HCSI12 IAR Assembler

Reference Guide

for Freescale’s
HCS 12 Microcontroller Family

COPYRIGHT NOTICE
© Copyright 1997-2004 IAR Systems. All rights reserved.

No part of this document may be reproduced without the prior written consent of AR
Systems. The software described in this document is furnished under a license and may
only be used or copied in accordance with the terms of such a license.

DISCLAIMER

The information in this document is subject to change without notice and does not
represent a commitment on any part of IAR Systems. While the information contained
herein is assumed to be accurate, IAR Systems assumes no responsibility for any errors
or omissions.

In no event shall IAR Systems, its employees, its contractors, or the authors of this
document be liable for special, direct, indirect, or consequential damage, losses, costs,
charges, claims, demands, claim for lost profits, fees, or expenses of any nature or kind.

TRADEMARKS

IAR Embedded Workbench, IAR visualSTATE, IAR MakeApp, and IAR PreQual are
registered trademarks owned by IAR Systems. C-SPY is a trademark registered in the
European Union and Japan by IAR Systems. IAR, IAR XLINK Linker, IAR XAR
Library Builder, and IAR XLIB Librarian are trademarks owned by IAR Systems.

Freescale is a registered trademark of Freescale Inc.
Microsoft and Windows are registered trademarks of Microsoft Corporation.

All other product names are trademarks or registered trademarks of their respective
owners.

EDITION NOTICE
First edition: November 2004

Part number: AHCS12-1
This guide applies to version 3.x of the HCS12 IAR Embedded Workbench IDE.

Contents

TaADIES ..o e vii
PrEface ... ix
Who should read this guide ... ix

How to use this guide ... ix
What this guide contains ... X
Other documentation ... X
Document conventions ... xi
Introduction to the HCS12 IAR Assembler ..., 1
Introduction to assembler programming ..., 1
Getting StArtedccevvevierierirereriietct ettt 1

Modular programming ... 2
SoUrce fOrMALocoooii s 2
Assembler iNStructions ... 3

Expressions, operands, and operators

RegiSter SYMDOLScuveiiiiiiiiniirieeiceiteeeee e 6
Program counter-relative addressing symbol—PCRcccccocenene 6
Predefined SymbOISccccoereriiiiiiiiiienineeeececce e 7
Absolute and relocatable eXpressionsce.ceceevereerereneneneneennene 8
EXPression reStriCtionsc..ceceereereeeierienienienteniesieenieeneeeneeneesnenns 9
List file format ...
HEAET ..t
BOAY oottt 9
SUMMATY ettt sttt eneene 10
Symbol and cross-reference tablecc.cocevevveeieiierienenienienenenene 10

Programming hints ... 10

Accessing special function reg@isterscoccovceevveeneeneenieeniennienieennne. 10
Using C-style preprocessor dir€CtiVesceeveeeereeeeierienienenienienne 11
Assembler OPLioNs ... 13
Setting command line options ... 13
Extended command line fileccccoceeviriniininiinienieieneneeneseen 13

EITOr 1eturn COAESc.coviiiiiiiiiiiiiiiiiccieeecceeetee e

Assembler environment variables ...

Summary of assembler options

Descriptions of assembler options

Assembler OPErators ... 27
Precedence of operators ..., 27
Summary of assembler operators ..., 27

Unary OPerators — 1coueoieniinienieeneeieeieetert et 27

Multiplicative arithmetic Operators — 2ccccoceeveeeeveievienienenienienne 28

Additive arithmetic Operators — 3cccceveeerererieneeienieseeneneeneeas 28

AND OPETAtOrs — 4coviiieiiieiieieeieete ettt 28

OR operators — 5

Comparison OPETALOrS — Ocoeeueeueerierierienrenienienieneeeetete e seeneeas 29
Description of operators ..o 29

Assembler dir€CtiVes ... 41
Summary of assembler directives ..o 41
Module control directives ..o, 45

DESCIIPHON .ottt ettt s 49

EXAMPIES .oeeiiiiiiiiiiieeete e 50

HCSI12 IAR Assembler
Reference Guide

Contents °

vi

Examples

Data definition or allocation directivesccococuvvrnnnn. 83
SYNLAX vttt ettt ettt ettt be b sresbesae b ebeeneene 84
Parametersoceevueeeieeiieeieeie ettt ae ettt seeneenee 84
EXAMPIES .ouviiiiiiiiiiieeierie ettt 84

Assembler control directivesccccooviieniiiiniea, 85

DESCTIPLION ...eveveiiiieiiitcienienierte sttt ettt et s eae e 86
EXAMPIES ...eviiniiiiiiieeeeee s 86
Function directives ... 87
SYNTAX ©evieviiiieiieiietetet ettt sttt ettt ettt ettt et esne st st saesre e 87
Parameterscoeeerereeininieie s 88
DESCIIPHONS ...eeuvieiiiiieieeieee ettt sttt 88
Call frame information (CFI) directivesccccocevenne. 89
SYNLAX vttt sttt sttt ettt ettt s be st saesbesbeebeebeene 90
Parameterscocooevieiiiiiniiicieceen s 91

Descriptions ...

Simple rules

CFIL @XPIESSIONS ..evviereriiiiiiiientienieenieeteeteeitesitesteseeesaeenteenaeensesaeesnnes 98

EXQAMPIE ..ooiiiiiiiiieniee e 100

Assembler diagnostiCs ... 103
Message format ... 103
Severity levels ... 103
Assembly Warning mMeSSAZESccceeveereerueerierrieriienreneeseesieenieenaeens 103

Command line e1ror MESSAZEScveeververrerrirreeeeierieierienienienenennenne 103

ASSEMDIY EITOT TESSAZES ..veuvenvevirierierieiieiierenieniesiesiesieeieesteeeneeneens 103

Assembly fatal error MESSAZESeevverveeriiereenieerieerieeieesie e see e 104

Assembler internal eIror MESSAZES ...coveeveevreureververienerereneneeeeeens 104

INA@X oo 105

HCSI12 IAR Assembler
Reference Guide

Tables

1: Typographic conventions used in this UIAEc..cccevverrerriereinenininirieeeeceee xi
2: Integer CONStANt TOIMNALSc.evvererierierieieieieie ettt ettt ettt et ettt et see b enean 4
3: ASCII character constant fOrmatscceeerereririninieieeeieresese e eeeeneene 4
4: Predefined register SYMDOISc.oocveieiiiieierinenerener e 6
5: Predefined symbols

6: Symbol and cross-reference tablec..c.coceveeviiiiiniiinienininneeeae 10
7: Assembler e1ror retUIN COARScoueriiriiruiririnieniieietetetenteste ettt neeas 14
8: Assembler environment Variablescc.ccoeviererineninineeeeeeeee e 14
9: Assembler Options SUMIMATYc.ceueruerueruerrinrierierieieeetererestestessessessessesseeseeneeneens 15
10: Conditional LISt (=€) .eeevvvieeiieeiieeiie ettt ettt e et e v e eae e e eaaaeeanes 17
11: Generating debug information (-)cccceevvereerienieenienteeieeeeneeseee e 23
12: Controlling case sensitivity in user Symbols (=8)ceceeveecverererierienienieneeneeneens 23
13: Disabling assembler warnings (-w)cccceceeerervenenne e 25
14: Including cross-references in assembler list file (-x) 25
15: Assembler direCtives SUMIMATYccccoeeeereteniertenientenenreereeeeseeseeresenessessensenee 41
16: Module control dir€CtiVEScceceeeeuierierieieierieniere sttt 45
17: Symbol control dir€CtIVEScecueeriieriirieriiiienierie ettt et 48
18: Segment CONIOl dITECHIVESccververuiruiriiriieiieieteieesterteet ettt 50
19: Value assignment dirf€CtIVESeeeeeeuieieierienienienienienieeieereeie ettt eeere e e e e 55
20: Conditional assembly dirECVESccceeviirieriieriiirieeieeienteet et sie e eeeeaee 59
21: Macro processing dirCtIVEScuevveruiruerririnirieieieiententesesiesieseeeneesneseenaesaenseas 61
22: Structured assembly directives 68
23: Listing CONLIOl dIT@CLIVES ...c..evuerieriiiriieniieniienieenieeie ettt ettt e eaesne e 74
24: C-style preprocessor dirfECHIVEScoueruerrirrirrieririeeeieientenenenieseeeeeenneneessensensens 79
25: Data definition or allocation dir€CtiVesceceeveevvevierenenienenineeieieneseseneens 83
26: Assembler control dir€CtiVesc.coevevirieieiiiiieienicniese et 85
27: Call frame information dir€CtIVESc.ccoeruirriririeieieienienienenenceeeeeeeeeseenaens 89
28: Unary operators in CEL @XpresSSionsc..coeverereeeeeeieienienienienenenesseeseeneens 98
29: Binary operators in CFI expressions

30: Ternary operators in CFI expressions

31: Code sample with backtrace rows and COIUMNScccevererererirnienecrienennenne. 100

vii

HCSI12 IAR Assembler
viii Reference Guide

Preface

Welcome to the HCS12 IAR Assembler Reference Guide. The purpose of this
guide is to provide you with detailed reference information that can help you
to use the HCSI12 IAR Assembler to develop your application according to
your requirements.

Who should read this guide

You should read this guide if you plan to develop an application using assembler
language for the HCS12 microcontroller and need to get detailed reference information
on how to use the HCS12 IAR Assembler. In addition, you should have working
knowledge of the following:

o The architecture and instruction set of the HCS12 microcontroller. Refer to the
documentation from Freescale for information about the HCS12 microcontroller

e General assembler language programming

Application development for embedded systems

o The operating system of your host machine.

How to use this guide

When you first begin using the HCS12 IAR Assembler, you should read the
Introduction to the HCS12 IAR Assembler chapter in this reference guide.

If you are an intermediate or advanced user, you can focus more on the reference
chapters that follow the introduction.

If you are new to using the IAR toolkit, we recommend that you first read the initial
chapters of the JAR Embedded Workbench™ IDE User Guide. They give product
overviews, as well as tutorials that can help you get started.

What this guide contains

X

What this guide contains

Below is a brief outline and summary of the chapters in this guide.

Introduction to the HCS12 IAR Assembler provides programming information. It
also describes the source code format, and the format of assembler listings.
Assembler options first explains how to set the assembler options from the
command line and how to use environment variables. It then gives an alphabetical
summary of the assembler options, and contains detailed reference information
about each option.

Assembler operators gives a summary of the assembler operators, arranged in order
of precedence, and provides detailed reference information about each operator.
Assembler directives gives an alphabetical summary of the assembler directives, and
provides detailed reference information about each of the directives, classified into
groups according to their function.

Assembler diagnostics contains information about the formats and severity levels of
diagnostic messages.

Other documentation

HCSI12 IAR Assembler
Reference Guide

The complete set of IAR Systems development tools for the HCS12 microcontroller is
described in a series of guides. For information about:

Using the IAR Embedded Workbench™ and the IAR C-SPY™ Debugger, refer to
the JAR Embedded Workbench™ IDE User Guide

Programming for the HCS12 IAR C/C++ Compiler, refer to the HCSI12 IAR
C/EC++ Compiler Reference Guide

Using the IAR XLINK Linker™, the IAR XLIB Librarian™, and the IAR XAR
Library Builder™, refer to the IAR Linker and Library Tools Reference Guide.
Using the IAR DLIB Library, refer to the online help system

Using the IAR CLIB Library, refer to the JAR C Library Functions Reference Guide
available from the online help system.

Porting application code and projects created with a previous 68HC12 IAR
Embedded Workbench IDE, refer to the HCS12 IAR Embedded Workbench
Migration Guide.

All of these guides are delivered in hypertext PDF or HTML format on the installation
media. Some of them are also delivered as printed books.

Preface __ 4

Document conventions

This guide uses the following typographic conventions:

Style Used for

computer Text that you enter or that appears on the screen.

parameter A label representing the actual value you should enter as part of a
command.

[option] An optional part of a command.

{fa | b | c} Alternatives in a command.

bold Names of menus, menu commands, buttons, and dialog boxes that

appear on the screen.
reference A cross-reference within this guide or to another guide.

An ellipsis indicates that the previous item can be repeated an arbitrary
number of times.

Identifies instructions specific to the IAR Embedded Workbench
interface.

Identifies instructions specific to the command line interface.

=

Table 1: Typographic conventions used in this guide

Document conventions

HCSI12 IAR Assembler
xii Reference Guide

Introduction to the HCS 12
IAR Assembler

This chapter contains the following sections:
e Introduction to assembler programming
e Modular programming

e Source format

e Assembler instructions

e Expressions, operands, and operators

o List file format

e Programming hints.

Introduction to assembler programming

Even if you do not intend to write a complete application in the assembler language,
there may be situations where you will find it necessary to write parts of the code in
assembler, for example, when using mechanisms in the HCS12 microcontroller that
require precise timing and special instruction sequences.

To write efficient assembler programs, you should be familiar with the architecture and
instruction set of the HCS12 microcontroller. Refer to Freescale’s hardware
documentation for syntax descriptions of the instruction mnemonics.

GETTING STARTED
To ease the start of the development of your assembler program, you can:

o Work through the tutorials—especially the one about mixing C and assembler
modules—which you find in the JAR Embedded Workbench™ IDE User Guide

o Read about the assembly language interface—also useful when mixing C and
assembler modules—in the HCS12 IAR C/EC++ Compiler Reference Guide

e In the IAR Embedded Workbench, you can base a new project on a template for an
assembler project.

Modular programming

Modular programming

Typically, you write your assembler code in assembler source files. In each source file,
you define one or several assembler modules by using the module control directives. By
structuring your code in small modules—in contrast to one single monolithic
module—you can organize your application code in a logical structure, which makes the
code easier to understand, and which benefits:

e an efficient program development
e reuse of modules
e maintenance.

Each module has a name and a type, where the type can be either PROGRAM or LIBRARY.
The linker will always include a PROGRAM module, whereas a LIBRARY module is only
included in the linked code if other modules reference a public symbol in the module. A
module consists of one or more segments.

A segment is a logical entity containing a piece of data or code that should be mapped
to a physical location in memory. You place your code and data in segments by using the
Segment Control directives. A segment can be either absolute or relocatable. An
absolute segment always has a fixed address in memory, whereas the address for a
relocatable segment is resolved at link time. By using segments, you can control how
your code and data will be placed in memory. Each segment consists of many segment
parts. A segment part is the smallest linkable unit, which allows the linker to include
only those units that are referred to.

Source format

HCSI12 IAR Assembler
2 Reference Guide

The format of an assembler source line is as follows:
[label [:]] [operation] [operands] [; comment]

where the components are as follows:

label A definition of a label, which is a symbol that represents an
address. If the label starts in the first column—that is, to the
leftmost on the line—the : (colon) is optional.

operation An assembler instruction or directive. This must not start in the
first column—must have some whitespace to the left of it.

Introduction to the HCS12 IAR Assembler ___4

operands An assembler instruction or directive can have zero, one, or
more operands. The operands are separated by commas. An
operand can be:
* a constant representing a numeric value or an address
* a symbolic name representing a numeric value or an address
(where the latter also is referred to as a label)
* a register
* a predefined symbol
* the program location counter (PLC)
* an expression.

comment Comment, preceded by a ; (semicolon)
C or C++ comments are also allowed.

The components are separated by spaces or tabs.
A source line may not exceed 2047 characters.

Tab characters, ASCII 094, are expanded according to the most common practice; i.e.
to columns 8, 16, 24 etc.

The HCS12 IAR Assembler uses the default filename extensions s12, asm, and msa for
source files.

Assembler instructions

The HCS12 IAR Assembler supports the syntax for assembler instructions as described
in the chip manufacturer’s hardware documentation.

Expressions, operands, and operators

Expressions consist of expression operands and operators.

The assembler will accept a wide range of expressions, including both arithmetic and
logical operations. All operators use 32-bit two’s complement integers. Range checking
is performed if a value is used for generating code.

Expressions are evaluated from left to right, unless this order is overridden by the
priority of operators; see also Precedence of operators, page 27. The valid operators are
described in the chapter Assembler operators, page 27.

Expressions, operands, and operators

HCSI12 IAR Assembler
4 Reference Guide

The following operands are valid in an expression:

e Constants for data or addresses, excluding floating-point constants.

o Symbols—symbolic names—which can represent either data or addresses, where
the latter also is referred to as labels.

o The program location counter (PLC), *.

The operands are described in greater detail on the following pages.

INTEGER CONSTANTS

Since all IAR Systems assemblers use 32-bit two’s complement internal arithmetic,
integers have a (signed) range from -2147483648 to 2147483647.

Constants are written as a sequence of digits with an optional - (minus) sign in front to
indicate a negative number.

Commas and decimal points are not permitted.

The following types of number representation are supported:

Integer type Example

Binary 1010b, %1010

Octal 1234q, @20, '\10"
Decimal 1234, -1

Hexadecimal OFFFFh, OXFFFF, SFFFF

Table 2: Integer constant formats

Note: Both the prefix and the suffix can be written with either uppercase or lowercase
letters.

ASCIl CHARACTER CONSTANTS

ASCII constants can consist of between zero and more characters enclosed in single or
double quotes. Only printable characters and spaces may be used in ASCII strings. If the
quote character itself is to be accessed, two consecutive quotes must be used:

Format Value

'ABCD' ABCD (four characters).

"ABCD" ABCD'\0' (five characters the last ASCII null).
'A"B' A'B

TAT A

""" (4 quotes) '

' ' (2 quotes) Empty string (no value).

Table 3: ASCII character constant formats

Introduction to the HCS12 IAR Assembler ___4

Format Value

"" (2 double quotes) Empty string (an ASCII null character).

\' ", for quote within a string, as in 'I\'d love to'
\\ \, for \ within a string

\" ", for double quote within a string

Table 3: ASCII character constant formats (Continued)

TRUE AND FALSE

In expressions a zero value is considered FALSE, and a non-zero value is considered
TRUE.

Conditional expressions return the value O for FALSE and 1 for TRUE.

SYMBOLS

User-defined symbols can be up to 255 characters long, and all characters are
significant. Depending on what kind of operation a symbol is followed by, the symbol
is either a data symbol or an address symbol where the latter is referred to as a label. A
symbol before an instruction is a label and a symbol before, for example the EQU
directive, is a data symbol. A symbol can be:

e absolute—its value is known by the assembler
e relocatable—its value is resolved at linktime.

Symbols must begin with a letter, a—z or A—Z, ? (question mark), or _ (underscore).
Symbols can include the digits 0-9 and $ (dollar).

Case is insignificant for built-in symbols like instructions, registers, operators, and
directives. For user-defined symbols case is by default significant but can be turned on
and off using the Case sensitive user symbols (-s) assembler option. See -5, page 23
for additional information.

Use the Symbol Control directives to control how symbols are shared between modules.
For example, use the PUBLIC directive to make one or more symbols available to other
modules. The EXTERN directive is used for importing an untyped external symbol.

LABELS

Symbols used for memory locations are referred to as labels.

Program location counter (PLC)

The assembler keeps track of the start address of the current instruction. This is called
the Program Location Counter.

Expressions, operands, and operators

HCSI12 IAR Assembler
6 Reference Guide

If you need to refer to the program location counter in your assembler source code you
can use the * sign. For example:

BRA * ; Loop forever

At link time, the * sign will expand to the start address of the current instruction.

REGISTER SYMBOLS

The following table shows the existing predefined register symbols:
Name Register size Description

A,B 8 bits Accumulators

D 16 bits Accumulator

X, Y 16 bits Index registers

SP 16 bits Stack pointer

PC 16 bits Program counter

Table 4: Predefined register symbols

PROGRAM COUNTER-RELATIVE ADDRESSING SYMBOL—PCR

To simplify program counter-relative addressing, you can use the symbol PCR instead of
pc for all instructions that accept indexed addressing mode with PC as base register.

When you use the register symbol pc, the offset is added to the program counter to
obtain the effective address.

However, when you use the symbol PCR, the offset is not an offset but an address.
HCS12 IAR Assembler will calculate the difference between the specified address and
the pPC and generate an instruction with a pC-relative offset, for example:

ORG $1000

LDAA 14,PC

LDAB LABEL, PCR

ORG $1010
LABEL: DC8 $80

After this code has been executed, both the registers A and B will contain 0x80, because
both of the LDax instructions will load the value from the label LABEL.

Note: The generated pc-relative instruction will not be optimized. It will use a 16-bit
offset even if a 5-bit or 9-bit offset would be sufficient.

Introduction to the HCS12 IAR Assembler ___4

PREDEFINED SYMBOLS

The HCS12 IAR Assembler defines a set of symbols for use in assembler source files.
The symbols provide information about the current assembly, allowing you to test them
in preprocessor directives or include them in the assembled code. The strings returned
by the assembler are enclosed in double quotes.

The following predefined symbols are available:

Symbol Value

__DATE__ Current date in dd/Mmm/yyyy format (string).

__FILE__ Current source filename (string).

__IAR_SYSTEMS_ASM_ _ IAR assembler identifier (number).

__LINE__ Current source line number (number).

__TID__ Target identity, consisting of two bytes (number). The high

byte is the target identity, which is 0x21 for HCS12. The
low byte is the processor option 0.

__TIME__ Current time in hh :mm: ss format (string).

__VER__ Version number in integer format; for example, version
4.17 is returned as 417 (number).

Table 5: Predefined symbols

Notice that __TID__ is related to the predefined symbol __TID__ in the HCS12 JAR

C/C++ Compiler. It is described in the HCS12 IAR C/EC++ Compiler Reference Guide.

Including symbol values in code

There are several data definition directives provided to make it possible to include a
symbol value in the code. These directives define values or reserve memory. To include
a symbol value in the code, use the symbol in the appropriate data definition directive.

For example, to include the time of assembly as a string for the program to display:

timdat FCC __TIME__,",",__DATE__,0; time and date
LDX #timdat ; Load address of string
JSR printstring ; Call string output routine

Testing symbols for conditional assembly

To test a symbol at assembly time, you can use one of the conditional assembly
directives. These directives let you control the assembly process at assembly time.

Expressions, operands, and operators

HCSI12 IAR Assembler
8 Reference Guide

For example, if you want to assemble separate code sections depending on whether you
are using HCS12 IAR Assembler or the old IAR 68HC12 Assembler, you can do as
follows:

#if (__VER__ > 300) ; HCS12 IAR Assembler
#else ; 0ld IAR 68HC12 Assembler
#endif

See Conditional assembly directives, page 59.

ABSOLUTE AND RELOCATABLE EXPRESSIONS

Depending on what operands an expression consists of, the expression is either absolute
or relocatable. Absolute expressions are those expressions that only contain absolute
symbols or, in some cases, relocatable symbols that cancel each out.

Expressions that include symbols in relocatable segments cannot be resolved at
assembly time, because they depend on the location of segments.

Such expressions are evaluated and resolved at link time, by the IAR XLINK Linker™.
There are no restrictions on the expression; any operator can be used on symbols from
any segment, or any combination of segments.

For example, a program could define the segments DATA and CODE as follows:

EXTERN third

RSEG DATA
first RMB 5
second RMB 3

RSEG CODE

start

Then in segment CODE the following instructions are legal:

INC #first+7
INC #first-7
INC #7+first
INC #(first/second) *third

Note: At assembly time, there will be no range check. The range check will occur at link
time and, if the values are too large, there will be a linker error.

Introduction to the HCS12 IAR Assembler ___4

EXPRESSION RESTRICTIONS

Expressions can be categorized according to restrictions that apply to some of the
assembler directives. One such example is the expression used in conditional statements
like TF, where the expression must be evaluated at assembly time and therefore cannot
contain any external symbols.

The following expression restrictions are referred to in the description of each directive
they apply to.

No forward

All symbols referred to in the expression must be known, no forward references are
allowed.

No external

No external references in the expression are allowed.

Absolute

The expression must evaluate to an absolute value; a relocatable value (segment offset)
is not allowed.

Fixed

The expression must be fixed, which means that it must not depend on variable-sized
instructions. A variable-sized instruction is an instruction that may vary in size
depending on the numeric value of its operand.

List file format

The format of an assembler list file is as follows:

HEADER

The header section contains product version information, the date and time when the file
was created, and which options were used.

BODY

The body of the listing contains the following fields of information:

o The line number in the source file. Lines generated by macros will, if listed, have a
. (period) in the source line number field.

Programming hints

10

o The address field shows the location in memory, which can be absolute or relative
depending on the type of segment. The notation is hexadecimal.

o The data field shows the data generated by the source line. The notation is
hexadecimal. Unresolved values are represented by (periods), where two periods
signify one byte. These unresolved values will be resolved during the linking
process.

o The assembler source line.

SUMMARY

The end of the file contains a summary of errors and warnings that were generated.

SYMBOL AND CROSS-REFERENCE TABLE

When you specify the Include cross-reference option, or if the LSTXRF+ directive has
been included in the source file, a symbol and cross-reference table is produced.

The following information is provided for each symbol in the table:

Information Description

Label The label’s user-defined name.

Mode ABS (Absolute), or REL (Relative).

Type The label type.

Segment The name of the segment that this label is defined relative to.
Value/Offset The value (address) of the label within the current module, relative to the

beginning of the current segment part.

Table 6: Symbol and cross-reference table

Programming hints

HCSI12 IAR Assembler
Reference Guide

This section gives hints on how to write efficient code for the HCS12 IAR Assembler.
For information about projects including both assembler and C or C++ source files, see
the HCS12 IAR C/EC++ Compiler Reference Guide.

ACCESSING SPECIAL FUNCTION REGISTERS

Specific header files for a number of HCS12 derivatives are included in the IAR product
package, in the \hcs12\inc directory. These header files define the processor-specific
special function registers (SFRs) and interrupt vector numbers.

The header files are intended to be used also with the HCS12 IAR C/C++ Compiler, and
they are suitable to use as templates when creating new header files for other HCS12
derivatives.

Introduction to the HCS12 IAR Assembler ___4

If any assembler-specific additions are needed in the header file, these can be added
easily in the assembler-specific part of the file:

#ifdef IAR_SYSTEMS_ASM_ _

(assembler-specific defines)
#endif

USING C-STYLE PREPROCESSOR DIRECTIVES

The C-style preprocessor directives are processed before other assembler directives.
Therefore, do not use preprocessor directives in macros and do not mix them with
assembler-style comments. For more information about comments, see Defining
comments, page 87.

Programming hints

HCSI12 IAR Assembler
12 Reference Guide

Assembler options

This chapter first explains how to set the options from the command line, and
gives an alphabetical summary of the assembler options. It then provides
detailed reference information for each assembler option.

The IAR Embedded Workbench™ IDE User Guide describes how to set
assembler options in the IAR Embedded Workbench, and gives reference

information about the available options.

Setting command line options

To set assembler options from the command line, you include them on the command
line, after the ahcs12 command:

ahcsl2 [options] [sourcefile]l [options]
These items must be separated by one or more spaces or tab characters.

If all the optional parameters are omitted the assembler will display a list of available
options a screenful at a time. Press Enter to display the next screenful.

For example, when assembling the source file power2 .s12, use the following
command to generate a list file to the default filename (power2.1st):

ahcsl2 power2 -L

Some options accept a filename, included after the option letter with a separating space.
For example, to generate a list file with the name 1ist.1lst:

ahcsl2 power2 -1 list.lst

Some other options accept a string that is not a filename. This is included after the option
letter, but without a space. For example, to generate a list file to the default filename but
in the subdirectory named 1ist:

ahcsl2 power2 -Llist\

Note: The subdirectory you specify must already exist. The trailing backslash is
required because the parameter is prepended to the default filename.
EXTENDED COMMAND LINE FILE

In addition to accepting options and source filenames from the command line, the
assembler can accept them from an extended command line file.

Setting command line options

14

HCSI12 IAR Assembler
Reference Guide

By default, extended command line files have the extension xc1, and can be specified
using the - £ command line option. For example, to read the command line options from
extend.xcl, enter:

ahcsl2 -f extend.xcl

ERROR RETURN CODES

When using the HCS12 IAR Assembler from within a batch file, you may need to
determine whether the assembly was successful in order to decide what step to take next.
For this reason, the assembler returns the following error return codes:

Return code Description

0 Assembly successful, warnings may appear

1 There were warnings (only if the -ws option is used)
2 There were errors

Table 7: Assembler error return codes

ASSEMBLER ENVIRONMENT VARIABLES

Options can also be specified using the ASMHCS12 environment variable. The assembler
appends the value of this variable to every command line, so it provides a convenient
method of specifying options that are required for every assembly.

The following environment variables can be used with the HCS12 IAR Assembler:

Environment variable Description

ASMHCS12 Specifies command line options; for example:
set ASMHCS12=-L -ws

AHCS12_INC Specifies directories to search for include files; for example:
set AHCS12_INC=c:\myinc\

Table 8: Assembler environment variables

For example, setting the following environment variable will always generate a list file
with the name temp.1lst:

ASMHCS12=-1 temp.lst

For information about the environment variables used by the AR XLINK Linker and
the IAR XLIB Librarian, see the IAR Linker and Library Tools Reference Guide.

Assembler options __¢

Summary of assembler options

The following table summarizes the assembler options available from the command

line:

Command line option

Description

-B
-b
-c {DSMEAOC}

-Dsymbol [=value]

-Enumber

-f filename
-G

-h

-Iprefix
-i
-L[prefix]
-1 filename
-Mab

-N

-n
-Oprefix
-o filename
-plines
-rle|n]

-S

-s{+|-}

-tn

-Usymbol

-wlstring] [s]

-x{DI2}

Macro execution information
Makes a library module
Conditional list

Defines a symbol

Maximum number of errors
Extends the command line
Opens standard input as source

Enables the use of space (' ') as the character for starting
a comment

Includes paths

Lists #included text

Lists to prefixed source name

Lists to named file

Macro quote characters

Omit header from assembler listing
Enables support for multibyte characters
Sets object filename prefix

Sets object filename

Lines/page

Generates debug information

Sets silent operation

Case sensitive user symbols

Tab spacing

Undefines a symbol

Disables warnings

Includes cross-references

Table 9: Assembler options summary

Descriptions of assembler options

16

Descriptions of assembler options

HCSI12 IAR Assembler
Reference Guide

-B

The following sections give full reference information about each assembler option.

-B

Use this option to make the assembler print macro execution information to the standard
output stream on every call of a macro. The information consists of:

o The name of the macro

e The definition of the macro

o The arguments to the macro

e The expanded text of the macro.

This option is mainly used in conjunction with the list file options -L or -1; for
additional information, see page 20.

In the IAR Embedded Workbench, this option is identical to the Macro execution info
option available on the List page in the Assembler category.

-b
This option causes the object file to be a library module rather than a program module.

By default, the assembler produces a program module ready to be linked with the IAR
XLINK Linker. Use the -b option if you instead want the assembler to make a library
module.

If the NaME directive is used in the source (to specify the name of the program module),
the -b option is ignored, i.e. the assembler produces a program module regardless of the
-b option.

In the IAR Embedded Workbench, this option is identical to the Make LIBRARY
module option available on the Output page in the Assembler category.

-c {DSMEAOC}

Use this option to control the contents of the assembler list file. This option is mainly
used in conjunction with the list file options -L and -1; see page 20 for additional
information.

Assembler options __¢

The following table shows the available parameters:

Command line option Description

-cD Disable list file
Table 10: Conditional list (-c)

-cS Structured assembly
-cM Macro definitions
-cE No macro expansions
-cA Assembled lines only
-c0 Multiline code

-cC Cycle count

In the IAR Embedded Workbench, these options are related to the options available on

-Dsymbol [=valuel]

Use this option to define a preprocessor symbol with the name symbo1 and the value
value. If no value is specified, 1 is used.

The -D option allows you to specify a value or choice on the command line instead of
in the source file.

Example

For example, you could arrange your source to produce either the test or production
version of your program dependent on whether the symbol TESTVER was defined. To do
this, use include sections such as:

#ifdef TESTVER

... ; additional code lines for test version only
#endif
Then select the version required in the command line as follows:

Production version: ahcsl2 prog
Test version: ahcsl2 prog -DTESTVER

Alternatively, your source might use a variable that you need to change often. You can
then leave the variable undefined in the source, and use -D to specify the value on the
command line; for example:

ahcsl2 prog -DFRAMERATE=3

In the AR Embedded Workbench, this option is identical to the Defined symbols
option available on the Preprocessor page in the Assembler category.

Descriptions of assembler options

18

HCSI12 IAR Assembler
Reference Guide

-Enumber
This option specifies the maximum number of errors that the assembler will report.

By default, the maximum number is 100. The -E option allows you to decrease or
increase this number to see more or fewer errors in a single assembly.

In the IAR Embedded Workbench, this option is identical to the Max number of errors
option available on the Diagnostics page in the Assembler category.

-f filename

This option extends the command line with text read from the file named extend.xc1.
Notice that there must be a space between the option itself and the filename.

The - £ option is particularly useful where there is a large number of options which are
more conveniently placed in a file than on the command line itself.

Example

To run the assembler with further options taken from the file extend.xc1, use:

ahcsl2 prog -f extend.xcl

-G

This option causes the assembler to read the source from the standard input stream,
rather than from a specified source file.

When -G is used, no source filename may be specified.

-h
This option enables the use of space (' ') as the character for starting a comment.

In early versions of the A6812 assembler, all directives could be followed by a comment,
with or without a preceding ; (semi-colon). Because the semi-colon delimiter was
optional, it was easy to start a comment unintentionally. For example, the following line
would have been legal:

ANDD $3FFF, X

However, the following line would have generated a syntax error, because X was treated
as a comment instead of as an operand:

ANDD $3FFF, X

By using the -h option, this old-style behavior is enabled.

Assembler options __¢

In the IAR Embedded Workbench, this option is identical to the Start comment with
tab/space option in the Assembler category.

-Iprefix

Use this option to specify paths to be used by the preprocessor by adding the #include
file search prefix prefix.

By default, the assembler searches for #include files only in the current working
directory and in the paths specified in the AHCS12_INC environment variable. The -1
option allows you to give the assembler the names of directories where it will also search
if it fails to find the file in the current working directory.

Example

Using the options:

-Ic:\global\ -Ic:\thisproj\headers\

and then writing:

#include "asmlib.hdr"

in the source, will make the assembler search first in the current directory, then in the
directory c:\global\, and finally in the directory c:\thisproj\headers\.

You can also specify the include path with the AHCS12_INC environment variable, see
Assembler environment variables, page 14.

In the IAR Embedded Workbench, this option is related to the Include paths option
available on the Preprocessor page in the Assembler category.

-1
Includes #include files in the list file.

By default, the assembler does not list #include file lines since these often come from
standard files and would waste space in the list file. The -i option allows you to list
these file lines.

In the IAR Embedded Workbench, this option is related to the Include paths option
available on the Preprocessor page in the Assembler category.

Descriptions of assembler options

20

HCSI12 IAR Assembler
Reference Guide

-L

-L[prefix]

By default, the assembler does not generate a list file. Use this option to make the
assembler generate one and send it to file [prefix] sourcename.lst.

To simply generate a listing, use the -L option without a prefix. The listing is sent to the
file with the same name as the source, but the extension will be 1st.

The -L option lets you specity a prefix, for example to direct the list file to a
subdirectory. Notice that you cannot include a space before the prefix.

-L may not be used at the same time as -1.

Example
To send the list file to 1ist\prog. 1st rather than the default prog.1st:
ahcsl2 prog -Llist\

In the IAR Embedded Workbench, this option is related to the List options in the
Assembler category.

-1 filename

Use this option to make the assembler generate a listing and send it to the file £i1ename.
If no extension is specified, 1st is used. Notice that you must include a space before the
filename.

By default, the assembler does not generate a list file. The -1 option generates a listing,
and directs it to a specific file. To generate a list file with the default filename, use the
-L option instead.

In the AR Embedded Workbench, this option is related to the List options in the
Assembler category.

-Mab

This option sets the characters to be used as left and right quotes of each macro argument
to a and b respectively.

By default, the characters are < and >. The -M option allows you to change the quote
characters to suit an alternative convention or simply to allow a macro argument to
contain < or > themselves.

Assembler options __¢

Example

For example, using the option:

-M[]

in the source you would write, for example:
print [>]

to call a macro print with > as the argument.

Note: Depending on your host environment, it may be necessary to use quote marks
with the macro quote characters, for example:

ahcsl2 filename -M'<>'

In the IAR Embedded Workbench, this option is identical to the Macro quote
characters option available on the Language page in the Assembler category.

-N

Use this option to omit the header section that is printed by default in the beginning of
the list file.

This option is useful in conjunction with the list file options -L or -1; see page 20 for
additional information.

In the AR Embedded Workbench, this option is related to the Include header option
available on the List page in the Assembler category.

-n

By default, multibyte characters cannot be used in assembler source code. If you use this
option, multibyte characters in the source code are interpreted according to the host
computer’s default setting for multibyte support.

Multibyte characters are allowed in C and C++ style comments, in string literals, and in
character constants. They are transferred untouched to the generated code.

In the IAR Embedded Workbench, this option is identical to the Enable multibyte
support option available on the Language page in the Assembler category.

21

Descriptions of assembler options

22

HCSI12 IAR Assembler
Reference Guide

-0

-Oprefix

Use this option to set the prefix to be used on the name of the object file. Notice that you
cannot include a space before the prefix.

By default the prefix is null, so the object filename corresponds to the source filename
(unless -o is used). The -0 option lets you specify a prefix, for example to direct the
object file to a subdirectory.

Notice that -0 may not be used at the same time as -o.

Example

To send the object code to the file obj \prog.r12 rather than to the default file
prog.rl2:

ahcsl2 prog -0Oobj\

In the IAR Embedded Workbench, this option is related to the Qutput directories
options in the General Options category.

-o filename

This option sets the filename to be used for the object file. Notice that you must include
a space before the filename. If no extension is specified, r12 is used.

The option -o may not be used at the same time as the option -0.

Example

For example, the following command puts the object code to the file obj . r12 instead
of the default prog.ri12:

ahcsl2 prog -o obj
Notice that you must include a space between the option itself and the filename.

In the IAR Embedded Workbench, this option is related to the filename and directory
that you specify when creating a new source file or project.

-plines

The -p option sets the number of lines per page to 1ines, which must be in the range
10 to 150.

This option is used in conjunction with the list options -L or -1; see page 20 for
additional information.

Assembler options __¢

In the IAR Embedded Workbench, this option is identical to the Lines/page option
available on the List page in the Assembler category.

-rle|n]

The -r option makes the assembler generate debug information that allows a symbolic
debugger such as C-SPY to be used on the program.

By default, the assembler does not generate debug information, to reduce the size and
link time of the object file. You must use the -r option if you want to use a debugger
with the program.

The following table shows the available parameters:

Command line option Description
-re Includes the full source file into the object file
-rn Generates an object file without source information; symbol

information will be available.

Table 11: Generating debug information (-r)

In the IAR Embedded Workbench, this option is identical to the Generate debug
information option in the Assembler category.

-S

The -5 option causes the assembler to operate without sending any messages to the
standard output stream.

By default, the assembler sends various insignificant messages via the standard output
stream. Use the -5 option to prevent this.

The assembler sends error and warning messages to the error output stream, so they are
displayed regardless of this setting.

-s{+|-}

Use the -s option to control whether the assembler is sensitive to the case of user
symbols:

Command line option Description
-s+ Case sensitive user symbols
-s- Case insensitive user symbols

Table 12: Controlling case sensitivity in user symbols (-s)

23

Descriptions of assembler options

24

HCSI12 IAR Assembler
Reference Guide

By default, case sensitivity is on. This means that, for example, LABEL and label refer
to different symbols. Use -s- to turn case sensitivity off, in which case LABEL and 1abel
will refer to the same symbol.

In the IAR Embedded Workbench, this option is identical to the User symbols are case
sensitive option in the Assembler category.

-tn

By default the assembler sets 8 character positions per tab stop. The -t option allows
you to specify a tab spacing to n, which must be in the range 2 to 9.

This option is useful in conjunction with the list options -L or -1; see page 20 for
additional information.

In the IAR Embedded Workbench, this option is identical to the Tab spacing option in
the Assembler category.

-Usymbol
Use the -U option to undefine the predefined symbol symbo1l.

By default, the assembler provides certain predefined symbols; see Predefined symbols,
page 7. The -U option allows you to undefine such a predefined symbol to make its name
available for your own use through a subsequent -D option or source definition.

Example

To use the name of the predefined symbol __TIME__ for your own purposes, you could
undefine it with:

ahcsl2 prog -U __TIME_

In the IAR Embedded Workbench, this option is related to the Defined symbols option
in the Assembler category.

-wlstring] [s]

By default, the assembler displays a warning message when it detects an element of the
source which is legal in a syntactical sense, but may contain a programming error; see
Assembler diagnostics, page 103, for details.

Assembler options __¢

Use this option to disable warnings. The -w option without a range disables all warnings.
The -w option with a range performs the following:

Command line option Description

-w+ Enables all warnings

-w- Disables all warnings
-wW+n Enables just warning n
-w-n Disables just warning n
-w+m-n Enables warnings m to n
-w-m-n Disables warnings m to n

Table 13: Disabling assembler warnings (-w)

Only one -w option may be used on the command line.

By default, the assembler generates exit code O for warnings. Use the -ws option to
generate exit code 1 if a warning message is produced.

Example

To disable just warning O (unreferenced label), use the following command:
ahcsl2 prog -w-0

To disable warnings 0 to 8, use the following command:

ahcsl2 prog -w-0-8

In the IAR Embedded Workbench, this option is related to the options available on the
Diagnostics page in the Assembler category.

-x -x{DI2}

Use this option to make the assembler include a cross-reference table at the end of the
list file.

This option is useful in conjunction with the list options -L or -1; see page 20 for
additional information.

The following parameters are available:

Command line option Description
-xD #defines

-xI Internal symbols
-x2 Dual line spacing

Table 14: Including cross-references in assembler list file (-x)

25

Descriptions of assembler options

In the IAR Embedded Workbench, this option is identical to the Include
cross-reference option in the Assembler category.

HCSI12 IAR Assembler
26 Reference Guide

Assembler operators

This chapter first describes the precedence of the assembler operators, and
then summarizes the operators, classified according to their precedence.
Finally, this chapter provides reference information about each operator,
presented in alphabetical order.

Precedence of operators

Each operator has a precedence number assigned to it that determines the order in which
the operator and its operands are evaluated. The precedence numbers range from 1 (the
highest precedence, i.e. first evaluated) to 7 (the lowest precedence, i.e. last evaluated).

The following rules determine how expressions are evaluated:

e The highest precedence operators are evaluated first, then the second highest
precedence operators, and so on until the lowest precedence operators are evaluated.

e Operators of equal precedence are evaluated from left to right in the expression.

e Parentheses (and) can be used for grouping operators and operands and for
controlling the order in which the expressions are evaluated. For example, the
following expression evaluates to 1:

7/ (1+(2%3))

Summary of assembler operators

The following tables give a summary of the operators, in order of priority. Synonyms,
where available, are shown after the operator name.

UNARY OPERATORS - |

i Unary plus.

- Unary minus.

.NOT. (!) Logical NOT.
.Low. Low byte.
.HIGH. High byte.
.BYT2. Second byte.
.BYT3. Third byte.

27

Summary of assembler operators

.LWRD. Low word.
.HWRD. High word.
.DATE. Current time/date.
.SFB. (SFB) Segment begin.
.SFE. (SFE) Segment end.
.SIZEOF. (SIZEOF) Segment size.
.BINNOT. (~) Bitwise NOT.

MULTIPLICATIVE ARITHMETIC OPERATORS -2

* Multiplication.
/ Division.
.MOD. Modulo.

ADDITIVE ARITHMETIC OPERATORS -3

+ Addition.
- Subtraction.
.SHR. (>>) Logical shift right.

.SHL. (<<) Logical shift left.

AND OPERATORS -4

JAND. (&&) Logical AND.
.BINAND. (&) Bitwise AND.

OR OPERATORS -5

.OR. (|]) Logical OR.
.BINOR. () Bitwise OR.

.XOR. Logical exclusive OR.
.BINXOR. (") Bitwise exclusive OR.

HCSI12 IAR Assembler
28 Reference Guide

Assembler operators ___o

COMPARISON OPERATORS -6

.EQ. (=, ==) Equal.

.NE. (<>, !=) Not equal.

.GT. (>) Greater than.

LT, (<) Less than.

.UGT. Unsigned greater than.
.ULT. Unsigned less than.
.GE. (>=) Greater than or equal.
.LE. (<=) Less than or equal.

Description of operators
The following sections give detailed descriptions of each assembler operator. See
Expressions, operands, and operators, page 3, for related information. The number
within parentheses specifies the priority of the operator.

* Multiplication (2).
* produces the product of its two operands. The operands are taken as signed 32-bit
integers and the result is also a signed 32-bit integer.
Example

2*%2 > 4
_o%x) — _4

+ Unary plus (1).

Unary plus operator.

Example

+3 > 3
3*+2 > 6

29

Description of operators

30

HCSI12 IAR Assembler
Reference Guide

Addition (3).

The + addition operator produces the sum of the two operands which surround it. The
operands are taken as signed 32-bit integers and the result is also a signed 32-bit integer.

Example
92+19 — 111

-242 > 0
-24-2 > -4

Unary minus (1).

The unary minus operator performs arithmetic negation on its operand.

The operand is interpreted as a 32-bit signed integer and the result of the operator is the
two’s complement negation of that integer.

Example

-3 > -3
3*-2 > -6
4--5 = 9

Subtraction (3).

The subtraction operator produces the difference when the right operand is taken away
from the left operand. The operands are taken as signed 32-bit integers and the result is
also signed 32-bit integer.

Example

92-19 — 73
-2-2 7 -4
-2--2 > 0

Division (2).

/ produces the integer quotient of the left operand divided by the right operator. The
operands are taken as signed 32-bit integers and the result is also a signed 32-bit integer.

Example
9/2 > 4
-12/3 > -4
9/2*6 —> 24

Assembler operators ___o

.AND. (&&) Logical AND (4).

Use && to perform logical AND between its two integer operands. If both operands are
non-zero the result is 1; otherwise it is zero.

Example

B’1010 && B’0011 — 1
B’1010 && B’0101 —> 1
B’1010 && B’0000 —> O

.BINAND. (&) Bitwise AND (4).

Use & to perform bitwise AND between the integer operands.

Example

B’1010 & B’0011 — B’0010
B’1010 & B'0101 — B’'0000
B’1010 & B’0000 — B’0000

.BINNOT. (~) Bitwise NOT (1).

Use ~ to perform bitwise NOT on its operand.

Example

~ B’1010 - B’11111111111111111111111111110101

.BINOR. (]|) Bitwise OR (5).

Use | to perform bitwise OR on its operands.

Example

B’1010 | B-0101 —> B’1111
B’'1010 | B’0000 — B’1010

.BINXOR. (”) Bitwise exclusive OR (5).

Use ~ to perform bitwise XOR on its operands.

31

Description of operators

Example

B’1010 ~ B’0101 — B’1111
B’1010 ~ B’0011 — B’1001

.BYT2. Second byte (1).
.BYT2. takes a single operand, which is interpreted as an unsigned 32-bit integer value.
The result is the middle-low byte (bits 15 to 8) of the operand.
Example

.BYT2. 0x12345678 —> 0x56

.BYT3. Third byte (1).
.BYT3. takes a single operand, which is interpreted as an unsigned 32-bit integer value.
The result is the middle-high byte (bits 23 to 16) of the operand.
Example

.BYT3. 0x12345678 —> 0x34

.DATE. Current time/date (1).
Use the .DATE. operator to specify when the current assembly began.

The .DATE. operator takes an absolute argument (expression) and returns:

.DATE.1 Current second (0-59).

.DATE.2 Current minute (0-59).

.DATE. 3 Current hour (0-23).

.DATE. 4 Current day (1-31).

.DATE.5 Current month (1-12).

.DATE. 6 Current year MOD 100 (1998 —98, 2000 —00, 2002 —02).
Example

To assemble the date of assembly:

today: DC.DATE.5, .DATE.4, .DATE.3

HCSI12 IAR Assembler
32 Reference Guide

.GT. (>)

.HIGH.

Assembler operators ___o

Equal (6).

= evaluates to 1 (true) if its two operands are identical in value, or to O (false) if its two
operands are not identical in value.

'ABC' = 'ABCD' > O

Greater than or equal (6).

>= evaluates to 1 (true) if the left operand is equal to or has a higher numeric value than
the right operand.

Example

1 >=2 >0
2>=>1—2>1
1 >=1—>1

Greater than (6).

> evaluates to 1 (true) if the left operand has a higher numeric value than the right
operand.

Example

-1 >1 >0
2>1—>1
1>1—>0

High byte (1).

.HIGH. takes a single operand to its right which is interpreted as an unsigned, 16-bit
integer value. The result is the unsigned 8-bit integer value of the higher order byte of
the operand.

Example

.HIGH. OxABCD — OxAB

33

Description of operators

.HWRD. High word (1).

.HWRD. takes a single operand, which is interpreted as an unsigned, 32-bit integer value.
The result is the high word (bits 31 to 16) of the operand.

Example

.HWRD. 0x12345678 — 0x1234

.LE. (<=) Less than or equal (6)

<= evaluates to 1 (true) if the left operand has a numeric value that is lower than or equal
to the right operand.

Example

1 <=2 —>1
2<=1—2>0
1 <=1 —>1

.LOW. Low byte (1).

.Low. takes a single operand, which is interpreted as an unsigned, 32-bit integer value.
The result is the unsigned, 8-bit integer value of the lower order byte of the operand.

Example

.LOW. OxABCD — 0xCD

.LT. (<) Less than (6).

< evaluates to 1 (true) if the left operand has a lower numeric value than the right
operand.

Example

-1 <2 —>1
2 <1 >0
2 <2 >0

HCSI12 IAR Assembler
34 Reference Guide

Assembler operators ___o

.LWRD. Low word (1).

.LWRD. takes a single operand, which is interpreted as an unsigned, 32-bit integer value.
The result is the low word (bits 15 to 0) of the operand.

Example

.LWRD. 0x12345678 — 0x5678

.MOD. Modulo (2).

.MoD. produces the remainder from the integer division of the left operand by the right
operand. The operands are taken as signed 32-bit integers and the result is also a signed
32-bit integer.

X.MOD.Y is equivalent to X-v* (X/Y) using integer division.

Example

2.MOD.2 ™ 0
12.MOD.7 —> 5
3.MO0D.2 —> 1

(<>, !=) Notequal (6).

<> evaluates to O (false) if its two operands are identical in value or to 1 (true) if its two
operands are not identical in value.

Example

1 <>2 1
2 <>2 >0
'A' <> 'B' > 1

.NOT. (!) Logical NOT (1).

Use ! to negate a logical argument.

Example

! B’0101 > O
! B’0000 > 1

35

Description of operators

36

HCSI12 IAR Assembler
Reference Guide

.OR.

.SFB.

.SFE.

(I

(SFB)

(SFE)

Logical OR (5).

Use | | to perform a logical OR between two integer operands.

Example

B’1010 || B’0000 — 1
B/0000 || B’0000 > 0

Segment begin (1).

Syntax

SFB (segment [{+]|-}offset])

Parameters

segment The name of a relocatable segment, which must be defined before
SFB is used.

offset An optional offset from the start address. The parentheses are

optional if of fset is omitted.

Description

SFB accepts a single operand to its right. The operand must be the name of a relocatable
segment.

The operator evaluates to the absolute address of the first byte of that segment. This
evaluation takes place at linking time.
Example

NAME demo
RSEG CODE
start: FDB SFB(CODE)

Even if the above code is linked with many other modules, start will still be set to the
address of the first byte of the segment.

Segment end (1).

Syntax

SFE (segment [{+ | -} offset])

Assembler operators ___o

Parameters

segment The name of a relocatable segment, which must be defined before
SFE is used.

offset An optional offset from the start address. The parentheses are

optional if of fset is omitted.

Description

SFE accepts a single operand to its right. The operand must be the name of a relocatable
segment. The operator evaluates to the segment start address plus the segment size. This
evaluation takes place at linking time.

Example

NAME demo
RSEG CODE
end: FDB SFE (CODE)

Even if the above code is linked with many other modules, end will still be set to the
address of the last byte of the segment.

The size of the segment MY_SEGMENT can be calculated as:

SFE (MY_SEGMENT) -SFB (MY_SEGMENT)

.SHL. (<<) Logical shift left (3).

Use << to shift the left operand, which is always treated as unsigned, to the left. The
number of bits to shift is specified by the right operand, interpreted as an integer value
between 0 and 32.

Example

B’00011100 << 3 — B’11100000
B’00000111111111111 << 5 ™ B’11111111111100000
14 << 1 — 28

.SHR. (>>) Logical shift right (3).

Use >> to shift the left operand, which is always treated as unsigned, to the right. The
number of bits to shift is specified by the right operand, interpreted as an integer value
between 0 and 32.

37

Description of operators

38

.SIZEOF.

HCSI12 IAR Assembler
Reference Guide

(SIZEOF)

.UGT.

Example

B’01110000 >> 3 — B’00001110
B’1111111111111111 >> 20 > O
14 >> 1 > 7

Segment size (1).

Syntax

SIZEOF segment

Parameters

segment The name of a relocatable segment, which must be defined
before SIZEOF is used.

Description

SIZEOF generates SFE-SFB for its argument, which should be the name of a relocatable
segment; i.e. it calculates the size in bytes of a segment. This is done when modules are
linked together.

Example

NAME demo
RSEG CODE
size: FDB SIZEOF CODE

sets size to the size of segment CODE.

Unsigned greater than (6).

.UGT. evaluates to 1 (true) if the left operand has a larger value than the right operand.
The operation treats its operands as unsigned values.

Example

2.0GT.1 > 1
-1.0GT.1 > 1

Assembler operators ___o

.ULT. Unsigned less than (6).
.ULT. evaluates to 1 (true) if the left operand has a smaller value than the right operand.
The operation treats its operands as unsigned values.
Example

1.ULT.2 > 1
-1.ULT.2 > O

.XOR. Logical exclusive OR (5).

Use .XOR. to perform logical XOR on its two operands.

Example

B’0101.XOR.B’1010 —> O
B’0101.XOR.B’'0000 — 1

39

Description of operators

HCSI12 IAR Assembler
40 Reference Guide

Assembler directives

This chapter gives an alphabetical summary of the assembler directives and

provides detailed reference information for each category of directives.

Summary of assembler directives

The following table gives a summary of all the assembler directive, except for the CFI
directives, which you can find in the section Call frame information (CFI) directives,

page 89.

Directive

Description

Section

$
#define

#elif

#else
#endif
#error

#if

#ifdef
#ifndef
#include
#message
#undef
/*comment*/

/7

ALIAS
ALIGN

ALIGNRAM
ASEG
ASEGN

Includes a file.
Assigns a value to a label.

Introduces a new condition ina #1f...#endif
block.

Assembles instructions if a condition is false.
Ends a #if, #ifdef, or #ifndef block.
Generates an error.

Assembles instructions if a condition is true.
Assembles instructions if a symbol is defined.
Assembles instructions if a symbol is undefined.
Includes a file.

Generates a message on standard output.
Undefines a label.

C-style comment delimiter.

C++ style comment delimiter.

Assigns a permanent value local to a module.
Assigns a permanent value local to a module.

Aligns the location counter by inserting
zero-filled bytes.

Aligns without inserting.
Begins an absolute segment.

Begins an absolute segment.

Assembler control
C-style preprocessor

C-style preprocessor

C-style preprocessor
C-style preprocessor
C-style preprocessor
C-style preprocessor
C-style preprocessor
C-style preprocessor
C-style preprocessor
C-style preprocessor
C-style preprocessor
Assembler control
Assembler control
Value assignment
Value assignment

Segment control

Segment control
Segment control

Segment control

Table 15: Assembler directives summary

41

Summary of assembler directives

42

HCSI12 IAR Assembler

Reference Guide

Directive Description Section
BREAK Exits prematurely from a loop or switch Structured assembly
construct.
CASE Case in SWITCH block. Structured assembly
CASEQFF Disables case sensitivity. Assembler control
CASEON Enables case sensitivity. Assembler control
CFI Specifies call frame information. Call frame
information
COL Sets the number of columns per page. Listing control
COMMON Begins a common segment. Segment control
CONTINUE Continues execution of a loop or switch Structured assembly
construct.
CYCMAX Selects the greater of two possible cycle count Listing control
values.
CYCMEAN Selects the mean value. Listing control
CYCMIN Selects the lower of two possible cycle count Listing control
values.
CYCLES Sets cycle count. Listing control
DC8 (FCB) Generates 8-bit byte constants, including strings. Data definition or
allocation
DC16 Generates |6-bit word constants, including Data definition or
strings. allocation
DC24 Generates 24-bit word constants. Data definition or
allocation
DC32 Generates 32-bit long word constants. Data definition or
allocation
DC.B Generates an 8-bit constant. Data definition or
allocation
DCB Generates constant data. Data definition or
allocation
DC.L (FQB) Generates a 32-bit constant. Data definition or
allocation
DC.W (FDB) Generates a | 6-bit constant. Data definition or
allocation
DEFAULT Default case in SWITCH block. Structured assembly
DEFINE Defines a file-wide value. Value assignment

Table 15: Assembler directives summary (Continued)

Assembler directives __¢

Directive Description Section
DS (RMB) Allocates space for 8-bit bytes. Data definition or
allocation
DS16 Allocates space for |6-bit words. Data definition or
allocation
DS24 Allocates space for 24-bit words. Data definition or
allocation
DS32 Allocates space for 32-bit words. Data definition or
allocation
DS8 Allocates space for 8-bit bytes. Data definition or
allocation
ELSE (ELSEC) Assembles instructions if a condition is false. Conditional assembly
ELSEIF Specifies a new condition in an IF...ENDIF Conditional assembly
block.
ELSEIFS Specifies a new condition in an IFS. . .ENDIFS Structured assembly
block.
ELSES Specifies instructions to be executed if a Structured assembly
condition is false.
END Terminates the assembly of the last module ina Module control
file.
ENDF Ends a FOR loop. Structured assembly
ENDIF (ENDC) Ends an IF block. Conditional assembly
ENDIFS Ends an IFS block. Structured assembly
ENDM (ENDMAC) Ends a macro definition. Macro processing
ENDMOD Terminates the assembly of the current module. Module control
ENDR Ends a REPT, REPTC or REPTI structure. Macro processing
ENDS Ends a SWITCH block. Structured assembly
ENDW Ends a WHILE loop. Structured assembly
EQU Assigns a permanent value local to a module. Value assignment
EVEN Aligns the program counter to an even address. ~ Segment control
EXITM Exits prematurely from a macro. Macro processing
EXPORT Exports symbols to other modules. Symbol control
EXTERN Imports an external symbol. Symbol control
EXTRN Imports an external symbol. Symbol control

Table 15: Assembler directives summary (Continued)

43

Summary of assembler directives

44

HCSI12 IAR Assembler
Reference Guide

Directive Description Section

FCC Generates a constant string. Data definition or
allocation

FOR Repeats subsequent instructions a specified Structured assembly

number of times.

IF Assembles instructions if a condition is true.
IFNC Assembles instructions if a condition is not true.
IFxx Assembles instructions if a condition is true.
IFS Specifies instructions to be executed if a

condition is true.

IMPORT Imports an external symbol.

INCLUDE Includes a file

LIBRARY Begins a library module.

LOCAL Creates symbols local to a macro.

LSTCND Controls conditional assembler listing.

LSTCOD Controls multi-line code listing.

LSTCYC Controls the listing of cycle counts.

LSTEXP Controls the listing of macro generated lines.

LSTMAC Controls the listing of macro definitions.

LSTOUT Controls assembler-listing output.

LSTPAG Controls the formatting of output into pages.

LSTREP Controls the listing of lines generated by repeat
directives.

LSTSAS Controls structured assembler listing.

LSTXRF Generates a cross-reference table.

MACRO Defines a macro.

MODULE Begins a library module.

NAME Begins a program module.

ORG Sets the location counter.

PAGE Generates a new page.

PAGSIZ Sets the number of lines per page.

PROGRAM Begins a program module.

PUBLIC Exports symbols to other modules.

Conditional assembly
Conditional assembly
Conditional assembly

Structured assembly

Symbol control
Assembler control
Module control
Macro processing
Listing control
Listing control
Listing control
Listing control
Listing control
Listing control
Listing control

Listing control

Listing control
Listing control
Macro processing
Module control
Module control
Segment control
Listing control
Listing control
Module control

Symbol control

Table 15: Assembler directives summary (Continued)

Assembler directives __¢

Directive Description Section

PUBWEAK Exports symbols to other modules, multiple Symbol control
definitions allowed.

RADIX Sets the default base. Assembler control
REPEAT Repeats subsequent instructions until a condition Structured assembly
is true.
REPT Assembles instructions a specified number of Macro processing
times.
REPTC Repeats and substitutes characters. Macro processing
REPTI Repeats and substitutes strings. Macro processing
REQUIRE Forces a symbol to be referenced. Symbol control
RSEG Begins a relocatable segment. Segment control
RTMODEL Declares runtime model attributes. Module control
SET Assigns a temporary value. Value assignment
sfrb Creates byte-access SFR labels. Value assignment
sfrtype Specifies SFR attributes. Value assignment
sfrw Creates word-access SFR labels. Value assignment
STACK Begins a stack segment. Segment control
SWITCH Multiple case switch. Structured assembly
UNTIL Ends a REPEAT loop. Structured assembly
WHILE Repeats subsequent instructions until a condition Structured assembly
is true.

Table 15: Assembler directives summary (Continued)

Module control directives

Module control directives are used for marking the beginning and end of source program
modules, and for assigning names and types to them.

Directive Description

END Terminates the assembly of the last module in a file.
ENDMOD Terminates the assembly of the current module.
LIBRARY Begins a library module.

MODULE Begins a library module.

NAME Begins a program module.

Table 16: Module control directives

45

Module control directives

46

HCSI12 IAR Assembler
Reference Guide

Directive Description
PROGRAM Begins a program module.
RTMODEL Declares runtime model attributes.

Table 16: Module control directives

SYNTAX

END [labell]

ENDMOD [labell]

LIBRARY symbol [(expr)]
MODULE symbol [(expr)]
NAME symbol [(expr)]
PROGRAM symbol [(expr)]
RTMODEL key, value

PARAMETERS

expr Optional expression (0-255) used by the IAR compiler to encode
programming language, memory model, and processor configuration.

key A text string specifying the key.

label An expression or label that can be resolved at assembly time. It is output in the
object code as a program entry address.

symbol Name assigned to module, used by XLINK and XLIB when processing object
files.

value A text string specifying the value.

DESCRIPTION

Beginning a program module

Use NAME to begin a program module, and to assign a name for future reference by the
IAR XLINK Linker™ and the IAR XLIB Librarian™.

Program modules are unconditionally linked by XLINK, even if other modules do not
reference them.

Beginning a library module

Use MODULE to create libraries containing a number of small modules—Ilike runtime
systems for high-level languages—where each module often represents a single routine.
With the multi-module facility, you can significantly reduce the number of source and
object files needed.

Assembler directives __¢

Library modules are only copied into the linked code if other modules reference a public
symbol in the module.

Terminating a module

Use ENDMOD to define the end of a module.

Terminating the last module

Use END to indicate the end of the source file. Any lines after the END directive are
ignored.

Assembling multi-module files

Program entries must be either relocatable or absolute, and will show up in XLINK load
maps, as well as in some of the hexadecimal absolute output formats. Program entries
must not be defined externally.

The following rules apply when assembling multi-module files:

o At the beginning of a new module all user symbols are deleted, except for those
created by DEFINE, #define, or MACRO, the location counters are cleared, and the
mode is set to absolute.

e Listing control directives remain in effect throughout the assembly.

Note: END must always be used in the /ast module, and there must not be any source
lines (except for comments and listing control directives) between an ENDMOD and a
MODULE directive.

If the NAME or MODULE directive is missing, the module will be assigned the name of the
source file and the attribute program.

Declaring runtime model attributes

Use RTMODEL to enforce consistency between modules. All modules that are linked
together and define the same runtime attribute key must have the same value for the
corresponding key value, or the special value *. Using the special value * is equivalent
to not defining the attribute at all. It can however be useful to explicitly state that the
module can handle any runtime model.

A module can have several runtime model definitions.

Note: The compiler runtime model attributes start with double underscore. In order to
avoid confusion, this style must not be used in the user-defined assembler attributes.

If you are writing assembler routines for use with C or C++ code, and you want to
control the module consistency, refer to the HCS12 IAR C/EC++ Compiler Reference
Guide.

47

Symbol control directives

48

Examples

The following example defines three modules where:

e MOD_1 and MOD_2 cannot be linked together since they have different values for

runtime model foo.

e MOD_1 and MOD_3 can be linked together since they have the same definition of
runtime model bar and no conflict in the definition of foo.

e MOD_2 and MOD_3 can be linked together since they have no runtime model
conflicts. The value * matches any runtime model value.

MODULE MOD_1

RTMODEL "foo",
RTMODEL "bar",
ENDMOD

MODULE MOD_2

RTMODEL "foo",
RTMODEL "bar",
ENDMOD

MODULE MOD_3
RTMODEL "bar",

END

nym
"X

o

"k

ool

Symbol control directives

These directives control how symbols are shared between modules.

HCSI12 IAR Assembler
Reference Guide

Directive

Description

EXTERN, EXTRN (IMPORT)
PUBLIC (EXPORT)

PUBWEAK

REQUIRE

Imports an external symbol.
Exports symbols to other modules.

Exports symbols to other modules; multiple definitions
allowed.

Forces a symbol to be referenced.

Table 17: Symbol control directives

SYNTAX

EXTERN symbol [,symbol]
PUBLIC symbol [,symboll]
PUBWEAK symbol [,symbol]

Assembler directives __¢

REQUIRE symbol

PARAMETERS

symbol Symbol to be imported or exported.

DESCRIPTION

Exporting symbols to other modules

Use PUBLIC to make one or more symbols available to other modules. Symbols declared
PUBLIC can be relocatable or absolute, and can also be used in expressions (with the
same rules as for other symbols).

The pUBLIC directive always exports full 32-bit values, which makes it feasible to use
global 32-bit constants also in assemblers for 8-bit and 16-bit processors. With the L.ow,
HIGH, >>, and << operators, any part of such a constant can be loaded in an 8-bit or
16-bit register or word.

There are no restrictions on the number of PUBLIC-declared symbols in a module.

Exporting symbols with multiple definitions to other modules

PUBWEAK is similar to PUBLIC except that it allows the same symbol to be defined
several times. Only one of those definitions will be used by XLINK. If a module
containing a PUBLIC definition of a symbol is linked with one or more modules
containing PUBWEAK definitions of the same symbol, XLINK will use the PUBLIC
definition.

A symbol defined as PUBWEAK must be a label in a segment part, and it must be the only
symbol defined as PUBLIC or PUBWEAK in that segment part.

Note: Library modules are only linked if a reference to a symbol in that module is made,
and that symbol has not already been linked. During the module selection phase, no
distinction is made between PUBLIC and PUBWEAK definitions. This means that to
ensure that the module containing the PUBLIC definition is selected, you should link it
before the other modules, or make sure that a reference is made to some other PUBLIC
symbol in that module.

Importing symbols

Use EXTERN to import an untyped external symbol.

The REQUIRE directive marks a symbol as referenced. This is useful if the segment part
containing the symbol must be loaded for the code containing the reference to work, but
the dependence is not otherwise evident.

49

Segment control directives

50

EXAMPLES

The following example defines a subroutine to print an error message, and exports the
entry address err so that it can be called from other modules. It defines print as an
external routine; the address will be resolved at link time.

NAME error
EXTERN print
PUBLIC err

err JSR print
Dc n % % Error *xn
RTS
END

Segment control directives

HCSI12 IAR Assembler
Reference Guide

The segment directives control how code and data are generated.

Directive Description

ALIGN Aligns the program location counter by inserting zero-filled bytes.
ALIGNRAM Aligns the program location counter.

ASEG Begins an absolute segment.

ASEGN Begins a named absolute segment.

COMMON Begins a common segment.

EVEN Aligns the program counter to an even address.

ORG Sets the program location counter (PLC).

RSEG Begins a relocatable segment.

STACK Begins a stack segment.

Table 18: Segment control directives

SYNTAX

ALIGN align [,valuel]

ALIGNRAM align

ASEG [start [(align)]]

ASEGN segment [:typel, address
COMMON segment [:typel [(align)]

EVEN [value]

ORG expr

RSEG segment [:type] [flag] [(align)]
RSEG segment [:typel], address

Assembler directives __¢

STACK segment [:typel [(align)]

PARAMETERS

address Address where this segment part will be placed.

align Exponent of the value to which the address should be aligned, in the range 0
to 30.

expr Address to set the location counter to.

flag NOROOT, ROOT

The default mode is ROOT which indicates that the segment part must
not be discarded. NOROOT means that the segment part may be
discarded by the linker if no symbols in this segment part are referred
to. Normally all segment parts except startup code and interrupt
vectors should set this flag.

REORDER, NOREORDER

The default mode is NOREORDER which indicates that the segment
parts must remain in order. REORDER allows the linker to reorder
segment parts. For a given segment, all segment parts must specify
the same state for this flag.

SORT, NOSORT

The default mode is NOSORT which indicates that the segment parts

will not be sorted. SORT means that the linker will sort the segment

parts in decreasing alignment order. For a given segment, all segment
parts must specify the same state for this flag.

segment The name of the segment.

start A start address that has the same effect as using an ORG directive at the
beginning of the absolute segment.

type The memory type, typically CODE, or DATA. In addition, any of the types
supported by the IAR XLINK Linker.

value Byte value used for padding, default is zero.

DESCRIPTION

Beginning an absolute segment

Use ASEG to set the absolute mode of assembly, which is the default at the beginning of
a module.

If the parameter is omitted, the start address of the first segment is 0, and subsequent
segments continue after the last address of the previous segment.

51

Segment control directives

52

HCSI12 IAR Assembler
Reference Guide

Beginning a named absolute segment

Use ASEGN to start a named absolute segment located at the address address.
This directive has the advantage of allowing you to specify the memory type of the
segment.

Beginning a relocatable segment

Use RSEG to set the current mode of the assembly to relocatable assembly mode. The
assembler maintains separate location counters (initially set to zero) for all segments,
which makes it possible to switch segments and mode anytime without the need to save
the current segment location counter.

Up to 65536 unique, relocatable segments may be defined in a single module.

Beginning a stack segment

Use STACK to allocate code or data allocated from high to low addresses (in contrast
with the RSEG directive that causes low-to-high allocation).

Note: The contents of the segment are not generated in reverse order.

Beginning a common segment

Use COMMON to place data in memory at the same location as COMMON segments from
other modules that have the same name. In other words, all COMMON segments of the
same name will start at the same location in memory and overlay each other.

Obviously, the coMMON segment type should not be used for overlaid executable code.
A typical application would be when you want a number of different routines to share a
reusable, common area of memory for data.

It can be practical to have the interrupt vector table in a COMMON segment, thereby
allowing access from several routines.

The final size of the COMMON segment is determined by the size of largest occurrence of
this segment. The location in memory is determined by the XLINK -z command; see
the IAR Linker and Library Tools Reference Guide.

Use the align parameter in any of the above directives to align the segment start
address.
Setting the program location counter (PLC)

Use ORG to set the program location counter of the current segment to the value of an
expression. The optional label will assume the value and type of the new location
counter.

Assembler directives __¢

The result of the expression must be of the same type as the current segment, i.e. it is not
valid to use ORG 10 during RSEG, since the expression is absolute; use ORG *+10 instead.
The expression must not contain any forward or external references.

All program location counters are set to zero at the beginning of an assembly module.

Aligning a segment

Use ALIGN to align the program location counter to a specified address boundary. The
expression gives the power of two to which the program counter should be aligned.

The alignment is made relative to the segment start; normally this means that the
segment alignment must be at least as large as that of the alignment directive to give the
desired result.

ALIGN aligns by inserting zero/filled bytes. The EVEN directive aligns the program
counter to an even address (which is equivalent to ALIGN 1).

Use ALIGNRAM to align the program location counter by incrementing it; no data is
generated. The expression can be within the range 0 to 30.

EXAMPLES

Beginning an absolute segment

The following example assembles interrupt routine entry instructions in the appropriate
interrupt vectors using an absolute segment:

EXTERN irgsrv,nmisrv

ASEG
ORG $1000
main LDAA #1
RTS
ORG SFFF2
FDB irgsrv ; IRQ interrupt
ORG SFFF4
FDB nmisrv ; NMI interrupt
ORG SFFFE
FDB main ; Power on
END

The main power-on code is assembled in memory starting at $1000.

53

Segment control directives

Beginning a relocatable segment

In the following example, the data following the first RSEG directive is placed in a
relocatable segment called table; the ORG directive is used for creating a gap of six

bytes in the table.

The code following the second RSEG directive is placed in a relocatable segment called

code:

EXTERN
RSEG
FDB
ORG
FDB
RSEG
subrtn LDAA
SBA
END

divrtn,mulrtn
table
divrtn,mulrtn
*+6

subrtn

code

#1

Beginning a stack segment

The following example defines two 100-byte stacks in a relocatable segment called

rpnstack:
STACK

parms DS8

opers DS8
END

rpnstack
100
100

The data is allocated from high to low addresses.

Beginning a common segment

The following example defines two common segments containing variables:

NAME

COMMON
count RMB 4

ENDMOD

NAME
COMMON
up RMB
ORG
down RMB 1
END

HCSI12 IAR Assembler
54 Reference Guide

commonl
data

common?2
data

*+2

Assembler directives __¢

Because the common segments have the same name, data, the variables up and down
refer to the same locations in memory as the first and last bytes of the 4-byte variable
count.

Aligning a segment

This example starts a relocatable segment, moves to an even address, and adds some
data. It then aligns to a 64-byte boundary before creating a 64-byte table.

RSEG data ; Start a relocatable data segment

EVEN ; Ensure it’s on an even boundary
target DC16 1 ; target and best will be on

; an even boundary

best DC16 1

ALIGN 6 ; Now align to a 64 byte boundary
results DS8 64 ; And create a 64 byte table

END

Value assignment directives

These directives are used for assigning values to symbols.

Directive Description

= Assigns a permanent value local to a module.

ALIAS Assigns a permanent value local to a module.
DEFINE Defines a file-wide value.

EQU Assigns a permanent value local to a module.
SET Assigns a temporary value.

sfrb Creates byte-access SFR labels.

sfrtype Specifies SFR attributes.

sfrw Creates word-access SFR labels.

Table 19: Value assignment directives

SYNTAX

label = expr

label ALIAS expr

label DEFINE expr

label SET expr

label EQU expr

[const] sfrb register = value

[const] sfrtype register attribute [,attribute] = value
[const] sfrw register = value

55

Value assignment directives

56

HCSI12 IAR Assembler
Reference Guide

PARAMETERS

attribute One or more of the following:
BYTE The SFR must be accessed as a byte.
LONG The SFR must be accessed as a long.
READ You can read from this SFR.
WORD The SFR must be accessed as a word.
WRITE You can write to this SFR.

expr Value assigned to symbol or value to be tested.

label Symbol to be defined.

register The special function register.

value The SFR value.

DESCRIPTION

Defining a temporary value

Use SET to define a symbol which may be redefined, such as for use with macro
variables. Symbols defined with SET cannot be declared PUBLIC.

Defining a permanent local value

Use EQU or = to assign a value to a symbol.

Use EQU to create a local symbol that denotes a number or offset.

The symbol is only valid in the module in which it was defined, but can be made
available to other modules with a PUBLIC directive.

Use EXTERN to import symbols from other modules.

Defining a permanent global value
Use DEFINE to define symbols that should be known to all modules in the source file.

A symbol which has been given a value with DEFINE can be made available to modules
in other files with the PUBLIC directive.

Symbols defined with DEFINE cannot be redefined within the same file.

Assembler directives __¢

Defining special function registers

Use sfrb to create special function register labels with attributes READ, WRITE, and
BYTE turned on. Use s frw to create special function register labels with attributes READ,
WRITE, WORD, or LONG turned on. Use sfrtype to create special function register labels
with specified attributes.

Prefix the directive with const to disable the WRITE attribute assigned to the SFR. You
will then get an error or warning message when trying to write to the SFR. The const
keyword must be placed on the same line as the directive.

EXAMPLES

Redefining a symbol

The following example uses VAR to redefine the symbol cons in a REPT loop to generate
a table of the first 8 powers of 3:

NAME table
cons VAR 1
buildit MACRO times
DC1l6 cons
cons VAR cons*3
IF times>1
buildit times-1
ENDIF
ENDM
main buildit 4
END

It generates the following code:

1 00000000 NAME table

2 00000001 cons VAR 1

10 00000000 main buildit 4

10.1 00000000 0001 DC16 cons
10. 00000003 cons VAR cons*3
10. 00000002 IF 4>1

10 00000002 buildit 4-1
10.1 00000002 0003 DC16 cons
10. 00000009 cons VAR cons*3
10. 00000004 IF 4-1>1
10 00000004 buildit 4-1-1
10.1 00000004 0009 DC16 cons
10. 0000001B cons VAR cons*3
10. 00000006 IF 4-1-1>1
10 00000006 buildit 4-1-1-1
10. 00000006 001B DC16 cons

57

Value assignment directives

HCSI12 IAR Assembler
58 Reference Guide

10.2 00000051
10.3 00000008
10.4 00000008
10.5 00000008
10.6 00000008
10.7 00000008
10.8 00000008
10.9 00000008
10.10 00000008
10.11 00000008
10.12 00000008

11 00000008

cons

Using local and global symbols

VAR cons*3

IF 4-1-1-1>1
buildit 4-1-1-1-1
ENDIF

ENDM

ENDIF

ENDM

ENDIF

ENDM

ENDIF

ENDM

END

In the following example the symbol value defined in module add1 is local to that
module; a distinct symbol of the same name is defined in module add2. The DEFINE
directive is used for declaring Locn for use anywhere in the file:

NAME addl
locn DEFINE 100H
value EQU 77

LDAA locn

ADDA value

RTS

ENDMOD

NAME add2
value EQU 88

LDAA locn

ADDA value

RTS

END

The symbol locn defined in module add1l is also available to module add2.

Using special function registers

In this example a number of SFR variables are declared with a variety of access

capabilities:

sfrb portd
sfrw ocrl
const sfrb pind

sfrtype portb write,

byte

0x12

0x2A

0x10

0x18

/* byte read/write
access */

/* word read/write
access */

/* byte read only

access */
/* byte write only
access */

Assembler directives __¢

Conditional assembly directives

These directives provide logical control over the selective assembly of source code.

Directive Description

IF Assembles instructions if a condition is true.
IFxx Assembles instructions if a condition is true.

IFC Assembles instructions if two strings are equal.
IFNC Assembles instructions if two strings are not equal.
ELSE (ELSEC) Assembles instructions if a condition is false.
ELSEIF Specifies a new condition in an IF...ENDIF block.
ENDIF (ENDC) Ends an IF block.

Table 20: Conditional assembly directives

SYNTAX

IF condition

IFxx expr

IFC stringa, stringb
IFNC stringa, stringb
ELSE

ELSEIF condition
ENDIF

59

Conditional assembly directives

60

HCSI12 IAR Assembler
Reference Guide

PARAMETERS
condition One of the following:

An absolute expression The expression must not contain forward
or external references, and any non-zero
value is considered as true.

stringl=string2 The condition is true if stringl and
string2 have the same length and
contents.

stringl<>string2 The condition is true if stringl and
string2 have different length or
contents.

expr Numeric argument.
XX One of the following:

EQ Equal.

NE Not equal.

LT Less than.

LE Less than or equal.

GT Greater than.

GE Greater than or equal.

stringa, stringb String arguments, enclosed in " (quotes) or ' (apostrophes).

DESCRIPTION

Use the IF, ELSE, and ENDIF directives to control the assembly process at assembly
time. If the condition following the IF directive is not true, the subsequent instructions
will not generate any code (i.e. it will not be assembled or syntax checked) until an ELSE
or ENDIF directive is found.

Use ELSEIF to introduce a new condition after an IF directive. Conditional assembler
directives may be used anywhere in an assembly, but have their greatest use in
conjunction with macro processing.

All assembler directives (except END) as well as the inclusion of files may be disabled
by the conditional directives. Each IF directive must be terminated by an ENDIF
directive. The ELSE directive is optional, and if used, it must be inside an IF. . .ENDIF
block. IF. . .ENDIF and IF...ELSE. . .ENDIF blocks may be nested to any level.

Assembler directives __¢

EXAMPLES

The following macro adds a constant to the A register:

ADDV MACRO
IF
INCA
ELSE
ADDA
ENDIF

ENDMAC

v==1

#v

If the argument to the macro is 1, an INCA instruction is generated to save instruction
cycles; otherwise an ADDA instruction is generated.

It could be tested with the following program:

main LDAA #0
ADDV 1
ADDV 2
END

Macro processing directives

These directives allow user macros to be defined.

Directive Description

ENDM (ENDMAC) Ends a macro definition.

ENDR Ends a repeat structure.

EXITM Exits prematurely from a macro.

LOCAL Creates symbols local to a macro.

MACRO Defines a macro.

REPT Assembles instructions a specified number of times.
REPTC Repeats and substitutes characters.

REPTI Repeats and substitutes strings.

Table 21: Macro processing directives

SYNTAX

ENDM
ENDR
EXITM

LOCAL symbol
name MACRO [argument]

[, symbol]
[, argument]

REPT expr

61

Macro processing directives

62

HCSI12 IAR Assembler
Reference Guide

REPTC formal, actual
REPTI formal,actual [,actuall]

PARAMETERS

actual String to be substituted.

argument A symbolic argument name.

expr An expression.

formal Argument into which each character of actual (REPTC) or each string

actual (REPTI) is substituted.

name The name of the macro.
symbol Symbol to be local to the macro.
DESCRIPTION

A macro is a user-defined symbol that represents a block of one or more assembler
source lines. Once you have defined a macro, you can use it in your program like an
assembler directive or assembler mnemonic.

When the assembler encounters a macro, it looks up the macro’s definition, and inserts
the lines that the macro represents as if they were included in the source file at that
position.

Macros perform simple text substitution effectively, and you can control what they
substitute by supplying parameters to them.

Note: Avoid using C-type preprocessor directives within assembler macros, as this
might lead to unexpected behavior, see Using C-style preprocessor directives, page 11.
Defining a macro

You define a macro with the statement:

macroname MACRO [,arg] [,argl

Here macroname is the name you are going to use for the macro, and argis an argument
for values that you want to pass to the macro when it is expanded.

For example, you could define a macro ERROR as follows:

EXTERN abort

errmac MACRO text
JSR abort
FCB text, 0
ENDM

Assembler directives __¢

This macro uses a parameter text to set up an error message for a routine abort. You
would call the macro with a statement such as:

errmac 'Disk not ready'
The assembler will expand this to:

JSR abort
FCB 'Disk not ready',O0

If you omit a list of one or more arguments, the arguments you supply when calling the
macro are called \1 to \9 and \A to \z.

The previous example could therefore be written as follows:

errmac2 MACRO

JSR abort
FCB \1,0
ENDM

errmac2 'Disk not ready'
Use the EXITM directive to generate a premature exit from a macro.
EXITM is not allowed inside REPT...ENDR, REPTC...ENDR, or REPTI...ENDR blocks.

Use LOCAL to create symbols local to a macro. The LOCAL directive must be used before
the symbol is used.

Each time that a macro is expanded, new instances of local symbols are created by the
LocaL directive. Therefore, it is legal to use local symbols in recursive macros.

Note: It is illegal to redefine a macro.

Creating local symbols

Use LOCAL to create symbols local to a macro. The LOCAL directive must be used before
the symbol is used.

Each time a macro is expanded, new instances of local symbols are created by the LOCAL
directive, so it is legal to use local symbols in recursive macros.
Passing special characters

Macro arguments that include commas or white space can be forced to be interpreted as
one argument by using the matching quote characters < and > in the macro call.

For example:

macld MACRO op
LDAA op
ENDM

63

Macro processing directives

The macro can be called using the macro quote characters:

macld <3, X>
END

You can redefine the macro quote characters with the -M command line option; see -M,
page 20.

Predefined macro symbols

The symbol _args is set to the number of arguments passed to the macro. The following
example shows how _args can be used:

DO_CONST MACRO
IF _args ==
DC8 \1,\2
ELSE
DC8 \1
ENDIF
ENDM

RSEG CODE

DO_CONST 3, 4
DO_CONST 3

END

The following listing is generated:

1 000000

9 000000

10 000000

11 000000 RSEG CODE
12 000000

13 000000 DO_CONST 3,4
13.1 000000 IF _args == 2
13.2 000000 0304 DC8 3,4
13.3 000002 ELSE

13.4 000002 DC8 3
13.5 000002 ENDIF

13.6 000002 ENDM

14 000002 DO_CONST 3
14.1 000002 IF _args == 2
14.2 000002 DC8 3,
14.3 000002 ELSE

14.4 000002 03 DC8 3
14.5 000003 ENDIF

14.6 000003 ENDM

HCSI12 IAR Assembler
64 Reference Guide

Assembler directives __¢

15 000003
16 000003 END

How macros are processed
There are three distinct phases in the macro process:

o The assembler performs scanning and saving of macro definitions. The text between
MACRO and ENDM is saved but not syntax checked. Include-file references $ file are
recorded and will be included during macro expansion.

o A macro call forces the assembler to invoke the macro processor (expander). The
macro expander switches (if not already in a macro) the assembler input stream
from a source file to the output from the macro expander. The macro expander takes
its input from the requested macro definition.

The macro expander has no knowledge of assembler symbols since it only deals with
text substitutions at source level. Before a line from the called macro definition is
handed over to the assembler, the expander scans the line for all occurrences of
symbolic macro arguments, and replaces them with their expansion arguments.

o The expanded line is then processed as any other assembler source line. The input
stream to the assembler will continue to be the output from the macro processor,
until all lines of the current macro definition have been read.

Repeating statements

Use the REPT. . . ENDR structure to assemble the same block of instructions a number of
times. If expr evaluates to 0 nothing will be generated.

Use REPTC to assemble a block of instructions once for each character in a string. If the
string contains a comma it should be enclosed in quotation marks.

Only double quotes have a special meaning and their only use is to enclose the
characters to iterate over. Single quotes have no special meaning and are treated as any
ordinary character.

Use REPTT to assemble a block of instructions once for each string in a series of strings.
Strings containing commas should be enclosed in quotation marks.

EXAMPLES

This section gives examples of the different ways in which macros can make assembler
programming easier.

Coding in-line for efficiency

In time-critical code it is often desirable to code routines in-line to avoid the overhead
of a subroutine call and return. Macros provide a convenient way of doing this.

65

Macro processing directives

HCSI12 IAR Assembler
66 Reference Guide

The following example outputs bytes from a buffer to a port:

EXTERN port
RSEG DATA
buffer rmb 512 ;buffer
RSEG CODE
play LDX #buffer
loop LDAA 0,X
CPX #buffer+512
BNE loop
RTS

The main program calls this routine as follows:
JSR play
For efficiency we can rewrite this as the following macro:

play macro

local loop
ldx #buffer
loop ldaa 0,x
cpx #buffer+512
bne loop
endmac
rseg DATA
buffer RMB 512 ;buffer
rseg CODE
play
rts
end

Notice the use of the LOCAL directive to make the label 1oop local to the macro;
otherwise an error will be generated if the macro is used twice, as the 1oop label will
already exist.

Using REPTC and REPTI

The following example assembles a series of calls to a subroutine plot to plot each
character in a string:

NAME reptc
EXTERN plotc
banner REPTC chr, "Welcome"
LDAA #'chr'
JSR plotc
ENDR
END

This

00
00
00
00
00
00
00
1

H wW 0 J o0 Ul W N

.14
00
00

W 00 9 9 9 9 9 9 9 9 9 49 99990 0 b who e

produces the following code:

0000 name reptc

0000

0000 extern plotc

0000 banner reptc chr, "Welcome"

0000 ldaa #'chr'

0000 jsr plotc

0000 endr

000000 8657 ldaa #'W'

000002 16.... jsr plotc

000005 8665 ldaa #'e'

000007 16.... jsr plotc

00000A 866C ldaa #'1l'

00000C 16.... jsr plotc

00000F 8663 ldaa #'c'

000011 16.... jsr plotc

000014 866F ldaa #'o'
000016 16.... jsr plotc
000019 866D ldaa #'m'
00001B 16.... jsr plotc
00001E 8665 ldaa #'e'
000020 16.... jsr plotc

0023

0023 end

Assembler directives __¢

The following example uses REPTI to clear a number of memory locations:

NAME repti
EXTERN base, count, init
banner REPTI adds, base, count, init
CLR adds
ENDR
END
This produces the following code:
000000 NAME repti
000000
000000 EXTERN base, count,init
000000

W 0O J 39 Jo0 U WwWwhN P

000000 banner REPTI adds,base,count,init
000000 CLR adds
000000 ENDR

.1 000000 79.... CLR base
.2 000003 79.... CLR count
.3 000006 79.... CLR init
000009

000009 END

67

Structured assembly directives

Structured assembly directives

The structured assembly directives allow loops and control structures to be implemented
at assembly level.

Directive Description

BREAK Exits prematurely from a loop or switch construct.

CASE Case in SWITCH block.

CONTINUE Continues execution of a loop or switch construct.
DEFAULT Default case in SWITCH block.

ELSEIFS Specifies a new condition in an IFS. . .ENDIFS block.
ELSES Specifies instructions to be executed if a condition is false.
ENDF Ends an FOR loop.

ENDIFS Ends an IFS block.

ENDS Ends an SWITCH block.

ENDW Ends an WHILE loop.

FOR Repeats subsequent instructions a specified number of times.
IFS Specifies instructions to be executed if a condition is true.
REPEAT Repeats subsequent instructions until a condition is true.
SWITCH Multiple case switch.

UNTIL Ends an REPEAT loop.

WHILE Repeats subsequent instructions until a condition is true.

Table 22: Structured assembly directives

SYNTAX

IFS{condition | expression}
ELSES

ELSEIFS{condition | expression}
ENDIFS

WHILE{condition | expression}
ENDW

REPEAT

UNTIL{condition | expression}
FOR reg = start {TO | DOWNTO} end {BY | STEP} step
ENDF

SWITCH

CASE op

CASE opl..op2

DEFAULT

ENDS

HCSI12 IAR Assembler
68 Reference Guide

BREAK Ievels
CONTINUE

PARAMETERS

condition

expression

reg

rel

op, opl, op2

start, end, step

levels

DESCRIPTION

Assembler directives __¢

One of the following conditions:
<cc> Carry clear

<Cs> Carry set

<EQ> Equal

<NE> Not equal

<vC> Overflow clear

<vs> Overflow set.

An expression of the form:

reg rel op

One of the following registers:
A,B,D, XY

One of the following relations:
>=, <=, 1=, <>, ==, =,>0r<

An intermediate or memory operand.

An intermediate or memory operand. If step is omitted it
defaults to #1 or #-1 if DOWNTO is specified. The increment or
decrement in this structure is implemented with ADD/SUB.

Number of levels to break, from 1 to 3.

The HCS12 IAR Assembler includes a versatile range of directives for structured
assembly, to make it easier to implement loops and control structures at assembly level.

The advantage of using the structured assembly directives is that the resulting programs
are clearer, and their logic is easier to understand.

The directives are designed to generate simple, predictable code so that the resulting
program is as efficient as if it were programmed by hand.

69

Structured assembly directives

70

HCSI12 IAR Assembler
Reference Guide

Conditional constructs

Use IFS...ENDIFS to generate assembler source code for comparison and jump
instructions. The generated code is assembled like ordinary code, and is similar to
macros. This should not be confused with conditional assembly.

IFS blocks can be nested to any level.

Use ELSES after an IFs directive to introduce instructions to be executed if the IFs
condition is false.

Use ELSEIFS to introduce a new condition after an IFS directive.

Loop directives

Use WHILE. . .ENDW to create a loop which is executed as long as the expression is
TRUE. If the expression is false at the beginning of the loop the body will not be
executed.

Use the REPEAT . . . UNTIL construct to create a loop with a body that is executed at least
once, and as long as the expression is FALSE.

You can use BREAK to exit prematurely from an WHILE. . . ENDW Or REPEAT. . .UNTIL
loop, or CONTINUE to continue with the next iteration of the loop.

The directives generate the same statements as the IFs directive.

Iteration construct

Use FOR. . . ENDF to assemble instructions to repeat a block of instructions for a
specified sequence of values.

BREAK can be used to exit prematurely from an FOR loop, and continue execution
following the ENDF.

CONTINUE can be used to continue with the next iteration of the loop.

Switch construct

Use the SWITCH. . . ENDS block to execute one of a number of sets of statements,
depending on the value of test.

CASE defines each of the tests, and DEFAULT introduces an CASE which is always true.
Note that cASE falls through by default similar to switch statements in the C language.

BREAK can be used to exit from a SWITCH. . . ENDS block.

EXAMPLES

Using conditional constructs

Assembler directives __¢

The following program tests the A register and plots 'N', 'Z', or 'P', depending on

whether it is less than zero, zero, or greater than zero:

NAME else
EXTERN plot

main ifs a<0

This generates the following code:

W 00 3 39 3 o0 U1 Ul U LU lWW W N

9

10 000012 16....

ldab 'N'
elseifs A==0
ldab 'z’
elses

ldab 'p'
endifs

jsr plot

rts

end main

000000 name else
000000 extern plot
000000 main ifs a<O0
.1 000000 9100 CMPA 0
.2 000002 2404 BCC _20
000004 D64E ldab 'N'
000006 elseifs A==0
.1 000006 200A BRA _21
.2 000008 _?0

.3 000008 9100 CMPA 0
.4 00000A 2604 BNE _?2
00000C D65A ldab 'Z'
00000E elses

.1 00000E 2002 BRA _21
.2 000010 _»2

000010 D670 ldab 'p'
000012 endifs

.1 000012 _»1

11 000015 3D rts
12 000016 end main

jsr plot

71

Structured assembly directives

HCSI12 IAR Assembler
72 Reference Guide

Using loop constructs

The following example uses an REPEAT
register B and put the result in register A:

name repeat
reverse repeat

lsra

rolb

until A <> #0

rts

end

This generates the following code:

000000 name repeat
000000

000000 reverse repeat
.1 000000 _?0

000000 44 1sra

000001 55 rolb

000002 until A <> #0
.1 000002 8100 CMPA #0
.2 000004 27FA BEQ _°20
.3 000006 _?1

000006 3D rts

000007 end

0 < o0 ooy Oy Ul WW N

Using for constructs

UNTIL loop to reverse the order of bits in

The following example uses a FOR block to output a buffer of 1000 16-bit values to a

16-bit port:

name for
extern port

play for x = #0 to #1000 step #2

1dd 0,x
std port
endf
rts
end

This generates the following code:

000000 name for
000000 extern port

000000 play for x = #0 to #1000 step #2

.2 000003 2007 BRA _?1

1
2
3
3.1 000000 CEO000 LDX #0
3
3.3 000005 _20

00000A endf
.2 00000B 08 INX
.3 00000C 8EO3ES8

.5 000011 _?3
000011 3D rts
000012 end

W <3 o0 o0 o O O O Ul

000005 A600 ldaa 0,x
000007 7A.... staa port

.1 00000A 08 _?2 INX

?1 CPX #1000

4 00000F 2FF4 BLE _?0

Using switch constructs

Assembler directives __¢

The following example uses an SWITCH. . . ENDS block to print Zero, Positive, or
Negative depending on the value of the A register. It uses an external print routine to
print an immediate string:

name switch
extern print

test switch a

case #0
jsr print
fcc "Zero"
break

case #580
jsr print

#SFF

fcc "Negative"

break

jsr print

fcc "Positive"

break

ends
end

This generates the following code:

1
2
3
4
5
6
6
6

000000 name switch
000000 extern print
000000

000000 test switch a
000000

000000 case #0

.1 000000 8100 CMPA #0
.2 000002 260A BNE _°?1

73

Listing control directives

7 000004 16.... jsr print

8 000007 5A65726F fcc "Zero"

9 00000C break

9.1 00000C 2024 BRA _?0

10 00000E

11 00000E case #$80 .. #SFF
11.1 0000OE 8180 _?1 CMPA #$80
11.2 000010 2512 BCS _?2

11.3 000012 81FF CMPA #SFF
11.4 000014 220E BHI _?2

12 000016 16.... jsr print

13 000019 4E656761 fcc "Negative"
14 000022 break

14.1 000022 200E BRA _?0

15 000024

16 000024 default

16.1 000024 _22

17 000024 16.... jsr print

18 000027 506F7369 fcc "Positive"
19 000030 break

19.1 000030 2000 BRA _?0

20 000032

21 000032 ends

21.1 000032 _?0

22 000032 end

Listing control directives

HCSI12 IAR Assembler
74 Reference Guide

These directives provide control over the assembler list file.

Directive Description

COL Sets the number of columns per page.

CYCMAX Selects the greater of two possible cycle count values.
CYCMEAN Selects the mean values.

CYCMIN Selects the lower of two possible cycle count values.
CYCLES Sets the cycle count.

LSTCND Controls conditional assembly listing.

LSTCOD Controls multi-line code listing.

LSTCYC Controls the listing of cycle counts.

LSTEXP Controls the listing of macro-generated lines.
LSTMAC Controls the listing of macro definitions.

Table 23: Listing control directives

Assembler directives __¢

Directive Description

LSTOUT Controls assembler-listing output.

LSTPAG Controls the formatting of output into pages.

LSTREP Controls the listing of lines generated by repeat directives.
LSTSAS Controls structured assembly listing.

LSTXRF Generates a cross-reference table.

PAGE Generates a new page.

PAGSIZ Sets the number of lines per page.

Table 23: Listing control directives (Continued)

SYNTAX

COL columns
CYCMAX
CYCMEAN
CYCMIN
CYCLES expr
LSTCND{+ |-}
LSTCOD{+ |-}
LSTCYC{+|-}
LSTEXP{+|-}
LSTMAC{+]|-}
LSTOUT{+|-}
LSTPAG{+|-}
LSTREP{+|-}
LSTSAS{+|-}
LSTXRF{+|-}
PAGE

PAGSIZ lines

PARAMETERS

columns An absolute expression in the range 80 to 132, default is 80

lines An absolute expression in the range 10 to 150, default is 44

DESCRIPTION

Turning the listing on or off

Use LSTOUT- to disable all list output except error messages. This directive overrides
all other listing control directives.

The default is LsTouT+, which lists the output (if a list file was specified).

75

Listing control directives

76

HCSI12 IAR Assembler
Reference Guide

Listing conditional code and strings

Use LsTCND+ to force the assembler to list source code only for the parts of the assembly
that are not disabled by previous conditional TF statements.

The default setting is LSTCND-, which lists all source lines.

Use LSTCOD- to restrict the listing of output code to just the first line of code for a source
line.

The default setting is LsTCOD+, which lists more than one line of code for a source line,
if needed; i.e. long ASCII strings will produce several lines of output. Code generation
is not affected.

Controlling the listing of macros

Use LSTEXP- to disable the listing of macro-generated lines. The default is LSTEXP+,
which lists all macro-generated lines.

Use LSTMAC+ to list macro definitions. The default is LSTMAC-, which disables the
listing of macro definitions.
Controlling the listing of generated lines

Use LSTREP- to turn off the listing of lines generated by the directives REPT, REPTC,
and REPTI.

The default is LSTREP+, which lists the generated lines.

Controlling structured assembly listing

Use LSTSAS- to disable listing of the assembler source produced by the directives for
structured assembly.

The default is LsTSAS+, which lists assembler source produced by structured assembly
directives.
Generating a cross-reference table

Use LSTXRF+ to generate a cross-reference table at the end of the assembler list for the
current module. The table shows values and line numbers, and the type of the symbol.

The default is LSTXRF-, which does not give a cross-reference table.

Listing cycle counts

Use LsTcyC+ to list cycle counts. The value displayed is the sum of the processor clock
cycles. The sum can be reset to any value by the cYCLES directive. The cycle count is
set to 0 at the beginning of the listing.

Assembler directives __¢

CYCMIN causes the assembler to choose the lower of two possible values for the cycle
count. The HCS12 conditional branch instructions have two different cycle counts,
depending on if the branch is taken or not. CYCMaX selects the greater of the two, which
is default. CYCMEAN causes the assembler to take the mean value of cycMAX and
CYCMIN.

Specifying the list file format

Use COL to set the number of columns per page of the assembler list. The default number
of columns is 80.

Use PAGSIZ to set the number of printed lines per page of the assembler list. The default
number of lines per page is 44.

Use LsTPAG+ to format the assembler output list into pages.
The default is LSTPAG-, which gives a continuous listing.

Use PAGE to generate a new page in the assembler list file if paging is active.
EXAMPLES

Turning the listing on or off
To disable the listing of a debugged section of program:

LSTOUT-
; Debugged section
LSTOUT+
; Not yet debugged

Listing conditional code and strings

The following example shows how LSTCND+ hides a call to a subroutine that is disabled
by an 1F directive:

NAME lstcndtst
EXTERN print
RSEG prom
debug SET 0
begin IF debug
JSR print
ENDIF
LSTCND+
begin2 IF debug
CALL print
ENDIF

77

Listing control directives

78

HCSI12 IAR Assembler
Reference Guide

END
This will generate the following listing:

000000 name lstcndtst
000000 extern print
000000

000000 rseg prom
000000 debug set 0
000000

000000 begin if debug
000000 jsr print
000000 endif

0 000000

11 000000 lstcnd+

12 000000 begin2 if debug
14 000000 endif

15 000000 end

P W 00 J o0 U B W N

Controlling the listing of macros

The following example shows the effect of LsTMAC and LSTEXP:

dec2 MACRO arg
DEC arg
DEC arg
ENDM
LSTMAC+

inc2 MACRO arg
INC arg
INC arg
ENDM

EXTERN memloc
begin dec2 memloc

LSTEXP-

inc2 memloc
RTS

END begin

This will produce the following output:

5 000000 lstmac-

10 000000 extern memloc

11 000000 begin dec2 memloc
11.1 000000 73.... dec memloc
11.2 000003 73.... dec memloc

Assembler directives __¢

11.3 000006 endm

12 000006

13 000006 lstexp-14
14 000006 inc2 memloc
15 00000C 3D rts

16 00000D

17 00000D end begin

Formatting listed output

The following example formats the output into pages of 66 lines each with 132 columns.
The LSTPAG directive organizes the listing into pages, starting each module on a new
page. The PAGE directive inserts additional page breaks.

PAGSIZ 66 ; Page size
COL 132
LSTPAG+
ENDMOD
MODULE

PAGE

C-style preprocessor directives

The following C-language preprocessor directives are available:

Directive Description

#define Assigns a value to a label.

#elif Introduces a new condition ina #if. . .#endif block.
#else Assembles instructions if a condition is false.
#endif Ends a #if, #ifdef, or #ifndef block.
#error Generates an error.

#if Assembles instructions if a condition is true.
#ifdef Assembles instructions if a symbol is defined.
#ifndef Assembles instructions if a symbol is undefined.
#include Includes a file.

#message Generates a message on standard output.
#undef Undefines a label.

Table 24: C-style preprocessor directives

79

C-style preprocessor directives

80

HCSI12 IAR Assembler
Reference Guide

SYNTAX

#define label text
#elif condition
#else

#endif

#error "message"
#if condition
#ifdef Iabel
#ifndef Iabel
#include {"filename" | <filename>}
#message "message"
#undef Iabel

PARAMETERS
condition One of the following:

An absolute expression The expression must not
contain forward or external
references, and any non-zero
value is considered as true.

stringl=string The condition is true if
stringl and string2 have
the same length and contents.

stringl<>string2 The condition is true if

stringl and string2 have
different length or contents.

filename Name of file to be included.

label Symbol to be defined, undefined, or tested.

message Text to be displayed.

text Value to be assigned.

DESCRIPTION

Defining and undefining labels
Use #define to define a temporary label.
#define label value

Use #undef to undefine a label; the effect is as if it had not been defined.

Assembler directives __¢

Conditional directives

Use the #if...#else...#endif directives to control the assembly process at assembly
time. If the condition following the #i £ directive is not true, the subsequent instructions
will not generate any code (i.e. it will not be assembled or syntax checked) until a
#endif or #else directive is found.

All assembler directives (except for END) and file inclusion may be disabled by the
conditional directives. Each #1if directive must be terminated by a #endi £ directive.
The #else directive is optional and, if used, it must be inside a #if...#endif block.

#if..#endif and #if...#else...#endif blocks may be nested to any level.

Use #ifdef to assemble instructions up to the next #else or #endif directive only if
a symbol is defined.

Use #ifndef to assemble instructions up to the next #else or #endi £ directive only if
a symbol is undefined.

Including a source file

Use #include to insert the contents of a file into the source file at a specified point.
#include " filename" searches the following directories in the specified order:

1 The source file directory.

2 The directories specified by the - T option, or options.

3 The current directory.

#include <filename> searches the following directories in the specified order:

1 The directories specified by the - I option, or options.

2 The current directory.

Displaying errors

Use #error to force the assembler to generate an error, such as in a user-defined test.

Defining comments
Use /* ... */tocomment sections of the assembler listing.
Use // to mark the rest of the line as comment.

Note: Avoid mixing the operators, directives, and mnemonics with the C-style
preprocessor directives, as mixing them may lead to unexpected behavior. For more
information, see Using C-style preprocessor directives, page 11.

81

C-style preprocessor directives

82

HCSI12 IAR Assembler
Reference Guide

The following example illustrates some problems that may occur when assembler
comments are used in the C-style preprocessor:

#define five 5 ; comment
STAA [five, X] ; Syntax error!
; Expands to "STAA [5;comment, X]"
LDAA five + address ; Incorrect code!

; Expanded to "LDAA 5 ; comment + address"
EXAMPLES

Using conditional directives

The following example defines a label adjust, and then uses the conditional
directive #ifdef to use the value if it is defined. If it is not defined #error
displays an error:

NAME ifdef

EXTERN input, output
#define adjust 10
main LDAA input
#ifdef adjust

ADDA #adjust
#else
#error "'adjust' not defined"
#endif
#undef adjust

STAA output

RTS

END

Including a source file

The following example uses #include to include a file defining macros into the source
file. For example, the following macros could be defined in exchange.s12:

xch MACRO 1locl,loc2
LDAA locl
LDAB loc2
STAA loc2
STAB locl
ENDMAC

Assembler directives __¢

The macro definitions can then be included, using #include, as in the following example:

NAME include

LSTWID+
meml rmb 1
mem?2 rmb 1

#include "exchange.s33"
main xch meml, mem2
RTS
END

Data definition or allocation directives

These directives define values or reserve memory:

Directive Alias Description Expression restrictions
DC Defines constant values.
DC8 FCB Generates 8-bit constants, including
strings.
DC16 FDB Generates |6-bit constants.
DC32 FQB Generates 32-bit constants.
DCB Defines a constant block.
DS8 DS Allocates space for 8-bit integers. No external references
Absolute
DS16 DS Allocates space for |6-bit integers. ~ No external references
Absolute
DS32 DS Allocates space for 32-bit integers. ~ No external references
Absolute
DS Reserves memory bytes without
initializing.
FCB Defines constant bytes.
FCC Defines a constant string.
FDB Defines constant words.
FQOB Defines constant long words.
RMB Reserves memory bytes without
initializing.

Table 25: Data definition or allocation directives

83

Data definition or allocation directives

SYNTAX

DC[.size] expr [,expr]
DC8 expr [,expr]

DCl6 expr [,expr]

DC32 expr [,expr]
DCB[.size] count,value
DS[.size] count

DS8 expr [,expr]

DS16 expr [,expr]

DS32 expr [,expr]

FCB expr [,expr]

FCC expr

FDB expr [,expr]

FQB expr [,expr]

RMB count

PARAMETERS

count An absolute expression specifying the number of items to be reserved.

expr A valid absolute, relocatable, or external expression, or an ASCII string.
ASCII strings will be zero filled to a multiple of the data size implied by
the directive. Double-quoted strings will be zero-terminated.

value A valid absolute expression.

EXAMPLES

Generating lookup table
The following example generates a lookup table of addresses to routines:

NAME table
RSEG CONST
table DC16 addsubr, subsubr, clrsubr

RSEG CODE
addsubraba

rts
subsubrsba

rts
clrsubrclra

rts

END

HCSI12 IAR Assembler
84 Reference Guide

Assembler directives __¢

Defining strings

To define a string:

mymsg DC8 'Please enter your name'

To define a string which includes a trailing zero:

myCstr DC8 "This is a string."

To include a single quote in a string, enter it twice; for example:

errmsg DC8 'Don''t understand!'

Reserving space
To reserve space for 0xa bytes:

table DS8 0xA

Assembler control directives

These directives provide control over the operation of the assembler.

Directive Description

$ Includes a file.

/*comment*/ C-style comment delimiter.

/7 C+ style comment delimiter.

CASEOFF Disables case sensitivity.

CASEON Enables case sensitivity.

RADIX Sets the default base on all numeric values.

Table 26: Assembler control directives

SYNTAX

$filename
/* comment*/
// comment
CASEOFF
CASEON
RADIX expr

85

Assembler control directives

86

HCSI12 IAR Assembler
Reference Guide

PARAMETERS

comment Comment ignored by the assembler.

expr Default base; default 10 (decimal).

filename Name of file to be included. The $ character must be the first
character on the line.

DESCRIPTION

Use $ to insert the contents of a file into the source file at a specified point.
Use /*...*/ to comment sections of the assembler listing.
Use // to mark the rest of the line as comment.

Use RADIX to set the default base for constants. The default base is 10.

Controlling case sensitivity

Use CASEON or CASEOFF to turn on or off case sensitivity for user-defined symbols. By
default case sensitivity is off.

When CASEOFF is active all symbols are stored in upper case, and all symbols used by
XLINK should be written in upper case in the XLINK definition file.

EXAMPLES

Including a source file

The following example uses $ to include a file defining macros into the source file. For
example, the following macros could be defined in Mymacros.s12:

; Memory exchange

xch MACRO locl, loc2
LDAA locl
LDAB loc2
STAA loc2
STAB locl
ENDMAC

The macro definitions can be included with a $ directive, as in:

name include
extern meml, mem?2
SMymacros.sl2
main xch meml, mem2
rts
end

Assembler directives __¢

Defining comments

The following example shows how /*. . .*/ can be used for a multi-line comment:
/ *

Program to read serial input.

Version 3: 19.11.04

Author: mjp

*/

Changing the base

To set the default base to 16:

RADIX 16
LDAA #12

The immediate argument will then be interpreted as H' 12.

Controlling case sensitivity
When CASEOFF is set, label and LABEL are identical in the following example:

label NOP ; Stored as "LABEL"
BRA LABEL

The following will generate a duplicate label error:

label NOP
LABEL NOP ; Error, "LABEL" already defined

END

Function directives

The function directives are generated by the HCS12 IAR C/C++ Compiler to pass
information about functions and function calls to the IAR XLINK Linker. These
directives can be seen if you create an assembler list file by using the compiler option
Output assembler file>Include compiler runtime information (-12).

Note: These directives are primarily intended to support static overlay, a feature which
is useful in smaller microcontrollers. The HCS12 IAR C/C++ Compiler does not use
static overlay, as it has no use for it.

SYNTAX

FUNCTION <label>,<value>
ARGFRAME <segment>, <size>, <type>

87

Function directives

88

HCSI12 IAR Assembler
Reference Guide

LOCFRAME <segment>, <size>, <type>
FUNCALL <caller>, <callee>

PARAMETERS

label Label to be declared as function.

value Function information.

segment Segment in which the argument frame or local frame will be
stored.

size Size of argument frame or local frame.

type Type of argument or local frame; either STACK or STATIC.

caller Caller to a function.

callee Called function.

DESCRIPTIONS

FUNCTION declares the 1abel name to be a function. value encodes extra information
about the function.

FUNCALL declares that the function caller calls the function callee. callee can be
omitted to indicate an indirect function call.

ARGFRAME and LOCFRAME declare how much space the frame of the function uses in
different memories. ARGFRAME declares the space used for the arguments to the
function, LOCFRAME the space for locals. segment is the segment in which the space
resides. size is the number of bytes used. type is either STACK or STATIC, for
stack-based allocation and static overlay allocation, respectively.

ARGFRAME and LOCFRAME always occur immediately after a FUNCTION or FUNCALL
directive.

After a FUNCTION directive for an external function, there can only be ARGFRAME
directives, which indicate the maximum argument frame usage of any call to that
function. After a FUNCTION directive for a defined function, there can be both
ARGFRAME and LOCFRAME directives.

After a FUNCALL directive, there will first be LoCcFRAME directives declaring frame
usage in the calling function at the point of call, and then ARGFRAME directives
declaring argument frame usage of the called function.

Assembler directives __¢

Call frame information (CFl) directives

These directives allow backtrace information to be defined in the assembler source code.
The benefit is that you can view the call frame stack when you debug your assembler

code.

Directive Description

CFI BASEADDRESS Declares a base address CFA (Canonical Frame Address).
CFI BLOCK Starts a data block.

CFI CODEALIGN Declares code alignment.

CFI COMMON Starts or extends a common block.

CFI CONDITIONAL Declares data block to be a conditional thread.
CFI DATAALIGN Declares data alignment.

CFI ENDBLOCK Ends a data block.

CFI ENDCOMMON Ends a common block.

CFI ENDNAMES Ends a names block.

CFI FRAMECELL Creates a reference into the caller’s frame.
CFI FUNCTION Declares a function associated with data block.
CFI INVALID Starts range of invalid backtrace information.
CFI NAMES Starts a names block.

CFI NOFUNCTION Declares data block to not be associated with a function.
CFI PICKER Declares data block to be a picker thread.

CFI REMEMBERSTATE Remembers the backtrace information state.
CFI RESOURCE Declares a resource.

CFI RESOURCEPARTS Declares a composite resource.

CFI RESTORESTATE Restores the saved backtrace information state.
CFI RETURNADDRESS Declares a return address column.

CFI STACKFRAME Declares a stack frame CFA.

CFI STATICOVERLAYFRAME Declares a static overlay frame CFA.

CFI VALID Ends range of invalid backtrace information.
CFI VIRTUALRESOURCE Declares a virtual resource.

CFI cfa Declares the value of a CFA.

CFI resource Declares the value of a resource.

Table 27: Call frame information directives

89

Call frame information (CFl) directives

SYNTAX

The syntax definitions below show the syntax of each directive. The directives are
grouped according to usage.

Names block directives

CFI NAMES name

CFI ENDNAMES name

CFI RESOURCE resource : bits [, resource : bits]

CFI VIRTUALRESOURCE resource : bits [, resource : bits]
CFI RESOURCEPARTS resource part, part [, part]

CFI STACKFRAME cfa resource type [, cfa resource type]
CFI STATICOVERLAYFRAME cfa segment [, cfa segment]

CFI BASEADDRESS cfa type [, cfa typel

Extended names block directives

CFI NAMES name EXTENDS namesblock
CFI ENDNAMES name
CFI FRAMECELL cell cfa(offset): size|[, cell cfa(offset): sizel

Common block directives

CFI COMMON name USING namesblock

CFI ENDCOMMON name

CFI CODEALIGN codealignfactor

CFI DATAALIGN dataalignfactor

CFI RETURNADDRESS resource type

CFI cfa {NOTUSED|USED}

CFI cfa {resource | resource + constant | resource - constant}
CFI cfa cfiexpr

CFI resource {UNDEFINED | SAMEVALUE | CONCAT}
CFI resource {resource | FRAME (cfa, offset)}
CFI resource cfiexpr

Extended common block directives

CFI COMMON name EXTENDS commonblock USING namesblock
CFI ENDCOMMON name

Data block directives

CFI BLOCK name USING commonblock
CFI ENDBLOCK name

CFI {NOFUNCTION | FUNCTION label}
CFI {INVALID | VALID}

CFI {REMEMBERSTATE | RESTORESTATE}

HCSI12 IAR Assembler
90 Reference Guide

Assembler directives __¢

CFI PICKER
CFI CONDITIONAL label [, labell]
CFI cfa {resource | resource + constant \ resource - constant}

CFI cfa cfiexpr

CFI resource {UNDEFINED | SAMEVALUE | CONCAT}
CFI resource {resource | FRAME(cfa, offset)}
CFI resource cfiexpr

PARAMETERS
bits

cell

cfa

cfiexpr

codealignfactor

commonblock

constant

dataalignfactor

label

name
namesblock
offset

part

resource

segment

The size of the resource in bits.

The name of a frame cell.

The name of a CFA (canonical frame address).

A CFI expression (see CFI expressions, page 98).

The smallest factor of all instruction sizes. Each CFI directive for
a data block must be placed according to this alignment. 1 is the
default and can always be used, but a larger value will shrink the
produced backtrace information in size. The possible range is
1-256.

The name of a previously defined common block.

A constant value or an assembler expression that can be evaluated
to a constant value.

The smallest factor of all frame sizes. If the stack grows towards
higher addresses, the factor is negative; if it grows towards lower
addresses, the factor is positive. 1 is the default, but a larger value
will shrink the produced backtrace information in size. The
possible ranges are -256 — -1 and 1 — 256.

A function label.

The name of the block.

The name of a previously defined names block.

The offset relative the CFA. An integer with an optional sign.

A part of a composite resource. The name of a previously
declared resource.

The name of a resource.

The name of a segment.

91

Call frame information (CFl) directives

92

HCSI12 IAR Assembler
Reference Guide

size The size of the frame cell in bytes.

type The memory type, such as CODE, CONST or DATA. In addition, any
of the memory types supported by the IAR XLINK Linker. It is
used solely for the purpose of denoting an address space.

DESCRIPTIONS

The Call Frame Information directives (CFI directives) are an extension to the
debugging format of the IAR C-SPY Debugger. The CFI directives are used for defining
the backtrace information for the instructions in a program. The compiler normally
generates this information, but for library functions and other code written purely in
assembler language, backtrace information has to be added if you want to use the call
frame stack in the debugger.

The backtrace information is used to keep track of the contents of resources, such as
registers or memory cells, in the assembler code. This information is used by the IAR
C-SPY Debugger to go “back” in the call stack and show the correct values of registers
or other resources before entering the function. In contrast with traditional approaches,
this permits the debugger to run at full speed until it reaches a breakpoint, stop at the
breakpoint, and retrieve backtrace information at that point in the program. The
information can then be used to compute the contents of the resources in any of the
calling functions—assuming they have call frame information as well.

Backtrace rows and columns

At each location in the program where it is possible for the debugger to break execution,
there is a backtrace row. Each backtrace row consists of a set of columns, where each
column represents an item that should be tracked. There are three kinds of columns:

o The resource columns keep track of where the original value of a resource can be
found.

o The Canonical Frame Address columns (CFA columns) keep track of the top of the
function frames.

o The return address column keeps track of the location of the return address.

There is always exactly one return address column and usually only one CFA column,
although there may be more than one.
Defining a names block

A names block is used to declare the resources available for a processor. Inside the
names block, all resources that can be tracked are defined.

Assembler directives __¢

Start and end a names block with the directives:

CFI NAMES name
CFI ENDNAMES name

where name is the name of the block.
Only one names block can be open at a time.

Inside a names block, four different kinds of declarations may appear: a resource
declaration, a stack frame declaration, a static overlay frame declaration, or a base
address declaration:

o To declare a resource, use one of the directives:

CFI RESOURCE resource : bits
CFI VIRTUALRESOURCE resource : bits

The parameters are the name of the resource and the size of the resource in bits. A
virtual resource is a logical concept, in contrast to a “physical” resource such as a
processor register. Virtual resources are usually used for the return address.

More than one resource can be declared by separating them with commas.

A resource may also be a composite resource, made up of at least two parts. To
declare the composition of a composite resource, use the directive:

CFI RESOURCEPARTS resource part, part,

The parts are separated with commas. The resource and its parts must have been
previously declared as resources, as described above.

e To declare a stack frame CFA, use the directive:
CFI STACKFRAME cfa resource type

The parameters are the name of the stack frame CFA, the name of the associated
resource (the stack pointer), and the segment type (to get the address space). More
than one stack frame CFA can be declared by separating them with commas.

When going “back” in the call stack, the value of the stack frame CFA is copied into
the associated stack pointer resource to get a correct value for the previous function
frame.

e To declare a static overlay frame CFA, use the directive:
CFI STATICOVERLAYFRAME cfa segment

The parameters are the name of the CFA and the name of the segment where the static
overlay for the function is located. More than one static overlay frame CFA can be
declared by separating them with commas.

93

Call frame information (CFl) directives

o To declare a base address CFA, use the directive:
CFI BASEADDRESS cfa type

The parameters are the name of the CFA and the segment type. More than one base
address CFA can be declared by separating them with commas.

A base address CFA is used to conveniently handle a CFA. In contrast to the stack
frame CFA, there is no associated stack pointer resource to restore.
Extending a names block

In some special cases you have to extend an existing names block with new resources.
This occurs whenever there are routines that manipulate call frames other than their
own, such as routines for handling, entering, and leaving C or C++ functions; these
routines manipulate the caller’s frame. Extended names blocks are normally used only
by compiler developers.

Extend an existing names block with the directive:
CFI NAMES name EXTENDS namesblock

where namesblock is the name of the existing names block and name is the name of
the new extended block. The extended block must end with the directive:

CFI ENDNAMES name

Defining a common block

The common block is used for declaring the initial contents of all tracked resources.
Normally, there is one common block for each calling convention used.

Start a common block with the directive:
CFI COMMON name USING namesblock

where name is the name of the new block and namesbIock is the name of a previously
defined names block.

Declare the return address column with the directive:
CFI RETURNADDRESS resource type

where resource is a resource defined in namesblock and type is the segment type.
You have to declare the return address column for the common block.

End a common block with the directive:
CFI ENDCOMMON name

where name is the name used to start the common block.

HCSI12 IAR Assembler
94 Reference Guide

Assembler directives __¢

Inside a common block you can declare the initial value of a CFA or a resource by using
the directives listed last in Common block directives, page 90. For more information on
these directives, see Simple rules, page 96, and CF1I expressions, page 98.

Extending a common block

Since you can extend a names block with new resources, it is necessary to have a
mechanism for describing the initial values of these new resources. For this reason, it is
also possible to extend common blocks, effectively declaring the initial values of the
extra resources while including the declarations of another common block. Just as in the
case of extended names blocks, extended common blocks are normally only used by
compiler developers.

Extend an existing common block with the directive:
CFI COMMON name EXTENDS commonblock USING namesblock

where name is the name of the new extended block, commonblock is the name of the
existing common block, and namesblock is the name of a previously defined names
block. The extended block must end with the directive:

CFI ENDCOMMON name

Defining a data block

The data block contains the actual tracking information for one continuous piece of
code. No segment control directive may appear inside a data block.

Start a data block with the directive:
CFI BLOCK name USING commonblock

where name is the name of the new block and commonblock is the name of a previously
defined common block.

If the piece of code is part of a defined function, specify the name of the function with
the directive:

CFI FUNCTION label

where label is the code label starting the function.

If the piece of code is not part of a function, specify this with the directive:
CFI NOFUNCTION

End a data block with the directive:

CFI ENDBLOCK name

where name is the name used to start the data block.

95

Call frame information (CFl) directives

Inside a data block you may manipulate the values of the columns by using the directives
listed last in Data block directives, page 90. For more information on these directives,
see Simple rules, page 96, and CFI expressions, page 98.

SIMPLE RULES

To describe the tracking information for individual columns, there is a set of simple rules
with specialized syntax:

CFI cfa { NOTUSED | USED }

CFI cfa { resource | resource + constant | resource - constant }
CFI resource { UNDEFINED \ SAMEVALUE \ CONCAT }

CFI resource { resource | FRAME(cfa, offset) }

These simple rules can be used both in common blocks to describe the initial
information for resources and CFAs, and inside data blocks to describe changes to the
information for resources or CFAs.

In those rare cases where the descriptive power of the simple rules are not enough, a full
CFI expression can be used to describe the information (see CFI expressions, page 98).
However, whenever possible, you should always use a simple rule instead of a CFI
expression.

There are two different sets of simple rules: one for resources and one for CFAs.

Simple rules for resources

The rules for resources conceptually describe where to find a resource when going back
one call frame. For this reason, the item following the resource name in a CFI directive
is referred to as the location of the resource.

To declare that a tracked resource is restored, that is, already correctly located, use
SAMEVALUE as the location. Conceptually, this declares that the resource does not have
to be restored since it already contains the correct value. For example, to declare that a
register REG is restored to the same value, use the directive:

CFI REG SAMEVALUE

To declare that a resource is not tracked, use UNDEFINED as location. Conceptually, this
declares that the resource does not have to be restored (when going back one call frame)
since it is not tracked. Usually it is only meaningful to use it to declare the initial location
of aresource. For example, to declare that REG is a scratch register and does not have to
be restored, use the directive:

CFI REG UNDEFINED

HCSI12 IAR Assembler
96 Reference Guide

Assembler directives __¢

To declare that a resource is temporarily stored in another resource, use the resource
name as its location. For example, to declare that a register REG1 is temporarily located
in a register REG2 (and should be restored from that register), use the directive:

CFI REG1l REG2

To declare that a resource is currently located somewhere on the stack, use FRAME (cfa,
offset) as location for the resource, where cfa is the CFA identifier to use as “frame
pointer” and of fset is an offset relative the CFA. For example, to declare that a register
REG is located at offset -4 counting from the frame pointer CFA_SP, use the directive:

CFI REG FRAME (CFA_SP, -4)

For a composite resource there is one additional location, CONCAT, which declares that
the location of the resource can be found by concatenating the resource parts for the
composite resource. For example, consider a composite resource RET with resource
parts RETLO and RETHI. To declare that the value of RET can be found by investigating
and concatenating the resource parts, use the directive:

CFI RET CONCAT

This requires that at least one of the resource parts has a definition, using the rules
described above.

Simple rules for CFAs

In contrast with the rules for resources, the rules for CFAs describe the address of the
beginning of the call frame. The call frame often includes the return address pushed by
the subroutine calling instruction. The CFA rules describe how to compute the address
to the beginning of the current call frame. There are two different forms of CFAs, stack
frames and static overlay frames, each declared in the associated names block. See
Names block directives, page 90.

Each stack frame CFA is associated with a resource, such as the stack pointer. When
going back one call frame the associated resource is restored to the current CFA. For
stack frame CFAs there are two possible simple rules: an offset from a resource (not
necessarily the resource associated with the stack frame CFA) or NOTUSED.

To declare that a CFA is not used, and that the associated resource should be tracked as
anormal resource, use NOTUSED as the address of the CFA. For example, to declare that
the CFA with the name CFA_SP is not used in this code block, use the directive:

CFI CFA_SP NOTUSED

To declare that a CFA has an address that is offset relative the value of a resource, specify
the resource and the offset. For example, to declare that the CFA with the name CFA_sp
can be obtained by adding 4 to the value of the SP resource, use the directive:

CFI CFA_SP SP + 4

97

Call frame information (CFl) directives

For static overlay frame CFAs, there are only two possible declarations inside common
and data blocks: USED and NOTUSED.

CFI EXPRESSIONS

Call Frame Information expressions (CFI expressions) can be used when the descriptive
power of the simple rules for resources and CFAs is not enough. However, you should
always use a simple rule when one is available.

CFI expressions consist of operands and operators. Only the operators described below
are allowed in a CFI expression. In most cases, they have an equivalent operator in the
regular assembler expressions.

In the operand descriptions, c£iexpr denotes one of the following:

o A CFI operator with operands
® A numeric constant

o A CFA name

® A resource name.

Unary operators

Overall syntax: OPERATOR (operand)

Operator Operand Description

COMPLEMENT cfiexpr Performs a bitwise NOT on a CFl expression.

LITERAL expr Get the value of the assembler expression. This can insert
the value of a regular assembler expression into a CFl
expression.

NOT cfiexpr Negates a logical CFl expression.

UMINUS cfiexpr Performs arithmetic negation on a CFl expression.

Table 28: Unary operators in CFI expressions

Binary operators

Overall syntax: OPERATOR (operandl, operand2)

98

HCSI12 IAR Assembler
Reference Guide

Operator Operands Description

ADD cfiexpr,cfiexpr Addition

AND cfiexpr,cfiexpr Bitwise AND

DIV cfiexpr,cfiexpr Division

EQ cfiexpr,cfiexpr Equal

GE cfiexpr,cfiexpr Greater than or equal

Table 29: Binary operators in CFI expressions

Assembler directives __¢

Operator Operands Description

GT cfiexpr,cfiexpr Greater than

LE cfiexpr,cfiexpr Less than or equal

LSHIFT cfiexpr,cfiexpr Logical shift left of the left operand. The number of
bits to shift is specified by the right operand. The sign
bit will not be preserved when shifting.

LT cfiexpr,cfiexpr Less than

MOD cfiexpr,cfiexpr Modulo

MUL cfiexpr,cfiexpr Multiplication

NE cfiexpr,cfiexpr Not equal

OR cfiexpr,cfiexpr Bitwise OR

RSHIFTA cfiexpr,cfiexpr Arithmetic shift right of the left operand. The number
of bits to shift is specified by the right operand. In
contrast with RSHIFTL the sign bit will be preserved
when shifting.

RSHIFTL cfiexpr,cfiexpr Logical shift right of the left operand. The number of
bits to shift is specified by the right operand. The sign
bit will not be preserved when shifting.

SUB cfiexpr,cfiexpr Subtraction

XOR cfiexpr,cfiexpr Bitwise XOR

Table 29: Binary operators in CFI expressions (Continued)

Ternary operators

Overall syntax: OPERATOR (operandl, operand2, operand3)

Operator Operands

Description

FRAME cfa,size,offset Get value from stack frame. The operands are:
cfa An identifier denoting a previously declared CFA.
size A constant expression denoting a size in bytes.
offset A constant expression denoting an offset in bytes.

Gets the value at address cfa+offset of size size.

IF cond, true, false Conditional operator. The operands are:
cond A CFA expression denoting a condition.
true Any CFA expression.
false Any CFA expression.
If the conditional expression is non-zero, the result is the
value of the true expression; otherwise the result is the
value of the false expression.

Table 30: Ternary operators in CFI expressions

99

Call frame information (CFl) directives

100

HCSI12 IAR Assembler
Reference Guide

Operator Operands Description

LOAD size, type,addr Get value from memory. The operands are:
size A constant expression denoting a size in bytes.
type A memory type.
addr A CFA expression denoting a memory address.
Gets the value at address addr in segment type type of

size size.

Table 30: Ternary operators in CFI expressions (Continued)

EXAMPLE

The following is a generic example and not an example specific to the HCS12
microcontroller. This will simplify the example and clarify the usage of the CFI
directives. A target-specific example can be obtained by generating assembler output
when compiling a C source file.

Consider a generic processor with a stack pointer Sp, and two registers R0 and R1.
Register RO will be used as a scratch register (the register is destroyed by the function
call), whereas register R1 has to be restored after the function call. For reasons of
simplicity, all instructions, registers, and addresses will have a width of 16 bits.

Consider the following short code sample with the corresponding backtrace rows and
columns. At entry, assume that the stack contains a 16-bit return address. The stack
grows from high addresses towards zero. The CFA denotes the top of the call frame, that
is, the value of the stack pointer after returning from the function.

Address CFA SP RO RI RET Assembler code

0000 SP+2 — SAME CFA -2 funcl: PUSH R1
0002 SP+4 CFA -4 MOV R1,#4
0004 CALL func2
0006 POP RO
0008 SP+2 RO MOV R1,RO
000A SAME RET

Table 31: Code sample with backtrace rows and columns

Each backtrace row describes the state of the tracked resources before the execution of
the instruction. As an example, for the MOV R1, RO instruction the original value of the
R1 register is located in the RO register and the top of the function frame (the CFA
column) is SP + 2. The backtrace row at address 0000 is the initial row and the result
of the calling convention used for the function.

Assembler directives __¢

The SP column is empty since the CFA is defined in terms of the stack pointer. The RET
column is the return address column—that is, the location of the return address. The RO
column has a ‘—’ in the first line to indicate that the value of RO is undefined and does
not need to be restored on exit from the function. The R1 column has SAME in the initial
row to indicate that the value of the R1 register will be restored to the same value it
already has.

Defining the names block
The names block for the small example above would be:

CFI NAMES trivialNames
CFI RESOURCE SP:16, R0O:16, R1:16
CFI STACKFRAME CFA SP DATA

;; The virtual resource for the return address column
CFI VIRTUALRESOURCE RET:16
CFI ENDNAMES trivialNames

Defining the common block

The common block for the simple example above would be:

CFI COMMON trivialCommon USING trivialNames

CFI RETURNADDRESS RET DATA

CFI CFA SP + 2

CFI RO UNDEFINED

CFI R1 SAMEVALUE

CFI RET FRAME (CFA, -2) ; Offset -2 from top of frame
CFI ENDCOMMON trivialCommon

Note: sp may not be changed using a CFI directive since it is the resource associated
with CFA.

Defining the data block

Continuing the simple example, the data block would be:

RSEG CODE:CODE

CFI BLOCK funclblock USING trivialCommon
CFI FUNCTION funcl
funcl:
PUSH R1
CFI CFA SP + 4
CFI R1 FRAME (CFA, -4)
MOV R1,#4
CALL func?2
POP RO
CFI R1 RO

101

Call frame information (CFl) directives

CFI CFA SP + 2
MOV R1,RO

CFI R1 SAMEVALUE
RET

CFI ENDBLOCK funclblock

Note that the CFI directives are placed after the instruction that affects the backtrace
information.

HCSI12 IAR Assembler
102 Reference Guide

Assembler diagnostics

This chapter describes the format of the diagnostic messages and explains how
diagnostic messages are divided into different levels of severity.

Message format

All diagnostic messages are issued as complete, self-explanatory messages. A typical
diagnostic message from the assembler is produced in the form:

filename, linenumber levell[tag]: message

where filename is the name of the source file in which the error was encountered;
1linenumber is the line number at which the assembler detected the error; Ievel is the
level of seriousness of the diagnostic; tag is a unique tag that identifies the diagnostic
message; message is a self-explanatory message, possibly several lines long.

Diagnostic messages are displayed on the screen. In the IAR Embedded Workbench
IDE, diagnostic messages are displayed in the Build messages window.

Severity levels

The diagnostic messages produced by the HCS12 IAR Assembler reflect problems or
errors that are found in the source code or occur at assembly time.

ASSEMBLY WARNING MESSAGES

Assembly warning messages are produced when the assembler has found a construct
which is probably the result of a programming error or omission.

COMMAND LINE ERROR MESSAGES

Command line errors occur when the assembler is invoked with incorrect parameters.
The most common situation is when a file cannot be opened, or with duplicate,
misspelled, or missing command line options.

ASSEMBLY ERROR MESSAGES

Assembly error messages are produced when the assembler has found a construct which
violates the language rules.

103

Severity levels

104

HCSI12 IAR Assembler
Reference Guide

ASSEMBLY FATAL ERROR MESSAGES

Assembly fatal error messages are produced when the assembler has found a user error
so severe that further processing is not considered meaningful. After the diagnostic
message has been issued, the assembly is immediately terminated.

ASSEMBLER INTERNAL ERROR MESSAGES

An internal error is a diagnostic message that signals that there has been a serious and
unexpected failure due to a fault in the assembler. It is produced using the following
form:

Internal error: message

where message is an explanatory message. If internal errors occur, they should be
reported to your software distributor or IAR Technical Support. Please include
information enough to reproduce the problem. This would typically include:

o The product name

The version number of the assembler, which can be seen in the header of the list
files generated by the assembler

Your license number

The exact internal error message text

The source file of the program that generated the internal error

A list of the options that were used when the internal error occurred.

A

absolute eXpressions . ..o .v vttt 8
absolute SegMentsSo vttt 51
ADD (CFLOperator)o.vuetneneeeennenen.. 98
addition (assembler operator), 30
address field, in assembler listfile 10
AHCS12_INC (environment variable) 14
ALIAS (assembler directive) 55
ALIGN (assembler directive) 50
alignment, of segments., 53
ALIGNRAM (assembler directive). 50
AND (CFLoperator)vuvuneneeennennn.. 98
architecture, HCS12 i, ix
ARGFRAME (assembler directive) 87
ASCII character constants.c.couvnennen.n.. 4
ASEG (assembler directive), 50
ASEGN (assembler directive). 50
asm (filename extension)i.iu.n. 3
ASMHCS12 (environment variable). 14
assembler control directives 85
assembler diagnosticso 103
assembler directives
ALIAS . . . 55
ALIGN. . ..o 50
ALIGNRAM i 50
ARGFRAME. 87
ASEG. ... 50
ASEGN 50
assemblercontrol. 85
BREAK 68
call frame information 89
CASE. .. 68
CASEOFF e 85
CASEON. ... e 85
CFLdirectives.oovi i 89
COL. .ot e 74
COMMON. ... e e 50

Index °

conditional assembly L oL 59
See also C-style preprocessor directives
CONTINUE.o e 68
CYCLES ..ot e 74
CYCMAX .ottt e e 74
CYCMEAN. . .ot 74
CYCMIN . . .ot e e 74
C-style preprocessorc.oeuvreneuannenenn 79
data definition or allocation 83
DC . 83
D8 . 83
DCB. .ottt 83
DCIO . oot 83
DC32 83
DEFAULT ot 68
DEFINE.t 55
DS 83
DS 83
DSIO .« 83
DS 83
ELSE ... 59
ELSEIF e 59
ELSEIFS ..o e 68
ELSES . .. 68
END. .o 45
ENDF. . .o 68
ENDIF. ... 59
ENDIFS. ..o e 68
ENDM. ..o e e 61
ENDMODt 45
ENDR ... 61
ENDS. . 68
ENDW . .o 68
EQU. .o 55
EVEN .. 50
EXITM ..ot e e 61
EXPORT ...t e 48
EXTERNo e 48
FCB . o 83

105

106

FDB. .. e 83
FOR. ... e 68
FOQB. ... 83
FUNCALL. e e 88
FUNCTION. e 87
function 87
TF . 59
TIRC. . 59
IENC .. 59
IRS . 68
IEXX e 59
IMPORT 48
LIBRARY 45
listfilecontrol 74
LOCAL ... e e 61
LOCFRAMEt 88
LSTCND ...t et 74
LSTCOD . ..o e e 74
LSTCYC ... e e 74
LSTEXP ... e 74
LSTMAC. ... e 74
LSTOUT ... e 75
LSTPAG e 75
LSTREP. i 75
LSTSAS. . 75
LSTXRF ... e 75
MACRO. . .. 61
MACIO PrOCESSING . « ¢ vt v v vt ettt ee e 61
MODULE 45
modulecontrol. 45
NAME 45
ORG ... 50
PAGE. 75
PAGSIZ 75
PROGRAM i 46
PUBLIC. e 48
PUBWEAK i 48
RADIX ... 85

HCSI12 IAR Assembler
Reference Guide

REPEAT e 68
REPT e 61
REPTC. e e e 61
REPTI s 61
REQUIRE it 48
RSEG. ... 50
RTMODEL it 46
segmentcontrol i 50
SET ot 55
STTb. .o 55
SITtYPE « oo 55
SITW .o 55
STACK ... e 50
structured assembly Lo L. 68
SUMMATY « + v v v tete e et e et ee e e e ee s 41
SWITCH e 68
symbolcontrol 48
UNTIL. ... e e 68
value assignment 55
WHILE i 68
#define....... 79
Helif ... 79
HelSe. o oo 79
#endif. 79
HOITOT . . ottt e 79
B 79
#ifdef 79
#ifndef 79
#include......... 79
HMESSAZE . o o e 79
#undef 79
S 85
P 85
/P 85
PP 55
assembler environment variables 14
assembler instructions. 3
assemblerlabels, 5
defining and undefining 80

formatof L 2
assembler list files
addressfield.......... L. 10
conditional code and strings. 76
conditions, specifying 16
cross-references
GENETatiNg . . . oottt 25
table, generating 76
cyclecountsin., 76
datafield L L., 10
disabling 75
enabling......... i 75
filename, specifying. 20
format, specifying 77
generated lines, controlling 76
GENETALNG . . ottt ettt 20
header section, omitting. 21
#include files, specifying 19
lines per page, specifying. 22
macro execution information, including. 16
macro-generated lines, controlling. 76
structured assembly, controlling. 76
symbol and cross-reference table. 10
tab spacing, specifying. 24
using directives to format. 77
assembler macros
arguments, Passing to. vovv v v v n e 64
defining i 62
generated lines, controlling in listfile 76
in-line routines.ottt 65
predefined symbol L. 64
PIOCESSING . o v vttt et et 65
quote characters, specifying. 20
special characters, using. 63
assembler object file, specifying filename. 22
assembler Operators 27
I EXPIESSIONS. .« o\ vt vt vttt e et en 3
precedence. e 27
P 35

Index °

o 35
DO . e e 35
& e 31
K& 31
e 29
e e 29-30
PP 30
BYT2.. o 32
BYT3.. o 32
DATE.. ..ottt 32
HIGH.. e 33
HWRD.. e 34
LOW. . 34
LWRD. ... 35
SFB. .ot 36
SFE. .« @t 36
SIZEOF. . .o 38
UGT. . oo e 38
ULT. .o 39
XOR.. ot 39
L 30
S 34
e 37
o 34
> e 35
TS PP 33
e i P 33
D 33
> 33
> 37
LA PP 31
Lo 31
e 36
S PP 31
assembler options
command line, setting 13
extended command file, setting 13
SUMMATY © e v v evee e et e e e et ee e e e e e 15
typographic convention xi

107

108

B 16

L P 16

S e e e 16
D 17
B 18

S PN 13,18

SG 18
(P 18
PP 19

s 19
PP 20
PP 20
M 20
N 21

SO 22

L T 22

D e 22

s 23

S 23

S e e e 23
PP 24
U 24
s 25 P 24

K e e e e e e 25
assembler output, including debug information 23
assembler source files, including 81, 86
assembler source format........... 2
assembler symbols i 5
EXPOITING . ..ottt 49
IMPOrting.oouuini i 49

in relocatable expressions 8
local. ..o 58
predefined L 7
undefining. i 24
redefining. i 57
assembly error messages.i i 103
assembly warning messagesoiinen... 103
disabling 24
assumptions (programming experience) ix

HCSI12 IAR Assembler
Reference Guide

-B (assembleroption) i 16
-b (assembler option)i .. 16
backtrace information, defining 89
bitwise AND (assembler operator) 31
bitwise exclusive OR (assembler operator)............. 31
bitwise NOT (assembler operator) 31
bitwise OR (assembler operator). 31
BREAK (assembler directive).covu... 68
-c (assembleroption) 16
call frame information directives 89
case sensitive user symbols. oL i 23
case sensitivity, controlling. 86
CASE (assembler directive) 68
CASEOFF (assembler directive). 85
CASEON (assembler directive) 85
CFLAIirectiveso v ettt e 89
CFILexpressionscueuenerenennenenenenan.. 98
CFLOPeratorsvuuenenen e 98
character constants, ASCII 4
COL (assembler directive)coouvue.n.. 74
command line error messages, assembler............. 103
command line Options. 13
command line, extending 18
COMIMENLS .+« v vt e et et ettt e et et e et e eeeneenns 81
in assembler sourcecode, 2
multi-line, using with assembler directives 87
COMIMON SEZMENTS .« . v v v ev ettt et e ee e 52
COMMON (assembler directive) 50
compiler options
S 21
COMPLEMENT (CFI operator).c.c.ovun.. 98
computer style, typographic convention xi
conditional assembly directives 59
See also C-style preprocessor directives. 81

conditional code and strings, listing 76
conditional listfile 16
CONSLANtS, INTEZET . . .ot v ettt et eeeen 4
CONTINUE (assembler directive) 68
conventions, typographic, xi
CRC, in assembler listfile 10
cross-references, in assembler list file

GENETALNG . . o\ttt it 25

table, generating. 76
current time/date (assembler operator) 32
CYCLES (assembler directive). 74
CYCMAX (assembler directive). 74
CYCMEAN (assembler directive) 74
CYCMIN (assembler directive) 74
C-style preprocessor directives, 79
-D (assembler option) 17
data allocation directives.coovuvnenn.. 83
data definition directives., 83
data field, in assembler listfile 10
_ _DATE_ _ (predefined symbol) 7
DC8 (assembler directive).covtiin ... 83
DC (assembler directive).ccouiniean.... 83
DCB (assembler directive)ccuuon.... 83
DC16 (assembler directive).oou.... 83
DC32 (assembler directive).cou.... 83
debug information, including in assembler output 23
DEFAULT (assembler directive). 68
#define (assembler directive) 79
DEFINE (assembler directive) 55
diagnosticsot 103
directives. See assembler directives
DIV (CFLOperator) vov vttt e e eeeeenn 98
division (assembler operator) 30
document Conventions.vuineenennenen.. xi
DS8 (assembler directive). 83
DS (assembler directive)., 83

Index °

DS16 (assembler directive). 83
DS32 (assembler directive). 83
-E (assembleroption)t 18
editioN NOLICE . . vttt et e et ii
efficient coding techniques 10
#elif (assembler directive).ii... 79
#else (assembler directive) 79
ELSE (assembler directive). 59
ELSEIF (assembler directive). 59
ELSEIFS (assembler directive).covu.... 68
ELSES (assembler directive) 68
END (assembler directive)covuvinenen... 45
ENDF (assembler directive) 68
#endif (assembler directive) 79
ENDIF (assembler directive) 59
ENDIFS (assembler directive) 68
ENDM (assembler directive) 61
ENDMOD (assembler directive).c.oovnnn.. 45
ENDR (assembler directive) 61
ENDS (assembler directive) 68
ENDW (assembler directive) 68
environment variables

AHCSI2_INC 14

ASMHCSI2. ..ot e 14

assembler. 14
EQ (CFLoperator).vvvue e eeeaannn 98
EQU (assembler directive)coovu.... 55
equal (assembler operator)uuiinenn.. 33
#error (assembler directive) 79
error messages

maximum number, specifying 18

using #errortodisplay i 81
EVEN (assembler directive) 50
EXITM (assembler directive) 61
experience, programmingoueneenenn.... ix
EXPORT (assembler directive).coouvnnn.. 48

109

110

EXPIESSIONS & . o v v ettt et et e e 3
expressions. See assembler expressions

extended command line file 13,18
EXTERN (assembler directive). 48
-f (assembleroption)., 13,18
false value, in assembler expressions 5
fatal errors. . . .o 104
FCB (assembler directive).coovinnon.... 83
FCC (assembler directive).coviinnen.... 83
FDB (assembler directive) 83
_ _FILE_ _ (predefined symbol)...................... 7
file extensions. See filename extensions
file types
assembler SOUICe vt v 3
extended commandline...................... 13,18
#include. ... 19
filename extensions
ASTIL ettt et e e 3
00T 3
Tl 22
S 3
XCl o 13,18
filenames, specifying for assembler objectfile 22
FOR (assembler directive) 68
formats, assembler source code. 2
FQB (assembler directive) 83
FRAME (CFLoperator).covveieenenennnnnn.. 99
FUNCALL (assembler directive) 88
function directives. 87
FUNCTION (assembler directive) 87
-G (assembler option) 18
GE (CFLOperator). vovvvn vt eann 98
global value, defining 56

HCSI12 IAR Assembler
Reference Guide

greater than or equal (assembler operator) 33
greater than (assembler operator) 33
GT (CFLOperator). vv v e eaene 99
-h (assembleroption)coviiiiiiian.. 18
HCS12 architecture and instructionset. ix
HCS12 instruction set. ix
header files, SFR. L. 10
header section, omitting from assembler list file. 21
high byte (assembler operator) 33
high word (assembler operator) 34
-I (assembler option). 19
-i(assembleroption).c. i 19
IAR Technical Support, 104
_ _IAR_SYSTEMS_ASM_ _ (predefined symbol) 7
#if (assembler directive) 79
IF (assembler directive)ccovvrvrennnnn. 59
IF (CFLOperator).vovv vttt eeeeaens 99
IFC (assembler directive)ccvvnon... 59
#ifdef (assembler directive)., 79
IFNC (assembler directive).couuin... 59
#ifndef (assembler directive)., 79
IFS(assembler directive)ccvviniinann... 68
IFxx (assembler directive).ccvvvenvnnnnnnn. 59
IMPORT (assembler directive) 48
#includefiles. 19
#include (assembler directive) 79
include paths, specifying. 19
INSEIUCHON SEt . . o vttt ix
instruction set, HCS12 ix
INteger CONStANtSo ve ettt 4
internal errors, assembler L. 104
in-line coding, using Macros. 65

L

-L (assembler option)iiiiii. 20
-1 (assembleroption).iiiiiii 20
labels. See assembler labels
LE (CFLOperator)ovvueeiee e eeenennn 99
less than or equal (assembler operator) 34
less than (assembler operator). 34
librarymodules. i 46
CIEALING . vttt ettt ettt 16
LIBRARY (assembler directive). 45
_ _LINE_ _ (predefined symbol) 7
lines per page, in assembler listfile 22
listfileformat........ i 9
bOdy. .ot 9
CRC. . 10
header 9
symbol and cross reference
listing control directives 74
LITERAL (CFIoperator)ovvvvnennnnennn.. 98
LOAD (CFLOperator)ovovvvnnineenenennn. 100
local symbols, creating 63
local value, defining 56
LOCAL (assembler directive).c.covuvnnn.. 61
LOCFRAME (assembler directive). 88
logical AND (assembler operator) 31
logical exclusive OR (assembler operator) 39
logical NOT (assembler operator). 35
logical OR (assembler operator) 36
logical shift left (assembler operator) 37
logical shift right (assembler operator) 37
low byte (assembler operator). 34
low word (assembler operator) 35
LSHIFT (CFLOperator). vvvuvine e 99
LSTCND (assembler directive). 74
LSTCOD (assembler directive). 74
LSTCYC (assembler directive). 74
LSTEXP (assembler directives) 74
LSTMAC (assembler directive) 74

Index °

LSTOUT (assembler directive). 75
LSTPAG (assembler directive) 75
LSTREP (assembler directive) 75
LSTSAS (assembler directive) 75
LSTXREF (assembler directive) 75
LT (CFLOPErator)ottt e e eaen e 99
-M (assembler option).ot 20
macro execution information, including in list file 16
macro processing directives 61
macro quote charactersc..viiinin... 63
SPeCifyingt 20
MACRO (assembler directive) 61
macros. See assembler macros
memory, reserving uninitialized spacein 83
#message (assembler directive). 79
messages, excluding from standard output stream 23
MOD (CFLOpPerator). cvvvee e ieeeeaannn 99
module CONSISteNCY. . .. oottt 47
module control directives 45
MODULE (assembler directive) 45
modules, assembling multi-modules files 47
modules, terminatingi ... 47
modulo (assembler operator) 35
msa (filename extension)uuven... 3
MUL (CFLOperator) cvvvee e eeieieeeeeeaannn 99
multibyte character support., 21
multiplication (assembler operator) 29
multi-module files, assembling. 47
-N (assembleroption), 21
-n (compileroption) i 21
NAME (assembler directive). 45
NE (CFLOperator).vvvu v 99
not equal (assembler operator) 35

112

NOT (CFLOperator)cuoeueuenenennnnenen.. 98

o

-O (assembler option) ov vttt 22
-0 (assembler option)i i 22
operands
formatof L 2
in assembler expressions i 3
operations, formatof. oL 2
operation, silentt 23
operators. See assembler operators
OPLION SUMMATY .« v v tv vttt et e e e e eeeennn 15
OR (CFLOperator). . .. oo ovvv et ie e eeeeenns 99
ORG (assembler directive)covvinen... 50
-p (assembleroption) 22
PAGE (assembler directive) 75
PAGSIZ (assembler directive). 75
parameters, typographic convention Xi
precedence, of assembler operators. 27
predefined register symbols 6
predefined symbols. L il 7
in assembler macros. 64
undefining 24
__ DATE_ .. 7
__FILE .. 7
_JAR_SYSTEMS_ASM_ _ 7
LINE 7
L TID 7
TIME_ _ ... 7
__VER . 7
preprocessor symbol, defining 17
prerequisites (programming experience). ix
program location counter (PLC) 5
SEHNG .« oottt 52
program modules, beginning. 46

HCSI12 IAR Assembler
Reference Guide

PROGRAM (assembler directive). 46
programming experience, required ix
programming hints 10
PUBLIC (assembler directive)c.c.c..... 48
PUBWEAK (assembler directive). 48
-r (assembler option). 23
RADIX (assembler directive) 85
reference information, typographic convention. xi
registered trademarks, ii
TEISTEIS & v vt ittt ettt e e 6

special function, defining. 57
relocatable exXpressions e 8
relocatable segments, beginning 52
REPEAT (assembler directive) 68
repeating Statementsovvt ettt 65
REPT (assembler directive)cccovunn.. 61
REPTC (assembler directive) 61
REPTI (assembler directive).covuvn.... 61
REQUIRE (assembler directive). 48
RSEG (assembler directive) 50
RSHIFTA (CFIoperator)ovuvuninenenan.. 99
RSHIFTL (CFILoperator)ouvuiinenennn.. 99
RTMODEL (assembler directive) 46
rules, in CFl directives, 96
runtime model attributes, declaring. 47
r12 (filename extension)ouuiinnnn. 22
-S (assembleroption) 23
-s (assembler option). 23
second byte (assembler operator) 32
segment begin (assembler operator) 36
segment control directives.l 50
segment size (assembler operator) 38

segments
absolute 51
aligning 53
common, beginning 52
relocatable 52
stack, beginning L il 52
SET (assembler directive).o...... 55
sfrb (assembler directive) 55
sfrtype (assembler directive). 55
sfrw (assembler directive). 55

SFR. See special function registers
SFR. See special function registers

silent operation, specifying in assembler. 23
simple rules, in CFl directives. 96
source files, including. 81, 86
source format, assembler 2
special function registers. 10

defininglabels 57
stack segments, beginning. 52
STACK (assembler directive) 50
stack, definingasegment 52
standard input stream (stdin), reading from. 18
standard output stream, disabling messagesto 23
statements, repeating.t 65
structured assembly directives 68
SUB (CFIoperator)c.ouuuiieeneneenenn.. 99
subtraction (assembler operator). 30
Support, Technical 104
SWITCH (assembler directive). 68

symbol and cross-reference table, in assembler list file. . . . 10
See also Include cross-reference

symbol control directives 48
symbols
See also assembler symbols
exporting to other modules. 49
predefined, in assembler 7
predefined, in assembler macro 64
user-defined, case sensitive 23
symbols, creating local 63

Index °

s12 (filename extension)vii ... 3
-t (assembler option) 24
tab spacing, specifying in assembler listfile............ 24
Technical Support, IAR 104
temporary value, defining 56
third byte (assembler operator) 32
_ _TID_ _ (predefined symbol). 7
_ _TIME_ _ (predefined symbol) 7
time-criticalcode i 65
trademarks ii
true value, in assembler expressions 5
typographic conventionsc..oueiuenenn.... xi
-U (assembler option)t 24
UMINUS (CFLoperator).covuininenennnnen. 98
unary minus (assembler operator). 30
unary plus (assembler operator) 29
#undef (assembler directive). 79
unsigned greater than (assembler operator). 38
unsigned less than (assembler operator) 39
UNTIL (assembler directive) 68
user symbols, case sensitive 23
value assignment directives. 55
values, defining. 83
_ _VER_ _ (predefined symbol)...................... 7
-w (assembler option) 24
WAININEZS « « o v ottt et e e e e ettt 103

disabling 24

113

114

WHILE (assembler directive) 68

X

-X (assembler option)i i 25
xcl (filename extension) 13, 18
XOR (CFLOperator)vvveeinee e 99

Symbols

! (assembler operator). 35
= (assembler operator). 35
#define (assembler directive) 79
#elif (assembler directive). 79
#else (assembler directive)co ... 79
#endif (assembler directive) 79
#error (assembler directive) 79
#if (assembler directive) 79
#ifdef (assembler directive). 79
#ifndef (assembler directive). 79
#includefiles. 19
#include (assembler directive) 79
#message (assembler directive). 79
#undef (assembler directive). 79
$ (assembler directive) i 85
$ (program location counter)., 5
% (assembler Operator)t 35
& (assembler Operator)t 31
&& (assembler operator) 31
* (assembler operator) 29
+ (assembler operator) 29-30
- (assembler operator) 30
-B (assembleroption) i 16
-b (assembleroption), 16
-c (assembler option)c.. ... 16
-D (assembleroption) i 17
-E (assembleroption)l 18
-f (assembleroption). oL 13,18
-G (assembler option) 18

HCSI12 IAR Assembler
Reference Guide

-h (assembleroption) 18
-I (assembler option).o 19
-i(assembleroption). 19
-L (assembleroption), 20
-l (assembleroption). 20
-M (assembler Option).t 20
-N (assembleroption), 21
-n (compileroption) i 21
-O (assembleroption) 22
-0 (assembler option)i i 22
-p (assembler option)iiiiiiiiia.. 22
-1 (assembler option). 23
-S (assembleroption) i 23
-s (assembler option). i 23
-t (assembler option) 24
-U (assembleroption) 24
-w (assembleroption) i 24
-X (assembler option) i 25
.BYT2. (assembler operator). 32
.BYT3. (assembler operator). 32
.DATE. (assembler operator).c...... 32
.HIGH. (assembler operator). 33
.HWRD. (assembler operator). 34
.LOW. (assembler operator)c.cn.o.. 34
.LWRD. (assembler operator) 35
.SFB. (assembler operator)ouvenon. 36
.SFE. (assembler operator)vonon. 36
SIZEOF. (assembler operator) 38
JUGT. (assembler operator).veuenenen. 38
JULT. (assembler operator)oueuuunenen. 39
.XOR. (assembler operator)onon.. 39
/ (assembler Operator)iii i 30
/*...%/ (assembler directive). 85
// (assembler directive), 85
< (assembler Operator)oueiiinenenan.. 34
<< (assembler Operator)euuinenenan.. 37
<= (assembler Operator)ouuinenienan.. 34
<> (assembler Operator)oueuiininenan.. 35
= (assemblerdirective) 55

= (assembler operator)iiia. 33
== (assembler operator)ciiinin.. 33
> (assembler operator)iiiia. 33
>= (assembler operator) 33
>> (assembler Operator) 37
A (assembler Operator).ottt 31
_ _DATE_ _ (predefined symbol) 7
_ _FILE_ _ (predefined symbol). 7
_ _IAR_SYSTEMS_ASM_ _ (predefined symbol) 7
_ _LINE_ _ (predefined symbol) 7
_ _TID_ _ (predefined symbol). 7
_ _TIME_ _ (predefined symbol) 7
_ _VER_ _ (predefined symbol) 7
_args, predefined macrosymbol 64
| (assembler operator) i 31
Il (assembler operator).c..coiiii . 36
~ (assembler operator) 31

Index °

115

HCSI12 IAR Assembler
116 Reference Guide

	Contents
	Tables
	Preface
	Who should read this guide
	How to use this guide
	What this guide contains
	Other documentation
	Document conventions

	Introduction to the HCS12 IAR Assembler
	Introduction to assembler programming
	Getting started

	Modular programming
	Source format
	Assembler instructions
	Expressions, operands, and operators
	Integer constants
	ASCII character constants
	TRUE and FALSE
	Symbols
	Labels
	Program location counter (PLC)

	Register symbols
	Program counter-relative addressing symbol-PCR
	Predefined symbols
	Including symbol values in code
	Testing symbols for conditional assembly

	Absolute and relocatable expressions
	Expression restrictions
	No forward
	No external
	Absolute
	Fixed

	List file format
	Header
	Body
	Summary
	Symbol and cross-reference table

	Programming hints
	Accessing special function registers
	Using C-style preprocessor directives

	Assembler options
	Setting command line options
	Extended command line file
	Error return codes
	Assembler environment variables

	Summary of assembler options
	Descriptions of assembler options
	-B
	-b
	-c
	-D
	-E
	-f
	-G
	-h
	-I
	-i
	-L
	-l
	-M
	-N
	-n
	-O
	-o
	-p
	-r
	-S
	-s
	-t
	-U
	-w
	-x

	Assembler operators
	Precedence of operators
	Summary of assembler operators
	Unary operators - 1
	Multiplicative arithmetic operators - 2
	Additive arithmetic operators - 3
	AND operators - 4
	OR operators - 5
	Comparison operators - 6

	Description of operators
	*
	+
	+
	-
	-
	/
	.AND. (&&)
	.BINAND. (&)
	.BINNOT. (~)
	.BINOR. (|)
	.BINXOR. (^)
	.BYT2.
	.BYT3.
	.DATE.
	.EQ. (=, ==)
	.GE. (>=)
	.GT. (>)
	.HIGH.
	.HWRD.
	.LE. (<=)
	.LOW.
	.LT. (<)
	.LWRD.
	.MOD.
	.NE. (<>, !=)
	.NOT. (!)
	.OR. (||)
	.SFB. (SFB)
	.SFE. (SFE)
	.SHL. (<<)
	.SHR. (>>)
	.SIZEOF. (SIZEOF)
	.UGT.
	.ULT.
	.XOR.

	Assembler directives
	Summary of assembler directives
	Module control directives
	Syntax
	Parameters
	Description
	Beginning a program module
	Beginning a library module
	Terminating a module
	Terminating the last module
	Assembling multi-module files
	Declaring runtime model attributes

	Symbol control directives
	Syntax
	Parameters
	Description
	Exporting symbols to other modules
	Exporting symbols with multiple definitions to other modules
	Importing symbols

	Examples

	Segment control directives
	Syntax
	Parameters
	Description
	Beginning an absolute segment
	Beginning a named absolute segment
	Beginning a relocatable segment
	Beginning a stack segment
	Beginning a common segment
	Setting the program location counter (PLC)
	Aligning a segment

	Examples
	Beginning an absolute segment
	Beginning a relocatable segment
	Beginning a stack segment
	Beginning a common segment
	Aligning a segment

	Value assignment directives
	Syntax
	Parameters
	Description
	Defining a temporary value
	Defining a permanent local value
	Defining a permanent global value
	Defining special function registers

	Examples
	Redefining a symbol
	Using local and global symbols
	Using special function registers

	Conditional assembly directives
	Syntax
	Parameters
	Description
	Examples

	Macro processing directives
	Syntax
	Parameters
	Description
	Defining a macro
	Creating local symbols
	Passing special characters
	Predefined macro symbols
	How macros are processed
	Repeating statements

	Examples
	Coding in-line for efficiency
	Using REPTC and REPTI

	Structured assembly directives
	Syntax
	Parameters
	Description
	Conditional constructs
	Loop directives
	Iteration construct
	Switch construct

	Examples
	Using conditional constructs
	Using loop constructs
	Using for constructs
	Using switch constructs

	Listing control directives
	Syntax
	Parameters
	Description
	Turning the listing on or off
	Listing conditional code and strings
	Controlling the listing of macros
	Controlling the listing of generated lines
	Controlling structured assembly listing
	Generating a cross-reference table
	Listing cycle counts
	Specifying the list file format

	Examples
	Turning the listing on or off
	Listing conditional code and strings
	Controlling the listing of macros
	Formatting listed output

	C-style preprocessor directives
	Syntax
	Parameters
	Description
	Defining and undefining labels
	Conditional directives
	Including a source file
	Displaying errors
	Defining comments

	Examples
	Using conditional directives
	Including a source file

	Data definition or allocation directives
	Syntax
	Parameters
	Examples
	Generating lookup table
	Defining strings
	Reserving space

	Assembler control directives
	Syntax
	Parameters
	Description
	Controlling case sensitivity

	Examples
	Including a source file
	Defining comments
	Changing the base
	Controlling case sensitivity

	Function directives
	Syntax
	Parameters
	Descriptions

	Call frame information (CFI) directives
	Syntax
	Names block directives
	Extended names block directives
	Common block directives
	Extended common block directives
	Data block directives

	Parameters
	Descriptions
	Backtrace rows and columns
	Defining a names block
	Extending a names block
	Defining a common block
	Extending a common block
	Defining a data block

	Simple rules
	Simple rules for resources
	Simple rules for CFAs

	CFI expressions
	Unary operators
	Binary operators
	Ternary operators

	Example
	Defining the names block
	Defining the common block
	Defining the data block

	Assembler diagnostics
	Message format
	Severity levels
	Assembly warning messages
	Command line error messages
	Assembly error messages
	Assembly fatal error messages
	Assembler internal error messages

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Symbols

