IAR Embedded Workbench®

C-SPY® Debugging Guide

©IAR
UCSPY- | SYSTEMS

2

IAR Embedded Workbench®
C-SPY® Debugging Guide

COPYRIGHT NOTICE
© 2013 IAR Systems AB.

No part of this document may be reproduced without the prior written consent of IAR
Systems AB. The software described in this document is furnished under a license and
may only be used or copied in accordance with the terms of such a license.

DISCLAIMER

The information in this document is subject to change without notice and does not
represent a commitment on any part of IAR Systems. While the information contained
herein is assumed to be accurate, IAR Systems assumes no responsibility for any errors
or omissions.

In no event shall IAR Systems, its employees, its contractors, or the authors of this
document be liable for special, direct, indirect, or consequential damage, losses, costs,
charges, claims, demands, claim for lost profits, fees, or expenses of any nature or kind.

TRADEMARKS

IAR Systems, IAR Embedded Workbench, C-SPY, visualSTATE, The Code to Success,
IAR KickStart Kit, I-jet, IAR, and the logotype of IAR Systems are trademarks or
registered trademarks owned by IAR Systems AB.

Microsoft and Windows are registered trademarks of Microsoft Corporation.
Adobe and Acrobat Reader are registered trademarks of Adobe Systems Incorporated.

All other product names are trademarks or registered trademarks of their respective
owners.

EDITION NOTICE
First edition: April 2013

Part number: UCSPY-1
Internal reference: M12, Too6.4 , ISUD.

Brief contents

TaABIES ... 15
Preface ... s 17
The IAR C-SPY Debugger ... 23
Getting started using C-SPY ... 29
Executing your application ... 45
Variables and eXpressions ... 63
Breakpoints ... 97
MemOory and reQISTEIS ... 119
TFACE .o 153
Profiling ... 173
COdE COVEIAZEoooieeieeee e 183
INEEITUPES ..o 187
C-SPY MACIOS ..o sssssssssss e 207
The C-SPY Command Line Utility—cspybatccoocevvvrnne. 253
Debugger OPLIONS ..o 261
Additional information on C-SPY drivers ..., 267
FIash 102ders ... essssssesss e 273

IAR Embedded Workbench®
4 C-SPY® Debugging Guide

Contents

TABIES ... 15
Preface ... 17
Who should read this guide ... 17
Required KNOWIEAZEcceeieiiiiieieienieieieseeeeee s 17
How to use this guide ..., 17
Some descriptions do not apply to your productc..c.ceceevereeruennene 17

What this guide contains ...

Other documentation
User and reference guides

The online help SYStEMccceeieiiierieierienenerere e
WED SITES ..viieiriiiiiieiiiecie e et ettt e e et e e e e e eae e e taeesaae e eaaeeeseeesaeenns 20
Document conventionscccooiiieciicceee e

Typographic conventions ...

Naming CONVENLIONSc.ceceeueeierieieiinienientenenenieneeeereeteeeseeneeeeeens
The IAR C-SPY Debugger ... 23
Introduction to C-SPY ... 23
An integrated enVIrONMENTcceeveererrereririeeeienieneereneeseeneeeeeeseenee 23
General C-SPY debugger featurescoceeveeveenervienienieneeneennen. 24
RTOS aWarenesscccceevveeueeieieieiiieienrenenesesesessesieeeeseeeeeeeens 25
Debugger CONCEPLS ... 25
C-SPY and target SYStEIMScccuerueerueerierrieirienieniteneenieenieeseeeseseesinens 26
The deDUZEZETcvevuirieiiriiiieiceeteteeee e 26
The target SYSIEIMN ...ccvevveerirreereriiriieieeiteit ettt 26
The apPliCALIONcc.eeviiriiiiieiieieeie ettt
C-SPY debugger systems
The ROM-mONItOr PrOZIamc..cceeeerererrerereeienieneerieneessenseeseeseenees 27
Third-party debUZEZETScc.covuiiriiriiiiieieeieetererter et 27
C-SPY plugin modulescccceeveieviiniininineneneneneeeneneceeeeeeeene 27
The IAR C-SPY Simulator ... 28

SimMUIAtor fEAtUIESccoviiiriieeiieeieeeiee et 28

Getting started using C-SPY ... 29

Setting UP C-SPY ..o 29
Setting up for debuggingccccooevviiriiiniiniini 29
EXecuting frOm IESETccccveriririririiieieicieicnee e

Using a setup macro file

Selecting a device description filecooeevieviriiniinienienieneeen. 31
Loading plugin modulescccceceeeeieriiiieiineneneneneneneceseneeene 31
Starting C-SPY ... 31
Starting a debug SESSIONcocveeiiriiriiiieieeeeeteeeeeee e 32
Loading executable files built outside of the IDEc..cccceceeeenee 32
Starting a debug session with source files missingcccceeeeveeeeneee 32
Loading multiple imagesccccceveevirrieriienienieneeeeieeeeeeeee e 33
Adapting for target hardware ... 34
Memory CONfigUrationc..cceververerenenineneeterteseee s 34
Modifying a device description filecccceveeveriieniiinieniinieneene. 35
Initializing target hardware before C-SPY startsccccccecevercnenne 35
Running example projects
Running an example Projectcocevervierierieneenieenenieneeseenieeees 36
Reference information on starting C-SPY ..., 38
C-SPY Debugger main Windowccccceeeererenienenieneneeeeeeeeneens 38
ITMAages WINAOWoc.oiiiiiiiiiiiieeeeee et

Get Alternative File dialog box

Executing your application ... 45
Introduction to application execution ... 45
Briefly about application eXeCUtionceceeeveeverieriereneneneneeeenea 45

Source and disassembly mode debuggingcoceeveerieniininnieennen. 45

SINGLE SIEPPING ..cvvevverrirririeriiriteit ettt ettt 46
StEPPING SPEEA ..vevviriiiieiieiieiietetete ettt 48
Running the appliCationccccceverieriierienienieeieniceeese e 49
Highlightingooooveiiniiie e 50

Call stack infOrmMationcoceeerereeieierieieiesieseee e 50
Terminal input and OULPULcoeevieiniiiiiiriieierieeeeeee e 51

Debug 10ZZING ..cuveeiiiieiieiieiieieeetee e 51

IAR Embedded Workbench®
C-SPY® Debugging Guide

Contents °

Reference information on application execution 52
Disassembly WINAOWcccoviiriiriiniiiienieeenteeee e 52
Call Stack WINAOW ...c.couiiiiiiiiiiiiiiieeceseseseeeee et 56
Terminal [/O WINAOWcceeiriririiiiiiiciceneeeseeeeeceeeeees 58
Terminal I/O Log File dialog boXccccevvierienienenniiiiiiienenienene 59
Debug Log WINAOWcc.coeviirinininiiiiieicecnicnenenesie e 60
Log File dialog box
Report Assert dialog DOXcc.eevveerieiierieniinienieseeeeeeeeeeere e 62
Autostep settings dialog bOXcccceceeieieiiiiiiiiniinirennneeeee 62
Variables and eXpressions ..., 63
Introduction to working with variables and expressions 63
Briefly about working with variables and expressions 63
C-SPY expressions
Limitations on variable informationc.....ceceeevenenenenenencneenn. 66
Working with variables and expressions ... 67
Using the windows related to variables and expressions 67
Viewing assembler variablesccccocevevieveninenenienenceieeeees

Getting started using data [0ZZINGccceceeveeierienienienenereneeeeeeene

Getting started using data sampling

Reference information on working with variables and

EXPIESSTONS ..ottt eeee 69
AULO WINAOW ..eoiiiiiiiieiiiceiteeieecee ettt eteeeaaeeseaeesaseesesaeenns 70
L0CalS WINAOW ...ooiiuiiiiiiiieiieceieecee ettt ve e 72

Watch window

Live Watch WINdOWccccoviiiiiiiiiiiniiienieienencccececeeeee 76
StAtiCs WINAOW ..eveiiiiriiiiieiieiteiteteteeeses ettt 78
Quick Watch WindOowc.ccceevuieiiieciicieeieseeeee e 81
Macro Quicklaunch Windowcccccoeveiieriiiiiieeiieeie e

SymDbOIS WINAOW ...c.eiueiiiriiiiiiieieieieieeteeseseseseei et
Resolve Symbol Ambiguity dialog box ...

Data Log WINAOWocviiiiriiiiieniieiteieeecteeteeee et

Data Log Summary WindowWcccccevuerenenenenenenenencneeeeeeeeneen

Setup Data Sample Windowc.ccccoeiveirenieinecineeereeseeeeene 90

Data Sample window

Sampled Graphs WiNAOWccceveriiiienieneenierieeeeeeseeiee e 93
Breakpointso 97
Introduction to setting and using breakpoints ... 97
Reasons for using breakpointscccceceeeverienenenieniencnieceeeeecnnens 97

Briefly about setting breakpointscccceeceveevreniecnerineneennennnn 98

Breakpoint types ...

Breakpoint icons

Breakpoints in the C-SPY simulatorcoceecevvievienienienenenenennene 100
Breakpoint CONSUMETSc..eevueeriierieirienieniienieneeeieeee et
Setting breakpoints ...
Various ways to set a breakpointccoceeveeeeerereenienienienenenennens
Toggling a simple code breakpoint .
Setting breakpoints using the dialog boXcc.ceceevveiieiiencncncncnene 102
Setting a data breakpoint in the Memory windowccccevenee. 103
Setting breakpoints using SyStem MAacCrOSc.cceecvereereerreerernueenne 104
Useful breakpoint hintscccceverenenienenenenenecieeeeeneneneneens 104
Reference information on breakpoints ... 106

Breakpoints window

Breakpoint Usage WindOWcccccceverenienieninenineeieeeeeneneneneens
Code breakpoints dialog DOXccceceeereririieieieieieieienesesiesieee
Log breakpoints dialog DOXc..coceriervierienieniinienieeieseeseeniee s
Data breakpoints dialog BOXccceveverenenenieneeieieieienenenieneene
Data Log breakpoints dialog box
Immediate breakpoints dialog bOXc.cccecvevieriineenieniieeienieneenene 115
Enter Location dialog BOXcccoevererenenenininineeteeeeeneeneneeeene 116
Resolve Source Ambiguity dialog bOXceceeverieienienienenenenennne 118
Memory and regiSters ... 119
Introduction to monitoring memory and registers 119
Briefly about monitoring memory and registersc.ccccccoeueeenn. 119
C-SPY MEMOIY ZOMEServevemeeieemienteierentinreeseeseeseeeestessensenseseeseenee 120
Stack diSPIAY ...evvevverieriieiieiecteeeee e e 121
Memory access ChecKingcccceouevueriinenininieineeeeieeresesenenee 121

IAR Embedded Workbench®
C-SPY® Debugging Guide

Contents °

Monitoring memory and registers ... 122
Defining application-specific register roupsc.cceeceereerueereenuens 122
Reference information on memory and registers 123
MEMOTY WINAOWeovinieiiiiieiiiiiieiesicnteniesteneeieee ettt 124
Memory Save dialog BOXccccevvirviirieriiinieeerieeeeeeste e 128
Memory Restore dialog BOXcoceeveerieruiniininininineeieieicienenenne 129
Fill dialog box
Symbolic Memory Windowccecerierieneenienienienieneeneeneeieene 131
Stack WINAOW ..c.eruiriiiiiiiiiiciiicicieteteteet ettt s 133
RegiSter WINAOWccueeuieuieiieieieieiciciesencnceeee ettt 137
SFR Setup WINAOWc.cocuiiiiriinienienitenieenieeie ettt 139
Edit SFR dialog DOXcocveiiiiniiiiiiniinieiieriereeeeeeeeecretesresesee e 142
Memory Configuration dialog bOXcccceceeververeeiierienienenencnennene 144
Edit Memory Range dialog BoXcccceevieviininnienieniesienceceene 147
Memory Access Setup dialog boXccceeevieeeieiieiiecienieienenenene 149
Edit Memory Access dialog DOXccccocevererereneenienieienieneneneneene 151
.. 153
Introduction to using trace ... 153
Reasons for using trace
Briefly about tracec.ccoeverererieieieiciciecesenene et
Requirements for USING traCeccevveruerierierenenenieieieieneeneenaens 154
Collecting and using trace data ..., 154
Getting started With tracecc.ccoevererininieninieieeeerenesenee 154
Trace data collection using breakpointsc.cceceeverereeeereeneenuenens 155
Searching in trace dataccccevceevvienienieneeieeeeeeeeee e 155
Browsing through trace dataccceceeveeieiieninininieneneneeeeene 156
Reference information on trace ..o 156
Trace WINAOW ...cc.ocuiviiiiiiiiiiiiiiicicneneeeeeee e 157
Function Trace Windowcccccoeriiiiiniinenecnceccceeceeeees 159

Timeline window

Viewing Range dialog DOXc.ccooceerieviiniininniieieiecesteneescene 166
Trace Start breakpoints dialog BOXccccevevererereenienienenencnienene 167
Trace Stop breakpoints dialog DOXccevverererierienienienienienenens 168

Trace EXpressions Windowccccecevereneneneneneenieneeneenenenennens 169

Find in Trace dialog BOXccocceviiriiniiniiieeeeeeesteseeeeene 170
Find in Trace windowcccccciiiiiiiiiiiiniiicceccee 171
Profiling ... 173
Introduction to the profiler ...
Reasons for using the profilerccccoeeieieiieiieneninienieneneceeene
Briefly about the profilercocovieviiiiininnineieecececeee
Requirements for using the profiler ...
Using the profiler ...
Getting started using the profiler on function levelcccocec... 175
Getting started using the profiler on instruction level 175
Selecting a time interval for profiling informationc..cccececue... 176
Reference information on the profiler ... 177
Function Profiler windowccoccciiiiiiiniccnceccce 177
COdE COVEIAZE ..o 183
Introduction to code coverage ..o 183
Reasons for using code COVErageocevveuenienierenenenenenneenieeens 183

Briefly about code coverage

Requirements for using code COVErageccccevererenerenenneenuennns 183

Reference information on code coveragecccccocoe..... 183

Code Coverage WindOWc.ccceeeeverienieniinininineneneeeereeeneeenne 184

INEEITUPLES ..o 187
Introduction to interrupts ... 187
Briefly about interrupt 10Zingcccceeeeieverienienienienieneeeeeeieneene 187

Briefly about the interrupt simulation SyStemcccccevceevueeneennenne 188

Interrupt CharacCteriSticsouevvvveevierienenerenenereeeeeeeeeeeeeseenes 189

Interrupt sSimulation StAteSccceceeeeievierieriereneneneeeeeeteseeneeneene 189

C-SPY system macros for interrupt simulationc.ccceceeveenenne. 191
Target-adapting the interrupt simulation systemcc.ccceveruennene 191
Using the interrupt system ... 192
Simulating a simple INEITUPLcc.eereereirierenieeieneeeeeneeneereeeie e 192
Simulating an interrupt in a multi-task systemcccccceeevenenenne 193

IAR Embedded Workbench®
C-SPY® Debugging Guide

Contents °

Getting started using interrupt loggingc.ceceevveveveevenienenencnenne 194
Reference information on interrupts ... 194
Interrupt Setup dialog BOXcovevverierierireneriiiiieiececcceeeen 195
Edit Interrupt dialog DOXcceeeverueeeeieieieieieneneneneneeeeeeeeeeene 197
Forced Interrupt Windowcoccceveeevieniiinienienieicereeesee e 198
Interrupt Status WINAOWccoecveieieneneneneneneneeeeceeeeeeeee e 199

Interrupt Log window

Interrupt Log Summary windowcc.cceceevieneeneniieniienienieneenens 204
C-SPY MACIOS . 207
Introduction to C-SPY macros ... 207
Reasons for using C-SPY mMacroscccceceeeeveevuenenenenienenneeeenens 207
Briefly about using C-SPY mMacrosccceceeveevienenenenenenneenienens 208
Briefly about setup macro functions and filesccccovceeveeneennenn. 208
Briefly about the macro 1anguageccccceceveveneninieenecncncnennens
Using C-SPY MaACros ...
Registering C-SPY macros—an overview ...
Executing C-SPY macros—an overview
Using the Macro Configuration dialog boXcccceveeveerienienenennne
Registering and executing using setup macros and setup files 212
Executing macros using Quick Watchcccocevveveniiniiiicncncncnene 213
Executing a macro by connecting it to a breakpointc.ccceuee. 213
Reference information on the macro language 215
MaCro fUNCHONScouiiiiiiiiicieicecce e 215
MaCTO VAriablescc.cceriruieiiieieieieieseeeeeeee et 215

Macro strings

MaACTO SLALEINENLS ...cuvevivieeieueeiieiieietete ettt ettt et s e nneas 217
Formatted OULPULc..covuiriiiieiiieicriecceeeeeeeee et 218
Reference information on reserved setup macro function
MAMIES ..o e 220
eXECUSEIPIElOadc..oovevverieiiiiiiieieietee e 220
execUserExecutionStartedccocevievienininineniniinienicnienenennene 220
execUserExecutionStoppedccccevevereneneneneneeieeeeenenenieneene 220

execUserFlashInit

12

IAR Embedded Workbench®
C-SPY® Debugging Guide

Reference information on C-SPY system macros

execUserSetup

execUSerFIashReSetcccoveeviiiiiiiniiieietecececeeeee
eXeCUSETPIERESEtooiiiiiiiiiiii e,
€XECUSETRESELooiiiiiiiiiiiiiee e
EXECUSETEXIL .veiutieniiiiiiie ittt

eXeCUSErFIashEXitc.ccccoviiiiiiiiiiciicciee e

__CanCelAIIINLEITUPLSovuviriieriieieeieeieeie ettt
__canCelINtEITUPL ...ocvevviriiniiiiieiieiieicictecc ettt

__ClearBreakoooviiiiiiceeee e

__eNAbIEINIEITUPLS ...eovviriiriiriieiieiieietcte et
__@VAUALE oottt
__1SBatchMOdeccoouiiiiiiiiiiiiiciciecccceece
__loadImage
__MEMOTYRESLOTEeeouviiiiiiiiiiieeiieie ettt
__MEMOTYSAVE ..eeviiiieiieiieieeieetesiteseesieesseenseenseessesasesssesseesseenseens
__OPENFILE e
__OTAEITNEEITUPE ...oeniiniiiiiiieeicet ettt
__popSimulatorInterruptExecutingStackccccceveviiniiiniiniinnn.
__readFile .
__1€AdFIIEBYLE ...eoviiiiieiiiieeeeeee e

__readMemory8, __readMemoryBytecccccooveeviniiininiiiniiiinene

__1€adMemOTry 16 ...cc.coueviiniiiiiiiieicicicceeee e
__1€adMEMOTY32 ..ottt
__registerMacroFile
_T@SCLFILE Lot
__SELCOAEBIEAKcoivevviiiieiieeeeeeeee e
__setDataBreakccccceviiniiniinininin
__setDatalLogBreakcccccevevinininninccee

__SELLOEBIEakoouiiiiiiiiiie e

Contents °

__setSimBreak

__setTraceStartBreakc..cccoceeviiiiiiiniininininiiiiiciciciencneen
__SetTraceStopBreakcccevvevievieriinenininiiinececteececieseeeean
__SOUTCEPOSIHION ...eeuvineiriiieiieiieieeiiet et
_SEFINA L
__SUDSHIING ottt
__targetDebuggerVersion ...
_EOLOWET ittt
__EOSHING oottt sttt
_ EOUPPET ettt
__unloadlmagecccceveriiiiieiiecieneee e

WL i s

__WIIEFIIEBYLE ..oviiiiiiieiieiieieieeccerceereee sttt

[J—

__writeMemory8, __writeMemoryByteccccccocveriiniinienennene 251
__WIEMEMOTY 16oviiiiiiiiiiiiccceeceee ettt 251

__WIIEMEMOTY32 .ottt 252
The C-SPY Command Line Utility—cspybat ... 253

Using C-SPY in batchmode ... 253
Starting cspybat

Summary of C-SPY command line optionsc.ccc..c.... 254
General cSpybat OPHONS ..co.evveeeeeuieieieieniintenieereeieeie ettt seeneenee
Options available for all C-SPY drivers

Options available for the simulator driverccccocceevenvenriennenne. 255

Reference information on C-SPY command line options ...255

-~ doWNI0Ad_ONLY ...ovveriiiiiiiiiiiiiteee e 257
B U FT) o W (6 : e (<) U USRS ST RPRRRRRRRIN 257

Debugger OPLiONS ... 261

Setting debugger options ...

Reference information on debugger options

SEUUP ettt ettt ettt
DOWNIOAAooeiieeieeiieeieeeeeee e e
TMAZES oo
Plugins
EXIra OPtONS ...cvevveriiriieiieiieieeiieiie ettt sttt
Additional information on C-SPY drivers ..., 267
Reference information on the C-SPY simulator 267
SIMUIALOT MENUvvevieiieiieieetiete e eee e e eeete e ee e e e seesreesseesseenns
Resolving problems ...
Write failure during load
SIOW StEPPING SPEEA ...vevereeriiriieiieiieieiee sttt
FIash 10aders ... 273
Introduction to the flash loader ... 273
Using flash loaders ... 273
Setting up the flash 10ader(s)c..cooeeveerienineninieninieieecerenee 274
The flash loading mechaniSmccccceveeviriieriinienieneeeeeeee 274
Build considerationscocceereerieerieeienienieseeseeseeeseeeee e 274
Reference information on the flash loader 275
Flash Loader Overview dialog boXccccceeveevieneineniieniieniencenens 275
Flash Loader Configuration dialog boXcccceceeevenenenenvencnnenn 2717
INAEX oot 279

IAR Embedded Workbench®
C-SPY® Debugging Guide

Tables

1: Typographic conventions used in this UIAEcc.cccevervieieiieiienieneiinercneenee 21
2: Naming conventions used in this gUIAEcccceeviririiriieiienieriereereserene e 22
3: C-SPY assembler Symbols XPIeSSiOnsc..ceccecvereeruenuenvenreneneeeeeeeesenenenenne 65
4: Handling name conflicts between hardware registers and assembler labels 65
5: Project options for enabling the profiler

6: Project options for enabling code COVETagec.ccovemiminerirneeveerienienrinrenneneenes 184
7: TIMET INLEITUPE SELLINZS ..veuveverrirrerreerierieienieterten et eete ettt ettt seeseeseeseesbeeneene 193
8: Examples of C-SPY macro variablesc..ccceevierierieneneneninceeeeeecieeeeeees 216
9: Summary Of SYStEIM MACTOS ..c..evveruiruerrireenieienietentenresteeteetrererenesresreseesresaeeneene 223
10: __cancellnterrupt return VaIUEScccceevevueriererienenencnceeeseeeeie e 225
11: __disableInterrupts return ValUEscccceceeveerierierienieeneenieenieeieeeesreeresenens 226
12: __driverType 1eturn VAlUESccecvevierierienenenineniececeteneetere e 227
13: __enableInterrupts return ValUesc..cocvevererereeienienienieneneniesreeieee e 227
14: __evaluate return Valluescccocevieviininineniniiieieierciecee e 228
15: __isBatchMode return valuesc..coceeeevieiienenenenininceeeeceeesrcerese e 228
16: __loadImage return VAlUESccccoveverererereeiieeeetetestete e 229
17: __openFile return VAIUEScccoeevieiiiiiiiniienientesceieesiceee ettt 232
18: __readFile return ValUEscccocvimininiriiiiieieiciestestcercereeeee e 234
19: __setCodeBreak return valuesc..ccccooeiiiiiinciiieneenceee e 238
20: __setDataBreak return valuesc.ccccoceevieviiienienieninininieiceciecrcieseeene 239
21: __setDatalLogBreak return valuesc.coceeeirririinienieniinineneeeeeeeeeieneene 240
22: __setLogBreak return values

23: __setSimBreak return values

24: __setTraceStartBreak return valuescccccoeveneninenininneenieienenceeeeeenes 244
25: __setTraceStopBreak return Valuescc.ccevevierieneneneneneeneeieeeecieseneenes 245
26: __sourcePosition return valuesc..coccevvevieiienienieniinininieieecieece e 246
27: __unloadImage return ValUESsccoceveririririeieieieieienrenreseeeeeere e 249
28: CSPYDAL PATAMELETSeveveenieiienienieierierte ettt ettt ettt et sb s b bbb ne 254

IAR Embedded Workbench®
16 C-SPY® Debugging Guide

Preface

Welcome to the C-SPY® Debugging Guide. The purpose of this guide is to help
you fully use the features in the IAR C-SPY® Debugger for debugging your
application.

Who should read this guide

Read this guide if you plan to develop an application using IAR Embedded Workbench
and want to get the most out of the features available in C-SPY.

REQUIRED KNOWLEDGE

To use the tools in IAR Embedded Workbench, you should have working knowledge of:

o The architecture and instruction set of the processor (refer to the chip
manufacturer's documentation)

® The C or C++ programming language
o Application development for embedded systems
o The operating system of your host computer.

For more information about the other development tools incorporated in the IDE, refer
to their respective documentation, see Other documentation, page 19.

How to use this guide

If you are new to using this product, we suggest that you first read the guide Getting
Sarted with AR Embedded Workbench® for an overview of the tools and the features
that the IDE offers. The tutorials, which you can find in IAR Information Center, will
help you get started using IAR Embedded Workbench.

Information about how to use C-SPY for debugging is described in this guide, whereas
the process of managing projects and building, as well as editing, is described in the IDE
Project Management and Building Guide.

Finally, we recommend the Glossary if you should encounter any unfamiliar terms in
the IAR Systems user documentation.

SOME DESCRIPTIONS DO NOT APPLY TO YOUR PRODUCT
This guide describes the generic parts of the IAR C-SPY debugger.

However, some functionality described does not apply to all C-SPY drivers. You can
find a list of features supported by your C-SPY driver in the release notes. Reference
information about windows and dialog boxes that do not apply to all C-SPY drivers have
a note that says Requirements: See the release notes.

What this guide contains

This is a brief outline and summary of the chapters in this guide:

e ThelAR C-SPY Debugger introduces you to the C-SPY debugger and to the
concepts that are related to debugging in general and to C-SPY in particular. The
chapter also introduces the various C-SPY drivers. The chapter briefly shows the
difference in functionality that the various C-SPY drivers provide.

o Getting started using C-SPY helps you get started using C-SPY, which includes
setting up, starting, and adapting C-SPY for target hardware.

e Executing your application describes the conceptual differences between source
and disassembly mode debugging, the facilities for executing your application, and
finally, how you can handle terminal input and output.

e \ariables and expressions describes the syntax of the expressions and variables
used in C-SPY, as well as the limitations on variable information. The chapter also
demonstrates the various methods for monitoring variables and expressions.

e Breakpoints describes the breakpoint system and the various ways to set
breakpoints.
Memory and registers shows how you can examine memory and registers.

e Collecting and using trace data describes how you can inspect the program flow up
to a specific state using trace data.

e Using the profiler describes how the profiler can help you find the functions in your
application source code where the most time is spent during execution.

e Code coverage describes how the code coverage functionality can help you verify
whether all parts of your code have been executed, thus identifying parts which have
not been executed.

e Interrupts contains detailed information about the C-SPY interrupt simulation
system and how to configure the simulated interrupts to make them reflect the
interrupts of your target hardware.

o Using C-SPY macros describes the C-SPY macro system, its features, the purposes
of these features, and how to use them.

o The C-SPY Command Line Utility—cspybat describes how to use C-SPY in batch
mode.

Preface __4

e Debugger options describes the options you must set before you start the C-SPY
debugger.

e Additional information on C-SPY driversdescribes menus and features provided by
the C-SPY drivers not described in any dedicated topics.

o Flash loaders describes the flash loader, what it is and how to use it.

Other documentation

User documentation is available as hypertext PDFs and as a context-sensitive online
help system in HTML format. You can access the documentation from the Information
Center or from the Help menu in the TAR Embedded Workbench IDE. The online help
system is also available via the F1 key.

USER AND REFERENCE GUIDES

The complete set of IAR Systems development tools is described in a series of guides.
Information about:

o System requirements and information about how to install and register the IAR
Systems products, is available in the booklet Quick Reference (available in the
product box) and the Installation and Licensing Guide.

o Getting started using IAR Embedded Workbench and the tools it provides, is
available in the guide Getting Sarted with |AR Embedded Workbench®.

e Using the IDE for project management and building, is available in the IDE Project
Management and Building Guide.

e Using the IAR C-SPY® Debugger, is available in the C-SPY® Debugging Guide.

e Programming for the IAR C/C++ Compiler, is available in the IAR C/C++
Compiler Reference Guide if your product package includes the IAR XLINK
Linker, or in the |AR C/C++ Development Guide, Compiling and Linking if your
product package includes the IAR ILINK Linker.

o Using the IAR XLINK Linker, the IAR XAR Library Builder, and the IAR XLIB
Librarian, is available in the IAR Linker and Library Tools Reference Guide.

e Programming for the IAR Assembler, is available in the |AR Assembler Reference
Guide.

e Using the IAR DLIB Library, is available in the DLIB Library Reference
information, available in the online help system.

e Using the TAR CLIB Library, is available in the AR C Library Functions Reference
Guide, available in the online help system. This guide is only available if your
product package includes the CLIB library.

Document conventions

20

o Developing safety-critical applications using the MISRA C guidelines, is available
in the |AR Embedded Workbench® MISRA C:2004 Reference Guide or the IAR
Embedded Workbench® MISRA C:1998 Reference Guide.

Note: Additional documentation might be available depending on your product
installation.

THE ONLINE HELP SYSTEM
The context-sensitive online help contains:

Information about project management and building in the IDE

Information about debugging using the IAR C-SPY® Debugger

Information about using the editor

Reference information about the menus, windows, and dialog boxes in the IDE

Compiler reference information

Keyword reference information for the DLIB library functions. To obtain reference
information for a function, select the function name in the editor window and press
F1. Note that if you select a function name in the editor window and press F1 while
using the CLIB library, you will get reference information for the DLIB library.

WEB SITES
Recommended web sites:

o The chip manufacturer web site.

o The IAR Systems web site, www.iar.com, that holds application notes and other
product information.
o The web site of the C standardization working group,
www.open-std.or g/jtcl/sc22/wgl4.
e The web site of the C++ Standards Commiittee, www.open-std.or g/j tcl/sc22/wg21.
o Finally, the Embedded C++ Technical Committee web site,

www.car avan.net/ec2plus, that contains information about the Embedded C++
standard.

Document conventions

IAR Embedded Workbench®
C-SPY® Debugging Guide

When, in the IAR Systems documentation, we refer to the programming language C, the
text also applies to C++, unless otherwise stated.

When referring to a directory in your product installation, for example cpuname, the full
path to the location is assumed, for example c: \Program Files\IAR
Systems \Embedded Workbench 6 .n\ cpuname\doc.

Preface __4

TYPOGRAPHIC CONVENTIONS
The IAR Systems documentation set uses the following typographic conventions:

Style Used for

computer * Source code examples and file paths.
* Text on the command line.
* Binary, hexadecimal, and octal numbers.

parameter A placeholder for an actual value used as a parameter, for example
filename.h where £ilename represents the name of the file.
Note that this style is also used for cpuname, configfile,
libraryfile,and other labels representing your product, as well as
for the numeric part of filename extensions—xx.

[option] An optional part of a linker directive, inline assembler statement, or a
stack usage control directive,[and] are not part of the actual directive,
butany [,], {, or } are part of the directive syntax.

{option} A mandatory part of a linker directive, { and } are not part of the actual
directive, butany [,], {, or } are part of the directive syntax

[option] An optional part of a command.

[a]b|c] An optional part of a command with alternatives.

{a|b]|c} A mandatory part of a command with alternatives.

bold Names of menus, menu commands, buttons, and dialog boxes that

appear on the screen.

italic * A cross-reference within this guide or to another guide.
* Emphasis.

An ellipsis indicates that the previous item can be repeated an arbitrary
number of times.

Identifies instructions specific to the IAR Embedded Workbench® IDE
interface.

Identifies instructions specific to the command line interface.

Identifies helpful tips and programming hints.

Identifies warnings.

Table 1: Typographic conventions used in this guide

21

Document conventions

22

IAR Embedded Workbench®
C-SPY® Debugging Guide

NAMING CONVENTIONS

The following naming conventions are used for the products and tools from IAR

Systems®, when referred to in the documentation:

Brand name

Generic term

IAR Embedded Workbench®
IAR Embedded Workbench® IDE
IAR C-SPY® Debugger

IAR C-SPY® Simulator

IAR C/C++ Compiler™

IAR Assembler™

IAR XLINK Linker™

IAR ILINK Linker™

IAR XAR Library Builder™
IAR XLIB Librarian™

IAR DLIB Library™

IAR CLIB Library™

IAR Embedded Workbench®
the IDE

C-SPY, the debugger
the simulator

the compiler

the assembler
XLINK, the linker
ILINK, the linker
the library builder
the librarian

the DLIB library

the CLIB library

Table 2: Naming conventions used in this guide

Note that some of these products and tools might not be available in the product package

you are using.

The IAR C-SPY Debugger

This chapter introduces you to the IAR C-SPY® Debugger and to the
concepts that are related to debugging in general and to C-SPY in particular.
The chapter also introduces the various C-SPY drivers. More specifically, this
means:

e Introduction to C-SPY
e Debugger concepts

o The IAR C-SPY Simulator

Introduction to C-SPY

This section covers these topics:

o An integrated environment
o General C-SPY debugger features

o RTOS awareness

AN INTEGRATED ENVIRONMENT

C-SPY is a high-level-language debugger for embedded applications. It is designed for
use with the IAR Systems compilers and assemblers, and is completely integrated in the
IDE, providing development and debugging within the same application. This will give
you possibilities such as:

e Editing while debugging. During a debug session, you can make corrections directly
in the same source code window that is used for controlling the debugging. Changes
will be included in the next project rebuild.

e Setting breakpoints at any point during the development cycle. You can inspect and
modify breakpoint definitions also when the debugger is not running, and
breakpoint definitions flow with the text as you edit. Your debug settings, such as
watch properties, window layouts, and register groups will be preserved between
your debug sessions.

All windows that are open in the Embedded Workbench workspace will stay open when
you start the C-SPY Debugger. In addition, a set of C-SPY-specific windows are opened.

Introduction to C-SPY

2

IAR Embedded Workbench®
C-SPY® Debugging Guide

GENERAL C-SPY DEBUGGER FEATURES

Because IAR Systems provides an entire toolchain, the output from the compiler and
linker can include extensive debug information for the debugger, resulting in good
debugging possibilities for you.

C-SPY offers these general features:

Source and disassembly level debugging

C-SPY allows you to switch between source and disassembly debugging as required,
for both C or C++ and assembler source code.

Single-stepping on a function call level

Compared to traditional debuggers, where the finest granularity for source level
stepping is line by line, C-SPY provides a finer level of control by identifying every
statement and function call as a step point. This means that each function
call—inside expressions, and function calls that are part of parameter lists to other
functions—can be single-stepped. The latter is especially useful when debugging
C++ code, where numerous extra function calls are made, for example to object
constructors.

Code and data breakpoints

The C-SPY breakpoint system lets you set breakpoints of various kinds in the
application being debugged, allowing you to stop at locations of particular interest.
For example, you set breakpoints to investigate whether your program logic is correct
or to investigate how and when the data changes.

Monitoring variables and expressions

For variables and expressions there is a wide choice of facilities. You can easily
monitor values of a specified set of variables and expressions, continuously or on
demand. You can also choose to monitor only local variables, static variables, etc.
Container awareness

When you run your application in C-SPY, you can view the elements of library data
types such as STL lists and vectors. This gives you a very good overview and
debugging opportunities when you work with C++ STL containers.

Call stack information

The compiler generates extensive call stack information. This allows the debugger to
show, without any runtime penalty, the complete stack of function calls wherever the
program counter is. You can select any function in the call stack, and for each
function you get valid information for local variables and available registers.
Powerful macro system

C-SPY includes a powerful internal macro system, to allow you to define complex
sets of actions to be performed. C-SPY macros can be used on their own or in

The IAR C-SPY Debugger __o

conjunction with complex breakpoints and—if you are using the simulator—the
interrupt simulation system to perform a wide variety of tasks.

Additional general C-SPY debugger features
This list shows some additional features:

Threaded execution keeps the IDE responsive while running the target application
Automatic stepping

The source browser provides easy navigation to functions, types, and variables
Extensive type recognition of variables

Configurable registers (CPU and peripherals) and memory windows

Graphical stack view with overflow detection

Support for code coverage and function level profiling

The target application can access files on the host PC using file I/O (requires the
DLIB library)

UBRGOF, Intel-extended, and Motorola input formats supported

o Optional terminal I/O emulation.

RTOS AWARENESS
C-SPY supports RTOS-aware debugging.

RTOS plugin modules can be provided by IAR Systems, and by third-party suppliers.
Contact your software distributor or IAR Systems representative, alternatively visit the
IAR Systems web site, for information about supported RTOS modules.

A C-SPY RTOS awareness plugin module gives you a high level of control and visibility
over an application built on top of an RTOS. It displays RTOS-specific items like task
lists, queues, semaphores, mailboxes, and various RTOS system variables. Task-specific
breakpoints and task-specific stepping make it easier to debug tasks.

A loaded plugin will add its own menu, set of windows, and buttons when a debug
session is started (provided that the RTOS is linked with the application). For
information about other RTOS awareness plugin modules, refer to the manufacturer of
the plugin module.

Debugger concepts
This section introduces some of the concepts and terms that are related to debugging in
general and to C-SPY in particular. This section does not contain specific information
related to C-SPY features. Instead, you will find such information in the other chapters

Debugger concepts

of this documentation. The IAR Systems user documentation uses the terms described
in this section when referring to these concepts.

C-SPY AND TARGET SYSTEMS

You can use C-SPY to debug either a software target system or a hardware target system.

This figure gives an overview of C-SPY and possible target systems:

\ Target

hardware

! [
! . I :

. T I
I | s“:".'hmr | Simulator !
| [river : :

I | T }

L ' [o | !
I ; ROM-monitor | M- |
IAR Embedded | | driver | —1 monitor |
Workbench 1 GSPY | Target hardware |
I

! I |
Emulator ! |
: ! driver ! ___'“‘x.q__ | JTAG Target |
I | emulator hardware |
! I [|
: | 3rd-party | . |
| driver L \
| | i !

| [
I | 1
| 1

= Provided by IAR Systems

‘ = Provided by IAR Systems or third-party vendors

THE DEBUGGER

The debugger, for instance C-SPY, is the program that you use for debugging your
applications on a target system.

THE TARGET SYSTEM

The target system is the system on which you execute your application when you are
debugging it. The target system can consist of hardware, either an evaluation board or
your own hardware design. It can also be completely or partially simulated by software.
Each type of target system needs a dedicated C-SPY driver.

THE APPLICATION

A user application is the software you have developed and which you want to debug
using C-SPY.

IAR Embedded Workbench®
4 C-SPY® Debugging Guide

The IAR C-SPY Debugger __o

C-SPY DEBUGGER SYSTEMS

C-SPY consists of both a general part which provides a basic set of debugger features,
and a target-specific back end. The back end consists of two components: a processor
module—one for every microcontroller, which defines the properties of the
microcontroller, and a C-SPY driver. The C-SPY driver is the part that provides
communication with and control of the target system. The driver also provides the user
interface—menus, windows, and dialog boxes—to the functions provided by the target
system, for instance, special breakpoints. Typically, there are three main types of C-SPY
drivers:

e Simulator driver
o ROM-monitor driver
o Emulator driver.

C-SPY is available with a simulator driver, and depending on your product package,
optional drivers for hardware debugger systems.

THE ROM-MONITOR PROGRAM

The ROM-monitor program is a piece of firmware that is loaded to non-volatile memory
on your target hardware; it runs in parallel with your application. The ROM-monitor
communicates with the debugger and provides services needed for debugging the
application, for instance stepping and breakpoints.

THIRD-PARTY DEBUGGERS

You can use a third-party debugger together with the IAR Systems toolchain as long as
the third-party debugger can read any of the output formats provided by XLINK, such
as UBROF, ELF/DWARF, COFF, Intel-extended, Motorola, or any other available
format. Or if you are using the ILINK linker, any of the formats ELF/DWAREF,
Intel-extended, or Motorola. For information about which format to use with a
third-party debugger, see the user documentation supplied with that tool.

C-SPY PLUGIN MODULES

C-SPY is designed as a modular architecture with an open SDK that can be used for
implementing additional functionality to the debugger in the form of plugin modules.
These modules can be seamlessly integrated in the IDE.

Plugin modules are provided by IAR Systems, or can be supplied by third-party vendors.
Examples of such modules are:

o Code Coverage, which is integrated in the IDE.

o The various C-SPY drivers for debugging using certain debug systems.

o RTOS plugin modules for support for real-time OS aware debugging.

The IAR C-SPY Simulator

6

e Peripheral simulation modules make C-SPY simulate peripheral units. Such plugin
modules are not provided by IAR Systems, but can be developed and distributed by
third-party suppliers.

o C-SPYLink that bridges IAR visualSTATE and IAR Embedded Workbench to make
true high-level state machine debugging possible directly in C-SPY, in addition to
the normal C level symbolic debugging. For more information, see the
documentation provided with IAR visualSTATE.

For more information about the C-SPY SDK, contact IAR Systems.

The IAR C-SPY Simulator

IAR Embedded Workbench®
C-SPY® Debugging Guide

The C-SPY Simulator simulates the functions of the target processor entirely in
software, which means that you can debug the program logic long before any hardware
is available. Because no hardware is required, it is also the most cost-effective solution
for many applications.

SIMULATOR FEATURES

In addition to the general features in C-SPY, the simulator also provides:

Instruction-level simulation
Memory configuration and validation

Interrupt simulation

Peripheral simulation (using the C-SPY macro system in conjunction with
immediate breakpoints).

Getting started using
C-SPY

This chapter helps you get started using C-SPY®. More specifically, this means:
e Setting up C-SPY

e Starting C-SPY

Adapting for target hardware

Running example projects

e Reference information on starting C-SPY

Setting up C-SPY

This section describes how to set up C-SPY.
More specifically, you will get information about:
Setting up for debugging

Executing from reset

Using a setup macro file

Selecting a device description file

Loading plugin modules

SETTING UP FOR DEBUGGING

Install a USB driver or some other communication driver if your C-SPY driver requires
it.

Before you start C-SPY, choose Project>Options>Debugger >Setup and select the

C-SPY driver that matches your debugger system: simulator or a hardware debugger
system.

Note: You can only choose a driver you have installed on your computer.
In the Category list, select the appropriate C-SPY driver and make your settings.

For information about these options, see Debugger options, page 261.

29

Setting up C-SPY

30

IAR Embedded Workbench®
C-SPY® Debugging Guide

4
5

Click OK.
Choose Tools>Options>Debugger to configure:

o The debugger behavior
o The debugger’s tracking of stack usage.

For more information about these options, see the IDE Project Management and
Building Guide.

See also Adapting for target hardware, page 34.

EXECUTING FROM RESET

The Run to option—available on the Debugger >Setup page—specifies a location you
want C-SPY to run to when you start a debug session as well as after each reset. C-SPY
will place a temporary breakpoint at this location and all code up to this point is executed
before stopping at the location.

The default location to run to is the main function. Type the name of the location if you
want C-SPY to run to a different location. You can specify assembler labels or whatever
can be evaluated to such, for instance function names.

If you leave the check box empty, the program counter will contain the regular hardware
reset address at each reset.

If no breakpoints are available when C-SPY starts, a warning message notifies you that
single stepping will be required and that this is time-consuming. You can then continue
execution in single-step mode or stop at the first instruction. If you choose to stop at the
first instruction, the debugger starts executing with the pC (program counter) at the
default reset location instead of the location you typed in the Run to box.

Note: This message will never be displayed in the C-SPY Simulator, where breakpoints
are not limited.

USING A SETUP MACRO FILE

A setup macro file is a macro file that you choose to load automatically when C-SPY
starts. You can define the setup macro file to perform actions according to your needs,
using setup macro functions and system macros. Thus, if you load a setup macro file you
can initialize C-SPY to perform actions automatically.

For more information about setup macro files and functions, see Introduction to C-SPY
macros, page 207. For an example of how to use a setup macro file, see the chapter
Initializing target hardware before C-SPY starts, page 35.

Toregister a setup macrofile:
Before you start C-SPY, choose Project>Options>Debugger >Setup.

Getting started using C-SPY ___4

2 Select Use macro file and type the path and name of your setup macro file, for
example Setup.mac. If you do not type a filename extension, the extension mac is
assumed.

SELECTING A DEVICE DESCRIPTION FILE
C-SPY uses device description files to handle device-specific information.

A default device description file is automatically used based on your project settings. If
you want to override the default file, you must select your device description file. Device
description files are provided in the cpuname\config directory and they have the
filename extension ddf.

For more information about device description files, see Adapting for target hardware,
page 34.

To override the default device description file:

I Before you start C-SPY, choose Project>Options>Debugger >Setup.

2 Enable the use of a device description file and select a file using the Device
description file browse button.
LOADING PLUGIN MODULES

On the Plugins page you can specify C-SPY plugin modules to load and make available
during debug sessions. Plugin modules can be provided by IAR Systems, and by
third-party suppliers. Contact your software distributor or [AR Systems representative,
or visit the AR Systems web site, for information about available modules.

For more information, see Plugins, page 265.

Starting C-SPY

When you have set up the debugger, you are ready to start a debug session; this section
describes various ways to start C-SPY.

More specifically, you will get information about:

Starting a debug session
Loading executable files built outside of the IDE

°
°
e Starting a debug session with source files missing
°

Loading multiple images

31

Starting C-SPY

32

IAR Embedded Workbench®
C-SPY® Debugging Guide

I

I

STARTING A DEBUG SESSION
You can choose to start a debug session with or without loading the current project.

To start C-SPY and load the current project, click the Download and Debug button.
Alternatively, choose Project>Download and Debug.

To start C-SPY without reloading the current project, click the Debug without
Downloading button. Alternatively, choose Project>Debug without Downloading.

LOADING EXECUTABLE FILES BUILT OUTSIDE OF THE IDE

You can also load C-SPY with an application that was built outside the IDE, for example
applications built on the command line. To load an externally built executable file and
to set build options you must first create a project for it in your workspace.

To createaproject for an externally built file:
Choose Project>Create New Project, and specify a project name.

To add the executable file to the project, choose Project>Add Files and make sure to
choose All Filesin the Files of type drop-down list. Locate the executable file.

To start the executable file, click the Download and Debug button. The project can be
reused whenever you rebuild your executable file.

The only project options that are meaningful to set for this kind of project are options in
the General Optionsand Debugger categories. Make sure to set up the general project
options in the same way as when the executable file was built.

STARTING A DEBUG SESSION WITH SOURCE FILES MISSING

Normally, when you use the IAR Embedded Workbench IDE to edit source files, build
your project, and start the debug session, all required files are available and the process
works as expected.

Getting started using C-SPY ___4

However, if C-SPY cannot automatically find the source files, for example if the
application was built on another computer, the Get Alter native File dialog box is
displayed:

Get Alternative File g|

Could nat find the following source file:
C:hprojectshtutorsTutor.c

<RNones J
| Skip |

Suggested alternative:

I If possible, don't show this dialog again

Typically, you can use the dialog box like this:

e The source files are not available: Click If possible, don’t show thisdialog again
and then click Skip. C-SPY will assume that there simply is no source file available.
The dialog box will not appear again, and the debug session will not try to display
the source code.

e Alternative source files are available at another location: Specify an alternative
source code file, click If possible, don’t show thisdialog again, and then click Use
thisfile. C-SPY will assume that the alternative file should be used. The dialog box
will not appear again, unless a file is needed for which there is no alternative file
specified and which cannot be located automatically.

If you restart the IAR Embedded Workbench IDE, the Get Alter native File dialog box
will be displayed again once even if you have clicked If possible, don’t show this
dialog again. This gives you an opportunity to modify your previous settings.

For more information, see Get Alternative File dialog box, page 44.

LOADING MULTIPLE IMAGES

Normally, a debuggable application consists of exactly one file that you debug.
However, you can also load additional debug files (images). This means that the
complete program consists of several images.

Typically, this is useful if you want to debug your application in combination with a
prebuilt ROM image that contains an additional library for some platform-provided

features. The ROM image and the application are built using separate projects in the
IAR Embedded Workbench IDE and generate separate output files.

If more than one image has been loaded, you will have access to the combined debug
information for all the loaded images. In the Images window you can choose whether
you want to have access to debug information for one image or for all images.

33

Adapting for target hardware

34

To load additional images at C-SPY startup:

Choose Project>Options>Debugger >l mages and specify up to three additional
images to be loaded. For more information, see |mages, page 264.

Start the debug session.
To load additional images at a specific moment:

Use the __loadImage system macro and execute it using either one of the methods
described in Using C-SPY macros, page 209.

To display a list of loaded images:

Choose I mages from the View menu. The Images window is displayed, see Images
window, page 42.

Adapting for target hardware

IAR Embedded Workbench®
C-SPY® Debugging Guide

This section provides information about how to describe the target hardware to C-SPY,
and how you can make C-SPY initialize the target hardware before your application is
downloaded to memory.

More specifically, you will get information about:

e Memory configuration
o Modifying a device description file

o Initializing target hardware before C-SPY starts

MEMORY CONFIGURATION

Providing C-SPY with information about the memory layout of the target system is
helpful both in terms of performance and functionality.

o Reading (and writing) memory (if your debug probe is connected through a USB
port) can be fast, but is usually the limiting factor when C-SPY needs to update
many debugger windows. Caching memory can speed up the performance, but then
C-SPY needs information about the target memory.

o If C-SPY has been informed that the content of certain memory areas will not
change during a debug session, C-SPY can keep a copy of that memory readable
even when the target does not normally allow reading (such as when executing).

o C-SPY can prevent accesses to areas without any memory at all, which can be
important for certain hardware.

Typically, when you set up your project, a device description file for your particular
device is automatically or manually selected. If that file fully specifies the memory
range information of your device, you do not have to configure C-SPY in this respect.

Getting started using C-SPY ___4

However, it that file does not specify memory ranges for a specific device, but rather for
a family of devices (perhaps with different amounts of on-chip RAM), you will
automatically be asked to examine or modify the ranges to fit your specific device.

To fine-tune the information to suit your device, use the Memory Configuration dialog
box, see Memory Configuration dialog box, page 144.

MODIFYING A DEVICE DESCRIPTION FILE

C-SPY uses device description files provided with the product to handle several of the
target-specific adaptations, see Selecting a devicedescriptionfile, page 31. They contain
device-specific information such as:

o Memory information for device-specific memory zones, see C-SPY memory zones,
page 120.

e Definitions of memory-mapped peripheral units, device-specific CPU registers, and
groups of these.

e Definitions for device-specific interrupts, which makes it possible to simulate these
interrupts in the C-SPY simulator; see Interrupts, page 187.

Normally, you do not need to modify the device description file. However, if the
predefinitions are not sufficient for some reason, you can edit the file. Note, however,
that the format of these descriptions might be updated in future upgrade versions of the
product.

Make a copy of the device description file that best suits your needs, and modify it
according to the description in the file.

For information about how to load a device description file, see Selecting a device
description file, page 31.
INITIALIZING TARGET HARDWARE BEFORE C-SPY STARTS

You can use C-SPY macros to initialize target hardware before C-SPY starts. For
example, if your hardware uses external memory that must be enabled before code can
be downloaded to it, C-SPY needs a macro to perform this action before your
application can be downloaded.

Create a new text file and define your macro function.

By using the built-in execUserPreload setup macro function, your macro function
will be executed directly after the communication with the target system is established
but before C-SPY downloads your application.

35

Running example projects

36

For example, a macro that enables external SDRAM could look like this:

/* Your macro function. */
enableExternal SDRAM ()
{
__message "Enabling external SDRAM\n";
__writeMemory32(...);
}

/* Setup macro determines time of execution. */
execUserPreload()
{
enableExternal SDRAM() ;
}

Save the file with the filename extension mac.
Before you start C-SPY, choose Project>Options>Debugger and click the Setup tab.
Select the option Use Setup file and choose the macro file you just created.

Your setup macro will now be loaded during the C-SPY startup sequence.

Running example projects

IAR Embedded Workbench®
C-SPY® Debugging Guide

IAR Embedded Workbench comes with example applications. You can use these
examples to get started using the development tools from IAR Systems or simply to
verify that contact has been established with your target board. You can also use the
examples as a starting point for your application project.

You can find the examples in the cpuname\examples directory. The examples are ready
to be used as is. They are supplied with ready-made workspace files, together with
source code files and all other related files.

RUNNING AN EXAMPLE PROJECT

Torun an example project:
Choose Help>Information Center and click EXAMPLE PROJECTS.

2

qop 6

Getting started using C-SPY ___4

Browse to the example that matches the specific evaluation board or starter kit you are
using.

=
ARRLERRR R AR AR R Ry
Info Open Name Description
project
This example shows how
Basic LCD to use the LCD and the
touch screen controller
s example shows
" basic use of the parallel
(020 'O, hmer and the
nterrupt controller
=
Il] <] |

Click the Open Project button.

In the dialog box that appears, choose a destination folder for your project location.
Click Select to confirm your choice.

The available example project(s) are displayed in the workspace window. Select one of
the projects, and if it is not the active project (highlighted in bold), right-click it and
choose Set AsActive from the context menu.

To view the project settings, select the project and choose Options from the context
menu. Verify the settings for device selection and Debugger >Setup>Driver. As for
other settings, the project is set up to suit the target system you selected.

For more information about the C-SPY options and how to configure C-SPY to interact
with the target board, see Debugger options, page 261.

Click OK to close the project Options dialog box.
To compile and link the application, choose Project>Make or click the Make button.

To start C-SPY, choose Project>Debug or click the Download and Debug button. If
C-SPY fails to establish contact with the target system, see Resolving problems, page
269.

Choose Debug>Go or click the Go button to start the application.

Click the Sop button to stop execution.

37

Reference information on starting C-SPY

Reference information on starting C-SPY

This section gives reference information about these windows and dialog boxes:

e C-SPY Debugger main window, page 38
e Imageswindow, page 42
o Get Alternative File dialog box, page 44

See also:

e Tools options for the debugger in the IDE Project Management and Building Guide.

C-SPY Debugger main window
When you start a debug session, these debugger-specific items appear in the main IAR
Embedded Workbench IDE window:
e A dedicated Debug menu with commands for executing and debugging your
application

o Depending on the C-SPY driver you are using, a driver-specific menu, often
referred to as the Driver menu in this documentation. Typically, this menu contains
menu commands for opening driver-specific windows and dialog boxes.

e A special debug toolbar
® A special trace setup toolbar
o Several windows and dialog boxes specific to C-SPY.

The C-SPY main window might look different depending on which components of the
product installation you are using.

Menu bar
These menus are available during a debug session:
Debug
Provides commands for executing and debugging the source application. Most
of the commands are also available as icon buttons on the debug toolbar.
Simulator

Provides access to the dialog boxes for setting up interrupt simulation and
memory access checking. This menu is only available when the C-SPY
Simulator is used, see Smulator menu, page 267.

IAR Embedded Workbench®
38 C-SPY® Debugging Guide

Debug menu

-
\E
+*

x [0 &

N

Getting started using C-SPY ___4

Har dware debugger system

Provides commands specific to the C-SPY hardware debugger drivers, if any.
This menu is only available when a C-SPY hardware debugger driver is used.
For some products, the name of the menu reflects the C-SPY driver and for some
products, the name of the menu is Emulator.

The Debug menu is available during a debug session. The Debug menu provides
commands for executing and debugging the source application. Most of the commands
are also available as icon buttons on the debug toolbar.

Go F5
Break:
Reset

Stop Debugging Chrl+Shift+D

Step Over F10

Step Into Fii

Step Cut Shift+F11
MNext Statement

Run to Cursor

Autostep...

Set Next Statement

C++ Exceptions 3

Memory 3
Refresh

Macros...

Logging 3

These commands are available:

GoF5

Executes from the current statement or instruction until a breakpoint or program
exit is reached.

Break
Stops the application execution.
Reset
Resets the target processor.
Sop Debugging (Ctrl+Shift+D)
Stops the debugging session and returns you to the project manager.
Sep Over (F10)

Executes the next statement, function call, or instruction, without entering C or
C++ functions or assembler subroutines.

39

Reference information on starting C-SPY

40

&

£

IAR Embedded Workbench®
C-SPY® Debugging Guide

Sep Into (F11)

Executes the next statement or instruction, or function call, entering C or C++
functions or assembler subroutines.

Sep Out (Shift+F11)

Executes from the current statement up to the statement after the call to the
current function.

Next Satement

Executes directly to the next statement without stopping at individual function
calls.

Run to Cursor

Executes from the current statement or instruction up to a selected statement or
instruction.

Autostep

Displays a dialog box where you can customize and perform autostepping, see
Autostep settings dialog box, page 62.

Set Next Satement

Moves the program counter directly to where the cursor is, without executing
any source code. Note, however, that this creates an anomaly in the program
flow and might have unexpected effects.

C++ Exceptions>
Break on Throw

This menu command is not supported by your product package.

C++ Exceptions>
Break on Uncaught Exception

This menu command is not supported by your product package.
Memory>Save

Displays a dialog box where you can save the contents of a specified memory
area to a file, see Memory Save dialog box, page 128.

Memory>Restore

Displays a dialog box where you can load the contents of a file in, for example
Intel-extended or Motorola s-record format to a specified memory zone, see
Memory Restore dialog box, page 129.

Getting started using C-SPY ___4

Refresh
Refreshes the contents of all debugger windows. Because window updates are
automatic, this is needed only in unusual situations, such as when target memory
is modified in ways C-SPY cannot detect. It is also useful if code that is
displayed in the Disassembly window is changed.

Macros
Displays a dialog box where you can list, register, and edit your macro files and
functions, see Using C-SPY macros, page 209.

Logging>Set Log file
Displays a dialog box where you can choose to log the contents of the Debug
Log window to a file. You can select the type and the location of the log file. You
can choose what you want to log: errors, warnings, system information, user
messages, or all of these. See Log File dialog box, page 61.

L ogging>

Set Terminal 1/0 Log file

Displays a dialog box where you can choose to log simulated target access
communication to a file. You can select the destination of the log file. See
Terminal 1/O Log File dialog box, page 59

C-SPY windows
Depending on the C-SPY driver you are using, these windows specific to C-SPY are
available during a debug session:
C-SPY Debugger main window
Disassembly window
Memory window
Symbolic Memory window
Register window
Watch window
Locals window
Auto window
Live Watch window
Quick Watch window
Statics window
Call Stack window

Trace window

Function Trace window

41

Reference information on starting C-SPY

Timeline window
Terminal I/O window
Code Coverage window
Function Profiler window
Images window

Stack window

Symbols window.

Additional windows are available depending on which C-SPY driver you are using.

Editing in C-SPY windows

You can edit the contents of the Memory, Symbolic Memory, Register, Auto, Watch,
Locals, Statics, Live Watch, and Quick Watch windows.

Use these keyboard keys to edit the contents of these windows:

Enter Makes an item editable and saves the new value.

Esc Cancels a new value.

In windows where you can edit the Expression field, you can specify the number of
elements to be displayed in the field by adding a semicolon followed by an integer. For

example, to display only the three first elements of an array named myArray, or three
elements in sequence starting with the element pointed to by a pointer, write:

myArray; 3

Optionally, add a comma and another integer that specifies which element to start with.
For example, to display elements 10-14, write:

myArray; 5,10

Images window

The Images window is available from the View menu.

Images E|
Mame Fath
<All images> [Combines debug information from all images]
project] ChDocuments and Settingsi\hy Documentsy| AR Embedded WorkbenchDebugiExeyproject] .out

exfralmage ChDocuments and Settingsi\hy Documentsy| AR Embedded WorkbenchDebughExelextralmage. out

The Images window lists all currently loaded images (debug files).

IAR Embedded Workbench®
42 C-SPY® Debugging Guide

Getting started using C-SPY ___4

Normally, a source application consists of exactly one image that you debug. However,
you can also load additional images. This means that the complete debuggable unit
consists of several images.

Requirements

None; this window is always available.

Display area

C-SPY can either use debug information from all of the loaded images simultaneously,
or from one image at a time. Double-click on a row to show information only for that
image. The current choice is highlighted.

This area lists the loaded images in these columns:

Name
The name of the loaded image.

Path
The path to the loaded image.

Context menu

This context menu is available:

Show only 'projectl’
These commands are available:

Show all images
Shows debug information for all loaded debug images.

Show only image

Shows debug information for the selected debug image.

Related information
For related information, see:
e Loading multiple images, page 33
o Images, page 264
e _ |oadimage, page 229.

43

Reference information on starting C-SPY

Get Alternative File dialog box

The Get Alternative File dialog box is displayed if C-SPY cannot automatically find
the source files to be loaded, for example if the application was built on another
computer.

Get Alternative File §|

Could nat find the following source file:
C:hprojectshtutorsTutor.c

<RNones J
| Skip |

Suggested alternative:

I If possible, don't show this dialog again

Could not find the following source file

The missing source file.

Suggested alternative

Specify an alternative file.

Use this file

After you have specified an alternative file, Use thisfile establishes that file as the alias
for the requested file. Note that after you have chosen this action, C-SPY will
automatically locate other source files if these files reside in a directory structure similar
to the first selected alternative file.

The next time you start a debug session, the selected alternative file will be preloaded
automatically.
Skip

C-SPY will assume that the source file is not available for this debug session.

If possible, don’t show this dialog again

Instead of displaying the dialog box again for a missing source file, C-SPY will use the
previously supplied response.

Related information

For related information, see Sarting a debug session with source files missing, page 32.

IAR Embedded Workbench®
44 C-SPY® Debugging Guide

Executing your application

This chapter contains information about executing your application in
C-SPY®. More specifically, this means:

e Introduction to application execution

e Reference information on application execution

Introduction to application execution

This section covers these topics:

Briefly about application execution
Source and disassembly mode debugging
Single stepping

Stepping speed

Running the application

Highlighting

Call stack information

Terminal input and output

Debug logging

BRIEFLY ABOUT APPLICATION EXECUTION

C-SPY allows you to monitor and control the execution of your application. By
single-stepping through it, and setting breakpoints, you can examine details about the
application execution, for example the values of variables and registers. You can also use
the call stack to step back and forth in the function call chain.

The terminal I/O and debug log features let you interact with your application.

You can find commands for execution on the Debug menu and on the toolbar.

SOURCE AND DISASSEMBLY MODE DEBUGGING

C-SPY allows you to switch between source mode and disassembly mode debugging as
needed.

Source debugging provides the fastest and easiest way of developing your application,
without having to worry about how the compiler or assembler has implemented the

45

Introduction to application execution

46

IAR Embedded Workbench®
C-SPY® Debugging Guide

code. In the editor windows you can execute the application one statement at a time
while monitoring the values of variables and data structures.

Disassembly mode debugging lets you focus on the critical sections of your application,
and provides you with precise control of the application code. You can open a
disassembly window which displays a mnemonic assembler listing of your application
based on actual memory contents rather than source code, and lets you execute the
application exactly one machine instruction at a time.

Regardless of which mode you are debugging in, you can display registers and memory,
and change their contents.

SINGLE STEPPING

C-SPY allows more stepping precision than most other debuggers because it is not
line-oriented but statement-oriented. The compiler generates detailed stepping
information in the form of step points at each statement, and at each function call. That
is, source code locations where you might consider whether to execute a step into or a
step over command. Because the step points are located not only at each statement but
also at each function call, the step functionality allows a finer granularity than just
stepping on statements.

There are several factors that can slow down the stepping speed. If you find it too slow,
see Sow stepping speed, page 270 for some tips.

The step commands
There are four step commands:
e Seplinto

o Sep Over

o Next Satement

e Sep Out.

Using the Autostep settingsdialog box, you can automate the single stepping. For more
information, see Autostep settings dialog box, page 62.

Executing your application __4

Consider this example and assume that the previous step has taken you to the £ (1)
function call (highlighted):

extern int g(int);

int f(int n)

{

value = g(n-1) + g(n-2) + g(n-3);
return value;

}
int main()

{

£(i);
value ++;

Step Into

While stepping, you typically consider whether to step into a function and continue
stepping inside the function or subroutine. The Step Into command takes you to the first
step point within the subroutine g (n-1):

extern int g(int);

int f(int n)

{

value = g(n-1) + g(n-2) + g(n-3);
return value;

}

The Step Into command executes to the next step point in the normal flow of control,
regardless of whether it is in the same or another function.

Step Over

The Sep Over command executes to the next step point in the same function, without
stopping inside called functions. The command would take you to the g (n-2) function
call, which is not a statement on its own but part of the same statement as g (n-1) . Thus,
you can skip uninteresting calls which are parts of statements and instead focus on
critical parts:

extern int g(int);

int f(int n)

{

value = g(n-1) + g(n-2) + g(n-3);
return value;

}

47

Introduction to application execution

48

IAR Embedded Workbench®
C-SPY® Debugging Guide

Next Statement

The Next Statement command executes directly to the next statement, in this case
return value, allowing faster stepping:

extern int g(int);

int f(int n)

{

value = g(n-1) + g(n-2) + g(n-3);
return value;

}

Step Out

When inside the function, you can—if you wish—use the Step Out command to step
out of it before it reaches the exit. This will take you directly to the statement
immediately after the function call:

extern int g(int);
int f(int n)
{
value = g(n-1) + g(n-2) g(n-3);
return value;

}

int main()

{

£(i);
value ++;

}

The possibility of stepping into an individual function that is part of a more complex
statement is particularly useful when you use C code containing many nested function
calls. It is also very useful for C++, which tends to have many implicit function calls,
such as constructors, destructors, assignment operators, and other user-defined
operators.

This detailed stepping can in some circumstances be either invaluable or unnecessarily
slow. For this reason, you can also step only on statements, which means faster stepping.

STEPPING SPEED

Stepping in C-SPY is normally performed using breakpoints. When performing a step
command, a breakpoint is set on the next statement and the program executes until
reaching this breakpoint. If you are debugging using a hardware debugger system, the
number of hardware breakpoints—typically used for setting a stepping breakpoint, at
least in code that is located in flash/ROM memory—is limited. If you for example, step
into a C swi tch statement, breakpoints are set on each branch, and hence, this might

¥
iy

Executing your application ___4

consume several hardware breakpoints. If the number of available hardware breakpoints
is exceeded, C-SPY switches into single stepping at assembly level, which can be very
slow.

For this reason, it can be helpful to keep track of how many hardware breakpoints are
used and make sure to some of them are left for stepping. For more information, see and
Breakpoint consumers, page 100.

In addition to limited hardware breakpoints, these issues might also affect stepping
speed:

o If Trace or Function profiling is enabled. This might slow down stepping because
collected Trace data is processed after each step. Note that it is not sufficient to
close the corresponding windows to disable Trace data collection. Instead, you must
disable the Enable/Disable button in both the Trace and the Function profiling
windows.

e If the Register window is open and displays SFR registers. This might slow down
stepping because all registers in the selected register group must be read from the
hardware after each step. To solve this, you can choose to view only a limited
selection of SFR register; you can choose between two alternatives. Either type
#SFR_name (Where #SFR_name reflects the name of the SFR you want to monitor)
in the Watch window, or create your own filter for displaying a limited group of
SFRs in the Register window. See Defining application-specific register groups,
page 122.

e If any of the Memory or Symbolic memory windows is open. This might slow down
stepping because the visible memory must be read after each step.

e If any of the expression related windows such as Watch, Live Watch, Locals, Statics
is open. This might slow down stepping speed because all these windows reads
memory after each step.

e If the Stack window is open and especially if the option Enable graphical stack
display and stack usage tracking option is enabled. To disable this option, choose
Tools>Options>Sack and disable it.

e If a too slow communication speed has been set up between C-SPY and the target
board/emulator you should consider to increase the speed, if possible.

RUNNING THE APPLICATION

Go

The Go command continues execution from the current position until a breakpoint or
program exit is reached.

49

Introduction to application execution

50

IAR Embedded Workbench®
C-SPY® Debugging Guide

Run to Cursor

The Run to Cursor command executes to the position in the source code where you
have placed the cursor. The Run to Cursor command also works in the Disassembly
window and in the Call Stack window.

HIGHLIGHTING

At each stop, C-SPY highlights the corresponding C or C++ source or instruction with
a green color, in the editor and the Disassembly window respectively. In addition, a
green arrow appears in the editor window when you step on C or C++ source level, and
in the Disassembly window when you step on disassembly level. This is determined by
which of the windows is the active window. If none of the windows are active, it is
determined by which of the windows was last active.

Tutor.c I!EEE

void init_fib{ void |

i

int i = 45;
o root[0] = root[l] = 1;

for { i=2 ; i<MAX _FIE : i++)
{

For simple statements without function calls, the whole statement is typically
highlighted. When stopping at a statement with function calls, C-SPY highlights the first
call because this illustrates more clearly what Sep Into and Siep Over would mean at
that time.

Occasionally, you will notice that a statement in the source window is highlighted using
a pale variant of the normal highlight color. This happens when the program counter is
at an assembler instruction which is part of a source statement but not exactly at a step
point. This is often the case when stepping in the Disassembly window. Only when the
program counter is at the first instruction of the source statement, the ordinary highlight
color is used.

CALL STACK INFORMATION

The compiler generates extensive backtrace information. This allows C-SPY to show,
without any runtime penalty, the complete function call chain at any time.

Typically, this is useful for two purposes:

e Determining in what context the current function has been called
o Tracing the origin of incorrect values in variables and in parameters, thus locating
the function in the call chain where the problem occurred.

The Call Stack window shows a list of function calls, with the current function at the
top. When you inspect a function in the call chain, the contents of all affected windows

12

Executing your application ___4

are updated to display the state of that particular call frame. This includes the editor,
Locals, Register, Watch and Disassembly windows. A function would normally not
make use of all registers, so these registers might have undefined states and be displayed
as dashes (---).

In the editor and Disassembly windows, a green highlight indicates the topmost, or
current, call frame; a yellow highlight is used when inspecting other frames.

For your convenience, it is possible to select a function in the call stack and click the
Run to Cursor command to execute to that function.

Assembler source code does not automatically contain any backtrace information. To
see the call chain also for your assembler modules, you can add the appropriate CFI
assembler directives to the assembler source code. For further information, see the |AR
Assembler Reference Guide.

TERMINAL INPUT AND OUTPUT

Sometimes you might have to debug constructions in your application that use stdin
and stdout without an actual hardware device for input and output. The Terminal I/O
window lets you enter input to your application, and display output from it. You can also
direct terminal I/O to a file, using the Terminal 1/O Log Files dialog box.

This facility is useful in two different contexts:

e If your application uses stdin and stdout

e For producing debug trace printouts.

For more information, see Terminal 1/O window, page 58 and Terminal 1/0 Log File
dialog box, page 59.

DEBUG LOGGING

The Debug Log window displays debugger output, such as diagnostic messages,
macro-generated output, event log messages, and information about trace.

It can sometimes be convenient to log the information to a file where you can easily
inspect it. The two main advantages are:

o The file can be opened in another tool, for instance an editor, so you can navigate
and search within the file for particularly interesting parts

o The file provides history about how you have controlled the execution, for instance,
which breakpoints that have been triggered etc.

51

Reference information on application execution

Reference information on application execution
This section gives reference information about these windows and dialog boxes:
Disassembly window, page 52
Call Sack window, page 56
Terminal 1/0 window, page 58
Terminal 1/O Log File dialog box, page 59
Debug Log window, page 60
Log File dialog box, page 61
Report Assert dialog box, page 62
Autostep settings dial og box, page 62

See also Terminal 1/O options in IDE Project Management and Building Guide.

Disassembly window
The C-SPY Disassembly window is available from the View menu.

Go to memory address Zone display Toggle embedded source mode
|

Disassembly =]
Goto * | Memory -

Disassembly
& 001EA o7 RET
NextCounter() ;
DoForegroundProcess:

-« OO01lEE FDE701 CALL N:NextCounter
fib = GetFikb({callCount) ;
Code coverage s 00LEE AFOOEF MOV AX, N:callCount
information + OO0LF1 FD4502 CALL N:UFOSTR
PutFila{ fily) ;
& 001F4 EDS002 ER N:UF1CTLO
callCount = 0O;
main:
& 001F7 Fi5 CLEW AKX
Current position © oore BROEF MOV NocallCownt, AX
InitFila() ;
& 001FE FDOEODZ2 CALL N:TCR27
& 001FE EFO03 ER S:5+0x05
. DoForegroundProcess() ;
Breakpoint ®
while (callCount = MAX FIE)
& 00203 AFOOEF MOV A¥, N:callCount
* 00206 TCR0 XOR A, #0x80 5

This window shows the application being debugged as disassembled application code.

IAR Embedded Workbench®
52 C-SPY® Debugging Guide

Executing your application ___4

To changethedefault color of the source codein the Disassembly window:
I Choose Tools>Options>Debugger .

2 Set the default color using the Source code coloring in disassembly window option.

To view the corresponding assembler code for a function, you can select it in the editor
@ window and drag it to the Disassembly window.

Requirements

None; this window is always available.

Toolbar
The toolbar contains:

Goto
The memory location or symbol you want to view.

Zone
Selects a memory zone, see C-SPY memory zones, page 120.

Toggle Mixed-M ode

Toggles between displaying only disassembled code or disassembled code
together with the corresponding source code. Source code requires that the
corresponding source file has been compiled with debug information

Display area

The display area shows the disassembled application code.

53

Reference information on application execution

54

Context menu

IAR Embedded Workbench®
C-SPY® Debugging Guide

This area contains these graphic elements:

Green highlight

Yellow highlight

Red dot

Green diamond

Indicates the current position, that is the next assembler
instruction to be executed. To move the cursor to any line in
the Disassembly window, click the line. Alternatively, move
the cursor using the navigation keys.

Indicates a position other than the current position, such as
when navigating between frames in the Call Stack window
or between items in the Trace window.

Indicates a breakpoint. Double-click in the gray left-side
margin of the window to set a breakpoint. For more
information, see Breakpoints, page 97.

Indicates code that has been executed—that is, code
coverage.

If instruction profiling has been enabled from the context menu, an extra column in the
left-side margin appears with information about how many times each instruction has

been executed.

This context menu is available:

Move to PC
Run ko Cursor

Code Coverage
Instruction Profiling

Toggle Breakpoint {Code)
Toggle Breakpoint {Log)

Toggle Breakpoint {Trace Start)
Toggle Breakpoint {Trace Stop)
Enable/disable Ereakpaint

Set Mext Statement

Copy Window Contents
v Mixed-Mode

Note: The contents of this menu are dynamic, which means it might look different
depending on your product package.

These commands are available:

Moveto PC

Displays code at the current program counter location.

Executing your application ___4

Run to Cursor

Executes the application from the current position up to the line containing the
Cursor.

Code Coverage

Displays a submenu that provides commands for controlling code coverage.
This command is only enabled if the driver you are using supports it.

Enable Toggles code coverage on or off.

Show Toggles the display of code coverage on or off.
Executed code is indicated by a green diamond.

Clear Clears all code coverage information.

Instruction Profiling

Displays a submenu that provides commands for controlling instruction
profiling. This command is only enabled if the driver you are using supports it.

Enable Toggles instruction profiling on or off.

Show Toggles the display of instruction profiling on or off.
For each instruction, the left-side margin displays
how many times the instruction has been executed.

Clear Clears all instruction profiling information.

Toggle Breakpoint (Code)

Toggles a code breakpoint. Assembler instructions and any corresponding label
at which code breakpoints have been set are highlighted in red. For more
information, see Code breakpoints dialog box, page 109.

Toggle Breakpoint (L og)

Toggles a log breakpoint for trace printouts. Assembler instructions at which log
breakpoints have been set are highlighted in red. For more information, see Log
breakpoints dialog box, page 111.

Toggle Breakpoint (Trace Sart)

Toggles a Trace Start breakpoint. When the breakpoint is triggered, the trace
data collection starts. Note that this menu command is only available if the
C-SPY driver you are using supports trace. For more information, see Trace
Sart breakpoints dialog box, page 167.

55

Reference information on application execution

56

Call Stack window

IAR Embedded Workbench®
C-SPY® Debugging Guide

Toggle Breakpoint (Trace Stop)
Toggles a Trace Stop breakpoint. When the breakpoint is triggered, the trace
data collection stops. Note that this menu command is only available if the
C-SPY driver you are using supports trace. For more information, see Trace
Sop breakpoints dialog box, page 168.

Enable/Disable Breakpoint
Enables and Disables a breakpoint. If there is more than one breakpoint at a
specific line, all those breakpoints are affected by the Enable/Disable
command.

Edit Breakpoint

Displays the breakpoint dialog box to let you edit the currently selected
breakpoint. If there is more than one breakpoint on the selected line, a submenu
is displayed that lists all available breakpoints on that line.

Set Next Statement

Sets the program counter to the address of the instruction at the insertion point.
Copy Window Contents

Copies the selected contents of the Disassembly window to the clipboard.
Mixed-Mode

Toggles between showing only disassembled code or disassembled code
together with the corresponding source code. Source code requires that the
corresponding source file has been compiled with debug information.

The Call stack window is available from the View menu.

Call Stack =

[~ Destination for Step Into

xC3E2)
main)
[?estart_call_main + 0x4]

This window displays the C function call stack with the current function at the top. To
inspect a function call, double-click it. C-SPY now focuses on that call frame instead.

Executing your application ___4

If the next Step I nto command would step to a function call, the name of the function is
displayed in the grey bar at the top of the window. This is especially useful for implicit
function calls, such as C++ constructors, destructors, and operators.

Requirements

None; this window is always available.

Display area
Provided that the command Show Argumentsis enabled, each entry in the display area
has the format:

function(values)

where (values) is alist of the current value of the parameters, or empty if the function
does not take any parameters.

Context menu

This context menu is available:
Go to Source
Show Arguments
Run to Cursor
Toggle Breakpoint (Code)
Toggle Breakpoint (Log)
Toggle Breakpoint (Trace Start)
Toggle Breakpoint (Trace Stop)
Enable/Disable Breakpoint

These commands are available:

Goto Source
Displays the selected function in the Disassembly or editor windows.
Show Arguments

Shows function arguments.

Run to Cursor
Executes until return to the function selected in the call stack.

Toggle Breakpoint (Code)
Toggles a code breakpoint.

Toggle Breakpoint (L og)
Toggles a log breakpoint.

57

Reference information on application execution

58

Terminal 1/0 window

Requirements

IAR Embedded Workbench®
C-SPY® Debugging Guide

Toggle Breakpoint (Trace Start)

Toggles a Trace Start breakpoint. When the breakpoint is triggered, trace data
collection starts. Note that this menu command is only available if the C-SPY
driver you are using supports it.

Toggle Breakpoint (Trace Stop)

Toggles a Trace Stop breakpoint. When the breakpoint is triggered, trace data
collection stops. Note that this menu command is only available if the C-SPY
driver you are using supports it.

Enable/Disable Breakpoint
Enables or disables the selected breakpoint

The Terminal I/O window is available from the View menu.

Terminal I/0 =

Output: Log file: OFff

[a—

21
34
bh

Input: LCtl codes | InputMode...|

Buffer size: 1]

Use this window to enter input to your application, and display output from it.

To use thiswindow, you must:

Link your application with the option With I/O emulation modules (for the XLINK
linker) and Include C-SPY debugging support (for the ILINK linker).

C-SPY will then direct stdin, stdout and stderr to this window. If the Terminal I/O
window is closed, C-SPY will open it automatically when input is required, but not for
output.

None; this window is always available.

Executing your application ___4

Input
Type the text that you want to input to your application.
Ctrl codes
Opens a menu for input of special characters, such as EOF (end of file) and NUL.
0:x00-0x0f »
O:x10-0:x1F »
EOQF
Input Mode

Opens the Input M ode dialog box where you choose whether to input data from the
keyboard or from a file.

& Buffered e

" Direct ﬂl
" File

& Text

| Binary
$PROJ_DIREAT ermnlOlnput bt J

For reference information about the options available in this dialog box, see Terminal
I/O options in IDE Project Management and Building Guide.

Terminal I/O Log File dialog box

The Terminal 1/0 Log File dialog box is available by choosing Debug>L ogging>Set
Terminal 1/0 Log File.

Terminal I/0 Log File

Terminal [/0 Log File 0Ok

™ Enable Teminal 10 log file
J Cancel

Use this dialog box to select a destination log file for terminal I/O from C-SPY.

Requirements

None; this dialog box is always available.

59

Reference information on application execution

60

Terminal 10 Log Files

Debug Log window

Requirements

Context menu

IAR Embedded Workbench®
C-SPY® Debugging Guide

Controls the logging of terminal I/O. To enable logging of terminal I/O to a file, select
Enable Terminal 10 log file and specify a filename. The default filename extension is
log. A browse button is available for your convenience.

The Debug Log window is available by choosing View>M essages.
- |

Log

Fri Feb 06 10:41:40 2004: Loaded module
Fri Felb 06 10:41:40 2004: Target reset

This window displays debugger output, such as diagnostic messages, macro-generated
output, event log messages, and information about trace. This output is only available
during a debug session. When opened, this window is, by default, grouped together with
the other message windows, see | DE Project Management and Building Guide.

Double-click any rows in one of the following formats to display the corresponding
source code in the editor window:

<path> (<row>) :<message>
<path> (<row>,<column>) :<message>

None; this window is always available.

This context menu is available:

Copy
Select Al

Clear Al

These commands are available:
Copy

Copies the contents of the window.

Select All
Selects the contents of the window.

Executing your application ___4

Clear All

Clears the contents of the window.

Log File dialog box
The Log File dialog box is available by choosing Debug>L ogging>Set L og File.

r Log File
o Include:
¥ Enable log file
¥ Enmors ¥ “wamings
¥ Info IV User
$PROJ_DIR$ LogFile1.log J

()3 I Cancel |

Use this dialog box to log output from C-SPY to a file.

Requirements

None; this dialog box is always available.

Enable Log file
Enables or disables logging to the file.

Include

The information printed in the file is, by default, the same as the information listed in
the Log window. Use the browse button, to override the default file and location of the
log file (the default filename extension is 1og). To change the information logged,
choose between:

Errors
C-SPY has failed to perform an operation.

Warnings

An error or omission of concern.
Info

Progress information about actions C-SPY has performed.
User

Messages from C-SPY macros, that is, your messages using the __message
statement.

61

Reference information on application execution

62

Report Assert dialog box

Abort

Debug

Ignore

The Report Assert dialog box appears if you have a call to the assert function in your
application source code, and the assert condition is false. In this dialog box you can
choose how to proceed.

Report Assert g|
The following Failed:
File: C:\Documents and SettingsiMy DocumentsiIAR Embedded Workbenchiresolve.cpp

Line: 35
Expression Failed:

Abort | Debug |

The application stops executing and the runtime library function abort, which is part
of your application on the target system, will be called. This means that the application
itself terminates its execution.

C-SPY stops the execution of the application and returns control to you.

The assertion is ignored and the application continues to execute.

Autostep settings dialog box

Requirements

Delay

IAR Embedded Workbench®
C-SPY® Debugging Guide

The Autostep settings dialog box is available from the Debug menu.

I Step Into [Source level] j Start I
Delay [miIIiseconds]:I‘I] Cancel |

Use this dialog box to customize autostepping.

The drop-down menu lists the available step commands.

None; this dialog box is always available.

Specify the delay between each step in milliseconds.

Variables and expressions

This chapter describes how variables and expressions can be used in C-SPY®.
More specifically, this means:

e Introduction to working with variables and expressions
o Working with variables and expressions

e Reference information on working with variables and expressions

Introduction to working with variables and expressions

This section covers these topics:

e Briefly about working with variables and expressions
o C-SPY expressions

o Limitations on variable information.

BRIEFLY ABOUT WORKING WITH VARIABLES AND
EXPRESSIONS

There are several methods for looking at variables and calculating their values:

e Tooltip watch—in the editor window—provides the simplest way of viewing the
value of a variable or more complex expressions. Just point at the variable with the
mouse pointer. The value is displayed next to the variable.

o The Auto window displays a useful selection of variables and expressions in, or
near, the current statement. The window is automatically updated when execution
stops.

o The Locals window displays the local variables, that is, auto variables and function
parameters for the active function. The window is automatically updated when
execution stops.

o The Watch window allows you to monitor the values of C-SPY expressions and
variables. The window is automatically updated when execution stops.

o The Live Watch window repeatedly samples and displays the values of expressions
while your application is executing. Variables in the expressions must be statically
located, such as global variables.

o The Statics window displays the values of variables with static storage duration. The
window is automatically updated when execution stops.

63

Introduction to working with variables and expressions

o The Macro Quicklaunch window and the Quick Watch window give you precise
control over when to evaluate an expression.

e The Symbols window displays all symbols with a static location, that is, C/C++
functions, assembler labels, and variables with static storage duration, including
symbols from the runtime library.

o The Data Log window and the Data Log Summary window display logs of accesses
up to four different memory locations or areas you choose by setting Data Log
breakpoints. Data logging can help you locate frequently accessed data. You can
then consider whether you should place that data in more efficient memory.

o The Data Sample window displays samples for up to four different variables. You
can also display the data samples as graphs in the Sampled Graphs window. By
using data sampling, you will get an indication of the data value over a length of
time. Because it is a sampled value, data sampling is best suited for slow-changing
data. Variables in the expressions must be of integer type and statically located, for
example global variables.

o The Trace-related windows let you inspect the program flow up to a specific state.
For more information, see Trace, page 153.

C-SPY EXPRESSIONS

C-SPY expressions can include any type of C expression, except for calls to functions.
The following types of symbols can be used in expressions:

C/C++ symbols
Assembler symbols (register names and assembler labels)

°
°
o C-SPY macro functions
°

C-SPY macro variables.

Expressions that are built with these types of symbols are called C-SPY expressions and
there are several methods for monitoring these in C-SPY. Examples of valid C-SPY
expressions are:

i+ 3

i = 42

myVar = cVar

cVar = myVar + 2

#asm_label

#R2

#PC
my_macro_func(19)

If you have a static variable with the same name declared in several different functions,
use the notation function: : variable to specify which variable to monitor.

IAR Embedded Workbench®
64 C-SPY® Debugging Guide

Variables and expressions __¢

C/C++ symbols

C symbols are symbols that you have defined in the C source code of your application,
for instance variables, constants, and functions (functions can be used as symbols but
cannot be executed). C symbols can be referenced by their names. Note that C++
symbols might implicitly contain function calls which are not allowed in C-SPY
symbols and expressions.

Assembler symbols

Assembler symbols can be assembler labels or registers, for example the program
counter, the stack pointer, or other CPU registers. If a device description file is used, all
memory-mapped peripheral units, such as I/O ports, can also be used as assembler
symbols in the same way as the CPU registers. See Modifying a device description file,
page 35.

Assembler symbols can be used in C-SPY expressions if they are prefixed by #.

Example What it does
#PC++ Increments the value of the program counter.
myVar = #SP Assigns the current value of the stack pointer register to your

C-SPY variable.
myVar = #label Sets myVar to the value of an integer at the address of label.

myptr = #label7 Sets myptr to an int * pointer pointing at label7.

Table 3: C-SPY assembler symbols expressions

In case of a name conflict between a hardware register and an assembler label, hardware
registers have a higher precedence. To refer to an assembler label in such a case, you
must enclose the label in back quotes * (ASCII character 0x60). For example:

Example What it does
#PC Refers to the program counter.
PCT Refers to the assembler label PC.

Table 4: Handling name conflicts between hardware registers and assembler labels

Which processor-specific symbols are available by default can be seen in the Register
window, using the CPU Registers register group. See Register window, page 137.
C-SPY macro functions

Macro functions consist of C-SPY macro variable definitions and macro statements
which are executed when the macro is called.

For information about C-SPY macro functions and how to use them, see Briefly about
the macro language, page 209.

65

Introduction to working with variables and expressions

66

IAR Embedded Workbench®
C-SPY® Debugging Guide

C-SPY macro variables

Macro variables are defined and allocated outside your application, and can be used in
a C-SPY expression. In case of a name conflict between a C symbol and a C-SPY macro
variable, the C-SPY macro variable will have a higher precedence than the C variable.
Assignments to a macro variable assign both its value and type.

For information about C-SPY macro variables and how to use them, see Reference
information on the macro language, page 215.

Using sizeof
According to standard C, there are two syntactical forms of sizeof:

sizeof (type)
sizeof expr

The former is for types and the latter for expressions.

Note: In C-SPY, do not use parentheses around an expression when you use the sizeof
operator. For example, use sizeof x+2 instead of sizeof (x+2).

LIMITATIONS ON VARIABLE INFORMATION

The value of a C variable is valid only on step points, that is, the first instruction of a
statement and on function calls. This is indicated in the editor window with a bright
green highlight color. In practice, the value of the variable is accessible and correct more
often than that.

When the program counter is inside a statement, but not at a step point, the statement or
part of the statement is highlighted with a pale variant of the ordinary highlight color.

Effects of optimizations

The compiler is free to optimize the application software as much as possible, as long
as the expected behavior remains. The optimization can affect the code so that
debugging might be more difficult because it will be less clear how the generated code
relates to the source code. Typically, using a high optimization level can affect the code
in a way that will not allow you to view a value of a variable as expected.

Consider this example:

myFunction ()

{
int 1 = 42;

x = computer(i); /* Here, the value of i is known to C-SPY */

Variables and expressions __¢

From the point where the variable i is declared until it is actually used, the compiler
does not need to waste stack or register space on it. The compiler can optimize the code,
which means that C-SPY will not be able to display the value until it is actually used. If
you try to view the value of a variable that is temporarily unavailable, C-SPY will
display the text:

Unavailable

If you need full information about values of variables during your debugging session,
you should make sure to use the lowest optimization level during compilation, that is,
None.

Working with variables and expressions

This section describes various tasks related to working with variables and expressions.
More specifically, you will get information about:

o Using the windows related to variables and expressions
o Viewing assembler variables

o Getting started using data sampling

o Getting started using data logging

USING THE WINDOWS RELATED TO VARIABLES AND
EXPRESSIONS

Where applicable, you can add, modify, and remove expressions, and change the display
format in the windows related to variables and expressions.

To add a value you can also click in the dotted rectangle and type the expression you
want to examine. To modify the value of an expression, click the Value field and modify
its content. To remove an expression, select it and press the Delete key.

For text that is too wide to fit in a column—in any of the these windows, except the Trace
@ window—and thus is truncated, just point at the text with the mouse pointer and tooltip
information is displayed.

Right-click in any of the windows to access the context menu which contains additional
commands. Convenient drag-and-drop between windows is supported, except for in the
Locals window, Data logging windows, and the Quick Watch window where it is not
relevant.

VIEWING ASSEMBLER VARIABLES

An assembler label does not convey any type information at all, which means C-SPY
cannot easily display data located at that label without getting extra information. To

67

Working with variables and expressions

asmmain. as

Srmain

IAR Embedded Workbench®

68 C-SPY® Debugging Guide

asmvarl:
asmvarz:
asmvari:
asmvard:

PUBLIC

COMMOH
CODE 32

BSEG

DC32
DC32
DCE
DCE

CODE 32
NOFP

B main

EHD

view data conveniently, C-SPY by default treats all data located at assembler labels as
variables of type int. However, in the Watch, Quick Watch, and Live Watch windows,
you can select a different interpretation to better suit the declaration of the variables.

In this figure, you can see four variables in the Watch window and their corresponding
declarations in the assembler source file to the left:

nain Expression Walue Location Type
— asmuvarl 42 0=3000 int
main asmvare 456 0x5004 int
asrmvard 55 0x8008 <8-bit unsigned>
INTVEC: CODE it
Add
Remove
main
v Defaulk Format
Binary Formak
ICODE : CODE Ockal Format
Decimal Format
az Hexadecimal Format
456 Char Format
55
10
16-bit Signed
16-hit Unsigned
32-bit Signed
mwain 32-bit Unsigned

Note that asmvard4 is displayed as an int, although the original assembler declaration
probably intended for it to be a single byte quantity. From the context menu you can
make C-SPY display the variable as, for example, an 8-bit unsigned variable. This has
already been specified for the asmvar3 variable.

GETTING STARTED USING DATA LOGGING

In the Breakpoints or Memory window, right-click and choose New
Breakpoints>Data L og to open the breakpoints dialog box. Set a Data Log breakpoint
on the data you want to collect log information for. You can set up to four Data Log
breakpoints.

Choose C-SPY driver>Data L og to open the Data Log window. Optionally, you can
also choose:

e C-SPY driver>Data L og Summary to open the Data Log Summary window
e C-SPY driver>Timeline to open the Timeline window to view the Data Log graph.

From the context menu, available in the Data Log window, choose Enable to enable
the logging.

Variables and expressions __¢

4 Start executing your application program to collect the log information.

To view the data log information, look in any of the Data Log, Data Log Summary, or
the Data graph in the Timeline window.

6 If you want to save the log or summary to a file, choose Saveto log file from the
context menu in the window in question.

7 To disable data and interrupt logging, choose Disable from the context menu in each
window where you have enabled it.

GETTING STARTED USING DATA SAMPLING
I Choose C-SPY driver>Data Sample Setup to open the Data Sample Setup window.
2 In the Data Sample Setup window, perform these actions:

e In the Expression column, type the name of the variable for which you want to
sample data. The variable must be an integral type with a maximum size of 32 bits
and you can specify up to four variables. Make sure that the checkbox is selected for
the variable that you want to sample data.

o In the Sampling interval column, type the number of milliseconds to pass between
the samples.

3 To view the result of data sampling, you must enable it in the window in question:

o Choose C-SPY driver>Data Sample to open the Data Sample window. From the
context menu, choose Enable.

o Choose C-SPY driver>Sampled Graph to open the Sampled Graph window. From
the context menu, choose Enable.

4 Start executing your application program. This starts the data sampling. When the
execution stops, for example because a breakpoint is triggered, you can view the result
either in the Data Sample window or as the Data Sample Graph in the Sampled Graphs
window

5 If you want to save the log or summary to a file, choose Saveto log file from the
context menu in the window in question.

6 To disable data sampling, choose Disable from the context menu in each window
where you have enabled it.

Reference information on working with variables and expressions
This section gives reference information about these windows and dialog boxes:

o Auto window, page 70

69

Reference information on working with variables and expressions

70

Auto window

Requirements

IAR Embedded Workbench®
C-SPY® Debugging Guide

Locals window, page 72

Watch window, page 74

Live Watch window, page 76

Satics window, page 78

Quick Watch window, page 81

Macro Quicklaunch window, page 83
Symbols window, page 85

Resolve Symbol Ambiguity dialog box, page 86
Data Log window, page 87

Data Log Summary window, page 89
Setup Data Sample window, page 90
Data Sample window, page 91
Sampled Graphs window, page 93

For trace-related reference information, see Reference information on trace, page 156.

The Auto window is available from the View menu.

Expression Yalue Location Type

i 5 0x7 short

Fib[i] 0 Mermory:0xC00C unsigned int
Fik <array> hemony:0xC002 unsigned int[10]
GetFib GetFib (0xBC) unsigned int (*)...

This window displays a useful selection of variables and expressions in, or near, the
current statement. Every time execution in C-SPY stops, the values in the Auto window
are recalculated. Values that have changed since the last stop are highlighted in red.

None; this window is always available.

Variables and expressions __¢

Context menu

This context menu is available:
v Default Format
Binary Format
Octal Format
Decimal Format
Hexadecimal Format

Char Format
Show As 3

Options...

These commands are available:

Default For mat,
Binary Format,

Octal Format,
Decimal Format,
Hexadecimal Format,
Char Format

Changes the display format of expressions. The display format setting affects
different types of expressions in different ways. Your selection of display format
is saved between debug sessions. These commands are available if a selected
line in the window contains a variable.

The display format setting affects different types of expressions in these ways:

Variables The display setting affects only the selected variable, not
other variables.

Array elements The display setting affects the complete array, that is, the
same display format is used for each array element.

Structure fields All elements with the same definition—the same field
name and C declaration type—are affected by the
display setting.

Show As

Displays a submenu that provides commands for changing the default type
interpretation of variables. The commands on this submenu are mainly useful
for assembler variables—data at assembler labels—because these are, by
default, displayed as integers. For more information, see Viewing assembler
variables, page 67.

71

Reference information on working with variables and expressions

72

Locals window

Requirements

IAR Embedded Workbench®
C-SPY® Debugging Guide

Options
Displays the | DE Optionsdialog box where you can set the Update interval
option. The default value of this option is 1000 milliseconds, which means the
Live Watch window will be updated once every second during program
execution. Note that this command is only available from this context menu in
the Live Watch window.

The Locals window is available from the View menu.
¥ Locals M= 3

Expression | Yalue | Location | Type
i 3 17 short

This window displays the local variables and parameters for the current function. Every
time execution in C-SPY stops, the values in the Locals window are recalculated. Values
that have changed since the last stop are highlighted in red.

None; this window is always available.

Variables and expressions __¢

Context menu

This context menu is available:
v Default Format
Binary Format
Octal Format
Decimal Format
Hexadecimal Format

Char Format
Show As 3

Options...

These commands are available:

Default For mat,
Binary Format,

Octal Format,
Decimal Format,
Hexadecimal Format,
Char Format

Changes the display format of expressions. The display format setting affects
different types of expressions in different ways. Your selection of display format
is saved between debug sessions. These commands are available if a selected
line in the window contains a variable.

The display format setting affects different types of expressions in these ways:

Variables The display setting affects only the selected variable, not
other variables.

Array elements The display setting affects the complete array, that is, the
same display format is used for each array element.

Structure fields All elements with the same definition—the same field
name and C declaration type—are affected by the
display setting.

Show As

Displays a submenu that provides commands for changing the default type
interpretation of variables. The commands on this submenu are mainly useful
for assembler variables—data at assembler labels—because these are, by
default, displayed as integers. For more information, see Viewing assembler
variables, page 67.

73

Reference information on working with variables and expressions

74

Woatch window

Requirements

IAR Embedded Workbench®
C-SPY® Debugging Guide

Options
Displays the | DE Optionsdialog box where you can set the Update interval
option. The default value of this option is 1000 milliseconds, which means the
Live Watch window will be updated once every second during program
execution. Note that this command is only available from this context menu in
the Live Watch window.

The Watch window is available from the View menu.

Expression Walue Location Type
i 5 0x7 short

El Fib <array> hemony:0xC002 unsigned int[10]
Mermory:0xC002 unsigned int
Mermory:0xC004 unsigned int
Mermory:0xC006 unsigned int
Mermory:0xC008 unsigned int
Mermory:0xC00A unsigned int
Mermory:0xC00C unsigned int
Mermory:0xCO0E unsigned int
Mermory:0<C010 unsigned int
Mermory:0<C012 unsigned int
Mermory:0<C014 unsigned int

EEEEHEEREEE
o R e s T s Y Y [R

Auko Watch | B

Use this window to monitor the values of C-SPY expressions or variables. You can open
up to four instances of this window, where you can view, add, modify, and remove
expressions. Tree structures of arrays, structs, and unions are expandable, which means
that you can study each item of these.

Every time execution in C-SPY stops, the values in the Watch window are recalculated.
Values that have changed since the last stop are highlighted in red.

None; this window is always available.

Variables and expressions __¢

Context menu

This context menu is available:
v Default Format
Binary Format
Octal Format
Decimal Format
Hexadecimal Format

Char Format
Show As 3

Options...

These commands are available:

Default For mat,
Binary Format,

Octal Format,
Decimal Format,
Hexadecimal Format,
Char Format

Changes the display format of expressions. The display format setting affects
different types of expressions in different ways. Your selection of display format
is saved between debug sessions. These commands are available if a selected
line in the window contains a variable.

The display format setting affects different types of expressions in these ways:

Variables The display setting affects only the selected variable, not
other variables.

Array elements The display setting affects the complete array, that is, the
same display format is used for each array element.

Structure fields All elements with the same definition—the same field
name and C declaration type—are affected by the
display setting.

Show As

Displays a submenu that provides commands for changing the default type
interpretation of variables. The commands on this submenu are mainly useful
for assembler variables—data at assembler labels—because these are, by
default, displayed as integers. For more information, see Viewing assembler
variables, page 67.

75

Reference information on working with variables and expressions

76

Live Watch window

Requirements

Display area

IAR Embedded Workbench®
C-SPY® Debugging Guide

Options
Displays the | DE Optionsdialog box where you can set the Update interval
option. The default value of this option is 1000 milliseconds, which means the
Live Watch window will be updated once every second during program
execution. Note that this command is only available from this context menu in
the Live Watch window.

The Live Watch window is available from the View menu.

Live Watch =]

Expression | Yalue | Location | Type |
=l get_fib get_filb (0x1198) unsigned int (*)...
[

get_filb (0x1198) Mermor:0<1198 unsigned int {int)

This window repeatedly samples and displays the value of expressions while your
application is executing. Variables in the expressions must be statically located, such as
global variables.

See SQupported debugger features in the release notes for information about
applicability.

This area contains these columns:
Expression
The name of the variable. The base name of the variable is followed by the full

name, which includes module, class, or function scope. This column is not
editable.

Value
The value of the variable. Values that have changed are highlighted in red.

Dragging text or a variable from another window and dropping it on the Value
column will assign a new value to the variable in that row.

This column is editable.

L ocation

The location in memory where this variable is stored.

Variables and expressions __¢

Type
The data type of the variable.

Context menu

This context menu is available:
v Default Format
Binary Format
Octal Format
Decimal Format
Hexadecimal Format

Char Format
Show As 3

Options...

These commands are available:

Default For mat,
Binary Format,

Octal Format,
Decimal Format,
Hexadecimal Format,
Char Format

Changes the display format of expressions. The display format setting affects
different types of expressions in different ways. Your selection of display format
is saved between debug sessions. These commands are available if a selected
line in the window contains a variable.

The display format setting affects different types of expressions in these ways:

Variables The display setting affects only the selected variable, not
other variables.

Array elements The display setting affects the complete array, that is, the
same display format is used for each array element.

Structure fields All elements with the same definition—the same field
name and C declaration type—are affected by the
display setting.

77

Reference information on working with variables and expressions

Statics window

IAR Embedded Workbench®
78 C-SPY® Debugging Guide

Show As

Displays a submenu that provides commands for changing the default type
interpretation of variables. The commands on this submenu are mainly useful
for assembler variables—data at assembler labels—because these are, by
default, displayed as integers. For more information, see Viewing assembler
variables, page 67.

Options
Displays the | DE Options dialog box where you can set the Update interval
option. The default value of this option is 1000 milliseconds, which means the
Live Watch window will be updated once every second during program
execution. Note that this command is only available from this context menu in
the Live Watch window.

The Statics window is available from the View menu.

Expression | Walue | Location | Type |
call_count <Tutotcall_count> 0 DATA0x000060 int
=l root <Utilitiesiroot> <array> DATADx000062 unsigned int[10]
— [0 1 DATADx000062 unsigned int
DATADx000064 unsigned int
DATADx000066 unsigned int
DATADx000068 unsigned int
DATADx00006A unsigned int
DATADx00006C unsigned int
DATADx00006E unsigned int
DATADx000070 unsigned int
DATADx000072 unsigned int
DATADx000074 unsigned int

EEEEdEEREEE
oo o oo o O R

This window displays the values of variables with static storage duration that you have
selected. Typically, that is variables with file scope but it can also be static variables in
functions and classes. Note that volatile declared variables with static storage
duration will not be displayed.

Every time execution in C-SPY stops, the values in the Statics window are recalculated.
Values that have changed since the last stop are highlighted in red.

To select variablesto monitor:

In the window, right-click and choose Select statics from the context menu. The
window now lists all variables with static storage duration.

Either individually select the variables you want to be displayed, or choose Select All
or Deselect All from the context menu.

Variables and expressions __¢

3 When you have made your selections, choose Select statics from the context menu to
toggle back to the normal display mode.

Requirements

None; this window is always available.

Display area
This area contains these columns:
Expression
The name of the variable. The base name of the variable is followed by the full

name, which includes module, class, or function scope. This column is not
editable.

Value
The value of the variable. Values that have changed are highlighted in red.

Dragging text or a variable from another window and dropping it on the Value
column will assign a new value to the variable in that row.

This column is editable.

L ocation
The location in memory where this variable is stored.

Type
The data type of the variable.

79

Reference information on working with variables and expressions

Context menu

This context menu is available:
v Default Format
Binary Format
Octal Format
Decimal Format
Hexadecimal Format

Char Format
Show As 3

Select statics
Select all

Deselect all

These commands are available:

Default For mat,
Binary Format,

Octal Format,
Decimal Format,
Hexadecimal Format,
Char Format

Changes the display format of expressions. The display format setting affects
different types of expressions in different ways. Your selection of display format
is saved between debug sessions. These commands are available if a selected
line in the window contains a variable.

The display format setting affects different types of expressions in these ways:

Variables The display setting affects only the selected variable, not
other variables.

Array elements The display setting affects the complete array, that is, the
same display format is used for each array element.

Structure fields All elements with the same definition—the same field
name and C declaration type—are affected by the
display setting.

Select Satics

Lists all variables with static storage duration. Select the variables you want to
be monitored. When you have made your selections, select this menu command
again to toggle back to normal display mode.

IAR Embedded Workbench®
80 C-SPY® Debugging Guide

Variables and expressions __¢

Select all

Selects all variables.

Deselect all
Deselects all variables.

Quick Watch window

The Quick Watch window is available from the View menu and from the context menu
in the editor window.

Quick Watch =]

-

Expression Yalue Location Type
TimerStatus() 'Timer disabled® macro string

Use this window to watch the value of a variable or expression and evaluate expressions
at a specific point in time.

In contrast to the Watch window, the Quick Watch window gives you precise control
over when to evaluate the expression. For single variables this might not be necessary,
but for expressions with possible side effects, such as assignments and C-SPY macro
functions, it allows you to perform evaluations under controlled conditions.

To evaluate an expression:

I In the editor window, right-click on the expression you want to examine and choose
Quick Watch from the context menu that appears.

2 The expression will automatically appear in the Quick Watch window.
Alternatively:

3 In the Quick Watch window, type the expression you want to examine in the
Expressions text box.

g 4 Click the Recalculate button to calculate the value of the expression.
For an example, see Using C-SPY macros, page 209.

Requirements

None; this window is always available.

81

Reference information on working with variables and expressions

Context menu

This context menu is available:
v Default Format
Binary Format
Octal Format
Decimal Format
Hexadecimal Format

Char Format
Show As 3

Options...

These commands are available:

Default For mat,
Binary Format,

Octal Format,
Decimal Format,
Hexadecimal Format,
Char Format

Changes the display format of expressions. The display format setting affects
different types of expressions in different ways. Your selection of display format
is saved between debug sessions. These commands are available if a selected
line in the window contains a variable.

The display format setting affects different types of expressions in these ways:

Variables The display setting affects only the selected variable, not
other variables.

Array elements The display setting affects the complete array, that is, the
same display format is used for each array element.

Structure fields All elements with the same definition—the same field
name and C declaration type—are affected by the
display setting.

Show As

Displays a submenu that provides commands for changing the default type
interpretation of variables. The commands on this submenu are mainly useful
for assembler variables—data at assembler labels—because these are, by
default, displayed as integers. For more information, see Viewing assembler
variables, page 67.

IAR Embedded Workbench®
82 C-SPY® Debugging Guide

Variables and expressions __¢

Options
Displays the | DE Optionsdialog box where you can set the Update interval
option. The default value of this option is 1000 milliseconds, which means the
Live Watch window will be updated once every second during program
execution. Note that this command is only available from this context menu in
the Live Watch window.

Macro Quicklaunch window

al'

Requirements

The Macro Quicklaunch window is available from the View menu.

= Expression Result
G testEval()
G nval Error (col 1): Unknown or ambiguous symbol. nval
G testEval2() 0
Q s2-37
G incval() 3
=
2
B
=
5
&
2
= Macro Quicklaunch B

Use this window to evaluate expressions, typically C-SPY macros.

The Macro Quicklaunch window is similar to the Quick Watch window, but is primarily
designed for evaluating C-SPY macros. The window gives you precise control over
when to evaluate an expression.

To add an expression:
Choose one of these alternatives:

e Drag the expression to the window

e In the Expression column, type the expression you want to examine.

If the expression you add and want to evaluate is a C-SPY macro, the macro must first
be registered, see Using C-SPY macros, page 209.

To evaluate an expression:

Double-click the Recalculate icon to calculate the value of that expression.

None; this window is always available.

83

Reference information on working with variables and expressions

84

Display area

(e

Context menu

IAR Embedded Workbench®
C-SPY® Debugging Guide

This area contains these columns:

Recalculateicon
To evaluate the expression, double-click the icon. The latest evaluated
expression appears in bold style.

Expression
One or several expressions that you want to evaluate. Click <click to add>
to add an expression. If the return value has changed since last time, the value
will be displayed in red.

Result
Shows the return value from the expression evaluation.

This context menu is available:

Evaluate Now
Rermove

Rermove All

These commands are available:

Evaluate now

Adds an expression.

Remove
Removes the selected expression.

Remove All
Removes all selected expressions.

Variables and expressions __¢

Symbols window

The Symbols window is available from the View menu.

Symbal | Location | Full Mame |"
call_count 0x00102228 call_count
do_foreground_process 0x000003C8 do_foreground_process()

exit 0x000005E4 exit

get_fib 0x0000028C get_fib(int)

init_fibh 0x00000248 init_fib()

main 0x000003E2 mainf)

next_counter 0x000003BC next_counter()

put_fib 0x000002B8 put_fib{unsigned int)

putchar 0x00000464 putchar

root 0x00102200 root v

This window displays all symbols with a static location, that is, C/C++ functions,
assembler labels, and variables with static storage duration, including symbols from the
runtime library.

Requirements

None; this window is always available.

Display area
This area contains these columns:
Symbol
The symbol name.
L ocation

The memory address.

Full name

The symbol name; often the same as the contents of the Symbol column but
differs for example for C++ member functions.

Click the column headers to sort the list by symbol name, location, or full name.

85

Reference information on working with variables and expressions

86

Context menu

This context menu is available:

Functions
Variables
Labels

These commands are available:
Functions

Toggles the display of function symbols on or off in the list.
Variables

Toggles the display of variables on or off in the list.

Labels
Toggles the display of labels on or off in the list.

Resolve Symbol Ambiguity dialog box

The Resolve Symbol Ambiguity dialog box appears, for example, when you specify a
symbol in the Disassembly window to go to, and there are several instances of the same
symbol due to templates or function overloading.

Resolve Symbol Ambiguity

Ambiguous symbol: foo

Fleaze select one symbal:

foo[void]
fon<T: Camcel

Requirements

None; this window is always available.

Ambiguous symbol

Indicates which symbol that is ambiguous.

IAR Embedded Workbench®
C-SPY® Debugging Guide

Please select one symbol

Data Log window

Variables and expressions __¢

A list of possible matches for the ambiguous symbol. Select the one you want to use.

The Data Log window is available from the C-SPY driver menu.

Time | Pragram Counter | 11 Address 52 Address it
0.160us —— W 00000 @ 0x2004
0.160us 0xFFE00049 - @ 0x2000

24.4B0us OxFFEODOBS R 0x0000 @ Ox2006
24.720us O=FFEO0OBF W 00042 @ 02004
24.760us OxFFE00OCE R 0x0042 @ 02006
24.960us OxFFEO0OE4 W 000004444 @ 0x2000
7E. Péfus DwFFE00104 R 0x0042 @ Ox2004+7
79.000us —- W 00084 @ 02004
100.800us OxFFE00104 R 0x0084 @ Ox2006
101.040us OxFFEOO10E W 0x00C6 @ Ox2004
I3 Edfus Overflow
136.880us OxFFEO010E R @ 0x2004 R
White rows indicate Grey rows indicate
read accesses write accesses
Use this window to log accesses to up to four different memory locations or areas.
See also Getting started using data logging, page 68.
Requirements

Display area

See SQupported debugger features in the release notes for information about

applicability.

Each row in the display area shows the time, the program counter, and, for every tracked
data object, its value and address in these columns:

Time

The time for the data access for the C-SPY hardware driver and the simulator,

based on the clock frequency.

If the time is displayed in italics, the target system has not been able to collect a
correct time, but instead had to approximate it.

This column is available when you have selected Show time from the context

menu.

87

Reference information on working with variables and expressions

88

Context menu

IAR Embedded Workbench®
C-SPY® Debugging Guide

Cycles

The number of cycles from the start of the execution until the event. This
information is cleared at reset.

If a cycle is displayed in italics, the target system has not been able to collect a
correct time, but instead had to approximate it.

This column is available when you have selected Show cycles from the context
menu.

Program Counter*

Value

Displays one of these:

An address, which is the content of the PC, that is, the address of the instruction
that performed the memory access.

---, the target system failed to provide the debugger with any information.

Overflowinred, the communication channel failed to transmit all data from the
target system.

Displays the access type and the value (using the access size) for the location or
area you want to log accesses to. For example, if zero is read using a byte access
it will be displayed as 0x00, and for a long access it will be displayed as
0x00000000.

To specity what data you want to log accesses to, use the Data L og breakpoint
dialog box. See Data Log breakpoints, page 99.

Address

The actual memory address that is accessed. For example, if only a byte of a
word is accessed, only the address of the byte is displayed. The address is
calculated as base address + offset, where the base address is retrieved from the
Data L og breakpoint dialog box and the offset is retrieved from the logs. If the
log from the target system does not provide the debugger with an offset, the
offset contains + ?.

* You can double-click a line in the display area. If the value of the pcC for that line is
available in the source code, the editor window displays the corresponding source code
(this does not include library source code).

Identical to the context menu of the Interrupt Log window, see Interrupt Log window,
page 201.

Variables and expressions __¢

Data Log Summary window

The Data Log Summary window is available from the C-SPY driver menu.

I %]
Data Total accesses Fead accesses | Write accesses e’
I 2 0 1
52 20 £l £l

COwerflow count. 2
Current cycles: 14545

v

This window displays a summary of data accesses to specific memory location or areas.

See also Getting started using data logging, page 68.

Requirements

See SQupported debugger features in the release notes for information about
applicability.

Display area
Each row in this area displays the type and the number of accesses to each memory
location or area in these columns:
Data

The name of the data object you have selected to log accesses to. To specify
what data object you want to log accesses to, use the Data L og breakpoint
dialog box. See Data Log breakpoints, page 99.

The current time or cycles is displayed—execution time since the start of
execution or the number of cycles. Overflow count displays the number of
overflows.

Total accesses
The number of total accesses.
If the sum of read accesses and write accesses is less than the total accesses,
there have been a number of access logs for which the target system for some
reason did not provide valid access type information.

Read accesses
The number of total read accesses.

Write accesses
The number of total write accesses.

89

Reference information on working with variables and expressions

Context menu

Identical to the context menu of the Interrupt Log window, see Interrupt Log window,
page 201.

Setup Data Sample window

The Data Sample Setup window is available from the C-SPY driver menu.

Data Sample Setup @
Expression Address Size Sampling interval [ms]
¥ myVarl OxFFFFBO2A 1 18
v myVar2 OxFFFFBO04 4 48
cl OxFFFFBO2B 1 1680

Use this window to specify up to four variables to sample data for. You can view the
sampled data for the variables either in the Data Sample window or as graphs in the
Sampled Graphs window.

See also Getting started using data sampling, page 69.

Requirements
See SQupported debugger features in the release notes for information about
applicability.
Display area
This area contains these columns:
Expression
Type the name of the variable which must be an integral type with a maximum

size of 32 bits. Click the checkbox to enable or disable data sampling for the
variable.

Alternatively, drag an expression from the editor window and drop it in the
display area.

Variables in the expressions must be statically located, for example global
variables.

Address

The actual memory address that is accessed. The column cells cannot be edited.

IAR Embedded Workbench®
90 C-SPY® Debugging Guide

Variables and expressions __¢

Size
The size of the variable, either 1, 2, or 4 bytes. The column cells cannot be
edited.

Sampling interval [ms]
Type the number of milliconds to pass between the samples, defined in

milliseconds. The shortest allowed interval is 10 ms and the interval you specify
must be a multiple of that.

Context menu
This context menu is available:

Rermove

Rermove All

These commands are available:

Remove
Removes the selected variable.

Remove All
Removes all variables.

Data Sample window

The Data Sample window is available from the C-SPY driver menu.

Data Sample @
Sampling Time myVarl myVar2 i
1168 ms R @xB8 R ©x000008ES
1178 ms R exle
1178 ms Stop
1188 ms R @x1e R ex@eeeeeDs
1198 ms R @x28
1208 ms R exle
1218 ms R @x18@ R ©x000008B8
1228 ms R @xee o

Use this window to view the result of the data sampling for the variables you have
selected in the Data Sample Setup window.

Choose Enable from the context menu to enable data sampling.

See also Getting started using data sampling, page 69.

91

Reference information on working with variables and expressions

92

Requirements

Display area

Context menu

IAR Embedded Workbench®
C-SPY® Debugging Guide

See SQupported debugger features in the release notes for information about
applicability.

This area contains these columns:
Sampling Time
The time when the data sample was collected. Time starts at zero after a reset.
Every time the execution stops, a red Stop indicates when the stop occurred.
The selected expression

The column headers display the names of the variables that you selected in the
Data Sample Setup window. The column cells display the sampling values for
the variable.

There can be up to four colums of this type, one for each selected variable.

* You can double-click a row in the display area. If you have enabled the data sample
graph in the Sampled Graphs window, the selection line will be moved to reflect the time
of the row you double-clicked.

This context menu is available:
v Enable

Clear

Hexadecimal (for myVarl)
v | Hexadecimal (for myVar2)

Save to Log File...

Open Setup Window

These commands are available:

Enable
Enables data sampling.

Clear
Clears the sampled data.

Hexadecimal (for var)
Toggles between displaying the values of selected variable in decimal or
hexadecimal format. The display format affects the Data Sample window and
the Sampled Graphs window.

Variables and expressions __¢

Saveto Log File

Displays a standard save dialog box.

Open setup window
Opens the Data Sample Setup window.

Sampled Graphs window

The Sampled Graphs window is available from the C-SPY driver menu.

Sampled Graphs @
Color-filled
horizontal graph
Linear graph
1288ms 1488ms 1608ms 1808ms 2008ms 2208ms
4 I 2

Use this window to display graphs for up to four different variables, and where:

o The graph displays how the value of the variable changes over time. The area on the
left displays the limits, or range, of the Y-axis for the variable. You can use the
context menu to change these limits. The graph is a graphical representation of the
information in the Data Sample window, see Data Sample window, page 91.

o The graph can be displayed as levels, where a horizontal line—optionally
color-filled—shows the value until the next sample. Alternatively, the graph can be
linear, where a line connects consecutive samples.

o A red vertical line indicates the time of application execution stops.

At the bottom of the window, there is a common time axis that uses seconds as the time
unit.

To navigate in the graph, use any of these alternatives:

o Right-click and choose Zoom In or Zoom Out from the context menu.
Alternatively, use the + and - keys to zoom.

e Right-click in the graph and choose Navigate and the appropriate command to
move backward and forward on the graph. Alternatively, use any of the shortcut
keys: arrow keys, Home, End, and Ctrl+End.

93

Reference information on working with variables and expressions

o Double-click on a sample to highlight the corresponding source code in the editor
window and in the Disassembly window.

o Click on the graph and drag to select a time interval. Press Enter or right-click and
choose Zoom>Zoom to Selection from the context menu. The selection zooms in.

@ Hover with the mouse pointer in the graph to get detailed tooltip information for that
location.

See also Getting started using data sampling, page 69.

Requirements
See Supported debugger features in the release notes for information about
applicability.

Context menu

This context menu is available:

MNavigate 3
v Auto Scroll
Zoom 3

Data Sample
v | Enable

Clear

myVar2:

Viewing Range...

Size 3

Style 3
v | Solid Graph

Show Mumerical Values

<

v | Hexadecimal
Select Graphs 3
These commands are available:

Navigate
Commands for navigating in the graphs. Choose between:

Next moves the selection to the next relevant point in the graph. Shortcut key:
right arrow.

Previous moves the selection to the previous relevant point in the graph.
Shortcut key: left arrow.

First moves the selection to the first data entry in the graph. Shortcut key:
Home.

IAR Embedded Workbench®
94 C-SPY® Debugging Guide

Variables and expressions __¢

L ast moves the selection to the last data entry in the graph. Shortcut key: End.

End moves the selection to the last data in any displayed graph, in other words
the end of the time axis. Shortcut key: Ctrl+End.

Auto Scroll

Toggles auto scrolling on or off. When on, the most recently collected data is
automatically displayed if you have executed the command Navigate>End.

Zoom

Commands for zooming the window, in other words, changing the time scale.
Choose between:

Zoom to Selection makes the current selection fit the window. Shortcut key:
Return.

Zoom In zooms in on the time scale. Shortcut key: +.
Zoom Out zooms out on the time scale. Shortcut key: -.

1us, 10us, 100us makes an interval of 1 microseconds, 10 microseconds, or 100
microseconds, respectively, fit the window.

1ms, 10ms, 100ms makes an interval of 1 millisecond, 10 milliseconds, or 100
milliseconds, respectively, fit the window.

1s, 10s, 100s makes an interval of 1 second, 10 seconds, or 100 seconds,
respectively, fit the window.

1k s, 10k s, 100k smakes an interval of 1,000 seconds, 10,000 seconds, or
100,000 seconds, respectively, fit the window.

1M s, 10M s, makes an interval of 1,000,000 seconds or 10,000,000 seconds,
respectively, fit the window.

Data Sample

A menu item that shows that the Data Sample-specific commands below are
available.

Open Setup window (Data Sample Graph)
Opens the Data Sample Setup window.

Enable

Toggles the display of the graph on or off. If you disable a graph, that graph will
be indicated as OFF in the Data Sample window. If no data has been sampled for
a graph, no data will appear instead of the graph.

Clear
Clears the sampled data.

95

Reference information on working with variables and expressions

96

IAR Embedded Workbench®
C-SPY® Debugging Guide

Variable
The name of the variable for which the Data Sample-specific commands below
apply. This menu item is context-sensitive, which means it reflects the Data
Sample Graph you selected in the Sampled Graphs window (one of up to four).
Viewing Range
Displays a dialog box, see Viewing Range dialog box, page 166.
Size
Controls the vertical size of the graph; choose between Small, M edium, and
Large.
Syle
Choose how to display the graph. Choose between:

L evels, where a horizontal line—optionally color-filled—shows the value until
the next sample.

Linear, where a line connects consecutive samples.

Solid Graph
Displays the graph as a color-filled solid graph instead of as a thin line. This is
only possible if the graph is displayed as Levels.

Hexadecimal (for var)

Toggles between displaying the selected variable in decimal or hexadecimal
format. The display format affects the Data Sample window and the Sampled
Graphs window.

Show Numerical Value
Shows the numerical value of the variable, in addition to the graph.

Select Graphs
Selects which graphs to display in the Sampled Graphs window.

Breakpoints

This chapter describes breakpoints and the various ways to define and
monitor them. More specifically, this means:

e Introduction to setting and using breakpoints
e Setting breakpoints

e Reference information on breakpoints

Introduction to setting and using breakpoints

This section introduces breakpoints.
These topics are covered:

Reasons for using breakpoints
Briefly about setting breakpoints
Breakpoint types

Breakpoint icons

Breakpoints in the C-SPY simulator

Breakpoint consumers

REASONS FOR USING BREAKPOINTS

C-SPY® lets you set various types of breakpoints in the application you are debugging,
allowing you to stop at locations of particular interest. You can set a breakpoint at a code
location to investigate whether your program logic is correct, or to get trace printouts.
In addition to code breakpoints, and depending on what C-SPY driver you are using,
additional breakpoint types might be available. For example, you might be able to set a
data breakpoint, to investigate how and when the data changes.

You can let the execution stop under certain conditions, which you specify. You can also
let the breakpoint trigger a side effect, for instance executing a C-SPY macro function,
by transparently stopping the execution and then resuming. The macro function can be

defined to perform a wide variety of actions, for instance, simulating hardware behavior.

All these possibilities provide you with a flexible tool for investigating the status of your
application.

97

Introduction to setting and using breakpoints

BRIEFLY ABOUT SETTING BREAKPOINTS

You can set breakpoints in many various ways, allowing for different levels of
interaction, precision, timing, and automation. All the breakpoints you define will
appear in the Breakpoints window. From this window you can conveniently view all
breakpoints, enable and disable breakpoints, and open a dialog box for defining new
breakpoints. The Breakpoint Usage window also lists all internally used breakpoints,
see Breakpoint consumers, page 100.

Breakpoints are set with a higher precision than single lines, using the same mechanism
as when stepping; for more information about the precision, see Sngle stepping, page
46.

You can set breakpoints while you edit your code even if no debug session is active. The
breakpoints will then be validated when the debug session starts. Breakpoints are
preserved between debug sessions.

Note: For most hardware debugger systems it is only possible to set breakpoints when
the application is not executing.

BREAKPOINT TYPES

Depending on the C-SPY driver you are using, C-SPY supports different types of
breakpoints.

Code breakpoints

Code breakpoints are used for code locations to investigate whether your program logic
is correct or to get trace printouts. Code breakpoints are triggered when an instruction is
fetched from the specified location. If you have set the breakpoint on a specific machine
instruction, the breakpoint will be triggered and the execution will stop, before the
instruction is executed.

Log breakpoints

Log breakpoints provide a convenient way to add trace printouts without having to add
any code to your application source code. Log breakpoints are triggered when an
instruction is fetched from the specified location. If you have set the breakpoint on a
specific machine instruction, the breakpoint will be triggered and the execution will
temporarily stop and print the specified message in the C-SPY Debug Log window.

Trace breakpoints

Trace Start and Stop breakpoints start and stop trace data collection—a convenient way
to analyze instructions between two execution points.

IAR Embedded Workbench®
98 C-SPY® Debugging Guide

Breakpoints °

Data breakpoints

Data breakpoints are primarily useful for variables that have a fixed address in memory.
If you set a breakpoint on an accessible local variable, the breakpoint is set on the
corresponding memory location. The validity of this location is only guaranteed for
small parts of the code. Data breakpoints are triggered when data is accessed at the
specified location. The execution will usually stop directly after the instruction that
accessed the data has been executed.

Data Log breakpoints

Data Log breakpoints are triggered when data is accessed at the specified location. If
you have set a breakpoint on a specific address or a range, a log message is displayed in
the for each access to that location. Data logs can also be displayed on the Data Log
graph in the Timeline window, if that window is enabled.

Immediate breakpoints

The C-SPY Simulator lets you set immediate breakpoints, which will halt instruction
execution only temporarily. This allows a C-SPY macro function to be called when the
simulated processor is about to read data from a location or immediately after it has
written data. Instruction execution will resume after the action.

This type of breakpoint is useful for simulating memory-mapped devices of various
kinds (for instance serial ports and timers). When the simulated processor reads from a
memory-mapped location, a C-SPY macro function can intervene and supply
appropriate data. Conversely, when the simulated processor writes to a memory-mapped
location, a C-SPY macro function can act on the value that was written.

929

Introduction to setting and using breakpoints

IAR Embedded Workbench®

100 C-SPY® Debugging Guide

&

BREAKPOINT ICONS

A breakpoint is marked with an icon in the left margin of the editor window, and the icon
varies with the type of breakpoint:

. Tukor.c m |
COde breakpomt unsigned int get _fih(int nr)
) {
Log breakpoint_ o p—
{
- keturn | rootine- 1)/
Tooltip)
information Log @ Utilities.c:37.5
T Memory: Dx6a [Fetch] ‘
Disabled code — [} R
breakpoint !

If the breakpoint icon does not appear, make sure the option Show bookmarksis
selected, see Editor options in the |DE Project Management and Building Guide.

Just point at the breakpoint icon with the mouse pointer to get detailed tooltip
information about all breakpoints set on the same location. The first row gives user
breakpoint information, the following rows describe the physical breakpoints used for
implementing the user breakpoint. The latter information can also be seen in the
Breakpoint Usage window.

Note: The breakpoint icons might look different for the C-SPY driver you are using.

BREAKPOINTS IN THE C-SPY SIMULATOR

The C-SPY simulator supports all breakpoint types and you can set an unlimited amount
of breakpoints.

BREAKPOINT CONSUMERS

A debugger system includes several consumers of breakpoints.

User breakpoints

The breakpoints you define in the breakpoint dialog box or by toggling breakpoints in
the editor window often consume one physical breakpoint each, but this can vary greatly.
Some user breakpoints consume several physical breakpoints and conversely, several
user breakpoints can share one physical breakpoint. User breakpoints are displayed in
the same way both in the Breakpoint Usage window and in the Breakpoints window, for
example Data @[R] callCount.

Breakpoints °

C-SPY itself
C-SPY itself also consumes breakpoints. C-SPY will set a breakpoint if:

o The debugger option Run to has been selected, and any step command is used.
These are temporary breakpoints which are only set during a debug session. This
means that they are not visible in the Breakpoints window.

e The linker option With /O emulation modules (for the XLINK linker) and
Include C-SPY debugging support (for the ILINK linker) has been selected.

In the CLIB runtime environment, C-SPY will set a breakpoint if:

o the library functions putchar and getchar are used (low-level routines used by
functions like printf and scanf)

e the application has an exit label.

In the DLIB runtime environment, C-SPY will set a system breakpoint on the
__DebugBreak label.

These types of breakpoint consumers are displayed in the Breakpoint Usage window, for
example, C-SPY Terminal I/O & libsupport module.
C-SPY plugin modules

For example, modules for real-time operating systems can consume additional
breakpoints. Specifically, by default, the Stack window consumes one physical
breakpoint.

To disable the breakpoint used by the Stack window:
I Choose Tools>Options>Stack.
2 Deselect the Sack pointer(s) not valid until program reaches: label option.

To disable the Stack window entirely, choose Project>Options>Debugger >Plugins
and deselect the Stack plugin.

Setting breakpoints

This section describes various tasks related to setting and using breakpoints.
More specifically, you will get information about:

Various ways to set a breakpoint

Toggling a simple code breakpoint

Setting breakpoints using the dialog box

Setting a data breakpoint in the Memory window

Setting breakpoints using system macros

101

Setting breakpoints

102

IAR Embedded Workbench®
C-SPY® Debugging Guide

o Useful breakpoint hints.

VARIOUS WAYS TO SET A BREAKPOINT
You can set a breakpoint in various ways:

o Toggling a simple code breakpoint.

o Using the New Breakpoints dialog box and the Edit Breakpoints dialog box
available from the context menus in the editor window, Breakpoints window, and in
the Disassembly window. The dialog boxes give you access to all breakpoint
options.

e Setting a data breakpoint on a memory area directly in the Memory window.

o Using predefined system macros for setting breakpoints, which allows automation.

The different methods offer different levels of simplicity, complexity, and automation.

TOGGLING A SIMPLE CODE BREAKPOINT

Toggling a code breakpoint is a quick method of setting a breakpoint. The following
methods are available both in the editor window and in the Disassembly window:
o Click in the gray left-side margin of the window

o Place the insertion point in the C source statement or assembler instruction where
you want the breakpoint, and click the Toggle Breakpoint button in the toolbar

e Choose Edit>Toggle Breakpoint
e Right-click and choose Toggle Breakpoint from the context menu.

SETTING BREAKPOINTS USING THE DIALOG BOX

The advantage of using a breakpoint dialog box is that it provides you with a graphical
interface where you can interactively fine-tune the characteristics of the breakpoints.
You can set the options and quickly test whether the breakpoint works according to your
intentions.

All breakpoints you define using a breakpoint dialog box are preserved between debug
sessions.

You can open the dialog box from the context menu available in the editor window,
Breakpoints window, and in the Disassembly window.

To set a new breakpoint:
Choose View>Breakpoints to open the Breakpoints window.

In the Breakpoints window, right-click, and choose New Breakpoint from the context
menu.

Breakpoints °

3 On the submenu, choose the breakpoint type you want to set.
Depending on the C-SPY driver you are using, different breakpoint types are available.
4 1In the breakpoint dialog box that appears, specify the breakpoint settings and click OK.
The breakpoint is displayed in the Breakpoints window.
To modify an existing breakpoint:

I In the Breakpoints window, editor window, or in the Disassembly window, select the
breakpoint you want to modify and right-click to open the context menu.

35woid init fib(woid)
36 1
37 imt 1 = 45;
38 root[0] = root[l] = 1:

: 39

S 40 for | 1287 i<MAY FIB ; i++)
LA
L J az —

LAz)
a4
45
il Complete
47 fnrt
48 4/ Match Brackets
49unsi Insert Template 3
B Open HeaderfSource File
51 ii 1B |
52 Go ko definition of rook
& Toggle Breakpoint {Code)
54) i
55 el Toggle Breakpoint {Log)
56 | Enable/disable Ereakpaint
57 Set Data Breakpoint For 'root[i]'
53) Edit Code Breakpoint at column 15
:3 1 cek Next Statement Edit Log Breakpoint at column 7

If there are several breakpoints on the same source code line, the breakpoints will be
listed on a submenu.

2 On the context menu, choose the appropriate command.
In the breakpoint dialog box that appears, specify the breakpoint settings and click OK.

The breakpoint is displayed in the Breakpoints window.

SETTING A DATA BREAKPOINT IN THE MEMORY WINDOW

You can set breakpoints directly on a memory location in the Memory window.
Right-click in the window and choose the breakpoint command from the context menu
that appears. To set the breakpoint on a range, select a portion of the memory contents.

103

Setting breakpoints

104

IAR Embedded Workbench®
C-SPY® Debugging Guide

The breakpoint is not highlighted in the Memory window; instead, you can see, edit, and
remove it using the Breakpoints window, which is available from the View menu. The
breakpoints you set in the Memory window will be triggered for both read and write
accesses. All breakpoints defined in this window are preserved between debug sessions.

Note: Setting breakpoints directly in the Memory window is only possible if the driver
you use supports this.

SETTING BREAKPOINTS USING SYSTEM MACROS

You can set breakpoints not only in the breakpoint dialog box but also by using built-in
C-SPY system macros. When you use system macros for setting breakpoints, the
breakpoint characteristics are specified as macro parameters.

Macros are useful when you have already specified your breakpoints so that they fully
meet your requirements. You can define your breakpoints in a macro file, using built-in
system macros, and execute the file at C-SPY startup. The breakpoints will then be set
automatically each time you start C-SPY. Another advantage is that the debug session
will be documented, and that several engineers involved in the development project can
share the macro files.

Note: If you use system macros for setting breakpoints, you can still view and modify
them in the Breakpoints window. In contrast to using the dialog box for defining
breakpoints, all breakpoints that are defined using system macros are removed when you
exit the debug session.

For information about each breakpoint macro, see Reference information on C-SPY
system macros, page 223.

Setting breakpoints at C-SPY startup using a setup macro file
You can use a setup macro file to define breakpoints at C-SPY startup. Follow the
procedure described in Using C-SPY macros, page 209.

USEFUL BREAKPOINT HINTS

Below are some useful hints related to setting breakpoints.

Tracing incorrect function arguments

If a function with a pointer argument is sometimes incorrectly called with a NULL
argument, you might want to debug that behavior. These methods can be useful:

e Set a breakpoint on the first line of the function with a condition that is true only
when the parameter is 0. The breakpoint will then not be triggered until the
problematic situation actually occurs. The advantage of this method is that no extra

Breakpoints °

source code is needed. The drawback is that the execution speed might become
unacceptably low.

® You can use the assert macro in your problematic function, for example:

int MyFunction (int * MyPtr)
{

assert (MyPtr != 0); /* Assert macro added to your source
code. */

/* Here comes the rest of your function. */
}
The execution will break whenever the condition is true. The advantage is that the
execution speed is only very slightly affected, but the drawback is that you will get a
small extra footprint in your source code. In addition, the only way to get rid of the
execution stop is to remove the macro and rebuild your source code.

e Instead of using the assert macro, you can modify your function like this:

int MyFunction (int * MyPtr)
{

if (MyPtr == 0)

MyDummyStatement; /* Dummy statement where you set a
breakpoint. */

/* Here comes the rest of your function. */
}
You must also set a breakpoint on the extra dummy statement, so that the execution
will break whenever the condition is true. The advantage is that the execution speed
is only very slightly affected, but the drawback is that you will still get a small extra
footprint in your source code. However, in this way you can get rid of the execution
stop by just removing the breakpoint.

Performing a task and continuing execution

You can perform a task when a breakpoint is triggered and then automatically continue
execution.

You can use the Action text box to associate an action with the breakpoint, for instance
a C-SPY macro function. When the breakpoint is triggered and the execution of your
application has stopped, the macro function will be executed. In this case, the execution
will not continue automatically.

Instead, you can set a condition which returns 0 (false). When the breakpoint is
triggered, the condition—which can be a call to a C-SPY macro that performs a task—
is evaluated and because it is not true, execution continues.

105

Reference information on breakpoints

Consider this example where the C-SPY macro function performs a simple task:

__var my_counter;

count ()

{
my_counter += 1;
return O;

}

To use this function as a condition for the breakpoint, type count () in the EXpression
text box under Conditions. The task will then be performed when the breakpoint is
triggered. Because the macro function count returns 0, the condition is false and the
execution of the program will resume automatically, without any stop.

Reference information on breakpoints
This section gives reference information about these windows and dialog boxes:

Breakpoints window, page 107

Breakpoint Usage window, page 108

Code breakpoints dialog box, page 109

Log breakpoints dialog box, page 111

Data breakpoints dialog box, page 112

Data Log breakpoints dialog box, page 114
Immediate breakpoints dialog box, page 115
Enter Location dialog box, page 116

Resolve Source Ambiguity dialog box, page 118.

See also:

e Reference information on C-SPY system macros, page 223
e Reference information on trace, page 156.

IAR Embedded Workbench®
106 C-SPY® Debugging Guide

Breakpoints °

Breakpoints window

The Breakpoints window is available from the View menu.

Code @ Tutar.c:46.2

The Breakpoints window lists all breakpoints you define.

Use this window to conveniently monitor, enable, and disable breakpoints; you can also
define new breakpoints and modify existing breakpoints.

Requirements

None; this window is always available.

Display area

This area lists all breakpoints you define. For each breakpoint, information about the
breakpoint type, source file, source line, and source column is provided.

Context menu

This context menu is available:
G0 ko Source
Edit...

Delete
Disable
Enable Al
Disable Al

Mew Breakpoint ¥
These commands are available:

Goto Source

Moves the insertion point to the location of the breakpoint, if the breakpoint has
a source location. Double-click a breakpoint in the Breakpoints window to
perform the same command.

Edit
Opens the breakpoint dialog box for the breakpoint you selected.

107

Reference information on breakpoints

Delete

Deletes the breakpoint. Press the Delete key to perform the same command.

Enable
Enables the breakpoint. The check box at the beginning of the line will be
selected. You can also perform the command by manually selecting the check
box. This command is only available if the breakpoint is disabled.

Disable

Disables the breakpoint. The check box at the beginning of the line will be

deselected. You can also perform this command by manually deselecting the

check box. This command is only available if the breakpoint is enabled.
Enable All

Enables all defined breakpoints.

Disable All
Disables all defined breakpoints.

New Breakpoint

Displays a submenu where you can open the breakpoint dialog box for the
available breakpoint types. All breakpoints you define using this dialog box are
preserved between debug sessions.

Breakpoint Usage window

The Breakpoint Usage window is available from the menu specific to the C-SPY driver
you are using.

Breakpoint Usage [%]

[Fetch

-SSP Terminal 140 & libsupport module

The Breakpoint Usage window lists all breakpoints currently set in the target system,
both the ones you have defined and the ones used internally by C-SPY. The format of
the items in this dialog box depends on the C-SPY driver you are using.

IAR Embedded Workbench®
108 C-SPY® Debugging Guide

Breakpoints °

The window gives a low-level view of all breakpoints, related but not identical to the list
of breakpoints displayed in the Breakpoints window.

C-SPY uses breakpoints when stepping. If your target system has a limited number of
hardware breakpoints and software breakpoints are not enabled, exceeding the number
of available hardware breakpoints will cause the debugger to single step. This will
significantly reduce the execution speed. Therefore, in a debugger system with a limited
amount of hardware breakpoints, you can use the Breakpoint Usage window for:

o Identifying all breakpoint consumers

o Checking that the number of active breakpoints is supported by the target system

o Configuring the debugger to use the available breakpoints in a better way, if
possible.

Requirements

None; this window is always available.

Display area

For each breakpoint in the list, the address and access type are displayed. Each
breakpoint in the list can also be expanded to show its originator.

Code breakpoints dialog box

The Code breakpoints dialog box is available from the context menu in the editor
window, Breakpoints window, and in the Disassembly window.

& Code |
Break &f:
| Edit...l
— Size
&+ Auta I_I—
 Marual
— Action
Expression: I
Condition:
Expression:
' Condition true Skip count; I il
" Condition changed

This figure reflects the C-SPY simulator.

Use the Code breakpoints dialog box to set a code breakpoint.

109

Reference information on breakpoints

110

Requirements

Break At

Size

Action

Conditions

IAR Embedded Workbench®
C-SPY® Debugging Guide

See SQupported debugger features in the release notes for information about
applicability.

Specify the code location of the breakpoint in the text box. Alternatively, click the Edit
button to open the Enter L ocation dialog box, see Enter Location dialog box, page 116.

Determines whether there should be a size—in practice, a range—of locations where the
breakpoint will trigger. Each fetch access to the specified memory range will trigger the
breakpoint. Select how to specify the size:
Auto

The size will be set automatically, typically to 1.

Manual
Specify the size of the breakpoint range in the text box.

Specify a valid C-SPY expression, which is evaluated when the breakpoint is triggered
and the condition is true. For more information, see Useful breakpoint hints, page 104.

Specify simple or complex conditions:
Expression

Specify a valid C-SPY expression, see Expressions, page 217.
Condition true

The breakpoint is triggered if the value of the expression is true.

Condition changed
The breakpoint is triggered if the value of the expression has changed since it
was last evaluated.

Skip count

The number of times that the breakpoint condition must be fulfilled before the
breakpoint starts triggering. After that, the breakpoint will trigger every time the
condition is fulfilled.

Breakpoints °

Log breakpoints dialog box

Requirements

Trigger at

Message

C-SPY macro " _|

The L og breakpoints dialog box is available from the context menu in the editor
window, Breakpoints window, and in the Disassembly window.
B L
Break &t

C:htutorsTutor.c.47.3

Meszage: C-Spy macro "'__message' style
"depth ="', call_count

Conditions
Expression:

(%) Condition true
(O Condition changed

This figure reflects the C-SPY simulator.

Use the L og breakpoints dialog box to set a log breakpoint.

See Supported debugger features in the release notes for information about
applicability.

Specify the code location of the breakpoint. Alternatively, click the Edit button to open
the Enter Location dialog box, see Enter Location dialog box, page 116.

Specify the message you want to be displayed in the C-SPY Debug Log window. The
message can either be plain text, o—if you also select the option C-SPY macro
" __message” style—a comma-separated list of arguments.

message" style

Select this option to make a comma-separated list of arguments specified in the Message
text box be treated exactly as the arguments to the C-SPY macro language statement
__message, see Formatted output, page 2138.

Reference information on breakpoints

Conditions
Specify simple or complex conditions:
Expression
Specify a valid C-SPY expression, see Expressions, page 217.

Condition true
The breakpoint is triggered if the value of the expression is true.

Condition changed

The breakpoint is triggered if the value of the expression has changed since it
was last evaluated.

Data breakpoints dialog box

The Data breakpoints dialog box is available from the context menu in the editor
window, Breakpoints window, the Memory window, and in the Disassembly window.
’ [rata |
Break &f:

| [

5

—Access Type e
& Feadfwiite & buto |1—
 Read Manual
7 wirite - Action
Expression: I
r— Condition:
Expression:

% Condition true Skip count; I 0

" Condition changed

This figure reflects the C-SPY simulator.

Use the Data breakpoints dialog box to set a data breakpoint. Data breakpoints never
stop execution within a single instruction. They are recorded and reported after the
instruction is executed.

IAR Embedded Workbench®
112 C-SPY® Debugging Guide

Requirements

Break At

Access Type

Size

Action

Breakpoints °

See SQupported debugger features in the release notes for information about
applicability.

Specify the data location of the breakpoint in the text box. Alternatively, click the Edit
button to open the Enter L ocation dialog box, see Enter Location dialog box, page 116.

Selects the type of memory access that triggers the breakpoint:

Read/Write
Reads from or writes to location.

Read
Reads from location.

Write

Writes to location.

Determines whether there should be a size—in practice, a range—of locations where the
breakpoint will trigger. Each fetch access to the specified memory range will trigger the
breakpoint. Select how to specify the size:

Auto

The size will automatically be based on the type of expression the breakpoint is
set on. For example, if you set the breakpoint on a 12-byte structure, the size of
the breakpoint will be 12 bytes.

Manual
Specify the size of the breakpoint range in the text box.

For data breakpoints, this can be useful if you want the breakpoint to be triggered on
accesses to data structures, such as arrays, structs, and unions.

Specify a valid C-SPY expression, which is evaluated when the breakpoint is triggered
and the condition is true. For more information, see Useful breakpoint hints, page 104.

113

Reference information on breakpoints

114

Conditions

Specify simple or complex conditions:
Expression

Specify a valid C-SPY expression, see Expressions, page 217.
Condition true

The breakpoint is triggered if the value of the expression is true.

Condition changed

The breakpoint is triggered if the value of the expression has changed since it
was last evaluated.

Skip count
The number of times that the breakpoint condition must be fulfilled before the
breakpoint starts triggering. After that, the breakpoint will trigger every time the
condition is fulfilled.

Data Log breakpoints dialog box

IAR Embedded Workbench®
C-SPY® Debugging Guide

The Data L og breakpoints dialog box is available from the context menu in the editor
window, Breakpoints window, the Memory window, and in the Disassembly window.

Data Log

Trigger at:
Edit...
Access Type
@ Read/write
' Read
) Write

This figure reflects the C-SPY simulator.
Use the Data Log breakpoints dialog box to set a maximum of four data log breakpoints.

To get started using data logging, see Getting started using data logging, page 68

Breakpoints °

Requirements

See SQupported debugger features in the release notes for information about
applicability.

Trigger at

Specify the data location of the breakpoint. Alternatively, click the Edit button to open
the Enter Location dialog box, see Enter Location dialog box, page 116.

Access Type
Selects the type of memory access that triggers the breakpoint:

Read/Write
Reads from or writes to location.

Read
Reads from location.

Write

Writes to location.

Immediate breakpoints dialog box

The | mmediate breakpoints dialog box is available from the context menu in the editor
window, Breakpoints window, the Memory window, and in the Disassembly window.

Immediate

Trigger at:
Edit...
Access Type Action
@ Read Expression:
) Write

In the C-SPY simulator, use the | mmediate breakpoints dialog box to set an immediate
breakpoint. Immediate breakpoints do not stop execution at all; they only suspend it
temporarily.

115

Reference information on breakpoints

116

Requirements

Trigger at

Access Type

Action

The C-SPY simulator.

Specify the data location of the breakpoint. Alternatively, click the Edit button to open
the Enter Location dialog box, see Enter Location dialog box, page 116.

Selects the type of memory access that triggers the breakpoint:
Read

Reads from location.

Write
Writes to location.

Specify a valid C-SPY expression, which is evaluated when the breakpoint is triggered
and the condition is true. For more information, see Useful breakpoint hints, page 104.

Enter Location dialog box

Type

IAR Embedded Workbench®
C-SPY® Debugging Guide

The Enter Location dialog box is available from the breakpoints dialog box, either
when you set a new breakpoint or when you edit a breakpoint.

Enter Location E
Type————— Expression:

' Expression I
7 Absolute address

 Souree location

()3 I Cancel |

Use the Enter Location dialog box to specify the location of the breakpoint.

Note: This dialog box looks different depending on the Type you select.

Selects the type of location to be used for the breakpoint, choose between:
Expression
A C-SPY expression, whose value evaluates to a valid code or data location.

Breakpoints °

A code location, for example the function main, is typically used for code
breakpoints.

A data location is the name of a variable and is typically used for data
breakpoints. For example, my_var refers to the location of the variable my_var,
and arr [3] refers to the location of the fourth element of the array arr. For
static variables declared with the same name in several functions, use the syntax
my_func::my_static_variable to refer to a specific variable.

For more information about C-SPY expressions, see EXpressions, page 217.

Absolute address
An absolute location on the form zone: hexaddress or simply hexaddress
(for example Memory: 0x42). zone refers to C-SPY memory zones and
specifies in which memory the address belongs, see C-SPY memory zones, page
120.

Source location

A location in your C source code using the syntax:
{filename} .row.column.

filename specifies the filename and full path.
row specifies the row in which you want the breakpoint.
column specifies the column in which you want the breakpoint.

For example, {C:\src\prog.c}.22.3

sets a breakpoint on the third character position on row 22 in the source file
prog.c. Note that in quoted form, for example in a C-SPY macro, you must
instead write {C:\ \src\\prog.c}.22.3.

Note that the Source location type is usually meaningful only for code locations
in code breakpoints.

17

Reference information on breakpoints

118

Resolve Source Ambiguity dialog box

The Resolve Source Ambiguity dialog box appears, for example, when you try to set a
breakpoint on templates and the source location corresponds to more than one function.

Resolve Source Ambiguity

The zource location coresponds to multiple functions.
‘which onefz] do you mean?

woid foo(T, T #|[with T=unsigned long] Al

woid foo(T, T #|[with T=double]

Cancel

™ Automatically choose all

If you check. this item, the dialog will not be shown again
unless you re-enable it in the Tools->Dptions dialog, on
the Debugger page.

To resolve a source ambiguity, perform one of these actions:

o In the text box, select one or several of the listed locations and click Selected.

o Click All.
All

The breakpoint will be set on all listed locations.
Selected

The breakpoint will be set on the source locations that you have selected in the text box.
Cancel

No location will be used.

Automatically choose all

Determines that whenever a specified source location corresponds to more than one
function, all locations will be used.

Note that this option can also be specified in the | DE Optionsdialog box, see Debugger
options in the IDE Project Management and Building Guide.

IAR Embedded Workbench®
C-SPY® Debugging Guide

Memory and registers

This chapter describes how to use the features available in C-SPY® for
examining memory and registers. More specifically, this means information
about:

e Introduction to monitoring memory and registers
e Monitoring memory and registers

e Reference information on memory and registers

Introduction to monitoring memory and registers

This section covers these topics:

o Briefly about monitoring memory and registers
e C-SPY memory zones

e Stack display

o Memory access checking

BRIEFLY ABOUT MONITORING MEMORY AND REGISTERS

C-SPY provides many windows for monitoring memory and registers, each of them
available from the View menu:

o The Memory window

Gives an up-to-date display of a specified area of memory—a memory zone—and
allows you to edit it. Different colors are used for indicating data coverage along with
execution of your application. You can fill specified areas with specific values and
you can set breakpoints directly on a memory location or range. You can open several
instances of this window, to monitor different memory areas. The content of the
window can be regularly updated while your application is executing.

o The Symbolic memory window

Displays how variables with static storage duration are laid out in memory. This can
be useful for better understanding memory usage or for investigating problems
caused by variables being overwritten, for example by buffer overruns.

19

Introduction to monitoring memory and registers

o The Stack window

Displays the contents of the stack, including how stack variables are laid out in
memory. In addition, some integrity checks of the stack can be performed to detect
and warn about problems with stack overflow. For example, the Stack window is
useful for determining the optimal size of the stack. You can open up to two instances
of this window, each showing different stacks or different display modes of the same
stack.

o The Register window

Gives an up-to-date display of the contents of the processor registers and SFRs, and
allows you to edit them. Due to the large amount of registers—memory-mapped
peripheral unit registers and CPU registers—it is inconvenient to show all registers
concurrently in the Register window. Instead you can divide registers into register
groups. You can choose to load either predefined register groups or define your own
application-specific groups. You can open several instances of this window, each
showing a different register group.

o The SFR Setup window

Displays the currently defined SFRs that C-SPY has information about. If required,
you can use this window to customize aspects of the SFRs.

To view the memory contents for a specific variable, simply drag the variable to the
Memory window or the Symbolic memory window. The memory area where the
variable is located will appear.

Reading the value of some registers might influence the runtime behavior of your

& application. For example, reading the value of a UART status register might reset a
pending bit, which leads to the lack of an interrupt that would have processed a received
byte. To prevent this from happening, make sure that the Register window containing
any such registers is closed when debugging a running application.

C-SPY MEMORY ZONES

In C-SPY, the term zoneis used for a named memory area. A memory address, or
location, is a combination of a zone and a numerical offset into that zone.

Memory zones are used in several contexts, most importantly in the Memory and
Disassembly windows, and in C-SPY macros. In the windows, use the Zone box to
choose which memory zone to display.

Device-specific zones

Memory information for device-specific zones is defined in the device description files.
When you load a device description file, additional zones that adhere to the specific
memory layout become available.

IAR Embedded Workbench®
120 C-SPY® Debugging Guide

Memory and registers °

See the device description file for information about available memory zones.

For more information, see Selecting a device description file, page 31 and Modifying a
device description file, page 35.

STACK DISPLAY

The Stack window displays the contents of the stack, overflow warnings, and it has a
graphical stack bar. These can be useful in many contexts. Some examples are:

e Investigating the stack usage when assembler modules are called from C modules
and vice versa

Investigating whether the correct elements are located on the stack
Investigating whether the stack is restored properly

°
°
o Determining the optimal stack size
°

Detecting stack overflows.

For microcontrollers with multiple stacks, you can select which stack to view.

Stack usage

When your application is first loaded, and upon each reset, the memory for the stack area
is filled with the dedicated byte value 0xCD before the application starts executing.
Whenever execution stops, the stack memory is searched from the end of the stack until
a byte with a value different from 0xCD is found, which is assumed to be how far the
stack has been used. Although this is a reasonably reliable way to track stack usage,
there is no guarantee that a stack overflow is detected. For example, a stack can
incorrectly grow outside its bounds, and even modify memory outside the stack area,
without actually modifying any of the bytes near the stack range. Likewise, your
application might modify memory within the stack area by mistake.

The Stack window cannot detect a stack overflow when it happens, but can only detect
the signs it leaves behind. However, when the graphical stack bar is enabled, the
functionality needed to detect and warn about stack overflows is also enabled.

Note: The size and location of the stack is retrieved from the definition of the segment
holding the stack, made in the linker configuration file. If you, for some reason, modify
the stack initialization made in the system startup code, cstartup, you should also
change the segment definition in the linker configuration file accordingly; otherwise the
Stack window cannot track the stack usage. For more information about this, see the |AR
C/C++ Compiler Reference Guide.

MEMORY ACCESS CHECKING

The C-SPY simulator can simulate various memory access types of the target hardware
and detect illegal accesses, for example a read access to write-only memory. If a memory

121

Monitoring memory and registers

122

access occurs that does not agree with the access type specified for the specific memory
area, C-SPY will regard this as an illegal access. Also, a memory access to memory
which is not defined is regarded as an illegal access. The purpose of memory access
checking is to help you to identify any memory access violations.

The memory areas can either be the zones predefined in the device description file, or
memory areas based on the segment information available in the debug file. In addition
to these, you can define your own memory areas. The access type can be read and write,
read-only, or write-only. You cannot map two different access types to the same memory
area. You can check for access type violation and accesses to unspecified ranges. Any
violations are logged in the Debug Log window. You can also choose to have the
execution halted.

Monitoring memory and registers

IAR Embedded Workbench®
C-SPY® Debugging Guide

This section describes various tasks related to monitoring memory and registers.

e Defining application-specific register groups, page 122.

DEFINING APPLICATION-SPECIFIC REGISTER GROUPS

Defining application-specific register groups minimizes the amount of registers
displayed in the Register window and speeds up the debugging.

Choose Tools>Options>Register Filter during a debug session.

IDE Dptions [%]
IV Use register filter Groups:
IMyFiIter.fIt Filter Files. .. | I VI

=- EI_F'U Registers &
- Group members:

-3 |
<o |
Baze
[T Ovenide

QK | Cancel | Apply | Help |

For information about the register filter options, see the IDE Project Management and
Building Guide.

Memory and registers __4

2 Select Useregister filter and specify the filename and destination of the filter file for
your new group in the dialog box that appears.

3 Click New Group and specify the name of your group, for example My Timer Group.

ew Group x|

IMy Timer Group

()8 I Cancel |

4 1In the register tree view on the Register Filter page, select a register and click the arrow
button to add it to your group. Repeat this process for all registers that you want to add
to your group.

5 Optionally, select any registers for which you want to change the integer base, and

choose a suitable base.

6 When you are done, click OK. Your new group is now available in the Register
window.

If you want to add more groups to your filter file, repeat this procedure for each group
you want to add.

Note: The registers that appear in the list of registers are retrieved from the ddf file that
is currently used. If a certain SFR that you need does not appear, you can register your
own SFRs. For more information, see SFR Setup window, page 139.

Reference information on memory and registers

This section gives reference information about these windows and dialog boxes:

Memory window, page 124

Memory Save dialog box, page 128
Memory Restore dialog box, page 129
Fill dialog box, page 129

Symbolic Memory window, page 131
Sack window, page 133

Register window, page 137

SFR Setup window, page 139

Edit SFR dialog box, page 142

Memory Configuration dialog box, page 144
Edit Memory Range dialog box, page 147

123

Reference information on memory and registers

Memory window

e Memory Access Setup dialog box, page 149

e Edit Memory Access dialog box, page 151.

The Memory window is available from the View menu.

Memory contents

Go to
location

Available zones

Context menu button

Memory

I Goto

* | Memary ~| =]

]|

O00feefl
O00feefs
000fef0o0

Memory
addresses

Data

O00fefoa
000fefl0
O00fefla
O00fef20
QD0fef2s

ff
ff
48
72
&
oo
oo
(a]n]

coverage
information

&

Requirements

Toolbar

IAR Embedded Workbench®
124 C-SPY® Debugging Guide

000fef30
O00fef3a
000fefd0
O00fefda
nnnfef&0

cd
3c
ff
ff
Ff

ff
ff
685
ac
T4
oo
oo
oo
cd
o1
ff
ff
Ff

ff
ff
ac
54
Ta
oo
oo
oo
cd
oo
ff
ff
Ff

ff
ff
ac
21
4c
oo
oo
oo
cd
cd
ff
ff
Ff

ff
ff
6
oo
oo
oo
oo
cd
cd
ff
ff
ff
Ff

ff
ff
20
oo
oo
oo
oo
cd
cd
ff
ff
ff
Ff

ff
ff
57
68
oo
oo
oo
cd
cd
ff
ff
ff
Ff

ff
ff
6
Ga
oo
oo
oo
cd
cd
ff
ff
ff
Ff

~ Live update

\

Memory contents in
ASCII format

This window gives an up-to-date display of a specified area of memory—a memory
zone—and allows you to edit it. You can open several instances of this window, which
is very convenient if you want to keep track of several memory or register zones, or

monitor different parts of the memory.

To view the memory corresponding to a variable, you can select it in the editor window
and drag it to the Memory window.

None; this window is always available.

The toolbar contains:

Goto

The memory location or symbol you want to view.

Zone

Selects a memory zone, see C-SPY memory zones, page 120.

Memory and registers °

Context menu button

Displays the context menu.

Update Now

Updates the content of the Memory window while your application is executing.
This button is only enabled if the C-SPY driver you are using has access to the
target system memory while your application is executing.

Live Update

Updates the contents of the Memory window regularly while your application is
executing. This button is only enabled if the C-SPY driver you are using has
access to the target system memory while your application is executing. To set
the update frequency, specify an appropriate frequency in the IDE
Options>Debugger dialog box.

Display area

The display area shows the addresses currently being viewed, the memory contents in
the format you have chosen, and—provided that the display mode is set to

1x Units—the memory contents in ASCII format. You can edit the contents of the
display area, both in the hexadecimal part and the ASCII part of the area.

Data coverage is displayed with these colors:

Yellow Indicates data that has been read.
Blue Indicates data that has been written
Green Indicates data that has been both read and written.

Note: Data coverage is not supported by all C-SPY drivers. Data coverage is supported
by the C-SPY Simulator.

125

Reference information on memory and registers

Context menu

This context menu is available:

Copy
Paste

Zone 3

v lxUnits
2x Units
4x Units
8x Units

v Little Endian
Big Endian

Data Coverage 3

Find...

Replace...

Mermory Fill...
Memory Save...

Mermory Restore...

Set Data Breakpoint

These commands are available:
Copy, Paste

Standard editing commands.
Zone

Selects a memory zone, see C-SPY memory zones, page 120.
1x Units

Displays the memory contents as single bytes.
2x Units

Displays the memory contents as 2-byte groups.
4x Units

Displays the memory contents as 4-byte groups.
8x Units

Displays the memory contents as 8-byte groups.

Little Endian
Displays the contents in little-endian byte order.

IAR Embedded Workbench®
126 C-SPY® Debugging Guide

Memory and registers °

Big Endian
Displays the contents in big-endian byte order.

Data Coverage
Choose between:

Enable toggles data coverage on or off.
Show toggles between showing or hiding data coverage.
Clear clears all data coverage information.

These commands are only available if your C-SPY driver supports data
coverage.

Find
Displays a dialog box where you can search for text within the Memory
window; read about the Find dialog box in the IDE Project Management and
Building Guide.

Replace

Displays a dialog box where you can search for a specified string and replace
each occurrence with another string; read about the Replace dialog box in the
IDE Project Management and Building Guide.

Memory Fill
Displays a dialog box, where you can fill a specified area with a value, see Fill
dialog box, page 129.

Memory Save
Displays a dialog box, where you can save the contents of a specified memory
area to a file, see Memory Save dialog box, page 128.

Memory Restore

Displays a dialog box, where you can load the contents of a file in Intel-hex or
Motorola s-record format to a specified memory zone, see Memory Restore
dialog box, page 129.

Set Data Breakpoint

Sets breakpoints directly in the Memory window. The breakpoint is not
highlighted; you can see, edit, and remove it in the Breakpoints dialog box. The
breakpoints you set in this window will be triggered for both read and write
access. For more information, see Setting a data breakpoint in the Memory
window, page 103.

127

Reference information on memory and registers

Memory Save dialog box

Requirements

Zone

Start address

End address

File format

Filename

Save

IAR Embedded Workbench®
128 C-SPY® Debugging Guide

The Memory Savedialog box is available by choosing Debug>M emor y>Save or from
the context menu in the Memory window.

Memory Save g|

Zone:

Start address: End address:
080 0xFF

File: Farmat:

intel-extended v

Filename:

Ciiprojectsimemary, hex E]

Use this dialog box to save the contents of a specified memory area to a file.

None; this dialog box is always available.

Selects a memory zone, see C-SPY memory zones, page 120.

Specify the start address of the memory range to be saved.

Specify the end address of the memory range to be saved.

Selects the file format to be used, which is Intel-extended by default.

Specify the destination file to be used; a browse button is available for your convenience.

Saves the selected range of the memory zone to the specified file.

Memory Restore dialog box
The Memory Restore dialog box is available by choosing Debug>M emory>Restore

Requirements

Zone

Filename

Restore

Fill dialog box

or from the context menu in the Memory window.

Memory Restore E

Zone:

= 5
Close |

Filename:

I Ciiprojectsimemary, hex

Memory and registers °

Use this dialog box to load the contents of a file in Intel-extended or Motorola S-record

format to a specified memory zone.

None; this dialog box is always available.

Selects a memory zone, see C-SPY memory zones, page 120.

Specify the file to be read; a browse button is available for your convenience.

Loads the contents of the specified file to the selected memory zone.

The Fill dialog box is available from the context menu in the Memory window.

Start address: Length: Zone:
101D [0 |Memay x|
Walue: Operation

FF ' Copy AND

" HOR 0OR

()3 I Cancel |

Use this dialog box to fill a specified area of memory with a value.

129

Reference information on memory and registers

130

Requirements

Start address

Length

Zone

Value

Operation

IAR Embedded Workbench®
C-SPY® Debugging Guide

None; this dialog box is always available.

Type the start address—in binary, octal, decimal, or hexadecimal notation.

Type the length—in binary, octal, decimal, or hexadecimal notation.

Selects a memory zone, see C-SPY memory zones, page 120.

Type the 8-bit value to be used for filling each memory location.

These are the available memory fill operations:

Copy
Value will be copied to the specified memory area.

AND
An AND operation will be performed between Value and the existing contents of
memory before writing the result to memory.

XOR
An XOR operation will be performed between Value and the existing contents of
memory before writing the result to memory.

OR

An OR operation will be performed between Value and the existing contents of
memory before writing the result to memory.

Memory and registers __4

Symbolic Memory window

The Symbolic Memory window is available from the View menu during a debug

sess1on.
Go ko I j IMemory j Previousl TMext |
Location | Data | ‘ariable | Walue | Tvpe | ;I
0x5C 0x0200C300
0x60 0x0002 call count 10 int
0x62 0x0001 root[0] 1 unsigned int
0x64 0x0001 root1] 1 unsigned int
0x66 0x0002 root[2] 2 unsigned int
0x68 0x0003 root3] 3 unsigned int
0x6A 0x0005 root[4] 5 unsigned int
0x6C 0x0008 root[5]] unsigned int
0x6E 0x000D rootfB] 13 unsigned int
0x70 0x0015 root[7] 21 unsigned int
0x72 0x0022 rootf8] 34 unsigned int
0x74 0x0037 root[9] 55 unsigned int
0x76 0xCDCDCDCD
Ox7A 0xCDCDCICD x|

This window displays how variables with static storage duration, typically variables
with file scope but also static variables in functions and classes, are laid out in memory.
This can be useful for better understanding memory usage or for investigating problems
caused by variables being overwritten, for example buffer overruns. Other areas of use
are spotting alignment holes or for understanding problems caused by buffers being
overwritten.

To view the memory corresponding to a variable, you can select it in the editor window
@ and drag it to the Symbolic Memory window.

Requirements

None; this window is always available.

Toolbar

The toolbar contains:

Goto
The memory location or symbol you want to view.

Zone
Selects a memory zone, see C-SPY memory zones, page 120.

Previous
Highlights the previous symbol in the display area.

Next
Highlights the next symbol in the display area.

131

Reference information on memory and registers

Display area
This area contains these columns:

L ocation
The memory address.

Data

The memory contents in hexadecimal format. The data is grouped according to
the size of the symbol. This column is editable.

Variable
The variable name; requires that the variable has a fixed memory location. Local
variables are not displayed.
Value
The value of the variable. This column is editable.
Type
The type of the variable.

There are several different ways to navigate within the memory space:

o Text that is dropped in the window is interpreted as symbols

o The scroll bar at the right-side of the window

e The toolbar buttons Next and Previous

e The toolbar list box GO to can be used for locating specific locations or symbols.

Note: Rows are marked in red when the corresponding value has changed.

Context menu

This context menu is available:

Mext Symbol
Previous Symbaol

1 Units
2x Units
¢ Units

&dd B Watch Windaw

These commands are available:
Next Symbol
Highlights the next symbol in the display area.

Previous Symbol
Highlights the previous symbol in the display area.

IAR Embedded Workbench®
132 C-SPY® Debugging Guide

Memory and registers __4

1x Units

Displays the memory contents as single bytes. This applies only to rows which
do not contain a variable.

2x Units
Displays the memory contents as 2-byte groups.
4x Units

Displays the memory contents as 4-byte groups.

Add to Watch Window
Adds the selected symbol to the Watch window.

Stack window

The Stack window is available from the View menu.

Current stack pointer Used stack memory, in dark gray
Unused stack
memory, in
| Locati0n| Diata Yariahle Yalue | Frame | llght gray
Curren 0x08
stack +1 0Ox08 g
pointer +2 0x0000 p.mStatus 0 [1] _exit The graphlcal stack
+4 Ox4R bar with tooltip
*+5 | 067 information
+5 OxEO0
+7 0Ox04

This window is a memory window that displays the contents of the stack. In addition,
some integrity checks of the stack can be performed to detect and warn about problems
with stack overflow. For example, the Stack window is useful for determining the
optimal size of the stack.

To view the graphical stack bar:
I Choose Tools>Options>Sack.
2 Select the option Enable graphical stack display and stack usage.

You can open up to two Stack windows, each showing a different stack—if several
stacks are available—or the same stack with different display settings.

Note: By default, this window uses one physical breakpoint. For more information, see
Breakpoint consumers, page 100.

133

Reference information on memory and registers

134

Requirements

Toolbar

For information about options specific to the Stack window, see the IDE Project
Management and Building Guide.

None; this window is always available.

The toolbar contains:

Sack

Selects which stack to view. This applies to microcontrollers with multiple
stacks.

The graphical stack bar

&

Display area

IAR Embedded Workbench®
C-SPY® Debugging Guide

Displays the state of the stack graphically.

The left end of the stack bar represents the bottom of the stack, in other words, the
position of the stack pointer when the stack is empty. The right end represents the end
of the memory space reserved for the stack. The graphical stack bar turns red when the
stack usage exceeds a threshold that you can specify.

When the stack bar is enabled, the functionality needed to detect and warn about stack
overflows is also enabled.

Place the mouse pointer over the stack bar to get tooltip information about stack usage.

This area contains these columns:

L ocation

Displays the location in memory. The addresses are displayed in increasing
order. If your target system has a stack that grows toward high addresses, the top
of the stack will consequently be located at the bottom of the window. The
address referenced by the stack pointer, in other words the top of the stack, is
highlighted in a green color.

Data

Displays the contents of the memory unit at the given location. From the Stack
window context menu, you can select how the data should be displayed; as a 1-,
2-, or 4-byte group of data.

Context menu

Memory and registers __4

Variable
Displays the name of a variable, if there is a local variable at the given location.
Variables are only displayed if they are declared locally in a function, and
located on the stack and not in registers.

Value
Displays the value of the variable that is displayed in the Variable column.

Frame

Displays the name of the function that the call frame corresponds to.

This context menu is available:

v Show Variables
Show Offsets
1x Units
2x Units

v dxUnits

Default Format
Binary Format

Octal Format
Decimal Format
Hexadecimal Format

Char Format

Options...

These commands are available:

Show variables

Displays separate columns named Variables, Value, and Frame in the Stack
window. Variables located at memory addresses listed in the Stack window are
displayed in these columns.

Show offsets

Displays locations in the L ocation column as offsets from the stack pointer.
When deselected, locations are displayed as absolute addresses.

1x Units

Displays the memory contents as single bytes.

2x Units
Displays the memory contents as 2-byte groups.

135

Reference information on memory and registers

4x Units

Displays the memory contents as 4-byte groups.

Default For mat,
Binary Format,

Octal Format,
Decimal Format,
Hexadecimal Format,
Char Format

Changes the display format of expressions. The display format setting affects
different types of expressions in different ways. Your selection of display format
is saved between debug sessions. These commands are available if a selected
line in the window contains a variable.

The display format setting affects different types of expressions in these ways:

Variables The display setting affects only the selected variable, not
other variables.

Array elements The display setting affects the complete array, that is, the
same display format is used for each array element.

Structure fields All elements with the same definition—the same field
name and C declaration type—are affected by the
display setting.

Options

Opens the | DE Options dialog box where you can set options specific to the
Stack window, see the IDE Project Management and Building Guide.

IAR Embedded Workbench®
136 C-SPY® Debugging Guide

Memory and registers __4

Register window

The Register window is available from the View menu.

Register @

CPU Registers -

RO = Ox0001 R13 = 0x00000000
R1 = Ox0000 RA = 0x00000035
R2 = OxCOO0O0 SP = 0x0000C128
R3 = Ox0000 FH PSR = 0x0240

R4 = Ox0000 Hcre = 0x0100

R5 = Ox0000 ISP = 0x0000C268E
Ré = Ox0000 Usp = 0x00000000
R7 = Ox002D INTBASE = 0x000001A2
RE8 = Ox0008 BPC = 0x0000008C
R® = OxCOOE

R10 = Ox(C548

R11 = Ox0OBE

R12 = Ox00000000

This window gives an up-to-date display of the contents of the processor registers and
special function registers, and allows you to edit their contents. Optionally, you can
choose to load either predefined register groups or to define your own
application-specific groups.

You can open several instances of this window, which is very convenient if you want to
keep track of different register groups.

To enable predefined register groups:

I Select a device description file that suits your device, see Selecting a device description
file, page 31.

2 The register groups appear in the Register window, provided that they are defined in
the device description file. Note that the available register groups are also listed on the
Register Filter page.

To define application-specific register groups:

See Defining application-specific register groups, page 122.

Requirements

None; this window is always available.

137

Reference information on memory and registers

138

Toolbar

Display area

IAR Embedded Workbench®
C-SPY® Debugging Guide

The toolbar contains:

CPU Registers
Selects which register group to display, by default CPU Registers. Additional
register groups are predefined in the device description files that make SFR
registers available in the register window. The device description file contains a
section that defines the special function registers and their groups. If some of

your SFRs are missing, you can register your own SFRs in a Custom group, see
SFR Setup window, page 139.

Displays registers and their values. Every time C-SPY stops, a value that has changed
since the last stop is highlighted. To edit the contents of a register, click it, and modify
the value.

Some registers are expandable, which means that the register contains interesting bits or
subgroups of bits.

To change the display format, change the Base setting on the Register Filter
page—available by choosing Tools>Options.

SFR Setup window

Requirements

Memory and registers __4

For the C-SPY Simulator and possibly in the C-SPY hardware debugger drivers, these
additional support registers are available in the CPU Registers group:

CYCLECOUNTER Cleared when an application is started or reset and is
incremented with the number of used cycles during

execution.
CCSTEP Shows the number of used cycles during the last performed
C/C++ source or assembler step.
CCTIMER1 and Two trip counts that can be cleared manually at any given
CCTIMER2 time. They are incremented with the number of used cycles

during execution.

The SFR Setup window is available from the Project menu.

SFR Setup =]
Name Address Zone Size Access *

+ MyOwnSFR 0x20004000 Memory 8 Read only

+ MyHideSFR 0x20004004 Memory 16 MNone
TIM2_CR1 0x40000000 Memory 32 Read/Write

c TIM2_CR2 0x40000004 Memory 32 Read only
TIM2_SMCR 0x40000008 Memory 32 Read/Write
TIM2_DIER 0x4000000C Memory 32 Read/Write
TIM2_SR 0x40000010 Memory 32 Read/Write -

This window displays the currently defined SFRs that C-SPY has information about.
You can choose to display only factory-defined or custom-defined SFRs, or both. If
required, you can use this window to customize the aspects of the SFRs. For
factory-defined SFRs (that is, retrieved from the ddf file that is currently used), you can
only customize the access type.

Any custom-defined SFRs are added to a dedicated register group called Custom, which
you can choose to display in the Register window. Your custom-defined SFRs are saved
in projectCustomSFR.sfr.

You can only add or modify SFRs when the C-SPY debugger is not running.

None; this window is always available.

139

Reference information on memory and registers

140

Display area

IAR Embedded Workbench®
C-SPY® Debugging Guide

This area contains these columns:
Satus
A character that signals the status of the SFR, which can be one of:
blank, a factory-defined SFR.
¢, a factory-defined SFR that has been modified.
+, a custom-defined SFR.

2, an SFR that is ignored for some reason. An SFR can be ignored when a
factory-defined SFR has been modified, but the SFR is no longer available, or it
is located somewhere else or with a different size. Typically, this might happen
if you change to another device.

Name
A unique name of the SFR.

Address
The memory address of the SFR.

Zone

Selects a memory zone, see C-SPY memory zones, page 120.
Size

The size of the register, which can be any of 8, 16, 32, or 64.

Access

The access type of the register, which can be one of Read/Write, Read only,
Write only, Or None.

You can click a name or an address to change the value. The hexadecimal 0x prefix for
the address can be omitted, the value you enter will still be interpreted as hexadecimal.
For example, if you enter 4567, you will get 0x4567.

You can click a column header to sort the SFRs according to the column property.
Color coding used in the display area:

o Green, which indicates that the corresponding value has changed

o Red, which indicates an ignored SFR.

Context menu

This
v

context menu is available:
Show All

Show Custom SFRs only

Show Factory SFRs only

Add...

Edit...

Delete

Delete/Revert All Custom SFRs
Save Custom SFRs...

& bits
16 bits
32 bits

64 bits

Read/Write
Read only
Write only

MNone

These commands are available:

Show All

Shows all SFR.

Show Custom SFRsonly

Shows all custom-defined SFRs.

Show Factory SFRsonly
Shows all factory-defined SFRs retrieved from the ddf file.

Memory and registers __4

Displays the Edit SFR dialog box where you can add a new SFR, see Edit SFR

Displays the Edit SFR dialog box where you can edit an SFR, see Edit SFR

Add

dialog box, page 142.
Edit

dialog box, page 142.
Delete

Delete/revert All Custom SFRs

Deletes an SFR. This command only works on custom-defined SFRs.

Deletes all custom-defined SFRs and reverts all modified factory-defined SFRs

to their factory settings.

141

Reference information on memory and registers

142

Edit SFR dialog box

Requirements

Name

Address

IAR Embedded Workbench®
C-SPY® Debugging Guide

Save Custom SFRs
Opens a standard save dialog box to save all custom-defined SFRs.
8|16|32|64 bits
Selects display format for the selected SFR, which can be 8, 16, 32, or 64 bits.
Note that the display format can only be changed for custom-defined SFRs.
Read/Write]Read only|Write only|None

Selects the access type of the selected SFR, which can be Read/Write, Read
only, Write only, or None. Note that for factory-defined SFRs, the default
access type is indicated.

The Edit SFR dialog box is available from the SFR Setup window.

Edit SFR (=23
SFR
M ame:
MyOwnSFR Carcel
Address: Zone:
0400004567 Memary -
Size Access
@ 8 bits @ Read wiite
16 bitz Fiead only
32 bitz write: only
B4 bits MHone

Use this dialog box to define the SFRs.

None; this dialog box is always available.

Specify the name of the SFR that you want to add or edit.

Specify the address of the SFR that you want to add or edit. The hexadecimal 0x prefix
for the address can be omitted, the value you enter will still be interpreted as
hexadecimal. For example, if you enter 4567, you will get 0x4567.

Memory and registers °

Zone
Selects the memory zone for the SFR you want to add or edit. The list of zones is
retrieved from the ddf file that is currently used.

Size
Selects the size of the SFR. Choose between 8, 16, 32, or 64 bits. Note that the display
format can only be changed for custom-defined SFRs.

Access

Selects the access type of the SFR. Choose between Read/Write, Read only, Write
only, or None. Note that for factory-defined SFRs, the default access type is indicated.

143

Reference information on memory and registers

Memory Configuration dialog box
The Memory Configuration dialog box is available from the C-SPY driver menu.

Memory Configuration [%]
It iz impartant for C-5PY that the target memory is described fully and accurately. Your project settings normally specify
this, az follows.

Cancel |

r— Factory ranges
Selected device description file in Project Options:

C:\Program Filesh|AR Embedded Workbench &.0%arm\COMFIGYdebuggertSTAS TM 32015248 ddf

It specifies the following default memory ranges:

Zone | Hame | Start | End | Type | Size

Hemory Fla=sh 0xz08000000 0=z0801FFFF Fead only 128 kbytes

Hemory Periph Oxz40000000 0=SFFFFFFF SFR 512 Hbytes

Hemory RAH Oxzz20000000 0x20003FFF RFead-Write 16 kbytes

Hemory Sy=st ... OxzEOOOO0OOO 0=FFFFFFFF SFR 512 Hbytes

Hemory ExztDew OxzAO0000000 0=zDFFFFFFF SFR 1024 Mbytes
r~ Used ranges

Thiz iz the memory configuration that will be used. You can modify this as needed.

Zone | Start | End | Cache Type | Size | Comment Mew... |
Hemory 0x08000000 0=z0801FFFF ROM-Fla=zh 128 kbytes =
Memory O=z20000000 0=20003FFF RAM 16 kbytes i |
Hemory Ox22000000 0x23FFFFFF RAH 32 Mbytes bit-banding e |
Hemory Oxz40000000 0=SFFFFFFF Tncached SFR 512 Hbytes

Hemory OxzAO0000000 0=zDFFFFFFF Tncached SFR 1024 Mbytes Use Factary |
Hemory OxzEOOOO0OOO 0=FFFFFFFF Tncached SFR 512 Hbytes

4] |

O=08000000-0=0801£f£f££
128 kbytes (ROM-Flash)

Use this dialog box to verify, and if needed, modify the memory areas so that they match
the memory available on your device. C-SPY needs this information to handle memory
as efficiently as possible.

This dialog box is automatically displayed the first time you start the C-SPY driver for
a given project, unless the device description file contains a memory description which
is already specified as correct and complete. Subsequent starts will not display the
dialog box unless you have made project changes that might cause the memory

IAR Embedded Workbench®
144 C-SPY® Debugging Guide

Memory and registers °

configuration to change, for example if you have selected another device description
file.

You can only change the memory configuration when C-SPY is not running.

Requirements
See SQupported debugger features in the release notes for information about
applicability.

Factory ranges

Identifies which device description file that is currently selected and lists the default
memory areas retrieved from the file in these columns:

Zone

Selects a memory zone, see C-SPY memory zones, page 120.
Name

The name of the memory area.
Sart

The start address for the memory area, in hexadecimal notation.
End

The end address for the memory area, in hexadecimal notation.
Type

The access type of the memory area.
Size

The size of the memory area.

Used ranges

These columns lists the memory areas that you have specified manually:
Zone

Selects a memory zone, see C-SPY memory zones, page 120.
Sart

The start address for the memory area, in hexadecimal notation.
End

The end address for the memory area, in hexadecimal notation.

Cache Type
The cache type of the memory area.

145

Reference information on memory and registers

146

Graphical bar

Buttons

IAR Embedded Workbench®
C-SPY® Debugging Guide

Size

The size of the memory area.
Comment

Memory area information.

Use the buttons to override the default memory areas that are retrieved from the device
description file.

A graphical bar that visualizes the whole theoretical memory space for the device.
Defined areas are highlighted in green.

These buttons are available:

New
Opens the Edit Memory Range dialog box, where you can specify a new
memory area and attach a cache type to it, see Edit Memory Access dialog box,
page 151.

Edit
Opens the Edit Memory Range dialog box, where you can edit the selected
memory area. See Edit Memory Access dialog box, page 151.

Remove
Removes the selected memory area definition.

Use Default
Retrieves the memory areas as specified in the selected device description file,
or if memory information is missing in the device description file, tries to
provide a usable factory default.

Memory and registers __4

Edit Memory Range dialog box

The Edit Memory Range dialog box is available from the Memory Configur ation
dialog box.
Edit Memory Range)]

Memory range

Zone:
ll\"lemor_l,l—VJ Cancel

Start address: End address:
0x0 0x0

Cache type:

@) RaM

) ROM/Flash

1 S5FR/Uncached

Use this dialog box to specify the memory areas, and assign a cache type to each
memory range.

Requirements
See Supported debugger features in the release notes for information about
applicability.
Memory range
Defines the memory area specific to your device:
Zone
Selects a memory zone, see C-SPY memory zones, page 120.
Start address
Specity the start address for the memory area, in hexadecimal notation.

End address
Specify the end address for the memory area, in hexadecimal notation.

147

Reference information on memory and registers

Cache type

Selects a cache type to the memory area; choose between:

RAM

When the target CPU is not executing, all read accesses from memory are loaded
into the cache. For example, if two Memory windows show the same part of
memory, the actual memory is only read once from the hardware to update both
windows. If you modify memory from a C-SPY window, your data is written to
cache only. Before any target execution, even stepping a single machine
instruction, the RAM cache is flushed so that all modified bytes are written to
the memory on your hardware.

ROM/Flash

This memory is assumed not to change during a debug session. Any code within
such a range that is downloaded when starting a debug session (or technically,
any such code that is part of the application being debugged) is stored in the
cache and remains there. Other parts of such ranges are loaded into the cache
from memory on demand, but are then kept during the debug session. Also,
C-SPY will not allow you to modify such memory from C-SPY windows.

Even though flash memory is normally used as a fixed read-only memory, there
are applications that use parts of flash memory for modifying storage at runtime.
For example, some part of flash memory might be used for a file system or
simply to store non-volatile information. To reflect this in C-SPY, you should
designate those parts of flash memory as one or more RAM ranges instead. Then
C-SPY will assume that those parts can change at any time during execution.

SFR/Uncached

A range of this type is completely uncached. All read or write commands from
a C-SPY window will access the hardware. Typically, this type is useful for
special function registers, which can have all sorts of unusual behavior, such as
having different values at every read access, which in turn can have side-effects
on other registers when being written, not containing the same value as was
previously written, etc.

If you do not have the appropriate information about your device, you can specify an
entire memory as SFR/Uncached. This is not incorrect, but might make C-SPY slower
when updating windows. In fact, this is sometimes the default suggestion when there is
no memory range information available.

IAR Embedded Workbench®
148 C-SPY® Debugging Guide

Memory and registers __4

Memory Access Setup dialog box
The Memory Access Setup dialog box is available from the C-SPY driver menu.

Memory Access Setup _|

™ Use ranges based on

X

% Deyvice description file

it

| Debug file segment information [anly shovwn while debugging) Cancel
Zone | Start Addr | End Addr | Accesz Type |
Memory 0x0 0x1FF R

Memory 0200 0x9FF R
Memory 01000 0«10FF R
Memory 0x1100 0«FFFF R

™ Use manual ranges
Zone | Start Addr| End Addr| Accesz Type | e

Exdit....

Delete

[elete &l

L

Memony aczess checking
Check far: Schor:
¥ Access bype violation € Log violations
¥ Access tounspeciied ranges % [Log and stop execution

This dialog box lists all defined memory areas, where each column in the list specifies
the properties of the area. In other words, the dialog box displays the memory access
setup that will be used during the simulation.

Note: If you enable both the Useranges based on and the Use manual ranges option,
memory accesses are checked for all defined ranges.

For information about the columns and the properties displayed, see Edit Memory
Access dialog box, page 151.

Requirements
The C-SPY simulator.

Use ranges based on

Selects any of the predefined alternatives for the memory access setup. Choose between:

Device description file
Loads properties from the device description file.

149

Reference information on memory and registers

Debug file segment infor mation

Properties are based on the segment information available in the debug file. This
information is only available while debugging. The advantage of using this
option, is that the simulator can catch memory accesses outside the linked
application.

Use manual ranges

Specify your own ranges manually via the Edit Memory Access dialog box. To open
this dialog box, choose New to specify a new memory range, or select a memory zone
and choose Edit to modify it. For more information, see Edit Memory Access dialog
box, page 151.

The ranges you define manually are saved between debug sessions.

Memory access checking
Check for determines what to check for;
® Access type violation
® Access to unspecified ranges.
Action selects the action to be performed if an access violation occurs; choose between:
e Log violations

e Log and stop execution.

Any violations are logged in the Debug Log window.

Buttons
These buttons are available:

New

Opens the Edit Memory Access dialog box, where you can specify a new
memory range and attach an access type to it, see Edit Memory Access dialog
box, page 151.

Edit

Opens the Edit Memory Access dialog box, where you can edit the selected
memory area. See Edit Memory Access dialog box, page 151.

Delete

Deletes the selected memory area definition.

Delete All
Deletes all defined memory area definitions.

IAR Embedded Workbench®
150 C-SPY® Debugging Guide

Memory and registers °

Note that except for the OK and Cancel buttons, buttons are only available when the
option Use manual rangesis selected.

Edit Memory Access dialog box
The Edit Memory Access dialog box is available from the Memory Access Setup

dialog box.

- Memoy range

Zone:

I Memory - l Cancel |

Start address: End address:
Jo [1FFF

—Access lype
 Fead and write

' Fead only
© Wfrite anly

Use this dialog box to specify the memory ranges, and assign an access type to each
memory range, for which you want to detect illegal accesses during the simulation.

Requirements
The C-SPY simulator.

Memory range
Defines the memory area specific to your device:

Zone
Selects a memory zone, see C-SPY memory zones, page 120.

Sart address

Specify the start address for the memory area, in hexadecimal notation.

End address
Specify the end address for the memory area, in hexadecimal notation.

Access type
Selects an access type to the memory range; choose between:
e Read and write
e Read only
e Writeonly.

151

Reference information on memory and registers

IAR Embedded Workbench®
152 C-SPY® Debugging Guide

Trace

This chapter gives you information about collecting and using trace data in
C-SPY®. More specifically, this means:

e Introduction to using trace
e Collecting and using trace data

o Reference information on trace

Introduction to using trace

This section introduces trace.
These topics are covered:

o Reasons for using trace

e Briefly about trace

o Requirements for using trace

See also:

e Getting started using data logging, page 68

e Getting started using interrupt logging, page 194
e Profiling, page 173

REASONS FOR USING TRACE

By using trace, you can inspect the program flow up to a specific state, for instance an
application crash, and use the trace data to locate the origin of the problem. Trace data
can be useful for locating programming errors that have irregular symptoms and occur
sporadically.

BRIEFLY ABOUT TRACE

To use trace in C-SPY requires that your target system can generate trace data. Once
generated, C-SPY can collect it and you can visualize and analyze the data in various
windows and dialog boxes.

Depending on your target system, different types of trace data can be generated.

153

Collecting and using trace data

154

Trace features in C-SPY

In C-SPY, you can use the trace-related windows Trace, Function Trace, Timeline, and
Find in Trace.

Depending on your C-SPY driver, you:

o Can set various types of trace breakpoints to control the collection of trace data.

o Have access to windows such as the Interrupt Log, Interrupt Log Summary, Data
Log, and Data Log Summary.

In addition, several other features in C-SPY also use trace data, features such as
Profiling, Code coverage, and Instruction profiling.
REQUIREMENTS FOR USING TRACE

The C-SPY simulator supports trace-related functionality, and there are no specific
requirements.

Note: The specific set of debug components you are using (hardware, a debug probe,
and a C-SPY driver) determine which trace features in C-SPY that are supported.

Collecting and using trace data

IAR Embedded Workbench®
C-SPY® Debugging Guide

This section describes various tasks related to collecting and using trace data.
More specifically, you will get information about:

Getting started with trace
Trace data collection using breakpoints

°
°
o Searching in trace data
°

Browsing through trace data.

GETTING STARTED WITH TRACE

Start C-SPY and choose C-SPY driver>Trace Settings. In the Trace Settings dialog
box that is displayed, check if you need to change any of the default settings.

Note: If you are using the C-SPY simulator you can ignore this step.

Open the Trace window—available from the driver-specific menu—and click the
Activate button to enable collecting trace data.

Start the execution. When the execution stops, for example because a breakpoint is
triggered, trace data is displayed in the Trace window. For more information about the
window, see Trace window, page 157.

Trace __4

TRACE DATA COLLECTION USING BREAKPOINTS

A convenient way to collect trace data between two execution points is to start and stop
the data collection using dedicated breakpoints. Choose between these alternatives:

e In the editor or Disassembly window, position your insertion point, right-click, and
toggle a Trace Start or Trace Stop breakpoint from the context menu.

e In the Breakpoints window, choose Trace Start or Trace Stop.

o The C-SPY system macros __setTraceStartBreak and
__setTraceStopBreak can also be used.

For more information about these breakpoints, see Trace Sart breakpoints dial og box,
page 167 and Trace Sop breakpoints dialog box, page 168, respectively.

SEARCHING IN TRACE DATA

When you have collected trace data, you can perform searches in the collected data to
locate the parts of your code or data that you are interested in, for example, a specific
interrupt or accesses of a specific variable.

You specify the search criteria in the Find in Tracedialog box and view the result in the
Find in Trace window.

The Find in Trace window is very similar to the Trace window, showing the same
columns and data, but only those rows that match the specified search criteria.
Double-clicking an item in the Find in Trace window brings up the same item in the
Trace window.

To search in your trace data:

On the Trace window toolbar, click the Find button.

In the Find in Trace dialog box, specify your search criteria.
Typically, you can choose to search for:

e A specific piece of text, for which you can apply further search criteria
o An address range
o A combination of these, like a specific piece of text within a specific address range.

For more information about the various options, see Find in Trace dialog box, page 170.

When you have specified your search criteria, click Find. The Find in Trace window is
displayed, which means you can start analyzing the trace data. For more information,
see Find in Trace window, page 171.

155

Reference information on trace

BROWSING THROUGH TRACE DATA

To follow the execution history, simply look and scroll in the Trace window.
Alternatively, you can enter browse mode.

o} To enter browse mode, double-click an item in the Trace window, or click the Browse
toolbar button.

The selected item turns yellow and the source and disassembly windows will highlight
the corresponding location. You can now move around in the trace data using the up and
down arrow keys, or by scrolling and clicking; the source and Disassembly windows
will be updated to show the corresponding location. This is like stepping backward and
forward through the execution history.

Double-click again to leave browse mode.

Reference information on trace

This section gives reference information about these windows and dialog boxes:

Trace window, page 157

Function Trace window, page 159

Timeline window, page 159

Viewing Range dialog box, page 166

Trace Sart breakpoints dialog box, page 167
Trace Sop breakpoints dialog box, page 168
Trace Expressions window, page 169

Find in Trace dialog box, page 170

Find in Trace window, page 171.

IAR Embedded Workbench®
156 C-SPY® Debugging Guide

Trace window

Requirements

Trace toolbar

B X e

Trace __4

The Trace window is available from the C-SPY driver menu.

Trace @
OX[BYSYHE & A
Cycles Trace callCount e
5064 13582 00044F JC 0x043C 5
DoForegroundProcess() ;
5065 13588 00043C LCALL DoForegrou... &
DoForegroundProcess: : Prelay:
5066 13594 0ooos3 18 Bt 5
?YBDISPATCH_FF:
5067 13597 000075 POP LDFH 5
5068 13600 000077 POP DPL 5
5069 13604 000072 PUSH ?CBANE 5 w
Trace |Trace Expressions =

This window displays the collected trace data.

The Trace window depends on the C-SPY driver you are using. This figure reflects the
C-SPY simulator.

See Supported debugger features in the release notes for information about
applicability.

The toolbar in the Trace window and in the Function trace window contains:

Enable/Disable
Enables and disables collecting and viewing trace data in this window. This
button is not available in the Function trace window.

Clear trace data
Clears the trace buffer. Both the Trace window and the Function trace window
are cleared.

Toggle source
Toggles the Trace column between showing only disassembly or disassembly
together with the corresponding source code.

Browse

Toggles browse mode on or off for a selected item in the Trace window, see
Browsing through trace data, page 156.

157

Reference information on trace

158

Display area

IAR Embedded Workbench®
C-SPY® Debugging Guide

FI:'

Find
Displays a dialog box where you can perform a search, see Findin Trace dialog
box, page 170.

Save

Displays a standard Save As dialog box where you can save the collected trace
data to a text file, with tab-separated columns.

Edit Settings
In the C-SPY simulator, this button is not enabled.

Edit Expressions (C-SPY simulator only)

Opens the Trace Expressions window, see Trace Expressionswindow, page 169.

This area displays a collected sequence of executed machine instructions. In addition,
the window can display trace data for expressions.

This area contains these columns for the C-SPY simulator:

#
A serial number for each row in the trace buffer. Simplifies the navigation within
the buffer.

Cycles
The number of cycles elapsed to this point.

Trace
The collected sequence of executed machine instructions. Optionally, the
corresponding source code can also be displayed.

Expression

Each expression you have defined to be displayed appears in a separate column.
Each entry in the expression column displays the value after executing the
instruction on the same row. You specify the expressions for which you want to
collect trace data in the Trace Expressions window, see Trace Expressions
window, page 169.

Trace __4

Function Trace window

Requirements

Toolbar

Display area

Timeline window

The Function Trace window is available from the C-SPY driver menu during a debug
session.

Function Trace @
@ [/ |

Cycles Trace rmyariable i
475 1050 O0=000000E4: PutFib{unsigned int} + 76
4176 10585 0xz00000242: DoForegroundProces=() + 22
477 1058 0=0000025C main() + 24

483 1069 0xz0000022C: DoForegroundProcess()

485 1074 0xz00000220: HextCounter()

491 1086 0xz00000232: DoForegroundProce==() + 6

494 1092 0=00000074: GetFib{int)
ED4 1109 0xz00000234: DoForegroundProces=() + 14

PO M3 P — o

Function Trace | Trace | Trace Expressions =

This window displays a subset of the trace data displayed in the Trace window. Instead
of displaying all rows, the Function Trace window only shows trace data corresponding
to calls to and returns from functions.

See SQupported debugger features in the release notes for information about
applicability.

For information about the toolbar, see Trace window, page 157.

For information about the columns in the display area, see Trace window, page 157

The Timeline window is available from the C-SPY driver menu during a debug session.
This window displays trace data in different graphs in relation to a common time axis:
o Call Stack graph

e Data Log graph

e Interrupt Log graph

To display a graph:

Choose Timeline from the C-SPY driver menu to open the Timeline window.

159

Reference information on trace

160

&

Requirements

IAR Embedded Workbench®
C-SPY® Debugging Guide

In the Timeline window, click in the graph area and choose Enable from the context
menu to enable a specific graph.

For the Data Log Graph, you need to set a Data Log breakpoint for each variable you
want a graphical representation of in the Timeline window. See Data Log breakpoints
dialog box, page 114.

Click Go on the toolbar to start executing your application. The graph appears.
To navigate in the graph, use any of these alternatives:

e Right-click and from the context menu choose Zoom In or Zoom Out.
Alternatively, use the + and - keys. The graph zooms in or out depending on which
command you used.

e Right-click in the graph and from the context menu choose Navigate and the
appropriate command to move backwards and forwards on the graph. Alternatively,
use any of the shortcut keys: arrow keys, Home, End, and Ctrl+End.

o Double-click on a sample of interest and the corresponding source code is
highlighted in the editor window and in the Disassembly window.

o Click on the graph and drag to select a time interval. Press Enter or right-click and
from the context menu choose Zoom>Zoom to Selection. The selection zooms in.

Point in the graph with the mouse pointer to get detailed tooltip information for that
location.

See Supported debugger features in the release notes for information about
applicability.

For more information about requirements related to trace data, see Requirements for
using trace, page 154.

Trace __4

Display area for the Call Stack Graph
The Call Stack Graph displays the sequence of calls and returns collected by trace.

Timeline (=]
— o 2
_w _w éﬂ _w _w
|putchar]| [putchar| 45| [putehar| |45 [putchar] [putchar | 3
6R |?Springboa| y |?Springboa| : |?Springboa| |?Springboa| |?Springboa|
" putch [_printf 517
"1 ?5pring |printf 537 |
= _printf | [nmiHandler:??INTVEC 16 57 |
lprintf 232| |nmiHandler:??INTVEC 16 8
‘i main 87 ¥
0.800022s 0.866624s 0.800626s 8.666628s 0.80606838s 8.866832s
L | 1, | »
Common time axis Selection for current graph

At the bottom of the graph you will usually find main, and above it, the functions called
frommain, and so on. The horizontal bars, which represent invocations of functions, use
four different colors:

o Medium green for normal C functions with debug information

o Light green for functions known to the debugger only through an assembler label

o Medium or light yellow for interrupt handlers, with the same distinctions as for

green.

The numbers represent the number of cycles spent in, or between, the function
invocations.

At the bottom of the window, there is a common time axis that uses seconds as the time
unit.

161

Reference information on trace

Display area for the Data Log graph

The Data Log graph displays the data logs generated by trace, for up to four different
variables or address ranges specified as Data Log breakpoints.

Timeline

Data Log Graph as a thin line ~ Solid Data Log Graph

]

e 2080 4000

6080 8000 le608 12600 146080 16608

i

| 2

Common time axis

Where:

Each graph is labeled with—in the left-side area—the variable name or address for
which you have specified the Data Log breakpoint.

The graph itself displays how the value of the variable changes over time. The label
area also displays the limits, or range, of the Y-axis for a variable. You can use the

context menu to change these limits. The graph is a graphical representation of the
information in the Data Log window, see Data Log window, page 87.

The graph can be displayed either as a thin line or as a color-filled solid graph.

A red vertical line indicates overflow, which means that the communication channel
failed to transmit all data logs from the target system.

At the bottom of the window, there is a common time axis that uses seconds as the time
unit.

IAR Embedded Workbench®
162 C-SPY® Debugging Guide

Trace __4

Display area for the Interrupt Log graph

The Interrupt Log graph displays interrupts reported by the C-SPY simulator. In other
words, the graph provides a graphical view of the interrupt events during the execution
of your application.

Active interrupts

Timeline (=]

< [om

0.00000s 9.88887 8.80804s 8.00806s B.80808s 8.00818s 8.80812s

Common time axis

Where:

o The label area at the left end of the graph shows the names of the interrupts.

o The graph itself shows active interrupts as a thick green horizontal bar where the
white figure indicates the time spent in the interrupt. This graph is a graphical
representation of the information in the Interrupt Log window, see Interrupt Log
window, page 201.

At the bottom of the window, there is a common time axis that uses seconds as the time
unit.

Selection and navigation

Click and drag to select. The selection extends vertically over all graphs, but appears
highlighted in a darker color for the selected graph. You can navigate backward and
forward in the selected graph using the left and right arrow keys. Use the Home and End
keys to move to the first or last relevant point, respectively. Use the navigation keys in
combination with the Shift key to extend the selection.

163

Reference information on trace

Context menu

This context menu is available:

Mavigate 3
v Auto Scroll

Zoom 3
v Enable

Go To Source

Select Graphs »
Time Axis Unit »

Note: The context menu contains some commands that are common to all graphs and
some commands that are specific to each graph. The figure reflects the context menu for
the Call Stack Graph, which means that the menu looks slightly different for the other

graphs.
These commands are available:

Navigate (All graphs)

Commands for navigating over the graph(s); choose between:

Next moves the selection to the next relevant point in the graph. Shortcut key:

right arrow.

Previous moves the selection backward to the previous relevant point in the
graph. Shortcut key: left arrow.

First moves the selection to the first data entry in the graph. Shortcut key:

Home.

L ast moves the selection to the last data entry in the graph. Shortcut key: End.

End moves the selection to the last data in any displayed graph, in other words
the end of the time axis. Shortcut key: Ctrl+End.

Auto Scroll (All graphs)

Toggles auto scrolling on or off. When on, the most recently collected data is
automatically displayed if you have executed the command Navigate>End.

Zoom (All graphs)

Commands for zooming the window, in other words, changing the time scale;

choose between:

Zoom to Selection makes the current selection fit the window. Shortcut key:

Return.

Zoom In zooms in on the time scale. Shortcut key: +.

Zoom Out zooms out on the time scale. Shortcut key: -.

IAR Embedded Workbench®
164 C-SPY® Debugging Guide

Trace __4

10ns, 100ns, 1us, etc makes an interval of 10 nanoseconds, 100 nanoseconds, 1
microsecond, respectively, fit the window.

1ms, 10ms, etc makes an interval of 1 millisecond or 10 milliseconds,
respectively, fit the window.

10m, 1h, etc makes an interval of 10 minutes or 1 hour, respectively, fit the
window.

Data Log (Data L og Graph)

A heading that shows that the Data Log-specific commands below are available.

Call Stack (Call Stack Graph)
A heading that shows that the Call stack-specific commands below are available.

Interrupt (Interrupt Log Graph)

A heading that shows that the Interrupt Log-specific commands below are
available.

Enable (All graphs)
Toggles the display of the graph on or off. If you disable a graph, that graph will
be indicated as OFF in the Timeline window. If no trace data has been collected
for a graph, no data will appear instead of the graph.

Variable (Data Log Graph)

The name of the variable for which the Data Log-specific commands below
apply. This menu command is context-sensitive, which means it reflects the
Data Log Graph you selected in the Timeline window (one of up to four).

Solid Graph (Data L og Graph)

Displays the graph as a color-filled solid graph instead of as a thin line.
Viewing Range (Data L og Graph)

Displays a dialog box, see Viewing Range dialog box, page 166.
Size (Data L og Graph)

Determines the vertical size of the graph; choose between Small, M edium, and
Large.

Show Numerical Value (Data L og Graph)

Shows the numerical value of the variable, in addition to the graph.

Go To Source (Common)
Displays the corresponding source code in an editor window, if applicable.

Select Graphs (Common)
Selects which graphs to be displayed in the Timeline window.

165

Reference information on trace

Time Axis Unit (Common)
Selects the unit used in the time axis; choose between Seconds and Cycles.

Profile Selection

Enables profiling time intervals in the Function Profiler window. Note that this
command is only available if the C-SPY driver supports PC Sampling.

Viewing Range dialog box
The Viewing Range dialog box is available from the context menu that appears when
you right-click in the Data Log Graph in the Timeline window.

Range for power:
(& Auto {currently 0 - 70)
O Factory (5 - 200)
O Custom

Lowest value: Highest value:

Scale:

O Linear
(%) Logarithmic

[ok |[Cancel]

Use this dialog box to specify the value range, that is, the range for the Y-axis for the
graph.

Requirements

See Supported debugger features in the release notes for information about
applicability.

Range for ...
Selects the viewing range for the displayed values:

Auto
Uses the range according to the range of the values that are actually collected,
continuously keeping track of minimum or maximum values. The currently
computed range, if any, is displayed in parentheses. The range is rounded to
reasonably even limits.

Factory

For the Data Log Graph: Uses the range according to the value range of the
variable, for example 0-65535 for an unsigned 16-bit integer.

IAR Embedded Workbench®
166 C-SPY® Debugging Guide

Trace __4

Custom

Use the text boxes to specify an explicit range.

Scale

Selects the scale type of the Y-axis:

e Linear
e Logarithmic.

Trace Start breakpoints dialog box

The Trace Sart dialog box is available from the context menu that appears when you
right-click in the Breakpoints window.

New Breakpoint PZ|
9 Trace Start l

Trigger At:

| Ed,.

(] 8 | Cancel

Use this dialog box to set a Trace Start breakpoint where you want to start collecting
trace data. If you want to collect trace data only for a specific range, you must also set a
Trace Stop breakpoint where you want to stop collecting data.

See also, Trace Sop breakpoints dialog box, page 168.
To set a Trace Sart breakpoint:

I In the editor or Disassembly window, right-click and choose Trace Sart from the
context menu.

Alternatively, open the Breakpoints window by choosing View>Breakpoints.
2 In the Breakpoints window, right-click and choose New Breakpoint>Trace Start.

Alternatively, to modify an existing breakpoint, select a breakpoint in the Breakpoints
window and choose Edit on the context menu.

3 Inthe Trigger At text box, specify an expression, an absolute address, or a source
location. Click OK.

167

Reference information on trace

168

Requirements

Trigger at

4 When the breakpoint is triggered, the trace data collection starts.

See Supported debugger features in the release notes for information about
applicability.

Specify the code location of the breakpoint. Alternatively, click the Edit button to open
the Enter Location dialog box, see Enter Location dialog box, page 116.

Trace Stop breakpoints dialog box

IAR Embedded Workbench®
C-SPY® Debugging Guide

The Trace Stop dialog box is available from the context menu that appears when you
right-click in the Breakpoints window.

x
& Trace Stop |

Trigger At:

| Edit.. |

()8 I Cancel |

Use this dialog box to set a Trace Stop breakpoint where you want to stop collecting
trace data. If you want to collect trace data only for a specific range, you might also need
to set a Trace Start breakpoint where you want to start collecting data.

See also, Trace Sart breakpoints dialog box, page 167.

To set a Trace Stop breakpoint:

In the editor or Disassembly window, right-click and choose Trace Stop from the
context menu.

Alternatively, open the Breakpoints window by choosing View>Breakpoints.
In the Breakpoints window, right-click and choose New Breakpoint>Trace Stop.

Alternatively, to modify an existing breakpoint, select a breakpoint in the Breakpoints
window and choose Edit on the context menu.

Trace __4

3 Inthe Trigger At text box, specify an expression, an absolute address, or a source
location. Click OK.
4

When the breakpoint is triggered, the trace data collection stops.
Requirements

See SQupported debugger features in the release notes for information about
applicability.

Trigger at

Specify the code location of the breakpoint. Alternatively, click the Edit button to open
the Enter Location dialog box, see Enter Location dialog box, page 116.

Trace Expressions window

Trace Expressions

+ 3

Expression | Format
i Default

The Trace Expressions window is available from the Trace window toolbar.

race Expression:

Use this window to specify, for example, a specific variable (or an expression) for which
you want to collect trace data.

Requirements

The C-SPY simulator.
Toolbar

The toolbar buttons change the order between the expressions:
Arrow up

Moves the selected row up.
Arrow down

Moves the selected row down.

169

Reference information on trace

Display area
Use the display area to specify expressions for which you want to collect trace data:
Expression
Specify any expression that you want to collect data from. You can specify any
expression that can be evaluated, such as variables and registers.
Format
Shows which display format that is used for each expression. Note that you can

change display format via the context menu.

Each row in this area will appear as an extra column in the Trace window.

Find in Trace dialog box

The Find in Trace dialog box is available by clicking the Find button on the Trace
window toolbar or by choosing Edit>Find and Replace>Find.

Note that the Edit>Find and Replace>Find command is context-dependent. It displays
the Find in Trace dialog box if the Trace window is the current window or the Find
dialog box if the editor window is the current window.

Find in Trace P§|

W' Text search
| =l
Cancel

[~ Match case
I Match whale word

™ only search in one colurnn

| I

™ Address range

Use this dialog box to specify the search criteria for advanced searches in the trace data.

The search results are displayed in the Find in Trace window—available by choosing the
View>M essages command, see Find in Trace window, page 171.

See also Searching in trace data, page 155.

IAR Embedded Workbench®
170 C-SPY® Debugging Guide

Trace __4

Requirements

See SQupported debugger features in the release notes for information about
applicability.

Text search

Specify the string you want to search for. To specify the search criteria, choose between:

Match Case
Searches only for occurrences that exactly match the case of the specified text.
Otherwise int will also find INT and Int and so on.

Match wholeword
Searches only for the string when it occurs as a separate word. Otherwise int
will also find print, sprintf and so on.

Only search in one column
Searches only in the column you selected from the drop-down list.

Address Range

Specify the address range you want to display or search. The trace data within the
address range is displayed. If you also have specified a text string in the Text search
field, the text string is searched for within the address range.

Find in Trace window

The Find in Trace window is available from the View>M essages menu. Alternatively, it
is automatically displayed when you perform a search using the Find in Trace dialog

box or perform a search using the Find in Trace command available from the context

menu in the editor window.

Find In Trace B
Trace

008led CHP R4, #10 2

Find In Trace

This window displays the result of searches in the trace data. Double-click an item in the
Find in Trace window to bring up the same item in the Trace window.

171

Reference information on trace

172

Requirements

Display area

IAR Embedded Workbench®
C-SPY® Debugging Guide

Before you can view any trace data, you must specify the search criteria in the Find in
Trace dialog box, see Find in Trace dialog box, page 170.

For more information, see Searching in trace data, page 155.

See SQupported debugger features in the release notes for information about
applicability.

The Find in Trace window looks like the Trace window and shows the same columns
and data, but only those rows that match the specified search criteria.

Profiling

This chapter describes how to use the profiler in C-SPY®. More specifically,
this means:

e Introduction to the profiler
o Using the profiler

e Reference information on the profiler

Introduction to the profiler

This section introduces the profiler.
These topics are covered:

o Reasons for using the profiler
e Briefly about the profiler

o Requirements for using the profiler

REASONS FOR USING THE PROFILER

Function profiling can help you find the functions in your source code where the most
time is spent during execution. You should focus on those functions when optimizing
your code. A simple method of optimizing a function is to compile it using speed
optimization. Alternatively, you can move the data used by the function into more
efficient memory. For detailed information about efficient memory usage, see the IAR
C/C++ Compiler Reference Guide.

Alternatively, you can use filtered profiling, which means that you can exclude, for
example, individual functions from being profiled. To profile only a specific part of your
code, you can select a time interval—using the Timeline window—for which C-SPY
produces profiling information.

Instruction profiling can help you fine-tune your code on a very detailed level, especially
for assembler source code. Instruction profiling can also help you to understand where
your compiled C/C++ source code spends most of its time, and perhaps give insight into
how to rewrite it for better performance.

173

Using the profiler

174

BRIEFLY ABOUT THE PROFILER

Function profiling information is displayed in the Function Profiler window, that is,
timing information for the functions in an application. Profiling must be turned on
explicitly using a button on the window’s toolbar, and will stay enabled until it is turned
off.

Instruction profiling information is displayed in the Disassembly window, that is, the
number of times each instruction has been executed.

Profiling sources

The profiler can use different mechanisms, or SOUrces, to collect profiling information.
Depending on the available trace source features, one or more of the sources can be used
for profiling:

o Trace (calls)

The full instruction trace is analyzed to determine all function calls and returns.
When the collected instruction sequence is incomplete or discontinuous, the
profiling information is less accurate.

e Trace (flat) / Sampling

Each instruction in the full instruction trace or each PC Sample is assigned to a
corresponding function or code fragment, without regard to function calls or returns.
This is most useful when the application does not exhibit normal call/return
sequences, such as when you are using an RTOS, or when you are profiling code
which does not have full debug information.

o Breakpoints

The profiler sets a breakpoint on every function entry point. During execution, the
profiler collects information about function calls and returns as each breakpoint is
hit. This assumes that the hardware supports a large number of breakpoints, and it
has a huge impact on execution performance.

REQUIREMENTS FOR USING THE PROFILER

For information about the requirements for using the profiler, see Supported debugger
features in the release notes.

Using the profiler

IAR Embedded Workbench®
C-SPY® Debugging Guide

This section describes various tasks related to using the profiler.
More specifically, you will get information about:

o Getting started using the profiler on function level

Profiling °

o Getting started using the profiler on instruction level

e Selecting a time interval for profiling information

GETTING STARTED USING THE PROFILER ON FUNCTION
LEVEL

Todisplay function profilinginformation in the Function Profiler window:

Build your application using these options:

Category Setting
C/C++ Compiler Output>Generate debug information
Linker Output>Format>Debug information for C-SPY (for the XLINK linker)

Output>Include debug information in output (for the ILINK linker)

Table 5: Project options for enabling the profiler

When you have built your application and started C-SPY, choose Driver>Function
Profiler to open the Function Profiler window, and click the Enable button to turn on
the profiler. Alternatively, choose Enable from the context menu that is available when
you right-click in the Function Profiler window.

Start executing your application to collect the profiling information.

Profiling information is displayed in the Function Profiler window. To sort, click on the
relevant column header.

When you start a new sampling, you can click the Clear button—alternatively, use the
context menu—to clear the data.

GETTING STARTED USING THE PROFILER ON INSTRUCTION
LEVEL

Todisplay instruction profiling information in the Disassembly window:

When you have built your application and started C-SPY, choose View>Disassembly
to open the Disassembly window, and choose I nstruction Profiling>Enable from the
context menu that is available when you right-click in the left-hand margin of the
Disassembly window.

Make sure that the Show command on the context menu is selected, to display the
profiling information.

Start executing your application to collect the profiling information.

175

Using the profiler

IAR Embedded Workbench®
176 C-SPY® Debugging Guide

4 When the execution stops, for instance because the program exit is reached or a

breakpoint is triggered, you can view instruction level profiling information in the
left-hand margin of the window.

BO&2 SUB
£320 Dly = {Int32Uiarg;
08005F94 EO0S B ??D1ly100us_0
for{wolatile int i = LOOP_DLY 100US: i: i—=1:
PD1lwl00us_1:
08005F96 9900 LLR R1. [SF]
08005F98 1E49 SUES R1. R1. #0=l
08005F94 9100 STR R1. [5SF]
for{volatile int i = LOOF_DLY 100US; i i—};
'Dlyl00us 2.
08005F9C 9900 LLR R1. [SFP]
0800SF9E 2900 CHP R1. #0=0
08005FAD DI1F9 BHE ??D1lyl00us_1
while(Dly——}
?Dlyl00us 0:
08005FA2 0001 HOVS R1. RO
08005FA4 1E48 SUES RO, R1. #0xl _ILI
»

SP. SP. #0=8

For each instruction, the number of times it has been executed is displayed.

Instruction profiling attempts to use the same source as the function profiler. If the
function profiler is not on, the instruction profiler will try to use first trace and then PC
sampling as source. You can change the source to be used from the context menu that is
available in the Function Profiler window.

SELECTING A TIME INTERVAL FOR PROFILING
INFORMATION

Normally, the profiler computes its information from all PC samples it receives,
accumulating more and more information until you explicitly clear the profiling
information. However, you can choose a time interval for which the profiler computes
the PC samples.

To select atimeinterval:
Choose Function Profiler from the C-SPY driver menu.

In the Function Profiler window, right-click and choose Source: Sampling from the
context menu.

Execute your application to collect samples.

Choose View>Timeline.

Profiling °

5 In the Timeline window, click and drag to select a time interval.

6 In the selected time interval, right-click and choose Profile Selection from the context
menu.

The Function Profiler window now displays profiling information for the selected time
interval.

e 7 Click the Full/Time-interval profiling button to toggle the Full profiling view.

Reference information on the profiler

This section gives reference information about these windows and dialog boxes:
e Function Profiler window, page 177
See also:

e Disassembly window, page 52

Function Profiler window

The Function Profiler window is available from the C-SPY driver menu.

=
[o ol@l=]]
Function | calls | FlatTime | Flat Time (%) | Acc. Time | Acc. Time (%) |
main() 1 165 3.57 4356 54.18
FutFib{unsigned int) 10 3174 62.63 3174 68.63
MextCounter() 10 100 2.16 100 2.16
InitFib) 1 231 4.93 487 10.53
GetFih(int) 26 416 8.99 416 8.93
DoForegroundProcess() 10 270 5.84 3704 80.09
<Other> o 269 5.82 4572 98.4a5

This window displays function profiling information.

When Trace(flat) is selected, a checkbox appears on each line in the left-side margin of
the window. Use these checkboxes to include or exclude lines from the profiling.
Excluded lines are dimmed but not removed.

177

Reference information on the profiler

178

Requirements

Toolbar

IAR Embedded Workbench®
C-SPY® Debugging Guide

See SQupported debugger features in the release notes for information about
applicability.

The toolbar contains:

0] Enable/Disable
Enables or disables the profiler.

ﬁl Clear
Clears all profiling data.

(=] Save
Opens a standard Save As dialog box where you can save the contents of the
window to a file, with tab-separated columns. Only non-expanded rows are
sincluded in the list file.

=| Graphical view

= Overlays the values in the percentage columns with a graphical bar.

Progress bar

kA

Displays a backlog of profiling data that is still being processed. If the rate of
incoming data is higher than the rate of the profiler processing the data, a
backlog is accumulated. The progress bar indicates that the profiler is still
processing data, but also approximately how far the profiler has come in the
process. Note that because the profiler consumes data at a certain rate and the
target system supplies data at another rate, the amount of data remaining to be
processed can both increase and decrease. The progress bar can grow and shrink
accordingly.

Time-interval mode

Toggles between profiling a selected time interval or full profiling. This toolbar
button is only available if PC Sampling is supported by the debug probe.

For information about which views that are supported in the C-SPY driver you
are using, see Requirements for using the profiler, page 174.

Satus field

Displays the range of the selected time interval, in other words, the profiled
selection. This field is yellow when Time-interval profiling mode is enabled.
This field is only available if PC Sampling is supported by the debug probe.

For information about which views that are supported in the C-SPY driver you
are using, see Requirements for using the profiler, page 174.

Profiling °

Display area

The content in the display area depends on which source that is used for the profiling
information:

e For the Breakpoints and Trace (calls) sources, the display area contains one line for
each function compiled with debug information enabled. When some profiling
information has been collected, it is possible to expand rows of functions that have
called other functions. The child items for a given function list all the functions that
have been called by the parent function and the corresponding statistics.

o For the Sampling and Trace (flat) sources, the display area contains one line for
each C function of your application, but also lines for sections of code from the
runtime library or from other code without debug information, denoted only by the
corresponding assembler labels. Each executed pc address from trace data is treated
as a separate sample and is associated with the corresponding line in the Profiling
window. Each line contains a count of those samples.

For information about which views that are supported in the C-SPY driver you are using,
see Requirements for using the profiler, page 174.

More specifically, the display area provides information in these columns:

Function (All sources)
The name of the profiled C function.

For Sampling source, also sections of code from the runtime library or from
other code without debug information, denoted only by the corresponding
assembler labels, is displayed.

Calls (Breakpointsand Trace (calls))
The number of times the function has been called.

Flat time (Breakpointsand Trace (calls))

The time spent inside the function. The time depends on the C-SPY driver you
are using and can be expressed as the number of executed instructions or
expressed as the estimated number of cycles

Flat time (%) (Breakpoints and Trace (calls))
Flat time expressed as a percentage of the total time.

Acc. time (Breakpoint and Trace (calls))

The time spent inside the function. The time depends on the C-SPY driver you
are using and can be expressed as the number of executed instructions or
expressed as the estimated number of cycles.

Acc. time (%) (Breakpoints and Trace (calls))

Accumulated time expressed as a percentage of the total time.

179

Reference information on the profiler

Context menu

IAR Embedded Workbench®
180 C-SPY® Debugging Guide

PC Samples (Trace (flat) and Sampling)

The number of PC samples associated with the function.

PC Samples (%) (Trace (flat) and Sampling)

The number of PC samples associated with the function as a percentage of the
total number of samples.

This context menu is available:
v | Enable

Clear
Filtering 3
Source: Trace (calls)
v Source: Trace (flat)
The contents of this menu depend on the C-SPY driver you are using.
These commands are available:

Enable

Enables the profiler. The system will collect information also when the window
is closed.

Clear
Clears all profiling data.

Filtering
Selects which part of your code to profile. Choose between:

Check All—Excludes all lines from the profiling.
Uncheck All—Includes all lines in the profiling.
L oad—Reads all excluded lines from a saved file.

Save—Saves all excluded lines to a file. Typically, this can be useful if you are
a group of engineers and want to share sets of exclusions.

These commands are only available when using one of the modes Trace(flat) or
Sampling.

Source*

Selects which source to be used for the profiling information. Choose between:

Sampling—the instruction count for instruction profiling represents the number
of samples for each instruction.

Profiling °

Trace (calls)—the instruction count for instruction profiling is only as complete
as the collected trace data.

Trace (flat)—the instruction count for instruction profiling is only as complete
as the collected trace data.

* The available sources depend on the C-SPY driver you are using.

181

Reference information on the profiler

IAR Embedded Workbench®
182 C-SPY® Debugging Guide

Code coverage

This chapter describes the code coverage functionality in C-SPY®, which helps
you verify whether all parts of your code have been executed. More
specifically, this means:

e Introduction to code coverage

e Reference information on code coverage.

Introduction to code coverage
This section covers these topics:
o Reasons for using code coverage
e Briefly about code coverage

o Requirements for using code coverage.

REASONS FOR USING CODE COVERAGE

The code coverage functionality is useful when you design your test procedure to verify
whether all parts of the code have been executed. It also helps you identify parts of your
code that are not reachable.

BRIEFLY ABOUT CODE COVERAGE

The Code Coverage window reports the status of the current code coverage analysis. For
every program, module, and function, the analysis shows the percentage of code that has
been executed since code coverage was turned on up to the point where the application
has stopped. In addition, all statements that have not been executed are listed. The
analysis will continue until turned off.

REQUIREMENTS FOR USING CODE COVERAGE
See Supported debugger features in the release notes.

Reference information on code coverage

This section gives reference information about these windows and dialog boxes:

e Code Coverage window, page 184.

183

Reference information on code coverage

See also Single stepping, page 46.

Code Coverage window

IAR Embedded Workbench®
184 C-SPY® Debugging Guide

The Code Coverage window is available from the View menu.

[© sl[c]le & &

=% project] 91.18%
=@ Tutor 100.00%
¢ DoFaregroundProcess 100.00%
¢ NextCounter 100.00%
% main 100.00%
=% Utilities 86.96%
=@ GetFib 66.67%
< 5-13:54 addr((xDE)
4 InitFib 100.00%
=@ PutFib 84.62%
< 5-17:65 addr(IxEB)
< 5-11:66 addr(0xF0)

This window reports the status of the current code coverage analysis. For every program,
module, and function, the analysis shows the percentage of code that has been executed
since code coverage was turned on up to the point where the application has stopped. In
addition, all statements that have not been executed are listed. The analysis will continue
until turned off.

An asterisk (*) in the title bar indicates that C-SPY has continued to execute, and that
the Code Coverage window must be refreshed because the displayed information is no
longer up to date. To update the information, use the Refresh command.

To get started using code cover age:

Before using the code coverage functionality you must build your application using
these options:

Category Setting

C/C++ Compiler Output>Generate debug information

Linker Format>Debug information for C-SPY (for the XLINK linker)
Linker Output>Include debug information in output (for the ILINK linker)
Debugger Plugins>Code Coverage

Table 6: Project options for enabling code coverage

After you have built your application and started C-SPY, choose View>Code
Coverage to open the Code Coverage window.

Code coverage ___4

m 3 Click the Activate button, alternatively choose Activate from the context menu, to
J switch on code coverage.

cl 4 Start the execution. When the execution stops, for instance because the program exit is
reached or a breakpoint is triggered, click the Refresh button to view the code
coverage information.

Requirements

See Supported debugger features in the release notes for information about
applicability.

Display area
The code coverage information is displayed in a tree structure, showing the program,
module, function, and statement levels. The window displays only source code that was
compiled with debug information. Thus, startup code, exit code, and library code is not
displayed in the window. Furthermore, coverage information for statements in inlined
functions is not displayed. Only the statement containing the inlined function call is
marked as executed. The plus sign and minus sign icons allow you to expand and
collapse the structure.

These icons give you an overview of the current status on all levels:

Red diamond Signifies that 0% of the modules or functions has been
executed.

Green diamond Signifies that 100% of the modules or functions has been
executed.

Red and green diamond ~ Signifies that some of the modules or functions have been
executed.

Yellow diamond Signifies a statement that has not been executed.
The percentage displayed at the end of every program, module, and function line shows

the amount of statements that has been covered so far, that is, the number of executed
statements divided with the total number of statements.

For statements that have not been executed (yellow diamond), the information displayed
is the column number range and the row number of the statement in the source window,
followed by the address of the step point:

<column_start>-<column_end>:row address.

A statement is considered to be executed when one of its instructions has been executed.
When a statement has been executed, it is removed from the window and the percentage
is increased correspondingly.

185

Reference information on code coverage

186

Double-clicking a statement or a function in the Code Coverage window displays that
statement or function as the current position in the source window, which becomes the
active window. Double-clicking a module on the program level expands or collapses the
tree structure.

Context menu

This context menu is available:

v Activate
Clear
Refresh
Auko-refresh

Save As...

These commands are available:

0] Activate
Switches code coverage on and off during execution.
Clears the code coverage information. All step points are marked as not
executed.
Refresh

0

Updates the code coverage information and refreshes the window. All step
points that have been executed since the last refresh are removed from the tree.

Auto-refresh

Toggles the automatic reload of code coverage information on and off. When
turned on, the code coverage information is reloaded automatically when
C-SPY stops at a breakpoint, at a step point, and at program exit.

Save As

Saves the current code coverage result in a text file.

©

ﬁ | Save session

Saves your code coverage session data to a * . dat file. This is useful if you for
some reason must abort your debug session, but want to continue the session
later on. This command is available on the toolbar.

ﬁ Restore session

Restores previously saved code coverage session data. This is useful if you for
some reason must abort your debug session, but want to continue the session
later on. This command is available on the toolbar.

IAR Embedded Workbench®
C-SPY® Debugging Guide

Interrupts

This chapter describes how C-SPY® can help you test the logic of your
interrupt service routines and debug the interrupt handling in the target
system. Interrupt logging provides you with comprehensive information about
the interrupt events. More specifically, this chapter gives:

e Introduction to interrupts
e Using the interrupt system

e Reference information on interrupts

Introduction to interrupts

This section introduces you to interrupt logging and to interrupt simulation.
This section covers these topics:

Briefly about interrupt logging

Briefly about the interrupt simulation system
Interrupt characteristics

Interrupt simulation states

C-SPY system macros for interrupt simulation

Target-adapting the interrupt simulation system
See also:
e Reference information on C-SPY system macros, page 223

e Breakpoaints, page 97
o The IARC/C++ Compiler Reference Guide

BRIEFLY ABOUT INTERRUPT LOGGING

Interrupt logging provides you with comprehensive information about the interrupt
events. This might be useful for example, to help you locate which interrupts you can
fine-tune to become faster. You can log entrances and exits to and from interrupts. You
can also log internal interrupt status information, such as triggered, expired, etc. The
logs are displayed in the Interrupt Log window and a summary is available in the
Interrupt Log Summary window. The Interrupt Graph in the Timeline window provides

187

Introduction to interrupts

188

IAR Embedded Workbench®
C-SPY® Debugging Guide

a graphical view of the interrupt events during the execution of your application
program.

Requirements for interrupt logging

Interrupt logging is supported by the C-SPY simulator.

BRIEFLY ABOUT THE INTERRUPT SIMULATION SYSTEM

By simulating interrupts, you can test the logic of your interrupt service routines and

debug the interrupt handling in the target system long before any hardware is available.
If you use simulated interrupts in conjunction with C-SPY macros and breakpoints, you
can compose a complex simulation of, for instance, interrupt-driven peripheral devices.

The C-SPY Simulator includes an interrupt simulation system where you can simulate
the execution of interrupts during debugging. You can configure the interrupt simulation
system so that it resembles your hardware interrupt system.

The interrupt system has the following features:

Simulated interrupt support for your microcontroller
Single-occasion or periodical interrupts based on the cycle counter
Predefined interrupts for various devices

Configuration of hold time, probability, and timing variation

State information for locating timing problems

Configuration of interrupts using a dialog box or a C-SPY system macro—that is,
one interactive and one automating interface. In addition, you can instantly force an
interrupt.

o A log window that continuously displays events for each defined interrupt.
e A status window that shows the current interrupt activities.
All interrupts you define using the Interrupt Setup dialog box are preserved between

debug sessions, unless you remove them. A forced interrupt, on the other hand, exists
only until it has been serviced and is not preserved between sessions.

The interrupt simulation system is activated by default, but if not required, you can turn
off the interrupt simulation system to speed up the simulation. To turn it off, use either
the Interrupt Setup dialog box or a system macro.

Interrupts °

INTERRUPT CHARACTERISTICS

The simulated interrupts consist of a set of characteristics which lets you fine-tune each
interrupt to make it resemble the real interrupt on your target hardware. You can specify
a first activation time, a repeat interval, a hold time, a variance, and a probability.

H H H
Activation | |_‘ |_|—| | | |
signal } I | I I
F‘meI] | | | l |
cycles
B Ton ot wt it
A A+R A+2R A+3R

*If probability is less than 100%, some interrupts may be omitted.

A = Activation time
R = Repeat interval
H =Hold time

Y =Variance

The interrupt simulation system uses the cycle counter as a clock to determine when an
interrupt should be raised in the simulator. You specify the first activation time, which
is based on the cycle counter. C-SPY will generate an interrupt when the cycle counter
has passed the specified activation time. However, interrupts can only be raised between
instructions, which means that a full assembler instruction must have been executed
before the interrupt is generated, regardless of how many cycles an instruction takes.

To define the periodicity of the interrupt generation you can specify the repeat interval
which defines the amount of cycles after which a new interrupt should be generated. In
addition to the repeat interval, the periodicity depends on the two options
probability—the probability, in percent, that the interrupt will actually appear in a
period—and variance—a time variation range as a percentage of the repeat interval.
These options make it possible to randomize the interrupt simulation. You can also
specify a hold time which describes how long the interrupt remains pending until
removed if it has not been processed. If the hold time is set to infinite, the corresponding
pending bit will be set until the interrupt is acknowledged or removed.

INTERRUPT SIMULATION STATES

The interrupt simulation system contains status information that you can use for locating
timing problems in your application. The Interrupt Status window displays the available
status information. For an interrupt, these states can be displayed: |dle, Pending,
Executing, or Suspended.

189

Introduction to interrupts

190

IAR Embedded Workbench®
C-SPY® Debugging Guide

Normally, a repeatable interrupt has a specified repeat interval that is longer than the
execution time. In this case, the status information at different times looks like this:

Hold time
- -
|
Interrupt A 8 : < D! E
activation !
signal : :
e

| .
Execution time for

interrupt handler

T
Fol H
|
| - -
|
I
Time Status
A Idle
B Pending
D Executing
E Idle
F Pending
G, H Executing

Note: The interrupt activation signal—also known as the pending bit—is automatically
deactivated the moment the interrupt is acknowledged by the interrupt handler.

However, if the interrupt repeat interval is shorter than the execution time, and the
interrupt is reentrant (or non-maskable), the status information at different times looks

like this:
Hold time

T I

I 1
Interrupt By C D E F G
activation — | : ! L __
signal | :_

I

Execution time for
interrupt invocation (1)

Execution time for
interrupt invocation (2)

Time Status
A Idle
B Pending
C,DE Executing
kG 1st interrupt: Suspended
2nd interrupt: Executing

Interrupts °

An execution time that is longer than the repeat interval might indicate that you should
rewrite your interrupt handler and make it faster, or that you should specify a longer
repeat interval for the interrupt simulation system.

C-SPY SYSTEM MACROS FOR INTERRUPT SIMULATION

Macros are useful when you already have sorted out the details of the simulated interrupt
so that it fully meets your requirements. If you write a macro function containing
definitions for the simulated interrupts, you can execute the functions automatically
when C-SPY starts. Another advantage is that your simulated interrupt definitions will
be documented if you use macro files, and if you are several engineers involved in the
development project you can share the macro files within the group.

The C-SPY Simulator provides these predefined system macros related to interrupts:
__enablelInterrupts

__disableInterrupts

__orderInterrupt

__cancelInterrupt

__cancelAllInterrupts

__popSimulatorInterruptExecutingStack

The parameters of the first five macros correspond to the equivalent entries of the
I nterrupts dialog box.

For more information about each macro, see Reference information on C-SPY system
macros, page 223.
TARGET-ADAPTING THE INTERRUPT SIMULATION SYSTEM

The interrupt simulation system is easy to use. However, to take full advantage of the
interrupt simulation system you should be familiar with how to adapt it for the processor
you are using.

The interrupt simulation resembles the behavior of the hardware, but only aspects of the
interrupt that are relevant for the simulation are considered.

To simulate device-specific interrupts, the interrupt system must have detailed
information about each available interrupt. This information is provided in the device
description files.

For information about device description files, see Selecting a device description file,
page 31.

191

Using the interrupt system

192

Using the interrupt system

IAR Embedded Workbench®
C-SPY® Debugging Guide

This section describes various tasks related to interrupts.
More specifically, you will get information about:

e Simulating a simple interrupt
o Simulating an interrupt in a multi-task system

o Getting started using interrupt logging.
See also:

e Using C-SPY macros, page 209 for details about how to use a setup file to define
simulated interrupts at C-SPY startup

e The tutorial Smulating an interrupt in the Information Center.

SIMULATING A SIMPLE INTERRUPT

This example demonstrates the method for simulating a timer interrupt. However, the
procedure can also be used for other types of interrupts.

To simulate and debug an interrupt:

Assume this simple application which contains an interrupt service routine for a timer,
which increments a tick variable. The main function sets the necessary status registers.
The application exits when 100 interrupts have been generated.

#pragma language = extended
#include <sdtio.h>

#include "iocpuname.h"
#include <intrinsics.h>

volatile int ticks = 0;
void main (void)
{

/* Add your timer setup code here */

__enable_interrupt() ; /* Enable interrupts */
while (ticks < 100); /* Endless loop */
printf ("Done\n") ;

}

/* Timer interrupt service routine */
#pragma vector = TIMER_VECTOR
__interrupt void basic_timer (void)

{

ticks += 1;

}

Interrupts °

Add your interrupt service routine to your application source code and add the file to
your project.

Choose Project>Options>Debugger >Setup and select a device description file. The
device description file contains information about the interrupt that C-SPY needs to be
able to simulate it. Use the Use device description file browse button to locate the ddf
file.

Build your project and start the simulator.

Choose Simulator>Interrupt Setup to open the I nterrupts Setup dialog box. Select
the Enable interrupt simulation option to enable interrupt simulation. Click New to
open the Edit Interrupt dialog box. For the timer example, verify these settings:

Option Settings
Interrupt TIMER_VECTOR
First activation 4000

Repeat interval 2000

Hold time 10

Probability (%) 100

Variance (%) 0

Table 7: Timer interrupt settings

Click OK.

Execute your application. If you have enabled the interrupt properly in your application
source code, C-SPY will:

o Generate an interrupt when the cycle counter has passed 4000

o Continuously repeat the interrupt after approximately 2000 cycles.

To watch the interrupt in action, choose Simulator >l nterrupt L og to open the
Interrupt Log window.

From the context menu, available in the Interrupt Log window, choose Enable to
enable the logging. If you restart program execution, status information about
entrances and exits to and from interrupts will now appear in the Interrupt Log window.

For information about how to get a graphical representation of the interrupts correlated
with a time axis, see Timeline window, page 159.
SIMULATING AN INTERRUPT IN A MULTI-TASK SYSTEM

If you are using interrupts in such a way that the normal instruction used for returning
from an interrupt handler is not used, for example in an operating system with
task-switching, the simulator cannot automatically detect that the interrupt has finished

193

Reference information on interrupts

executing. The interrupt simulation system will work correctly, but the status
information in the I nterrupt Setup dialog box might not look as you expect. If too
many interrupts are executing simultaneously, a warning might be issued.

To simulate a normal interrupt exit:
Set a code breakpoint on the instruction that returns from the interrupt function.

Specify the __popSimulatorInterruptExecutingStack macro as a condition to
the breakpoint.

When the breakpoint is triggered, the macro is executed and then the application
continues to execute automatically.
GETTING STARTED USING INTERRUPT LOGGING

Choose C-SPY driver>Interrupt Log to open the Interrupt Log window. Optionally,
you can also choose:

e C-SPY driver>Interrupt Log Summary to open the Interrupt Log Summary
window

o C-SPY driver>Timelineto open the Timeline window and view the Interrupt graph.

From the context menu in the Interrupt Log window, choose Enable to enable the
logging.

In the Configuration dialog box, you can see in the Interrupt Log Events area that
interrupt logs are enabled.

Start executing your application program to collect the log information.

To view the interrupt log information, look in any of the Interrupt Log, Interrupt Log
Summary, or the Interrupt graph in the Timeline window.

If you want to save the log or summary to a file, choose Save to log file from the
context menu in the window in question.

To disable interrupt logging, from the context menu in the Interrupt Log window,
toggle Enable off.

Reference information on interrupts

IAR Embedded Workbench®
194 C-SPY® Debugging Guide

This section gives reference information about these windows and dialog boxes:
e Interrupt Setup dialog box, page 195

e Edit Interrupt dialog box, page 197

e Forced Interrupt window, page 198

e Interrupt Satus window, page 199
e Interrupt Log window, page 201

e Interrupt Log Summary window, page 204.

Interrupt Setup dialog box
The Interrupt Setup dialog box is available by choosing Simulator>Interrupt Setup.

Requirements

Interrupt Setup

Enable interrupt simulation

==l

UARTR_VECTOR

Intermupt [}

i

Type
Single

Timing [cycles]
1]

Lo |
Cancel

| Mew. |
Delete

Delete &l

Ok
Mew..

Interrupts °

This dialog box lists all defined interrupts. Use this dialog box to enable or disable the
interrupt simulation system, as well as to enable or disable individual interrupts.

The C-SPY simulator.

Enable interrupt simulation

Display area

Enables or disables interrupt simulation. If the interrupt simulation is disabled, the
definitions remain but no interrupts are generated. Note that you can also enable and
disable installed interrupts individually by using the check box to the left of the interrupt

name in the list of installed interrupts.

This area contains these columns:

Interrupt

Lists all interrupts. Use the checkbox to enable or disable the interrupt.

ID

A unique interrupt identifier.

195

Reference information on interrupts

196

Buttons

IAR Embedded Workbench®
C-SPY® Debugging Guide

Type

Timing

Shows the type of the interrupt. The type can be one of:

Forced, a single-occasion interrupt defined in the Forced Interrupt Window.
Single, a single-occasion interrupt.

Repeat, a periodically occurring interrupt.

If the interrupt has been set from a C-SPY macro, the additional part (macro)
is added, for example: Repeat (macro).

The timing of the interrupt. For a Single and Forced interrupt, the activation
time is displayed. For a Repeat interrupt, the information has the form:
Activation Time + n*Repeat Time. For example, 2000 + n*2345. This
means that the first time this interrupt is triggered, is at 2000 cycles and after that
with an interval of 2345 cycles.

These buttons are available:

New

Edit

Delete

Opens the Edit Interrupt dialog box, see Edit Interrupt dialog box, page 197.

Opens the Edit Interrupt dialog box, see Edit Interrupt dialog box, page 197.

Removes the selected interrupt.

Delete All

Removes all interrupts.

Interrupts °

Edit Interrupt dialog box

Requirements

Interrupt

Description

First activation

Repeat interval

The Edit Interrupt dialog box is available from the Interrupt Setup dialog box.

Edit Interrupt g|
Interrupt:
UARTR_VECTOR v

Drescription:

64 0 0 pPRIOREG.UART rUART.RIE

First activatior:

4000 Hold tirne
R b interyval ®
epeat interval:
2000 o
Wariance [%]: Probability [%]:
a v 100 .

Use this dialog box to interactively fine-tune the interrupt parameters. You can add the
parameters and quickly test that the interrupt is generated according to your needs.

Note: You can only edit or remove non-forced interrupts.

The C-SPY simulator.

Selects the interrupt that you want to edit. The drop-down list contains all available
interrupts. Your selection will automatically update the Description box. The list
ispopulated with entries from the device description file that you have selected.

A description of the selected interrupt, if available. The description is retrieved from the
selected device description file. For interrupts specified using the system macro
__orderInterrupt, the Description box is empty.

Specify the value of the cycle counter after which the specified type of interrupt will be
generated.

Specify the periodicity of the interrupt in cycles.

197

Reference information on interrupts

198

Variance %

Hold time

Probability %

Selects a timing variation range, as a percentage of the repeat interval, in which the
interrupt might occur for a period. For example, if the repeat interval is 100 and the
variance 5%, the interrupt might occur anywhere between T=95 and T=105, to simulate
a variation in the timing.

Specify how long, in cycles, the interrupt remains pending until removed if it has not
been processed. If you select | nfinite, the corresponding pending bit will be set until the
interrupt is acknowledged or removed.

Selects the probability, in percent, that the interrupt will actually occur within the
specified period.

Forced Interrupt window

Requirements

IAR Embedded Workbench®
C-SPY® Debugging Guide

The Forced Interrupt window is available from the C-SPY driver menu.

Forced Interrupt =)
Interrupt Description it
FORT2_VECTOR 0x02 2 P2IE.PO PZIFG.FO E
FORT2_VECTOR 0x02 2 P2IERT PEIFG.F1
FORT2_VECTOR 0x02 2 P2IE.P2 PEIFG.F2
FORT2_VECTOR 0x02 2 P2IE.P3 PEIFG.F3
FORT2_VECTOR 0x02 2 P2IE.P4 PZIFG.F4
FORT2_VECTOR 0x02 2 P2IE.PS PEIFG.FS
FORT2_VECTOR 0x02 2 P2IE.PE PZIFG.FE
FORT2_VECTOR 0x02 2 P2IEF? PEIFG.F? -

Use this window to force an interrupt instantly. This is useful when you want to check
your interrupt logistics and interrupt routines.

The hold time for a forced interrupt is infinite, and the interrupt exists until it has been
serviced or until a reset of the debug session.

Toforcean interrupt:
Enable the interrupt simulation system, see Interrupt Setup dialog box, page 195.

Double-click the interrupt in the Forced Interrupt window, or activate by using the
Force command available on the context menu.

The C-SPY simulator.

Interrupts °

Display area
This area lists all available interrupts and their definitions. This information is retrieved
from the selected device description file. See this file for a detailed description.
Context menu
This context menu is available:
Force
This command is available:

Force

Triggers the interrupt you selected in the display area.

Interrupt Status window

The Interrupt Status window is available from the C-SPY driver menu.

Interrupt Status @
Interrupt D Type Status Mext Time Timing [cycles]
[R1]] 0 Forced Pending -- --
IRQ0 1 Forced Pending -- --

This window shows the status of all the currently active interrupts, in other words
interrupts that are either executing or waiting to be executed.

Requirements
The C-SPY simulator.

Display area
This area contains these columns:
Interrupt
Lists all interrupts.

ID

A unique interrupt identifier.

199

Reference information on interrupts

Type
The type of the interrupt. The type can be one of:
Forced, a single-occasion interrupt defined in the Forced Interrupt window.
Single, a single-occasion interrupt.
Repeat, a periodically occurring interrupt.
If the interrupt has been set from a C-SPY macro, the additional part (macro)
is added, for example: Repeat (macro).
Satus
The state of the interrupt:
Idle, the interrupt activation signal is low (deactivated).
Pending, the interrupt activation signal is active, but the interrupt has not been
yet acknowledged by the interrupt handler.
Executing, the interrupt is currently being serviced, that is the interrupt handler
function is executing.
Suspended, the interrupt is currently suspended due to execution of an interrupt
with a higher priority.
(deleted) is added to Executing and Suspended if you have deleted a currently
active interrupt. (deleted) is removed when the interrupt has finished executing.
Next Time
The next time an idle interrupt is triggered. Once a repeatable interrupt stats
executing, a copy of the interrupt will appear with the state Idle and the next time
set. For interrupts that do not have a next time—that is pending, executing, or
suspended—the column will show --.
Timing

The timing of the interrupt. For a Single and Forced interrupt, the activation
time is displayed. For a Repeat interrupt, the information has the form:
Activation Time + n*Repeat Time. For example, 2000 + n*2345. This
means that the first time this interrupt is triggered, is at 2000 cycles and after that
with an interval of 2345 cycles.

IAR Embedded Workbench®
200 C-SPY® Debugging Guide

Interrupts °

Interrupt Log window

The Interrupt Log window is available from the C-SPY driver menu.

Interrupt Log (=]
Cycles Interrupt Status Program Counter Execufion Cycles
4068 INTPL Triggered 8x181C
4728 INTP1 Enter BxAQ
555@ INTP1 Leave Bx12C4 83e
5998 NMI Triggered 8x1108
5998 NMI Enter Bx1188
6803 INTP2 Triggered BxE98
6841 INTP2 Expired Bx17AE
6578 NMI Leave Bx1188 588
8802 INTP1 Triggered 8x1188
8002 INTP1 Enter Bx1188
8467 NMI Forced Bx1eac
8478 NMI Enter Bx10
9858 NMI Leave Bx14B0 588
9428 INTP1 Leave Bx1188 1418

Light-colored rows indicate Darker rows indicate exits from
entrances to interrupts interrupts

This window logs entrances to and exits from interrupts. The C-SPY simulator also logs
internal state changes.

The information is useful for debugging the interrupt handling in the target system.
When the Interrupt Log window is open, it is updated continuously at runtime.

Note: There is a limit on the number of saved logs. When this limit is exceeded, the
entries in the beginning of the buffer are erased.

For more information, see Getting started using interrupt logging, page 194.

For information about how to get a graphical view of the interrupt events during the
execution of your application, see Timeline window, page 159.

201

Reference information on interrupts

Requirements
See SQupported debugger features in the release notes for information about
applicability.
Display area
This area contains these columns:
Time

The time for the interrupt entrance, based on an internally specified clock
frequency.

This column is available when you have selected Show Time from the context
menu.

Cycles
The number of cycles from the start of the execution until the event.

This column is available when you have selected Show Cyclesfrom the context
menu.

Interrupt

The interrupt as defined in the device description file.

Satus
Shows the event status of the interrupt:

Triggered, the interrupt has passed its activation time.

Forced, the same as Triggered, but the interrupt was forced from the Forced
Interrupt window.

Enter, the interrupt is currently executing.
L eave, the interrupt has been executed.

Expired, the interrupt hold time has expired without the interrupt being
executed.

Rejected, the interrupt has been rejected because the necessary interrupt
registers were not set up to accept the interrupt.

Program Counter
The value of the program counter when the event occurred.

Execution Time/Cycles

The time spent in the interrupt, calculated using the Enter and Leave
timestamps. This includes time spent in any subroutines or other interrupts that
occurred in the specific interrupt.

IAR Embedded Workbench®
202 C-SPY® Debugging Guide

Interrupts °

Interrupt Log window context menu
This context menu is available in the Interrupt Log window and in the Interrupt Log
Summary window:

v | Enable
Clear

Save to Log File...

v | Show Time
Show Cycles

Note: The commands are the same in each window, but they only operate on the specific
window.

These commands are available:

Enable
Enables the logging system. The system will log information also when the
window is closed.

Clear
Deletes the log information. Note that this will happen also when you reset the
debugger.

Saveto log file
Displays a standard file selection dialog box where you can select the
destination file for the log information. The entries in the log file are separated
by TaB and LF. An X in the Approx column indicates that the timestamp is an
approximation.

Show Time
Displays the Time column in the Data Log window and in the Interrupt Log
window, respectively.

Show Cycles

Displays the Cycles column in the Data Log window and in the Interrupt Log
window, respectively.

203

Reference information on interrupts

Interrupt Log Summary window

The Interrupt Log Summary window is available from the C-SPY driver menu.

Interrupt

RTC

Cwverflow count:
Currenttime:

Approximative time count. 1

3350.080us

I Countl First Time J Tatal Time] Fastest] Slowestl tin Interval] e Interval]
5 25.560us 95 400us 16.320us 30.120us 192 640us 1284 100us
4 41 700us 55.200us 13 .800us 13 .800us 27 0e0us 2687 420us

1

Requirements

Display area

IAR Embedded Workbench®

204 C-SPY® Debugging Guide

This window displays a summary of logs of entrances to and exits from interrupts.
For more information, see Getting started using interrupt logging, page 194.

For information about how to get a graphical view of the interrupt events during the
execution of your application, see Timeline window, page 159.

See Supported debugger features in the release notes for information about
applicability.

Each row in this area displays statistics about the specific interrupt based on the log
information in these columns:

Interrupt
The type of interrupt that occurred.

At the bottom of the column, the current time or cycles is displayed—the
number of cycles or the execution time since the start of execution. Overflow
count and approximative time count is always zero.

Count
The number of times the interrupt occurred.

First time

The first time the interrupt was executed.

Total time**
The accumulated time spent in the interrupt.

Fastest**
The fastest execution of a single interrupt of this type.

Interrupts °

Slowest**
The slowest execution of a single interrupt of this type.

Max interval
The longest time between two interrupts of this type.

The interval is specified as the time interval between the entry time for two
consecutive interrupts.

** Calculated in the same way as for the Execution time/cycles in the Interrupt Log

window.

Context menu

Identical to the context menu of the Interrupt Log window, see Interrupt Log window,
page 201.

205

Reference information on interrupts

IAR Embedded Workbench®
206 C-SPY® Debugging Guide

C-SPY macros

C-SPY® includes a comprehensive macro language which allows you to
automate the debugging process and to simulate peripheral devices.

This chapter describes the C-SPY macro language, its features, for what
purpose these features can be used, and how to use them. More specifically,
this means:

e Introduction to C-SPY macros

e Using C-SPY macros

e Reference information on the macro language

e Reference information on reserved setup macro function names

e Reference information on C-SPY system macros

Introduction to C-SPY macros

This section covers these topics:

o Reasons for using C-SPY macros

e Briefly about using C-SPY macros

e Briefly about setup macro functions and files
e Briefly about the macro language

REASONS FOR USING C-SPY MACROS

You can use C-SPY macros either by themselves or in conjunction with complex
breakpoints and interrupt simulation to perform a wide variety of tasks. Some examples
where macros can be useful:

o Automating the debug session, for instance with trace printouts, printing values of
variables, and setting breakpoints.
e Hardware configuring, such as initializing hardware registers.

e Feeding your application with simulated data during runtime.

207

Introduction to C-SPY macros

208

IAR Embedded Workbench®
C-SPY® Debugging Guide

e Simulating peripheral devices, see the chapter Interrupts. This only applies if you
are using the simulator driver.

o Developing small debug utility functions, for instance reading I/O input from a file,
see the file setupsimple.mac located in the directory \ cpuname\tutor\.

BRIEFLY ABOUT USING C-SPY MACROS

To use C-SPY macros, you should:

o Write your macro variables and functions and collect them in one or several macro
files

e Register your macros

e Execute your macros.

For registering and executing macros, there are several methods to choose between.

Which method you choose depends on which level of interaction or automation you
want, and depending on at which stage you want to register or execute your macro.

BRIEFLY ABOUT SETUP MACRO FUNCTIONS AND FILES

There are some reserved Setup macro function names that you can use for defining
macro functions which will be called at specific times, such as:

o Once after communication with the target system has been established but before
downloading the application software

o Once after your application software has been downloaded
o FEach time the reset command is issued

o Once when the debug session ends.

To define a macro function to be called at a specific stage, you should define and register
a macro function with one of the reserved names. For instance, if you want to clear a
specific memory area before you load your application software, the macro setup
function execUserPreload should be used. This function is also suitable if you want
to initialize some CPU registers or memory-mapped peripheral units before you load
your application software.

You should define these functions in a setup macro file, which you can load before
C-SPY starts. Your macro functions will then be automatically registered each time you
start C-SPY. This is convenient if you want to automate the initialization of C-SPY, or
if you want to register multiple setup macros.

For more information about each setup macro function, see Reference information on
reserved setup macro function names, page 220.

C-SPY macros __4

BRIEFLY ABOUT THE MACRO LANGUAGE
The syntax of the macro language is very similar to the C language. There are:

e Macro statements, which are similar to C statements.

e Macro functions, which you can define with or without parameters and return
values.

e Predefined built-in System macros, similar to C library functions, which perform
useful tasks such as opening and closing files, setting breakpoints, and defining
simulated interrupts.

e Macro variables, which can be global or local, and can be used in C-SPY
expressions.

e Macro strings, which you can manipulate using predefined system macros.

For more information about the macro language components, see Referenceinformation
on the macro language, page 215.

Example

Consider this example of a macro function which illustrates the various components of
the macro language:

__var oldval;
CheckLatest (val)

{

if (oldval != val)

{

__message "Message: Changed from ", oldval, " to ", val, "\n";
oldval = val;

}

}

Note: Reserved macro words begin with double underscores to prevent name conflicts.

Using C-SPY macros

This section describes various tasks related to registering and executing C-SPY macros.
More specifically, you will get information about:

Registering C-SPY macros—an overview
Executing C-SPY macros—an overview
Using the Macro Configuration dialog box

Registering and executing using setup macros and setup files

Executing macros using Quick Watch

209

Using C-SPY macros

210

IAR Embedded Workbench®
C-SPY® Debugging Guide

e Executing a macro by connecting it to a breakpoint
For more examples using C-SPY macros, see:

o The tutorial about simulating an interrupt, which you can find in the Information
Center

e |Initializing target hardware before C-SPY starts, page 35.

REGISTERING C-SPY MACROS—AN OVERVIEW

C-SPY must know that you intend to use your defined macro functions, and thus you
must register your macros. There are various ways to register macro functions:

e You can register macros interactively in the Macro Configuration dialog box, see
Using the Macro Configuration dialog box, page 211.

® You can register macro functions during the C-SPY startup sequence, see
Registering and executing using setup macros and setup files, page 212.

® You can register a file containing macro function definitions, using the system
macro __registerMacroFile. This means that you can dynamically select which
macro files to register, depending on the runtime conditions. Using the system
macro also lets you register multiple files at the same moment. For information
about the system macro, see __registerMacroFile, page 237.

Which method you choose depends on which level of interaction or automation you
want, and depending on at which stage you want to register your macro.

EXECUTING C-SPY MACROS—AN OVERVIEW
There are various ways to execute macro functions:

e You can execute macro functions during the C-SPY startup sequence and at other
predefined stages during the debug session by defining setup macro functions in a
setup macro file, see Registering and executing using setup macros and setup files,
page 212.

o The Quick Watch window lets you evaluate expressions, and can thus be used for
executing macro functions. For an example, see Executing macros using Quick
Watch, page 213.

o The Macro Quicklaunch window is similar to the Quick Watch window, but is more
specified on designed for C-SPY macros. See Macro Quicklaunch window, page 83.

o A macro can be connected to a breakpoint; when the breakpoint is triggered the
macro is executed. For an example, see Executing a macro by connecting it to a
breakpoint, page 213.

Which method you choose depends on which level of interaction or automation you
want, and depending on at which stage you want to execute your macro.

C-SPY macros __4

USING THE MACRO CONFIGURATION DIALOG BOX

The Macro Configuration dialog box is available by choosing Debug>M acr os.

Look in: Ia tutaor j - I‘j‘ v

1 Debug
[settings

Setupadvanced. mac

SetupSimple. mac

File name: ISetupSimpIe.mac j
Files of type: IMacro Filez [*.mac] j
Selected Macro Files: Add |

C:hprojectshtutorS etupSimple. mac Add Al |
Remove |
Remave Al |

— Registered Macro .
Regist |
(o] User € System e

Parameters | File

_canceldlinterrupts] - Spstem Macro -
__cancellnterupt int] - Spstem Macro -
_clearBreak [id) - Spstem Macro -
__clozeFile [file] - Spstem Macro - — ol
- ose |
__dizablelnterrupts Il - Spstem Macro -
__driverType [ztring] - Spstem Macro - LI Help |

Use this dialog box to list, register, and edit your macro files and functions. The dialog
box offers you an interactive interface for registering your macro functions which is
convenient when you develop macro functions and continuously want to load and test
them.

Macro functions that have been registered using the dialog box are deactivated when you
exit the debug session, and will not automatically be registered at the next debug session.

Toregister amacrofile:

Select the macro files you want to register in the file selection list, and click Add or
Add All to add them to the Selected Macro Files list. Conversely, you can remove files
from the Selected Macro Files list using Remove or Remove All.

Click Register to register the macro functions, replacing any previously defined macro
functions or variables. Registered macro functions are displayed in the scroll list under
Registered Macros.

211

Using C-SPY macros

212

IAR Embedded Workbench®
C-SPY® Debugging Guide

Note: System macros cannot be removed from the list, they are always registered.

To list macro functions:

Select All to display all macro functions, select User to display all user-defined macros,
or select System to display all system macros.

Click either Name or File under Registered Macros to display the column contents
sorted by macro names or by file. Clicking a second time sorts the contents in the
reverse order.

To modify a macrofile:

Double-click a user-defined macro function in the Name column to open the file where
the function is defined, allowing you to modify it.

REGISTERING AND EXECUTING USING SETUP MACROS AND
SETUP FILES

It can be convenient to register a macro file during the C-SPY startup sequence. To do
this, specify a macro file which you load before starting the debug session. Your macro
functions will be automatically registered each time you start the debugger.

If you use the reserved setup macro function names to define the macro functions, you
can define exactly at which stage you want the macro function to be executed.

To define a setup macro function and load it during C-SPY startup:
Create a new text file where you can define your macro function.
For example:

execUserSetup ()

{

_ _registerMacroFile("MyMacroUtils.mac") ;
_ _registerMacroFile("MyDeviceSimulation.mac") ;
}

This macro function registers the additional macro files MyMacroUtils.mac and
MyDeviceSimulation.mac. Because the macro function is defined with the function
name execUserSetup, it will be executed directly after your application has been
downloaded.

Save the file using the filename extension mac.

Before you start C-SPY, choose Project>Options>Debugger >Setup. Select Use
Setup file and choose the macro file you just created.

The macros will now be registered during the C-SPY startup sequence.

C-SPY macros __4

EXECUTING MACROS USING QUICK WATCH

The Quick Watch window lets you dynamically choose when to execute a macro
function.

Consider this simple macro function that checks the status of a timer enable bit:

TimerStatus ()
{
if ((TimerStatreg & 0x01) != 0)/* Checks the status of reg */
return "Timer enabled"; /* C-SPY macro string used */
else
return "Timer disabled"; /* C-SPY macro string used */

}
Save the macro function using the filename extension mac.

To register the macro file, choose Debug>M acros. The Macro Configuration dialog
box appears.

Locate the file, click Add and then Register. The macro function appears in the list of
registered macros.

Choose View>Quick Watch to open the Quick Watch window, type the macro call
TimerStatus () in the text field and press Return,

Alternatively, in the macro file editor window, select the macro function name
TimerStatus (). Right-click, and choose Quick Watch from the context menu that
appears.

Quick Watch =]
@ Tirners tatus() -
Expression Yalue Location Type
TimerStatus() 'Timer disabled® macro string

The macro will automatically be displayed in the Quick Watch window.
For more information, see Quick Watch window, page 81.
EXECUTING A MACRO BY CONNECTINGITTO A
BREAKPOINT

You can connect a macro to a breakpoint. The macro will then be executed when the
breakpoint is triggered. The advantage is that you can stop the execution at locations of
particular interest and perform specific actions there.

213

Using C-SPY macros

214

IAR Embedded Workbench®
C-SPY® Debugging Guide

For instance, you can easily produce log reports containing information such as how the
values of variables, symbols, or registers change. To do this you might set a breakpoint
on a suspicious location and connect a log macro to the breakpoint. After the execution
you can study how the values of the registers have changed.

To create alog macro and connect it to a breakpoint:
Assume this skeleton of a C function in your application source code:

int fact(int x)
{

}
Create a simple log macro function like this example:

logfact ()
{
__message "fact(" ,x, ")";

}
The __message statement will log messages to the Log window.
Save the macro function in a macro file, with the filename extension mac.

To register the macro, choose Debug>M acr os to open the Macro Configuration
dialog box and add your macro file to the list Selected Macro Files. Click Register
and your macro function will appear in the list Registered Macros. Close the dialog
box.

To set a code breakpoint, click the Toggle Breakpoint button on the first statement
within the function fact in your application source code. Choose View>Breakpoints
to open the Breakpoints window. Select your breakpoint in the list of breakpoints and
choose the Edit command from the context menu.

To connect the log macro function to the breakpoint, type the name of the macro
function, logfact (), in the Action field and click Apply. Close the dialog box.

Execute your application source code. When the breakpoint is triggered, the macro
function will be executed. You can see the result in the Log window.

e Note that the expression in the Action field is evaluated only when the breakpoint
causes the execution to really stop. If you want to log a value and then automatically
continue execution, you can either:

Use a Log breakpoint, see Log breakpoints dialog box, page 111

e Use the Condition field instead of the Action field. For an example, see Performing
atask and continuing execution, page 105.

C-SPY macros __4

7 You can easily enhance the log macro function by, for instance, using the __fmessage
statement instead, which will print the log information to a file. For information about
the __fmessage statement, see Formatted output, page 218.

For an example where a serial port input buffer is simulated using the method of
connecting a macro to a breakpoint, see the tutorial Smulating an interrupt in the
Information Center.

Reference information on the macro language
This section gives reference information on the macro language:
Macro functions, page 215
Macro variables, page 215
Macro strings, page 216
Macro statements, page 217

Formatted output, page 218.

MACRO FUNCTIONS

C-SPY macro functions consist of C-SPY variable definitions and macro statements
which are executed when the macro is called. An unlimited number of parameters can
be passed to a macro function, and macro functions can return a value on exit.

A C-SPY macro has this form:

macroName (parameterList)
{
macroBody

}

where parameterList is a list of macro parameters separated by commas, and
macroBody is any series of C-SPY variable definitions and C-SPY statements.

Type checking is neither performed on the values passed to the macro functions nor on
the return value.
MACRO VARIABLES

A macro variable is a variable defined and allocated outside your application. It can then
be used in a C-SPY expression, or you can assign application data—rvalues of the
variables in your application—to it. For more information about C-SPY expressions, see
Expressions, page 217.

215

Reference information on the macro language

216

IAR Embedded Workbench®
C-SPY® Debugging Guide

The syntax for defining one or more macro variables is:
__var nameList;
where nameList is a list of C-SPY variable names separated by commas.

A macro variable defined outside a macro body has global scope, and it exists
throughout the whole debugging session. A macro variable defined within a macro body
is created when its definition is executed and destroyed on return from the macro.

By default, macro variables are treated as signed integers and initialized to 0. When a
C-SPY variable is assigned a value in an expression, it also acquires the type of that
expression. For example:

Expression What it means
myvar = 3.5; myvar is now type float, value 3.5.
myvar = (int*)i; myvar is now type pointer to int, and the value is the same as i.

Table 8: Examples of C-SPY macro variables

In case of a name conflict between a C symbol and a C-SPY macro variable, C-SPY
macro variables have a higher precedence than C variables. Note that macro variables
are allocated on the debugger host and do not affect your application.

MACRO STRINGS

In addition to C types, macro variables can hold values of macro strings. Note that
macro strings differ from C language strings.

When you write a string literal, such as "Hello! ", in a C-SPY expression, the value is
a macro string. It is not a C-style character pointer char*, because char* must point to
a sequence of characters in target memory and C-SPY cannot expect any string literal to
actually exist in target memory.

You can manipulate a macro string using a few built-in macro functions, for example
__strFindor __subString. The result can be a new macro string. You can
concatenate macro strings using the + operator, for example str + "tail". You can
also access individual characters using subscription, for example Str [3]. You can get the
length of a string using sizeof (str). Note that a macro string is not
NULL-terminated.

The macro function __toString is used for converting from a NULL-terminated C
string in your application (char* or char []) to a macro string. For example, assume
this definition of a C string in your application:

char const *cstr = "Hello";

C-SPY macros __4

Then examine these macro examples:

__var str; /* A macro variable */

str = cstr /* str is now just a pointer to char */

sizeof str /* same as sizeof (char*), typically 2 or 4 */
str = __toString(cstr,512) /* str is now a macro string */
sizeof str /* 5, the length of the string */

str[l] /* 101, the ASCII code for 'e' */

str += " World!" /* str is now "Hello World!" */

See also Formatted output, page 218.

MACRO STATEMENTS

Statements are expected to behave in the same way as the corresponding C statements
would do. The following C-SPY macro statements are accepted:

Expressions
expression;

For more information about C-SPY expressions, see Expressions, page 217.

Conditional statements

if (expression)
statement

if (expression)
statement
else
statement

Loop statements

for (init_expression; cond_expression; update_expression)
statement

while (expression)
statement

do

statement
while (expression);

217

Reference information on the macro language

Return statements
return;

return expression;

If the return value is not explicitly set, signed int 0 is returned by default.

Blocks

Statements can be grouped in blocks.

{
statementl
statement2

statementN

FORMATTED OUTPUT

C-SPY provides various methods for producing formatted output:

__message argList; Prints the output to the Debug Log window.
__fmessage file, argList; Prints the output to the designated file.

__smessage argList; Returns a string containing the formatted output.

where argList is a comma-separated list of C-SPY expressions or strings, and fileis
the result of the __openFile system macro, see __openFile, page 231.

To produce messages in the Debug Log window:

varl = 42;
var2 = 37;
__message "This line prints the values ", varl, " and ", var2,

" in the Log window.";

This produces this message in the Log window:

This line prints the values 42 and 37 in the Log window.
To write the output to a designated file:

__fmessage myfile, "Result is ", res, "!\n";

To produce strings:

myMacroVar = __smessage 42, " is the answer.";

IAR Embedded Workbench®
218 C-SPY® Debugging Guide

C-SPY macros __4

myMacroVar now contains the string "42 is the answer.".

Specifying display format of arguments

To override the default display format of a scalar argument (number or pointer) in
argList, suffix it with a : followed by a format specifier. Available specifiers are:

%b for binary scalar arguments

%0 for octal scalar arguments

%d for decimal scalar arguments

$x for hexadecimal scalar arguments

o0
Q

for character scalar arguments
These match the formats available in the Watch and Locals windows, but number
prefixes and quotes around strings and characters are not printed. Another example:

__message "The character '", cvar:%c, "' has the decimal value
", cvar;

Depending on the value of the variables, this produces this message:
The character 'A' has the decimal value 65

Note: A character enclosed in single quotes (a character literal) is an integer constant
and is not automatically formatted as a character. For example:

__message 'A', " is the numeric value of the character ",
'A':%C;
would produce:

65 is the numeric value of the character A

Note: The default format for certain types is primarily designed to be useful in the
Watch window and other related windows. For example, a value of type char is
formatted as 'A' (0x41), while a pointer to a character (potentially a C string) is
formatted as 0x8102 "Hello", where the string part shows the beginning of the string
(currently up to 60 characters).

When printing a value of type char*, use the $x format specifier to print just the pointer
value in hexadecimal notation, or use the system macro __toString to get the full
string value.

219

Reference information on reserved setup macro function names

Reference information on reserved setup macro function names

execUserPreload

Syntax
Applicability

Description

There are reserved setup macro function names that you can use for defining your setup
macro functions. By using these reserved names, your function will be executed at
defined stages during execution. For more information, see Briefly about setup macro
functions and files, page 208.

This section gives detailed reference information for all reserved setup macro function
names.

execUserPreload
Available for all C-SPY drivers.

Called after communication with the target system is established but before
downloading the target application.

Implement this macro to initialize memory locations and/or registers which are vital for
loading data properly.

execUserExecutionStarted

Syntax

Applicability

Description

execUserExecutionStarted

See Supported debugger features in the release notes for information about
applicability.

Called when the debugger is about to start or resume execution. The macro is not called
when performing a one-instruction assembler step, in other words, Step or Step Into in
the Disassembly window.

execUserExecutionStopped

Syntax

Applicability

IAR Embedded Workbench®
220 C-SPY® Debugging Guide

execUserExecutionStopped

See SQupported debugger features in the release notes for information about
applicability.

C-SPY macros __4

Description Called when the debugger has stopped execution. The macro is not called when
performing a one-instruction assembler step, in other words, Step or Step Into in the
Disassembly window.

execUserFlashlnit

Syntax execUserFlashInit

Applicability See Supported debugger features in the release notes for information about
applicability.

Description Called once before the flash loader is downloaded to RAM. Implement this macro
typically for setting up the memory map required by the flash loader. This macro is only
called when you are programming flash, and it should only be used for flash loader
functionality.

execUserSetup

Syntax execUserSetup

Applicability All C-SPY drivers.

Description Called once after the target application is downloaded.

Implement this macro to set up the memory map, breakpoints, interrupts, register macro
files, etc.

If you define interrupts or breakpoints in a macro file that is executed at system start

& (using execUserSetup) we strongly recommend that you also make sure that they are
removed at system shutdown (using execUserExit). An example is available in
SetupSimple.mac, see the tutorials in the Information Center.

The reason for this is that the simulator saves interrupt settings between sessions and if
they are not removed they will get duplicated every time execUserSetup is executed
again. This seriously affects the execution speed.

execUserFlashReset
Syntax execUserFlashReset
Applicability See Supported debugger features in the release notes for information about

applicability.

221

Reference information on reserved setup macro function names

Description

execUserPreReset

Syntax
Applicability

Description

execUserReset

Syntax
Applicability

Description

execUserExit

Syntax
Applicability

Description

execUserFlashExit

Syntax

Applicability

Description

IAR Embedded Workbench®
222 C-SPY® Debugging Guide

Called once after the flash loader is downloaded to RAM, but before execution of the
flash loader. This macro is only called when you are programming flash, and it should

only be used for flash loader functionality.

execUserPreReset

All C-SPY drivers.

Called each time just before the reset command is issued.

Implement this macro to set up any required device state.

execUserReset
All C-SPY drivers.

Called each time just after the reset command is issued.

Implement this macro to set up and restore data.

execUserExit
All C-SPY drivers.

Called once when the debug session ends.

Implement this macro to save status data etc.

execUserFlashExit

See SQupported debugger features in the release notes for information about

applicability.

Called once when the debug session ends.

C-SPY macros __4

Implement this macro to save status data etc. This macro is useful for flash loader

functionality.

Reference information on C-SPY system macros

This section gives reference information about each of the C-SPY system macros.

This table summarizes the pre-defined system macros:

Macro

Description

__cancelAllInterrupts
__cancelInterrupt
__clearBreak
__closeFile

__delay
__disablelInterrupts
__driverType

__enableInterrupts

__evaluate

__1isBatchMode
_loadImage

__memoryRestore

_ _memorySave

__openFile
__orderInterrupt

__popSimulatorInterruptExecu
tingStack

__readFile
__readFileByte

__readMemorys8,
__readMemoryByte

__readMemoryl6

Cancels all ordered interrupts

Cancels an interrupt

Clears a breakpoint

Closes a file that was opened by __openFile
Delays execution

Disables generation of interrupts

Verifies the driver type

Enables generation of interrupts

Interprets the input string as an expression and
evaluates it.

Checks if C-SPY is running in batch mode or not.
Loads an image.

Restores the contents of a file to a specified
memory zone

Saves the contents of a specified memory area to a
file

Opens a file for I/O operations
Generates an interrupt

Informs the interrupt simulation system that an
interrupt handler has finished executing

Reads from the specified file
Reads one byte from the specified file

Reads one byte from the specified memory location

Reads two bytes from the specified memory
location

Table 9: Summary of system macros

223

Reference information on C-SPY system macros

Macro Description

__readMemory32 Reads four bytes from the specified memory
location

__registerMacroFile Registers macros from the specified file

__resetFile Rewinds a file opened by __openFile

__setCodeBreak Sets a code breakpoint

__setDataBreak Sets a data breakpoint

__setDataLogBreak Sets a data log breakpoint

__setLogBreak Sets a log breakpoint

__setSimBreak Sets a simulation breakpoint

__setTraceStartBreak Sets a trace start breakpoint

__setTraceStopBreak Sets a trace stop breakpoint

__sourcePosition Returns the file name and source location if the

current execution location corresponds to a source
location

__strFind Searches a given string for the occurrence of
another string

__subString Extracts a substring from another string
__targetDebuggerVersion Returns the version of the target debugger
__toLower Returns a copy of the parameter string where all the

characters have been converted to lower case
__toString Prints strings

__toUpper Returns a copy of the parameter string where all the
characters have been converted to upper case

__unloadImage Unloads a debug image.

__writeFile Writes to the specified file

__writeFileByte Writes one byte to the specified file

__writeMemorys8, Writes one byte to the specified memory location

_ _writeMemoryByte

__writeMemoryl6 Writes a two-byte word to the specified memory
location

__writeMemory32 Writes a four-byte word to the specified memory
location

Table 9: Summary of system macros (Continued)

IAR Embedded Workbench®
224 C-SPY® Debugging Guide

__cancelAlllnterrupts

Syntax
Return value
Applicability

Description

__cancellnterrupt

Syntax

Parameters

Return value

Applicability

Description

___clearBreak

Syntax

Parameters

Return value
Applicability

Description

__cancelAllInterrupts()
int 0
The C-SPY Simulator.

Cancels all ordered interrupts.

__cancellInterrupt (interrupt_id)

interrupt_id

C-SPY macros __4

The value returned by the corresponding __orderInterrupt macro call

(unsigned long).

Result Value
Successful int 0
Unsuccessful Non-zero error number

Table 10: __cancelInterrupt return values
The C-SPY Simulator.

Cancels the specified interrupt.

__clearBreak (break_id)

break_id

The value returned by any of the set breakpoint macros.

int 0
All C-SPY drivers.

Clears a user-defined breakpoint.

225

Reference information on C-SPY system macros

See also Breakpoints, page 97.
__closeFile

Syntax __closeFile(fileHandle)

Parameters fileHandle

A macro variable used as filehandle by the __openFile macro.

Return value int 0

Applicability All C-SPY drivers.

Description Closes a file previously opened by __openFile.
__delay

Syntax __delay(value)

Parameters value

The number of milliseconds to delay execution.

Return value int 0

Applicability All C-SPY drivers.

Description Delays execution the specified number of milliseconds.
__disablelnterrupts

Syntax __disableInterrupts()

Return value

Result Value
Successful int 0
Unsuccessful Non-zero error number

Table 11: __disablelnterrupts return values

Applicability The C-SPY Simulator.

IAR Embedded Workbench®
226 C-SPY® Debugging Guide

C-SPY macros __4

Description Disables the generation of interrupts.
__driverType

Syntax __driverType (driver_id)

Parameters driver_id

A string corresponding to the driver you want to check for. Choose one of these:
"sim" corresponds to the simulator driver.
"string" corresponds to the C-SPY driver. See Supported debugger features

in the release notes for information about possible strings.

Return value

Result Value
Successful 1
Unsuccessful 0

Table 12: __ driverType return values
Applicability All C-SPY drivers

Description Checks to see if the current C-SPY driver is identical to the driver type of the
driver_1id parameter.

Example __driverType("sim")

If the simulator is the current driver, the value 1 is returned. Otherwise 0 is returned.

__enablelnterrupts

Syntax __enableInterrupts()

Return value

Result Value
Successful int 0
Unsuccessful Non-zero error number

Table 13: __enablelnterrupts return values
Applicability The C-SPY Simulator.

Description Enables the generation of interrupts.

227

Reference information on C-SPY system macros

__evaluate

Syntax

Parameters

Return value

Applicability

Description

Example

__isBatchMode

Syntax

Return value

Applicability

Description

IAR Embedded Workbench®
228 C-SPY® Debugging Guide

__evaluate(string, valuePtr)
string
Expression string.

valuePtr

Pointer to a macro variable storing the result.

Result Value
Successful int 0
Unsuccessful int 1

Table 14: __evaluate return values
All C-SPY drivers.

This macro interprets the input string as an expression and evaluates it. The result is
stored in a variable pointed to by valuePtr.

This example assumes that the variable i is defined and has the value 5:
__evaluate("i + 3", &myVar)

The macro variable myVar is assigned the value 8.

__isBatchMode ()

Result Value
True int 1
False int 0

Table 15: __isBatchMode return values

All C-SPY drivers.

This macro returns True if the debugger is running in batch mode, otherwise it returns
False.

C-SPY macros __4

__loadlmage
Syntax __loadImage(path, offset, debugInfoOnly)
Parameters path

A string that identifies the path to the image to download. The path must either
be absolute or use argument variables. For information about argument
variables, see the |DE Project Management and Building Guide.

offset
An integer that identifies the offset to the destination address for the downloaded
image.

debugInfoOnly

A non-zero integer value if no code or data should be downloaded to the target
system, which means that C-SPY will only read the debug information from the
debug file. Or, 0 (zero) for download.

Return value
Value Result

Non-zero integer number A unique module identification.

int 0 Loading failed.

Table 16: __loadlmage return values

Applicability All C-SPY drivers.

Description Loads an image (debug file).
Note: Flash loading will not be performed; using the | mages options you can only
download images to RAM.

Example | Your system consists of a ROM library and an application. The application is your active

project, but you have a debug file corresponding to the library. In this case you can add
this macro call in the execUserSetup macro in a C-SPY macro file, which you
associate with your project:

__loadImage (ROMfile, 0x8000, 1);

This macro call loads the debug information for the ROM library RoM£i 1e without
downloading its contents (because it is presumably already in ROM). Then you can
debug your application together with the library.

Example 2 Your system consists of a ROM library and an application, but your main concern is the

library. The library needs to be programmed into flash memory before a debug session.
While you are developing the library, the library project must be the active project in the

229

Reference information on C-SPY system macros

See also

__memoryRestore

Syntax

Parameters

Return value
Applicability
Description

Example

See also

__memorySave

Syntax

Parameters

IAR Embedded Workbench®
230 C-SPY® Debugging Guide

IDE. In this case you can add this macro call in the execUserSetup macro in a C-SPY
macro file, which you associate with your project:

__loadImage (ApplicationFile, 0x8000, 0);

The macro call loads the debug information for the application and downloads its
contents (presumably into RAM). Then you can debug your library together with the
application.

Images, page 264 and Loading multiple images, page 33.

_memoryRestore (zone, filename)

zone

A string that specifies the memory zone, see C-SPY memory zones, page 120.

filename

A string that specifies the file to be read. The filename must include a path,
which must either be absolute or use argument variables. For information about
argument variables, see the |DE Project Management and Building Guide.

int 0

All C-SPY drivers.

Reads the contents of a file and saves it to the specified memory zone.

__memoryRestore ("Memory", "c:\\temp\\saved_memory.hex") ;

Memory Restore dialog box, page 129.

__memorySave (start, stop, format, filename)

start

A string that specifies the first location of the memory area to be saved.

stop

A string that specifies the last location of the memory area to be saved.

C-SPY macros __4

format

A string that specifies the format to be used for the saved memory. Choose
between:

intel-extended
motorola
motorola-sl19
motorola-s28
motorola-s37.

filename
A string that specifies the file to write to. The filename must include a path,
which must either be absolute or use argument variables. For information about
argument variables, see the |DE Project Management and Building Guide.

Return value int 0

Applicability All C-SPY drivers.

Description Saves the contents of a specified memory area to a file.

Example _ _memorySave ("Memory:0x00", "Memory:0xFF", "intel-extended",

"c:\\temp\\saved_memory.hex") ;

See also Memory Save dialog box, page 128.
__openFile

Syntax __openFile(filename, access)

Parameters filename

The file to be opened. The filename must include a path, which must either be
absolute or use argument variables. For information about argument variables,
see the |DE Project Management and Building Guide.

access

The access type (string).
These are mandatory but mutually exclusive:
"a" append, new data will be appended at the end of the open file

"y read

231

Reference information on C-SPY system macros

"w" write

These are optional and mutually exclusive:
"b" binary, opens the file in binary mode
"t ASCII text, opens the file in text mode
This access type is optional:

"4+ together with r, w, or a; r+ or w+ is read and write, while a+ is read and

append
Return value
Result Value
Successful The file handle
Unsuccessful An invalid file handle, which tests as False

Table 17: __openFilereturn values
Applicability All C-SPY drivers.

Description Opens a file for I/O operations. The default base directory of this macro is where the
currently open project file (* . ewp) is located. The argument to __openFile can
specify a location relative to this directory. In addition, you can use argument variables
such as $PROJ_DIRS and $TOOLKIT_DIRS in the path argument.

Exmnpk __var myFileHandle; /* The macro variable to contain */
/* the file handle */
myFileHandle = __openFile("$SPROJ_DIRS\\Debug\\Exe\\test.tst",
npny

if (myFileHandle)
{

/* successful opening */

See also For information about argument variables, see the |DE Project Management and
Building Guide.
__orderinterrupt
Syntax __orderInterrupt (specification, first_activation,

repeat_interval, variance, infinite_hold time,
hold_time, probability)

IAR Embedded Workbench®
232 C-SPY® Debugging Guide

C-SPY macros __4

Parameters specification

The interrupt (string). The specification can either be the full specification used
in the device description file (dd£) or only the name. In the latter case the
interrupt system will automatically get the description from the device
description file.

first_activation

The first activation time in cycles (integer)

repeat_interval

The periodicity in cycles (integer)

variance

The timing variation range in percent (integer between 0 and 100)

infinite_hold_time

1 if infinite, otherwise 0.

hold_time
The hold time (integer)

probability
The probability in percent (integer between 0 and 100)
Return value The macro returns an interrupt identifier (unsigned long).

If the syntax of specification is incorrect, it returns -1.

Applicability The C-SPY Simulator.
Description Generates an interrupt.
Example This example shows how you can use this macro to generate an interrupt:

__orderInterrupt ("USARTR_VECTOR", 4000, 2000, 0, 1, 0O, 100);

__popSimulatorinterruptExecutingStack

Syntax __popSimulatorInterruptExecutingStack (void)
Return value int 0
Applicability The C-SPY Simulator.

233

Reference information on C-SPY system macros

Description

See also

__readFile

Syntax

Parameters

Return value

Applicability

Description

Example

IAR Embedded Workbench®
234 C-SPY® Debugging Guide

Informs the interrupt simulation system that an interrupt handler has finished executing,
as if the normal instruction used for returning from an interrupt handler was executed.

This is useful if you are using interrupts in such a way that the normal instruction for
returning from an interrupt handler is not used, for example in an operating system with
task-switching. In this case, the interrupt simulation system cannot automatically detect

that the interrupt has finished executing.

Smulating an interrupt in a multi-task system, page 193.

__readFile(fileHandle, valuePtr)

fileHandle

A macro variable used as filehandle by the __openFile macro.

valuePtr

A pointer to a variable.

Result Value
Successful 0
Unsuccessful Non-zero error number

Table 18: __readFilereturn values

All C-SPY drivers.

Reads a sequence of hexadecimal digits from the given file and converts them to an
unsigned long which is assigned to the value parameter, which should be a pointer

to a macro variable.

__var number;
if (__readFile(myFileHandle, &number)
{

// Do something with number

0)

__readFileByte

Syntax

Parameters

Return value
Applicability
Description

Example

C-SPY macros __4

__readFileByte(fileHandle)

fileHandle
A macro variable used as filehandle by the __openFile macro.

-1 upon error or end-of-file, otherwise a value between 0 and 255.
All C-SPY drivers.

Reads one byte from a file.

__var byte;

while ((byte = __readFileByte(myFileHandle)) != -1)
{

/* Do something with byte */
}

__readMemory8, __readMemoryByte

Syntax

Parameters

Return value
Applicability
Description

Example

__readMemory8 (address, zone)
__readMemoryByte (address, zone)

address

The memory address (integer).

zone

A string that specifies the memory zone, see C-SPY memory zones, page 120.
The macro returns the value from memory.
All C-SPY drivers.
Reads one byte from a given memory location.

__readMemory8(0x0108, "Memory") ;

235

Reference information on C-SPY system macros

__readMemoryl é

Syntax __readMemoryl6 (address, zone)

Parameters address
The memory address (integer).

zone
A string that specifies the memory zone, see C-SPY memory zones, page 120.
Return value The macro returns the value from memory.
Applicability All C-SPY drivers.
Description Reads a two-byte word from a given memory location.
Example __readMemoryl6 (0x0108, "Memory");
__readMemory32
Syntax __readMemory32 (address, zone)
Parameters address
The memory address (integer).
zone
A string that specifies the memory zone, see C-SPY memory zones, page 120.
Return value The macro returns the value from memory.
Applicability All C-SPY drivers.
Description Reads a four-byte word from a given memory location.
Example __readMemory32 (0x0108, "Memory");

IAR Embedded Workbench®
236 C-SPY® Debugging Guide

C-SPY macros __4

__registerMacroFile

Syntax __registerMacroFile (filename)

Parameters filename
A file containing the macros to be registered (string). The filename must include
a path, which must either be absolute or use argument variables. For information
about argument variables, see the | DE Project Management and Building
Guide.

Return value int 0

Applicability All C-SPY drivers.

Description Registers macros from a setup macro file. With this function you can register multiple

macro files during C-SPY startup.
Example __registerMacroFile("c:\\testdir\\macro.mac") ;
See also Using C-SPY macros, page 209.
__resetFile

Syntax __resetFile(fileHandle)

Parameters fileHandle
A macro variable used as filehandle by the __openFile macro.

Return value int 0

Applicability All C-SPY drivers.

Description Rewinds a file previously opened by __openFile.

237

Reference information on C-SPY system macros

__setCodeBreak
Syntax __setCodeBreak(location, count, condition, cond_type, action)
Parameters location

A string that defines the code location of the breakpoint, either a valid C-SPY
expression whose value evaluates to a valid address, an absolute location, or a
source location. For more information about the location types, see Enter
Location dialog box, page 116.

count
The number of times that a breakpoint condition must be fulfilled before a break
occurs (integer).

condition

The breakpoint condition (string).

cond_type
The condition type; either "CHANGED" or "TRUE" (string).

action

An expression, typically a call to a macro, which is evaluated when the
breakpoint is detected.

Return value
Result Value

Successful An unsigned integer uniquely identifying the breakpoint. This value
must be used to clear the breakpoint.

Unsuccessful 0

Table 19: __setCodeBreak return values

Applicability See SQupported debugger features in the release notes for information about
applicability.
Description Sets a code breakpoint, that is, a breakpoint which is triggered just before the processor

fetches an instruction at the specified location.

Examples __setCodeBreak ("{D:\\src\\prog.c}.12.9", 3, "d>16", "TRUE",
"ActionCode()");

This example sets a code breakpoint on the label main in your source:

__setCodeBreak("main", 0, "1", "TRUE", "");

See also Breakpoints, page 97.

IAR Embedded Workbench®
238 C-SPY® Debugging Guide

C-SPY macros __4

__setDataBreak
Syntax __setDataBreak(location, count, condition, cond_type, access,
action)
Parameters location

A string that defines the data location of the breakpoint, either a valid C-SPY
expression whose value evaluates to a valid address or an absolute location. For
more information about the location types, see Enter Location dialog box, page
116.

count
The number of times that a breakpoint condition must be fulfilled before a break
occurs (integer).

condition

The breakpoint condition (string).
cond_type
The condition type; either "CHANGED" or "TRUE" (string).

access

The memory access type: "R", for read, "w" for write, or "Rw" for read/write.

action

An expression, typically a call to a macro, which is evaluated when the
breakpoint is detected.

Return value
Result Value

Successful An unsigned integer uniquely identifying the breakpoint. This value
must be used to clear the breakpoint.

Unsuccessful 0

Table 20: __setDataBreak return values

Applicability See Supported debugger features in the release notes for information about
applicability.
Description Sets a data breakpoint, that is, a breakpoint which is triggered directly after the processor

has read or written data at the specified location.

239

Reference information on C-SPY system macros

240

Example

See also

__setDatalogBreak

Syntax

Parameters

Return value

Applicability

Description

Example

See also

IAR Embedded Workbench®
C-SPY® Debugging Guide

__var brk;
brk = __setDataBreak ("Memory:0x4710", 3, "d>6", "TRUE",
"W", "ActionData()");

__clearBreak (brk) ;

Breakpoints, page 97.

__setDataLogBreak (location, access)

location

A string that defines the data location of the breakpoint, either a valid C-SPY
expression whose value evaluates to a valid address or an absolute location. For
more information about the location types, see Enter Location dialog box, page
116.

access

The memory access type: "R", for read, "w" for write, or "Rw" for read/write.

Result Value

Successful An unsigned integer uniquely identifying the breakpoint. This value
must be used to clear the breakpoint.

Unsuccessful 0

Table 21: __ setDatal ogBreak return values

See Supported debugger features in the release notes for information about
applicability.

Sets a data log breakpoint, that is, a breakpoint which is triggered when the processor
reads or writes data at the specified location. Note that a data log breakpoint does not
stop the execution it just generates a data log.

var brk;

brk = __setDataLogBreak ("Memory:0x4710", "R");

__clearBreak (brk) ;

Breakpoints, page 97 and Getting started using data logging, page 68.

__setLogBreak

Syntax

Parameters

Return value

Applicability

Description

C-SPY macros __4

__setLogBreak (location, message, msg_type, condition,
cond_type)

location

A string that defines the code location of the breakpoint, either a valid C-SPY
expression whose value evaluates to a valid address, an absolute location, or a
source location. For more information about the location types, see Enter
Location dialog box, page 116.

message

The message text.

msg_type
The message type; choose between:

TEXT, the message is written word for word.

ARGS, the message is interpreted as a comma-separated list of C-SPY
expressions or strings.

condition

The breakpoint condition (string).

cond_type
The condition type; either "CHANGED" or "TRUE" (string).

Result Value

Successful An unsigned integer uniquely identifying the breakpoint. The same
value must be used when you want to clear the breakpoint.

Unsuccessful 0

Table 22: __ setlLogBreak return values

See Supported debugger features in the release notes for information about
applicability.

Sets a log breakpoint, that is, a breakpoint which is triggered when an instruction is
fetched from the specified location. If you have set the breakpoint on a specific machine
instruction, the breakpoint will be triggered and the execution will temporarily halt and
print the specified message in the C-SPY Debug Log window.

241

Reference information on C-SPY system macros

242

Example

See also

__setSimBreak

Syntax

Parameters

IAR Embedded Workbench®
C-SPY® Debugging Guide

__var logBpl;
__var logBp2;
logOn ()
{
logBpl = __setLogBreak ("{C:\\temp\\Utilities.c}.23.1",
"\"Entering trace zone at :\", #PC:%X", "ARGS", "1", "TRUE");
logBp2 = __setLogBreak ("{C:\\temp\\Utilities.c}.30.1",
"Leaving trace zone...", "TEXT", "1", "TRUE");
}
logOff ()

{
__clearBreak(logBpl) ;
__clearBreak (logBp2) ;

Formatted output, page 218 and Breakpoints, page 97.

__setSimBreak(location, access, action)

location

A string that defines the data location of the breakpoint, either a valid C-SPY
expression whose value evaluates to a valid address or an absolute location. For
more information about the location types, see Enter Location dialog box, page
116.

count

The number of times that a breakpoint condition must be fulfilled before a break
occurs (integer).

condition

The breakpoint condition (string).

cond_type
The condition type; either "CHANGED" or "TRUE" (string).

action

An expression, typically a call to a macro, which is evaluated when the
breakpoint is detected.

C-SPY macros __4

Return value
Result Value

Successful An unsigned integer uniquely identifying the breakpoint. This value
must be used to clear the breakpoint.

Unsuccessful 0

Table 23: __ setSmBreak return values
Applicability The C-SPY Simulator

Description Use this system macro to set immediate breakpoints, which will halt instruction
execution only temporarily. This allows a C-SPY macro function to be called when the
processor is about to read data from a location or immediately after it has written data.
Instruction execution will resume after the action.

This type of breakpoint is useful for simulating memory-mapped devices of various
kinds (for instance serial ports and timers). When the processor reads at a
memory-mapped location, a C-SPY macro function can intervene and supply the
appropriate data. Conversely, when the processor writes to a memory-mapped location,
a C-SPY macro function can act on the value that was written.

__setTraceStartBreak

Syntax __setTraceStartBreak(location)

Parameters location
A string that defines the code location of the breakpoint, either a valid C-SPY
expression whose value evaluates to a valid address, an absolute location, or a
source location. For more information about the location types, see Enter
Location dialog box, page 116.

count

The number of times that a breakpoint condition must be fulfilled before a break
occurs (integer)

condition
The breakpoint condition (string)
cond_type
The condition type; either "CHANGED" or "TRUE" (string)

action

An expression, typically a call to a macro, which is evaluated when the
breakpoint is detected

243

Reference information on C-SPY system macros

244

Return value

Applicability
Description

Example

See also

__setTraceStopBreak

Syntax

Parameters

IAR Embedded Workbench®
C-SPY® Debugging Guide

Result Value

Successful An unsigned integer uniquely identifying the breakpoint. The same
value must be used when you want to clear the breakpoint.

Unsuccessful 0

Table 24: __ setTraceSartBreak return values

See SQupported debugger features in the release notes for information about
applicability.

Sets a breakpoint at the specified location. When that breakpoint is triggered, the trace
system is started.

__var startTraceBp;
__var stopTraceBp;

traceOn()
{
startTraceBp = __setTraceStartBreak
("{C:\\TEMP\\Utilities.c}.23.1");
stopTraceBp = __setTraceStopBreak

("{C:\\temp\\Utilities.c}.30.1");

traceOff ()

{
__clearBreak (startTraceBp) ;
__clearBreak (stopTraceBp) ;

Breakpoints, page 97.

__setTraceStopBreak (location)

location
A string that defines the code location of the breakpoint, either a valid C-SPY
expression whose value evaluates to a valid address, an absolute location, or a
source location. For more information about the location types, see Enter
Location dialog box, page 116.

C-SPY macros __4

count

The number of times that a breakpoint condition must be fulfilled before a break
occurs (integer)

condition

The breakpoint condition (string)
cond_type
The condition type; either "CHANGED" or "TRUE" (string)

action

An expression, typically a call to a macro, which is evaluated when the
breakpoint is detected

Return value
Result Value

Successful An unsigned integer uniquely identifying the breakpoint. The same
value must be used when you want to clear the breakpoint.

Unsuccessful int 0

Table 25: __ setTraceStopBreak return values

Applicability See Supported debugger features in the release notes for information about
applicability.
Description Sets a breakpoint at the specified location. When that breakpoint is triggered, the trace

system is stopped.

Example See __ setTraceSartBreak, page 243.

See also Breakpoints, page 97.
__sourcePosition

Syntax __sourcePosition(linePtr, colPtr)

Parameters linePtr

Pointer to the variable storing the line number

colPtr
Pointer to the variable storing the column number

245

Reference information on C-SPY system macros

Return value

Applicability

Description

__strFind

Syntax

Parameters

Return value
Applicability

Description

Example

See also

IAR Embedded Workbench®
246 C-SPY® Debugging Guide

Result Value
Successful Filename string
Unsuccessful Empty (" ") string

Table 26: __sourcePosition return values
All C-SPY drivers.

If the current execution location corresponds to a source location, this macro returns the
filename as a string. It also sets the value of the variables, pointed to by the parameters,
to the line and column numbers of the source location.

_strFind(macroString, pattern, position)

macroString

A macro string.

pattern

The string pattern to search for

position

The position where to start the search. The first position is 0
The position where the pattern was found or -1 if the string is not found.
All C-SPY drivers.

This macro searches a given string (macrostring) for the occurrence of another string
(pattern).

__strFind("Compiler", "pile", 0) = 3
__strFind("Compiler", "foo", 0) = -1

Macro strings, page 216.

__subString

Syntax

Parameters

Return value
Applicability
Description

Example

See also

C-SPY macros __4

__subString(macroString, position, length)
macroString
A macro string.

position

The start position of the substring. The first position is 0.

length
The length of the substring

A substring extracted from the given macro string.
All C-SPY drivers.
This macro extracts a substring from another string (macroString).

__subString("Compiler", 0, 2)
The resulting macro string contains Co.
__subString("Compiler", 3, 4)

The resulting macro string contains pile.

Macro strings, page 216.

__targetDebuggerVersion

Syntax
Return value
Applicability
Description

Example

_ _targetDebuggerVersion

A string that represents the version number of the C-SPY debugger processor module.
All C-SPY drivers.

This macro returns the version number of the C-SPY debugger processor module.

__var toolVer;
toolVer = __targetDebuggerVersion() ;
__message "The target debugger version is, ", toolVer;

247

Reference information on C-SPY system macros

__tolLower
Syntax __toLower (macroString)
Parameters macroString

A macro string.

Return value The converted macro string.

Applicability All C-SPY drivers.

Description This macro returns a copy of the parameter macroString where all the characters have
been converted to lower case.

Example __toLower ("IAR")
The resulting macro string contains iar.
__toLower ("Mix42")
The resulting macro string contains mix42.

See also Macro strings, page 216.

__toString
Syntax __toString(C_string, maxlength)
Parameters C_string

Any null-terminated C string.
maxlength

The maximum length of the returned macro string.

Return value Macro string.

Applicability All C-SPY drivers.
Description This macro is used for converting C strings (char* or char []) into macro strings.
Example Assuming your application contains this definition:

IAR Embedded Workbench®
C-SPY® Debugging Guide

char const * hptr = "Hello World!";

C-SPY macros __4

this macro call:
__toString (hptr, 5)

would return the macro string containing Hello.

See also Macro strings, page 216.
__toUpper

Syntax __toUpper (macroString)

Parameters macroString

A macro string.

Return value The converted string.
Applicability All C-SPY drivers.
Description This macro returns a copy of the parameter macroString where all the characters have

been converted to upper case.

Example __toUpper ("string")

The resulting macro string contains STRING.

See also Macro strings, page 216.
__unloadlmage

Syntax __unloadImage (module_id)

Parameters module_id

An integer which represents a unique module identification, which is retrieved
as a return value from the corresponding __loadImage C-SPY macro.

Return value

Value Result

module_id A unique module identification (the same as the input
parameter).

int 0 The unloading failed.

Table 27: __unloadlimage return values

249

Reference information on C-SPY system macros

Applicability All C-SPY drivers.

Description Unloads debug information from an already downloaded image.

See also Loading multiple images, page 33 and Images, page 264.
__writeFile

Syntax __writeFile(fileHandle, value)

Parameters fileHandle

A macro variable used as filehandle by the __openFile macro.

value
An integer.
Return value int 0
Applicability All C-SPY drivers.
Description Prints the integer value in hexadecimal format (with a trailing space) to the file file.

Note: The __fmessage statement can do the same thing. The __writeFile macro is
provided for symmetry with __readFile.

__writeFileByte
Syntax __writeFileByte(fileHandle, value)
Parameters fileHandle
A macro variable used as filehandle by the __openFile macro.
value
An integer.
Return value int 0
Applicability All C-SPY drivers.
Description Writes one byte to the file £ileHandle.

IAR Embedded Workbench®
250 C-SPY® Debugging Guide

C-SPY macros __4

__writeMemory8, __writeMemoryByte

Syntax __writeMemory8 (value, address, zone)
__writeMemoryByte(value, address, zone)

Parameters value
An integer.

address

The memory address (integer).

zone
A string that specifies the memory zone, see C-SPY memory zones, page 120.
Return value int 0
Applicability All C-SPY drivers.
Description Writes one byte to a given memory location.
Example __writeMemory8 (0x2F, 0x8020, "Memory");
__writeMemoryl 6
Syntax __writeMemorylé6 (value, address, zone)
Parameters value
An integer.
address
The memory address (integer).
zone
A string that specifies the memory zone, see C-SPY memory zones, page 120.
Return value int 0
Applicability All C-SPY drivers.
Description Writes two bytes to a given memory location.
Example __writeMemoryl6 (0x2FFF, 0x8020, "Memory");

251

Reference information on C-SPY system macros

__writeMemory32
Syntax __writeMemory32 (value, address, zomne)
Parameters value
An integer.
address
The memory address (integer).
zone
A string that specifies the memory zone, see C-SPY memory zones, page 120.
Return value int 0
Applicability All C-SPY drivers.
Description Writes four bytes to a given memory location.
Example __writeMemory32 (0x5555FFFF, 0x8020, "Memory");

IAR Embedded Workbench®
252 C-SPY® Debugging Guide

The C-SPY Command
Line Utility—cspybat

This chapter describes how you can execute C-SPY® in batch mode, using the
C-SPY Command Line Utility—cspybat.exe. More specifically, this means:

e Using C-SPY in batch mode
e Summary of C-SPY command line options

e Reference information on C-SPY command line options.

Using C-SPY in batch mode

You can execute C-SPY in batch mode if you use the command line utility cspybat,
installed in the directory common\bin.

STARTING CSPYBAT

To start cspybat you must first create a batch file. An easy way to do that is to use the
batch file that C-SPY automatically creates when you start C-SPY in the IDE. C-SPY
generates a batch file projectname.cspy.bat every time C-SPY is initialized. You
can find the file in the directory $PROJ_DIR$\settings. This batch file contains the
same settings as the IDE, and you can use it from the command line to start cspybat.
The file gives hints about additional options that you can use.

OUTPUT
When you run cspybat, these types of output can be produced:

o Terminal output from cspybat itself

All such terminal output is directed to stderr. Note that if you run cspybat from
the command line without any arguments, the cspybat version number and all
available options including brief descriptions are directed to stdout and displayed
on your screen.

o Terminal output from the application you are debugging

All such terminal output is directed to stdout, provided that you have used the
--plugin option. See --plugin, page 259.

253

Summary of C-SPY command line options

o Error return codes

cspybat returns status information to the host operating system that can be tested in
a batch file. For successful, the value int 0 is returned, and for unsuccessful the value
int 1 is returned.

INVOCATION SYNTAX

The invocation syntax for cspybat is:

cspybat processor_ DLL driver DLL debug file [cspybat_options]
--backend driver_options

Note: In those cases where a filename is required—including the DLL files—you are
recommended to give a full path to the filename.
Parameters

The parameters are:

Parameter Description

processor_DLL The processor-specific DLL file; available in cpuname\bin.
driver_ DLL The C-SPY driver DLL file; available in cpuname\bin.
debug_file The object file that you want to debug (filename extension dxx).

cspybat_options The command line options that you want to pass to cspybat. Note
that these options are optional. For information about each option,
see Reference information on C-SPY command line options, page 255.

--backend Marks the beginning of the parameters to the C-SPY driver; all
options that follow will be sent to the driver. Note that this option is
mandatory.

driver_options The command line options that you want to pass to the C-SPY driver.
Note that some of these options are mandatory and some are
optional. For information about each option, see Reference information
on C-SPY command line options, page 255.

Table 28: cspybat parameters

Summary of C-SPY command line options
This section gives an overview of each cspybat option and each generic option
available to the C-SPY drivers. For information about driver-specific options, see
Supported debugger featuresin the release notes.

IAR Embedded Workbench®
254 C-SPY® Debugging Guide

The C-SPY Command Line Utility—cspybat ___4

GENERAL CSPYBAT OPTIONS

--backend Marks the beginning of the parameters to be sent to the
C-SPY driver (mandatory).

--code_coverage_file Enables the generation of code coverage information and
places it in a specified file.

--cycles Specifies the maximum number of cycles to run.

--download_only Downloads a code image without starting a debug session
afterwards.

--flash_loader Specifies a flash loader specification XML file.

--macro Specifies a macro file to be used.

--plugin Specifies a plugin file to be used.

--silent Onmits the sign-on message.

--timeout Limits the maximum allowed execution time.

OPTIONS AVAILABLE FOR ALL C-SPY DRIVERS

-B Enables batch mode (mandatory).

-p Specifies the device description file to be used.

OPTIONS AVAILABLE FOR THE SIMULATOR DRIVER

--disable_interrupts Disables the interrupt simulation.

--mapu Activates memory access checking.

Reference information on C-SPY command line options

This section gives detailed reference information about each cspybat option and each
option available to the C-SPY drivers.

Syntax -B

255

Reference information on C-SPY command line options

Applicability All C-SPY drivers.

Description Use this option to enable batch mode.

This option is not available in the IDE.

--backend
Syntax --backend {driver options}
Parameters driver options
Any option available to the C-SPY driver you are using.
Applicability Sent to cspybat (mandatory).
Description Use this option to send options to the C-SPY driver. All options that follow --backend

will be passed to the C-SPY driver, and will not be processed by cspybat itself.

This option is not available in the IDE.

--code_coverage_file

Syntax --code_coverage_file file

Parameters file
The name of the destination file for the code coverage information.

Applicability Sent to cspybat.

Description Use this option to enable the generation of code coverage information. The code
coverage information will be generated after the execution has completed and you can
find it in the specified file.

Note that this option requires that the C-SPY driver you are using supports code
coverage. If you try to use this option with a C-SPY driver that does not support code
coverage, an error message will be directed to stderr.

See also Code coverage, page 183.

To set this option, choose View>Code Cover age, and click Activate and Save Session
when the C-SPY debugger is running.

IAR Embedded Workbench®
256 C-SPY® Debugging Guide

The C-SPY Command Line Utility—cspybat ___4

--cycles
Syntax --cycles cycles
Parameters cycles
The number of cycles to run.
Applicability Sent to cspybat.
Description Use this option to specify the maximum number of cycles to run. If the target program

executes longer than the number of cycles specified, the target program will be aborted.
Using this option requires that the C-SPY driver you are using supports a cycle counter,
and that it can be sampled while executing.

This option is not available in the IDE.

--disable_interrupts

Syntax --disable_interrupts
Applicability The C-SPY Simulator driver.
Description Use this option to disable the interrupt simulation.

To set this option, choose Simulator>Interrupt Setup and deselect the Enable
interrupt simulation option.

--download_only

Syntax --download_only
Applicability Sent to cspybat.
Description Use this option to download the code image without starting a debug session afterwards.

To set related option, choose:

Proj ect>Options>Debugger >Setup and deselect Run to.

--flash_loader

Syntax --flash_loader filename

257

Reference information on C-SPY command line options

Parameters

Applicability

Description

See also

=-=macro

Syntax

Parameters

Applicability

Description

See also

--mapu
Syntax
Applicability

Description

IAR Embedded Workbench®
258 C-SPY® Debugging Guide

filename

The flash loader specification XML file, with the filename extension board.
Sent to cspybat.

Use this option to specify a flash loader specification xml file which contains all relevant
information about the flash loading. There can be more than one such argument, in
which case each argument will be processed in the specified order, resulting in several
flash programming passes.

The |AR Embedded Workbench flash loader User Guide.
To set related options, choose:

Proj ect>Options>Debugger >Download>Use flash loader (s)

--macro filename

filename

The C-SPY macro file to be used (filename extension mac).
Sent to cspybat.

Use this option to specify a C-SPY macro file to be loaded before executing the target
application. This option can be used more than once on the command line.

Briefly about using C-SPY macros, page 208.

Proj ect>Options>Debugger >Setup>Setup macros>Use macro file

--mapu
The C-SPY simulator driver.

Specify this option to use the segment information in the debug file for memory access
checking. During the execution, the simulator will then check for accesses to
unspecified memory ranges. If any such access is found, the C function call stack and a
message will be printed on stderr and the execution will stop.

The C-SPY Command Line Utility—cspybat ___4

See also Memory access checking, page 121.

To set related options, choose:

Simulator>Memory Access Setup

-p

Syntax -p filename

Parameters filename

The device description file to be used.

Applicability All C-SPY drivers.

Description Use this option to specify the device description file to be used.

See also Selecting a device description file, page 31.

Pr oj ect>Options>Debugger >Setup>Device description file

--plugin

Syntax --plugin filename

Parameters filename

The plugin file to be used (filename extension d11).
Applicability Sent to cspybat.

Description Certain C/C++ standard library functions, for example print£, can be supported by
C-SPY—for example, the C-SPY Terminal I/O window—instead of by real hardware
devices. To enable such support in cspybat, a dedicated plugin module called
cpunamebat .dl11l located in the cpuname\bin directory must be used.

Use this option to include this plugin during the debug session. This option can be used
more than once on the command line.

Note: You can use this option to include also other plugin modules, but in that case the
module must be able to work with cspybat specifically. This means that the C-SPY
plugin modules located in the common\plugin directory cannot normally be used with
cspybat.

259

Reference information on C-SPY command line options

Proj ect>Options>Debugger >Plugins

--silent
Syntax --silent
Applicability Sent to cspybat.
Description Use this option to omit the sign-on message.
This option is not available in the IDE.
--timeout
Syntax --timeout milliseconds
Parameters milliseconds
The number of milliseconds before the execution stops.
Applicability Sent to cspybat.
Description Use this option to limit the maximum allowed execution time.

This option is not available in the IDE.

IAR Embedded Workbench®
260 C-SPY® Debugging Guide

Debugger options

This chapter describes the C-SPY® options available in the IAR Embedded
Workbench® IDE. More specifically, this means:

e Setting debugger options

o Reference information on debugger options

Setting debugger options

Before you start the C-SPY debugger you might need to set some options—both C-SPY
generic options and options required for the target system (C-SPY driver-specific
options). This section gives detailed information about the options in the Debugger
category.

To set debugger optionsin theIDE:
I Choose Project>Optionsto display the Options dialog box.
2 Select Debugger in the Category list.

For more information about the generic options, see Referenceinformation on debugger
options, page 262.

3 On the Setup page, make sure to select the appropriate C-SPY driver from the Driver
drop-down list.

4 To set the driver-specific options, select the appropriate driver from the Category list.
Depending on which C-SPY driver you are using, different options are available.

To restore all settings to the default factory settings, click the Factory Settings button.

6 When you have set all the required options, click OK in the Options dialog box.

261

Reference information on debugger options

262

Reference information on debugger options

This section gives reference information on C-SPY debugger options.

Setup

The Setup options select the C-SPY driver, the setup macro file, and device description
file to use, and specify which default source code location to run to.

Setup |
Driver———————————— ¥ Funto
I Simulator j Imain
— Setup macro

™ Use macra file
| L

— Device description file

™ Overide default

| L

Driver

Selects the C-SPY driver for the target system you have.

Run to

Specifies the location C-SPY runs to when the debugger starts after a reset. By default,
C-SPY runs to the main function.

To override the default location, specify the name of a different location you want
C-SPY to run to. You can specify assembler labels or whatever can be evaluated as such,
for example function names.

Setup macros

Registers the contents of a setup macro file in the C-SPY startup sequence. Select Use
macro file and specify the path and name of the setup file, for example
SetupSimple.mac. If no extension is specified, the extension mac is assumed. A
browse button is available for your convenience.

Device description file

A default device description file is selected automatically based on your project settings.
To override the default file, select Override default and specify an alternative file. A
browse button is available for your convenience.

IAR Embedded Workbench®
C-SPY® Debugging Guide

Debugger options °

For information about the device description file, see Modifying a device description
file, page 35.

Download

By default, C-SPY downloads the application to RAM or flash when a debug session
starts. The Download options let you modify the behavior of the download. Note that
these options might not be available in the IAR Embedded Workbench version you are
using. Also, in the version you are using, there might be additional options on this page.
Download
[~ Attach to program
[~ Werfy download
™ Suppress download
V' Use flash lnader(s)
[T Overide default board file
I$TDDLKIT_DIF|$\config\flashloader\8T\FIashSTM3 _l

Exdit.... |

Attach to running target

Makes the debugger attach to a running application at its current location, without
resetting the target system. To avoid unexpected behavior when using this option, the
Debugger >Setup option Run to should be deselected.

Verify download

Verifies that the downloaded code image can be read back from target memory with the
correct contents.

Suppress download

Disables the downloading of code, while preserving the present content of the flash.
This command is useful if you want to debug an application that already resides in target
memory.

If this option is combined with the Verify download option, the debugger will read back
the code image from non-volatile memory and verify that it is identical to the debugged
application.

263

Reference information on debugger options

Use flash loader(s)

Use this option to use one or several flash loaders for downloading your application to
flash memory. If a flash loader is available for the selected chip, it is used by default.
Press the Edit button to display the Flash Loader Overview dialog box.

For more information about flash loaders, see Flash loaders, page 273.

Override default .board file

A default flash loader is selected based on your choice of device on the General
Optios>Tar get page. To override the default flash loader, select Override default
.board file and specify the path to the flash loader you want to use. A browse button is
available for your convenience. Click Edit to display the Flash L oader Overview
dialog box. For more information, see Flash Loader Overview dialog box, page 275.

Images

The Images options control the use of additional debug files to be downloaded.

Images

[Download extra image

=

i

[Download extra image

:

[Download extra image

:

Note: Flash loading will not be performed; using the | mages options you can only
download images to RAM.

Download extra Images

Controls the use of additional debug files to be downloaded:

Path
Specify the debug file to be downloaded. A browse button is available for your
convenience.

Offset
Specity an integer that determines the destination address for the downloaded
debug file.

IAR Embedded Workbench®
264 C-SPY® Debugging Guide

Plugins

Debug info only

Debugger options °

Makes the debugger download only debug information, and not the complete

debug file.

If you want to download more than three images, use the related C-SPY macro, see

__loadimage, page 229.

For more information, see Loading multiple images, page 33.

The Plugins options select the C-SPY plugin modules to be loaded and made available

during debug sessions.

Flugins

Select pluging to load:

Code Coverage

Description: |[Enables code coverage in the debugger.

Lacatian: |\common\plugins\EodeEoverage\EodeEoverage.dII

Originator: |IAF| Systems
Wersior: |4.B.D.D

Select plugins to load

Selects the plugin modules to be loaded and made available during debug sessions. The
list contains the plugin modules delivered with the product installation.

Describes the plugin module.

Informs about the location of the plugin module.

Generic plugin modules are stored in the common\plugins directory. Target-specific

plugin modules are stored in the cpuname\plugins directory.

Informs about the originator of the plugin module, which can be modules provided by

IAR Systems or by third-party vendors.

265

Reference information on debugger options

Version

Informs about the version number.

Extra Options

The Extra Options page provides you with a command line interface to C-SPY.

r

(Cammatdlife:

Use command line options

Specity additional command line arguments to be passed to C-SPY (not supported by
the GUI).

IAR Embedded Workbench®
266 C-SPY® Debugging Guide

Additional information on
C-SPY drivers

This chapter describes the additional menus and features provided by the

C-SPY® drivers. You will also find some useful hints about resolving problems.

Reference information on the C-SPY simulator

Simulator menu

This section gives additional reference information the C-SPY simulator, reference
information not provided elsewhere in this documentation.

More specifically, this means:

e Smulator menu, page 267

When you use the simulator driver, the Simulator menu is added to the menu bar.

Memory Access Setup...

Trace

Function Trace
Function Profiler

Data Log

Data Leg Summary
Interrupt Log

Interrupt Log Summary

Timeline

Interrupt Setup...
Forced Interrupt

Interrupt Status

Breakpoint Usage

267

Reference information on the C-SPY simulator

268

Menu commands

IAR Embedded Workbench®
C-SPY® Debugging Guide

These commands are available on the menu:

Memory Access Setup
Displays a dialog box to simulate memory access checking by specifying
memory areas with different access types, see Memory Access Setup dial og box,
page 149.

Trace
Opens a window which displays the collected trace data, see Trace window,
page 157.

Function Trace
Opens a window which displays the trace data for function calls and function
returns, see Function Trace window, page 159.

Function Profiler
Opens a window which shows timing information for the functions, see
Function Profiler window, page 177.

Data L og
Opens a window which logs accesses to up to four different memory locations
or areas, see Data Log window, page 87.

Data Log Summary
Opens a window which displays a summary of data accesses to specific memory
location or areas, see Data Log Summary window, page 89.

Interrupt Log
Opens a window which displays the status of all defined interrupts, see Interrupt
Log window, page 201.

Interrupt Log Summary
Opens a window which displays a summary of the status of all defined
interrupts, see Interrupt Log Summary window, page 204.

Timeline
Opens a window which gives a graphical view of various kinds of information
on a timeline, see Timeline window, page 159.

Interrupt Setup

Displays a dialog box where you can configure C-SPY interrupt simulation, see
Interrupt Setup dialog box, page 195.

Additional information on C-SPY drivers __4

Forced Interrupts
Opens a window from where you can instantly trigger an interrupt, see Forced
Interrupt window, page 198.

Interrupt Status
Opens a window from where you can instantly trigger an interrupt, see I nterrupt
Satus window, page 199.

Breakpoint Usage

Displays a window which lists all active breakpoints, see Breakpoint Usage
window, page 108.

Resolving problems

Debugging using the C-SPY hardware debugger systems requires interaction between
many systems, independent from each other. For this reason, setting up this debug
system can be a complex task. If something goes wrong, it might be difficult to locate
the cause of the problem.

This section includes suggestions for resolving the most common problems that can
occur when debugging with the C-SPY hardware debugger systems.

For problems concerning the operation of the evaluation board, refer to the
documentation supplied with it, or contact your hardware distributor.
WRITE FAILURE DURING LOAD

There are several possible reasons for write failure during load. The most common is
that your application has been incorrectly linked:

o Check the contents of your linker configuration file and make sure that your
application has not been linked to the wrong address

o Check that you are using the correct linker configuration file.

In the IDE, the linker configuration file is automatically selected based on your choice
of device.

To choose a device:
I Choose Project>Options.

Select the General Options category.
Click the Target tab.

H W N

Choose the appropriate device from the Device drop-down list.

269

Resolving problems

270

IAR Embedded Workbench®
C-SPY® Debugging Guide

H W N

To override the default linker configuration file:

Choose Project>Options.

Select the Linker category.

Click the Config tab.

Choose the appropriate linker configuration file in the Linker configuration file area.

SLOW STEPPING SPEED

If you find that the stepping speed is slow, these troubleshooting tips might speed up
stepping:

If you are using a hardware debugger system, keep track of how many hardware
breakpoints that are used and make sure some of them are left for stepping.

Stepping in C-SPY is normally performed using breakpoints. When C-SPY performs
a step command, a breakpoint is set on the next statement and the application
executes until it reaches this breakpoint. If you are using a hardware debugger
system, the number of hardware breakpoints—typically used for setting a stepping
breakpoint in code that is located in flash/ROM memory—is limited. If you, for
example, step into a C switch statement, breakpoints are set on each branch; this
might consume several hardware breakpoints. If the number of available hardware
breakpoints is exceeded, C-SPY switches into single stepping on assembly level,
which can be very slow.

For more information, see and Breakpoint consumers, page 100.

Disable trace data collection, using the Enable/Disablebutton in both the Trace and
the Function Profiling windows. Trace data collection might slow down stepping
because the collected trace data is processed after each step. Note that it is not
sufficient to just close the corresponding windows to disable trace data collection.

Choose to view only a limited selection of SFR registers. You can choose between
two alternatives. Either type #SFR_name (where SFR_name reflects the name of the
SFR you want to monitor) in the Watch window, or create your own filter for
displaying a limited group of SFRs in the Register window. Displaying many SFR
registers might slow down stepping because all registers must be read from the
hardware after each step. See Defining application-specific register groups, page
122.

Close the Memory and Symbolic Memory windows if they are open, because the
visible memory must be read after each step and that might slow down stepping.

Close any window that displays expressions such as Watch, Live Watch, Locals,
Statics if it is open, because all these windows read memory after each step and that
might slow down stepping.

Additional information on C-SPY drivers __4

e Close the Stack window if it is open. Choose Tools>Options>Stack and disable the
Enable graphical stack display and stack usage tracking option if it is enabled.

e If possible, increase the communication speed between C-SPY and the target
board/emulator.

271

Resolving problems

IAR Embedded Workbench®
272 C-SPY® Debugging Guide

Flash loaders

This chapter describes the flash loader, what it is and how to use it. More
specifically, this means:

e Introduction to the flash loader
e Using flash loaders
e Reference information on the flash loader

Note that flash loaders might not be supported by the IAR Embedded
Workbench version you are using. See Supported debugger features in the
release notes.

Introduction to the flash loader

A flash loader is an agent that is downloaded to the target. It fetches your application
from the debugger and programs it into flash memory. The flash loader uses the file I/O
mechanism to read the application program from the host. You can select one or several
flash loaders, where each flash loader loads a selected part of your application. This
means that you can use different flash loaders for loading different parts of your
application.

Flash loaders for various microcontrollers is provided with some IAR Embedded
Workbench versions. The flash loader API, documentation, and several implementation
examples are available to make it possible for you to implement your own flash loader.

Using flash loaders

This section describes various tasks related to using flash loaders.
More specifically, you will get information about:

o Setting up the flash loader(s)
o The flash loading mechanism

o Build considerations.

273

Using flash loaders

274

IAR Embedded Workbench®
C-SPY® Debugging Guide

vi A W N

SETTING UP THE FLASH LOADER(S)

To use aflash loader for downloading your application:
Choose Project>Options.

Choose the Debugger category and click the Download tab.

Select the Use Flash loader (S) option. A default flash loader configured for the device
you have specified will be used. The configuration is specified in a preconfigured
board file.

To override the default flash loader or to modify the behavior of the default flash loader
to suit your board, select the Override default. board file option, and Edit to open the
Flash Loader Configuration dialog box. A copy of the * . board file will be created

in your project directory and the path to the * . board file will be updated accordingly.

The Flash L oader Overview dialog box lists all currently configured flash loaders, see
Flash Loader Overview dialog box, page 275. You can either select a flash loader or
open the Flash Loader Configuration dialog box.

In the Flash Loader Configuration dialog box, you can configure the download. For
more information about the various flash loader options, see Flash Loader
Configuration dialog box, page 277.

THE FLASH LOADING MECHANISM

When the Use flash loader (s) option is selected and one or several flash loaders have
been configured, these steps are performed when the debug session starts.

Steps 1 to 4 are performed for each flash loader in the flash loader configuration.
C-SPY downloads the flash loader into target RAM.

Steps 2 to 4 are performed one or more times depending on the size of the RAM and the
size of the application image.

C-SPY writes code/data from the application image into target RAM (RAM buffer).
C-SPY starts execution of the flash loader.
The flash loader reads data from the RAM buffer and programs the flash memory.

The application image now resides in flash memory and can be started. The flash
loader and the RAM buffer are no longer needed, so RAM is fully available to the
application in the flash memory.

BUILD CONSIDERATIONS
This text is only applicable if you are using the XLINK linker.

Flash loaders °

When you build an application that will be downloaded to flash, special consideration
is needed. Two output fils must be generated. The first is the usual UBROF file (dxx)
that provides the debugger with debug and symbol information. The second file is a
simple-code file (filename extension sim) that will be opened and read y the flash loader
when it downloads the application to flash memory.

The simple-code file must have the same path and name as the UBROF file except for
the filename extension.

Reference information on the flash loader
This section gives reference information about these windows and dialog boxes:
e Flash Loader Overview dialog box, page 275
e Flash Loader Configuration dialog box, page 277.

Flash Loader Overview dialog box

The Flash Loader Overview dialog box is available from the Debugger >Download
page.

Flash Loader Overview

Range | Offset/Address | Loader Path | Extra Parameters fe]

Cancel

Mew

LR

This dialog box lists all defined flash loaders. If you have selected a device on the
General Options>Target page for which there is a flash loader, this flash loader is by
default listed in the Flash L oader Overview dialog box.

The display area

Each row in the display area shows how you have set up one flash loader for flashing a
specific part of memory:

Range
The part of your application to be programmed by the selected flash loader.

275

Reference information on the flash loader

276

Function buttons

IAR Embedded Workbench®
C-SPY® Debugging Guide

Offset/Address

The start of the memory where your application will be flashed. If the address
is preceded with a, the address is absolute. Otherwise, it is a relative offset to the
start of the memory.

L oader Path

The path to the flash loader * . £1ash file to be used (* . out for old-style flash
loaders).

Extra Parameters
List of extra parameters that will be passed to the flash loader.

Click on the column headers to sort the list by range, offset/address, etc.

These function buttons are available:

OK
The selected flash loader(s) will be used for downloading your application to
memory.

Cancel
Standard cancel.

New

Displays a dialog box where you can specify what flash loader to use, see Flash
Loader Configuration dialog box, page 277.

Edit

Displays a dialog box where you can modify the settings for the selected flash
loader, see Flash Loader Configuration dialog box, page 277.

Delete
Deletes the selected flash loader configuration.

Flash loaders °

Flash Loader Configuration dialog box

The Flash Loader Configuration dialog box is available from the Flash L oader
Overview dialog box.

Flash Loader, Configuration

3
Memary range
e al

@ start; | 0x0 End: | 0xd Cancel
[Relocate

& EC

o r

Flash loader path:

|]

Extra parameters:

Parameter descriptions:

Use the Flash Loader Configuration dialog box to configure the download to suit your
board. A copy of the default board file will be created in your project directory.

Memory range

Specify the part of your application to be downloaded to flash memory. Choose
between:

All
The whole application is downloaded using this flash loader.

Sart/End

Specity the start and the end of the memory area for which part of the
application will be downloaded.

Relocate

Overrides the default flash base address, in other words, relocates the location of the
application in memory. This means that you can flash your application to a different
location from where it was linked. Choose between:

Offset

A numeric value for a relative offset. This offset will be added to the addresses
in the application file.

277

Reference information on the flash loader

Absolute address

A numeric value for an absolute base address where the application will be
flashed. The lowest address in the application will be placed on this address.
Note that you can only use one flash loader for your application when you
specify an absolute address.

You can use these numeric formats:

® 123456, decimal numbers

® 0x123456, hexadecimal numbers

® 0123456, octal numbers

The default base address used for writing the first byte—the lowest address—to flash is
specified in the linker configuration file used for your application. However, it can
sometimes be necessary to override the flash base address and start at a different location

in the address space. This can, for example, be necessary for devices that remap the
location of the flash memory.

Flash loader path

Use the text box to specify the path to the flash loader file (* . £1ash) to be used by your
board configuration.

Extra parameters

Some flash loaders define their own set of specific options. Use this text box to specify
options to control the flash loader. For information about available flash loader options,
see the Parameter descriptions field.

Parameter descriptions

Displays a description of the extra parameters specified in the Extra parameter s text
box.

IAR Embedded Workbench®
278 C-SPY® Debugging Guide

A

Abort (Report Assert option)cooueunn.. 62
absolute location, specifying for a breakpoint. 117
Access type (Edit Memory Access option) 151
Access (Edit SFRoption) 143
Add to Watch Window (Symbolic Memory window context
10731111 [133
Add (SFR Setup window context menu). 141
Address Range (Find in Trace option) 171
Address (Edit SFRoption), 142
Ambiguous symbol (Resolve Symbol Ambiguity option). . 86
application, built outside the IDE 32
assembler labels, viewing 67
assembler source code, fine-tuning. 173
assembler symbols, using in C-SPY expressions 65
assembler variables, viewing. 67
assumptions, programming experience 17
Attach to program (debugger option) 263
Auto Scroll (Sampled Graphs window context menu)95
Auto Scroll (Timeline window context menu) 164
Auto window 70
Autostep settings dialogboX. 62
Autostep (Debugmenu), 40
-B (C-SPY command line option). 255
--backend (C-SPY command line option) 256
backtrace information

generated by compiler L oL 50

viewing in Call Stack window 56
batch mode, using C-SPYin............ 253
Big Endian (Memory window context menu). 127
blocks, in C-SPY macros, 218
bold style,inthisguide........... 21
Break on Throw (Debug menu). 40
Break on Uncaught Exception (Debug menu). 40
Break (Debugmenu)., 39

Index °

breakpoint condition, example 104-105
Breakpoint Usage window 108
Breakpoint Usage (Simulator menu). 269
breakpoints
code,example 238
connectinga C-SPYmacro 213
consumers of L L L i 100
data ... 112
datalog ... 114
descriptionof L 98
disabling used by Stack window 101
iconsforinthe IDE 100
in Memory window 103
listingall 0. i, 108
profilingsource, 174, 179
reasons forusing L il 97
setting
inmemory window, 103
USING SYSteM MACTOS .« « « v v e e e e e eeene 104
using the dialogbox 102
single-stepping if not available. 30
toggling 102
tyPesS Of .. oot 98
useful tips. . .. oo 104
Breakpoints dialog box
Code . .i 109
Data. ... 112
Datalog . ..o 114
Immediate i 115
Log o 111
Trace Startottt 167
Trace StOp « .« v v v et 168
Breakpoints window o i 107
Browse (Tracetoolbar) 157
byte order, setting in Memory window 126
C function information, in C-SPY.................... 50

279

280

C symbols, using in C-SPY expressions 65

C variables, using in C-SPY expressions 64
Cache type (Edit Memory Range option) 148
call chain, displaying in C-SPY 50
Call stack information., 50
Call Stack window i, 56

for backtrace information. 50
Call Stack (Timeline window context menu) 165
__cancelAlllnterrupts (C-SPY system macro) 225
__cancellnterrupt (C-SPY system macro). 225
Clear All (Debug Log window context menu) 61
Clear trace data (Trace toolbar). 157
Clear (Interrupt Log window context menu). 203
__clearBreak (C-SPY systemmacro) 225
CLIB

documentationc.c.itiiia 19
__closeFile (C-SPY systemmacro) 226
code breakpoints

OVEIVIBW . ettt ettt e e e e 98

toggling 102
Code Coverage windowcueuen... 184

Code Coverage (Disassembly window context menu)55
--code_coverage_file (C-SPY command line option)256

code, covering execution of 184
command line Options. 255
typographic conventionon. 21
command prompt icon, in this guide. 21
computer style, typographic convention 21
conditional statements, in C-SPY macros............. 217
context menu, in windows. 67
conventions, used inthisguide 20
Copy Window Contents (Disassembly
window context menu)ouurenrnannnnn.. 56
Copy (Debug Log window context menu) 60
copyrightnoticet 2
CSpybat . .. 253
current position, in C-SPY Disassembly window 54
cursor, in C-SPY Disassembly window. 54
--cycles (C-SPY command line option) 257

C-SPY
batch mode, usingin 253
debugger systems, overview of 26
environment OVerview 23
plugin modules, loading. 31
SN UP « o v o v ettt e 29-30
starting the debugger 31
C-SPY drivers
Specifying 262
C-SPY eXPressions . ..o vov v vt e 64
evaluating, using Macro Quicklaunch window. 83
evaluating, using Quick Watch window 81
inC-SPYmacros.............. 217
Tooltip watch, using.o .. 63
Watch window, using., 63
C-SPY macros
blocks. 218
conditional statements 217
C-SPY eXpressionsoeevenenenenen.. 217
dialog box,usingt 211
eXamples 209
checking status of register. 213
creatingalogmacro, 214
EXECULING . . o vttt 209
connecting to a breakpoint 213
using Quick Watch 213
using setup macro and setup file. 212
functions i, 65,215
loop statementsiuiiiiiininan.. 217
MACIO SLAtEMENLS .« « v v v v v e e e e e e e e e 217
setupmacrofile L 208
EXECULIMG. « o\ vttt et e e 212
setup macro functions, 208
SUMMATY . ¢ oov e et et et et e e e e en s 220
system macros, summary of. 223
USIIE « oo vttt ettt e e e e e 207
variables. 66, 215
C-SPY Optionscovuiniiiein i 261
Extra Options.oouitinni i 266

Images.......couiiiin i 264

Plugins. ... 265

SetUP et 262
C-SPYLinK.o 28
C++terminology.ov v 20
data breakpoints, OVEIrViewo.vunenenenn.. 99
Data Coverage (Memory window context menu) 127
data coverage, in Memory window 125
data log breakpoints, overview 99
Data Log Summary window 89
DataLogwindow, 87
Data Log (Timeline window context menu) 165
Data Sample Setup window 90
Data Sample window 91
Data Sample (Sampled Graphs window context menu) . . .95
ddf (filename extension), selecting afile............... 31
Debug Logwindow., 60
Debug menu (C-SPY main window). 39
Debug (Report Assert option)vvvenenennn.. 62
debugger concepts, definitionsof 25
debugger drivers, typesof. L. 27
debugger system OVerviewc.oiena... 26
debugging projects

externally built applications. 32

loading multiple images. 33
debugging, RTOS awareness.covuvnnn.. 25
__delay (C-SPY system macro) 226
Delay (Autostep Settings option) 62
Delete (Breakpoints window context menu) 108
Delete (SFR Setup window context menu) 141
Delete/revert All Custom SFRs (SFR Setup window context
10753 111) 141
Description (Edit Interrupt option) 197
description (interrupt property). 197
Device description file (debugger option) 262

Index °

device descriptionfiles L 31
definitionof 35
MEMOTY ZONES .« « .« v v ovvvee e e e eeeeeeeneaenen 120
modifying 35
TEZISIET ZOMC. « v o vt ettt e e e e 120
specifying interruptsc.c. .. 233

Disable All (Breakpoints window context menu) 108

Disable (Breakpoints window context menu) 108

__disableInterrupts (C-SPY system macro) 226

--disable_interrupts (C-SPY command line option) 257

Disassembly window 52
CONEEXEMENU . . o v v ev e ettt et e et e e e e 54

disclaimer.t 2

DLIB, documentationouuuiiiiinnnn.. 19

do (macro statement)tiiian.. 217

document CONVENtioNS.o vvvenen e 20

documentation
overviewof guides. 19
overview of thisguide 18
thisguide 17

--download_only (C-SPY command line option) 257

Driver (debugger option)., 262

__driverType (C-SPY systemmacro) 227

Edit Expressions (Trace toolbar). 158

Edit Interrupt dialog box. i 197

Edit Memory Access dialogbox.................... 151

Edit Memory Range dialogbox 142, 147

Edit Settings (Trace toolbar). 158

Edit (Breakpoints window context menu). 107

Edit (SFR Setup window context menu). 141

edition, of thisguide i 2

Embedded C++ Technical Committee 20

Enable All (Breakpoints window context menu). 108

Enable interrupt simulation (Interrupt Setup option). 195

Enable Log File (Log File option). 61

Enable (Breakpoints window context menu). 108

281

282

Enable (Interrupt Log window context menu). 203

Enable (Sampled Graphs window context menu) 95
Enable (Timeline window context menu) 165
__enablelnterrupts (C-SPY system macro)............ 227
Enable/Disable Breakpoint (Call
Stack window contextmenu) 58
Enable/Disable Breakpoint (Disassembly window context
110153 110 [A 56
Enable/Disable (Trace toolbar) 157
endianness. See byte order
Enter Location dialog box. 116
__evaluate (C-SPY systemmacro) 228
Evaluate Now (Macro Quicklauncher
window conteXt menu)overirenrnn.n.. 84
examples
C-SPY MacroSovvvininiinennnnn.. 209
interrupts
interrupt logging 194
19101 1<) 192
macros
checking status of register. 213
creatingalogmacro 214
using Quick Watch 213
performing tasks and continue execution. 105
tracing incorrect function arguments 104
execUserExecutionStarted (C-SPY setup macro) 220
execUserExecutionStopped (C-SPY setup macro) 220
execUserExit (C-SPY setup macro) 222
execUserFlashExit (C-SPY setup macro) 222
execUserFlashlnit (C-SPY setup macro).............. 221
execUserFlashReset (C-SPY setup macro) 221
execUserPreload (C-SPY setup macro). 220
execUserPreReset (C-SPY setup macro). 222
execUserReset (C-SPY setupmacro) 222
execUserSetup (C-SPY setup macro) 221
executed code, covering 184
execution history, tracing 156

expressions. See C-SPY expressions
Extra Options, for C-SPY 266

F

Factory ranges (Memory Configuration option) 145
File format (Memory Save option) 128
file types

device description, specifyinginIDE 31

MACTO . .« o vt ettt ettt e e et 31, 262
filename extensions

ddf, selecting device description file 31

mac, usingmacrofile. 31
Filename (Memory Restore option) 129
Filename (Memory Save option). 128
Fill dialog boX. . . .ot o vt e 129
Find in Trace dialogbox., 170
Findin Trace windowc.iuuiun... 171
Find (Memory window contextmenu) 127
Find (Trace toolbar)coviuinienn. 158
first activation time (interrupt property)
definitionof i 189
First activation (Edit Interrupt option). 197
flash loader

parameterstocontrol 278

specifying the pathto. 278

USIIE &« ot e ettt et et et e e 273
Flash Loader Overview dialogbox.................. 275
flash memory, load library moduleto................ 229
--flash_loader (C-SPY command line option). 257
for (macro statement), 217
Forced Interrupt window., 198
Forced Interrupts (Simulatormenu) 269
formats, C-SPYinput 25
Function Profiler window 177
Function Profiler (Simulatormenu) 268
Function Trace window., 159
Function Trace (Simulatormenu) 268
functions

call stack informationfor. 50

C-SPY running to when starting 30, 262

most time spent in, locating 173

G

Go to Source (Breakpoints window context menu). 107
Go to Source (Call Stack window context menu) 57
Go To Source (Timeline window context menu). 165
Go(Debugmenu)...........oouiiiiiia.. 39,49
Graphical bar (Memory Configuration dialog box). 146
highlighting, inC-SPY 50
Hold time (Edit Interrupt option) 198
hold time (interrupt property), definitionof 189
icons,inthisguide 21
if else (macro statement). 217
if (macro statement), 217
Ignore (Report Assert option)ovvuenen.n.. 62
illegal memory accesses, checking for 122
Imageswindow. 42
Images, loading multiple. 264
immediate breakpoints, overview 99
Include (Log Fileoption)ccoienenn.. 61
input formats, C-SPY 25
Input Mode dialogbox 59
input, special characters in Terminal I/O window 59
installation directory 20
Instruction Profiling (Disassembly window context menu). 55
Intel-extended, C-SPY input format 25
Intel-extended, C-SPY output format 27
Interrupt Log Summary window. 204
Interrupt Log Summary (Simulator menu) 268
Interrupt Logwindow i, 201
Interrupt Log (Simulatormenu) 268
Interrupt Setup dialogbox 195
Interrupt Setup (Simulatormenu) 268
Interrupt Status window 199

Index °

interrupt system, using device description file 191
Interrupt (Edit Interrupt option) 197
Interrupt (Timeline window context menu). 165
interrupts
adapting C-SPY system for target hardware 191
simulated, introductionto 187
timer,example i 192
USING SYSLEM MACIOS .« v v v v v v e et e eeeeeeaenen 191
__isBatchMode (C-SPY system macro) 228
italic style,inthisguide 21

/O register. See SFR

L

labels (assembler), viewing., 67
Length (Fill option).oiiii i, 130
lightbulb icon, inthis guide. 21
linker options, typographic convention. 21
Little Endian (Memory window context menu) 126
Live Watchwindow 76
__loadImage (C-SPY system macro) 229
loading multiple debug files, list currently loaded. 42
loading multiple imagesc.cvuiin... 33
Localswindow i, 72
log breakpoints, OVEIrVIeWo v e e ennen.. 98
Log File dialogboX.ooiiiiii i 61
Logging>Set Log file (Debugmenu) 41
Logging>Set Terminal I/O Log file (Debug menu). 41
loop statements, in C-SPY macros 217
mac (filename extension), using amacro file 31
--macro (C-SPY command line option) 258
Macro Configuration dialogbox. 211
macro files, specifying 31, 262
Macro Quicklaunch window. 83
MACTO STALEMENLS . . vt vt vttt e et 217

283

284

macros

CXECULING . v v vttt ettt 209

USINE .ottt e 207
Macros (Debugmenu) oo, 41
main function, C-SPY running to when starting 30, 262
--mapu (C-SPY command line option) 258
memory access checking. 121
Memory access checking (Memory Access Setup option) 150
Memory Access Setup dialogbox. 149
Memory Access Setup (Simulator menu) 268
memory accesses, illegal. 122
Memory Configuration dialogbox 144
Memory Fill (Memory window context menu). 127
memory layout, informing C-SPY of 34
1001500102 28 11T o PP 149
Memory Restore dialogbox 129
Memory Restore (Memory window context menu). 127
Memory Save dialogbox 128
Memory Save (Memory window context menu). 127
Memory window. 124
MEMOTY ZONES. « . ¢t e vov v eeeee et e e e e e eeenens 120

in device descriptionfile 120
__memoryRestore (C-SPY system macro) 230
__memorySave (C-SPY system macro) 230
Memory>Restore (Debugmenu) 40
Memory>Save (Debugmenu). 40
menu bar, C-SPY-specific................ 38
MISRA C, documentationcouuuue.o.. 20
Mixed Mode (Disassembly window context menu) 56
Motorola, C-SPY input format 25
Motorola, C-SPY output format 27
Move to PC (Disassembly window context menu) 54
Name (Edit SFRoption) 142
Naming Conventionsc..oeuueunenn.n. 22
Navigate (Sampled Graphs window context menu) 94
Navigate (Timeline window context menu) 164

New Breakpoint (Breakpoints window context menu) . . . 108
Next Statement (Debugmenu) 40
Next Symbol (Symbolic Memory window context menu) 132

o

__openFile (C-SPY systemmacro). 231
Operation (Filloption), 130
operators, sizeof in C-SPY 66
optimizations, effects on variables 66
options

intheIDE 261

onthecommandline 255,266
Options (Stack window contextmenu) 136
__orderInterrupt (C-SPY system macro). 232
Originator (debuggeroption) 265
Override default .board file (debugger option) 264
-p (C-SPY command line option) 259
parameters

list of passed to the flash loader. 276

tracing incorrect valuesof 50

typographic convention 21
part number, of thisguide., 2
peripheral units

device-specific. i 35

displayed in Register window 120

in C-SPY expressionsc..coveuvenenn.. 65

initializing using setup macros. 208

peripherals register. See SFR
Please select one symbol

(Resolve Symbol Ambiguity option) 87
--plugin (C-SPY command line option) 259
plugin modules (C-SPY)............... 27

loading. 31
Plugins (C-SPY options).ooouun... 265

__popSimulatorInterruptExecutingStack (C-SPY

SYSEEIM MACTO). + ¢ v v eoe et et et et e e e eeene 233
pop-up menu. See context menu
prerequisites, programming experience. 17
Previous Symbol (Symbolic
Memory window contextmenu) 132
probability (interrupt property). 198
definitionof L L L i 189
Probability % (Edit Interrupt option) 198
Profile Selection (Timeline window context menu) 166
profiling
on functionlevel 175
oninstructionlevel. L L. 175
profiling information, on functions and instructions.. 174
profiling sources
breakpoints 174,179
sampling 174,179
trace (calls) 174, 179
trace (flat) 174, 179
program execution, in C-SPY 45
Programming eXperience.ouiuinenenn .. 17
program, see also application
projects, for debugging externally built applications. 32
publication date, of thisguide. 2
Quick Watchwindow 81
executing C-SPY macros. ..., 213
RAM (Edit Memory Accessoption). 148
Range for (Viewing Range option) 166
__readFile (C-SPY systemmacro) 234
__readFileByte (C-SPY systemmacro) 235
reading guidelines. 17
__readMemoryByte (C-SPY system macro)........... 235
__readMemory8 (C-SPY system macro) 235

Index °

__readMemory16 (C-SPY system macro) 236
__readMemory32 (C-SPY system macro) 236
reference information, typographic convention. 21
Refresh (Debugmenu) o... 41
TEEISET GTOUPS '« . vt et e et et e e e 120
predefined, enabling. 137
Registerwindow, 137
registered trademarks 2
__registerMacroFile (C-SPY system macro). 237
registers, displayed in Register window 137
Remove All (Macro Quicklauncher window
CONEEXE MENU) . v vt ettt e e e et et e e e e e et 84
Remove (Macro Quicklauncher window context menu) . . . 84
Repeat interval (Edit Interrupt option) 197
repeat interval (interrupt property), definition of. 189
Replace (Memory window context menu) 127
Report Assert dialogbox 62
Reset (Debugmenu), 39
__resetFile (C-SPY system macro). 237
Resolve Source Ambiguity dialogbox 118
Restore (Memory Restore option). 129
return (macro statement)., 218
ROM-monitor, definitionof 27
ROM/Flash (Edit Memory Access option) 148
RTOS awareness debugging 25
RTOS awareness (C-SPY plugin module). 25
Run to Cursor (Call Stack window context menu) 57
Run to Cursor (Debugmenu) 40
Run to Cursor (Disassembly window context menu) 55
Run to Cursor, command for executing. 50
Runto (C-SPYoption), 30
Run to (debuggeroption) 262
Sample Graphs window 93
sampling, profiling source. 174, 179

Save Custom SFRs (SFR Setup window context menu) . . 142
Save to log file (Interrupt Log window context menu) . . . 203

285

286

Save (Memory Save option)c...ouiun.... 128

Save (Tracetoolbar) 158
Scale (Viewing Range option). 167
Select All (Debug Log window context menu) 60
Select Graphs (Sampled Graphs window context menu). . . 96
Select Graphs (Timeline window context menu). 165
Select plugins to load (debugger option). 265
Set Data Breakpoint (Memory window context menu) . . . 127
Set Next Statement (Debugmenu) 40
Set Next Statement (Disassembly window context menu) .56
__setCodeBreak (C-SPY system macro). 238
__setDataBreak (C-SPY system macro) 239
__setDatal.ogBreak (C-SPY system macro)........... 240
__setLogBreak (C-SPY system macro) 241
__setSimBreak (C-SPY system macro) 242
__setTraceStartBreak (C-SPY system macro). 243
__setTraceStopBreak (C-SPY system macro).......... 244
setup macro functions. 208

reserved NAMes.ottt 220
Setup macros (debuggeroption) 262
Setup (C-SPY options)o, 262
setupsimple.mac 208
SFR

in Registerwindow 138

using as assembler symbols 65
SFR Setupwindow, 139
SFR/Uncached (Edit Memory Access option) 148
shortcut menu. See context menu
Show all images (Images window context menu) 43
Show All (SFR Setup window context menu). 141
Show Arguments (Call Stack window context menu). 57
Show Custom SFRs only (SFR Setup
window context menu)oueiuurann.nn. 141
Show Cycles (Interrupt Log window context menu). 203
Show Factory SFRs only (SFR Setup
Window CONtEXt MENU) . . oo vv v vt eeenenen. 141

Show Numerical Value (Sampled Graphs window context

10013 110 96
Show Numerical Value (Timeline window context menu) 165
Show offsets (Stack window context menu) 135

Show only (Image window contextmenu) 43
Show Time (Interrupt Log window context menu) 203
Show variables (Stack window context menu) 135
--silent (C-SPY command line option) 260
simulating interrupts, enabling/disabling 195
Simulatormenu. L . 267
simulator, introduction 28
Size (Edit SFRoption), 143
Size (Sampled Graphs window context menu) 96
Size (Timeline window context menu) 165
sizeof 66
Solid Graph (Sampled Graphs window context menu) 96
Solid Graph (Timeline window context menu) 165
__sourcePosition (C-SPY system macro) 245
special function registers (SFR)

in Register window 138

using as assembler symbols 65
stack usage, computing. oLl 121
Stackwindow i 133
stackamac 208
standard C, sizeof operator in C-SPY 66
Start address (Filloption) oo.... 130
Start address (Memory Save option). 128
Statics Window 78
stdin and stdout, redirecting to C-SPY window 58
Step Into (Debugmenu) 40
Step Into, descriptiont 47
Step Out (Debugmenu)covnininann.. 40
Step Out, description.vuvinine .. 48
Step Over (Debugmenu) 39
Step Over, description.cooiiiinin .. 47
step points, definitionof L. 46
Stop address (Memory Save option) 128
Stop Debugging (Debug menu). 39
__strFind (C-SPY systemmacro) 246
__subString (C-SPY system macro) 247
Suppress download (debugger option) 263
Symbolic Memory window. 131
Symbols window i 85

symbols, using in C-SPY expressions. 64
target system, definitionof 26
__targetDebuggerVersion (C-SPY system macro) 247
Terminal 10 Log Files (Terminal 10 Log Files option). . . . 60
Terminal I/O Log Files dialogbox 59
Terminal /O window 51,58
terminology.ot 20
Text search (Find in Trace option) 171
Time Axis Unit (Timeline window context menu) 166
time interval, in Timeline window 176
Timeline window 159
Timeline (Simulatormenu). 268
--timeout (C-SPY command line option) 260
timer interrupt, example e 192
Toggle Breakpoint (Code) (Call

Stack window contextmenu) 57
Toggle Breakpoint (Code) (Disassembly

WIindow CONtEXE MENU) . . oo v v vttt e ee e eaeennn 55
Toggle Breakpoint (Log) (Call

Stack window contextmenu) 57
Toggle Breakpoint (Log) (Disassembly

Window CONtEXE MENU) . . oo vv vttt e e e eaeen e 55
Toggle Breakpoint (Trace Start) (Call

Stack window contextmenu) 58
Toggle Breakpoint (Trace Start) (Disassembly

window conteXt menu)overiiranrnn.n.. 55
Toggle Breakpoint (Trace Stop) (Call

Stack window contextmenu) 58
Toggle Breakpoint (Trace Stop) (Disassembly

window contexXt Mmenu)uuienunennnan.. 56
Toggle source (Trace toolbar) 157
__toLower (C-SPY systemmacro) 248
tools icon,inthisguide.............. 21
__toString (C-SPY systemmacro) 248
__toUpper (C-SPY systemmacro) 249
Trace Expressions window 169
trace start and stop breakpoints, overview. 98

Index °

Trace Start breakpoints dialogbox 167
Trace Stop breakpoints dialogbox 168
Trace windowttt 157
trace (calls), profiling source. 174, 179
trace (flat), profiling source. 174, 179
Trace (Simulatormenu) 268
trace, in Timeline window. 159
trademarks 2
Trigger (Forced Interrupt window context menu) 199
typographic conventions 21
UBROF. . .. 25
Unavailable, C-SPY message 67
Universal Binary Relocatable Object Format. See UBROF
__unloadlmage(C-SPY system macro). 249
Use command line options (debugger option). 266
Use Extra Images (debugger option). 264
Use flash loader (debugger option) 264
Use manual ranges (Memory Access Setup option) 150
Use ranges based on (Memory Access Setup option) 149
Used ranges (Memory Configuration option) 145
user application, definitionof 26
Value (Filloption). 130
variables

effects of optimizations 66

information, limitationon 66

using in C-SPY expressions. 64
variance (interrupt property), definitionof 189
Variance % (Edit Interruptoption) 198
Verify download (debugger option). 263
version number, of this guide 2
Viewing Range dialogbox 166

Viewing Range (Sampled Graphs window context menu) .96
Viewing Range (Timeline window context menu) 165

287

288

visualSTATE, C-SPY plugin module for. 28

W

warnings icon, in thisguide 21
Watchwindow, 74

USIG &« vt ettt et e 63
web sites, recommended. oL 20
while (macro statement) 217
windows, specificto C-SPY 41
With I/O emulation modules (linker option), using. 58
__writeFile (C-SPY systemmacro) 250
__writeFileByte (C-SPY system macro). 250
__writeMemoryByte (C-SPY system macro) 251
__writeMemory8 (C-SPY system macro)............. 251
__writeMemory16 (C-SPY system macro)............ 251
__writeMemory32 (C-SPY system macro)............ 252
zone

defined in device descriptionfile 120

INC-SPY ... 120
Zone (Edit SFRoption). 143
Zoom (Sampled Graphs window context menu). 95
Zoom (Timeline window context menu).............. 164

Symbols

__cancelAllInterrupts (C-SPY system macro) 225
__cancellnterrupt (C-SPY system macro). 225
__clearBreak (C-SPY systemmacro) 225
__closeFile (C-SPY system macro) 226
__delay (C-SPY system macro) 226
__disablelnterrupts (C-SPY system macro) 226
__driverType (C-SPY systemmacro) 227
__enablelnterrupts (C-SPY system macro)............ 227
__evaluate (C-SPY systemmacro) 228
__fmessage (C-SPY macro statement) 218

__isBatchMode (C-SPY system macro) 228
__loadImage (C-SPY system macro) 229
__memoryRestore (C-SPY system macro) 230
__memorySave (C-SPY system macro) 230
__message (C-SPY macro statement). 218
__openFile (C-SPY systemmacro). 231
__orderInterrupt (C-SPY system macro). 232
__popSimulatorInterruptExecutingStack (C-SPY

SYSEEIM MACTO). « « « v v v vttt e e et e e e ee s 233
__readFile (C-SPY system macro) 234
__readFileByte (C-SPY system macro) 235
__readMemoryByte (C-SPY system macro). 235
__readMemory8 (C-SPY system macro) 235
__readMemory16 (C-SPY system macro) 236
__readMemory32 (C-SPY system macro) 236
__registerMacroFile (C-SPY system macro). 237
__resetFile (C-SPY system macro). 237
__setCodeBreak (C-SPY system macro). 238
__setDataBreak (C-SPY system macro) 239
__setDatal.ogBreak (C-SPY system macro)........... 240
__setLogBreak (C-SPY system macro) 241
__setSimBreak (C-SPY system macro) 242
__setTraceStartBreak (C-SPY system macro). 243
__setTraceStopBreak (C-SPY system macro). 244
__smessage (C-SPY macro statement) 218
__sourcePosition (C-SPY system macro) 245
__strFind (C-SPY system macro) 246
__subString (C-SPY system macro) 247
__targetDebuggerVersion (C-SPY system macro) 247
__toLower (C-SPY system macro) 248
__toString (C-SPY systemmacro) 248
__toUpper (C-SPY system macro) 249
__unloadImage (C-SPY system macro) 249
__writeFile (C-SPY systemmacro) 250
__writeFileByte (C-SPY system macro). 250
__writeMemoryByte (C-SPY system macro) 251
__writeMemory8 (C-SPY system macro). 251
__writeMemory16 (C-SPY system macro)............ 251
__writeMemory32 (C-SPY system macro)............ 252
-B (C-SPY command line option). 255

-p (C-SPY command line option) 259
--backend (C-SPY command line option) 256
--code_coverage_file (C-SPY command line option)256
--cycles (C-SPY command line option) 257
--disable_interrupts (C-SPY command line option) 257
--download_only (C-SPY command line option) 257
--flash_loader (C-SPY command line option). 257
--macro (C-SPY command line option) 258
--mapu (C-SPY command line option) 258
--plugin (C-SPY command line option) 259
--silent (C-SPY command line option) 260
--timeout (C-SPY command line option) 260

Numerics

1x Units (Symbolic Memory window context menu) 133
8x Units (Memory window context menu) 126

Index °

289

	Brief contents
	Contents
	Tables
	Preface
	Who should read this guide
	Required knowledge

	How to use this guide
	Some descriptions do not apply to your product

	What this guide contains
	Other documentation
	User and reference guides
	The online help system
	Web sites

	Document conventions
	Typographic conventions
	Naming conventions

	The IAR C-SPY Debugger
	Introduction to C-SPY
	An integrated environment
	General C-SPY debugger features
	Additional general C-SPY debugger features

	RTOS awareness

	Debugger concepts
	C-SPY and target systems
	The debugger
	The target system
	The application
	C-SPY debugger systems
	The ROM-monitor program
	Third-party debuggers
	C-SPY plugin modules

	The IAR C-SPY Simulator
	Simulator features

	Getting started using C-SPY
	Setting up C-SPY
	Setting up for debugging
	Executing from reset
	Using a setup macro file
	Selecting a device description file
	Loading plugin modules

	Starting C-SPY
	Starting a debug session
	Loading executable files built outside of the IDE
	Starting a debug session with source files missing
	Loading multiple images

	Adapting for target hardware
	Memory configuration
	Modifying a device description file
	Initializing target hardware before C-SPY starts

	Running example projects
	Running an example project

	Reference information on starting C-SPY
	C-SPY Debugger main window
	Images window
	Get Alternative File dialog box

	Executing your application
	Introduction to application execution
	Briefly about application execution
	Source and disassembly mode debugging
	Single stepping
	The step commands
	Step Into
	Step Over
	Next Statement
	Step Out

	Stepping speed
	Running the application
	Go
	Run to Cursor

	Highlighting
	Call stack information
	Terminal input and output
	Debug logging

	Reference information on application execution
	Disassembly window
	Call Stack window
	Terminal I/O window
	Terminal I/O Log File dialog box
	Debug Log window
	Log File dialog box
	Report Assert dialog box
	Autostep settings dialog box

	Variables and expressions
	Introduction to working with variables and expressions
	Briefly about working with variables and expressions
	C-SPY expressions
	C/C++ symbols
	Assembler symbols
	C-SPY macro functions
	C-SPY macro variables
	Using sizeof

	Limitations on variable information
	Effects of optimizations

	Working with variables and expressions
	Using the windows related to variables and expressions
	Viewing assembler variables
	Getting started using data logging
	Getting started using data sampling

	Reference information on working with variables and expressions
	Auto window
	Locals window
	Watch window
	Live Watch window
	Statics window
	Quick Watch window
	Macro Quicklaunch window
	Symbols window
	Resolve Symbol Ambiguity dialog box
	Data Log window
	Data Log Summary window
	Setup Data Sample window
	Data Sample window
	Sampled Graphs window

	Breakpoints
	Introduction to setting and using breakpoints
	Reasons for using breakpoints
	Briefly about setting breakpoints
	Breakpoint types
	Code breakpoints
	Log breakpoints
	Trace breakpoints
	Data breakpoints
	Data Log breakpoints
	Immediate breakpoints

	Breakpoint icons
	Breakpoints in the C-SPY simulator
	Breakpoint consumers
	User breakpoints
	C-SPY itself
	C-SPY plugin modules

	Setting breakpoints
	Various ways to set a breakpoint
	Toggling a simple code breakpoint
	Setting breakpoints using the dialog box
	Setting a data breakpoint in the Memory window
	Setting breakpoints using system macros
	Setting breakpoints at C-SPY startup using a setup macro file

	Useful breakpoint hints
	Tracing incorrect function arguments
	Performing a task and continuing execution

	Reference information on breakpoints
	Breakpoints window
	Breakpoint Usage window
	Code breakpoints dialog box
	Log breakpoints dialog box
	Data breakpoints dialog box
	Data Log breakpoints dialog box
	Immediate breakpoints dialog box
	Enter Location dialog box
	Resolve Source Ambiguity dialog box

	Memory and registers
	Introduction to monitoring memory and registers
	Briefly about monitoring memory and registers
	C-SPY memory zones
	Device-specific zones

	Stack display
	Stack usage

	Memory access checking

	Monitoring memory and registers
	Defining application-specific register groups

	Reference information on memory and registers
	Memory window
	Memory Save dialog box
	Memory Restore dialog box
	Fill dialog box
	Symbolic Memory window
	Stack window
	Register window
	SFR Setup window
	Edit SFR dialog box
	Memory Configuration dialog box
	Edit Memory Range dialog box
	Memory Access Setup dialog box
	Edit Memory Access dialog box

	Trace
	Introduction to using trace
	Reasons for using trace
	Briefly about trace
	Trace features in C-SPY

	Requirements for using trace

	Collecting and using trace data
	Getting started with trace
	Trace data collection using breakpoints
	Searching in trace data
	Browsing through trace data

	Reference information on trace
	Trace window
	Function Trace window
	Timeline window
	Viewing Range dialog box
	Trace Start breakpoints dialog box
	Trace Stop breakpoints dialog box
	Trace Expressions window
	Find in Trace dialog box
	Find in Trace window

	Profiling
	Introduction to the profiler
	Reasons for using the profiler
	Briefly about the profiler
	Profiling sources

	Requirements for using the profiler

	Using the profiler
	Getting started using the profiler on function level
	Getting started using the profiler on instruction level
	Selecting a time interval for profiling information

	Reference information on the profiler
	Function Profiler window

	Code coverage
	Introduction to code coverage
	Reasons for using code coverage
	Briefly about code coverage
	Requirements for using code coverage

	Reference information on code coverage
	Code Coverage window

	Interrupts
	Introduction to interrupts
	Briefly about interrupt logging
	Requirements for interrupt logging

	Briefly about the interrupt simulation system
	Interrupt characteristics
	Interrupt simulation states
	C-SPY system macros for interrupt simulation
	Target-adapting the interrupt simulation system

	Using the interrupt system
	Simulating a simple interrupt
	Simulating an interrupt in a multi-task system
	Getting started using interrupt logging

	Reference information on interrupts
	Interrupt Setup dialog box
	Edit Interrupt dialog box
	Forced Interrupt window
	Interrupt Status window
	Interrupt Log window
	Interrupt Log Summary window

	C-SPY macros
	Introduction to C-SPY macros
	Reasons for using C-SPY macros
	Briefly about using C-SPY macros
	Briefly about setup macro functions and files
	Briefly about the macro language
	Example

	Using C-SPY macros
	Registering C-SPY macros—an overview
	Executing C-SPY macros—an overview
	Using the Macro Configuration dialog box
	Registering and executing using setup macros and setup files
	Executing macros using Quick Watch
	Executing a macro by connecting it to a breakpoint

	Reference information on the macro language
	Macro functions
	Macro variables
	Macro strings
	Macro statements
	Expressions
	Conditional statements
	Loop statements
	Return statements
	Blocks

	Formatted output
	Specifying display format of arguments

	Reference information on reserved setup macro function names
	execUserPreload
	execUserExecutionStarted
	execUserExecutionStopped
	execUserFlashInit
	execUserSetup
	execUserFlashReset
	execUserPreReset
	execUserReset
	execUserExit
	execUserFlashExit

	Reference information on C-SPY system macros
	_ _cancelAllInterrupts
	_ _cancelInterrupt
	_ _clearBreak
	_ _closeFile
	_ _delay
	_ _disableInterrupts
	_ _driverType
	_ _enableInterrupts
	_ _evaluate
	_ _isBatchMode
	_ _loadImage
	_ _memoryRestore
	_ _memorySave
	_ _openFile
	_ _orderInterrupt
	_ _popSimulatorInterruptExecutingStack
	_ _readFile
	_ _readFileByte
	_ _readMemory8, _ _readMemoryByte
	_ _readMemory16
	_ _readMemory32
	_ _registerMacroFile
	_ _resetFile
	_ _setCodeBreak
	_ _setDataBreak
	_ _setDataLogBreak
	_ _setLogBreak
	_ _setSimBreak
	_ _setTraceStartBreak
	_ _setTraceStopBreak
	_ _sourcePosition
	_ _strFind
	_ _subString
	_ _targetDebuggerVersion
	_ _toLower
	_ _toString
	_ _toUpper
	_ _unloadImage
	_ _writeFile
	_ _writeFileByte
	_ _writeMemory8, _ _writeMemoryByte
	_ _writeMemory16
	_ _writeMemory32

	The C-SPY Command Line Utility—cspybat
	Using C-SPY in batch mode
	Starting cspybat
	Output
	Invocation syntax
	Parameters

	Summary of C-SPY command line options
	General cspybat options
	Options available for all C-SPY drivers
	Options available for the simulator driver

	Reference information on C-SPY command line options
	-B
	--backend
	--code_coverage_file
	--cycles
	--disable_interrupts
	--download_only
	--flash_loader
	--macro
	--mapu
	-p
	--plugin
	--silent
	--timeout

	Debugger options
	Setting debugger options
	Reference information on debugger options
	Setup
	Download
	Images
	Plugins
	Extra Options

	Additional information on C-SPY drivers
	Reference information on the C-SPY simulator
	Simulator menu

	Resolving problems
	Write failure during load
	Slow stepping speed

	Flash loaders
	Introduction to the flash loader
	Using flash loaders
	Setting up the flash loader(s)
	The flash loading mechanism
	Build considerations

	Reference information on the flash loader
	Flash Loader Overview dialog box
	Flash Loader Configuration dialog box

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z
	Symbols
	Numerics

