
AM32C-2

M32C IAR ASSEMBLER
Reference Guide

for Renesas
M32C and M16C/8x Series

of CPU Cores

AM32C-2

ii

COPYRIGHT NOTICE
© Copyright 1999-2004 IAR Systems. All rights reserved.

No part of this document may be reproduced without the prior written
consent of IAR Systems. The software described in this document is
furnished under a license and may only be used or copied in accordance
with the terms of such a license.

DISCLAIMER
The information in this document is subject to change without notice and
does not represent a commitment on any part of IAR Systems. While the
information contained herein is assumed to be accurate, IAR Systems
assumes no responsibility for any errors or omissions.

In no event shall IAR Systems, its employees, its contractors, or the
authors of this document be liable for special, direct, indirect, or
consequential damage, losses, costs, charges, claims, demands, claim for
lost profits, fees, or expenses of any nature or kind.

TRADEMARKS
IAR Embedded Workbench, IAR visualSTATE, IAR MakeApp, and IAR PreQual are
registered trademarks owned by IAR Systems. C-SPY is a trademark registered in the
European Union by IAR Systems. IAR, IAR XLINK Linker, IAR XAR Library Builder,
and IAR XLIB Librarian are trademarks owned by IAR Systems.

M32C and M16C/8x Series are registered trademarks of Renesas
Technology Corporation. Microsoft is a registered trademark, and
Windows is a trademark of Microsoft Corporation. Intel and Pentium are
registered trademarks of Intel Corporation.

All other product names are trademarks or registered trademarks of their
respective owners.

Second edition: June 2004

Part number: AM32C-2

AM32C-2

iii

WELCOME Welcome to the M32C IAR Assembler Reference Guide.

This guide provides reference information about the IAR Systems
Assembler for the M32C and M16C/8x Series of CPU cores, and applies
to the command line version of this tool.

Before reading this guide we recommend you to read the initial chapters
of the IAR Embedded Workbench™ IDE User Guide, where you will find
information about installing the IAR Systems development tools, product
overviews, and tutorials that will help you get started. The IAR Embedded
Workbench™ IDE User Guide also contains complete reference
information about the IAR Embedded Workbench™ and the M32C IAR
C-SPY™ Debugger.

For information about programming with the M32C IAR C Compiler,
refer to the M32C IAR C/C++ Compiler Reference Guide.

For information about using the IAR XLINK Linker™ and IAR XLIB
Librarian™, refer to the IAR Linker and Library Tools Reference Guide,
which is available from the M32C IAR Embedded Workbench™ Help
menu.

ABOUT THIS GUIDE This guide consists of the following chapters:

Introduction to the M32C Assembler provides a brief summary of the
M32C Assembler and gives programming hints.

Assembler options first explains how to set the M32C Assembler
options and how to use environment variables. It then gives an
alphabetical summary of the assembler options, and contains
complete reference information about each option.

Assembler file formats describes the source format for the
M32C Assembler, and the format of assembler listings.

Assembler operators gives a summary of the assembler operators,
arranged in order of precedence, and provides a complete alphabetical
list of the M32C Assembler operators, with a full description of each
one.

Assembler directives gives an alphabetical summary of the M32C
Assembler directives, and provides complete reference information
about the M32C Assembler directives, classified into groups
according to their function.

PREFACE

AM32C-2

iv

Assembler diagnostics provides a list of error and warning messages
specific to the M32C Assembler.

ASSUMPTIONS
This guide assumes that you already have a working knowledge of the
following:

◆ The architecture of the M32C and M16C/8x Series CPU cores.

◆ The M32C and M16C/8x Series assembler instruction set.

◆ Windows 98/2000/Me/NT, depending on your host system.

◆ The IAR Systems development tools and the project model, as
described in the IAR Embedded Workbench™ IDE User Guide.

Note: The illustrations in this guide show the IAR Embedded Workbench
running in a Windows-style environment, and their appearance will be
slightly different if you are using another platform.

CONVENTIONS
This guide uses the following typographical conventions:

Style Used for

computer Text that you type in, or that appears on the screen.

parameter A label representing the actual value you should type
as part of a command.

[option] An optional part of a command.

{a | b | c} Alternatives in a command.

bold Names of menus, menu commands, buttons, and
dialog boxes that appear on the screen.

reference Cross-references to another part of this guide, or to
another guide.

Identifies instructions specific to the versions of the
IAR development tools for the IAR Embedded
Workbench interface.

Identifies instructions specific to the command line
versions of IAR development tools.

PREFACE

AM32C-2

v

CONTENTS

INTRODUCTION TO THE M32C ASSEMBLER......................... 1
Key features 1
Programming hints 2

ASSEMBLER OPTIONS .. 3
Setting assembler options 3
Options summary 5

ASSEMBLER FILE FORMATS.. 21
Source format 21
Expressions and operators 22
Register symbols 28
Listing format 30
Output formats 32

ASSEMBLER OPERATORS .. 33
Precedence of operators 33
Summary of assembler operators 34

ASSEMBLER DIRECTIVES... 51
Summary of directives 51
Syntax conventions 57
Module control directives 58
Symbol control directives 61
Segment control directives 63
Value assignment directives 68
Conditional assembly directives 72
Macro processing directives 73
Listing control directives 80
C-style preprocessor directives 86
Data definition or allocation
 directives 91
Assembler control directives 93

ASSEMBLER DIAGNOSTICS.. 95
Introduction 95

CONTENTS

AM32C-2

vi

Error messages 97
Warning messages 107

INDEX.. 111

AM32C-2

1

INTRODUCTION TO THE
M32C ASSEMBLER
This chapter describes the key features of the IAR Systems M32C
Assembler, and provides some programming hints.

KEY FEATURES The IAR Systems M32C Assembler is a powerful relocating macro
assembler with a versatile set of directives.

The assembler incorporates a high degree of compatibility with the CPU
core manufacturer’s assembler to ensure that software originally
developed using that assembler can be transferred to the IAR Systems
Assembler with a few modifications.

The IAR Systems M32C Assembler provides the following features:

GENERAL
◆ One pass assembly, for fast execution.

◆ Integration with the IAR XLINK Linker™ and IAR XLIB Librarian™.

◆ Integration with other IAR Systems software for the M32C and
M16C/8x Series of CPU cores.

◆ Self-explanatory error messages.

ASSEMBLER FEATURES
◆ Up to 65536 relocatable segments per module.

◆ 32-bit arithmetic and IEEE floating-point constants.

◆ 255 significant characters in symbols.

◆ Powerful recursive macro facilities.

◆ Number of symbols and program size limited only by available
memory.

◆ Support for complex expressions with external references.

◆ Forward references allowed to any depth.

◆ Macros in Intel/Motorola style.

PROGRAMMING HINTS INTRODUCTION TO THE M32C ASSEMBLER

AM32C-2

2

◆ Support for C language preprocessor directives.

PROGRAMMING
HINTS

ACCESSING SPECIAL FUNCTION REGISTERS
A header file that defines the special function registers (SFRs) is included
in the M32C Assembler delivery. The header file is called iom32c.h.

Since the header file is intended to be used with the M32C IAR
C/EC++ Compiler, ICCM32C, the SFR declaration is made with macros.
The macros that convert the declaration to assembler or compiler syntax
are defined in the iomacros.h file.

The iom32c.h. header file is also suitable to use as a template when
creating new header files for any future M32C or M16C/80 derivatives.

Example
The Universal Asynchronous Receiver Transmitter (UART0)
transmitter buffer register at address 0x362 of the M32C CPU core is
defined in the iom32c.h. file as:

_ _SFR(_ _U0TB, 0x362, _ _REG16, _ _READ_WRITE)

Note: The _ _REG16 size definition and the _ _READ_WRITE attribute
definition are used in the compiler exclusively.

The declaration is converted by the file iomacros.h to:

_ _U0TB DEFINE 0x362

If any assembler-specific additions are needed in the header file, these can
be added easily in the assembler-specific part of the file:

#ifdef _ _IAR_SYSTEMS_ASM_ _
(assembler-specific defines)

#endif

C-STYLE PREPROCESSOR DIRECTIVES
The C-style preprocessor directives are processed before other assembler
directives. Therefore, do not use preprocessor directives in assembler
macros and do not mix them with assembler-style comments. For
additional information, see C-style preprocessor directives, page 86.

AM32C-2

3

ASSEMBLER OPTIONS
This chapter first explains how to set the options from the command line,
and gives an alphabetical summary of the assembler options. It then
provides detailed reference information for each assembler option.

The IAR Embedded Workbench™ IDE User Guide describes how to set
assembler options in the IAR Embedded Workbench, and gives reference
information about the available options.

SETTING ASSEMBLER
OPTIONS

To set assembler options from the command line, you include them on the
command line, after the am32c command:

am32c [options] [sourcefile] [options]

These items must be separated by one or more spaces or tab characters.

If all the optional parameters are omitted the assembler will display a list
of available options a screenful at a time. Press Enter to display the next
screenful.

For example, when assembling the source file power2.s48, use the
following command to generate a list file to the default filename
(power2.lst):

am32c power2 -L

Some options accept a filename, included after the option letter with a
separating space. For example, to generate a list file with the name
list.lst:

am32c power2 -l list.lst

Some other options accept a string that is not a filename. This is included
after the option letter, but without a space. For example, to generate a list
file to the default filename but in the subdirectory named list:

am32c power2 -Llist\

Note: The subdirectory you specify must already exist. The trailing
backslash is required because the parameter is prepended to the default
filename.

SETTING ASSEMBLER OPTIONS ASSEMBLER OPTIONS

AM32C-2

4

EXTENDED COMMAND LINE FILE
In addition to accepting options and source filenames from the command
line, the assembler can accept them from an extended command line file.

By default, extended command line files have the extension xcl, and can
be specified using the -f command line option. For example, to read the
command line options from extend.xcl, enter:

am32c -f extend.xcl

Error return codes
When using the M32C IAR Assembler from within a batch file, you may
need to determine whether the assembly was successful in order to decide
what step to take next. For this reason, the assembler returns the
following error return codes:

ASSEMBLER ENVIRONMENT VARIABLES
Options can also be specified using the ASMM32C environment variable.
The assembler appends the value of this variable to every command line,
so it provides a convenient method of specifying options that are required
for every assembly.

The following environment variables can be used with the M32C IAR
Assembler:

Return code Description

0 Assembly successful, warnings may appear

1 There were warnings (only if the -ws option is used)

2 There were errors

Environment variable Description

ASMM32C Specifies command line options; for example:

set ASMM32C=-L -ws

AM32C_INC Specifies directories to search for include files;
for example:

set AM32C_INC=c:\myinc\

ASSEMBLER OPTIONS OPTIONS SUMMARY

AM32C-2

5

For example, setting the following environment variable will always
generate a list file with the name temp.lst:

ASMM32C=-l temp.lst

For information about the environment variables used by the IAR XLINK
Linker and the IAR XLIB Librarian, see the IAR Linker and Library Tools
Reference Guide.

OPTIONS SUMMARY The following table summarizes the assembler options available from the
command line:

Command line option Description

-B Macro execution information

-b Make a library module

-c{DMEAO} Conditional list

-Dsymb[=value] Define symbol

-Enumber Maximum number of errors

-f extend.xcl Extend the command line

-G Open standard input as source

-Iprefix Include paths

-i #included text

-L[prefix] List to prefixed source name

-l filename List to named file

-Mab Macro quote characters

-N No header

-Oprefix Set object filename prefix

-o filename Set object filename

-plines Lines/page

-r Generate debug information

-S Set silent operation

-B ASSEMBLER OPTIONS

AM32C-2

6

The following sections give full reference information about each
assembler option.

-B Prints macro execution information. This option is mainly used in
conjunction with the list file options -L or -l; for additional information,
see page 11.

SYNTAX
-B

DESCRIPTION
Causes the assembler to print macro execution information to the
standard output stream on every call of a macro. The information consists
of:

◆ The name of the macro.

◆ The definition of the macro.

◆ The arguments to the macro.

◆ The expanded text of the macro.

This option is identical to the Macro execution info option in the
AM32C category in the IAR Embedded Workbench.

-s{+|-} Case sensitive user symbols

-tn Tab spacing

-Usymb Undefine symbol

-v[0|1] Processor configuration

-w[string][s] Disable warnings

-x{DI2} Include cross-reference

Command line option Description

ASSEMBLER OPTIONS -b

AM32C-2

7

-b Makes a library module to be used with the IAR XLIB Librarian.

SYNTAX
-b

DESCRIPTION
Causes the object file to be a library module rather than a program
module.

By default, the assembler produces a program module ready to be linked
with the IAR XLINK Linker. Use the -b option if you instead want the
assembler to make a library module for use with XLIB.

If the NAME directive is used in the source (to specify the name of the
program module), the -b option is ignored, i.e. the assembler produces a
program module regardless of the -b option.

This option is identical to the Make a LIBRARY module option in the
AM32C category in the IAR Embedded Workbench.

-c Conditional list. This option is mainly used in conjunction with the list
file options -L and -l; see page 11 for additional information.

SYNTAX
-c{DMEAO}

DESCRIPTION
Sets one or more of the following:

This option is related to the List options in the AM32C category in the
IAR Embedded Workbench.

Command line option Description

-cD Disable list file

-cM Macro definitions

-cE No macro expansions

-cA Assembled lines only

-cO Multiline code

-D ASSEMBLER OPTIONS

AM32C-2

8

-D Defines a symbol to be used by the preprocessor.

SYNTAX
Dsymb[=value]

DESCRIPTION
Defines a symbol with the name symb and the value value. If no value is
specified, 1 is used.

The -D option allows you to specify a value or choice on the command
line instead of in the source file.

For example, you could arrange your source to produce either the test or
production version of your program dependent on whether the symbol
testver was defined. To do this use include sections such as:

#ifdef testver
... ; additional code lines for test version only
#endif

Then select the version required in the command line as follows:

production version: am32c prog
test version: am32c prog -Dtestver

Alternatively, your source might use a variable that you need to change
often. You can then leave the variable undefined in the source, and use -D
to specify the value on the command line; for example:

am32c prog -Dframerate=3

This option is identical to the #define option in the AM32C category in
the IAR Embedded Workbench.

ASSEMBLER OPTIONS -E

AM32C-2

9

-E Sets maximum number of errors to be reported.

SYNTAX
-Enumber

DESCRIPTION
Sets the maximum number of errors the assembler reports.

By default, the maximum number is 100. The -E option allows you to
decrease or increase this number to see more or fewer errors in a single
assembly.

-f Extends the command line.

SYNTAX
-f extend.xcl

DESCRIPTION
Extends the command line with text read from the file named
extend.xcl. Notice that there must be a space between the option itself
and the filename.

The -f option is particularly useful where there is a large number of
options which are more conveniently placed in a file than on the
command line itself. For example, to run the assembler with further
options taken from the file extend.xcl, use:

am32c prog -f extend.xcl

-G ASSEMBLER OPTIONS

AM32C-2

10

-G Opens standard input as source.

SYNTAX
-G

DESCRIPTION
Causes the assembler to read the source from the standard input stream,
rather than from a specified source file.

When -G is used, no source filename may be specified.

-I Includes paths to be used by the preprocessor.

SYNTAX
-Iprefix

DESCRIPTION
Adds the #include file search prefix prefix.

By default, the assembler searches for #include files only in the current
working directory and in the paths specified in the AM32C_INC
environment variable. The -I option allows you to give the assembler the
names of directories which it will also search if it fails to find the file in
the current working directory.

For example, using the options:

-Ic:\global\ -Ic:\thisproj\headers\

and then writing:

#include "asmlib.hdr"

in the source, will make the assembler search first in the current
directory, then in the directory c:\global\, and finally in the directory
c:\thisproj\headers\ provided that the AM32C_INC environment
variable is set.

This option is related to the Include option in the AM32C category in
the IAR Embedded Workbench.

ASSEMBLER OPTIONS -i

AM32C-2

11

-i Includes #include text to be used by the preprocessor.

SYNTAX
-i

DESCRIPTION
Includes #include files in the list file.

By default, the assembler does not list #include file lines since these
often come from standard files and would waste space in the list file. The
-i option allows you to list these file lines.

This option is related to the #included text option in the AM32C
category in the IAR Embedded Workbench.

-L Generates a list file with the prefixed source file name.

SYNTAX
-L[prefix]

DESCRIPTION
Causes the assembler to generate a listing and send it to the file
prefixsourcename.lst. Notice that you must not include a space before
the prefix.

By default, the assembler does not generate a list file. To simply generate
a listing, you use the -L option without a prefix. The listing is sent to the
file with the same name as the source, but extension lst.

The -L option lets you specify a prefix, for example to direct the list file
to a subdirectory:

am32c prog -Llist\

This sends the list file to list\prog.lst rather than the default
prog.lst.

-L may not be used at the same time as -l.

This option is related to the List options in the AM32C category in the
IAR Embedded Workbench.

-l ASSEMBLER OPTIONS

AM32C-2

12

-l Generates a list file with the specified filename.

SYNTAX
-l filename

DESCRIPTION
Causes the assembler to generate a listing and send it to the named file. If
no extension is specified, lst is used. Notice that you must include a
space before the filename.

By default, the assembler does not generate a list file. The -l option
generates a listing, and directs it to a specific file. To generate a list file
with the default filename, use the -L option instead.

This option is related to the List options in the AM32C category in the
IAR Embedded Workbench.

-M Specifies quote characters for macro arguments.

SYNTAX
-Mab

DESCRIPTION
Sets the characters used for the left and right quotes of each macro
argument to a and b respectively.

By default, the characters are < and >. The -M option allows you to change
the quote characters to suit an alternative convention or simply to allow
a macro argument to contain < or > themselves.

For example, using the option:

-M[]

in the source you would write, for example:

print [>]

to call a macro print with > as the argument.

Note: Depending on your host environment, it may be necessary to use
quote marks with the macro quote characters, for example:

am32c filename -M’<>’

ASSEMBLER OPTIONS -N

AM32C-2

13

This option is identical to the Macro quote chars option in the AM32C
category in the IAR Embedded Workbench.

-N Omits the header from assembler list file. This option is useful in
conjunction with the list file options -L or -l; see page 11 for additional
information.

SYNTAX
-N

DESCRIPTION
By default the assembler list file contains a header section. Use this option
to omit the header section that is normally printed in the beginning of the
list file.

This option is related to the List options in the AM32C category in the
IAR Embedded Workbench.

-O Sets the object filename prefix.

SYNTAX
-Oprefix

DESCRIPTION
Set the prefix to be used on the filename of the object file. Notice that you
must not include a space before the prefix.

By default the prefix is null, so the object filename corresponds to the
source filename (unless -o is used). The -O option lets you specify a
prefix, for example to direct the object file to a subdirectory:

am32c prog -Oobj\

This sends the object to obj\prog.r48 rather than to the default file
prog.r48.

Notice that -O may not be used at the same time as -o.

-o ASSEMBLER OPTIONS

AM32C-2

14

-o Sets the object filename.

SYNTAX
-o filename

DESCRIPTION
Sets the filename to be used for the object file. Notice that you must
include a space before the filename. If no extension is specified, r48 is
used.

For example, the following command puts the object code to the file
obj.r48 instead of the default prog.r48:

am32c prog -o obj

Notice that you must include a space between the option itself and the
filename.

-o may not be used at the same time as -O.

This option is related to the filename and directory that you specify when
creating a new source file or project in the IAR Embedded Workbench.

-p Sets number of lines per page. This option is used in conjunction with the
list options -L or -l; see page 11 for additional information.

SYNTAX
-plines

DESCRIPTION
The -p option sets the number of lines per page to lines, which must be
in the range 10 to 150.

This option is identical to the Lines/page option in the AM32C category
in the IAR Embedded Workbench.

ASSEMBLER OPTIONS -r

AM32C-2

15

-r Generates debug information to be used with C-SPY.

SYNTAX
-r

DESCRIPTION
The -r option makes the assembler include information that allows a
symbolic debugger such as C-SPY to be used on the program.

By default, the assembler does not generate debug information, to reduce
the size and link time of the object file. You must use the -r option if you
want to use a debugger with the program.

This option is identical to the Generate debug information option in
the AM32C category in the IAR Embedded Workbench.

-S Specifies silent operation.

SYNTAX
-S

DESCRIPTION
The -S option causes the assembler to operate without sending any
messages to the standard output stream.

By default, the assembler sends various insignificant messages via the
standard output stream. You can use the -S option to prevent this. The
assembler sends error and warning messages to the error output stream,
so they are displayed regardless of this setting.

-s ASSEMBLER OPTIONS

AM32C-2

16

-s Makes user symbols case sensitive.

SYNTAX
-s{+|-}

DESCRIPTION
The -s option determines whether the assembler is sensitive to the case
of user symbols:

By default, case sensitivity is on. This means that, for example, LABEL and
label refer to different symbols. Use -s- to turn case sensitivity off, in
which case LABEL and label will refer to the same symbol.

This option is identical to the Case sensitive user symbols option in the
AM32C category in the IAR Embedded Workbench.

-t Specifies the tab spacing. This option is useful in conjunction with the list
options -L or -l; see page 11 for additional information.

SYNTAX
-tn

DESCRIPTION
The -t option sets the number of character positions per tab stop to n,
which must be in the range 2 to 9.

By default, the assembler sets eight character positions per tab stop.

This option is identical to the Tab spacing option in the AM32C
category in the IAR Embedded Workbench.

Command line option Description

-s+ Case sensitive user symbols

-s- Case insensitive user symbols

ASSEMBLER OPTIONS -U

AM32C-2

17

-U Undefines a predefined symbol.

SYNTAX
-Usymb

DESCRIPTION
The -U option undefines the symbol symb.

By default, the assembler provides certain predefined symbols; see
Predefined symbols, page 27. The -U option allows you to undefine such a
predefined symbol to make its name available for your own use through
a subsequent -D option or source definition.

To use the name of the predefined symbol __TIME__ for your own
purposes, you could undefine it with:

am32c prog -U __TIME__

This option is identical to the #undef option in the AM32C category in
the IAR Embedded Workbench.

-v Specifies the processor configuration.

SYNTAX
-v[0|1]

DESCRIPTION
Use the -v option to specify the processor configuration.

The following list summarizes the differences between the -v options:

The following table shows how the -v options are mapped to the
processor options:

If no processor configuration option is specified, the assembler uses the
-v0 option by default.

Option Processor

-v0 M32C

-v1 M16C/80

-w ASSEMBLER OPTIONS

AM32C-2

18

The -v option is identical to the Processor configuration option in the
General category in the IAR Embedded Workbench.

-w Disables warnings.

SYNTAX
-w[string][s]

DESCRIPTION
By default, the assembler displays a warning message when it detects an
element of the source which is legal in a syntactical sense, but may
contain a programming error; see Assembler diagnostics, page 95, for
details.

Use this option to disable warnings. The -w option without a range
disables all warnings. The -w option with a range performs the following:

By default, the assembler generates exit code 0 for warnings. Use the -ws
option to generate exit code 1 if a warning message is produced.

To disable just warning 0 (unreferenced label), use the following
command:

am32c prog -w-0

To disable warnings 0 to 8, use the following command:

am32c prog -w-0-8

Only one -w option may be used on the command line.

Command line option Description

-w+ Enables all warnings.

-w- Disables all warnings.

-w+n Enables just warning n.

-w-n Disables just warning n.

-w+m-n Enables warnings m to n.

-w-m-n Disables warnings m to n.

ASSEMBLER OPTIONS OPTIONS SUMMARY

AM32C-2

19

This option is identical to the Warnings option in the AM32C category
in the IAR Embedded Workbench.

-x Includes cross-references in the assembler list file. This option is useful in
conjunction with the list options -L or -l; see page 11 for additional
information.

SYNTAX
-x{DI2}

DESCRIPTION
Causes the assembler to generate a cross-reference list at the end of the
list file. See the chapter Assembler file formats, page 21, for details.

The following options are available:

This option is identical to the Include cross-reference option in the
AM32C category in the IAR Embedded Workbench.

Command line option Description

-xD #defines

-xI Internal symbols

-x2 Dual line spacing

OPTIONS SUMMARY ASSEMBLER OPTIONS

AM32C-2

20

AM32C-2

21

ASSEMBLER FILE
FORMATS
This chapter describes the source format for the M32C IAR Assembler,
and the format of assembler listings.

SOURCE FORMAT The format of an assembler source line is as follows:

[label [:]] operation [.size] [:format] [operands]
[; comment] [\]

where the components are as follows:

The fields can be separated by spaces or tabs.

A source line may not exceed 2048 characters.

Tab characters (ASCII 09H), are expanded according to the most
common practice; i.e. to columns 8, 16, 24 etc.

label A label, which is assigned the value and type of
the current program location counter (PLC). The
: (colon) is optional if the label starts in the first
column.

operation An assembler instruction or directive. This must
not start in the first column.

size Size specifier: Short (.S), Byte (.B), Word (.W),
Address (.A), or Long (.L).

format Format specifier: Generic (:G), Quick (:Q), Short
(:S), or Zero (:Z).

operands One, two, or three operands, separated by
commas.

comment Comment, preceded by a ; (semicolon). C++
style comments starting with // (double slash)
are also allowed.

\ Line continuation character.

EXPRESSIONS AND OPERATORS ASSEMBLER FILE FORMATS

AM32C-2

22

EXPRESSIONS AND
OPERATORS

Expressions can consist of operands and operators.

The assembler will accept a wide range of expressions, including both
arithmetic and logical operations. All operators use 32-bit two’s
complement integers, and range checking is only performed when a value
is used to generate code.

Expressions are evaluated from left to right, unless this order is
overridden by the priority of operators. The valid operands in an
expression are:

◆ User-defined symbols and labels.

◆ Constants, excluding floating-point constants.

◆ The program location counter (PLC) symbol, $.

These are described in greater detail in the following sections. The valid
operators are described in the chapter Assembler operators.

TRUE AND FALSE
In expressions a zero value is considered FALSE, and a non-zero value is
considered TRUE.

Conditional expressions return the value 0 for FALSE and 1 for TRUE.

USING SYMBOLS IN RELOCATABLE EXPRESSIONS
Expressions that include symbols in relocatable segments cannot be
resolved at assembly time, because they depend on where the segments
are located by the IAR XLINK Linker™.

Such expressions are evaluated and resolved at link time, by the linker.
There are no restrictions on the expression; any operator can be used on
symbols from any segment, or any combination of segments. For example,
a program could define the segments DATA and CODE as follows:

.MODULE EX_1

.EXTERN third

.RSEG DATA
first DS8 9
second DS8 3

 .RSEG CODE

ASSEMBLER FILE FORMATS EXPRESSIONS AND OPERATORS

AM32C-2

23

 INC.B first-7
 INC.B first+7

 INC.B first*third-second
.ENDMOD

The following list shows what the assembler list file looks like:

000000 A68E...... INC.B first-7

000005 A68E...... INC.B first+7

00000A A68E...... INC.B first*third-second

00000F .END

The expressions are evaluated and resolved by XLINK:

xlink -Z(CODE)CODE=80000 -Z(DATA)DATA=500 -Dthird=2
filename

After resolving the relocatable symbols the following absolute code is
generated:

080000 A68EF90400 INC.B first-7; 0x04F9

080005 A68E070500 INC.B first+7; 0x0507

08000A A68EF70400 INC.B first*third-second; 0x04F7

08000F .END

SYMBOLS
User-defined symbols can be up to 255 characters long, and all characters
are significant.

Symbols must begin with a letter, a–z or A–Z, ? (question mark), or
_ (underscore). Symbols can include the digits 0–9 and $ (dollar).

For user-defined symbols case is significant. Case is insignificant for
built-in symbols like instructions, registers, operators, and directives. For
user-defined symbols, case sensitivity can be turned on and off, see -s,
page 16.

LABELS
Symbols used for memory locations are referred to as labels.

Location counter
The location counter is called $ (dollar). For example:

JMP $; Loop forever

EXPRESSIONS AND OPERATORS ASSEMBLER FILE FORMATS

AM32C-2

24

FORMAT MODIFIERS
The assembler will normally assemble an instruction into the smallest
possible number of bytes. The format modifiers can be used to instruct
the assembler to use a less efficient format. This feature might be useful
to keep the execution speed or code size fixed with varying data.

The following examples demonstrate how the same instruction can
generate different amounts of code, and how the format specifiers can be
used to limit the optimizations that are applied.

In this example the assembler chooses the most compact format for a
variety of MOV commands, taking between 4 bytes and 1 byte.

 .MODULE EX_2
 .RSEG CODE
 MOV.W #0x1234,R1
 MOV.W #0x1234,R0
 MOV.W #0x3,R0
 MOV.W #0x0,R0
 MOV.B #0x3,R0L
 MOV.B #0x0,R0L

Now the same instructions as above are forced into the most general
format (the variations in length are caused by the size of the immediate
data):

 MOV.W:G #0x1234,R1
 MOV.W:G #0x1234,R0
 MOV.W:G #0x3,R0
 MOV.W:G #0x0,R0
 MOV.B:G #0x3,R0L
 MOV.B:G #0x0,R0L

In the next example, a single instruction is forced into all the formats. If
a format is not specified, the most efficient one is used.

 MOV.B #0x0,R0L
 MOV.B:Z #0x0,R0L
 MOV.B:S #0x0,R0L
 MOV.B:Q #0x0,R0L
 MOV.B:G #0x0,R0L
 .ENDMOD

ASSEMBLER FILE FORMATS EXPRESSIONS AND OPERATORS

AM32C-2

25

The following list file is produced:

 15 000000 99EF3412 MOV.W #0x1234,R1

 16 000004 053412 MOV.W #0x1234,R0

 17 000007 F9A3 MOV.W #0x3,R0

 18 000009 03 MOV.W #0x0,R0

 19 00000A F8A3 MOV.B #0x3,R0L

 20 00000C 02 MOV.B #0x0,R0L

 21 00000D

 22 00000D 99EF3412 MOV.W:G #0x1234,R1

 23 000011 99AF3412 MOV.W:G #0x1234,R0

 24 000015 99AF0300 MOV.W:G #0x3,R0

 25 000019 99AF0000 MOV.W:G #0x0,R0

 26 00001D 98AF03 MOV.B:G #0x3,R0L

 27 000020 98AF00 MOV.B:G #0x0,R0L

 28 000023

 29 000023 02 MOV.B #0x0,R0L

 30 000024 02 MOV.B:Z #0x0,R0L

 31 000025 0400 MOV.B:S #0x0,R0L

 32 000027 F8A0 MOV.B:Q #0x0,R0L

 33 000029 98AF00 MOV.B:G #0x0,R0L

Attempting to force an instruction into a format that is too small will
result in an error. For additional information about error messages, refer
to the chapter Assembler diagnostics.

For detailed information about the formats available for each command,
refer to the manufacturer’s data book.

Note: Errors may also be detected in the range check during the linking
process. For additional information, refer to the IAR Linker and Library
Tools Reference Guide.

INTEGER CONSTANTS
Since all IAR Systems Assemblers use 32-bit two’s complement internal
arithmetic, integers have a (signed) range from -2147483648 to
2147483647.

Constants are written as a sequence of digits with an optional - (minus)
sign in front to indicate a negative number.

Commas and decimal points are not permitted.

EXPRESSIONS AND OPERATORS ASSEMBLER FILE FORMATS

AM32C-2

26

The following types of number representation are supported:

Note: Both the prefix and suffix can be written with uppercase or
lowercase letters.

ASCII CHARACTER CONSTANTS
ASCII constants can consist of between zero and more characters
enclosed in single or double quotes. Only printable characters and spaces
may be used in ASCII strings. If the quote character itself is to be
accessed, two consecutive quotes must be used:

REAL NUMBER CONSTANTS
The M32C Assembler will accept real numbers as constants and convert
them into IEEE single-precision (signed 32-bit) real-number format.

Floating-point numbers can be written in the format:

[+|-][digits].[digits][{E|e}[+|-]digits]

Integer type Example

Binary B'1010

Octal 1234Q, 1234O, Q'1234, O'1234

Decimal 1234, -1, D'1234

Hexadecimal 0FFFFH, 0xFFFF, H’FFFF, X'FFFF

Format Value

'ABCD' ABCD (four characters).

"ABCD" ABCD'\0' (five characters, the last ASCII null).

'A''B' A'B

'A''' A'

'''' (4 quotes) '

'' (2 quotes) Empty string (no value).

"" Empty string (an ASCII null character).

\' '

\\ \

ASSEMBLER FILE FORMATS EXPRESSIONS AND OPERATORS

AM32C-2

27

Some valid examples are as follows:

Spaces and tabs are not allowed in real constants.

Note: Floating-point numbers will not give meaningful results when used
in expressions.

PREDEFINED SYMBOLS
The M32C Assembler defines a set of symbols for use in assembler source
files. The symbols provide information about the current assembly,
allowing you to test them in preprocessor directives or include them in
the assembled code.

Format Value

10.23 1.023 x 101

1.23456E-24 1.23456 x 10-24

1.0E3 1.0 x 103

Symbol Value

_ _DATE_ _ Current date in Mmm dd yyyy format (string).

_ _FILE_ _ Current source filename (string).

_ _IAR_SYSTEMS_ASM_ _ IAR assembler identifier (number).

_ _LINE_ _ Current source line number (number).

_ _TID_ _ Target identity, consisting of two bytes
(number). The low byte is the target identity,
which is 48 for the AM32C. The high byte is
not used.

_ _TIME_ _ Current time in hh:mm:ss format (string).

_ _VER_ _ Version number in integer format; for
example, version 4.17 is returned as 417
(number).

REGISTER SYMBOLS ASSEMBLER FILE FORMATS

AM32C-2

28

Including symbol values in code
To include a symbol value in the code, you use the symbol in one of the
data-definition directives.

For example, to include the time and date of assembly as a string for the
program to display:

timdat DC8 _ _TIME_ _,",",_ _DATE_ _,0
 ...
 MOV.L timdat,A0 ; load address of string
 JSR printstring ; routine to print string

Testing symbols for conditional assembly
To test a symbol at assembly time, you use one of the conditional
assembly directives.

For example, if you have assembler source files intended for use with
different assemblers, you may want to test that the code is appropriate for
a specific assembler. You could do this using the _ _IAR_SYSTEMS_ASM_ _
symbol as follows:

#ifdef _ _IAR_SYSTEMS_ASM_ _
 ...
#else
 ...
#endif

REGISTER SYMBOLS The following table shows the existing predefined register symbols:

Name Description

R0L, R0H, R1L, R1H 8-bit byte register (part of word
register)

R0, R1, R2, R3 16-bit (word) register

R2R0, R3R1 32-bit (long) register pair

R1R2R0 48-bit register group

A0, A1 24-bit address register

SP, ISP, USP 24-bit stack pointer register

SB, FB 24-bit base register

ASSEMBLER FILE FORMATS REGISTER SYMBOLS

AM32C-2

29

FLG Status flag register

INTB Interrupt-table base register

SVP, VCT, SVF High-speed interrupt registers

DMDx, DCTx
DRCx, DMAx
DSAx, DRAx

DMAC-related registers, x signifies
the channel number

Name Description

LISTING FORMAT ASSEMBLER FILE FORMATS

AM32C-2

30

LISTING FORMAT The format of the M32C Assembler listing is as follows:

###

#

IAR Systems M32C Assembler VX.x dd/mmm/yyyy hh:mm:ss

#

Source file = filename.asm

List file = filename.lst

Object file = filename.r48

Command line = filename.asm -L -ws

#

Copyright 1999 IAR Systems. All rights reserved.

###

 1 000000 ; Example of an assembler file with macro

 2 000000

 8 000000

 9 000000 .EXTERN result1, result2

 10 000000 main:

 11 000000 B96B...... MOV.W result1,R3

 12 000005 xch result2,R3

 12.1 000005 C78E...... PUSH.W result2

 12.2 00000A C79B...... MOV.W R3,result2

 12.3 00000F B96F POP.W R3

 12.4 000011 .ENDM

 13 000011 DF RTS

 14 000012 .END

##############################

CRC:314A

Errors: 0

Warnings: 0

Bytes: 18

##############################

Header

Assembler listing

Macro-generated lines

CRC

ASSEMBLER FILE FORMATS LISTING FORMAT

AM32C-2

31

The assembly list contains the following fields of information:

◆ The line number in the source file. Lines generated by macros will, if
listed, have a . (period) in the source line number field.

◆ The address field shows the location in memory, which can be
absolute or relative depending on the type of segment. The notation
is hexadecimal.

◆ The data field shows the data generated by the source line. The
notation is hexadecimal. Unsolved values are represented by
(periods) in the list file, where two periods signify one byte. These
unsolved values will be solved during the linking process.

◆ The assembler source line.

 11 000000 B96B...... MOV.W result1,R3

 12 000005 xch result2,R3

 12.1 000005 C78E...... PUSH.W result2

 12.2 00000A C79B...... MOV.W R3,result2

 12.3 00000F B96F POP.W R3

Source line number

Address field

Data field

Source line

OUTPUT FORMATS ASSEMBLER FILE FORMATS

AM32C-2

32

SYMBOL AND CROSS-REFERENCE TABLE
If the LSTXRF+ directive has been included, or the option Include cross
reference (-x) has been specified, a symbol and cross-reference table of
the following type will be produced:

The following information is provided for each symbol in the table:

OUTPUT FORMATS The relocatable and absolute output is in the same format for all IAR
assemblers, because object code is always intended for processing with
the IAR XLINK Linker.

In absolute formats the output from XLINK is, however, normally
compatible with the chip vendor’s debugger programs (monitors), as well
as with PROM programmers and stand-alone emulators from
independent sources.

Segment Type Mode

CODE UNTYPED REL

Label Mode Type Segment Value/Offset

A ABS CONST PUB UNTYP. ASEG 18

B ABS CONST PUB UNTYP. ASEG 1C

begin REL CONST PUB UNTYP. CODE 0

num ABS CONST PUB UNTYP. ASEG

Segments

Symbols

Information Description

Label The label’s user-defined name.

Mode ABS (Absolute), or REL (Relative).

Type The label’s type.

Segment The name of the segment this label is defined relative to.

Value/Offset The value (address) of the label within the current
module, relative to the beginning of the current segment.

AM32C-2

33

ASSEMBLER OPERATORS
This chapter first describes the precedence of the assembler operators,
and then summarizes the operators, classified according to their
precedence. Finally, this chapter provides complete reference information
about each operator, presented in alphabetical order.

PRECEDENCE OF
OPERATORS

Each operator has a precedence number assigned to it that determines the
order in which the operator and its operands are evaluated. The
precedence numbers range from 1 (the highest precedence, i.e. first
evaluated) to 7 (the lowest precedence, i.e. last evaluated).

The following rules determine how expressions are evaluated:

◆ The highest precedence (lowest number) operators are evaluated
first, then the second highest precedence operators, and so on until
the lowest precedence operators are evaluated.

◆ Operators of equal precedence are evaluated from left to right in the
expression.

◆ Parentheses (and) can be used to group operators and operands and
to control the order in which the expressions are evaluated. For
example, the following expression evaluates to 1:

7/(1+(2*3))

The following tables give a summary of the operators, in order of priority.
Synonyms, where available, are shown in brackets after the operator
name.

SUMMARY OF ASSEMBLER OPERATORS ASSEMBLER OPERATORS

AM32C-2

34

SUMMARY OF
ASSEMBLER
OPERATORS

UNARY OPERATORS – 1

MULTIPLICATIVE ARITHMETIC OPERATORS – 2

ADDITIVE ARITHMETIC OPERATORS – 3

+ Unary plus.

– Unary minus.

NOT (!) Logical NOT.

LOW Low byte.

HIGH High byte.

BYTE1 First byte.

BYTE2 Second byte.

BYTE3 Third byte.

BYTE4 Fourth byte.

LWRD Low word.

HWRD High word.

DATE Current date/time.

SFB Segment begin.

SFE Segment end.

SIZEOF Segment size.

BINNOT (~) Bitwise NOT.

* Multiplication.

/ Division.

MOD (%) Modulo.

+ Addition.

– Subtraction.

ASSEMBLER OPERATORS SUMMARY OF ASSEMBLER OPERATORS

AM32C-2

35

SHIFT OPERATORS – 4

AND OPERATORS – 5

OR OPERATORS – 6

COMPARISON OPERATORS – 7

The following sections give full descriptions of each assembler operator.

SHR (>>) Logical shift right.

SHL (<<) Logical shift left.

AND (&&) Logical AND.

BINAND (&) Bitwise AND.

OR (||) Logical OR.

XOR Logical exclusive OR.

BINOR (|) Bitwise OR.

BINXOR (^) Bitwise exclusive OR.

EQ (=, ==) Equal.

NE (<>, !=) Not equal.

GT (>) Greater than.

LT (<) Less than.

UGT Unsigned greater than.

ULT Unsigned less than.

GE (>=) Greater than or equal.

LE (<=) Less than or equal.

* ASSEMBLER OPERATORS

AM32C-2

36

* Multiplication (2).

DESCRIPTION
* produces the product of its two operands. The operands are taken as
signed 32-bit integers and the result is also a signed 32-bit integer.

EXAMPLES
2*2 → 4
-2*2 → -4

+ Unary plus (1).

DESCRIPTION
Unary plus operator.

EXAMPLES
+3 → 3
3*+2 → 6

+ Addition (3).

DESCRIPTION
The + addition operator produces the sum of the two operands which
surround it. The operands are taken as signed 32-bit integers and the
result is also a signed 32-bit integer.

EXAMPLES
92+19 → 111
-2+2 → 0
-2+-2 → -4

ASSEMBLER OPERATORS –

AM32C-2

37

– Unary minus (1).

DESCRIPTION
The unary minus operator performs arithmetic negation on its operand.

The operand is interpreted as a 32-bit signed integer and the result of the
operator is the two’s complement negation of that integer.

– Subtraction (3).

DESCRIPTION
The subtraction operator produces the difference when the right operand
is taken away from the left operand. The operands are taken as signed
32-bit integers and the result is also signed 32-bit integer.

EXAMPLES
92-19 → 73
-2-2 → -4
-2--2 → 0

/ Division (2).

DESCRIPTION
/ produces the integer quotient of the left operand divided by the right
operator. The operands are taken as signed 32-bit integers and the result
is also a signed 32-bit integer.

EXAMPLES
9/2 → 4
-12/3 → -4
9/2*6 → 24

AND (&&) ASSEMBLER OPERATORS

AM32C-2

38

AND (&&) Logical AND (5).

DESCRIPTION
Use AND to perform logical AND between its two integer operands. If both
operands are non-zero the result is 1; otherwise it is zero.

EXAMPLES
B’1010 AND B’0011 → 1
B’1010 AND B’0101 → 1
B’1010 AND B’0000 → 0

BINAND(&) Bitwise AND (5).

DESCRIPTION
Use BINAND to perform bitwise AND between the integer operands.

EXAMPLES
B’1010 BINAND B’0011 → B’0010
B’1010 BINAND B’0101 → B’0000
B’1010 BINAND B’0000 → B’0OOO

BINNOT (~) Bitwise NOT (1).

DESCRIPTION
Use BINNOT to perform bitwise NOT on its operand.

EXAMPLE
BINNOT B’1010 → B’11111111111111111111111111110101

ASSEMBLER OPERATORS BINOR (|)

AM32C-2

39

BINOR (|) Bitwise OR (6).

DESCRIPTION
Use BINOR to perform bitwise OR on its operands.

EXAMPLES
B’1010 BINOR B’0101 → B’1111
B’1010 BINOR B’0000 → B’1010

BINXOR (^) Bitwise exclusive OR (6).

DESCRIPTION
Use BINXOR to perform bitwise XOR on its operands.

EXAMPLES
B’1010 BINXOR B’0101 → B’1111
B’1010 BINXOR B’0011 → B’1001

BYTE1 First byte (1).

DESCRIPTION
BYTE1 takes a single operand, which is interpreted as an unsigned, 32-bit
integer value. The result is the unsigned, 8-bit integer value of the lower
order byte of the operand.

EXAMPLE
BYTE1 0xABCD → 0xCD

BYTE2 Second byte (1).

DESCRIPTION
BYTE2 takes a single operand, which is interpreted as an unsigned, 32-bit
integer value. The result is the middle-low byte (bits 15 to 8) of the
operand.

BYTE3 ASSEMBLER OPERATORS

AM32C-2

40

EXAMPLE
BYTE2 0x12345678 → 0x56

BYTE3 Third byte (1).

DESCRIPTION
BYTE3 takes a single operand, which is interpreted as an unsigned, 32-bit
integer value. The result is the middle-high byte (bits 23 to 16) of the
operand.

EXAMPLE
BYTE3 0x12345678 → 0x34

BYTE4 Fourth byte (1).

DESCRIPTION
BYTE4 takes a single operand, which is interpreted as an unsigned, 32-bit
integer value. The result is the middle-high byte (bits 23 to 16) of the
operand.

EXAMPLE
BYTE4 0x12345678 → 0x12

DATE Current date/time (1).

DESCRIPTION
Use the DATE operator to specify when the current assembly began.

The DATE operator takes an absolute argument (expression) and returns:

DATE 1 Current second (0–59).

DATE 2 Current minute (0–59).

DATE 3 Current hour (0–23).

DATE 4 Current day (1–31).

ASSEMBLER OPERATORS EQ (=, ==)

AM32C-2

41

EXAMPLE
To assemble the date of assembly:

today: DC8 DATE 5, DATE 4, DATE 3

EQ (=, ==) Equal (7).

DESCRIPTION
EQ evaluates to 1 (true) if its two operands are identical in value, or to 0
(false) if its two operands are not identical in value.

EXAMPLES
1 EQ 2 → 0
2 EQ 2 → 1
'ABC' EQ 'ABCD' → 0

GE(>=) Greater than or equal (7).

DESCRIPTION
GE evaluates to 1 (true) if the left operand is equal to or has a higher
numeric value than the right operand.

EXAMPLES
1 GE 2 → 0
2 GE 1 → 1
1 GE 1 → 1

DATE 5 Current month (1–12).

DATE 6 Current year MOD 100 (1998 →98,
2000 →00, 2002 →02).

GT (>) ASSEMBLER OPERATORS

AM32C-2

42

GT (>) Greater than (7).

DESCRIPTION
GT evaluates to 1 (true) if the left operand has a higher numeric value than
the right operand.

EXAMPLES
-1 GT 1 → 0
2 GT 1 → 1
1 GT 1 → 0

HIGH Second byte (1).

DESCRIPTION
HIGH takes a single operand to its right which is interpreted as an
unsigned, 16-bit integer value. The result is the unsigned 8-bit integer
value of the higher order byte of the operand.

EXAMPLE
HIGH 0xABCD → 0xAB

HWRD (MSW) High word (1).

DESCRIPTION
HWRD takes a single operand, which is interpreted as an unsigned, 32-bit
integer value. The result is the high word (bits 31 to 16) of the operand.

EXAMPLE
HWRD 0x12345678 → 0x1234

ASSEMBLER OPERATORS LE (<=)

AM32C-2

43

LE (<=) Less than or equal (7).

DESCRIPTION
LE evaluates to 1 (true) if the left operand has a lower or equal numeric
value to the right operand.

EXAMPLES
1 LE 2 → 1
2 LE 1 → 0
1 LE 1 → 1

LOW Low byte (1).

DESCRIPTION
LOW takes a single operand, which is interpreted as an unsigned, 32-bit
integer value. The result is the unsigned, 8-bit integer value of the lower
order byte of the operand.

EXAMPLE
LOW 0xABCD → 0xCD

LT (<) Less than (7).

DESCRIPTION
LT evaluates to 1 (true) if the left operand has a lower numeric value than
the right operand.

EXAMPLES
-1 LT 2 → 1
2 LT 1 → 0
2 LT 2 → 0

LWRD (LSW) ASSEMBLER OPERATORS

AM32C-2

44

LWRD (LSW) Low word (1).

DESCRIPTION
LWRD takes a single operand, which is interpreted as an unsigned, 32-bit
integer value. The result is the low word (bits 15 to 0) of the operand.

EXAMPLE
LWRD 0x12345678 → 0x5678

MOD (%) Modulo (2).

DESCRIPTION
MOD produces the remainder from the integer division of the left operand
by the right operand. The operands are taken as signed 32-bit integers and
the result is also a signed, 32-bit integer.

X MOD Y is equivalent to X-Y*(X/Y) using integer division.

EXAMPLES
2 MOD 2 → 0
12 MOD 7 → 5
3 MOD 2 → 1

NE (<>, !=) Not equal (7).

DESCRIPTION
NE evaluates to 0 (false) if its two operands are identical in value or to 1
(true) if its two operands are not identical in value.

EXAMPLES
1 NE 2 → 1
2 NE 2 → 0
'A' NE 'B' → 1

ASSEMBLER OPERATORS NOT (!)

AM32C-2

45

NOT (!) Logical NOT (1).

DESCRIPTION
Use NOT to negate a logical argument.

EXAMPLES
NOT B’0101 → 0
NOT B’0000 → 1

OR (||) Logical OR (6).

DESCRIPTION
Use OR to perform a logical OR between two integer operands.

EXAMPLES
B’1010 OR B’0000 → 1
B’0000 OR B’0000 → 0

SFB Segment begin (1).

SYNTAX
SFB(segment [{+ | -} offset])

PARAMETERS

DESCRIPTION
SFB accepts a single operand to its right. The operand must be the name
of a relocatable segment. The operator evaluates to the absolute address
of the first byte of that segment. This evaluation takes place at linking
time.

segment The name of a relocatable segment, which
must be defined before SFB is used.

offset An optional offset from the start address. The
parentheses are optional if offset is omitted.

SFE ASSEMBLER OPERATORS

AM32C-2

46

EXAMPLES
 NAME demo
 RSEG CODE
start DC16 SFB(CODE)

Even if the above code is linked with many other modules, start will still
be set to the address of the first byte of the segment.

SFE Segment end (1).

SYNTAX
SFE (segment [{+ | -} offset])

PARAMETERS

DESCRIPTION
SFE accepts a single operand to its right. The operand must be the name
of a relocatable segment. The operator evaluates to the segment start
address plus the segment size. This evaluation takes place at linking time.

EXAMPLES
 NAME demo
 RSEG CODE
end: DC16 SFE(CODE)

Even if the above code is linked with many other modules, end will still
be set to the address of the last byte of the segment.

segment The name of a relocatable segment, which
must be defined before SFE is used.

offset An optional offset from the start address. The
parentheses are optional if offset is omitted.

ASSEMBLER OPERATORS SHL (<<)

AM32C-2

47

SHL (<<) Logical shift left (4).

DESCRIPTION
Use SHL to shift the left operand, which is always treated as unsigned, to
the left. The number of bits to shift is specified by the right operand,
interpreted as an integer value between 0 and 32.

EXAMPLES
B’00011100 SHL 3 → B’11100000
B’00000111111111111 SHL 5 → B’11111111111100000
14 SHL 1 → 28

SHR (>>) Logical shift right (4).

DESCRIPTION
Use SHR to shift the left operand, which is always treated as unsigned, to
the right. The number of bits to shift is specified by the right operand,
interpreted as an integer value between 0 and 32.

EXAMPLES
B’01110000 SHR 3 → B’00001110
B’1111111111111111 SHR 20 → 0
14 SHR 1 → 7

SIZEOF Segment size (1).

SYNTAX
SIZEOF segment

PARAMETERS

segment The name of a relocatable segment, which
must be defined before SIZEOF is used.

UGT ASSEMBLER OPERATORS

AM32C-2

48

DESCRIPTION
SIZEOF generates SFE-SFB for its argument, which should be the name of
a relocatable segment; i.e. it calculates the size in bytes of a segment. This
is done when modules are linked together.

EXAMPLES
 NAME demo
 RSEG CODE
size: DC16 SIZEOF CODE

sets size to the size of segment CODE.

UGT Unsigned greater than (7).

DESCRIPTION
UGT evaluates to 1 (true) if the left operand has a larger absolute value
than the right operand.

EXAMPLES
2 UGT 1 → 1
-1 UGT 1 → 1

ULT Unsigned less than (7).

DESCRIPTION
ULT evaluates to 1 (true) if the left operand has a smaller absolute value
than the right operand.

EXAMPLES
1 ULT 2 → 1
-1 ULT 2 → 0

ASSEMBLER OPERATORS XOR

AM32C-2

49

XOR Logical exclusive OR (6).

DESCRIPTION
Use XOR to perform logical XOR on its two operands.

EXAMPLES
B’0101 XOR B’1010 → 0
B’0101 XOR B’0000 → 1

SUMMARY OF ASSEMBLER OPERATORS ASSEMBLER OPERATORS

AM32C-2

50

AM32C-2

51

ASSEMBLER DIRECTIVES
This chapter gives an alphabetical summary of the assembler directives.
It then describes the syntax conventions and provides complete reference
information for each category of directives:

◆ Module control directives, page 58

◆ Symbol control directives, page 61

◆ Segment control directives, page 63

◆ Value assignment directives, page 68

◆ Conditional assembly directives, page 72

◆ Macro processing directives, page 73

◆ Listing control directives, page 80

◆ C-style preprocessor directives, page 86

◆ Data definition or allocation directives, page 91

◆ Assembler control directives, page 93.

SUMMARY OF
DIRECTIVES

The following table gives a summary of all the assembler directives.

Directive Description Section

#define Assigns a value to a label. C-style
preprocessor

#elif Introduces a new condition in
an #if…#endif block.

C-style
preprocessor

#else Assembles instructions if a
condition is false.

C-style
preprocessor

#endif Ends a #if, #ifdef, or
#ifndef block.

C-style
preprocessor

#error Generates an error. C-style
preprocessor

SUMMARY OF DIRECTIVES ASSEMBLER DIRECTIVES

AM32C-2

52

#if Assembles instructions if a
condition is true.

C-style
preprocessor

#ifdef Assembles instructions if a
symbol is defined.

C-style
preprocessor

#ifndef Assembles instructions if a
symbol is undefined.

C-style
preprocessor

#include Includes a file. C-style
preprocessor

#message Generates a message on
standard output.

C-style
preprocessor

#undef Undefines a label. C-style
preprocessor

$ Includes a file. Assembler control

/*comment*/ C-style comment delimiter. Assembler control

// C++ style comment delimiter. Assembler control

= Assigns a permanent value
local to a module.

Value assignment

.ADDR Generates 24-bit triple byte
constants.

Data definition or
allocation
directives

.ALIAS Assigns a permanent value
local to a module.

Value assignment

.ALIGN Aligns the location counter
by inserting zero-filled bytes.

Segment control

.ALIGNRAM Aligns the program counter. Segment control

.ASEG Begins an absolute segment. Segment control

.ASSIGN Assigns a temporary value. Value assignment

.BLKA Allocates space for 24-bit triple
byte constants.

Data definition or
allocation
directives

Directive Description Section

ASSEMBLER DIRECTIVES SUMMARY OF DIRECTIVES

AM32C-2

53

.BLKB Allocates space for 8-bit bytes. Data definition or
allocation
directives

.BLKF Reserves memory space without
initializing for float (32 bits).

Data definition or
allocation
directives

.BLKL Allocates space for 32-bit
double word constants.

Data definition or
allocation
directives

.BLKW Allocates space for 16-bit words. Data definition or
allocation
directives

.BYTE Generates 8-bit byte constants. Data definition or
allocation
directives

.CASEOFF Disables case sensitivity. Assembler control

.CASEON Enables case sensitivity. Assembler control

.COL Sets the number of columns
per page.

Listing control

.COMMON Begins a common segment. Segment control

DC8 Generates 8-bit byte constants. Data definition or
allocation

DC16 Generates 16-bit word constants. Data definition or
allocation

DC24 Generates 24-bit triple byte
constants.

Data definition or
allocation

DC32 Generates 32-bit double word
constants.

Data definition or
allocation

.DEFINE Defines a file-wide value. Value assignment

DS8 Allocates space for 8-bit bytes. Data definition or
allocation

Directive Description Section

SUMMARY OF DIRECTIVES ASSEMBLER DIRECTIVES

AM32C-2

54

DS16 Allocates space for 16-bit words. Data definition or
allocation

DS24 Allocates space for 24-bit triple
byte constants.

Data definition or
allocation

DS32 Allocates space for 32-bit
double word constants.

Data definition or
allocation

.ELSE Assembles instructions if a
condition is false.

Conditional
assembly

.ELSEIF Specifies a new condition in an
.IF … .ENDIF block.

Conditional
assembly

.END Terminates the assembly of the
last module in a file.

Module control

.ENDIF Ends an .IF block. Conditional
assembly

.ENDM Ends a macro definition. Macro processing

.ENDMOD Terminates the assembly of the
current module.

Module control

.ENDR Ends a repeat structure. Macro processing

.EQU Assigns a permanent value
local to a module.

Value assignment

.EVEN Aligns the program counter to
an even address.

Segment control

.EXITM Exits prematurely from a macro. Macro processing

.EXPORT Exports symbols to other
modules.

Symbol control
directives

.EXTERN Imports an external symbol. Symbol control

.FLOAT Initializes float (32-bit) constants. Data definition or
allocation

.IF Assembles instructions if a
condition is true.

Conditional
assembly

Directive Description Section

ASSEMBLER DIRECTIVES SUMMARY OF DIRECTIVES

AM32C-2

55

.IFC Assembles instructions if two
strings are equal.

Conditional
assembly

.IFNC Assembles instructions if two
strings are not equal.

Conditional
assembly

.IMPORT Initializes float (32-bit) constants. Symbol control
directives

.LIBRARY Begins a library module. Module control

.LIMIT Checks a value against limits. Value assignment

.LOCAL Creates symbols local to a
macro.

Macro processing

.LSTCND Controls conditional
assembly listing.

Listing control

.LSTCOD Controls multi-line code listing. Listing control

.LSTEXP Controls the listing of macro
generated lines.

Listing control

.LSTMAC Controls the listing of macro
definitions.

Listing control

.LSTOUT Controls assembly-listing output. Listing control

.LSTPAG Controls the formatting of
output into pages.

Listing control

.LSTREP Controls the listing of lines
generated by repeat directives.

Listing control

.LSTXRF Generates a cross-reference
table.

Listing control

.LWORD Generates 32-bit double word
constants.

Data definition or
allocation
directives

.MACRO Defines a macro. Macro processing

.MODULE Begins a library module. Module control

.NAME Begins a program module. Module control

Directive Description Section

SUMMARY OF DIRECTIVES ASSEMBLER DIRECTIVES

AM32C-2

56

.ODD Aligns the program counter to
an odd address.

Segment control
directives

.ORG Sets the location counter. Segment control

.PAGE Generates a new page. Listing control

.PAGSIZ Sets the number of lines per
page.

Listing control

.PROGRAM Begins a program module. Module control

.PUBLIC Exports symbols to other
modules.

Symbol control

.PUBWEAK Exports symbols to other
modules; multiple definitions
allowed.

Symbol control
directives

.RADIX Sets the default base. Assembler control

.REPT Assembles instructions a
specified number of times.

Macro processing

.REPTC Repeats and substitutes
characters.

Macro processing

.REPTI Repeats and substitutes strings. Macro processing

.REQUIRE Marks a symbol as required. Symbol control

.RSEG Begins a relocatable segment. Segment control

.RTMODEL Declares run-time model
attributes.

Module control

.SET Assigns a temporary value. Value assignment

.SFRTYPE Specifies SFR attributes. Value assignment
directives

sfr Creates byte-access SFR labels. Value assignment
directives

sfrp Creates word-access SFR labels. Value assignment
directives

.STACK Begins a stack segment. Segment control

Directive Description Section

ASSEMBLER DIRECTIVES SYNTAX CONVENTIONS

AM32C-2

57

SYNTAX
CONVENTIONS

In the syntax definitions the following conventions are used:

Parameters, representing what you would type, are shown in italics. So,
for example, in:

.ORG expr

expr represents an arbitrary expression.

Optional parameters are shown in square brackets. So, for example, in:

.END [expr]

the expr parameter is optional. An ellipsis indicates that the previous
item can be repeated an arbitrary number of times. For example:

.LOCAL symbol [,symbol] …

indicates that .LOCAL can be followed by one or more symbols, separated
by commas.

Alternatives are enclosed in { and } brackets, separated by a vertical bar,
for example:

.LSTOUT{+ | -}

indicates that the directive must be followed by either + or -.

LABELS AND COMMENTS
Where a label must precede a directive, this is indicated in the syntax, as
in:

label .SET expr

An optional label, which will assume the value and type of the current
program location counter (PLC) can precede all directives. For clarity, this
is not included in each syntax definition.

.VAR Assigns a temporary value. Value assignment

.WORD Generates 16-bit word constants. Data definition or
allocation
directives

Directive Description Section

MODULE CONTROL DIRECTIVES ASSEMBLER DIRECTIVES

AM32C-2

58

In addition, unless explicitly specified, all directives can be followed by a
comment, preceded by ; (semicolon).

PARAMETERS
The following table shows the correct form of the most commonly used
types of parameter:

The following sections give full descriptions of each category of
directives.

MODULE CONTROL
DIRECTIVES

Module control directives are used to mark the beginning and end of
source program modules, and to assign names and types to them.

SYNTAX
.NAME symbol [(expr)]
.MODULE symbol [(expr)]
.ENDMOD [label]
.END [label]
.RTMODEL key, value

Parameter What it consists of

symbol An assembler symbol.

label A symbolic label.

expr An expression; see Expressions and operators, page 22.

Directive Description

.NAME (.PROGRAM) Begins a program module.

.MODULE (.LIBRARY) Begins a library module.

.ENDMOD Terminates the assembly of the current
module.

.END Terminates the assembly of the last module in
a file.

.RTMODEL Declares run-time model attributes.

ASSEMBLER DIRECTIVES MODULE CONTROL DIRECTIVES

AM32C-2

59

PARAMETERS

DESCRIPTION

Beginning a program module
Use .NAME to begin a program module, and to assign a name for future
reference by the IAR XLINK Linker™ and the IAR XLIB Librarian™.

Program modules are unconditionally linked by XLINK, even if other
modules do not reference them.

Beginning a library module
Use .MODULE to create libraries containing lots of small modules—like
run-time systems for high-level languages—where each module also often
represents a single routine. With the multi-module facility, you can
significantly reduce the number of source and object files needed.

Library modules are only copied into the linked code if other modules
reference a public symbol in the module.

Terminating a module
Use .ENDMOD to define the end of a module.

Terminating the last module
Use .END to indicate the end of the source file. Any lines after the .END
directive are ignored.

Program entries must be either relocatable or absolute, and will show up
in XLINK load maps, as well as in some of the hexadecimal absolute
output formats. Program entries must not be externally defined.

symbol Name assigned to module, used by XLIB when
referencing the module.

expr Optional expression (0–255) used by the IAR C
Compiler to encode programming language, memory
model, and processor configuration.

label An expression or label that can be resolved at
assembly time. It is output in the object code as a
program entry address.

key A text string specifying the key.

value A text string specifying the value.

MODULE CONTROL DIRECTIVES ASSEMBLER DIRECTIVES

AM32C-2

60

The following rules apply when assembling multi-module files:

◆ At the beginning of a new module, all user symbols are deleted
(except for those created by .DEFINE, #define, or .MACRO) the
location counters are cleared, and the mode is set to absolute.

◆ Listing control directives remain in effect throughout the assembly.

Note: .END must always be used in the last module, and there must not be
any source lines (except for comments and listing control directives)
between an .ENDMOD and a .MODULE directive.

If the .NAME or .MODULE directive is missing, the module will be assigned
the name of the source file and the attribute program.

Declaring run-time model attributes
Use .RTMODEL to enforce compatibility between modules.

All modules that are linked together and that are defining the same
run-time attribute key, must have the same value for the corresponding
key value, or the special value * (asterisk).

Using the special value * is equivalent to not defining the attribute at all.
It can, however, be useful to state explicitly that the module can handle
any run-time model.

Each module can have several run-time model definitions.

Note: The compiler run-time model attributes start with double
underscore. In order to avoid confusion, this style must not be used in the
user-defined assembler attributes.

If you are writing assembler routines for use with C code, and you want
to control compatibility between modules, refer to the chapter Assembly
Language Interface in the M32C IAR C/C++ Compiler Reference Guide.

EXAMPLES
The following example defines three modules where:

◆ MOD_1 and MOD_2 cannot be linked together since they have different
values for run-time model “foo”.

◆ MOD_1 and MOD_3 can be linked together since they have the same
definition of run-time model “bar” and no conflict in the definition
of “foo”.

ASSEMBLER DIRECTIVES SYMBOL CONTROL DIRECTIVES

AM32C-2

61

◆ MOD_2 and MOD_3 can be linked together since they have no run-time
model conflicts. The value “*” matches any run-time model value.

.MODULE MOD_1
 .RTMODEL “foo”, “1”
 .RTMODEL “bar”, “XXX”
 ...
.ENDMOD

.MODULE MOD_2
 .RTMODEL “foo”, “2”
 .RTMODEL “bar”, “*”
 ...
.ENDMOD

.MODULE MOD_3
 .RTMODEL “bar”, “XXX”
 ...
.END

SYMBOL CONTROL
DIRECTIVES

These directives control how symbols are shared between modules.

SYNTAX
.PUBLIC symbol [,symbol] …
.PUBWEAK symbol [,symbol] …
.EXTERN symbol [,symbol] …
.REQUIRE symbol

Directive Description

.PUBLIC (.EXPORT) Exports symbols to other modules.

.PUBWEAK Exports symbols to other modules; multiple
definitions allowed.

.EXTERN (.IMPORT) Imports an external symbol.

.REQUIRE Marks a symbol as required.

SYMBOL CONTROL DIRECTIVES ASSEMBLER DIRECTIVES

AM32C-2

62

PARAMETERS

DESCRIPTION

Exporting symbols to other modules
Use .PUBLIC to make one or more symbols available to other modules.
The symbols declared as .PUBLIC can only be assigned values by using
them as labels. .PUBLIC declared symbols can be relocated or absolute,
and can also be used in expressions (with the same rules as for other
symbols).

The .PUBLIC directive always exports full 32-bit values, which makes it
feasible to use global 32-bit constants also in assemblers for 8-bit and
16-bit processors. With the LOW, HIGH, >>, and << operators, any part of
such a constant can be loaded in an 8-bit or 16-bit register or word.

There are no restrictions on the number of .PUBLIC declared symbols in
a module.

.PUBWEAK is similar to .PUBLIC except that it allows the same symbol to
be declared several times. Only one of those declarations will be picked by
the linker. All declarations of the symbol must be equivalent.

Importing symbols
Use .EXTERN to import an untyped external symbol.

The .REQUIRE directive marks a symbol as referenced. This is useful if
the segment part containing the symbol must be loaded for the code
containing the reference to work, but the dependence is not otherwise
evident.

EXAMPLES
The following example defines a subroutine to print an error message,
and exports the entry address err so that it can be called from other
modules. It defines print as an external routine; the address will be
resolved at link time.

symbol Symbol to be imported or exported.

ASSEMBLER DIRECTIVES SEGMENT CONTROL DIRECTIVES

AM32C-2

63

 .NAME error
 .EXTERN print
 .PUBLIC err

errstr DC8 "** Error **",0
err PUSH.L errstr
 JSR print
 RTS

 .END

SEGMENT CONTROL
DIRECTIVES

The segment directives control how code and data are generated.

SYNTAX
.ASEG [start [(align)]]
.RSEG segment [:type] [flag] [(align)]
.RSEG segment [:type], address
.STACK segment [:type] [(align)]
.COMMON segment [:type] [(align)]
.ORG expr
.ALIGN align [,value]
.ALIGNRAM align [,value]
.EVEN [value]
.ODD [value]

Directive Description

.ASEG Begins an absolute segment.

.RSEG Begins a relocatable segment.

.STACK Begins a stack segment.

.COMMON Begins a common segment.

.ORG Sets the location counter.

.ALIGN Aligns the location counter by inserting zero-filled
bytes.

.ALIGNRAM Aligns the program counter without inserting bytes.

.EVEN Aligns the program counter to an even address.

.ODD Aligns the program counter to an odd address.

SEGMENT CONTROL DIRECTIVES ASSEMBLER DIRECTIVES

AM32C-2

64

PARAMETERS

DESCRIPTION

Beginning an absolute segment
Use .ASEG to set the absolute mode of assembly, which is the default at
the beginning of a module.

start A start address that has the same effect as using an .ORG
directive at the beginning of the absolute segment.

segment The name of the segment.

type The memory type; one of:
UNTYPED (the default), CODE, or DATA.
In addition, the following types are provided for
compatibility with the M32C IAR C Compiler:
NEAR, NEARDATA, NEARCONST, NEARCODE
FAR, FARDATA, FARCONST, FARCODE
HUGE, HUGEDATA, HUGECONST, HUGECODE

flag NOROOT
This segment part may be discarded by the linker if no
symbols in this segment part are referred to. Normally all
segment parts except startup code and interrupt vectors
should set this flag.

REORDER
Allows the linker to reorder segment parts. For a given
segment, all segment parts must specify the same state
for this flag.

SORT
The linker will sort the segment parts in decreasing
alignment order. For a given segment, all segment parts
must specify the same state for this flag.

address Address where this segment part will be placed.

expr Address to set the location counter to.

align Exponent of the value to which the address should be
aligned, in the range 0 to 30. For example, align 1
results in word alignment 2.

value Byte value used for padding, default is zero.

ASSEMBLER DIRECTIVES SEGMENT CONTROL DIRECTIVES

AM32C-2

65

If the parameter is omitted, the start address of the first segment is 0, and
subsequent segments continue after the last address of the previous
segment.

Beginning a relocatable segment
Use .RSEG to set the current mode of the assembly to relocatable assembly
mode. The assembler maintains separate location counters (initially set to
zero) for all segments, which makes it possible to switch segments and
mode anytime without the need to save the current segment location
counter.

Up to 65536 unique, relocatable segments may be defined in a single
module.

Beginning a stack segment
Use .STACK to allocate code or data allocated from high to low addresses
(in contrast with the .RSEG directive that causes low-to-high allocation).

Note: The contents of the segment are not generated in reverse order.

Beginning a common segment
Use .COMMON to place data in memory at the same location as .COMMON
segments from other modules that have the same name. In other words,
all .COMMON segments of the same name will start at the same location in
memory and overlay each other.

Obviously, the .COMMON segment type should not be used for overlaid
executable code. A typical application would be when you want a number
of different routines to share a reusable, common area of memory for
data.

It can be practical to have the interrupt vector table in a .COMMON
segment, thereby allowing access from several routines.

The final size of the .COMMON segment is determined by the size of largest
occurrence of this segment. The location in memory is determined by the
XLINK -Z command; see the IAR Linker and Library Tools Reference
Guide.

Setting the location counter
Use .ORG to set the location counter of the current segment to the value
of an expression. The optional label will assume the value and type of the
new location counter.

SEGMENT CONTROL DIRECTIVES ASSEMBLER DIRECTIVES

AM32C-2

66

The result of the expression must be of the same type as the current
segment, that is, it is not valid to use .ORG 10 during .RSEG, since the
expression is absolute; instead use .ORG $+10. The expression must not
contain any forward or external references.

All location counters are set to zero at the beginning of an assembly
module.

Aligning a segment
Use .ALIGN to align the location counter to a specified address boundary.
The expression gives the power of two to which the program counter
should be aligned.

The directive .ALIGN aligns by inserting zero/filled bytes. The .EVEN
directive aligns the program counter to an even address (which is
equivalent to .ALIGN 1) and the .ODD directive aligns the program
counter to an odd address.

Use .ALIGNRAM to align the location counter to a specified address
boundary. The expression gives the power of two to which the program
counter should be aligned. .ALIGNRAM aligns by incrementing the data; no
data is generated.

EXAMPLES

Beginning an absolute segment
The following example uses an absolute segment to initialize the reset
vector to point to the main label, which could indicate the start of a
program.

 .EXTERN main ; ‘main’ is a public label
 .ASEG
 .ORG 0xFFFFFC ; reset vector location
 DC32 main ; initialize the reset vector
 .ENDMOD

Beginning a relocatable segment
In the following example the data following the first .RSEG directive is
placed in a relocatable segment called table; the .ORG directive is used to
create a gap of six bytes in the table.

ASSEMBLER DIRECTIVES SEGMENT CONTROL DIRECTIVES

AM32C-2

67

The code following the second .RSEG directive is placed in a relocatable
segment called code:

 .EXTERN divrtn, mulrtn

 .RSEG table
 DC16 divrtn, mulrtn
 .ORG $+6
 DC16 subrtn

 .RSEG code
subrtn:
 MOV.W R2,R0
 SUB.W R3,R0

Beginning a stack segment
The following example defines two 100-byte stacks in a relocatable
segment called rpnstack:

 .STACK rpnstack
parms DS8 100
opers DS8 100
 .END

The data is allocated from high to low addresses.

Beginning a common segment
The following example defines two common segments containing
variables:

 .NAME common1
 .COMMON data
count DS32 1
 .ENDMOD

 .NAME common2
 .COMMON data
up DS8 1
 .ORG $+2
down DS8 1
 .END

VALUE ASSIGNMENT DIRECTIVES ASSEMBLER DIRECTIVES

AM32C-2

68

Because the common segments have the same name, data, the variables
up and down refer to the same locations in memory as the first and last
bytes of the 4-byte variable count.

VALUE ASSIGNMENT
DIRECTIVES

These directives are used to assign values to symbols.

SYNTAX
label .SET expr
label .EQU expr
label = expr
label .DEFINE expr
.LIMIT expr, min, max, message
.SFRTYPE register attribute [,attribute] = value
[const] sfr register = value
[const] sfrp register = value
const value

PARAMETERS

Directive Description

.SET (.VAR, .ASSIGN) Assigns a temporary value.

.EQU (.ALIAS,=) Assigns a permanent value local to a module.

.DEFINE Defines a file-wide value.

.LIMIT Checks a value against limits.

.SFRTYPE Specifies SFR attributes.

sfr Creates byte-access SFR labels.

sfrp Creates word-access SFR labels.

const Makes a value read-only.

label Symbol to be defined.

expr Value assigned to symbol.

min, max The minimum and maximum values allowed for
label.

message A text message that will be printed when the symbol
is out of range.

ASSEMBLER DIRECTIVES VALUE ASSIGNMENT DIRECTIVES

AM32C-2

69

DESCRIPTION

Defining a temporary value
Use .SET to define a symbol that may be redefined, such as for use with
macro variables. Symbols defined with .SET cannot be declared .PUBLIC.

Defining a permanent local value
Use .EQU or = to assign a value to a symbol.

The symbol is only valid in the module in which it was defined, but can
be made available to other modules with a .PUBLIC directive.

Use .EXTERN to import symbols from other modules.

Defining a permanent global value
Use .DEFINE to define symbols that should be known to all modules in
the source file.

A symbol which has been given a value with .DEFINE can be made
available to modules in other files with the .PUBLIC directive. Symbols
defined with .DEFINE cannot be redefined within the same file.

Checking symbol values
Use .LIMIT to check that expressions lie within a specified range. If the
expression is assigned a value outside the range, an error message will
appear.

register A user-defined identifier.

attribute One or more of the following:

value The SFR value.

min, max The minimum and maximum values allowed for label.

message A text message that will be printed when the symbol is
out of range.

READ You can read from this SFR.

WRITE You can write to this SFR.

BYTE The SFR must be accessed as a byte.

WORD The SFR must be accessed as a word.

VALUE ASSIGNMENT DIRECTIVES ASSEMBLER DIRECTIVES

AM32C-2

70

The check will occur as soon as the expression is resolved, which will be
during linking if the expression contains external references. The min
and max expressions cannot involve references to forward or external
labels, i.e. they must be resolved when encountered.

Defining special function registers
Use sfr to create special function register labels with attributes READ,
WRITE, and BYTE turned on. Use sfrp to create special function register
labels with attributes READ, WRITE, and WORD turned on. Use .SFRTYPE to
create special function register labels with specified attributes.

Prefix the directive with const to disable the WRITE attribute assigned to
the SFR. You will then get an error or warning when trying to write to
the SFR.

EXAMPLES

Redefining a symbol
The following example uses .SET to redefine the symbol cons in a REP
loop to generate a table of the first 8 powers of 3:

 .NAME table
cons .SET 1

repeat .MACRO times
cons .SET cons * 3
 .IF times>1
 .REPT times-1
 .ENDIF
 .ENDM

main repeat 4
 .END

It generates the following code:

 127 000000 .NAME table

 128 000001 cons .SET 1

 129 000000

 136 000000

 137 000000 main: repeat 4

 137.1 000003 cons .SET cons*3

 137.2 000000 .IF 4>1

 137 000000 repeat 4-1

ASSEMBLER DIRECTIVES VALUE ASSIGNMENT DIRECTIVES

AM32C-2

71

 137.1 000009 cons .SET cons*3

 137.2 000000 .IF 4-1>1

 137 000000 repeat 4-1-1

 137.1 00001B cons .SET cons*3

 137.2 000000 .IF 4-1-1>1

 137 000000 repeat 4-1-1-1

 137.1 000051 cons .SET cons*3

 137.2 000000 .IF 4-1-1-1>1

 137.3 000000 repeat 4-1-1-1-1

 137.4 000000 .ENDIF

 137.5 000000 .ENDM

 137.6 000000 .ENDIF

 137.7 000000 .ENDM

 137.8 000000 .ENDIF

 137.9 000000 .ENDM

 137.10 000000 .ENDIF

 137.11 000000 .ENDM

 138 000000 .ENDMOD

Using local and global symbols
In the following example the symbol value defined in module add1 is
local to that module; a distinct symbol of the same name is defined in
module add2. The .DEFINE directive is used to declare locn for use
anywhere in the file:

 .NAME add1
locn .DEFINE 0x100
value .EQU 77
 MOV.W locn,R0
 ADD.W #value,R0
 RTS
 .ENDMOD

 .NAME add2
value .EQU 88
 MOV.W locn,R0
 ADD.W #value,R0
 RTS
 .END
The symbol locn defined in module add1 is also available to module
add2.

CONDITIONAL ASSEMBLY DIRECTIVES ASSEMBLER DIRECTIVES

AM32C-2

72

CONDITIONAL
ASSEMBLY
DIRECTIVES

These directives provide logical control over the selective assembly of
source code.

SYNTAX
.IF condition
.ELSE
.ELSEIF
.ENDIF

PARAMETERS

DESCRIPTION
Use the .IF, .ELSE, and .ENDIF directives to control the assembly process
at assembly time. If the condition following the .IF directive is not true,
the subsequent instructions will not generate any code (i.e. it will not be
assembled or syntax checked) until an .ELSE or .ENDIF directive is
found. Conditional assembler directives may be used anywhere in an
assembly, but have their greatest use in conjunction with macro
processing.

Directive Description

.IF Assembles instructions if a condition is true.

.ELSE Assembles instructions if a condition is false.

.ELSEIF Specifies a new condition in an .IF….ENDIF block.

.ENDIF Ends an .IF block.

condition One of the following:

An absolute expression The expression must not
contain forward or external
references, and any non-zero
value is considered as true.

string1=string2 The condition is true if
string1 and string2 have
the same length and contents.

string1<>string2 The condition is true if
string1 and string2 have
different length or contents.

ASSEMBLER DIRECTIVES MACRO PROCESSING DIRECTIVES

AM32C-2

73

All assembler directives (except .END) as well as the inclusion of files may
be disabled by the conditional directives. Each .IF directive must be
terminated by an .ENDIF directive. The .ELSE directive is optional, and
if used, it must be inside an .IF … .ENDIF block.

.IF … .ENDIF and .IF … .ELSE … .ENDIF blocks may be nested to any
level.

EXAMPLES
The following macro adds a byte constant to any location. The a should
be tied to the byte constant and the c should be tied to the location:

addd .MACRO a,c
 .IF a=1
 INC.B c
 .ELSE
 ADD.B #a,c
 .ENDIF
 .ENDM

If the argument to the macro is 1 it generates an INC instruction to save
instruction cycles; otherwise it generates an ADD instruction. It could be
tested with the following program:

addd_main:
 MOV.B #17,R0L
 addd 2,R0L
 MOV.B #22,R0L
 addd 1,R0L
 RTS
 .END

MACRO PROCESSING
DIRECTIVES

These directives allow user macros to be defined.

Directive Description

.MACRO Defines a macro.

.ENDM Ends a macro definition.

.EXITM Exits prematurely from a macro.

.LOCAL Creates symbols local to a macro.

MACRO PROCESSING DIRECTIVES ASSEMBLER DIRECTIVES

AM32C-2

74

SYNTAX
name .MACRO [argument] …
.ENDM
.EXITM
.LOCAL symbol [,symbol] …
.REPT expr
.REPTC formal,actual
.REPTI formal,actual [,actual] …
.ENDR

PARAMETERS

DESCRIPTION
A macro is a user-defined symbol that represents a block of one or more
assembler source line. Once you have defined a macro you can use it in
your program like an assembler directive or assembler mnemonic.

When the assembler encounters a macro, it looks up the macro’s
definition, and inserts the lines that the macro represents as if they were
included in the source file at that position.

Although macros effectively perform simple text substitution, you can
control what they substitute by supplying parameters to them.

.REPT Assembles instructions a specified number of times.

.REPTC Repeats and substitutes characters.

.REPTI Repeats and substitutes strings.

.ENDR Ends a repeat structure.

name The name of the macro.

argument A symbolic argument name.

symbol Symbol to be local to the macro.

expr An expression.

formal Argument into which each character of actual
(.REPTC) or each actual (.REPTI) is substituted.

actual String to be substituted.

Directive Description

ASSEMBLER DIRECTIVES MACRO PROCESSING DIRECTIVES

AM32C-2

75

Defining a macro
You define a macro with the statement:

macroname .MACRO [arg] [arg] …

Here macroname is the name you are going to use for the macro, and arg
is an argument for values that you want to pass to the macro when it is
expanded.

For example, you could define a macro ERROR as follows:

errmac .MACRO text
 JSR abort
 DC8 text,0
 .ENDM

This uses a parameter text to set up an error message for a routine abort.
You would call the macro with a statement such as:

 errmac 'Disk not ready'

The assembler will expand this to:

 JSR abort
 DC8 'Disk not ready',0

If you omit a list of one or more arguments, the arguments you supply
when calling the macro are called \1 to \9 and \A to \Z.

The previous example could therefore be written as follows:

errmac .MACRO
 JSR abort
 DC8 \1,0
 .ENDM

Use the .EXITM directive to generate a premature exit from a macro.

EXITM is not allowed inside .REPT … .ENDR, .REPTC … .ENDR, or
.REPTI … .ENDR blocks.

Use .LOCAL to create symbols local to a macro. The .LOCAL directive must
be used before the symbol is used.

Each time that a macro is expanded, new instances of local symbols are
created by the .LOCAL directive. Therefore, it is legal to use local symbols
in recursive macros.

Note: It is illegal to redefine a macro.

MACRO PROCESSING DIRECTIVES ASSEMBLER DIRECTIVES

AM32C-2

76

Passing special characters
Macro arguments that include commas or white space can be forced to be
interpreted as one argument by using the matching macro quote
characters in the macro call.

For example:

macld .MACRO two_op
MOV.W two_op
.ENDM

It could be called using:

macld_main:
macld <#1,R0>
.END

You can redefine the macro quote characters with the -M command line
option; see -M, page 12.

Predefined macro symbols
The symbol _args is set to the number of arguments passed to the macro.

How macros are processed
There are three distinct phases in the macro process:

◆ The assembler performs scanning and saving of macro definitions.
The text between .MACRO and .ENDM is saved but not
syntax-checked. Include-file references $file are recorded and will
be included during macro expansion.

◆ A macro call forces the assembler to invoke the macro processor
(expander) which switches (if not already in a macro) the assembler
input stream from a source file to the output from the macro
expander (which takes its input from the requested macro
definition).

The macro expander has no knowledge of assembler symbols since it
only deals with text substitutions at source level. Before a line from
the called macro definition is handed over to the assembler, the
expander scans the line for all occurrences of symbolic macro
arguments, and replaces them with their expansion arguments.

ASSEMBLER DIRECTIVES MACRO PROCESSING DIRECTIVES

AM32C-2

77

◆ The expanded line is then processed as any other assembler source
line. The input stream to the assembler will continue to be the
output from the macro processor, until all lines of the current macro
definition have been read.

Repeating statements
Use the .REPT … .ENDR structure to assemble the same block of
instructions a number of times. If expr evaluates to 0 nothing will be
generated.

Use .REPTC to assemble a block of instructions once for each character in
a string. If the string contains a comma it should be enclosed in quotation
marks.

Use .REPTI to assemble a block of instructions once for each string in a
series of strings. Strings containing commas should be enclosed in
quotation marks.

EXAMPLES
This section gives examples of the different ways in which macros can
make assembler programming easier.

Coding in-line for efficiency
In time-critical code it is often desirable to code routines in-line to avoid
the overhead of a subroutine call and return. Macros provide a convenient
way of doing this.

The following subroutine outputs bytes from a buffer to a port:

 .NAME play
sfr IO_port=0x3E0

 .RSEG data
buffer DC8 512 //buffer

 .RSEG code
play: MOV.W #buffer,A0
loop: MOV.B [A0],IO_port
 INC.W A0
 CMP.W #buffer+512,A0
 JNE loop
 RTS
 .END

MACRO PROCESSING DIRECTIVES ASSEMBLER DIRECTIVES

AM32C-2

78

The main program calls this routine as follows:

 JSR play

For efficiency we can recode this as the following macro, which takes the
buffer as a parameter:

 .NAME play
sfr IO_port=0x3E0

 .RSEG data
buffer DC8 512
 .RSEG code
play: MOV.W #buffer,A0
loop: MOV.B [A0],IO_PORT
 INC.W A0
 CMP.W #buffer+512,A0
 JNE loop
 RTS
 .ENDMOD
 .END

Notice the use of the .LOCAL directive to make the label loop local to the
macro; otherwise an error will be generated if the macro is used twice, as
the loop label will already exist.

To use in-line code the main program is then simply altered to:

 play buffer

Using .REPTC and .REPTI
The following example assembles a series of calls to a subroutine plot to
plot each character in a string:

 .NAME retc1
 .EXTERN plotc
banner .REPTC chr, "Welcome"
 MOV.B #'chr',R0L
 JSR plotc
 .ENDR
 .ENDM

This produces the following code:

 238 000000 .NAME retc1

 239 000000 .EXTERN plotc

ASSEMBLER DIRECTIVES MACRO PROCESSING DIRECTIVES

AM32C-2

79

 240 000000 banner .REPTC chr, "Welcome"

 241 000000 MOV.B #'chr',R0L

 242 000000 JSR plotc

 243 000000 .ENDR

 243.1 000000 0457 MOV.B #'W',R0L

 243.2 000002 CD...... JSR plotc

 243.3 000006 0465 MOV.B #'e',R0L

 243.4 000008 CD...... JSR plotc

 243.5 00000C 046C MOV.B #'l',R0L

 243.6 00000E CD...... JSR plotc

 243.7 000012 0463 MOV.B #'c',R0L

 243.8 000014 CD...... JSR plotc

 243.9 000018 046F MOV.B #'o',R0L

 243.10 00001A CD...... JSR plotc

 243.11 00001E 046D MOV.B #'m',R0L

 243.12 000020 CD...... JSR plotc

 243.13 000024 0465 MOV.B #'e',R0L

 243.14 000026 CD...... JSR plotc

 244 00002A .ENDMOD

LISTING CONTROL DIRECTIVES ASSEMBLER DIRECTIVES

AM32C-2

80

The following example uses .REPTI to clear a number of memory
locations:

 .NAME retc2

 .EXTERN base,count,init
banner .REPTI adds,base,count,init
 MOV.W #0,adds
 .ENDR
 .ENDM

This produces the following code:

 250 000000 .NAME retc2

 251 000000 .EXTERN base,count,init

 252 000000 banner .REPTI adds,base,count,init

 253 000000 MOV.W #0,adds

 254 000000 .ENDR

 254.1 000000 F7A0...... MOV.W #0,base

 254.2 000005 F7A0...... MOV.W #0,count

 254.3 00000A F7A0...... MOV.W #0,init

 255 00000F .ENDMOD

LISTING CONTROL
DIRECTIVES

These directives provide control over the assembler listing.

Directive Description

.LSTCND Controls conditional assembly listing.

.LSTCOD Controls multi-line code listing.

.LSTEXP Controls the listing of macro generated lines.

.LSTMAC Controls the listing of macro definitions.

.LSTOUT Controls assembly-listing output.

.LSTPAG Controls the formatting of output into pages.

.LSTREP Controls the listing of lines generated by repeat directives.

.LSTXRF Generates a cross-reference table.

.PAGSIZ Sets the number of lines per page.

.COL Sets the number of columns per page.

ASSEMBLER DIRECTIVES LISTING CONTROL DIRECTIVES

AM32C-2

81

SYNTAX
.LSTCND{+ | -}

.LSTCOD{+ | -}

.LSTEXP{+ | -}

.LSTMAC{+ | -}

.LSTOUT{+ | -}

.LSTPAG{+ | -}

.LSTREP{+ | -}

.LSTXRF{+ | -}

.COL columns

.PAGSIZ lines

.PAGE

PARAMETERS

DESCRIPTION

Turning the listing on or off
Use .LSTOUT- to disable all list output except error messages. This
directive overrides all other list control directives.

The default is .LSTOUT+, which lists the output (if a list file was
specified).

Listing conditional code and strings
Use .LSTCND+ to force the assembler to list source code only for the parts
of the assembly that are not disabled by previous conditional .IF
statements, .ELSE, or .END.

The default setting is .LSTCND-, which lists all source lines.

.PAGE Generates a new page.

columns An absolute expression in the range 80 to 132,
default is 80.

lines An absolute expression in the range 10 to 150,
default is 44.

Directive Description

LISTING CONTROL DIRECTIVES ASSEMBLER DIRECTIVES

AM32C-2

82

Use .LSTCOD+ to list more than one line of code for a source line, if
needed; i.e. long ASCII strings will produce several lines of output. Code
generation is not affected.

The default setting is .LSTCOD-, which restricts the listing of output code
to just the first line of code for a source line.

Controlling the listing of macros
Use .LSTEXP- to disable the listing of macro-generated lines. The default
is .LSTEXP+, which lists all macro-generated lines.

Use .LSTMAC+ to list macro definitions. The default is .LSTMAC-, which
disables the listing of macro definitions.

Controlling the listing of generated lines
Use .LSTREP- to turn off the listing of lines generated by the directives
.REPT, .REPTC, and .REPTI.

The default is .LSTREP+, which lists the generated lines.

Generating a cross-reference table
Use .LSTXRF+ to generate a cross-reference table at the end of the
assembly list for the current module. The table shows values and line
numbers, and the type of the symbol.

The default is .LSTXRF-, which does not give a cross-reference table.

Formatting listed output
Use .COL to set the number of columns per page of the assembly list. The
default number of columns is 80.

Use .PAGSIZ to set the number of printed lines per page of the assembly
list. The default number of lines per page is 44.

Use .LSTPAG+ to format the assembly output list into pages.

The default is .LSTPAG-, which gives a continuous listing.

Use .PAGE to generate a new page in the assembly listing if paging is
active.

ASSEMBLER DIRECTIVES LISTING CONTROL DIRECTIVES

AM32C-2

83

EXAMPLES

Turning the listing on or off
To disable the listing of a debugged section of program:

 .NAME lstcndtst
 .LSTOUT-
; Debugged section, needs no listing
 .LSTOUT+
; Not yet debugged

Listing conditional code and strings
The following example shows how .LSTCND+ hides a call to a subroutine
that is disabled by an .IF directive:

 .NAME lstcndtst
 .EXTERN print
 .RSEG prom
debug .SET 0
begin1:
 .IF debug
 .JSR print
 .ENDIF
 .LSTCND+
begin2
 .IF debug
 .JSR print
 .ENDIF
 .END

This will generate the following listing:

 269 000000 .NAME lstcndtst

 270 000000 .EXTERN print

 271 000000 .RSEG prom

 272 000000 debug .SET 0

 273 000000 begin1:

 274 000000 .IF debug

 275 000000 JSR print

 276 000000 .ENDIF

 277 000000 .LSTCND+

 278 000000 begin2:

 279 000000 .IF debug

 281 000000 .ENDIF

LISTING CONTROL DIRECTIVES ASSEMBLER DIRECTIVES

AM32C-2

84

 282 000000 .ENDMOD

The following example shows the effect of .LSTCOD- on the code
generated by a DC8 directive:

 .NAME lstcodtbl
table1 DC8 1,2,3,4,5,6
 .LSTCOD-
table2 DC8 1,2,3,4,5,6
 .END

This will produce the following output:

 286 000000 .NAME lstcodtbl

 287 000000 .LSTCOD+

 288 000000 0102030405 table1 DC8 1,2,3,4,5,6

 06

 289 000006 .LSTCOD-

 290 000006 0102030405*table2 DC8 1,2,3,4,5,6

 291 00000C .ENDMOD

Controlling the listing of macros
The following example shows the effect of .LSTMAC and .LSTEXP:

dec2 .MACRO arg
 DEC.B arg
 DEC.B arg
 .ENDM

 .LSTMAC+
inc2 .MACRO arg
 .INC.B arg
 .INC.B arg
 .ENDM

 .EXTERN memlock
begin:
 dec2 memlock
 .LSTEXP-
 inc2 memlock
 RTS
 .END

ASSEMBLER DIRECTIVES LISTING CONTROL DIRECTIVES

AM32C-2

85

This will produce the following output:

 296 000000 .MODULE EX_9

 297 000000

 302 000000

 303 000000 .LSTMAC+

 304 000000 inc2 .MACRO arg

 305 000000 INC.B arg

 306 000000 INC.B arg

 307 000000 .ENDM

 308 000000

 309 000000 .EXTERN memlock

 310 000000 begin:

 311 000000 dec2 memlock

 311.1 000000 B68E...... DEC.B memlock

 311.2 000005 B68E...... DEC.B memlock

 311.3 00000A .ENDM

 312 00000A .LSTEXP-

 313 00000A inc2 memlock

 314 000014 DF RTS

 315 000015 .ENDMOD

Formatting listed output
The following example formats the output into pages of 66 lines each
with 132 columns. The .LSTPAG directive organizes the listing into pages,
starting each module on a new page. The .PAGE directive inserts
additional page breaks.

 .PAGSIZ 66 ; Page size
 .COL 132
 .LSTPAG+
 …
 .ENDMOD
 .MODULE
 …
 .PAGE
 …

C-STYLE PREPROCESSOR DIRECTIVES ASSEMBLER DIRECTIVES

AM32C-2

86

C-STYLE
PREPROCESSOR
DIRECTIVES

The following C-language preprocessor directives are available:

SYNTAX
#define label text

#undef label

#if condition

#ifdef label

#ifndef label

#elif condition

#else

#endif

#include {"filename" | <filename>}

#error "message"

#message "message"
/*comment*/
//comment

Directive Description

#define Assigns a value to a label.

#undef Undefines a label.

#if Assembles instructions if a condition is true.

#ifdef Assembles instructions if a symbol is defined.

#ifndef Assembles instructions if a symbol is undefined.

#elif Introduces a new condition in a #if…#endif block.

#else Assembles instructions if a condition is false.

#endif Ends a #if, #ifdef, or #ifndef block.

#include Includes a file.

#message Generates a message on standard output.

#error Generates an error.

/*comment*/ C-style comment delimiter.

// C++ style comment delimiter.

ASSEMBLER DIRECTIVES C-STYLE PREPROCESSOR DIRECTIVES

AM32C-2

87

PARAMETERS

DESCRIPTION
It is important to avoid mixing the assembler language with the C-style
preprocessor directives. Conceptually, they are different languages and
mixing them may lead to unexpected behavior since an assembler
directive is not necessarily accepted as a part of the C language.

The following example illustrates some problems that may occur when
assembler comments are used in the C-style preprocessor.

 #define five 5 ; comment
 MOV.W five+addr,R0 ; syntax error!

; expanded to "MOV.W 5 ; comment+addr,R0"
 MOV.W R0,five+addr ; incorrect code!

; expanded to "MOV.W R0,5 ; comment+addr"

label Symbol to be defined, undefined,
or tested.

text Value to be assigned.

condition One of the following:

An absolute expression The expression must
not
contain forward or
external references, and
any non-zero value is
considered as true.

string1=string The condition is true if
string1 and string2
have the same length
and contents.

string1<>string2 The condition is true if
string1 and string2
have different length or
contents.

filename Name of file to be included.

message Text to be displayed.

C-STYLE PREPROCESSOR DIRECTIVES ASSEMBLER DIRECTIVES

AM32C-2

88

Defining and undefining labels
Use #define to define a temporary label.

#define label value

is similar to:

label VAR value

Use #undef to undefine a label; the effect is as if it had not been defined.

Conditional directives
Use the #if … #else … #endif directives to control the assembly
process at assembly time. If the condition following the #if directive is
not true, the subsequent instructions will not generate any code (i.e. it
will not be assembled or syntax checked) until a #endif or #else
directive is found.

All assembler directives (except for .END), and file inclusion, may be
disabled by the conditional directives. Each #if directive must be
terminated by a #endif directive. The #else directive is optional, and if
used, it must be inside a #if … #endif block.

#if … #endif and #if … #else … #endif blocks may be nested to any
level.

Use #ifdef to assemble instructions up to the next #else or #endif
directive only if a symbol is defined.

Use #ifndef to assemble instructions up to the next #else or #endif
directive only if a symbol is undefined.

Including source files
Use #include to insert the contents of a file into the source file at a
specified point.

#include filename searches the following directories in the specified
order:

1 The source file directory.

2 The directories specified by the -I option, or options.

3 The current directory.

ASSEMBLER DIRECTIVES C-STYLE PREPROCESSOR DIRECTIVES

AM32C-2

89

#include <filename> searches the following directories in the specified
order:

1 The directories specified by the -I option, or options.

2 The current directory.

Displaying errors
Use #error to force the assembler to generate an error, such as in a
user-defined test.

Defining comments
Use /* … */ to comment sections of the assembler listing.

Use // to mark the rest of the line as comment.

The following example shows how /* … */ can be used for a multi-line
comment:

/*
Program to read serial input.
Version 2: 11.1.99
Author: mjp
*/

EXAMPLES

Using conditional directives
The following example defines a label adjust, and then uses the
conditional directive #ifdef to use the value if it is defined. If it is not
defined #error displays an error:

 .NAME ifdef
 .EXTERN input, output

#define adjust 10

main MOV.W input,A0
 MOV.W [A0],R0

#ifdef adjust
 ADD.W adjust,R0
#else
#error "'adjust' not defined"
#endif

C-STYLE PREPROCESSOR DIRECTIVES ASSEMBLER DIRECTIVES

AM32C-2

90

#undef adjust
 MOV.W [A0],R0
 RTS
 .END

Including a source file
The following example uses #include to include a file defining macros
into the source file. For example, the following macros could be defined in
xchmacro.s48:

xch_b .MACRO a,b
 PUSH.B a
 MOV.B b,a
 POP.B b
 .ENDM

xch_w .MACRO a,b
 PUSH.W a
 MOV.W b,a
 POP.W b
 .END

The macro definitions can then be included, using #include, as in the
following example:

 .NAME include1
 .EXTERN result1,result2
#include “xchmacro.s48”

inc_main:
 xch_w result1, result2
 xch_b result1, result2
 xch_w result1, result2
 .END

ASSEMBLER DIRECTIVES DATA DEFINITION OR ALLOCATION DIRECTIVES

AM32C-2

91

DATA DEFINITION
OR ALLOCATION
DIRECTIVES

These directives define temporary values or reserve memory.

SYNTAX
DC8 expr [,expr] ...
DC16 expr [,expr] ...
DC24 expr [,expr] ...
DC32 expr [,expr] ...
DS8 expr [,expr] ...
DS16 expr [,expr] ...
DS24 expr [,expr] ...
DS32 expr [,expr] ...
.BLKF expr [,expr] ...
.FLOAT expr [,expr] ...

PARAMETERS

DESCRIPTION
Use DS8, DS16, DS24, DS32, and .BLKF to allocate space. The memory
contents are not initialized in any way.

Directive Description

DC8 (.BYTE) Generates 8-bit byte constants.

DC16 (.WORD) Generates 16-bit word constants.

DC24 (.ADDR) Generates 24-bit 3-byte constants.

DC32 (.LWORD) Generates 32-bit double word constants.

DS8 (.BLKB) Allocates space for 8-bit bytes.

DS16 (.BLKW) Allocates space for 16-bit words.

DS24 (.BLKA) Allocates space for 24-bit 3-byte constants.

DS32 (.BLKL) Allocates space for 32-bit double word constants.

.BLKF Reserves memory space for float (32-bit) without
initializing.

.FLOAT Initializes float (32-bit) constants.

expr A valid absolute, relocatable, or external expression, or an
ASCII string. ASCII strings will be zero filled to a multiple of
the size. Double-quoted strings will be zero-terminated.

DATA DEFINITION OR ALLOCATION DIRECTIVES ASSEMBLER DIRECTIVES

AM32C-2

92

Use DC8, DC16, DC24, DC32, and .FLOAT to initialize and reserve memory
space.

EXAMPLES

Generating lookup table
The following example generates a lookup table of addresses to routines:

 .NAME table

table DC16 addsubr, subsubr, clrsubr
addsubr ADD.W R0,R1
 RTS

subsubr SUB.W R0,R1
 RTS

clrsubr MOV.W #0,R0
 RTS

 .END

Defining strings
To define a string:

mymess DC8 'Please enter your name'

To define a string which includes a trailing zero:

myCstr DC8 "This is a string."

To include a single quote in a string, enter it twice; for example:

errmess DC8 'Don''t understand!'

Reserving space
To reserve space for ten bytes:

table DS8 0xA

ASSEMBLER DIRECTIVES ASSEMBLER CONTROL DIRECTIVES

AM32C-2

93

ASSEMBLER
CONTROL
DIRECTIVES

These directives provide control over the operation of the assembler.

SYNTAX
$filename
.RADIX expr
.CASEON
.CASEOFF

PARAMETERS

DESCRIPTION
Use $ to insert the contents of a file into the source file at a specified
point.

Use .RADIX to set the default base for use in conversion of constants from
ASCII source to the internal binary format.

To reset the base from 16 to 10, expr must be written in hexadecimal
format, for example:

.RADIX 0x0A

Controlling case sensitivity
Use .CASEON or .CASEOFF to turn on or off case sensitivity for
user-defined symbols. By default case sensitivity is off.

When .CASEOFF is active all symbols are stored in upper case, and all
symbols used by XLINK should be written in upper case in the XLINK
definition file.

Directive Description

$ Includes a file.

.RADIX Sets the default base.

.CASEON Enables case sensitivity.

.CASEOFF Disables case sensitivity.

filename Name of file to be included. The $ character must be
the first character on the line.

expr Default base; default 10 (decimal).

ASSEMBLER CONTROL DIRECTIVES ASSEMBLER DIRECTIVES

AM32C-2

94

EXAMPLES

Including a source file
The following example uses $ to include a file defining macros into the
source file. For example, the following macros could be defined in
macros.s48:

xch .MACRO add1,add2
 PUSH.B add1
 MOV.B add1,add2
 POP.B add2
 .ENDM

The macro definitions can be included with a $ directive, as in:

 .NAME include
; Standard macro definitions
$macros.s48
; Program
 .EXTERN var1,var2
main exch var1, var2
 RTS
 .END

Changing the base
To set the default base to 16:

 .RADIX 16D
 MOV.W #12,A0

The immediate argument will then be interpreted as H'12.

Controlling case sensitivity
When .CASEOFF is set, label and LABEL are identical in the following
example:

label NOP ; stored as "LABEL"
JMP LABEL

The following will generate a duplicate label error:

label NOP
LABEL NOP ; Error: "LABEL" already defined

.END

AM32C-2

95

ASSEMBLER DIAGNOSTICS
This chapter lists the error and warning messages for the M32C
Assembler.

INTRODUCTION Error messages are displayed on the screen, as well as printed in the
optional list file.

All errors are issued as complete, self-explanatory messages. The error
message consists of the erroneous source line, with a pointer to the faulty
spot, followed by the source line number and diagnostics. If include files
are used, error messages will be preceded by the source line number and
name of current file:

 ADS B,C
-----------^
"subfile.h",4 Error[40]: bad instruction

The error messages produced by the assembler fall into the following
categories:

◆ Command line error messages.

◆ Assembly warning messages.

◆ Assembly error messages.

◆ Assembly fatal error messages.

◆ Memory overflow messages.

◆ Assembler internal error messages.

COMMAND LINE ERROR MESSAGES
Command line errors occur when the assembler is invoked with incorrect
parameters. The most common situation is when a file cannot be opened,
or with duplicate, mis-spelled, or missing command line switches.

ASSEMBLY ERROR MESSAGES
Assembly error messages are produced when the assembler has found a
construct which violates the language rules. These are listed in the
section Error messages, page 97.

INTRODUCTION ASSEMBLER DIAGNOSTICS

AM32C-2

96

ASSEMBLY WARNING MESSAGES
Assembly warning messages are produced when the assembler has found
a construct which is probably the result of a programming error or
omission. These are listed in the section Warning messages, page 107.

ASSEMBLY FATAL ERROR MESSAGES
Assembly fatal error messages are produced when the assembler has
found a user error so severe that further processing is not considered
meaningful. After the diagnostic message has been issued the assembly is
immediately terminated. The fatal error messages are identified as Fatal
in the error messages list.

MEMORY OVERFLOW MESSAGES
The assembler is a memory-based program that, in the case of a system
with a small primary memory or in the case of very large source files, may
run out of memory. This is identified by the special message:

* * * ASSEMBLER OUT OF MEMORY * * *
Dynamic memory used: nnnnnn bytes

If such a situation occurs, the solution is either to add system memory or
to split source files into smaller modules.

ASSEMBLER INTERNAL ERROR MESSAGES
During assembly a number of internal consistency checks are performed
and if any of these checks fail, the assembler will terminate after giving a
short description of the problem. Such errors should normally not occur
and should be reported to your software distributor or to IAR Technical
Support. Please include information enough to reproduce the problem.
This would typically include:

◆ The exact internal error message text.

◆ The source file of the program that generated the internal error.

◆ A list of the options that were used when the internal error
occurred.

◆ Version number of the M32C IAR Assembler.

ASSEMBLER DIAGNOSTICS ERROR MESSAGES

AM32C-2

97

ERROR MESSAGES GENERAL
The following section lists the general error messages.

0 Invalid syntax

The assembler could not decode the expression.

1 Too deep #include nesting (max. is 10)

Fatal. The assembler limit for nesting of #include files was
exceeded. A recursive #include could be the reason.

2 Failed to open #include file <name>

Fatal. Could not open a #include file. The file does not exist in the
specified directories. Check the -I prefixes.

3 Invalid #include file name

Fatal. A #include file name must be written <file> or "file".

4 Unexpected end of file encounted

Fatal. End of file encountered within a conditional assembly, the
repeat directive, or during macro expansion. A probable cause is the
missing end of conditional assembly.

5 Too long source line (max. is 2048 characters) truncated

The source line length exceeds the assembler limit.

6 Bad constant

A character that is not a legal digit was encountered.

7 Hexadecimal constant without digits

The prefix 0x or 0X of a hexadecimal constant found without any
hexadecimal digits following.

ERROR MESSAGES ASSEMBLER DIAGNOSTICS

AM32C-2

98

8 Invalid floating point constant

A too large floating-point constant or invalid syntax of
floating-point constant was encountered.

9 Too many errors encountered (>100).

The maximum number of errors can be set using the command line
option -E; see -E, page 9.

10 Space or tab expected

11 Too deep block nesting (max is 50)

The preprocessor directives are nested too deeply.

12 String too long (max is 2045)

The assembler string length limit was exceeded.

13 Missing delimiter in literal or character constant

No closing delimiter ' or " was found in character or literal
constant.

14 Missing #endif

A #if, #ifdef, or #ifndef was found but had no matching #endif.

15 Invalid character encountered: char; ignored

16 Identifier expected

A name of a label or symbol was expected.

17 ')' expected

18 No such pre-processor command: command

was followed by an unknown identifier.

ASSEMBLER DIAGNOSTICS ERROR MESSAGES

AM32C-2

99

19 Unexpected token found in pre-processor line

The preprocessor line was not empty after the argument part was
read.

20 Argument to #define too long (max is 2048)

21 Too many formal parameters for #define (max is 37)

22 Macro parameter parameter redefined

A #define symbol’s formal parameter was repeated.

23 ',' or ')' expected

24 Unmatched #else, #endif or #elif

Fatal. Missing #if, #ifdef, or #ifndef.

25 #error <error>.

Printout via the #error directive.

26 '(' expected

27 Too many active macro parameters (max is 256)

Fatal. Preprocessor limit exceeded.

28 Too many nested parameterized macros (max is 50)

Fatal. Preprocessor limit exceeded.

29 Too deep macro nesting (max is 100)

Fatal. Preprocessor limit exceeded.

30 Actual macro parameter too long (max is 512)

A single macro (in #define) argument may not exceed the length of
a source line.

ERROR MESSAGES ASSEMBLER DIAGNOSTICS

AM32C-2

100

31 Macro <macro> called with too many parameters

The number of parameters used was greater than the number in the
macro declaration.

32 Macro <macro> called with too few parameters

The number of parameters used was less than the number in the
macro declaration (#define).

33 Too many MACRO arguments

The number of assembler macros exceeds 32.

34 May not be redefined

Assembler macros may not be redefined.

35 No name on macro

An assembler macro definition without a label was encountered.

36 Illegal formal parameter in macro

A parameter that was not an identifier was found.

37 ENDM or EXITM not in macro

An ENDM directive or EXITM directive encountered outside a macro.

38 '>' expected but found end-of-line

A < was found but no matching >.

39 END before start of module

The end-of-module directive has no matching MODULE directive.

40 Bad instruction

The mnemonic/directive does not exist.

ASSEMBLER DIAGNOSTICS ERROR MESSAGES

AM32C-2

101

41 Bad label

Labels must begin with A–Z, a–z, _, or ?. The succeeding characters
must be A–Z, a–z, 0–9, _, or ?. Labels cannot have the same name as
a predefined symbol.

42 Duplicate label

The label has already appeared in the label field or has been declared
as EXTERN.

43 Illegal effective address

The addressing mode (operands) is not allowed for this mnemonic.

44 ',' expected

A comma was expected but not found.

45 Name duplicated

The name of RSEG, STACK, or COMMON segments is already used but
for something else.

46 Segment type expected

In RSEG, STACK, or COMMON directive : was found but the segment
type that should follow was not valid.

47 Segment name expected

The RSEG, STACK, and COMMON directives need a name.

48 Value out of range range

The value exceeds its limits.

49 Alignment already set

RSEG, STACK, and COMMON segment do not allow alignment to be set
more than once. Use ALIGN, EVEN, or ODD instead.

ERROR MESSAGES ASSEMBLER DIAGNOSTICS

AM32C-2

102

50 Undefined symbol: symbol

The symbol did not appear in label field or in an EXTERN or sfr
declaration.

51 Can't be both PUBLIC and EXTERN

Symbols can be declared as either PUBLIC or EXTERN.

52 EXTERN not allowed

Reference to EXTERN symbols is not allowed in this context.

53 Expression must be absolute

The expression cannot involve relocatable or external symbols.

54 Expression can not be forward

The assembler must be able to solve the expression the first time this
expression is encountered.

55 Illegal size

The maximum size for expressions is 32 bits.

56 Too many digits

The value exceeds the size of the destination.

57 Unbalanced conditional assembly directives

Missing conditional assembly IF or ENDIF.

58 ELSE without IF

Missing conditional assembly IF.

59 ENDIF without IF

Missing conditional assembly IF.

ASSEMBLER DIAGNOSTICS ERROR MESSAGES

AM32C-2

103

60 Unbalanced structured assembly directives

Missing structured assembly IF or ENDIF.

61 '+' or '-' expected

A plus or minus sign is missing.

62 Illegal operation on extern or public symbol

An illegal operation has been used on a public or external symbol;
eg SET.

63 Illegal operation on non-constant label

It is illegal to make a non-constant symbol PUBLIC or EXTERN.

64 Extern or unsolved expression

The expression must be solved at assembly time, i.e. not include
external references.

65 '=' expected

Equals sign was missing.

66 Segment too long (max is max)

The length of ASEG, RSEG, STACK, or COMMON segments is larger than
the addressable length.

67 Public did not appear in label field

A symbol was declared PUBLIC but no label with the same name was
found in the source file.

68 End of block-repeat without start

The repeat directive REPT was not found although the ENDR directive
was.

69 Segment must be relocatable

The operation is not allowed on ASEG.

ERROR MESSAGES ASSEMBLER DIAGNOSTICS

AM32C-2

104

70 Limit exceeded: error text, value is: value (decimal)

The value exceeded the limits set with the LIMIT directive. The
error text is set by the user in the LIMIT directive.

71 Symbol symbol has already been declared EXTERN

An attempt to redeclare an EXTERN as EXTERN was made.

72 Symbol symbol has already been declared PUBLIC

An attempt to redeclare a PUBLIC as PUBLIC was made.

73 End-of-module missing

A PROGRAM or MODULE directive was encountered before ENDMOD was
found.

74 Expression must yield non-negative result

The expression was evaluated to a negative number, whereas a
positive number was required.

75 Repeat directive unbalanced

This error is caused by a REPT directive without a matching ENDR, or
a an ENDR directive without a matching REPT.

76 End of repeat directive is missing

A REPT directive without a closing ENDR was encountered.

77 LOCALs not allowed in this context, (symbol)

Local symbols must be declared within macro definitions.

78 End of macro expected

An assembler macro is being defined but there was no end-of-macro.

79 End of repeat expected

One of the repeat directives is active, but there was no end-of-repeat
found.

ASSEMBLER DIAGNOSTICS ERROR MESSAGES

AM32C-2

105

80 End of conditional assembly expected

Conditional assembly is active but there was no end of if.

81 End of structured assembly expected

One of the directives for structured assembly is active but has no
matching END.

82 Misplaced end of structured assembly

A directive that terminates one of the structured assembly directives
was found but no matching START directive is active.

83 Error in SFR attribute definition

The SFRTYPE directive was used with unknown attributes.

84 Illegal symbol type in symbol

The symbol cannot be used in this context since it has the wrong
type.

85 Wrong number of arguments

Expected a different number of arguments.

86 Number expected

Characters other than digits were encountered.

87 Label must be public or extern

The label must be declared with PUBLIC or EXTERN.

88 Label not defined with DEFFN

The label has to be defined via DEFFN before used in this context.

89 Sorry DEMO version, bytecount exceeded (max bytes)

ERROR MESSAGES ASSEMBLER DIAGNOSTICS

AM32C-2

106

90 Different parts of ASEG have overlapping code

91 Internal error

92 Empty macro stack overflow

93 Macro stack overflow

94 Attempt to access out-of-stack value

95 Invalid macro operator

96 No such macro argument

97 Sorry Lite version, bytecount exceeded (max bytes)

98 Option -re cannot handle code in include files, use -r or -rn
instead

99 #include within macro not supported

100 Duplicate segment definitions

Segment redefinition with different attributes; for example, an RSEG
segment cannot be used as a COMMON segment.

M32C-SPECIFIC ERROR MESSAGES
In addition to the general errors, the M32C assembler may generate the
following errors:

400 Branch too long

401 Too many operands

402 :8 or :16 expected

ASSEMBLER DIAGNOSTICS WARNING MESSAGES

AM32C-2

107

403 :8, :16 or :24 expected

404 :16 or :24 expected

405 :11, :19 or :27 expected

406 :19 or :27 expected

407 Size specifier (.B .W etc) required

408 The register register is not allowed here

409 Illegal flag-register flag

410 Size specifier not compatible with operand

WARNING MESSAGES GENERAL
The following section lists the general warning messages.

0 Unreferenced label

The label was not used as an operand, nor was it declared public.

1 Nested comment

A C comment was nested.

2 Unknown escape sequence

A backslash (\) found in a character constant or string literal was
followed by an unknown escape character.

3 Non-printable character

A non-printable character was found in a literal or character
constant.

WARNING MESSAGES ASSEMBLER DIAGNOSTICS

AM32C-2

108

4 Macro or define expected

5 Floating point value out-of-range

Floating point value is too large to be represented by the floating
point system of the target.

6 Floating point division by zero

7 Wrong usage of string operator (# or ##); ignored.

The current implementation restricts use of the # and ## operators
to the token field of parameterized macros. In addition, the #
operator must precede a formal parameter.

8 Macro parameter(s) not used

9 Macro redefined

10 Unknown macro

11 Empty macro argument

12 Recursive macro

13 Redefinition of Special Function Register

The special function register (SFR) has already been defined.

14 Division by zero

Division by 0 in constant expression.

15 Constant truncated

The constant was longer than the size of the destination.

ASSEMBLER DIAGNOSTICS WARNING MESSAGES

AM32C-2

109

16 Suspicious sfr expression

A special function register (SFR) is used in an expression, and the
assembler cannot check access rights.

17 Empty module module, module skipped

An empty module was created by using END directly after ENDMOD or
MODULE, followed by ENDMOD without any statements in between.

18 End of program while in include file

The program ended while a file was being included.

19 Symbol symbol duplicated

20 Bit symbol cannot be used as operand

A symbol was declared using the bit directive, but since the bit
address is not calculated the symbol should not be used.

21 Label did not appear in label field

22 Set segment alignment the same value or larger

When the alignment set by ALIGN is larger than the segment
alignment it may be lost at link time.

M32C-SPECIFIC WARNING MESSAGES
In addition to the general warnings, the M32C IAR Assembler may
generate the following warnings:

400 Number out of range

401 SFR neither defined as READ nor WRITE

402 More than one SFR size attribute defined, using default
(byte)

403 No SFR size attribute defined, using default (byte)

WARNING MESSAGES ASSEMBLER DIAGNOSTICS

AM32C-2

110

404 Displacement out of bounds

405 Accessing SFR incorrectly, check read/write flags

406 Accessing SFR using incorrect size

407 :8 applied, ignoring upper byte

408 :16 applied

409 Illegal register

INDEX

AM32C-2

111

A
absolute segments 64
address field, in listing 31
AM32C_INC (environment variable) 4
AND (assembler operator) 38
ASCII character constants 26
ASMM32C (environment variable) 4
assembler

expressions 22
features 1
labels 23
listing format 30
operators 22
output formats 32
source format 21
symbols 23

assembler diagnostics 95
command line errors 95
error messages 95, 97
fatal errors 96
internal errors 96
memory overflow 96
warning messages 96, 107

assembler directive syntax
comments 57
conventions 57
labels 57
parameters 58

assembler directives
allocation 91
assembler control 93
conditional assembly 72
const 68
C-style preprocessor 86
data definition or allocation 91
DC16 91
DC24 91

DC32 91
DC8 91
DS16 91
DS24 91
DS32 91
DS8 91
listing control 80
macro processing 73
module control 58
segment control 63
sfr 68
sfrp 68
summary 51
symbol control 61
value assignment 68
#define 86
#elif 86
#else 86
#endif 86
#error 86
#if 86
#ifdef 86
#ifndef 86
#include 86
#message 86
#undef 86
$ 93
.ADDR 91
.ALIAS 68
.ALIGN 63
.ALIGNRAM 63
.ASEG 63
.ASSIGN 68
.BLKA 91
.BLKB 91
.BLKF 91
.BLKL 91
.BLKW 91

INDEX

INDEX

AM32C-2

112

.BYTE 91

.CASEOFF 93

.CASEON 93

.COL 80

.COMMON 63

.DEFINE 68

.ELSE 72

.ELSEIF 72

.END 58

.ENDIF 72

.ENDM 73

.ENDMOD 58

.ENDR 74

.EQU 68

.EVEN 63

.EXITM 73

.EXPORT 61

.EXTERN 61

.FLOAT 91

.IF 72

.IMPORT 61

.LIBRARY 58

.LIMIT 68

.LOCAL 73

.LSTCND 80

.LSTCOD 80

.LSTEXP 80

.LSTMAC 80

.LSTOUT 80

.LSTPAG 80

.LSTREP 80

.LSTXRF 80

.LWORD 91

.MACRO 73

.MODULE 58

.NAME 58

.ODD 63

.ORG 63

.PAGE 81

.PAGSIZ 80

.PROGRAM 58

.PUBLIC 61

.PUBWEAK 61

.RADIX 93

.REPT 74

.REPTC 74

.REPTI 74

.REQUIRE 61

.RSEG 63

.RTMODEL 58

.SET 68

.SFRTYPE 68

.STACK 63

.VAR 68

.WORD 91
/* 86
// 86
= 68
_args 76

assembler environment variables 4
assembler list files

conditions, specifying 7
cross-references, generating 19
filename, specifying 12
generating 11
header section, omitting 13
lines per page, specifying 14
macro execution information, including 6
tab spacing, specifying 16
#include files, specifying 11

assembler macros
quote characters, specifying 12

assembler object file
filename, specifying 13

assembler operators 33
AND 38

INDEX

AM32C-2

113

BINAND 38
BINNOT 38
BINOR 39
BINXOR 39
BYTE1 39
BYTE2 39
BYTE3 40
BYTE4 40
DATE 40
EQ 41
GE 41
GT 42
HIGH 42
HWRD 42
LE 43
LOW 43
LT 43
LWRD 44
MOD 44
NE 44
NOT 45
OR 45
precedence 33
SFB 45
SFE 46
SHL 47
SHR 47
SIZEOF 47
UGT 48
ULT 48
XOR 49
! 45
!= 44
% 44
& 38
&& 38
* 36
+ 36

- 37
/ 37
<<> 47
<=> 43
<> 43–44
= 41
== 41
> 42
>= 41
>> 47
^ 39
| 39
|| 45
~ 38

assembler options
command line, setting 3
extended command file, setting 4
summary 5
-B 6
-b 7
-c 7
-D 8
-E 9
-f 4, 9
-G 10
-I 10
-i 11
-L 11
-l 12
-M 12
-N 13
-O 13
-o 14
-p 14
-r 15
-S 15
-s 16
-t 16

INDEX

AM32C-2

114

-U 17
-v 17
-w 18
-x 19

assembler output, including debug information 15
assembler symbols, predefined

undefining 17
assembly warning messages, disabling 18
assumptions iv

B
BINAND (assembler operator) 38
BINNOT (assembler operator) 38
BINOR (assembler operator) 39
BINXOR (assembler operator) 39
BYTE1 (assembler operator) 39
BYTE2 (assembler operator) 39
BYTE3 (assembler operator) 40
BYTE4 (assembler operator) 40

C
case sensitive user symbols 16
case sensitivity 93
character constants 26
command line errors 95
command line options 3
command line, extending 9
comments, in assembler directives 57
common segments 65
conditional list file 7
configuration, specifying 17
const (assembler directive) 68
constants, integer 25
conventions iv
CPU, defining. See processor configuration

cross-references in assembler list file, generating 19
C-SPY iii

D
data field, in listing 31
DATE (assembler operator) 40
DC16 (assembler directive) 91
DC24 (assembler directive) 91
DC32 (assembler directive) 91
DC8 (assembler directive) 91
debug information in assembler output, including 15
debugger iii
declaring run-time model attributes 60
defining macros 75
diagnostics 95
directives, summary 51
DS16 (assembler directive) 91
DS24 (assembler directive) 91
DS32 (assembler directive) 91
DS8 (assembler directive) 91

E
environment variables 4

AM32C_INC 4
ASMM32C 4

EQ (assembler operator) 41
error messages 97

maximum number, specifying 9
errors, displaying 89
expressions, in assembly 22
extended command line file (extend.xcl) 4, 9

F
false value 22

INDEX

AM32C-2

115

features 1
file extensions

xcl 4, 9
file types

extended command line 4, 9
#include 10

filenames
assembler output, specifying 13–14

format modifiers 24
formats, output 32

G
GE (assembler operator) 41
global value, defining 69
GT (assembler operator) 42

H
header files, SFR 2
header section, omitting from assembler list file 13
HIGH (assembler operator) 42
HWRD (assembler operator) 42

I
IAR C-SPY Debugger iii
IAR Embedded Workbench iii
IAR XLINK Linker

output formats 32
include paths, specifying 10
installation iii
integer constants 25
in-line coding using macros 77
iomacros.h 2

L
labels

defining and undefining 88
in assembler directives 57
in assembly 23

LE (assembler operator) 43
library modules 59

creating 7
lines per page, in assembler list file 14
linker

output formats 32
listings

address field 31
assembler 30
conditional code and strings 81
cross-reference table 82
data field 31
formatting 82
generated lines 82
macros 82
source line 31
turning on and off 81

local
symbols 71
value 69

location counter 23
setting 65

LOW (assembler operator) 43
LT (assembler operator) 43
LWRD (assembler operator) 44

M
macro execution information, including in
assembler list file 6
macro quote characters, specifying 12
macro symbols, predefined 76

INDEX

AM32C-2

116

macros
defining 75
processing 76
using special characters 76

messages, excluding from standard output stream 15
MOD (assembler operator) 44
modifiers, format 24
module control directives 58
modules, terminating 59

N
NE (assembler operator) 44
NOT (assembler operator) 45

O
operation, silent 15
operators 22, 33
option summary, assembler 5
OR (assembler operator) 45
output formats, assembler 32
overview, product iii

P
predefined symbols 27

undefining 17
__DATE__ 27
__FILE__ 27
__IAR_SYSTEMS_ASM__ 27
__LINE__ 27
__TID__ 27
__TIME__ 27
__VER__ 27

preprocessor symbol, defining 8
processor configuration, specifying 17

product overview iii
program modules, beginning 59
programming hints 2

R
relocatable expressions, using symbols in 22
relocatable segments, beginning 65
repeating statements 77
run-time model attributes, declaring 60

S
segments, common 65
SFB (assembler operator) 45
SFE (assembler operator) 46
SFR 2
sfr (assembler directive) 68
sfrp (assembler directive) 68
SHL (assembler operator) 47
SHR (assembler operator) 47
silent operation, specifying 15
SIZEOF (assembler operator) 47
source files, including 88, 94
source format, assembler 21
source line, in listing 31
special function register 2
stack segments, beginning 65
standard input stream (stdin), reading from 10
standard output stream, disabling messages to 15
symbol and cross-reference table 32
symbols

exporting to other modules 62
importing 62
in assembly 23
in relocatable expressions 22
macro 76

INDEX

AM32C-2

117

predefined 27
redefining 70
user-defined, case sensitive 16

T
tab spacing, specifying in assembler list file 16
target processor, specifying 17
temporary value, defining 69
true value 22
tutorials iii

U
UGT (assembler operator) 48
ULT (assembler operator) 48
user symbols, case sensitive 16

W
warning messages 107

disabling 18

X
xcl (file extension) 4, 9
XOR (assembler operator) 49

Symbols
! (assembler operator) 45
!= (assembler operator) 44
#define (assembler directive) 86
#elif (assembler directive) 86
#else (assembler directive) 86
#endif (assembler directive) 86

#error (assembler directive) 86
#if (assembler directive) 86
#ifdef (assembler directive) 86
#ifndef (assembler directive) 86
#include files

listing 11
specifying 10

#include (assembler directive) 86
#message (assembler directive) 86
#undef (assembler directive) 86
$ (assembler directive) 93
$ (location counter) 23
% (assembler operator) 44
& (assembler operator) 38
&& (assembler operator) 38
* (assembler operator) 36
+ (assembler operator) 36
- (assembler operator) 37
-B (assembler option) 6
-b (assembler option) 7
-c (assembler option) 7
-D (assembler option) 8
-E (assembler option) 9
-f (assembler option) 4, 9
-G (assembler option) 10
-I (assembler option) 10
-i (assembler option) 11
-L (assembler option) 11
-l (assembler option) 12
-M (assembler option) 12
-N (assembler option) 13
-O (assembler option) 13
-o (assembler option) 14
-p (assembler option) 14
-r (assembler option) 15
-S (assembler option) 15
-s (assembler option) 16
-t (assembler option) 16

INDEX

AM32C-2

118

-U (assembler option) 17
-v (assembler option) 17
-w (assembler option) 18
-x (assembler option) 19
.ADDR (assembler directive) 91
.ALIAS (assembler directive) 68
.ALIGN (assembler directive) 63
.ALIGNRAM (assembler directive) 63
.ASEG (assembler directive) 63
.ASSIGN (assembler directive) 68
.BLKA (assembler directive) 91
.BLKB (assembler directive) 91
.BLKF (assembler directive) 91
.BLKL (assembler directive) 91
.BLKW (assembler directive) 91
.BYTE (assembler directive) 91
.CASEOFF (assembler directive) 93
.CASEON (assembler directive) 93
.COL (assembler directive) 80
.COMMON (assembler directive) 63
.DEFINE (assembler directive) 68
.ELSE (assembler directive) 72
.ELSEIF (assembler directive) 72
.END (assembler directive) 58
.ENDIF (assembler directive) 72
.ENDM (assembler directive) 73
.ENDMOD (assembler directive) 58
.ENDR (assembler directive) 74
.EQU (assembler directive) 68
.EVEN (assembler directive) 63
.EXITM (assembler directive) 73
.EXPORT (assembler directive) 61
.EXTERN (assembler directive) 61
.FLOAT (assembler directive) 91
.IF (assembler directive) 72
.IMPORT (assembler directive) 61
.LIBRARY (assembler directive) 58
.LIMIT (assembler directive) 68

.LOCAL (assembler directive) 73

.LSTCND (assembler directive) 80

.LSTCOD (assembler directive) 80

.LSTEXP (assembler directives) 80

.LSTMAC (assembler directive) 80

.LSTOUT (assembler directive) 80

.LSTPAG (assembler directive) 80

.LSTREP (assembler directive) 80

.LSTXRF (assembler directive) 80

.LWORD (assembler directive) 91

.MACRO (assembler directive) 73

.MODULE (assembler directive) 58

.NAME (assembler directive) 58

.ODD (assembler directive) 63

.ORG (assembler directive) 63

.PAGE (assembler directive) 81

.PAGSIZ (assembler directive) 80

.PROGRAM (assembler directive) 58

.PUBLIC (assembler directive) 61

.PUBWEAK (assembler directive) 61

.RADIX (assembler directive) 93

.REPT (assembler directive) 74

.REPTC (assembler directive) 74

.REPTI (assembler directive) 74

.REQUIRE (assembler directive) 61

.RSEG (assembler directive) 63

.RTMODEL(assembler directive) 58

.SET (assembler directive) 68

.SFRTYPE (assembler directive) 68

.STACK (assembler directive) 63

.VAR (assembler directive) 68

.WORD (assembler directive) 91
/ (assembler operator) 37
/* (assembler directive) 86
// (assembler directive) 86
< (assembler operator)> 43
<< (assembler operator)> 47
<= (assembler operator)> 43

INDEX

AM32C-2

119

<> (assembler operator) 44
= (assembler directive) 68
= (assembler operator) 41
== (assembler operator) 41
> (assembler operator) 42
>= (assembler operator) 41
>> (assembler operator) 47
^ (assembler operator) 39
_args (assembler directive) 76
__DATE__ (predefined symbol) 27
__FILE__ (predefined symbol) 27
__IAR_SYSTEMS_ASM__ (predefined symbol) 27
__LINE__ (predefined symbol) 27
__TID__ (predefined symbol) 27
__TIME__ (predefined symbol) 27
__VER__ (predefined symbol) 27
| (assembler operator) 39
|| (assembler operator) 45
~ (assembler operator) 38

INDEX

AM32C-2

120

	Contents
	Introduction to the M32C Assembler
	Key features
	General
	Assembler features

	Programming hints
	Accessing special function registers
	C-style preprocessor directives

	Assembler options
	Setting assembler options
	Extended command line file
	Assembler environment variables

	Options summary
	-B
	Syntax
	Description

	-b
	Syntax
	Description

	-c
	Syntax
	Description

	-D
	Syntax
	Description

	-E
	Syntax
	Description

	-f
	Syntax
	Description

	-G
	Syntax
	Description

	-I
	Syntax
	Description

	-i
	Syntax
	Description

	-L
	Syntax
	Description

	-l
	Syntax
	Description

	-M
	Syntax
	Description

	-N
	Syntax
	Description

	-O
	Syntax
	Description

	-o
	Syntax
	Description

	-p
	Syntax
	Description

	-r
	Syntax
	Description

	-S
	Syntax
	Description

	-s
	Syntax
	Description

	-t
	Syntax
	Description

	-U
	Syntax
	Description

	-v
	Syntax
	Description

	-w
	Syntax
	Description

	-x
	Syntax
	Description

	Assembler file formats
	Source format
	Expressions and operators
	TRUE and FALSE
	Using symbols in relocatable expressions
	Symbols
	Labels
	Format modifiers
	Integer constants
	ASCII character constants
	Real number constants
	Predefined symbols

	Register symbols
	Listing format
	Symbol and cross-reference table

	Output formats

	Assembler operators
	Precedence of operators
	Summary of assembler operators
	Unary operators - 1
	Multiplicative arithmetic operators - 2
	Additive arithmetic operators - 3
	shift operators - 4
	AND operators - 5
	OR operators - 6
	Comparison operators - 7

	*
	Description
	Examples

	+
	Description
	Examples

	+
	Description
	Examples

	-
	Description

	-
	Description
	Examples

	/
	Description
	Examples

	And (&&)
	Description
	Examples

	Binand(&)
	Description
	Examples

	Binnot (~)
	Description
	Example

	Binor (|)
	Description
	Examples

	Binxor (^)
	Description
	Examples

	Byte1
	Description
	Example

	Byte2
	Description
	Example

	Byte3
	Description
	Example

	Byte4
	Description
	Example

	Date
	Description
	Example

	Eq (=, ==)
	Description
	Examples

	Ge(>=)
	Description
	Examples

	Gt (>)
	Description
	Examples

	High
	Description
	Example

	Hwrd (msw)
	Description
	Example

	Le (<=)
	Description
	Examples

	Low
	Description
	Example

	Lt (<)
	Description
	Examples

	Lwrd (lsw)
	Description
	Example

	Mod (%)
	Description
	Examples

	Ne (<>, !=)
	Description
	Examples

	Not (!)
	Description
	Examples

	Or (||)
	Description
	Examples

	Sfb
	Syntax
	Parameters
	Description
	Examples

	Sfe
	Syntax
	Parameters
	Description
	Examples

	Shl (<<)
	Description
	Examples

	Shr (>>)
	Description
	Examples

	Sizeof
	Syntax
	Parameters
	Description
	Examples

	Ugt
	Description
	Examples

	Ult
	Description
	Examples

	Xor
	Description
	Examples

	Assembler directives
	Summary of directives
	Syntax conventions
	Labels and comments
	Parameters

	Module control directives
	Syntax
	Parameters
	Description
	Examples

	Symbol control directives
	Syntax
	Parameters
	Description
	Examples

	Segment control directives
	Syntax
	Parameters
	Description
	Examples

	Value assignment directives
	Syntax
	Parameters
	Description
	Examples

	Conditional assembly directives
	Syntax
	Parameters
	Description
	Examples

	Macro processing directives
	Syntax
	Parameters
	Description
	Examples

	Listing control directives
	Syntax
	Parameters
	Description
	Examples

	C-style preprocessor directives
	Syntax
	Parameters
	Description
	Examples

	Data definition or allocation directives
	Syntax
	Parameters
	Description
	Examples

	Assembler control directives
	Syntax
	Parameters
	Description
	Examples

	Assembler diagnostics
	Introduction
	Command line error messages
	Assembly error messages
	Assembly warning messages
	Assembly fatal error messages
	Memory overflow messages
	Assembler internal error messages

	Error messages
	General
	M32C-specific error messages

	Warning messages
	General
	M32C-Specific warning messages

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W
	X
	Symbols

