option can be used
more than once on the command line.

Include file search procedure, page 146.

Project>Options>C/C++ Compiler>Preprocessor>Additional include directories

-1[a|A|b|B|c|C|D][N][H] {filename|directory}

(@]

(default)

Assembler list file
Assembler list file with C or C++ source as comments

Basic assembler list file. This file has the same contents as a list file
produced with -1a, except that no extra compiler-generated
information (runtime model attributes, call frame information, frame
size information) is included *

Basic assembler list file. This file has the same contents as a list file
produced with -1A, except that no extra compiler generated
information (runtime model attributes, call frame information, frame
size information) is included ¥

C or C++ list file
C or C++ list file with assembler source as comments

C or C++ list file with assembler source as comments, but without
instruction offsets and hexadecimal byte values

No diagnostics in file

Include source lines from header files in output. Without this
option, only source lines from the primary source file are included

* This makes the list file less useful as input to the assembler, but more useful for reading by a
human.

For information about specifying a filename or a directory, see Rules for specifying a
filename or directory as parameters, page 152.

Compiler options _o

Description Use this option to generate an assembler or C/C++ listing to a file. Note that this option
can be used one or more times on the command line.

To set related options, choose:

Project>Options>C/C++ Compiler>List

--library_module

Syntax --library module
Description Use this option to make the compiler generate a library module rather than a program
module. A program module is always included during linking. A library module will

only be included if it is referenced in your program.

Project>Options>C/C++ Compiler>Output>Module type>Library Module

--low_consts

Syntax --low_consts

Description Use this option to copy constants to near RAM from ROM. All constants will be treated
as initialized variables. This simplifies the use of the near data model for projects with
no ROM in datal6 memory—for instance projects with no external ROM, as all M16C
cores have their internal ROM outside datal6 memory.

Note: This option is only useful in the near data model.

Project>Options>General Options>Target>Writable constants

--mfc

Syntax --mfc

Description Use this option to enable multi-file compilation. This means that the compiler compiles
one or several source files specified on the command line as one unit, which makes
interprocedural optimizations such as inlining, cross call, and cross jump possible.

Note: The compiler will generate one object file per input source code file, where the
first object file contains all relevant data and the other ones are empty. If you want only
the first file to be produced, use the -o compiler option and specify a certain output file.

Part 2. Reference information 169

Descriptions of options

170

Example

See also

iccmléc myfilel.c myfile2.c myfile3.c --mfc

--discard_unused publics, page 164, -o, --output, page 175, and Multi-file compilation
units, page 131.

Project>Options>C/C++ Compiler>Multi-file compilation

--migration_preprocessor_extensions

Syntax

Description

--module_name

Syntax

Parameters

Description

IAR C/C++ Compiler
Reference Guide

--migration_preprocessor_extensions

If you need to migrate code from an earlier IAR Systems C or C/C++ compiler, you
might want to use this option. Use this option to use the following in preprocessor
expressions:

o Floating-point expressions

e Basic type names and sizeof

o All symbol names (including typedefs and variables).

Note: If you use this option, not only will the compiler accept code that does not

conform to the ISO/ANSI C standard, but it will also reject some code that does conform
to the standard.

Important! Do not depend on these extensions in newly written code, because support
for them might be removed in future compiler versions.

Project>Options>C/C++ Compiler>Language>Enable IAR migration
preprocessor extensions

--module_name=name

name An explicit object module name

Normally, the internal name of the object module is the name of the source file, without
a directory name or extension. Use this option to specity an object module name
explicitly.

Compiler options _o

This option is useful when several modules have the same filename, because the
resulting duplicate module name would normally cause a linker error; for example,
when the source file is a temporary file generated by a preprocessor.

Project>Options>C/C++ Compiler>Output>Object module name

--no_code_motion

Syntax --no_code_motion

Description Use this option to disable code motion optimizations. These optimizations, which are
performed at the optimization levels Medium and High, normally reduce code size and
execution time. However, the resulting code might be difficult to debug.

Note: This option has no effect at optimization levels below Medium.

Project>Options>C/C++ Compiler>Optimizations>Enable
transformations>Code motion

--no_cross_call

Syntax --no_cross_call

Description Use this option to disable the cross-call optimization. This optimization is performed at
size optimization, level High. Note that, although the option can drastically reduce the
code size, this option increases the execution time.

Project>Options>C/C++ Compiler>Optimizations>Enable
transformations>Cross call

=--NO_cCse
Syntax --no_cse
Description Use this option to disable common subexpression elimination. At the optimization

levels Medium and High, the compiler avoids calculating the same expression more than
once. This optimization normally reduces both code size and execution time. However,
the resulting code might be difficult to debug.

Part 2. Reference information 171

Descriptions of options

--no_inline
Syntax

Description

Note: This option has no effect at optimization levels below Medium.

Project>Options>C/C++ Compiler>Optimizations>Enable
transformations>Common subexpression elimination

--no_inline

Use this option to disable function inlining. Function inlining means that a simple
function, whose definition is known at compile time, is integrated into the body of its
caller to eliminate the overhead of the call.

This optimization, which is performed at optimization level High, normally reduces
execution time and increases code size. The resulting code might also be difficult to
debug.

The compiler heuristically decides which functions to inline. Different heuristics are
used when optimizing for speed than for size.

Note: This option has no effect at optimization levels below High.

Project>Options>C/C++ Compiler>Optimizations>Enable
transformations>Function inlining

--no_path_in_file_macros

Syntax

Description

See also

IAR C/C++ Compiler
172 Reference Guide

--no_path_in_file_macros

Use this option to exclude the path from the return value of the predefined preprocessor
symbols __FILE__ and __BASE_FILE__.

Descriptions of predefined preprocessor symbols, page 242.

This option is not available in the IDE.

--no_tbaa

Syntax

Description

See also

Compiler options _o

--no_tbaa

Use this option to disable type-based alias analysis. When this options is not used, the
compiler is free to assume that objects are only accessed through the declared type or
through unsigned char.

Type-based alias analysis, page 134.

Project>Options>C/C++ Compiler>Optimizations>Enable
transformations>Type-based alias analysis

--no_typedefs_in_diagnostics

Syntax

Description

Example

--no_typedefs_in_diagnostics

Use this option to disable the use of typedef names in diagnostics. Normally, when a
type is mentioned in a message from the compiler, most commonly in a diagnostic
message of some kind, the typedef names that were used in the original declaration are
used whenever they make the resulting text shorter.

typedef int (*MyPtr) (char const *);
MyPtr p = "foo";
will give an error message like this:

Error[Peldd]: a value of type "char *" cannot be used to
initialize an entity of type "MyPtr"

Ifthe --no_typedefs_in_diagnostics optionis used, the error message will be like
this:

Error[Peld4d]: a value of type "char *" cannot be used to
initialize an entity of type "int (*) (char const *)"

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

Part 2. Reference information 173

Descriptions of options

174

--no_unroll

Syntax

Description

--no_warnings

Syntax

Description

--no_wrap_diagnostics

Syntax

Description

IAR C/C++ Compiler
Reference Guide

--no_unroll

Use this option to disable loop unrolling. The code body of a small loop, whose number
of iterations can be determined at compile time, is duplicated to reduce the loop
overhead.

For small loops, the overhead required to perform the looping can be large compared
with the work performed in the loop body.

The loop unrolling optimization duplicates the body several times, reducing the loop
overhead. The unrolled body also opens up for other optimization opportunities.

This optimization, which is performed at optimization level High, normally reduces
execution time, but increases code size. The resulting code might also be difficult to
debug.

The compiler heuristically decides which loops to unroll. Different heuristics are used
when optimizing for speed and size.

Note: This option has no effect at optimization levels below High.

Project>Options>C/C++ Compiler>Optimizations>Enable
transformations>Loop unrolling

--no_warnings

By default, the compiler issues warning messages. Use this option to disable all warning
messages.

This option is not available in the IDE.

--no_wrap_diagnostics

By default, long lines in diagnostic messages are broken into several lines to make the
message easier to read. Use this option to disable line wrapping of diagnostic messages.

This option is not available in the IDE.

Syntax

Parameters

Description

See also

-0, --output

Syntax

Parameters

Description

Compiler options _o

-0[n|1l|m|h|hs|hz]

n None* (Best debug support)
1 (default) Low*

m Medium

h High, balanced

hs High, favoring speed

hz High, favoring size

*The most important difference between None and Low is that at None, all non-static variables
will live during their entire scope.

Use this option to set the optimization level to be used by the compiler when optimizing
the code. If no optimization option is specified, the optimization level Low is used by
default. If only -0 is used without any parameter, the optimization level High balanced
is used.

A low level of optimization makes it relatively easy to follow the program flow in the
debugger, and, conversely, a high level of optimization makes it relatively hard.

Controlling compiler optimizations, page 131.

Project>Options>C/C++ Compiler>Optimizations

-o {filename|directory}
--output {filename| directory}

For information about specifying a filename or a directory, see Rules for specifying a
filename or directory as parameters, page 214.

By default, the object code output produced by the compiler is located in a file with the
same name as the source file, but with the extension r34. Use this option to explicitly

specify a different output filename for the object code output.

This option is not available in the IDE.

Part 2. Reference information 175

Descriptions of options

--omit_types

Syntax

Description

--only_stdout

Syntax

Description

--output, -o

Syntax

Parameters

Description

IAR C/C++ Compiler
176 Reference Guide

--omit_types

By default, the compiler includes type information about variables and functions in the
object output. Use this option if you do not want the compiler to include this type
information in the output, which is useful when you build a library that should not
contain type information. The object file will then only contain type information that is
a part of a symbol’s name. This means that the linker cannot check symbol references
for type correctness.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--only_stdout

Use this option to make the compiler use the standard output stream (stdout) also for
messages that are normally directed to the error output stream (stderr).

This option is not available in the IDE.

--output {filename| directory}
-o {filename|directory}

For information about specifying a filename or a directory, see Rules for specifying a
filename or directory as parameters, page 208.

By default, the object code output produced by the compiler is located in a file with the
same name as the source file, but with the extension r34. Use this option to explicitly

specify a different output filename for the object code output.

This option is not available in the IDE.

--predef_macros

Syntax

Parameters

Description

--preinclude

Syntax

Parameters

Description

--preprocess

Syntax

Parameters

Compiler options _o

--predef_macros {filename| directory}

For information about specifying a filename, see Rules for specifying a filename or
directory as parameters, page 152.

Use this option to list the predefined symbols. When using this option, make sure to also
use the same options as for the rest of your project.

If a filename is specified, the compiler stores the output in that file. If a directory is
specified, the compiler stores the output in that directory, in a file with the predef
filename extension.

This option is not available in the IDE.

--preinclude includefile

For information about specifying a filename, see Rules for specifying a filename or
directory as parameters, page 152.

Use this option to make the compiler include the specified include file before it starts to
read the source file. This is useful if you want to change something in the source code

for the entire application, for instance if you want to define a new symbol.

Project>Options>C/C++ Compiler>Preprocessor>Preinclude file

--preprocess[=[c][n][1]] {filename| directory}
c Preserve comments

n Preprocess only

1 Generate #1ine directives

For information about specifying a filename or a directory, see Rules for specifying a
filename or directory as parameters, page 152.

Part 2. Reference information 177

Descriptions of options

Description

--public_equ
Syntax

Parameters

Description

-r, --debug

Syntax

Description

--remarks

Syntax

Description

IAR C/C++ Compiler
178 Reference Guide

Use this option to generate preprocessed output to a named file.

Project>Options>C/C++ Compiler>Preprocessor>Preprocessor output to file

--public_equ symboll[=value]

symbol The name of the assembler symbol to be defined

value An optional value of the defined assembler symbol

This option is equivalent to defining a label in assembler language using the EQU
directive and exporting it using the PUBLIC directive. This option can be used more than
once on the command line.

This option is not available in the IDE.

-r
--debug

Use the -r or the --debug option to make the compiler include information in the
object modules required by the IAR C-SPY Debugger and other symbolic debuggers.

Note: Including debug information will make the object files larger than otherwise.

Project>Options>C/C++ Compiler>Output>Generate debug information

--remarks

The least severe diagnostic messages are called remarks. A remark indicates a source
code construct that may cause strange behavior in the generated code. By default, the
compiler does not generate remarks. Use this option to make the compiler generate
remarks.

Compiler options _o

See also Severity levels, page 209.

Project>Options>C/C++ Compiler>Diagnostics>Enable remarks

--require_prototypes

Syntax --require_prototypes

Description Use this option to force the compiler to verify that all functions have proper prototypes.
Using this option means that code containing any of the following will generate an error:

e A function call of a function with no declaration, or with a Kernighan & Ritchie
C declaration

e A function definition of a public function with no previous prototype declaration

e An indirect function call through a function pointer with a type that does not include
a prototype.

Note: This option only applies to functions in the C standard library.

Project>Options>C/C++ Compiler>Language>Require prototypes

--silent
Syntax --silent
Description By default, the compiler issues introductory messages and a final statistics report. Use

this option to make the compiler operate without sending these messages to the standard
output stream (normally the screen).

This option does not affect the display of error and warning messages.

This option is not available in the IDE.

--strict_ansi
Syntax --strict_ansi
Description By default, the compiler accepts a relaxed superset of ISO/ANSI C/C++, see Minor

language extensions, page 201. Use this option to ensure that the program conforms to
the ISO/ANSI C/C++ standard.

Part 2. Reference information 179

Descriptions of options

180

--use_DIV

Syntax

Description

--variable_data

Syntax

Parameters

Description

IAR C/C++ Compiler
Reference Guide

Note: The -e option and the --strict_ansi option cannot be used at the same time.

Project>Options>C/C++ Compiler>Language>Language conformances>Strict
ISO/ANSI

--use_DIV

The div and divu instructions are efficient division instructions where the dividend is
a 32-bit or 16-bit value and the divisor is a 16-bit or 8-bit value. However, the result of
the instruction is undefined if it cannot be contained in a 16-bit value. This makes it
impossible for the compiler to generate div.w, divu.w, div.b, and divu.b
instructions while still being ANSI-compliant. If you know for certain that your
divisions will never overflow, use this option to make the compiler generate div.w,
divu.w, div.b, and divu.b instructions for divisions where either:

e the dividend is a 4-byte value, the divisor is a 2-byte value, and the result is a 2-byte
value

or

e the dividend is a 2-byte value, the divisor is a 1-byte value, and the result is a 1-byte
value.

Note: This is very unsafe unless you are confident that the division will never overflow.
If the result is too large, it will be undetermined.

Project>Options>C/C++ Compiler>Optimizations>Use DIV and DIVU
(non-ANSI)

--variable_data={near|far|huge}

near (default) Places variables in near memory
far Places variables in huge memory
huge Places variables in huge memory

By default, the compiler places variable data in near memory. Use this option to override
the default placement of variables.

Compiler options _o

See also --constant_data, page 159, Constants and variables in different parts of memory, page
136.

Project>Options>General Options>Target>Variables in:

--warnings_affect_exit_code

Syntax --warnings_affect_exit_code

Description By default, the exit code is not affected by warnings, because only errors produce a
non-zero exit code. With this option, warnings will also generate a non-zero exit code.

ep This option is not available in the IDE.

--warnings_are_errors

Syntax --warnings_are_errors

Description Use this option to make the compiler treat all warnings as errors. If the compiler
encounters an error, no object code is generated. Warnings that have been changed into
remarks are not treated as errors.

Note: Any diagnostic messages that have been reclassified as warnings by the option
--diag_warning or the #pragma diag_warning directive will also be treated as
errors when --warnings_are_errors is used.

See also --diag_warning, page 225.

Project>Options>C/C++ Compiler>Diagnostics>Treat all warnings as errors

Part 2. Reference information 181

Descriptions of options

IAR C/C++ Compiler
182 Reference Guide

Data representation

This chapter describes the data types, pointers, and structure types supported
by the compiler.

See the chapter Efficient coding for embedded applications for information about
which data types and pointers provide the most efficient code for your
application.

Alignment

Every C data object has an alignment that controls how the object can be stored in
memory. Should an object have an alignment of, for example, 4, it must be stored on an
address that is divisible by 4.

The reason for the concept of alignment is that some processors have hardware
limitations for how the memory can be accessed.

Assume that a processor can read 4 bytes of memory using one instruction, but only
when the memory read is placed on an address divisible by 4. Then, 4-byte objects, such
as long integers, will have alignment 4.

Another processor might only be able to read 2 bytes at a time; in that environment, the
alignment for a 4-byte 1ong integer might be 2.

A structure type will have the same alignment as the structure member with the most
strict alignment. To decrease the alignment requirements on the structure and its
members, use #pragma pack.

All data types must have a size that is a multiple of their alignment. Otherwise, only the
first element of an array would be guaranteed to be placed in accordance with the
alignment requirements. This means that the compiler might add pad bytes at the end of
the structure. For more information about pad bytes, see Packed structure types, page
190.

Note that with the #pragma data_alignment directive you can increase the alignment
demands on specific variables.

ALIGNMENT ON THE MI16C/R8C SERIES OF CPU CORES

With an alignment of 2, all objects with a size of 2 bytes or more are stored at addresses
divisible by 2. If you set the alignment to 1 by specifying the option --align_data=1,
there is no such requirement.

Part 2. Reference information

Basic data types

Basic data types
The compiler supports both all ISO/ANSI C basic data types and some additional types.

INTEGER TYPES

This table gives the size and range of each integer data type:

Data type Size Range Alignment
bool 8 bits Oto | |
char 8 bits 0 to 255 |
signed char 8 bits -128 to 127 |
unsigned char 8 bits 0 to 255 |
signed short 16 bits -32768 to 32767 2
unsigned short 16 bits 0 to 65535 2
signed int 16 bits -32768 to 32767 2
unsigned int 16 bits 0 to 65535 2
signed long 32 bits 23 10 23111 2
unsigned long 32 bits 0to 232 2
signed long long 64 bits 283 10 283 2
unsigned long long 64 bits 0 to 2541 2

Table 31: Integer types

Note: Integer types with a size of 16 bits or more have a default alignment of 2. This
can be changed using the option --align_data.

Signed variables are represented using the two’s complement form.

Bool

The bool data type is supported by default in the C++ language. If you have enabled
language extensions, the bool type can also be used in C source code if you include the
file stdbool.h. This will also enable the boolean values false and true.

The long long type

The long long data type is supported with these restrictions:

o The CLIB runtime library does not support the 1ong long type
® A long long variable cannot be used in a switch statement.

IAR C/C++ Compiler
184 Reference Guide

Data representation __¢

The enum type

The compiler will use the smallest type required to hold enum constants, preferring
signed rather than unsigned.

When IAR Systems language extensions are enabled, and in C++, the enum constants
and types can also be of the type long, unsigned long, long long, Or unsigned
long long.

To make the compiler use a larger type than it would automatically use, define an enum
constant with a large enough value. For example:

/* Disables usage of the char type for enum */
enum Cards{Spadel, Spade2,
DontUseChar=257};

The char type

The char type is by default unsigned in the compiler, but the --char_is_signed
compiler option allows you to make it signed. Note, however, that the library is compiled
with the char type as unsigned.

The wchar_t type

The wchar_t data type is an integer type whose range of values can represent distinct
codes for all members of the largest extended character set specified among the
supported locals.

The wchar_t data type is supported by default in the C++ language. To use the
wchar_t type also in C source code, you must include the file stddef . h from the
runtime library.

Note: The IAR CLIB Library has only rudimentary support for wchar_t.

Bitfields

In ISO/ANSI C, int and unsigned int can be used as the base type for integer
bitfields. In the IAR C/C++ Compiler for M16C/R8C, any integer type can be used as
the base type when language extensions are enabled.

Bitfields in expressions will have the same data type as the integer base type.

By default, the compiler places bitfield members from the least significant to the most
significant bit in the container type.

If you use the directive #pragma bitfields=reversed, the bitfield members are
placed from the most significant to the least significant bit.

Part 2. Reference information 185

Basic data types

186

IAR C/C++ Compiler
Reference Guide

Floating-point types

In the IAR C/C++ Compiler for M16C/R8C, floating-point values are represented in
standard IEEE 754 format. The sizes for the different floating-point types are:

Type Size if --64bit_doubles is not used Size if --64bit_doubles is used
float 32 bits 32 bits
double 32 bits (default) 64 bits
long double 32 bits 64 bits

Table 32: Floating-point types

Note: The size of double and long double depends on the --64bit_doubles
option, see --64bit_doubles, page 157. The type long double uses the same precision as
double.

The compiler does not support subnormal numbers. All operations that should produce
subnormal numbers will instead generate zero.

Exception flags according to the IEEE 754 standard are not supported.

32-bit floating-point format

The representation of a 32-bit floating-point number as an integer is:

31 30 2322 0
| S | Exponent Mantissa

The exponent is 8 bits, and the mantissa is 23 bits.
The value of the number is:
(-1)S = 2(Exponent-127) % 1 Mantigsa
The range of the number is:

+1.18E-38 to *3.39E+38

The precision of the float operators (+, -, *, and /) is approximately 7 decimal digits.
64-bit floating-point format

The representation of a 64-bit floating-point number as an integer is:

63 62 5251 0
l S ‘ Exponent Mantissa

Data representation __¢

The exponent is 11 bits, and the mantissa is 52 bits.

The value of the number is:

(-1)8 = o (Exponent-1023) « 1 Mantissa

The range of the number is:
+2.23E-308 to *1.79E+308

The precision of the float operators (+, -, *, and /) is approximately 15 decimal digits.

Representation of special floating-point numbers

This list describes the representation of special floating-point numbers:

® Zero is represented by zero mantissa and exponent. The sign bit signifies positive or
negative zero.

o Infinity is represented by setting the exponent to the highest value and the mantissa
to zero. The sign bit signifies positive or negative infinity.

e Not a number (NaN) is represented by setting the exponent to the highest positive
value and the mantissa to a non-zero value. The value of the sign bit is ignored.

Note: The IAR CLIB Library does not fully support the special cases of floating-point
numbers, such as infinity, and NaN. A library function which gets one of these special
cases of floating-point numbers as an argument might behave unexpectedly.

Pointer types

The compiler has two basic types of pointers: code pointers and data pointers.

SIZE

The size of code pointers is always 20 bits, with a storage size of 4 bytes, and they can
address the entire memory. The internal representation of a code pointer is the actual
address it refers to.

These data pointers are available:

Keyword Pointer size Storage in bytes Description

__datal6 16 bits 2 Can only point into 0-64 Kbytes

__far 20 bits 4 Element pointed at must be inside a
16 bits for index pointers 64-Kbyte page

__data20 20 bits 4 No restrictions

20 bits for index pointers

Table 33: Data pointers

Part 2. Reference information 187

Pointer types

188

IAR C/C++ Compiler
Reference Guide

CASTING

Casts between pointers have these characteristics:

o Casting a value of an integer type to a pointer of a smaller type is performed by
truncation

o Casting a value of a signed integer type to a pointer of a larger type is performed in
two steps. In the first step, the value is sign extended to int size. In the second step,
the int value is zero extended to pointer size. In practice, both steps are performed
when casting from a signed char to all pointer types except for datal6 pointers.

Casting a pointer type to a smaller integer type is performed by truncation
Casting a pointer type to a larger integer type is performed by zero extension
Casting a data pointer to a function pointer and vice versa is illegal

Casting a function pointer to an integer type gives an undefined result

Casting from a smaller pointer to a larger pointer is performed by zero extension.

Casting from a larger pointer to a smaller pointer is illegal.

size_t

size_t is the unsigned integer type required to hold the maximum size of an object. In
the IAR C/C++ Compiler for M16C/R8C, the size of size_t is 2 bytes for the near and
far data models, and 4 bytes for the huge data model.

ptrdiff_t

ptrdiff_tis the type of the signed integer required to hold the difference between two
pointers to elements of the same array. In the IAR C/C++ Compiler for M16C/R8C, the
size of ptrdiff_t is 2 bytes for the near and far data models, and 4 bytes for the huge
data model.

Note: Subtracting the start address of an object from the end address can yield a
negative value, because the object can be larger than what the ptrdi ££_t canrepresent.
See this example:

char buff[60000]; /* Assuming ptrdiff_t is a 16-bit */
char *pl = buff; /* signed integer type. */

char *p2 = buff + 60000;

ptrdiff_t diff = p2 - pl;

intptr_t

intptr_t is a signed integer type large enough to contain a void *. In the IAR C/C++
Compiler for M16C/R8C, the size of intptr_t is 2 bytes for the near data model, and
4 bytes for the far and huge data models.

Data representation __¢

uintptr_t
uintptr_t is equivalent to intptr_t, with the exception that it is unsigned.

Note: The sizes of size_t,ptrdiff_t, intptr_t, and uintptr_t are not standard
compliant for the near data model when constants are placed in far or data20 memory.
See --constant data, page 159, for a discussion about this.

Structure types

The members of a struct are stored sequentially in the order in which they are
declared: the first member has the lowest memory address.

ALIGNMENT

The struct and union types have the same alignment as the member with the highest
alignment requirement. The size of a struct is also adjusted to allow arrays of aligned
structure objects.

GENERAL LAYOUT

Members of a struct are always allocated in the order specified in the declaration.
Each member is placed in the struct according to the specified alignment (offsets).

Example

struct First
{
char c;
short s;
} os;

This diagram shows the layout in memory:

c pad s

0 | 2 3
Figure 5: Structure layout

The alignment of the structure is 2 bytes, and a pad byte must be inserted to give
short s the correct alignment.

Part 2. Reference information 189

Structure types

190

IAR C/C++ Compiler
Reference Guide

PACKED STRUCTURE TYPES

The #pragma pack directive is used for relaxing the alignment requirements of the
members of a structure. This changes the layout of the structure. The members are
placed in the same order as when declared, but there might be less pad space between
members.

Note that accessing an object that is not correctly aligned requires code that is both
larger and slower. If such structure members are accessed many times, it is usually better
to construct the correct values in a struct that is not packed, and access this struct
instead.

Special care is also needed when creating and using pointers to misaligned members.
For direct access to misaligned members in a packed struct, the compiler will emit the
correct (but slower and larger) code when needed. However, when a misaligned member
is accessed through a pointer to the member, the normal (smaller and faster) code is
used. In the general case, this will not work.

Example

This example declares a packed structure:

#pragma pack(1l)
struct S
{

char c;

short s;

Y

#pragma pack ()

In this example, the structure s has this memory layout:

c S

0 | 2
Figure 6: Packed structure layout

This example declares a new non-packed structure, S2, that contains the structure s
declared in the previous example:

struct S2

{
struct S s;
long 1;

}i

Data representation __¢

S2 has this memory layout

c s pad 1

0 | 2 3 4 5 6 7
Figure 7: Packed structure layout

The structure s will use the memory layout, size, and alignment described in the
previous example. The alignment of the member 1 is 2 (if --align_data=2), which
means that alignment of the structure s2 will become 2.

For more information, see Alignment of elements in a structure, page 125.

Type qualifiers

According to the ISO/ANSI C standard, volatile and const are type qualifiers.

DECLARING OBJECTS VOLATILE

There are three main reasons for declaring an object volatile:

e Shared access; the object is shared between several tasks in a multitasking
environment

o Trigger access; as for a memory-mapped SFR where the fact that an access occurs
has an effect

o Modified access; where the contents of the object can change in ways not known to
the compiler.

Definition of access to volatile objects

The ISO/ANSI standard defines an abstract machine, which governs the behavior of
accesses to volatile declared objects. In general and in accordance to the abstract
machine, the compiler:

o Considers each read and write access to an object declared volatile as an access

o The unit for the access is either the entire object or, for accesses to an element in a
composite object—such as an array, struct, class, or union—the element. For
example:
char volatile a;

a =5; /* A write access */
a += 6; /* First a read then a write access */

e An access to a bitfield is treated as an access to the underlaying type.

Part 2. Reference information 191

Type qualifiers

192

IAR C/C++ Compiler
Reference Guide

However, these rules are not detailed enough to handle the hardware-related
requirements. The rules specific to the IAR C/C++ Compiler for M16C/R8C are
described below.

Rules for accesses

In the IAR C/C++ Compiler for M16C/R8C, accesses to volatile declared objects are
subject to these rules:

o All accesses are preserved

o All accesses are complete, that is, the whole object is accessed

o All accesses are performed in the same order as given in the abstract machine

o All accesses are atomic, that is, they cannot be interrupted.

The compiler adheres to these rules for these combinations of memory types and data
types:

Data type Access rules

8 bits Preserved, complete, same order, atomic.
16 bits Preserved, complete, same order, atomic.
20 bits Preserved, complete, same order.

32 bits Preserved, complete, same order.

64 bits Preserved, complete, same order.

Table 34: Volatile accesses

For all combinations of object types not listed, only the rule that states that all accesses
are preserved applies.

DECLARING OBJECTS CONST

The const type qualifier is used for indicating that a data object, accessed directly or
via a pointer, is non-writable. A pointer to const declared data can point to both
constant and non-constant objects. It is good programming practice to use const
declared pointers whenever possible because this improves the compiler’s possibilities
to optimize the generated code and reduces the risk of application failure due to
erroneously modified data.

Static and global objects declared const are allocated in ROM, unless the option
--low_consts isused. The objects are allocated in RAM and initialized by the runtime
system at startup.

In C++, objects that require runtime initialization cannot be placed in ROM.

Data representation __¢

Data types in C++

In C++, all plain C data types are represented in the same way as described earlier in this
chapter. However, if any Embedded C++ features are used for a type, no assumptions
can be made concerning the data representation. This means, for example, that it is not
supported to write assembler code that accesses class members.

Part 2. Reference information 193

Data types in C++

IAR C/C++ Compiler
194 Reference Guide

Compiler extensions

This chapter gives a brief overview of the compiler extensions to the
ISO/ANSI C standard. All extensions can also be used for the C++
programming language. More specifically the chapter describes the available C
language extensions.

Compiler extensions overview

The compiler offers the standard features of ISO/ANSI C and a wide set of extensions,
ranging from features specifically tailored for efficient programming in the embedded
industry to the relaxation of some minor standards issues.

You can find the extensions available as:

o C/C++ language extensions

For a summary of available language extensions, see C language extensions, page
196. For reference information about the extended keywords, see the chapter
Extended keywords. For information about C++, the two levels of support for the
language, and C++ language extensions; see the chapter Using C++.

e Pragma directives

The #pragma directive is defined by the ISO/ANSI C standard and is a mechanism
for using vendor-specific extensions in a controlled way to make sure that the source
code is still portable.

The compiler provides a set of predefined pragma directives, which can be used for
controlling the behavior of the compiler, for example how it allocates memory,
whether it allows extended keywords, and whether it outputs warning messages.
Most pragma directives are preprocessed, which means that macros are substituted
in a pragma directive. The pragma directives are always enabled in the compiler. For
several of them there is also a corresponding C/C++ language extension. For a list of
available pragma directives, see the chapter Pragma directives.

e Preprocessor extensions

The preprocessor of the compiler adheres to the ISO/ANSI standard. The compiler
also makes several preprocessor-related extensions available to you. For more
information, see the chapter The preprocessor.

e Intrinsic functions

The intrinsic functions provide direct access to low-level processor operations and
can be very useful in, for example, time-critical routines. The intrinsic functions
compile into inline code, either as a single instruction or as a short sequence of

Part 2. Reference information

195

C language extensions

196

instructions. To read more about using intrinsic functions, see Mixing C and
assembler, page 87. For a list of available functions, see the chapter Intrinsic
functions.

e Library functions

The IAR DLIB Library provides most of the important C and C++ library definitions
that apply to embedded systems. The library also provides some extensions, partly
taken from the C99 standard. For more information, see /AR DLIB Library, page 249.

Note: Any use of these extensions, except for the pragma directives, makes your
application inconsistent with the ISO/ANSI C standard.

ENABLING LANGUAGE EXTENSIONS

In the IDE, language extensions are enabled by default.

For information about how to enable and disable language extensions from the
command line, see the compiler options -e, page 165, and --strict_ansi, page 179.

C language extensions

IAR C/C++ Compiler
Reference Guide

This section gives a brief overview of the C language extensions available in the
compiler. The compiler provides a wide set of extensions, so to help you to find the
extensions required by your application, the extensions are grouped according to their
expected usefulness. In short, this means:

o Important language extensions—extensions specifically tailored for efficient
embedded programming, typically to meet memory restrictions

o Useful language extensions—features considered useful and typically taken from
related standards, such as C99 and C++

o Minor language extensions, that is, the relaxation of some minor standards issues
and also some useful but minor syntax extensions.

IMPORTANT LANGUAGE EXTENSIONS

The following language extensions available both in the C and the C++ programming
languages are well suited for embedded systems programming:
e Memory attributes, type attributes, and object attributes

For information about the related concepts, the general syntax rules, and for
reference information, see the chapter Extended keywords.

o Placement at an absolute address or in a named segment

The @ operator or the directive #pragma location can be used for placing global
and static variables at absolute addresses, or placing a variable or function in a named

Compiler extensions °

segment. For more information about using these primitives, see Controlling data
and function placement in memory, page 127, and location, page 224.

Alignment

Each data type has its own alignment, for more details, see Alignment, page 183. If
you want to change the alignment, the #pragma pack and #pragma
data_alignment directive are available. If you want to use the alignment of an
object, use the __ALIGNOF__ () operator.

The __ALIGNOF__ operator is used for accessing the alignment of an object. It takes
one of two forms:

® _ ALIGNOF__ (type)

® __ALIGNOF__ (expression)

In the second form, the expression is not evaluated.

Anonymous structs and unions

C++ includes a feature named anonymous unions. The compiler allows a similar
feature for both structs and unions in the C programming language. For more
information, see Anonymous structs and unions, page 126.

Bitfields and non-standard types

In ISO/ANSI C, a bitfield must be of type int or unsigned int. Using IAR
Systems language extensions, any integer type or enumeration can be used. The
advantage is that the struct will sometimes be smaller. This matches G.5.8 in the
appendix of the ISO standard, ISO Portability Issues. For more information, see
Floating-point types, page 186.
Dedicated segment operators __segment_begin and __segment_end
The syntax for these operators is:

void * __ segment_begin (segment)

void * __ segment_end (segment)
These operators return the address of the first byte of the named segment and the
first byte after the named segment, respectively. This can be useful if you use the @
operator or the #pragma location directive to place a data object or a function in
a user-defined segment.

The named segment must be a string literal and segment must have been declared
earlier with the #pragma segment directive. If the segment was declared with a
memory attribute memattr, the type of the __segment_begin operator is a pointer
to memattr void. Otherwise, the type is a default pointer to void. Note that you
must enable language extensions to use these operators.

In this example, the type of the __segment_begin operator is void __data20 *.
#pragma segment="MYSEGMENT" __data20

segment_start_address = __segment_begin ("MYSEGMENT") ;

Part 2. Reference information 197

C language extensions

198

IAR C/C++ Compiler
Reference Guide

See also segment, page 229, and location, page 224.

USEFUL LANGUAGE EXTENSIONS

This section lists and briefly describes useful extensions, that is, useful features typically
taken from related standards, such as C99 and C++:

Inline functions

The #pragma inline directive, alternatively the inline keyword, advises the
compiler that the function whose declaration follows immediately after the directive
should be inlined. This is similar to the C++ keyword inline. For more information,
see inline, page 223.

Mixing declarations and statements

It is possible to mix declarations and statements within the same scope. This feature
is part of the C99 standard and C++.

Declaration in for loops

It is possible to have a declaration in the initialization expression of a for loop, for
example:

for (int i = 0; 1 < 10; ++1i)
{
/* Do something here. */

}
This feature is part of the C99 standard and C++.
The bool data type

To use the bool type in C source code, you must include the file stdbool .h. This
feature is part of the C99 standard and C++. (The bool data type is supported by
default in C++.)

C++ style comments

C++ style comments are accepted. A C++ style comment starts with the character
sequence // and continues to the end of the line. For example:

// The length of the bar, in centimeters.
int length;

This feature is copied from the C99 standard and C++.

Inline assembler

Inline assembler can be used for inserting assembler instructions in the generated
function. This feature is part of the C99 standard and C++.

The asmand __asm extended keywords both insert an assembler instruction. However,
when compiling C source code, the asm keyword is not available when the option
--strict_ansi is used. The __asm keyword is always available.

Compiler extensions °

Note: Not all assembler directives or operators can be inserted using this keyword.
The syntax is:
asm ("string");

The string can be a valid assembler instruction or a data definition assembler directive,
but not a comment. You can write several consecutive inline assembler instructions, for
example:

asm ("Label: nop\n"
" jsr Label");

where \n (new line) separates each new assembler instruction. Note that you can define
and use local labels in inline assembler instructions.

For more information about inline assembler, see Mixing C and assembler, page 87.

Compound literals

To create compound literals you can use this syntax:

/* Create a pointer to an anonymous array */
int *p = (int []) {1, 2, 3};

/* Create a pointer to an anonymous structX */
structX *px = &(structX) {5, 6, 7};

Note:

o A compound literal can be modified unless it is declared const
o Compound literals are not supported in Embedded C++ and Extended EC++.
o This feature is part of the C99 standard.

Incomplete arrays at end of structs

The last element of a struct can be an incomplete array. This is useful for allocating a
chunk of memory that contains both the structure and a fixed number of elements of the
array. The number of elements can vary between allocations.

This feature is part of the C99 standard.

Note: The array cannot be the only member of the struct. If that was the case, then
the size of the struct would be zero, which is not allowed in ISO/ANSI C.

Part 2. Reference information 199

C language extensions

200

IAR C/C++ Compiler
Reference Guide

Example

struct str
{
char a;
unsigned long bl[];

Y

struct str * GetAStr(int size)

{
return malloc(sizeof (struct str) +
sizeof (unsigned long) * size);

void UseStr (struct str * s)

{
s->b[10] = 0;
}

The incomplete array will be aligned in the structure just like any other member of the
structure. For more information about structure alignment, see Structure types, page
189.

Hexadecimal floating-point constants

Floating-point constants can be given in hexadecimal style. The syntax is

O0xMANTp{+ | -} EXP, where MANT is the mantissa in hexadecimal digits, including an
optional . (decimal point), and ExPis the exponent with decimal digits, representing an
exponent of 2. This feature is part of the C99 standard.

Examples

0x1p0is 1

OxA.8p2 is 10.5%22

Designated initializers in structures and arrays

Any initialization of either a structure (struct or union) or an array can have a
designation. A designation consists of one or more designators followed by an
initializer. A designator for a structure is specified as . elementname and for an array
[constant index expression].Using designated initializers is not supported in
C++.

Compiler extensions °

Examples

This definition shows a struct and its initialization using designators:

struct
{
int i;
int j;
int k;
int 1;
short array[10];
}u =
{
.1 =6, /* initialize 1 to 6 */
.j = 6, /* initialize j to 6 */
8, /* initialize k to 8 */
.array[7] = 2, /* initialize element 7 to 2 */
.array[3] = 2, /* initialize element 3 to 2 */
5, /* arrayl[4] =5 */
.k = 4 /* reinitialize k to 4 */

Note that a designator specifies the destination element of the initialization. Note also
that if one element is initialized more than once, it is the last initialization that will be
used.

To initialize an element in a union other than the first, do like this:

union
{
int i;
float £;
} vy = {.f =5.0};

To set the size of an array by initializing the last element, do like this:

char array[] = {[10] = 'a'};

MINOR LANGUAGE EXTENSIONS

This section lists and briefly describes minor extensions, that is, the relaxation of some
standards issues and also some useful but minor syntax extensions:
e Arrays of incomplete types

An array can have an incomplete struct, union, or enum type as its element type.
The types must be completed before the array is used (if it is), or by the end of the
compilation unit (if it is not).

Part 2. Reference information 201

C language extensions

202

IAR C/C++ Compiler
Reference Guide

Forward declaration of enum types

The IAR Systems language extensions allow that you first declare the name of an
enum and later resolve it by specifying the brace-enclosed list.

Missing semicolon at end of struct or union specifier

A warning is issued if the semicolon at the end of a struct or union specifier is
missing.

Null and void

In operations on pointers, a pointer to void is always implicitly converted to another
type if necessary, and a null pointer constant is always implicitly converted to a null
pointer of the right type if necessary. In ISO/ANSI C, some operators allow such
things, while others do not allow them.

Casting pointers to integers in static initializers

In an initializer, a pointer constant value can be cast to an integral type if the integral
type is large enough to contain it. For more information about casting pointers, see
Casting, page 188.

Taking the address of a register variable

In ISO/ANSI C, it is illegal to take the address of a variable specified as a register
variable. The compiler allows this, but a warning is issued.

Duplicated size and sign specifiers

Should the size or sign specifiers be duplicated (for example, short short or
unsigned unsigned), an error is issued.

long float means double
The type long float is accepted as a synonym for double.
Repeated typedef declarations

Redeclarations of typedef that occur in the same scope are allowed, but a warning
is issued.

Mixing pointer types
Assignment and pointer difference is allowed between pointers to types that are

interchangeable but not identical; for example, unsigned char * and char *. This
includes pointers to integral types of the same size. A warning is issued.

Assignment of a string constant to a pointer to any kind of character is allowed, and
no warning is issued. However, if constants are placed in far or data20 memory and
variables are placed in datal6, this will cause an error.

Non-top level const

Assignment of pointers is allowed in cases where the destination type has added type
qualifiers that are not at the top level (for example, int ** to int const **).
Comparing and taking the difference of such pointers is also allowed.

Compiler extensions °

o Non-lvalue arrays

A non-lvalue array expression is converted to a pointer to the first element of the
array when it is used.

o Comments at the end of preprocessor directives

This extension, which makes it legal to place text after preprocessor directives, is
enabled, unless strict ISO/ANSI mode is used. The purpose of this language
extension is to support compilation of legacy code; we do not recommend that you
write new code in this fashion.

® An extra comma at the end of enum lists

Placing an extra comma is allowed at the end of an enum list. In strict ISO/ANSI
mode, a warning is issued.

o A label preceding a }
In ISO/ANSI C, a label must be followed by at least one statement. Therefore, it is
illegal to place the label at the end of a block. The compiler issues a warning.

Note: This also applies to the labels of switch statements.

o Empty declarations
An empty declaration (a semicolon by itself) is allowed, but a remark is issued
(provided that remarks are enabled).

e Single-value initialization
ISO/ANSI C requires that all initializer expressions of static arrays, structs, and
unions are enclosed in braces.
Single-value initializers are allowed to appear without braces, but a warning is
issued. The compiler accepts this expression:

struct str

{
int a;
} x = 10;

Part 2. Reference information 203

C language extensions

204

IAR C/C++ Compiler
Reference Guide

o Declarations in other scopes

External and static declarations in other scopes are visible. In the following example,
the variable y can be used at the end of the function, even though it should only be
visible in the body of the if statement. A warning is issued.

int test(int x)
{

if (x)

{

extern int vy;
y = 1;

return y;

}

Expanding function names into strings with the function as context

Use any of the symbols __func__ or __FUNCTION__ inside a function body to
make the symbol expand into a string, with the function name as context. Use the
symbol __PRETTY_FUNCTION__ to also include the parameter types and return
type. The result might, for example, look like this if you use the
__PRETTY_FUNCTION__ symbol:

"void func (char)"

These symbols are useful for assertions and other trace utilities and they require that
language extensions are enabled, see -e, page 165.

Extended keywords

This chapter describes the extended keywords that support specific features
of the M16C/R8C Series CPU core and the general syntax rules for the
keywords. Finally the chapter gives a detailed description of each keyword.

For information about the address ranges of the different memory areas, see
the chapter Segment reference.

General syntax rules for extended keywords
To understand the syntax rules for the extended keywords, it is important to be familiar
with some related concepts.

The compiler provides a set of attributes that can be used on functions or data objects to
support specific features of the M16C/R8C Series CPU core. There are two types of
attributes—type attributes and object attributes:

o Type attributes affect the external functionality of the data object or function

o Object attributes affect the internal functionality of the data object or function.

The syntax for the keywords differs slightly depending on whether it is a type attribute
or an object attribute, and whether it is applied to a data object or a function.

For information about how to use attributes to modify data, see the chapter Data storage.
For information about how to use attributes to modify functions, see the chapter
Functions. For detailed information about each attribute, see Descriptions of extended
keywords, page 210.

Note: The extended keywords are only available when language extensions are enabled
in the compiler.

In the IDE, language extensions are enabled by default.

Use the -e compiler option to enable language extensions. See -e, page 165 for
additional information.

TYPE ATTRIBUTES

Type attributes define how a function is called, or how a data object is accessed. This
means that if you use a type attribute, it must be specified both when a function or data
object is defined and when it is declared.

Part 2. Reference information 205

General syntax rules for extended keywords

206

IAR C/C++ Compiler
Reference Guide

You can either place the type attributes directly in your source code, or use the pragma
directive #pragma type_attribute.

Type attributes can be further divided into memory type attributes and general type
attributes. Memory type attributes are referred to as simply memory attributes in the rest
of the documentation.

Memory attributes

A memory attribute corresponds to a certain logical or physical memory in the CPU
core.

e Available function memory attributes: __tiny_ func

e Available data memory attributes: __datal3 datalé data20,and __far

s —— Jp—

Data objects, functions, and destinations of pointers or C++ references always have a
memory attribute. If no attribute is explicitly specified in the declaration or by the
pragma directive #pragma type_attribute, an appropriate default attribute is used.
You can specify one memory attribute for each level of pointer indirection.

General type attributes
These general type attributes are available:

® Function type attributes affect how the function should be called: __interrupt,

_monitor, regbank_interrupt simple, and __task

— ’ —— [Jp—

® Data type attributes: const and volatile
You can specify as many type attributes as required for each level of pointer indirection.

To read more about the type qualifiers const and volatile, see Type qualifiers, page
191.

Syntax for type attributes used on data objects

In general, type attributes for data objects follow the same syntax as the type qualifiers
const and volatile.

The following declaration assigns the __data20 type attribute to the variables i and j;
in other words, the variable i and j is placed in data20 memory. The variables k and 1
behave in the same way:

__data20 int i, 3J;
int __data20 k, 1;

Note that the attribute affects both identifiers.

Extended keywords ___o

This declaration of i and j is equivalent with the previous one:

#pragma type_attribute=__data20

int 1, 3J;

The advantage of using pragma directives for specifying keywords is that it offers you a
method to make sure that the source code is portable. Note that the pragma directive has
no effect if a memory attribute is already explicitly declared.

For more examples of using memory attributes, see More examples, page 17.

An easier way of specifying storage is to use type definitions. These two declarations
are equivalent:

typedef char __data20 Byte;
typedef Byte *BytePtr;

Byte b;

BytePtr bp;

and

__data20 char b;
char __data20 *bp;

Note that #pragma type_attribute can be used together with a typedef
declaration.
Syntax for type attributes on data pointers

The syntax for declaring pointers using type attributes follows the same syntax as the
type qualifiers const and volatile:

int __data20 * p; The int object is located in __data20 memory.
int * __data20 p; The pointer is located in __data20 memory.
__data20 int * p; The pointer is located in __data20 memory.

Syntax for type attributes on functions

The syntax for using type attributes on functions differs slightly from the syntax of type
attributes on data objects. For functions, the attribute must be placed either in front of
the return type, or in parentheses, for example:

__interrupt void my_handler (void) ;
or

void (__interrupt my_handler) (void) ;

Part 2. Reference information 207

General syntax rules for extended keywords

This declaration of my_handler is equivalent with the previous one:
#pragma type_attribute=__interrupt

void my_handler (void) ;

Syntax for type attributes on function pointers

To declare a function pointer, use this syntax:

int (__data20 * fp) (double);

After this declaration, the function pointer £p points to data2() memory.
An easier way of specifying storage is to use type definitions:

typedef __data20 void FUNC_TYPE (int) ;
typedef FUNC_TYPE *FUNC_PTR_TYPE;
FUNC_TYPE func() ;

FUNC_PTR_TYPE funcptr;

Note that #pragma type_attribute can be used together with a typedef
declaration.

OBJECT ATTRIBUTES

Object attributes affect the internal functionality of functions and data objects, but not
how the function is called or how the data is accessed. This means that an object attribute
does not need to be present in the declaration of an object.

These object attributes are available:

Object attributes that can be used for variables: __no_init, __bitvar

Object attributes that can be used for functions and variables: location, @, and
__root

o Object attributes that can be used for functions: __intrinsic
vector.

noreturn, and

Jp—

You can specify as many object attributes as required for a specific function or data
object.

For more information about 1ocation and @, see Controlling data and function
placement in memory, page 127. For more information about vector, see vector, page
230.

Syntax for object attributes

The object attribute must be placed in front of the type. For example, to place myarray
in memory that is not initialized at startup:

__no_init int myarray[10];

IAR C/C++ Compiler
208 Reference Guide

Extended keywords ___o

The #pragma object_attribute directive can also be used. This declaration is

equivalent to the previous one:

#pragma object_attribute=__no_init

int myarray[10];

Note: Object attributes cannot be used in combination with the typedef keyword.

Summary of extended keywords

This table summarizes the extended keywords:

Extended keyword

Description

__bitvar
__datal3
__datalé
__data20
__far
__huge
__interrupt
__intrinsic
__monitor
__near
__no_init
__noreturn

__regbank_interrupt

__root

__simple
__task

__tiny func

Controls the storage of variables

Controls the storage of data objects

Controls the storage of data objects

Controls the storage of data objects

Controls the storage of data objects

Alias for __data20, available for backwards compatibility
Supports interrupt functions

Reserved for compiler internal use only

Supports atomic execution of a function

Alias for __datalé, available for backwards compatibility
Supports non-volatile memory

Informs the compiler that the function will not return

Supports interrupt functions using the secondary register
bank

Ensures that a function or variable is included in the object
code even if unused

Specifies the simple calling convention for a function
Relaxes the rules for preserving registers

Specifies using special page function calls

Table 35: Extended keywords summary

Part 2. Reference information 209

Descriptions of extended keywords

Descriptions of extended keywords

___bitvar

Syntax

Description

Example

__datal3

Syntax

Description

Storage information

Example

See also

IAR C/C++ Compiler
210 Reference Guide

These sections give detailed information about each extended keyword.

Follows the generic syntax rules for object attributes, see Object attributes, page 208.
The compiler allows you to write code that is equivalent with the relocatable bit type
available in the previous version of the compiler. Absolute bits are not supported.

The only declaration allowed for this data type is s a structure with unsigned bitfields
with the size one (that is a bit). The variable will be stored in the BITVARS segment,
where each bit variable only occupies one bit.

Note: No pointers to objects can be declared __bitvar.

__bitvar struct {unsigned char NAME:1;}

If you find this syntax inconvenient, you can create a macro to define bit variables:
#define __BIT(NAME) __bitvar struct {unsigned char NAME:1;}
Then use it like this:

__BIT(MY_BIT);

Follows the generic syntax rules for memory type attributes that can be used on data
objects, see Type attributes, page 205.

The __datal3 memory attribute overrides the default storage of variables given by the
selected data model and places individual variables and constants in datal3 memory.
__datal3 pointers are not allowed. However, __datalé pointers can point to
_datal3 objects.

| J—

o Address range: 0-0x1FFF
o Maximum object size: 8192 bytes.

e Pointer size: 2 bytes.

__datal3 int x;

Memory types, page 13.

__datalé

Syntax

Description

Storage information

Example

See also

__data20

Syntax

Description

Storage information

Example

See also

_far

Syntax

Extended keywords ___o

Follows the generic syntax rules for memory type attributes that can be used on data
objects, see Type attributes, page 205.

The __datalé memory attribute overrides the default storage of variables given by the
selected data model and places individual variables and constants in datal6 memory.
You can also use the __datal6 attribute to create a pointer explicitly pointing to an
object located in the datal6 memory.

o Address range: 0-0xFFFF (64 Kbytes)
e Maximum object size: 65535 bytes.

e Pointer size: 2 bytes.

__datal6 int x;

Memory types, page 13.

Follows the generic syntax rules for memory type attributes that can be used on data
objects, see Type attributes, page 205.

The __data20 memory attribute overrides the default storage of variables given by the
selected data model and places individual variables and constants in data20 memory.
You can also use the __data20 attribute to create a pointer explicitly pointing to an

object located in the data20 memory.

® Address range: 0-0xFFFFF
o Maximum object size: 1,048,576 bytes.

e Pointer size: 4 bytes.

__data20 int x;

Memory types, page 13.

Follows the generic syntax rules for memory type attributes that can be used on data
objects, see Type attributes, page 205.

Part 2. Reference information 211

Descriptions of extended keywords

Description

Storage information

Example

See also

__huge

__interrupt

Syntax

Description

Example

See also

__intrinsic

Description

IAR C/C++ Compiler
212 Reference Guide

The __far memory attribute overrides the default storage of variables given by the
selected data model and places individual variables and constants in far memory. You
can also use the __ far attribute to create a pointer explicitly pointing to an object
located in the far memory.

o Address range: 0-0xFFFFF
Maximum object size: 65535 bytes. An object cannot cross a 64-Kbyte boundary.

Pointer size: 4 bytes. Arithmetics is only performed on the two lower bytes, except
comparison which is always performed on the entire 20-bit address.

_far int x;

Memory types, page 13.

This keyword is equivalent to the __data20 memory attribute and is provided for
backward compatibility.

Follows the generic syntax rules for type attributes that can be used on functions, see
TBype attributes, page 205.

The __interrupt keyword specifies interrupt functions. To specify one or several
interrupt vectors, use the #pragma vector directive. The range of the interrupt vectors
depends on the device used. It is possible to define an interrupt function without a vector,
but then the compiler will not generate an entry in the interrupt vector table.

An interrupt function must have a void return type and cannot have any parameters.

The header file iochip.h, where chip corresponds to the selected CPU core, contains
predefined names for the existing interrupt vectors.

#pragma vector=0x14
_ _interrupt void my_interrupt_handler (void) ;

Interrupt functions, page 24, vector, page 230, INTVEC, page 271.

The __intrinsic keyword is reserved for compiler internal use only.

___monitor

Syntax

Description

Example

See also

__near

Description

Example

__noreturn

Syntax

Description

Example

Extended keywords ___o

Follows the generic syntax rules for type attributes that can be used on functions, see
Type attributes, page 205.

The __monitor keyword causes interrupts to be disabled during execution of the
function. This allows atomic operations to be performed, such as operations on
semaphores that control access to resources by multiple processes. A function declared
with the __monitor keyword is equivalent to any other function in all other respects.
__monitor int get_lock(void);

Monitor functions, page 25. Read also about the intrinsic functions __disable_interrupt,

page 233, enable interrupt, page 233, get interrupt state, page 234, and
__set_interrupt_state, page 238.

This keyword is equivalent to the __datal6 memory attribute and is provided for
backward compatibility.

Follows the generic syntax rules for object attributes, see Object attributes, page 208.

Usethe __no_init keyword to place a data object in non-volatile memory. This means
that the initialization of the variable, for example at system startup, is suppressed.

__no_init int myarrayl[10];

Follows the generic syntax rules for object attributes, see Object attributes, page 208.
The __noreturn keyword can be used on a function to inform the compiler that the
function will not return. If you use this keyword on such functions, the compiler can

optimize more efficiently. Examples of functions that do not return are abort and exit.

__noreturn void terminate(void) ;

Part 2. Reference information 213

Descriptions of extended keywords

__regbank_interrupt

Syntax

Description

See also

__root

Syntax

Description

Example

See also
__simple

Syntax

Description

See also

__task

Syntax

IAR C/C++ Compiler
214 Reference Guide

Follows the generic syntax rules for type attributes that can be used on functions, see
Type attributes, page 205.

This keyword is the same as __interrupt except that registers are saved by switching
register banks instead of pushing them on the stack. This requires that
__regbank_interrupt cannot be interrupted by itself or other register bank

interrupts.

__interrupt, page 212

Follows the generic syntax rules for object attributes, see Object attributes, page 208.
A function or variable with the __root attribute is kept whether or not it is referenced
from the rest of the application, provided its module is included. Program modules are
always included and library modules are only included if needed.

__root int myarray[10];

To read more about modules, segments, and the link process, see the [4R Linker and
Library Tools Reference Guide.

Follows the generic syntax rules for type attributes that can be used on functions, see
Type attributes, page 205.

Functions that are declared __simple use the simple calling convention. This keyword
can be specified using the #pragma type_attribute directive.

Calling convention, page 93, type_attribute, page 229. .

Follows the generic syntax rules for type attributes that can be used on functions, see
Type attributes, page 205.

Description

Example

__tiny_func

Syntax

Description

Example

Extended keywords ___o

This keyword allows functions to relax the rules for preserving registers. Typically, the
keyword is used on the main function.

By default, functions save the contents of used preserved registers on the stack upon
entry, and restore them at exit. Functions that are declared __task do not save all
registers, and therefore require less stack space.

Because a function declared __ task can corrupt registers that are needed by the calling
function, you should only use __task on functions that do not return or call such a
function from assembler code.

The function main can be declared __task, unless it is explicitly called from the
application. In real-time applications with more than one task, the root function of each
task can be declared __ task.

The __task keyword must be specified both in the function declaration and when the
function is defined.
__task void my_handler (void) ;

The #pragma type_attribute directive can also be used. The following declaration of
my_handler is equivalent with the previous one:

#pragma type_attribute=__task
void my_handler (void) ;

Follows the generic syntax rules for type attributes that can be used on functions, see
Type attributes, page 205.

The __tiny func memory attribute overrides the default storage of functions and
places individual functions in the special page area. An entry in a jump table will be
allocated for the function. The __tiny func declared function will be called with the
instruction jsrs via an entry in the jump table. The address range is
0xF0000-0xFFFFF.

Note: This keyword is only available when the compiler is used in M16C mode, that is
when the option --cpu=M16C is used.

This example shows the assembler code generated when a function is declared
__tiny func:

#pragma language=extended

1
2
\ In segment TINYFUNC, align 1
3 _ _tiny_func void myFunc ()

Part 2. Reference information 215

Descriptions of extended keywords

\ myFunc:
4 {1}
\ 000000 F3 RTS
5
\ In segment CODE, align 1
6 void test()
\ test:
7 {
8 myFunc () ;
\ 000000 REQUIRE ?flist?myFunc
\ 000000 EF.. JSRS #((0xffffe - ?flist?myFunc) >> 0x1) & Oxff)
9 1}
\ 000002 F3 RTS
\ In segment FLIST, align 1
\ ?flist?myFunc:
\ 000000 DCl6 LWRD(myFunc-0xF0000)
\ 000002 REQUIRE myFunc
See also FLIST, page 270 and TINYFUNC, page 272.

IAR C/C++ Compiler
216 Reference Guide

Pragma directives

This chapter describes the pragma directives of the compiler.

The #pragma directive is defined by the ISO/ANSI C standard and is a
mechanism for using vendor-specific extensions in a controlled way to make
sure that the source code is still portable.

The pragma directives control the behavior of the compiler, for example how
it allocates memory for variables and functions, whether it allows extended
keywords, and whether it outputs warning messages.

The pragma directives are always enabled in the compiler.

Summary of pragma directives

This table lists the pragma directives of the compiler that can be used either with the
#pragma preprocessor directive or the _Pragma () preprocessor operator:

Pragma directive Description

basic_template_matching Makes a template function fully memory attribute-aware

bitfields Controls the order of bitfield members
constseg Places constant variables in a named segment
data_alignment Gives a variable a higher (more strict) alignment
dataseg Places variables in a named segment
diag_default Changes the severity level of diagnostic messages
diag_error Changes the severity level of diagnostic messages
diag_remark Changes the severity level of diagnostic messages
diag_suppress Suppresses diagnostic messages
diag_warning Changes the severity level of diagnostic messages
include_alias Specifies an alias for an include file

inline Inlines a function

language Controls the IAR Systems language extensions
location Specifies the absolute address of a variable, or places groups

of functions or variables in named segments

Table 36: Pragma directives summary

Part 2. Reference information 217

Descriptions of pragma directives

218

Pragma directive

Description

message
object_attribute
optimize

pack

__printf_args

required

rtmodel

__scanf_args

segment

type_attribute

vector

Prints a message

Changes the definition of a variable or a function
Specifies the type and level of an optimization

Specifies the alignment of structures and union members

Verifies that a function with a printf-style format string is
called with the correct arguments

Ensures that a symbol that is needed by another symbol is
included in the linked output

Adds a runtime model attribute to the module

Verifies that a function with a scanf-style format string is
called with the correct arguments

Declares a segment name to be used by intrinsic functions

Changes the declaration and definitions of a variable or
function

Specifies the vector of an interrupt or special page function

Table 36: Pragma directives summary (Continued)

Note: For portability reasons, see also Recognized pragma directives (6.8.6), page 279
and the M16C/R8C IAR Embedded Workbench® Migration Guide.

Descriptions of pragma directives

This section gives detailed information about each pragma directive.

basic_template_matching

Syntax

Description

Example

IAR C/C++ Compiler
Reference Guide

#pragma basic_template_matching

Use this pragma directive in front of a template function declaration to make the
function fully memory-attribute aware, in the rare cases where this is useful. That
template function will then match the template without the modifications described in
Templates and data memory attributes, page 116.

#pragma basic_template_matching

template<typename T> void fun(T *);

fun ((int

_datalé6 *)

/* Template parameter T becomes
int __datal6 */

bitfields

Syntax

Parameters

Description

See also

constseg

Syntax

Parameters

Description

Example

Pragma directives °

#pragma bitfields={reversed|default}

reversed Bitfield members are placed from the most significant bit to the
least significant bit.

default Bitfield members are placed from the least significant bit to the
most significant bit.

Use this pragma directive to control the order of bitfield members.

By default, the compiler places bitfield members from the least significant bit to the
most significant bit in the container type. Use the #pragma bitfields=reversed
directive to place the bitfield members from the most significant to the least significant
bit. This setting remains active until you turn it off again with the #pragma
bitfields=default directive.

Floating-point types, page 186.

#pragma constseg=[memoryattribute]|{SEGMENT NAME|default}

memoryattribute An optional memory attribute denoting in what memory the
segment will be placed; if not specified, default memory is used.

SEGMENT_NAME A user-defined segment name; cannot be a segment name
predefined for use by the compiler and linker.

default Uses the default segment for constants.

Use this pragma directive to place constant variables in a named segment. The segment
name cannot be a segment name predefined for use by the compiler and linker. The
setting remains active until you turn it off again with the #pragma constseg=default
directive.

#pragma constseg=__data20 MY_CONSTANTS
const int factorySettings[] = {42, 15, -128, 0};
#pragma constseg=default

Part 2. Reference information 219

Descriptions of pragma directives

220

data_alignment

Syntax

Parameters

Description

dataseg

Syntax

Parameters

Description

Example

IAR C/C++ Compiler
Reference Guide

#pragma data_alignment=expression

expression A constant which must be a power of two (1, 2, 4, etc.).

Use this pragma directive to give a variable a higher (more strict) alignment of the start
address than it would otherwise have. This directive can be used on variables with static
and automatic storage duration.

When you use this directive on variables with automatic storage duration, there is an
upper limit on the allowed alignment for each function, determined by the calling
convention used.

Note: Normally, the size of a variable is a multiple of its alignment. The
data_alignment directive only affects the alignment of the variable’s start address,
and not its size, and can thus be used for creating situations where the size is not a
multiple of the alignment.

#pragma dataseg=[memoryattribute]{SEGMENT NAME|default}

memoryattribute An optional memory attribute denoting in what memory the
segment will be placed; if not specified, default memory is used.

SEGMENT_NAME A user-defined segment name; cannot be a segment name
predefined for use by the compiler and linker.

default Uses the default segment.

Use this pragma directive to place variables in a named segment. The segment name
cannot be a segment name predefined for use by the compiler and linker. The variable
will not be initialized at startup, and can for this reason not have an initializer, which
means it must be declared __no_init. The setting remains active until you turn it off
again with the #pragma constseg=default directive.

#pragma dataseg=__data20 MY_SEGMENT
__no_init char myBuffer[1000];
#pragma dataseg=default

Pragma directives °

diag default

Syntax #pragma diag_default=tagl, tag, ...]

Parameters
tag The number of a diagnostic message, for example the message
number Pell7.

Description Use this pragma directive to change the severity level back to the default, or to the
severity level defined on the command line by any of the options --diag_error,
--diag_remark, --diag_suppress, Or --diag_warnings, for the diagnostic
messages specified with the tags.

See also Diagnostics, page 148.
diag error

Syntax #pragma diag_error=tagl, tag, ...]

Parameters
tag The number of a diagnostic message, for example the message

number Pell7.

Description Use this pragma directive to change the severity level to error for the specified
diagnostics.

See also Diagnostics, page 148.

diag remark

Syntax #pragma diag_remark=tagl, tag, ...]

Parameters
tag The number of a diagnostic message, for example the message

number Pel77.

Description Use this pragma directive to change the severity level to remark for the specified
diagnostic messages.

See also Diagnostics, page 148.

Part 2. Reference information 221

Descriptions of pragma directives

diag suppress
Syntax #pragma diag_suppress=tagl, tag,...]
Parameters

tag The number of a diagnostic message, for example the message
number Pell7.

Description Use this pragma directive to suppress the specified diagnostic messages.

See also Diagnostics, page 148.

diag_warning

Syntax #pragma diag_warning=tagl, tag, ...]
Parameters

tag The number of a diagnostic message, for example the message
number Pe826.

Description Use this pragma directive to change the severity level to warning for the specified
diagnostic messages.

See also Diagnostics, page 148.

include_alias

Syntax #pragma include_alias ("orig header" , "subst_header")
#pragma include_alias (<orig _header> , <subst_header>)

Parameters
orig_header The name of a header file for which you want to create an alias.
subst_header The alias for the original header file.

Description Use this pragma directive to provide an alias for a header file. This is useful for
substituting one header file with another, and for specifying an absolute path to a relative
file.

This pragma directive must appear before the corresponding #include directives and
subst_header must match its corresponding #include directive exactly.

IAR C/C++ Compiler
222 Reference Guide

Example

See also

inline
Syntax

Parameters

Description

language
Syntax

Parameters

Description

Pragma directives °

#pragma include_alias (<stdio.h> , <C:\MyHeaders\stdio.h>)
#include <stdio.h>

This example will substitute the relative file stdio.h with a counterpart located
according to the specified path.

Include file search procedure, page 146.

#pragma inline[=forced]

forced Disables the compiler’s heuristics and forces inlining.

Use this pragma directive to advise the compiler that the function whose declaration
follows immediately after the directive should be inlined—that is, expanded into the
body of the calling function. Whether the inlining actually occurs is subject to the
compiler’s heuristics.

This is similar to the C++ keyword inline, but has the advantage of being available in
C code.

Specifying #pragma inline=forced disables the compiler’s heuristics and forces
inlining. If the inlining fails for some reason, for example if it cannot be used with the
function type in question (like printf£), an error message is emitted.

Note: Because specifying #pragma inline=forced disables the compiler’s
heuristics, including the inlining heuristics, the function declared immediately after the
directive will not be inlined on optimization levels None or Low. No error or warning
message will be emitted.

#pragma language:{extended|default}

extended Turns on the IAR Systems language extensions and turns off the
--strict_ansi command line option.

default Uses the language settings specified by compiler options.

Use this pragma directive to enable the compiler language extensions or for using the
language settings specified on the command line.

Part 2. Reference information 223

Descriptions of pragma directives

location

Syntax

Parameters

Description

Example

See also

message

Syntax

Parameters

Description

Example:

IAR C/C++ Compiler
224 Reference Guide

#pragma location={address | NAME}

address The absolute address of the global or static variable for which you
want an absolute location.

NAME A user-defined segment name; cannot be a segment name
predefined for use by the compiler and linker.

Use this pragma directive to specify the location—the absolute address—of the global
or static variable whose declaration follows the pragma directive. The variable must be
declared either __no_init or const. Alternatively, the directive can take a string
specifying a segment for placing either a variable or a function whose declaration
follows the pragma directive.

#pragma location=0x3E1l
__no_init volatile char PORT1; /* PORT1 is located at address

0x3ELl */

#pragma location="foo"
char PORT1; /* PORT1 is located in segment foo */

/* A better way 1s to use a corresponding mechanism */
#define FLASH _Pragma("location=\"FLASH\"")

FLASH int i; /* i1 is placed in the FLASH segment */

Controlling data and function placement in memory, page 127.

#pragma message (message)

message The message that you want to direct to the standard output stream.

Use this pragma directive to make the compiler print a message to the standard output
stream when the file is compiled.

#ifdef TESTING
#pragma message ("Testing")
#endif

object_attribute

Syntax

Parameters

Description

Example

See also

optimize
Syntax

Parameters

Description

Pragma directives °

#pragma object_attribute=object_attributel,object_attribute,...]

For a list of object attributes that can be used with this pragma directive, see Object
attributes, page 208.

Use this pragma directive to declare a variable or a function with an object attribute. This
directive affects the definition of the identifier that follows immediately after the
directive. The object is modified, not its type. Unlike the directive #pragma
type_attribute that specifies the storing and accessing of a variable or function, it is
not necessary to specify an object attribute in declarations.

#pragma object_attribute=__no_init
char bar;

General syntax rules for extended keywords, page 205.

#pragma optimize=param|[param...]

balanced|size|speed Optimizes balanced between speed and size,
optimizes for size, or optimizes for speed

none | low|medium|high Specifies the level of optimization
no_code_motion Turns off code motion

no_cse Turns off common subexpression elimination
no_inline Turns off function inlining

no_tbaa Turns off type-based alias analysis
no_unroll Turns off loop unrolling

no_scheduling Turns off instruction scheduling

Use this pragma directive to decrease the optimization level, or to turn off some specific
optimizations. This pragma directive only affects the function that follows immediately
after the directive.

The parameters speed, size, and balanced only have effect on the high optimization
level and only one of them can be used as it is not possible to optimize for speed and size

Part 2. Reference information 225

Descriptions of pragma directives

226

Example

pack

Syntax

Parameters

Description

See also

IAR C/C++ Compiler
Reference Guide

at the same time. It is also not possible to use preprocessor macros embedded in this
pragma directive. Any such macro will not be expanded by the preprocessor.

Note: If you use the #pragma optimize directive to specify an optimization level that
is higher than the optimization level you specify using a compiler option, the pragma
directive is ignored.

#pragma optimize=speed
int small_and_used_often()
{

#pragma optimize=size no_inline
int big_and_seldom_used()
{

#pragma pack(n)
#pragma pack ()

#pragma pack({push|pop} [, namel [,n])

n Sets an optional structure alignment; one of: 1, 2, 4, 8, or 16

Empty list Restores the structure alignment to default

push Sets a temporary structure alignment

pop Restores the structure alignment from a temporarily pushed alignment
name An optional pushed or popped alignment label

Use this pragma directive to specify the maximum alignment of struct and union
members.

The #pragma pack directive affects declarations of structures following the pragma
directive to the next #pragma pack or end of file.

Note: This can result in significantly larger and slower code when accessing members
of the structure.

Structure types, page 189.

__printf_args

Syntax

Description

Example

required

Syntax

Parameters

Description

Example

Pragma directives °

#pragma __printf_args

Use this pragma directive on a function with a printf-style format string. For any call to
that function, the compiler verifies that the argument to each conversion specifier (for
example %d) is syntactically correct.

#pragma __printf_args
int printf (char const *,...);

/* Function call */
printf("%d",x); /* Compiler checks that x is a double */

#pragma required=symbol

symbol Any statically linked function or variable.

Use this pragma directive to ensure that a symbol which is needed by a second symbol
is included in the linked output. The directive must be placed immediately before the
second symbol.

Use the directive if the requirement for a symbol is not otherwise visible in the
application, for example if a variable is only referenced indirectly through the segment
it resides in.

const char copyright[] = "Copyright by me";

#pragma required=copyright
int main()
{

/* Do something here. */

}

Even if the copyright string is not used by the application, it will still be included by the
linker and available in the output.

Part 2. Reference information 227

Descriptions of pragma directives

rtmodel

Syntax

Parameters

Description

Example

See also

__scanf_args

Syntax

Description

Example

IAR C/C++ Compiler
228 Reference Guide

#pragma rtmodel="key", "value"

"key" A text string that specifies the runtime model attribute.

"value" A text string that specifies the value of the runtime model attribute.
Using the special value * is equivalent to not defining the attribute at
all.

Use this pragma directive to add a runtime model attribute to a module, which can be
used by the linker to check consistency between modules.

This pragma directive is useful for enforcing consistency between modules. All modules
that are linked together and define the same runtime attribute key must have the same
value for the corresponding key, or the special value *. It can, however, be useful to state
explicitly that the module can handle any runtime model.

A module can have several runtime model definitions.

Note: The predefined compiler runtime model attributes start with a double underscore.
To avoid confusion, this style must not be used in the user-defined attributes.
#pragma rtmodel="I2C", "ENABLED"

The linker will generate an error if a module that contains this definition is linked with

a module that does not have the corresponding runtime model attributes defined.

Checking module consistency, page 73.

#pragma __scanf_args

Use this pragma directive on a function with a scanf-style format string. For any call to
that function, the compiler verifies that the argument to each conversion specifier (for
example %d) is syntactically correct.

#pragma __scanf_args
int printf(char const *,...);

/* Function call */
scanf ("%d",x); /* Compiler checks that x is a double */

segment

Syntax

Parameters

Description

Example

See also

type_attribute

Syntax

Parameters

Description

Example

Pragma directives °

#pragma segment="NAME" [memoryattribute] [align]

NAME The name of the segment

memoryattribute An optional memory attribute identifying the memory the segment
will be placed in; if not specified, default memory is used.

align Specifies an alignment for the segment part. The value must be a
constant integer expression to the power of two.

Use this pragma directive to define a segment name that can be used by the segment
operators __segment_begin and __segment_end. All segment declarations for a
specific segment must have the same memory type attribute and alignment.

If an optional memory attribute is used, the return type of the segment operators
__segment_begin and __segment_end is:

void memoryattribute *.
#pragma segment="MYDATA20" __data20 4

Important language extensions, page 196. For more information about segments and
segment parts, see the chapter Placing code and data.

#pragma type_attribute=type_attributel, type_attribute,...]

For a list of type attributes that can be used with this pragma directive, see Type
attributes, page 205.

Use this pragma directive to specify IAR-specific type attributes, which are not part of
the ISO/ANSI C language standard. Note however, that a given type attribute might not
be applicable to all kind of objects.

This directive affects the declaration of the identifier, the next variable, or the next
function that follows immediately after the pragma directive.
In this example, an int object with the memory attribute __datalé is defined:

#pragma type_attribute=__datal6
int x;

Part 2. Reference information 229

Descriptions of pragma directives

See also

vector

Syntax

Parameters

Description

Example!

IAR C/C++ Compiler
230 Reference Guide

This declaration, which uses extended keywords, is equivalent:

__datal6 int x;

See the chapter Extended keywords for more details.

#pragma vector=vectorl|[, vector2, vector3, ...]

vector The vector number(s) of an interrupt or special page function.

Use this pragma directive to specity the vector(s) of an interrupt or special page function
whose declaration follows the pragma directive. Note that several vectors can be defined

for each function.

#pragma vector=0x14
__interrupt void my_handler (void) ;

Intrinsic functions

This chapter gives reference information about the intrinsic functions, a

predefined set of functions available in the compiler.

The intrinsic functions provide direct access to low-level processor operations

and can be very useful in, for example, time-critical routines. The intrinsic

functions compile into inline code, either as a single instruction or as a short

sequence of instructions.

Summary of intrinsic functions

To use intrinsic functions in an application, include the header file intrinsics.h.

Note that the intrinsic function names start with double underscores, for example:

__disable_interrupt

This table summarizes the intrinsic functions:

Intrinsic function

Description

__break

__BTSTS
__disable_interrupt
__enable_interrupt
__get_FLG_register
__get_interrupt_level
__get_interrupt_state
__illegal_opcode
__no_operation
__overflow

__require

__RMPA_B

__RMPA_B_INTO

Inserts a brk instruction

Inserts a bt sts instruction
Disables interrupts

Enables interrupts

Reads the value of the FLG register
Returns the interrupt level

Returns the interrupt state

Inserts an illegal operation code
Inserts a nop instruction

Reads the value of the overflow flag

Ensures that the module containing the
specified symbol is linked

Inserts an rmpa . b instruction

Inserts an rmpa . b instruction, followed by an
into instruction

Table 37: Intrinsic functions summary

Part 2. Reference information

231

Descriptions of intrinsic functions

232

Intrinsic function

Description

__RMPA_B_overflow

__RMPA_W

__RMPA_W_INTO

__RMPA_W_overflow

__segment_begin

__segment_end

__set_FLG_register

__set_INTB_register

_set_interrupt_level

__set_interrupt_state

__SMOVB_B

__SMOVB_W

__SMOVF_B

__SMOVF_W

__software_interrupt

__SSTR_B

__SSTR_W

_wait_for_interrupt

Inserts an rmpa . b instruction and stores the
value of the overflow flag

Inserts an rmpa . w instruction

Inserts an rmpa . w instruction, followed by an
into instruction

Inserts an rmpa . w instruction and stores the
value of the overflow flag

Returns the start address of a segment
Returns the end address of a segment
Sets the value of the FLG register
Sets the value of the INTB register
Sets the interrupt level

Restores the interrupt state

Inserts a smovb. b instruction
Inserts a smovb.w instruction
Inserts a smovf . b instruction
Inserts a smovf . w instruction
Inserts an int instruction

Inserts a sstr.b instruction

Inserts a sstr.w instruction

Inserts a wait instruction

Table 37: Intrinsic functions summary (Continued)

Descriptions of intrinsic

___break

Syntax

Description

IAR C/C++ Compiler
Reference Guide

functions

This section gives reference information about each intrinsic function.

void __break(void) ;

Inserts a brk instruction.

Intrinsic functions __¢

__BTSTS
Syntax void __BTSTS(unsigned char b, unsigned char __datal6 * a);
Description Inserts a bt sts instruction, addressing the bit b at address a. Note that the address must

be in datal3 memory, because the instruction uses bit addressing.

__disable_interrupt

Syntax void __disable_interrupt (void) ;

Description Clears the Interrupt Enable flag (flag T of the FLG register).

__enable_interrupt

Syntax void __enable_interrupt (void) ;

Description Sets the Interrupt Enable flag (flag T of the FLG register).

__get_FLG_register

Syntax unsigned short __get_FLG_register();

Description Returns the value of the FLG register.

__get_interrupt_level
Syntax __ilevel_t __get_interrupt_level (void) ;
Description Returns the current interrupt level. The return type __ilevel_t has this definition:

typedef unsigned char __ilevel_t;

The return value of __get_interrupt_level can be used as an argument to the
__set_interrupt_level intrinsic function.

Part 2. Reference information 233

Descriptions of intrinsic functions

__get_interrupt_state

Syntax

Description

Example

__illegal_opcode

Syntax

Description

__ho_operation

Syntax

Description

___overflow

Syntax

Description

IAR C/C++ Compiler
234 Reference Guide

__listate_t __get_interrupt_state(void);

Returns the global interrupt state. The return value can be used as an argument to the
__set_interrupt_state intrinsic function, which will restore the interrupt state.

__istate_t s = __get_interrupt_state();
__disable_interrupt () ;

/* Do something here. */

__set_interrupt_state(s);

The advantage of using this sequence of code compared to using
__disable_interrupt and __enable_interrupt is that the code in this example
will not enable any interrupts disabled before the call of __get_interrupt_state.

void __illegal_opcode (void) ;

Inserts an illegal operation code.

void __no_operation (void) ;

Inserts a nop instruction.

extern unsigned char __datal3 __overflow();

Reads the value of the overflow flag, as previously stored by the __RMPA_B_overflow
or __RMPA_W_overflow intrinsic functions. At higher optimization levels, the
overflow flag will be used directly if it is preserved between the call to
__RMPA_B_overflowor __RMPA_B_overflow and the accessing of __overflow.

__require

Syntax

Description

__RMPA_B

Syntax

Description

__RMPA_B_INTO

Syntax

Description

__RMPA_B_overflow

Syntax

Description

Intrinsic functions __¢

void __require(void __data20 *);

Sets a constant literal as required.

XLINK excludes anything that is not needed. This is good because it reduces the
resulting code size to a minimum. However, in some situations you might want to
explicitly include a piece of code or a variable even though it is not directly used.

The argument to __require could be a variable, a function name, or an exported
assembler label. However, it must be a constant literal. The label referred to will be
treated as if it would be used at the location of the __require call.

short __RMPA_B(const signed char __datalé * vI, const signed
char __datal6é * v2, short init, unsigned short n);

Inserts an rmpa . b instruction.

This instruction performs a scalar product between the vectors vi and v2, where n
specifies the size of the vectors and init is added to the result. The result returned is
undefined in the event of an overflow.

short __RMPA_B_INTO (const signed char __datal6é * vI, const
signed char __datal6 * v2, short init, unsigned short n);

Inserts an rmpa . b instruction, followed by an into instruction.

This instruction performs a scalar product between the vectors vi and v2, where n
specifies the size of the vectors and init is added to the result. The result returned is
undefined in the event of an overflow.

short __RMPA_B_overflow(const signed char __datal6é * vl, const
signed char __datal6 * v2, short init, unsigned short n);

Inserts an rmpa . b instruction and stores the value of the overflow flag.

Part 2. Reference information 235

Descriptions of intrinsic functions

236

See also

__RMPA_ W

Syntax

Description

__RMPA_W_INTO

Syntax

Description

__RMPA_W _overflow

Syntax

Description

See also

IAR C/C++ Compiler
Reference Guide

This instruction performs a scalar product between the vectors v1 and v2, where n
specifies the size of the vectors and ini ¢t is added to the result. The result returned is
undefined in the event of an overflow.

__overflow, page 234.

__datalé * vl1, const signed
unsigned short n);

short __RMPA_W(const signed char

char __datalé * v2, short init,

Inserts an rmpa . w instruction.

This instruction performs a scalar product between the vectors vi and v2, where n
specifies the size of the vectors and init is added to the result. The result returned is
undefined in the event of an overflow.

__datalée * vi,
unsigned short n);

short __RMPA_W_INTO (const signed char const

signed char __datal6 * v2, short init,

Inserts an rmpa . w instruction, followed by an into instruction.

This instruction performs a scalar product between the vectors vi and v2, where n
specifies the size of the vectors and init is added to the result. The result returned is
undefined in the event of an overflow.

short __RMPA_W_overflow(const signed char __datal6é * vl, const

signed char __datal6 * v2, short init, unsigned short n);

Inserts an rmpa . w instruction and stores the value of the overflow flag.

This instruction performs a scalar product between the vectors vi and v2, where n
specifies the size of the vectors and init is added to the result. The result returned is
undefined in the event of an overflow.

__overflow, page 234.

__segment_begin

Syntax

Description

__segment_end

Syntax

Description

__set_FLG_register

Syntax

Description

__set_INTB_register

Syntax

Description

Intrinsic functions __¢

__segment_begin (segment) ;

Returns the address of the first byte of the named segment. The named segment must
be a string literal that has been declared earlier with the #pragma segment directive.
See segment, page 229.

If the segment was declared with a memory attribute memat tr, the type of the
__segment_begin function is pointer to memattr void. Otherwise, the type is a
default pointer to void.

Note: You must have enabled language extensions to use this intrinsic function.

__segment_end (segment) ;
Returns the address of the first byte affer the named segment. The named segment

must be a string literal that has been declared earlier with the #pragma segment
directive. See segment, page 229.

If the segment was declared with a memory attribute memattr, the type of the
__segment_end function is pointer to memattr void. Otherwise, the type is a default
pointer to void.

Note: You must have enabled language extensions to use this intrinsic function.

void __set_FLG_register (unsigned short) ;

Sets the value of the FLG register.

void __set_INTB_register (unsigned long) ;

Sets the value of the INTB register.

Part 2. Reference information 237

Descriptions of intrinsic functions

238

__set_interrupt_level

Syntax

Description

__set_interrupt_state

Syntax

Descriptions

__SMOVB_B

Syntax
Description
__SMOVB_W
Syntax
Description
__SMOVF_B
Syntax

Description

IAR C/C++ Compiler
Reference Guide

void __get_interrupt_level (__ilevel_t);

Sets the interrupt level. For information about the __ilevel t type, see
__get interrupt level, page 233.

void __set_interrupt_state(__istate_t);

Restores the interrupt state to a value previously returned by the
__get_interrupt_state function

For information about the __istate_t type, see _get interrupt state, page 234.

void __SMOVB_B (char
unsigned short n);

_datalé * dest, const char __far * src,

Inserts an smovb . b instruction. This instruction copies n bytes from the address src to
the address dest by decreasing the addresses after each byte copied.

void __SMOVB_W(short __datal6é * dest, const short __far * src,
unsigned short n);

Inserts an smovb . w instruction. This instruction copies n words from the address src to
the address dest by decreasing the addresses after each word copied.

void __SMOVF_B (char
unsigned short n);

_datal6e * dest, const char __far * src,

Inserts an smov £ . b instruction. This instruction copies n bytes from the address src to
the address dest by increasing the addresses after each byte copied.

Intrinsic functions __¢

__SMOVF_W
Syntax void __SMOVF_W(short __datal6 * dest, const short __far * src,
unsigned short n);
Description Inserts an smov £ . w instruction. This instruction copies n words from the address src to

the address dest by increasing the addresses after each word copied.

__software_interrupt

Syntax void __software_interrupt (void) ;
Description Inserts an int instruction.
__SSTR_B
Syntax void __SSTR B(char __datal6 * dest, signed char init, unsigned
short n);
Description Inserts an sstr.b instruction. This instruction stores the data init to n bytes starting

at the address dest.

__SSTR W
Syntax void __SSTR_W(short __datal6 * dest, short init, unsigned short
n) ;
Description Inserts an sstr.w instruction. This instruction stores the data init to n words starting

at the address dest.

__wait_for_interrupt

Syntax void __wait_for_interrupt (void) ;

Description Inserts a wait instruction.

Part 2. Reference information 239

Descriptions of intrinsic functions

IAR C/C++ Compiler
240 Reference Guide

The preprocessor

This chapter gives a brief overview of the preprocessor, including reference

information about the different preprocessor directives, symbols, and other

related information.

Overview of the preprocessor
The preprocessor of the IAR C/C++ Compiler for M16C/R8C adheres to the ISO/ANSI

standard. The compiler also makes these preprocessor-related features available to you:

Predefined preprocessor symbols

These symbols allow you to inspect the compile-time environment, for example the
time and date of compilation. For details, see Descriptions of predefined
preprocessor symbols, page 242.

User-defined preprocessor symbols defined using a compiler option

In addition to defining your own preprocessor symbols using the #define directive,
you can also use the option -D, see -D, page 160.

Preprocessor extensions

There are several preprocessor extensions, for example many pragma directives; for

more information, see the chapter Pragma directives in this guide. Read also about
the corresponding _Pragma operator and the other extensions related to the

preprocessor, see Descriptions of miscellaneous preprocessor extensions, page 245.

Preprocessor output

Use the option --preprocess to direct preprocessor output to a named file, see
--preprocess, page 177.

Some parts listed by the ISO/ANSI standard are implementation-defined, for example
the character set used in the preprocessor directives and inclusion of bracketed and
quoted filenames. To read more about this, see Preprocessing directives, page 279.

Part 2. Reference information

241

Descriptions of predefined preprocessor symbols

Descriptions of predefined preprocessor symbols

This table describes the predefined preprocessor symbols:

Predefined symbol Identifies

__BASE_FILE__ A string that identifies the name of the base source file (that is,
not the header file), being compiled. See also __ FTLE _, page
243, and —no_path_in_file_macros, page 172.

_ _BUILD_NUMBER__ An integer that identifies the build number of the compiler
currently in use. The build number does not necessarily increase
with a compiler that is released later.

__CONSTANT_DATA_ _ An integer that identifies the default placement of constant data.
The symbol reflects the --constant_data option and is
defined to __ CONSTANT_DATA_NEAR_ _,
__CONSTANT_DATA_FAR__, or
__CONSTANT_DATA_HUGE_ _. These symbolic names can be
used when testing the __ CONSTANT_DATA_ _ symbol.

__CORE_ _ An integer that identifies the chip core in use. The symbol
reflects the --core option and is defined to 0 for M16C mode
or 1 for R8C mode.

__cplusplus An integer which is defined when the compiler runs in any of the
C++ modes, otherwise it is undefined. When defined, its value is
199711L. This symbol can be used with #ifdef to detect
whether the compiler accepts C++ code. It is particularly useful
when creating header files that are to be shared by C and C++
code.’

_ _DATA_MODEL_ _ An integer that identifies the data model in use. The symbol
reflects the --data_model option and is defined to
__DATA_MODEL_NEAR__,__DATA_MODEL_FAR__,

__DATA_MODEL_HUGE_ _. These symbolic names can be used
when testing the __DATA_MODEL__ symbol.

or

__DATE_ A string that identifies the date of compilation, which is returned

in the form "Mmm dd yyyy", for example "Oct 30 2008". *

__embedded_cplusplus Aninteger which is defined to 1 when the compiler runs in any of
the C++ modes, otherwise the symbol is undefined. This symbol
can be used with #1ifdef to detect whether the compiler
accepts C++ code. It is particularly useful when creating header
files that are to be shared by C and C++ code.”

Table 38: Predefined symbols

IAR C/C++ Compiler
242 Reference Guide

Predefined symbol

The preprocessor Py

Identifies

__FILE__

__func_

__FUNCTION__

__TIAR_SYSTEMS_ICC__

__TIcceMlec_

__LINE__

__PRETTY_FUNCTION__

__STDC__

__STDC_VERSION___

A string that identifies the name of the file being compiled, which
can be both the base source file and any included header file. See
also __BASE_FILE__, page 242, and —no_path_in_file_macros,
page 172"

A string that identifies the name of the function in which the
symbol is used. This is useful for assertions and other trace
utilities. The symbol requires that language extensions are
enabled, see -e, page 165. See also __ PRETTY_FUNCTION__,
page 243.

A string that identifies the name of the function in which the
symbol is used. This is useful for assertions and other trace
utilities. The symbol requires that language extensions are
enabled, see -e, page 165. See also __ PRETTY_FUNCTION__,
page 243.

An integer that identifies the IAR compiler platform. The current
value is 7. Note that the number could be higher in a future
version of the product. This symbol can be tested with #ifdef
to detect whether the code was compiled by a compiler from
IAR Systems.

An integer that is set to 1 when the code is compiled with the
IAR C/C++ Compiler for M16C/R8C, and otherwise to 0.

An integer that identifies the current source line number of the

file being compiled, which can be both the base source file and
. *

any included header file.

A string that identifies the function name, including parameter
types and return type, of the function in which the symbol is
used, for example "void func (char) ". This symbol is useful
for assertions and other trace utilities. The symbol requires that
language extensions are enabled, see -e, page 165. See also
__func__, page 243.

An integer that is set to 1, which means the compiler adheres to
the ISO/ANSI C standard. This symbol can be tested with
#ifdef to detect whether the compiler in use adheres to
ISO/ANSI C.*

An integer that identifies the version of ISO/ANSI C standard in
use. The symbols expands to 1994 09L. This symbol does not
apply in EC++ mode.”

Table 38: Predefined symbols (Continued)

Part 2. Reference information 243

Descriptions of predefined preprocessor symbols

244

IAR C/C++ Compiler
Reference Guide

Predefined symbol

Identifies

__SUBVERSION_ _

__TID__

__TIME__

__VARIABLE_DATA__

__VER__

An integer that identifies the subversion number of the compiler
version number, for example 3 in 1.2.3.4.

Target identifier for the IAR C/C++ Compiler for M16C/R8C.
Expands to the target identifier which contains these parts:

*» A number unique for each IAR compiler. For the M16C/R8C
Series of CPU cores, the target identifier is 28.

* The value of the cpu, which is 0 in this compiler.

* The value corresponding to the --data_model option. The
value is 0, |, or 2 for the near, far, and huge data model,
respectively.

* An intrinsic flag. This flag is set for M16C/R8C because the
compiler supports intrinsic functions.

The __TID__ value is constructed as:

((1 << 15) | (£t << 8) | (c << 4) | Q)

You can extract the values like this:

i = (__TID__ >> 15) & 0x01l; /* intrinsic
flag */

t = (__TID__ >> 8) & OxX7F; /* target
identifier */

c = (__TID__ >> 4) & 0xO0F); /* cpu */

d = __TID_ _ >> & 0x0F; /* data model */

In other words, the __TID__ symbolis 0x9C00 when the near
data model is used, 0x9C01 when the far data model is used,
and 0x9C02 when the huge data model is used.

A string that identifies the time of compilation in the form
"hh:mm:ss".”

Identifies where variables are placed in memory. The value of this
symbol is __VARIABLE_DATA_X__, where X is NEAR, FAR,
or HUGE depending on the data model.

An integer that identifies the version number of the IAR compiler
in use. The value of the number is calculated in this way: (100 *

the major version number + the minor version

number) . For example, for compiler version 3.34, 3 is the major
version number and 34 is the minor version number. Hence, the
value of __VER_ _ is 334.

Table 38: Predefined symbols (Continued)

* This symbol is required by the ISO/ANSI standard.

The preprocessor Py

Descriptions of miscellaneous preprocessor extensions

NDEBUG

Description

_Pragma()

Syntax

Description

Example

See also

This section gives reference information about the preprocessor extensions that are
available in addition to the predefined symbols, pragma directives, and ISO/ANSI
directives.

This preprocessor symbol determines whether any assert macros you have written in
your application shall be included or not in the built application.

If this symbol is not defined, all assert macros are evaluated. If the symbol is defined,
all assert macros are excluded from the compilation. In other words, if the symbol is:

o defined, the assert code will not be included

e not defined, the assert code will be included

This means that if you write any assert code and build your application, you should
define this symbol to exclude the assert code from the final application.

Note that the assert macro is defined in the assert .h standard include file.

In the IDE, the NDEBUG symbol is automatically defined if you build your application in
the Release build configuration.

_Pragma ("string")

where string follows the syntax of the corresponding pragma directive.

This preprocessor operator is part of the C99 standard and can be used, for example, in
defines and is equivalent to the #pragma directive.

Note: The -e option—enable language extensions—does not have to be specified.
#1f NO_OPTIMIZE

#define NOOPT _Pragma ("optimize=none")
#else

#define NOOPT
#endif

See the chapter Pragma directives.

Part 2. Reference information 245

Descriptions of miscellaneous preprocessor extensions

#warning message

Syntax #warning message
where message can be any string.
Description Use this preprocessor directive to produce messages. Typically, this is useful for

assertions and other trace utilities, similar to the way the ISO/ANSI standard #error
directive is used.

__VA_ARGS__
Syntax #define P(...) __VA_ARGS_ _
#define P(x, v, ...) X + vy + __VA_ARGS_ _
__va_aRGS__ will contain all variadic arguments concatenated, including the
separating commas.
Description Variadic macros are the preprocessor macro equivalents of print £ style functions.
__VA_ARGS_ _ is part of the C99 standard.
Example #1f DEBUG
#define DEBUG_TRACE(S, ...) printf(S, __VA_ARGS__)
#else
#define DEBUG_TRACE(S, ...)
#endif

/* Place your own code here */
DEBUG_TRACE ("The value is:%d\n",value);

will result in:

printf ("The value is:%d\n",value);

IAR C/C++ Compiler
246 Reference Guide

Library functions

This chapter gives an introduction to the C and C++ library functions. It also
lists the header files used for accessing library definitions.

For detailed reference information about the library functions, see the online
help system.

Introduction

The compiler provides two different libraries:

o IAR DLIB Library is a complete ISO/ANSI C and C++ library. This library also
supports floating-point numbers in IEEE 754 format and it can be configured to
include different levels of support for locale, file descriptors, multibyte characters,
et cetera.

e JAR CLIB Library is a light-weight library, which is not fully compliant with
ISO/ANSI C. Neither does it fully support floating-point numbers in IEEE 754
format or does it support Embedded C++.

Note that different customization methods are normally needed for these two libraries.
For additional information, see the chapter The DLIB runtime environment and The
CLIB runtime environment, respectively.

For detailed information about the library functions, see the online documentation
supplied with the product. There is also keyword reference information for the DLIB
library functions. To obtain reference information for a function, select the function
name in the editor window and press F1.

For additional information about library functions, see the chapter
Implementation-defined behavior in this guide.

HEADER FILES

Your application program gains access to library definitions through header files, which
it incorporates using the #include directive. The definitions are divided into several
different header files, each covering a particular functional area, letting you include just
those that are required.

It is essential to include the appropriate header file before making any reference to its
definitions. Failure to do so can cause the call to fail during execution, or generate error
or warning messages at compile time or link time.

Part 2. Reference information 247

Introduction

248

IAR C/C++ Compiler
Reference Guide

LIBRARY OBJECT FILES

Most of the library definitions can be used without modification, that is, directly from
the library object files that are supplied with the product. For information about how to
choose a runtime library, see Basic settings for project configuration, page 5. The linker
will include only those routines that are required—directly or indirectly—by your
application.

REENTRANCY

A function that can be simultaneously invoked in the main application and in any
number of interrupts is reentrant. A library function that uses statically allocated data is
therefore not reentrant.

Most parts of the DLIB library are reentrant, but these functions and parts are not
reentrant because they need static data:

o Heap functions—malloc, free, realloc, calloc, and the C++ operators new
and delete
o Time functions—asctime, localtime, gmtime, mktime

o Multibyte functions—mbrlen, mbrtowc, mbsrtowc, wertomb, wesrtomb,
wctomb

The miscellaneous functions setlocale, rand, atexit, strerror, strtok
Functions that use files in some way. This includes printf, scanf, getchar, and
putchar. The functions sprintf and sscanf are not included.

For the CLIB library, the gsort function and functions that use files in some way are
non-reentrant. This includes printf, scanf, getchar, and putchar. The functions
sprintf and sscanf are not included.

Some functions also share the same storage for errno. These functions are not
reentrant, since an errno value resulting from one of these functions can be destroyed
by a subsequent use of the function before it is read. Among these functions are:

exp, expl0, ldexp, log, logl0, pow, sqgrt, acos, asin, atan2,
cosh, sinh, strtod, strtol, strtoul

Remedies for this are:

o Do not use non-reentrant functions in interrupt service routines

o Guard calls to a non-reentrant function by a mutex, or a secure region, etc.

Library functions __4

IAR DLIB Library

The IAR DLIB Library provides most of the important C and C++ library definitions
that apply to embedded systems. These are of the following types:

o Adherence to a free-standing implementation of the ISO/ANSI standard for the
programming language C. For additional information, see the chapter
Implementation-defined behavior in this guide.

e Standard C library definitions, for user programs.
Embedded C++ library definitions, for user programs.

CSTARTUP, the module containing the start-up code. It is described in the chapter
The DLIB runtime environment in this guide.

Runtime support libraries; for example low-level floating-point routines.
Intrinsic functions, allowing low-level use of M16C/R8C Series features. See the

chapter Intrinsic functions for more information.

In addition, the IAR DLIB Library includes some added C functionality, partly taken
from the C99 standard, see Added C functionality, page 252.

C HEADER FILES

This section lists the header files specific to the DLIB library C definitions. Header files
may additionally contain target-specific definitions; these are documented in the chapter
Compiler extensions.

The following table lists the C header files:

Header file Usage

assert.h Enforcing assertions when functions execute
ctype.h Classifying characters

errno.h Testing error codes reported by library functions
float.h Testing floating-point type properties
inttypes.h Defining formatters for all types defined in stdint.h
iso0646.h Using Amendment |—iso646.h standard header
limits.h Testing integer type properties

locale.h Adapting to different cultural conventions
math.h Computing common mathematical functions
setjmp.h Executing non-local goto statements

signal.h Controlling various exceptional conditions
stdarg.h Accessing a varying number of arguments

Table 39: Traditional standard C header files—DLIB

Part 2. Reference information 249

IAR DLIB Library

250

IAR C/C++ Compiler
Reference Guide

Header file Usage

stdbool.h Adds support for the bool data type in C.
stddef.h Defining several useful types and macros
stdint.h Providing integer characteristics

stdio.h Performing input and output

stdlib.h Performing a variety of operations

string.h Manipulating several kinds of strings

time.h Converting between various time and date formats
wchar.h Support for wide characters

wctype.h Classifying wide characters

Table 39: Traditional standard C header files—DLIB (Continued)

C++ HEADER FILES

This section lists the C++ header files.

Embedded C++
The following table lists the Embedded C++ header files:

Header file Usage

complex Defining a class that supports complex arithmetic

exception Defining several functions that control exception handling

fstream Defining several /O stream classes that manipulate external files
iomanip Declaring several I/O stream manipulators that take an argument

ios Defining the class that serves as the base for many I/O streams classes
iosfwd Declaring several /O stream classes before they are necessarily defined
iostream Declaring the 1/O stream objects that manipulate the standard streams
istream Defining the class that performs extractions

new Declaring several functions that allocate and free storage

ostream Defining the class that performs insertions

sstream Defining several /O stream classes that manipulate string containers
stdexcept Defining several classes useful for reporting exceptions

streambuf Defining classes that buffer I/O stream operations

string Defining a class that implements a string container

strstream Defining several 1/O stream classes that manipulate in-memory character

sequences

Table 40: Embedded C++ header files

Library functions °

The following table lists additional C++ header files:

Header file Usage

fstream.h Defining several /O stream classes that manipulate external files
iomanip.h Declaring several I/O stream manipulators that take an argument
iostream.h Declaring the I/O stream objects that manipulate the standard streams
new.h Declaring several functions that allocate and free storage

Table 41: Additional Embedded C++ header files—DLIB

Extended Embedded C++ standard template library

The following table lists the Extended EC++ standard template library (STL) header
files:

Header file Description

algorithm Defines several common operations on sequences
deque A deque sequence container

functional Defines several function objects

hash_map A map associative container, based on a hash algorithm
hash_set A set associative container, based on a hash algorithm
iterator Defines common iterators, and operations on iterators
list A doubly-linked list sequence container

map A map associative container

memory Defines facilities for managing memory

numeric Performs generalized numeric operations on sequences
queue A queue sequence container

set A set associative container

slist A singly-linked list sequence container

stack A stack sequence container

utility Defines several utility components

vector A vector sequence container

Table 42: Standard template library header files

Using standard C libraries in C++

The C++ library works in conjunction with 15 of the header files from the standard C
library, sometimes with small alterations. The header files come in two forms—new and
traditional—for example, cassert and assert.h.

Part 2. Reference information 251

IAR DLIB Library

The following table shows the new header files:

Header file Usage

cassert Enforcing assertions when functions execute
cctype Classifying characters

cerrno Testing error codes reported by library functions
cfloat Testing floating-point type properties
cinttypes Defining formatters for all types defined in stdint.h
climits Testing integer type properties

clocale Adapting to different cultural conventions
cmath Computing common mathematical functions
csetjmp Executing non-local goto statements

csignal Controlling various exceptional conditions
cstdarg Accessing a varying number of arguments
cstdbool Adds support for the bool data type in C.
cstddef Defining several useful types and macros
cstdint Providing integer characteristics

cstdio Performing input and output

cstdlib Performing a variety of operations

cstring Manipulating several kinds of strings

ctime Converting between various time and date formats
cwchar Support for wide characters

cwctype Classifying wide characters

Table 43: New standard C header files—DLIB

LIBRARY FUNCTIONS AS INTRINSIC FUNCTIONS

Certain C library functions will under some circumstances be handled as intrinsic
functions and will generate inline code instead of an ordinary function call, for example
memcpy, memset, and strcat.

ADDED C FUNCTIONALITY

The IAR DLIB Library includes some added C functionality, partly taken from the C99
standard.

The following include files provide these features:

® ctype.h
® inttypes.h

IAR C/C++ Compiler
252 Reference Guide

Library functions __4

math.h
stdbool.h
stdint.h
stdio.h
stdlib.h

wchar.h

wctype.h

ctype.h
In ctype.h, the C99 function isblank is defined.

inttypes.h

This include file defines the formatters for all types defined in stdint . h to be used by
the functions printf, scanf, and all their variants.

math.h

In math.h all functions exist in a £1oat variant and a long double variant, suffixed
by £ and 1 respectively. For example, sinf and sinl.

The following C99 macro symbols are defined:

HUGE_VALF, HUGE_VALL, INFINITY, NAN, FP_INFINITE, FP_NAN, FP_NORMAL
FP_SUBNORMAL, FP_ZERO, MATH_ERRNO, MATH_ERREXCEPT, math_errhandling

The following C99 macro functions are defined:

fpclassify, signbit, isfinite, isinf, isnan, isnormal, isgreater, isless,
islessequal, islessgreater, isunordered

The following C99 type definitions are added:

float_t, double_t.

stdbool.h

This include file makes the bool type available if the Allow IAR extensions (-e) option
is used.

stdint.h

This include file provides integer characteristics.

Part 2. Reference information 253

IAR CLIB Library

254

stdio.h
In stdio.h, the following C99 functions are defined:
vscanf, viscanf, vsscanf, vsnprintf, snprintf

The functions printf, scanf, and all their variants have added functionality from the
C99 standard. For reference information about these functions, see the library reference
available from the Help menu.

The following functions providing I/O functionality for libraries built without FILE
support are definded:

__write_array Corresponds to fwrite on stdout.
__ungetchar Corresponds to ungetc on stdout.

__gets Corresponds to fgets on stdin.

stdlib.h
In stdlib.h, the following C99 functions are defined:
_Exit, llabs, 11div, strtoll, strtoull, atoll, strtof, strtold.

The function strtod has added functionality from the C99 standard. For reference
information about this functions, see the library reference available from the Help
menu.

The __gsortbbl function is defined; it provides sorting using a bubble sort algorithm.
This is useful for applications that have a limited stack.

wchar.h

In wchar . h, the following C99 functions are defined:

viwscanf, vswscanf, vwscanf, wcstof, wecstolb.

wctype.h

In wetype. h, the C99 function iswblank is defined.

IAR CLIB Library

IAR C/C++ Compiler
Reference Guide

The IAR CLIB Library provides most of the important C library definitions that apply
to embedded systems. These are of the following types:

e Standard C library definitions available for user programs. These are documented in
this chapter.

Library functions °

o The system startup code. It is described in the chapter The CLIB runtime
environment in this guide.

Runtime support libraries; for example low-level floating-point routines.

Intrinsic functions, allowing low-level use of M16C/R8C Series features. See the
chapter Intrinsic functions for more information.

LIBRARY DEFINITIONS SUMMARY
This following table lists the header files specific to the CLIB library:

Header file Description

assert.h Assertions

ctype.h* Character handling

errno.h Error return values

float.h Limits and sizes of floating-point types

iccbutl.h Low-level routines

limits.h Limits and sizes of integral types

math.h Mathematics

setjmp.h Non-local jumps

stdarg.h Variable arguments

stdbool.h Adds support for the bool data type in C

stddef.h Common definitions including size_t, NULL,
ptrdiff_t,and offsetof

stdio.h Input/output

stdlib.h General utilities

string.h String handling

Table 44: IAR CLIB Library header files

* The functions i sxxx, toupper, and tolower declared in the header file ctype . h evaluate
their argument more than once. This is not according to the ISO/ANSI standard.

Part 2. Reference information 255

IAR CLIB Library

IAR C/C++ Compiler
256 Reference Guide

Segment reference

The compiler places code and data into named segments which are referred

to by the IAR XLINK Linker. Details about the segments are required for
programming assembler language modules, and are also useful when

interpreting the assembler language output from the compiler.

For more information about segments, see the chapter Placing code and data.

Summary of segments

The table below lists the segments that are available in the compiler:

Segment Description

BITVARS Holds bit variables.

CHECKSUM Holds the checksum generated by the linker.

CODE Holds the program code.

CSTACK Holds the stack used by C or C++ programs.

CSTART Holds the startup code.

DATAL13_AC Holds __datal3 located constant data.

DATA13_AN Holds __datal3 located uninitialized data.

DATA13_C Holds __datal3 constant data.

DATA13_T Holds __datal3 static and global initialized variables.

DATA13_ID Holds initial values for __datal3 static and global variables in
DATA13_T.

DATA13_N Holds __no_init __datals3 static and global variables.

DATA13_Z Holds zero-initialized __datal3 static and global variables.

DATA16_AC Holds __datalé6 located constant data.

DATA16_AN Holds __datal6 located uninitialized data.

DATAl6_C Holds __datal6 constant data.

DATAl6_HEAP
DATAl6_TI
DATA16_1ID

Holds the heap used for dynamically allocated data in datal6 memory.
Holds __datalé static and global initialized variables.

Holds initial values for __datalé static and global variables in
DATAl6_T.

Table 45: Segment summary

Part 2. Reference information

257

Summary of segments

Segment Description

DATA16_N Holds __no_init __datalé static and global variables.

DATAl6_Z Holds zero-initialized __datalé6 static and global variables.

DATA20_AC Holds __data20 located constant data.

DATA20_AN Holds __data20 located uninitialized data.

DATA20_C Holds __data20 constant data.

DATA20_HEAP Holds the heap used for dynamically allocated data in data20 memory.

DATA20_T Holds __data?20 static and global initialized variables.

DATA20_ID Holds initial values for __data20 static and global variables in
DATA20_T.

DATA20_N Holds __no_init __data20 static and global variables.

DATA20_2Z Holds zero-initialized __data?20 static and global variables.

DIFUNCT Holds pointers to code, typically C++ constructors, that should be
executed by the system startup code before main is called.

FAR_AC Holds __ far located constant data.

FAR_AN Holds __ far located uninitialized data.

FAR_C Holds __ far constant data.

FAR_HEAP Holds the heap used for dynamically allocated data in far memory.

FAR_T Holds __ far static and global initialized variables.

FAR_ID Holds initial values for __far static and global variables in FAR_T.

FAR_N Holds __no_init __ far static and global variables.

FAR_7Z Holds zero-initialized __ far static and global variables.

FLIST Holds the jump table for __tiny_func functions.

HEAP Holds the heap used for dynamically allocated data.

INTVEC Contains the reset and interrupt vectors.

INTVEC1 Contains the fixed reset and interrupt vectors.

ISTACK Holds the stack used by interrupts and exceptions.

TINYFUNC Holds __tiny_ func declared functions to be placed in the special page
area.

Table 45: Segment summary (Continued)

IAR C/C++ Compiler
258 Reference Guide

Segment reference ___4

Descriptions of segments

BITVARS

Description
Segment memory type
Memory placement

Access type

CHECKSUM

Description

Segment memory type
Memory placement

Access type

This section gives reference information about each segment.

The segments are placed in memory by the segment placement linker directives -z and
-p, for sequential and packed placement, respectively. Some segments cannot use
packed placement, as their contents must be continuous.

In each description, the segment memory type—BIT, CODE, CONST, DATA, FARCONST,
HUGECONST, NEARCONST, FARDATA, HUGEDATA, or NEARDATA—indicates whether the
segment should be placed in ROM or RAM memory; see Table 6, XLINK segment
memory types, page 32.

For information about the -z and the - P directives, see the AR Linker and Library Tools
Reference Guide.

For information about how to define segments in the linker command file, see
Customizing the linker command file, page 33.

For detailed information about the extended keywords mentioned here, see the chapter
Extended keywords.

Holds bit variables.
BIT
0-0x1FFF

Read/write

Holds the checksum bytes generated by the linker. This segment also holds the
__checksum symbol. Note that the size of this segment is affected by the linker option
-J.

CONST

This segment can be placed anywhere in ROM memory.

Read-only

Part 2. Reference information 259

Descriptions of segments

CODE
Description Holds program code, except the code for system initialization.
Segment memory type CODE
Memory placement 0-0xFFFFF
Access type Read-only
See also Calling convention, page 93, Calling assembler routines from C, page 90, and Calling
assembler routines from C++, page 92.
CSTACK
Description Holds the internal data stack.
Segment memory type NEARDATA
Memory placement 0-O0xFFFF
Access type Read/write
See also The stack, page 38.
CSTART
Description Holds the startup code.
This segment cannot be placed in memory by using the -p directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker command file, the -z directive must be used.
Segment memory type CODE
Memory placement This segment must be placed at the address where the chip starts executing after reset.
Access type Read-only

IAR C/C++ Compiler
260 Reference Guide

DATAI3_AC

Description

DATAI3_AN

Description

DATAI3_C

Description
Segment memory type
Memory placement

Access type

DATAI3_1

Description

Segment memory type
Memory placement

Access type

Segment reference ___4

Holds __data13 located constant data.

Located means being placed at an absolute location using the @ operator or the #pragma
location directive. Because the location is known, this segment does not need to be
specified in the linker command file.

Holds __no_init __datal3 located data.

Located means being placed at an absolute location using the @ operator or the #pragma
location directive. Because the location is known, this segment does not need to be
specified in the linker command file.

Holds __datal3 constant data.
NEARCONST
0-0x1FFF

Read-only

Holds __datal3 static and global initialized variables initialized by copying from the
segment DATA13_ID at application startup.

This segment cannot be placed in memory by using the -p directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker command file, the -z directive must be used.

NEARDATA

0-0x1FFF

Read/write

Part 2. Reference information 261

Descriptions of segments

DATAI3_ID

Description

Segment memory type
Memory placement

Access type

DATAI3_N

Description
Segment memory type
Memory placement

Access type

DATAI3 Z

Description

Segment memory type
Memory placement

Access type

IAR C/C++ Compiler
262 Reference Guide

Holds initial values for __datal3 static and global variables in the DATA13_ T segment.
These values are copied from DATA13_ID to DATA13_T at application startup.

This segment cannot be placed in memory by using the -p directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker command file, the -z directive must be used.

FARCONST

0-OxFFFFF

Read-only

Holds static and global __no_init __datal3 variables.
NEARDATA
0-0x1FFF

Read/write

Holds zero-initialized __datal3 static and global variables. The contents of this
segment is declared by the system startup code.

This segment cannot be placed in memory by using the - P directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker command file, the -z directive must be used.

NEARDATA

0-0x1FFF

Read/write

DATAI6_AC

Description

DATAI6_AN

Description

DATAI16_C

Description
Segment memory type
Memory placement

Access type

DATAI16_HEAP

Description

Segment memory type
Memory placement
Access type

See also

Segment reference ___4

Holds __data16 located constant data.

Located means being placed at an absolute location using the @ operator or the #pragma
location directive. Because the location is known, this segment does not need to be
specified in the linker command file.

Holds __no_init __datalé located data.

Located means being placed at an absolute location using the @ operator or the #pragma
location directive. Because the location is known, this segment does not need to be
specified in the linker command file.

Holds __datal6 constant data.
NEARCONST
0-0XFFFF

Read-only

Holds the heap used for dynamically allocated data in datal6 memory, in other words
data allocated by datal6_malloc and datal6_free, and in C++, new and delete.

Note: This segment is only used when you use the DLIB library.
DATA

0-O0xXFFFF

Read/write

The heap, page 40 and New and Delete operators, page 115.

Part 2. Reference information 263

Descriptions of segments

DATAI6_1

Description

Segment memory type
Memory placement

Access type

DATAI6_ID

Description

Segment memory type
Memory placement

Access type

DATAI6_N

Description
Segment memory type
Memory placement

Access type

IAR C/C++ Compiler
264 Reference Guide

Holds __datals6 static and global initialized variables initialized by copying from the
segment DATA16_1ID at application startup.

This segment cannot be placed in memory by using the -p directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker command file, the -z directive must be used.

NEARDATA

0-OxFFFF

Read/write

Holds initial values for __datal6 static and global variables in the DATA16_T segment.
These values are copied from DATA16_ID to DATAL6_T at application startup.

This segment cannot be placed in memory by using the -p directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker command file, the -z directive must be used.

FARCONST

0-O0xFFFFF

Read-only

Holds static and global __no_init __datalé variables.
NEARDATA
0-O0xFFFF

Read/write

Segment reference ___4

DATAI6_Z
Description Holds zero-initialized __datal6 static and global variables. The contents of this
segment is declared by the system startup code.
This segment cannot be placed in memory by using the -p directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker command file, the -z directive must be used.
Segment memory type NEARDATA
Memory placement 0-O0xXFFFF
Access type Read/write
DATA20_AC
Description Holds __data20 located constant data.
Located means being placed at an absolute location using the @ operator or the #pragma
location directive. Because the location is known, this segment does not need to be
specified in the linker command file.
DATA20_AN
Description Holds __no_init __data20 located data.
Located means being placed at an absolute location using the @ operator or the #pragma
location directive. Because the location is known, this segment does not need to be
specified in the linker command file.
DATA20_C
Description Holds __data20 constant data.
Segment memory type HUGECONST
Memory placement 0-O0xXFFFFF
Access type Read-only

Part 2. Reference information 265

Descriptions of segments

266

DATA20_HEAP

Description

Segment memory type
Memory placement
Access type

See also

DATA20 I

Description

Segment memory type
Memory placement

Access type

DATA20_ID

Description

Segment memory type

Memory placement

IAR C/C++ Compiler
Reference Guide

Holds the heap used for dynamically allocated data in data20 memory, in other words
data allocated by data20_malloc and data20_free, and in C++, new and delete.

Note: This segment is only used when you use the DLIB library.

DATA
0-0XFFFFF
Read/write

The heap, page 40 and New and Delete operators, page 115.

Holds __data20 static and global initialized variables initialized by copying from the
segment DATA20_ID at application startup.

This segment cannot be placed in memory by using the -p directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker command file, the -z directive must be used.

DATA

0-0xXFFFFF

Read/write

Holds initial values for __data20 static and global variables in the DATA20_T segment.
These values are copied from DATA20_ID to DATA20_T at application startup.

This segment cannot be placed in memory by using the - P directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker command file, the -z directive must be used.

CONST

0-O0xFFFFF

Access type

DATA20_N

Description
Segment memory type
Memory placement

Access type

DATA20 Z

Description

Segment memory type
Memory placement

Access type

DIFUNCT

Description

Segment memory type

Memory placement

Access type

Segment reference ___4

Read-only

Holds static and global __no_init __data20 variables.
DATA
0-0xXFFFFF

Read/write

Holds zero-initialized __data20 static and global variables. The contents of this
segment is declared by the system startup code.

This segment cannot be placed in memory by using the -p directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker command file, the -z directive must be used.

DATA

0-0xXFFFFF

Read/write

Holds the dynamic initialization vector used by C++.

FARCONST

Note: The reason why this segment is of the FARCONST type is that the far access
method is used by the initializing code in cstartup.

0-0xXFFFFF

Read-only

Part 2. Reference information

267

Descriptions of segments

268

FAR_AC

Description

FAR_AN

Description

FAR_C

Description
Segment memory type
Memory placement

Access type

FAR_HEAP

Description

Segment memory type
Memory placement
Access type

See also

IAR C/C++ Compiler
Reference Guide

Holds __ far located constant data.

Located means being placed at an absolute location using the @ operator or the #pragma
location directive. Because the location is known, this segment does not need to be
specified in the linker command file.

Holds __no_init __ far located data.

Located means being placed at an absolute location using the @ operator or the #pragma
location directive. Because the location is known, this segment does not need to be
specified in the linker command file.

Holds __ far constant data.
FARCONST
0-0XFFFFF

Read-only

Holds the heap used for dynamically allocated data in far memory, in other words data
allocated by far_malloc and far_free, and in C++, new and delete.

Note: This segment is only used when you use the DLIB library.
DATA

0-0xXFFFFF

Read/write

The heap, page 40 and New and Delete operators, page 115.

FAR_I

Description

Segment memory type
Memory placement

Access type

FAR_ID

Description

Segment memory type
Memory placement

Access type

FAR_N

Description

Segment memory type
Memory placement

Access type

Segment reference ___4

Holds __ far static and global initialized variables initialized by copying from the
segment FAR_ID at application startup.

This segment cannot be placed in memory by using the -p directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker command file, the -z directive must be used.

FARDATA

0-OxFFFFF

Read/write

Holds initial values for __ far static and global variables in the FAR_TI segment. These
values are copied from FAR_ID to FAR_T at application startup.

This segment cannot be placed in memory by using the -p directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker command file, the -z directive must be used.

FARCONST

0-O0xFFFFF

Read-only

Holds static and global __no_init __far variables.

Note: This segment is only available when the compiler is used in M16C mode, that is
when the option --cpu=M16C is used.

FARDATA
0-O0xFFFFF

Read/write

Part 2. Reference information 269

Descriptions of segments

FAR Z

Description

Segment memory type
Memory placement

Access type

FLIST

Description

Segment memory type
Memory placement

Access type

HEAP

Description

IAR C/C++ Compiler
270 Reference Guide

Holds zero-initialized __ far static and global variables. The contents of this segment
is declared by the system startup code.

This segment cannot be placed in memory by using the -p directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker command file, the -z directive must be used.

FARDATA
0-OxFFFFF

Read/write

Holds the jump table with an entry for each __tiny_func function. Each entry is two
bytes and contains the lower 16 bits for the destination address. The high 4 bits are
always F.

Note: This segment is only available when the compiler is used in M16C mode, that is
when the option --cpu=M16C is used.
CONST

0xFFEOO-0xFFFDB

Read-only

Holds the heap used for dynamically allocated data, in other words data allocated by
malloc and free, and in C++, new and delete. This segment is used under any of
these conditions:

o when the compiler is used in R8C mode, that is when the option --cpu=R8C is used

o when the IAR CLIB Library is used

o when the compiler is used in M16C mode, that is when the option --cpu=M16C is
used; and when the AR DLIB Library is used; and finally, if the near data model is
used.

Segment memory type

Memory placement
Access type

See also

INTVEC

Description

Segment memory type
Memory placement

Access type

INTVEC1

Description

Segment memory type

Segment reference ___4

This segment is an alias for the DATA16_HEAP segment.

Depends on the data model. In the supplied linker command files, the type is NEAR,
because no M16C/R8C CPU currently has RAM outside datal6 memory.

Depends on the data model.
Read/write

The heap, page 40.

Holds the interrupt vector table populated by the use of the __interrupt extended
keyword in combination with the #pragma vector directive.

CONST
0-0xXFFFFF

Read-only

Holds the fixed interrupt vector table populated by the use of the __interrupt
extended keyword. The function must have one of these names:

__undefined_instruction_handler
__overflow_handler
__break_instruction_handler
__address_match_handler
__single_step_handler
__watchdog_timer_handler
__DBC_handler

_NMI_handler

Note: The interrupt sources Watchdog Timer, Oscillation Stop, Re-Oscillation
Detection, and Voltage Down Detection share the same interrupt vector.

The vector entries consist of the addresses of the named functions. Thus, each of these
named functions is represented by a vector entry.

CONST

Part 2. Reference information 271

Descriptions of segments

Memory placement o When the compiler is used in M16C mode: 0xFFFDC-0xFFFFF

o When the compiler is used in R8C mode: 0xFFDC-0xFFFF

Access type Read-only
ISTACK
Description Holds the internal stack used by interrupts and exceptions.
Segment memory type NEARDATA
Memory placement 0-O0xFFFF
Access type Read/write
See also The stack, page 38.
TINYFUNC
Description Holds __tiny_ func declared functions to be placed in the special page area.

Note: This segment is only available when the compiler is used in M16C mode, that is
when the option --cpu=M16C is used.

Segment memory type CODE
Memory placement FFEOO-FFFDB
Access type Read-only

IAR C/C++ Compiler
272 Reference Guide

Implementation-defined
behavior

This chapter describes how the compiler handles the implementation-defined
areas of the C language.

ISO 9899:1990, the International Organization for Standardization standard -
Programming Languages - C (revision and redesign of ANSI X3.159-1989,
American National Standard), changed by the ISO Amendment |:1994,
Technical Corrigendum [, and Technical Corrigendum 2, contains an appendix
called Portability Issues. The ISO appendix lists areas of the C language that ISO
leaves open to each particular implementation.

Note: The compiler adheres to a freestanding implementation of the ISO
standard for the C programming language. This means that parts of a standard
library can be excluded in the implementation.

Descriptions of implementation-defined behavior

Translation

This section follows the same order as the ISO appendix. Each item covered includes
references to the ISO chapter and section (in parenthesis) that explains the
implementation-defined behavior.

Diagnostics (5.1.1.3)
Diagnostics are produced in the form:
filename, linenumber levell[tag]: message

where £ilename is the name of the source file in which the error was encountered,
linenumber is the line number at which the compiler detected the error, Ievel is the
level of seriousness of the message (remark, warning, error, or fatal error), tag is a
unique tag that identifies the message, and message is an explanatory message, possibly
several lines.

Part 2. Reference information

273

Descriptions of implementation-defined behavior

274

Environment

Identifiers

Characters

IAR C/C++ Compiler
Reference Guide

Arguments to main (5.1.2.2.2.1)

The function called at program startup is called main. No prototype was declared for
main, and the only definition supported for main is:

int main(void)

To change this behavior for the IAR DLIB runtime environment, see Customizing
system initialization, page 61. To change this behavior for the IAR CLIB runtime
environment, see Customizing system initialization, page 84.

Interactive devices (5.1.2.3)

The streams stdin and stdout are treated as interactive devices.

Significant characters without external linkage (6.1.2)

The number of significant initial characters in an identifier without external linkage is
200.

Significant characters with external linkage (6.1.2)

The number of significant initial characters in an identifier with external linkage is 200.

Case distinctions are significant (6.1.2)

Identifiers with external linkage are treated as case-sensitive.

Source and execution character sets (5.2.1)

The source character set is the set of legal characters that can appear in source files. The
default source character set is the standard ASCII character set. However, if you use the
command line option --enable_multibytes, the source character set will be the host
computer’s default character set.

The execution character set is the set of legal characters that can appear in the execution
environment. The default execution character set is the standard ASCII character set.

However, if you use the command line option --enable_multibytes, the execution
character set will be the host computer’s default character set. The IAR DLIB Library

Implementation-defined behavior ___¢

needs a multibyte character scanner to support a multibyte execution character set. The
IAR CLIB Library does not support multibyte characters.

See Locale, page 66.

Bits per character in execution character set (5.2.4.2.1)

The number of bits in a character is represented by the manifest constant CHAR_BIT. The
standard include file 1imits.h defines CHAR_BIT as 8.

Mapping of characters (6.1.3.4)

The mapping of members of the source character set (in character and string literals) to
members of the execution character set is made in a one-to-one way. In other words, the
same representation value is used for each member in the character sets except for the
escape sequences listed in the ISO standard.

Unrepresented character constants (6.1.3.4)

The value of an integer character constant that contains a character or escape sequence
not represented in the basic execution character set or in the extended character set for
a wide character constant generates a diagnostic message, and will be truncated to fit the
execution character set.

Character constant with more than one character (6.1.3.4)

An integer character constant that contains more than one character will be treated as an
integer constant. The value will be calculated by treating the leftmost character as the
most significant character, and the rightmost character as the least significant character,
in an integer constant. A diagnostic message will be issued if the value cannot be
represented in an integer constant.

A wide character constant that contains more than one multibyte character generates a
diagnostic message.
Converting multibyte characters (6.1.3.4)

The only locale supported—that is, the only locale supplied with the IAR C/C++
Compiler—is the ‘C’ locale. If you use the command line option
--enable_multibytes, the [AR DLIB Library will support multibyte characters if
you add a locale with multibyte support or a multibyte character scanner to the library.
The IAR CLIB Library does not support multibyte characters.

See Locale, page 66.

Part 2. Reference information 275

Descriptions of implementation-defined behavior

Range of 'plain’ char (6.2.1.1)

A ‘plain’ char has the same range as an unsigned char.

Integers

Range of integer values (6.1.2.5)

The representation of integer values are in the two's complement form. The most
significant bit holds the sign; 1 for negative, 0 for positive and zero.

See Basic data types, page 184, for information about the ranges for the different integer
types.
Demotion of integers (6.2.1.2)

Converting an integer to a shorter signed integer is made by truncation. If the value
cannot be represented when converting an unsigned integer to a signed integer of equal
length, the bit-pattern remains the same. In other words, a large enough value will be
converted into a negative value.

Signed bitwise operations (6.3)
Bitwise operations on signed integers work the same way as bitwise operations on
unsigned integers; in other words, the sign-bit will be treated as any other bit.

Sign of the remainder on integer division (6.3.5)

The sign of the remainder on integer division is the same as the sign of the dividend.

Negative valued signed right shifts (6.3.7)

The result of a right-shift of a negative-valued signed integral type preserves the sign-bit.
For example, shifting 0xFF00 down one step yields 0xFF80.

Floating point

Representation of floating-point values (6.1.2.5)

The representation and sets of the various floating-point numbers adheres to IEEE
854-1987. A typical floating-point number is built up of a sign-bit (s), a biased
exponent (e), and a mantissa (m).

See Floating-point types, page 186, for information about the ranges and sizes for the
different floating-point types: £loat and double.

IAR C/C++ Compiler
276 Reference Guide

Implementation-defined behavior ___¢

Converting integer values to floating-point values (6.2.1.3)

When an integral number is cast to a floating-point value that cannot exactly represent
the value, the value is rounded (up or down) to the nearest suitable value.
Demoting floating-point values (6.2.1.4)

When a floating-point value is converted to a floating-point value of narrower type that
cannot exactly represent the value, the value is rounded (up or down) to the nearest
suitable value.

Arrays and pointers
size_t (6.3.3.4, 7.1.1)

See size_t, page 188, for information about size_t.

Conversion from/to pointers (6.3.4)

See Casting, page 188, for information about casting of data pointers and function
pointers.

ptrdiff_t (6.3.6, 7.1.1)

See ptrdiff ¢, page 188, for information about the ptrdiff_t.

Registers

Honoring the register keyword (6.5.1)

User requests for register variables are not honored.

Structures, unions, enumerations, and bitfields

Improper access to a union (6.3.2.3)

If a union gets its value stored through a member and is then accessed using a member
of a different type, the result is solely dependent on the internal storage of the first
member.

Padding and alignment of structure members (6.5.2.1)

See the section Basic data types, page 184, for information about the alignment
requirement for data objects.

Part 2. Reference information 277

Descriptions of implementation-defined behavior

278

Qualifiers

Declarators

Statements

IAR C/C++ Compiler
Reference Guide

Sign of 'plain’ bitfields (6.5.2.1)

A 'plain’ int bitfield is treated as a signed int bitfield. All integer types are allowed as
bitfields.

Allocation order of bitfields within a unit (6.5.2.1)

Bitfields are allocated within an integer from least-significant to most-significant bit.

Can bitfields straddle a storage-unit boundary (6.5.2.1)

Bitfields cannot straddle a storage-unit boundary for the chosen bitfield integer type.

Integer type chosen to represent enumeration types (6.5.2.2)

The chosen integer type for a specific enumeration type depends on the enumeration
constants defined for the enumeration type. The chosen integer type is the smallest
possible.

Access to volatile objects (6.5.3)

Any reference to an object with volatile qualified type is an access.

Maximum numbers of declarators (6.5.4)

The number of declarators is not limited. The number is limited only by the available
memory.

Maximum number of case statements (6.6.4.2)

The number of case statements (case values) in a switch statement is not limited. The
number is limited only by the available memory.

Implementation-defined behavior ___¢

Preprocessing directives

Character constants and conditional inclusion (6.8.1)

The character set used in the preprocessor directives is the same as the execution
character set. The preprocessor recognizes negative character values if a 'plain' character
is treated as a signed character.

Including bracketed filenames (6.8.2)

For file specifications enclosed in angle brackets, the preprocessor does not search
directories of the parent files. A parent file is the file that contains the #include
directive. Instead, it begins by searching for the file in the directories specified on the
compiler command line.

Including quoted filenames (6.8.2)

For file specifications enclosed in quotes, the preprocessor directory search begins with
the directories of the parent file, then proceeds through the directories of any
grandparent files. Thus, searching begins relative to the directory containing the source
file currently being processed. If there is no grandparent file and the file is not found,
the search continues as if the filename was enclosed in angle brackets.

Character sequences (6.8.2)

Preprocessor directives use the source character set, except for escape sequences. Thus,
to specify a path for an include file, use only one backslash:

#include "mydirectory\myfile"
Within source code, two backslashes are necessary:

file = fopen("mydirectory\\myfile", "rt");

Recognized pragma directives (6.8.6)

In addition to the pragma directives described in the chapter Pragma directives, the
following directives are recognized and will have an indeterminate effect:
alignment

baseaddr

building runtime

can_instantiate

codeseg

Ccspy_support

define_type_info

Part 2. Reference information 279

Descriptions of implementation-defined behavior

do_not_instantiate
early dynamic_initialization
function

hdrstop
important_typedef
instantiate
keep_definition
memory
module_name

no_pch

once
__printf_args
public_equ
__scanf_args
section

STDC
system_include
VARARGS

warnings

Default __DATE__and __TIME__ (6.8.8)

The definitions for __TIME _ and __DATE__ are always available.

IAR DLIB Library functions
The information in this section is valid only if the runtime library configuration you have
chosen supports file descriptors. See the chapter The DLIB runtime environment for
more information about runtime library configurations.

NULL macro (7.1.6)

The NULL macro is defined to 0.

Diagnostic printed by the assert function (7.2)
The assert () function prints:
filename:linenr expression -- assertion failed

when the parameter evaluates to zero.

IAR C/C++ Compiler
280 Reference Guide

Implementation-defined behavior ___¢

Domain errors (7.5.1)

NaN (Not a Number) will be returned by the mathematic functions on domain errors.

Underflow of floating-point values sets errno to ERANGE (7.5.1)

The mathematics functions set the integer expression errno to ERANGE (a macro in
errno.h) on underflow range errors.

fmod() functionality (7.5.6.4)

If the second argument to £mod () is zero, the function returns NaN; errno is set to
EDOM.

signal() (7.7.1.1)

The signal part of the library is not supported.

Note: Low-level interface functions exist in the library, but will not perform anything.
Use the template source code to implement application-specific signal handling. See
Signal and raise, page 69.

Terminating newline character (7.9.2)
stdout stream functions recognize either newline or end of file (EOF) as the
terminating character for a line.

Blank lines (7.9.2)

Space characters written to the stdout stream immediately before a newline character
are preserved. There is no way to read the line through the stdin stream that was
written through the stdout stream.

Null characters appended to data written to binary streams (7.9.2)

No null characters are appended to data written to binary streams.

Files (7.9.3)

Whether a write operation on a text stream causes the associated file to be truncated
beyond that point, depends on the application-specific implementation of the low-level
file routines. See File input and output, page 65.

remove() (7.9.4.1)

The effect of a remove operation on an open file depends on the application-specific
implementation of the low-level file routines. See File input and output, page 65.

Part 2. Reference information 281

Descriptions of implementation-defined behavior

rename() (7.9.4.2)

The effect of renaming a file to an already existing filename depends on the
application-specific implementation of the low-level file routines. See File input and
output, page 65.

%p in printf() (7.9.6.1)

The argument to a $p conversion specifier, print pointer, to printf () is treated as
having the type void *. The value will be printed as a hexadecimal number, similar to
using the $x conversion specifier.

%p in scanf() (7.9.6.2)

The %p conversion specifier, scan pointer, to scanf () reads a hexadecimal number and
converts it into a value with the type void *.

Reading ranges in scanf() (7.9.6.2)

A - (dash) character is always treated as a range symbol.

File position errors (7.9.9.1, 7.9.9.4)

On file position errors, the functions fgetpos and ftell store EFPOS in errno.

Message generated by perror() (7.9.10.4)
The generated message is:

usersuppliedprefix: errormessage

Allocating zero bytes of memory (7.10.3)

The calloc (), malloc (), and realloc () functions accept zero as an argument.
Memory will be allocated, a valid pointer to that memory is returned, and the memory
block can be modified later by realloc.

Behavior of abort() (7.10.4.1)

The abort () function does not flush stream buffers, and it does not handle files,
because this is an unsupported feature.

Behavior of exit() (7.10.4.3)

The argument passed to the exit function will be the return value returned by the main
function to cstartup.

IAR C/C++ Compiler
282 Reference Guide

Implementation-defined behavior ___¢

Environment (7.10.4.4)

The set of available environment names and the method for altering the environment list
is described in Environment interaction, page 68.

system() (7.10.4.5)

How the command processor works depends on how you have implemented the system
function. See Environment interaction, page 68.

Message returned by strerror() (7.11.6.2)

The messages returned by strerror () depending on the argument is:

Argument Message

EZERO no error

EDOM domain error

ERANGE range error

EFPOS file positioning error
EILSEQ multi-byte encoding error
<0 || >99 unknown error

all others error nnn

Table 46: Message returned by strerror()—IAR DLIB library

The time zone (7.12.1)

The local time zone and daylight savings time implementation is described in Time, page
70.

clock() (7.12.2.1)

From where the system clock starts counting depends on how you have implemented the
clock function. See ZTime, page 70.

IAR CLIB Library functions
NULL macro (7.1.6)

The NULL macro is defined to (void *) 0.

Diagnostic printed by the assert function (7.2)
The assert () function prints:

Assertion failed: expression, file Filename, line linenumber

Part 2. Reference information 283

Descriptions of implementation-defined behavior

when the parameter evaluates to zero.

Domain errors (7.5.1)

HUGE_VAL, the largest representable value in a double floating-point type, will be
returned by the mathematic functions on domain errors.

Underflow of floating-point values sets errno to ERANGE (7.5.1)
The mathematics functions set the integer expression errno to ERANGE (a macro in
errno.h) on underflow range errors.

fmod() functionality (7.5.6.4)

If the second argument to fmod () is zero, the function returns zero (it does not change
the integer expression errno).

signal() (7.7.1.1)

The signal part of the library is not supported.

Terminating newline character (7.9.2)

stdout stream functions recognize either newline or end of file (EOF) as the
terminating character for a line.

Blank lines (7.9.2)

Space characters written to the stdout stream immediately before a newline character
are preserved. There is no way to read the line through the stdin stream that was
written through the stdout stream.

Null characters appended to data written to binary streams (7.9.2)

There are no binary streams implemented.

Files (7.9.3)

There are no other streams than stdin and stdout. This means that a file system is not
implemented.

remove() (7.9.4.1)

There are no other streams than stdin and stdout. This means that a file system is not
implemented.

IAR C/C++ Compiler
284 Reference Guide

Implementation-defined behavior ___¢

rename() (7.9.4.2)

There are no other streams than stdin and stdout. This means that a file system is not
implemented.

%p in printf() (7.9.6.1)

The argument to a $p conversion specifier, print pointer, to printf () is treated as
having the type 'char *'. The value will be printed as a hexadecimal number, similar
to using the %x conversion specifier.

%p in scanf() (7.9.6.2)

The %p conversion specifier, scan pointer, to scanf () reads a hexadecimal number and
converts it into a value with the type 'void *'.

Reading ranges in scanf() (7.9.6.2)

A - (dash) character is always treated explicitly as a - character.

File position errors (7.9.9.1, 7.9.9.4)

There are no other streams than stdin and stdout. This means that a file system is not
implemented.

Message generated by perror() (7.9.10.4)

perror () is not supported.

Allocating zero bytes of memory (7.10.3)

The calloc (), malloc (), and realloc () functions accept zero as an argument.
Memory will be allocated, a valid pointer to that memory is returned, and the memory
block can be modified later by realloc.

Behavior of abort() (7.10.4.1)

The abort () function does not flush stream buffers, and it does not handle files,
because this is an unsupported feature.

Behavior of exit() (7.10.4.3)

The exit () function does not return.

Environment (7.10.4.4)

Environments are not supported.

Part 2. Reference information 285

Descriptions of implementation-defined behavior

system() (7.10.4.5)

The system () function is not supported.

Message returned by strerror() (7.11.6.2)

The messages returned by strerror () depending on the argument are:

Argument Message

EZERO no error
EDOM domain error
ERANGE range error
<0 || >99 unknown error
all others error NoO.xx

Table 47: Message returned by strerror()—IAR CLIB library

The time zone (7.12.1)

The time zone function is not supported.

clock() (7.12.2.1)

The clock () function is not supported.

IAR C/C++ Compiler
286 Reference Guide

A

abort
implementation-defined behavior (CLIB) 285
implementation-defined behavior (DLIB) 282
system termination (DLIB) 61
absolute location
data, placingat (@), 128
language supportfor, 196
#pragmalocation............, 224
addressing. See memory types and data models
algorithm (STL headerfile) 251
alignmento it 183
forcing stricter (#pragma data_alignment).......... 220
in structures (#pragmapack) 226
in structures, causing problems 125
of an object (_ ALIGNOF__)................... 197
of datatypes.t 183
alignment (pragma directive) 279
__ALIGNOF__(operator)coouvuienenen.. 197
--align_data (compileroption) 157
--align_func (compiler option) 157
ANONYMOUS SIIUCLUTES .« « . v v vvee e e eeeeeeeene 126
anonymous symbols, creating. 199
application
building, overview of L oo 4
startup and termination (CLIB) 83
startup and termination (DLIB) 58
architecture, of MI6C/R8C....... 11
ARGFRAME (assembler directive) 100
arrays
designated initializersin 200
global,accessing 101
hints about index type 123
implementation-defined behavior. 277
incomplete atend of structs 199
non-lvalue i 203
of incomplete types 201
single-value initialization. 203

Index °

asm, __asm (language extension) 198
assembler code
callingfrom C 90
callingfrom C++. i 92
insertinginline., 89
assembler directives
for call frame information 104
forstaticoverlay 100
using in inline assemblercode 90
assembler instructions
BStS . oo 233
insertinginline. L ... 89
INEO. . ot 235-236
JOTS e e 23
mpa.b ... 235
TINPAW .« ot e e ettt et e e e e e e e 236
smovbb 238
SMOVD.W. ... 238
smovEb ... 238
SMOVEW 239
SStED. L 239
SSIELW & ettt e e 239
used for calling functions. 101
WAl .o e 239
assembler labels, making public (--public_equ) 178
assembler language interface 87
calling convention. See assembler code
assembler list file, generating 168
assembler outputfile........... 92
assembler,inline 198
ASSCITS . o ettt e e 70
implementation-defined behavior of, (CLIB). 283
implementation-defined behavior of, (DLIB). 280
including in application 245
assert.h (CLIB headerfile) 255
assert.h (DLIB headerfile) 249
atoll, C99 extensionc.ouiuriiinnn. 254
atOMIC OPETALIONS . . ot vt ottt et e e eens 25
CMOMILOT .« v v ettt 213

287

288

attributes

(0] 0] 11 T 208
17 51 205
autovariables L L L i 19
at functionentrance 96
programming hints for efficientcode. 135
using in inline assemblercode 90

backtrace information See call frame information

Barr,Michael XXVi
baseaddr (pragma directive), 279
_ BASE_FILE__ (predefined symbol)............... 242
basic type names, using in preprocessor expressions
(--migration_preprocessor_extensions). 170
basic_template_matching (pragma directive) 218
USING « vttt 117
batch files, errorreturncodes 148
binary streams (CLIB) 284
binary streams (DLIB) 281
bitnegation.ottt 139
bitfields
data representationof. L. 185
hints. 123
implementation-defined behaviorof 277
non-standard typesin.............., 197
specifying order of members (#pragma bitfields). 219
bitfields (pragma directive). 219
bits,absolute. 210
__bitvar (extended keyword). 210
BITVARS (segment)., 259
bold style, inthis guide. XXVii
bool (datatype).oovenin e 184
adding support forinCLIB 255
adding support forin DLIB 250, 252
making availableinCcode 253
__break (intrinsic function). 232
brk (assembler instruction) 232

IAR C/C++ Compiler
Reference Guide

__ BTSTS (intrinsic function) 233
btsts (assembler instruction) 233
bubble sort function, defined in stdlib.h 254
building_runtime (pragma directive). 279
_ BUILD_NUMBER___ (predefined symbol) 242
CandC++1linkaget 94
C/C++ calling convention. See calling convention
Cheaderfiles, 249
call frame information 104

inassembler listfile............................ 91

in assembler list file (-1A) 168
call stack. . ..o 104
callee-save registers, stored on stack. 19
calling convention

C++, requiring C linkage 92

incompiler. 93
__calling_convention (runtime model attribute) 75
--calling_convention (compiler option). 158
calloc (library function), 21

See also heap

implementation-defined behavior of (CLIB) 285

implementation-defined behavior of (DLIB) 282
can_instantiate (pragma directive) 279
cassert (DLIB headerfile). 252
cast operators

inExtended EC++........ 110

missing from Embedded C++ 110
casting

between pointer types 17

of pointers and integers 188
cctype (DLIB header file) 252
cerrno (DLIB headerfile) 252
cexit (system termination code)

inDLIB...... ... 58

placementinsegment., 42
CFI (assembler directive)ccvuunn. 104

CFI_COMMON (call frame information macro) 107
CFI_NAMES (call frame information macro). 107
cfi.m34 (CFI header example file) 107
cfloat (DLIB header file). 252
char (datatype)........ .o, 184
changing default representation (--char_is_signed) . .. 158
signed and unsigned. L Lol 185
characters, implementation-defined behaviorof 274
character-based 1/0
INCLIB e e 81
INDLIB ... e e 62
overriding in runtime library 55
--char_is_signed (compiler option). 158
CHECKSUM (segment) «ovovenennnnenenen... 259
cinttypes (DLIB headerfile)....................... 252
class memory (extended EC++) 112
class template partial specialization
matching (extended EC++)........... 116
ClasSeS. « vt 111
CLIB. .. e e e 7,254
reference information
runtime enViroNmMento.vuenunnenn... 77
summary of definitions 255
climits (DLIB header file). 252
clocale (DLIB headerfile) 252
clock (CLIB library function),
implementation-defined behaviorof 286
clock (DLIB library function),
implementation-defined behaviorof 283
clockc .o 70
__close (DLIB library function) 66
cmath (DLIB headerfile) 252
code
interruption of execution 24
verifying linked result 43
code motion (compiler transformation). 134
disabling (--no_code_motion) 171
€Ode POINLETS. . o . v vttt e 187
code segments, used for placement. 42

Index °

CODE (segment)oueueinunenenenenn.. 260
USING .ottt e 42
codeseg (pragma directive) 279
--code_segment (compiler option) 159
command line options
part of compiler invocation syntax................ 145
PaSSING. . ottt 145
See also compiler options
typographic convention XXVii
command prompt icon, in this guide. XXvii
comments
after preprocessor directives. 203
C++ style,usinginCcode. 198
common block (call frame information) 105
common subexpr elimination (compiler transformation) . 133
disabling (--n0_CS€) v i 171
compilation date
exacttimeof (_TID_) 244
exacttimeof (_TIME_)...................... 244
identifying (_DATE_) 242
compiler
environment variables 146
INVOCAtion SYNEAX . .. oo v ee e e 145
outputfrom 147
compiler listing, generating (-1). 168
compiler objectfile. 4
including debug information in (--debug, -r) 161
output from compiler. 147
compiler optimization levels. 132
compiler Optionsottt 151
passingtocompiler, 145
reading fromfile (-f) 167
specifying parameterso..... 153
SUIMMATY « o v ov et et e ettt e e et e e e eeeens 153
4 112 SO 151
for creating skeletoncode 91
--warnings_affect_exit_code 148
compiler platform, identifying 243
compiler subversion number. 244

289

290

compiler transformations 131

compiler version number 0. 244
compiling

from the commandline 4

3 1172 - GO P 145
complex numbers, supported in Embedded C++. 110
complex (library header file). 250
compound literals, 199
computer style, typographic convention XX Vil
configuration

basic project settingst 5

_low_level init o i 61
configuration symbols, in library configuration files. 57
consistency, module 73
const

declaring objects i 192

non-toplevel 202
constant data

copyingtonear RAM. 169

placementof 159
constants, placing in named segment 219
__CONSTANT_DATA__ (predefined symbol). 242
__constant_data (runtime model attribute) 75
--constant_data (compiler option). 159
constseg (pragma directive) 219
const_cast (Cast OPerator)ouveneenen... 110
contents, of thisguide. XXiv
conventions, used inthisguide XXVi
copyrightnotice, i, il
__CORE__ (predefined symbol). 242
core, identifying i 242
__cplusplus (predefined symbol) 242
--cpu (compileroption). 159
CPUCOIE ..ottt e e e e et 6
cpu, specifying on command line 159
cross call (compiler transformation) 135
csetjmp (DLIB headerfile) 252
csignal (DLIB headerfile) 252
cspy_support (pragma directive). 279

IAR C/C++ Compiler
Reference Guide

CSTACK (segment)cuvuvununenenenen... 260
example 38
See also stack

CSTART (segment).covvvrnenennenenan.. 42,260

cstartup (system startupcode). 42, 83
CUSTOMUZING .« . v\ttt e ettt e 62
overriding in runtime library 55

CStartuP.S34. . o 58

cstdarg (DLIB header file) 252

cstdbool (DLIB headerfile) 252

cstddef (DLIB headerfile) 252

cstdio (DLIB headerfile) 252

cstdlib (DLIB header file). 252

cstring (DLIB header file). 252

ctime (DLIB headerfile). 252

ctype.h (library header file). 249, 255
added C functionality. 253

cwctype.h (library header file) 252

?C_EXIT (assemblerlabel). 85

?C_GETCHAR (assembler label). 85

C_INCLUDE (environment variable) 146

?7C_PUTCHAR (assembler label).................... 85

C-SPY
interface to system termination 61
low-level interface 71, 85
STL container SUpportc.oouvennnn.. 119

C++
See also Embedded C++ and Extended Embedded C++
absolute location 129-130
callingconvention, 92
dynamic initializationin 43
features excluded from EC++ 109
headerfiles. 250-251
language extensions. 121
special function types. 28
static member variables 129-130
SUPPOIt fOr . . oot 3

C++ names, in assemblercode 93

C++ objects, placing in memory type 18

C++terminology. oo v XXVi
Ct++-stylecomments.covneninnnnnenen... 198
C99 standard, added functionality from 252
-D (compileroption)., 160
--data_model (compiler option) 160
data
alignmentof. i, 183
constant, placementof 159
different ways of storing 11
located, declaringextern 129
placing.......... 127, 220, 257
at absolute location. 128
representation of 183
SEOTAZE « + v vt et e e e 11
verifying linkedresult 43
data block (call frame information). 105
data memory attributes, using. 15
datamodels. 12
configurationt 6
identifying (_ DATA_MODEL_) 242
data poIntersottt 187
data Segmentst 35
data tyPes « v ot e 184
avoiding signed i 123
floatingpointo i 186
INCH 193
INEEEETS « v v vt ettt ettt e e 184
dataseg (pragma directive)ounen... 220
__data_alignment (runtime model attribute) 75
data_alignment (pragma directive) 220
_ DATA_MODEL__ (predefined symbol)............ 242
__data_model (runtime model attribute). 75
__datal3 (extended keyword) 210
datal3 (Memory tyPe). « . o v v v et ee e e e e 14
DATAI3_AC (S€ZMeNnt) . ..o vvvvveeeeeeeneenenn 261
DATAI3_AN (segment)cvuvenennnnnnenen. 261

Index °

DATA13_C(segment).vuvvnenienenannnnnn. 261
DATA13_I(segment)ccuveninenenennnnnn. 261
DATA13_ID (segment)vvvueneenenennnnnn. 262
DATA13_N(segment).coveninenenennenn.. 262
DATA13_Z (segment).cooueninenenennnnn.. 262
__datal6 (extended keyword) 211
datal6 (Memory type). . . .« vv v et 14
DATA16_AC (segment)ovuvnenenennnnn.. 263
DATA16_AN (segment)cvenienenennnnn.. 263
DATA16_C (segment).vvvenen e, 263
DATA16_HEAP (segment).c.covuvunen.n. 263
DATA16_I(segment)covniuininennnnn.. 264
DATA16_ID (segment)covveninenenennnnn.. 264
DATA16_N (segment).covieninenenennnnn.. 264
_datal6_size_t 115
DATA16_Z (segment).covueninenenennnnn.. 265
__data20 (extended keyword) L 211
data20 (Memory type). . . .« v vt e 14
DATA20_AC (segment)ovuvnenenennunn.. 265
DATA20_AN (segment)cveninenenennnnn.. 265
DATA20_C (segment).vuvineneeneennennn. 265
DATA20_HEAP (segment).oouvuvnnen.n. 266
DATA20_I(segment)couninenenannnnnn. 266
DATA20_ID (segment)ovieneenenennnnn.. 266
DATA20_N (segment).oovtneneenenennnnn.. 267
_data20 SIZe_t .o 115
DATA20_Z (segment).oouenenienenannnnn.. 267
__DATE__ (predefined symbol).................... 242
date (library function), configuring support for. 70
--debug (compiler option), 161
debug information, including in object file 156, 161, 178
declarations
CINPLY ¢ ot e e et e e 203
inforloops.......... .. . i 198
Kernighan & Ritchie 139
offunctions i 94
declarations and statements, mixing 198
declarators, implementation-defined behavior 278
define_type_info (pragma directive) 279

291

delete operator (extended EC++) 115
delete (keyword) 21
--dependencies (compiler option) 161
deque (STL headerfile) 251
destructors and interrupts, using 29, 120
diagnostic MeSSaZeS vttt 148
classifying as compilationerrors 162
classifying as compilation remarks 163
classifying as compiler warnings 163
disabling compiler warnings 174
disabling wrapping of incompiler................ 174
enabling compiler remarks. 178
listing all used by compiler 164
suppressing incompiler. 163
--diagnostics_tables (compiler option) 164
diag_default (pragma directive) 221
--diag_error (compiler option) 162
diag_error (pragma directive) 221
--diag_remark (compiler option). 163
diag_remark (pragma directive) 221
--diag_suppress (compiler option) 163
diag_suppress (pragma directive) 222
--diag_warning (compiler option) 163
diag_warning (pragma directive) 222
DIFUNCT (segment)c.ouueueununenen.. 43,267
directives
function for staticoverlay 100
Pragma.oit ittt 9,217
directory, specifying as parameter. 152
__disable_interrupt (intrinsic function). 233
--discard_unused_publics (compiler option). 164
disclaimer.o i, i1
DLIB. . ..o 7,249
building customized library 47
configurationsuuiuiinininenen... 47
configuring.oovvtnin i 46, 165
debug support. 48

reference information. See the online help system 247
runtime environment, 45

IAR C/C++ Compiler
Reference Guide

--dlib_config (compiler option). 165

DLib_defaults.h (library configuration file) 57
diml6ccustomh 57
document conventions.uuiinenon.. XXVi
documentation, library 247
domain errors, implementation-defined behavior . . . 281, 284
double (datatype)........covuiriniininnnn... 186
avoidingo 124
configuring size of floating-pointtype............... 7
in parameter Passingoeveienenenen .. 96
double_t,C99 extension, 253
do_not_instantiate (pragma directive). 280
dynamic initialization 58, 83
INCH . 43
dynamic Mmemoryiuiiiinii 20
-e (compileroption), 165
early_initialization (pragma directive) 280
--ec++ (compileroption). i 166
EC++headerfiles......... oo, 250
edition, of thisguide ii, il
--eec++ (compileroption)., 166
Embedded C++. 109
differences from C++. oL 109
enabling.......... ... i 166
function linkage 94
language extensions. 109
OVEIVIEW . oottt ettt e 109
Embedded C++ Technical Committee XXVi
embedded systems, IAR special supportfor............. 9
__embedded_cplusplus (predefined symbol) 242
__enable_interrupt (intrinsic function) 233
--enable_multibytes (compiler option) 166
entry label, program 59
enumerations, implementation-defined behavior. 277
enums
datarepresentation.iiiinan.. 185

forward declarationsof 202
environment
implementation-defined behavior. 274
runtime (CLIB) 77
runtime (DLIB) 45
environment variables
C_INCLUDE.itiiiiiiiiiniiaaennn.. 146
QCCMIGC. ..ot e 146
EQU (assembler directive) 178
errno.h (library header file). 249,255
CITOT MESSAZES « « « v v e ve et e e e e e ee e 149
classifying for compiler........................ 162
errorreturncodesl 148
--error_limit (compiler option) 166
exception handling, missing from Embedded C++. 109
EXCEPLION VECIOTS . . oo vv ettt et ie e e eenn 43
exception (library header file). 250
_Exit (library function) 61
exit (library function) 60
implementation-defined behavior. 282, 285
_exit (library function) 60
__exit(library function) 60
export keyword, missing from Extended EC++ 116
extended command line file
forcompiler............ ... i 167
Passing Options. oottt 145
Extended Embedded C++., 110
enabling. 166
standard template library (STL). 251
extended keywordso 205
enabling (-€).ot 165
OVEIVIEW . e ottt et et e e e 9
SUMMATY .o vvvvt et et et e e et e e 209
13 117 . GO PP 15
object attributes. i 208
type attributes on data objects. 206
type attributes on data pointers 207
type attributes on function pointers. 208
type attributes on functions. 207

Index °

extern "C" linkage. 114
-f (compileroption). i 167
_ far (extended keyword), 212
far (Memory type). . . oo v et ittt 14
FAR_AC (segment).vunintnieneennnn, 268
FAR_AN (segment)coviuinunenennnnnn. 268
FAR_C(segment)..........o.viuininunenennnnnn. 268
FAR_HEAP (segment)ccouiuinvnnnnenon. 268
FAR_I(segment).vuninininenenennnann. 269
FAR_ID (segment)ooviuininenenennnnnn. 269
FAR_N (segment).vuniininiienenennnnnn. 269
FAR_Z (segment)ouuiininiienenennnnnn. 270
fatal error messagesviiiiii 150
fgetpos (library function), implementation-defined
behavior 282
field width, library supportfor 82
__FILE__ (predefined symbol)..................... 243
file dependencies, tracking 161
file paths, specifying for #include files 167
file Systemsttt 284
filename, specifying as parameter. 152
FLG
getting the value of (__get FLG_register).......... 233
writing to (__set_ FLG_register). 237
FLIST (segment).ooivienenenannnn. 23,42,270
float (data type).o v e 186
floating-point constants
hexadecimal notation. 200
hints. 124
floating-point expressions,
using in preprocessor exXtensions. 170
floating-point format., 186
hints. 124
implementation-defined behavior. 276
Special Cases.t 187
32DItS ¢ v 186

293

294

64-bits 186

floating-point numbers, library supportfor............. 82
floating-point type, configuring size of double 7
float_t, C99 extension.coouiiiiinnnnn... 253
float.h (library headerfile) 249,255
fmod (library function),
implementation-defined behavior 281, 284
for loops, declarationsin. 198
formats

floating-point values 186

standard IEEE (floating point) 186
_formatted_write (library function) 82
fpclassify, C99 extension 253
FP_INFINITE, C99 extension 253
FP_NAN, C99 extension.ououuveeuunnnn... 253
FP_NORMAL, C99 extensionououuo... 253
FP_SUBNORMAL, C99 extension 253
FP_ZERO, C99 extension.oovuiuinnnn... 253
fragmentation, of heap memory 21
free (library function). See alsoheap 21
fstream (library header file) 250
fstream.h (library headerfile) 251
ftell (library function), implementation-defined behavior . 282
Full DLIB (library configuration) 47
__func__ (predefined symbol) 204, 243
FUNCALL (assembler directive) 100
__ FUNCTION__ (predefined symbol) 204, 243
function calls

callingconvention 93

stack image after 98
function declarations, Kernighan & Ritchie 139
function directives for staticoverlay 100
function inlining (compiler transformation) 134

disabling (--no_inline) 172
function prototypes.covve i 138

enforcing 179
function template parameter deduction (extended EC++). 117
function type information, omitting in object output. 176
FUNCTION (assembler directive) 100
function (pragma directive). 280

IAR C/C++ Compiler
Reference Guide

functional (STL headerfile) 251
functions. 23
C++ and special function types 28
declaring 94,138
inlining. 134, 136, 198, 223
INEEITUPL . . o ettt e 24-25
INTENSIC .« oottt e e 87, 136
1001071 1170 o 25
omitting typeinfo L. 176
PATAMELETS « . . o v vttt e 96
placinginmemory............... 127, 130
recursive
avoiding 138
storing dataonstack 20
reentrancy (DLIB) 248
register bank interrupt L Lo L 25
related eXtensions. 23
return values from L Lol L 98
special function types. 24
special page 23
verifying linked result 43
getchar (library function) 81
getenv (library function), configuring support for. 68
getzone (library function), configuring support for. 70
o7/ 1 TS« PP 70
__get_FLG_register (intrinsic function) 233
__get_interrupt_level (intrinsic function) 233
__get_interrupt_state (intrinsic function) 234
global arrays, accessingciiuiinan... 101
global variables
ACCESSING .« v vttt et e 101
initialization. L 37
guidelines, reading, xxiii

H

Harbison, Samuel P. XXVi
hardware support in compiler 46
hash_map (STL headerfile) 251
hash_set (STL headerfile) 251
hdrstop (pragma directive)von... 280
header files
C o 249
G e 250-251
ECH+ . o 250
Lbraryoonini 247
special function registers, 140
STL . o 251
assert.h. 255
ctypeh. . 255
DLib_defaults.h........ L 57
diml6ccustom.h. 57
errno.h ... 255
floath. o 255
iccbutlh. o 255
intrinsics.h L 231
limits.h. ..o 255
mathh 255
sefmp.ho ..o 255
stdargh ... 255
stdbool.Lh 184, 250, 255
stddef.h ... o 185, 255
stdioh ..o 255
stdlibh. ... 255
string.h. ... 255
--header_context (compiler option). 167
heap
DLIB support for multiple 71
dynamic memoryvueiiiit i 20
segments for. e 40
storingdata 12

heap segments
CLIB 40

Index °

DATA16_HEAP (segment) 263

DATA20_HEAP (segment) 266

DLIB ..ttt e 40

FAR_HEAP (segment).cocvvnenon... 268

HEAP (segment), 270

placing. 41
heap size

andstandard /O. oL 41

changingdefault. 40
HEAP (segment).c...oiiiinnenenn.. 40, 270
hints, optimization 135
HUGE_VALF, C99 extension.couvuuo.... 253
HUGE_VALL, C99 extension.c.ouuv.... 253
-I (compileroption).t 167
IAR Command Line Build Utility. 57
IAR Systems Technical Support 150
iarbuild.exe (utility)o 57
__TAR_SYSTEMS_ICC__ (predefined symbol) 243
iccbutlh (library header file). 255
__ICCM16C__ (predefined symbol). 243
icons,inthisguide XXVii
IDE

building applications from........................ 4
identifiers, implementation-defined behavior 274
IEEE format, floating-point values 186
__illegal_opcode (intrinsic function) 234
implementation-defined behavior 273
important_typedef (pragma directive)................ 280
include files

including before source files 177

Specifying 146
include_alias (pragma directive) 222
Infinity 187
INFINITY, C99 extension.coveunven... 253
inheritance, in Embedded C++ 109

295

296

initialization

dynamic......... ...t 58, 83
single-value i 203
initialized datasegments.co ... 37
initializers, StatiC.o 202
inlineassembler 89, 198
avoiding oot 136
See also assembler language interface
inline functions. L L L. 198
incompiler. i 134
inline (pragma directive). 223
installation directory XXVi
instantiate (pragma directive) 280
int (assembler instruction). 239
Nt (datatype) . .. oove i 184
INTB, writing to (__set_INTB_register). 237
integer characteristics, adding. 253
INEEEETS « o v o vt e e e e e e e e e 184
CASHING .« v v v vt et 188
implementation-defined behavior. 276
INEPLE L. oot 188
ptrdiff t ... 188
SIZE bttt 188
WINEPEE ..ot 189
integral promotion. L .. 139
INternal error. . ..o .v ettt 150
__interrupt (extended keyword) 24,212
using in pragma directives 230
interrupt functions. 24
placementinmemory. 43
interrupt state, reStoringouvunenenen... 238
interrupt vector table. 25
INTVEC segmentc.covuininannnn.. 271
INTVECT segmentc.covuininnnnnn.. 271
TINYFUNC segment.coouvnunenennn... 272
interrupt vector, specifying with pragma directive 230
interrupts
disabling i 213
during function execution 25

IAR C/C++ Compiler
Reference Guide

PrOCESSOL StALE .« . v v vttt et 19
using with EC++ destructors 29, 120
into (assembler instruction). 235-236
Intptr_t (INtEEEr tYPe) « o v v v vt e et 188
__intrinsic (extended keyword). 212
intrinsic functions 136
LS 17 15 2 87
SUMMATY « o v ov et ettt et e e e et e e e eenne 231
intrinsics.h (headerfile) 231
inttypes.h (library header file). 249
inttypes.h, added C functionality 253
INTVEC (segment).conenenenennnnnn.. 43,271
INTVECI (segment).cocovninennnna... 43,271
intwri.c (library source code) 83
INVOCAtION SYNEAX « . vt ettt ie e e eeene 145
iomanip (library header file) 250
iomanip.h (library header file) 251
ios (library headerfile) 250
iosfwd (library header file) 250
iostream (library header file). 250
iostream.h (library header file) 251
isblank, C99 extensioncoooun .. 253
isfinite, C99 extensionuueinin .. 253
isgreater, C99 extension 253
isinf, C99 extensionouiuuiiiini... 253
islessequal, C99 extension 253
islessgreater, C99 extension 253
isless, C99 extension.oueviiiunnennn .. 253
isnan, C99 extension.ouuuiiiuneennn .. 253
isnormal, C99extensionc..uu. .. 253
ISO/ANSI C
compiler eXtensions 195
C++ features excluded from EC++ 109
library compliance with. 7,247
specifying strictusage 179
is0646.h (library header file). 249
ISTACK (segment)ovvvnin e 272
See also stack
istream (library header file). 250

isunordered, C99 extension.c.vuuuuno... 253
iswblank, C99 extension.ouviinnnn... 254
italic style, inthisguide XX Vil
iterator (STL headerfile) 251
I/0 debugging, supportfor 71
I/0 module, overriding in runtime library.............. 55
1/O, character-based 81
jsrs (assembler instruction) 23
keep_definition (pragma directive) 280
Kernighan & Ritchie function declarations. 139
disallowing. i 179
Kernighan, Brian W.........., XXVi
Keywords.ot 205
extended, overviewof L Lo 9
-1 (compileroption). i 168
for creating skeletoncode 91
Tabels. . ..o 203
assembler, making public., 178
_program_Start.iiiiiei.. 59
Labrosse,JeanJ.. XXVi
Lajoie, Josée XXVi
language extensions
descriptionst 195
Embedded C++o 109
enabling. 223
enabling (-€).t 165
language OVeIvIewWoiiinii e 3
language (pragma directive)ouio.. .. 223
libraries
building DLIB i 47

Index °

CLIB ..ottt e 77
definitionof L L Ll 4
TUNLIME. . . oottt ettt 48
standard template library 251
library configuration files
DLIB ..ot 47
DLib_defaults.h. o 57
dlml6ccustom.h.o 57
modifying 58
Specifying 165
library documentation., 247
library features, missing from Embedded C++......... 110
library functions i 247
reference information. oL L. XXV
summary, CLIB 255
summary, DLIB, 249
library header files 247
library modules
CIEALING . v ettt et et 169
overriding. i 55
library objectfiles.......... 248
library options, setting 9
library projecttemplate., 8,57
--library_module (compiler option) 169
lightbulb icon, in this guide. XXvii
limits.h (library header file) 249,255
__LINE__ (predefined symbol) 243
linkage, Cand C++. 94
linker command file 32
CUSEOMUZING .« . vttt ettt e et 33
usingthe -Pcommand 34
usingthe-Zcommand 34
linkermapfile. i 44
linker outputfiles i 5
linker segment. See segment
linking
from the commandline 5
required input. 5
Lippman, Stanley B. XXVi

297

298

list (STL header file). 251

listing, generatingt 168
literals, compound. 199
literature, recommended XXVi
llabs, C99 extensionuuvieeennnnnn... 254
Idiv, C99 extensionc.ouuiiiiunnnnn... 254

local variables, See auto variables
locale support

DLIB ..ottt e 66
adding. 68
changing atruntime. 68
TEMOVING. . ¢ o vttt et e e e e 67

locale.h (library header file) 249
located datasegmentsooueninenann.. 41
located data, declaringextern 129
location (pragma directive) 128, 224
LOCFRAME (assembler directive). 100
long double (datatype)c.ooovrvnnnnnenen... 186
long float (data type), synonym for double 202
long long (datatype).cvvnvenennnenen .. 184

avoidingot 124

TESIICHONS « . v ottt ettt e e e e 184
long (datatype). . .. oovv e 184
loop overhead, reducing 174
loop unrolling (compiler transformation) 134

disabling 174
loop-invariant eXpressions.vuiiiaen. .. 134
--low_consts (compiler option). 169
_dow_level dnit.......... 59

CUSTOMIZING .« . vt ettt ettt e et 61
low_level dnit.c. ... 58, 83
low-level processor operations 195, 231

ACCESSINE .« o v vttt ettt et e e 87
__Iseek (library function), 66
macros, variadic o L i oo 246
main (function), definition 274

IAR C/C++ Compiler
Reference Guide

malloc (library function)

Seealsoheap 21
implementation-defined behavior. 282, 285
Mann,Bernhard XXVi
map (STL headerfile). oL 251
map, linker 44
MATH_ERREXCEPT, C99 extension 253
math_errhandling, C99 extension 253
MATH_ERRNO, C99 extension. 253
math.h (library header file) 249, 255
math.h, added C functionality...................... 253
_medium_write (library function). 82
member functions, pointers to. 120
memory
ACCESSING . o vttt 6, 14, 101
using datal3method 102
using datal6é method 102
using data20 method 103
using farmethod oL 103
allocating inCH++.o 21
dynamicC.ot e 20
heap oot 20
non-initialized oL 141
RAM,Savingoviiii i 138
releasing in C++. 21
Stack. ... 19
SAVIIE v vt vttt et e 138
used by global or static variables 11
memory consumption, reducing 82
memory layout, MI6C/R8C 11
memory management, type-safe 109
memory map
customizing the linker command filefor 33
memory placement
using pragma directive. i 16
using type definitions. 16, 207
memory segment. See segment
TMETMNOTY EYPES - « v ettt ettt e e e e e ee e eeene 13
G o 18

hints. 136
placing variablesin 18
POINLELS « vttt ettt e e 16
specifying 15
SLIUCKULES . . o\ ot e ettt et e e e 17
SUMMATY « + v v v v e et et et et e e e e e 15
memory (pragma directive). 280
memory (STL header file). 251
__memory_of, operator. 113
message (pragma directive). 224
messages
disabling i 179
forcing 224
--mfc (compiler option). 169
--migration_preprocessor_extensions (compiler option). . 170
--misrac (compileroption) 155
--misrac_verbose (compiler option) 155
--misrac1998 (compiler option) 155
--misrac2004 (compiler option) 155
module ConsiStency.ot 73
rtmodel. 228
module map, in linkermapfile...................... 44
module name, specifying 170
module summary, in linker map file 44
--module_name (compiler option) 170
module_name (pragma directive) 280
__monitor (extended keyword) 140, 213
monitor functions, 25,213
multibyte character support. 166
multiple inheritance, missing from Embedded C++ 109
multi-file compilation........... 131
mutable attribute, in Extended EC++ 110, 119
M16C/R8C
INSIIUCHON SEL. .« . v vttt e e e een e 101
MEIMOTY ACCESS. « « « v vt vt et ettt e et e eneaenan 6
memory layout. 11
supported devices.t 4

Index °

N

names block (call frame information)................ 105
namespace support

inExtended EC++........................ 110, 119

missing from Embedded C++ 110
Naming CONVENtIONSvvr e v vrnnnenenen.. XXVii
NAN, C99 extension.ooueuninnennennen... 253
NDEBUG (preprocessor symbol) 245
__near (extended keyword). 212-213
new operator (extended EC++)..................... 115
new (keyword) 21
new (library headerfile) 250
new.h (library header file). 251
non-initialized variables, hints for. 141
non-scalar parameters, avoiding 138
nop (assembler instruction). 234
__noreturn (extended keyword) 213
normal calling convention. 94
Normal DLIB (library configuration) 47
Notanumber (NaN).............. 187
--no_code_motion (compiler option) 171
--no_cse (compileroption) i, 171
__no_init (extended keyword) 141, 213
--no_inline (compiler option) 172
__no_operation (intrinsic function). 234
--no_path_in_file_macros (compiler option). 172
no_pch (pragma directive) 280
--no_typedefs_in_diagnostics (compiler option). 173
--no_unroll (compileroption) 174
--no_warnings (compiler option) 174
--no_wrap_diagnostics (compiler option) 174
NULL. ..o e 255
NULL (macro), implementation-defined behavior . . 280, 283
numeric (STL header file). 251
-O (compileroption)., 175

299

300

-0 (compileroption) i 175

objectattributes. 208
object filename, specifying in compiler 175
object module name, specifying 170
object_attribute (pragma directive) 141, 225
offsetof L. 255
--omit_types (compiler option) 176
once (pragma directive) 280
--only_stdout (compiler option) 176
__open (library function) 66
operators
See also @ (operator)
_memory_of. 113
optimization
code motion, disabling. 171
common sub-expression elimination, disabling 171
configurationt 7
disabling 133
function inlining, disabling (--no_inline)........... 172
hints. 135
loop unrolling, disabling 174
specifying (-O). .. .ot 175
SUMMATY &« o\ v vt e et et e e e e et e e e eene 132
techniques oo 133
type-based alias analysis, disabling (--tbaa)......... 173
using inline assemblercode 90
using pragma directive. 225
optimizationlevels, 132
optimize (pragma directive) 225
OPLioN PAraMELersS vt v sttt e e 151
options, compiler. See compiler options
Oram, Andyoiiiini i XXVi
ostream (library header file) 250
output
from linker, specifying. 5
from preprocessoroiiii . 177
supporting non-standard. 83
--output (compiler option). 176
__overflow (intrinsic function) 234

IAR C/C++ Compiler
Reference Guide

overhead, reducing 134
pack (pragma directive) 190, 226
packed Structure types.ovvv e 190
parameters
function i 96
hidden i 96
non-scalar, avoiding. 138
(o4 1]) (PP 96
rules for specifying a file or directory 152
Specifying 153
Stack. ... 96-97
typographic convention XXVii
part number, of thisguide ii, il
Permanent Te@isterS.o v v vttt 95
perror (library function),
implementation-defined behavior 282,285
placement
codeanddata............... .. 257
innamed segments. 130
POINEET EYPES « v o v et e et e e e e e 187
differences between 17
MEXING « ot ettt 202
USIIE © oo vttt et et e e 125
pointers
CaSHING . o vttt 17,188
COOC . ottt e 187
data ... 187
implementation-defined behavior. 277
polymorphism, in Embedded C++ 109
porting, code containing pragma directives. 218
_Pragma (predefined symbol). 245
pragmadirectives 9
SUIMMATY « o v ov et et e et e e e et e e e eeees 217
basic_template_matching, using 117
bitfieldst 185
for absolute located data 128

list of all recognized. oL, 279

Pack . ..o 190, 226

type_attribute, USing.o 16
precision arguments, library supportfor............... 82
predefined symbols

OVEIVIEWttt 10

SUMMATY « « v v e v e et ettt e e e et e e e eene 242
--predef_macro (compiler option). 177
--preinclude (compiler option) 177
--preprocess (compiler option) 177
preprocessor

OULPUL. o v ettt e e e e e e e e e e 177

OVEIVIEWttt 241
preprocessor directives

implementation-defined behavior. 279
preprocessor extensions

compatibility i 170

_VA_ARGS_ .. 246

H#Warning messageo v vttt 246
preprocessor symbolso 242

defining i 160
preserved registersouiitnini 95
__ PRETTY_FUNCTION__ (predefined symbol). 243
primitives, for special functions 24
print formatter, selecting. 54
printf (library function). 53, 82

choosing formatter., .. 53

configuration symbols 64

CUSTOMIZING .« . vt ettt ettt e et 83

implementation-defined behavior. 282, 285

SEleCting. . o\ vt 82
__printf_args (pragma directive). 227
__processor (runtime model attribute) 75
processor operations

ACCESSINE .« o v vttt ettt et e 87

low-level i 195, 231
programentry label. 59
programming hints o ... 135
__program_start (label). 59

Index °

projects, basic settings for. L oL 5
prototypes, enforcing 179
ptrdiff_t (integer type). 188, 255
PUBLIC (assembler directive) 178
publication date, of this guide. ii, il
--public_equ (compiler option) 178
public_equ (pragma directive) 280
putchar (library function) 81
putenv (library function), absent from DLIB 68
QCCMI16C (environment variable). 146
qualifiers

constand volatile. L. 191

implementation-defined behavior. 278
queue (STL headerfile) v, 251
-r (compileroption). i 178
raise (library function), configuring support for 69
TAISE.C .o v vttt et e e e e 69
RAM

non-zero initialized variables. 37

SAVING MEMOTY. . ¢ ettt ettt e et eee e eeeenn 138
range errors, inlinker o L oL 43
_ read (library function). 66

CUStOMUZING « . ot v ettt 62
read formatter, selecting 55, 83
reading guidelines. oL Xxiii
reading, recommended XXVi
realloc (library function)

implementation-defined behavior. 282, 285

Seealsoheap i 21
recursive functions

avoidingo 138

storing dataonstack 20
reentrancy (DLIB). 248

301

302

reference information, typographic convention. XXvii
__regbank_interrupt (extended keyword) 25,214
register bank, secondary, using for interrupts 25
TEZISLer PATAMELELS .« « . v v v v et e e 96
registered trademarks i, il
registers
assigning to parametersooueuen.a... 96
callee-save, storedonstack 19
FLG, getting the value of (__get_FLG_register) 233
FLG, writing to (__set_FLG_register)............. 237
for functionreturns 98
implementation-defined behavior. 2717
in assembler-level routines. 93
INTB, writing to (__set_INTB_register) 237
Preservedot 95
scratch 95
reinterpret_cast (cast Operator) 110
remark (diagnostic message)
classifying for compiler........................ 163
enablingincompiler 178
--remarks (compileroption) 178
remarks (diagnostic message). 149
remove (library function) 66
implementation-defined behavior. 281, 284
rename (library function) 66
implementation-defined behavior. 282, 285
__ReportAssert (library function). 70
required (pragma directive). 227
--require_prototypes (compiler option). 179
return values, from functions 98
Ritchie, Dennis M. XXVi
_ RMPA_B (intrinsic function) 235
_ RMPA_B_INTO (intrinsic function). 235
_ RMPA_B_overflow (intrinsic function) 235
_ RMPA_W (intrinsic function). 236
_ RMPA_W_INTO (intrinsic function) 236
_ RMPA_W_overflow (intrinsic function). 236
rmpa.b (assembler instruction) 235
rmpa.w (assembler instruction). 236

IAR C/C++ Compiler
Reference Guide

__root (extended keyword) oL 214

routines, time-critical 87, 195, 231
rtmodel (assembler directive) 74
rtmodel (pragma directive) 228
rtti support, missing from STL 110
__rt_version (runtime model attribute) 75
runtime environment
CLIB .. 77
DLIB ...t 45
SEHtiNG OPLiONS .« .« vttt 9
runtime libraries
CchooSINgG. . .. oo 8
introduction 247
CLIB .. e 77
DLIB ...t 48
chooSingooii i 52, 80
customizing without rebuilding. 52
naming convention 51, 80
overriding modulesin........................ 55
runtime model attributes 73
runtime model definitions. 228

runtime type information, missing from Embedded C++ . 110

S

-s (compileroption) i, 156
scanf (library function), 83

choosing formatter. 54

configuration symbols 64

implementation-defined behavior. 282, 285
_ scanf_args (pragma directive) 228
SCratCh Te@iStersottt i it 95
section (pragma directive)., 280
SEZMENt GrOUP NAME . « o« o v ov v e e ee e e eenenennn 36
segment map, in linkermap file 44
segment memory types, in XLINK 32
segment names, declaring. 229
segment (pragma directive)., .. 229

SEEIMCIIS . « v v v vt et ettt e e e 257
code. ... 42
data ... 35
definitionof L il 31
initializeddata L L il 37
introduction L 31
locateddata 41
NAMING . ¢ o ettt ettt e 37
packing in memoryc.c.iiiiiiinnn 34
placinginsequencec... i 34
7218 (1015 1010) 1 PPN 35
SUMMATY &« « v v e v e et et et e e e et e e e e 257
too long for addressrange 43
toolong,inlinker. L. 43
CODE 42
FLIST ... 23,42
HEAP. ... 40
INTVEC ... 43
INTVECT ... 43
TINYFUNC. 42

__segment_begin (extended operator). 197

__segment_begin (intrinsic function) 237

__segment_end (extended operator) 197

__segment_end (intrinsic function). 237

semaphores
Cexample 25
CH+examplet 27
OPETatioNS OM . . o\ vttt et e e e eeenes 213

set (STL headerfile)............. 251

setjmp.h (library header file). 249, 255

setlocale (library function) 68

settings, basic for project configuration 5

__set_FLG_register (intrinsic function) 237

__set_INTB_register (intrinsic function) 237

__set_interrupt_level (intrinsic function) 238

__set_interrupt_state (intrinsic function) 238

severity level, of diagnostic messages................ 149
SPecifyingoi 150

Index °

SFR

accessing special function registers 140

declaring extern special function registers 129
shared object. 148
short (datatype)o, 184
signal (library function)

configuring supportfor 69

implementation-defined behavior. 281
Signal.c 69
signal.h (library header file) 249
signbit, C99 extension.vuiieninan... 253
signed char (datatype) 184-185

specifying 158
signed int (data type).ot i i 184
signed long long (datatype) 184
signed long (datatype), 184
signed short (datatype).cooiiiininon .. 184
signed values, avoiding. 123
--silent (compiler option) 179
silent operation, specifying in compiler 179
__simple (extended keyword) 214
simple calling convention 94
64-bits (floating-point format) 186
sizeof, using in preprocessor extensions 170
Size_t (INLEZET LYPE) v v v v v e e e e 188, 255
skeleton code, creating for assembler language interface . . 90
skeleton.s34 (assembler source output). 91
slist (STL headerfile). 251
_small_write (library function) 82
_ SMOVB_B (intrinsic function). 238
_ SMOVB_W (intrinsic function) 238
smovb.b (assembler instruction) 238
smovb.w (assembler instruction). 238
_ SMOVF_B (intrinsic function) 238
__SMOVF_W (intrinsic function) 239
smovf.b (assembler instruction) 238
smovf.w (assembler instruction). 239
snprintf, C99 extension. 254
__software_interrupt (intrinsic function) 239

303

304

source files, list all referred. 167

special function registers (SFR) 140
special function types 24
OVEIVIEWttt 10
special page functions. i 23
sprintf (library function) 53, 82
choosing formatter. 53
CUSTOMIZING .« . v ettt e 83
sscanf (library function) 83
choosing formatter. 54
sstream (library header file) 250
__ SSTR_B (intrinsic function) 239
SSTR_W (intrinsic function) 239
sstr.b (assembler instruction). 239
sstr.w (assembler instruction) 239
StACK . v v 19, 38
advantages and problems using 20
changing defaultsizeof 39
cleaning after functionreturn. 98
contentsof 19
internaldata............................. 260, 272
layout.o 97
SAVINE SPACE. + « v v v v vt e e et 138
SIZB. « v e e e e 39
stack parameters oo 96-97
stack pointert 20
stack pointer register, considerations. 96
stack segment, placing inmemory 39
stack (STL headerfile) 251
standard error, redirecting in compiler 176
standard input. 62
standard output 62
specifying in compiler 176
standard template library (STL)
in Extended EC++.................... 110, 118, 251
missing from Embedded C++ 110
startup code
placementof il 42
See also CSTART

IAR C/C++ Compiler
Reference Guide

startup, system

CLIB .. e 84
DLIB ...t 58
statements, implementation-defined behavior. 278
static data, in linker command file 38
static MemOory SEZMENtS o.vvvenenenenenennnn. 35
staticoverlay. i 100
static variables 11
initialization. 37
taking theaddressof 136
static_cast (Cast Operator)c..uoeuenen... 110
std namespace, missing from EC++
and Extended EC++ 120
stdarg.h (library header file) 249, 255
stdbool.h (library header file) 184, 250, 255
added C functionality. 253
STDC__ (predefined symbol).................... 243
STDC (pragma directive)c.coinen .. 280
__ STDC_VERSION__ (predefined symbol) 243
stddef.h (library header file) 185, 250, 255
Stderr. . ..o 66, 176
stdexcept (library headerfile) 250
SEAIN ..o 66
implementation-defined behavior. 281, 284
stdint.h (library header file). 250, 252
stdint.h, added C functionality 253
stdio.h (library header file) 250, 255
stdio.h, additional C functionality. 254
stdlib.h (library header file). 250, 255
stdlib.h, additional C functionality 254
StAOUL .ot 66, 176
implementation-defined behavior. 281, 284
Steele, Guy L.. XXVi
ST o 118
streambuf (library header file). 250
streams, supported in Embedded C++. 110
strerror (library function)
implementation-defined behavior 283, 286
--strict_ansi (compiler option). 179
string (library header file) 250

strings, supported in Embedded C++ 110
string.h (library header file) 250, 255
Stroustrup, Bjarne. o XXVi
strstream (library header file) 250
strtod (library function), configuring support for 70
strtod, instdlibh. 254
strtof, C99 extension.t 254
strtold, C99 extension. 254
strtoll, C99 extensionc.cviiiiinnnnnn. 254
strtoull, C99 extensioncoiiinn.nn. 254
structure types
alignment............. 189-190
layoutof. 189
packed 190
structures
accessing using a pointerc.c.o.o... 101
aligning 226
ANONYMOUS. « + v v v vt e ee e e e eeeeeneaene 126, 197
implementation-defined behavior. 2717
incomplete arrays as lastelement. 199
placing in memory type 17
subnormal numbers. i 186
__SUBVERSION___ (predefined symbol). 244
support, technical 150
symbol names, using in preprocessor extensions 170
symbols
anonymous, creatingo...... 199
includinginoutput. 227
listing in linkermap file. 44
overview of predefined. 10
preprocessor, defining 160
syntax
command line options, 151
extended keywords. 15,206-208
invoking compiler 145
system startup
CLIB ..ottt e e e 84
CUSTOMIZING .« . v ettt ettt e 61
DLIB ..ottt e 58

Index °

system termination

CLIB . .ottt e e e 84
C-SPY interface to. v .. 61
DLIB ..ttt 60
system (library function)
configuring supportfor 68
implementation-defined behavior. 283, 286
system_include (pragma directive) 280
__task (extended keyword) 215
technical support, [AR Systems 150
template support
inExtended EC++........................ 110, 116
missing from Embedded C++ 109
Terminal /O window 85
making available 72
terminal output, speedingup. 73
termination, of system
CLIB . .o 84
DLIB ... 60
terminology.o v i XXVi
32-bits (floating-point format) 186
this (POINET) vttt e e 92
ClasS MEMOTY . . o\ vttt et 112
datatypeof ... 18
referring toaclassobject. 112
__TID__ (predefined symbol). 244
__TIME__ (predefined symbol) 244
time zone (library function)
implementation-defined behavior 283, 286
time (library function), configuring support for 70
time-critical routines. 87, 195, 231
BIME.C o vttt ettt e e e e e e e 70
time.h (library headerfile) 250
TINYFUNC (segment)covnvnenennn... 42,272
__tiny_func (extended keyword). 23,215
tipS, PrOgramming.vvven et eneneennn 135

305

306

tools icon,inthisguide. XX Vil

trademarks i, ii
transformations, compiler. 131
translation, implementation-defined behavior. 273
-2 (compileroption)c. i 153
type attributes 205

Specifyingo 229
type definitions, used for specifying memory storage . 16, 207
type information, omitting 176
type qualifiers

constand volatile., 191

implementation-defined behavior. 278
typedefs

excluding from diagnostics 173

repeated 202

using in preprocessor extensions 170
type_attribute (pragma directive) 16, 229
type-based alias analysis (compiler transformation) 134

disabling 173
type-safe memory management 109
typographic conventions, XX Vil
UBROF

format of linkable object files 147

specifing, exampleof L 5
uintptr_t (INteZEr type) .« . v v v v e e e 189
underflow range errors,
implementation-defined behavior 281, 284
unions

ANONYIMOUS. .+ oottt e te et et ee e 126, 197

implementation-defined behavior. 277
unsigned char (datatype) 184-185

changing tosignedchar........................ 158
unsigned int (data type). 184
unsigned long long (datatype) 184
unsigned long (datatype) ..., 184
unsigned short (datatype)., 184

IAR C/C++ Compiler
Reference Guide

--use_DIV (compileroption) 180
utility (STL headerfile) 251
VARARGS (pragma directive) 280
variable type information, omitting in object output. 176
variables
AULD « . vttt et e e e e 19
defined inside a function 19
global
ACCESSING. . v\ vttt et e 101
placement inmemoryoon.... 11
hints for choosing 135
local. See auto variables
non-initialized 141
omitting typeinfo 176
placing at absolute addresses 130
placing in named segments 130
static
placementinmemoryoen... 11
taking the addressof 136
static and global, initializing 37
__VARIABLE_DATA__ (predefined symbol) 244
__variable_data (runtime model attribute) 75
--variable_data (compiler option) 180
vector (pragma directive), 24,230
vector (STL headerfile) 251
__VER__ (predefined symbol)..................... 244
version
IAR Embedded Workbench ii, ii
ofcompiler. 244
version, of compiler 244
vscanf, C99 extensionc.ovvriuinnen.n. 254
viwscanf, C99 extension., 254
VOId, POINEETS TO .« « o v ottt e e e et 202
volatile (keyword). i 140
volatile, declaring objects 191
vscanf, C99 eXtension.ouuvenenennnnn.. 254

vsnprintf, C99 extension. 254
vsscanf, C99 extensionot 254
vswscanf, C99 extension.c.iiiinnn.... 254
vwscanf, C99 extensioncoiiiinnn... 254
wait (assembler instruction) 239
__wait_for_interrupt (intrinsic function). 239
#warning message (preprocessor extension). 246
WAININEZS « « o v ot ettt e e e ettt 149
classifying in compiler. 163
disablingincompiler.......................... 174
exitcodeincompiler, .. 181
warnings icon, in thisguide XXVii
warnings (pragma directive) 280
--warnings_affect_exit_code (compiler option)148, 181
--warnings_are_errors (compiler option) 181
wchar_t (data type), adding support forinC........... 185
wchar.h (library header file) 250, 252
wchar.h, added C functionality 254
westof, C99 extension.l 254
westolb, C99 extension.t 254
wctype.h (library header file) 250
wectype.h, added C functionality 254
web sites, recommended., .. . oL XXVi
__write (library function) 66
CUSTOMIZING « + vt vttt ettt e ee e 62
write formatter, selecting 82-83
XLINK errors
FANEZE €ITOL « « . vttt et e e et e e e 43
segmenttoolongl 43
XLINK segment memory typesc.coeuen.. 32
XIEPOTLASSCIT.C. v v vt vt et e et ettt e e e e 70

Index °

Z

-z (compileroption) 156

Symbols

_Exit (library function) oL 61
_exit (library function) L. 60
_Exit, C99 extension.ot 254
_formatted_write (library function) 82
_medium_write (library function). 82
_Pragma (predefined symbol). 245
_small_write (library function) 82
__ALIGNOF_ (0Operator)c.cueueneununn.. 197
__asm (language extension) 198
__BASE _FILE__ (predefined symbol). 242
__bitvar (extended keyword). 210
__break (intrinsic function). 232
__ BTSTS (intrinsic function) 233
_ BUILD_NUMBER___ (predefined symbol) 242
__calling_convention (runtime model attribute) 75
__close (library function)t 66
__constant_data (runtime model attribute) 75
__ CONSTANT_DATA__ (predefined symbol)......... 242
__CORE__ (predefined symbol). 242
__cplusplus (predefined symbol) 242
__data_alignment (runtime model attribute)............ 75
__data_model (runtime model attribute)............... 75
_ DATA_MODEL__ (predefined symbol)............ 242
__datal3 (extended keyword) 210
__datal6 (extended keyword) 211
_datal6_Size_t ... 115
__data20 (extended keyword) L 211
_data20_SiZe_t ...t 115
_ DATE__ (predefined symbol).................... 242
__disable_interrupt (intrinsic function). 233
__embedded_cplusplus (predefined symbol) 242
__enable_interrupt (intrinsic function) 233
_exit(library function) 60

307

308

far (extended keyword) L. 212

__FILE__ (predefined symbol)..................... 243
_ FUNCTION__ (predefined symbol) 204, 243
__func__ (predefined symbol) 204, 243
_gets,instdioh. L 254
__get_FLG_register (intrinsic function) 233
__get_interrupt_level (intrinsic function) 233
__get_interrupt_state (intrinsic function) 234
__huge (extended keyword) 209
_ TAR_SYSTEMS_ICC__ (predefined symbol) 243
__ICCM16C__ (predefined symbol). 243
__illegal_opcode (intrinsic function) 234
__interrupt (extended keyword) 24,212

using in pragma directives 230
__intrinsic (extended keyword). 212
__LINE__ (predefined symbol) 243
_dow_level dnit..... i 59
__low_level_init, customizing 61
__Iseek (library function), 66
__memory_of, operator. 113
__monitor (extended keyword) 140, 213
__near (extended keyword). 209, 212-213
__noreturn (extended keyword), 213
__no_init (extended keyword) 141,213
__no_operation (intrinsic function). 234
__open (library function) 66
__overflow (intrinsic function) 234
__ PRETTY_FUNCTION__ (predefined symbol). 243
__printf_args (pragma directive). 227, 280
__processor (runtime model attribute) 75
__program_start (label). 59
__qsortbbl, C99 extension.covuenenn.. 254
__read (library function)., 66

CUSTOMIZING .« . vt ettt ettt et e 62
__regbank_interrupt (extended keyword) 25,214
__ReportAssert (library function). 70
_ RMPA_B (intrinsic function) 235
_ RMPA_B_INTO (intrinsic function). 235
_ RMPA_B_overflow (intrinsic function) 235

IAR C/C++ Compiler
Reference Guide

_ RMPA_W (intrinsic function). 236
_ RMPA_W_INTO (intrinsic function) 236
_ RMPA_W_overflow (intrinsic function). 236
__root (extended keyword) oL 214
__rt_version (runtime model attribute) 75
__scanf_args (pragma directive) 228, 280
__segment_begin (extended operator 197
__segment_begin (intrinsic function) 237
__segment_end (extended operators) 197
__segment_end (intrinsic function). 237
__set_FLG_register (intrinsic function) 237
__set_INTB_register (intrinsic function) 237
__set_interrupt_level (intrinsic function) 238
__set_interrupt_state (intrinsic function) 238
__simple (extended keyword) 214
__SMOVB_B (intrinsic function). 238
_ SMOVB_W (intrinsic function) 238
_ SMOVEF_B (intrinsic function) 238
_ SMOVEF_W (intrinsic function) 239
__software_interrupt (intrinsic function) 239
__ SSTR_B (intrinsic function) 239
__SSTR_W (intrinsic function) 239
__STDC_VERSION__ (predefined symbol) 243
__STDC__ (predefined symbol).................... 243
__SUBVERSION___ (predefined symbol). 244
__task (extended keyword) oL 215
__TID__ (predefined symbol). 244
__TIME__ (predefined symbol) 244
__tiny_func (extended keyword). 23,215
_ungetchar,instdio.h L oL, 254
__variable_data (runtime model attribute) 75
__VARIABLE_DATA__ (predefined symbol) 244
__VA_ARGS__ (preprocessor extension). 246
__VER__ (predefined symbol)..................... 244
__wait_for_interrupt (intrinsic function). 239
__write (library function) 66

CUSEOMUZING .« . o\ttt ettt e 62
__write_array,instdio.h. Lo L 254
__write_buffered (DLIB library function). 73

__64bit_doubles (runtime model attribute). 75
-D (compileroption). 160
-e (compileroption) 165
-f (compileroption). 167
-I (compileroption). 167
-1 (compileroption). i 168

for creating skeletoncode 91
-O (compileroption). 175
-0 (compileroption) i 175
-R (compileroption) 156
-r (compiler option). i 178
-s (compiler option) 156
-u (compileroption) i 156
-y (compileroption) i 156
-z (compileroption) i 156
--align_data (compiler option) 157
--align_func (compiler option) 157
--calling_convention (compiler option). 158
--char_is_signed (compiler option). 158
--code_segment (compiler option) 159
--constant_data (compiler option). 159
--cpu (compileroption). L .. 159
--data_model (compiler option) 160
--debug (compileroption) 161
--dependencies (compiler option) 161
--diagnostics_tables (compiler option) 164
--diag_error (compiler option) 162
--diag_remark (compiler option). 163
--diag_suppress (compiler option) 163
--diag_warning (compiler option) 163
--discard_unused_publics (compiler option). 164
--dlib_config (compiler option). 165
--ec++ (compiler option). 166
--eec++ (compileroption). 166
--enable_multibytes (compiler option) 166
--error_limit (compiler option) 166
--header_context (compiler option). 167
--library_module (compiler option) 169
--low_consts (compiler option). 169

Index °

--mfc (compileroption). 169
--migration_preprocessor_extensions (compiler option). . 170
--misrac (compileroption) 155
--misrac_verbose (compiler option) 155
--misrac1998 (compiler option) 155
--misrac2004 (compiler option) 155
--module_name (compiler option) 170
--no_code_motion (compiler option) 171
--no_cross_call (compiler option). 171
--no_cse (compileroption), 171
--no_inline (compiler option) 172
--no_path_in_file_macros (compiler option). 172
--no_tbaa (compiler option) 173
--no_typedefs_in_diagnostics (compiler option). 173
--no_unroll (compileroption) 174
--no_warnings (compiler option) 174
--no_wrap_diagnostics (compiler option) 174
--omit_types (compiler option) 176
--only_stdout (compiler option) 176
--output (compiler option). 176
--predef_macro (compiler option). 177
--preinclude (compiler option) 177
--preprocess (compileroption) 177
--remarks (compiler option) 178
--require_prototypes (compiler option). 179
--silent (compiler option) 179
--strict_ansi (compiler option). 179
--use_DIV (compileroption) 180
--variable_data (compiler option) 180
--warnings_affect_exit_code (compiler option)148, 181
--warnings_are_errors (compiler option) 181
--64bit_doubles (compiler option) 157
-2 (compiler option) 153
?C_EXIT (assemblerlabel). 85
?C_GETCHAR (assemblerlabel). 85
?7C_PUTCHAR (assembler label).................... 85
@ (operator)

placing at absolute address. 128

placinginsegments, 130

309

310

#include files, specifying 146, 167
#warning message (preprocessor extension). 246

Numerics

32-bits (floating-point format) 186
__64bit_doubles (runtime model attribute). 75
--64bit_doubles (compiler option) 157
64-bit data types, avoiding 124
64-bits (floating-point format) 186

IAR C/C++ Compiler
Reference Guide

	Brief contents
	Contents
	Tables
	Preface
	Who should read this guide
	How to use this guide
	What this guide contains
	Part 1. Using the compiler
	Part 2. Reference information

	Other documentation
	Further reading

	Document conventions
	Typographic conventions
	Naming conventions

	Part 1. Using the compiler
	Getting started
	IAR language overview
	Supported M16C/R8C Series devices
	Building applications—an overview
	Compiling
	Linking

	Basic settings for project configuration
	CPU core
	Data model
	Size of double floating-point type
	Optimization for speed and size
	Runtime environment
	Choosing a runtime library in the IDE
	Choosing runtime environment from the command line
	Setting library and runtime environment options

	Special support for embedded systems
	Extended keywords
	Pragma directives
	Predefined symbols
	Special function types
	Accessing low-level features

	Data storage
	Introduction
	Different ways to store data

	Data models
	Specifying a data model

	Memory types
	Data13
	Data16
	Far
	Data20
	Using data memory attributes
	Syntax
	Type definitions

	Pointers and memory types
	Differences between pointer types

	Structures and memory types
	More examples

	C++ and memory types
	Auto variables—on the stack
	The stack
	Advantages
	Potential problems

	Dynamic memory on the heap
	Potential problems

	Functions
	Function-related extensions
	Special page functions
	Primitives for interrupts, concurrency, and OS-related programming
	Interrupt functions
	Register bank interrupt functions
	Monitor functions
	C++ and special function types
	Using interrupts and C++ destructors

	Placing code and data
	Segments and memory
	What is a segment?
	Segment memory type

	Placing segments in memory
	Customizing the linker command file
	The contents of the linker command file
	Using the -Z command for sequential placement
	Using the -P command for packed placement
	Symbols for available memory areas

	Data segments
	Static memory segments
	Segment naming
	Initialized data
	Data segments for static memory in the default linker command file

	The stack
	Stack size allocation in the IDE
	Stack size allocation from the command line
	Placement of stack segment
	Stack size considerations

	The heap
	Heap segments in DLIB
	Heap segments in the CLIB runtime environment
	Heap size allocation in the IDE
	Heap size allocation from the command line
	Placement of heap segment
	Heap size and standard I/O

	Located data
	User-defined segments

	Code segments
	Startup code
	Normal code
	Tinyfunc-declared code
	Exception vectors

	C++ dynamic initialization
	Verifying the linked result of code and data placement
	Segment too long errors and range errors
	Linker map file

	The DLIB runtime environment
	Introduction to the runtime environment
	Runtime environment functionality
	Library selection
	Situations that require library building
	Library configurations
	Debug support in the runtime library

	Using a prebuilt library
	Customizing a prebuilt library without rebuilding

	Choosing formatters for printf and scanf
	Choosing printf formatter
	Specifying the print formatter in the IDE
	Specifying printf formatter from the command line

	Choosing scanf formatter
	Specifying scanf formatter in the IDE
	Specifying scanf formatter from the command line

	Overriding library modules
	Overriding library modules using the IDE
	Overriding library modules from the command line

	Building and using a customized library
	Setting up a library project
	Modifying the library functionality
	Modifying the library configuration file

	Using a customized library

	System startup and termination
	System startup
	System termination
	C-SPY interface to system termination

	Customizing system initialization
	_ _low_level_init
	Modifying the file cstartup.s34

	Standard streams for input and output
	Implementing low-level character input and output
	Example of using _ _write
	Example of using _ _read

	Configuration symbols for printf and scanf
	Customizing formatting capabilities

	File input and output
	Locale
	Locale support in prebuilt libraries
	Customizing the locale support
	Locale configuration symbols
	Building a library without support for locale interface
	Building a library with support for locale interface

	Changing locales at runtime
	Example

	Environment interaction
	Signal and raise
	Time
	Strtod
	Assert
	Heaps
	C-SPY runtime interface
	Low-level debugger runtime interface
	The debugger terminal I/O window
	Speeding up terminal output

	Checking module consistency
	Runtime model attributes
	Using runtime model attributes
	Predefined runtime attributes
	Examples

	User-defined runtime model attributes

	The CLIB runtime environment
	Prebuilt libraries
	Input and output
	Character-based I/O
	Formatters used by printf and sprintf
	_medium_write
	_small_write
	Specifying the printf formatter in the IDE
	Specifying the printf formatter from the command line
	Customizing printf

	Formatters used by scanf and sscanf
	_medium_read
	Specifying the scanf formatter in the IDE
	Specifying the read formatter from the command line

	System startup and termination
	System startup
	System termination

	Overriding default library modules
	Customizing system initialization
	C-SPY runtime interface
	The debugger terminal I/O window
	Termination

	Checking module consistency

	Assembler language interface
	Mixing C and assembler
	Intrinsic functions
	Mixing C and assembler modules
	Inline assembler

	Calling assembler routines from C
	Creating skeleton code
	Compiling the code
	The output file

	Calling assembler routines from C++
	Calling convention
	Choosing a calling convention
	Function declarations
	Using C linkage in C++ source code
	Preserved versus scratch registers
	Scratch registers
	Preserved registers
	Special registers

	Function entrance
	Hidden parameters
	Register parameters
	Stack parameters and layout

	Function exit
	Registers used for returning values
	Stack layout at function exit
	Return address handling

	Examples
	Function directives

	Calling functions
	Assembler instructions used for calling functions

	Memory access methods
	The data13 memory access method
	The data16 memory access method
	The far memory access method
	The data20 memory access method

	Call frame information
	CFI directives
	Creating assembler source with CFI support

	Using C++
	Overview
	Standard Embedded C++
	Extended Embedded C++
	Enabling C++ support

	Feature descriptions
	Classes
	The this pointer
	Class memory

	Function types
	New and Delete operators
	New and delete expressions

	Templates
	Templates and data memory attributes
	Non-type template parameters
	The standard template library
	STL and the IAR C-SPY® Debugger

	Variants of casts
	Mutable
	Namespace
	The STD namespace
	Pointer to member functions
	Using interrupts and EC++ destructors

	C++ language extensions

	Efficient coding for embedded applications
	Selecting data types
	Using efficient data types
	Floating-point types
	Using different pointer types
	Example

	Alignment of elements in a structure
	Anonymous structs and unions

	Controlling data and function placement in memory
	Data placement at an absolute location
	Examples
	C++ considerations

	Data and function placement in segments
	Examples of placing variables in named segments
	Examples of placing functions in named segments

	Controlling compiler optimizations
	Scope for performed optimizations
	Multi-file compilation units

	Optimization levels
	Speed versus size
	Fine-tuning enabled transformations
	Common subexpression elimination
	Loop unrolling
	Function inlining
	Code motion
	Type-based alias analysis
	Cross call

	Writing efficient code
	Memory types
	Constants and variables in different parts of memory

	Saving stack space and RAM memory
	Function prototypes
	Prototyped style
	Kernighan & Ritchie style

	Integer types and bit negation
	Protecting simultaneously accessed variables
	Accessing special function registers
	Non-initialized variables

	Part 2. Reference information
	External interface details
	Invocation syntax
	Compiler invocation syntax
	Passing options
	Environment variables

	Include file search procedure
	Compiler output
	Error return codes

	Diagnostics
	Message format
	Severity levels
	Remark
	Warning
	Error
	Fatal error

	Setting the severity level
	Internal error

	Compiler options
	Options syntax
	Types of options
	Rules for specifying parameters
	Rules for optional parameters
	Rules for mandatory parameters
	Rules for options with both optional and mandatory parameters
	Rules for specifying a filename or directory as parameters
	Additional rules

	Summary of compiler options
	Descriptions of options
	--64bit_doubles
	--align_data
	--align_func
	--calling_convention
	--char_is_signed
	--code_segment
	--constant_data
	--cpu
	-D
	--data_model
	--debug, -r
	--dependencies
	--diag_error
	--diag_remark
	--diag_suppress
	--diag_warning
	--diagnostics_tables
	--discard_unused_publics
	--dlib_config
	-e
	--ec++
	--eec++
	--enable_multibytes
	--error_limit
	-f
	--header_context
	-I
	-l
	--library_module
	--low_consts
	--mfc
	--migration_preprocessor_extensions
	--module_name
	--no_code_motion
	--no_cross_call
	--no_cse
	--no_inline
	--no_path_in_file_macros
	--no_tbaa
	--no_typedefs_in_diagnostics
	--no_unroll
	--no_warnings
	--no_wrap_diagnostics
	-O
	-o, --output
	--omit_types
	--only_stdout
	--output, -o
	--predef_macros
	--preinclude
	--preprocess
	--public_equ
	-r, --debug
	--remarks
	--require_prototypes
	--silent
	--strict_ansi
	--use_DIV
	--variable_data
	--warnings_affect_exit_code
	--warnings_are_errors

	Data representation
	Alignment
	Alignment on the M16C/R8C Series of CPU cores

	Basic data types
	Integer types
	Bool
	The long long type
	The enum type
	The char type
	The wchar_t type
	Bitfields
	Floating-point types
	32-bit floating-point format
	64-bit floating-point format
	Representation of special floating-point numbers

	Pointer types
	Size
	Casting
	size_t
	ptrdiff_t
	intptr_t
	uintptr_t

	Structure types
	Alignment
	General layout
	Packed structure types

	Type qualifiers
	Declaring objects volatile
	Definition of access to volatile objects
	Rules for accesses

	Declaring objects const

	Data types in C++

	Compiler extensions
	Compiler extensions overview
	Enabling language extensions

	C language extensions
	Important language extensions
	Useful language extensions
	Inline assembler
	Compound literals
	Incomplete arrays at end of structs
	Hexadecimal floating-point constants
	Designated initializers in structures and arrays

	Minor language extensions

	Extended keywords
	General syntax rules for extended keywords
	Type attributes
	Memory attributes
	General type attributes
	Syntax for type attributes used on data objects
	Syntax for type attributes on data pointers
	Syntax for type attributes on functions
	Syntax for type attributes on function pointers

	Object attributes
	Syntax for object attributes

	Summary of extended keywords
	Descriptions of extended keywords
	_ _bitvar
	_ _data13
	_ _data16
	_ _data20
	_ _far
	_ _huge
	_ _interrupt
	_ _intrinsic
	_ _monitor
	_ _near
	_ _no_init
	_ _noreturn
	_ _regbank_interrupt
	_ _root
	_ _simple
	_ _task
	_ _tiny_func

	Pragma directives
	Summary of pragma directives
	Descriptions of pragma directives
	basic_template_matching
	bitfields
	constseg
	data_alignment
	dataseg
	diag_default
	diag_error
	diag_remark
	diag_suppress
	diag_warning
	include_alias
	inline
	language
	location
	message
	object_attribute
	optimize
	pack
	_ _printf_args
	required
	rtmodel
	_ _scanf_args
	segment
	type_attribute
	vector

	Intrinsic functions
	Summary of intrinsic functions
	Descriptions of intrinsic functions
	_ _break
	_ _BTSTS
	_ _disable_interrupt
	_ _enable_interrupt
	_ _get_FLG_register
	_ _get_interrupt_level
	_ _get_interrupt_state
	_ _illegal_opcode
	_ _no_operation
	_ _overflow
	_ _require
	_ _RMPA_B
	_ _RMPA_B_INTO
	_ _RMPA_B_overflow
	_ _RMPA_W
	_ _RMPA_W_INTO
	_ _RMPA_W_overflow
	_ _segment_begin
	_ _segment_end
	_ _set_FLG_register
	_ _set_INTB_register
	_ _set_interrupt_level
	_ _set_interrupt_state
	_ _SMOVB_B
	_ _SMOVB_W
	_ _SMOVF_B
	_ _SMOVF_W
	_ _software_interrupt
	_ _SSTR_B
	_ _SSTR_W
	_ _wait_for_interrupt

	The preprocessor
	Overview of the preprocessor
	Descriptions of predefined preprocessor symbols
	Descriptions of miscellaneous preprocessor extensions
	NDEBUG
	_Pragma()
	#warning message
	_ _VA_ARGS_ _

	Library functions
	Introduction
	Header files
	Library object files
	Reentrancy

	IAR DLIB Library
	C header files
	C++ header files
	Embedded C++
	Extended Embedded C++ standard template library
	Using standard C libraries in C++

	Library functions as intrinsic functions
	Added C functionality
	ctype.h
	inttypes.h
	math.h
	stdbool.h
	stdint.h
	stdio.h
	stdlib.h
	wchar.h
	wctype.h

	IAR CLIB Library
	Library definitions summary

	Segment reference
	Summary of segments
	Descriptions of segments
	BITVARS
	CHECKSUM
	CODE
	CSTACK
	CSTART
	DATA13_AC
	DATA13_AN
	DATA13_C
	DATA13_I
	DATA13_ID
	DATA13_N
	DATA13_Z
	DATA16_AC
	DATA16_AN
	DATA16_C
	DATA16_HEAP
	DATA16_I
	DATA16_ID
	DATA16_N
	DATA16_Z
	DATA20_AC
	DATA20_AN
	DATA20_C
	DATA20_HEAP
	DATA20_I
	DATA20_ID
	DATA20_N
	DATA20_Z
	DIFUNCT
	FAR_AC
	FAR_AN
	FAR_C
	FAR_HEAP
	FAR_I
	FAR_ID
	FAR_N
	FAR_Z
	FLIST
	HEAP
	INTVEC
	INTVEC1
	ISTACK
	TINYFUNC

	Implementation-defined behavior
	Descriptions of implementation-defined behavior
	Translation
	Diagnostics (5.1.1.3)

	Environment
	Arguments to main (5.1.2.2.2.1)
	Interactive devices (5.1.2.3)

	Identifiers
	Significant characters without external linkage (6.1.2)
	Significant characters with external linkage (6.1.2)
	Case distinctions are significant (6.1.2)

	Characters
	Source and execution character sets (5.2.1)
	Bits per character in execution character set (5.2.4.2.1)
	Mapping of characters (6.1.3.4)
	Unrepresented character constants (6.1.3.4)
	Character constant with more than one character (6.1.3.4)
	Converting multibyte characters (6.1.3.4)
	Range of 'plain' char (6.2.1.1)

	Integers
	Range of integer values (6.1.2.5)
	Demotion of integers (6.2.1.2)
	Signed bitwise operations (6.3)
	Sign of the remainder on integer division (6.3.5)
	Negative valued signed right shifts (6.3.7)

	Floating point
	Representation of floating-point values (6.1.2.5)
	Converting integer values to floating-point values (6.2.1.3)
	Demoting floating-point values (6.2.1.4)

	Arrays and pointers
	size_t (6.3.3.4, 7.1.1)
	Conversion from/to pointers (6.3.4)
	ptrdiff_t (6.3.6, 7.1.1)

	Registers
	Honoring the register keyword (6.5.1)

	Structures, unions, enumerations, and bitfields
	Improper access to a union (6.3.2.3)
	Padding and alignment of structure members (6.5.2.1)
	Sign of 'plain' bitfields (6.5.2.1)
	Allocation order of bitfields within a unit (6.5.2.1)
	Can bitfields straddle a storage-unit boundary (6.5.2.1)
	Integer type chosen to represent enumeration types (6.5.2.2)

	Qualifiers
	Access to volatile objects (6.5.3)

	Declarators
	Maximum numbers of declarators (6.5.4)

	Statements
	Maximum number of case statements (6.6.4.2)

	Preprocessing directives
	Character constants and conditional inclusion (6.8.1)
	Including bracketed filenames (6.8.2)
	Including quoted filenames (6.8.2)
	Character sequences (6.8.2)
	Recognized pragma directives (6.8.6)
	Default _ _DATE_ _ and _ _TIME_ _ (6.8.8)

	IAR DLIB Library functions
	NULL macro (7.1.6)
	Diagnostic printed by the assert function (7.2)
	Domain errors (7.5.1)
	Underflow of floating-point values sets errno to ERANGE (7.5.1)
	fmod() functionality (7.5.6.4)
	signal() (7.7.1.1)
	Terminating newline character (7.9.2)
	Blank lines (7.9.2)
	Null characters appended to data written to binary streams (7.9.2)
	Files (7.9.3)
	remove() (7.9.4.1)
	rename() (7.9.4.2)
	%p in printf() (7.9.6.1)
	%p in scanf() (7.9.6.2)
	Reading ranges in scanf() (7.9.6.2)
	File position errors (7.9.9.1, 7.9.9.4)
	Message generated by perror() (7.9.10.4)
	Allocating zero bytes of memory (7.10.3)
	Behavior of abort() (7.10.4.1)
	Behavior of exit() (7.10.4.3)
	Environment (7.10.4.4)
	system() (7.10.4.5)
	Message returned by strerror() (7.11.6.2)
	The time zone (7.12.1)
	clock() (7.12.2.1)

	IAR CLIB Library functions
	NULL macro (7.1.6)
	Diagnostic printed by the assert function (7.2)
	Domain errors (7.5.1)
	Underflow of floating-point values sets errno to ERANGE (7.5.1)
	fmod() functionality (7.5.6.4)
	signal() (7.7.1.1)
	Terminating newline character (7.9.2)
	Blank lines (7.9.2)
	Null characters appended to data written to binary streams (7.9.2)
	Files (7.9.3)
	remove() (7.9.4.1)
	rename() (7.9.4.2)
	%p in printf() (7.9.6.1)
	%p in scanf() (7.9.6.2)
	Reading ranges in scanf() (7.9.6.2)
	File position errors (7.9.9.1, 7.9.9.4)
	Message generated by perror() (7.9.10.4)
	Allocating zero bytes of memory (7.10.3)
	Behavior of abort() (7.10.4.1)
	Behavior of exit() (7.10.4.3)
	Environment (7.10.4.4)
	system() (7.10.4.5)
	Message returned by strerror() (7.11.6.2)
	The time zone (7.12.1)
	clock() (7.12.2.1)

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z
	Symbols
	Numerics

