IAR Embedded Workbench®

IAR Assembler Reference Guide

for the Texas Instruments

MSP430 Microcontroller Family
-

o

©IAR

A430-4 SYSTEMS

COPYRIGHT NOTICE
© 1995-2016 TIAR Systems AB.

No part of this document may be reproduced without the prior written consent of IAR
Systems AB. The software described in this document is furnished under a license and
may only be used or copied in accordance with the terms of such a license.

DISCLAIMER

The information in this document is subject to change without notice and does not
represent a commitment on any part of [AR Systems. While the information contained
herein is assumed to be accurate, IAR Systems assumes no responsibility for any errors
or omissions.

In no event shall IAR Systems, its employees, its contractors, or the authors of this
document be liable for special, direct, indirect, or consequential damage, losses, costs,
charges, claims, demands, claim for lost profits, fees, or expenses of any nature or kind.

TRADEMARKS

IAR Systems, IAR Embedded Workbench, C-SPY, C-RUN, C-STAT, visualSTATE,
Focus on Your Code, IAR KickStart Kit, [AR Experiment!, I-jet, I-jet Trace, I-scope,
IAR Academy, IAR, and the logotype of IAR Systems are trademarks or registered
trademarks owned by IAR Systems AB.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

Texas Instruments is a registered trademark of Texas Instruments Corporation. MSP430
is a trademark of Texas Instruments Corporation.

Adobe and Acrobat Reader are registered trademarks of Adobe Systems Incorporated.

All other product names are trademarks or registered trademarks of their respective
owners.

EDITION NOTICE
Fourth edition: June 2016

Part number: A430-4

This guide applies to version 6.x of IAR Embedded Workbench® for Texas
Instruments’s MSP430 microcontroller family.

Internal reference: M20, asrct2010.3, IMAE.

Contents

TADIES ..o 7
PrEface ... 9
Who should read this guide ... 9
How to use this guide ... 9
What this guide contains ..., 10
Document conVeNntions ... 10
Introduction to the IAR Assembler for MSP430 13
Introduction to assembler programming ... 13
GEtting StATTEA ..vevvvereieriiiieeieeieeteee ettt 13
Modular programming ... 14
External interface detailsc.coovvviiiin e, 15
Assembler iNVOCAtION SYNEAX ..cc.eevverrueeruerieriienieenieeieeieeresresieenieenees 15
PasSing OPLIONSccevuirereriririnieceteie ettt 16
Environment variablesccccoceereririeiiienceneneeseseeeeeeeaen 16
EITor return COARSc.coiviininininiiiiicicicieeese e 16
SoUrce fOrMALoovi e 17
Assembler instructions ..o 17
Expressions, operands, and operatorsc.ccoconivniennnnee. 18
Integer constants
ASCII character CONSANLScc.eeverueeieirerieierienierieneseeseeseereeeeeeneenees 19
Floating-point CONSLANESccceevierierierierieetenieetesite st sieeieesee e 19
TRUE and FALSEoooiiieeeeeeee et 20
SYMDOIS ittt 20
LabeLS ..ot
Register symbols
Predefined SymDbOIScccoeririninirieieicceceseeeee e 21
Absolute and relocatable eXpressionscceccevvereereeneenieeneeneennes 23
EXPression reStriCtions ...c..c.coeeevereeieieeentenienienenenenieseeeeeeeeenens 24
List file format ..o 25

HEAAET ..ttt 25

SUMMATY c.oteiiiiiiiiiecte ettt et ettt saeeseee b enee s 25
Symbol and cross-reference tablec..ccccocevievievineninicninienieeeene 25
Programming hints ... 26
Accessing special function registerscooceveeverieriiereenieeneeneenne 26
Using C-style preprocessor dir€CtiVesoceueeerverrerreneniereneeeeeene 26
Tracking call frame usage ... 26
Call frame information OVEIVIEWcccccceevvevievienienenenenieneneeeenens 27
Call frame information in more detailccccocevvereririnicicncncnnne 28
Defining a names blOCKccceeiriririniieieieiccneeeeee 28
Defining a common blOCKcoceriiiriiniiniiniiieiceceeceeeee 29
Annotating your source code within a data blockcc.ccceeveeenennene 30
Specifying rules for tracking resources and the stack depth 31
Using CFI expressions for tracking complex casesc..coceeeeueeneee 33

Stack usage analysis directives

Examples of using CFI dir€Ctivescccceceeereerieneneneneneneeeeneenes 34
AsSemMbIer OPLIONS ... 37
Using command line assembler options ... 37
Specifying options and their parametersccccovveeveereeneenerneennnen. 37
Extended command line file ... 38
Summary of assembler options ... 38
Description of assembler options ..., 39
AsSSEMDIEr OPErators ... 55
Precedence of assembler operators ..o 55
Summary of assembler operators ... 55
Parenthesis operator
UNAry OPEIAtOrSoocvirviiieiiieeiieniecieeteeee et
Multiplicative arithmetic OPeratorscc.eceveevverereneneneneeeeeenees 56
Additive arithmetic OPEratorsceceeeeieieierienerieneneseneeeeeenea 56
Shift OPEIALOTScveiiiiriiriiniiriieitceceee ettt 57
AND OPETALOTS ...cuteueeueinieiirenienieeteeiteit ettt see et sve s nees 57
OR OPEIALOLS .cuveenvieiieiieieeiteete ettt e et ete et sae e sbee st esbeeaee s 57
COmMPATISON OPETALOLS ...vcvveuvereriertiriieriereeneeneentererentessesiesiessesseeseeneens 57

IAR Assembler
Reference Guide for MSP430

Contents °

Description of assembler operators ... 58
Assembler direCtives ... 71
Summary of assembler directives ... 71
Description of assembler directives ..o, 76
Assembler diagnoStiCs ... 125
Message fOrmat ...
Severity levels ...
Options for diagnostics
Assembly Warning MeSSaZESc..coevververriereneeeeeeeerrenuenenerenienne 125
Command line eIror MESSAZESceeereereereerverrenrenrenrenreneeeereeeeene 126
ASSEMDIY EITOT MESSAZES ...euveveeeienienienieienieniesiesieereesteteneesteseesaenaens 126
Assembly fatal €1ror MmeSSAZEScocveveveniiniinrinrieieieierereenenene 126
Assembler internal eIror MESSAZESeeveuveverrerierererereeeereeeeneens 126
INAEX s 127

IAR Assembler
Reference Guide for MSP430

Tables

1: Typographic conventions used in this UIAEcc.cccevervieieiieiienieneiinercneenee 10
2: Naming conventions used in this gUIdecccceevieiriiriieiienienienenerererese e 11
3: Assembler environment vVariablesc..c.ccoevirinininininiteieeeee e 16
4: Assembler error return COUGScoerimiririririeieieientesestesie ettt ettt see e eaeas 16
5: Integer constant formats 18
6: ASCII character constant fOrmatscocceceeeereerieienieneninieeeeererereresesenieene 19
7: Floating-pOint CONSANESc..eeeeteiertiriertentinienteettetetetestestestesreseesseebeeseeseeeenaeneens 19
8: Predefined re@iSter SYMDOLScceveririirieieienieieieseseee ettt 21
9: Predefined SYMDOIScccouiriiriininiiiieiccccenee et 21
10: Symbol and cross-reference tableccoccoeverereninininieeeeeeeee e 25
11: Code sample with call frame informationcccceveeverieriinieniienieneneeneee 34
12: Assembler Options SUMIMATYccccccveverierererrinsiereereeeetetensensesessessesseeseeeeeens 38
13: Assembler directives summary -..... .11
14: Module control directives 76
15: Symbol control dir€CtIVEScccceerueeueruieieiiienienienesteetete ettt 80
16: Mode CONLIOl AITECLIVES ...coveeueruiriiriieiieiieieiere sttt ettt 82
17: Segment CONIOl AITECHIVESccuevuvirieriiriiiriienite ettt sttt 84
18: Value assignment dir€CtIVESecveruerueriereneniniiniierietetetererere s ene 89
19: Macro processing dir€CtIVESo.eeerueruieieierierierieniestenieeieeseeeetetensensestesiesiesienne
20: Listing cOntrol dir€CtIVESccueeruerrierierieeienitenitesiee ettt st seee e eas

21: C-style preprocessor dir€CtiVESc.ccoevereeirieienienieneneneneeeeieeeeeeresnesnenes

22: Data definition or allocation directives ...

23: Assembler control dir€CtivVesccecierieriinieniininieieieiceieiee e

24: Call frame information directives names block

25: Call frame information directives common block

26: Call frame information directives for data blocksc.ceccvevenceinicreccncnnenee 120
27: Unary operators in CFL @XPIresSionscececeevevenieneneneneeeeeeneeneensenrenennes 122
28: Binary operators in CFL eXPressionscceceverereneneneeneeneenienieneenreseneennes 122
29: Ternary operators in CFL @Xpressionscoccevveveenieneenieeneenieenieeneseeeveenens 123
30: Call frame information directives for tracking resources and CFAs

31:

Call frame information directives for stack usage analysisc..cccceeverrerennenne.

IAR Assembler
Reference Guide for MSP430

Preface

Welcome to the IAR Assembler Reference Guide for MSP430. The purpose
of this guide is to provide you with detailed reference information that can
help you to use the IAR Assembler for MSP430 to develop your application
according to your requirements.

Who should read this guide

You should read this guide if you plan to develop an application, or part of an
application, using assembler language for the MSP430 microcontroller and need to get
detailed reference information on how to use the IAR Assembler for MSP430. In
addition, you should have working knowledge of the following:

o The architecture and instruction set of the MSP430 microcontroller (refer to the
chip manufacturer’s documentation)

o General assembler language programming

o Application development for embedded systems

o The operating system of your host computer.

How to use this guide

When you first begin using the IAR Assembler Reference Guide, you should read the
chapter Introduction to the IAR Assembler for MSP430.

If you are an intermediate or advanced user, you can focus more on the reference
chapters that follow the introduction.

If you are new to using the IAR Embedded Workbench, we recommend that you first
work through the tutorials, which you can find in the IAR Information Center and which
will help you get started using IAR Embedded Workbench.

What this guide contains

10

What this guide contains

Below is a brief outline and summary of the chapters in this guide.

o [ntroduction to the IAR Assembler for MSP430 provides programming information.
It also describes the source code format, and the format of assembler listings.

o Assembler options first explains how to set the assembler options from the
command line and how to use environment variables. It then gives an alphabetical
summary of the assembler options, and contains detailed reference information
about each option.

® Assembler operators gives a summary of the assembler operators, arranged in order
of precedence, and provides detailed reference information about each operator.

o Assembler directives gives an alphabetical summary of the assembler directives, and
provides detailed reference information about each of the directives, classified into
groups according to their function.

o Assembler diagnostics contains information about the formats and severity levels of
diagnostic messages.

Document conventions

IAR Assembler
Reference Guide for MSP430

When, in the IAR Systems documentation, we refer to the programming language C, the
text also applies to C++, unless otherwise stated.

When referring to a directory in your product installation, for example 430\ doc, the full
path to the location is assumed, for example c¢: \Program Files\IAR
Systems\Embedded Workbench N.n\430\doc, where the initial digit of the version
number reflects the initial digit of the version number of the IAR Embedded Workbench
shared components.

TYPOGRAPHIC CONVENTIONS
The IAR Systems documentation set uses the following typographic conventions:

Style Used for

computer * Source code examples and file paths.
* Text on the command line.
* Binary, hexadecimal, and octal numbers.

parameter A placeholder for an actual value used as a parameter, for example
filename.h where filename represents the name of the file.

[option] An optional part of a directive, where [and] are not part of the actual
directive, but any [,], {, or } are part of the directive syntax.

Table 1: Typographic conventions used in this guide

Style Used for

Preface __4

{option} A mandatory part of a directive, where { and } are not part of the
actual directive, butany [, 1, {, or } are part of the directive syntax.

[option] An optional part of a command.

[a]b|c] An optional part of a command with alternatives.

{a|b|c} A mandatory part of a command with alternatives.

bold Names of menus, menu commands, buttons, and dialog boxes that

appear on the screen.

italic * A cross-reference within this guide or to another guide.

* Emphasis.

An ellipsis indicates that the previous item can be repeated an arbitrary

number of times.

interface.

Identifies warnings.

Identifies instructions specific to the IAR Embedded Workbench® IDE

Identifies instructions specific to the command line interface.

Identifies helpful tips and programming hints.

Table 1: Typographic conventions used in this guide (Continued)

NAMING CONVENTIONS

The following naming conventions are used for the products and tools from IAR

Systems®, when referred to in the documentation:

Brand name

Generic term

IAR Embedded Workbench® for MSP430

IAR Embedded Workbench® IDE for MSP430

IAR C-SPY® Debugger for MSP430
IAR C-SPY® Simulator

IAR C/C++ Compiler™ for MSP430
IAR Assembler™ for MSP430

IAR XLINK Linker™

IAR XAR Library Builder™

IAR XLIB Librarian™

IAR DLIB Runtime Environment™

IAR Embedded Workbench®
the IDE

C-SPY, the debugger

the simulator

the compiler

the assembler

XLINK, the linker

the library builder

the librarian

the DLIB runtime environment

Table 2: Naming conventions used in this guide

Document conventions

Brand name Generic term

IAR CLIB Runtime Environment™ the CLIB runtime environment

Table 2: Naming conventions used in this guide (Continued)

IAR Assembler
12 Reference Guide for MSP430

Introduction to the IAR
Assembler for MSP430

e Introduction to assembler programming
e Modular programming

e External interface details

e Source format

e Assembler instructions

e Expressions, operands, and operators

o List file format

e Programming hints

e Tracking call frame usage

Introduction to assembler programming
Even if you do not intend to write a complete application in assembler language, there
might be situations where you find it necessary to write parts of the code in assembler,
for example, when using mechanisms in the MSP430 microcontroller that require
precise timing and special instruction sequences.

To write efficient assembler applications, you should be familiar with the architecture
and instruction set of the MSP430 microcontroller. Refer to the Texas Instruments
hardware documentation for syntax descriptions of the instruction mnemonics.

GETTING STARTED
To ease the start of the development of your assembler application, you can:

o Work through the tutorials—especially the one about mixing C and assembler
modules—that you find in the Information Center

o Read about the assembler language interface—also useful when mixing C and
assembler modules—in the /AR C/C++ Compiler Reference Guide for MSP430

Modular programming

14

o In the IAR Embedded Workbench IDE, you can base a new project on a template
for an assembler project.

Modular programming

IAR Assembler
Reference Guide for MSP430

Itis widely accepted that modular programming is a prominent feature of good software
design. If you structure your code in small modules—in contrast to one single
monolith—you can organize your application code in a logical structure, which makes
the code easier to understand, and which aids:

e efficient program development
e reuse of modules

® maintenance.

The IAR development tools provide different facilities for achieving a modular structure
in your software.

Typically, you write your assembler code in assembler source files. In each source file
you define one or several assembler modules, using the module control directives. Each
module has a name and a type, where the type can be either PROGRAM or LIBRARY. The
linker always includes a PROGRAM module, whereas a LIBRARY module is only included
in the linked code if other modules refer to a public symbol in the module. You can
divide each module further into subroutines.

A segment is a logical entity containing a piece of data or code that should be mapped
to a physical location in memory. Use the segment control directives to place your code
and data in segments. A segment can be either absolute or relocatable. An absolute
segment always has a fixed address in memory, whereas the address for a relocatable
segment is resolved at link time. Segments let you control how your code and data is
placed in memory. Each segment consists of many segment parts. A segment part is the
smallest linkable unit, which allows the linker to include only those units that are
referred to.

If you are working on a large project you will soon accumulate a collection of useful
routines that are used by several of your applications. To avoid ending up with a huge
amount of small object files, collect modules that contain such routines in a library
object file. In the IAR Embedded Workbench IDE, you can set up a library project, to
collect many object files in one library. For an example, see the tutorials in the
Information Center.

To summarize, your software design benefits from modular programming, and to
achieve a modular structure you can:

o Create many small modules, either one per source file, or many modules per file by
using the module directives

Introduction to the IAR Assembler for MSP430 ___o

e In each module, divide your assembler source code into small subroutines
(corresponding to functions on the C level)

e Divide your assembler source code into segments, to gain more precise control of
how your code and data finally is placed in memory

e Collect your routines in libraries, which means that you can reduce the number of
object files and make the modules conditionally linked.

External interface details

This section provides information about how the assembler interacts with its

environment:

® Assembler invocation syntax, page 15

® Passing options, page 16

® [Environment variables, page 16

® Error return codes, page 16
You can use the assembler either from the IAR Embedded Workbench IDE or from the
command line. Refer to the /AR Embedded Workbench® IDE User Guide for MSP430
for information about using the assembler from the IAR Embedded Workbench IDE.

ASSEMBLER INVOCATION SYNTAX
The invocation syntax for the assembler is:
a430 [options] [sourcefile] [options]

For example, when assembling the source file prog. s43, use this command to generate
an object file with debug information:

a430 prog -r

By default, the IAR Assembler for MSP430 recognizes the filename extensions s43,
asm, and msa for source files. The default filename extension for assembler output is
rd3.

Generally, the order of options on the command line, both relative to each other and to
the source filename, is not significant. However, there is one exception: when you use
the -I option, the directories are searched in the same order that they are specified on the
command line.

If you run the assembler from the command line without any arguments, the assembler
version number and all available options including brief descriptions are directed to
stdout and displayed on the screen.

External interface details

16

IAR Assembler
Reference Guide for MSP430

PASSING OPTIONS
You can pass options to the assembler in three different ways:

e Directly from the command line

Specity the options on the command line after the a430 command; see Assembler
invocation syntax, page 15.

e Via environment variables

The assembler automatically appends the value of the environment variables to every
command line, so it provides a convenient method of specifying options that are
required for every assembly; see Environment variables, page 16.

e Via a text file by using the - £ option; see -f, page 42.

For general guidelines for the option syntax, an options summary, and more information
about each option, see the Assembler options chapter.

ENVIRONMENT VARIABLES
You can use these environment variables with the AR Assembler:

Environment variable Description

ASM430 Specifies command line options; for example:
set ASM430=-L -ws

ASM430_INC Specifies directories to search for include files; for example:
set ASM430_INC=c:\myinc\

Table 3: Assembler environment variables

For example, setting this environment variable always generates a list file with the name
temp.lst:

set ASM430=-1 temp.lst

For information about the environment variables used by the IAR XLINK Linker and
the IAR XLIB Librarian, see the [AR Linker and Library Tools Reference Guide.
ERROR RETURN CODES

When using the IAR Assembler from within a batch file, you might have to determine
whether the assembly was successful to decide what step to take next. For this reason,
the assembler returns these error return codes:

Return code Description
0 Assembly successful, warnings might appear.
1 Warnings occurred (only if the -ws option is used).

Table 4: Assembler error return codes

Introduction to the IAR Assembler for MSP430 ___4

Return code Description

2 Errors occurred.

Table 4: Assembler error return codes (Continued)

Source format

The format of an assembler source line is as follows:
[label [:]] [operation] [operands] [; comment]

where the components are as follows:

label A definition of a label, which is a symbol that represents
an address. If the label starts in the first column—that is, at
the far left on the line—the : (colon) is optional.

operation An assembler instruction or directive. This must not start
in the first column—there must be some whitespace to the
left of it.

operands An assembler instruction or directive can have zero, one,

or more operands. The operands are separated by commas
or whitespaces.

comment Comment, preceded by a ; (semicolon)

C or C++ comments are also allowed.

The components are separated by spaces or tabs.
A source line cannot exceed 2047 characters.

Tab characters, ASCII 09H, are expanded according to the most common practice; i.e.
to columns 8, 16, 24 etc. This affects the source code output in list files and debug
information. Because tabs might be set up differently in different editors, do not use tabs
in your source files.

Assembler instructions

The IAR Assembler for MSP430 supports the syntax for assembler instructions as
described in the Texas Instruments hardware documentation. It complies with the
requirement of the MSP430 architecture on word alignment. Any instructions in a code
segment placed on an odd address results in an error.

8-bit instructions have the suffix .b, 16-bit instructions have the suffix .w, and 20-bit
instructions have the suffix .a.

Expressions, operands, and operators

18

Expressions, operands, and operators

IAR Assembler
Reference Guide for MSP430

Expressions consist of expression operands and operators.

The assembler accepts a wide range of expressions, including both arithmetic and
logical operations. All operators use 32-bit two’s complement integers. Range checking
is performed if a value is used for generating code.

Expressions are evaluated from left to right, unless this order is overridden by the
priority of operators; see also Assembler operators.

These operands are valid in an expression:

o Constants for data or addresses, excluding floating-point constants.

o Symbols—symbolic names—which can represent either data or addresses, where
the latter also is referred to as labels.

o The program location counter (PLC), $ (dollar).

The operands are described in greater detail on the following pages.

INTEGER CONSTANTS

Because all IAR Systems assemblers use 32-bit two’s complement internal arithmetic,
integers have a (signed) range from -2147483648 to 2147483647.

Constants are written as a sequence of digits with an optional - (minus) sign in front to
indicate a negative number.

Commas and decimal points are not permitted.

The following types of number representation are supported:

Integer type Example

Binary 1010b,b"1010

Octal 1234q,q'1234

Decimal 1234,-1,d4'1234
Hexadecimal OFFFFh, OXFFFF, h'FFFFE

Table 5: Integer constant formats

Note: Both the prefix and the suffix can be written with either uppercase or lowercase
letters.

Introduction to the IAR Assembler for MSP430 ___4

ASCIlI CHARACTER CONSTANTS

ASCII constants can consist of any number of characters enclosed in single or double
quotes. Only printable characters and spaces can be used in ASCII strings. If the quote
character itself will be accessed, two consecutive quotes must be used:

Format Value

'ABCD' ABCD (four characters).

"ABCD" ABCD'\O0"' (five characters the last ASCII null).
'A''B' A'B

N <

"' (4 quotes) '

"' (2 quotes) Empty string (no value).

"" (2 double quotes) Empty string (an ASCII null character).

\! ', for quote within a string, asin 'I\'d love to'
\\ \, for \ within a string
A\ ", for double quote within a string

Table 6: ASCII character constant formats

FLOATING-POINT CONSTANTS

The IAR Assembler accepts floating-point values as constants and converts them into
IEEE single-precision (signed 32-bit) floating-point format or fractional format.

Floating-point numbers can be written in the format:
[+]|-1[digits].[digits] [{E|e}[+]|-1digits]

This table shows some valid examples:

Format Value

10.23 1.023 x 10
1.23456E-24 1.23456 x 104
1.0E3 1.0 x 103

Table 7: Floating-point constants
Spaces and tabs are not allowed in floating-point constants.

Note: Floating-point constants do not give meaningful results when used in expressions.

Expressions, operands, and operators

20

IAR Assembler
Reference Guide for MSP430

The MSP430 single and double precision floating-point format

The IAR Assembler for MSP430 supports the Texas Instruments single and double
precision floating-point format. For a description of this format, see the MSP430
documentation provided by Texas Instruments.

TRUE AND FALSE

In expressions a zero value is considered FALSE, and a non-zero value is considered
TRUE.

Conditional expressions return the value O for FALSE and 1 for TRUE.

SYMBOLS

User-defined symbols can be up to 255 characters long, and all characters are
significant. Depending on what kind of operation a symbol is followed by, the symbol
is either a data symbol or an address symbol where the latter is referred to as a label. A
symbol before an instruction is a label and a symbol before, for example the EQU
directive, is a data symbol. A symbol can be:

e absolute—its value is known by the assembler

e relocatable—its value is resolved at link time.

Symbols must begin with a letter, a—z or A—Z, ? (question mark), or _ (underscore).
Symbols can include the digits 0-9 and $ (dollar).

Symbols may contain any printable characters if they are quoted with * (backquote), for
example:

‘strange#label’

Case is insignificant for built-in symbols like instructions, registers, operators, and
directives. For user-defined symbols, case is by default significant but can be turned on
and off using the Case sensitive user symbols (-s) assembler option. For more
information, see -s, page 51.

Use the symbol control directives to control how symbols are shared between modules.
For example, use the PUBLIC directive to make one or more symbols available to other
modules. The EXTERN directive is used for importing an untyped external symbol.

Note that symbols and labels are byte addresses. For more information, see Data
definition or allocation directives, page 111.

LABELS

Symbols used for memory locations are referred to as labels.

Introduction to the IAR Assembler for MSP430 ___4

Program location counter (PLC)

The assembler keeps track of the start address of the current instruction. This is called
the program location counter.

If you must refer to the program location counter in your assembler source code, use the
$ (dollar) sign. For example:

BR S ; Loop forever
REGISTER SYMBOLS
This table shows the existing predefined register symbols:
Name Size Description
R4-R15 16 bits General purpose registers
PC 16 bits Program counter
SP 16 bits Stack pointer
SR 16 bits Status register

Table 8: Predefined register symbols

PREDEFINED SYMBOLS

The IAR Assembler defines a set of symbols for use in assembler source files. The
symbols provide information about the current assembly, allowing you to test them in
preprocessor directives or include them in the assembled code. The strings returned by
the assembler are enclosed in double quotes.

These predefined symbols are available:

Symbol Value

__A430__ An integer that is set to 1 when the code is assembled
with the IAR Assembler for MSP430.

_ _BUILD_NUMBER_ _ A unique integer that identifies the build number of the
assembler currently in use. The build number does not
necessarily increase with an assembler that is released
later.

__CORE__ An integer that identifies the processor core in use. The
symbol reflects the —v option and is defined to
__430_CORE__ for the MSP430 architecture and to
__430X_CORE_ _ for the MSP430X architecture. These
symbolic names can be used when testing the __ CORE_ __
symbol.

Table 9: Predefined symbols

21

Expressions, operands, and operators

22

IAR Assembler
Reference Guide for MSP430

Symbol

Value

__CODE_MODEL_ _

__DATA_MODEL_ _

__DATE_ _
__FILE_ _

__IAR_SYSTEMS_ASM__

__LINE__

_ _REGISTER_MODEL__

__ROPI_

TID

__SUBVERSION_ _

__TIME__

VER,

An integer that identifies the code model. The symbol
reflects the --code_model option and is defined to
_ _CODE_MODEL_SMALL_ _ for the small code model
and to __CODE_MODEL_LARGE_ _ for the large code
model. These symbolic names can be used when testing
the __CODE_MODEL__ symbol.

An integer that identifies the data model. The symbol
reflects the --data_model option and is defined to one
of __DATA_MODEIL_SMALI,_ _,
__DATA_MODEL_MEDIUM_ _, and
__DATA_MODEL_LARGE_ _. These symbolic names can
be used when testing the __ DATA_MODEL_ _ symbol.

The current date in dd/Mmm/yyyy format (string).
The name of the current source file (string).

IAR assembler identifier (number). Note that the number
could be higher in a future version of the product. This
symbol can be tested with #1ifdef to detect whether the
code was assembled by an assembler from IAR Systems.

The current source line number (number).

An integer that identifies whether the data model
supports 20-bit registers. For the Small data model, this is
equal to __REGISTER_MODEL_REG16__ and for the
Medium and Large data models, it is equal to
__REGISTER_MODEL_REG20__. These symbolic
names can be used when testing the
__REGISTER_MODEL__ symbol.

The integer 1 when the --ropi command line option is
used, and undefined otherwise.

Target identity, consisting of two bytes (number). The high
byte is the target identity, which is 43 for a430.

An integer that identifies the subversion number of the
assembler version number, for example 3 in 1.2.3.4.

The current time in hh:mm: ss format (string).

The version number in integer format; for example,
version 4.17 is returned as 417 (number).

Table 9: Predefined symbols (Continued)

Introduction to the IAR Assembler for MSP430 ___o

C/C++ Compiler for MSP430. It is described in the IJAR C/C++ Compiler Reference
Guide for MSP430.

Note: The symbol __TID__ is related to the predefined symbol __TID__ in the IAR

Including symbol values in code

Several data definition directives make it possible to include a symbol value in the code.
These directives define values or reserve memory. To include a symbol value in the code,
use the symbol in the appropriate data definition directive.

For example, to include the time of assembly as a string for the program to display:

name timeOfAssembly
extern printStr
rseg CODE : CODE
printTime mov.w #time, rl2 ; Load address of time string
; in ril2
call #printStr ; Call string output routine.
ret
rseg DATA16_C:DATA
time: dc8 _ TIME_ ; String representing the
; time of assembly.
end

Testing symbols for conditional assembly

To test a symbol at assembly time, use one of the conditional assembly directives. These
directives let you control the assembly process at assembly time.

For example, if you want to assemble separate code sections depending on whether you
are using an old assembler version or a new assembler version, do as follows:

#if (__VER__ > 300) ; New assembler version
#else ; 01d assembler version
#endif

For more information, see Conditional assembly directives, page 91.

ABSOLUTE AND RELOCATABLE EXPRESSIONS

Depending on what operands an expression consists of, the expression is either absolute
or relocatable. Absolute expressions are those expressions that only contain absolute
symbols or relocatable symbols that cancel each other out.

23

Expressions, operands, and operators

24

IAR Assembler
Reference Guide for MSP430

Expressions that include symbols in relocatable segments cannot be resolved at
assembly time, because they depend on the location of segments. These are referred to
as relocatable expressions.

Such expressions are evaluated and resolved at link time, by the IAR xlink Linker. There
are no restrictions on the expression; any operator can be used on symbols from any
segment, or any combination of segments.

For example, a program could define absolute and relocatable expressions as follows:

name simpleExpressions
rseg CONST : CONST
extern size
first dc8 5 ; A relocatable label.
second equ 10 + 5 ; An absolute expression.
dc8 first ; Examples of some legal
dc8 first + 1 ; relocatable expressions.
dc8 first + second
dc8 first + 8 * gize
end

Note: At assembly time, there is no range check. The range check occurs at link time
and, if the values are too large, there is a linker error.
EXPRESSION RESTRICTIONS

Expressions can be categorized according to restrictions that apply to some of the
assembler directives. One such example is the expression used in conditional statements
like 1F, where the expression must be evaluated at assembly time and therefore cannot
contain any external symbols.

The following expression restrictions are referred to in the description of each directive
they apply to.

No forward

All symbols referred to in the expression must be known, no forward references are
allowed.

No external

No external references in the expression are allowed.

Absolute

The expression must evaluate to an absolute value; a relocatable value (segment offset)
is not allowed.

Introduction to the IAR Assembler for MSP430 ___4

Fixed

The expression must be fixed, which means that it must not depend on variable-sized
instructions. A variable-sized instruction is an instruction that might vary in size
depending on the numeric value of its operand.

List file format

The format of an assembler list file is as follows:

HEADER

The header section contains product version information, the date and time when the file
was created, and which options were used.

BODY

The body of the listing contains the following fields of information:

o The line number in the source file. Lines generated by macros, if listed, have a .
(period) in the source line number field.

o The address field shows the location in memory, which can be absolute or relative
depending on the type of segment. The notation is hexadecimal.

o The data field shows the data generated by the source line. The notation is
hexadecimal. Unresolved values are represented by (periods), where two periods
signify one byte. These unresolved values are resolved during the linking process.

® The assembler source line.

SUMMARY

The end of the file contains a summary of errors and warnings that were generated.

SYMBOL AND CROSS-REFERENCE TABLE

When you specify the Include cross-reference option, or if the LSTXRF+ directive was
included in the source file, a symbol and cross-reference table is produced.

This information is provided for each symbol in the table:

Information Description

Symbol The symbol’s user-defined name.

Mode ABS (Absolute), or REL (Relocatable).

Segments The name of the segment that this symbol is defined relative to.

Table 10: Symbol and cross-reference table

25

Programming hints

Information Description

Value/Offset The value (address) of the symbol within the current module, relative to
the beginning of the current segment part.

Table 10: Symbol and cross-reference table (Continued)

Programming hints

This section gives hints on how to write efficient code for the IAR Assembler. For
information about projects including both assembler and C or C++ source files, see the
IAR C/C++ Compiler Reference Guide for MSP430.

ACCESSING SPECIAL FUNCTION REGISTERS

Specific header files for several MSP430 devices are included in the IAR Systems
product package, in the 430\ inc directory. These header files define the
processor-specific special function registers (SFRs) and interrupt vector numbers.

The header files are intended to be used also with the IAR C/C++ Compiler for MSP430.

If any assembler-specific additions are needed in the header file, you can easily add
these in the assembler-specific part of the file:

#ifdef _ IAR_SYSTEMS_ASM_
; Add your assembler-specific defines here.
#endif

USING C-STYLE PREPROCESSOR DIRECTIVES

The C-style preprocessor directives are processed before other assembler directives.
Therefore, do not use preprocessor directives in macros and do not mix them with
assembler-style comments. For more information about comments, see Assembler
control directives, page 114.

C-style preprocessor directives like #define are valid in the remainder of the source
code file, while assembler directives like EQU only are valid in the current module.

Tracking call frame usage

In this section, these topics are described:

o Call frame information overview, page 27

o Call frame information in more detail, page 28
These tasks are described:

® Defining a names block, page 28

IAR Assembler
26 Reference Guide for MSP430

Introduction to the IAR Assembler for MSP430 ___o

Defining a common block, page 29

Annotating your source code within a data block, page 30
Specifying rules for tracking resources and the stack depth, page 31
Using CFI expressions for tracking complex cases, page 33

Stack usage analysis directives, page 33

Examples of using CFI directives, page 34

For reference information, see:

Call frame information directives for names blocks, page 117
Call frame information directives for common blocks, page 119

Call frame information directives for data blocks, page 120

Call frame information directives for tracking resources and CFAs, page 121

Call frame information directives for stack usage analysis, page 124

CALL FRAME INFORMATION OVERVIEW

Call frame information (CFI) is information about the call frames. Typically, a call
frame contains a return address, function arguments, saved register values, compiler
temporaries, and local variables. Call frame information holds enough information
about call frames to support two important features:

o C-SPY can use call frame information to reconstruct the entire call chain from the
current PC (program counter) and show the values of local variables in each function
in the call chain.

o Call frame information can be used, together with information about possible calls
for calculating the total stack usage in the application. Note that this feature might
not be supported by the product you are using.

The compiler automatically generates call frame information for all C and C++ source
code. Call frame information is also typically provided for each assembler routine in the
system library. However, if you have other assembler routines and want to enable C-SPY
to show the call stack when executing these routines, you must add the required call
frame information annotations to your assembler source code. Stack usage can also be
handled this way (by adding the required annotations for each function call), but you can
also specify stack usage information for any routines in a stack usage control file (see
the /AR C/C++ Compiler Reference Guide for MSP430), which is typically easier.

27

Tracking call frame usage

28

IAR Assembler
Reference Guide for MSP430

CALL FRAME INFORMATION IN MORE DETAIL

You can add call frame information to assembler files by using c£i directives. You can
use these to specify:

o The start address of the call frame, which is referred to as the canonical frame
address (CFA). There are two different types of call frames:

o On a stack—stack frames. For stack frames the CFA is typically the value of the
stack pointer after the return from the routine.

o In static memory, as used in a static overlay system—static overlay frames. This
type of call frame is not required by the MSP430 microcontroller and is thus not
supported.

e How to find the return address.

e How to restore various resources, like registers, when returning from the routine.
When adding the call frame information for each assembler module, you must:
1 Provide a names block where you describe the resources to be tracked.

2 Provide a common block where you define the resources to be tracked and specify
their default values. This information must correspond to the calling convention
used by the compiler.

3 Annotate the resources used in your source code, which in practice means that you
describe the changes performed on the call frame. Typically, this includes
information about when the stack pointer is changed, and when permanent registers
are stored or restored on the stack.

To do this you must define a data block that encloses a continuous piece of source
code where you specify rules for each resource to be tracked. When the descriptive
power of the rules is not enough, you can instead use CFI expressions.

A full description of the calling convention might require extensive call frame
information. In many cases, a more limited approach will suffice. The recommended
way to create an assembler language routine that handles call frame information
correctly is to start with a C skeleton function that you compile to generate assembler
output. For an example, see the /AR C/C++ Compiler Reference Guide for MSP430.

DEFINING A NAMES BLOCK

A names block is used for declaring the resources available for a processor. Inside the
names block, all resources that can be tracked are defined.

Start and end a names block with the directives:

CFI NAMES name
CFI ENDNAMES name

Introduction to the IAR Assembler for MSP430 ___4

where name is the name of the block.
Only one names block can be open at a time.

Inside a names block, four different kinds of declarations can appear: a resource
declaration, a stack frame declaration, a static overlay frame declaration, and a base
address declaration:

o To declare a resource, use one of the directives:

CFI RESOURCE resource : bits
CFI VIRTUALRESOURCE resource : bits

The parameters are the name of the resource and the size of the resource in bits. A
virtual resource is a logical concept, in contrast to a “physical” resource such as a
processor register. Virtual resources are usually used for the return address.

To declare more than one resource, separate them with commas.

A resource can also be a composite resource, made up of at least two parts. To declare
the composition of a composite resource, use the directive:

CFI RESOURCEPARTS resource part, part,

The parts are separated with commas. The resource and its parts must have been
previously declared as resources, as described above.

o To declare a stack frame CFA, use the directive:
CFI STACKFRAME cfa resource type

The parameters are the name of the stack frame CFA, the name of the associated
resource (the stack pointer), and the memory type (to get the address space). To
declare more than one stack frame CFA, separate them with commas.

When going “back” in the call stack, the value of the stack frame CFA is copied into
the associated stack pointer resource to get a correct value for the previous function
frame.

DEFINING A COMMON BLOCK

The common block is used for declaring the initial contents of all tracked resources.
Normally, there is one common block for each calling convention used.

Start a common block with the directive:
CFI COMMON name USING namesblock

where name is the name of the new block and namesblock is the name of a previously
defined names block.

Declare the return address column with the directive:

CFI RETURNADDRESS resource type

29

Tracking call frame usage

30

IAR Assembler
Reference Guide for MSP430

where resource is a resource defined in namesblock and type is the memory in
which the calling function resides. You must declare the return address column for the
common block.

Inside a common block, you can declare the initial value of a CFA or a resource by using
the directives available for common blocks, see Call frame information directives for
common blocks, page 119. For more information about how to use these directives, see
Specifying rules for tracking resources and the stack depth, page 31 and Using CFI
expressions for tracking complex cases, page 33.

End a common block with the directive:
CFI ENDCOMMON name

where name is the name used to start the common block.

ANNOTATING YOUR SOURCE CODE WITHIN A DATA
BLOCK

The data block contains the actual tracking information for one continuous piece of
code.

Start a data block with the directive:
CFI BLOCK name USING commonblock

where name is the name of the new block and commonb1ock is the name of a previously
defined common block.

If the piece of code for the current data block is part of a defined function, specify the
name of the function with the directive:

CFI FUNCTION label
where label is the code label starting the function.

If the piece of code for the current data block is not part of a function, specify this with
the directive:

CFI NOFUNCTION

End a data block with the directive:

CFI ENDBLOCK name

where name is the name used to start the data block.

Inside a data block, you can manipulate the values of the resources by using the
directives available for data blocks, see Call frame information directives for data
blocks, page 120. For more information on how to use these directives, see Specifying
rules for tracking resources and the stack depth, page 31, and Using CFI expressions for
tracking complex cases, page 33.

Introduction to the IAR Assembler for MSP430 ___o

SPECIFYING RULES FOR TRACKING RESOURCES AND THE
STACK DEPTH

To describe the tracking information for individual resources, two sets of simple rules
with specialized syntax can be used:
o Rules for tracking resources

CFI resource { UNDEFINED | SAMEVALUE | CONCAT }

CFI resource { resource | FRAME (cfa, offset) }
o Rules for tracking the stack depth (CFAs)

CFI cfa { NOTUSED | USED }

CFI cfa { resource | resource + constant | resource - constant }
You can use these rules both in common blocks to describe the initial information for

resources and CFAs, and inside data blocks to describe changes to the information for
resources or CFAs.

In those rare cases where the descriptive power of the simple rules are not enough, you
can use a full CFI expression with dedicated operators to describe the information, see
Using CFI expressions for tracking complex cases, page 33. However, whenever
possible, you should always use a rule instead of a CFI expression.

Rules for tracking resources

The rules for resources conceptually describe where to find a resource when going back
one call frame. For this reason, the item following the resource name in a CFI directive
is referred to as the Jocation of the resource.

To declare that a tracked resource is restored, in other words, already correctly located,
use SAMEVALUE as the location. Conceptually, this declares that the resource does not
have to be restored because it already contains the correct value. For example, to declare
that a register R11 is restored to the same value, use the directive:

CFI R11 SAMEVALUE

To declare that a resource is not tracked, use UNDEFINED as location. Conceptually, this
declares that the resource does not have to be restored (when going back one call frame)
because it is not tracked. Usually it is only meaningful to use it to declare the initial
location of a resource. For example, to declare that R11 is a scratch register and does not
have to be restored, use the directive:

CFI R11 UNDEFINED

31

Tracking call frame usage

32

IAR Assembler
Reference Guide for MSP430

To declare that a resource is temporarily stored in another resource, use the resource
name as its location. For example, to declare that a register R11 is temporarily located
in a register R12 (and should be restored from that register), use the directive:

CFI R11 R12

To declare that aresource is currently located somewhere on the stack, use FRAME (cfa,
offset) as location for the resource, where cfa is the CFA identifier to use as “frame
pointer” and of fset is an offset relative the CFA. For example, to declare that a register
R11 is located at offset —4 counting from the frame pointer CFA_SP, use the directive:

CFI R11 FRAME (CFA_SP,-4)

For a composite resource there is one additional location, CONCAT, which declares that
the location of the resource can be found by concatenating the resource parts for the
composite resource. For example, consider a composite resource RET with resource
parts RETLO and RETHI. To declare that the value of RET can be found by investigating
and concatenating the resource parts, use the directive:

CFI RET CONCAT

This requires that at least one of the resource parts has a definition, using the rules
described above.

Rules for tracking the stack depth (CFAs)

In contrast to the rules for resources, the rules for CFAs describe the address of the
beginning of the call frame. The call frame often includes the return address pushed by
the assembler call instruction. The CFA rules describe how to compute the address of
the beginning of the current stack frame.

Each stack frame CFA is associated with a stack pointer. When going back one call
frame, the associated stack pointer is restored to the current CFA. For stack frame CFAs
there are two possible rules: an offset from a resource (not necessarily the resource
associated with the stack frame CFA) or NOTUSED.

To declare that a CFA is not used, and that the associated stack pointer should be tracked
as a normal resource, use NOTUSED as the address of the CFA. For example, to declare
that the CFA with the name CFA_SP is not used in this code block, use the directive:

CFI CFA_SP NOTUSED

To declare that a CFA has an address that is offset relative the value of a resource, specify
the stack pointer and the offset. For example, to declare that the CFA with the name
CFA_SP can be obtained by adding 4 to the value of the SP resource, use the directive:

CFI CFA_SP SP + 4

Introduction to the IAR Assembler for MSP430 ___o

USING CFI EXPRESSIONS FOR TRACKING COMPLEX CASES

You can use call frame information expressions (CFI expressions) when the descriptive
power of the rules for resources and CFAs is not enough. However, you should always
use a simple rule if there is one.

CFI expressions consist of operands and operators. Three sets of operators are allowed
in a CFI expression:

e Unary operators
e Binary operators

e Ternary operators
In most cases, they have an equivalent operator in the regular assembler expressions.

In this example, R12 is restored to its original value. However, instead of saving it, the
effect of the two post increments is undone by the subtract instruction.

AddTwo:
cfi block addTwoBlock using myCommon
cfi function addTwo
cfi nocalls
cfi rl2 samevalue
add @rl2+, rl3
cfi rl2 sub(rl2, 2)
add @rl2+, rl3
cfi rl2 sub(rl2, 4)
sub #4, rl2
cfi rl2 samevalue
ret
cfi endblock addTwoBlock

For more information about the syntax for using the operators in CFI expressions, see
Call frame information directives for tracking resources and CFAs, page 121.

STACK USAGE ANALYSIS DIRECTIVES

The stack usage analysis directives (CFI FUNCALL, CFI TAILCALL, CFI
INDIRECTCALL, and CFI NOCALLS) are used for building a call graph which is needed
for stack usage analysis. These directives can be used only in data blocks. When the data
block is a function block (in other words, when the CFI FUNCTION directive has been
used in the data block), you should not specify a caller parameter. When a stack usage
analysis directive is used in code that is shared between functions, you must use the

caller parameter to specify which of the possible functions the information applies to.

The CFI FUNCALL, CFI TAILCALL, and CFI INDIRECTCALL directives must be placed
immediately before the instruction that performs the call. The CFI NOCALLS directive
can be placed anywhere in the data block.

33

Tracking call frame usage

34

IAR Assembler
Reference Guide for MSP430

EXAMPLES OF USING CFI DIRECTIVES

The following is a generic example of how to add and use the required CFI directives.
The example is not specific to the MSP430 microcontroller. To obtain an example
specific to the microcontroller you are using, generate assembler output when you
compile a C source file.

Consider a generic processor with a stack pointer sp, and two registers RO and R1.
Register RO is used as a scratch register (the register may be destroyed by a function
call), whereas register R1 must be restored after the function call. To simplify, all
instructions, registers, and addresses are assumed to have a width of 16 bits.

Consider the following short code example with the corresponding call frame
information. At entry, assume that the stack contains a 16-bit return address. The stack
grows from high addresses toward zero. The CFA denotes the top of the call frame, in
other words, the value of the stack pointer after returning from the function.

Address CFA RO RI RET Assembler code

0000 SP+2 Undefined SAME CFA -2 funcl: PUSH R1
0002 SP + 4 CFA -4 MOV R1,#4
0004 CALL func2
0006 POP RO
0008 SP+2 RO MOV R1,RO
000A SAME RET

Table 11: Code sample with call frame information

Each row describes the state of the tracked resources before the execution of the
instruction. As an example, for the MOV R1, RO instruction the original value of the R1
register is located in the RO register and the top of the function frame (the CFA column)
is Sp + 2. The row at address 0000 is the initial row and the result of the calling
convention used for the function.

The RET column is the return address column—that is, the location of the return
address. The value of RO is undefined because it does not need to be restored on exit
from the function. The R1 column has SAME in the initial row to indicate that the value
of the R1 register will be restored to the same value it already has.

Defining the names block

The names block for the small example above would be:

cfi names trivialNames
cfi resource SP:16, R0:16, R1:16
cfi stackframe CFA SP DATA

Introduction to the IAR Assembler for MSP430 ___4

; The virtual resource for the return address column.

cfi
cfi

virtualresource RET:16
endnames trivialNames

Defining the common block

The common block for the simple example above would be:

cfi
cfi
cfi
cfi
cfi

common trivialCommon using trivialNames
returnaddress RET DATA

CFA SP + 2

RO undefined

R1 samevalue

; Offset -2 from top of frame.

cfi
cfi

RET frame (CFA,-2)

endcommon trivialCommon

Note: sp cannot be changed using a CFI directive as it is the resource associated with

CFA.

Annotating your source code within a data block

You should place the CFI directives at the point where the call frame information has
changed, in other words, immediately affer the instruction that changes the call frame

information.

Continuing the simple example, the data block would be:

rseg
cfi
cfi

funcl push
cfi
cfi
mov
call
pop
cfi
cfi
mov
cfi
ret
cfi

CODE : CODE
block funclblock using trivialCommon
function funcl

rl

CFA SP + 4

R1 frame (CFA, -4)
rl,#4

func?2

r0

R1 RO

CFA SP + 2
rl,r0

R1 samevalue

endblock funclblock

35

Tracking call frame usage

IAR Assembler
36 Reference Guide for MSP430

Assembler options

e Using command line assembler options
e Summary of assembler options

e Description of assembler options

Using command line assembler options

Assembler options are parameters you can specify to change the default behavior of the
assembler. You can specify options from the command line—which is described in more
detail in this section—and from within the IAR Embedded Workbench® IDE.

The IAR Embedded Workbench® IDE User Guide for MSP430 describes how to set
assembler options in the IDE, and gives reference information about the available
options.

SPECIFYING OPTIONS AND THEIR PARAMETERS

To set assembler options from the command line, include them after the a430 command:

a430 [options] [sourcefile] [options]
These items must be separated by one or more spaces or tab characters.

If all the optional parameters are omitted, the assembler displays a list of available
options a screenful at a time. Press Enter to display the next screenful.

For example, when assembling the source file power2 . s43, use this command to
generate a list file to the default filename (power2.1st):

a430 power2.s43 -L

Some options accept a filename, included after the option letter with a separating space.
For example, to generate a list file with the name 1ist.1lst:

a430 power2.s43 -1 list.lst

Some other options accept a string that is not a filename. This is included after the option
letter, but without a space. For example, to generate a list file to the default filename but
in the subdirectory named list:

ad430 power2.s43 -Llist)\

Note: The subdirectory you specify must already exist. The trailing backslash is
required to separate the name of the subdirectory from the default filename.

37

Summary of assembler options

EXTENDED COMMAND LINE FILE

In addition to accepting options and source filenames from the command line, the
assembler can accept them from an extended command line file.

By default, extended command line files have the extension xc1, and can be specified
using the - £ command line option. For example, to read the command line options from

extend.xcl, enter:

a430 -f extend.xcl

Summary of assembler options

This table summarizes the assembler options available from the command line:

Command line option

Description

-B
-c
--code_model
-D
--data_model
-E
-f

--macro_positions_in
_diagnostics

-N

-n

Macro execution information
Conditional list

Specifies the code model to use
Defines preprocessor symbols
Specifies the data model to use
Maximum number of errors
Extends the command line
Opens standard input as source

Disables the automatic search for system include
files

Enables workaround for hardware issue CPU6
Enables workarounds for various hardware issues
Adds a search path for a header file

Lists #included text

Generates a list file to path

Generates a list file

Macro quote characters

Obtains positions inside macros in diagnostic
messages

Omits header from the assembler listing

Enables support for multibyte characters

Table 12: Assembler options summary

IAR Assembler
38 Reference Guide for MSP430

Command line option

Assembler options ___¢

Description

--no_path_in_file_macros

--no_ubrof_messages

--system_include_dir

-t

Removes the path from the return value of the
symbols __FILE__ and __BASE_FILE__

Suppresses UBROF error messages in object files
Sets the object filename to path

Sets the object filename

Sets the number of lines per page in the list file
Generates debug information.

Specifies position-independent code and read-only
data

Sets silent operation

Case-sensitive user symbols

Specifies the path for system include files
Tab spacing

Undefines a symbol

Selects the processor core

Disables warnings

Includes cross-references

Table 12: Assembler options summary (Continued)

Description of assembler options

The following sections give detailed reference information about each assembler option.

Syntax

Description

A

Note that if you use the page Extra Options to specify specific command line options,
the IDE does not perform an instant check for consistency problems like conflicting
options, duplication of options, or use of irrelevant options.

-B

Use this option to make the assembler print macro execution information to the standard
output stream for every call to a macro. The information consists of:

® The name of the macro
o The definition of the macro

o The arguments to the macro

39

Description of assembler options

o The expanded text of the macro.

This option is mainly used in conjunction with the list file options -L or -1.

See also -L, page 45.

Project>Options>Assembler >List>Macro execution info

-C

Syntax -c{D|M|E|Aa|0O}

Parameters
D Disables list file
M Includes macro definitions
E Excludes macro expansions
A Includes assembled lines only
0 Includes multiline code

Description Use this option to control the contents of the assembler list file.

This option is mainly used in conjunction with the list file options -L or -1.

See also -L, page 45.

To set related options, select:

Project>Options>Assembler >List

--code_model

Syntax --code_model{small|large}
Parameters
small Specifies the Small code model.
large Specifies the Large code model.
Description Use this option to specify the code model to use. Effectively, this option defines the

predefined preprocessor symbol __CODE_MODEL_ _.

IAR Assembler
40 Reference Guide for MSP430

See also

Syntax

Parameters

Description

Example

--data_model

Syntax

Parameters

Assembler options ___¢

Predefined symbols, page 21

To set this option, use Project>Options>Assembler>Extra Options.

-Dsymbol[=value]

symbol The name of the symbol you want to define.

value The value of the symbol. If no value is specified, 1 is used.

Use this option to define a symbol to be used by the preprocessor.

You might want to arrange your source code to produce either the test version or the
production version of your application, depending on whether the symbol TESTVER was
defined. To do this, use include sections such as:

#ifdef TESTVER

.. ; additional code lines for test version only
#endif
Then select the version required on the command line as follows:

Production version: a430 prog
Test version: 2430 prog -DTESTVER

Alternatively, your source might use a variable that you must change often. You can then
leave the variable undefined in the source, and use -D to specify the value on the
command line; for example:

a430 prog -DFRAMERATE=3

Project>Options>Assembler>Preprocessor>Defined symbols

--data_model{small |medium|large}

small Specifies the Small data model.

medium Specifies the Medium data model.

41

Description of assembler options

42

Description

See also

Syntax

Parameters

Description

Syntax

Parameters

Description

IAR Assembler
Reference Guide for MSP430

large Specifies the Large data model.

Use this option to specify the data model to use. Effectively, this option defines the
predefined preprocessor symbol __DATA_MODEL_ _.

Predefined symbols, page 21

To set this option, use Project>Options>Assembler>Extra Options.

-Enumber

number The number of errors before the assembler stops the
assembly. number must be a positive integer; 0 indicates no
limit.

Use this option to specify the maximum number of errors that the assembler reports. By
default, the maximum number is 100.

Project>Options>Assembler>Diagnostics>Max number of errors

-f filename

filename The commands that you want to extend the command line
with are read from the specified file. Notice that there must
be a space between the option itself and the filename.

For information about specifying a filename, see Using command line assembler
options, page 37.
Use this option to extend the command line with text read from the specified file.

The - £ option is particularly useful if there are many options which are more
conveniently placed in a file than on the command line itself.

Example

Syntax

Description

-8
Syntax

Description

-h
Syntax

Description

See also

Assembler options ___¢

To run the assembler with further options taken from the file extend.xc1, use:
ad430 prog -f extend.xcl
To set this option, use:

Project>Options>Assembler>Extra Options

-G

Use this option to make the assembler read the source from the standard input stream,
rather than from a specified source file.

When -G is used, you cannot specify a source filename.

This option is not available in the IDE.

-9

By default, the assembler automatically locates the system include files. Use this option
to disable the automatic search for system include files. In this case, you might need to
set up the search path by using the - T assembler option.

Project>Options>Assembler>Preprocessor>Ignore standard include directories

-h

Use this option to enable an assembler workaround for the hardware issue CPU6. When
enabled, the assembler will issue an error message if it detects an operand that could
trigger the hardware issue CPUG6.

Note: This option is not enabled automatically by the IAR Embedded Workbench IDE.

For more information about the available workarounds for different hardware issues, see
the release notes.

43

Description of assembler options

--hw_workaround

Syntax

Parameters

Description

See also

Syntax

Parameters

Description

Example

IAR Assembler

44 Reference Guide for MSP430

To set this option, use Project>Options>Assembler>Extra Options.

--hw_workaround=nop_after_lpm

nop_after_lpm Workaround for hardware issues CPU18, CPU19,
CPU24, CPU25, CPU27, and CPU 29

Use this option to enable assembler workarounds for various hardware issue. Typically,
the assembler will issue a warning message if it detects a code sequence that could
trigger a hardware issue.

For more information about the available workarounds for different hardware issues, see
the release notes.

When you select a device in the IAR Embedded Workbench IDE, the relevant hardware
workarounds are enabled automatically.

-Ipath

path The search path for #include files.

Use this option to specify paths to be used by the preprocessor. This option can be used
more than once on the command line.

By default, the assembler searches for #include files in the current working directory,
in the system header directories, and in the paths specified in the TASM430_INC
environment variable. The - I option allows you to give the assembler the names of
directories which it will also search if it fails to find the file in the current working
directory.

For example, using the options:

-Ic:\global\ -Ic:\thisproj\headers\

Syntax

Description

Syntax

Parameters

Description

Example

Assembler options ___¢

and then writing:
#include "asmlib.hdr"

in the source code, make the assembler search first in the current directory, then in the
directory c:\global\, and then in the directory C:\thisproj\headers\. Finally,
the assembler searches the directories specified in the ASM430_INC environment
variable, provided that this variable is set, and in the system header directories.

Project>Options>Assembler>Preprocessor>Additional include directories

Use this option to list #include files in the list file.

By default, the assembler does not list #include file lines because these often come
from standard files and would waste space in the list file. The -i option allows you to
list these file lines.

Project>Options>Assembler >List>#included text

-L[path]

No parameter Generates a listing with the same name as the source file, but
with the filename extension 1st.

path The path to the destination of the list file. Note that you must

not include a space before the path.

By default, the assembler does not generate a list file. Use this option to make the
assembler generate one and send it to the file [path] sourcename.lst.

-L cannot be used at the same time as -1.

To send the list file to 1ist\prog. 1st rather than the default prog.1st:

a430 prog -Llist\

45

Description of assembler options

46

Syntax

Parameters

Description

-M
Syntax

Parameters

Description

Example

IAR Assembler
Reference Guide for MSP430

To set related options, select:

Project>Options>Assembler >List

-1 filename

filename The output is stored in the specified file. Note that you must
include a space before the filename. If no extension is
specified, 1st is used.

For information about specifying a filename, see Using command line assembler
options, page 37.

Use this option to make the assembler generate a listing and send it to the file £i1ename.
By default, the assembler does not generate a list file.

To generate a list file with the default filename, use the -L option instead.

To set related options, select:

Project>Options>Assembler >List

-Mab

ab The characters to be used as left and right quotes of each
macro argument, respectively.

Use this option to sets the characters to be used as left and right quotes of each macro
argument to a and b respectively.

By default, the characters are < and >. The -M option allows you to change the quote
characters to suit an alternative convention or simply to allow a macro argument to
contain < or > themselves.

For example, using the option:

-M[]

Assembler options ___¢

in the source you would write, for example:
print [>]
to call a macro print with > as the argument.

Note: Depending on your host environment, it might be necessary to use quote marks
with the macro quote characters, for example:

ad430 filename -M'<>’

Project>Options>Assembler >Language>Macro quote characters

--macro_positions_in_diagnostics

Syntax

Description

Syntax

Description

See also

Syntax

Description

--macro_positions_in_diagnostics

Use this option to obtain position references inside macros in diagnostic messages. This
is useful for detecting incorrect source code constructs in macros.

To set this option, use Project>Options>Assembler>Extra Options.

-N

Use this option to omit the header section that is printed by default in the beginning of
the list file.

This option is useful in conjunction with the list file options -L or -1.

-L, page 45.

Project>Options>Assembler >List>Include header

By default, multibyte characters cannot be used in assembler source code. Use this
option to interpret multibyte characters in the source code according to the host
computer’s default setting for multibyte support.

47

Description of assembler options

Multibyte characters are allowed in C/C++ style comments, in string literals, and in
character constants. They are transferred untouched to the generated code.

Project>Options>Assembler >Language>Enable multibyte support

--no_path_in_file_macros

Syntax

Description

--no_ubrof_messages

Syntax

Description

Syntax

Parameters

Description

IAR Assembler
48 Reference Guide for MSP430

--no_path_in_file_macros
Use this option to exclude the path from the return value of the predefined preprocessor
symbols __FILE__ and __BASE FILE__.

This option is not available in the IDE.

--no_ubrof_messages

Use this option to minimize the size of your application object file by excluding
messages from the UBROF files. The file size can decrease by up to 60%. Note that the
XLINK diagnostic messages will, however, be less useful when you use this option.

To set this option, use Project>Options>Assembler>Extra Options.

-O[path]

path The path to the destination of the object file. Note that you
must not include a space before the path.

Use this option to set the path to be used on the name of the object file.

By default, the path is null, so the object filename corresponds to the source filename.
The -0 option lets you specify a path, for example, to direct the object file to a
subdirectory.

Note that -0 cannot be used at the same time as -o.

-0

Example

Syntax

Parameters

Description

Syntax

Parameters

Description

Assembler options ___¢

To send the object code to the file obj\prog.r43 rather than to the default file
prog.rd3:

ad30 prog -0Oobj\

Project>Options>General Options>Output>Output directories>Object files

-o {filename|directory}

filename The object code is stored in the specified file.

directory The object code is stored in a file (filename extension o)
which is stored in the specified directory.

For information about specifying a filename or directory, see Using command line
assembler options, page 37.

By default, the object code produced by the assembler is located in a file with the same
name as the source file, but with the extension o. Use this option to specify a different
output filename for the object code.

The -o option cannot be used at the same time as the -0 option.

Project>Options>General Options>Output>Output directories>Object files

-plines

lines The number of lines per page, which must be in the range 10
to 150.

Use this option to set the number of lines per page explicitly.

This option is used in conjunction with the list options -L or -1.

49

Description of assembler options

50

See also

Syntax

Description

--ropi
Syntax

Description

See also

Syntax

Description

IAR Assembler
Reference Guide for MSP430

-L, page 45.

Project>Options>Assembler>List>Lines/page

Use this option to make the assembler generate debug information, which means the
generated output can be used in a symbolic debugger such as IAR C-SPY® Debugger.

Project>Options>Assembler >Output>Generate debug information

--ropi

Use this option to specify that the code is intended for position-independent code and
read-only data. Effectively, when this option is specified, the predefined preprocessor
symbol __ROPI__ is defined to 1.

Predefined symbols, page 21

To set this option, use Project>Options>Assembler>Extra Options.

-S

By default, the assembler sends various minor messages via the standard output stream.
Use this option to make the assembler operate without sending any messages to the
standard output stream.

The assembler sends error and warning messages to the error output stream, so they are
displayed regardless of this setting.

This option is not available in the IDE.

--system_include_dir

Syntax

Parameters

Description

Example

Syntax

Parameters

Description

Syntax

Parameters

Description

Assembler options ___¢

-s{+|-}

+ Case-sensitive user symbols.

- Case-insensitive user symbols.

Use this option to control whether the assembler is sensitive to the case of user symbols.
By default, case sensitivity is on.

By default, for example LABEL and label refer to different symbols. When -s- is used,
LABEL and label instead refer to the same symbol.

Project>Options>Assembler>Language>User symbols are case sensitive

--system_include_dir path

path The path to the system include files.

By default, the assembler automatically locates the system include files. Use this option
to explicitly specify a different path to the system include files. This might be useful if
you have not installed IAR Embedded Workbench in the default location.

This option is not available in the IDE.

-tn

n The tab spacing; must be in the range 2 to 9.
By default, the assembler sets 8 character positions per tab stop. Use this option to

specify a different tab spacing.

This option is useful in conjunction with the list options -L or -1.

51

Description of assembler options

See also -L, page 45.

Project>Options>Assembler>List>Tab spacing

-U
Syntax -Usymbol
Parameters
symbol The predefined symbol to be undefined.
Description By default, the assembler provides certain predefined symbols.
Use this option to undefine such a predefined symbol to make its name available for your
own use through a subsequent -D option or source definition.
Example To use the name of the predefined symbol __TIME _ for your own purposes, you could
undefine it with:
a430 prog -U__TIME_
See also Predefined symbols, page 21.
This option is not available in the IDE.
=V
Syntax -v[0]1]
Parameters
0 Specifies devices based on the MSP430 architecture.
1 Specifies devices based on the MSP430X architecture.
Description Use this option to select the architecture for which the code is to be generated. If no

processor core option is specified, the assembler uses the -v0 option by default.

Project>Options>General Options>Target>Device

IAR Assembler
52 Reference Guide for MSP430

Syntax

Parameters

Description

Example

See also

Assembler options ___¢

-wl+|-|+n|-n|+m-n|-m-n] [s]

No parameter

+

+n
-n
+m-n

-m-n

Disables all warnings.
Enables all warnings.
Disables all warnings.
Enables just warning n.
Disables just warning n.
Enables warnings m to n.
Disables warnings m to n.

Generates the exit code 1 if a warning message is produced.
By default, warnings generate exit code 0.

By default, the assembler displays a warning message when it detects an element of the
source code which is legal in a syntactical sense, but might contain a programming error.

Use this option to disable all warnings, a single warning, or a range of warnings.

Note that the -w option can only be used once on the command line.

To disable just warning 0 (unreferenced label), use this command:

a430 prog -w-0

To disable warnings O to 8, use this command:

a430 prog -w-0-8

Assembler diagnostics, page 125.

To set related options, select:

Project>Options>Assembler>Diagnostics

53

Description of assembler options

54

Syntax

Parameters

Description

See also

IAR Assembler
Reference Guide for MSP430

-x{D|I|2}

D Includes preprocessor #defines.
I Includes internal symbols.

2 Includes dual-line spacing.

Use this option to make the assembler include a cross-reference table at the end of the
list file.

This option is useful in conjunction with the list options -L or -1.

-L, page 45.

Project>Options>Assembler>List>Include cross reference

Assembler operators

e Precedence of assembler operators
e Summary of assembler operators

e Description of assembler operators

Precedence of assembler operators

Each operator has a precedence number assigned to it that determines the order in which
the operator and its operands are evaluated. The precedence numbers range from 1 (the
highest precedence, that is, first evaluated) to 7 (the lowest precedence, that is, last
evaluated).

These rules determine how expressions are evaluated:

o The highest precedence operators are evaluated first, then the second highest
precedence operators, and so on until the lowest precedence operators are evaluated.

o Operators of equal precedence are evaluated from left to right in the expression.

o Parentheses (and) can be used for grouping operators and operands and for
controlling the order in which the expressions are evaluated. For example, this
expression evaluates to 1:

7/ (1+(2*3))

Summary of assembler operators

The following tables give a summary of the operators, in order of precedence.
Synonyms, where available, are shown after the operator name.

PARENTHESIS OPERATOR

Precedence: 1

() Parenthesis.

Summary of assembler operators

UNARY OPERATORS

Precedence: 1

+ Unary plus.

- Unary minus.

1, NOT Logical NOT.

~, BITNOT Bitwise NOT.
Low Low byte.

HIGH High byte.

LWRD Low word.

HWRD High word.

DATE Current time/date.
SFB Segment begin.
SFE Segment end.
SIZEOF Segment size.

MULTIPLICATIVE ARITHMETIC OPERATORS

Precedence: 2

* Multiplication.
/ Division.
%, MOD Modulo.

ADDITIVE ARITHMETIC OPERATORS

Precedence: 3

+ Addition.

- Subtraction.

IAR Assembler
56 Reference Guide for MSP430

SHIFT OPERATORS

Precedence: 4
>>, SHR

<<, SHL

AND OPERATORS

Precedence: 5

&&, AND

&, BITAND

OR OPERATORS

Precedence: 6

||, OR
|, BITOR
XOR

~, BITXOR

Assembler operators ___o

Logical shift right.
Logical shift left.

Logical AND.
Bitwise AND.

Logical OR.
Bitwise OR.
Logical exclusive OR.

Bitwise exclusive OR.

COMPARISON OPERATORS

Precedence: 7

<, LT
UGT
ULT
>=, GE

<=, LE

Equal.

Not equal.

Greater than.

Less than.

Unsigned greater than.
Unsigned less than.
Greater than or equal.

Less than or equal.

57

Description of assembler operators

Description of assembler operators

()Parenthesis

Precedence

Description

Example

* Multiplication
Precedence

Description

Example

+ Unary plus

Precedence
Description

Example

+ Addition

Precedence

Description

IAR Assembler
58 Reference Guide for MSP430

This section gives detailed descriptions of each assembler operator.

See also Expressions, operands, and operators, page 18.

(and) group expressions to be evaluated separately, overriding the default precedence
order.

1+2*3 —> 7
(142)*3 -=> 9

* produces the product of its two operands. The operands are taken as signed 32-bit
integers and the result is also a signed 32-bit integer.

2%2 -> 4
-2*%2 -> -4

Unary plus operator.

+3 -> 3
3*+2 —> 6
3

The + addition operator produces the sum of the two operands which surround it. The
operands are taken as signed 32-bit integers and the result is also a signed 32-bit integer.

Assembler operators ___4

Example 92+19 -> 111
-2+2 -> 0
-2+-2 -> -4

— Unary minus
Precedence 1

Description The unary minus operator performs arithmetic negation on its operand.

The operand is interpreted as a 32-bit signed integer and the result of the operator is the
two’s complement negation of that integer.

Example -3 —> -3
3*-2 —> -6
4--5 -> 9

— Subtraction

Precedence 3

Description The subtraction operator produces the difference when the right operand is taken away
from the left operand. The operands are taken as signed 32-bit integers and the result is
also signed 32-bit integer.

Example 92-19 -> 73
-2-2 -> -4
2--2 => 0

/| Division
Precedence 2

Description / produces the integer quotient of the left operand divided by the right operator. The
operands are taken as signed 32-bit integers and the result is also a signed 32-bit integer.

Example 9/2 —> 4

-12/3 -> -4
9/2*6 -> 24

59

Description of assembler operators

60

< Less than

Precedence

Description

Example

<= Less than or equal

Precedence

Description

Example

<>, != Not equal

Precedence

Description

Example

=, == Equal
Precedence

Description

IAR Assembler
Reference Guide for MSP430

< or LT evaluates to 1 (true) if the left operand has a lower numeric value than the right
operand, otherwise it is O (false).

-1 <2 —>1
2 <1 ->0
2 <2 >0
7

<= or LE evaluates to 1 (true) if the left operand has a numeric value that is lower than
or equal to the right operand, otherwise it is O (false).

1 <=2 -—>1
2 <=1 ->0
1 <=1 ->1

<> or NE evaluates to O (false) if its two operands are identical in value or to 1 (true) if
its two operands are not identical in value.

1 <>2 -—>1
2 <>2 >0
'A' <> 'B' -> 1

= or EQ evaluates to 1 (true) if its two operands are identical in value, or to O (false) if its
two operands are not identical in value.

Example

> Greater than

Precedence

Description

Example

Assembler operators ___4

> or GT evaluates to 1 (true) if the left operand has a higher numeric value than the right
operand, otherwise it is 0 (false).

-1 >1 ->0
2>1 —>1
1>1->0

>= Greater than or equal

Precedence

Description

Example

&& Logical AND

Precedence

Description

Example

7

>= or GE evaluates to 1 (true) if the left operand is equal to or has a higher numeric value
than the right operand, otherwise it is O (false).

>= evaluates to 1 (true) if the left operand is equal to or has a higher numeric value than
the right operand, otherwise it is O (false).

1 >=2 ->0
2 >=1 -—>1
1 >>1 -—>1

Use && or AND to perform logical AND between its two integer operands. If both
operands are non-zero the result is 1 (true), otherwise it is O (false).

1010B && 0011B -> 1

1010B && 0101B -> 1
1010B && 0000B -> O

61

Description of assembler operators

& Bitwise AND

Precedence 5

Description Uses or BITAND to perform bitwise AND between the integer operands. Each bit in the
32-bit result is the logical AND of the corresponding bits in the operands.

Example 1010B & 0011B -> 0010B

1010B & 0101B -> 0000B
1010B & 0000B -> 0000B

~ Bitwise NOT)

Precedence 1

Description Use ~ or BITNOT to perform bitwise NOT on its operand. Each bit in the 32-bit result is
the complement of the corresponding bit in the operand.

Example ~ 1010B -> 11111111111111111111111111110101B

| Bitwise OR

Precedence 6

Description Use | or BITOR to perform bitwise OR on its operands. Each bit in the 32-bit result is
the inclusive OR of the corresponding bits in the operands.

Example 1010B | 0101B -> 1111B

1010B | 0000B -> 1010B

A Bitwise exclusive OR

Precedence 6

Description Use ~ or BITXOR to perform bitwise XOR on its operands. Each bit in the 32-bit result
is the exclusive OR of the corresponding bits in the operands.

Example 10108 ~ 0101B -> 1111B
1010B ~ 0011B -> 1001B

IAR Assembler
62 Reference Guide for MSP430

Assembler operators ___o

% Modulo
Precedence 2
Description % or MOD produces the remainder from the integer division of the left operand by the right
operand. The operands are taken as signed 32-bit integers and the result is also a signed
32-bit integer.
X % Yisequivalent to X-Y* (X/Y) using integer division.
Example 2%2->0
12 7 -> 5
3% 2 -—>1
! Logical NOT
Precedence 1
Description Use ! or NOT to negate a logical argument.
Example ! 0101B -> 0
! 0000B -> 1
|| Logical OR
Precedence 6
Description Use | | or OR to perform a logical OR between two integer operands.
Example 1010B || 0000B —> 1
0000B || 0000B -> 0
<< Logical shift left
Precedence 4
Description Use << or SHL to shift the left operand, which is always treated as unsigned, to the left.

The number of bits to shift is specified by the right operand, interpreted as an integer
value between 0 and 32.

63

Description of assembler operators

Example

>> Logical shift right

Precedence

Description

Example

BYTEI First byte

Precedence

Description

Example

BYTE2 Second byte

Precedence

Description

Example

IAR Assembler
64 Reference Guide for MSP430

00011100B << 3 —-> 11100000B
00000111111111111B << 5 -> 11111111111100000B
14 << 1 -> 28

4

Use >> or SHR to shift the left operand, which is always treated as unsigned, to the
right. The number of bits to shift is specified by the right operand, interpreted as an
integer value between 0 and 32.

01110000B >> 3 -> 00001110B
1111111111111111B >> 20 -> 0
14 >> 1 —> 7

BYTEL takes a single operand, which is interpreted as an unsigned 32-bit integer value.
The result is the unsigned, 8-bit integer value of the lower order byte of the operand.

BYTE1 OxABCD -> 0xCD

BYTE?2 takes a single operand, which is interpreted as an unsigned 32-bit integer value.
The result is the middle-low byte (bits 15 to 8) of the operand.

BYTE2 0x12345678 O 0x56

BYTE3 Third byte ()

Precedence

Description

Example

BYTE4 Fourth byte

Precedence

Description

Example

Assembler operators ___4

BYTE3 takes a single operand, which is interpreted as an unsigned 32-bit integer value.
The result is the middle-high byte (bits 23 to 16) of the operand.

BYTE3 0x12345678 -> 0x34

BYTE4 takes a single operand, which is interpreted as an unsigned 32-bit integer value.
The result is the high byte (bits 31 to 24) of the operand.

BYTE4 0x12345678 -> 0x12

DATE Current time/date

Precedence

Description

Example

1

Use the DATE operator to specify when the current assembly began.

The DATE operator takes an absolute argument (expression) and returns:

DATE 1 Current second (0-59).

DATE 2 Current minute (0-59).

DATE 3 Current hour (0-23).

DATE 4 Current day (1-31).

DATE 5 Current month (1-12).

DATE 6 Current year MoD 100 (1998 098, 2000 000, 2002 002).

To assemble the date of assembly:

today: DC8 DATE 5, DATE 4, DATE 3

65

Description of assembler operators

HIGH High byte

Precedence

Description

Example

HWRD High word ()

Precedence

Description

Example

LOW Low byte

Precedence

Description

Example

LWRD Low word

Precedence

Description

Example

IAR Assembler
66 Reference Guide for MSP430

HIGH takes a single operand to its right which is interpreted as an unsigned, 16-bit
integer value. The result is the unsigned 8-bit integer value of the higher order byte of
the operand.

HIGH OxABCD -> 0xAB

HWRD takes a single operand, which is interpreted as an unsigned, 32-bit integer value.
The result is the high word (bits 31 to 16) of the operand.

HWRD 0x12345678 -> 0x1234

Low takes a single operand, which is interpreted as an unsigned, 32-bit integer value.
The result is the unsigned, 8-bit integer value of the lower order byte of the operand.

LOW OxABCD -> 0xCD

LWRD takes a single operand, which is interpreted as an unsigned, 32-bit integer value.
The result is the low word (bits 15 to 0) of the operand.

LWRD 0x12345678 -> 0x5678

SFB segment begin

Syntax
Precedence

Parameters

Description

Example

SFE segment end ()

Syntax
Precedence

Parameters

Description

Assembler operators ___4

SFB(segment [{+|-}offset])

1

segment The name of a relocatable segment, which must be defined before
SFB is used.

offset An optional offset from the start address. The parentheses are

optional if offset is omitted.

SFB accepts a single operand to its right. The operator evaluates to the absolute address
of the first byte of that segment. This evaluation occurs at linking time.

name
rseg
rseg
start dclé
end

segmentBegin

MYCODE:CODE ; Forward declaration of MYCODE.
SEGTAB:CONST

sfb (MYCODE)

Even if this code is linked with many other modules, start is still set to the address of
the first byte of the segment.

SFE (segment [{+ | -} offset])

1

segment The name of a relocatable segment, which must be defined before
SFE is used.

offset An optional offset from the start address. The parentheses are

optional if of £set is omitted.

SFE accepts a single operand to its right. The operator evaluates to the address of the first
byte after the segment end. This evaluation occurs at linking time.

67

Description of assembler operators

Example

name segmentEnd
rseg MYCODE:CODE ; Forward declaration of MYCODE.
rseg SEGTAB:CONST
end dclé6 sfe (MYCODE)
end

Even if this code is linked with many other modules, end is still set to the first byte after
the segment MYCODE.

The size of the segment MYCODE can be achieved by using the SIZEOF operator or
calculated as:

SFE (MYCODE) -SFB (MYCODE)

SIZEOF segment size ()

Syntax
Precedence

Parameters

Description

Example

IAR Assembler

68 Reference Guide for MSP430

SIZEOF segment

segment The name of a relocatable segment, which must be defined
before STIZEOF is used.

SIZEOF generates SFE-SFB for its argument. That is, it calculates the size in bytes of a
segment. This is done when modules are linked together.

This code sets size to the size of the segment MYCODE:

module table

rseg MYCODE:CODE ; Forward declaration of MYCODE.
rseg SEGTAB:CONST

size dc32 sizeof (MYCODE)
endmod

module application

rseg MYCODE : CODE

nop ; Placeholder for application.
end

Assembler operators ___o

UGT Unsigned greater than

Precedence 7

Description UGT evaluates to 1 (true) if the left operand has a larger value than the right operand,
otherwise it is 0 (false). The operation treats the operands as unsigned values.

Example 2 UGT 1 -> 1
-1 UGT 1 -> 1

ULT Unsigned less than

Precedence 7

Description ULT evaluates to 1 (true) if the left operand has a smaller value than the right operand,
otherwise it is O (false). The operation treats the operands as unsigned values.

Example 1 ULT 2 -> 1
-1 ULT 2 —> 0

XOR Logical exclusive OR

Precedence 6

Description XOR evaluates to 1 (true) if either the left operand or the right operand is non-zero, but
to O (false) if both operands are zero or both are non-zero. Use XOR to perform logical
XOR on its two operands.

Example 0101B XOR 1010B -> 0
0101B XOR 0000B -> 1

69

Description of assembler operators

IAR Assembler
70 Reference Guide for MSP430

Assembler directives

This chapter gives a summary of the assembler directives and provides detailed

reference information for each category of directives.

Summary of assembler directives

The assembler directives are classified into these groups according to their function:

Module control directives, page 76

Symbol control directives, page 79

segment control directives, page 82

Value assignment directives, page 88

Conditional assembly directives, page 91

Macro processing directives, page 93

Listing control directives, page 101

C-style preprocessor directives, page 106

Data definition or allocation directives, page 111

Assembler control directives, page 114

Function directives, page 117

Call frame information directives for names blocks, page 117.
Call frame information directives for common blocks, page 119
Call frame information directives for data blocks, page 120
Call frame information directives for tracking resources and CFAs, page 121

Call frame information directives for stack usage analysis, page 124

This table gives a summary of all the assembler directives:

Directive Description Section

_args Is set to number of arguments passed to macro. Macro processing

S Includes a file. Assembler control

#define Assigns a value to a label. C-style preprocessor

#elif Introduces a new condition inan #if...#endif C-style preprocessor
block.

#else Assembles instructions if a condition is false. C-style preprocessor

Table 13: Assembler directives summary

71

Summary of assembler directives

72

IAR Assembler

Reference Guide for MSP430

Directive Description Section

#endif Ends an #1if, #ifdef, or #ifndef block. C-style preprocessor
#error Generates an error. C-style preprocessor
#if Assembles instructions if a condition is true. C-style preprocessor
#ifdef Assembles instructions if a symbol is defined. C-style preprocessor
#ifndef Assembles instructions if a symbol is undefined. C-style preprocessor
#include Includes a file. C-style preprocessor
#line Changes the line numbers. C-style preprocessor
#message Generates a message on standard output. C-style preprocessor
#pragma Recognized but ignored. C-style preprocessor
#undef Undefines a label. C-style preprocessor

/*comment* /

//

ALIAS

ALIGN

ALIGNRAM
ASEG
ASEGN
ASSIGN
BLOCK

CASEOFF
CASEON
CFI

COL

COMMON
DB

C-style comment delimiter.

C++ style comment delimiter.

Assigns a permanent value local to a module.
Assigns a permanent value local to a module.

Aligns the program location counter by inserting
zero-filled bytes.

Aligns the program location counter.
Begins an absolute segment.

Begins a named absolute segment.
Assigns a temporary value.

Specifies the block number for an alias created by
the SYMBOL directive.

Disables case sensitivity.
Enables case sensitivity.

Specifies call frame information.

Sets the number of columns per page. Retained for
backward compatibility reasons; recognized but
ignored.

Begins a common segment.

Generates 8-bit constants, including strings.

Assembler control
Assembler control
Value assignment
Value assignment

Segment control

Segment control
Segment control
Segment control
Value assignment

Symbol control

Assembler control
Assembler control

Call frame
information

Listing control

Segment control

Data definition or
allocation

Table 13: Assembler directives summary (Continued)

Assembler directives ___¢

Directive Description Section
DC8 Generates 8-bit constants, including strings. Data definition or
allocation
DC16 Generates | 6-bit constants. Data definition or
allocation
DC24 Generates 24-bit constants. Data definition or
allocation
DC32 Generates 32-bit constants. Data definition or
allocation
DC64 Generates 64-bit constants. Data definition or
allocation
DEFINE Defines a file-wide value. Value assignment
DF Generates 32-bit floating-point constants. Data definition or
allocation
DF32 Generates 32-bit floating-point constants. Data definition or
allocation
DF64 Generates 64-bit floating-point constants. Data definition or
allocation
DL Generates 32-bit constants. Data definition or
allocation
.double Generates 32-bit values in Texas Instruments’ Data definition or
floating-point format. allocation
DS Allocates space for 8-bit integers. Data definition or
allocation
DS8 Allocates space for 8-bit integers. Data definition or
allocation
DS16 Allocates space for |6-bit integers. Data definition or
allocation
DS24 Allocates space for 24-bit integers. Data definition or
allocation
DS32 Allocates space for 32-bit integers. Data definition or
allocation
DS64 Allocates space for 64-bit integers. Data definition or
allocation
Dw Generates |6-bit constants. Data definition or

allocation

Table 13: Assembler directives summary (Continued)

73

Summary of assembler directives

74

IAR Assembler

Reference Guide for MSP430

Directive Description Section
ELSE Assembles instructions if a condition is false. Conditional
assembly
ELSEIF Specifies a new condition in an IF...ENDIF block. Conditional
assembly
END Ends the assembly of the last module in a file. Module control
ENDIF Ends an IF block. Conditional
assembly
ENDM Ends a macro definition. Macro processing
ENDMOD Ends the assembly of the current module. Module control
ENDR Ends a repeat structure. Macro processing
EQU Assigns a permanent value local to a module. Value assignment
EVEN Aligns the program counter to an even address. Segment control
EXITM Exits prematurely from a macro. Macro processing
EXTERN Imports an external symbol. Symbol control
.float Generates 48-bit values in Texas Instruments’ Data definition or
floating-point format. allocation
FUNCTION Declares a label name to be a function. Function
IF Assembles instructions if a condition is true. Conditional
assembly
IMPORT Imports an external symbol. Symbol control
LIBRARY Begins a library module. Module control
LIMIT Checks a value against limits. Value assignment
LOCAL Creates symbols local to a macro. Macro processing
LSTCND Controls conditional assembler listing. Listing control
LSTCOD Controls multi-line code listing. Listing control
LSTEXP Controls the listing of macro generated lines. Listing control
LSTMAC Controls the listing of macro definitions. Listing control
LSTOUT Controls assembler-listing output. Listing control
LSTPAG Retained for backward compatibility reasons. Listing control
Recognized but ignored.
LSTREP Controls the listing of lines generated by repeat Listing control
directives.
LSTXRF Generates a cross-reference table. Listing control

Table 13: Assembler directives summary (Continued)

Directive

Description

Assembler directives ___¢

Section

MACRO
MODULE

MULTWEAK

NAME

ODD

ORG
OVERLAY
PAGE
PAGSIZ
PROGRAM
PUBLIC
PUBWEAK

RADIX

REPT

REPTC
REPTI
REQUIRE
RSEG
RTMODEL
SET
SFRB
SFRL
SFRTYPE
SFRW
STACK

SYMBOL

VAR

Defines a macro.

Begins a library module.

Exports symbols to other modules; multiple

definitions allowed.

Begins a program module.

Aligns the program location counter to an odd

address.
Sets the program location counter.

Recognized but ignored.

Retained for backward compatibility reasons.

Retained for backward compatibility reasons.

Begins a program module.

Exports symbols to other modules.

Exports symbols to other modules, multiple

definitions allowed.

Sets the default base.

Assembles instructions a specified number of

times.

Repeats and substitutes characters.
Repeats and substitutes strings.
Forces a symbol to be referenced.
Begins a relocatable segment.
Declares runtime model attributes.
Assigns a temporary value.
Creates byte-access SFR labels.
Creates 4-byte-access SFR labels.
Specifies SFR attributes.

Creates word-access SFR labels.

Begins a stack segment.

Creates an alias that can be used for referring to a

C/C++ symbol.

Assigns a temporary value.

Macro processing
Module control

Symbol control

Module control

Segment control

Segment control
Symbol control
Listing control
Listing control
Module control
Symbol control

Symbol control

Assembler control

Macro processing

Macro processing
Macro processing
Symbol control
Segment control
Module control
Value assignment
Value assignment
Value assignment
Value assignment
Value assignment
Segment control

Symbol control

Value assignment

Table 13: Assembler directives summary (Continued)

75

Description of assembler directives

76

Description of assembler directives

The following pages give reference information about the assembler directives.

Module control directives

Syntax

Parameters

Description

IAR Assembler
Reference Guide for MSP430

END [address]

ENDMOD

[address]

LIBRARY symbol [(expr)]

MODULE symbol [(expr)]

NAME symbol

[(expr)]

PROGRAM symbol [(expr)]

RTMODEL key,

address

expr

key

symbol

value

value

An expression (label plus offset) that ca be resolved at assembly time.
It is output in the object code as a program entry address.

An optional expression used by the assembler to encode the runtime
options. It must be within the range 0-255 and evaluate to a constant
value. The expression is only meaningful if you are assembling source
code that originates as assembler output from the compiler.

A text string specifying the key.

Name assigned to module, used by XLINK, XAR, and XLIB when
processing object files.

A text string specifying the value.

Module control directives are used for marking the beginning and end of source program
modules, and for assigning names and types to them. For information about the
restrictions that apply when using a directive in an expression, see Expression
restrictions, page 24.

Directive

Description Expression restrictions

END

Ends the assembly of the last module in a file. Locally defined symbols

plus offset or integer
constants

Table 14: Module control directives

Assembler directives ___¢

Directive Description Expression restrictions

ENDMOD Ends the assembly of the current module. Locally defined symbols
plus offset or integer
constants

LIBRARY Begins a library module. No external references
Absolute

MODULE Begins a library module. No external references
Absolute

NAME Begins a program module. Absolute

PROGRAM Begins a program module. No external references
Absolute

RTMODEL Declares runtime model attributes. Not applicable

Table 14: Module control directives (Continued)

Beginning a program module

Use NAME or PROGRAM to begin a program module, and to assign a name for future
reference by the IAR XLINK Linker, the [AR XAR Library Builder, and the IAR XLIB
Librarian.

Program modules are unconditionally linked by XLINK, even if other modules do not
reference them.

Beginning a library module

Use MODULE or LIBRARY to create libraries containing several small modules—Ilike
runtime systems for high-level languages—where each module often represents a single
routine. With the multi-module facility, you can significantly reduce the number of
source and object files needed.

Library modules are only copied into the linked code if other modules reference a public
symbol in the module.

Beginning a module

Use any of the directives NAME or PROGRAM to begin an ELF module, and to assign a
name.

A module is included in the linked application, even if other modules do not reference
them. For more information about how modules are included in the linked application,
read about the linking process in the /AR C/C++ Compiler Reference Guide for
MSP430.

Note: There can be only one module in a file.

77

Description of assembler directives

78

Terminating a module

Use ENDMOD to define the end of a module.

Terminating the source file

Use END to indicate the end of the source file. Any lines after the END directive are
ignored. The END directive also ends the last module in the file, if this is not done
explicitly with an ENDMOD directive.

Defining a program entry

Program entries must be either relocatable or absolute and cannot be external. The
defined program entry for the application will show up in the XLINK map file, and in
some of the XLINK output formats.

Assembling multi-module files

These rules apply when assembling multi-module files:

o At the beginning of a new module all user symbols are deleted, except for those
created by DEFINE, #define, or MACRO, the location counters are cleared, and the
mode is set to absolute.

e Listing control directives remain in effect throughout the assembly.
Note: END must always be placed after the last module, and there must not be any source

lines (except for comments and listing control directives) between an ENDMOD and the
next module (beginning with MODULE, LIBRARY, NAME, Of PROGRAM).

If any of the directives NAME, MODULE, LIBRARY, or PROGRAM is missing, the module is
assigned the name of the source file and the attribute program.

Declaring runtime model attributes

IAR Assembler
Reference Guide for MSP430

Use RTMODEL to enforce consistency between modules. All modules that are linked
together and define the same runtime attribute key must have the same value for the
corresponding key value, or the special value *. Using the special value * is equivalent
to not defining the attribute at all. It can however be useful to explicitly state that the
module can handle any runtime model.

A module can have several runtime model definitions.

Note: The compiler runtime model attributes start with double underscores. In order to
avoid confusion, this style must not be used in the user-defined assembler attributes.

If you are writing assembler routines for use with C or C++ code, and you want to
control the module consistency, refer to the /AR C/C++ Compiler Reference Guide for
MSP430.

Assembler directives ___¢

The following example defines three modules where:
e MOD_1 and MOD_2 cannot be linked together since they have different values for
runtime model CAN.

e MOD_1 and MOD_3 can be linked together since they have the same definition of
runtime model RTOS and no conflict in the definition of CAN.

e MOD_2 and MOD_3 can be linked together since they have no runtime model
conflicts. The value * matches any runtime model value.

module mod_1

rtmodel "CAN", "IS011519"
rtmodel "Platform", "M7"
endmo

module mod_2

rtmodel "CAN", "TS011898"
rtmodel "Platform", "*"
endmo

module mod_3
rtmodel "Platform", "M7"

7

end

Symbol control directives

Syntax
label BLOCK old_label, block_number
EXTERN symbol [, symbol]
MULTWEAK symbol [,symbol]
IMPORT symbol [,symboll]
PUBLIC symbol [,symbol]
PUBWEAK symbol [,symboll]
REQUIRE symbol
label SYMBOL "C/C++_symbol" [,o0ld_labell
Parameters

block number Block number of the alias created by the sYMBOL directive.

79

Description of assembler directives

C/C++_symbol C/C++ symbol to create an alias for.

label Label to be used as an alias for a C/C++ symbol.

old_label Alias created earlier by a SYMBOL directive.

symbol Symbol to be imported or exported.

Description These directives control how symbols are shared between modules:

Directive Description

BLOCK Specifies the block number for an alias created by the
SYMBOL directive.

EXTERN, IMPORT Imports an external symbol.

MULTWEAK Exports symbols to other modules; multiple definitions
allowed.

OVERLAY Recognized but ignored.

PUBLIC Exports symbols to other modules.

PUBWEAK Exports symbols to other modules, multiple definitions
allowed.

REQUIRE Forces a symbol to be referenced.

SYMBOL Creates an alias for a C/C++ symbol.

Table 15: Symbol control directives

Exporting symbols to other modules

Use PUBLIC to make one or more symbols available to other modules. Symbols defined
PUBLIC can be relocatable or absolute, and can also be used in expressions (with the
same rules as for other symbols).

The puBLIC directive always exports full 32-bit values, which makes it feasible to use
global 32-bit constants also in assemblers for 8-bit and 16-bit processors. With the Low,
HIGH, >>, and << operators, any part of such a constant can be loaded in an 8-bit or
16-bit register or word.

There can be any number of PUBLIC-defined symbols in a module.

Exporting symbols with multiple definitions to other modules

PUBWEAK is similar to PUBLIC except that it allows the same symbol to be defined in
more than one module. Only one of those definitions is used by XLINK. If a module
containing a PUBLIC definition of a symbol is linked with one or more modules
containing PUBWEAK definitions of the same symbol, XLINK uses the PUBLIC
definition.

IAR Assembler
80 Reference Guide for MSP430

Assembler directives ___¢

A symbol defined as PUBWEAK must be a label in a segment part, and it must be the only
symbol defined as PUBLIC or PUBWEAK in that segment part.

Note: Library modules are only linked if a reference to a symbol in that module is made,
and that symbol was not already linked. During the module selection phase, no
distinction is made between PUBLIC and PUBWEAK definitions. This means that to
ensure that the module containing the PUBLIC definition is selected, you should link it
before the other modules, or make sure that a reference is made to some other PUBLIC
symbol in that module.

Importing symbols
Use EXTERN or IMPORT to import an untyped external symbol.

The REQUIRE directive marks a symbol as referenced. This is useful if the segment part
containing the symbol must be loaded even if the code is not referenced.

Referring to scoped C/C++ symbols

Use the syMBOL directive to create an alias for a C/C++ symbol. You can use the alias
to refer to the C/C++ symbol. The symbol and the alias must be located within the same
scope.

Use the BLOCK directive to provide the block scope for the alias.

Typically, the syMBOL and the BLOCK directives are for compiler internal use only, for
example, when referring to objects inside classes or namespaces. For detailed
information about how to use these directives, declare and define your C/C++ symbol,
compile, and view the assembler listfile output.

Example The following example defines a subroutine to print an error message, and exports the
entry address err so that it can be called from other modules.

Because the message is enclosed in double quotes, the string will be followed by a zero
byte.

It defines print as an external routine; the address is resolved at link time.

name errorMessage
extern print
public err

rseg CODE : CODE
err call print
dc8 "*% Error **"
ret
end

81

Description of assembler directives

Mode control directives

Syntax CODE
DATA
DATAS8
DATAL6
DATA24
DATA32

DATA64

Description These directives provide control over the assembly mode:

Directive Description

CODE Subsequent instructions are assembled, linked, and disassembled as code.

DATA, DATA8 Subsequent instructions are assembled, linked, and disassembled as 8-bit data.

DATAL6 Subsequent instructions are assembled, linked, and disassembled as |6-bit data.
DATA24 Subsequent instructions are assembled, linked, and disassembled as 24-bit data.
DATA32 Subsequent instructions are assembled, linked, and disassembled as 32-bit data.
DATA64 Subsequent instructions are assembled, linked, and disassembled as 64-bit data.

Table 16: Mode control directives

The copE and DATA directives set the assembly mode for code and data sections. This
information is used by C-SPY.

Note: The cODE or DATA directives are required for big-endian applications, but they
improve the disassembly for all applications.

You can use the CODE or DATA directives to:

e Start a code/data segment part (RSEG) that generates bytes that end up in the image,
either code or data

o Change the assembly mode in the middle of a segment part. You do not need the
CODE or DATA directives for declaring segments, extern labels etc, nor when you
declare RAM space.

segment control directives

Syntax ALIGN align [,value]

ALIGNRAM align

IAR Assembler
82 Reference Guide for MSP430

Parameters

ASEG [start]

Assembler directives ___¢

ASEGN segment [:typel [:flag] [,address]
COMMON segment [:typel [:flag]l [(align)]
EVEN [valuel

ODD [value]

ORG expr

RSEG segment [:typel [:flag] [(align)]
STACK segment [:type] [:flag] [(align)]

address

align

expr

flag

Address where this segment part is placed.

The power of two to which the address should be aligned. The
permitted range is O to 8.

The default align value is 0, except for code segments where the
default is 1.

Address to set the location counter to.
ROOT, NOROOT

ROOT (the default mode) indicates that the segment part must not be
discarded.

NOROOT means that the segment part is discarded by the linker if no
symbols in this segment part are referred to. Normally, all segment
parts except startup code and interrupt vectors should set this flag.

REORDER, NOREORDER

NOREORDER (the default mode) indicates that the segment parts must
remain in order.

REORDER allows the linker to reorder segment parts. For a given
segment, all segment parts must specify the same state for this flag.

SORT, NOSORT

NOSORT (the default mode) indicates that the segment parts are not
sorted.

SORT means that the linker sorts the segment parts in decreasing
alignment order. For a given segment, all segment parts must specify
the same state for this flag.

83

Description of assembler directives

segment The name of the segment. The segment name is a user-defined
symbol that follows the rules described in Symbols, page 20.

start A start address that has the same effect as using an ORG directive at
the beginning of the absolute segment.

type The memory type, typically CODE or DATA. In addition, any of the
types supported by the IAR XLINK Linker.

value Byte value used for padding, default is zero.

Description The segment directives control how code and data are located. For information about the
restrictions that apply when using a directive in an expression, see Expression
restrictions, page 24.

Directive Description Expression restrictions

ALIGN Aligns the program location counter by inserting No external references
zero-filled bytes. Absolute

ALIGNRAM Aligns the program location counter. No external references
Absolute

ASEG Begins an absolute segment. No external references
Absolute

ASEGN Begins a named absolute segment. No external references
Absolute

COMMON Begins a common segment. No external references
Absolute

EVEN Aligns the program counter to an even address. No external references
Absolute

ODD Aligns the program counter to an odd address. ~ No external references
Absolute

ORG Sets the program location counter (PLC). No external references

Absolute (see below)

RSEG Begins a relocatable segment. No external references
Absolute

STACK Begins a stack segment.

Table 17: Segment control directives

Beginning an absolute segment

Use ASEG to set the absolute mode of assembly, which is the default at the beginning of
a module.

IAR Assembler
84 Reference Guide for MSP430

Assembler directives ___¢

If the parameter is omitted, the start address of the first segment is 0, and subsequent
segments continue after the last address of the previous segment.

This example assembles the jump to the function main in address 0. On RESET, the chip
sets PC to address 0.

module resetVector
extern main

aseg
org Oxfffe ; Start the segment at the
; reset vector address.
reset dclé main ; Point the reset vector to
; the externally defined main
; label.
end

Beginning a named absolute segment
Use ASEGN to start a named absolute segment located at the address address.
This directive has the advantage of allowing you to specify the memory type of the

segment.

Beginning a relocatable segment

Use RSEG to start a new segment. The assembler maintains separate location counters
(initially set to zero) for all segments, which makes it possible to switch segments and
mode anytime without having to save the current program location counter.

Up to 65536 unique, relocatable segments can be defined in a single module.

In the following example, the data following the first RSEG directive is placed in a
relocatable segment called TABLE.

The code following the second RSEG directive is placed in a relocatable segment called

CODE:
module calculate
extern operator
extern addOperator, subOperator
rseg TABLE:CONST (8)
operatorTable:
dc8 addOperator, subOperator

85

Description of assembler directives

rseg CODE : CODE
calculate lda operator
1dhx #operatorTable
cbeqg , X+ ,add
cbeqg ,X+,sub
rts
add P
rts
sub PN
rts
end

Beginning a common segment

Use cOMMON to place data in memory at the same location as COMMON segments from
other modules that have the same name. In other words, all COMMON segments of the
same name start at the same location in memory and overlay each other.

Obviously, the coMMON segment type should not be used for overlaid executable code.
A typical application would be when you want several different routines to share a
reusable, common area of memory for data.

It can be practical to have the interrupt vector table in a COMMON segment, thereby
allowing access from several routines.

The final size of the coMMON segment is determined by the size of largest occurrence of
this segment. The location in memory is determined by the XLINK -z command; see
the IAR Linker and Library Tools Reference Guide.

Use the align parameter in any of the above directives to align the segment start
address.

This example defines two common segments containing variables:

name commonl
common MYDATA
count dc32 1
endmod
name common?2
common MYDATA
up ds8 1
ds8 2
down ds8 1
end

IAR Assembler
86 Reference Guide for MSP430

Assembler directives ___¢

Because the common segments have the same name, MYDATA, the variables up and
count refer to the same location in memory.

Setting the program location counter (PLC)

Use ORG to set the program location counter of the current segment to the value of an
expression. When ORG is used in an absolute segment (ASEG), the parameter expression
must be absolute. However, when ORG is used in a relative segment (RSEG), the
expression can be either absolute or relative (and the value is interpreted as an offset
relative to the segment start in both cases).

The program location counter is set to zero at the beginning of an assembler module.

Aligning a segment

Use ALIGN to align the program location counter to a specified address boundary. You
do this by specifying an expression for the power of two to which the program counter
should be aligned. That is, a value of 1 aligns to an even address and a value of 2 aligns
to an address evenly divisibly by 4.

The alignment is made relative to the segment start; normally this means that the
segment alignment must be at least as large as that of the alignment directive to give the
desired result.

ALIGN aligns by inserting zero/filled bytes, up to a maximum of 255. The EVEN directive
aligns the program counter to an even address (which is equivalent to ALIGN 1) and the
oDD directive aligns the program location counter to an odd address. The value used for
padding bytes must be within the range 0 to 255.

Use ALIGNRAM to align the program location counter by incrementing it; no data is
generated. The parameter align can be within the range 0 to 30.

This example starts a relocatable segment, moves to an even address, and adds some
data. It then aligns to a 64-byte boundary before creating a 64-byte table.

name alignment

rseg DATA ; Start a relocatable data segment.

even ; Ensure it is on an even boundary.
target dclé6 1 ; target and best will be on an
best dclé 1 ; even boundary.

align 6 ; Now, align to a 64-byte boundary,
results ds8 64 ; and create a 64-byte table.

end

87

Description of assembler directives

Value assignment directives

Syntax label = expr
label ALIAS expr
label ASSIGN expr
label DEFINE const_expr
label EQU expr
LIMIT expr, min, max, message
[const] SFRB register = value
[const] SFRL register = value
[const] SFRTYPE register attribute [,attribute] = value
[const] SFRW register = value
label SET expr

label VAR expr

Parameters
attribute One or more of these:

BYTE: The SFR must be accessed as a byte.
READ: You can read from this SFR.
woRD: The SFR must be accessed as a word.

WRITE: You can write to this SFR.

const_expr Constant value assigned to symbol.

expr Value assigned to symbol or value to be tested.

label Symbol to be defined.

message A text message that is printed when expr is out of range.
min, max The minimum and maximum values allowed for expr.
register The special function register.

value The SFR port address.

IAR Assembler
88 Reference Guide for MSP430

Assembler directives ___¢

Description These directives are used for assigning values to symbols:
Directive Description
=, EQU Assigns a permanent value local to a module.
ALIAS Assigns a permanent value local to a module.

ASSIGN, SET, VAR Assigns a temporary value.

DEFINE Defines a file-wide value.

LIMIT Checks a value against limits.
SFRB Creates byte-access SFR labels.
SFRL Creates 4-byte-access SFR labels.
SFRTYPE Specifies SFR attributes.

SFRW Creates word-access SFR labels.

Table 18: Value assignment directives

Defining a temporary value

Use ASSIGN, SET, or VAR to define a symbol that might be redefined, such as for use
with macro variables. Symbols defined with ASSIGN, SET, or VAR cannot be declared
PUBLIC.

This example uses SET to redefine the symbol cons in a loop to generate a table of the
first 8 powers of 3:

name table
cons set 1

; Generate table of powers of 3.

cr_tabl macro times
dc32 cons
cons set cons * 3
if times > 1
cr_tabl times - 1
endif
endm
rseg CODE : CODE
table cr_tabl 4
end

Defining a permanent local value

Use EQU or = to create a local symbol that denotes a number or offset. The symbol is
only valid in the module in which it was defined, but can be made available to other
modules with a PUBLIC directive (but not with a PUBWEAK directive).

89

Description of assembler directives

90

Use EXTERN to import symbols from other modules.

Defining a permanent global value

Use DEFINE to define symbols that should be known to the module containing the
directive and all modules following that module in the same source file. If a DEFINE
directive is placed outside of a module, the symbol will be known to all modules
following the directive in the same source file.

A symbol which was given a value with DEFINE can be made available to modules in
other files with the PUBLIC directive.

Symbols defined with DEFINE cannot be redefined within the same file. Also, the
expression assigned to the defined symbol must be constant.

Using local and global symbols

In the following example the symbol value defined in module add1 is local to that
module; a distinct symbol of the same name is defined in module add2. The DEFINE
directive is used for declaring RO for use anywhere in the file:

name addl
public addl2
gvVal define 0x20 ; Definition of a permanent
; global value.
1lval equ 12 ; Definition of a local value.
rseg CODE : CODE
addl2 mov #gval, r8
addc #1val, r8
ret
endmod
name add2
public add20
1val equ 20 ; Redefinition of local value.
rseg CODE : CODE
add20 mov #gVal, r8
addc #1val, r8
ret
end

The symbol gval defined in module add1 is also available to module add2.

Defining special function registers

IAR Assembler
Reference Guide for MSP430

Use SFRB to create special function register labels with the attributes READ, WRITE, and
BYTE turned on. Use SFRW to create special function register labels with the attributes

Assembler directives ___¢

READ, WRITE, or WORD turned on. Use SFRTYPE to create special function register labels
with specified attributes.

Prefix the directive with const to disable the WRITE attribute assigned to the SFR. You
will then get an error or warning message when trying to write to the SFR. The const
keyword must be placed on the same line as the directive.

In this example several SFR variables are declared with a variety of access capabilities:

name sfrs

rseg CODE : CODE

sfrb portd = 0x12 ; Byte read/write access.

sfrw ocrl = 0x2A ; Word read/write access.
const sfrb pind = 0x10 ; Byte read only access.

sfrtype portb write, byte = 0x18 ; Byte write only

; access.
end

Checking symbol values

Use LIMIT to check that expressions lie within a specified range. If the expression is
assigned a value outside the range, an error message appears.

The check occurs as soon as the expression is resolved, which is during linking if the
expression contains external references. The min and max expressions cannot involve

references to forward or external labels, that is they must be resolved when encountered.

The following example sets the value of a variable called speed and then checks it, at
assembly time, to see if it is in the range 10 to 30. This might be useful if speed is often
changed at compile time, but values outside a defined range would cause undesirable
behavior.

module setLimit

speed set 23
limit speed, 10,30, "Speed is out of range!"
end

Conditional assembly directives

Syntax

ELSE

ELSEIF condition

ENDIF

IF condition

91

Description of assembler directives

Parameters
condition One of these:

An absolute expression The expression must not contain
forward or external references, and
any non-zero value is considered as
true.

stringl=string2 The condition is true if stringl and
string2 have the same length and
contents.

stringl<>string2 The condition is true if stringl and
string2 have different length or
contents.

Description Use the IF, ELSE, and ENDIF directives to control the assembly process at assembly

time. If the condition following the IF directive is not true, the subsequent instructions
do not generate any code (that is, it is not assembled or syntax checked) until an ELSE
or ENDIF directive is found.

Use ELSEIF to introduce a new condition after an IF directive. Conditional assembly
directives can be used anywhere in an assembly, but have their greatest use in
conjunction with macro processing.

All assembler directives (except for END) as well as the inclusion of files can be disabled
by the conditional directives. Each IF directive must be terminated by an ENDIF
directive. The ELSE directive is optional, and if used, it must be inside an IF. . .ENDIF
block. IF. . .ENDIF and IF...ELSE. . .ENDIF blocks can be nested to any level.

IAR Assembler
92 Reference Guide for MSP430

Assembler directives ___¢

Example This example uses a macro to add a constant to a direct page memory location:

; If the second argument to the addMem macro is 1, 2, or 3,

; it generates the equivalent number of INC instructions. For any
; other non-zero value of the second argument, it generates a

; mov.w instruction.

addMem macro loc,val ; loc is a direct page memory
; location, and val is an
; 8-bit value to add to that

; location.
if val = 0
; Do nothing.
elseif wval =1
inc loc
elseif wval = 2
inc loc
inc loc
elseif wval = 3
inc loc
inc loc
inc loc
else
add #val, loc
endif
endm

module addwithMacro

rseg CODE : CODE

addSome addMem O0xa0,0 ; Add 0 to memory loc. 0xa0.
addMem 0xa0,1 ; Add 1 to the same address.
addMem 0xa0, 2 ; Add 2 to the same address.
addMem O0Oxa0,3 ; Add 3 to the same address.
addMem 0xa0,47 ; Add 47 to the same address.
ret
end

Macro processing directives

Syntax _args
ENDM

ENDR

93

Description of assembler directives

94

Parameters

Description

IAR Assembler
Reference Guide for MSP430

EXITM

LOCAL symbol [,symbol]

name MACRO [argument] [,argument]
REPT expr

REPTC formal, actual

REPTI formal,actual [,actuall

actual Strings to be substituted.

argument Symbolic argument names.

expr An expression.

formal An argument into which each character of actual (REPTC) or each

string of actual (REPTI) is substituted.
name The name of the macro.

symbol Symbols to be local to the macro.

These directives allow user macros to be defined. For information about the restrictions
that apply when using a directive in an expression, see Expression restrictions, page 24.

Directive Description Expression restrictions

_args Is set to number of arguments passed to macro.

ENDM Ends a macro definition.

ENDR Ends a repeat structure.

EXITM Exits prematurely from a macro.

LOCAL Creates symbols local to a macro.

MACRO Defines a macro.

REPT Assembles instructions a specified number of times. No forward references
No external references
Absolute
Fixed

REPTC Repeats and substitutes characters.

REPTI Repeats and substitutes text.

Table 19: Macro processing directives

Assembler directives ___¢

A macro is a user-defined symbol that represents a block of one or more assembler
source lines. Once you have defined a macro, you can use it in your program like an
assembler directive or assembler mnemonic.

When the assembler encounters a macro, it looks up the macro’s definition, and inserts
the lines that the macro represents as if they were included in the source file at that
position.

Macros perform simple text substitution effectively, and you can control what they
substitute by supplying parameters to them.

The macro process consists of three distinct phases:

1 The assembler scans and saves macro definitions. The text between MACRO and
ENDM is saved but not syntax checked. Include-file references $ £i1le are recorded
and included during macro expansion.

2 A macro call forces the assembler to invoke the macro processor (expander). The
macro expander switches (if not already in a macro) the assembler input stream
from a source file to the output from the macro expander. The macro expander takes
its input from the requested macro definition.

The macro expander has no knowledge of assembler symbols since it only deals with
text substitutions at source level. Before a line from the called macro definition is
handed over to the assembler, the expander scans the line for all occurrences of
symbolic macro arguments, and replaces them with their expansion arguments.

3 The expanded line is then processed as any other assembler source line. The input
stream to the assembler continues to be the output from the macro processor, until
all lines of the current macro definition have been read.

Defining a macro
You define a macro with the statement:

name MACRO [argument] [,argument]

Here name is the name you are going to use for the macro, and argument is an argument
for values that you want to pass to the macro when it is expanded.

For example, you could define a macro errMac as follows:

name errMacro
errMac macro text

extern abort

call abort

dc8 text, 0

endm

end

95

Description of assembler directives

96

This macro uses a parameter text to set up an error message for a routine abort. You
would call the macro with a statement such as:

errMac 'Disk not ready'
The assembler expands this to:

call abort
dc8 'Disk not ready',0
even

If you omit a list of one or more arguments, the arguments you supply when calling the
macro are called \1 to \9 and \A to \Z.

The previous example could therefore be written as follows:

name errMacro
errMac macro text

extern abort

call abort

dc8 \1,0

endm

end

Use the EXITM directive to generate a premature exit from a macro.
EXITM is not allowed inside REPT...ENDR, REPTC...ENDR, Or REPTI...ENDR blocks.

Use LOCAL to create symbols local to a macro. The LOCAL directive must be used before
the symbol is used.

Each time that a macro is expanded, new instances of local symbols are created by the
LocaL directive. Therefore, it is legal to use local symbols in recursive macros.

Note: It is illegal to redefine a macro.

Passing special characters

IAR Assembler
Reference Guide for MSP430

Macro arguments that include commas or white space can be forced to be interpreted as
one argument by using the matching quote characters < and > in the macro call.

For example:

name ldaMacro
ldaMac macro op

add op

endm

end

The macro can be called using the macro quote characters:

ldaMac <R4,R5>

Assembler directives ___¢

You can redefine the macro quote characters with the -M command line option; see -M,
page 46.

Predefined macro symbols

The symbol _args is set to the number of arguments passed to the macro. This example
shows how _args can be used:

fill macro
if _args ==
rept \2
dc8 \1
endr
else
dc8 \1
endif
endm

module filler

rseg CODE : CODE
fill 3

fill 4, 3

end

It generates this code:

10 000000

11 000000 module filler
12 000000 rseg CODE : CODE
13 000000 fill 3

13.1 000000 if _args == 2
13.2 000000 rept

13.3 000000 dc8 3

13.4 000000 endr

13.5 000000 else

13.6 000000 03 dc8 3

13.7 000001 endif

13.8 000001 endm

14 000001 fill 4, 3
14.1 000001 if _args ==
14.2 000001 rept 3

14.3 000001 dc8 4

14.4 000001 endr

14.5 000001 04 dc8 4

14.6 000004 else

14.7 000004 dc8 4

14.8 000004 endif

14.9 000004 endm

15 000004 end

97

Description of assembler directives

98

Repeating statements

IAR Assembler
Reference Guide for MSP430

Use the REPT. . . ENDR structure to assemble the same block of instructions several
times. If expr evaluates to 0 nothing is generated.

Use REPTC to assemble a block of instructions once for each character in a string. If the
string contains a comma it should be enclosed in quotation marks.

Only double quotes have a special meaning and their only use is to enclose the
characters to iterate over. Single quotes have no special meaning and are treated as any
ordinary character.

Use REPTT to assemble a block of instructions once for each string in a series of strings.
Strings containing commas should be enclosed in quotation marks.

This example assembles a series of calls to a subroutine plot to plot each character in
a string:

name reptc

extern plotc

rseg CODE : CODE

banner reptc chr, "Welcome"

mov 'chr', r8

call plotc

endr

end

Assembler directives ___¢

This produces this code:

1 000000 NAME reptc

2 000000 extern plotc

3 000000 rseg CODE : CODE

4 000000

5 000000 banner reptc chr, 'Welcome'
6 000000 mov 'chr', r8
7 000000 call plotc

8 000000 endr

8.1 000000 18405500 mov 'W', r8
8.2 000004 9012.... call plotc
8.3 000008 18405B00 mov 'e', r8
8.4 00000C 9012.... call plotc
8.5 000010 18405A00 mov '1', r8
8.6 000014 9012.... call plotc
8.7 000018 18404900 mov 'c', r8
8.8 00001C 9012... call plotc
8.9 000020 18484D00 mov 'o', r8
8.10 000024 9012.... call plotc
8.11 000028 18404300 mov 'm', r8
8.12 00002C 9012.... call plotc
8.13 000030 18403300 mov 'e', r8
8.14 000034 9012.... call plotc

9 000038 end

This example uses REPTT to clear several memory locations:

name repti
extern Dbase, count, init
rseg CODE : CODE
banner repti adds, base, count, init
clr adds
endr
end

929

Description of assembler directives

This produces this code:

1 000000 name repti

2 000000 extern base, count, init
3 000000 rseg CODE : CODE

4 000000

5 000000 banner repti adds, base, count, init
6 000000 clr adds

7 000000 endr

7.1 000000 8043.... clr base

7.2 000004 8043.... clr count

7.3 000008 8043.... clr init

8 00000C

9 00000C end

Coding inline for efficiency

In time-critical code it is often desirable to code routines inline to avoid the overhead of
a subroutine call and return. Macros provide a convenient way of doing this.

This example outputs bytes from a buffer to a port:

extern port

rseg RAM
buffer db 25
rseg PROM
;Plays 256 bytes from buffer to port
play mov #buffer, r4d
mov #256, r5
loop mov @rd+, &port
inc rd
dec r5
jne loop
ret
end

For efficiency we can recode this using a macro:

play macro

local loop

mov #buffer,rd

mov #64,r5
loop mov @rd+, &port

mov @rd+, &port

mov @rd+, &port

mov @rd+, &port

dec dec r5

jne loop

endm

IAR Assembler
100 Reference Guide for MSP430

Assembler directives ___¢

Notice the use of the LOCAL directive to make the label 1o0p local to the macro;
otherwise an error is generated if the macro is used twice, as the 1oop label already
exists.

Listing control directives

Syntax COL columns
LSTCND{+ |-}
LSTCOD{+ |-}
LSTEXP{+|-}
LSTMAC{+|-}
LSTOUT{+|-}
LSTPAG{+|-}
LSTREP{+|-}
LSTXRF{+|-}
PAGE

PAGSIZ lines

Parameters

columns An absolute expression in the range 80 to 132, default is 80

lines An absolute expression in the range 10 to 150, default is 44
Description These directives provide control over the assembler list file:

Directive Description

COL Sets the number of columns per page.

LSTCND Controls conditional assembly listing.

LSTCOD Controls multi-line code listing.

LSTEXP Controls the listing of macro-generated lines.

LSTMAC Controls the listing of macro definitions.

LSTOUT Controls assembly-listing output.

LSTPAG Controls the formatting of output into pages.

LSTREP Controls the listing of lines generated by repeat directives.

Table 20: Listing control directives

101

Description of assembler directives

102

Directive Description

LSTXRF Generates a cross-reference table.
PAGE Generates a new page.

PAGSIZ Sets the number of lines per page.

Table 20: Listing control directives (Continued)

Turning the listing on or off

Use LSTOUT- to disable all list output except error messages. This directive overrides
all other listing control directives.

The default is LsTOUT+, which lists the output (if a list file was specified).

To disable the listing of a debugged section of program:

lstout-

; This section has already been debugged.
lstout+

; This section is currently being debugged.
end

Listing conditional code and strings

IAR Assembler
Reference Guide for MSP430

Use LsTCND+ to force the assembler to list source code only for the parts of the assembly
that are not disabled by previous conditional IF statements.

The default setting is LSTCND-, which lists all source lines.

Use LSTCOD- to restrict the listing of output code to just the first line of code for a source
line.

The default setting is LSTCOD+, which lists more than one line of code for a source line,
if needed; that is, long ASCII strings produce several lines of output. Code generation
is not affected.

Assembler directives ___¢

This example shows how LSTCND+ hides a call to a subroutine that is disabled by an IF

directive:
name lstcndTest
extern print
rseg FLASH:CODE
debug set 0
begin if debug
call print
endif
lstcnd+
begin2 if debug
call print
endif
end

This generates the following listing:

1 000000 name lstcndTest
2 000000 extern print

3 000000 rseg FLASH:CODE
4 000000

5 000000 debug set 0

6 000000 begin if debug

7 000000 call print

8 000000 endif

9 000000

10 000000 lstcnd+

11 000000 begin2 if debug

13 000000 endif

14 000000

15 000000 end

Controlling the listing of macros

Use LSTEXP- to disable the listing of macro-generated lines. The default is LSTEXP+,
which lists all macro-generated lines.

Use L.STMAC+ to list macro definitions. The default is LsSTMAC-, which disables the
listing of macro definitions.

103

Description of assembler directives

This example shows the effect of LSTMAC and LSTEXP:

name lstmacTest
extern memLoc
rseg FLASH:CODE
dec?2 macro arg
dec arg
dec arg
endm
lstmac+
inc2 macro arg
inc arg
inc arg
endm
begin dec2 memLoc
lstexp-
inc2 memLoc
ret

; Restore default values for
; listing control directives.

lstmac-
lstexp+

end begin

IAR Assembler
104 Reference Guide for MSP430

This produces the following output:

9 000000
10 000000
11 000000
12 000000
17 000000
18 000000
19 000000
20 000000
21 000000
22 000000
23 000000
24 000000

24.1 000000 9083...
24.2 000004 9083...
24.3 000008
25 000008

26 000008
27 000010 3041
28 000012
29 000012
30 000012
31 000012
32 000012
33 000012
34 000012
35 000012

Controlling the listing of generated lines

Assembler directives ___¢

name lstmacTest
extern memLoc
rseg FLASH:CODE
lstmac+

inc2 macro arg
inc arg
inc arg
endm

begin dec2 memLoc
dec memLoc
dec memLocC
endm
lstexp-
inc2 memLoc
ret

; Restore default values for
; listing control directives.

lstmac-
lstexp+

end begin

Use LSTREP- to turn off the listing of lines generated by the directives REPT, REPTC,

and REPTI.

The default is LSTREP+, which lists the generated lines.

Generating a cross-reference table

Use LSTXRF+ to generate a cross-reference table at the end of the assembler list for the
current module. The table shows values and line numbers, and the type of the symbol.

The default is LSTXRF-, which does not give a cross-reference table.

Specifying the list file format

Use COL to set the number of columns per page of the assembler list. The default number

of columns is 80.

105

Description of assembler directives

Use PAGSIZ to set the number of printed lines per page of the assembler list. The default
number of lines per page is 44.

Use LsTPAG+ to format the assembler output list into pages.
The default is LSTPAG-, which gives a continuous listing.

Use PAGE to generate a new page in the assembler list file if paging is active.

C-style preprocessor directives

Syntax #define symbol text
#elif condition
#else
#endif
#error "message"
#if condition
#ifdef symbol
#ifndef symbol
#include {"filename" | <filename>}
#line line-no {"filename"}
#message "message"

#undef symbol

Parameters
condition An absolute expression

The expression must not contain any assembler labels or symbols,
and any non-zero value is considered as true. The C preprocessor
operator defined can be used.

filename Name of file to be included or referred.

line-no Source line number.

message Text to be displayed.

symbol Preprocessor symbol to be defined, undefined, or tested.
text Value to be assigned.

IAR Assembler
106 Reference Guide for MSP430

Assembler directives ___¢

Description The assembler has a C-style preprocessor that is similar to the C89 standard.

These C-language preprocessor directives are available:

Directive Description

#define Assigns a value to a preprocessor symbol.

#elif Introduces a new condition inan #if. . .#endif block.
#else Assembles instructions if a condition is false.

#endif Ends an #if, #ifdef, or #ifndef block.

#error Generates an error.

#if Assembles instructions if a condition is true.

#ifdef Assembles instructions if a preprocessor symbol is defined.
#ifndef Assembles instructions if a preprocessor symbol is undefined.
#include Includes a file.

#line Changes the source references in the debug information.
#message Generates a message on standard output.

#pragma This directive is recognized but ignored.

#undef Undefines a preprocessor symbol.

Table 21: C-style preprocessor directives

You must not mix assembler language and C-style preprocessor directives.
Conceptually, they are different languages and mixing them might lead to unexpected
behavior because an assembler directive is not necessarily accepted as a part of the C
preprocessor language.

Note that the preprocessor directives are processed before other directives. As an
example avoid constructs like:

redef macro ; Avoid the following!
#define \1 \2
endm

because the \1 and \2 macro arguments are not available during the preprocessing
phase.

Defining and undefining preprocessor symbols

Use #define to define a value of a preprocessor symbol.
#define symbol value

Use #undef to undefine a symbol; the effect is as if it had not been defined.

107

Description of assembler directives

Conditional preprocessor directives

IAR Assembler

108 Reference Guide for MSP430

Use the #if...#else...#endif directives to control the assembly process at assembly
time. If the condition following the #1i £ directive is not true, the subsequent instructions
will not generate any code (that is, it will not be assembled or syntax checked) until an
#endif or #else directive is found.

All assembler directives (except for END) and file inclusion can be disabled by the
conditional directives. Each #i £ directive must be terminated by an #endi £ directive.
The #else directive is optional and, if used, it must be inside an #if...#endif block.

#if..#endif and #if...#else...#endif blocks can be nested to any level.

Use #1ifdef to assemble instructions up to the next #else or #endif directive only if
a symbol is defined.

Use #ifndef to assemble instructions up to the next #else or #endif directive only if
a symbol is undefined.

This example defines the labels tweak and adjust. If adjust is defined, then register
16 is decremented by an amount that depends on adjust, in this case 30.

module calibrate
extern calibrationConstant

rseg CODE : CODE
#define tweak 1
#define adjust 3
calibrate mov calibrationConstant, r8
#ifdef tweak
#if adjust==
sub #4, r8
#elif adjust==2
sub #20, r8
#elif adjust==3
sub #30, r8
#endif
#endif /* ifdef tweak */
mov r8, calibrationConstant
ret
end

Assembler directives ___¢

Including source files

Use #include to insert the contents of a header file into the source file at a specified
point.

#include " filename" and #include <filename> search these directories in the
specified order:

1 The source file directory. (This step is only valid for #include " filename".)

2 The directories specified by the - T option, or options. The directories are searched
in the same order as specified on the command line, followed by the ones specified
by environment variables.

3 The current directory, which is the same as where the assembler executable file is
located.

4 The automatically set up library system include directories. See -g, page 43.

This example uses #include to include a file defining macros into the source file. For
example, these macros could be defined in Macros. inc:

; Exchange registers a and b.
; Use the stack for temporary storage.

xch macro a,b
push a
mov a,b
pop b
endm

The macro definitions can then be included, using #include, as in this example:

program includeFile
rseg CODE : CODE

; Standard macro definitions.
#include "Macros.inc"

xchRegs xch r8, r9
ret

end

Displaying errors

Use #error to force the assembler to generate an error, such as in a user-defined test.

109

Description of assembler directives

Ignoring #pragma

A #pragma line is ignored by the assembler, making it easier to have header files
common to C and assembler.

Changing the source line numbers

Use the #1ine directive to change the source line numbers and the source filename used
in the debug information. #1ine operates on the lines following the #1ine directive.

Comments in C-style preprocessor directives

IAR Assembler
110 Reference Guide for MSP430

If you make a comment within a define statement, use:

o the C comment delimiters /* */ to comment sections

o the C++ comment delimiter // to mark the rest of the line as comment.

Do not use assembler comments within a define statement as it leads to unexpected
behavior.

This expression evaluates to 3 because the comment character is preserved by #define:

#define x 3 ; This is a misplaced comment.

module misplacedCommentl
expression equ x * 8 + 5

end

This example illustrates some problems that might occur when assembler comments are
used in the C-style preprocessor:

#define five 5 ; This comment is not OK.
#define six 6 // This comment is OK.
#define seven 7 /* This comment is OK. */

module misplacedComment?2

rseg CONST :CONST (2)
DC32 five, 11, 12
; The previous line expands to:
; "DC32 5 ; This comment is not OK., 11, 12"
DC32 six + seven, 11, 12
; The previous line expands to:
; "DC32 6 + 7, 11, 12"
end

Assembler directives ___¢

Data definition or allocation directives

Syntax DB expr [,expr]
DC8 expr [,expr]
DCl6 expr [,expr]
DC24 expr [,expr]
DC32 expr [,expr]
DC64 expr [,expr]
DF value [,value] .
DF32 value [,valuel
DF64 value [,value]
DL expr [,expr]
.double value [, valuel
DS count
DS8 count
DS16 count
DS24 count
DS32 count
DS64 count
.float value [,value]

Parameters
count A valid absolute expression specifying the number of elements to be
reserved.
expr A valid absolute, relocatable, or external expression, or an ASCII string.
ASCII strings are zero filled to a multiple of the data size implied by the
directive. Double-quoted strings are zero-terminated.
value A valid absolute expression or floating-point constant.
Description These directives define values or reserve memory.

Use DC8, DC16, DC24, DC32, DC64, DF32, or DF64 to create a constant, which means
an area of bytes is reserved big enough for the constant.

Use Ds, DS8, DS16, DS24, DS32, or DS64 to reserve a number of uninitialized bytes.

For information about the restrictions that apply when using a directive in an expression,
see Expression restrictions, page 24.

The column Alias in the following table shows the Texas Instruments directive that
corresponds to the IAR Systems directive.

Directive Alias Description

DC8 DB Generates 8-bit constants, including strings.

Table 22: Data definition or allocation directives

Description of assembler directives

112

IAR Assembler
Reference Guide for MSP430

Directive Alias Description

DC16 DW Generates |6-bit constants.

DC24 Generates 24-bit constants.

DC32 Generates 32-bit constants.

DC64 Generates 64-bit constants

DF32 DF Generates 32-bit floating-point constants.

DF64 Generates 64-bit floating-point constants.

.double Generates 32-bit values in Texas Instruments’ floating-point
format.

DS8 DS Allocates space for 8-bit integers.

DS16 DS 2 Allocates space for |6-bit integers.

DS24 Allocates space for 24-bit integers.

DS32 DS 4 Allocates space for 32-bit integers.

DS64 DS 8 Allocates space for 64-bit integers.

.float Generates 48-bit values in Texas Instruments’ floating-point

format.

Table 22: Data definition or allocation directives (Continued)

Generating a lookup table

Defining strings

Assembler directives ___¢

This example generates a constant table of 8-bit data that is accessed via the call
instruction and added up to a sum.

module

rseg

table dc8
dc8
dc8
dc8
dc8
dc8
dc8

rseg
count set

addTable mov
rept
if
exitm
endif
addc

count set
endr

ret

end

To define a string:

sumTableAndIndex
DATAl6_C:CONST

12
15
17
16
14
11
9

CODE : CODE
0

#0, r8

I
1}
~

count

table + count. r8
count + 1

myMsg DC8 'Please enter your name'

To define a string which includes a trailing zero:

myCstr DC8 "This is a string."

To include a single quote in a string, enter it twice; for example:

errMsg DC8 'Don''t understand!'

113

Description of assembler directives

Reserving space

To reserve space for 10 bytes:

table DS8 10

Assembler control directives

Syntax $filename
/* comment*/
// comment
CASEOFF
CASEON

RADIX expr

Parameters
comment Comment ignored by the assembler.
expr Default base; default 10 (decimal).
filename Name of file to be included. The ¢ character must be the first
character on the line.
Description These directives provide control over the operation of the assembler. For information

about the restrictions that apply when using a directive in an expression, see Expression
restrictions, page 24.

Directive Description Expression restrictions

$ Includes a file.

/*comment*/ C-style comment delimiter.

!/ C++ style comment delimiter.

CASEOFF Disables case sensitivity.

CASEON Enables case sensitivity.

RADIX Sets the default base on all numeric No forward references

values. No external references

Absolute
Fixed

Table 23: Assembler control directives

IAR Assembler
114 Reference Guide for MSP430

Assembler directives ___¢

Use $ to insert the contents of a file into the source file at a specified point. This is an
alias for #include, see C-style preprocessor directives, page 107.

Use /*...*/ to comment sections of the assembler listing.

Use // to mark the rest of the line as comment.

Use RADIX to set the default base for constants. The default base is 10.

Controlling case sensitivity

Use CASEON or CASEOFF to turn on or off case sensitivity for user-defined symbols. By
default, case sensitivity is off.

When CASEOFF is active all symbols are stored in upper case, and all symbols used by
XLINK should be written in upper case in the XLINK definition file.

When CASEOFF is set, 1label and LABEL are identical in this example:

label

module caseSensitivityl

rseg CODE : CODE

caseoff

nop ; Stored as "LABEL".
bra LABEL

end

The following will generate a duplicate label error:

label
LABEL

Including a source file

module caseSensitivity2

rseg CODE : CODE

caseoff

nop ; Stored as "LABEL".

nop ; Error, "LABEL" already defined.
end

This example uses $ to include a file defining macros into the source file. For example,
these macros could be defined in Macros. inc:

xch

macro a,b
push a
mov a,b
pop b
endm

115

Description of assembler directives

The macro definitions can be included with a $ directive, as in:

program includeFile
rseg CODE : CODE

; Standard macro definitions.
$Macros.inc

xchRegs xch r8,r9
ret
end xchRegs

Defining comments
This example shows how /*. . .*/ can be used for a multi-line comment:

/*

Program to read serial input.
Version 1: 19.2.11

Author: mjp

*/

See also C-style preprocessor directives, page 107.

Changing the base
To set the default base to 16:

module radix

rseg CODE : CODE
radix 16 ; With the default base set
mov 12, r8 ; to 16, the immediate value

P ; of the load instruction is
; interpreted as 0x12.

; To reset the base from 16 to 10 again, the argument must be
; written in hexadecimal format.

radix 0x0a ; Reset the default base to 10.
mov 12, r8 ; Now, the immediate value of
P ; the load instruction is

; interpreted as 0xOc.
end

IAR Assembler
116 Reference Guide for MSP430

Function directives

Syntax

Parameters

Description

Example

See also

Assembler directives ___¢

CALL_GRAPH_ROOT function [,categoryl]

function The function, a symbol.

category An optional call graph root category, a string.

Use this directive to specify that, for stack usage analysis purposes, the function
function is a call graph root. You can also specify an optional category, a quoted
string.

The compiler will generate this directive in assembler list files, when needed.

CALL_GRAPH_ROOT my_interrupt, "interrupt"

Call frame information directives for stack usage analysis, page 124, for information
about CFI directives required for stack usage analysis.

IAR C/C++ Compiler Reference Guide for MSP430 for information about how to
enable and use stack usage analysis.

Call frame information directives for names blocks

Syntax

Names block directives:

CFI NAMES name

CFI ENDNAMES name

CFI RESOURCE resource : bits [, resource : bits]

CFI VIRTUALRESOURCE resource : bits [, resource : bits]
CFI RESOURCEPARTS resource part, part [, part] ...

CFI STACKFRAME cfa resource type [, cfa resource typel
CFI BASEADDRESS cfa type [, cfa typel

Extended names block directives:

CFI NAMES name EXTENDS namesblock

CFI ENDNAMES name

CFI FRAMECELL cell cfa(offset): size [, cell cfa (offset): sizel

17

Description of assembler directives

118

Parameters

Description

Example

See also

IAR Assembler
Reference Guide for MSP430

bits

cell

cfa

name

namesblock

offset

part

resource

segment

size

type

The size of the resource in bits.

The name of a frame cell.

The name of a CFA (canonical frame address).

The name of the block.

The name of a previously defined names block.

The offset relative the CFA. An integer with an optional sign.

A part of a composite resource. The name of a previously
declared resource.

The name of a resource.
The name of a segment.
The size of the frame cell in bytes.

The segment memory type, such as CODE, CONST or DATA. In
addition, any of the memory types supported by the AR XLINK
Linker. It is only used for denoting an address space.

Use these directives to define a names block:

Directive Description

CFI BASEADDRESS Declares a base address CFA (Canonical Frame Address).
CFI ENDNAMES Ends a names block.

CFI FRAMECELL Creates a reference into the caller’s frame.

CFI NAMES Starts a names block.

CFI RESOURCE Declares a resource.

CFI RESOURCEPARTS Declares a composite resource.

CFI STACKFRAME Declares a stack frame CFA.

CFI VIRTUALRESOURCE Declares a virtual resource.

Table 24: Call frame information directives names block

Examples of using CF1I directives, page 34

Tracking call frame usage, page 26

Assembler directives ___¢

Call frame information directives for common blocks

Syntax Common block directives:
CFI COMMON name USING namesblock
CFI ENDCOMMON name
CFI CODEALIGN codealignfactor
CFI DATAALIGN dataalignfactor
CFI RETURNADDRESS resource type
Extended common block directives:
CFI COMMON name EXTENDS commonblock USING namesblock

CFI ENDCOMMON name

Parameters

codealignfactor The smallest common factor of all instruction sizes. Each CFI
directive for a data block must be placed according to this
alignment. 1 is the default and can always be used, but a larger
value reduces the produced call frame information in size. The
possible range is 1-256.

commonblock The name of a previously defined common block.

dataalignfactor The smallest common factor of all frame sizes. If the stack
grows toward higher addresses, the factor is negative; if it grows
toward lower addresses, the factor is positive. 1 is the default, but
a larger value reduces the produced call frame information in
size. The possible ranges are —256 to —1 and 1 to 256.

name The name of the block.

namesblock The name of a previously defined names block.

resource The name of a resource.

type The memory type, such as CODE, CONST or DATA. In addition,
any of the segment memory types supported by the [AR XLINK
Linker. It is only used for denoting an address space.

Description Use these directives to define a common block:
Directive Description
CFI CODEALIGN Declares code alignment.

Table 25: Call frame information directives common block

19

Description of assembler directives

Directive Description

CFI COMMON Starts or extends a common block.
CFI DATAALIGN Declares data alignment.

CFI ENDCOMMON Ends a common block.

CFI RETURNADDRESS Declares a return address column.

Table 25: Call frame information directives common block (Continued)

In addition to these directives you might also need the call frame information directives
for specifying rules or CFI expressions for resources and CFAs, see Call frame
information directives for tracking resources and CFAs, page 121.

Example Examples of using CFI directives, page 34

See also Tracking call frame usage, page 26

Call frame information directives for data blocks

Syntax CFI BLOCK name USING commonblock
CFI ENDBLOCK name
CFI { NOFUNCTION | FUNCTION label }
CFI { INVALID | VALID }

CFI { REMEMBERSTATE | RESTORESTATE }

CFI PICKER
CFI CONDITIONAL label [, labell
Parameters
commonblock The name of a previously defined common block.
label A function label.
name The name of the block.
Description These directives allow call frame information to be defined in the assembler source
code:
Directive Description
CFI BLOCK Starts a data block.
CFI CONDITIONAL Declares a data block to be a conditional thread.

Table 26: Call frame information directives for data blocks

IAR Assembler
120 Reference Guide for MSP430

Assembler directives ___¢

Directive Description

CFI ENDBLOCK Ends a data block.

CFI FUNCTION Declares a function associated with a data block.

CFI INVALID Starts a range of invalid call frame information.

CFI NOFUNCTION Declares a data block to not be associated with a function.
CFI PICKER Declares a data block to be a picker thread. Used by the

compiler for keeping track of execution paths when code
is shared within or between functions.

CFI REMEMBERSTATE Remembers the call frame information state.
CFI RESTORESTATE Restores the saved call frame information state.
CFI VALID Ends a range of invalid call frame information.

Table 26: Call frame information directives for data blocks (Continued)

In addition to these directives you might also need the call frame information directives
for specifying rules or CFI expressions for resources and CFAs, see Call frame
information directives for tracking resources and CFAs, page 121.

Example Examples of using CFI directives, page 34

See also Tracking call frame usage, page 26

Call frame information directives for tracking resources and CFAs

Syntax CFI cfa { resource | resource + constant | resource - constant }
CFI cfa cfiexpr
CFI resource { UNDEFINED | SAMEVALUE | CONCAT }
CFI resource { resource | FRAME (cfa, offset) }
CFI resource cfiexpr
Parameters
cfa The name of a CFA (canonical frame address).
cfiexpr A CFI expression, which can be one of these:

A CFI operator with operands
A numeric constant
A CFA name

[]
[]
[]
e A resource name.

121

Description of assembler directives

122

Unary operators

Binary operators

IAR Assembler
Reference Guide for MSP430

constant

offset

resource

A constant value or an assembler expression that can be
evaluated to a constant value.

The offset relative the CFA. An integer with an optional sign.

The name of a resource.

Overall syntax: OPERATOR (operand)

CFIl operator Operand Description

COMPLEMENT cfiexpr Performs a bitwise NOT on a CFl expression.

LITERAL expr Get the value of the assembler expression. This can insert
the value of a regular assembler expression into a CFl
expression.

NOT cfiexpr Negates a logical CFl expression.

UMINUS cfiexpr Performs arithmetic negation on a CFl expression.

Table 27: Unary operators in CFI expressions

Overall syntax: OPERATOR (operandl, operand2)

CFl operator Operands

Description

ADD
AND
DIV
EQ
GE
GT
LE

LSHIFT

LT
MOD
MUL
NE
OR

cfiexpr,cfiexpr
cfiexpr,cfiexpr
cfiexpr,cfiexpr
cfiexpr,cfiexpr
cfiexpr,cfiexpr
cfiexpr,cfiexpr
cfiexpr,cfiexpr

cfiexpr,cfiexpr

cfiexpr,cfiexpr
cfiexpr,cfiexpr
cfiexpr,cfiexpr
cfiexpr,cfiexpr

cfiexpr,cfiexpr

Addition

Bitwise AND

Division

Equal

Greater than or equal
Greater than

Less than or equal

Logical shift left of the left operand. The number of
bits to shift is specified by the right operand. The sign
bit will not be preserved when shifting.

Less than
Modulo
Multiplication
Not equal
Bitwise OR

Table 28: Binary operators in CFI expressions

Assembler directives ___¢

CFl operator Operands Description

RSHIFTA cfiexpr,cfiexpr Arithmetic shift right of the left operand. The
number of bits to shift is specified by the right
operand. In contrast with RSHIFTL, the sign bit is
preserved when shifting.

RSHIFTL cfiexpr,cfiexpr Logical shift right of the left operand. The number of
bits to shift is specified by the right operand. The sign
bit will not be preserved when shifting.

SUB cfiexpr,cfiexpr Subtraction

XOR cfiexpr,cfiexpr Bitwise XOR

Table 28: Binary operators in CFI expressions (Continued)

Ternary operators Overall syntax: OPERATOR (operandl, operand2, operand3)

Operator Operands Description

FRAME cfa,size,offset Gets the value from a stack frame. The operands are:
cfa, an identifier that denotes a previously declared CFA.
Size, a constant expression that denotes a size in bytes.
offset, a constant expression that denotes a size in bytes.
Gets the value at address cfa+offset of size size.

IF cond, true, false Conditional operator. The operands are:
cond, a CFl expression that denotes a condition.
true, any CFl expression.
false, any CFl expression.
If the conditional expression is non-zero, the result is the
value of the true expression; otherwise the result is the
value of the false expression.

LOAD size, type,addr Gets the value from memory. The operands are:
Size, a constant expression that denotes a size in bytes.
type, a memory type.
addr, a CFl expression that denotes a memory address.
Gets the value at address addr in the segment memory
type type of size size.

Table 29: Ternary operators in CFI expressions

Description Use these directives to track resources and CFAs in common blocks and data blocks:
Directive Description
CFI cfa Declares the value of a CFA.
CFI resource Declares the value of a resource.

Table 30: Call frame information directives for tracking resources and CFAs

123

Description of assembler directives

124

Example

See also

Examples of using CFI directives, page 34

Tracking call frame usage, page 26

Call frame information directives for stack usage analysis

Syntax

Description

See also

IAR Assembler
Reference Guide for MSP430

CFI

CFI

CFI

CFI

FUNCALL { caller } callee

INDIRECTCALL { caller }

NOCALLS { caller }

TAILCALL { callee }

These directives allow call frame information to be defined in the assembler source

code:

Directive Description

CFI FUNCALL Declares function calls for stack usage analysis.
CFI INDIRECTCALL Declares indirect calls for stack usage analysis.
CFI NOCALLS Declares absence of calls for stack usage analysis.
CFI TAILCALL Declares tail calls for stack usage analysis.

Table 31: Call frame information directives for stack usage analysis

Tracking call frame usage, page 26

The IAR C/C++ Compiler Reference Guide for MSP430 for information about stack
usage analysis.

Assembler diagnostics

The following pages describe the format of the diagnostic messages and
explains how diagnostic messages are divided into different levels of severity.

Message format

All diagnostic messages are displayed on the screen, and printed in the optional list file.

All messages are issued as complete, self-explanatory messages. The message consists
of the incorrect source line, with a pointer to where the problem was detected, followed
by the source line number and the diagnostic message. If include files are used, error
messages are preceded by the source line number and the name of the current file:

"subfile.h",4 Error[40]: bad instruction

In addition, you can find all messages specific to the AR Assembler for MSP430 in the
release note a430_msg.htm.

Severity levels

The diagnostic messages produced by the IAR Assembler for MSP430 reflect problems
or errors that are found in the source code or occur at assembly time.

OPTIONS FOR DIAGNOSTICS

There are two assembler options for diagnostics. You can:

o Disable or enable all warnings, ranges of warnings, or individual warnings, see -w,
page 53

e Set the number of maximum errors before the compilation stops, see -E, page 42.

ASSEMBLY WARNING MESSAGES

Assembly warning messages are produced when the assembler finds a construct which
is probably the result of a programming error or omission.

125

Severity levels

126

IAR Assembler
Reference Guide for MSP430

COMMAND LINE ERROR MESSAGES

Command line errors occur when the assembler is invoked with incorrect parameters.
The most common situation is when a file cannot be opened, or with duplicate,
misspelled, or missing command line options.

ASSEMBLY ERROR MESSAGES

Assembly error messages are produced when the assembler finds a construct which
violates the language rules.

ASSEMBLY FATAL ERROR MESSAGES

Assembly fatal error messages are produced when the assembler finds a user error so
severe that further processing is not considered meaningful. After the diagnostic
message is issued, the assembly is immediately ended. These error messages are
identified as Fatal in the error messages list.

ASSEMBLER INTERNAL ERROR MESSAGES

An internal error is a diagnostic message that signals that there was a serious and
unexpected failure due to a fault in the assembler.

During assembly, several internal consistency checks are performed and if any of these
checks fail, the assembler terminates after giving a short description of the problem.
Such errors should normally not occur. However, if you should encounter an error of this
type, it should be reported to your software distributor or to IAR Systems Technical
Support. Please include information enough to reproduce the problem. This would
typically include:

o The product name

o The version number of the assembler, which can be seen in the header of the list
files generated by the assembler

Your license number
The exact internal error message text

The source file of the program that generated the internal error

A list of the options that were used when the internal error occurred.

A

absolute eXpPressionsvvv it 23
absolute Segments.o vt 84
ADD (CFLOperator)ovveeieeeenenennn. 122
addition (assembler operator)oeenL.. 58
address field, in assembler listfile 25
ALIAS (assembler directive) 89
ALIGN (assembler directive)covuennn.. 84
alignment, of segments.o.iininena... 87
ALIGNRAM (assembler directive). 84
AND (CFLoperator)ovvvneneeieenennn. 122
architecture, MSP430 i 9
_args (assembler directive), 94
_args (predefined macro symbol) 97
ASCII character constants.couvue.... 19
ASEG (assembler directive) 84
ASEGN (assembler directive). 84
assembler BLOCK (assembler directive) 80
assembler control directives 114
assembler diagnostics Lo 125
assembler directives
assemblercontrol., 114
CFI directives for common blocks. 119
CFI directives for datablocks 120
CFI directives for names blocks. 117
CFI directives for tracking resources and CFAs. 121
CFI for stack usage analysis) 124
conditional assembly L oL 91
See also C-style preprocessor directives
C-style preprocessorc.c.oeevnenenen... 106
data definition or allocation 111
function 117
listfilecontrol 101
MACTO PrOCESSING . .« ¢ o v ot e et e et eee e 93
modecontrol 82
modulecontrol. i 76
segmentcontrol i, 82
SUMMATY © ot vv ettt ettt et e e et een s 71

Index °

symbolcontrol 79
value assignment i 88
assembler environment variables 16
assembler eXpressions.t 18
assembler instructions. 17
assembler invocation Syntax 15
assemblerlabels oL 20
formatof L 17
assembler list files
addressfield. Ll 25
COMMENES. . ..ottt et 115
conditional code and strings. 102
cross-references
generating (LSTXRF).......... 105
geNnerating (-X)viiiii e 54
datafield L LiiiLL, 25
enabling and disabling (LSTOUT)................ 102
filename, specifying (-1). 46
generated lines, controlling (LSTREP) 105
generating (-L). i 45
header section, omitting (-N) 47
#include files, specifying (-1) 45
lines per page, specifying (-p) 49
macro execution information, including (-B)......... 39
macro-generated lines, controlling. 103
symbol and cross-reference table. 25
tab spacing, specifying. 51
using directives to format. 105
assembler macros
arguments, passing to.o i 97
defining 95
generated lines, controlling in listfile 103
inlineroutines 100
predefined symbol 97
quote characters, specifying. 46
special characters, using. 96
assembler object file, specifying filename 48
assembler Operatorsiiiiii 55
I EXPIESSIONS . o\ v v vttt et e e 18

127

128

precedence. 55
assembler options

passing to assembler 16
command line, setting 37
extended command file, setting 38
specifying parameters, 37
SUMMATY « + v v v v e et et et et e e e e e 38
assembler output, including debug information 50
assembler source files, including 109, 115
assembler source format 17
assembler subversionnumber., 22
assembler symbols oL 20
CXPOTHING . o o vttt et e 80
IMPOTtING .« o vttt e 81
in relocatable expressions 23
local. ..o 90
predefined i 21
undefining. 52
assembling, invocation syntax 15
assembly error messages. 126
assembly messages format 125
assembly warning messagesiiaien... 125
disabling 53
ASSIGN (assembler directive) 89
assumptions (programming experience) 9
__A430__ (predefined symbol) 21
-B (assembleroption) 39
bitwise AND (assembler operator) 62
bitwise exclusive OR (assembler operator)............. 62
bitwise NOT (assembler operator) 62
bitwise OR (assembler operator). 62
BLOCK (assembler directive). 80
bold style, inthisguide. 11
__ BUILD_NUMBER__ (predefined symbol) 21
BYTEI (assembler operator)oou.n.. 64
BYTE2 (assembler operator)c.coouun.. 64
IAR Assembler

Reference Guide for MSP430

BYTES3 (assembler operator) 65
BYTEA4 (assembler operator) 65
-c (assembler option) it 40
call frame information directives 117, 119-121, 124
CALL_GRAPH_ROOT (assembler directive) 117
case sensitive user symbols. L. 51
case sensitivity, controlling. 115
CASEOFF (assembler directive). 114
CASEON (assembler directive) 114
CFA, CFI directives for tracking 121
CFI BASEADDRESS (assembler directive)........... 118
CFI BLOCK (assembler directive) 120
CFI cfa (assembler directive) 123
CFI CODEALIGN (assembler directive) 119
CFI COMMON (assembler directive). 120
CFI CONDITIONAL (assembler directive) 120
CFI DATAALIGN (assembler directive) 120
CFI directives for common blocks 119
CFI directives fordatablocks...................... 120
CFI directives for names blocks 117
CFI directives for stack usage analysis............... 124
CFI directives for tracking resources and CFAs 121
CFI ENDBLOCK (assembler directive) 121
CFI ENDCOMMON (assembler directive). 120
CFI ENDNAMES (assembler directive).............. 118
CFI eXpressionsuuvuvtvreinenenenenanennnns 33
CFI FRAMECELL (assembler directive) 118
CFI FUNCALL (assembler directive). 124
CFI FUNCTION (assembler directive). 121
CFI INDIRECTCALL (assembler directive) 124
CFI INVALID (assembler directive) 121
CFI NAMES (assembler directive).................. 118
CFI NOCALLS (assembler directive). 124
CFI NOFUNCTION (assembler directive) 121
CFI PICKER (assembler directive). 121
CFI REMEMBERSTATE (assembler directive). 121

CFI RESOURCE (assembler directive) 118
CFI resource (assembler directive) 123
CFI RESOURCEPARTS (assembler directive) 118
CFI RESTORESTATE (assembler directive).......... 121
CFI RETURNADDRESS (assembler directive)........ 120
CFI STACKFRAME (assembler directive) 118
CFI TAILCALL (assembler directive) 124
CFI VALID (assembler directive). 121
CFI VIRTUALRESOURCE (assembler directive). 118
character constants, ASCII 19
CLIB
naming Convention.eeuenenen... 12
_ CODE_MODEL__ (predefined symbol). 22
--code_model (assembler option) 40
COL (assembler directive) 101
command line error messages, assembler............. 126
command line Options.t 37
part of invocation Syntaxon... 15
PASSING. . o et e 16
typographic convention, .. 11
command line, extending 42
command prompt icon, in this guide. 11
comments
in assembler listfile........................... 115
in assembler sourcecode 17
in C-style preprocessor directives 110
multi-line, using with assembler directives 116
common block (call frame information) 28
common blocks, CFI directives for. 119
common block, defining L. 29
COMMON SEZMENLS .« . v v v ev et e e e e e eeeneennn 86
COMMON (assembler directive) 84
COMPLEMENT (CFl operator). 122
computer style, typographic convention 10
conditional assembly directives 91
See also C-style preprocessor directives
conditional code and strings, listing 102
configuration, ProCesSOro v v v eeneeenenan.n 52

Index °

constants

defaultbaseof 115

INEEEET « o vttt et e 18
conventions, used inthisguide 10
Copyright noticet 2
__CORE__ (predefined symbol). 21
CRC, in assembler listfile 25
cross-references, in assembler list file

generating (LSTXRF) 105

GENETAtNG (-X) « + v v v et et 54
current time/date (assembler operator) 65
C-style preprocessor directives. 106
C++terminology. .. .o oot 10
-D (assembleroption) 41
data allocation directives.coviinn... 111
data block (call frame information). 28
data blocks, CFI directives for 120
data definition directives., 111
data field, in assembler listfile 25
_ DATA_MODEL__ (predefined symbol) 22
--data_model (assembler option). 41
_ _DATE__ (predefined symbol). 22
DATE (assembler operator)c.ovuuenn.. 65
DB (assembler directive)cii.... 111
DC.B (assembler directive).coou... 111
DC.S (assembler directive).t 112
DC.W (assembler directive) 112
DC8 (assembler directive)coou... 111
DC16 (assembler directive) 112
DC24 (assembler directive) 112
DC32 (assembler directive) 112
debug information, including in assembler output 50
default base, forconstants. 115
#define (assembler directive) 107
DEFINE (assembler directive) 89
defining acommonblock 29

129

130

defininganamesblock............ 28

DF (assembler directive)., 112
DF32 (assembler directive). 112
DF64 (assembler directive). 112
diagnostic messages

optionsfor 125
diagnostics . ..ottt 125
directives. See assembler directives
disclaimer. i e 2
DIV (CFLOperator) vcvve e 122
division (assembler operator) 59
DLIB

naming Convention.uuuenenen .. 11
document conventions it 10
DS.L (assembler directive)o. ... 112
DS.W (assembler directive) 112
DSB8 (assembler directive). 112
DS16 (assembler directive). 112
DS24 (assembler directive). 112
DS32 (assembler directive). 112
DW (assembler directive) 112
-E (assembleroption) 42
edition, of thisguide i, 2
efficient coding techniques. 26
#elif (assembler directive). 107
#else (assembler directive) 107
END (assembler directive) 76
#endif (assembler directive) 107
ENDM (assembler directive) 94
ENDMOD (assembler directive). 77
ENDR (assembler directive) 94
environment variables

assembler. 16

TASMA430. . oo 16

TASM430_INC e 16
EQ (CFLoperator).vvvne e, 122

IAR Assembler

Reference Guide for MSP430

EQU (assembler directive)oin.. 89
equal (assembler operator)iiaon.. 60
#error (assembler directive) 107
error messages

format 125

maximum number, specifying 42

#error, using todisplay 109
EVEN (assembler directive)o..... 84
EXITM (assembler directive) 94
eXperience, programmingeuenenenenennn.. 9
EXPIESSIONS &« o v ov e ettt e e 18
extended command line file (extend.xcl) 38,42
EXTERN (assembler directive) 80
-f (assembleroption)., 38,42
false value, in assembler expressions 20
fatal errors. 126
__FILE__ (predefined symbol). 22
file extensions. See filename extensions
file types

assembleroutput 15

extended commandline...................... 38,42

#include, specifyingpath. 44
filename extensions

A3 e 15

XCl o 38,42
filenames, specifying for assembler object file 48-49
first byte (assembler operator) 64
floating-point constants.oueuirnenan.. 19
formats

assembler sourcecode 17

diagnostic MeSSages. . . v vt v vv et 125

inlistfileso i, 25
fourth byte (assembler operator). 65
FRAME (CFLoperator). o.vvetnieenenennannn 123
function directivescoiiiiiiiiia.. 117

G

-G (assembler option)ot 43
-g (assembler option)i i, 43
GE (CFLoperator).o.vvtnee e, 122
global value, defining 90
greater than or equal (assembler operator) 61
greater than (assembler operator) 61
GT (CFLOperator).vvve et eieieeeennn. 122
-h (assembleroption), 43
header files, SFR. 26
header section, omitting from assembler list file. 47
high byte (assembler operator) 66
high word (assembler operator) 66
HIGH (assembler operator).cocuvnnn.. 66
HWRD (assembler operator) 66
--hw_workaround (assembler option) 44
- (assembler option).t 44
__ IAR_SYSTEMS_ASM__ (predefined symbol). 22
IASM430 (environment variable).................... 16
TASM430_INC (environment variable) 16
icons,inthisguide 11
#if (assembler directive) 107
IF (CFLoperator).oovue i 123
#ifdef (assembler directive) 107
#ifndef (assembler directive) 107
IMPORT (assembler directive). 80
#includefiles 45
#include files, specifying 44
#include (assembler directive) 107
include files, disabling searchfor 43
include paths, specifying. 44
inline coding, using Macros 100

Index °

installation directory i 10
instruction set, MSP430 9
INEEZET CONSEANLS . « & v v v ettt e e e e 18
internal errors, assembler, 126
INVOCALION SYNEAX . v\ vt vttt 15
italic style, inthis guide 10-11
-L (assembleroption)ot 45
-1 (assembleroption).viiiiii . 46
labels. See assembler labels
LE (CFLOperator)vvvuve e e iee e 122
less than or equal (assembler operator). 60
less than (assembler operator). 60
library modules. i 77
LIBRARY (assembler directive). 74,77
lightbulb icon, in this guide. 11
LIMIT (assembler directive).ccouvunenn.. 89
__LINE__ (predefined symbol) 22
#line (assembler directive) 107
lines per page, in assembler listfile 49
linker options
typographic conventionc........ 10
listfileformat. i, 25
bOdY. .ot 25
CRC. . 25
header 25

symbol and cross reference
list files

control directives for 101
controlling contents of (-¢). 40
cross-references, generating (-X) 54
filename, specifying (-1)., .. 46
generating (-L). 45
header section, omitting (-N) 47
#include files, specifying (-1) 45
LITERAL (CFloperator)coveuvennen... 122
LOAD (CFLOperator)o vve e e ieee e 123

131

132

local value, defining 89

LOCAL (assembler directive). 94
location counter. See program location counter
logical AND (assembler operator) 61
logical exclusive OR (assembler operator) 69
logical NOT (assembler operator). 63
logical OR (assembler operator) 63
logical shift left (assembler operator) 63
logical shift right (assembler operator) 64
low byte (assembler operator).c.c.vn.... 66
low word (assembler operator) 66
LOW (assembler operator)covuenennn.. 66
LSHIFT (CFLoperator).ovvvieeeneenen... 122
LSTCND (assembler directive). 101
LSTCOD (assembler directive). 101
LSTEXP (assembler directives) 101
LSTMAC (assembler directive) 101
LSTOUT (assembler directive). 101
LSTPAG (assembler directive). 101
LSTREP (assembler directive) 101
LSTXRF (assembler directive). 102
LT (CFLOperator)vvee et 122
LWRD (assembler operator).c.coeun... 66
-M (assembler option)., 46
macro execution information, including in list file 39
macro processing directiveso, 93
macro quote charactersouvinenenan.. 96
SPeCifyingoi i 46
MACRO (assembler directive) 94
macros. See assembler macros
--macro_positions_in_diagnostics (compiler option) 47
Memory, reserving Space inoevuene... 111
#message (assembler directive). 107
messages, excluding from standard output stream 50
MOD (CFLOperator).vvvveeeeeeeeeeenennn. 122
mode control directives., 82
IAR Assembler

Reference Guide for MSP430

module consistency. 78
module control directives 76
MODULE (assembler directive). 77
modules

assembling multi-modules files 78

erMINAtING. - . o oo vttt e 78
modules, beginning. i 77
MSP430 architecture and instructionset. 9
MUL (CFLOPerator) «vvve e e eeeeeen 122
multibyte character support. 47
multiplication (assembler operator) 58
MULTWEAK (assembler directive). 80
-N (assembler option)ottt 47
-n (assembler option) 47
NAME (assembler directive) 77
names block (call frame information)................. 28
names blocks, CFI directives for. 117
names block, defining. 28
NAMing CONVENHONS ovvt vt ee e e e 11
NE (CFLOperator).vvuve i e eeeennn 122
not equal (assembler operator) 60
NOT (CFLOPerator)vuieneenenannnnnn. 122
--no_path_in_file_macros (assembler option). 48
--no_ubrof_messages (assembler option) 48
-O (assembler option) 48
-0 (assembleroption), 49
ODD (assembler directive)ovuuin... 84
operands

formatof 17

in assembler expressionsol 18
operations, formatof........ L L L L 17
operation, silento 50

operators. See assembler operators

OPLION SUMMATY .« . vttt ettt e e e ee e 38
OR (CFLOperator). vvvnen e 122
ORG (assembler directive) 84
OVERLAY (assembler directive).................... 80
-p (assembler option)i ... 49
PAGE (assembler directive) 102
PAGSIZ (assembler directive) 102
parameters
SPeCifyingoi i 37
typographic convention 10
part number, of thisguide. 2
PLC. See program location counter
#pragma (assembler directive) 107
precedence, of assembler operators. 55
predefined register symbols 21
predefined symbols. 21
in assembler macros. i 97
undefining 52
preprocessor symbols
defining and undefining. 107
defining on command line 41
prerequisites (programming experience). 9
processor configuration, specifying 52
program counter. See program location counter
PrOGIam €NtIY . o vt vttt e ettt et e e e e eeen 78
program location counter (PLC).................. ... 21
SCLHIMG .« vttt 87
program modules, beginning. 77
PROGRAM (assembler directive) 77
programming experience, required 9
programming hints 26
PUBLIC (assembler directive)c.covunn.. 80
publication date, of this guide. 2
PUBWEAK (assembler directive) 80

Index °

R

-r (assembler Option). 50
RADIX (assembler directive) 114
reference information, typographic convention. 11
registered trademarks oo oL 2
TEZISIEIS v vt vt ettt e e e e e 21

special function, defining. 90
__REGISTER_MODEL__ (predefined symbol) 22
relocatable eXpressionsii i 23
relocatable segments, beginning 85
repeating Statementsv.vt e 98
REPT (assembler directive)c....... 94
REPTC (assembler directive) 94
REPTI (assembler directive).coovunen.... 94
REQUIRE (assembler directive). 80
resources, CFI directives for tracking................ 121
__ROPI__ (predefined symbol) 22
--ropi (assembler option). i 50
RSEG (assembler directive) 84
RSHIFTA (CFloperator)covieninen .. 123
RSHIFTL (CFloperator)cooueuvnen... 123
RTMODEL (assembler directive). 77
rules, in CFL directives v, 31
runtime model attributes, declaring. 78
r43 (filename extension), 15
-S (assembleroption) i 50
-s (assembler option).ol 51
second byte (assembler operator) 64
segment begin (assembler operator) 67
segment control directives 82
segment end (assembler operator). 67
segment size (assembler operator) 68
segments

absolute 84

aligning 87

133

common, beginning 86

relocatable L i 85
SET (assembler directive). 89
SFB (assembler operator)ocueenin.. 67
SFE (assembler operator)c.cueuenenn.. 67
SFRB (assembler directive) 89
SFRTYPE (assembler directive). 89
SFRW (assembler directive). 89
SFR. See special function registers
SFR. See special function registers
silent operation, specifying in assembler. 50
simple rules, in CFl directives 31
SIZEOF (assembler operator)c.cuvn.n.. 68
source files

example of including 115

including 109
source format, assembler 17
source line numbers, changing 110
special function registers.t 26

defininglabels L. 90
stack usage analysis, CFI directivesfor 124
STACK (assembler directive). 84
standard input stream (stdin), reading from. 43
standard output stream, disabling messagesto 50
statements, repeating.l 98
SUB (CFIoperator)cueuieuunenannnn.. 123
subtraction (assembler operator). 59
__SUBVERSION___ (predefined symbol) 22
symbol and cross-reference table, in assembler list file . . .25

See also Include cross-reference
symbol control directives 79
symbol values, checking. 91
SYMBOL (assembler directive) 80
symbols

See also assembler symbols

exporting to other modules 80

predefined, in assembler 21

predefined, in assembler macro 97

user-defined, case sensitive 51

IAR Assembler
134 Reference Guide for MSP430

system include files, disabling searchfor 43
--system_include_dir (assembler option) 51
-t (assembler option)t 51
tab spacing, specifying in assembler list file............ 51
target processor, specifying. 52
temporary values, defining 89
terminology.o v et 10
third byte (assembler operator) 65
__TID__ (predefined symbol). 22
__TIME__ (predefined symbol) 22
time-criticalcode oL 100
tools icon, inthisguide. 11
trademarks 2
true value, in assembler expressions. 20
typographic COnventions.ouueuenennnn. 10
-U (assembler option)c.oeuiiin... 52
UGT (assembler operator)c.cvuvnnn.. 69
ULT (assembler operator).cocuenvnennnn. 69
UMINUS (CFLoperator).c.vuvunenenenen .. 122
unary minus (assembler operator). 59
unary plus (assembler operator) 58
#undef (assembler directive). 107
unsigned greater than (assembler operator). 69
unsigned less than (assembler operator) 69
user symbols, case sensitive 51
-v (assembler option) 52
value assignment directivesc..... 88
values, defining. i i 111
VAR (assembler directive)u.... 89
__VER__ (predefined symbol)...................... 22

version
ofthisguide.......... i 2
-w (assembler option) 53
WAININZS « « o v ottt et e e e ettt 125
disabling i 53
warnings icon, inthisguide 11
-x (assembleroption) 54
xcl (filename extension) 38,42
XOR (assembler operator)coeiini... 69
XOR (CFLoperator)covnveninnnnunenen... 123

Symbols

_args (assembler directive), 94
_args (predefined macrosymbol) 97
__A430__ (predefined symbol) 21
__ BUILD_NUMBER___ (predefined symbol) 21
__CODE_MODEL__ (predefined symbol). 22
__CORE__ (predefined symbol). 21
_ DATA_MODEL__ (predefined symbol) 22
_ DATE__ (predefined symbol). 22
__FILE__ (predefined symbol). 22
__IAR_SYSTEMS_ASM__ (predefined symbol) 22
__LINE__ (predefined symbol) 22
__REGISTER_MODEL__ (predefined symbol) 22
__ROPI__ (predefined symbol) 22
__SUBVERSION___ (predefined symbol) 22
__TID__ (predefined symbol). 22
__TIME__ (predefined symbol) 22
__VER__ (predefined symbol)...................... 22
- (assembler operator). 59
-B (assembleroption) i 39
-c (assembler option)iiiiiiiiaa.. 40

Index °

-D (assembler option) 41
-E (assembleroption) i 42
-f (assembleroption). 38,42
-G (assembler option)t 43
-g (assembleroption) i, 43
-h (assembleroption) 43
-I (assembler option).t 44
-i(assembleroption). i 45
-L (assembleroption) 45
-1 (assembleroption). i 46
-M (assembler option). 46
-N (assembler option) ov i 47
-n (assembler option) il 47
-O (assembler option)o vt 48
-0 (assembler option) i 49
-p (assembleroption), 49
-r (assembler option). 50
-S (assembleroption) i 50
-s (assembler option).o 51
-t (assembler option).l 51
-U (assembler option) vviin i 52
-v (assembler option) i 52
-w (assembler option) 53
-X (assembler option) 54
--code_model (assembler option) 40
--data_model (assembler option). 41
--hw_workaround (assembler option) 44
--macro_positions_in_diagnostics (compiler option) 47
--no_path_in_file_macros (assembler option). 48
--no_ubrof_messages (assembler option) 48
--ropi (assembler option). i 50
--system_include_dir (assembler option) 51
! (assembler operator). 63
= (assembler operator). 60
() (assembler Operator)cueuenenenennnnenn 58
* (assembler Operator)euiiiiiiat e 58
/ (assembler Operator)cove e 59
/*...%/ (assembler directive). i 114
/l (assembler directive) i, 114

135

136

& (assembler Operator)o v 62

&& (assembler Ooperator) 61
#define (assembler directive) 107
#elif (assembler directive). 107
#else (assembler directive) 107
#endif (assembler directive) 107
#error (assembler directive) 107
#if (assembler directive) 107
#ifdef (assembler directive) 107
#ifndef (assembler directive) 107
#includefiles 45
#include files, specifying 44
#include (assembler directive) 107
#line (assembler directive) 107
#message (assembler directive). 107
#pragma (assembler directive) 107
#undef (assembler directive). 107
A (assembler Operator).o v vttt 62
+ (assembler Operator)iiiiiiieenan.. 58
< (assembler Operator)ouiiiinenenan.. 60
<< (assembler Operator)ueienenenan.. 63
<= (assembler Operator)ueienenan.. 60
<> (assembler Operator)ueiiinenenan.. 60
= (assembler directive) 89
= (assembler Operator)ouiiiinenenan.. 60
== (assembler Operator)ueuenenan.. 60
> (assembler Operator)iuiiiinenenan.. 61
>= (assembler Operator)veiiienenan.. 61
>> (assembler Operator)ouiii i 64
| (assembler operator)ot 62
Il (assembler operator).t 63
~ (assembler Operator) 62
$ (assembler directive) 114
$ (program location counter). 21
IAR Assembler

Reference Guide for MSP430

	Contents
	Tables
	Preface
	Who should read this guide
	How to use this guide
	What this guide contains
	Document conventions
	Typographic conventions
	Naming conventions

	Introduction to the IAR Assembler for MSP430
	Introduction to assembler programming
	Getting started

	Modular programming
	External interface details
	Assembler invocation syntax
	Passing options
	Environment variables
	Error return codes

	Source format
	Assembler instructions
	Expressions, operands, and operators
	Integer constants
	ASCII character constants
	Floating-point constants
	TRUE and FALSE
	Symbols
	Labels
	Register symbols
	Predefined symbols
	Absolute and relocatable expressions
	Expression restrictions

	List file format
	Header
	Body
	Summary
	Symbol and cross-reference table

	Programming hints
	Accessing special function registers
	Using C-style preprocessor directives

	Tracking call frame usage
	Call frame information overview
	Call frame information in more detail
	Defining a names block
	Defining a common block
	Annotating your source code within a data block
	Specifying rules for tracking resources and the stack depth
	Using CFI expressions for tracking complex cases
	Stack usage analysis directives
	Examples of using CFI directives

	Assembler options
	Using command line assembler options
	Specifying options and their parameters
	Extended command line file

	Summary of assembler options
	Description of assembler options
	-B
	-c
	--code_model
	-D
	--data_model
	-E
	-f
	-G
	-g
	-h
	--hw_workaround
	-I
	-i
	-L
	-l
	-M
	--macro_positions_in_diagnostics
	-N
	-n
	--no_path_in_file_macros
	--no_ubrof_messages
	-O
	-o
	-p
	-r
	--ropi
	-S
	-s
	--system_include_dir
	-t
	-U
	-v
	-w
	-x

	Assembler operators
	Precedence of assembler operators
	Summary of assembler operators
	Parenthesis operator
	Unary operators
	Multiplicative arithmetic operators
	Additive arithmetic operators
	Shift operators
	AND operators
	OR operators
	Comparison operators

	Description of assembler operators
	()Parenthesis
	* Multiplication
	+ Unary plus
	+ Addition
	– Unary minus
	– Subtraction
	/ Division
	< Less than
	<= Less than or equal
	<>, != Not equal
	=, == Equal
	> Greater than
	>= Greater than or equal
	&& Logical AND
	& Bitwise AND
	~ Bitwise NOT)
	| Bitwise OR
	^ Bitwise exclusive OR
	% Modulo
	! Logical NOT
	|| Logical OR
	<< Logical shift left
	>> Logical shift right
	BYTE1 First byte
	BYTE2 Second byte
	BYTE3 Third byte ()
	BYTE4 Fourth byte
	DATE Current time/date
	HIGH High byte
	HWRD High word ()
	LOW Low byte
	LWRD Low word
	SFB segment begin
	SFE segment end ()
	SIZEOF segment size ()
	UGT Unsigned greater than
	ULT Unsigned less than
	XOR Logical exclusive OR

	Assembler directives
	Summary of assembler directives
	Description of assembler directives
	Module control directives
	Symbol control directives
	Mode control directives
	segment control directives
	Value assignment directives
	Conditional assembly directives
	Macro processing directives
	Listing control directives
	C-style preprocessor directives
	Data definition or allocation directives
	Assembler control directives
	Function directives
	Call frame information directives for names blocks
	Call frame information directives for common blocks
	Call frame information directives for data blocks
	Call frame information directives for tracking resources and CFAs
	Call frame information directives for stack usage analysis

	Assembler diagnostics
	Message format
	Severity levels
	Options for diagnostics
	Assembly warning messages
	Command line error messages
	Assembly error messages
	Assembly fatal error messages
	Assembler internal error messages

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Symbols

