
CM32C-2

M32C IAR C/C++
COMPILER

Reference Guide

for Renesas
M32C and M16C/8x Series of

CPU Cores

CM32C-2

ii

COPYRIGHT NOTICE
© Copyright 1999-2004 IAR Systems. All rights reserved.

No part of this document may be reproduced without the prior written
consent of IAR Systems. The software described in this document is
furnished under a license and may only be used or copied in accordance
with the terms of such a license.

DISCLAIMER
The information in this document is subject to change without notice and
does not represent a commitment on any part of IAR Systems. While the
information contained herein is assumed to be accurate, IAR Systems
assumes no responsibility for any errors or omissions.

In no event shall IAR Systems, its employees, its contractors, or the
authors of this document be liable for special, direct, indirect, or
consequential damage, losses, costs, charges, claims, demands, claim for
lost profits, fees, or expenses of any nature or kind.

TRADEMARKS
IAR Embedded Workbench, IAR visualSTATE, IAR MakeApp, and IAR PreQual are
registered trademarks owned by IAR Systems. C-SPY is a trademark registered in the
European Union by IAR Systems. IAR, IAR XLINK Linker, IAR XAR Library Builder,
and IAR XLIB Librarian are trademarks owned by IAR Systems.

M32C and M16C/8x Series are registered trademarks of Renesas
Technology Corporation. Microsoft is a registered trademark, and
Windows is a trademark of Microsoft Corporation. Intel and Pentium are
registered trademarks of Intel Corporation.

All other product names are trademarks or registered trademarks of their
respective owners.

Second edition: June 2004

Part number: CM32C-2

CM32C-2

iii

WELCOME Welcome to the M32C IAR C/C++ Compiler Reference Guide.

This guide provides reference information about the IAR Systems
C/C++ Compiler for the M32C and M16C/8x Series of CPU cores.

Before reading this guide we recommend you to read the initial chapters
of the IAR Embedded Workbench™ IDE User Guide, where you will find
information about installing the IAR Systems development tools, product
overviews, and tutorials that will help you get started. The IAR Embedded
Workbench™ IDE User Guide also contains complete reference
information about the IAR Embedded Workbench and the IAR C-SPY™
Debugger.

For information about programming with the M32C Assembler, refer to
the M32C IAR Assembler Reference Guide.

ABOUT THIS GUIDE This guide consists of the following chapters:

Introduction to the M32C IAR C/C++ Compiler provides a brief
summary of the M32C IAR C/C++ Compiler’s features and describes
how the compiler represents each of the C data types. There are also
recommendations for efficient coding, and a summary of the available
language extensions.

Configuration describes how to configure the C/C++ compiler for
different requirements.

Compiler options explains how to set the C/C++ compiler options, it
gives a summary of the options, and contains complete reference
information for each C compiler option.

EC++ library functions gives an introduction to the C/C++ library
functions, and summarizes the header files.

Extended keywords reference gives reference information about each of the
extended keywords.

#pragma directives reference gives reference information about the
#pragma keywords.

Predefined symbols reference gives reference information about the
predefined symbols.

Intrinsic functions reference gives reference information about the
intrinsic functions.

PREFACE

CM32C-2

iv

Assembler language interface describes the interface between C/C++
programs and assembler language routines.

Segment reference gives reference information about the C/C++
compiler’s use of segments.

Migration hints provides information that is useful when porting code
from the M16C IAR C Compiler to the M32C IAR C/C++ Compiler.

Implementation-defined behavior describes how IAR C handles the
implementation-defined areas of the C language.

IAR C extensions describes the IAR extensions to the ISO/ANSI standard
for the C programming language.

Diagnostics describes the diagnostic functions and lists M32C-specific
warning and error messages.

ASSUMPTIONS
This guide assumes that you already have a working knowledge of the
following:

◆ The M32C and M16C/8x Series of CPU cores

◆ The C/C++ programming languages

◆ The operating system of your host machine

◆ The IAR Systems development tools and the project model, as
described in the M32C IAR Embedded Workbench™ IDE User Guide.

Note: The illustrations in this guide show the IAR Embedded Workbench
running in a Windows 95-style environment, and their appearance will
be slightly different if you are using a different platform.

PREFACE

CM32C-2

v

CONVENTIONS
This guide uses the following typographical conventions:

Style Used for

computer Text that you type in, or that appears on the screen.

parameter A label representing the actual value you should type
as part of a command.

[option] An optional part of a command.

{a | b | c} Alternatives in a command.

bold Names of menus, menu commands, buttons, and
dialog boxes that appear on the screen.

... Multiple parameters can follow a command.

reference A cross-reference to another part of this guide, or to
another guide.

Identifies instructions specific to the versions of the
IAR Systems tools for the IAR Embedded Workbench
interface.

Identifies instructions specific to the command line
versions of IAR Systems tools.

PREFACE

CM32C-2

vi

PREFACE

CM32C-2

vii

CONTENTS

INTRODUCTION TO THE M32C IAR C/C++ COMPILER 1
Key features 1
Data representation 2
Pointers 5
Programming hints 7
Embedded C++ overview 10
Language extensions 11

CONFIGURATION .. 17
Introduction 17
Processor 18
Memory model 18
Linker command file 21
Run-time library 24
Stack and heap size 24
Input and output using the IAR C
Library 25
Input and output using the EC++
library 29
Register I/O 32
Initialization 32
Interrupt system 34

COMPILER OPTIONS ... 37
Setting compiler options 37
Environment variables 39
Options summary 40

C LIBRARY FUNCTIONS.. 63
Introduction 63
Library definitions summary 64
math functions 65

EC++ LIBRARY FUNCTIONS .. 67
Introduction 67
Library definitions summary 68

CONTENTS

CM32C-2

viii

EXTENDED KEYWORDS REFERENCE................................... 73
Summary of extended keywords 73
Storage 74
Functions 79
Embedded C++ 84

#PRAGMA DIRECTIVES REFERENCE 85
Type attribute 85
Object attribute 86
Dataseg 87
Constseg 88
Location 88
Vector 88
Diagnostics 88
Language 89
Optimize 90
Pack 90

PREDEFINED SYMBOLS REFERENCE................................... 93

INTRINSIC FUNCTIONS REFERENCE 97

ASSEMBLER LANGUAGE INTERFACE................................ 105
Creating a shell 105
C calling convention 108
Interrupt handling 110
Monitor functions 111
Calling assembler routines from C 112
Run-time model 112
Embedded C++ 112

SEGMENT REFERENCE... 115

MIGRATION HINTS.. 121
Introduction 121
Extended keywords 122
#pragma directives 125
Predefined symbols 127
Intrinsic functions 128
C compiler options 128

CONTENTS

CM32C-2

ix

Segments 134

IMPLEMENTATION-DEFINED BEHAVIOR 135
Translation 135
Environment 136
Identifiers 136
Characters 136
Integers 138
Floating point 138
Arrays and pointers 139
Registers 139
Structures, unions, enumerations,
and bitfields 139
Qualifiers 140
Declarators 140
Statements 141
Preprocessing directives 141
C library functions 143
EC++ library functions 146

IAR C EXTENSIONS ... 151
Available extensions 151
Extensions accepted in normal
EC++ mode 154
Language features not accepted in
EC++ 155

DIAGNOSTICS... 157
Severity levels 157

INDEX.. 159

CONTENTS

CM32C-2

x

CM32C-2

1

INTRODUCTION TO THE
M32C IAR C/C++
COMPILER
In this chapter you will find information about theM32C IAR C/C++
Compiler’s key features and its data representation. There is also a section
containing hints on how to write programs efficiently for the M32C IAR
C/C++ Compiler, and information about the language extensions
available.

KEY FEATURES The M32C IAR C/C++ Compiler offers the standard features of the
C/C++ languages, plus many extensions designed to take advantage of
the M32C and M16C/8x Series-specific facilities. The compiler is
supplied with the IAR Systems Assembler for the M32C and M16C/8x
Series CPU cores, with which it shares linker and librarian manager tools.

It provides the following features:

LANGUAGE FACILITIES
◆ Conformance to the ISO/ANSI standard for a free-standing

environment.

◆ Standard library of functions applicable to embedded systems, with
source optionally available.

◆ IEEE-compatible floating-point arithmetic.

◆ Powerful extensions for M32C and M16C/8x Series-specific features.

◆ External references are type-checked at link time.

◆ Linkage of user code with assembler routines.

◆ Long identifiers—up to 255 significant characters.

◆ Up to 32000 external symbols.

PERFORMANCE
◆ Memory-based design which avoids temporary files or overlays.

◆ Extensive type checking at compile time.

DATA REPRESENTATION INTRODUCTION TO THE M32C IAR C/C++ COMPILER

CM32C-2

2

◆ Extensive module interface type checking at link time.

CODE GENERATION
◆ Selectable optimization for code speed or size.

◆ Comprehensive output options, including relocatable binary,
assembler, assembler+C, etc.

◆ Easy-to-understand error and warning messages.

◆ Compatibility with the C-SPY™ high-level debugger.

TARGET SUPPORT
◆ Near, far, and huge memory models.

◆ Flexible variable allocation.

◆ Interrupt functions can be written in C.

◆ Several processor-specific interrupt mechanisms supported.

◆ #pragma directives to maintain portability while using
processor-specific extensions.

DATA
REPRESENTATION

This section describes how the M32C IAR C/C++ Compiler represents
each of the C data types.

The M32C IAR C/C++ Compiler supports all ISO/ANSI C basic
elements. Variables are stored with the least significant part located at low
memory address.

INTEGER TYPES
The following table gives the size and range of each C integer data type:

Data type Alignment Size Range

signed char 1 8 bit -128 to 127

char
unsigned char

1 8 bit 0 to 255

short
signed short

2 16 bit -32768 to 32767

unsigned short 2 16 bit 0 to 65535

INTRODUCTION TO THE M32C IAR C/C++ COMPILER DATA REPRESENTATION

CM32C-2

3

Enum type
The enum keyword creates each object with the shortest integer type
(char, short, or long) required to contain its value.

Char type
The char type is, by default, unsigned in the compiler, but the ‘char’ is
‘signed char’ (--char_is_signed) option allows you to make it signed.
Notice, however, that the library is compiled with char types as unsigned.

Bitfields
The char, short, and long bitfields are extensions to the ANSI C integer
bitfields.

Bitfields in expressions will have the same data type as the base type
(signed or unsigned char, short, int, or long).

Bitfield variables are packed in elements of the specified type starting at
the least significant position.

FLOATING-POINT TYPES

Floating-point values are represented by 4-byte numbers in standard
IEEE format; float and double values have the same representation.
Floating-point values below the smallest limit will be regarded as zero,
and overflow gives undefined results. If the 64-bit floating point (-2)
option is used, double and long double types will use the 8-byte format.
For additional information, see -2, page 61.

4-byte floating-point format
The memory layout of 4-byte floating-point numbers is:

int
signed int

2 16 bit -32768 to 32767

unsigned int 2 16 bit 0 to 65535

long
signed long

2 32 bit -231 to 231-1

unsigned long 2 32 bit 0 to 232-1

Data type Alignment Size Range

DATA REPRESENTATION INTRODUCTION TO THE M32C IAR C/C++ COMPILER

CM32C-2

4

The value of the number is:

(-1)S * 2(Exponent-127) * 1.Mantissa

Zero is represented by 4 bytes of zeros.

The precision of the float operators (+, -, *, and /) is approximately
7 decimal digits.

The ranges and sizes for the different floating-point types are:

8-byte floating-point format
The memory layout of 8-byte floating-point numbers is:

The value of the number is:

(-1)S * 2(Exponent-1023) * 1.Mantissa

Zero is represented by 8 bytes of zeros.

The precision of the long double operators (+, -, *, and /) is
approximately 16 decimal digits.

The ranges and sizes for the different floating-point types are:

BITFIELDS
The char, short, and long bitfields in unions and structures are
extensions to ANSI C integer bitfields.

Bitfields in expressions will have the same data type as the base type
(signed or unsigned char, short, int, or long).

Bitfield variables are packed in elements of the specified type starting at
the Least Significant Bit (LSB) position.

Range Decimal Byte Exponent Mantissa

1.8E-38 to
3.39E+38

7 4 8 23

Range Decimal Byte Exponent Mantissa

2.23E-308 to
1.79E+308

16 8 9 52

INTRODUCTION TO THE M32C IAR C/C++ COMPILER POINTERS

CM32C-2

5

POINTERS This section describes the M32C IAR C/C++ Compiler’s use of
pointers.

Function pointers
The M32C IAR C/C++ Compiler has one type of function pointer, a
32-bit pointer that can access the whole code memory. Interrupt
functions cannot be accessed through a function pointer.

Code pointers
Code pointers are always 24 bits, with at storage size of 4 bytes.

Data pointers
The data pointers are as follows:

Casting
Casting an integer value to a pointer of a smaller size will be performed
by truncation and casting to a larger pointer will be performed by zero
extension.

Casting a pointer type to a smaller integer type will be performed by
truncation. Casting to a larger integral type will be performed by first
casting the pointer to the largest possible pointer that fits in the integer
and then, if necessary, zero extended.

size_t
size_t is the unsigned integer type required to hold the maximum size
of an object. The size_t integer type is unsigned in IAR C.

ptrdiff_t
ptrdiff_t is the type of integer required to hold the difference between
two pointers to elements of the same array. The ptrdiff_t integer type
is signed in IAR C.

Keyword Storage in bytes Comment

_ _near 2 Can only point into 0–64
Kbytes.

_ _ far 4 Element pointed at must be
inside a 64 Kbyte page.

_ _ huge 4 No restrictions.

POINTERS INTRODUCTION TO THE M32C IAR C/C++ COMPILER

CM32C-2

6

STRUCTURES
Structure members are stored sequentially in the order in which they are
declared: the first member has the lowest memory address.

Anonymous structures and unions
An anonymous structure or union is a structure or union object that is
declared without a name. Its members are promoted to the surrounding
scope. An anonymous structure or union may not have a tag. In the
example below, the members in the anonymous union can be accessed, in
function f, without explicitly specifying the union name:

struct s
{
 char tag;
 union
 {
 long l;
 float f;
 };
} st;

void f()
{

st.l = 5;
}

The member names must be unique in the surrounding scope. Having
anonymous structures and unions at file scope, as a global, external,
or static is also allowed. This is for instance used to declare special
function registers (SFRs) as in the following example, where the union is
anonymous:

_ _ no_init volatile union
 {
 unsigned char PORT_P0;
 struct
 {
 unsigned char mult :1;
 unsigned char div :1;
 unsigned char div_ovf :1;
 unsigned char :5;
 }PORT_P0;
 } @ 0x03E0;

INTRODUCTION TO THE M32C IAR C/C++ COMPILER PROGRAMMING HINTS

CM32C-2

7

The SFR has 3 bits declared: mult, div, and div_ovf. The SFR byte
register (PORT_P0) is declared at address 0x03E0.

PROGRAMMING
HINTS

It is important to be aware of the limitations of the M32C and M16C/8x
Series architecture in order to avoid the use of inefficient language
constructs. The following list contains recommendations on how to write
efficient code for the M32C IAR C/C++ Compiler:

◆ Avoid far and huge variables, since they require more space than the
near variables.

◆ Avoid global variables if they are not needed. Local variables, and
static variables in some cases, have a good chance of being allocated
in register. Globals will always be allocated in memory.

◆ Unsigned data types (unsigned char and unsigned short) are
usually handled more efficiently than their signed counterparts.

◆ For variables that do not need to be initialized, use the keyword
_ _no_init to avoid the implicit zero initialization.

◆ Use ISO/ANSI function prototypes since they allow the compiler to
generate more efficient code and give type checking of function
parameters.

ACCESSING SPECIAL FUNCTION REGISTERS
A specific header file for M32C is included in the M32C IAR
C/C++ Compiler delivery. The header file is named iom32c.h and
defines the processor-specific SFRs.

Since the header file is also intended to be used with the M32C IAR
Assembler, AM32C, the SFR declaration is made with macros. The macros
that convert the declaration to assembler or compiler syntax are defined
in the iomacros.h file.

Example
The following example shows how a control register (CNTRL) at address
0xE8 can be defined.

First we define the bits in the register:

typedef struct {
_ _REG8 t1enb :1;
_ _REG8 t1pndb :1;

PROGRAMMING HINTS INTRODUCTION TO THE M32C IAR C/C++ COMPILER

CM32C-2

8

_ _REG8 wen :1;
_ _REG8 wpnd :1;
_ _REG8 t0en :1;
_ _REG8 t0pnd :1;
_ _REG8 lpen :1;
_ _REG8 :1;

} _ _icntrl_bits;

Then the register is defined:

_ _SFR_BITS(_ _CNTRL, 0xE8, _ _REG8, _ _READ_WRITE,
_ _cntrl_bits);

Note: __REG8 is converted to unsigned char and the _ _READ_WRITE
attribute is currently not used.

The declaration is converted by the iomacros.h file:

_ _no_init volatile _ _nonbanked union
 {
 unsigned char _ _CNTRL;

 _ _cntrl_bits _ _CNTRL_bit;
 } @ 0xE8 ;

It is then possible to access either the whole register or any individual bit
as follows:

// Byte access
_ _CNTRL = 0xAA;

// Bit access
_ _CNTRL_bit.t0en = 1;

If any compiler-specific additions are needed in the header file, these can
easily be added in the compiler-specific part of the file:

#ifdef _ _ IAR_SYSTEMS_ICC_ _
(compiler-specific defines)

#endif

The header files are also suitable to use as templates, when creating new
header files for other M32C and M16C/8x Series derivatives.

INTRODUCTION TO THE M32C IAR C/C++ COMPILER PROGRAMMING HINTS

CM32C-2

9

APPLICATION MEMORY USAGE
When using the command line version of the compiler and linker, the
application memory usage will automatically be displayed on the screen
after completed compilation or linking. The memory usage is displayed in
decimal notation.

The compiler reports the memory usage for the compiled file per segment
and then it summarizes for different memory types as follows:

2 bytes in segment IDATA0
2 bytes in segment CDATA0
2 bytes in segment NDATA0

9 bytes of CODE memory
70 bytes of NEARCODE memory
2 bytes of NEARCONST memory
4 bytes of NEARDATA memory

In this example, the 4 bytes of the NEARDATA memory is the sum of the
IDATA0 and CDATA0 segments.

The linker reports the total memory usage for the linked application as
follows:

144 bytes of CODE memory
68 bytes of DATA memory

Here the CODE memory size is the sum of all program and library code,
variable initializers, and constant data.

The DATA memory size is the sum of the global variable memory size, the
stack sizes defined in the linker definition file, and the heap size if used.

In the example above, the variable stack segment (CSTACK) has been
defined to 64 bytes (0x40). Add the 4 bytes from the compiled file and the
sum will be 68 bytes of DATA memory as reported by the linker.

In the IAR Embedded Workbench, these figures and other information
can be found in the Message window after compiling or linking if the
Message Filtering Level has been set to All in the Make Control page
of the Settings dialog box. For more information, see the IAR Embedded
Workbench™ IDE User Guide.

EMBEDDED C++ OVERVIEW INTRODUCTION TO THE M32C IAR C/C++ COMPILER

CM32C-2

10

EMBEDDED C++
OVERVIEW

Embedded C++ is a subset of the C++ programming language, which is
aimed at embedded systems programming. It is defined by an industry
consortium, the Embedded C++ Technical Committee. The fact that
performance and portability are particularly important in embedded
systems development was considered when defining the language.

Like full C++, the following extensions of the C programming language
are provided:

◆ Classes, which are user-defined types that incorporate both data
structure and behavior. The essential feature of inheritance allows
data structure and behavior to be shared among classes.

◆ Polymorphism, which means that an operation can behave
differently on different classes, is provided by virtual functions.

◆ Overloading of operators and function names, which allows several
operators or functions with the same name, provided that there is a
sufficient difference in their argument lists.

◆ Type-safe memory management using operators new and delete.

◆ Inline functions, which are indicated as particularly suitable for
inline expansion.

Excluded features in C++are those, which introduce overheads in
execution time or code size that are beyond the control of the
programmer. Also excluded are recent additions to the ISO/ANSI C++
standard. This is motivated by potential portability problems, due to the
fact that few development tools support the standard. Embedded C++
thus offers a subset of C++, which is efficient and fully supported by
existent development tools.

Embedded C++ lacks the following C++features:

◆ Templates

◆ Multiple inheritance

◆ Exception handling

◆ Run-time type information

◆ New cast syntax (operators dynamic_cast, static_cast,
reinterpret_cast, and const_cast)

◆ Name spaces.

INTRODUCTION TO THE M32C IAR C/C++ COMPILER LANGUAGE EXTENSIONS

CM32C-2

11

The excluded language features also make the run-time library
significantly more efficient. The Embedded C++ library furthermore
differs from the full C++library in that:

◆ The Standard Template Library (STL) is excluded.

◆ Streams, strings, and complex numbers are supported, without using
templates.

Library features, which relate to exception handling and run-time type
information (headers <except>, <stdexcept> and <typeinfo>) are
excluded.

LANGUAGE
EXTENSIONS

This section summarizes the extensions provided in the M32C IAR
C/C++ Compiler to support specific features of the M32C and M16C/8x
Series CPU cores.

The extensions are provided in the following ways:

◆ As extended keywords. The command line option -e makes the
extended keywords available, and hence reserves them so that they
cannot be used as variable names.

For a complete description of the extended keywords, see the chapter
Extended keywords reference.

◆ As #pragma keywords. These provide #pragma directives which
control how the compiler allocates memory, whether the compiler
allows extended keywords, and whether the compiler outputs
warning messages.

For a complete description of the #pragma directives, see the chapter
#pragma directives reference.

◆ As intrinsic functions. These provide direct access to very low-level
processor details.

For a complete description of the intrinsic functions, see the chapter
Intrinsic functions reference.

LANGUAGE EXTENSIONS INTRODUCTION TO THE M32C IAR C/C++ COMPILER

CM32C-2

12

EXTENDED KEYWORDS AND PRAGMAS
The extended keywords and #pragma directives provide the following
facilities:

Storage
The compiler places variables in the default segments for each memory
model. The program may achieve additional flexibility for special cases by
overriding the default address range by using one of the storage modifiers:

_ _ near
_ _ far
_ _ huge

Pointers
The compiler uses a default data pointer for each memory model. It is
possible to override the default size of the data pointers by using one of
the following modifiers:

_ _near
_ _far
_ _huge

Non-initialized memory
To avoid initialization of variables, the keyword _ _ no_init can be used.
Use this keyword to reduce the amount of initialization code generated,
or for data that will be placed in non-volatile RAM.

Variables may be placed in non-initialized memory by the use of the
following modifier:

_ _ no_init

Absolute variable location
It is possible to specify the location of a variable (its absolute address) by
using the @ operator followed by a constant-expression. See Absolute
location, page 77, for more information.

The #pragma location directive is, however, recommended for
specifying an absolute variable location. See Location, page 88, for more
information.

Functions
The default calling mechanism for functions can be overridden in special
cases by the use of one of the following function modifiers:

◆ _ _interrupt

INTRODUCTION TO THE M32C IAR C/C++ COMPILER LANGUAGE EXTENSIONS

CM32C-2

13

Specifies interrupt functions. The #pragma vector directive can be
used to specify the interrupt vector.

◆ _ _regbank_interrupt

Specifies interrupt functions where the interrupt routine uses the
secondary register bank.

◆ _ _fast_interrupt

Specifies interrupt functions where the interrupt routine uses the fast
interrupt mechanism and where the return is made by a FREIT
instruction.

◆ _ _monitor

Specifies a monitor function, i.e. a function that cannot be
interrupted.

◆ _ _tiny_func

Calls function with JSRS via a vector in the special page. The normal
calls are made with an 24-bit address JSR.

◆ _ _c_task

Specifies that the functions should not restore used registers.

INTRINSIC FUNCTIONS

Intrinsic functions allow very low-level control of the M32C and
M16C/8x Series CPU cores. To use them in a C/C++ application,
include the header file inm32c.h. The intrinsic functions compile into
in-line code, either as a single instruction or as a short sequence of
instructions.

For details concerning the effects of the intrinsic functions, see the
manufacturer’s documentation of the M32C and M16C/8x Series of CPU
cores.

Intrinsic function Description

asm Inserts an assembler
instruction.

void _ _break_instruction (void) Inserts a BRK
instruction.

void _ _disable_interrupt (void) Disables interrupts.

LANGUAGE EXTENSIONS INTRODUCTION TO THE M32C IAR C/C++ COMPILER

CM32C-2

14

void _ _intrinsic_load_DCT (unsigned
short dmaChannel, unsigned short data)

Places 16-bit data in
DCT register.

void _ _intrinsic_load_DMA (unsigned
short dmaChannel, unsigned long data)

Places 24-bit data in
DMA register.

void _ _intrinsic_load_DMD (unsigned
short dmaChannel, unsigned short data)

Places 16-bit data in
DMD register.

void _ _intrinsic_load_DRA (unsigned
short dmaChannel, unsigned long data)

Places 24-bit data in
DRA register.

void _ _intrinsic_load_DRC (unsigned
short dmaChannel, unsigned short data)

Places 16-bit data in
DRC register.

void _ _intrinsic_load_DSA (unsigned
short dmaChannel, unsigned long data)

Places 24-bit data in
DSA register.

void _ _intrinsic_load_VCT (unsigned
long data)

Places 24-bit data in
VCT register.

unsigned short _ _intrinsic_store_DCT
(unsigned short dmaChannel)

Retrieves 16-bit data
from DCT register.

unsigned long _ _intrinsic_store_DMA
(unsigned short dmaChannel)

Retrieves 24-bit data
from DMA register.

unsigned short _ _intrinsic_store_DMD
(unsigned short dmaChannel)

Retrieves 16-bit data
from DMD registers

unsigned long _ _intrinsic_store_DRA
(unsigned short dmaChannel)

Retrieves 24-bit data
from DRA register.

unsigned long _ _intrinsic_store_DRC
(unsigned short dmaChannel)

Retrieves 16-bit data
from DRC register.

unsigned long _ _intrinsic_store_DSA
(unsigned short dmaChannel)

Retrieves 24-bit data
from DSA register.

unsigned long _ _intrinsic_store_VCT
(void)

Retrieves 24-bit data
from VCT register.

void _ _enable_interrupt (void) Enables interrupts.

void _ _interrupt_on_overflow (void) Inserts an INTO
instruction.

Intrinsic function Description

INTRODUCTION TO THE M32C IAR C/C++ COMPILER LANGUAGE EXTENSIONS

CM32C-2

15

For additional information, see the chapter Intrinsic functions reference.

Inline assembler
The asm function assembles and inserts the supplied assembler statement
inline. The statement can include instruction mnemonics, register
mnemonics, constants, and/or a reference to a global variable. Example:

asm(“MOV.W #3,R0”);

Note: The asm function reduces the compiler’s ability to optimize the
code. We recommend the use of assembler-written modules instead of
inline assembler.

void _ _no_operation (void) Inserts a no operation,
NOP, instruction.

short _ _overflow_flag_value (void) Reads the overflow
flag value from the flag
register.

unsigned char _ _read_ipl (void) Reads the interrupt
level.

long _ _rmpa_instruction (short *s1,
short *s2, unsigned short n)

Emits and RMPA.W
instruction.

void _ _set_interrupt_table (unsigned
long)

Loads interrupt base
register (INTB).

long _ _short_rmpa_instruction (signed
char *s1, signed char *s2, unsigned
short n)

Emits and RMPA.B
instruction.

void _ _software_interrupt (unsigned
char int_no)

Causes a software
interrupt.

void _ _und_instruction (void) Inserts an UND
instruction.

void _ _wait_for_interrupt (void) Insers a WAIT
instruction.

void _ _write_ipl (unsigned char val) Sets the interrupt
level.

Intrinsic function Description

LANGUAGE EXTENSIONS INTRODUCTION TO THE M32C IAR C/C++ COMPILER

CM32C-2

16

CM32C-2

17

CONFIGURATION
This chapter describes how to configure the IAR C/C++ Compiler for
different requirements.

INTRODUCTION Systems based on the M32C and M16C/8x Series CPU cores can vary
considerably in their use of ROM and RAM, and in their stack
requirements. They also differ in their need for libraries. Therefore, you
may need to configure the M32C IAR C/C++ Compiler to suit your
requirements.

The options specify ROM areas, which are used for functions, constants,
and initial values and RAM areas, which are used for stack and variables.

The configurable elements of the compiler package are described as
follows:

The following sections describe each of the above features.

Feature Configurable elements See

Processor option Compiler option, XLINK,
command file (including
run-time library)

page 18

Floating-point precision Compiler option, XLINK,
command file (including
run-time library)

page 18

Memory model Compiler option, XLINK,
option (including run-time
library)

page 18

Memory location XLINK command file page 20

Non-volatile RAM XLINK command file page 21

Stack size XLINK command file page 24

input/output functions Run-time library module page 29

Hardware/memory initialization __low_level_init
module

page 33

PROCESSOR CONFIGURATION

CM32C-2

18

Note: Many of the configuration procedures involve modifying the
standard files. It is recommended that you stores copies of the originals
before beginning.

PROCESSOR The M32C IAR C/EC++Compiler supports both the M32C and
M16C/8x Series of CPU cores. The processor option reflects the
addressing capability of the target processor. When you select a particular
processor option for your project, several target-specific parameters are
tuned to best suit that processor.

Use either the --cpu or -v option to specify which CPU core you are
using; see the chapter Compiler options for syntax information.

See the chapter General options in the IAR Embedded Workbench™ IDE
User Guide for information about setting project options in the IAR
Embedded Workbench.

Mapping of processor option and CPU core
The following table shows the mapping of --cpu and -v options and
which processors they support:

Your program may use only one processor option at a time, and the same
processor option must be used by all user and library modules in order to
maintain module consistency.

MEMORY MODEL The M32C IAR C/C++ Compiler supports three memory models. The
choice of memory model depends on the RAM-memory requirements of
your application. The choice of memory model affects execution speed
and code/data size, versus maximum size of program code and/or data.

Processor option Alternative option Supported processor

--cpu=0 -v0 M32C

--cpu=1 -v1 M16C/80

CONFIGURATION MEMORY MODEL

CM32C-2

19

SELECTING MEMORY MODEL
The memory model selected affects the data memory management. Data
memory is used for:

◆ Non-stacked variables, i.e. global data and variables declared as
static. From here on this will be referred to as static data.

◆ Stacked data; for example, locally declared data.

◆ Dynamically allocated data, e.g. data allocated with malloc and
calloc.

The following table summarizes the different memory models:

Default memory
Variables are placed in the default memory, depending on the chosen
memory model. The following default memories are used:

For additional information, see Allocating the writable segments and
constants, page 22.

All default behaviors originating from the selected memory model option
can be altered by the use of extended keywords and #pragma directives.

Default pointers
The default code pointer is 4 bytes. Each memory model has its own
default data pointer, _ _near, _ _far, and _ _huge, respectively.

Memory model Data Largest data element Comment

Near 0–0xFFFF 64 KBytes

Far 0–0xFFFFFF 64 KBytes 16-bit offsets
only.

Huge 0–0xFFFFFF 16 MBytes

Memory model Default segment Memory keyword

Near UDATA0, IDATA0,
NDATA0

_ _ near

Far UDATA1, IDATA1,
NDATA1

_ _ far

Huge UDATA2, IDATA2,
NDATA2

_ _huge

MEMORY MODEL CONFIGURATION

CM32C-2

20

Note: The entire stack and data objects without memory attributes
defined must be linked at addresses that can be reached by the default
pointer type.

SPECIFYING THE MEMORY MODEL
Your program may use only one memory model at a time, and the same
model must be used by all user modules and all library modules. Use one
of the following target options to specify the memory model to the
compiler:

For example, to compile myprog.c for the huge memory model, use the
Huge option in the IAR Embedded Workbench or the command:

iccm32c myprog --memory_model=huge

If you do not include the memory model option, the compiler uses the
near memory model by default.

Before linking a project, you must specify the IAR XLINK Linker™
options, including the library module to be used. The library module must
correspond to the memory model you have selected; see Linker command
file, page 21, and Run-time library, page 24.

MEMORY LOCATION
You must specify the address ranges in ROM and RAM memory in the
linker command file. See Linker command file, page 21, for information
about which linker command file template to use and how to modify it.

For information about how to specify the memory address ranges, see the
contents of the linker command file template and the IAR Linker and
Library Tools Reference Guide.

IAR Embedded Workbench option Command line option

Near (default) --memory_model=near
-mn

Far --memory_model=far
-mf

Huge --memory_model=huge
-mh

CONFIGURATION LINKER COMMAND FILE

CM32C-2

21

NON-VOLATILE RAM
The compiler supports the declaration of variables that are to reside in
non-volatile RAM through the _ _ no_init type modifier and the object
attribute #pragma. The compiler places such variables in separate
segments, depending on which memory keyword is used. These segments
should be assigned to, for example, the address range of the non-volatile
RAM of the hardware environment. The run-time system does not
initialize variables located in these segments.

To assign the _ _ no_init segment to the address of the non-volatile
RAM, you need to modify the linker command file. For details of
assigning a segment to a given address, see the IAR Linker and Library
Tools Reference Guide.

LINKER COMMAND
FILE

The M32C IAR C/EC++ Compiler is provided with one XLINK
extended linker command file (.xcl) for each known derivative.

To create an XLINK extended linker command file (.xcl) for a particular
project you should first copy the most suitable linker command file and
use it as a template.

Then modify the file—as described within the file—to specify the details
of the target system’s memory map.

SPECIFYING THE LINKER COMMAND FILE
In the IAR Embedded Workbench, you specify the linker command file in
the Include options in the XLINK category. For more information about
setting linker options, see the IAR Linker and Library Tools Reference
Guide, or the IAR Embedded Workbench™ IDE User Guide.

In the command line version of the M32C IAR C/C++ Compiler, you
use the XLINK option -f to specify the linker command file and run-time
library, for example:

xlink filename(s) -f lnkm32cn cln.r48

LINKER COMMAND FILE CONFIGURATION

CM32C-2

22

MODIFYING THE LINKER COMMAND FILE
The only change you will normally have to make to the supplied linker
command file is to suit the details of your target’s memory map. However,
for special applications you may want to change the assignment of
segments to memory areas. For details of individual segments, see the
chapter Segment reference.

The following section explains the contents of a linker command file. The
example is based on the lnkm32cn.xcl file, which is a linker command
file for the near memory model. This file can also be used as a template if
you want to create your own linker command file.

Note: In the linker command file, all values are hexadecimal.

Defining the CPU
In the first section of the linker command file, we use the XLINK
option -c to specify the processor:

-cm32c

Allocating the writable segments and constants
Next we allocate the writable segments to the RAM area:

IDATA denotes initialized data, UDATA denotes zero unitialized data, and
NDATA denotes uninitialized data.

-Z(NEAR)IDATA0,UDATA0,NDATA0=401

The size of the user stack segment, CSTACK, is specified to 512 bytes:

-Z(NEAR)CSTACK+200

Then we specify the interrupt stack and give it a size of 64 bytes:

-Z(NEAR)ISTACK+40

Next we specify the constants that are reachable for near pointers:

-Z(NEARCONST)CONST0

Then we specify the far and huge data segments in RAM, starting at
address 0x10000:

-Z(FAR)IDATA1,UDATA1,NDATA1=10000
-Z(HUGE)IDATA2,UDATA2,NDATA2

CONFIGURATION LINKER COMMAND FILE

CM32C-2

23

Then we specify the far and huge constant segments in ROM, starting at
address 0x80000:

-Z(FARCONST)CDATA0,CDATA1,CONST1=80000
-Z(HUGECONST)CDATA2,CONST2

The last segment to specify is the CODE segment:

-Z(HUGECODE)CODE

Declaring the interrupt handling segments
Now we shall declare the interrupt handling segment INTVEC:

-Z(HUGECONST)INTVEC=FF0000

Next we set up the special page vector table:

-Z(HUGECONST)FLIST=FFFE00-FFFFDB

Then we set up the fixed interrupt table:

-Z(HUGECONST)INTVEC1=FFFFDC-FFFFFF

Specifying the input and output formatters
Now we shall specify the formatters for the input and output functions.

First we select which printf and sprintf formatter to use. Here we use
the default formatter called _small_write:

-e_small_write=_formatted_write

See I/O functions, page 29, for more information.

Next we select which scanf and sscanf formatter to use. Again we use
the default formatter, which is called _medium_read.

-e_medium_read=_formatted_read

See I/O functions, page 29, for more information.

This completes the linker command file.

RUN-TIME LIBRARY CONFIGURATION

CM32C-2

24

RUN-TIME LIBRARY The following library modules are supplied with the product:

C LIBRARIES:

EMBEDDED C++ LIBRARIES:

Use the command line option -2 to select 64-bit floating-point doubles.

Note: The run-time options for the selected library must be the same as
the run-time options used when compiling the user-written modules.

STACK AND HEAP
SIZE

The compiler uses the stack for a variety of user program operations, and
the required stack size depends heavily on the details of these operations.
If the given stack size is too small, the stack will normally overwrite the
variable storage which is likely to result in program failure. If the given
stack size is too large, RAM will be wasted.

Memory model Floating-point option Library file

Near 32-bit doubles cln.r48

Near 64-bit doubles clnd.r48

Far 32-bit doubles clf.r48

Far 64-bit doubles clfd.r48

Huge 32-bit doubles clh.r48

Huge 64-bit doubles clhd.r48

Memory model Floating-point option Library file

Near 32-bit doubles dln.r48

Near 64-bit doubles dlnd.r48

Far 32-bit doubles dlf.r48

Far 64-bit doubles dlfd.r48

Huge 32-bit doubles dlh.r48

Huge 64-bit doubles dlhd.r48

CONFIGURATION INPUT AND OUTPUT USING THE IAR C LIBRARY

CM32C-2

25

ESTIMATING THE REQUIRED DATA STACK SIZE
The stack is used for the following:

◆ Storing local variables and parameters.

◆ Storing temporary results in expressions.

◆ Saving function return addresses.

◆ Storing temporary values in run-time library routines.

◆ Saving processor state during interrupts.

The total required stack size is the worst case total of the required sizes
for each of the above plus the sum of all concurrently active interrupt
functions.

CHANGING THE STACK SIZE
The default user stack size is set to 512 (0x200) bytes in the linker
command file, with the expression CSTACK+200 in the linker command:

-Z(NEAR)CSTACK+200,HEAP+200

There is also an interrupt stack segment, ISTACK, of 64 (0x40) bytes,
defined by:

-Z(NEAR)ISTACK+40

To change either stack size, edit the linker command file and replace the
current size by the stack size you want to use.

INPUT AND OUTPUT
USING THE IAR C
LIBRARY

The I/O functions are different depending on which set of libraries you
are using. This information holds true for the IAR C Library.

PUTCHAR AND GETCHAR

The functions putchar and getchar are the fundamental functions
through which C performs all character-based I/O. For any
character-based I/O to be available, you must provide definitions for these
two functions using whatever facilities the hardware environment
provides.

The creation of new I/O routines is based upon the files putchar.c,
which serves as the low-level part of the printf function, and
getchar.c.

INPUT AND OUTPUT USING THE IAR C LIBRARY CONFIGURATION

CM32C-2

26

The low-level I/O function getchar is supplied in the C file getchar.c,
which can be customized using the method described for putchar.

The following section describes the procedure for replacing the original C
library with one containing a customized putchar.

Customizing putchar
First make the required additions to the source putchar.c, and save it
under the same name (or create your own routine using putchar.c as a
model). The example below shows how memory-mapped I/O could be
used to write to a memory-mapped I/O device:

_ _no_init volatile unsigned char DEV_IO @ address;

int putchar(int outchar)
{

DEV_IO = outchar;
return (outchar);

}

Note: The exact address depends on the used derivative.

Creating a library module
Then compile the modified putchar using the appropriate processor
option and the Make library module (--library_module) option.

For example, if your program uses the near memory model, compile
putchar.c from the command line with the command:

iccm32c putchar --library_module
This will create an optimized replacement object module file named
putchar.r48.

Testing the modified putchar
XLINK allows you to test the modified module before installing it in the
library by using the Load as PROGRAM (-A) XLINK option. Place the
following lines into your linker command file before the library reference:

-A putchar

This causes your version of putchar.r48 to load instead of the one in the
library. For information about the XLINK options, see the M32C IAR
Assembler Reference Guide.

CONFIGURATION INPUT AND OUTPUT USING THE IAR C LIBRARY

CM32C-2

27

Modifying the C library
Finally add the new putchar module to the appropriate run-time library
module, replacing the original.

Note: Be sure to save your original library file before you overwrite the
putchar module.

For example, to add the new putchar module to the original library for
the near memory model, use the command:

xlib
def-cpu m32c
rep-mod putchar cln
exit
The library module cln will now have the modified putchar instead of
the original one.

Note: def-cpu and rep-mod are abbreviations of the XLIB commands
DEFINE-CPU and REPLACE-MODULES. Notice also that in XLIB, module
names are case sensitive. For additional information about the IAR XLIB
Librarian, see the M32C IAR Assembler Reference Guide.

PRINTF AND SPRINTF
The printf and sprintf functions use a common formatter called
_formatted_write. The ANSI standard version of _formatted_write
is very large, and provides facilities not required in many applications. To
reduce the memory consumption the following alternative smaller
versions are also provided in the standard C library:

◆ _medium_write

As for _formatted_write, except that floating-point numbers are
not supported. Any attempt to use a %f, %g, %G, %e, and %E specifier
will produce the error:

FLOATS? wrong formatter installed!

_medium_write is considerably smaller than _formatted_write.

◆ _small_write

As for _medium_write, except that it supports only the %%, %d, %o, %c,
%s and %x specifiers for integer objects, and does not support field
width or precision arguments. The size of _small_write is 10–15%
of the size of _formatted_write.

The default version is _small_write.

INPUT AND OUTPUT USING THE IAR C LIBRARY CONFIGURATION

CM32C-2

28

SELECTING THE WRITE FORMATTER VERSION
The selection of a write formatter is made in the XLINK control file. The
default formatter, _small_write, is selected with the line:

-e_small_write=_formatted_write

To select the full ANSI version, remove this line.

To select _medium_write, replace this line with:

-e_medium_write=_formatted_write

REDUCED PRINTF
For many applications sprintf is not required, and even printf with
_small_write provides more facilities than are justified by the memory
consumed. Alternatively, a custom output routine may be required to
support particular formatting needs and/or non-standard output devices.

For such applications, a highly reduced version of the entire printf
function (without sprintf) is supplied in source form in the file
intwri.c. This file can be modified to your requirements and the
compiled module inserted into the library in place of the original using
the procedure described for putchar; for additional information, see
Modifying the C library, page 27.

SCANF AND SSCANF
In a similar way to the printf and sprintf functions, scanf and
sscanf use a common formatter called _formatted_read. The ANSI
standard version of _formatted_read is very large, and provides
facilities that are not required in many applications. To reduce the
memory consumption, an alternative smaller version is also provided in
the standard C library.

_medium_read
As for _formatted_read, except that floating-point numbers are not
supported. _medium_read is considerably smaller than
_formatted_read.

The default version is _medium_read.

CONFIGURATION INPUT AND OUTPUT USING THE EC++ LIBRARY

CM32C-2

29

SELECTING READ FORMATTER VERSION
The selection of a read formatter is made in the XLINK control file. The
default version, _medium_read, is selected with the line:

-e_medium_read=_formatted_read

To select the full ANSI version, remove this line.

INPUT AND OUTPUT
USING THE EC++
LIBRARY

The standard library contains a large number of powerful functions for
I/O operations. In order to simplify adaption to specific hardware, all I/O
functions call a small set of primitive functions, each designed to
accomplish one particular task; for example, __open acts as if it opens a
file and __write outputs a number of characters.

The primitive I/O files are located in the m32c\src\lib directory.

I/O FUNCTIONS

The primitive I/O functions are the fundamental functions through
which C performs all character-based I/O. For any character-based I/O to
be available, you must provide definitions for these functions using
whatever facilities the hardware environment provides.

The creation of new I/O routines is based upon the files listed above.

I/O function File Description

__open() open.c Open a file.

__close() close.c Close a file.

__read() read.c Read a character buffer.

__readchar() readchar.c Read a character.

__write() write.c Write a character buffer.

__writechar() writechar.c Write a character.

__lseek() lseek.c Set the file position indicator.

remove() remove.c Remove a file.

rename() rename.c Rename a file.

INPUT AND OUTPUT USING THE EC++ LIBRARY CONFIGURATION

CM32C-2

30

The primitive functions identify I/O streams such as an open file, with a
file descriptor that is a unique integer. The I/O streams normally
associated with stdin, stdout, and stderr have file descriptors 0, 1,
and 2, respectively.

The default implementation of the primitive functions maps the I/O
streams associated with stdin and stdout to the debugger; all other
operations are ignored.

Customizing a primitive I/O function on the command line
In most cases you can use the primitive I/O functions provided with the
product. The following section describes how to modify a primitive
function in case your application requires it. The example is based on
__writechar() but applies also to the other primitive I/O functions.

Notice that __writechar serves as the low-level part of the printf
function.

1 Copy the file writechar.c, which is provided in the m32c\src\lib
directory, to your project directory.

2 Make the required additions to your copy of writechar.c, and save
it under the same name. The code in the following example uses
memory-mapped I/O to write to an LCD display:

#include <stdio.h>
#include <yfuns.h>

_STD_BEGIN

int __writechar(int handle, unsigned char ch)
{
 unsigned char * LCD_IO;

 LCD_IO = (unsigned char *) 0x03E0;
 // Port P0 register
 *LCD_IO = ch;
 // ch on success, -1 on failure.
 return ch;
}

_STD_END

CONFIGURATION INPUT AND OUTPUT USING THE EC++ LIBRARY

CM32C-2

31

3 Compile the modified writechar.c using the appropriate processor
and memory model options.

For example, if your program uses the far memory model and the
M32C CPU core, compile writechar.c from the command line with
the command:

iccm32c writechar -mf --cpu=0 --library_module
--module_name ?writechar -Ic:\program files\iar
systems\embedded workbench 3\m32c\inc\

Note: The name of each module in the standard library always begins
with ? in order to avoid name collision with user modules.

This will create an optimized replacement object module file named
writechar.r48.

4 Add the following to your XLINK command line:

-A writechar

5 Link your code using the modified linker command file.

Customizing a primitive I/O function in the IAR Embedded
Workbench
In most cases you can use the primitive I/O functions provided with the
product. The following section describes how to modify a primitive
function in case your application requires it. The example is based on
__writechar() but applies also to the other primitive I/O functions.

Notice that __writechar serves as the low-level part of the printf
function.

1 Copy the file writechar.c, which is provided in the m32c\src\lib
directory, to your project directory.

2 Make the required additions to your copy of writechar.c, and save
it under the same name. The code in the following example uses
memory-mapped I/O to write to an LCD display:

#include <stdio.h>
#include <yfuns.h>

_STD_BEGIN

int __writechar(int handle, unsigned char ch)
{

REGISTER I/O CONFIGURATION

CM32C-2

32

 unsigned char * LCD_IO;

 LCD_IO = (unsigned char *) 0x03E0;
 // Port P0 register
 *LCD_IO = ch;
 // ch on success, -1 on failure.
 return ch;
}

_STD_END

3 Add the modified writechar to your project.

4 Compile the modified writechar.c using the same processor
configuration and memory model options as for the project.

This will create an optimized replacement object module file named
writechar.r48.

5 Rebuild the project.

Maintaining library files
The IAR XLIB Librarian command REPLACE-MODULES allows you to
permanently replace the original CSTARTUP with your customized
version. See the IAR Linker and Library Tools Reference Guide for detailed
information.

REGISTER I/O A program may access the M32C and M16C/8x Series I/O system using
the memory-mapped internal special function registers (SFRs).

All operators that apply to integral types may be applied to SFR registers.
Predefined declarations for the M32C and M16C/8x Series are supplied
with the product; see Run-time library, page 24.

INITIALIZATION On processor reset, execution passes to a run-time system routine called
CSTARTUP, which normally performs the following:

◆ Initializes the user and interrupt stack pointers.

◆ Initializes C file-level and static variables.

◆ Initializes the INTB register.

CONFIGURATION INITIALIZATION

CM32C-2

33

◆ Calls the start of the user program in main().

CSTARTUP is also responsible for receiving and retaining control if the
user program exits, whether through exit or abort.

VARIABLE AND I/O INITIALIZATION
In some applications you may want to initialize I/O registers, or omit the
default initialization of data segments performed by CSTARTUP.

You can do this by providing a customized version of the routine
_ _low_level_init, which is called from CSTARTUP before the data
segments are initialized.

The value returned by _ _low_level_init determines whether data
segments are initialized. The run-time library includes a dummy version
of _ _low_level_init that simply returns 1, to cause CSTARTUP to
initialize data segments.

The source code for _ _low_level_init is provided in the file
lowinit.c, which is provided with the product. To perform your own
I/O initializations, create a version of this routine containing the
necessary code to make the initializations. If you also want to disable the
initialization of data segments, make the routine return a zero. Compile
the customized routine and link it with the rest of your code.

MODIFYING CSTARTUP
If you want to modify CSTARTUP you will need to reassemble CSTARTUP
with options that match your selected compiler options.

The overall procedure for assembling a modified copy of CSTARTUP is as
follows:

◆ Make any required modifications to the assembler source of
CSTARTUP, supplied by default in the file cstartup.s48 and save it
under the same name.

◆ Assemble CSTARTUP using options that match your selected compiler
options.

This will create an object module file named cstartup.r48.

INTERRUPT SYSTEM CONFIGURATION

CM32C-2

34

You should then use the following commands in the linker command
file to make XLINK use the CSTARTUP module that you have defined
instead of the one in library:

-A cstartup Load as program module

-C library Load as library module

The modified cstartup will be used instead of the default one in the
library. This is done with the options Load as LIBRARY (-C) and
Load as PROGRAM (-A).

The XLINK options are described in the IAR Linker and Library Tools
Reference Guide.

In the IAR Embedded Workbench, add the modified cstartup file to
your project, and add -C before the library in the linker command file.

INTERRUPT SYSTEM INTERRUPT KEYWORDS
The keywords _ _ interrupt, _ _fast_interrupt, and
_ _regbank_interrupt are available for interrupt functions.

For a complete description of the interrupt keywords, see Functions, page
79.

INTERRUPT VECTOR TABLE
The compiler will automatically create an interrupt vector table where it
will enter the addresses of the defined interrupt functions. The vector
table will be located in the INTVEC segment. It will be allocated to address
0xFF0000 by the supplied linker command files with the following
command:

-Z(HUGECONST)INTVEC=FF0000

For the moment the only way to enter default values in the vector table is
to edit the cstartup routine and fill in default values at all vector
addresses not specified by the compiler (or assembler). There are
comments in the cstartup file to show the user how to proceed.

CONFIGURATION INTERRUPT SYSTEM

CM32C-2

35

INTERRUPT VECTOR TABLE OFFSET
The #pragma vector will be used in the C code to define the byte offset
into the interrupt vector table where the _ _ interrupt functions address
will be stored, as in the following example:

#pragma vector=20
_ _ interrupt void wTimer_ISR (void)
{
 C code ...
}

The #pragma causes the compiler to store the address of the wTimer_ISR
function at byte offset 20 in the interrupt vector table located in the
INTVEC segment. The _ _ interrupt keyword will also cause the
compiler to end the Timer2B_ISR function with a REIT instruction.

INTERRUPT SYSTEM CONFIGURATION

CM32C-2

36

CM32C-2

37

COMPILER OPTIONS
This chapter explains how to set the compiler options from the command
line, and gives detailed reference information about each option.

Refer to the IAR Embedded Workbench™ IDE User Guide for information
about the compiler options available in the IAR Embedded Workbench
and how to set them.

SETTING COMPILER
OPTIONS

To set compiler options from the command line, include them on the
command line after the iccm32c command, either before or after the
source filename. For example, when compiling the source prog.c, use the
following command to generate an object file with debug information:

iccm32c prog --debug

Some options accept a filename, included after the option letter with a
separating space. For example, to generate a listing to the file list.lst:

iccm32c prog -l list.lst

Some other options accept a string that is not a filename. The string is
included after the option letter, but without a space. For example, to
define a symbol:

iccm32c prog -DDEBUG=1

Generally, the order of options on the command line, both relative to each
other and to the source filename, is not significant. There is, however, one
exception: when you use the -I option, the directories are searched in the
same order as they are specified on the command line.

Notice that a command line option has a short name and/or a long name:

◆ A short option name consists of one character, with or without
parameters. You specify it with a single dash, for example -e.

◆ A long name consists of one or several words joined by underscores,
and it may have parameters. You specify it with double dashes, for
example --char_is_signed.

SETTING COMPILER OPTIONS COMPILER OPTIONS

CM32C-2

38

Specifying parameters
When a parameter is needed for an option with a short name, it can be
specified either immediately following the option or as the next command
line argument. For instance, an include file path of \usr\include can be
specified either as:

-I\usr\include

or as

-I \usr\include

Note: / can be used instead of \ as directory delimiter.

Additionally, output file options can take a parameter that is a directory
name. The output file will then receive a default name and extension.

When a parameter is needed for an option with a long name, it can be
specified either immediately after the equal sign (=) or as the next
command line argument, for example:

--diag_suppress=Pe0001

or

--diag_suppress Pe0001

The option --preprocess is, however, an exception as the filename must
be preceded by space. In the following example comments are included in
the preprocessor output:

--preprocess=c prog

Options that accept multiple values may be repeated, and may also have
comma-separated values (without space), for example:

--diag_warning=Be0001,Be0002

The current directory is specified with a period (.), for example:

iccm32c prog -l .

A file specified by '-' is standard input or output, whichever is
appropriate.

Note: When an option takes a parameter, the parameter cannot start with
a dash (-) followed by another character. Instead you can prefix the
parameter with two dashes; the following example will create a list file
called -r:

iccm32c prog -l ---r

COMPILER OPTIONS ENVIRONMENT VARIABLES

CM32C-2

39

Error return codes
The M32C IAR C/EC++ Compiler returns status information to the
operating system which can be tested in a batch file.

The following command line error codes are supported:

ENVIRONMENT
VARIABLES

Compiler options can also be specified in the QCCM32C environment
variable. The compiler automatically appends the value of this variable to
every command line, so it provides a convenient method of specifying
options that are required for every compilation.

The following environment variables can be used with the M32C IAR
C/EC++ Compiler:

See the M32C IAR Assembler Reference Guide for information about the
environment variables that can be used by the M32C Assembler, IAR
XLINK Linker™, and IAR XLIB Librarian™.

Code Description

0 Compilation successful, but there may have been warnings.

1 There were warnings, provided that the option
--warnings_affect_exit_code was used.

2 There were non-fatal errors.

3 There were fatal errors (compiler aborted).

Environment variable Description

C_INCLUDE Specifies directories to search for include files;
for example:
C_INCLUDE=c:\iar\m32c\inc;c:\headers

QCCM32C Specifies command line options; for example:
QCCM32C=-lA asm.lst -z9

OPTIONS SUMMARY COMPILER OPTIONS

CM32C-2

40

OPTIONS SUMMARY The following table summarizes the compiler command line options:

Command line option Description

--char_is_signed ‘char’ is ‘signed char’

--code_segment name Code segment

--cpu=cpu Processor variant

-Dsymb[=value] Defines preprocessor
symbols

--debug Generates debug info

--diag_error=tag,tag,... Treats these as errors

--diag_remark=tag,tag,... Treats these as remarks

--diag_suppress=tag,tag,... Suppresses these diagnostics

--diag_warning=tag,tag,... Treats these as warnings

-e Enables language extensions

--ec++ Enables Embedded C ++
syntax

-Ipath Includes file path

-l[c|C|a|A][N] filename Creates list file

--library_module Makes library module

-m[n|f|h] Memory model

--memory_model=[near|far|huge] Memory model

--module_name=name Sets object module name

--no_code_motion Disables code motion
optimization

--no_cse Disables common
sub-expression elimination

--no_inline Disables function inlining

--no_unroll Disables loop unrolling

--no_warnings Disables all warnings

COMPILER OPTIONS OPTIONS SUMMARY

CM32C-2

41

The following sections give detailed reference information about each
compiler option.

--char_is_signed ‘char’ is ‘signed char’.

SYNTAX
--char_is_signed

-o filename Sets object filename

--only_stdout Uses standard output only

--preprocess=[c][n][l] filename Preprocessor output to file

-R name Code segment

-r Generates debug
information

--remarks Enables remarks

--require_prototypes Forces verification of
function prototypes

-s[3|6|9] Optimizes for speed

--silent Sets silent operation

--strict_ansi Enables strict ISO/ANSI

-Usymb -

-v[0|1] Processor variant

--warnings_affect_exit_code Warnings affects exit code

--warnings_are_errors Treats all warnings as errors

-z[3|6|9] Optimizes for size

-2 64-bit floating point

Command line option Description

--code_segment, -R COMPILER OPTIONS

CM32C-2

42

DESCRIPTION
By default the compiler interprets the char type as unsigned char. Use
this option to make the compiler interpret the char type as signed char
instead, for example for compatibility with another compiler.

Note: The run-time library is compiled without the --char_is_signed
option. If you use this option, you may get type mismatch warnings from
the linker since the library uses unsigned chars.

Use this option to make the char type equivalent to signed char.

This option corresponds to the ‘char’ is ‘signed char’ option in the
ICCM32C category in the IAR Embedded Workbench.

--code_segment, -R Places executable code in a named segment.

DESCRIPTION
Normally, the compiler places executable code in the segment named
CODE. If you want to be able to specify an explicit location for the code,
use the --code_segment option to specify a code segment name, which
you can then assign to a fixed address in the linker command file.

SYNTAX

Syntax: --code_segment name

--cpu Processor variant.

SYNTAX
--cpu=cpu

DESCRIPTION
Use this option to select the processor for which the code is to be
generated.

For example, use the following command to specify the M32C CPU core:

--cpu=0

See Processor, page 18, for a summary of the available processors.

COMPILER OPTIONS -D

CM32C-2

43

Notice that to specify the processor, you can use either the --cpu option
or the -v option. The --cpu option is, however, more precise since
implicit assumptions are made about the processor when you use the
-v option. For additional information, see page 18.

This option is related to the Processor configuration option in the
General category in the IAR Embedded Workbench.

-D Defines preprocessor symbols.

SYNTAX
-Dsymb[=value]
-D symb[=value]

DESCRIPTION
Defines a symbol with the name symb and the value value. If no value is
specified, 1 is used.

The option -D has the same effect as a #define statement at the top of
the source file.

-Dsymb

is equivalent to:

#define symb

For example, you could arrange your source to produce either the test or
production version of your program depending on whether the symbol
testver was defined. To do this you would use include sections such as:

#ifdef testver
... ; additional code lines for test version only

#endif

Then, you would select the version required on the command line as
follows:

Production version: iccm32c prog

Test version: iccm32c prog -Dtestver

This option can be used one or more times.

--debug, -r COMPILER OPTIONS

CM32C-2

44

This option is related to the Preprocessor options in the ICCM32C
category in the IAR Embedded Workbench.

--debug, -r Generates debug information.

SYNTAX
 --debug
-r

DESCRIPTION
This option causes the compiler to include additional information
required by C-SPY™ and other symbolic debuggers in the object modules.

Note: Including debug information will make the object files become
larger than otherwise.

This option is related to the Output options in the ICCM32C category in
the IAR Embedded Workbench.

--diag_error Treats the specified diagnostic messages as errors.

SYNTAX
--diag_error=tag,tag,...

DESCRIPTION
An error indicates a violation of the C language rules, of such severity that
object code will not be generated, and the exit code will not be 0. Use this
option to classify diagnostic messages as errors.

The following example classifies warning Pe117 as an error:

--diag_error=Pe117

This option is related to the Diagnostics options in the ICCM32C
category in the IAR Embedded Workbench.

COMPILER OPTIONS --diag_remark

CM32C-2

45

--diag_remark Treats the specified diagnostic messages as remarks.

SYNTAX
--diag_remark=tag,tag,...

DESCRIPTION
A remark is the least severe type of diagnostic message and indicates a
source code construct that may cause strange behavior in the generated
code. Use this option to classify diagnostic messages as remarks.

The following example classifies the warning Pe177 as a remark:

--diag_remark=Pe177

This option is related to the Diagnostics options in the ICCM32C
category in the IAR Embedded Workbench.

--diag_suppress Suppresses the specified diagnostics messages.

SYNTAX
--diag_suppress=tag,tag,...

DESCRIPTION
Suppresses the output of diagnostics for the specified tags.

Use this option to suppress diagnostic messages. The following example
suppresses the warnings Pe117 and Pe177:

--diag_suppress=Pe117,Pe177

This option is related to the Diagnostics options in the ICCM32C
category in the IAR Embedded Workbench.

--diag_warning Treats the specified diagnostic messages as warnings.

SYNTAX
--diag_warning=tag,tag,...

-e COMPILER OPTIONS

CM32C-2

46

DESCRIPTION
A warning indicates an error or omission that is of concern, but which
will not cause the compiler to stop before compilation is completed. Use
this option to classify diagnostic messages as warnings.

The following example classifies the remark Pe826 as a warning:

--diag_warning=Pe826

This option is related to the Diagnostics options in the ICCM32C
category in the IAR Embedded Workbench.

-e Enables language extensions.

SYNTAX
-e

DESCRIPTION
Language extensions must be enabled for the M32C IAR Compiler to be
able to accept M32C-specific keywords as extensions to the standard C
language.

In the command line version of the M32C IAR Compiler, language
extensions are disabled by default. Use the command line option -e to
enable language extensions such as keywords and anonymous structs
and unions.

Note: The -e option and the --strict_ansi option cannot be used at the
same time.

For additional informatioin, see Language extensions, page 11.

This option is related to the Language options in the ICCM32C category
in the IAR Embedded Workbench.

--ec++ Enables the Embedded C++ syntax.

SYNTAX
--ec++

COMPILER OPTIONS -I

CM32C-2

47

DESCRIPTION
In the command line version of the M32C IAR Compiler, Embedded
C++ syntax is disabled by default. If you are using Embedded C++
syntax in your source code, you must enable it by using this option.

The --ec++ option is only available in the EC++ version of the product.

This option is related to the Language options in the ICCM32C category
in the IAR Embedded Workbench.

-I Specifies #include file paths.

SYNTAX
-Ipath

DESCRIPTION
Adds a path to the list of #include file paths, for example:

iccm32c prog -I\mylib1

Note: Both \ and / can be used as directory delimiters.

This option may be used more than once on a single command line.

Following is the full description of the compiler’s #include file search
procedure:

◆ If the name of the #include file is an absolute path, that file is
opened.

◆ When the compiler encounters the name of an #include file in
angle brackets such as:

#include <stdio.h>

it searches the following directories for the file to include:

1. The directories specified with the -I option, in the order that they
were specified.

2. The directories specified using the C_INCLUDE environment
variable, if any.

◆ When the compiler encounters the name of an #include file in
double quotes such as:

-l COMPILER OPTIONS

CM32C-2

48

#include "vars.h"

it searches the directory of the source file in which the #include
statement occurs, and then performs the same sequence as for
angle-bracketed filenames.

If there are nested #include files, the compiler starts searching in the
directory of the file that was last included, iterating upwards for each
included file, searching the source file directory last. Example:

src.c in directory dir
#include “src.h”
...

src.h in directory dir\h
#include “io.h”
...

When dir\exe is the current directory, use the following command
for compilation:

iccm32c ..\src.c -I..\dir\include

Then the following directories are searched for the io.h file, in the
following order:

dir\h Current file.

dir File including current file.

dir\include As specified with the -I option.

This option is related to the Preprocessor options in the ICCM32C
category in the IAR Embedded Workbench.

-l Generates a listing to the specified filename.

SYNTAX
-l[c|C|a|A][N] filename

DESCRIPTION
Generates a listing to the named file with the default extension lst.

Normally, the compiler does not generate a listing. To generate a listing to
a named file, you use the -l option. For example, to generate a listing to
the file list.lst, use:

COMPILER OPTIONS --library_module

CM32C-2

49

iccm32c prog -l list

The following modifiers are available:

This option is related to the List options in the ICCM32C category in the
IAR Embedded Workbench.

--library_module Makes module a library module.

SYNTAX
--library_module

DESCRIPTION
A program module is always included during linking. Use this option to
make a library module that will only be included if it is referenced in your
program.

Use the --library_module option to make the object file be treated as a
library module rather than as a program module.

This option is related to the Output options in the ICCM32C category in
the IAR Embedded Workbench.

-m, --memory_model Specifies the data memory model.

SYNTAX
-m[n|f|h]
--memory_model=[near|far|huge]

Option modifier Description

a Assembler file

A (N is implied) Assembler file with C source as comments

c C list file

C (default) C list file with assembler source as comments

N No diagnostics in file

--module_name COMPILER OPTIONS

CM32C-2

50

DESCRIPTION
Specifies the memory model for which the code is to be generated.

By default the compiler generates code for the near memory model. Use
the -m or the --memory_model option if you want to generate code for a
different memory model.

For example, to generate code for the far memory model, give the
command:

iccm32c filename -mf

or:

iccm32c filename --memory_model=far

These options are related to the Memory model option in the General
category in the IAR Embedded Workbench.

--module_name Sets the object module name.

SYNTAX
--module_name=name

DESCRIPTION
Normally, the internal name of the object module is the name of the
source file, without a directory name or extension. Use this option to
specify an object module name.

To set the object module name explicitly, use the option
--module_name=name, for example:

iccm32c prog --module_name=main

This option is particularly useful when several modules have the same
filename, since the resulting duplicate module name would normally
cause a linker error; for example, when the source file is a temporary file
generated by a preprocessor.

COMPILER OPTIONS --no_code_motion

CM32C-2

51

The following example—in which %1 is an operating system variable
containing the name of the source file—will give duplicate name errors
from the linker:

preproc %1.c temp.c ; preprocess source,

; generating temp.c
iccm32c temp.c ; module name is

; always 'temp'

To avoid this, use --module_name=name to retain the original name:

preproc %1.c temp.c ; preprocess source,

; generating temp.c
iccm32c temp.c --module_name=%1 ; use original source

; name as module name

Note: In the above example, preproc is an external utility.

This option is related to the Output options in the ICCM32C category in
the IAR Embedded Workbench.

--no_code_motion Disables the code motion optimization.

SYNTAX
--no_code_motion

DESCRIPTION
Evaluation of loop-invariant expressions and common sub-expressions
are moved to avoid redundant re-evaluation. This optimization, which is
performed at optimization levels 4–9, normally reduces code size and
execution time. The resulting code may however be difficult to debug.

Use --no_code_motion to disable code motion.

Note: This option has no effect at optimization levels 0–3.

This option is related to the Optimization options in the ICCM32C
category in the IAR Embedded Workbench.

--no_cse COMPILER OPTIONS

CM32C-2

52

--no_cse Disables the common sub-expression elimination.

SYNTAX
--no_cse

DESCRIPTION
Use --no_cse to disable common sub-expression elimination.

Redundant re-evaluation of common sub-expressions is by default
eliminated at optimization levels 4–9. This optimization normally
reduces both code size and execution time. The resulting code may
however be difficult to debug.

Note: This option has no effect at optimization levels 0–3.

This option is related to the Optimization options in the ICCM32C
category in the IAR Embedded Workbench.

--no_inline Disables function inlining.

SYNTAX
--no_inline

DESCRIPTION
Use --no_inline to disable function inlining.

Function inlining means that a simple function, whose definition is
known at compile time, is integrated into the body of its caller to
eliminate the overhead of the call.

This optimization, which is performed at optimization levels 7–9,
normally reduces execution time, but increases code size. The resulting
code may also be difficult to debug. In certain cases, the code size will
decrease when this option is used.

The compiler heuristically decides which functions to inline. Different
heuristics are used when optimizing for speed.

Note: This option has no effect at optimization levels 0–6.

This option is related to the Optimization options in the ICCM32C
category in the IAR Embedded Workbench.

COMPILER OPTIONS --no_unroll

CM32C-2

53

--no_unroll Disables loop unrolling.

SYNTAX
--no_unroll

DESCRIPTION
The code body of a small loop, whose number of iterations can be
determined at compile time, is duplicated to reduce the loop overhead.

This optimization, which is performed at optimization levels 7–9,
normally reduces execution time, but increases code size. The resulting
code may also be difficult to debug.

The compiler heuristically decides which loops to unroll. Different
heuristics are used when optimizing for speed and size. This option has
no effect at optimization levels 0–6.

Note: Loop unrolling is permanently disabled in the M32C IAR C/EC++
Compiler. This option is available for compatibility with other IAR
compilers.

This option is related to the Optimization options in the ICCM32C
category in the IAR Embedded Workbench.

--no_warnings Disables all warnings.

SYNTAX
--no_warnings

DESCRIPTION
Normally, the compiler issues standard warning messages. To disable all
warning messages, use the --no_warnings option.

This option is related to the Diagnostics options in the ICCM32C
category in the IAR Embedded Workbench.

-o COMPILER OPTIONS

CM32C-2

54

-o Sets object filename.

SYNTAX
-o filename

DESCRIPTION
If no object code filename is specified, the compiler stores the object code
in a file whose name consists of the source filename, excluding the path,
plus the filename extension r48.

Use the -o option to specify a name for the output file. The filename may
include a pathname. For example, to store it in the file obj.r48 in the
mypath directory, you would use:

iccm32c prog -o \mypath\obj

Note: Both \ and / can be used as directory delimiters.

This option is related to the Output Directories options in the General
category in the IAR Embedded Workbench.

--only_stdout Uses standard output only.

SYNTAX
--only_stdout

DESCRIPTION
Causes the compiler to use stdout also for messages that are normally
directed to stderr.

--preprocess Directs preprocessor output to file.

SYNTAX
--preprocess=[c][n][l] filename

DESCRIPTION
Use this option to generate preprocessor output to the named file,
filename.i.

COMPILER OPTIONS --R, --code_segment

CM32C-2

55

The filename consists of the filename itself, optionally preceded by a
pathname and optionally followed by an extension. If no extension is
given, the extension i is used. In the syntax description above, note that
space is allowed in front of the filename.

The following table shows the mapping of the available preprocessor
modifiers:

This option is related to the Preprocessor options in the ICCM32C
category in the IAR Embedded Workbench.

--R, --code_segment Places executable code in a named segment.

DESCRIPTION
Normally, the compiler places executable code in the segment named
CODE. If you want to be able to specify an explicit location for the code,
use the --R option to specify a code segment name, which you can then
assign to a fixed address in the linker command file.

SYNTAX

Syntax: --R name

-r, --debug Generates debug information.

SYNTAX
 --debug
-r

DESCRIPTION
This option causes the compiler to include additional information
required by C-SPY™ and other symbolic debuggers in the object modules.

Command line option Description

--preprocess=c Preserve comments

--preprocess=n Preprocess only

--preprocess=l Generate #line directives

--remarks COMPILER OPTIONS

CM32C-2

56

Note: Including debug information will make the object files become
larger than otherwise.

This option is related to the Output options in the ICCM32C category in
the IAR Embedded Workbench.

--remarks Enables remarks.

SYNTAX
--remarks

DESCRIPTION
The least severe diagnostic messages are called remarks (see Severity
levels, page 157). A remark indicates a source code construct that may
cause strange behavior in the generated code.

By default remarks are not generated. Use --remarks to make the
compiler generate remarks.

This option is related to the Diagnostics options in the ICCM32C
category in the IAR Embedded Workbench.

--require_prototypes Forces verification of function prototypes

SYNTAX
--require_prototypes

DESCRIPTION
This option forces the compiler to verify that all functions have proper
prototypes. Using this option means that code containing either of the
following will generate an error:

◆ A function call of a function with no declaration or a Kernighan
Ritchie C declaration.

◆ A function definition of a public function with no previous
prototype declaration.

◆ An indirect function call through a function pointer with a type that
does not include a prototype.

COMPILER OPTIONS -s

CM32C-2

57

-s Optimizes for speed.

SYNTAX
-s[3|6|9]

DESCRIPTION
Causes the compiler to optimize the code for maximum execution speed.

If no optimization option is specified -z3 is used by default. If the -s or
the -z option is used without specifying the optimization level, level 3 is
used by default.

Note: The -s and -z options cannot be used at the same time.

The following table shows how the optimization levels are mapped:

This option is related to the Optimization options in the ICCM32C
category in the IAR Embedded Workbench.

--silent Specifies silent operation.

SYNTAX
--silent

DESCRIPTION
By default the compiler issues introductory messages and a final statistics
report. Use --silent to make the compiler operate without sending
unessential messages to standard output (normally the screen). This does
not affect the display of error and warning messages.

Option modifier Description

3 Fully debuggable

6 Heavy optimization can make the program flow hard
to follow during debug

9 Full optimization

--strict_ansi COMPILER OPTIONS

CM32C-2

58

--strict_ansi Specifies strict ISO/ANSI.

SYNTAX
--strict_ansi

DESCRIPTION
By default the compiler accepts a superset of ISO/ANSI C (see the chapter
IAR C extensions). Use --strict_ansi to ensure that the program
conforms to the ISO/ANSI C standard.

Note: The -e option and the --strict_ansi option cannot be used at the
same time.

This option is related to the Language options in the ICCM32C category
in the IAR Embedded Workbench.

-U Removes the definition of the named symbol.

SYNTAX

Syntax: -Usymb
-U symb

DESCRIPTION
Normally, the compiler provides various predefined symbols. If you want
to remove one of these, for example to avoid a conflict with your own
symbol with the same name, use the undefine symbol (-U) option.

For example, to remove the symbol _ _ VER_ _ , use:

iccm32c prog -U _ _ VER_ _

For a list of the predefined symbols, see the chapter Predefined symbols
reference.

COMPILER OPTIONS -v

CM32C-2

59

-v Specifies the processor variant.

SYNTAX
-v[0|1]

DESCRIPTION
Use this option to select the processor for which the code is to be
generated. The following processors are available:

See also --cpu, page 42, and Processor, page 18.

This option is related to the Processor configuration option in the
General category in the IAR Embedded Workbench.

--warnings_affect
_exit_code

Makes warnings affect the exit code.

SYNTAX
--warnings_affect_exit_code

DESCRIPTION
By default the exit code is not affected by warnings, only errors produce
a non-zero exit code. With this option, warnings will generate a non-zero
exit code.

This option is related to the Diagnostics options in the ICCM32C
category in the IAR Embedded Workbench.

--warnings_are_
errors

Makes the compiler treat all warnings as errors.

SYNTAX
--warnings_are_errors

Command line option Processor

-v0 M32C

-v1 M16C/80

-z COMPILER OPTIONS

CM32C-2

60

DESCRIPTION
Use this option to make the compiler treat all warnings as errors. If the
compiler encounters an error, no object code is generated.

If you want to keep some warnings, you can use this option in
combination with the option --diag_warning. First make all warnings
become treated as errors and then reset the ones that should still be
treated as warnings, for example:

--diag_warning=Pe117

For additional information, see --diag_warning, page 45.

This option is related to the Diagnostics options in the ICCM32C
category in the IAR Embedded Workbench.

-z Optimizes for size.

SYNTAX
-z[3|6|9]

DESCRIPTION
Causes the compiler to optimize the code for minimum size. If no
optimization option is specified -z3 is used by default. If the -s or the -z
option is used without specifying the optimization level, level 3 is used by
default.

Note: The -s and -z options cannot be used at the same time.

The following table shows how the optimization levels are mapped:

This option is related to the Optimization options in the ICCM32C
category in the IAR Embedded Workbench.

Option modifier Description

3 Fully debuggable

6 Heavy optimization can make the program flow
difficult to follow during debug

9 Full optimization

COMPILER OPTIONS OPTIONS SUMMARY

CM32C-2

61

-2 Forces the compiler to use the 64-bit IEEE floating-point format.

SYNTAX
-2

DESCRIPTION
By default the compiler uses 32-bit precision for the data types double
and long double. This option selects the 64-bit IEEE floating-point
format instead.

For example, to generate code for the huge memory model using the 64-bit
floating-point format, give the command:

iccm32c filename --memory_model=huge -2

This option is related to the Target options in the General category in
the IAR Embedded Workbench.

OPTIONS SUMMARY COMPILER OPTIONS

CM32C-2

62

CM32C-2

63

C LIBRARY FUNCTIONS
This chapter gives an introduction to the C library functions. It also lists
the header files used to access library definitions. If you are using the
Embedded C++ library, you should read the EC++ library functions
chapter instead.

For detailed information about the C library functions, see the file
c_library.pdf which is provided with the product.

INTRODUCTION The M32C IAR Compiler package provides most of the important C
library definitions that apply to embedded systems. These are of the
following types:

◆ Adherence to free-standing implementation of the ISO standard for
the programming language - C.

For information about the IAR implementation of the standard, see
the chapter Implementation-defined behavior in this guide.

◆ Standard C library definitions, for user programs.

◆ CSTARTUP, the single program module containing the start-up code. It
is described in Initialization, page 32.

◆ Run-time support libraries, for example low-level floating-point
routines.

LIBRARY OBJECT FILES
You must select the appropriate library object file for your chosen
memory and code model. See Run-time library, page 24, for more
information. The linker includes only those routines that are required
(directly or indirectly) by the user’s program.

Most of the library definitions can be used without modification, that is,
directly from the library object files supplied. There are some
I/O-oriented routines that you may need to customize for your target
application.

LIBRARY DEFINITIONS SUMMARY C LIBRARY FUNCTIONS

CM32C-2

64

HEADER FILES
The user program gains access to library definitions through header files,
which it incorporates using the #include directive. The definitions are
divided into a number of different header files each covering a particular
functional area, letting you include just those that are required.

It is essential to include the appropriate header file before making any
reference to its definitions. Failure to do this can cause the call to fail
during execution, or generate error or warning messages at compile time
or link time.

LIBRARY
DEFINITIONS
SUMMARY

This section lists the header files. Header files may additionally contain
target-specific definitions; these are documented in the chapter IAR C
extensions.

The standard C library header files are:

Header file Usage

assert.h Enforcing assertions when functions execute

ctype.h Classifying characters

errno.h Testing error codes reported by library functions

float.h Testing floating-point type properties

iso646.h Alternative names for logical operators

limits.h Testing integer type properties

locale.h Adapting to different cultural conventions

math.h Computing common mathematical functions

setjmp.h Executing non-local goto statements

signal.h Controlling various exceptional conditions

stdarg.h Accessing a varying number of arguments

stddef.h Defining several useful types and macros

stdio.h Performing input and output

stdlib.h Performing a variety of operations

string.h Manipulating several kinds of strings

C LIBRARY FUNCTIONS MATH FUNCTIONS

CM32C-2

65

MATH FUNCTIONS The C library contains both 32-bit IEEE (float), and 64-bit IEEE
(double) math functions. The 32-bit version is more effective in code size
and execution speed. As C does not allow function name overloading, the
32-bit functions have the suffix f, for example, the standard library
function for sinus is sin and the additional 32-bit IEEE is sinf.

The sin and sinf are actually macros mapping to _Sin() and _FSin()
functions, and can be redefined by the user.

Examples
#include <math.h>
void f()
{

double d1, d2; // 64-bit IEEE
float f1, f2; // 32-bit IEEE

d2 = sin(d1); // 64-bit library used
d2 = sin(f1); // NOTE! 64-bit library used, float f1

 // is casted to double before the
 // function call.

f2 = sinf(f1); // 32-bit library used.

#undef sin
#define sinf(x) sinf(x)

d2 = sin(d1) // 32-bit library used
f2 = sin(f1) // 32 bit library used

time.h Converting between various time and date formats

wchar.h Supporting wide characters

wctype.h Classifying wide characters

Header file Usage

MATH FUNCTIONS C LIBRARY FUNCTIONS

CM32C-2

66

CM32C-2

67

EC++ LIBRARY FUNCTIONS
This chapter gives an introduction to the Embedded C++ library
functions. It also lists the header files used for accessing library
definitions.

If you are using the IAR C library, you should read the C library functions
chapter instead.

INTRODUCTION The M32C IAR Compiler package provides most of the important C
library definitions that apply to PROM-based embedded systems. These
are of the following types:

◆ Adherence to a free-standing implementation of the ISO standard for
the programming language C. For additional information, see the
chapter Implementation-defined behavior.

◆ Standard C library definitions, for user programs.

◆ Embedded C++ library definitions, for user programs.

◆ CSTARTUP, the single program module containing the start-up code. It
is described in Initialization, page 32.

◆ Run-time support libraries; for example, low-level floating-point
routines.

LIBRARY OBJECT FILES
You must select the appropriate library object file for your chosen
memory model. See Run-time library, page 24, for more information. The
linker will include only those routines that are required—directly or
indirectly—by your application.

Most of the library definitions can be used without modification, that is,
directly from the supplied library object files. There are some
I/O-oriented routines (such as __writechar and __readchar) that you
may need to customize for your application. For a description of how to
modify the library definitions, see Customizing a primitive I/O function on
the command line, page 30.

LIBRARY DEFINITIONS SUMMARY EC++ LIBRARY FUNCTIONS

CM32C-2

68

HEADER FILES
The user program gains access to library definitions through header files,
which it incorporates using the #include directive. The definitions are
divided into a number of different header files each covering a particular
functional area, letting you include just those that are required.

It is essential to include the appropriate header file before making any
reference to its definitions. Failure to do this can cause the call to fail
during execution, or generate error or warning messages at compile time
or link time.

VIEWING THE C LIBRARY DOCUMENTATION
The library documentation is located in the m32c\doc directory and can
be accessed from the Help menu in the IAR Embedded Workbench.

◆ To view the C library documentation, you need access to Acrobat®
Reader. Notice that the pdf file format must be associated with the
Acrobat® Reader.

◆ To view the Embedded C++library documentation, you need access
to an Internet browser. Notice that the html file format must be
associated with your Internet browser.

LIBRARY
DEFINITIONS
SUMMARY

This section lists the header files. Header files may additionally contain
target-specific definitions; these are documented in the chapter IAR C
extensions.

EMBEDDED C++
The following table shows the Embedded C++ library headers:

Header file Usage

complex Defining a class that supports complex arithmetic

exception Defining several functions that control exception
handling

fstream Defining several I/O streams classes that manipulate
external files

iomanip Declaring several I/O streams manipulators that take
an argument

EC++ LIBRARY FUNCTIONS LIBRARY DEFINITIONS SUMMARY

CM32C-2

69

USING STANDARD C LIBRARIES IN EC++
The Embedded C++ library works in conjunction with 15 of the headers
from the standard C library, sometimes with small alterations. The
headers come in two forms, new and traditional.

The following table shows the new headers:

ios Defining the class that serves as the base for many
I/O streams classes

iosfwd Declaring several I/O streams classes before they are
necessarily defined

iostream Declaring the I/O streams objects that manipulate
the standard streams

istream Defining the class that performs extractions

new Declaring several functions that allocate and free
storage

ostream Defining the class that performs insertions

sstream Defining several I/O streams classes that manipulate
string containers

stdexcept Defining several classes useful for reporting
exceptions

streambuf Defining classes that buffer I/O streams operations

string Defining a class that implements a string container

strstream Defining several I/O streams classes that manipulate
in-memory character sequences

Header file Usage

cassert Enforcing assertions when functions execute

cctype Classifying characters

cerrno Testing error codes reported by library functions

cfloat Testing floating-point type properties

climits Testing integer type properties

Header file Usage

LIBRARY DEFINITIONS SUMMARY EC++ LIBRARY FUNCTIONS

CM32C-2

70

STANDARD C
The following table shows the traditional standard C library headers:

clocale Adapting to different cultural conventions

cmath Computing common mathematical functions

csetjmp Executing non-local goto statements

csignal Controlling various exceptional conditions

cstdarg Accessing a varying number of arguments

cstddef Defining several useful types and macros

cstdio Performing input and output

cstdlib Performing a variety of operations

cstring Manipulating several kinds of strings

ctime Converting between various time and date formats

Header file Usage

assert.h Enforcing assertions when functions execute

ctype.h Classifying characters

errno.h Testing error codes reported by library functions

float.h Testing floating-point type properties

iso646.h Using Amendment 1—iso646.h standard header

limits.h Testing integer type properties

locale.h Adapting to different cultural conventions

math.h Computing common mathematical functions

setjmp.h Executing non-local goto statements

signal.h Controlling various exceptional conditions

stdarg.h Accessing a varying number of arguments

stddef.h Defining several useful types and macros

stdio.h Performing input and output

Header file Usage

EC++ LIBRARY FUNCTIONS LIBRARY DEFINITIONS SUMMARY

CM32C-2

71

COMPATIBILITY WITH STANDARD C++
In this implementation, the Embedded C++ library also includes several
headers for compatibility with traditional C++ libraries:

stdlib.h Performing a variety of operations

string.h Manipulating several kinds of strings

time.h Converting between various time and date formats

wchar.h Support for wide characters

wctype.h Classifying wide characters

Header file Usage

fstream.h Defining several I/O streams template classes that
manipulate exteral files

iomanip.h Declaring several I/O streams manipulators that take
an argument

iostream.h Declaring the I/O streams objects that manipulate
the standard streams

new.h Declaring several functions that allocate and free
storage

Header file Usage

LIBRARY DEFINITIONS SUMMARY EC++ LIBRARY FUNCTIONS

CM32C-2

72

CM32C-2

73

EXTENDED KEYWORDS
REFERENCE
This chapter describes the non-standard keywords that support specific
features of the M32C and M16C/8x Series CPU cores.

SUMMARY OF
EXTENDED
KEYWORDS

The following list summarizes the extended keywords that are available
for the M32C IAR C/C++ Compiler:

◆ _ _near controls the storage of variables and the representation of
pointers in near memory.

◆ _ _far controls the storage of variables and the representation of
pointers in far memory.

◆ _ _huge controls the storage of variables and the representation of
pointers in huge memory.

◆ _ _no_init controls storage of variables. A variable declared as
_ _no_init will be placed in a special non-initialized segment for the
above storage type, for example NDATA. Variables placed in these
non-initialized segments will not be initialized at startup.

◆ __sbdata provides SB-relative data access for 8-bit variables (which
requires 1 byte) instead of accessing the absolute address location
(which requires 2 bytes).

◆ __sbdata16 provides SB-relative data access for 16-bit variables
(which requires 2 bytes) instead of accessing the absolute address
location (which requires 3 bytes).

◆ __bitvar allows you to write code that is equivalent to the
relocatable bit type.

◆ _ _interrupt supports interrupt functions.

◆ _ _fast_interrupt works as _ _interrupt but uses the fast
interrupt mechanism and returns with a FREIT instruction.

◆ _ _regbank_interrupt works as _ _interrupt but uses the
secondary register bank.

STORAGE EXTENDED KEYWORDS REFERENCE

CM32C-2

74

◆ _ _tiny_func calls functions with JSRS via a vector in the special
page.

◆ _ _monitor supports atomic execution of a function.

◆ _ _c_task supports main and processes main functions that are
never called by other functions. The local address area will not be
restored upon exit.

STORAGE By default the compiler places variables in a memory segment depending
on the memory model used.

◆ In the near memory model, the default placement is UDATA0 for
zero-initialized variables, IDATA0 for initialized variables, and
NDATA0 for uninitialized variables.

◆ In the far memory model, the default placement is UDATA1 for
zero-initialized variables, IDATA1 for initialized variables, and
NDATA1 for uninitialized variables.

◆ In the huge memory model, the default placement is UDATA2 for
zero-initialized variables, IDATA2 for initialized variables, and
NDATA2 for uninitialized variables.

Constants, i.e. const declared variables, and constant strings are by
default placed in constant segments located in code memory.

The default location can be overridden by the following keywords:

◆ _ _near places the variable in near memory area, i.e. memory
location 0x00–0xFFFF. Access to these variables can sometimes be
faster and generate less code than access to variables placed in any of
the other memories.

◆ _ _far places the variable in far memory area, i.e. memory location
0x00–0xFFFFFF.

◆ _ _huge places the variable in huge memory area, i.e. memory
location 0x00–0xFFFFFF.

There are several pointer types that can be used to access the memory
areas specified above. The pointers differ in how they access memory and
in size.

Code pointers are always 24 bits, with at storage size of 4 bytes.

EXTENDED KEYWORDS REFERENCE STORAGE

CM32C-2

75

The data pointers are as follows:

The keywords follow the same syntax as the type qualifiers const and
volatile. The following declaration places the variable i in a _ _ far
memory segment:

_ _ far int i;

Notice however the difference between placing the keyword before and
after the type specifier. When the keyword is placed before the type, it
affects all the identifiers of the declaration. Otherwise, the keyword only
affects the identifier that follows immediately. In the following example,
a, b, and c are thus placed in _ _ far memory, whereas d is not affected
by the keyword:

_ _ far short a, b;

short _ _ far c, d;

A keyword that is followed by an asterisk (*), affects the type of the
pointer being declared. A pointer to _ _ near memory is thus declared by:

char _ _ near * p;

Notice that the location of the pointer variable p is not affected by the
keyword. In the following example, however, the pointer variable p2 is
placed in _ _ far memory. Like p, p2 points to a character in _ _ near
memory.

_ _ far char _ _ near *p2;

Storage can also be specified using typedefs. The following two
declarations are equivalent:

typedef char _ _ far Byte;
typedef Byte *BytePtr;
Byte b;
BytePtr bp;

Keyword Storage in bytes Comment

_ _near (default) 2 bytes Can only point into 0–64
Kbytes.

_ _far 4 bytes Element pointed at must be
inside a 64 Kbyte page.

_ _huge 4 bytes No restrictions.

STORAGE EXTENDED KEYWORDS REFERENCE

CM32C-2

76

and

_ _ far char b;
char _ _ far *bp;

It is possible to avoid the non-standard keywords in declarations by using
#pragma directives. The #pragma type_attribute controls the storage
of variables.

The previous example may be rewritten using the #pragma
type_attribute:

#pragma type_attribute=_ _ far
typedef char Byte;
typedef Byte *BytePtr;
...

The #pragma type_attribute only affects the declaration of the
identifier that follows immediately. The following two declarations are
therefore equivalent:

#pragma type_attribute=_ _ far
short c, d;

and

short _ _ far c, d;

This means that only c is affected by the keyword.

See the chapter #pragma directives reference for a complete description of
the #pragma directives.

It is, for obvious reasons, impossible to place a variable in more than one
memory segment. It is therefore not feasible to specify more than one of
the keywords in a declaration. Multiple keywords result in a diagnostic
message. The keyword that is specified "closest" to the identifier is used
in this case. In the following declarations x1 and y1 are placed in _ _ far
memory, while x2 and y2 is placed in _ _ near memory:

_ _ far int x1, _ _ near x2;
_ _ near int _ _ far y1, y2;

Direct usage of keywords, as in the above example, overrides a keyword
that is specified in a #pragma.

EXTENDED KEYWORDS REFERENCE STORAGE

CM32C-2

77

UNINITIALIZED VARIABLES
The _ _ no_init keyword changes the definition of a variable. It places a
variable in the NDATA non-volatile memory segment and suppresses
initialization at startup.

◆ In the near memory model, the default placement is NDATA0.

◆ In the far memory model, the default placement is NDATA1.

◆ In the huge memory model, the default placement is NDATA2.

The keyword is placed in front of the type, for instance to place settings
in non-volatile memory:

_ _ no_init int settings[10];

#pragma object_attribute can also be used. The following declaration
of settings is equivalent to the previous one:

#pragma object_attribute=_ _ no_init
int settings[10];

Note: _ _no_init cannot be used in typedefs.

Unlike the keywords that specify storage and access of a variable, it is not
necessary to specify _ _ no_init in declarations. The following example
declares settings without a keyword (for example, in a header file:)

extern int settings[];

The definition of settings specifies that it is placed in non-volatile
memory:

_ _ no_init int settings[10];

If a keyword is specified in a declaration, it is used in the subsequent
definition of the variable, for instance:

extern _ _ no_init int settings[];
...
int settings[10];

ABSOLUTE LOCATION
It is possible to specify the location of a variable (its absolute address)
using either of the following two constructs:

◆ The operator @ followed by a constant-expression

STORAGE EXTENDED KEYWORDS REFERENCE

CM32C-2

78

◆ #pragma location

The following declaration locates CNTRL at address 0xE8:

_ _no_init volatile char CNTRL @ 0xE8;

The equivalent declaration using the #pragma location directive is:

#pragma location=0xE8
#pragma object_attribute=_ _no_init
volatile char CNTRL;

Absolute-located objects are by default _ _ no_init and cannot be
initialized.

SB-RELATIVE DATA ACCESS
Instead of accessing the absolute address location (which requires 2 or 3
bytes) it is possible to use the SB-relative addressing mode which only
requires 1 or 2 bytes.

For this purpose, two type keywords are supplied:

 These keywords can be used in the same manner as other type attributes,
as in the following examples:

 #pragma type_attribute=__sbdata
 < variable declaration >

or:

 __sbdata < variable declaration >

The data type is not a valid pointer type, but it is possible to take the
address of a variable (using the & operator). The variables implicitly have
the __no_init attribute and will therefore not be initialized. When
generating code, the offset is calculated as the distance between the
variable location and the beginning of the SBDATA segment. If the distance
exceeds the limit, an error occurs when linking.

Keyword Offset size Data limit Segment

_ _sbdata 1 byte Not more than 256 bytes for the
application.

SBDATA

_ _sbdata16 2 bytes Not more than 64 Kbytes for the
application.

SBDATA16

EXTENDED KEYWORDS REFERENCE FUNCTIONS

CM32C-2

79

RELOCATABLE BIT VARIABLES
The M32C IAR C/C++Compiler allows you to write code that is
equivalent with the relocatable bit type available in the ICCM16C
compiler. Absolute bits are not supported.

For this purpose, use the __bitvar keyword. The syntax is:

__bitvar struct {unsigned char NAME:1;}

The only declaration allowed for this data type is a structure with
unsigned bitfields with size one (i.e. a bit). The variable will be stored in
the BITVARS segment, where each bit variable only occupies one bit.

If you find this syntax inconvenient, you can create a macro to define bit
variables:

#define __BIT(NAME) __bitvar struct {unsigned char
 NAME:1;}

Then use it like this:

__BIT(MY_BIT);

FUNCTIONS The following keywords control the calling convention of a function:

◆ _ _ interrupt, which declares a function as an interrupt function.

◆ _ _fast_interrupt, as _ _interrupt except that the interrupt
routine uses the fast interrupt mechanism.

◆ _ _regbank_interrupt, as _ _interrupt except that the interrupt
routine uses the second register bank.

◆ _ _ monitor, which declares an atomic function that cannot be
interrupted.

◆ _ _ tiny_func, which calls a function with JSRS via a vector in the
special page.

The keywords are specified before the return type:

_ _ monitor void foo(void);

FUNCTIONS EXTENDED KEYWORDS REFERENCE

CM32C-2

80

A keyword that is followed by an asterisk (*) affects the type of the
pointer being declared. A pointer to a _ _ c_task function is declared in
the following example.

void (_ _ c_task * fptr) (void);

It is possible to avoid the non-standard keywords in declarations by using
#pragma directives. The #pragma type_attribute controls the calling
convention of functions. See the chapter #pragma directives reference for
a complete description of the #pragma directives.

The previous declaration of foo may be rewritten using #pragma
type_attribute:

#pragma type_attribute=_ _monitor
void foo(void);

INTERRUPT FUNCTIONS
The _ _interrupt keyword declares a function that is called upon a
processor interrupt. The function must be void and have no arguments.

If a vector is specified, the address of the function is inserted in that
vector. If no vector is specified, the user must provide an appropriate
entry in the vector table—preferably placed in the cstartup module—for
the interrupt function.

The following example declares an interrupt function with interrupt
vector at address 08h offset in the INTVEC segment:

#pragma vector=0x08
_ _interrupt void my_handler(void);

Fixed table
The fixed table contains nine interrupts and is stored in the INTVEC1
segment. All entries are allocated in cstartup.s48 and use hard-coded
names for the interrupt handler. If you do not define a fixed interrupt
handler, a default handler in cstartup.s48 is used. The supplied file
fixedint.c contains definition examples for all fixed interrupts.

In other words, if you do not define a fixed interrupt, you will get an
empty interrupt handler that contains an REIT instruction. If you want
to define an interrupt handler for a fixed interrupt, you must name it
exactly as the example in fixedint.c. The compiler recognizes theses
special handler names and will generate error messages if you try to use
them as a normal non-interrupt function, or if you try to attach a vector.

EXTENDED KEYWORDS REFERENCE FUNCTIONS

CM32C-2

81

The following list specifies the hard-coded names:

_ _undefined_instruction_handler
_ _overflow_handler
_ _break_instruction_handler
_ _address_match_handler
_ _single_step_handler
_ _watchdog_timer_handler
_ _DBC_handler
_ _NMI_handler

The following example shows how the _ _break_instruction_handler
could be used:

_ _interrupt void _ _break_instruction_handler (void)
{
 /* Code for interrupt routine */
}

The relocatable table
All other interrupts are installed in the relocatable interrupt vector table.
This table is stored in segment INTVEC. The cstartup code initializes
the INTB register to point to the start of INTVEC before calling
_ _low_level_int().

Examples
The following interrupt will be installed as the first vector in INTVEC. It
will use the alternate register bank for fast interrupt response.

#pragma vector=0
_ _regbank_interrupt void int1 (void)
{
 /* Code for interrupt routine */
}

The #pragma directive applies only to the definition following
immediately after the #pragma. If there is not a #pragma definition, the
interrupt will not be installed in the INTVEC segment. You must then
provide the vector manually, maybe in a special assembler file.

FUNCTIONS EXTENDED KEYWORDS REFERENCE

CM32C-2

82

MONITOR FUNCTIONS
The keyword _ _monitor causes interrupts to be disabled during
execution of the function. This allows atomic operations to be performed,
such as operations on semaphores that control access to critical resources
that are shared by multiple processes. A function declared as monitor is
equivalent to a normal function in all other aspects.

In the following example a semaphore is implemented. The semaphore is
tested, and if the resource is available, setting the flag claims it. The
routine then returns indicating if the requested resource can be used and
clears the interrupt mask. This function is short (as all monitor functions
should be) so it does not interfere with the operation of other interrupt
routines.

char printer_free; /* printer-free semaphore */
__monitor int got_flag(char *flag)
{
 if (!*flag)
 {
 return (*flag = 1);
 }
 return (0);
}

void f(void)
{
 if (got_flag(&printer_free))

 /* act only if printer is free */
 action code
}

C TASK FUNCTIONS
The _ _ c_task keyword only affects the definition of a function, and
specifies a main or processes a main function. Normal functions save the
contents of used non-scratch registers on stack upon entry, and restore
them at exit.

Functions declared as _ _ c_task do not save any registers, and therefore
require less stack space. Such functions should not be called from any
other functions.

The function main may be declared _ _ c_task unless it is called by itself
or by another function. In real-time applications with more than one task,
the root function of each task may be declared _ _ c_task.

EXTENDED KEYWORDS REFERENCE FUNCTIONS

CM32C-2

83

The keyword is placed in front of the return type, for instance:

_ _ c_task void my_handler(void);

The #pragma object_attribute can also be used. The following
declaration of my_handler is equivalent with the previous one:

#pragma object_attribute=_ _ c_task
void my_handler(void);

Note: _ _ c_task cannot be used in typedefs.

Unlike the keywords that specify the calling convention of a function, it
is not necessary to specify _ _ c_task in declarations. The following
example declares my_handler without any keyword (for instance, in a
header file):

extern void my_handler(void);

The definition of my_handler specifies the _ _ c_task keyword:

_ _ c_task void my_handler(void)
{
...
}

If a keyword is specified in a declaration, it is used in the subsequent
definition of the function, for instance:

extern _ _ c_task void my_handler(void);
...
void my_handler(void)
{
...
}

INTRINSIC
The _ _ intrinsic keyword is used with the IAR Systems library
functions, and allows the compiler to make function-specific
optimizations. In the include files provided with the product, some of the
library functions are declared with the _ _ intrinsic keyword. If the
_ _ intrinsic declaration is removed, the function will be called like a
normal function. Declaring other functions as _ _ intrinsic has no
effect.

EMBEDDED C++ EXTENDED KEYWORDS REFERENCE

CM32C-2

84

EMBEDDED C++ The usage of extended keywords, which is described above, applies to the
common subset of Embedded C++ and C. In Embedded C++, it is thus
possible to use the keywords in type declarations and declarations of
variables and functions with file scope. There are, however, certain
restrictions in the declaration of Embedded C++ class members.

In C, the location of a struct member is determined by the location of
the entire struct. It is thus not possible to declare the storage location of
a particular member. It is, however, possible to declare in which memory
the entire struct is to reside.

<MAttr1> struct S ss;

This principle extends to member variables in Embedded C++. It is not
possible to declare the storage location of a particular member, but it is
possible to declare in which memory the class object is to reside. It is
however required that the pointer to the object can be converted to the
default pointer type, without loss of precision. This is necessary, since
non-static member functions expect a pointer of that type.

class Y {
public:
 int len;
 <Mattr1> char buf[1000]; // Error!!!
};

<Mattr1> Y myBuf; // This is OK

Static member variables are treated as ordinary—file scope— variables
with respect to extended keywords. The following declaration is legal:

class Z {
 static <Mattr1> int numZ; // OK since numZ is static
};

It is furthermore possible to specify the absolute location of static member
variables using the operator @ or the directive #pragma location.

Controlling the calling convention of non-static member functions is not
possible. The calling convention of static member functions may however
be modified using extended keywords, for instance:

class Device {
 static __interrupt void handler();
};

CM32C-2

85

#PRAGMA DIRECTIVES
REFERENCE
This chapter describes the #pragma directives of the M32C IAR C/C++
Compiler.

The #pragma directives are preprocessed, which means that macros are
substituted in a #pragma directive.

All #pragma directives should be entered like:

#pragma pragmaname=pragmavalue

or

#pragma pragmaname = pragmavalue

Note: The #pragma directives warnings, codeseg, bitfields,
baseaddr, memory, function, and alignment are recognized and will
give a diagnostic message but will not work. It is important to be aware of
this if you need to port existing code that contains any of those old-style
#pragma directives.

TYPE ATTRIBUTE The #pragma directive type_attribute affects the declaration of the
identifier that follows immediately after the #pragma. In the following
example, myBuffer is placed in a _ _ near segment, whereas the variable
i is not affected by the #pragma.

#pragma type_attribute=_ _ near
char inBuffer[10];
int i;

The following declarations, which use extended keywords, are
equivalent. See the chapter Extended keywords reference for more details.

_ _ near char inBuffer[10];
int i;

The #pragma type_attribute modifies only the next variable or the
next function.

OBJECT ATTRIBUTE #PRAGMA DIRECTIVES REFERENCE

CM32C-2

86

The following keywords can be used with the #pragma type_attribute
for a variable:

One of _ _ near, __far, _ _ huge, __sbdata, and __sbdata16.

The following keywords can be used with #pragma type_attribute for
a pointer. They are only useful together with a typedef declaration:

_ _near
_ _far
_ _huge

For more information, see page 75.

The following keywords can be used with #pragma type_attribute for
a function:

_ _ monitor
_ _interrupt
_ _fast_interrupt
_ _regbank_interrupt
_ _tiny_func

OBJECT ATTRIBUTE The #pragma directive object_attribute affects the declaration of the
identifier that follows immediately after the #pragma. In the following
example the variable bar is placed in the non-initialized segment:

#pragma object_attribute=_ _no_init
char bar;

Except for the #pragma directive type_attribute that specifies the
storage and access of a variable, it is not necessary to specify an object
attribute in declarations. The following example declares bar without a
#pragma object_attribute:

extern char bar;

The definition of bar specifies that it is placed in non-initialized memory:

#pragma object_attribute=_ _no_init
char bar;

If an object attribute is specified in a declaration, it is used in the
subsequent definition of the variable or function. The following example
defines the function foo as _ _c_task:

extern _ _c_task void foo(void);

#PRAGMA DIRECTIVES REFERENCE DATASEG

CM32C-2

87

The definition of foo does not specify the function as _ _c_task but this
object attribute is inherited from the declaration:

void foo(void)
{

...
}

Note: Object attributes cannot be used in typedefs.

The following keyword can be used with the #pragma
object_attribute for a variable:

_ _no_init

The following keyword can be used with the #pragma
object_attribute for a function:

_ _c_task

DATASEG Use the following syntax to place variables in a named segment:

#pragma dataseg=MY_SEGMENT
_ _no_init char myBuffer[10];
#pragma dataseg=default

The segment name must not be a predefined segment, see the chapter
Segment reference for more information. The variable myBuffer will not
be initialized at startup.

The memory in which the segment resides is optionally specified using
the following syntax:

#pragma dataseg=_ _ far MY_OTHER_SEG

All variables in MY_OTHER_SEG will be accessed using _ _ far addressing.

CONSTSEG #PRAGMA DIRECTIVES REFERENCE

CM32C-2

88

CONSTSEG Use the following syntax to place constant variables in a named segment:

#pragma constseg=MY_CONSTANTS
const int factorySettings[] = {42, 15, -128, 0};
#pragma constseg=default

The segment name must not be a predefined segment, see Segment
reference for more information.

The memory in which the segment resides is optionally specified using
the following syntax:

#pragma constseg=_ _ far MY_OTHER_SEG

All variables in MY_OTHER_SEG will be accessed using _ _ far addressing.

LOCATION The #pragma location directive specifices the location (absolute
address) of the variable, whose declaration follows the #pragma directive.
For example:

#pragma location=0xD0
char PORTLD;

VECTOR The #pragma vector directive specifies the interrupt vector of an
interrupt function whose declaration follows the #pragma directive, for
example:

#pragma vector=0x12
_ _ interrupt void my_handler(void);

DIAGNOSTICS The following #pragma directives are available for reclassifying,
restoring, and suppressing diagnostics:

DIAG_REMARK

Syntax: #pragma diag_remark=tag,tag,...

Changes the severity level to remark for the specified diagnostics.

#PRAGMA DIRECTIVES REFERENCE LANGUAGE

CM32C-2

89

DIAG_WARNING

Syntax: #pragma diag_warning=tag,tag,...

Changes the severity level to warning for the specified diagnostics.

DIAG_ERROR

Syntax: #pragma diag_error=tag,tag,...

Changes the severity level to error for the specified diagnostics.

DIAG_DEFAULT

Syntax: #pragma diag_default=tag,tag,...

Changes the severity level back to default or as defined on the command
line for the diagnostic messages with the specified tags.

DIAG_SUPPRESS

Syntax: #pragma diag_suppress=tag,tag,...

Suppresses the diagnostic messages with the specified tags.

See the chapter Diagnostics for more information about diagnostic
messages.

LANGUAGE The #pragma language directive is used to turn on the IAR language
extensions or to use the language settings specified on the command line.

Syntax: #pragma language=[extended|default]

extended Turns on the IAR extensions and
turns off the strict_ansi option.

default Uses the settings specified on the
command line.

OPTIMIZE #PRAGMA DIRECTIVES REFERENCE

CM32C-2

90

OPTIMIZE The #pragma optimize directive is used to decrease the optimization
level or to turn off some specific optimizations.

Syntax: #pragma optimize=token [token] …

where token is one or more of the following:

Note: It is not possible to optimize for speed and size at the same time.
Only one of the s and z tokens can be used.

This #pragma directive affects only the function that follows immediately
after the directive.

Note: If the #pragma optimize directive is used to specify an
optimization level that is higher than what is specified on the command
line, the token of this #pragma directive is ignored.

PACK The #pragma pack directive is used for specifying the alignment of
structures and union members.

Syntax: #pragma pack([[{push|pop},][name,]][n])

pack(n) sets the structure alignment to n. The pack(n) only effects
declarations of structures following the #pragma and to the next #pragma
pack or end of file. A #pragma pack within a function will only be active
to the end of the function.

s Optimizes for speed

z Optimizes for size

0 - 9 Specifies level of optimization

no_sce Turns off common sub-expression elimination

no_inline Turns off function inlining

no_unroll Turns off loop unrolling

no_code_motion Turns off code motion.

n Packing alignment, one of:
1, 2, 4, 8 or 16

name Pushed or popped alignment label.

#PRAGMA DIRECTIVES REFERENCE PACK

CM32C-2

91

pack() resets the structure alignment to default.

pack(push [,name] [,n]) pushes the current alignment with the label
name and sets alignment to n. Notice that both name and n are optional.

pack(pop [,name] [,n]) pops to the label name and sets alignment to n.
Notice that both name and n are optional.

If name is omitted, only top alignment is removed. If n is omitted,
alignment is set to the value popped from the stack.

PACK #PRAGMA DIRECTIVES REFERENCE

CM32C-2

92

CM32C-2

93

PREDEFINED SYMBOLS
REFERENCE
This chapter gives reference information about the symbols predefined by
the M32C IAR C/C++ Compiler.

_ _DATE_ _ Current date.

SYNTAX
_ _ DATE_ _

DESCRIPTION
The date of compilation is returned in the form Mmm dd yyyy.

_ _ FILE_ _ Current source filename.

SYNTAX
_ _ FILE_ _

DESCRIPTION
The name of the file currently being compiled is returned.

_ _ IAR_SYSTEMS_ICC_ _ IAR C Compiler identifier.

SYNTAX
_ _ IAR_SYSTEMS_ICC_ _

DESCRIPTION
The number 3 is returned. This symbol can be tested with #ifdef to
detect that it was compiled by an IAR Systems C/C++ Compiler.

__LINE__ PREDEFINED SYMBOLS REFERENCE

CM32C-2

94

_ _ LINE_ _ Current source line number.

SYNTAX
_ _ LINE_ _

DESCRIPTION
The current line number of the file currently being compiled is returned.

_ _ STDC_ _ ISO/ANSI standard C identifier.

SYNTAX
_ _ STDC_ _

DESCRIPTION
The number 1 is returned. This symbol can be tested with #ifdef to
detect that the compiler used adheres to ANSI C.

_ _ STDC_VERSION_ _ ISO/ANSI Standard C and version identifier.

SYNTAX
_ _ STDC_VERSION_ _

DESCRIPTION
The number 199409L is returned.

_ _TID_ _ Target identifier.

SYNTAX
_ _ TID_ _

DESCRIPTION
The target identifier contains the following parts:

◆ A number unique for each IAR Systems Compiler (i.e. unique for
each target).

PREDEFINED SYMBOLS REFERENCE __TIME__

CM32C-2

95

◆ The value of the corresponding --cpu option.

◆ The value corresponding to the --memory_model option, which is 0
for the near memory model, 1 for the far memory model, and 2 for
the huge memory model.

For the M32C and M16C/8x Series CPU cores, the target identifier is 48.

The _ _ TID_ _ value is constructed as:

((t << 8) | (c << 4) |m)

You can extract the values as follows:

To find the value of the target identifier for the current compiler, execute
the following command:

printf("%ld",(_ _ TID_ _ >> 8) & 0x7F)

For an example where _ _ TID_ _ is used, see the file stdarg.h.

_ _TIME_ _ Current time.

SYNTAX
_ _ TIME_ _

DESCRIPTION
The time of compilation is returned in the form hh:mm:ss.

_ _VER_ _ Returns the compiler version number.

SYNTAX
_ _ VER_ _

DESCRIPTION
The version number of the compiler is returned as an integer.

t = (_ _ TID_ _ >> 8) & 0x7F;/* target identifier */

c = (_ _ TID_ _ >> 4) & 0xF; /* cpu option */

m = _ _ TID_ _ & 0x0F; /* memory model */

__VER__ PREDEFINED SYMBOLS REFERENCE

CM32C-2

96

EXAMPLE
The example below prints a message for version 3.34.

#if _ _ VER_ _ == 334
#message "Compiler version 3.34"
#endif

CM32C-2

97

INTRINSIC FUNCTIONS
REFERENCE
This chapter gives reference information about the intrinsic functions.
To use the intrinsic functions, include the header file inm32c.h.

_ _break_instruction Inserts a BRK instruction.

SYNTAX
void _ _ break_instruction(void);

DESCRIPTION
This intrinsic function inserts a BRK instruction.

_ _disable_interrupt Disables global interrupts.

SYNTAX
void _ _ disable_interrupt(void);

DESCRIPTION
This intrinsic function disables interrupts by clearing the I flag of the
FLG register.

_ _ enable_interrupt Enables global interrupts.

SYNTAX
void _ _ enable_interrupt(void);

DESCRIPTION
This intrinsic function enables interrupts by setting the I flag of the FLG
register.

__interrupt_on_overflow INTRINSIC FUNCTIONS REFERENCE

CM32C-2

98

_ _ interrupt_on_overflow Inserts an INTO instruction.

SYNTAX
void _ _interrupt on overflow(void);

DESCRIPTION
This intrinsic function inserts an INTO instruction.

_ _ intrinsic_load_DCT Places 16-bit data in DCT registers.

SYNTAX

Syntax: void _ _intrinsic_load_DCT (unsigned short
dmaChannel, unsigned short data);

DESCRIPTION
This intrinsic function places 16-bit data in DCT registers.

_ _ intrinsic_load_DMA Places 24-bit data in DMA registers.

SYNTAX

Syntax: void _ _intrinsic_load_DMA (unsigned short
dmaChannel, unsigned long data);

DESCRIPTION
This intrinsic function places 24-bit data in DMA registers.

_ _ intrinsic_load_DMD Places 16-bit data in DMD registers.

SYNTAX

Syntax: void _ _intrinsic_load_DMD (unsigned short
dmaChannel, unsigned short data);

DESCRIPTION
This intrinsic function places 16-bit data in DMD registers.

INTRINSIC FUNCTIONS REFERENCE __intrinsic_load_DRA

CM32C-2

99

_ _ intrinsic_load_DRA Places 24-bit data in DRA registers.

SYNTAX

Syntax: void _ _intrinsic_load_DRA (unsigned short
dmaChannel, unsigned long data);

DESCRIPTION
This intrinsic function places 24-bit data in DRA registers.

_ _ intrinsic_load_DRC Places 16-bit data in DRC registers.

SYNTAX

Syntax: void _ _intrinsic_load_DRC (unsigned short
dmaChannel, unsigned short data);

DESCRIPTION
This intrinsic function places 16-bit data in DRC registers.

_ _ intrinsic_load_DSA Places 24-bit data in DSA registers.

SYNTAX

Syntax: void _ _intrinsic_load_VCT (unsigned short
dmaChannel, unsigned long data);

DESCRIPTION
This intrinsic function places 24-bit data in DSA registers.

_ _intrinsic_load_VCT Places 24-bit data in VCT register.

SYNTAX

Syntax: void _ _intrinsic_load_VCT (unsigned long data);

DESCRIPTION
This intrinsic function places 24-bit data in VCT register.

__intrinsic_store_DCT INTRINSIC FUNCTIONS REFERENCE

CM32C-2

100

_ _ intrinsic_store_DCT Retrieves 16-bit data from DCT registers.

SYNTAX

Syntax: unsigned short _ _intrinsic_store_DCT (unsigned
 short dmaChannel);

DESCRIPTION
This intrinsic function retrieves 16-bit data from DCT registers.

_ _ intrinsic_store_DMA Retrieves 24-bit data from DMA registers.

SYNTAX

Syntax: unsigned long _ _intrinsic_store_DMA (unsigned
 short dmaChannel);

DESCRIPTION
This intrinsic function retrieves 24-bit data from DMA registers.

_ _ intrinsic_store_DMD Retrieves 16-bit data from DMD registers.

SYNTAX

Syntax: unsigned short _ _intrinsic_store_DMD (unsigned
 short dmaChannel);

DESCRIPTION
This intrinsic function retrieves 16-bit data from DMD registers.

_ _ intrinsic_store_DRA Retrieves 24-bit data from DRA registers.

SYNTAX

Syntax: unsigned long _ _intrinsic_store_DRA (unsigned
short dmaChannel);

INTRINSIC FUNCTIONS REFERENCE __intrinsic_store_DRC

CM32C-2

101

DESCRIPTION
This intrinsic function retrieves 24-bit data from DRA registers.

_ _ intrinsic_store_DRC Retrieves 16-bit data from DRC registers.

SYNTAX

Syntax: unsigned long _ _intrinsic_store_DRC (unsigned
short dmaChannel);

DESCRIPTION
This intrinsic function retrieves 16-bit data from DRC registers.

_ _ intrinsic_store_DSA Retrieves 24-bit data from DSA registers.

SYNTAX

Syntax: unsigned long _ _intrinsic_store_DSA (unsigned
 short dmaChannel);

DESCRIPTION
This intrinsic function retrieves 24-bit data from DSA registers.

_ _intrinsic_store_VCT Retrieves 24-bit data from VCT register.

SYNTAX

Syntax: unsigned long _ _intrinsic_store_DSA (void);

DESCRIPTION
This intrinsic function retrieves 24-bit data from VCT register.

_ _no_operation Inserts a NOP instruction.

SYNTAX
void _ _ no_operation (void);

__overflow_flag_value INTRINSIC FUNCTIONS REFERENCE

CM32C-2

102

DESCRIPTION
This intrinsic function generates a NOP instruction.

_ _overflow_flag_value Reads the overflow flag value from the flag register.

SYNTAX
short _ _overflow_flag_value (void);

DESCRIPTION
This function reads the overflow flag value from the flag register. This can
be used after a RMPA instruction to see whether the result was too large.

_ _ read_ipl Reads the interrupt permission level.

SYNTAX
unsigned char _ _read_ipl (void);

DESCRIPTION
This intrinsic function reads the interrupt permission level.

_ _rmpa_instruction Emits an RMPA.W instruction

SYNTAX
long _ _rmpa_instruction (short *s1, short *s2, unsigned
short n)

DESCRIPTION
This function emits an RMPA.W instruction. n is the counter, and s1 and
s2 are pointers to the multiplicand array and the multiplier array. The
sum is returned.

_ _set_interrupt_table Loads interrupt base register (INTB).

SYNTAX
void _ _set_interrupt_table (unsigned long);

INTRINSIC FUNCTIONS REFERENCE __short_rmpa_instruction

CM32C-2

103

DESCRIPTION
This function loads the interrupt base register (INTB). The argument
must be a constant that can be calculated at compile time.

_ _short_rmpa_instruction Emits an RMPA.B instruction.

SYNTAX
long _ _short_rmpa_instruction (signed char *s1, signed
char *s2, unsigned short n)

DESCRIPTION
This function emits an RMPA.B instruction. n is the counter, and s1 and
s2 are pointers to the multiplicand array and the multiplier array. The
sum is returned.

_ _ software_interrupt Inserts an INT instruction.

SYNTAX
void _ _software_interrupt (unsigned char int_no);

DESCRIPTION
This intrinsic function causes a software interrupt by generating an INT
instruction. int_no must be a constant that can be calculated at compile
time.

_ _und_instruction Inserts an UND instruction.

SYNTAX
void _ _und_instruction(void);

DESCRIPTION
This intrinsic function inserts a UND instruction.

__wait_for_interrupt INTRINSIC FUNCTIONS REFERENCE

CM32C-2

104

_ _wait_for_interrupt Inserts a WAIT instruction.

SYNTAX
void _ _ wait_for_interrupt(void);

DESCRIPTION
This intrinsic function generates a WAIT instruction.

_ _write_ipl Sets the interrupt level.

SYNTAX
void _ _ write_ipl (unsigned char value);

DESCRIPTION
This intrinsic function is used to set the current interrupt level. value
must be a constant that can be calculated at compile time.

CM32C-2

105

ASSEMBLER LANGUAGE
INTERFACE
The M32C IAR C/C++ Compiler allows assembler language modules to
be combined with compiled C/C++ modules. This is particularly useful
for small, time-critical routines that need to be written in assembler
language and then called from a C/C++ main program. This chapter
describes the interface between a C/C++ main program and the
assembler language routines.

CREATING A SHELL The recommended method of creating an assembler language routine
with the correct interface is to start with an assembler language source
created by the C/C++ compiler. To this shell you can easily add the
functional body of the routine.

The shell source needs only to declare the variables required and perform
simple accesses to them, for example:

char globChar;
int globInt;
long globLong;

char func(int arg1, char arg2, long arg3)
{
 char locChar = arg2; /* set local */
 globInt = arg1; /* use globInt/arg1 */
 globChar = arg2; /* use globChar/arg2 */
 globLong = arg3; /* use globLong/arg3 */
 return locChar; /* set return value */
}

void main(void)
{
 long locLong = globLong;
 globChar = func(globInt, globChar, locLong);
}

CREATING A SHELL ASSEMBLER LANGUAGE INTERFACE

CM32C-2

106

Note: Use a low optimization level when compiling the code. Otherwise
required references to local variables could be removed during
optimization. The actual function declaration is not changed by the
optimization level.

Compiling the program using the IAR Embedded Workbench™
Select Options... from the Project menu. In the Options dialog box,
choose the ICCM32C category, and then the List tab. Select Assembler
file and the suboption C source. Then click OK to close the Options
dialog box. Compile the program by selecting Compile from the Project
menu.

Compiling the program using the command line
Use the following command to compile the program:

iccm32c filename -lA .

The -lA option creates an assembler language output file including
C/C++ source lines as assembler comments. The . (period) specifies
that the assembler file should be named in the same way as the C/C++
module, i.e. shell, but with the s48 extension.

The result is the assembler source filename.s48 containing the
declarations, function call, function return, and variable accesses.

The following list example shows an assembler output file with C source
comments. The list file has been slightly modified to work as a good
example.

NAME filename

 RTMODEL "Double size", "32"

 RTMODEL "Memory model", "near"

 RTMODEL "Processor", "M32C"

 RSEG CSTACK:NEARDATA:NOROOT(1)

 EXTERN ?CLM32CN_2_10_L00

 PUBLIC func

 FUNCTION func,0203H

 PUBLIC globChar

 PUBLIC globInt

 PUBLIC globLong

 PUBLIC main

ASSEMBLER LANGUAGE INTERFACE CREATING A SHELL

CM32C-2

107

 FUNCTION main,0a03H

 RSEG UDATA0:NEARDATA:NOROOT(0)

;; 1 char globChar;

globChar:

DS8 1

 RSEG UDATA0:NEARDATA:NOROOT(1)

;; 2 int globInt;

globInt:

DS8 2

 RSEG UDATA0:NEARDATA:NOROOT(1)

;; 3 long globLong;

globLong:

DS8 4

;; 4

 RSEG CODE:FARCODE:REORDER:NOROOT(0)

;; 5 char func(int arg1,char arg2,long arg3)

func:

REQUIRE ?CLM32CN_2_10_L00

;; 6 {

ENTER #0

PUSHM R3,R2,R1

MOV.W R0,R2

MOV.B 8[FB],R0H

MOV.L 10[FB],R3R1

;; 7 char locChar =arg2; /*set local */

MOV.B R0H,R0L

;; 8 globInt =arg1; /*use globInt/arg1 */

MOV.W R2,globInt:16

;; 9 globChar =arg2; /*use globChar/arg2 */

MOV.B R0H,globChar:16

;; 10 globLong =arg3; /*use globLong/arg3 */

MOV.L R3R1,globLong:16

;; 11 return locChar; /*set return value */

POPM R3,R2,R1

EXITD

C CALLING CONVENTION ASSEMBLER LANGUAGE INTERFACE

CM32C-2

108

;; 12 }

;; 13

 RSEG CODE:FARCODE:REORDER:NOROOT(0)

;; 14 void main(void)

main:

REQUIRE ?CLM32CN_2_10_L00

;; 15 {

PUSHM R3,R1,R0

;; 16 long locLong =globLong;

MOV.L globLong:16,R3R1

;; 17 globChar =func(globInt,globChar,locLong);

PUSH.L R3R1

PUSH.B globChar:16

MOV.W globInt:16,R0

JSR.A func:24

ADD.L #6,SP

MOV.B R0L,globChar:16

;; 18 }

POPM R3,R1,R0

RTS

 RSEG SBDATA:FARDATA:ROOT(1)

 END

The following section describes the interface in detail.

C CALLING
CONVENTION

REGISTER USAGE AND PARAMETER PASSING
All registers that do not participate in the first parameter or return value
must be preserved.

If R0L is used, the whole R0 register will be overwritten.

The first parameter is passed in the following register(s), unless it is a
struct or a union:

Size Register Comment

1 byte R0L

2 bytes R0 16-bit address

ASSEMBLER LANGUAGE INTERFACE C CALLING CONVENTION

CM32C-2

109

If a parameter is a struct or a union, the data is passed on the stack along
with a pointer to the data. If it is the first parameter, the pointer is placed
in register.

RETURN VALUES
Return values are passed in the following registers:

If the return value is a struct or a union, the data is returned in a special
memory area and the return value is a pointer to it.

3 bytes A0 24-bit address

4 bytes R2:R0

Size Register Comment

1 byte R0L

2 bytes R0 16-bit address

4 bytes R2:R0 24-bit address

Size Register Comment

INTERRUPT HANDLING ASSEMBLER LANGUAGE INTERFACE

CM32C-2

110

STACK FRAMES
A function call creates a stack frame as follows:

The return address and saved FB registers are mandatory.

INTERRUPT
HANDLING

INTERRUPT FUNCTIONS
The calling convention for ordinary functions cannot be used for
interrupt functions since the interrupt can occur at any time during
program execution. Hence the requirements for an interrupt routine are
different from those of a normal function, as follows:

◆ All registers that are changed by the interrupt service routine must
be saved.

◆ The routine must consider all control registers and flags within them
as undefined.

◆ Interrupt routines may call re-entrant functions, but the use of
lengthy functions should be avoided to prevent conflicts with
real-time interrupts.

Stacked parameters

Return address

Caller

Callee
Saved FB register

Auto variables

Saved registers

Temporary storage

High
address

Low
address

Stack
FB

SP

Saved FLG register

ASSEMBLER LANGUAGE INTERFACE MONITOR FUNCTIONS

CM32C-2

111

◆ Parameters are not allowed for interrupt functions.

INTERRUPT STACK FRAMES
An interrupt function call creates a stack frame as follows:

For an example of a interrupt service routine written in C/C++, see
tutor3.c, which is used in the compiler tutorials in the IAR Embedded
Workbench™ IDE User Guide.

DEFINING INTERRUPT VECTORS
When you have an assembler-written interrupt function, you must install
it in the interrupt vector table. See the cstartup file for a description.

The interrupt vectors are located in the INTVEC segment, and the fixed
interrupts in the INTVEC1 segment.

MONITOR
FUNCTIONS

In the case of a monitor function, the compiler saves the FLG using a
PUSHC instruction and clears the interrupt enable bit (disabling masked
interrupts). On exiting from the function the compiler restores the FLG
register using a POPC instruction.

Saved FLG registers

Return address

Caller

Callee
Saved registers

Auto variables

Temporary storage

High
address

Low
addressStack pointer

Stack

CALLING ASSEMBLER ROUTINES FROM C ASSEMBLER LANGUAGE INTERFACE

CM32C-2

112

CALLING ASSEMBLER
ROUTINES FROM C

An assembler routine that is to be called from C must:

◆ Conform to the calling convention described above.

◆ Have a PUBLIC entry-point label.

◆ Be declared as external before any call, to allow type checking and
optional promotion of parameters, as in the following examples:

extern int foo(void)

or

extern int foo(int i, int j)

RUN-TIME MODEL Use the assembler directive RTMODEL to enforce compatibility between
modules. If a module defines a run-time model attribute, all modules that
are linked and with this module and define the same run-time attributes,
must have the same value for that key, or the special value * (asterisk).

In the current version of the M32C IAR C/C++ Compiler, run-time
model attributes are not in use.

If you are using assembler routines in the C/C++ code, refer to the
chapter Assembler Directives Reference in the M32C IAR Assembler
Reference Guide.

EMBEDDED C++ The C calling convention, which is described on page 108, does not apply
to Embedded C++ functions. Most importantly, a function name is not
sufficient to identify an Embedded C++ function. The scope and the
type of the function are also required to guarantee type-safe linkage and
to resolve overloading.

Another difference is that non-static member functions get an extra,
hidden argument, the this pointer.

Using C linkage, the calling convention however conforms to the above
description. An assembler routine may therefore be called from
Embedded C++ when declared in the following manner:

extern "C" {
 int my_routine(int x);
}

ASSEMBLER LANGUAGE INTERFACE EMBEDDED C++

CM32C-2

113

Member functions cannot be given C linkage. It is however possible to
construct the equivalent non-member functions. Member access control
is not an issue, since there is no way of preventing an assembler routine
from accessing private and protected members.

To achieve the equivalent to a non-static member function, the implicit
pointer has to be made explicit:

class X;

extern "C" {
 void doit(X *ptr, int arg);
}

It is possible to "wrap" the call to the assembler routine in a member
function. Using an inline member function removes the overhead of the
extra call—provided that function inlining is enabled:

class X {
public:
 inline void doit(int arg) { ::doit(this, arg); }
};

EMBEDDED C++ ASSEMBLER LANGUAGE INTERFACE

CM32C-2

114

CM32C-2

115

SEGMENT REFERENCE
The M32C IAR C/C++ Compiler places code and data into named
segments which are referred to by the IAR XLINK Linker™. Details of the
segments are required for programming assembler language modules, and
are also useful when interpreting the assembler language output of the
compiler.

This section provides an alphabetical list of the segments.

The type read-only or read/write indicates if the segment should be
placed in ROM or RAM memory areas.

BITVARS Bit variables.

TYPE
Read/write.

DESCRIPTION
Holds bit variables and can also hold user-defined relocatable bit
variables.

CDATA0, CDATA1,
CDATA2

Initialization constants for near, far, and huge data, respectively.

TYPE
Read-only.

DESCRIPTION
Assembly-accessible.

CSTARTUP copies initialization values from this segment to the
corresponding IDATA0, IDATA1, or IDATA2 segments.

CODE SEGMENT REFERENCE

CM32C-2

116

CODE Code.

TYPE
Read-only.

DESCRIPTION
Holds user program code and various library routines. Notice that any
assembler language routines called from C/C++ must meet the calling
convention in use. For more information, see Calling assembler routines
from C, page 112.

CONST0, CONST1,
CONST2

Near, far, and huge constants, respectively.

TYPE
Read-only.

DESCRIPTION
Used for storing constant objects. Can be used in assembler language
routines for declaring constant data.

CSTACK Data stack.

TYPE
Read/write.

DESCRIPTION
Holds the user data stack.

This segment and length is normally defined in the XLINK file with the
following command:

-Z(DATA)CSTACK+size=start

or

-Z(DATA)CSTACK=start-end

where size is the size of the segment, start is the first memory location,
and end is the last memory location.

SEGMENT REFERENCE FLIST

CM32C-2

117

FLIST Table of tiny_func jumps.

TYPE
Read-only.

DESCRIPTION
Jump table for tiny_func functions.

HEAP Used for the heap.

TYPE
Read/write.

MEMORY AREA
Data. The address range depends on the memory model:

DESCRIPTION
Holds the heap data used by malloc, calloc, and free.

This segment and its length is normally defined in the linker command
file by the command:

-Z(DATA)HEAP+nn=start

where nn is the length and start is the location.

IDATA0, IDATA1,
IDATA2

Initialized static data for near, far, and huge data, respectively.

TYPE
Read/write.

Memory model Address range

Near 0x0–0xFFFF

Far 0x0–0xFFFFFF

Huge 0x0–0xFFFFFF

INTVEC SEGMENT REFERENCE

CM32C-2

118

DESCRIPTION
Holds static variables in internal data memory that are automatically
initialized from the corresponding CDATA0, CDATA1, or CDATA2 in
CSTARTUP. See also CDATA0, CDATA1, CDATA2, page 115.

INTVEC Interrupt vectors.

TYPE
Read-only.

DESCRIPTION
Holds the interrupt vector table generated by the use of any of the
extended keywords for interrupt functions. The keywords can also be
used for user-written interrupt vector table entries).

INTVEC1 Fixed interrupt vectors.

TYPE
Read-only.

DESCRIPTION
Holds the interrupt vector table generated by the use of the
_ _ interrupt extended keyword with one of the following names:

_ _ undefined_instruction_handler
_ _ overflow_handler
_ _ break_instruction_handler
_ _ address_match_handler
_ _ single_step_handler
_ _ watchdog_timer_handler
_ _ DBC_handler
_ _ NMI_handler

SEGMENT REFERENCE

CM32C-2

119

ISTACK Stack for interrupt functions.

TYPE
Read/write.

DESCRIPTION
Holds the stack used by interrupt functions.

NDATA0, NDATA1,
NDATA2

Non-volatile non-initialized variables.

TYPE
Read/write.

DESCRIPTION
Holds variables to be placed in non-volatile memory, which are
automatically initialized from the corresponding segment NDATA0,
NDATA1, or NDATA2. These will have been allocated by the compiler,
declared no_init or created no_init by use of the #pragma directive, or
created manually from assembler language source.

SBDATA, SBDATA16 Non-initialized SB-relative variables.

TYPE
Read/write.

DESCRIPTION
Holds variables that are accessed using the SB-relative addressing mode.

UDATA0, UDATA1,
UDATA2

Uninitialized static data.

TYPE
Read/write.

SEGMENT REFERENCE

CM32C-2

120

DESCRIPTION
Holds variables in memory that are not explicitly initialized from the
corresponding segment UDATA0, UDATA1, or UDATA2. They are initialized
to zero ch is performed by CSTARTUP.

CM32C-2

121

MIGRATION HINTS
If you have C code that was originally written for version 1 of M16C IAR
C/C++ Compiler, it can—with some modifications—be used also with
M32C IAR C/C++ Compiler. (Code written for MC80 IAR C Compiler
can be used as it is.)

This chapter contains information that is useful when migrating from
version 1 of M16C IAR C/C++ Compiler to M32C/C++ IAR
Compiler. It briefly describes both differences and similarities between
the two products.

For information about migrating from an older version of the compiler to
the new version, see the migration information supplied in the \doc
directory on the installation media.

The header file m16ccomp.h contains compatibility definitions to
facilitate the migration from M16C to M32C.

INTRODUCTION The main difference between the two compilers is that the M32C IAR
C/C++ Compiler uses a new generation of compiler front-end, which
makes it possible to enhance your application code in a way that
previously was not possible. One of the main advantages with the new
front-end is its new global optimizer, which improves the efficiency of the
generated code. The consistency of the compiler is also improved due to
the new front-end.

Moreover, the new compiler front-end allows you to write source code
that is easily portable since it adheres more stricly to the ISO/ANSI
standard; for example, it is possible to use #pragma directives instead of
extended keywords for defining special function registers (SFRs). Also
the data type checking adheres more strictly to the ISO/ANSI standard in
M32C than in M16C. Therefore, it is important to be aware that code
written for M16C may generate warnings or errors in the M32C IAR
C/C++ Compiler.

The set of language extensions has changed in M32C. Some extensions
have been added, som extensions have been removed, or the syntax has
changed. There is also a rare case where an extension has a different
interpretation if typedefs are used. See Extended keywords, page 122, for
detailed information.

EXTENDED KEYWORDS MIGRATION HINTS

CM32C-2

122

EXTENDED
KEYWORDS

In M32C, all extended keywords except asm start with two underscores,
for example _ _near, compared to near in M16C.

_ _NEAR, _ _FAR, AND _ _HUGE
Both M16C and M32C allow keywords that specify memory location.
Each of these keywords can be used either as a placement attribute for an
object, or as a pointer type attribute denoting a pointer that can point to
the specified memory.

When the keywords are used directly in the source code, they behave in
the same way in both M16C and M32C. The usage of typedef and
extended keywords is, however, more strict in M32C than in M16C.

The M16C compiler behaves unexpectedly in some cases:

typedef int far FINT;
FINT a,b;
FINT near c; /* Illegal */
FINT *p; /* p in far memory, points to

default memory attribute */

The first variable declaration works as expected, that is a and b are
located in far memory. The declaration of c is however illegal, except
when far is the default memory, in which case there is no need for an
extended keyword in the typedef.

In the last declaration, the far keyword of the typedef affects the location
of the pointer variable p, not the type of pointer. The type of the pointer
is the default, which is given by the memory model.

The corresponding example for M32C is:

typedef int _ _far FINT;
FINT a,b;
FINT _ _near c; /* c stored in near memory --

override attribute in typedef */
FINT *p; /* p points to far memory, p stored

 in default memory */

The declarations of c and p differ. The _ _near keyword in the
declaration of c will always compile. It overrides the keyword of the
typedef. In the last declaration the _ _far keyword of the typedef affects
the type of the pointer. It is thus a _ _far pointer to int. The location of
the variable p is however not affected.

MIGRATION HINTS

CM32C-2

123

_ _NO_INIT
The M16C keyword no_init specifies that an object is not initialized and
that it resides in default memory. In M32C _ _no_init can be used
together with a keyword specifying any memory location, for example:

_ _far _ _no_init char buffer [1000];

_ _INTERRUPT
In M16C the keyword interrupt specifies not only the type attribute
setting but also the memory location. In M32C _ _interrupt is a type
attribute only.

In M16C a vector can be attached to an interrupt function with the
#pragma directive function or directly in the source code, for example:

interrupt [0x8] void f(void);

In M32C a vector can be attached to any function but only with the
#pragma directive vector.

#pragma vector=2
_ _interrupt void f(void);

_ _MONITOR
In M16C the keyword monitor specifies not only the type attribute
setting but also the memory location. In M32C _ _monitor is a type
attribute only.

USING
The M16C keyword using, which can be used to denote what register
bank to use in an interrupt function, does not exist in M32C. Instead the
keyword _ _regbank_interrupt is available.

SFR AND BIT
In M16C sfr and sfrp keywords denote an object of byte or word size
residing in the Special Function Register (SFR) memory area for the chip,
and having a volatile type. The SFR is always located at an absolute
address. For example:

sfr PORT=100;

MIGRATION HINTS

CM32C-2

124

In M32C sfr and sfrp are not available. Instead you have the ability to:

◆ Place any object into the SFR memory, or any other memory, by
using a memory attribute.

◆ Locate any object at an absolute address by by using the #pragma
directive location or by using the locator operator @; for example:

long PORT @ 100;

◆ Use the volatile attribute on any type, for example:

volatile _ _near char PORT@100;

A bit variable in M16C is a volatile boolean variable that can have an
absolute bit-address, be co-located with an SFR or be a relocatable object,
like ordinary variables. For example:

bit a = 87; /* at bit-address 87 (M16C) */
bit p0 = PORT.5; /* bit 5 of port (M16C) */
bit r; /* relocatable bit (M16C) */

M32C uses bit fields of width 1 to implement bit-variables. The extended
language feature anonymous structs allows the bits, which are struct
members, to be used as if they were variables in the enclosing scope. The
keyword bit is not available in M32C. For additional information about
anonymous structs, see Anonymous structures and unions, page 6.

The following example shows an anonymous struct in M32C:

/* anonymous struct */
struct {
 char b0:1, b1:1, b2:1, :5, b7:1;
};
char foo() { return b7; }
void bar() { b0 = 1; }

To declare an absolute-located bit, the bit address must first be converted
to a byte address. The bit a, in the above example, has bit address 87.
Division by 8 yields byte address 10 and remainder 7, the latter of which
is the bit-offset in that byte. Thus the corresponding M32C declaration is:

volatile _ _near struct { char :7, a:1; } @ 10;

Anonymous unions are used to locate an SFR and a bit field at the same
address. For additional information, see Anonymous structures and
unions, page 6.

MIGRATION HINTS #PRAGMA DIRECTIVES

CM32C-2

125

The declaration of PORT (address 100) and p0 (bit 5 of PORT) are
combined in the following way:

/* anonymous union */
volatile _ _near union {
char PORT;
struct { char :5, p0:1; };
} @ 100;

When it comes to relocatable bits, the same (maximal) packing as in
M16C can be achieved by placing all bits in the same anonymous struct.
For example:

struct
{
char r:1, s:1, t:1, u:1, v:1, x:1, y:1, z:1;
};

The M32C notation is not as brief as the one used in M16C. It is, on the
other hand, more flexible. Bit fields can have any width (not only 1), can
be located in any memory (not restricted to near) and are not necessarily
volatile.

See the chapter Extended keywords reference for complete information
about the extended keywords available in M32C.

#PRAGMA
DIRECTIVES

M16C and M32C have different sets of #pragma directives for specifying
attributes, which also behave differently:

◆ In M16C the #pragma directives change the default attribute to use
for objects declared; they do not have an effect on pointer types. The
#pragma directives are memory for setting the default memory
placement for data objects, and function for setting the default
memory placement for functions.

◆ In M32C the #pragma directives type_attribute and
object_attribute change the next declared object or typedef. The
#pragma directive memory still works—for backward
compatibility—but we strongly recommend that you instead use the
new pragma syntax which has cleaner semantics, giving you better
control.

MIGRATION HINTS

CM32C-2

126

The rules for overriding a memory attribute differ between M16C and
M32C. However, both give the highest priority to memory attribute
keywords in the actual declaration, and the lowest priority to the specific
segment placement #pragma directives.

The following M16C #pragma directives have been removed in M32C:

alignment
bitfields
codeseg
function
warnings

These are recognized and will give a diagnostic message but will not work
in the M32C.

Note: Instead of the #pragma directive codeseg, the M32C command line
option -R can be used, providing the same functionality.

The following table shows the mapping of #pragma directives:

Note: All M32C #pragma directives in the table above affect only the
declaration that follows immediately after the directive, except #pragma
memory=constseg and #pragma memory=dataseg that are active until
they are turned off.

The following #pragma directives are identical in M16C and M32C:

M16C #pragma directive M32C #pragma directive

#pragma function=interrupt[xx] #pragma type_attribute=_ _interrupt
#pragma vector=xx

#pragma function=C_task #pragma object_attribute=_ _c_task

#pragma function=interrupt #pragma type_attribute=_ _interrupt

#pragma function=monitor #pragma type_attribute=_ _monitor

#pragma memory=constseg #pragma constseg

#pragma memory=dataseg #pragma dataseg

#pragma memory=no_init #pragma object_attribute=_ _no_init

#pragma memory=near #pragma type_attribute=_ _near

#pragma memory=far #pragma type_attribute=_ _far

#pragma memory=huge #pragma type_attribute=_ _huge

MIGRATION HINTS PREDEFINED SYMBOLS

CM32C-2

127

#pragma language=extended
#pragma language=default

The following #pragma directives have been added in M32C:

#pragma diag_default
#pragma diag_error
#pragma diag_remark
#pragma diag_suppress
#pragma diag_warning
#pragma location
#pragma vector

Specific segment placement
In M16C the #pragma directive memory supports a syntax that enables
subsequent data objects that match certain criterias to end up in a
specified segment. In M32C the #pragma directives dataseg and
constseg are available for this purpose.

In M16C each object found after the invocation of a segment placement
directive will be placed in the segment, provided that it does not have a
memory attribute placement and that it has the correct constant
attributes.

In M32C only an object that has the correct memory placement will end
up in the segment, provided that, for constseg it is a constant, and for
dataseg that it has the _ _no_init attribute and no initializer.

See the chapter #pragma directives reference for complete information
about the M32C #pragma directives.

PREDEFINED
SYMBOLS

In M32C, all predefined symbols start and end with two underscores, for
example _ _IAR_SYSTEMS_ICC_ _.

In M32C, the _ _TID_ _ value is 48.

See the chapter Predefined symbols reference for complete information
about the predefined symbols available in M32C.

MIGRATION HINTS

CM32C-2

128

INTRINSIC
FUNCTIONS

In M32C, all intrinsic functions start with two underscores, for example
_ _enable_interrupt.

The M16C intrinsic functions _args$ and _argt$ are not available in
M32C.

See the chapter Intrinsic functions reference for complete information
about the intrinsic functions available for the IAR M32C
C/C++Compiler.

C COMPILER OPTIONS COMMAND LINE SYNTAX
The M32C command line options follow two different syntax styles:

◆ A single letter prefixed with a single dash and sometimes followed by
a modifier, for example -r or -mf. This style is the only style used in
M16C.

◆ One or more words prefixed with two dashes and sometimes
followed by an equal sign and a modifier, for example
--strict_ansi or --memory_model=far. This style is not available
in M16C.

Some options appear in one style only, other options appear in both
styles.

The following table shows the M16C command line options that have
been removed in M32C:

M16C option Comment

-C Nested comments

-F Form-feed after each function

-ffilename Extend the command line

-G Open standard input as source. Replaced by - (dash) as
source file in M32C.

-g Global strict type check. In M32C, global strict type
checking is always enabled.

-gO No type information in object code

MIGRATION HINTS C COMPILER OPTIONS

CM32C-2

129

Note: Instead of the command line option -f, the following methods may
be used, depending on your operating system, for extending the command
line:

◆ Use a command file to add the options; for example, a bat file in
DOS and Windows.

◆ Use the environment variables for flags, for example QCCM32C.

◆ Define your own variables to be used on the command line; for
example, in Windows 95 or NT:

set F=--memory_model=far -e
ICCM32C %F% -z9 foo.c

The following table shows the command line options that are identical in
M16C and M32C:

-K // comments. In M32C, // comments are allowed
unless the option --strict_ansi is used.

-Oprefix Set object filename prefix. In M32C, use -o filename
instead.

-P Generate PROMable code. This functionality is always
enabled in M32C.

-pnn Lines/page

-T Active lines only

-t Tab spacing

-Usymb Undefine symbol

-u{1|2} Object alignment

-X List C declarations

-x[DFT2] Cross-reference

-y Writable strings

Option Comment

-Dsymb=value Define symbols

-e Language extensions

M16C option Comment

MIGRATION HINTS

CM32C-2

130

The following M16C command line options have been renamed and/or
modified:

-I Include paths. (Syntax is more free in M32C.)

-o filename Set object filename

-R name Set code segment name

-s[3|6|9] Optimize for speed

-Wn Stack optimize size

-z[3|6|9] Optimize for size

-2 64-bit floating point

Option Comment

M16C option M32C option Comment

-A
-a filename

-la .
-la filename

Assembly output. See
Filenames, page 131.

-b --library_module Make object a library module

-c --char_is_signed Char is signed char

-gA --strict_ansi Flag old-style functions

-Hname --module_name=name Set object module name

-L[prefix], -l[c|C|a|A][N]
filename

-l[c|C|a|A|][N] filename List file. The modifiers
specify the type of list file to
create.

-m[d|f|h] --memory_model=[n|f|h]
-m[n|f|h]

Memory model

-Nprefix, -n --preprocess=[c][n][l]
filename

Preprocessor output

-q -lA, -lC Insert mnemonics. List file
syntax has changed.

-r[012][i][n] -r
--debug

Generate debug information.
The modifiers have been
removed.

-S --silent Set silent operation

MIGRATION HINTS C COMPILER OPTIONS

CM32C-2

131

The M32C command line options --memory_model=near or -mn both
correspond to the M16C command line option -md, which can be used
also in M32C.

Note: Some new command line options have been added in M32C. For a
complete list of the command line options available in the M32C IAR
C/C++ Compiler, see Options summary, page 40.

FILENAMES
In M16C, file references can be made in either of the following ways:

◆ With a specific filename, and maybe with a default extension added,
using a command line option such as -a filename (Assembly
output to named file).

◆ With a prefix string added to the default name, using a command
line option such as -A[prefix] (Assembly output to prefixed
filename).

In M32C, a file reference is always regarded as a file path that can either
be a directory, which the compiler will check and then add a default
filename to, or it will be treated explicitly as a filename.

The following table shows some examples where it is assumed that the
source file is named test.c, aaaa is not a directory and bbbb is a
directory:

-w --no_warnings Disable warnings

M16C option M32C option Comment

M16C command M32C command Result

-l aaaa -l aaaa aaaa.lst

-Laaaa -l aaaatest aaaatest.lst

-L -l . test.lst

-Lbbbb/ -l bbbb
-l bbbb/

bbbb/test.lst

C COMPILER OPTIONS MIGRATION HINTS

CM32C-2

132

LIST FILES
In M16C, no more than one C list file and one assembler list file can be
produced; in M32C there is no upper limit on the number of list files that
can be generated. The M32C command line option -l[c|C|a|A][N]
filename is used to specify the behavior of each list file.

OBJECT FILE FORMAT
UBROF6 is the generated object format for M16C. When using the M16C
command line option -r two types of source references can be generated
in the object file: either the source statements was refered to (-r), or the
actual source was embedded in the object format (-re).

UBROF9 is the generated object file format for M32C. When the M32C
command line option -r or --debug is used, source file references are
always generated in UBROF, i.e. embedding of the source is not
supported.

NESTED COMMENTS
In M16C, nested comments were allowed if the option -C was used. In
M32C, nested comments are never allowed. For example, if a comment is
used to remove a statement as in the following example, it will not have
the desired effect.

/*
/* x is a counter */
int x = 0;
*/

The variable x will still be defined, there will be a warning where the
inner comment begins, and there will be an error where the outer
comment ends.

 /* x is a counter */
 ^
"c:\bar.c",2 Warning[Pe009]: nested comment is not
allowed

 */
 ^
"c:\bar.c",4 Error[Pe040]: expected an identifier

The solution is to use #if 0 to "hide" portions of the source code when
compiling:

MIGRATION HINTS C COMPILER OPTIONS

CM32C-2

133

#if 0
/* x is a counter */
int x = 0;
#endif

Note: #if statements may be nested.

PREPROCESSOR FILE
In M16C, a preprocessor file can be generated as a side effect of compiling
a source file.

In M32C a preprocessor file is either generated as a side effect, or as the
whole purpose when parsing of the source code is not required. You may
also choose to include or exclude comments and/or #line directives.

CROSS-REFERENCE INFORMATION
In M16C cross-reference information can be generated. This possibility is
not available in M32C.

SIZEOF IN PREPROCESSOR DIRECTIVES
In M16C, sizeof could be used in #if directives, for example:

#if sizeof(int)==2
int i = 0;
#endif

In M32C, sizeof is not allowed in #if directives. The following error
message will be produced:

 #if sizeof(int)==2
 ^
"c:\bar.c",1 Error[Pe059]: function call is not allowed
in a constant expression.

Macros can be used instead, for example SIZEOF_INT. Macros can be
defined using the -D option, or using a #define in the source code:

#define SIZEOF_INT 2
#if SIZEOF_INT==2
int i = 0;
#endif

To find the size of a predefined data type, see Data representation, page 2.
Complex data types may be computed using one of several methods:

SEGMENTS MIGRATION HINTS

CM32C-2

134

1 Write a small program, and run it in the simulator, with terminal
I/O.

#include <stdio.h>
struct s { char c; int a; };

void main(void)
{
 printf("sizeof(struct s)=%d \n", sizeof(struct s));
}

2 Write a small program, compile it with the option -la . to get an
assembler listing in the current directory and look for the definition
of the constant x.

struct s { char c; int a; };
const int x = sizeof(struct s);

SEGMENTS The CONST segment is replaced with three segments named CONST0,
CONST1, and CONST2. The segments correspond to the near, far, and huge
memory models respectively. The default segment depends on the
memory model, in the same way as for other data segments. This gives
you more control over the usage and allocation of the constant segments.

CM32C-2

135

IMPLEMENTATION-DEFINED
BEHAVIOR
This chapter describes how IAR C handles the implementation-defined
areas of the C language.

ISO 9899:1990, the International Organization for Standardization
standard - Programming Languages - C (revision and redesign of ANSI
X3.159-1989, American National Standard), changed by the ISO
Amendment 1:1994, Technical Corrigendum 1, and Technical
Corrigendum 2, contains an appendix called Portability Issues. The ISO
appendix lists areas of the C language that ISO leaves open to each
particular implementation.

Note: IAR C adheres to a freestanding implementation of the ISO
standard for the C programming language. This means that parts of a
standard library can be excluded in the implementation. IAR has not
implemented the following parts of the standard library: locale, files
(but streams stdin and stdout), time, and signal.

This chapter follows the same order as the ISO appendix. Each item
covered includes references to the ISO chapter and section (in
parenthesis) that explains the implementation-defined behavior.

TRANSLATION DIAGNOSTICS (5.1.1.3)
IAR C produces diagnostics in the form:

filename,linenumber level[tag]: message

where filename is the name of the source file in which the error was
encountered; linenumber is the line number at which the compiler
detected the error; level is the level of seriousness of the message
(remark, warning, error, or fatal error); tag is a unique tag that identifies
the message; message is an explanatory message, possibly several lines.

ENVIRONMENT IMPLEMENTATION-DEFINED BEHAVIOR

CM32C-2

136

ENVIRONMENT ARGUMENTS TO MAIN (5.1.2.2.2.1)
In IAR C, the function called at program startup is called main. There is
no prototype declared for main, and the only definition supported for
main is:

int main(void)

To change this behavior, see the CSTARTUP description, page 32.

INTERACTIVE DEVICES (5.1.2.3)
IAR C treats the streams stdin and stdout as interactive devices.

IDENTIFIERS SIGNIFICANT CHARACTERS WITHOUT EXTERNAL
LINKAGE (6.1.2)
The number of significant initial characters in an identifier without
external linkage is 200.

SIGNIFICANT CHARACTERS WITH EXTERNAL
LINKAGE (6.1.2)
The number of significant initial characters in an identifier with external
linkage is 200.

CASE DISTINCTIONS ARE SIGNIFICANT (6.1.2)
IAR C treats identifiers with external linkage as case-sensitive.

CHARACTERS SOURCE AND EXECUTION CHARACTER SETS (5.2.1)
The source character set is the set of legal characters that can appear in
source files. In IAR C, the source character set is the standard ASCII
character set.

The execution character set is the set of legal characters that can appear
in the execution environment. In IAR C, the execution character set is the
standard ASCII character set.

IMPLEMENTATION-DEFINED BEHAVIOR CHARACTERS

CM32C-2

137

BITS PER CHARACTER IN EXECUTION CHARACTER
SET (5.2.4.2.1)
The number of bits in a character is represented by the manifest constant
CHAR_BIT. The standard include file limits.h defines CHAR_BIT as 8.

MAPPING OF CHARACTERS (6.1.3.4)
The mapping of members of the source character set (in character and
string literals) to members of the execution character set is made in a
one-to-one way, i.e. using the same representation value for each member
in the character sets, except for the escape sequences listed in the ISO
standard.

UNREPRESENTED CHARACTER CONSTANTS (6.1.3.4)
The value of an integer character constant that contains a character or
escape sequence not represented in the basic execution character set or in
the extended character set for a wide character constant, generates a
diagnostic and will be truncated to fit the execution character set.

CHARACTER CONSTANT WITH MORE THAN ONE
CHARACTER (6.1.3.4)
An integer character constant that contains more than one character will
be treated as an integer constant. The value will be calculated by treating
the leftmost character as the most significant character, and the rightmost
character as the least significant character, in an integer constant. A
diagnostic will be issued if the value cannot be represented in an integer
constant.

A wide character constant that contains more than one multibyte
character, generates a diagnostic.

CONVERTING MULTIBYTE CHARACTERS (6.1.3.4)
The current and only locale supported in IAR C is the ‘C’ locale.

RANGE OF 'PLAIN' CHAR (6.2.1.1)
A ‘plain’ char has the same range as an unsigned char.

INTEGERS IMPLEMENTATION-DEFINED BEHAVIOR

CM32C-2

138

INTEGERS RANGE OF INTEGER VALUES (6.1.2.5)
The representation of integer values are in two's-complement form. The
most-significant bit holds the sign; 1 for negative, 0 for positive and zero.

See Data representation, page 2, for information about the ranges for the
different integer types: char, short, int, and long.

DEMOTION OF INTEGERS (6.2.1.2)
Converting an integer to a shorter signed integer is made by truncation.
If the value cannot be represented when converting an unsigned integer
to a signed integer of equal length the bit-pattern remains the same, i.e. a
large enough value will be converted into a negative value.

SIGNED BITWISE OPERATIONS (6.3)
Bitwise operations on signed integers work the same as bitwise
operations on unsigned integers, i.e. the sign-bit will be treated as any
other bit.

SIGN OF THE REMAINDER ON INTEGER DIVISION
(6.3.5)
The sign of the remainder on integer division is the same as the sign of
the dividend.

NEGATIVE VALUED SIGNED RIGHT SHIFTS (6.3.7)
The result of a right shift of a negative-valued signed integral type,
preserves the sign-bit. For example, shifting 0xFF00 down one step yields
0xFF80.

FLOATING POINT REPRESENTATION OF FLOATING-POINT VALUES
(6.1.2.5)
The representation and sets of the various floating-point numbers
adheres to IEEE 854–1987. A typical floating-point number is built up of
a sign-bit (s), a biased exponent (e), and a mantissa (m).

See Floating-point types, page 3, for information about the ranges and
sizes for the different floating-point types: float, double, and long
double.

IMPLEMENTATION-DEFINED BEHAVIOR ARRAYS AND POINTERS

CM32C-2

139

CONVERTING INTEGER VALUES TO FLOATING-POINT
VALUES (6.2.1.3)
When an integral number is cast to a floating-point value that cannot
exactly represent the value, the value is rounded (up or down) to the
nearest suitable value.

DEMOTING FLOATING-POINT VALUES (6.2.1.4)
When a floating-point value is converted to a floating-point value of
narrower type that cannot exactly represent the value, the value is
rounded(up or down) to the nearest suitable value.

ARRAYS AND
POINTERS

SIZE_T (6.3.3.4, 7.1.1)
See size_t, page 5, for information about size_t in IAR C.

CONVERSION FROM/TO POINTERS (6.3.4)
See Casting, page 5, for information about casting of data pointers and
function pointers.

PTRDIFF_T (6.3.6, 7.1.1)
See ptrdiff_t, page 5, for information about the ptrdiff_t in IAR C.

REGISTERS HONORING THE REGISTER KEYWORD (6.5.1)
IAR C does not honor user requests for register variables. Instead it
makes it own choices when optimizing.

STRUCTURES,
UNIONS,
ENUMERATIONS,
AND BITFIELDS

IMPROPER ACCESS TO A UNION (6.3.2.3)
If a union get its value stored through a member and is then accessed
using a member of a different type, the result is solely dependent on the
internal storage of the first member.

QUALIFIERS IMPLEMENTATION-DEFINED BEHAVIOR

CM32C-2

140

PADDING AND ALIGNMENT OF STRUCTURE
MEMBERS (6.5.2.1)
See the section Data representation, page 2, for information about the
alignment requirement for data objects in IAR C.

SIGN OF 'PLAIN' BITFIELDS (6.5.2.1)
A 'plain' int bitfield is treated as a signed int bitfield. All integer types
are allowed as bitfields.

ALLOCATION ORDER OF BITFIELDS WITHIN A UNIT
(6.5.2.1)
Bitfields are allocated within an integer from least-significant to
most-significant bit.

CAN BITFIELDS STRADDLE A STORAGE-UNIT
BOUNDARY (6.5.2.1)
Bitfields cannot straddle a storage-unit boundary for the bitfield integer
type chosen.

INTEGER TYPE CHOSEN TO REPRESENT
ENUMERATION TYPES (6.5.2.2)
The chosen integer type for a specific enumeration type depends on the
enumeration constants defined for the enumeration type. The chosen
integer type is the smallest possible.

QUALIFIERS ACCESS TO VOLATILE OBJECTS (6.5.3)
Any reference to an object with volatile qualified type is an access.

DECLARATORS MAXIMUM NUMBERS OF DECLARATORS (6.5.4)
IAR C does not limit the number of declarators. The number is limited
only by the available memory.

IMPLEMENTATION-DEFINED BEHAVIOR STATEMENTS

CM32C-2

141

STATEMENTS MAXIMUM NUMBER OF CASE STATEMENTS (6.6.4.2)
IAR C does not limit the number of case statements (case values) in a
switch statement. The number is limited only by the available memory.

PREPROCESSING
DIRECTIVES

CHARACTER CONSTANTS AND CONDITIONAL
INCLUSION (6.8.1)
The character set used in the preprocessor directives is the same as the
execution character set. The preprocessor recognizes negative character
values if a 'plain' character is treated as a signed character.

INCLUDING BRACKETED FILENAMES (6.8.2)
For file specifications enclosed in angle brackets, the preprocessor does
not search directories of the parent files. A "parent" file is the file that has
the #include directive. Instead, it begins by searching for the file in the
directories specified on the compiler command line.

INCLUDING QUOTED FILENAMES (6.8.2)
For file specifications enclosed in quotes, the preprocessor directory
search begins with the directories of the parent file, then proceeds
through the directories of any grandparent files. Thus, searching begins
relative to the directory containing the source file currently being
processed. If there is no grandparent file and the file has not been found,
the search continues as if the filename were enclosed in angle brackets.

CHARACTER SEQUENCES (6.8.2)
Preprocessor directives use the source character set, with the exception of
escape sequences. Thus to specify a path for an include file, use only one
backslash:

#include "mydirectory\myfile"

Within source code, two backslashes are necessary:

file = fopen("mydirectory\\myfile","rt");

PREPROCESSING DIRECTIVES IMPLEMENTATION-DEFINED BEHAVIOR

CM32C-2

142

RECOGNIZED #PRAGMA DIRECTIVES (6.8.6)
The following #pragma directives are recognized in IAR C:

alignment
ARGSUSED
baseaddr
bitfields
can_instantiate
codeseg
constseg
dataseg
define_type_info
diag_default
diag_error
diag_remark
diag_suppress
diag_warning
do_not_instantiate
function
hdrstop
instantiate
language
location
memory
message
none
no_pch
NOTREACHED
object_attribute
once
optimize
pack
__printf_args
__scanf_args
type_attribute
VARARGS
vector
warnings

For a description of the #pragma directives, see the chapter #pragma
directives reference.

DEFAULT __DATE__ AND __TIME__ (6.8.8)
The definitions for __TIME__ and __DATE__ are always available.

IMPLEMENTATION-DEFINED BEHAVIOR C LIBRARY FUNCTIONS

CM32C-2

143

C LIBRARY
FUNCTIONS

NULL MACRO (7.1.6)
The NULL macro is defined to (void *) 0.

DIAGNOSTIC PRINTED BY THE ASSERT FUNCTION
(7.2)
The assert() function prints:

Assertion failed: expression, file filename, line
linenumber

when the parameter evaluates to zero.

DOMAIN ERRORS (7.5.1)
HUGE_VAL, the largest representable value in a double floating-point type,
will be returned by the mathematic functions on domain errors.

UNDERFLOW OF FLOATING-POINT VALUES SETS
ERRNO TO ERANGE (7.5.1)
The mathematics functions set the integer expression errno to ERANGE (a
macro in errno.h) on underflow range errors.

FMOD() FUNCTIONALITY (7.5.6.4)
If the second argument to fmod() is zero, the function returns zero (it
does not change the integer expression errno).

SIGNAL() (7.7.1.1)
IAR C does not support the signal part of the library.

TERMINATING NEWLINE CHARACTER (7.9.2)
Stdout stream functions recognize either newline or end of file
(EOF) as the terminating character for a line.

BLANK LINES (7.9.2)
Space characters written out to the stdout stream immediately before a
newline character are preserved. There is no way to read in the line
through the stream stdin that was written out through the stream
stdout in IAR C.

C LIBRARY FUNCTIONS IMPLEMENTATION-DEFINED BEHAVIOR

CM32C-2

144

NULL CHARACTERS APPENDED TO DATA WRITTEN
TO BINARY STREAMS (7.9.2)
There are no binary streams implemented in IAR C.

FILES (7.9.3)
There are no streams other than stdin and stdout in IAR C. This means
that a file system is not implemented.

REMOVE() (7.9.4.1)
There are no streams other than stdin and stdout in IAR C. This means
that a file system is not implemented.

RENAME() (7.9.4.2)
There are no streams other than stdin and stdout in IAR C. This means
that a file system is not implemented.

%P IN PRINTF() (7.9.6.1)
The argument to a %p conversion specifier, print pointer, to printf() is
treated as having the type 'char *'. The value will be printed as a
hexadecimal number, similar to using the %x conversion specifier.

%P IN SCANF() (7.9.6.2)
The %p conversion specifier, scan pointer, to scanf() reads a
hexadecimal number and converts that into a value with the type
'void *'.

READING RANGES IN SCANF() (7.9.6.2)
A - (dash) character is always treated explicitly as a - charatcer.

FILE POSITION ERRORS (7.9.9.1, 7.9.9.4)
There are no streams other than stdin and stdout in IAR C. This means
that a file system is not implemented.

MESSAGE GENERATED BY PERROR() (7.9.10.4)
perror() is not supported in IAR C.

IMPLEMENTATION-DEFINED BEHAVIOR C LIBRARY FUNCTIONS

CM32C-2

145

ALLOCATING ZERO BYTES OF MEMORY (7.10.3)
The calloc(), malloc(), and realloc() functions accept zero as an
argument. Memory will be allocated, a valid pointer to that memory is
returned, and the memory block can be modified later by realloc.

BEHAVIOR OF ABORT() (7.10.4.1)
The abort() function does not flush stream buffers, and it does not
handle files, since this is an unsupported feature in IAR C.

BEHAVIOR OF EXIT() (7.10.4.3)
The exit() function does not return in IAR C.

ENVIRONMENT (7.10.4.4)
An environment is not supported in IAR C.

SYSTEM() (7.10.4.5)
A system is not supported in IAR C.

MESSAGE RETURNED BY STRERROR() (7.11.6.2)
The messages returned by strerror() depending on the argument is:

THE TIME ZONE (7.12.1)
Time is not supported in IAR C.

CLOCK() (7.12.2.1)
Time is not supported in IAR C.

Argument Message

EZERO no error

EDOM domain error

ERANGE range error

<0 || >99 unknown error

all others error No.xx

EC++ LIBRARY FUNCTIONS IMPLEMENTATION-DEFINED BEHAVIOR

CM32C-2

146

EC++ LIBRARY
FUNCTIONS

NULL MACRO (7.1.6)
The NULL macro is defined to 0.

DIAGNOSTIC PRINTED BY THE ASSERT FUNCTION
(7.2)
The assert() function prints:

filename:linenr expression -- assertion failed

when the parameter evaluates to zero.

DOMAIN ERRORS (7.5.1)
NaN (Not a Number) will be returned by the mathematic functions on
domain errors.

UNDERFLOW OF FLOATING-POINT VALUES SETS
ERRNO TO ERANGE (7.5.1)
The mathematics functions set the integer expression errno to ERANGE (a
macro in errno.h) on underflow range errors.

FMOD() FUNCTIONALITY (7.5.6.4)
If the second argument to fmod() is zero, the function returns NaN;
errno is set to EDOM.

SIGNAL() (7.7.1.1)
IAR C does not support the signal part of the library.

Note: Interface functions exist but will not perform anything. Instead,
they will result in an error.

TERMINATING NEWLINE CHARACTER (7.9.2)
Stdout stream functions recognize either newline or end of file (EOF)
as the terminating character for a line.

BLANK LINES (7.9.2)
Space characters written out to the stdout stream immediately before a
newline character are preserved. There is no way to read in the line
through the stream stdin that was written out through the stream
stdout in IAR C.

IMPLEMENTATION-DEFINED BEHAVIOR EC++ LIBRARY FUNCTIONS

CM32C-2

147

NULL CHARACTERS APPENDED TO DATA WRITTEN
TO BINARY STREAMS (7.9.2)
There are no binary streams implemented in IAR C.

Note: Interface functions exist but will not perform anything. Instead,
they will result in an error.

FILES (7.9.3)
There are no streams other than stdin and stdout in IAR C. This means
that a file system is not implemented.

Note: Interface functions exist but will not perform anything. Instead,
they will result in an error.

REMOVE() (7.9.4.1)
There are no streams other than stdin and stdout in IAR C. This means
that a file system is not implemented.

Note: Interface functions exist but will not perform anything. Instead,
they will result in an error.

RENAME() (7.9.4.2)
There are no streams other than stdin and stdout in IAR C. This means
that a file system is not implemented.

Note: Interface functions exist but will not perform anything. Instead,
they will result in an error.

%P IN PRINTF() (7.9.6.1)
The argument to a %p conversion specifier, print pointer, to printf() is
treated as having the type void *. The value will be printed as a
hexadecimal number, similar to using the %x conversion specifier.

%P IN SCANF() (7.9.6.2)
The %p conversion specifier, scan pointer, to scanf() reads a
hexadecimal number and converts that into a value with the type void *.

READING RANGES IN SCANF() (7.9.6.2)
A - (dash) character is always treated as a range symbol.

EC++ LIBRARY FUNCTIONS IMPLEMENTATION-DEFINED BEHAVIOR

CM32C-2

148

FILE POSITION ERRORS (7.9.9.1, 7.9.9.4)
There are no streams other than stdin and stdout in IAR C. This means
that a file system is not implemented.

Note: Interface functions exist but will not perform anything. Instead,
they will result in an error.

MESSAGE GENERATED BY PERROR() (7.9.10.4)
The generated message is:

usersuppliedprefix:errormessage

ALLOCATING ZERO BYTES OF MEMORY (7.10.3)
The calloc(), malloc(), and realloc() functions accept zero as an
argument. Memory will be allocated, a valid pointer to that memory is
returned, and the memory block can be modified later by realloc.

BEHAVIOR OF ABORT() (7.10.4.1)
The abort() function does not flush stream buffers, and it does not
handle files, since this is an unsupported feature in IAR C.

BEHAVIOR OF EXIT() (7.10.4.3)
The exit() function does not return in IAR C.

ENVIRONMENT (7.10.4.4)
An environment is not supported in IAR C.

Note: Interface functions exist but will not perform anything. Instead,
they will result in an error.

SYSTEM() (7.10.4.5)
The system() function is not supported in IAR C.

Note: Interface functions exist but will not perform anything. Instead,
they will result in an error.

MESSAGE RETURNED BY STRERROR() (7.11.6.2)
The messages returned by strerror() depending on the argument is:

Argument Message

EZERO no error

IMPLEMENTATION-DEFINED BEHAVIOR EC++ LIBRARY FUNCTIONS

CM32C-2

149

THE TIME ZONE (7.12.1)
Time is not supported in IAR C.

Note: Interface functions exist but will not perform anything. Instead,
they will result in an error.

CLOCK() (7.12.2.1)
Time is not supported in IAR C.

Note: Interface functions exist but will not perform anything. Instead,
they will result in an error.

EDOM domain error

ERANGE range error

EFPOS file positioning error

EILSEQ multi-byte encoding error

<0 || >99 unknown error

all others error nnn

Argument Message

EC++ LIBRARY FUNCTIONS IMPLEMENTATION-DEFINED BEHAVIOR

CM32C-2

150

CM32C-2

151

IAR C EXTENSIONS
This chapter describes IAR extensions to the ISO standard for the C
programming language.

See the compiler option -e, page 46 for information about enabling and
disabling language extensions from the command line.

AVAILABLE
EXTENSIONS

The following language extensions are available:

◆ Functions and data may be declared with memory, type, and object
attributes. The attributes follow the syntax for qualifiers but not the
semantics.

◆ The operator @ may be used for specifying either the location of an
absolute addressed variable or the segment placement of a function
or variable. The directive #pragma location has the same effect.

◆ A translation unit (input file) is allowed to contain no declarations.

◆ Comment text can appear at the end of preprocessing directives.

◆ __ALIGNOF__ is similar to sizeof, but returns the alignment
requirement value for a type, or 1 if there is no alignment
requirement. It may be followed by a type or expression in
parenthesis, __ALIGNOF__(type), or __ALIGNOF__(expression).
The expression in the second form is not evaluated.

◆ Bitfields may have base types that are enums or integral types besides
int and unsigned int. This matches G.5.8 in the appendix to the
ISO standard, ISO Portability issues.

◆ The last member of a struct may have an incomplete array type. It
may not be the only member of the struct (otherwise, the struct
would have zero size).

◆ A file-scope array may have an incomplete struct, union, or enum
type as its element type. The type must be completed before the
array is subscripted (if it is), and by the end of the compilation if the
array is not external.

◆ Static functions may be declared in function and block scopes. Their
declarations are moved to the file scope.

AVAILABLE EXTENSIONS IAR C EXTENSIONS

CM32C-2

152

◆ enum tags may be incomplete: one may define the tag name and
resolve it (by specifying the brace-enclosed list) later.

◆ The values of enumeration constants may be given by expressions
that evaluate to unsigned quantities that fit in the unsigned int
range but not in the int range. A warning is issued for suspicious
cases.

◆ An extra comma is allowed at the end of an enum list. A remark is
issued.

◆ The final semicolon preceeding the closing } of a struct or union
specifier may be omitted. A warning is issued.

◆ A label definition may be immediately followed by a closing }
(normally a statement must follow a label definition). A warning is
issued.

◆ An empty declaration (a semicolon with nothing before it) is
allowed. A remark is issued.

◆ An initializer expression that is a single value and is used for
initializing an entire static array, struct, or union need not be
enclosed in braces. ISO C requires the braces.

◆ In an initializer, a pointer constant value may be cast to an integral
type if the integral type is large enough to contain it.

◆ The address of a variable with a register storage class may be taken.
A warning is issued.

◆ In an integral constant expression, an integer constant may be cast
to a pointer type and then back to an integral type.

◆ In duplicate size and sign specifiers (for example short short or
unsigned unsigned) the redundancy is ignored. A warning is
issued.

◆ long float is accepted as synonym of double.

◆ Benign redeclarations of typedef names are allowed. That is, a
typedef name may be redeclared in the same scope as the same type.
A warning is issued.

◆ Dollar signs are accepted in identifiers.

IAR C EXTENSIONS AVAILABLE EXTENSIONS

CM32C-2

153

◆ Numbers are scanned according to the syntax for numbers rather
than the pp-number syntax. Thus, 0x123e+1 is scanned as three
tokens instead of one invalid token (if --strict_ansi is specified,
the pp-number syntax is used).

◆ Assignment and pointer difference is allowed between pointers to
types that are interchangeable but not identical, for example,
unsigned char * and char *. This includes pointers to integral
types of the same size (for example, short * and int *). A warning
is issued. Assignment of a string constant to a pointer to any kind of
character is allowed without a warning.

◆ Assignment of pointer types is allowed in cases where the
destination type has added type qualifiers that are not at the top level
(for example int ** to int const **). Comparisons and pointer
difference of such pairs of pointer types are also allowed. A warning
is issued.

◆ In operations on pointers, a pointer to void is always implicitly
converted to another type if necessary, and a null pointer constant
is always implicitly converted to a null pointer of the right type if
necessary. In ISO C, some operators allow such things, while others
do not allow them.

◆ asm statements are accepted, like asm("LD A,#5");. This is disabled
in strict ISO/ANSI C mode.

◆ Anonymous structs and unions (similar to the C++ anonymous
unions) are allowed. An anonymous structure type defines an
unnamed object (and not a type) whose member names are
promoted to the surrounding scope. The member names must be
unique in the surrounding scope. External anonymous structure
types are allowed.

◆ External entities declared in other scopes are visible. A warning is
issued. Example:

void f1(void) { extern void f(); }
void f2() { f(); }

◆ End-of-line comments (//, as in C++) are allowed.

◆ A non-lvalue array expression is converted to a pointer to the first
element of the array when it is subscripted or similarly used.

EXTENSIONS ACCEPTED IN NORMAL EC++ MODE IAR C EXTENSIONS

CM32C-2

154

EXTENSIONS
ACCEPTED IN
NORMAL EC++
MODE

The following extensions are accepted in all modes (except when strict
ANSI violations are diagnosed as errors):

◆ A friend declaration for a class may omit the class keyword:

class B;
class A {
 friend B; // Should be ‘friend class B’
};

◆ Constants of scalar type may be defined within classes (this is an old
form; the modern form uses an initialized static data member):

class A {
 const int size = 10;
 int a[size];
};

◆ In the declaration of a class member, a qualified name may be used:

struct A {
 int A::f(); // Should be int f ();
};

◆ The preprocessing symbol c_plusplus is defined in addition to the
standard _cplusplus.

◆ An extension is supported to allow an anonymous union to be
introduced into a containing class by a typedef name—it does not
have to be declared directly, as with a true anonymous union. For
example:

typedef union {
 int i, j;
} U; // U identifies a reusable anonymous

// union.
class A {
 U; // Okay -- references to A::i and

// A::j are allowed.
}

IAR C EXTENSIONS LANGUAGE FEATURES NOT ACCEPTED IN EC++

CM32C-2

155

In addition, the extension also permits ‘anonymous classes’ and
‘anonymous structures’, as long as they have no EC++ feature (for
example, no static data members or member functions, and no
non-public members) and have no nested types other than other
anonymous classes, structures, or unions.

For example:

struct A {
 struct {
 int i, j;
 }; // Okay -- references to A::i and
 // A::j are allowed.
};

◆ An assignment operator declared in a derived class with a parameter
type matching one of its base classes is treated as a ‘default’
assignment operator—that is, such a declaration blocks the implicit
generation of a copy assignment operator. For example:

struct A { };
struct B : public A {
 B& operator=(A&);
};

◆ By default, as well as in C front compatibility mode, there will be no
implicit declaration of B::operator=(const B&), whereas in strict
ANSI mode B::operator=(A&) is not a copy assignment operator
and B::operator=(const B&) is implicitly declared.

LANGUAGE
FEATURES NOT
ACCEPTED IN EC++

The following ISO/ANSI C++ features are not accepted in EC++:

◆ reinterpret_cast does not allow casting a pointer to a member of
one class to a pointer to a member of another class if the classes are
unrelated.

◆ In a reference of the form f()->g(), with g being a static member
function, f() is not evaluted.

◆ Class name injection is not implemented.

◆ Friend functions of the argument class types cannot be found by
name lookup on the function name in calls since this feature is not
implemented.

LANGUAGE FEATURES NOT ACCEPTED IN EC++ IAR C EXTENSIONS

CM32C-2

156

◆ String literals do not have the const type.

◆ Universal character set escape sequences (for example, \uabcd) are
not implemented.

CM32C-2

157

DIAGNOSTICS
A normal diagnostic from the compiler is produced in the form:

filename,linenumber level[tag]: message

where filename is the name of the source file in which the error was
encountered; linenumber is the line number at which the compiler
detected the error; level is the level of seriousness of the diagnostic; tag
is a unique tag that identifies the diagnostic; message is a self-explanatory
message, possibly several lines long.

SEVERITY LEVELS The diagnostics are divided into different levels of severity:

Remark
A diagnostic that is produced when the compiler finds a source code
construct that can possibly lead to erroneous behavior in the generated
code. Remarks are by default not issued but can be enabled, see --remarks,
page 56.

Warning
A diagnostic that is produced when the compiler finds a programming
error or omission which is of concern but not so severe as to prevent the
completion of compilation. Warnings can be disabled by using the
command-line option --no_warnings, see --no_warnings, page 53.

Error
A diagnostic that is produced when the compiler has found a construct
which clearly violates the C language rules, such that code cannot be
produced.

Fatal error
A diagnostic that is produced when the compiler has found a condition
that not only prevents code generation, but which makes further
processing of the source code pointless. After the diagnostic has been
issued, compilation terminates. A fatal error will produce a non-zero exit
code.

SEVERITY LEVELS DIAGNOSTICS

CM32C-2

158

SETTING THE SEVERITY LEVEL
The diagnostic can be suppressed or the severity level can be changed for
all diagnostics except for fatal errors and some of the regular errors.

See the chapter Compiler options, page 37, for a description of the options
that are available for setting severity levels.

See Diagnostics, page 88, for a description of the #pragma directives that
are available for setting severity levels.

INTERNAL ERROR
A diagnostic that signals that there has been a serious and unexpected
failure due to a fault in the compiler itself is the internal error. It is
produced using the following form:

Internal error: message

where message is an explanatory message. Internal errors should not
occur and should be reported to your software distributor or IAR
Technical Support. Your report should include all possible information
about the problem and preferably, in electronic form, a minimal source
file that generates the internal error.

EXAMPLE
The following examples show the style of the diagnostic messages:

[Og0001] Assembler error: string
Indicates erroneous syntax in an asm operation. The string specifies the
actual error.

[Be0003] A located initialized variable must be constant: full
symbol name and place
Specifying absolute address variables that must be initialized at start up
is not allowed.

INDEX

CM32C-2

159

A
absolute location 12, 77
arrays 139
asm (inline assembler) 15
asm (intrinsic function) 13, 15
assembler

inline 15
interface 105

assembler routines, calling from C 112
assert.h (library header file) 70
assumptions iv

B
bitfields 3

in implementation-defined behavior 139
BITVARS (segment) 115

C
C library functions 146
C task functions 82
calling convention 108

Embedded C++ 112
cassert (library header file) 69
casting 5
cctype (library header file) 69
CDATA0 (segment) 115
CDATA1 (segment) 115
CDATA2 (segment) 115
cerrno (library header file) 69
cfloat (library header file) 69
char (data type) 2–3

signed and unsigned 41
characters, in implementation-defined behavior 136
climits (library header file) 69

clocale (library header file) 70
cmath (library header file) 70
code

generation 2
pointers 5

code motion, disabling 51
CODE (segment) 116
coding, efficient 7
common sub-expression elimination, disabling 52
compiler

code generation 2
features 1
introduction 1
language facilities 1
performance 1
target support 2
version number 95

compiler environment variables 39
compiler error return codes 39
compiler listing, generating 48
compiler object file

including debug information 44, 55
compiler options

setting 37
specifying parameters 38
summary 40
-A 106
-D 43
-e 46
-I 47
-l 48
-m 49, 95
-o 54
-R 55
-r 44, 55
-s 57
-U 58
-v 58–59, 95

INDEX

INDEX

CM32C-2

160

-z 60
--char_is_signed 41
--code_segment 42
--cpu 42, 95
--debug 44, 55
--diag_error 44
--diag_remark 45
--diag_suppress 45
--diag_warning 45
--ec++ 46
--library_module 49
--memory_model 49
--module_name 50
--no_code_motion 51
--no_cse 52
--no_inline 52
--no_unroll 53
--no_warnings 53
--only_stdout 54
--preprocess 54
--remarks 56
--require_prototypes 56
--silent 57
--strict_ansi 58
--warnings_affect_exit_code 39, 59
--warnings_are_errors 59
-2 61

complex (library header file) 68
configuration 17
constseg (#pragma directive) 88
CONST0 (segment) 116
CONST1 (segment) 116
CONST2 (segment) 116
conventions v
CPU, defining in .xcl file 22
csetjmp (library header file) 70
csignal (library header file) 70
CSTACK (segment) 116

CSTARTUP 32
modifying 33

cstartup.s48 111
cstdarg (library header file) 70
cstddef (library header file) 70
cstdio (library header file) 70
cstdlib (library header file) 70
cstring (library header file) 70
ctime (library header file) 70
ctype.h (library header file) 70
C-SPY iii
C_INCLUDE (environment variable) 39, 47

D
data pointers 5
data representation 2

bitfields 3
char 2–3
floating point format 3
floating point types 3
int 3
integers 2
long 3
short 2
signed char 2
signed int 3
signed long 3
signed short 2
unsigned char 2
unsigned int 3
unsigned long 3
unsigned short 2

dataseg (#pragma directive) 87
debug information, including in object file 44, 55
debugger iii
declarators, in implementation-defined behavior 140
default

INDEX

CM32C-2

161

memory 19
pointers 19

diagnostic messages
classifying as errors 44
classifying as remarks 45
classifying as warnings 45
disabling warnings 53
enabling remarks 56
suppressing 45

diagnostics 157
error 157
fatal error 157
internal error 158
Og0001 158
remark 157
severity levels 157
warnings 157

diagnostics (#pragma directives) 88
diag_default (#pragma directive) 89
diag_error (#pragma directive) 89
diag_remark #pragma directive) 88
diag_suppress (#pragma directive) 89
diag_warning #pragma directive) 89

E
efficient coding 7
Embedded C++

calling convention 112
differences from C++ 10
enabling 46
extended keywords, using 84
language extensions 10, 154
overview 10

Embedded Workbench
setting project options 18

enum (keyword) 3
enumerations, in implementation-defined behavior 139

environment variables 39
C_INCLUDE 39, 47
QCCM32C 39

environment, in implementation-defined behavior 136
errno.h (library header file) 70
error 157

fatal 157
error return codes 39
errors, classifying 44
exception (library header file) 68
extended keywords 12, 73

absolute location 12, 77
C task functions 82
enabling 46
enum 3
functions 79
in Embedded C++ 84
interrupt functions 80
monitor functions 82
near 5, 75, 78
storage 74
syntax 75
__bitvar 73
__c_task 13, 74, 82
__far 5, 73, 75, 78
__fast_interrupt 13, 34, 73, 79
__huge 5, 73, 75
__interrupt 12, 34, 73, 79–80, 118
__monitor 13, 74, 79, 82
__near 73
__no_init 12, 73, 77
__regbank_interrupt 13, 34, 73, 79
__sbdata 73
__sbdata16 73
__tiny_func 13, 74, 79

extended keywords, summary 73
extended linker command line file 21
extensions. See language extensions

INDEX

CM32C-2

162

F
far (memory model) 19
fatal error 157
features, compiler 1
file paths, specifying for #include files 47
FLIST (segment) 117
floating point (data type)

specifying 64 bits 61
floating-point

format 3
types 3

floating-point format
implementation-defined behavior 138

float.h (library header file) 70
formatters, specifying in .xcl file 23
fstream (library header file) 68
fstream.h (library header file) 71
function inlining, disabling 52
function pointers 5
function prototypes, requiring 56
functions

I/O 29

G
getchar (library function) 25
getchar, customizing 26

H
header files 64, 68

SFR 7
heap

size 24
HEAP (segment) 117
hints

migration 121
programming 7

html (file format) 68
huge (memory model) 19

I
IAR Assembler Reference Guide iii
IAR C-SPY Debugger iii
IAR Embedded Workbench

reference information iii
User Guide iii

IDATA0 (segment) 117
IDATA1 (segment) 117
IDATA2 (segment) 117
identifiers, in implementation-defined behavior 136
implementation-defined behavior 135
inheritance, in Embedded C++ 10
initialization 32
inline assembler 15
input 25
input functions, in standard library 29
installation iii
int (data type) 3
integer types 2
integers

in implementation-defined behavior 138
internal error 158
Internet

browser 68
interrupt

functions 80, 110
handling 110
handling segments,
declaring 23
vector table 34
vectors, defining 111

intrinsic functions

INDEX

CM32C-2

163

asm 13, 15
summary 13
__break_instruction 13, 97
__disable_interrupt 13, 97
__enable_interrupt 14, 97
__interrupt_on_overflow 14, 98
__intrinsic_load_DCT 14, 98
__intrinsic_load_DMA 14, 98
__intrinsic_load_DMD 14, 98
__intrinsic_load_DRA 14, 99
__intrinsic_load_DRC 14, 99
__intrinsic_load_DSA 14, 99
__intrinsic_load_VCT 14, 99
__intrinsic_store_DCT 14, 100
__intrinsic_store_DMA 14, 100
__intrinsic_store_DMD 14, 100
__intrinsic_store_DRA 14, 100
__intrinsic_store_DRC 14, 101
__intrinsic_store_DSA 14, 101
__intrinsic_store_VCT 14, 101
__no_operation 15, 101
__overflow_flag_value 15, 102
__read_ipl 15, 102
__rmpa_instruction 15, 102
__set_interrupt_table 15, 102
__short_rmpa_instruction 15, 103
__software_interrupt 15, 103
__und_instruction 15, 103
__wait_for_interrupt 15, 104
__write_ipl 15, 104

INTVEC (segment) 111, 118
INTVEC1 (segment) 111, 118
iomacros.h 7
iomanip (library header file) 68
iomanip.h (library header file) 71
iom32c.h 7
ios (library header file) 69
iosfwd (library header file) 69

iostream (library header file) 69
iostream.h (library header file) 71
ISO/ANSI

C++ standard 10
specifying strict usage 58

ISO/ANSI prototypes 7
iso646.h (library header file) 70
ISTACK (segment) 119
istream (library header file) 69
I/O functions 29

customizing 30–31

K
keywords, extended 73

L
language

extensions, summary 11
facilities 1

language extensions
Embedded C++ 10
enabling 46
reference information 151

language (#pragma directive) 89
library documentation 68
library functions 67, 143

getchar 25
header files 68
in implementation-defined behavior 146
object files 67
printf 27
putchar 25
remove 29
rename 29
scanf 28

INDEX

CM32C-2

164

sprintf 27
sscanf 28
summary 64, 68
_ _close 29
_ _lseek 29
_ _open 29
_ _read 29
_ _readchar 29
_ _write 29
_ _writechar 29

library module, creating 49
library, run-time 24
limits.h (library header file) 70
linker command file 21

allocating writable segments 22
contents 22
declaring interrupt handling
segment 23
defining the CPU 22
input and output formatters 23
modifying 22
specifying 21
template 22

listing, generating 48
locale.h (library header file) 70
location (#pragma directive) 88
long (data type) 3
loop unrolling, disabling 53

M
math.h (library header file) 70
member functions 113

calling convention 84
in Embedded C++ 113

member variables 84
memory

default 19

model, choosing 19
model, specifying 20
non-initialized 12
usage, application 9

memory models
far 19
huge 19
near 19
specifying 49

migration 121
module name, specifying 50
monitor functions 82, 111

N
name, specifying for object file 54
NDATA0 (segment) 119
NDATA1 (segment) 119
NDATA2 (segment) 119
near (memory model) 19
new (library header file) 69
new.h (library header file) 71
non-initialized memory 12
non-volatile RAM 21
NO_INIT (segment) 21

O
object attribute (#pragma directive) 86
object filename, specifying 54
object module name, specifying 50
Og0001 (diagnostics) 158
optimization

code motion, disabling 51
common sub-expression elimination, disabling 52
function inlining, disabling 52
loop unrolling, disabling 53

INDEX

CM32C-2

165

size, specifying 60
speed, specifying 57

optimize (#pragma directive) 90
options summary, compiler 40
ostream (library header file) 69
output 25
output functions, in standard library 29
output, preprocessor 54
overview, product iii

P
pack (#pragma directive) 90
parameter passing 108
parameters

specifying 38
pdf (file format) 68
performance 1
pointer types 74
pointers 12, 139

code 5
data 5
default 19
function 5

polymorphism 10
porting of code 121
predefined symbols

__DATE__ 93
__FILE__ 93
__IAR_SYSTEMS_ICC__ 93
__LINE__ 94
__STDC__ 94
__STDC__VERSION__ 94
__TID__ 94
__TIME__ 95
__VER__ 95

preprocessing directives, in implementation-defined
behavior 141

preprocessor
output, directing to file 54
symbols, defining 43

printf 25
printf (library function) 27
printf, reduced 28
processor options 18

mapping 18
processor variant

specifying on command line 42, 58–59
product overview iii
programming hints 7
project options

setting in Embedded Workbench 18
prototypes, requiring 56
ptrdiff_t 5
putchar (library function) 25
putchar, customizing 26

Q
QCCM32C (environment variable) 39
qualifiers, in implementation-defined behavior 140

R
RAM, non-volatile 21
read formatter, selecting 29
register I/O 32
register usage 108
registers 139
remark (diagnostic message)

classifying 45
enabling 56

remarks 157
remove (library function) 29
rename (library function) 29

INDEX

CM32C-2

166

return values 109
RTMODEL 112
run-time

library 24
model 112

S
SBDATA (segment) 119
SBDATA16 (segment) 119
scanf (library function) 28
search procedure, #include files 47
segments 115

BITVARS 115
CDATA0 115
CDATA1 115
CDATA2 115
CODE 116
CONST0 116
CONST1 116
CONST2 116
CSTACK 116
FLIST 117
HEAP 117
IDATA0 117
IDATA1 117
IDATA2 117
INTVEC 118
INTVEC1 118
ISTACK 119
NDATA0 119
NDATA1 119
NDATA2 119
NO_INIT 21
SBDATA 119
SBDATA16 119
UDATA0 119
UDATA1 119

UDATA2 119
setjmp.h (library header file) 70
severity level 157

specifying 158
SFR 7
short (data type) 2
signal.h (library header file) 70
signed char (data type) 2

specifying 42
signed int (data type) 3
signed long (data type) 3
signed short (data type) 2
silent operation, specifying 57
size optimization

specifying 60
size_t 5
special function register 7
speed optimization

specifying 57
sprintf (library function) 27
sscanf (library function) 28
sstream (library header file) 69
stack

size 24
stack frames 110
standard error 54
standard output, specifying 54
statements, in implementation-defined behavior 141
stdarg.h (header file) 95
stdarg.h (library header file) 70
stddef.h (library header file) 70
stderr 30, 54
stdexcept (library header file) 69
stdin 30
stdio.h (library header file) 70
stdlib.h (library header file) 71
stdout 30, 54
storage 12

INDEX

CM32C-2

167

storage (extended keywords) 74
streambuf (library header file) 69
string (library header file) 69
string.h (library header file) 71
strstream (library header file) 69
structures

in implementation-defined behavior 139
symbols

preprocessor, defining 43
syntax

extended keywords 75

T
target identifier 94
target support 2
time.h (library header file) 71
translation, in implementation-defined behavior 135
tutorials iii
type attribute (#pragma directive) 85

U
UDATA0 (segment) 119
UDATA1 (segment) 119
UDATA2 (segment) 119
unions

in implementation-defined behavior 139
unsigned char (data type) 2

changing to signed char 42
unsigned int (data type) 3
unsigned long (data type) 3
unsigned short (data type) 2

V
variables, uninitialized 77

vector (#pragma directive) 88

W
warnings 157

classifying 45
disabling 53
exit code 59
treating as errors 59

wchar.h (library header file) 71
wctype.h (library header file) 71
writable segments, allocating in .xcl file 22
write formatter, selecting 28
writechar.c 30

X
XLINK command file 21
XLINK options, -A 26

Symbols
#include file paths, specifying 47
#include files, search procedure 47
#pragma directives 12, 85

constseg 88
dataseg 87
diagnostics 88
diag_default 89
diag_error 89
diag_remark 88
diag_suppress 89
diag_warning 89
language 89
location 88
object attribute 86
optimize 90

INDEX

CM32C-2

168

pack 90
type_attribute 85
vector 35, 88

-A (compiler option) 106
-A (XLINK option) 26
-D (compiler option) 43
-e (compiler option) 46
-I (compiler option) 47
-l (compiler option) 48
-m (compiler option) 49, 95
-md (M16/C compiler option) 131
-o (compiler option) 54
-R (compiler option) 55
-r (compiler option) 44, 55
-s (compiler option) 57
-U (compiler option) 58
-v (compiler option) 58–59, 95
-z (compiler option) 60
--char_is_signed (compiler option) 41
--code_segment (compiler option) 42
--cpu (compiler option) 42, 95
--debug (compiler option) 44, 55
--diag_error (compiler option) 44
--diag_remark (compiler option) 45
--diag_suppress (compiler option) 45
--diag_warning (compiler option) 45
--ec++ (compiler option) 46
--library_module (compiler option) 49
--memory_model (compiler option) 49
--module_name (compiler option) 50
--no_code_motion (compiler option) 51
--no_cse (compiler option) 52
--no_inline (compiler option) 52
--no_unroll (compiler option) 53
--no_warnings (compiler option) 53
--only_stdout (compiler option) 54
--preprocess (compiler option) 54
--remarks (compiler option) 56

--require_prototypes (compiler option) 56
--silent (compiler option) 57
--strict_ansi (compiler option) 58
--warnings_affect_exit_code (compiler option) 39, 59
--warnings_are_ errors (compiler option) 59
-2 (compiler option) 61
.xcl file 21
_ _close (library function) 29
_ _lseek (library function) 29
_ _open (library function) 29
_ _read (library function) 29
_ _readchar (library function) 29
_ _write (library function) 29
_ _writechar (library function) 29
_formatted_write (library
function) 27
_medium_write (library
function) 27
_small_write (library
function) 27
__bitvar (extended keyword) 73
__break_instruction (intrinsic function) 13, 97
__c_task (extended keyword) 13, 74, 82
__DATE__ (predefined symbol) 93
__disable_interrupt (intrinsic function) 13, 97
__enable_interrupt (intrinsic function) 14, 97
__far (extended keyword) 5, 73, 75, 78
__fast_interrupt (extended keyword) 13, 34, 73, 79
__FILE__ (predefined symbol) 93
__huge (extended keyword) 5, 73, 75
__IAR_SYSTEMS_ICC__ (predefined symbol) 93
__interrupt (extended keyword) 12, 34, 73, 79–80, 118
__interrupt_on_overflow (intrinsic function) 14, 98
__intrinsic (IAR keyword) 83
__intrinsic_load_DCT (intrinsic function) 14, 98
__intrinsic_load_DMA (intrinsic function) 14, 98
__intrinsic_load_DMD (intrinsic function) 14, 98
__intrinsic_load_DRA (intrinsic function) 14, 99
__intrinsic_load_DRC (intrinsic function) 14, 99

INDEX

CM32C-2

169

__intrinsic_load_DSA (intrinsic function) 14, 99
__intrinsic_load_VCT (intrinsic function) 14, 99
__intrinsic_store_DCT (intrinsic function) 14, 100
__intrinsic_store_DMA (intrinsic function) 14, 100
__intrinsic_store_DMD (intrinsic function) 14, 100
__intrinsic_store_DRA (intrinsic function) 14, 100
__intrinsic_store_DRC (intrinsic function) 14, 101
__intrinsic_store_DSA (intrinsic function) 14, 101
__intrinsic_store_VCT (intrinsic function) 14, 101
__LINE__ (predefined symbol) 94
__low_level_init 33
__monitor (extended keyword) 13, 74, 79, 82
__near (extended keyword) 5, 73, 75, 78
__no_init (extended keyword) 12, 73, 77
__no_operation (intrinsic function) 15, 101
__overflow_flag_value (intrinsic function) 15, 102
__read_ipl (intrinsic function) 15, 102
__regbank_interrupt (extended keyword) 13, 34, 73, 79
__rmpa_instruction (intrinsic function) 15, 102
__sbdata (extended keyword) 73
__sbdata16 (extended keyword) 73
__set_interrupt_table (intrinsic function) 15, 102
__short_rmpa_instruction (intrinsic function) 15, 103
__software_interrupt (intrinsic function) 15, 103
__STDC__ (predefined symbol) 94
__STDC__VERSION__ (predefined symbol) 94
__TID__ (predefined symbol) 94
__TIME__ (predefined symbol) 95
__tiny_func (extended keyword) 13, 74, 79
__und_instruction (intrinsic function) 15, 103
__VER__ (predefined symbol) 95
__wait_for_interrupt (intrinsic function) 15, 104
__write_ipl (intrinsic function) 15, 104

Numerics
64-bit floating point, specifying 61

INDEX

CM32C-2

170

	Contents
	Introduction to the M32C IAR C/C++ Compiler
	Key features
	Language facilities
	Performance
	Code generation
	Target support

	Data representation
	Integer types
	Floating-point types
	Bitfields

	Pointers
	Structures

	Programming hints
	Accessing special function registers
	Application memory usage

	Embedded C++ overview
	Language extensions
	Extended keywords and pragmas
	Intrinsic functions

	Configuration
	Introduction
	Processor
	Memory model
	Selecting memory model
	Specifying the memory model
	Memory location
	Non-volatile RAM

	Linker command file
	Specifying the linker command file
	Modifying the linker command file

	Run-time library
	Stack and heap size
	Estimating the required data stack size
	Changing the stack size

	Input and output using the IAR C Library
	Putchar and getchar
	printf and sprintf
	Selecting the write formatter version
	Reduced printf
	Scanf and sscanf
	Selecting read formatter version

	Input and output using the EC++ library
	I/O functions

	Register I/O
	Initialization
	Variable and I/O initialization
	Modifying CSTARTUP

	Interrupt system
	Interrupt keywords
	Interrupt vector table
	Interrupt vector table offset

	Compiler options
	Setting compiler options
	Environment variables
	Options summary
	--char_is_signed
	Syntax
	Description

	--code_segment, -R
	Description
	Syntax

	--cpu
	Syntax
	Description

	-D
	Syntax
	Description

	--debug, -r
	Syntax
	Description

	--diag_error
	Syntax
	Description

	--diag_remark
	Syntax
	Description

	--diag_suppress
	Syntax
	Description

	--diag_warning
	Syntax
	Description

	-e
	Syntax
	Description

	--ec++
	Syntax
	Description

	-I
	Syntax
	Description

	-l
	Syntax
	Description

	--library_module
	Syntax
	Description

	-m, --memory_model
	Syntax
	Description

	--module_name
	Syntax
	Description

	--no_code_motion
	Syntax
	Description

	--no_cse
	Syntax
	Description

	--no_inline
	Syntax
	Description

	--no_unroll
	Syntax
	Description

	--no_warnings
	Syntax
	Description

	-o
	Syntax
	Description

	--only_stdout
	Syntax
	Description

	--preprocess
	Syntax
	Description

	--R, --code_segment
	Description
	Syntax

	-r, --debug
	Syntax
	Description

	--remarks
	Syntax
	Description

	--require_prototypes
	Syntax
	Description

	-s
	Syntax
	Description

	--silent
	Syntax
	Description

	--strict_ansi
	Syntax
	Description

	-U
	Syntax
	Description

	-v
	Syntax
	Description

	--warnings_affect _exit_code
	Syntax
	Description

	--warnings_are_ errors
	Syntax
	Description

	-z
	Syntax
	Description

	-2
	Syntax
	Description

	C library functions
	Introduction
	Library object files
	Header files

	Library definitions summary
	math functions

	EC++ library functions
	Introduction
	Library object files
	Header files
	Viewing the C library documentation

	Library definitions summary
	Embedded C++
	Using standard C libraries in EC++
	Standard C
	Compatibility with standard C++

	Extended keywords reference
	Summary of extended keywords
	Storage
	Uninitialized variables
	Absolute location
	SB-relative data access
	Relocatable bit variables

	Functions
	Interrupt functions
	Monitor functions
	C task Functions
	Intrinsic

	Embedded C++

	#pragma directives reference
	Type attribute
	Object attribute
	Dataseg
	Constseg
	Location
	Vector
	Diagnostics
	diag_remark
	diag_warning
	diag_error
	diag_default
	diag_suppress

	Language
	Optimize
	Pack

	Predefined symbols reference
	__DATE__
	Syntax
	Description

	__FILE__
	Syntax
	Description

	__IAR_SYSTEMS_ICC__
	Syntax
	Description

	__LINE__
	Syntax
	Description

	__STDC__
	Syntax
	Description

	__STDC_VERSION__
	syntax
	description

	__TID__
	Syntax
	Description

	__TIME__
	Syntax
	Description

	__VER__
	Syntax
	Description
	Example

	Intrinsic functions reference
	__break_instruction
	Syntax
	Description

	__disable_interrupt
	Syntax
	Description

	__enable_interrupt
	Syntax
	Description

	__interrupt_on_overflow
	Syntax
	Description

	__intrinsic_load_DCT
	Syntax
	Description

	__intrinsic_load_DMA
	Syntax
	Description

	__intrinsic_load_DMD
	Syntax
	Description

	__intrinsic_load_DRA
	Syntax
	Description

	__intrinsic_load_DRC
	Syntax
	Description

	__intrinsic_load_DSA
	Syntax
	Description

	__intrinsic_load_VCT
	Syntax
	Description

	__intrinsic_store_DCT
	Syntax
	Description

	__intrinsic_store_DMA
	Syntax
	Description

	__intrinsic_store_DMD
	Syntax
	Description

	__intrinsic_store_DRA
	Syntax
	Description

	__intrinsic_store_DRC
	Syntax
	Description

	__intrinsic_store_DSA
	Syntax
	Description

	__intrinsic_store_VCT
	Syntax
	Description

	__no_operation
	Syntax
	Description

	__overflow_flag_value
	Syntax
	Description

	__read_ipl
	Syntax
	Description

	__rmpa_instruction
	Syntax
	Description

	__set_interrupt_table
	Syntax
	Description

	__short_rmpa_instruction
	Syntax
	Description

	__software_interrupt
	Syntax
	Description

	__und_instruction
	Syntax
	Description

	__wait_for_interrupt
	Syntax
	Description

	__write_ipl
	Syntax
	Description

	Assembler language interface
	Creating a shell
	C calling convention
	Register usage and parameter passing
	Return values
	Stack frames

	Interrupt handling
	Interrupt functions
	Interrupt stack frames
	DEFINING INTERRUPT VECTORS

	Monitor functions
	Calling assembler routines from C
	Run-time model
	Embedded C++

	Segment reference
	Bitvars
	Type
	Description

	Cdata0, Cdata1, Cdata2
	Type
	Description

	Code
	Type
	Description

	Const0, Const1, Const2
	Type
	Description

	Cstack
	Type
	Description

	Flist
	Type
	Description

	Heap
	Type
	Memory area
	Description

	Idata0, Idata1, Idata2
	Type
	Description

	Intvec
	Type
	Description

	Intvec1
	Type
	Description

	Istack
	Type
	Description

	Ndata0, Ndata1, Ndata2
	Type
	Description

	Sbdata, Sbdata16
	Type
	Description

	Udata0, Udata1, Udata2
	Type
	Description

	Migration hints
	Introduction
	Extended keywords
	__Near, __far, and __huge
	__no_init
	__interrupt
	__monitor
	using
	SFR and bit

	#pragma directives
	Predefined symbols
	Intrinsic functions
	C compiler options
	Command line syntax
	Filenames
	List files
	Object file format
	Nested comments
	Preprocessor file
	Cross-reference information
	Sizeof in preprocessor directives

	Segments

	Implementation-defined behavior
	Translation
	Diagnostics (5.1.1.3)

	Environment
	Arguments to main (5.1.2.2.2.1)
	Interactive devices (5.1.2.3)

	Identifiers
	Significant characters without external linkage (6.1.2)
	Significant characters with external linkage (6.1.2)
	Case distinctions are significant (6.1.2)

	Characters
	Source and execution character sets (5.2.1)
	Bits per character in execution character set (5.2.4.2.1)
	Mapping of characters (6.1.3.4)
	Unrepresented character constants (6.1.3.4)
	Character constant with more than one character (6.1.3.4)
	Converting multibyte characters (6.1.3.4)
	Range of 'plain' char (6.2.1.1)

	Integers
	Range of integer values (6.1.2.5)
	Demotion of integers (6.2.1.2)
	Signed bitwise operations (6.3)
	Sign of the remainder on integer division (6.3.5)
	Negative valued signed right shifts (6.3.7)

	Floating point
	Representation of floating-point values (6.1.2.5)
	Converting integer values to floating-point values (6.2.1.3)
	Demoting floating-point values (6.2.1.4)

	Arrays and pointers
	size_t (6.3.3.4, 7.1.1)
	Conversion from/to pointers (6.3.4)
	ptrdiff_t (6.3.6, 7.1.1)

	Registers
	Honoring the register keyword (6.5.1)

	Structures, unions, enumerations, and bitfields
	Improper access to a union (6.3.2.3)
	Padding and alignment of structure members (6.5.2.1)
	Sign of 'plain' bitfields (6.5.2.1)
	Allocation order of bitfields within a unit (6.5.2.1)
	Can bitfields straddle a storage-unit boundary (6.5.2.1)
	Integer type chosen to represent enumeration types (6.5.2.2)

	Qualifiers
	Access to volatile objects (6.5.3)

	Declarators
	Maximum numbers of declarators (6.5.4)

	Statements
	Maximum number of case statements (6.6.4.2)

	Preprocessing directives
	Character constants and conditional inclusion (6.8.1)
	Including bracketed filenames (6.8.2)
	Including quoted filenames (6.8.2)
	Character sequences (6.8.2)
	Recognized #pragma directives (6.8.6)
	Default _ _DATE_ _ and _ _TIME_ _ (6.8.8)

	C library functions
	NULL macro (7.1.6)
	Diagnostic printed by the assert function (7.2)
	Domain errors (7.5.1)
	Underflow of floating-point values sets errno to ERANGE (7.5.1)
	fmod() functionality (7.5.6.4)
	Signal() (7.7.1.1)
	Terminating newline character (7.9.2)
	Blank lines (7.9.2)
	Null characters appended to data written to binary streams (7.9.2)
	Files (7.9.3)
	Remove() (7.9.4.1)
	Rename() (7.9.4.2)
	%p in printf() (7.9.6.1)
	%p in scanf() (7.9.6.2)
	Reading ranges in scanf() (7.9.6.2)
	File position errors (7.9.9.1, 7.9.9.4)
	Message generated by perror() (7.9.10.4)
	Allocating zero bytes of memory (7.10.3)
	Behavior of abort() (7.10.4.1)
	Behavior of exit() (7.10.4.3)
	Environment (7.10.4.4)
	System() (7.10.4.5)
	Message returned by strerror() (7.11.6.2)
	The time zone (7.12.1)
	Clock() (7.12.2.1)

	EC++ library functions
	NULL macro (7.1.6)
	Diagnostic printed by the assert function (7.2)
	Domain errors (7.5.1)
	Underflow of floating-point values sets errno to ERANGE (7.5.1)
	fmod() functionality (7.5.6.4)
	signal() (7.7.1.1)
	Terminating newline character (7.9.2)
	Blank lines (7.9.2)
	Null characters appended to data written to binary streams (7.9.2)
	Files (7.9.3)
	remove() (7.9.4.1)
	rename() (7.9.4.2)
	%p in printf() (7.9.6.1)
	%p in scanf() (7.9.6.2)
	Reading ranges in scanf() (7.9.6.2)
	File position errors (7.9.9.1, 7.9.9.4)
	Message generated by perror() (7.9.10.4)
	Allocating zero bytes of memory (7.10.3)
	Behavior of abort() (7.10.4.1)
	Behavior of exit() (7.10.4.3)
	Environment (7.10.4.4)
	system() (7.10.4.5)
	Message returned by strerror() (7.11.6.2)
	The time zone (7.12.1)
	clock() (7.12.2.1)

	IAR C extensions
	Available extensions
	Extensions accepted in normal EC++ mode
	Language features not accepted in EC++

	Diagnostics
	Severity levels
	Setting the severity level
	Internal error
	Example

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Symbols
	Numerics

