
MMAXQ-1

MAXQ IAR Embedded
Workbench®

Migration Guide

for Dallas Semiconductor/Maxim’s
MAXQ Microcontroller

MMAXQ-1

COPYRIGHT NOTICE
© Copyright 2004–2006 IAR Systems. All rights reserved.

No part of this document may be reproduced without the prior written consent of IAR
Systems. The software described in this document is furnished under a license and may
only be used or copied in accordance with the terms of such a license.

DISCLAIMER
The information in this document is subject to change without notice and does not
represent a commitment on any part of IAR Systems. While the information contained
herein is assumed to be accurate, IAR Systems assumes no responsibility for any errors
or omissions.

In no event shall IAR Systems, its employees, its contractors, or the authors of this
document be liable for special, direct, indirect, or consequential damage, losses, costs,
charges, claims, demands, claim for lost profits, fees, or expenses of any nature or kind.

TRADEMARKS
IAR Systems, From Idea to Target, IAR Embedded Workbench, visualSTATE, IAR
MakeApp and C-SPY are trademarks owned by IAR Systems AB.

Dallas Semiconductor/Maxim is a registered trademark of Dallas
Semiconductor/Maxim. MAXQ is a trademark of Dallas Semiconductor/Maxim.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

All other product names are trademarks or registered trademarks of their respective
owners.

EDITION NOTICE

First edition: March 2006

Part number: MMAXQ-1

This guide applies to version 2.x of MAXQ IAR Embedded Workbench®.

Contents
Migrating from version 1.xx to version 2.xx 1

The migration process ... 1

IAR Embedded Workbench IDE .. 1

Workspace and projects ... 1

C-SPY® layout files .. 2

Code and data models .. 2

Linker considerations ... 2

Runtime library and object files considerations 3

Compiling and linking with the DLIB runtime library 3

Program entry ... 4

Migrating from CLIB to DLIB .. 5
MMAXQ-1

iii

iv
MMAXQ-1

MAXQ IAR Embedded Workbench®
Migration Guide

Migrating from version
1.xx to version 2.xx
This chapter gives hints for porting your application code and projects to the
new version 2.xx.

C source code that was originally written for the MAXQ IAR C Compiler
version 1.xx can be used also with the new MAXQ IAR C Compiler version
2.xx. However, some small modifications may be required.

This guide presents the major differences between the MAXQ IAR Embedded
Workbench version 1.xx and the MAXQ IAR Embedded Workbench version
2.xx, and describes the migration considerations.

The migration process
In short, to migrate your old project consider the following:

● Some minor changes in the IAR Embedded Workbench IDE
● Project setup related to the new code and data models
● Runtime library and object files considerations.

Note that not all items in the list may be relevant for your project. Consider carefully
what actions are needed in your case.

IAR Embedded Workbench IDE
Upgrading to the new version of the IAR Embedded Workbench IDE should be a
smooth process as the improvements do not affect the compatibility between the
versions.

WORKSPACE AND PROJECTS

The workspaces and projects you have created with 1.xx are compatible with 2.xx. Note
that there are some differences in the project settings. Therefore, make sure to check
the options carefully. For further information, see Code and data models, page 2.
MMAXQ-1

1

2

Code and data models
C-SPY® LAYOUT FILES

Due to a new improved window management system, the C-SPY layout files support in
1.xx has been removed. Any custom-made lew files can safely be removed from your
projects.

Code and data models
In version 2.xx, two code models and two data models have been introduced. These are
mechanisms for flexible utilization of code and data memory, and for some applications
can lead to smaller code size. These models are also good for portability reasons as no
target-specific keywords are needed.

In short about the code models:

● The Small code model is segmented and suitable for devices with less than 64
Kbytes program memory or applications with lots of constant data

● The Large code model is linear and suitable for larger devices and for applications
that can have its constant data in RAM. This code model is only available for the
MAXQ20 core.

Use the --code_model={small|large} option to choose code model for your
project.

In short about the data models:

● The Small data model can access the low 256 bytes of the data memory space
● The Large data model can access the entire 64 Kbytes of the data memory space.

Use the --data_model={small|large} option to choose data model for your
project.

For more detailed information, see the MAXQ IAR C Compiler Reference Guide.

LINKER CONSIDERATIONS

If you have created your own customized linker command file, compare this file with
the original file in the old installation and make the required changes in a copy of the
corresponding file in the new installation. Note that the new code and data models also
introduces some changes among the linker segments.
MMAXQ-1

MAXQ IAR Embedded Workbench®
Migration Guide

Migrating from version 1.xx to version 2.xx
Linker segments for holding data

All segment names previously named DATA_suffix have changed names to
DATA16_suffix. These segments are used by default to hold data when compiling
using the Large data model, and for data that is explicitly declared __data16. In
addition, a new set of segments, DATA8_suffix, have been added for holding data
when compiling using the Small data model and for data explicitly declared __data8.

Linker segments for holding code

In version 2.xx, the following code segments are new or have modified behavior:

● The CODE segment holds __near_func program code and constant data when
compiling using the --place_const_in_code option

● The LCODE segment holds program code in the Large code model.

The segments FARCODE and RCODE have the same behavior as in version 1.xx.

Runtime library and object files considerations
In version 2.xx, two sets of runtime libraries are provided—CLIB and DLIB. CLIB
corresponds to the runtime library provided with version 1.xx, and it can be used in the
same way as before. However, for changes related to DLIB, see Compiling and linking
with the DLIB runtime library, page 3.

To build code produced by version 2.xx of the compiler, you must use the runtime
environment components it provides. It is not possible to link object code produced
using version 2.xx with components provided with version 1.xx.

For information about how to migrate from CLIB to DLIB, see Migrating from CLIB to
DLIB, page 5. For more information about the two libraries, and the runtime
environment they provide see the MAXQ IAR C Compiler Reference Guide.

COMPILING AND LINKING WITH THE DLIB RUNTIME
LIBRARY

In earlier versions, the choice of runtime library did not have any impact on the
compilation. In MAXQ IAR Embedded Workbench version 2.xx, this has changed.
Now you can configure the runtime library to contain the features that are needed by
your application.

One example is input and output. An application might use the fprintf function for
terminal I/O (stdout), but might not use file I/O functionality on file descriptors
associated with the files. In this case the library can be configured so that code related
to file I/O is removed but still provides terminal I/O functionality.
MMAXQ-1

3

4

Runtime library and object files considerations
This configuration involves the library header files, for example stdio.h. In other
words, when you build your application, the same header file setup must be used as
when the library was built. The library setup is specified in a library configuration file,
which defines the library functionality.

When you build an application using the IAR Embedded Workbench IDE, there are
three library configuration alternatives to choose between: Normal, Full, and Custom.
Normal and Full are prebuilt library configurations delivered with the product, where
Normal should be used in the above example with file I/O. Custom is used for custom
built libraries. Note that the choice of the library configuration file is handled
automatically.

When building an application from the command line, you must use the same library
configuration file as when the library was built. For the prebuilt libraries (r66) there is
a corresponding library configuration file (h), which has the same name as the library.
The files are located in the maxq\lib directory. The command lines for specifying the
library configuration file and library object file could look like this:

iccmaxq -dlib_config <install_dir>\maxq\lib\dlib
dlmaxq10fsln.h

xlink dlmaxq10fsln.r66

In case you intend to build your own library version, use the default library configuration
file dlMaxqCustom.h.

To take advantage of the new features, it is recommended that you read about the
runtime environment in the MAXQ IAR C Compiler Reference Guide.

PROGRAM ENTRY

By default, the linker includes all root declared segment parts in program modules
when building an application. However, there is a new mechanism that affects the load
procedure.

The new linker option Entry label (-s) specifies a start label. By specifying the start
label, the linker will look in all modules for a matching start label, and start loading from
that point. As before, any program modules containing a root segment part will also be
loaded.

In version 2.xx, the default program entry label in cstartup.s66 is
__program_start, which means the linker will start loading from there. The
advantage of this new behavior is that it is much easier to override cstartup.s66.

If you build your application in the IAR Embedded Workbench IDE, you might simply
add a customized cstartup file to your project. It will then be used instead of the
cstartup module in the library. It is also possible to switch startup files just by
overriding the name of the program entry point.
MMAXQ-1

MAXQ IAR Embedded Workbench®
Migration Guide

Migrating from version 1.xx to version 2.xx
If you build your application from the command line, the -s option must be explicitly
specified when you link a C application. If you link without the option, the resulting
output executable file will be empty, because no modules were referred to.

MIGRATING FROM CLIB TO DLIB

There are some considerations to have in mind if you want to migrate from the CLIB,
the legacy C library, to the modern DLIB C/C++ library:

● The CLIB exp10 function defined in iccext.h is not available in DLIB.
● The DLIB library uses the low-level I/O routines __write and __read instead of

putchar and getchar.
● If the heap size in your version 1.xx project (using CLIB) was defined in a file

named heap.c, you must now set the heap size either in the extended linker
command file (*.xcl) or in the Embedded Workbench IDE to use the DLIB library.

You should also see the chapter The DLIB runtime environment in the MAXQ IAR C
Compiler Reference Guide.
MMAXQ-1

5

	Contents
	Migrating from version 1.xx to version 2.xx
	The migration process
	IAR Embedded Workbench IDE
	Workspace and projects
	C-SPY® layout files

	Code and data models
	Linker considerations
	Linker segments for holding data
	Linker segments for holding code

	Runtime library and object files considerations
	Compiling and linking with the DLIB runtime library
	Program entry
	Migrating from CLIB to DLIB

