
EWMISRAC:2004-1

IAR Embedded Workbench®
MISRA C:2004

Reference Guide

EWMISRAC:2004-1

COPYRIGHT NOTICE
© Copyright 2004–2008 IAR Systems. All rights reserved.

No part of this document may be reproduced without the prior written consent of IAR
Systems. The software described in this document is furnished under a license and may
only be used or copied in accordance with the terms of such a license.

DISCLAIMER
The information in this document is subject to change without notice and does not
represent a commitment on any part of IAR Systems. While the information contained
herein is assumed to be accurate, IAR Systems assumes no responsibility for any errors
or omissions.

In no event shall IAR Systems, its employees, its contractors, or the authors of this
document be liable for special, direct, indirect, or consequential damage, losses, costs,
charges, claims, demands, claim for lost profits, fees, or expenses of any nature or kind.

TRADEMARKS
IAR Systems, IAR Embedded Workbench, C-SPY, visualSTATE, From Idea To Target,
IAR KickStart Kit, IAR PowerPac, IAR YellowSuite, IAR Advanced Development Kit,
IAR, and the IAR Systems logotype are trademarks or registered trademarks owned by
IAR Systems AB. J-Link is a trademark licensed to IAR Systems AB.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

All other product names are trademarks or registered trademarks of their respective
owners.

EDITION NOTICE
Third edition: March 2008

Part number: EWMISRAC:2004-1

This guide describes version 1.0 of the IAR Systems implementation of The Motor
Industry Software Reliability Association’s Guidelines for the Use of the C Language
in Critical Systems (the MISRA-C:2004 standard), including the MISRA-C:2004
Technical Corrigendum 1, dated 17 July, 2007.

Internal reference: IJOA

Contents
Preface .. 1

Who should read this guide ... 1

What this guide contains ... 1

Other documentation ... 2

Document conventions .. 2

Introduction .. 5

Using MISRA C .. 5

Claiming compliance ... 5

Implementation and interpretation of the MISRA C rules 5

Checking the rules .. 6

Enabling MISRA C rules ... 7

General IDE options ... 9

MISRA C 2004 ... 9

Compiler IDE options .. 11

MISRA C 2004 ... 11

Command line options .. 13

Options summary ... 13

Descriptions of options .. 13

MISRA C:2004 rules reference .. 15

Summary of rules .. 15

Group 1: Environment ... 15

Group 2: Language extensions ... 16

Group 3: Documentation .. 16

Group 4: Character sets .. 16

Group 5: Identifiers .. 17

Group 6: Types ... 17

Group 7: Constants ... 17

Group 8: Declarations and definitions ... 18
EWMISRAC:2004-1

iii

iv
Group 9: Initialization .. 19

Group 10: Arithmetic type conversions ... 19

Group 11: Pointer type conversions ... 20

Group 12: Expressions ... 20

Group 13: Control statement expressions .. 21

Group 14: Control flow .. 22

Group 15: Switch statements ... 23

Group 16: Functions ... 23

Group 17: Pointers and arrays .. 24

Group 18: Structures and unions .. 24

Group 19: Preprocessing directives ... 25

Group 20: Standard libraries .. 26

Group 21: Runtime failures .. 27

Environment rules .. 27

Language extensions ... 28

Documentation .. 29

Character sets .. 31

Identifiers ... 32

Types .. 33

Constants ... 35

Declarations and definitions .. 35

Initialization .. 38

Arithmetic type conversions ... 39

Pointer type conversions ... 42

Expressions .. 43

Control statement expressions .. 47

Control flow .. 49

Switch statements .. 52

Functions .. 53

Pointers and arrays .. 56

Structures and unions ... 57

Preprocessing directives .. 58

Standard libraries ... 63

Runtime failures .. 65
EWMISRAC:2004-1

IAR Embedded Workbench® MISRA C:2004
Reference Guide

Preface
Welcome to the IAR Embedded Workbench® MISRA C:2004 Reference
Guide. This guide includes gives reference information about the IAR Systems
implementation of The Motor Industry Software Reliability Association’s
Guidelines for the Use of the C Language in Critical Systems.

Who should read this guide
You should read this guide if you are developing a software product using the
MISRA-C:2004 rules. In addition, you should have a working knowledge of:

● The C programming language

● The MISRA C subset of the C language

● Application development for safety-critical embedded systems

● The architecture and instruction set of your microcontroller (refer to the chip
manufacturer's documentation)

● The operating system of your host machine.

What this guide contains
Below is a brief outline and summary of the chapters in this guide.

● Introduction explains the benefits of using MISRA C and gives an overview of the
IAR Systems implementation.

● General IDE options describes the general MISRA C options in the IAR Embedded
Workbench IDE.

● Compiler IDE options describes the MISRA C compiler options in the IAR
Embedded Workbench IDE.

● Command line options explains how to set the options from the command line.

● MISRA C:2004 rules reference describes how IAR Systems has interpreted and
implemented the rules given in Guidelines for the Use of the C Language in Critical
Systems, including the MISRA-C:2004 Technical Corrigendum 1, dated 17 July,
2007.
EWMISRAC:2004-1

1

2

Other documentation
Other documentation
The complete set of IAR development tools are described in a series of guides. For
information about:

● Using the IAR Embedded Workbench® and the IAR C-SPY® Debugger, refer to
the IAR Embedded Workbench® IDE User Guide

● Programming for the IAR C/C++ Compiler, refer to the IAR C/C++ Compiler
Reference Guide or the IAR C/C++ Development Guide

● Programming for the IAR Assembler, refer to the IAR Assembler Reference Guide
● Using the IAR linker and library tools, refer to the IAR Linker and Library Tools

Reference Guide or the IAR C/C++ Development Guide
● Using the MISRA C 1998 rules, refer to the IAR Embedded Workbench®

MISRA C:1998 Reference Guide
● Using the runtime library, refer to the Library Reference information, available in

the IAR Embedded Workbench IDE online help system.

All of these guides are delivered in hypertext PDF or HTML format on the installation
media. Some of them are also delivered as printed books.

Recommended websites:

● The MISRA website, www.misra.org.uk, contains information and news about the
MISRA C rules.

● The IAR website, www.iar.com, holds application notes and other product
information.

Document conventions
This book uses the following typographic conventions:

Style Used for

computer Text that you type or that appears on the screen.

parameter A label representing the actual value you should type as part of a
command.

[option] An optional part of a command.

{option} A mandatory part of a command.

a|b|c Alternatives in a command.

bold Names of menus, menu commands, buttons, and dialog boxes that
appear on the screen.

Table 1: Typographic conventions used in this guide
EWMISRAC:2004-1

IAR Embedded Workbench® MISRA C:2004
Reference Guide

Preface
reference A cross-reference within this guide or to another guide.

Identifies instructions specific to the IAR Embedded Workbench
interface.

Identifies instructions specific to the command line interface.

Style Used for

Table 1: Typographic conventions used in this guide (Continued)
EWMISRAC:2004-1

3

4

Document conventions
EWMISRAC:2004-1

IAR Embedded Workbench® MISRA C:2004
Reference Guide

Introduction
The Motor Industry Software Reliability Association’s Guidelines for the Use of
the C Language in Critical Systems describe a subset of C intended for developing
safety-critical systems.

This chapter describes the IAR Systems implementation for checking that a
software project complies with the MISRA C rules.

Using MISRA C
C is arguably the most popular high-level programming language for embedded
systems, but when it comes to developing code for safety-critical systems, the language
has many drawbacks. There are several unspecified, implementation-defined, and
undefined aspects of the C language that make it unsuited for use when developing
safety-critical systems.

The MISRA C guidelines are intended to help you to overcome these weaknesses in the
C language.

CLAIMING COMPLIANCE

To claim compliance with the MISRA C guidelines for your product, you must
demonstrate that:

● A compliance matrix has been completed demonstrating how each rule is enforced.

● All C code in the product is compliant with the MISRA C rules or subject to
documented deviations.

● A list of all instances where rules are not being followed is maintained, and for each
instance there is an appropriately signed-off documented deviation.

● You have taken appropriate measures in the areas of training, style guide, compiler
selection and validation, checking tool validation, metrics, and test coverage, as
described in section 4.2 of Guidelines for the Use of the C Language in Critical
Systems.

Implementation and interpretation of the MISRA C rules
The implementation of the MISRA C rules does not affect code generation, and has no
significant effect on the performance of IAR Embedded Workbench. No changes have
been made to the IAR CLIB or DLIB runtime libraries.
EWMISRAC:2004-1

5

6

Implementation and interpretation of the MISRA C rules
Note: The rules apply to the source code of the applications that you write and not to
the code generated by the compiler. For example, rule 17.4 is interpreted to mean that
you as a programmer cannot explicitly use any other pointer arithmetic than array
indexing, but the resulting compiler-generated arithmetic is not considered to be a
deviation from the rule.

CHECKING THE RULES

The compiler and linker only generate error messages, they do not actually prevent you
from breaking the rules you are checking for. You can enable or disable individual rules
for the entire project or at file level. A log is produced at compile and link time, and
displayed in the Build Message window of the IAR Embedded Workbench IDE. This
log can be saved to a file, as described in the IAR Embedded Workbench User Guide.

A message is generated for every deviation from a required or advisory rule, unless you
have disabled it. Each message contains a reference to the MISRA C rule deviated from.
The format of the reference is as in the following error message:

Error[Pm088]: pointer arithmetics should not be used
(MISRA C 2004 rule 17.4)

Note: The numbering of the messages does not match the rule numbering.

For each file being checked with MISRA C enabled, you can generate a full report
containing a list of:

● All enabled MISRA C rules

● All MISRA C rules that are actually checked.

Manual checking

There are several rules that require manual checking. These are, for example, rules
requiring knowledge of your intentions as a programmer or rules that are impractical to
check statically, requiring excessive computations.

Note: The fact that rule 3.6 is not enforced means that standard header files in a project
are not checked for compliance.

Documenting deviations

A deviation from a MISRA C rule is an instance where your application does not follow
the rule. If you document a deviation from a rule, you can disable the warning for
violations of that particular rule.

Note: Your source code can deviate from a rule as long as the reason is clearly
documented. Because breaking rules in a controlled fashion is permitted according to
the MISRA C guidelines, error messages can be explicitly disabled using the
#pragma diag_xxx directives.
EWMISRAC:2004-1

IAR Embedded Workbench® MISRA C:2004
Reference Guide

Introduction
In addition, each rule is checked in its own right; no assumptions are made regarding
what other rules are in effect, as these may have been disabled for this particular piece
of code.

Enabling MISRA C rules
In the IAR Embedded Workbench IDE, you enable the MISRA C rules checking by
choosing Project>Options>General Options and using the options on the MISRA C
2004 page.

From the command line, use the option --misrac2004 to enable the MISRA C 2004
rules checking.
EWMISRAC:2004-1

7

8

Enabling MISRA C rules
EWMISRAC:2004-1

IAR Embedded Workbench® MISRA C:2004
Reference Guide

General IDE options
This chapter describes the general MISRA C 2004 options in the IAR
Embedded Workbench® IDE.

For information about how options can be set, see the IAR Embedded
Workbench® IDE User Guide.

MISRA C 2004
Use the options on the MISRA C 2004 page to control how the IAR Embedded
Workbench IDE checks the source code for deviations from the MISRA C rules. The
settings will be used for both the compiler and the linker.

If you want the compiler to check a different set of rules than the linker, you can override
these settings in the C/C++ Compiler category of options.

Figure 1: MISRA C 2004 general options
EWMISRAC:2004-1

9

10

MISRA C 2004
ENABLE MISRA C

Select this option to enable checking the source code for deviations from the MISRA C
rules during compilation and linking. Only the rules you select in the scroll list will be
checked.

LOG MISRA C SETTINGS

Select this option to generate a log during compilation and linking. This log is a list of
the rules that are enabled—but not necessarily checked—and a list of rules that are
actually checked.

MISRA C 2004

Select this option to check for compliance with the MISRA-C:2004 standard.

MISRA C 1998

If you want to check for compliance with the older MISRA-C:1998 standard, select this
option and use the settings on the MISRA C 1998 page instead. When this option is
selected, the list of MISRA-C:2004 rules becomes unavailable.

SET ACTIVE MISRA C 2004 RULES

Select the checkboxes for the rules in the scroll list that you want the compiler and linker
to check during compilation and linking. You can use the buttons None, Required, or
All to select or deselect several rules with one click:

None Deselects all rules.

Required Selects all rules that are categorized by the Guidelines for the Use of the C
Language in Critical Systems as required and deselects the rules that are
categorized as advisory

All Selects all rules.
EWMISRAC:2004-1

IAR Embedded Workbench® MISRA C:2004
Reference Guide

Compiler IDE options
This chapter describes the MISRA C:2004 compiler options available in the
IAR Embedded Workbench® IDE.

For information about how to set options, see the IAR Embedded Workbench®
IDE User Guide.

MISRA C 2004
Use these options to override the options set on the General Options>MISRA C 2004
page. This means that the compiler will check for a different set of rules than the linker.

Figure 2: MISRA C 2004 compiler options

OVERRIDE GENERAL MISRA C SETTINGS

Select this option if you want the compiler to check a different selection of rules than
the rules selected in the General Options category.

SET ACTIVE MISRA C 2004 RULES

Select the checkboxes for the rules in the scroll list that you want the compiler to check
during compilation. You can use the buttons None, Required, All, or Restore to select
or deselect several rules with one click:

None Deselects all rules.
EWMISRAC:2004-1

11

12

MISRA C 2004
Note: This list is only available when both the options Enable MISRA C and MISRA
C 2004 have been selected on the MISRA C 2004 page of the General Options
category.

Required Selects all rules that are categorized by the Guidelines for the Use of the C
Language in Critical Systems as required and deselects the rules that are
categorized as advisory

All Selects all rules.

Restore Restores the MISRA C 2004 settings used in the General Options
category.
EWMISRAC:2004-1

IAR Embedded Workbench® MISRA C:2004
Reference Guide

Command line options
This chapter describes how to set the MISRA C options from the command
line, and gives reference information about each option.

Options summary
The following table summarizes the command line options:

Descriptions of options
This section gives detailed reference information about each command line option.

--misrac2004

Syntax --misrac2004={range1,[~]range2,[~]range3,…}

Parameters

Description Use this option to enable checking for deviations from the rules described in the MISRA
Guidelines for the Use of the C Language in Critical Systems.

Command line option Description

--misrac2004 Enables error messages
specific to MISRA C 2004

--misrac_verbose Enables verbose logging of
MISRA C checking

Table 2: Command line options summary

range range can be one of:
 • all = all MISRA-C:2004 rules
 • required = all MISRA-C:2004 rules categorized as required
 • the number of a group of rules
 • the number of a rule
 • a continuous sequence starting with a rule or a group and ending with a rule
 or a group, separated by a - (dash)

~ excludes the following range from checking
EWMISRAC:2004-1

13

14

Descriptions of options
If a rule cannot be checked, specifying the option for that rule has no effect. For instance,
MISRA-C:2004 rule 3.2 is a documentation issue, and the rule is not checked. As a
consequence, specifying --misrac2004=3.2 has no effect.

Note: MISRA-C:2004 is not supported by all IAR Systems products. If
MISRA-C:2004 checking is not supported, using this option will generate an error.

Examples This command line checks all rules from rule 1.1 to rule 6.3, and all rules from rule 7.1
to rule 20.11:

--misrac2004=1-6.3,7-20.11

This command line checks rule 3.3 and all required rules except rule 10.3 and the rule
in group 21:

--misrac2004=required,3.3,~10.3,~21

This command line checks all rules except rule 20.8:

--misrac2004=all,~20.8

To set the equivalent option in the IAR Embedded Workbench IDE, select
Project>Options>General Options>MISRA C 2004 or Project>Options>C/C++
Compiler>MISRA C 2004.

--misrac_verbose

Syntax --misrac_verbose

Description Use this option to generate a MISRA C log during compilation and linking. This is a list
of the rules that are enabled—but not necessarily checked—and a list of rules that are
actually checked.

If this option is enabled, a text is displayed at sign-on that shows both enabled and
checked MISRA C rules.

To set the equivalent option in the IAR Embedded Workbench IDE, select
Project>Options>General Options>MISRA C 2004.
EWMISRAC:2004-1

IAR Embedded Workbench® MISRA C:2004
Reference Guide

MISRA C:2004 rules
reference
This chapter describes how IAR Systems has interpreted and implemented the
rules given in Guidelines for the Use of the C Language in Critical Systems to
enforce measures for stricter safety in the ISO standard for the C
programming language [ISO/IEC 9899:1990].

The IAR Systems implementation is based on the standard MISRA-C:2004,
dated October 2004, with the clarifications of the MISRA-C:2004 Technical
Corrigendum 1, dated 17 July, 2007.

Summary of rules
These tables list all MISRA-C:2004 rules.

GROUP 1: ENVIRONMENT

No Rule Type Category

1.1 All code shall conform to ISO 9899:1990
Programming languages – C, amended and corrected
by ISO/IEC 9899/COR1:1995, ISO/IEC
9899/AMD1:1995, and ISO/IEC 9899/COR2:1996.

Environment Required

1.2 No reliance shall be placed on undefined or
unspecified behavior.

Environment Required

1.3 Multiple compilers and/or languages shall only be used
if there is a common defined interface standard for
object code to which the
language/compilers/assemblers conform.

Environment Required

1.4 The compiler/linker shall be checked to ensure that
31 character significance and case sensitivity are
supported for external identifiers.

Environment Required

1.5 Floating-point implementations should comply with a
defined floating-point standard.

Environment Advisory

Table 3: MISRA C 2004 Environment rules summary
EWMISRAC:2004-1

15

16

Summary of rules
GROUP 2: LANGUAGE EXTENSIONS

GROUP 3: DOCUMENTATION

GROUP 4: CHARACTER SETS

No Rule Type Category

2.1 Assembler language shall be encapsulated and
isolated.

Language
extensions

Required

2.2 Source code shall only use /* ... */ style comments. Language
extensions

Required

2.3 The character sequence /* shall not be used within a
comment.

Language
extensions

Required

2.4 Sections of code should not be commented out. Language
extensions

Advisory

Table 4: MISRA C 2004 Language extensions rules summary

No Rule Type Category

3.1 All usage of implementation-defined behavior shall be
documented.

Documentation Required

3.2 The character set and the corresponding encoding
shall be documented.

Documentation Required

3.3 The implementation of integer division in the chosen
compiler should be determined, documented, and
taken into account.

Documentation Advisory

3.4 All uses of the #pragma directive shall be documented
and explained.

Documentation Required

3.5 If it is being relied upon, the implementation-defined
behavior and packing of bitfields shall be documented.

Documentation Required

3.6 All libraries used in production code shall be written
to comply with the provisions of this document, and
shall have been subject to appropriate validation.

Documentation Required

Table 5: MISRA C 2004 Documentation rules summary

No Rule Type Category

4.1 Only those escape sequences that are defined in the
ISO C standard shall be used.

Character sets Required

4.2 Trigraphs shall not be used. Character sets Required

Table 6: MISRA C 2004 Character sets rules summary
EWMISRAC:2004-1

IAR Embedded Workbench® MISRA C:2004
Reference Guide

MISRA C:2004 rules reference
GROUP 5: IDENTIFIERS

GROUP 6: TYPES

GROUP 7: CONSTANTS

No Rule Type Category

5.1 Identifiers (internal and external) shall not rely on the
significance of more than 31 characters.

Identifiers Required

5.2 Identifiers in an inner scope shall not use the same
name as an identifier in an outer scope, and therefore
hide that identifier.

Identifiers Required

5.3 A typedef name shall be a unique identifier. Identifiers Required

5.4 A tag name shall be a unique identifier. Identifiers Required

5.5 No object or function identifier with static storage
duration should be reused.

Identifiers Advisory

5.6 No identifier in one namespace should have the same
spelling as an identifier in another namespace, with
the exception of structure member and union
member names.

Identifiers Advisory

5.7 No identifier name should be reused. Identifiers Advisory

Table 7: MISRA C 2004 Identifiers rules summary

No Rule Type Category

6.1 The plain char type shall be used only for the storage
and use of character values.

Types Required

6.2 signed and unsigned char type shall be used only for
the storage and use of numeric values.

Types Required

6.3 typedefs that indicate size and signedness should
be used in place of the basic types.

Types Advisory

6.4 Bitfields shall only be defined to be of type unsigned
int or signed int.

Types Required

6.5 Bitfields of signed type shall be at least 2 bits long. Types Required

Table 8: MISRA C 2004 Types rules summary

No Rule Type Category

7.1 Octal constants (other than zero) and octal escape
sequences shall not be used.

Constants Required

Table 9: MISRA C 2004 Constants rules summary
EWMISRAC:2004-1

17

18

Summary of rules
GROUP 8: DECLARATIONS AND DEFINITIONS

No Rule Type Category

8.1 Functions shall have prototype declarations and the
prototype shall be visible at both the function
definition and call.

Declarations and
definitions

Required

8.2 Whenever an object or function is declared or
defined, its type shall be explicitly stated.

Declarations and
definitions

Required

8.3 For each function parameter, the type given in the
declaration and definition shall be identical and the
return types shall also be identical.

Declarations and
definitions

Required

8.4 If objects or functions are declared more than once,
their types shall be compatible.

Declarations and
definitions

Required

8.5 There shall be no definitions of objects or functions in
a header file.

Declarations and
definitions

Required

8.6 Functions shall be declared at file scope. Declarations and
definitions

Required

8.7 Objects shall be defined at block scope if they are
only accessed from within a single function.

Declarations and
definitions

Required

8.8 An external object or function shall be declared in
one and only one file.

Declarations and
definitions

Required

8.9 An identifier with external linkage shall have exactly
one external definition.

Declarations and
definitions

Required

8.10 All declarations and definitions of objects or functions
at file scope shall have internal linkage unless external
linkage is required.

Declarations and
definitions

Required

8.11 The static storage class specifier shall be used in
definitions and declarations of objects and functions
that have internal linkage.

Declarations and
definitions

Required

8.12 When an array is declared with external linkage, its
size shall be stated explicitly or defined implicitly by
initialization.

Declarations and
definitions

Required

Table 10: MISRA C 2004 Declarations and definitions rules summary
EWMISRAC:2004-1

IAR Embedded Workbench® MISRA C:2004
Reference Guide

MISRA C:2004 rules reference
GROUP 9: INITIALIZATION

GROUP 10: ARITHMETIC TYPE CONVERSIONS

No Rule Type Category

9.1 All automatic variables shall have been assigned a
value before being used.

Initialization Required

9.2 Braces shall be used to indicate and match the
structure in the non-zero initialization of arrays and
structures.

Initialization Required

9.3 In an enumerator list, the “=” construct shall not be
used to explicitly initialize members other than the
first, unless all items are explicitly initialized.

Initialization Required

Table 11: MISRA C 2004 Initialization rules summary

No Rule Type Category

10.1 The value of an expression of integer type shall not be
implicitly converted to a different underlying type if:
a. it is not a conversion to a wider integer type of the
same signedness, or
b. the expression is complex, or
c. the expression is not constant and is a function
argument, or
d. the expression is not constant and is a return
expression.

Arithmetic type
conversions

Required

10.2 The value of an expression of floating type shall not
be implicitly converted to a different underlying type
if:
a. it is not a conversion to a wider floating type, or
b. the expression is complex, or
c. the expression is a function argument, or
d. the expression is a return expression.

Arithmetic type
conversions

Required

10.3 The value of a complex expression of integer type
shall only be cast to a type that is not wider and of the
same signedness as the underlying type of the
expression.

Arithmetic type
conversions

Required

10.4 The value of a complex expression of floating type
shall only be cast to a floating type which is narrower
or of the same size.

Arithmetic type
conversions

Required

Table 12: MISRA C 2004 Arithmetic type conversions rules summary
EWMISRAC:2004-1

19

20

Summary of rules
GROUP 11: POINTER TYPE CONVERSIONS

GROUP 12: EXPRESSIONS

10.5 If the bitwise operators ~ and << are applied to an
operand of underlying type unsigned char or unsigned
short, the result shall be immediately cast to the
underlying type of the operand.

Arithmetic type
conversions

Required

10.6 A U suffix shall be applied to all constants of unsigned
type.

Arithmetic type
conversions

Required

No Rule Type Category

11.1 Conversions shall not be performed between a
pointer to a function and any type other than an
integral type.

Pointer type
conversions

Required

11.2 Conversions shall not be performed between a
pointer to object and any type other than an integral
type, another pointer to object type, or a pointer to
void.

Pointer type
conversions

Required

11.3 A cast should not be performed between a pointer
type and an integral type.

Pointer type
conversions

Advisory

11.4 A cast should not be performed between a pointer to
object type and a different pointer to object type.

Pointer type
conversions

Advisory

11.5 A cast shall not be performed that removes any const
or volatile qualification from the type addressed by a
pointer.

Pointer type
conversions

Required

Table 13: MISRA C 2004 Pointer type conversions rules summary

No Rule Type Category

12.1 Limited dependence should be placed on the C
operator precedence rules in expressions.

Expressions Advisory

12.2 The value of an expression shall be the same under
any order of evaluation that the standard permits.

Expressions Required

12.3 The sizeof operator shall not be used on expressions
that contain side effects.

Expressions Required

Table 14: MISRA C 2004 Expressions rules summary

No Rule Type Category

Table 12: MISRA C 2004 Arithmetic type conversions rules summary (Continued)
EWMISRAC:2004-1

IAR Embedded Workbench® MISRA C:2004
Reference Guide

MISRA C:2004 rules reference
GROUP 13: CONTROL STATEMENT EXPRESSIONS

12.4 The right-hand operand of a logical && or || operator
shall not contain side effects.

Expressions Required

12.5 The operands of a logical && or || shall be primary
expressions.

Expressions Required

12.6 The operands of logical operators (&&, ||, and !)
should be effectively boolean. Expressions that are
effectively boolean should not be used as operands to
operators other than (&&, ||, !, =, ==, !=, and ?:).

Expressions Advisory

12.7 Bitwise operators shall not be applied to operands
whose underlying type is signed.

Expressions Required

12.8 The right-hand operand of a shift operator shall lie
between zero and one less than the width in bits of
the underlying type of the left-hand operand.

Expressions Required

12.9 Trigraphs shall not be used.The unary minus operator
shall not be applied to an expression whose
underlying type is unsigned.

Expressions Required

12.10 The comma operator shall not be used. Expressions Required

12.11 Evaluation of constant unsigned integer expressions
should not lead to wrap-around.

Expressions Advisory

12.12 The underlying bit representations of floating-point
values shall not be used.

Expressions Required

12.13 The increment (++) and decrement (--) operators
should not be mixed with other operators in an
expression.

Expressions Advisory

No Rule Type Category

13.1 Assignment operators shall not be used in
expressions that yield a boolean value.

Control statement
expressions

Required

13.2 Tests of a value against zero should be made explicit,
unless the operand is effectively boolean.

Control statement
expressions

Advisory

13.3 Floating-point expressions shall not be tested for
equality or inequality.

Control statement
expressions

Required

13.4 The controlling expression of a for statement shall
not contain any objects of floating type.

Control statement
expressions

Required

Table 15: MISRA C 2004 Control statement expressions rules summary

No Rule Type Category

Table 14: MISRA C 2004 Expressions rules summary (Continued)
EWMISRAC:2004-1

21

22

Summary of rules
GROUP 14: CONTROL FLOW

13.5 The three expressions of a for statement shall be
concerned only with loop control.

Control statement
expressions

Required

13.6 Numeric variables being used within a for loop for
iteration counting shall not be modified in the body of
the loop.

Control statement
expressions

Required

13.7 Boolean operations whose results are invariant shall
not be permitted.

Control statement
expressions

Required

No Rule Type Category

14.1 There shall be no unreachable code. Control flow Required

14.2 All non-null statements shall either have at least one
side effect however executed, or cause control flow
to change.

Control flow Required

14.3 Before preprocessing, a null statement shall only
occur on a line by itself; it may be followed by a
comment, provided that the first character following
the null statement is a whitespace character.

Control flow Required

14.4 The goto statement shall not be used. Control flow Required

14.5 The continue statement shall not be used. Control flow Required

14.6 For any iteration statement, there shall be at most
one break statement used for loop termination.

Control flow Required

14.7 A function shall have a single point of exit at the end
of the function.

Control flow Required

14.8 The statement forming the body of a switch, while, do
... while, or for statement shall be a compound
statement.

Control flow Required

14.9 An if expression construct shall be followed by a
compound statement. The else keyword shall be
followed by either a compound statement or another
if statement.

Control flow Required

14.10 All if ... else if constructs shall be terminated with an
else clause.

Control flow Required

Table 16: MISRA C 2004 Control flow rules summary

No Rule Type Category

Table 15: MISRA C 2004 Control statement expressions rules summary (Continued)
EWMISRAC:2004-1

IAR Embedded Workbench® MISRA C:2004
Reference Guide

MISRA C:2004 rules reference
GROUP 15: SWITCH STATEMENTS

GROUP 16: FUNCTIONS

No Rule Type Category

15.1 A switch label shall only be used when the most
closely-enclosing compound statement is the body of
a switch statement.

Switch statements Required

15.2 An unconditional break statement shall terminate
every non-empty switch clause.

Switch statements Required

15.3 The final clause of a switch statement shall be the
default clause.

Switch statements Required

15.4 A switch expression shall not represent a value that is
effectively boolean.

Switch statements Required

15.5 Every switch statement shall have at least one case
clause.

Switch statements Required

Table 17: MISRA C 2004 Switch statements rules summary

No Rule Type Category

16.1 Functions shall not be defined with a variable number
of arguments.

Functions Required

16.2 Functions shall not call themselves, either directly or
indirectly.

Functions Required

16.3 Identifiers shall be given for all of the parameters in a
function prototype declaration.

Functions Required

16.4 The identifiers used in the declaration and definition
of a function shall be identical.

Functions Required

16.5 Functions with no parameters shall be declared and
defined with the parameter list void.

Functions Required

16.6 The number of arguments passed to a function shall
match the number of parameters.

Functions Required

16.7 A pointer parameter in a function prototype should
be declared as pointer to const if the pointer is not
used to modify the addressed object.

Functions Advisory

16.8 All exit paths from a function with non-void return
type shall have an explicit return statement with an
expression.

Functions Required

Table 18: MISRA C 2004 Functions rules summary
EWMISRAC:2004-1

23

24

Summary of rules
GROUP 17: POINTERS AND ARRAYS

GROUP 18: STRUCTURES AND UNIONS

16.9 A function identifier shall only be used with either a
preceding &, or with a parenthesized parameter list,
which may be empty.

Functions Required

16.10 If a function returns error information, then that
error information shall be tested.

Functions Required

No Rule Type Category

17.1 Pointer arithmetic shall only be applied to pointers
that address an array or array element.

Pointers and arrays Required

17.2 Pointer subtraction shall only be applied to pointers
that address elements of the same array.

Pointers and arrays Required

17.3 >, >=, <, <= shall not be applied to pointer types
except where they point to the same array.

Pointers and arrays Required

17.4 Array indexing shall be the only allowed form of
pointer arithmetic.

Pointers and arrays Required

17.5 The declaration of objects should contain no more
than two levels of pointer indirection.

Pointers and arrays Advisory

17.6 The address of an object with automatic storage shall
not be assigned to another object that may persist
after the first object has ceased to exist.

Pointers and arrays Required

Table 19: MISRA C 2004 Pointers and arrays rules summary

No Rule Type Category

18.1 All structure and union types shall be complete at the
end of the translation unit.

Structures and
unions

Required

18.2 An object shall not be assigned to an overlapping
object.

Structures and
unions

Required

18.3 An area of memory shall not be used for unrelated
purposes.

Structures and
unions

Required

18.4 Unions shall not be used. Structures and
unions

Required

Table 20: MISRA C 2004 Structures and unions rules summary

No Rule Type Category

Table 18: MISRA C 2004 Functions rules summary (Continued)
EWMISRAC:2004-1

IAR Embedded Workbench® MISRA C:2004
Reference Guide

MISRA C:2004 rules reference
GROUP 19: PREPROCESSING DIRECTIVES

No Rule Type Category

19.1 #include statements in a file should only be
preceded by other preprocessor directives or
comments.

Preprocessing
directives

Advisory

19.2 Non-standard characters should not occur in header
file names in #include directives.

Preprocessing
directives

Advisory

19.3 The #include directive shall be followed by either a
<filename> or "filename" sequence.

Preprocessing
directives

Required

19.4 C macros shall only expand to a braced initializer, a
constant, a string literal, a parenthesized expression, a
type qualifier, a storage class specifier, or a
do-while-zero construct.

Preprocessing
directives

Required

19.5 Macros shall not be #define’d or #undef’d within a
block.

Preprocessing
directives

Required

19.6 #undef shall not be used. Preprocessing
directives

Required

19.7 A function should be used in preference to a
function-like macro.

Preprocessing
directives

Advisory

19.8 A function-like macro shall not be invoked without all
of its arguments.

Preprocessing
directives

Required

19.9 Arguments to a function-like macro shall not contain
tokens that look like preprocessing directives.

Preprocessing
directives

Required

19.10 In the definition of a function-like macro, each
instance of a parameter shall be enclosed in
parentheses unless it is used as the operand of # or
##.

Preprocessing
directives

Required

19.11 All macro identifiers in preprocessor directives shall
be defined before use, except in #ifdef and #ifndef
preprocessor directives and the defined() operator.

Preprocessing
directives

Required

19.12 There shall be at most one occurrence of the # or ##
preprocessor operators in a single macro definition.

Preprocessing
directives

Required

19.13 The # and ## preprocessor operators should not be
used.

Preprocessing
directives

Advisory

19.14 The defined preprocessor operator shall only be used
in one of the two standard forms.

Preprocessing
directives

Required

Table 21: MISRA C 2004 Preprocessing directives rules summary
EWMISRAC:2004-1

25

26

Summary of rules
GROUP 20: STANDARD LIBRARIES

19.15 Precautions shall be taken in order to prevent the
contents of a header file being included twice.

Preprocessing
directives

Required

19.16 Preprocessing directives shall be syntactically
meaningful even when excluded by the preprocessor.

Preprocessing
directives

Required

19.17 All #else, #elif, and #endif preprocessor directives
shall reside in the same file as the #if or #ifdef
directive to which they are related.

Preprocessing
directives

Required

No Rule Type Category

20.1 Reserved identifiers, macros, and functions in the
standard library shall not be defined, redefined, or
undefined.

Standard libraries Required

20.2 The names of Standard Library macros, objects, and
functions shall not be reused.

Standard libraries Required

20.3 The validity of values passed to library functions shall
be checked.

Standard libraries Required

20.4 Dynamic heap memory allocation shall not be used. Standard libraries Required

20.5 The error indicator errno shall not be used. Standard libraries Required

20.6 The macro offsetof in the stddef.h library shall not be
used.

Standard libraries Required

20.7 The setjmp macro and the longjmp function shall not
be used.

Standard libraries Required

20.8 The signal handling facilities of signal.h shall not be
used.

Standard libraries Required

20.9 The input/output library stdio.h shall not be used in
production code.

Standard libraries Required

20.10 The functions atof, atoi, and atol from the library
stdlib.h shall not be used.

Standard libraries Required

20.11 The functions abort, exit, getenv, and system from the
library stdlib.h shall not be used.

Standard libraries Required

20.12 The time handling functions of time.h shall not be
used.

Standard libraries Required

Table 22: MISRA C 2004 Standard libraries rules summary

No Rule Type Category

Table 21: MISRA C 2004 Preprocessing directives rules summary (Continued)
EWMISRAC:2004-1

IAR Embedded Workbench® MISRA C:2004
Reference Guide

MISRA C:2004 rules reference
GROUP 21: RUNTIME FAILURES

Environment rules
The rules in this section are concerned with the language environment.

Rule 1.1 (required) All code shall conform to ISO 9899:1990 Programming languages – C, amended and
corrected by ISO/IEC 9899/COR1:1995, ISO/IEC 9899/AMD1:1995, and ISO/IEC
9899/COR2:1996.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if the compiler is
configured (using command line options or IDE options) to:

● compile with IAR extensions

● compile C++ code.

Note: The compiler does not generate this error if you use IAR extensions in your
source code by means of a pragma directive.

Examples of rule violations

int16_t __far my_far_variable;
int16_t port @ 0xBEEF;

Example of correct code

#pragma location=0xBEEF
int16_t port;

No Rule Type Category

21.1 Minimization of runtime failures shall be ensured by
the use of at least one of:
a. static analysis tools/techniques
b. dynamic analysis tools/techniques
c. explicit coding of checks to handle runtime faults.

Runtime failures Required

Table 23: MISRA C 2004 Runtime failures rules summary
EWMISRAC:2004-1

27

28

Language extensions
Rule 1.2 (required) No reliance shall be placed on undefined or unspecified behavior.

How the rule is checked

Violations of this rule are not checked for by the compiler or linker. This rule requires
manual checking.

Rule 1.3 (required) Multiple compilers and/or languages shall only be used if there is a common defined
interface standard for object code to which the language/compilers/assemblers conform.

How the rule is checked

Violations of this rule are not checked for by the compiler or linker. This rule requires
manual checking.

Rule 1.4 (required) The compiler/linker shall be checked to ensure that 31 character significance and case
sensitivity are supported for external identifiers.

How the rule is checked

All IAR Systems compilers and linkers adhere to this rule. This rule is always followed.

Rule 1.5 (advisory) Floating-point implementations should comply with a defined floating-point standard.

How the rule is checked

All IAR Systems compilers and runtime libraries comply with the IEEE 754
floating-point standard. This rule is always followed.

Language extensions
The rules in this section are concerned with how extensions to the C language can be
used.

Rule 2.1 (required) Assembler language shall be encapsulated and isolated.

How the rule is checked

Violations of this rule are not checked for by the compiler or linker. This rule requires
manual checking.
EWMISRAC:2004-1

IAR Embedded Workbench® MISRA C:2004
Reference Guide

MISRA C:2004 rules reference
Rule 2.2 (required) Source code shall only use /* ... */ style comments.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if C++ style
comments (//) are used in your source code.

Rule 2.3 (required) The character sequence /* shall not be used within a comment.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if /* is used
inside a comment.

Rule 2.4 (advisory) Sections of code should not be commented out.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, whenever a
comment ends with ;, {, or }.

Note: This rule is checked in such a manner that code samples inside comments are
allowed and do not generate an error.

Documentation
The rules in this section are concerned with documentation issues.

Rule 3.1 (advisory) All usage of implementation-defined behavior shall be documented.

How the rule is checked

Violations of this rule are not checked for by the compiler or linker. This rule requires
manual checking.

Rule 3.2 (required) The character set and the corresponding encoding shall be documented.

How the rule is checked

Violations of this rule are not checked for by the compiler or linker.
EWMISRAC:2004-1

29

30

Documentation
Rule 3.3 (advisory) The implementation of integer division in the chosen compiler should be determined,
documented, and taken into account.

How the rule is checked

This is implementation-defined behavior. For all IAR Systems compilers, the sign of the
remainder on integer division is the same as the sign of the dividend, as documented in
the IAR C/C++ Compiler Reference Guide.

Rule 3.4 (required) All uses of the #pragma directive shall be documented and explained.

How the rule is checked

Violations of this rule are not checked for by the compiler or linker. This rule requires
manual checking.

Rule 3.5 (required) If it is being relied upon, the implementation-defined behavior and packing of bitfields
shall be documented.

How the rule is checked

Violations of this rule are not checked for by the compiler or linker.

Note: See the IAR C/C++ Compiler Reference Guide or IAR C/C++ Development
Guide for a description of how bitfields are stored in memory.

Rule 3.6 (required) All libraries used in production code shall be written to comply with the provisions of
this document, and shall have been subject to appropriate validation.

How the rule is checked

Violations of this rule are not checked for by the compiler or linker. This rule requires
manual checking.
EWMISRAC:2004-1

IAR Embedded Workbench® MISRA C:2004
Reference Guide

MISRA C:2004 rules reference
Character sets
The rules in this section are concerned with how character sets can be used.

Rule 4.1 (required) Only those escape sequences that are defined in the ISO C standard shall be used.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if any of the
following are read inside a string or character literal:

● A character with an ASCII code outside the ranges 32–35, 37–63, 65–95, and
97–126

● An escape sequence that is not one of: \a, \b, \f, \n, \r, \t, \v, \', \", \\, or \0.

Note: $ (dollar), @ (at), and ` (backquote) are not part of the source character set.

Examples of rule violations

"Just my $0.02"
"Just my £0.02"

Examples of correct code

"Hello world!\n"
'\n'

Note: This rule aims to restrict undefined behavior and implementation-defined
behavior. The implementation-defined behavior applies only when characters are
converted to internal representation, which only applies to character constants and string
literals. For that reason, the IAR Systems implementation restricts the usage of
characters only within character literals and string literals; characters within comments
are not restricted.

Rule 4.2 (required) Trigraphs shall not be used.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if a trigraph is
used.

Examples of rule violations

SI_16 a ??(3 ??);
STRING sic = "??(sic??)";
EWMISRAC:2004-1

31

32

Identifiers
Example of correct code

STRING str = "What???";

Identifiers
The rules in this section are concerned with identifiers used in the code.

Rule 5.1 (required) Identifiers (internal and external) shall not rely on the significance of more than 31
characters.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, in a declaration
or definition of an identifier if it has the same 31 initial characters as a previously
declared or defined identifier.

The linker will generate an error, indicating a violation of this rule, if any identifiers
have the same 31 initial characters.

Rule 5.2 (required) Identifiers in an inner scope shall not use the same name as an identifier in an outer
scope, and therefore hide that identifier.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, whenever a
declaration or definition hides the name of another identifier.

Rule 5.3 (required) A typedef name shall be a unique identifier.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, for:

● any declaration or definition that uses a name previously used as a typedef

● any typedef name previously used in a declaration or definition.
EWMISRAC:2004-1

IAR Embedded Workbench® MISRA C:2004
Reference Guide

MISRA C:2004 rules reference
Rule 5.4 (required) A tag name shall be a unique identifier.

How the rule is checked

Violations of this rule are not checked for by the compiler or linker. This rule requires
manual checking.

Rule 5.5 (advisory) No object or function identifier with static storage duration should be reused.

How the rule is checked

Violations of this rule are not checked for by the compiler or linker. This rule requires
manual checking.

Rule 5.6 (advisory) No identifier in one namespace should have the same spelling as an identifier in another
namespace, with the exception of structure member and union member names.

How the rule is checked

Violations of this rule are not checked for by the compiler or linker. This rule requires
manual checking.

Rule 5.7 (advisory) No identifier name should be reused.

How the rule is checked

Violations of this rule are not checked for by the compiler or linker. This rule requires
manual checking.

Types
The rules in this section are concerned with how data types are allowed to be declared.

Rule 6.1 (required) The plain char type shall be used only for the storage and use of character values.

How the rule is checked

Violations of this rule are not checked for by the compiler or linker. This rule requires
manual checking.
EWMISRAC:2004-1

33

34

Types
Rule 6.2 (required) signed and unsigned char type shall be used only for the storage and use of numeric
values.

How the rule is checked

Violations of this rule are not checked for by the compiler or linker. This rule requires
manual checking.

Rule 6.3 (advisory) typedefs that indicate size and signedness should be used in place of the basic types.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if any of the basic
types are used in a declaration or definition that is not a typedef.

Example of a rule violation

int x;

Example of correct code

typedef int SI_16
SI_16 x;

Note: The basic types are allowed in bitfields.

Rule 6.4 (required) Bitfields shall only be defined to be of type unsigned int or signed int.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if a bitfield is
declared to have any type other than unsigned int or signed int.

Note: An error is given if a bitfield is declared to be of type int without using a
signed or unsigned specifier.

Rule 6.5 (required) Bitfields of signed type shall be at least 2 bits long.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if a bitfield of
type signed int is declared to have size 0 or 1.
EWMISRAC:2004-1

IAR Embedded Workbench® MISRA C:2004
Reference Guide

MISRA C:2004 rules reference
Constants
The rule in this section is concerned with the use of constants.

Rule 7.1 (required) Octal constants (other than zero) and octal escape sequences shall not be used.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, whenever a
non-zero constant starts with a 0.

Declarations and definitions
The rules in this section are concerned with declarations and definitions.

Rule 8.1 (required) Functions shall have prototype declarations and the prototype shall be visible at both the
function definition and call.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, whenever:

● A non-static function is defined but there is no prototype visible at the point of
definition

● A function pointer type with no prototype is used

● A non-prototype function is declared.

Example of a rule violation

void func(); /* Not a prototype */

Example of correct code

void func(void);
void func(void) { … }
EWMISRAC:2004-1

35

36

Declarations and definitions
Rule 8.2 (required) Whenever an object or function is declared or defined, its type shall be explicitly stated.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if the type is
missing.

Rule 8.3 (required) For each function parameter, the type given in the declaration and definition shall be
identical and the return types shall also be identical.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, for any function
definition where the type given in the definition is not identical with the return type and
the type of the parameters in the declaration. In particular, typedef types with different
names are not considered identical and will generate an error.

Rule 8.4 (required) If objects or functions are declared more than once, their types shall be compatible.

How the rule is checked

The linker always checks for this, also when the MISRA C rules are disabled, and issues
a warning. When the MISRA C rules are enabled, an error is issued instead.

The linker checks that declarations and definitions have compatible types, with these
exceptions:

● bool and wchar_t are compatible with all int types of the same size.

● For parameters to Kernighan & Ritchie functions:

● int and unsigned int are considered compatible

● long and unsigned long are considered compatible.

● Incomplete types are considered compatible if they have the same name.

● Complete types are considered compatible if they have fields with compatible
types.

Rule 8.5 (required) There shall be no definitions of objects or functions in a header file.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if a function or
variable is defined in a header file.
EWMISRAC:2004-1

IAR Embedded Workbench® MISRA C:2004
Reference Guide

MISRA C:2004 rules reference
Note: The compiler will not generate an error when a variable is placed at an absolute
address using the @ operator or the #pragma location directive.

Rule 8.6 (required) Functions shall be declared at file scope.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, on encountering
a function declaration at block scope.

Rule 8.7 (required) Objects shall be defined at block scope if they are only accessed from within a single
function.

How the rule is checked

Violations of this rule are not checked for by the compiler or linker. This rule requires
manual checking.

Rule 8.8 (required) An external object or function shall be declared in one and only one file.

How the rule is checked

Violations of this rule are not checked for by the compiler or linker. This rule requires
manual checking.

Rule 8.9 (required) An identifier with external linkage shall have exactly one external definition.

How the rule is checked

The linker always checks for this, also when the MISRA C rules are disabled.

Note: Multiple definitions of global symbols are considered to be errors by the linker.
The use of a symbol with no definition available is also considered to be a linker error.
EWMISRAC:2004-1

37

38

Initialization
Rule 8.10 (required) All declarations and definitions of objects or functions at file scope shall have internal
linkage unless external linkage is required.

How the rule is checked

The linker will generate an error, indicating a violation of this rule, if a symbol is used
in—and exported from—a module but not referenced from any other module.

Rule 8.11 (required) The static storage class specifier shall be used in definitions and declarations of
objects and functions that have internal linkage.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if the static
keyword is used in some but not all declarations and the definition.

Rule 8.12 (required) When an array is declared with external linkage, its size shall be stated explicitly or
defined implicitly by initialization.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if the size of an
array cannot be determined.

Example of a rule violation

extern int16_t array[];

Examples of correct code

int16_t array2[10];
int16_t array2[] = { 1, 2, 3 };

Initialization
The rules in this section are concerned with the initialization of variables.

Rule 9.1 (required) All automatic variables shall have been assigned a value before being used.

How the rule is checked

Partial support for checking this rule is available.
EWMISRAC:2004-1

IAR Embedded Workbench® MISRA C:2004
Reference Guide

MISRA C:2004 rules reference
The compiler will generate an error, indicating a violation of this rule, if a variable is
used but not previously assigned a value, but only if no execution path contains an
assignment.

Rule 9.2 (required) Braces shall be used to indicate and match the structure in the non-zero initialization of
arrays and structures.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, for any initializer
that does not have the correct brace structure and number of elements. The compiler will
not generate an error if the initializer { 0 } is used.

Examples of rule violations

struct { int16_t a,b; } a_struct = { 1 };
struct { int16_t a[3]; } a_struct = { 1, 2 };

Examples of correct code

struct { int16_t a,b; } a_struct = { 1, 2 };
struct { int16_t a,b; } a_struct = { 0 };
struct { int16_t a[3]; } a_struct = { 0 };

Rule 9.3 (required) In an enumerator list, the “=” construct shall not be used to explicitly initialize members
other than the first, unless all items are explicitly initialized.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if there are
initializers for at least one of the enumeration constants, but:

● the first enumeration constant does not have an initializer, or

● the number of initializers is more than one but fewer than the number of
enumeration constants.

Arithmetic type conversions
The rules in this section are concerned with type conversions and casts.

Internally, the compiler tracks the underlying type of all expressions, as described in
section 6.10.4 of the Guidelines for the Use of the C Language in Critical Systems. The
definition of a complex expression can be found in section 6.10.5.
EWMISRAC:2004-1

39

40

Arithmetic type conversions
Rule 10.1 (required) The value of an expression of integer type shall not be implicitly converted to a different
underlying type if:

a. it is not a conversion to a wider integer type of the same signedness, or

b. the expression is complex, or

c. the expression is not constant and is a function argument, or

d. the expression is not constant and is a return expression.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, for implicit
integer conversions that do not comply with rule 10.1.

Rule 10.2 (required) The value of an expression of floating type shall not be implicitly converted to a
different underlying type if:

a. it is not a conversion to a wider floating type, or

b. the expression is complex, or

c. the expression is a function argument, or

d. the expression is a return expression.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, for implicit
floating-point conversions that do not comply with rule 10.2.

Rule 10.3 (required) The value of a complex expression of integer type shall only be cast to a type that is not
wider and of the same signedness as the underlying type of the expression.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, for integer casts
that do not comply with rule 10.3.

Rule 10.4 (required) The value of a complex expression of floating type shall only be cast to a floating type
which is narrower or of the same size.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, for floating-point
casts that do not comply with rule 10.4.
EWMISRAC:2004-1

IAR Embedded Workbench® MISRA C:2004
Reference Guide

MISRA C:2004 rules reference
Rule 10.5 (required) If the bitwise operators ~ and << are applied to an operand of underlying type unsigned
char or unsigned short, the result shall be immediately cast to the underlying type
of the operand.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if the result of the
~ and << operators, when applied to the specified types, is not immediately cast to the
underlying type.

Rule 10.6 (required) A U suffix shall be applied to all constants of unsigned type.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if a numeric
integer constant without the U suffix is used in an unsigned operation.

Example of a rule violation

uint8_t uc = 10;

Examples of correct code

uint16_t ui = 0U;
...
ui = ui + 10U;

uint8_t uc;
...
int16_t i = uc + 1; /* The + operation is performed with
 type int. */

char ch = ´a´; /* Not a numeric constant */
EWMISRAC:2004-1

41

42

Pointer type conversions
Pointer type conversions
The rules in this section are concerned with pointer type conversions and casts.

Rule 11.1 (required) Conversions shall not be performed between a pointer to a function and any type other
than an integral type.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if a pointer to a
function is converted to any type other than an integral type.

Rule 11.2 (required) Conversions shall not be performed between a pointer to object and any type other than
an integral type, another pointer to object type, or a pointer to void.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if a pointer to an
object type is converted to any type other than the types specified in rule 11.2.

Rule 11.3 (advisory) A cast should not be performed between a pointer type and an integral type.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if a cast is
performed between a pointer type and an integral type.

Rule 11.4 (advisory) A cast should not be performed between a pointer to object type and a different pointer
to object type.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if a cast is
performed between two different pointer to object types.
EWMISRAC:2004-1

IAR Embedded Workbench® MISRA C:2004
Reference Guide

MISRA C:2004 rules reference
Rule 11.5 (required) A cast shall not be performed that removes any const or volatile qualification from
the type addressed by a pointer.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if a cast removes
any const or volatile qualifications from a pointer type.

Expressions
The rules in this section are concerned with expressions.

Rule 12.1 (advisory) Limited dependence should be placed on the C operator precedence rules in expressions.

How the rule is checked

Violations of this rule are not checked for by the compiler or linker. This rule requires
manual checking.

Rule 12.2 (required) The value of an expression shall be the same under any order of evaluation that the
standard permits.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, for an expression
if there are:

● multiple writes to a location without an intervening sequence point

● unordered reads and writes to or from the same location

● unordered accesses to a volatile location.

Note: An error is not generated for the expression f() + f().

Rule 12.3 (required) The sizeof operator shall not be used on expressions that contain side effects.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if the sizeof
operator is applied to an expression containing either ++, --, an assignment operator, or
a function call.
EWMISRAC:2004-1

43

44

Expressions
Rule 12.4 (required) The right-hand operand of a logical && or || operator shall not contain side effects.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if the right-hand
side expression of an && or || operator contains either ++, --, an assignment operator,
or a function call.

Rule 12.5 (required) The operands of a logical && or || shall be primary expressions.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, unless both the
left- and right-hand sides of a binary logical operator are either a single variable, a
constant, or an expression in parentheses.

Note: No error is generated when the left- or right-hand expression is using the same
logical operator. These are safe with respect to evaluation order and readability.

Examples of rule violations

a && b || c
a || b && c
a == 3 || b > 5

Examples of correct code

a && b && c
a || b || c
(a == 3) || (b > 5)

Rule 12.6 (advisory) The operands of logical operators (&&, ||, and !) should be effectively boolean.
Expressions that are effectively boolean should not be used as operands to operators
other than (&&, ||, !, =, ==, !=, and ?:).

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, in the following
situations:

● If a bitwise operator is used in a boolean context

● If a logical operator is used in a non-boolean context.

A boolean context is:
EWMISRAC:2004-1

IAR Embedded Workbench® MISRA C:2004
Reference Guide

MISRA C:2004 rules reference
● The top level of the controlling expression in an if, while, or for statement

● The top level of the first expression of an ?: operator

● The top level of the left- or right-hand side of an && or || operator.

Examples of rule violations

d = (c & a) && b;
d = a && b << c;
if (ga & 1) { … }

Examples of correct code

d = a && b ? a : c;
d = ~a & b;
if ((ga & 1) == 0) { … }

Rule 12.7 (required) Bitwise operators shall not be applied to operands whose underlying type is signed.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if a bitwise
operator is applied to an operand whose underlying type is signed.

Rule 12.8 (required) The right-hand operand of a shift operator shall lie between zero and one less than the
width in bits of the underlying type of the left-hand operand.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if the right-hand
side of a shift operator is an integer constant with a value exceeding the width of the
left-hand type after integer promotion.

Specifically, for a signed 8-bit integer variable i8, the compiler will not generate an
error when shifting 8 positions because the value of i8 is promoted to int before the
left-shift operator is applied, and therefore has a well-defined behavior.

Example of correct code

i8 = i8 >> 8; /* i8 promoted to int */
EWMISRAC:2004-1

45

46

Expressions
Rule 12.9 (required) The unary minus operator shall not be applied to an expression whose underlying type
is unsigned.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if unary minus is
applied to an expression with an unsigned type.

Rule 12.10 (required) The comma operator shall not be used.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if the comma
operator is used.

Rule 12.11 (advisory) Evaluation of constant unsigned integer expressions should not lead to wrap-around.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if the evaluation
of a constant unsigned integer expression leads to wrap-around.

Rule 12.12 (required) The underlying bit representations of floating-point values shall not be used.

How the rule is checked

Violations of this rule are not checked for by the compiler or linker. This rule requires
manual checking.

Rule 12.13 (advisory) The increment (++) and decrement (--) operators should not be mixed with other
operators in an expression.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if the ++ and --
operators are mixed with other operators that perform side effects.

Note: Reading or writing volatile variables is not considered to be a side effect in
this context, because it is not considered a violation to apply ++ and -- to a volatile
variable.
EWMISRAC:2004-1

IAR Embedded Workbench® MISRA C:2004
Reference Guide

MISRA C:2004 rules reference
Control statement expressions
The rules in this section are concerned with expressions of control flow statements.

Rule 13.1 (required) Assignment operators shall not be used in expressions that yield a boolean value.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, for any
assignment operator appearing in a boolean context, that is:

● On the top level of the controlling expression in an if, while, or for statement

● In the first part of an ?: operator

● On the top level of the left- or right-hand side of an && or || operator.

Example of a rule violation

 if (a = func()) {
 …
 }

Rule 13.2 (advisory) Tests of a value against zero should be made explicit, unless the operand is effectively
boolean.

How the rule is checked

Violations of this rule are not checked for by the compiler or linker. This rule requires
manual checking.

Rule 13.3 (required) Floating-point expressions shall not be tested for equality or inequality.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if == or != is
applied to a floating-point value.

Note: The compiler does not check the correctness of indirect equality tests such as
((x <=y) && (x >= y)).
EWMISRAC:2004-1

47

48

Control statement expressions
Rule 13.4 (required) The controlling expression of a for statement shall not contain any objects of floating
type.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if the controlling
expression of a for statement contains any floating-point expressions.

Rule 13.5 (required) The three expressions of a for statement shall be concerned only with loop control.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if a for statement
is not of this form:

● The first expression is a simple assignment, and

● The second expression is a simple test, and

● The third expression is some kind of update expression. This includes applying a
variable to the pre- or post-increment and -decrement operation, any
operation-assign operators, or the plain assign operator (provided that the
right-hand side is not a constant).

In addition, these combinations are allowed:

● All three expressions exist

● The second and third expressions exist

● None of the expressions exist, indicating an infinite loop.

Rule 13.6 (required) Numeric variables being used within a for loop for iteration counting shall not be
modified in the body of the loop.

How the rule is checked

Violations of this rule are not checked for by the compiler or linker. This rule requires
manual checking.
EWMISRAC:2004-1

IAR Embedded Workbench® MISRA C:2004
Reference Guide

MISRA C:2004 rules reference
Rule 13.7 (required) Boolean operations whose results are invariant shall not be permitted.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, when a
comparison cannot be true or is always true. However, the compiler does not detect
when two or more expressions together cause an expression to be true or false.

Control flow
The rules in this section are concerned with the flow of the application code.

Rule 14.1 (required) There shall be no unreachable code.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, in any of the
following cases:

● Code after a goto or return

● Code in a switch body, before the first label

● Code after an infinite loop (a loop with a constant controlling expression that
evaluates to true)

● Code after a function call of a function that is known not to return

● Code after break in a switch clause

● Code after an if statement that is always taken where the end of the dependent
statement is unreachable

● Code after an if statement where the ends of both dependent statements are
unreachable

● Code after a switch statement where the ends of all clauses are unreachable.

Rule 14.2 (required) All non-null statements shall either have at least one side effect however executed, or
cause control flow to change.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if a statement
does not contain a function call, an assignment, an operator with a side-effect (++ and
--), or an access to a volatile variable.
EWMISRAC:2004-1

49

50

Control flow
Example of a rule violation

v; /* If 'v' is non-volatile */

Examples of correct code

do_stuff();
; /* A null statement */
v; /* If 'v' is volatile */

Rule 14.3 (required) Before preprocessing, a null statement shall only occur on a line by itself; it may be
followed by a comment, provided that the first character following the null statement is
a whitespace character.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, for a null
statement if the last physical line contains anything else than a single semicolon
surrounded by whitespace. A comment may follow the semicolon as long as there is at
least one whitespace character between the semicolon and the comment.

Rule 14.4 (required) The goto statement shall not be used.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if a goto
statement is used.

Rule 14.5 (required) The continue statement shall not be used.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if a continue
statement is used.
EWMISRAC:2004-1

IAR Embedded Workbench® MISRA C:2004
Reference Guide

MISRA C:2004 rules reference
Rule 14.6 (required) For any iteration statement, there shall be at most one break statement used for loop
termination.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if there are more
than one break statement in a loop.

Rule 14.7 (required) A function shall have a single point of exit at the end of the function.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if there is a return
statement anywhere else than at the end of a function.

Rule 14.8 (required) The statement forming the body of a switch, while, do ... while, or for statement
shall be a compound statement.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if the statements
forming the body of the constructions in rule 14.8 is not a block.

Rule 14.9 (required) An if expression construct shall be followed by a compound statement. The else
keyword shall be followed by either a compound statement or another if statement.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if the statements
forming the body of the constructions in rule 14.9 is not a block.

Rule 14.10 (required) All if ... else if constructs shall be terminated with an else clause.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if an if ...
else if construct is not terminated by an else clause.
EWMISRAC:2004-1

51

52

Switch statements
Switch statements
The rules in this section are concerned with the allowed syntax of switch statements.

Rule 15.1 (required) A switch label shall only be used when the most closely-enclosing compound
statement is the body of a switch statement.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if a case label is
not at the outermost block in the switch statement.

Rule 15.2 (required) An unconditional break statement shall terminate every non-empty switch clause.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, for any case
clause that is not terminated by a break statement.

Note: An error will be generated even if the case statement is terminated with a
return statement.

Rule 15.3 (required) The final clause of a switch statement shall be the default clause.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, whenever a
switch statement does not have a default label or the default label is not last in the
switch statement.

Rule 15.4 (required) A switch expression shall not represent a value that is effectively boolean.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, in the following
two cases:

● The controlling expression of a switch is the result of a comparison operator
(equality or relational operator) or a logical operator (&&, ||, or !)

● There is only one case label in the switch body.
EWMISRAC:2004-1

IAR Embedded Workbench® MISRA C:2004
Reference Guide

MISRA C:2004 rules reference
Rule 15.5 (required) Every switch statement shall have at least one case clause.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if a switch
statement does not contain at least one case clause.

Functions
The rules in this section are concerned with the declaration and use of functions.

Rule 16.1 (required) Functions shall not be defined with a variable number of arguments.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, whenever a
function is declared, defined, or called using the ellipsis notation.

Note: No error is given for using va_start, va_end, or va_arg macros, because it is
pointless to use them without using the ellipsis notation.

Rule 16.2 (required) Functions shall not call themselves, either directly or indirectly.

How the rule is checked

Violations of this rule are not checked for by the compiler or linker. This rule requires
manual checking.

Rule 16.3 (required) Identifiers shall be given for all of the parameters in a function prototype declaration.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, unless identifiers
are given for all parameters.
EWMISRAC:2004-1

53

54

Functions
Rule 16.4 (required) The identifiers used in the declaration and definition of a function shall be identical.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, unless the
parameter identifiers of the declaration and the definition are equal.

Rule 16.5 (required) Functions with no parameters shall be declared and defined with the parameter list
void.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if a function is
declared or defined without a parameter list.

Example of a rule violation

void myfunc1();

Example of correct code

void myfunc1(void);

Rule 16.6 (required) The number of arguments passed to a function shall match the number of parameters.

How the rule is checked

The compiler always checks for this, also when the MISRA C rules are disabled.

Rule 16.7 (advisory) A pointer parameter in a function prototype should be declared as pointer to const if
the pointer is not used to modify the addressed object.

How the rule is checked

Violations of this rule are not checked for by the compiler or linker. This rule requires
manual checking.
EWMISRAC:2004-1

IAR Embedded Workbench® MISRA C:2004
Reference Guide

MISRA C:2004 rules reference
Rule 16.8 (required) All exit paths from a function with non-void return type shall have an explicit return
statement with an expression.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, for non-void
functions if:

● the end of a function can be reached and it does not contain a return statement

● a return statement does not have an expression.

Rule 16.9 (required) A function identifier shall only be used with either a preceding &, or with a
parenthesized parameter list, which may be empty.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if:

● a function designator (a function name without parentheses) is used in the
controlling expression of an if, while, or for statement

● a function designator is compared with 0 using either == or !=

● a function designator is used in a void expression.

Example of a rule violation

extern int func(void);
if (func) { … }

Example of correct code

extern int func(void);
if (func()) { … }

Rule 16.10 (required) If a function returns error information, then that error information shall be tested.

How the rule is checked

Violations of this rule are not checked for by the compiler or linker. This rule requires
manual checking.
EWMISRAC:2004-1

55

56

Pointers and arrays
Pointers and arrays
The rules in this section are concerned with pointers and arrays.

Rule 17.1 (required) Pointer arithmetic shall only be applied to pointers that address an array or array
element.

How the rule is checked

Violations of this rule are not checked for by the compiler or linker. This rule requires
manual checking.

Rule 17.2 (required) Pointer subtraction shall only be applied to pointers that address elements of the same
array.

How the rule is checked

Violations of this rule are not checked for by the compiler or linker. This rule requires
manual checking.

Rule 17.3 (required) >, >=, <, <= shall not be applied to pointer types except where they point to the same
array.

How the rule is checked

Violations of this rule are not checked for by the compiler or linker. This rule requires
manual checking.

Rule 17.4 (required) Array indexing shall be the only allowed form of pointer arithmetic.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if a value is added
to or subtracted from a pointer. An error is not issued if the pointer[index] notation
is used.
EWMISRAC:2004-1

IAR Embedded Workbench® MISRA C:2004
Reference Guide

MISRA C:2004 rules reference
Rule 17.5 (advisory) The declaration of objects should contain no more than two levels of pointer indirection.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if any type with
more than two levels of indirection is used in a declaration or definition of an object or
function.

Rule 17.6 (required) The address of an object with automatic storage shall not be assigned to another object
that may persist after the first object has ceased to exist.

How the rule is checked

Violations of this rule are not checked for by the compiler or linker. This rule requires
manual checking.

Structures and unions
The rules in this section are concerned with the specification and use of structures and
unions.

Rule 18.1 (required) All structure and union types shall be complete at the end of the translation unit.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if a field in a
structure or a union is declared as an array without a size.

Rule 18.2 (required) An object shall not be assigned to an overlapping object.

How the rule is checked

Violations of this rule are not checked for by the compiler or linker. This rule requires
manual checking.
EWMISRAC:2004-1

57

58

Preprocessing directives
Rule 18.3 (required) An area of memory shall not be used for unrelated purposes.

How the rule is checked

Violations of this rule are not checked for by the compiler or linker. This rule requires
manual checking.

Rule 18.4 (required) Unions shall not be used.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, for a definition
or declaration of a union.

Preprocessing directives
The rules in this section are concerned with include files and preprocessor directives.

Rule 19.1 (advisory) #include statements in a file should only be preceded by other preprocessor directives
or comments.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if an include
directive is preceded by anything that is not a preprocessor directive or a comment.

Rule 19.2 (advisory) Non-standard characters should not occur in header file names in #include directives.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if a header file
name contains any non-standard character.

Rule 19.3 (required) The #include directive shall be followed by either a <filename> or "filename"
sequence.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if an include
directive is not followed by either " or <.
EWMISRAC:2004-1

IAR Embedded Workbench® MISRA C:2004
Reference Guide

MISRA C:2004 rules reference
Rule 19.4 (required) C macros shall only expand to a braced initializer, a constant, a string literal, a
parenthesized expression, a type qualifier, a storage class specifier, or a do-while-zero
construct.

How the rule is checked

Violations of this rule are not checked for by the compiler or linker. This rule requires
manual checking.

Rule 19.5 (required) Macros shall not be #define’d or #undef’d within a block.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if a #define or
#undef directive is used outside file-level scope.

Rule 19.6 (required) #undef shall not be used.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if an #undef
directive is used.

Rule 19.7 (advisory) A function should be used in preference to a function-like macro.

How the rule is checked

Violations of this rule are not checked for by the compiler or linker. This rule requires
manual checking.

Rule 19.8 (required) A function-like macro shall not be invoked without all of its arguments.

How the rule is checked

The compiler always checks to see that the correct number of arguments are used, also
when the MISRA C rules are disabled. The compiler will generate an error, indicating
a violation of this rule, for a macro call where one or more arguments do not contain any
tokens.
EWMISRAC:2004-1

59

60

Preprocessing directives
Example of a rule violation

MACRO(,)

Example of correct code

#define EMPTY
MACRO(EMPTY,EMPTY)

Rule 19.9 (required) Arguments to a function-like macro shall not contain tokens that look like preprocessing
directives.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if a preprocessing
token with an initial # is used.

Note: No error is given for macros that are never expanded.

Rule 19.10 (required) In the definition of a function-like macro, each instance of a parameter shall be enclosed
in parentheses unless it is used as the operand of # or ##.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if a macro
parameter is not enclosed in parentheses, unless the parameter is used as an operand of
or ##.

Example of a rule violation

#define MY_MACRO_1(x) x + 2

Example of correct code

#define MY_MACRO_1(x) (x) + 2
#define MY_MACRO_2(x,y) x##y

Rule 19.11 (required) All macro identifiers in preprocessor directives shall be defined before use, except in
#ifdef and #ifndef preprocessor directives and the defined() operator.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if an undefined
preprocessor symbol is used in an #if or #elif directive.
EWMISRAC:2004-1

IAR Embedded Workbench® MISRA C:2004
Reference Guide

MISRA C:2004 rules reference
Rule 19.12 (required) There shall be at most one occurrence of the # or ## preprocessor operators in a single
macro definition.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if more than one
of # or ## is used in combination. For example, the occurrence of # and ## in the same
macro definition will trigger an error.

Example of a rule violation

#define MY_MACRO(x) BAR(#x) ## _var

Examples of correct code

#define MY_MACRO(x) #x
#define MY_MACRO(x) my_ ## x

Rule 19.13 (advisory) The # and ## preprocessor operators should not be used.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if # or ## is part
of a macro definition.

Rule 19.14 (required) The defined preprocessor operator shall only be used in one of the two standard forms.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if the result of
expanding a macro in an expression controlling conditional inclusion, results in the
defined unary operator.
EWMISRAC:2004-1

61

62

Preprocessing directives
Rule 19.15 (required) Precautions shall be taken in order to prevent the contents of a header file being included
twice.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if a construction
similar to this one is not found in a header file:

#ifndef AHDR_H
#define AHDR_H
/* ... */
#endif

Rule 19.16 (required) Preprocessing directives shall be syntactically meaningful even when excluded by the
preprocessor.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if an unknown
preprocessor directive is found or if a standard preprocessor directive is used
incorrectly.

Examples of rule violations

#ifdef FOO BAR

#else1

#else FOO

#endif FOO

Rule 19.17 (required) All #else, #elif, and #endif preprocessor directives shall reside in the same file as
the #if or #ifdef directive to which they are related.

How the rule is checked

The compiler always checks for this, also when the MISRA C rules are disabled.
EWMISRAC:2004-1

IAR Embedded Workbench® MISRA C:2004
Reference Guide

MISRA C:2004 rules reference
Standard libraries
The rules in this section are concerned with the use of standard library functions.

Rule 20.1 (required) Reserved identifiers, macros, and functions in the standard library shall not be defined,
redefined, or undefined.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, for any #define
(or #undef) used to define (or undefine) an object- or function-like macro with a name
that is:

● a compiler predefined macro

● an object- or function-like macro defined in any standard header

● an object or function declared in any standard header.

Rule 20.2 (required) The names of Standard Library macros, objects, and functions shall not be reused.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, for any definition
used for defining a macro, object, or function with a name that is already declared in a
standard header. This regardless of whether the correct header file has been included or
not.

Rule 20.3 (required) The validity of values passed to library functions shall be checked.

How the rule is checked

Violations of this rule are not checked for by the compiler or linker. This rule requires
manual checking.

Rule 20.4 (required) Dynamic heap memory allocation shall not be used.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, for any reference
to functions named malloc, realloc, calloc, or free, even if the header file
stdlib.h has not been included.
EWMISRAC:2004-1

63

64

Standard libraries
Rule 20.5 (required) The error indicator errno shall not be used.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, for any reference
to an object named errno, even if the header file errno.h has been included.

Rule 20.6 (required) The macro offsetof in the stddef.h library shall not be used.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if a macro with
the name offsetof is expanded.

Note: Including the header file stddef.h does not, in itself, generate an error.

Rule 20.7 (required) The setjmp macro and the longjmp function shall not be used.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, for any reference
to a function named setjmp or longjmp; regardless of whether the header file
setjmp.h is included.

Rule 20.8 (required) The signal handling facilities of signal.h shall not be used.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if the header file
signal.h is included.

Rule 20.9 (required) The input/output library stdio.h shall not be used in production code.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if the header file
stdio.h has been included when NDEBUG is defined.
EWMISRAC:2004-1

IAR Embedded Workbench® MISRA C:2004
Reference Guide

MISRA C:2004 rules reference
Rule 20.10 (required) The functions atof, atoi, and atol from the library stdlib.h shall not be used.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, for any reference
to a function named atof, atoi, or atol; regardless of whether the header file
stdlib.h is included.

Rule 20.11 (required) The functions abort, exit, getenv, and system from the library stdlib.h shall not
be used.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, for any reference
to a function named abort, exit, getenv, and system; regardless of whether the
header file stdlib.h is included.

Rule 20.12 (required) The time handling functions of time.h shall not be used.

How the rule is checked

The compiler will generate an error, indicating a violation of this rule, if the header file
time.h has been included.

Runtime failures
The rule in this section is concerned with the minimization of runtime failures.

Rule 21.1 (required) Minimization of runtime failures shall be ensured by the use of at least one of:

a. static analysis tools/techniques

b. dynamic analysis tools/techniques

c. explicit coding of checks to handle runtime faults.

How the rule is checked

Violations of this rule are not checked for by the compiler or linker. This rule requires
manual checking.
EWMISRAC:2004-1

65

	Preface
	Who should read this guide
	What this guide contains
	Other documentation
	Document conventions

	Introduction
	Using MISRA C
	Claiming compliance

	Implementation and interpretation of the MISRA C rules
	Checking the rules

	Enabling MISRA C rules

	General IDE options
	MISRA C 2004
	Enable MISRA C
	Log MISRA C settings
	MISRA C 2004
	MISRA C 1998
	Set active MISRA C 2004 rules

	Compiler IDE options
	MISRA C 2004
	Override general MISRA C settings
	Set active MISRA C 2004 rules

	Command line options
	Options summary
	Descriptions of options
	--misrac2004
	--misrac_verbose

	MISRA C:2004 rules reference
	Summary of rules
	Group 1: Environment
	Group 2: Language extensions
	Group 3: Documentation
	Group 4: Character sets
	Group 5: Identifiers
	Group 6: Types
	Group 7: Constants
	Group 8: Declarations and definitions
	Group 9: Initialization
	Group 10: Arithmetic type conversions
	Group 11: Pointer type conversions
	Group 12: Expressions
	Group 13: Control statement expressions
	Group 14: Control flow
	Group 15: Switch statements
	Group 16: Functions
	Group 17: Pointers and arrays
	Group 18: Structures and unions
	Group 19: Preprocessing directives
	Group 20: Standard libraries
	Group 21: Runtime failures

	Environment rules
	Rule 1.1 (required)
	Rule 1.2 (required)
	Rule 1.3 (required)
	Rule 1.4 (required)
	Rule 1.5 (advisory)

	Language extensions
	Rule 2.1 (required)
	Rule 2.2 (required)
	Rule 2.3 (required)
	Rule 2.4 (advisory)

	Documentation
	Rule 3.1 (advisory)
	Rule 3.2 (required)
	Rule 3.3 (advisory)
	Rule 3.4 (required)
	Rule 3.5 (required)
	Rule 3.6 (required)

	Character sets
	Rule 4.1 (required)
	Rule 4.2 (required)

	Identifiers
	Rule 5.1 (required)
	Rule 5.2 (required)
	Rule 5.3 (required)
	Rule 5.4 (required)
	Rule 5.5 (advisory)
	Rule 5.6 (advisory)
	Rule 5.7 (advisory)

	Types
	Rule 6.1 (required)
	Rule 6.2 (required)
	Rule 6.3 (advisory)
	Rule 6.4 (required)
	Rule 6.5 (required)

	Constants
	Rule 7.1 (required)

	Declarations and definitions
	Rule 8.1 (required)
	Rule 8.2 (required)
	Rule 8.3 (required)
	Rule 8.4 (required)
	Rule 8.5 (required)
	Rule 8.6 (required)
	Rule 8.7 (required)
	Rule 8.8 (required)
	Rule 8.9 (required)
	Rule 8.10 (required)
	Rule 8.11 (required)
	Rule 8.12 (required)

	Initialization
	Rule 9.1 (required)
	Rule 9.2 (required)
	Rule 9.3 (required)

	Arithmetic type conversions
	Rule 10.1 (required)
	Rule 10.2 (required)
	Rule 10.3 (required)
	Rule 10.4 (required)
	Rule 10.5 (required)
	Rule 10.6 (required)

	Pointer type conversions
	Rule 11.1 (required)
	Rule 11.2 (required)
	Rule 11.3 (advisory)
	Rule 11.4 (advisory)
	Rule 11.5 (required)

	Expressions
	Rule 12.1 (advisory)
	Rule 12.2 (required)
	Rule 12.3 (required)
	Rule 12.4 (required)
	Rule 12.5 (required)
	Rule 12.6 (advisory)
	Rule 12.7 (required)
	Rule 12.8 (required)
	Rule 12.9 (required)
	Rule 12.10 (required)
	Rule 12.11 (advisory)
	Rule 12.12 (required)
	Rule 12.13 (advisory)

	Control statement expressions
	Rule 13.1 (required)
	Rule 13.2 (advisory)
	Rule 13.3 (required)
	Rule 13.4 (required)
	Rule 13.5 (required)
	Rule 13.6 (required)
	Rule 13.7 (required)

	Control flow
	Rule 14.1 (required)
	Rule 14.2 (required)
	Rule 14.3 (required)
	Rule 14.4 (required)
	Rule 14.5 (required)
	Rule 14.6 (required)
	Rule 14.7 (required)
	Rule 14.8 (required)
	Rule 14.9 (required)
	Rule 14.10 (required)

	Switch statements
	Rule 15.1 (required)
	Rule 15.2 (required)
	Rule 15.3 (required)
	Rule 15.4 (required)
	Rule 15.5 (required)

	Functions
	Rule 16.1 (required)
	Rule 16.2 (required)
	Rule 16.3 (required)
	Rule 16.4 (required)
	Rule 16.5 (required)
	Rule 16.6 (required)
	Rule 16.7 (advisory)
	Rule 16.8 (required)
	Rule 16.9 (required)
	Rule 16.10 (required)

	Pointers and arrays
	Rule 17.1 (required)
	Rule 17.2 (required)
	Rule 17.3 (required)
	Rule 17.4 (required)
	Rule 17.5 (advisory)
	Rule 17.6 (required)

	Structures and unions
	Rule 18.1 (required)
	Rule 18.2 (required)
	Rule 18.3 (required)
	Rule 18.4 (required)

	Preprocessing directives
	Rule 19.1 (advisory)
	Rule 19.2 (advisory)
	Rule 19.3 (required)
	Rule 19.4 (required)
	Rule 19.5 (required)
	Rule 19.6 (required)
	Rule 19.7 (advisory)
	Rule 19.8 (required)
	Rule 19.9 (required)
	Rule 19.10 (required)
	Rule 19.11 (required)
	Rule 19.12 (required)
	Rule 19.13 (advisory)
	Rule 19.14 (required)
	Rule 19.15 (required)
	Rule 19.16 (required)
	Rule 19.17 (required)

	Standard libraries
	Rule 20.1 (required)
	Rule 20.2 (required)
	Rule 20.3 (required)
	Rule 20.4 (required)
	Rule 20.5 (required)
	Rule 20.6 (required)
	Rule 20.7 (required)
	Rule 20.8 (required)
	Rule 20.9 (required)
	Rule 20.10 (required)
	Rule 20.11 (required)
	Rule 20.12 (required)

	Runtime failures
	Rule 21.1 (required)

