R32C IAR Assembler

Reference Guide

for the Renesas
R32C/100 Microcomputer Family

COPYRIGHT NOTICE
© Copyright 2007 IAR Systems. All rights reserved.

No part of this document may be reproduced without the prior written consent of AR
Systems. The software described in this document is furnished under a license and may
only be used or copied in accordance with the terms of such a license.

DISCLAIMER

The information in this document is subject to change without notice and does not
represent a commitment on any part of IAR Systems. While the information contained
herein is assumed to be accurate, IAR Systems assumes no responsibility for any errors
or omissions.

In no event shall IAR Systems, its employees, its contractors, or the authors of this
document be liable for special, direct, indirect, or consequential damage, losses, costs,
charges, claims, demands, claim for lost profits, fees, or expenses of any nature or kind.

TRADEMARKS

IAR, IAR Systems, IAR Embedded Workbench, IAR MakeApp, C-SPY, visual STATE,
From Idea To Target, IAR KickStart Kit and IAR PowerPac are trademarks or registered
trademarks owned by IAR Systems AB.

Renesas is a registered trademark of Renesas Technology Corporation. R32C/100 is a
registered trademark of Renesas Technology Corporation.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

All other product names are trademarks or registered trademarks of their respective
owners.

EDITION NOTICE

First edition: April 2007

Part number: AR32C-1

This guide applies to version 1.x of the R32C IAR Embedded Workbench® IDE.
Internal reference: AFE2, T7:7¢c, IJOA

Contents

TaADIES ..o e vii
PrEface ... ix
Who should read this guide ... ix

How to use this guide ... ix
What this guide contains ... X
Other documentation ..o X
Document conventions ... xi
Introduction to the R32C IAR Assembler ... 1
Introduction to assembler programming ..., 1
Getting StArtedccevvevierierirereriietct ettt 1

Modular programming ... 2
External interface details ... 2
Assembler INVOCAtiON SYNEAX ...ceevververreruerrerienenreeeeeeteeeeenresennensennes 2

Passing OPtIONSc..eceeruereriirinirireetete ettt 3

Environment variables ...t 4

EITOT TETUIN COUELSovviiiiiiniiiiniiiiietcit ettt 4

SoUFCE FOrMAL ...t 5
Assembler inStructions ..o 5
Expressions, operands, and operatorsccoccovenenennnn. 6
INEEZET CONSLANLS ...eovevienienienieiirieieetceteee ettt 6

ASCII character CONSIANLScceeieieieieieieniinieeeeieeeeeeneressesiesaene 7

Floating-point CONSTANESc..cocererierereriieieieienteniente st 7

TRUE and FALSEoouvoieeeeeeeeeeee ettt 8

RegiSter SYMDOIScvevuiriiiiiiirieiieeeeeet e 9
Predefined symbolscocooviiiiiiiiiiiiiiee e 10
Absolute and relocatable eXpressionsc..coceeeeveeeeceeierienenienienenne 12
EXPression reStriCtionscccceceevververrerenreneneneenteeeeeneeneeneeseeseesneas 12

Header ... 13
BOAY oottt 13
SUMMATY .ottt st sbe et 14
Symbol and cross-reference tableccoceveeviineineniennenieniennne 14
Programming hints ...

Accessing special function registers

Using C-style preprocessor directives

Specifying immediate operandscc.cocceeeevuevienienenenienienieneneeene 15

Assembler OPLioNs ... 17
Setting assembler options ... 17
SpPecifying Parametersc.ccoceeerererieieieieiesiesiee et eieeieene 18

Summary of assembler options ... 19
Description of assembler options ..., 20
Assembler Operators ... 33
Precedence of operators ..o 33
Summary of assembler operators ..o, 34
Parenthesis Operator — 1ccccoceveverininininieeeeecrcenese e 34

Function operators — 2

UNAry OPETators — 3 ...coiiiiiriierieenieenieeie ettt s

Multiplicative arithmetic Operators — 4cc.cocceveeiecvevevienenienienienne 35
Additive arithmetic Operators — 5c.cccceeeeerererienieeieniesereneseeneens 35
Shift OPEIators — 6c.eeveuieieierierieriese ettt 35

Comparison operators — 7

Equivalence operators —§ ...

Logical operators — 9-14

Conditional Operator — 15cccceveeeriririiniiicecrcteeeeseresee e 36

Description of assembler operators ..., 36
Assembler dir€Ctives ... 49
Summary of assembler directives ... 49
Module control directivesccocooiiiinine 52

SYNTAX ©eviviiiieiieieetete ettt sttt ettt ettt ettt et e sre st sresae e 53

R32C IAR Assembler
Reference Guide

Contents

DESCIIPHONS ...eeuiieiieiieeieeteeteee sttt ettt sttt 60
Examples

Value assignment directives ...

vi

Descriptions ...

EXAMPIES .onviiiiiiiiiiieee e

Data definition or allocation directivesc.cccccocoerneen. 81
SYNLAX vttt sttt ettt et et b et bt sae st sbeebeebeene 82
Parametersccccoevuevinininiiinieicce e 82
DESCIIPLIONS ...eovvereiienreieientenitete ettt ettt ettt sb s sre et 82
Examples

Assembler control directives ..o, 83
SYNLAX ©eviviiiieiieiteiete ettt sttt ettt ettt b e aesae b sresre e 84
Parametersooceeeruerinininieieeeeee s 84
DESCIIPHONS ...veueieiieiieeiieieet ettt ettt sttt

EXQAMPIES ..ottt

Call frame information directives

SYNLAX 1ottt sttt ettt sttt e st e e bt et sttt e st e naeens
Parameterscccoiiiiiiiiiiii e
DESCIIPHONS .vveviniinienieieieiesteet ettt 89
SIMPIE TULES ettt 93
CFI expressions
EXAMPIE .oeiiiiiiiieeeee e
Pragma dir€CtiVes ... 101
Summary of pragma directives ..o 101
Descriptions of pragma directivescccccovenininnincnnes 101
DIHAGNOSLICSooooiei s 103
Message format ... 103
Severity levels ... 103
Setting the Severity LeVelcocoviveriiiniiiieieieee e 104
Internal eITOrcccoiiiiiiiiiiiii s 104
INAEX s 105

R32C IAR Assembler
Reference Guide

Tables

1: Typographic conventions used in this UIAEc..cocevverrerieriiinenininiicececeen xi
2: Assembler environment Variablescocecieieiiriiniiienieieeseee e 4
3: Assembler eITor FetUIN COAESceeuiiirieriiriiriiriintintieteieeeetete ettt saeeieene 4
4: Integer constant fOrMALScccceeeieriririieierieieere ettt sbe e
5: ASCII character constant formats ...

6: Floating-point CONSLANEScccereriereriirerieieietererenrestese ettt et stetesaeseesbe s enees
7: Predefined re@iSter SYMDOLSccoveiirieriiniiniiniintinienieeitee et 9
8: Predefined SYMDOLSc..ocueiiiiiiiinieierereneetetee et e 10
9: Symbol and cross-reference tablec..c.cocevevieiiiiiiiinenininnnceeeeene 14
10: Assembler OPtionS SUMIMATYccceceetereeruenienrenteneneneeeesensesseniessessesseeseeseeneens 19
11: Generating a list of dependencies (--dependencies)c...cecceveverveeneeneenernuennne 22
12: Conditional list OPtioNS (-1) c..coevveriririiiiiiiiiiicceeeee e 27
13: Directing preprocessor output to file (--preprocess)31
14: Assembler directives SUMMAryc..cccceecverveernenne ... 49
15: Module control dir€CtIVESceeveuieuieierieieienienieneereerterteree ettt saene e nae 53
16: Symbol cONtrol dITECHIVES ..c..evveruerueeueeiieieieiententeniceieeiee et 56
17: Segment CONLIOl AITECHIVESeevueiriieriiiiiiiierieeteeie ettt sttt 58
18: Value assignment dir€CHIVESeeceeueeuieieienieniiniinientenieertereeeeitetererenesresiesaenae 63
19: Conditional assembly dir€CtIVESccceeveeieiierierierinienirieeeeeecee e 66
20: Macro processing QIrECIVESeeveriereerierieniienieeie ettt ettt e st sbe e eaeeeeeaee 68
21: Listing control dir€CHIVEScccveueriiriireniininieiieietetentestese ettt naens
22: C-style preprocessor directives

23: Data definition or allocation dir€CtiVescoeerueirrerinririerenieneeinieenenreennens 81
24: Using data definition or allocation direCtivescc.ceceeeevererenereneereenuenennens 82
25: Assembler CONtrol dir€CIVESc.coerererirerieieieieiestentesie sttt 83
26: Call frame information dir€CtiVescoccovirieereriiinieieniereeneeeeee e 86
27: Unary operators in CEL @Xpressionscc.ccoceererieieinieienienieneneneneneeneeeens 95
28: Binary operators in CFL XPressionscocoererereneeenieienieneenienenieneseeeeeens 95
29: Ternary operators in CFL eXpressionscoceevverierieneenieeneeneeniesieseeseeseennee
30: Code sample with backtrace rows and columns ..

31: Pragma dir€Ctives SUMIMATYceceeveeierreruerueruenserenseeteeeressessessessesmeesesensenee

vii

R32C IAR Assembler
viii Reference Guide

Preface

Welcome to the R32C IAR Assembler Reference Guide. The purpose of this
guide is to provide you with detailed reference information that can help you
to use the R32C IAR Assembler to develop your application according to your
requirements.

Who should read this guide

You should read this guide if you plan to develop an application, or part of an
application, using assembler language for the R32C/100 microcomputer and need to get
detailed reference information on how to use the R32C IAR Assembler. In addition, you
should have working knowledge of the following:

o The architecture and instruction set of the R32C/100 microcomputer. Refer to the
documentation from Renesas for information about the R32C/100 microcomputer

o General assembler language programming

e Application development for embedded systems

o The operating system of your host computer.

How to use this guide

When you first begin using the R32C IAR Assembler, you should read the chapter
Introduction to the R32C IAR Assembler in this reference guide.

If you are an intermediate or advanced user, you can focus more on the reference
chapters that follow the introduction.

If you are new to using the IAR Systems toolkit, we recommend that you first read the
initial chapters of the JAR Embedded Workbench® IDE User Guide. They give product
overviews, as well as tutorials that can help you get started. The /AR Embedded
Workbench® IDE User Guide also contains a glossary.

What this guide contains

X

What this guide contains

Below is a brief outline and summary of the chapters in this guide.

Introduction to the R32C IAR Assembler provides programming information. It also
describes the source code format, and the format of assembler listings.

Assembler options first explains how to set the assembler options from the
command line and how to use environment variables. It then gives an alphabetical
summary of the assembler options, and contains detailed reference information
about each option.

Assembler operators gives a summary of the assembler operators, arranged in order
of precedence, and provides detailed reference information about each operator.

Assembler directives gives an alphabetical summary of the assembler directives, and
provides detailed reference information about each of the directives, classified into
groups according to their function.

® Pragma directives describes the pragma directives available in the assembler.

e Diagnostics contains information about the formats and severity levels of diagnostic

messages.

Other documentation

R32C IAR Assembler
Reference Guide

The complete set of IAR Systems development tools for the R32C/100 microcomputer
is described in a series of guides and online help files. For information about:

Using the IAR Embedded Workbench® IDE including the IAR C-SPY® Debugger,
refer to the AR Embedded Workbench® IDE User Guide

Programming for the R32C IAR C/C++ Compiler, refer to the R32C I4AR C/C++
Compiler Reference Guide

Using the IAR XLINK Linker, the IAR XAR Library Builder, and the IAR XLIB
Librarian, refer to the [AR Linker and Library Tools Reference Guide

Using the IAR DLIB Library, refer to the online help system.

All of these guides are delivered in hypertext PDF or HTML format on the installation
media. Some of them are also delivered as printed books.

Preface __ 4

Document conventions
This guide uses the following typographic conventions:

Style Used for

computer Text that you enter or that appears on the screen.

parameter A label representing the actual value you should enter as part of a
command.

[option] An optional part of a command.

{option} An mandatory part of a command.

a|b|c Alternatives in a command.

bold Names of menus, menu commands, buttons, and dialog boxes that

appear on the screen.
reference A cross-reference within this guide or to another guide.

An ellipsis indicates that the previous item can be repeated an arbitrary
number of times.

Identifies instructions specific to the IAR Embedded Workbench
interface.

Identifies instructions specific to the command line interface.

Table 1: Typographic conventions used in this guide

Document conventions

R32C IAR Assembler
xii Reference Guide

Introduction to the R32C
IAR Assembler

This chapter contains the following sections:
e Introduction to assembler programming
e Modular programming

e External interface details

e Source format

e Assembler instructions

e Expressions, operands, and operators

o List file format

e Programming hints.

Introduction to assembler programming
Even if you do not intend to write a complete application in assembler language, there
may be situations where you will find it necessary to write parts of the code in assembler,
for example, when using mechanisms in the R32C/100 microcomputer that require
precise timing and special instruction sequences.

To write efficient assembler applications, you should be familiar with the architecture
and instruction set of the R32C/100 microcomputer. Refer to the Renesas hardware
documentation for syntax descriptions of the instruction mnemonics.

GETTING STARTED
To ease the start of the development of your assembler application, you can:

o Work through the tutorials—especially the one about mixing C and assembler
modules—that you find in the /AR Embedded Workbench® IDE User Guide

o Read about the assembler language interface—also useful when mixing C and
assembler modules—in the R32C IAR C/C++ Compiler Reference Guide

Modular programming

e In the IAR Embedded Workbench IDE, you can base a new project on a template
for an assembler project.

Modular programming

Typically, you write your assembler code in assembler source files. In each source file,
you define one or several assembler modules by using the module control directives. By
structuring your code in small modules—in contrast to one single monolithic
module—you can organize your application code in a logical structure, which makes the
code easier to understand, and which benefits:

e an efficient program development
e reuse of modules

® maintenance.

Each module has a name and a type, where the type can be either PROGRAM or LIBRARY.
The linker will always include a PROGRAM module, whereas a LIBRARY module is only
included in the linked code if other modules reference a public symbol in the module. A
module consists of one or more segments.

A segment is a logical entity containing a piece of data or code that should be mapped
to a physical location in memory. You place your code and data in segments by using the
segment control directives. A segment can be either absolute or relocatable. An absolute
segment always has a fixed address in memory, whereas the address for a relocatable
segment is resolved at link time. By using segments, you can control how your code and
data will be placed in memory. Each segment consists of many segment parts. A
segment part is the smallest linkable unit, which allows the linker to include only those
units that are referred to.

External interface details

R32C IAR Assembler
2 Reference Guide

This section provides information about how the assembler interacts with its
environment.

You can use the assembler either from the IAR Embedded Workbench IDE or from the
command line. Refer to the IJAR Embedded Workbench® IDE User Guide for
information about using the assembler from the IAR Embedded Workbench IDE.

ASSEMBLER INVOCATION SYNTAX
The invocation syntax for the assembler is:

ar32c [options] [sourcefile] [options]

Introduction to the R32C IAR Assembler ___¢

For example, when compiling the source file prog. c, use the following command to
generate an object file with debug information:

ar32c prog --debug

The R32C IAR Assembler uses the default filename extensions s53, asm, and msa for
source files.

Generally, the order of options on the command line, both relative to each other and to
the source filename, is not significant. There is, however, one exception: when you use
the -I option, the directories are searched in the same order that they are specified on the
command line. The default filename extension for assembler output is r53.

If you run the assembler from the command line without any arguments, the assembler
version number and all available options including brief descriptions are directed to
stdout and displayed on the screen.

PASSING OPTIONS
There are three different ways of passing options to the assembler:

o Directly from the command line

Specify the options on the command line after the ar32c command; see Assembler
invocation syntax, page 2.

o Via environment variables

The assembler automatically appends the value of the environment variables to every
command line; see Environment variables, page 4.

e Via a text file by using the - £ option; see -f, page 26.

For general guidelines for the option syntax, an options summary, and a detailed
description of each option, see the Assembler options chapter.

External interface details

R32C IAR Assembler
4 Reference Guide

ENVIRONMENT VARIABLES

Assembler options can also be specified in the ASMR32C environment variable. The
assembler automatically appends the value of this variable to every command line, so it
provides a convenient method of specifying options that are required for every assembly.

The following environment variables can be used with the R32C IAR Assembler:

Environment variable Description

ASMR32C Specifies command line options; for example:
set ASMR32C=-L -ws

AR32C_INC Specifies directories to search for include files; for example:
set AR32C_INC=c:\myinc\

Table 2: Assembler environment variables

For example, setting the following environment variable will always generate a list file
with the name temp.1lst:

ASMR32C=-1 temp.lst

For information about the environment variables used by the IAR XLINK Linker and
the IAR XLIB Librarian, see the IAR Linker and Library Tools Reference Guide.

ERROR RETURN CODES

When using the R32C IAR Assembler from within a batch file, you may need to
determine whether the assembly was successful in order to decide what step to take next.
For this reason, the assembler returns the following error return codes:

Return code Description

0 Assembly successful, warnings may appear.

1 There were warnings, provided that the option --warnings_affect_exit_code
was used.

2 There were non-fatal errors or fatal assembly errors (making the assembler
abort).

3 There were crashing errors.

Table 3: Assembler error return codes

Introduction to the R32C IAR Assembler ___¢

Source format

The format of an assembler source line is as follows:
[label [:]1] [operation] [operands] [; comment]

where the components are as follows:

label A definition of a label, which is a symbol that represents an
address. If the label starts in the first column—that is, at the far
left on the line—the : (colon) is optional.

operation An assembler instruction or directive. This must not start in the
first column—there must be some whitespace to the left of it.

operands An assembler instruction or directive can have zero, one, or
more operands. The operands are separated by commas. An
operand can be:
* a constant representing a numeric value or an address
* a symbolic name representing a numeric value or an address
(where the latter also is referred to as a label)
« a floating-point constant
* a register
* a predefined symbol
* $, the program location counter (PLC)
* an expression.

comment Comment, preceded by a ; (semicolon)
C or C++ comments are also allowed.

The components are separated by spaces or tabs.

A source line may not exceed 2047 characters.

Tab characters, ASCII 094, are expanded according to the most common practice; i.e.
to columns 8, 16, 24 etc. This affects the source code output in list files and debug
information. Because tabs may be set up differently in different editors, it is
recommended that you do not use tabs in your source files.

Assembler instructions

The R32C IAR Assembler supports the syntax for assembler instructions as described
in the chip manufacturer’s hardware documentation.

Expressions, operands, and operators

Expressions, operands, and operators

R32C IAR Assembler
6 Reference Guide

Expressions consist of expression operands and operators.

The assembler will accept a wide range of expressions, including both arithmetic and
logical operations. All operators use 32-bit two’s complement integers. Range checking
is performed if a value is used for generating code.

Expressions are evaluated from left to right, unless this order is overridden by the
priority of operators; see also Precedence of operators, page 33.

The following operands are valid in an expression:

o Constants for data or addresses, excluding floating-point constants.

o Symbols—symbolic names—which can represent either data or addresses, where
the latter also is referred to as labels.

o The program location counter (PLC), $.

The operands are described in greater detail on the following pages.

INTEGER CONSTANTS

Since all IAR Systems assemblers use 32-bit two’s complement internal arithmetic,
integers have a (signed) range from -2147483648 to 2147483647.

Constants are written as a sequence of digits with an optional - (minus) sign in front to
indicate a negative number.

Commas and decimal points are not permitted.

The following types of number representation are supported:

Integer type Example

Binary 1010b

Octal 1234g

Decimal 1234, -1
Hexadecimal OFFFFh, OXFFFF

Table 4: Integer constant formats

Note: Both the prefix and the suffix can be written with either uppercase or lowercase
letters.

Introduction to the R32C IAR Assembler °

ASCIlI CHARACTER CONSTANTS

ASCII constants can consist of any number of characters enclosed in single or double
quotes. Only printable characters and spaces may be used in ASCII strings. If the quote
character itself is to be accessed, two consecutive quotes must be used:

Format Value

'ABCD' ABCD (four characters).

"ABCD" ABCD'\0' (five characters the last ASCII null).
'‘A''B' A'B

TAT A

"' ' (4 quotes) '

' ' (2 quotes) Empty string (no value).

(2 double quotes) Empty string (an ASCII null character).

\' ', for quote within a string, as in 'I\'d love to'
\ \, for \ within a string
\" ", for double quote within a string

Table 5: ASCII character constant formats

FLOATING-POINT CONSTANTS

The R32C IAR Assembler will accept floating-point values as constants and convert
them into IEEE double-precision (signed 64-bit) floating-point format or fractional
format.

Floating-point numbers can be written in the format:
[+]|-1[digits].[digits] [{E|e}[+]|-]1digits]

The following table shows some valid examples:

Format Value

10.23 1.023 x 10
1.23456E-24 1.23456 x 1024
1.0E3 1.0 x 103

Table 6: Floating-point constants
Spaces and tabs are not allowed in floating-point constants.

Note: Floating-point constants will not give meaningful results when used in
expressions.

Expressions, operands, and operators

R32C IAR Assembler
8 Reference Guide

When a fractional format is used—for example, DQ15—the range that can be
representedis -1.0 <= x < 1.0.Any value outside that range is silently saturated into
the maximum or minimum value that can be represented.

If the word length of the fractional data is n, the fractional number will be represented
as the 2-complement number: x * 2~ (n-1).
TRUE AND FALSE

In expressions, a zero value is considered FALSE, and a non-zero value is considered
TRUE.

Conditional expressions return the value O for FALSE and 1 for TRUE.

SYMBOLS

User-defined symbols can be up to 255 characters long, and all characters are
significant. Depending on what kind of operation a symbol is followed by, the symbol
is either a data symbol or an address symbol where the latter is referred to as a label. A
symbol before an instruction is a label and a symbol before, for example the EQU
directive, is a data symbol. A symbol can be:

e absolute—its value is known by the assembler

o relocatable—its value is resolved at link-time.

Symbols must begin with a letter, a—z or A—Z, ? (question mark), or _ (underscore).
Symbols can include the digits 0-9 and $ (dollar).

Case is insignificant for built-in symbols like instructions, registers, operators, and
directives. For user-defined symbols case is by default significant but can be turned on
and off using the Case sensitive user symbols (--case_insensitive) assembler
option. See --case_insensitive, page 20 for additional information.

Use the symbol control directives to control how symbols are shared between modules.
For example, use the PUBLIC directive to make one or more symbols available to other
modules. The EXTERN directive is used for importing an untyped external symbol.

Note that symbols and labels are byte addresses.

LABELS

Symbols used for memory locations are referred to as labels.

Program location counter (PLC)

The assembler keeps track of the start address of the current instruction. This is called
the program location counter.

Introduction to the R32C IAR Assembler ___¢

If you need to refer to the program location counter in your assembler source code you
can use the $ (dollar) sign. For example:

JMP S ; Loop forever

REGISTER SYMBOLS

The following table shows the existing predefined register symbols:

Name Address size Description

ROL-R3L, ROH-R3H 8 bits General purpose data registers

RO-R7 16 bits General purpose data registers

R2R0, R3R1, R6R4, R7R5 32 bits General purpose data register pairs

R3R1R2R0, R7R5R6R4 64 bits General purpose data register combinations

A0-A3 32 bits General purpose address registers

A1AO0, A3A2 64 bits General purpose address register combinations

SB 32 bits Static base register

FB 32 bits Frame base register

ROLB-R3LB, ROHB-R3HB 8 bits General purpose data registers, register bank B

ROB-R7B 16 bits General purpose data registers, register bank B

R2ROB, R3R1B, R6R4B, R7R5B 32 bits General purpose data register pairs, register
bank B

R3R1R2R0OB, R7TR5R6R4B 64 bits General purpose data register combinations,
register bank B

AOB-A3B 32 bits General purpose address registers, register
bank B

A1AO0B, A3A2B 64 bits General purpose address register
combinations, register bank B

INTB 32 bits The interrupt table base pointer

SVF 32 bits Save flag register

SVP 32 bits Save PC register

FLG 32 bits Flag register

SP 32 bits The active stack pointer (USB or ISB
depending on the FLG register U bit)

ISP 32 bits Interrupt stack pointer

VCT 32 bits Vector register

Table 7: Predefined register symbols

Expressions, operands, and operators

Name Address size Description

DSAO0-DSA3 32 bits DMA source address registers
DSRO-DSR3 32 bits DMA source address reload registers
DDAO-DDA3 32 bits DMA destination address registers
DDRO-DDR3 32 bits DMA destination address reload registers
DMDO0-DMD3 32 bits DMA mode registers

DCTO0-DCT3 24 bits DMA terminal count registers
DCRO-DCR3 24 bits DMA terminal count reload registers
c | bit Carry flag

D I bit Debug flag

Z | bit Zero flag

S | bit Sign flag

B | bit Register bank select flag

] | bit Overflow flag

I I bit Interrupt enable flag

9] I bit Stack pointer select flag

Table 7: Predefined register symbols (Continued)

PREDEFINED SYMBOLS

The R32C IAR Assembler defines a set of symbols for use in assembler source files. The
symbols provide information about the current assembly, allowing you to test them in
preprocessor directives or include them in the assembled code. The strings returned by
the assembler are enclosed in double quotes.

The following predefined symbols are available:

Symbol Value

__AR32C__ An integer that is set to 1 when the code is assembled with
the R32C IAR Assembler.

__BUILD_NUMBER_ _ A unique integer that identifies the build number of the

assembler currently in use. The build number does not
necessarily increase with an assembler that is released later.

__CODE_MODEL_ _ An integer that identifies the code model in use. The
symbol reflects the --code_model option and is defined
to __FAR__ or __HUGE__. These symbolic names can
be used when testing the __ CODE_MODEL_ _ symbol.

Table 8: Predefined symbols

R32C IAR Assembler
10 Reference Guide

Introduction to the R32C IAR Assembler ___¢

Symbol Value

_ _DATA_MODEL_ _ An integer that identifies the data model in use. The symbol
reflects the --data_model option and can be defined to
__NEAR__,_ _FAR__,or__HUGE__.

__DATE_ _ The current date in dd/Mmm/yyyy format (string).

__DOUBLE_ _ Either 32 or 64, depending on the setting of the option
--double.

__FILE__ The name of the current source file (string).

__TIAR_SYSTEMS_ASM_ _ IAR assembler identifier (number).

__LINE__ The current source line number (number).

__SUBVERSION__ An integer that identifies the version letter of the version
number, for example the C in 4.21C, as an ASCII character.

__TIME__ The current time in hh :mm: ss format (string).

__VER__ The version number in integer format; for example, version

4.17 is returned as 417 (number).

Table 8: Predefined symbols (Continued)

Including symbol values in code

There are several data definition directives provided to make it possible to include a
symbol value in the code. These directives define values or reserve memory. To include
a symbol value in the code, use the symbol in the appropriate data definition directive.

For example, to include the time of assembly as a string for the program to display:

tim DC8 __TIME__ ; Time string
MOVA tim, A0 ; Load time string in A0
JSR printstr ; Call string output routine

Testing symbols for conditional assembly

To test a symbol at assembly time, you can use one of the conditional assembly
directives. These directives let you control the assembly process at assembly time.

For example, if you want to assemble separate code sections depending on whether you
are using an old assembler version or a new assembler version, you can do as follows:

#if (__VER__ > 300) ; New assembler version

#else ; 01d assembler version

Expressions, operands, and operators

R32C IAR Assembler
12 Reference Guide

#endif

See Conditional assembly directives, page 66.

ABSOLUTE AND RELOCATABLE EXPRESSIONS

Depending on what operands an expression consists of, the expression is either absolute
or relocatable. Absolute expressions are those expressions that only contain absolute
symbols or relocatable symbols that cancel each other out.

Expressions that include symbols in relocatable segments cannot be resolved at
assembly time, because they depend on the location of segments. These are referred to
as relocatable expressions.

Such expressions are evaluated and resolved at link time, by the IAR XLINK Linker.
There are no restrictions on the expression; any operator can be used on symbols from
any segment, or any combination of segments.

For example, a program could define the segments DATA and CODE as follows:

NAME progl

EXTERN third

RSEG DATA
first: DC8 5
second: DC8 3

ENDMOD

MODULE prog?2

RSEG CODE

start

Then in the segment CODE, the following relocatable expressions are legal:

DC8 first

DC8 first+1

DC8 1+first

DC8 (first/second) *third

Note: At assembly time, there will be no range check. The range check will occur at link
time and, if the values are too large, there will be a linker error.

EXPRESSION RESTRICTIONS

Expressions can be categorized according to restrictions that apply to some of the
assembler directives. One such example is the expression used in conditional statements
like TF, where the expression must be evaluated at assembly time and therefore cannot
contain any external symbols.

The following expression restrictions are referred to in the description of each directive
they apply to.

Introduction to the R32C IAR Assembler ___¢

No forward

All symbols referred to in the expression must be known, no forward references are
allowed.

No external

No external references in the expression are allowed.

Absolute

The expression must evaluate to an absolute value; a relocatable value (segment offset)
is not allowed.

Fixed

The expression must be fixed, which means that it must not depend on variable-sized
instructions. A variable-sized instruction is an instruction that may vary in size
depending on the numeric value of its operand.

List file format

The format of an assembler list file is as follows:

HEADER

The header section contains product version information, the date and time when the file
was created, and which options were used.

BODY

The body of the listing contains the following fields of information:

o The line number in the source file. Lines generated by macros will, if listed, have a
. (period) in the source line number field.

o The address field shows the location in memory, which can be absolute or relative
depending on the type of segment. The notation is hexadecimal.

o The data field shows the data generated by the source line. The notation is
hexadecimal. Unresolved values are represented by (periods), where two periods
signify one byte. These unresolved values will be resolved during the linking
process.

o The assembler source line.

Programming hints

14

SUMMARY

The end of the file contains a summary of errors and warnings that were generated.

SYMBOL AND CROSS-REFERENCE TABLE

When you specify the Include cross-reference option, or if the LSTXRF+ directive has
been included in the source file, a symbol and cross-reference table is produced.

The following information is provided for each symbol in the table:

Information Description

Symbol The symbol’s user-defined name.

Mode ABS (Absolute), or REL (Relocatable).

Segments The name of the segment that this symbol is defined relative to.
Value/Offset The value (address) of the symbol within the current module, relative to

the beginning of the current segment part.

Table 9: Symbol and cross-reference table

Programming hints

R32C IAR Assembler
Reference Guide

This section gives hints on how to write efficient code for the R32C IAR Assembler. For
information about projects including both assembler and C or C++ source files, see the
R32C IAR C/C++ Compiler Reference Guide.

ACCESSING SPECIAL FUNCTION REGISTERS

Specific header files for a number of R32C/100 derivatives are included in the IAR
Systems product package, in the \r32c\inc directory. These header files define the
processor-specific special function registers (SFRs) and interrupt vector numbers.

The header files are intended to be used also with the R32C IAR C/C++ Compiler, and
they are suitable to use as templates when creating new header files for other R32C/100
derivatives.

If any assembler-specific additions are needed in the header file, these can be added
easily in the assembler-specific part of the file:

#ifdef __IAR_SYSTEMS_ASM_ _
(assembler-specific defines)
#endif

USING C-STYLE PREPROCESSOR DIRECTIVES

The C-style preprocessor directives are processed before other assembler directives.
Therefore, do not use preprocessor directives in macros and do not mix them with

Introduction to the R32C IAR Assembler ___¢

assembler-style comments. For more information about comments, see Assembler
control directives, page 83.

SPECIFYING IMMEDIATE OPERANDS

The R32C/100 instruction set allows immediate operands to be encoded in a smaller
format known as #immex. To use this format, it is best to use negative numbers rather
than trying to sign-extend them in code. A sign-extended constant such as
#0xFFFFE024 will be interpreted as the unsigned entity rather than a negative value, and
will cause a range error. To use the #immex format, instead write #-0x1FDC."

Programming hints

R32C IAR Assembler
16 Reference Guide

Assembler options

This chapter first explains how to set the options from the command line, and
gives an alphabetical summary of the assembler options. It then provides
detailed reference information for each assembler option.

The IAR Embedded Workbench® IDE User Guide describes how to set assembler
options in the IAR Embedded Workbench® IDE, and gives reference
information about the available options.

Setting assembler options

To set assembler options from the command line, include them on the command line
after the ar32c command, either before or after the source filename. For example, when
assembling the source prog. s53, use the following command to generate an object file
with debug information:

ar32c prog --debug

Some options accept a filename, included after the option letter with a separating space.
For example, to generate a listing to the file prog.1lst:

ar32c prog -1 prog.lst

Some other options accept a string that is not a filename. The string is included after the
option letter, but without a space. For example, to define a symbol:

ar32c prog -DDEBUG=1

Generally, the order of options on the command line, both relative to each other and to
the source filename, is not significant. There is, however, one exception: when you use
the -I option, the directories are searched in the same order as they are specified on the
command line.

Notice that a command line option has a short name and/or a long name:

e A short option name consists of one character, with or without parameters. You
specify it with a single dash, for example -r.

o A long name consists of one or several words joined by underscores, and it may
have parameters. You specify it with double dashes, for example --debug.

Setting assembler options

18

R32C IAR Assembler
Reference Guide

SPECIFYING PARAMETERS

When a parameter is needed for an option with a short name, it can be specified either
immediately following the option or as the next command line argument.

For instance, an include file path of \usr\include can be specified either as:
-I\usr\include

or as

-I \usr\include

Note: / canbe used instead of \ as directory delimiter. A trailing backslash can be
added to the last directory name, but is not required.

Additionally, output file options can take a parameter that is a directory name. The
output file will then receive a default name and extension.

When a parameter is needed for an option with a long name, it can be specified either
immediately after the equal sign (=) or as the next command line argument, for example:

--diag_suppress=Pe0001
or
--diag_suppress Pe0001

Options that accept multiple values may be repeated, and may also have
comma-separated values (without space), for example:

--diag_warning=Be0001,Be0002

The current directory is specified with a period (.), for example:

ar32c prog -1

A file specified by - (a single dash) is standard input or output, whichever is appropriate.

Note: When an option takes a parameter, the parameter cannot start with a dash (-)
followed by another character. Instead you can prefix the parameter with two dashes
(--). The following example will generate a list on standard output:

ar32c prog -1 ---

Assembler options __¢

Summary of assembler options

The following table summarizes the assembler options available from the command

line:

Command line option

Description

--case_insensitive
--code_model

-D

--data_model
—--debug
--dependencies
--diag_error
--diag_remark
--diag_suppress
--diag_warning,
--diagnostics_tables
—--dir_first
--double
--enable_multibytes

——error_limit

-f
--header_context
-I

-1

-M

--mnem_first

--no_path_in_file_macros

--no_warnings
--no_wrap_diagnostics
-0

--only_ stdout

--preinclude

Case-insensitive user symbols

Defines the symbol __CODE_MODEL_ _
Defines preprocessor symbols

Defines the symbol __DATA_MODEL_ _
Generates debug information

Lists file dependencies

Treats these diagnostics as errors

Treats these diagnostics as remarks
Suppresses these diagnostics

Treats these diagnostics as warnings

Lists all diagnostic messages

Allows directives in the first column
Defines the symbol __DOUBLE_ _
Enables support for multibyte characters

Specifies the allowed number of errors before the
assembler stops

Extends the command line

Lists all referred source files

Includes file paths

Output list file

Macro quote characters

Allows mnemonics in the first column

Removes the path from the return value of the
symbols __FILE__ and __BASE_FILE__
Disables all warnings

Disables wrapping of diagnostic messages

Sets object filename

Uses standard output only

Includes an include file before reading the source file

Table 10: Assembler options summary

Description of assembler options

20

Command line option Description
--preprocess Preprocessor output to file
-r Generates debug information
--remarks Enables remarks

--silent Sets silent operation

--warnings_affect_exit_code Warnings affect exit code

--warnings_are_errors Treats all warnings as errors

Table 10: Assembler options summary (Continued)

Description of assembler options

R

--case_insensitive

R32C IAR Assembler
Reference Guide

The following sections give detailed reference information about each assembler option.

Note that if you use the page Extra Options to specify specific command line options,
there is no check for consistency problems like conflicting options, duplication of
options, or use of irrelevant options.

--case_insensitive
Use this option to make user symbols case insensitive.

By default, case sensitivity is on. This means that, for example, LABEL and l1abel refer
to different symbols. Use --case_insensitive to turn case sensitivity off, in which
case LABEL and label will refer to the same symbol.

You can also use the assembler directives CASEON and CASEOFF to control case
sensitivity for user-defined symbols. See Assembler control directives, page 83, for
more information.

Note: The --case_insensitive option does not affect preprocessor symbols.
Preprocessor symbols are always case sensitive, regardless of whether they are defined
in the IAR Embedded Workbench IDE or on the command line. See Defining and
undefining preprocessor symbols, page 7T8.

Project>Options>Assembler >Language>User symbols are case sensitive

--code_model

Assembler options __¢

--code_model={far|f|huge|h}

Parameters

far (default) Sets the predefined symbol __CODE_MODEL_ _ to
__CODE_MODEL_FAR_ _

huge Sets the predefined symbol __CODE_MODEL_ _ to
__CODE_MODEL_HUGE_ _

Description

Use this option to define the symbol __CODE_MODEL__. See Predefined symbols, page
10.

Project>Options>General Options>Target>Code model

-Dsymbol [=value]

Defines a symbol to be used by the preprocessor with the name symbo1l and the value
value. If no value is specified, 1 is used.

The -D option allows you to specify a value or choice on the command line instead of
in the source file.
Example

You may want to arrange your source to produce either the test or production version of
your program dependent on whether the symbol TESTVER was defined. To do this use
include sections such as:

#ifdef TESTVER

... ; additional code lines for test version only
#endif
Then select the version required on the command line as follows:

Production version: ar32c prog
Test version: ar32c prog -DTESTVER

Alternatively, your source might use a variable that you need to change often. You can
then leave the variable undefined in the source, and use -D to specify the value on the
command line; for example:

ar32c prog -DFRAMERATE=3

Project>Options>Assembler>Preprocessor>Defined symbols

21

Description of assembler options

22

--data_model

--debug, -r

--dependencies

R32C IAR Assembler
Reference Guide

--data_model={near|n|far|f|huge|h}

Parameters

near Sets the predefined symbol __DATA_MODEL__ to
__DATA_MODEL_NEAR_ _

far (default) Sets the predefined symbol __DATA_MODEL_ _ to
__DATA_MODEL_FAR_ _

huge Sets the predefined symbol __DATA_MODEL__ to
__DATA_MODEL_HUGE_ _

Description

Use this option to define the symbol __DATA_MODEL__. See Predefined symbols, page
10.

Project>Options>General Options>Target>Data model

--debug
-r

The --debug option makes the assembler generate debug information that allows a
symbolic debugger such as the IAR C-SPY® Debugger to be used on the program.

In order to reduce the size and link time of the object file, the assembler does not
generate debug information by default.

Project>Options>Assembler >Output>Generate debug information

--dependencies=[1i] [m] {filename| directory}

When you use this option, each source file opened by the assembler is listed in a file.
The following modifiers are available:

Option modifier Description
i Include only the names of files (default)
m Makefile style

J,

Table 11: Generating a list of dependencies (--dep ies)
If a filename is specified, the assembler stores the output in that file.

If a directoryis specified, the assembler stores the output in that directory, in a file
with the extension i. The filename will be the same as the name of the assembled source

Assembler options __¢

file, unless a different name has been specified with the option -o, in which case that
name will be used.

To specify the working directory, replace directory with a period (.).

If --dependencies or --dependencies=i is used, the name of each opened source
file, including the full path if available, is output on a separate line. For example:

c:\iar\product\include\stdio.h
d:\myproject\include\foo.h

If --dependencies=mis used, the output uses makefile style. For each source file, one
line containing a makefile dependency rule is output. Each line consists of the name of
the object file, a colon, a space, and the name of a source file. For example:

foo.r53: c:\iar\product\include\stdio.h
foo.r53: d:\myproject\include\foo.h
Example |
To generate a listing of file dependencies to the file 1isting. i, use:

ar32c prog --dependencies=i listing

Example 2

To generate a listing of file dependencies to a file called 1isting.i in the mypath
directory, you would use:

ar32c prog --dependencies \mypath\listing

Note: Both \ and / can be used as directory delimiters.

Example 3
An example of using --dependencies with gmake:
Set up the rule for assembling files to be something like:

%$.r53 : %.cC
S (ASM) $ (ASMFLAGS) S$< --dependencies=m S$*.d

That is, besides producing an object file, the command also produces a dependent file
in makefile style (in this example using the extension . d).

Include all the dependent files in the makefile using for example:

—-include $(sources:.c=.d)

Because of the -, it works the first time, when the . d files do not yet exist.

This option is not available in the JAR Embedded Workbench IDE.

23

Description of assembler options

--diag_error --diag_error=tag, tag, ...
Use this option to classify diagnostic messages as errors.

An error indicates a violation of the assembler language rules, of such severity that
object code will not be generated, and the exit code will not be 0.

The following example classifies warning As001 as an error:
--diag_error=As001

Project>Options>Assembler >Diagnostics>Treat these as errors

--diag_remark --diag_remark=tag, tag, ...
Use this option to classify diagnostic messages as remarks.

A remark is the least severe type of diagnostic message and indicates a source code
construct that may cause strange behavior in the generated code.

The following example classifies the warning As001 as a remark:
--diag_remark=As001

Project>Options>Assembler >Diagnostics>Treat these as remarks

--diag_suppress --diag_suppress=tag, tag, ...

Use this option to suppress diagnostic messages. The following example suppresses the
warnings As001 and As002:

--diag_suppress=As001,As002

Project>Options>Assembler >Diagnostics>Suppress these diagnostics

--diag_warning --diag_warning=tag, tag, ...
Use this option to classify diagnostic messages as warnings.

A warning indicates an error or omission that is of concern, but which will not cause the
assembler to stop before the assembly is completed.

The following example classifies the remark As028 as a warning:
--diag_warning=As028

Project>Options>Assembler >Diagnostics>Treat these as warnings

R32C IAR Assembler
24 Reference Guide

--diagnostics_tables

—--dir_first

--double

Assembler options __¢

--diagnostics_tables {filename\directory}

Use this option to list all possible diagnostic messages in a named file. This can be very
convenient, for example, if you have used a #pragma directive to suppress or change the
severity level of any diagnostic messages, but forgot to document why.

This option cannot be given together with other options.

If a filename is specified, the assembler stores the output in that file.

If a directory is specified, the assembler stores the output in that directory, in a file
with the name diagnostics_tables. txt. To specify the working directory, replace
directory with a period (.).

Example |

To output a list of all possible diagnostic messages to the file diag. txt, use:

--diagnostics_tables diag

Example 2

If you want to generate a table to a file diagnostics_tables. txt in the working
directory, you could use:

--diagnostics_tables
Both \ and / can be used as directory delimiters.

This option is not available in the IAR Embedded Workbench IDE.

—--dir_first

The default behavior of the assembler is to treat all identifiers starting in the first column
as labels.

Use this option to make directive names (without a trailing colon) that start in the first
column to be recognized as directives.

Project>Options>Assembler >Language>Allow directives in first column

——double:{32|64}

Parameters

far (default) Sets the predefined symbol __DOUBLE__ to 32
huge Sets the predefined symbol __DOUBLE__ to 64

25

Description of assembler options

26

--enable_multibytes

--error_limit

--header_context

R32C IAR Assembler
Reference Guide

Description
Use this option to define the symbol __DOUBLE_ _. See Predefined symbols, page 10.

Project>Options>General Options>Target>Size of type 'double’

--enable_multibytes

By default, multibyte characters cannot be used in assembler source code. If you use this
option, multibyte characters in the source code are interpreted according to the host
computer’s default setting for multibyte support.

Multibyte characters are allowed in comments, in string literals, and in character
constants. They are transferred untouched to the generated code.

Project>Options>Assembler>Language>Enable multibyte support

--error_limit=n

Use the --error_limit option to specify the number of errors allowed before the
assembler stops. By default, 100 errors are allowed. n must be a positive number; 0
indicates no limit.

This option is not available in the IAR Embedded Workbench IDE.

-f filename

Extends the command line with text read from the specified file. Notice that there must
be a space between the option itself and the filename.

The - £ option is particularly useful where there is a large number of options which are
more conveniently placed in a file than on the command line itself. For example, to run
the assembler with further options taken from the file extend.xc1, use:

ar32c prog -f extend.xcl
To set this option, use:

Project>Options>Assembler>Extra Options

--header_context

Occasionally, it is necessary to know which header file that was included from what
source line, to find the cause of a problem. Use this option to list, for each diagnostic
message, not only the source position of the problem, but also the entire include stack at
that point.

Assembler options __¢

This option is not available in the IAR Embedded Workbench IDE.

-I -Iprefix
Adds the #include file search prefix prefix.

By default, the assembler searches for #include files only in the current working
directory and in the paths specified in the AR32C_INC environment variable. The -1
option allows you to give the assembler the names of directories which it will also search
if it fails to find the file in the current working directory.

Example

For example, using the options:

-Ic:\global\ -Ic:\thisproj\headers\

and then writing:

#include "asmlib.hdr"

in the source, will make the assembler search first in the current directory, then in the
directory c: \global\, and then in the directory C: \thisproj\headers\. Finally,
the assembler searches the directories specified in the AR32C_INC environment
variable, provided that this variable is set.

Project>Options>Assembler >Preprocessor>Additional include directories

-1 -1[alld]llel[m][o][x]I[N] {filename|directory}

By default, the assembler does not generate a listing. Use this option to generate a listing
to a file.

You can choose to include one or more of the following types of information:

Command line option Description
-la Assembled lines only
-1d The LSTOUT directive controls if lines are

written to the list file or not. Using -1d turns
the start value for this to off.

-le No macro expansions
-1m Macro definitions

-lo Multiline code

-1x Includes cross-references

Table 12: Conditional list options (-I)

27

Description of assembler options

28

R32C IAR Assembler
Reference Guide

Command line option Description

-1N Do not include diagnostics

Table 12: Conditional list options (-1) (Continued)

If a filename is specified, the assembler stores the output in that file.

If a directoryis specified, the assembler stores the output in that directory, in a file
with the extension 1st. The filename will be the same as the name of the assembled
source file, unless a different name has been specified with the option -o, in which case
that name will be used.

To specify the working directory, replace directory with a period (.).

Example |
To generate a listing to the file 1ist.1st, use:

ar32c sourcefile -1 list

Example 2

If you assemble the file mysource.s53 and want to generate a listing to a file
mysource. lst in the working directory, you could use:

ar32c mysource -1
Note: Both \ and / can be used as directory delimiters.
To set related options, select:

Project>Options>Assembler >List

-Mab

Specifies quote characters for macro arguments by setting the characters used for the left
and right quotes of each macro argument to a and b respectively.

By default, the characters are < and >. The -M option allows you to change the quote
characters to suit an alternative convention or simply to allow a macro argument to
contain < or > themselves.

Note: Depending on your host environment, it may be necessary to use quote marks
with the macro quote characters, for example:

ar32c filename -M’'<>'

Example

For example, using the option:

—--mnem_first

--no_path_in_file_macros

--no_warnings

--no_wrap_diagnostics

Assembler options __¢

-M[]

in the source you would write, for example:
print [>]

to call a macro print with > as the argument.

Project>Options>Assembler >Language>Macro quote characters

—--mnem_first

The default behavior of the assembler is to treat all identifiers starting in the first column
as labels.

Use this option to make mnemonics names (without a trailing colon) starting in the first
column to be recognized as mnemonics.

Project>Options>Assembler >Language>Allow mnemonics in first column

--no_path_in_file_macros

Use this option to exclude the path from the return value of the predefined preprocessor
symbols __FILE__ and __BASE FILE _.

This option is not available in the IAR Embedded Workbench IDE.

--no_warnings

By default the assembler issues standard warning messages. Use this option to disable
all warning messages.

This option is not available in the IAR Embedded Workbench IDE.

--no_wrap_diagnostics

By default, long lines in assembler diagnostic messages are broken into several lines to
make the message easier to read. Use this option to disable line wrapping of diagnostic
messages.

This option is not available in the IAR Embedded Workbench IDE.

-o {filename|directory}

Use the -o option to specify an output file.

29

Description of assembler options

30

R32C IAR Assembler
Reference Guide

--only_stdout

--preinclude

--preprocess

If a £ilename is specified, the assembler stores the object code in that file.

If a directoryis specified, the assembler stores the object code in that directory, in a
file with the same name as the name of the assembled source file, but with the extension
r53. To specify the working directory, replace directory with a period (.).

Example |

To store the assembler output in a file called obj . r53 in the mypath directory, you
would use:

ar32c sourcefile -o \mypath\obj

Example 2

If you assemble the file mysource.s53 and want to store the assembler output in a file
mysource.r53 in the working directory, you could use:

ar32c mysource -o

Note: Both \ and / can be used as directory delimiters. You must include a space
between the option itself and the filename.

Project>Options>General Options>Output>Output directories>Object files

--only_stdout

Causes the assembler to use stdout also for messages that are normally directed to
stderr.

This option is not available in the JAR Embedded Workbench IDE.

--preinclude includefile

Use this option to make the compiler include the specified include file before it starts to
read the source file. This is useful if you want to change something in the source code
for the entire application, for instance if you want to define a new symbol.

To set this option, use:

Project>Options>Assembler>Extra Options

--preprocess=[c] [n][1] {filename\directory}

Use this option to direct preprocessor output to a named file.

-r,

--debug

Assembler options __¢

The following table shows the mapping of the available preprocessor modifiers:

Command line option Description

—--preprocess=c Preserve comments that otherwise are removed by the
preprocessor, that is, C and C++ style comments.
Assembler style comments are always preserved

--preprocess=n Preprocess only

--preprocess=1 Generate #1ine directives

Table 13: Directing preprocessor output to file (--preprocess)
If a £ilename is specified, the assembler stores the output in that file.

If a directoryis specified, the assembler stores the output in that directory, in a file
with the extension i. The filename will be the same as the name of the assembled source
file, unless a different name has been specified with the option -o, in which case that
name will be used.

To specify the working directory, replace directory with a period (.).

Example |
To store the assembler output with preserved comments to the file output. i, use:

ar32c sourcefile --preprocess=c output

Example 2

If you assemble the file mysource.s53 and want to store the assembler output with
#1line directives to a file mysource. i in the working directory, you could use:

ar32c mysource --preprocess=1
Note: Both \ and / can be used as directory delimiters.

Project>Options>Assembler >Preprocessor>Preprocessor output to file

--debug
-r

The --debug option makes the assembler generate debug information that allows a
symbolic debugger such as the IAR C-SPY Debugger to be used on the program.

In order to reduce the size and link time of the object file, the assembler does not
generate debug information by default.

Project>Options>Assembler >Output>Generate debug information

31

Description of assembler options

32

--remarks

--silent

--warnings_affect_exit_code

--warnings_are_errors

R32C IAR Assembler
Reference Guide

--remarks

Use this option to make the assembler generate remarks, which is the least severe type
of diagnostic message and which indicates a source code construct that may cause
strange behavior in the generated code. By default remarks are not generated.

See Severity levels, page 103, for additional information about diagnostic messages.

Project>Options>Assembler >Diagnostics>Enable remarks

--silent

The --silent option causes the assembler to operate without sending any messages to
the standard output stream.

By default, the assembler sends various non-vital messages via the standard output
stream. You can use the --silent option to prevent this. The assembler sends error and
warning messages to the error output stream, so they are displayed regardless of this
setting.

This option is not available in the IAR Embedded Workbench IDE.

--warnings_affect_exit_code

By default the exit code is not affected by warnings, only errors produce a non-zero exit
code. With this option, warnings will generate a non-zero exit code.

This option is not available in the IAR Embedded Workbench IDE.

--warnings_are_errors

Use this option to make the assembler treat all warnings as errors. If the assembler
encounters an error, no object code is generated.

If you want to keep some warnings, you can use this option in combination with the
option --diag_warning. First make all warnings become treated as errors and then
reset the ones that should still be treated as warnings, for example:

--diag_warning=As001
For additional information, see --diag_warning, page 24.

Project>Options>Assembler >Diagnostics>Treat all warnings as errors

Assembler operators

This chapter first describes the precedence of the assembler operators, and
then summarizes the operators, classified according to their precedence.
Finally, this chapter provides reference information about each operator,
presented in alphabetical order.

Precedence of operators

Each operator has a precedence number assigned to it that determines the order in which
the operator and its operands are evaluated. The precedence numbers range from 1 (the
highest precedence, that is, first evaluated) to 15 (the lowest precedence, that is, last
evaluated).

The following rules determine how expressions are evaluated:

o The highest precedence operators are evaluated first, then the second highest
precedence operators, and so on until the lowest precedence operators are evaluated

e Operators of equal precedence are evaluated from left to right in the expression

e Parentheses (and) can be used for grouping operators and operands and for
controlling the order in which the expressions are evaluated. For example, the
following expression evaluates to 1:

7/ (1+(2%3))

Note: The precedence order in the R32C IAR Assembler closely follows the
precedence order of the ANSI C++ standard for operators, where applicable.

33

Summary of assembler operators

Summary of assembler operators

The following tables give a summary of the operators, in order of priority. Synonyms,
where available, are shown in brackets after the operator name.

PARENTHESIS OPERATOR - |

() Parenthesis.

FUNCTION OPERATORS -2

BYTE1 First byte.
BYTE2 Second byte.
BYTE3 Third byte.
BYTE4 Fourth byte.
DATE Current date/time.
HIGH High byte.
HWRD High word.
Low Low byte.
LWRD Low word.

SFB Segment begin.
SFE Segment end.
SIZEOF Segment size.
UPPER Third byte.

UNARY OPERATORS -3

+ Unary plus.
BINNOT [~] Bitwise NOT.
NOT [!] Logical NOT.

- Unary minus.

R32C IAR Assembler
34 Reference Guide

Assembler operators ___o

MULTIPLICATIVE ARITHMETIC OPERATORS -4

* Multiplication.
/ Division.
MOD [%] Modulo.

ADDITIVE ARITHMETIC OPERATORS -5

+ Addition.

- Subtraction.

SHIFT OPERATORS -6

SHL [<<] Logical shift left.

SHR [>>] Logical shift right.

COMPARISON OPERATORS -7

GE [>=] Greater than or equal.
GT [>] Greater than.

LE [<=] Less than or equal.

LT [<] Less than.

UGT Unsigned greater than.
ULT Unsigned less than.

EQUIVALENCE OPERATORS -8
EQ [=] [==] Equal.

NE [<>] [!=] Not equal.

LOGICAL OPERATORS -9-14

BINAND [&] Bitwise AND (9).
BINXOR ["] Bitwise exclusive OR (10).
BINOR []] Bitwise OR (11).

35

Description of assembler operators

AND [&&] Logical AND (12).
XOR Logical exclusive OR (13).
OR []]] Logical OR (14).

CONDITIONAL OPERATOR - I5

2: Conditional operator.

Description of assembler operators

The following sections give full descriptions of each assembler operator. The number
within parentheses specifies the priority of the operator

() Parenthesis (1).
(‘and) group expressions to be evaluated separately, overriding the default precedence
order.
Example

1+2*%3 —> 7
(1+2)*3 —> 9

* Multiplication (4).
* produces the product of its two operands. The operands are taken as signed 32-bit
integers and the result is also a signed 32-bit integer.
Example

2*%2 > 4
_2%x) — _4

+ Unary plus (3).

Unary plus operator.

Example

+3 > 3
3*+2 > 6

R32C IAR Assembler
36 Reference Guide

Assembler operators ___o

+ Addition (5).

The + addition operator produces the sum of the two operands which surround it. The
operands are taken as signed 32-bit integers and the result is also a signed 32-bit integer.

Example
92+19 — 111

-242 > 0
-24-2 > -4

- Unary minus (3).
The unary minus operator performs arithmetic negation on its operand.
The operand is interpreted as a 32-bit signed integer and the result of the operator is the
two’s complement negation of that integer.
Example

-3 > -3
3*-2 > -6
4--5 = 9

- Subtraction (5).

The subtraction operator produces the difference when the right operand is taken away
from the left operand. The operands are taken as signed 32-bit integers and the result is
also signed 32-bit integer.

Example

92-19 — 73
-2-2 7 -4
-2--2 > 0

/ Division (4).

/ produces the integer quotient of the left operand divided by the right operand. The
operands are taken as signed 32-bit integers and the result is also a signed 32-bit integer.

Example
9/2 > 4
-12/3 > -4
9/2*6 —> 24

37

Description of assembler operators

?: Conditional operator (15).

The result of this operator is the first expr if condition evaluates to true and the
second expr if condition evaluates to false.

Note: The question mark and a following label must be separated by space or a tab,
otherwise the ? will be considered the first character of the label.

Syntax

condition ? expr : expr

Example

7 76

57?6
0?6 :7 7

AND [&&] Logical AND (12).

Use AND to perform logical AND between its two integer operands. If both operands are
non-zero the result is 1 (true), otherwise it will be O (false).

Example

1010B AND 0011B — 1
1010B AND 0101B —> 1
1010B AND 0000B — O

BINAND [&] Bitwise AND (9).
Use BINAND to perform bitwise AND between the integer operands. Each bit in the
32-bit result is the logical AND of the corresponding bits in the operands.
Example

1010B BINAND 0011B —> 0010B
1010B BINAND 0101B —> 0000B
1010B BINAND 0000B —> 0000B

BINNOT [~] Bitwise NOT (3).

Use BINNOT to perform bitwise NOT on its operand. Each bit in the 32-bit result is the
complement of the corresponding bit in the operand.

R32C IAR Assembler
38 Reference Guide

Assembler operators ___o

Example

BINNOT 1010B — 11111111111111111111111111110101B

BINOR [|] Bitwise OR (11).
Use BINOR to perform bitwise OR on its operands. Each bit in the 32-bit result is the
inclusive OR of the corresponding bits in the operands.
Example

1010B BINOR 0101B — 1111B
1010B BINOR 0000B — 1010B

BINXOR [~] Bitwise exclusive OR (10).
Use BINXOR to perform bitwise XOR on its operands. Each bit in the 32-bit result is the
exclusive OR of the corresponding bits in the operands.
Example

1010B BINXOR 0101B — 1111B
1010B BINXOR 0011B — 1001B

BYTE1 First byte (2).
BYTE1 takes a single operand, which is interpreted as an unsigned 32-bit integer value.

The result is the low byte (bits 7 to 0) of the operand.

Example

BYTE1l 0x12345678 —> 0x78

BYTE2 Second byte (2).

BYTE2 takes a single operand, which is interpreted as an unsigned 32-bit integer value.
The result is the middle-low byte (bits 15 to 8) of the operand.

Example

BYTE2 0x12345678 —> 0x56

39

Description of assembler operators

BYTE3 Third byte (2).

BYTE3 takes a single operand, which is interpreted as an unsigned 32-bit integer value.
The result is the middle-high byte (bits 23 to 16) of the operand.

Example

BYTE3 0x12345678 — 0x34

BYTE4 Fourth byte (2).
BYTEA4 takes a single operand, which is interpreted as an unsigned 32-bit integer value.

The result is the high byte (bits 31 to 24) of the operand.

Example

BYTE4 0x12345678 — 0x12

DATE Current date/time (2).
Use the DATE operator to specify when the current assembly began.

The DATE operator takes an absolute argument (expression) and returns:

DATE 1 Current second (0-59)

DATE 2 Current minute (0-59)

DATE 3 Current hour (0-23)

DATE 4 Current day (1-31)

DATE 5 Current month (1-12)

DATE 6 Current year MOD 100 (1998 —98, 2000 —00, 2002 —02)
Example

To assemble the date of assembly:

today: DC8 DATE 5, DATE 4, DATE 3

EQ [=] [==] Equal (8).

= evaluates to 1 (true) if its two operands are identical in value, or to O (false) if its two
operands are not identical in value.

R32C IAR Assembler
40 Reference Guide

GE

GT

[>=]

HIGH

HWRD

Assembler operators ___o

Greater than or equal (7).

>= evaluates to 1 (true) if the left operand is equal to or has a higher numeric value than
the right operand, otherwise it will be O (false).

Example

1>=2 >0
2>=1 71
1 >=1—>1

Greater than (7).

> evaluates to 1 (true) if the left operand has a higher numeric value than the right
operand, otherwise it will be O (false).

Example

-1>1—>0
2>1—>1
1>1—>0

High byte (2).

HIGH takes a single operand to its right which is interpreted as an unsigned, 16-bit
integer value. The result is the unsigned 8-bit integer value of the higher order byte of
the operand.

Example

HIGH OxABCD — O0OxAB

High word (2).

HWRD takes a single operand, which is interpreted as an unsigned, 32-bit integer value.
The result is the high word (bits 31 to 16) of the operand.

41

Description of assembler operators

42

R32C IAR Assembler
Reference Guide

LE [<=]
LOW

LT [<]
LWRD

Example

HWRD 0x12345678 — 0x1234

Less than or equal (7).

<= evaluates to 1 (true) if the left operand has a lower or equal numeric value to the right
operand, otherwise it will be O (false).

Example
1 <=2 —>1

2 <=1—>0
1 <=1—>1

Low byte (2).

Low takes a single operand, which is interpreted as an unsigned, 32-bit integer value.
The result is the unsigned, 8-bit integer value of the lower order byte of the operand.

Example

LOW O0xABCD — 0xCD

Less than (7).

< evaluates to 1 (true) if the left operand has a lower numeric value than the right
operand, otherwise it will be O (false).

Example

-1 <2 —>1
2 <170
2 <2 >0

Low word (2).

LWRD takes a single operand, which is interpreted as an unsigned, 32-bit integer value.
The result is the low word (bits 15 to 0) of the operand.

Example

LWRD 0x12345678 —> 0x5678

Assembler operators ___o

MOD [%$] Modulo (4).

MOD produces the remainder from the integer division of the left operand by the right
operand. The operands are taken as signed 32-bit integers and the result is also a signed
32-bit integer.

X MOD Y is equivalent to X-v* (X/Y) using integer division.

Example

2 MOD 2 > 0
12 MOD 7 =™ 5
3 MOD 2 > 1

NE [<>] [!=] Notequal (8).

<> evaluates to O (false) if its two operands are identical in value or to 1 (true) if its two
operands are not identical in value.

Example

1 <>2 1
2 <>2 >0
'A' <> 'B' > 1

NOT [!] Logical NOT (3).

Use NOT to negate a logical argument.

Example

NOT 0101B —> O
NOT 0000B — 1

OR [||] Logical OR (14).

Use OR to perform a logical OR between two integer operands.

Example

1010B OR 0000B > 1
0000B OR 0000B —> 0

43

Description of assembler operators

SFB Segment begin (2).

SFB accepts a single operand to its right. The operand must be the name of a relocatable
segment. The operator evaluates to the absolute address of the first byte of that segment.
This evaluation takes place at link time.

Syntax

SFB(segment [{+|-}offset])

Parameters

segment The name of a relocatable segment, which must be defined before
SFB is used.

offset An optional offset from the start address. The parentheses are
optional if of fset is omitted.

Example

NAME demo
RSEG segtab:CONST
start: DCl6 SFB(mycode)

Even if the above code is linked with many other modules, start will still be set to the
address of the first byte of the segment.

SFE Segment end (2).

SFE accepts a single operand to its right. The operand must be the name of a relocatable
segment. The operator evaluates to the segment start address plus the segment size. This
evaluation takes place at link time.

Syntax

SFE (segment [{+ | -} offset])

Parameters

segment The name of a relocatable segment, which must be defined before
SFE is used.

offset An optional offset from the start address. The parentheses are

optional if of fset is omitted.

R32C IAR Assembler
44 Reference Guide

Assembler operators ___o

Example

NAME demo
RSEG segtab:CONST
end: DCl6 SFE(mycode)

Even if the above code is linked with many other modules, end will still be set to the
first byte after that segment (mycode).

The size of the segment MY_SEGMENT can be calculated as:

SFE (MY_SEGMENT) -SFB (MY_SEGMENT)

SHL [<<] Logical shift left (6).

Use sHL to shift the left operand, which is always treated as unsigned, to the left. The
number of bits to shift is specified by the right operand, interpreted as an integer value
between 0 and 32.

Example

00011100B SHL 3 — 11100000B
00000111111111111B SHL 5 — 11111111111100000B
14 SHL 1 — 28

SHR [>>] Logical shift right (6).

Use SHR to shift the left operand, which is always treated as unsigned, to the right. The
number of bits to shift is specified by the right operand, interpreted as an integer value
between 0 and 32.

Example

01110000B SHR 3 — 00001110B
1111111111111111B SHR 20 —> 0
14 SHR 1 —> 7

SIZEOF Segment size (2).

SIZEOF generates SFE-SFB for its argument, which should be the name of a relocatable
segment; that is, it calculates the size in bytes of a segment. This is done when modules
are linked together.

Syntax

SIZEOF (segment)

45

Description of assembler operators

Parameters

segment The name of a relocatable segment, which must be defined before
SIZEOF is used.

Example

The following code sets size to the size of the segment mycode.

MODULE table

RSEG mycode: CODE ; forward declaration of mycode
RSEG segtab:CONST

size: DC32 SIZEOF (mycode)
ENDMOD

MODULE application

RSEG mycode: CODE

NOP ;placeholder for application code
ENDMOD

UGT Unsigned greater than (7).
UGT evaluates to 1 (true) if the left operand has a larger value than the right operand,
otherwise it will be O (false). The operation treats its operands as unsigned values.
Example

2U0GT 1 > 1
-1 ueTr 1 > 1

ULT Unsigned less than (7).
ULT evaluates to 1 (true) if the left operand has a smaller value than the right operand,
otherwise it will be O (false). The operation treats the operands as unsigned values.
Example

1 ULT 2 > 1
-1 ULT 2 > 0

UPPER Third byte (2).

UPPER takes a single operand, which is interpreted as an unsigned 32-bit integer value.
The result is the middle-high byte (bits 23 to 16) of the operand.

R32C IAR Assembler
46 Reference Guide

Assembler operators ___o

Example

UPPER 0x12345678 — 0x34

XOR Logical exclusive OR (13).

XOR evaluates to 1 (true) if either the left operand or the right operand is non-zero, but
to O (false) if both operands are zero or both are non-zero. Use XOR to perform logical
XOR on its two operands.

Example

0101B XOR 1010B — O
0101B XOR 0000B — 1

47

Description of assembler operators

R32C IAR Assembler
48 Reference Guide

Assembler directives

This chapter gives an alphabetical summary of the assembler directives and

provides detailed reference information for each category of directives.

Summary of assembler directives

The assembler directives are classified into the following groups according to their
function:

Module control directives, page 52

Symbol control directives, page 56

Segment control directives, page 58

Value assignment directives, page 63
Conditional assembly directives, page 66
Macro processing directives, page 68

Listing control directives, page 73

C-style preprocessor directives, page 76

Data definition or allocation directives, page 81
Assembler control directives, page 83

Call frame information directives, page 86.

The following table gives a summary of all the assembler directives.

Directive Description Section

#define Assigns a value to a label. C-style preprocessor
#elif Introduces a new condition ina #if...#endif C-style preprocessor

block.

#else Assembles instructions if a condition is false. C-style preprocessor
#endif Endsa #if, #ifdef, or #ifndef block. C-style preprocessor
#error Generates an error. C-style preprocessor
#if Assembles instructions if a condition is true. C-style preprocessor
#ifdef Assembles instructions if a symbol is defined. C-style preprocessor
#ifndef Assembles instructions if a symbol is undefined. C-style preprocessor
#include Includes a file. C-style preprocessor

Table 14: Assembler directives summary

49

Summary of assembler directives

50

R32C IAR Assembler

Reference Guide

Directive Description Section

#line Changes the line numbers. C-style preprocessor
#pragma Controls extension features. C-style preprocessor
#undef Undefines a label. C-style preprocessor

/*comment*/

/7

ALIGN

ALIGNRAM
ASEG
ASEGN
ASSIGN
BLOCK

CASEOFF
CASEON
CFI

COMMON
DC8

DC1l6

DC24

DC32

DC64

DEFINE

DF32

DF64

C-style comment delimiter.
C++style comment delimiter.
Assigns a permanent value local to a module.

Aligns the program location counter by inserting
zero-filled bytes.

Aligns the program location counter.
Begins an absolute segment.

Begins a named absolute segment.
Assigns a temporary value.

Specifies the block number for an alias created by
the SYMBOL directive.

Disables case sensitivity.
Enables case sensitivity.

Specifies call frame information.

Begins a common segment.

Generates 8-bit constants, including strings.

Generates | 6-bit constants.

Generates 24-bit constants.

Generates 32-bit constants.

Generates 64-bit constants.

Defines a file-wide value.

Generates 32-bit floating-point constants.

Generates 64-bit floating-point constants.

Assembler control
Assembler control
Value assignment

Segment control

Segment control
Segment control
Segment control
Value assignment

Symbol control

Assembler control
Assembler control

Call frame
information

Segment control

Data definition or
allocation

Data definition or
allocation

Data definition or
allocation

Data definition or
allocation

Data definition or
allocation

Value assignment

Data definition or
allocation

Data definition or
allocation

Table 14: Assembler directives summary (Continued)

Assembler directives __¢

Directive Description Section

DQ15 Generates | 6-bit fractional constants. Data definition or
allocation

DQ31 Generates 32-bit fractional constants. Data definition or
allocation

DS8 Allocates space for 8-bit integers. Data definition or
allocation

DS16 Allocates space for |6-bit integers. Data definition or
allocation

DS24 Allocates space for 24-bit integers. Data definition or
allocation

DS32 Allocates space for 32-bit integers. Data definition or
allocation

DS64 Allocates space for 64-bit integers. Data definition or
allocation

ELSE Assembles instructions if a condition is false. Conditional assembly

ELSEIF Specifies a new condition in an IF...ENDIF block. Conditional assembly

END Terminates the assembly of the last module in a file. Module control

ENDIF Ends an IF block. Conditional assembly

ENDM Ends a macro definition. Macro processing

ENDMOD Terminates the assembly of the current module. Module control

ENDR Ends a repeat structure. Macro processing

EQU Assigns a permanent value local to a module. Value assignment

EVEN Aligns the program counter to an even address. Segment control

EXITM Exits prematurely from a macro. Macro processing

EXTERN Imports an external symbol. Symbol control

IF Assembles instructions if a condition is true. Conditional assembly

IMPORT Imports an external symbol. Symbol control

LIBRARY Begins a library module. Module control

LIMIT Checks a value against limits. Value assignment

LOCAL Creates symbols local to a macro. Macro processing

LSTCND Controls conditional assembly listing. Listing control

LSTCOD Controls multi-line code listing. Listing control

LSTEXP Controls the listing of macro generated lines. Listing control

Table 14: Assembler directives summary (Continued)

51

Module control directives

Directive Description Section
LSTMAC Controls the listing of macro definitions. Listing control
LSTOUT Controls assembler-listing output. Listing control
LSTREP Controls the listing of lines generated by repeat Listing control
directives.
LSTXRF Generates a cross-reference table. Listing control
MACRO Defines a macro. Macro processing
MODULE Begins a library module. Module control
NAME Begins a program module. Module control
ODD Aligns the program location counter to an odd Segment control
address.
ORG Sets the program location counter. Segment control
OVERLAY Recognized but ignored. Symbol control
PROGRAM Begins a program module. Module control
PUBLIC Exports symbols to other modules. Symbol control
PUBWEAK Exports symbols to other modules, multiple Symbol control
definitions allowed.
RADIX Sets the default base. Assembler control
REPT Assembles instructions a specified number of times. Macro processing
REPTC Repeats and substitutes characters. Macro processing
REPTI Repeats and substitutes strings. Macro processing
REQUIRE Forces a symbol to be referenced. Symbol control
RSEG Begins a relocatable segment. Segment control
RTMODEL Declares runtime model attributes. Module control
SET Assigns a temporary value. Value assignment
SYMBOL Creates an alias that can be used for referringtoa Symbol control
C/C++ symbol.
VAR Assigns a temporary value. Value assignment

Table 14: Assembler directives summary (Continued)

Module control directives

Module control directives are used for marking the beginning and end of source program
modules, and for assigning names and types to them. See Expression restrictions, page

R32C IAR Assembler
52 Reference Guide

Assembler directives __¢

12, for a description of the restrictions that apply when using a directive in an

expression.

Directive Description Expression restrictions

END Terminates the assembly of the last module in a file. Only locally defined labels
or integer constants

ENDMOD Terminates the assembly of the current module. Only locally defined labels

LIBRARY Begins a library module.

MODULE Begins a library module.

NAME Begins a program module.

PROGRAM Begins a program module.

RTMODEL Declares runtime model attributes.

or integer constants

No external references
Absolute

No external references
Absolute

No external references
Absolute

No external references
Absolute

Not applicable

Table 15: Module control directives

SYNTAX

END [address]

ENDMOD [address]
LIBRARY symbol [(expr)]
MODULE symbol [(expr)]
NAME symbol [(expr)]
PROGRAM symbol [(expr)]
RTMODEL key, value

PARAMETERS

address An optional expression that determines the start address of the program.

It can take any positive integer value.

expr An optional expression used by the compiler to encode the runtime
options. It must be within the range 0-255 and evaluate to a constant
value. The expression is only meaningful if you are assembling source
code that originates as assembler output from the compiler.

key A text string specifying the key.

53

Module control directives

54

R32C IAR Assembler
Reference Guide

symbol Name assigned to module, used by XLINK, XAR, and XLIB when
processing object files.

value A text string specifying the value.

DESCRIPTIONS

Beginning a program module

Use NAME or PROGRAM to begin a program module, and to assign a name for future
reference by the IAR XLINK Linker, the [AR XAR Library Builder, and the IAR XLIB
Librarian.

Program modules are unconditionally linked by XLINK, even if other modules do not
reference them.

Beginning a library module

Use MODULE or LIBRARY to create libraries containing a number of small modules—like
runtime systems for high-level languages—where each module often represents a single
routine. With the multi-module facility, you can significantly reduce the number of
source and object files needed.

Library modules are only copied into the linked code if other modules reference a public
symbol in the module.

Terminating a module

Use ENDMOD to define the end of a module.

Terminating the source file

Use END to indicate the end of the source file. Any lines after the END directive are
ignored. The END directive also terminates the last module in the file, if this is not done
explicitly with an ENDMOD directive.

Assembling multi-module files

Program entries must be either relocatable or absolute, and will show up in XLINK load
maps, as well as in some of the hexadecimal absolute output formats. Program entries
must not be defined externally.

The following rules apply when assembling multi-module files:

o At the beginning of a new module all user symbols are deleted, except for those
created by DEFINE, #define, or MACRO, the location counters are cleared, and the
mode is set to absolute.

Assembler directives __¢

e Listing control directives remain in effect throughout the assembly.

Note: END must always be placed after the /ast module, and there must not be any source
lines (except for comments and listing control directives) between an ENDMOD and the
next module (beginning with MODULE, LIBRARY, NAME, Or PROGRAM).

If any of the directives NAME, MODULE, LIBRARY, or PROGRAM is missing, the module will
be assigned the name of the source file and the attribute program.

Declaring runtime model attributes

Use RTMODEL to enforce consistency between modules. All modules that are linked
together and define the same runtime attribute key must have the same value for the
corresponding key value, or the special value *. Using the special value * is equivalent
to not defining the attribute at all. It can however be useful to explicitly state that the
module can handle any runtime model.

A module can have several runtime model definitions.

Note: The compiler runtime model attributes start with double underscores. In order to
avoid confusion, this style must not be used in the user-defined assembler attributes.

If you are writing assembler routines for use with C or C++ code, and you want to
control the module consistency, refer to the R32C IAR C/C++ Compiler Reference
Guide.

Examples

The following example defines three modules where:

e MOD_1 and MOD_2 cannot be linked together since they have different values for
runtime model foo.

e MOD_1 and MOD_3 can be linked together since they have the same definition of
runtime model bar and no conflict in the definition of foo.

e MOD_2 and MOD_3 can be linked together since they have no runtime model
conflicts. The value * matches any runtime model value.

MODULE MOD_1

RTMODEL "foo", "1™
RTMODEL "bar", "XXX"
ENDMOD

MODULE MOD_2

RTMODEL "foo", "2"
RTMODEL "bar", "*"
ENDMOD

55

Symbol control directives

56

MODULE MOD_3
RTMODEL "bar", "XXX"

END

Symbol control directives

R32C IAR Assembler
Reference Guide

These directives control how symbols are shared between modules.

Directive Description

BLOCK Specifies the block number for an alias created by the SYMBOL
directive.

EXTERN, IMPORT Imports an external symbol.

OVERLAY Recognized but ignored.

PUBLIC Exports symbols to other modules.

PUBWEAK Exports symbols to other modules, multiple definitions allowed.

REQUIRE Forces a symbol to be referenced.

SYMBOL Creates an alias for a C/C++ symbol.

Table 16: Symbol control directives

SYNTAX

label BLOCK old_label, block_number
EXTERN symbol [,symbol]

IMPORT symbol [,symbol]

PUBLIC symbol [,symbol]

PUBWEAK symbol [,symbol]

REQUIRE symbol

label SYMBOL "C/C++_symbol" [,old _labell

PARAMETERS

block_number Block number of the alias created by the sYMBOL directive.

C/C++_symbol C/C++ symbol to create an alias for.

label Label to be used as an alias for a C/C++ symbol.
old_label Alias created earlier by a SYMBOL directive.
symbol Symbol to be imported or exported.

Assembler directives __¢

DESCRIPTIONS

Exporting symbols to other modules

Use PUBLIC to make one or more symbols available to other modules. Symbols defined
PUBLIC can be relocatable or absolute, and can also be used in expressions (with the
same rules as for other symbols).

The puBLIC directive always exports full 32-bit values, which makes it feasible to use
global 32-bit constants also in assemblers for 8-bit and 16-bit processors. With the Low,
HIGH, >>, and << operators, any part of such a constant can be loaded in an 8-bit or
16-bit register or word.

There are no restrictions on the number of PUBLIC-defined symbols in a module.

Exporting symbols with multiple definitions to other modules

PUBWEAK is similar to PUBLIC except that it allows the same symbol to be defined
several times. Only one of those definitions will be used by XLINK. If a module
containing a PUBLIC definition of a symbol is linked with one or more modules
containing PUBWEAK definitions of the same symbol, XLINK will use the PUBLIC
definition.

A symbol defined as PUBWEAK must be a label in a segment part, and it must be the only
symbol defined as PUBLIC or PUBWEAK in that segment part.

Note: Library modules are only linked if a reference to a symbol in that module is made,
and that symbol has not already been linked. During the module selection phase, no
distinction is made between PUBLIC and PUBWEAK definitions. This means that to
ensure that the module containing the PUBLIC definition is selected, you should link it
before the other modules, or make sure that a reference is made to some other PUBLIC
symbol in that module.

Importing symbols

Use EXTERN or IMPORT to import an untyped external symbol.

The REQUIRE directive marks a symbol as referenced. This is useful if the segment part
containing the symbol must be loaded for the code containing the reference to work, but
the dependence is not otherwise evident.

Referring to scoped C/C++ symbols

Use the sYMBOL directive to create an alias for a C/C++ symbol. The alias can be used
for referring to the C/C++ symbol. The symbol and the alias must be located within the
same scope.

Use the BLOCK directive to provide the block scope for the alias.

57

Segment control directives

58

Typically, the sYMBOL and the BLOCK directives are for compiler internal use only, for
example when referring to objects inside classes or namespaces. For detailed
information about how to use these directives, declare and define your C/C++ symbol,
compile, and view the assembler listfile output.

EXAMPLES

The following example defines a subroutine to print an error message, and exports the
entry address err so that it can be called from other modules.

Because the message is enclosed in double quotes, the string will be followed by a zero
byte.

It defines print as an external routine; the address will be resolved at link time.

NAME error
EXTERN print
PUBLIC err

RSEG CODE24 : CODE
str

DC8 "** Error **"
err

MOVA str, A0

JSR print

END

Segment control directives

R32C IAR Assembler
Reference Guide

The segment directives control how code and data are located. See Expression
restrictions, page 12, for a description of the restrictions that apply when using a
directive in an expression.

Directive Description Expression restrictions

ALIGN Aligns the program location counter by inserting ~ No external references
zero-filled bytes. Absolute

ALIGNRAM Aligns the program location counter. No external references
Absolute

ASEG Begins an absolute segment. No external references
Absolute

ASEGN Begins a named absolute segment. No external references
Absolute

COMMON Begins a common segment. No external references
Absolute

Table 17: Segment control directives

Assembler directives __¢

Directive Description Expression restrictions

EVEN Aligns the program counter to an even address. No external references
Absolute

ODD Aligns the program counter to an odd address. No external references
Absolute

ORG Sets the location counter. No external references

Absolute (see below)

RSEG Begins a relocatable segment. No external references
Absolute

Table 17: Segment control directives (Continued)

SYNTAX

ALIGN align [,valuel

ALIGNRAM align

ASEG [start]

ASEGN segment [:typel, address
COMMON segment [:typel]l [(align)]

EVEN [value]

ODD [value]

ORG expr

RSEG segment [:typel [flag] [(align)]

PARAMETERS
address Address where this segment part will be placed.
align The power of two to which the address should be aligned, in most

cases in the range O to 30.
The default align value is 1, except for stack data where the default is

4.
expr Address to set the location counter to.
flag NOROOT, ROOT

NOROOT means that the segment part is discarded by the linker if no
symbols in this segment part are referred to. Normally, all segment parts
except startup code and interrupt vectors should set this flag. The default
mode is ROOT which indicates that the segment part must not be discarded.

59

Segment control directives

60

R32C IAR Assembler
Reference Guide

REORDER, NOREORDER

REORDER allows the linker to reorder segment parts. For a given segment,
all segment parts must specify the same state for this flag. The default mode
is NOREORDER which indicates that the segment parts must remain in
order.

SORT, NOSORT

SORT means that the linker will sort the segment parts in decreasing
alignment order. For a given segment, all segment parts must specify the
same state for this flag. The default mode is NOSORT which indicates that
the segment parts will not be sorted.

segment The name of the segment.

start A start address that has the same effect as using an ORG directive at
the beginning of the absolute segment.

type The memory type, typically CODE or DATA. In addition, any of the
types supported by the IAR XLINK Linker.

value Byte value used for padding, default is zero.

DESCRIPTIONS

Beginning an absolute segment

Use ASEG to set the absolute mode of assembly, which is the default at the beginning of
a module.

If the parameter is omitted, the start address of the first segment is 0, and subsequent
segments continue after the last address of the previous segment.

Beginning a named absolute segment

Use ASEGN to start a named absolute segment located at the address address.
This directive has the advantage of allowing you to specify the memory type of the
segment.

Beginning a relocatable segment

Use RSEG to set the current mode of the assembly to relocatable assembly mode. The
assembler maintains separate location counters (initially set to zero) for all segments,
which makes it possible to switch segments and mode anytime without the need to save
the current segment location counter.

Up to 65536 unique, relocatable segments may be defined in a single module.

Assembler directives __¢

Beginning a common segment

Use COMMON to place data in memory at the same location as COMMON segments from
other modules that have the same name. In other words, all COMMON segments of the
same name will start at the same location in memory and overlay each other.

Obviously, the coMMON segment type should not be used for overlaid executable code.
A typical application would be when you want a number of different routines to share a
reusable, common area of memory for data.

It can be practical to have the interrupt vector table in a COMMON segment, thereby
allowing access from several routines.

The final size of the coMMoN segment is determined by the size of largest occurrence of
this segment. The location in memory is determined by the XLINK -z command; see
the IAR Linker and Library Tools Reference Guide.

Use the align parameter in any of the above directives to align the segment start
address.

Setting the program location counter (PLC)

Use ORG to set the program location counter of the current segment to the value of an
expression. When ORG is used in an absolute segment (ASEG), the parameter expression
must be absolute. However, when ORG is used in a relative segment (RSEG), the
expression may be either absolute or relative (and the value is interpreted as an offset
relative to the segment start in both cases).

The program location counter is set to zero at the beginning of an assembler module.

Aligning a segment

Use ALIGN to align the program location counter to a specified address boundary. The
expression gives the power of two to which the program counter should be aligned and
the permitted range is 0 to 8.

The alignment is made relative to the segment start; normally this means that the
segment alignment must be at least as large as that of the alignment directive to give the
desired result.

ALIGN aligns by inserting zero/filled bytes, up to a maximum of 255. The EVEN directive
aligns the program counter to an even address (which is equivalent to ALIGN 1) and the
oDD directive aligns the program location counter to an odd address. The byte value for
padding must be within the range O to 255.

Use ALIGNRAM to align the program location counter by incrementing it; no data is
generated. The expression can be within the range 0 to 30.

61

Segment control directives

62

R32C IAR Assembler
Reference Guide

EXAMPLES

Beginning an absolute segment

The following example places a boot loader stub in the internal ROM area and jumps to
main if the startup mode pin was high.

MODULE boot_load
PUBLIC Dboot_loader
EXTERN main

// locate the boot loader in the internal ROM memory area
ASEGN CODE32:CODE:ROQOT, 0x60000

boot_loader:

btst 1,0x3C0:16 ; test startup mode pin

jz ??start_load

mova main, al

jmpi.l a0 ; pin was high, jump to main

??start_load: ; pin was low, start loading

Beginning a relocatable segment

In the following example, the data following the first RSEG directive is placed in a
relocatable segment called table.

The code following the second RSEG directive is placed in a relocatable segment called
code:

EXTERN subrtn, divrtn

RSEG table
functable: ; place the external symbols in a table
DC32 subrtn, divrtn
RSEG code
PUBLIC main
main:
jsri.l functable ; call the two functions in functable
jsri.l functable+4
rts

Beginning a common segment

The following example defines two common segments containing variables:

NAME commonl
COMMON data

count DC32 1
ENDMOD

Assembler directives __¢

NAME common?2
COMMON data
up DS8 1
DS8 2
down DS8 1
END

Because the common segments have the same name, data, the variables up and down
refer to the same locations in memory as the first and last bytes of the 4-byte variable
count.

Aligning a segment

This example starts a relocatable segment, moves to an even address, and adds some
data. It then aligns to a 64-byte boundary, filling any intermediate space with 0xFF,
before creating a 64-byte table.

RSEG data ; start a relocatable segment

EVEN ; make sure the data is word-aligned
target DCl1l6 1
best DC1l6 1

ALIGN 6,0xFF ; Now align to a 64-byte boundary,
; padding with OxFF
results DS8 64 ; and create a 64 byte table

Value assignment directives

These directives are used for assigning values to symbols.

Directive Description

=, EQU Assigns a permanent value local to a module.
ASSIGN, SET, VAR Assigns a temporary value.
DEFINE Defines a file-wide value.

LIMIT Checks a value against limits.

Table 18: Value assignment directives

SYNTAX

label = expr

label ASSIGN expr

label DEFINE expr

label EQU expr

LIMIT expr, min, max, message

label SET expr

63

Value assignment directives

R32C IAR Assembler
64 Reference Guide

label VAR expr

PARAMETERS

expr Value assigned to symbol or value to be tested.

label Symbol to be defined.

message A text message that will be printed when expr is out of range.
min, max The minimum and maximum values allowed for expr.

DESCRIPTIONS

Defining a temporary value

Use ASSIGN, SET, or VAR to define a symbol that may be redefined, such as for use with
macro variables. Symbols defined with ASSIGN, SET, or VAR cannot be declared
PUBLIC.

Defining a permanent local value
Use EQU or = to assign a value to a symbol.

Use EQU or = to create a local symbol that denotes a number or offset. The symbol is
only valid in the module in which it was defined, but can be made available to other
modules with a PUBLIC directive (but not with a PUBWEAK directive).

Use EXTERN to import symbols from other modules.

Defining a permanent global value

Use DEFINE to define symbols that should be known to the module containing the
directive and all modules following that module in the same source file. If a DEFINE
directive is placed outside of a module, the symbol will be known to all modules
following the directive in the same source file.

A symbol which has been given a value with DEFINE can be made available to modules
in other files with the PUBLIC directive.

Symbols defined with DEFINE cannot be redefined within the same file.

Checking symbol values

Use LIMIT to check that expressions lie within a specified range. If the expression is
assigned a value outside the range, an error message will appear.

The check will occur as soon as the expression is resolved, which will be during linking
if the expression contains external references. The min and max expressions cannot

Assembler directives __¢

involve references to forward or external labels, that is they must be resolved when
encountered.

EXAMPLES

Redefining a symbol

The following example uses SET to redefine the symbol cons in a REPT loop to generate
a table of the first 8 powers of 3:

NAME table
; Generate table of powers of 3
cons SET 1

cr_tabl MACRO times

DC16 cons
cons SET cons*3

IF times>1

cr_tabl times-1

ENDIF

ENDM

RSEG CODE
table:

cr_tabl 4

END table

Using local and global symbols

In the following example the symbol value defined in module add12 is local to that
module; a distinct symbol of the same name is defined in module add20. The DEFINE
directive is used for declaring SRO for use anywhere in the file:

NAME addl

PUBLIC addl2
SRO DEFINE 0x400
value EQU 12

RSEG CODE
addl2:

ADD.W #value, SRO

RTS

ENDMOD

NAME add2

PUBLIC add20
value EQU 20

65

Conditional assembly directives

66

RSEG CODE
add20:

ADD.W #value, SRO

RTS

RETURN

END

The symbol SrR0 defined in module add12 is also available to module add20.

Using the LIMIT directive

The following example sets the value of a variable called speed and then checks it, at
assembly time, to see if it is in the range 10 to 30. This might be useful if speed is often
changed at compile time, but values outside a defined range would cause undesirable
behavior.

speed SET 23
LIMIT speed, 10,30, "Speed is out of range!"

Conditional assembly directives

R32C IAR Assembler
Reference Guide

These directives provide logical control over the selective assembly of source code. See
Expression restrictions, page 12, for a description of the restrictions that apply when
using a directive in an expression.

Directive Description Expression restrictions

ELSE Assembles instructions if a condition is false.

ELSEIF Specifies a new condition in an IF...ENDIF block. No forward references
No external references
Absolute
Fixed

ENDIF Ends an IF block.

IF Assembles instructions if a condition is true. No forward references

No external references
Absolute
Fixed

Table 19: Conditional assembly directives

SYNTAX

ELSE
ELSEIF condition
ENDIF

Assembler directives __¢

IF condition

PARAMETERS
condition One of the following:

An absolute expression The expression must not contain
forward or external references, and
any non-zero value is considered as
true.

stringl==string2 The condition is true if stringl and
string2 have the same length and
contents.

stringl!=string2 The condition is true if stringl and
string2 have different length or
contents.

DESCRIPTIONS

Use the IF, ELSE, and ENDIF directives to control the assembly process at assembly
time. If the condition following the IF directive is not true, the subsequent instructions
will not generate any code (that is, it will not be assembled or syntax checked) until an
ELSE or ENDIF directive is found.

Use ELSEIF to introduce a new condition after an IF directive. Conditional assembly
directives may be used anywhere in an assembly, but have their greatest use in
conjunction with macro processing.

All assembler directives (except for END) as well as the inclusion of files may be
disabled by the conditional directives. Each IF directive must be terminated by an
ENDIF directive. The ELSE directive is optional, and if used, it must be inside an
IF...ENDIF block. IF...ENDIF and IF...ELSE. . .ENDIF blocks may be nested to
any level.

EXAMPLES
The following macro adds a constant to a byte variable in memory:
addmac MACRO a,b ; a should be a general operand,
; b should be a literal
IF b=1
INC.W a
ELSE

ADD.W #b,a

67

Macro processing directives

ENDIF
ENDM

If the argument to the macro is 1, it generates an INC instruction; otherwise it generates
an ADD instruction.

It could be tested with the following program:

SRO DEFINE 0x400
SR1 DEFINE 0x402

RSEG CODE
main:

MOV.B #0x0F, SRO
addmac SRO, 0x12
addmac SR1, 1

RTS

END

Macro processing directives

These directives allow user macros to be defined. See Expression restrictions, page 12,
for a description of the restrictions that apply when using a directive in an expression.

Directive Description Expression restrictions

ENDM Ends a macro definition.

ENDR Ends a repeat structure.

EXITM Exits prematurely from a macro.

LOCAL Creates symbols local to a macro.

MACRO Defines a macro.

REPT Assembles instructions a specified number of times. No forward references
No external references
Absolute
Fixed

REPTC Repeats and substitutes characters.

REPTI Repeats and substitutes text.

Table 20: Macro processing directives

SYNTAX

ENDM
ENDR
EXITM

R32C IAR Assembler
68 Reference Guide

Assembler directives __¢

LOCAL symbol [,symboll]

name MACRO [argument] [,argument]
REPT expr

REPTC formal,actual

REPTI formal,actual [,actuall]

PARAMETERS

actual A string to be substituted.

argument A symbolic argument name.

expr An expression.

formal An argument into which each character of actual (REPTC) or each

actual (REPTT) is substituted.

name The name of the macro.
symbol A symbol to be local to the macro.
DESCRIPTIONS

A macro is a user-defined symbol that represents a block of one or more assembler
source lines. Once you have defined a macro you can use it in your program like an
assembler directive or assembler mnemonic.

When the assembler encounters a macro, it looks up the macro’s definition, and inserts
the lines that the macro represents as if they were included in the source file at that
position.

Macros perform simple text substitution effectively, and you can control what they
substitute by supplying parameters to them.

Defining a macro

You define a macro with the statement:

name MACRO [argument] [,argument]

Here name is the name you are going to use for the macro, and argument is an argument
for values that you want to pass to the macro when it is expanded.

For example, you could define a macro errmac as follows:

EXTERN abort
errmac MACRO text

MOVA $+9,A0

JMP abort

69

Macro processing directives

70

R32C IAR Assembler
Reference Guide

DC8 text
ENDM

This macro uses a parameter text to set up an error message for a routine abort. You
would call the macro with a statement such as:

errmac 'Disk not ready'
The assembler will expand this to:

JSR abort
DC8 'Disk not ready',O0

If you omit a list of one or more arguments, the arguments you supply when calling the
macro are called \1 to \9 and \A to \z.

The previous example could therefore be written as follows:

errmac MACRO

JSR abort
DC8 \1,0
ENDM

Use the EXITM directive to generate a premature exit from a macro.
EXITM is not allowed inside REPT...ENDR, REPTC...ENDR, Oor REPTI...ENDR blocks.

Use LOCAL to create symbols local to a macro. The LOCAL directive must be used before
the symbol is used.

Each time that a macro is expanded, new instances of local symbols are created by the
LocAL directive. Therefore, it is legal to use local symbols in recursive macros.

Note: It is illegal to redefine a macro.

Passing special characters

Macro arguments that include commas or white space can be forced to be interpreted as
one argument by using the matching quote characters < and > in the macro call.

For example:

macld MACRO op
MOV.L op
ENDM

The macro can be called using the macro quote characters:

macld <0x800, 0x900>
END

You can redefine the macro quote characters with the -M command line option; see -M,
page 28.

Assembler directives __¢

Predefined macro symbols

The symbol _args is set to the number of arguments passed to the macro. The following
example shows how _args can be used:

FILL MACRO

IF _args == 2
REPT \1
DC8 \2
ENDR
ELSE
DC8 \1
ENDIF
ENDM

RSEG CODE
FILL 3, 4
FILL 3

END

How macros are processed
There are three distinct phases in the macro process:

1 The assembler performs scanning and saving of macro definitions. The text between
MACRO and ENDM is saved but not syntax checked.

2 A macro call forces the assembler to invoke the macro processor (expander). The
macro expander switches (if not already in a macro) the assembler input stream
from a source file to the output from the macro expander. The macro expander takes
its input from the requested macro definition.

The macro expander has no knowledge of assembler symbols since it only deals with
text substitutions at source level. Before a line from the called macro definition is
handed over to the assembler, the expander scans the line for all occurrences of
symbolic macro arguments, and replaces them with their expansion arguments.

3 The expanded line is then processed as any other assembler source line. The input
stream to the assembler will continue to be the output from the macro processor,
until all lines of the current macro definition have been read.

Repeating statements

Use the REPT. . . ENDR structure to assemble the same block of instructions a number of
times. If expr evaluates to 0 nothing will be generated.

71

Macro processing directives

72

R32C IAR Assembler
Reference Guide

Use REPTC to assemble a block of instructions once for each character in a string. If the
string contains a comma it should be enclosed in quotation marks.

Only double quotes have a special meaning and their only use is to enclose the
characters to iterate over. Single quotes have no special meaning and are treated as any
ordinary character.

Use REPTI to assemble a block of instructions once for each string in a series of strings.
Strings containing commas should be enclosed in quotation marks.

EXAMPLES

This section gives examples of the different ways in which macros can make assembler
programming easier.

Coding inline for efficiency

In time-critical code it is often desirable to code routines inline to avoid the overhead of
a subroutine call and return. Macros provide a convenient way of doing this.

The following example outputs bytes from a buffer to a port:

NAME play
portb VAR 0x18

RSEG DATA
buffer DS 256

RSEG CODE

play MOVA buffer, A0
MOVA portb, Al
MOV.L #255,R7R5
SOUT.B
RTS
END

The main program calls this routine as follows:
doplay JSR play

For efficiency we can recode this using a macro:

NAME play
portb VAR 0x18

RSEG DATA
buffer DS 256

play MACRO
MOVA buffer, Al

Assembler directives __¢

MOVA portb, Al
MOV.L #255,R7R5
SOUT.B

ENDM

RSEG CODE
play
END

Using REPTC and REPTI

The following example assembles a series of calls to a subroutine plot to plot each
character in a string:

NAME reptc

EXTERN plotc
banner REPTC chr, "Welcome"

MOV.B #'chr',ROL ; Pass char in ROL as a parameter
JSR plotc

ENDR

END

The following example uses REPTT to clear a number of memory locations:

NAME repti
EXTERN base, count, init
banner REPTI adds, base, count, init

MOV.L #0, adds
ENDR

END

Listing control directives

These directives provide control over the assembler list file.

Directive Description
LSTCND Controls conditional assembly listing.
LSTCOD Controls multi-line code listing.

Table 21: Listing control directives

73

Listing control directives

74

R32C IAR Assembler
Reference Guide

Directive Description

LSTEXP Controls the listing of macro-generated lines.

LSTMAC Controls the listing of macro definitions.

LSTOUT Controls assembly-listing output.

LSTREP Controls the listing of lines generated by repeat directives.
LSTXRF Generates a cross-reference table.

Table 21: Listing control directives (Continued)

SYNTAX

LSTCND{+ |-}
LSTCOD{+|-}
LSTEXP{+|-}
LSTMAC{+|-}
LSTOUT{+|-}
LSTREP{+|-}
LSTXRF{+|-}

DESCRIPTIONS

Turning the listing on or off

Use LSTOUT- to disable all list output except error messages. This directive overrides
all other listing control directives.

The default is LsTouT+, which lists the output (if a list file was specified).

Listing conditional code and strings

Use LSTCND+ to force the assembler to list source code only for the parts of the assembly
that are not disabled by previous conditional IF statements.

The default setting is LSTCND-, which lists all source lines.

Use LSTCOD+ to list more than one line of code for a source line, if needed; that is, long
ASCII strings will produce several lines of output.

The default setting is LSTCOD-, which restricts the listing of output code to just the first
line of code for a source line.

Using the LSTCND and LSTCOD directives does not affect code generation.

Assembler directives __¢

Controlling the listing of macros

Use LSTEXP- to disable the listing of macro-generated lines. The default is LSTEXP+,
which lists all macro-generated lines.

Use LSTMAC+ to list macro definitions. The default is LsTMAC-, which disables the
listing of macro definitions.

Controlling the listing of generated lines

Use LSTREP- to turn off the listing of lines generated by the directives REPT, REPTC,
and REPTI.

The default is LSTREP+, which lists the generated lines.

Generating a cross-reference table

Use LSTXRF+ to generate a cross-reference table at the end of the assembler list for the
current module. The table shows values and line numbers, and the type of the symbol.

The default is LSTXRF-, which does not give a cross-reference table.
EXAMPLES

Turning the listing on or off
To disable the listing of a debugged section of program:

LSTOUT-
; Debugged section
LSTOUT+
; Not yet debugged

Listing conditional code and strings

The following example shows how LSTCND+ hides a call to a subroutine that is disabled
by an 1F directive:

NAME lstcndtst
EXTERN print

RSEG prom
debug SET 0
begin IF debug

JSR print

ENDIF

LSTCND+

75

C-style preprocessor directives

76

begin2 IF debug
JSR print
ENDIF
END

Controlling the listing of macros

The following example shows the effect of LSTMAC and LSTEXP:

dec2 MACRO arg
DEC.L arg
DEC.L arg
ENDM
LSTMAC-

inc2 MACRO arg
INC.L arg
INC.L arg
ENDM

EXTERN memlock

begin dec2 memlock
LSTEXP-
inc2 memlock
RTS
END begin

C-style preprocessor directives

R32C IAR Assembler
Reference Guide

The following C-language preprocessor directives are available:

Directive Description

#define Assigns a value to a preprocessor symbol.

#elif Introduces a new condition inan #1f. . .#endif block.
#else Assembles instructions if a condition is false.

#endif Ends an #if, #ifdef, or #ifndef block.

#error Generates an error.

#if Assembles instructions if a condition is true.

#ifdef Assembles instructions if a preprocessor symbol is defined.
#ifndef Assembles instructions if a preprocessor symbol is undefined.

Table 22: C-style preprocessor directives

Assembler directives __¢

Directive Description

#include Includes a file.

#line Changes the line numbers of the source code lines immediately
following the #1ine directive, or the filename of the file being
compiled.

#pragma Controls extension features. The supported #pragma directives are

described in the chapter Pragma directives.

#undef Undefines a preprocessor symbol.

Table 22: C-style preprocessor directives (Continued)

SYNTAX

#define symbol text

#elif condition

#else

#endif

#error "message"

#if condition

#ifdef symbol

#ifndef symbol

#include {"filename" | <filename>}

#undef symbol

PARAMETERS

condition An absolute expression The expression must not
contain any assembler labels or
symbols, and any non-zero
value is considered as true.

filename Name of file to be included.

message Text to be displayed.

symbol Preprocessor symbol to be defined,

undefined, or tested.

text Value to be assigned.

DESCRIPTIONS

It is important to avoid mixing the assembler language with the C-style preprocessor
directives. Conceptually, they are different languages and mixing them may lead to

77

C-style preprocessor directives

78

R32C IAR Assembler
Reference Guide

unexpected behavior because an assembler directive is not necessarily accepted as a part
of the C preprocessor language.

Note that the preprocessor directives are processed before other directives. As an
example avoid constructs like:

redef macro ; avoid the following
#define \1 \2
endm

because the \1 and \2 macro arguments will not be available during the preprocessing
phase.

Defining and undefining preprocessor symbols
Use #define to define a value of a preprocessor symbol.
#define symbol value

is similar to:

symbol ASSIGN value

Use #undef to undefine a symbol; the effect is as if it had not been defined.

Conditional preprocessor directives

Use the #if...#else...#endif directives to control the assembly process at assembly
time. If the condition following the #i £ directive is not true, the subsequent instructions
will not generate any code (that is, it will not be assembled or syntax checked) until a
#endif or #else directive is found.

All assembler directives (except for END) and file inclusion may be disabled by the
conditional directives. Each #i £ directive must be terminated by a #endif directive.
The #else directive is optional and, if used, it must be inside a #if...#endif block.

#if..#endif and #if...#else...#endif blocks may be nested to any level.

Use #ifdef to assemble instructions up to the next #else or #endif directive only if
a symbol is defined.

Use #ifndef to assemble instructions up to the next #else or #endi £ directive only if
a symbol is undefined.
Including source files

Use #include to insert the contents of a file into the source file at a specified point. The
filename can be specified within double quotes or within angle brackets.

Assembler directives __¢

Following is the full description of the assembler’s #include file search procedure:

o If the name of the #include file is an absolute path, that file is opened.

o When the assembler encounters the name of an #include file in angle brackets
such as:

#include <ior32cl2l.h>
it searches the following directories for the file to include:

1 The directories specified with the -I option, in the order that they were
specified.

2 The directories specified using the AR32C_INC environment variable, if any.

o When the assembler encounters the name of an #include file in double quotes
such as:

#include "vars.h"

it searches the directory of the source file in which the #include statement occurs,
and then performs the same sequence as for angle-bracketed filenames.

If there are nested #include files, the assembler starts searching the directory of the
file that was last included, iterating upwards for each included file, searching the
source file directory last.

Use angle brackets for header files provided with the R32C IAR Assembler, and double
quotes for header files that are part of your application.
Displaying errors

Use #error to force the assembler to generate an error, such as in a user-defined test.

Comments in C-style preprocessor directives
If you make a comment within a define statement, use:

e the C comment delimiters /* ... */ tocomment sections

o the C++ comment delimiter // to mark the rest of the line as comment.

Do not use assembler comments within a define statement as it leads to unexpected
behavior.

The following expression will evaluate to 3 because the comment character will be
preserved by #define:

#define x 3 ; comment
exp EQU x*8+5

79

C-style preprocessor directives

80

R32C IAR Assembler
Reference Guide

The following example illustrates some problems that might occur when assembler
comments are used in the C-style preprocessor:

#define five 5 ; this comment is not OK
#define six 6 // this comment is OK
#define seven 7 /* this comment is OK */

MOV.W #five,R5 ; syntax error!
; Expands to "MOV #5 ; this comment is not OK,R5"

MOV.W #six+seven, R6 ; OK
; Expanded to "MOV #6+7,R6"

EXAMPLES

Using conditional preprocessor directives

The following example defines the labels tweak and adjust. If adjust is defined, then
register A0 is decremented by an amount that depends on adjust, in this case 30.

#define tweak 1
#define adjust 3

#ifdef tweak
#if adjust==1
ADD.L #-4,A0
#elif adjust==2
ADD.L #-20,A0
#elif adjust==
ADD.L #-30,A0
#endif
#endif /* ifdef tweak */

Including a source file

The following example uses #include to include a file defining macros into the source
file. For example, the following macros could be defined in macros.s53:

; exchange a and b using c as temporary
xch MACRO a,b,c

MOV.W a,c

MOV.W b,a

MOV.W c,b

ENDM

Assembler directives __¢

The macro definitions can then be included, using #include, as in the following

example:

NAME include

SRO
SR1
SR2

DEFINE 0x400
DEFINE 0x402
DEFINE 0x404

; standard macro definitions

#include

; program

main:

"macros.s53"

xch SRO, SR1, SR2
RTS

END main

Data definition or allocation directives

These directives define values or reserve memory. See Expression restrictions, page 12,
for a description of the restrictions that apply when using a directive in an expression.

Directive

Description

DC8

DC16
DC24
DC32
DC64
DF32
DF64
DQ15
D31
DS8

DS16
DS24
DS32

Generates 8-bit constants, including strings.
Generates |6-bit constants.

Generates 24-bit constants.

Generates 32-bit constants.

Generates 64-bit constants.

Generates 32-bit floating-point constants.
Generates 64-bit floating-point constants.
Generates |6-bit fractional constants.
Generates 32-bit fractional constants.
Allocates space for 8-bit integers.
Allocates space for |6-bit integers.
Allocates space for 24-bit integers.

Allocates space for 32-bit integers.

Table 23: Data definition or allocation directives

81

Data definition or allocation directives

Directive Description

DS64 Allocates space for 64-bit integers.

Table 23: Data definition or allocation directives (Continued)

SYNTAX

DC8 expr [,expr]
DCl6 expr [,expr]
DC24 expr [,expr]
DC32 expr [,expr]
DC64 expr [,expr]
DF32 value [,value]
DF64 value [,value]
DQ15 value [,value]
DQ31 value [,value]
DS8 count

DS16 count

DS24 count

DS32 count

DS64 count

PARAMETERS

count A valid absolute expression specifying the number of elements to be
reserved.

expr A valid absolute, relocatable, or external expression, or an ASCII string.
ASCII strings will be zero filled to a multiple of the data size implied by
the directive. Double-quoted strings will be zero-terminated.”

value A valid absolute expression or floating-point constant.

*
For DC64, the expr cannot be relocatable or external.

DESCRIPTIONS

Use the data definition and allocation directives according to the following table; it
shows which directives reserve and initialize memory space or reserve uninitialized
memory space, and their size.

Size Reserve and initialize memory Reserve uninitialized memory

8-bit integers DC8 DS8

Table 24: Using data definition or allocation directives

R32C IAR Assembler
82 Reference Guide

Assembler directives __¢

Size Reserve and initialize memory Reserve uninitialized memory
16-bit integers DC16 DS16
24-bit integers DC24 DS24
32-bit integers DC32 DS32
64-bit integers DC64 DS64
32-bit floats DF32 DS32
64-bit floats DF64 DS64
1 6-bit fractionals DQ15 DS16
32-bit fractionals DQ31 DS32

Table 24: Using data definition or allocation directives (Continued)

EXAMPLES

Defining strings

To define a string:

myMsg DC8 'Please enter your name'

To define a string which includes a trailing zero:

myCstr DC8 "This is a string."

To include a single quote in a string, enter it twice; for example:

errMsg DC8 'Don''t understand!'

Reserving space
To reserve space for 0xa bytes:

table DS8 0xA

Assembler control directives

These directives provide control over the operation of the assembler. See Expression
restrictions, page 12, for a description of the restrictions that apply when using a
directive in an expression.

Directive Description Expression restrictions
/*comment*/ C-style comment delimiter.

// C++style comment delimiter.

CASEOFF Disables case sensitivity.

Table 25: Assembler control directives

83

Assembler control directives

Directive Description Expression restrictions
CASEON Enables case sensitivity.
RADIX Sets the default base on all numeric No forward references
values. No external references
Absolute
Fixed

Table 25: Assembler control directives (Continued)

SYNTAX

/*comment*/
// comment
CASEOFF
CASEON

RADIX expr

PARAMETERS

comment Comment ignored by the assembler.
expr Default base; default 10 (decimal).
DESCRIPTIONS

Use /*...*/ to comment sections of the assembler listing.
Use // to mark the rest of the line as comment.

Use RADIX to set the default base for constants. The default base is 10.

Controlling case sensitivity

Use CASEON or CASEOFF to turn on or off case sensitivity for user-defined symbols. By
default case sensitivity is on.

When CASEOFF is active all symbols are stored in upper case, and all symbols used by
XLINK should be written in upper case in the XLINK definition file.

R32C IAR Assembler
84 Reference Guide

Assembler directives __¢

EXAMPLES

Defining comments

The following example shows how /*. . .*/ can be used for a multi-line comment:
/ *

Program to read serial input.

Version 1: 19.2.07

Author: mjp
*/

See also, Comments in C-style preprocessor directives, page 79.

Changing the base
To set the default base to 16:

RADIX 16D
MOV.L #12,R2R0

The immediate argument will then be interpreted as the hexadecimal constant 12, that is
decimal 18.

To reset the base from 16 to 10 again, the argument must be written in hexadecimal
format, for example:

RADIX 0x0A

Controlling case sensitivity
When CASEOFF is set, label and LABEL are identical in the following example:

label NOP ; Stored as "LABEL"
JMP LABEL

; The following will generate a
; duplicate label error:

CASEOFF
label NOP
LABEL NOP ; Error, "LABEL" already defined

END

85

Call frame information directives

Call frame information directives

These directives allow backtrace information to be defined in the assembler source code.
The benefit is that you can view the call frame stack when you debug your assembler

86

R32C IAR Assembler

Reference Guide

code.

Directive

Description

CFI BASEADDRESS
CFI BLOCK

CFI CODEALIGN

CFI COMMON

CFI CONDITIONAL
CFI DATAALIGN

CFI ENDBLOCK

CFI ENDCOMMON
CFI ENDNAMES

CFI FRAMECELL

CFI FUNCTION

CFI INVALID

CFI NAMES

CFI NOFUNCTION
CFI PICKER

CFI REMEMBERSTATE
CFI RESOURCE

CFI RESOURCEPARTS
CFI RESTORESTATE
CFI RETURNADDRESS
CFI STACKFRAME
CFI STATICOVERLAYFRAME
CFI VALID

CFI VIRTUALRESOURCE
CFI cfa

CFI resource

Declares a base address CFA (Canonical Frame Address).
Starts a data block.

Declares code alignment.

Starts or extends a common block.

Declares data block to be a conditional thread.
Declares data alignment.

Ends a data block.

Ends a common block.

Ends a names block.

Creates a reference into the caller’s frame.
Declares a function associated with data block.
Starts range of invalid backtrace information.
Starts a names block.

Declares data block to not be associated with a function.
Declares data block to be a picker thread.
Remembers the backtrace information state.
Declares a resource.

Declares a composite resource.

Restores the saved backtrace information state.
Declares a return address column.

Declares a stack frame CFA.

Declares a static overlay frame CFA.

Ends range of invalid backtrace information.
Declares a virtual resource.

Declares the value of a CFA.

Declares the value of a resource.

Table 26: Call frame information directives

SYNTAX

The syntax definitions below show the syntax of each directive. The directives are
grouped according to usage.

Names block directives

CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI

NAMES name
ENDNAMES name

RESOURCE resource : bits [, resource : bits]
VIRTUALRESOURCE resource : bits [, resource

RESOURCEPARTS resource part, part [, part] ...

Assembler directives __¢

bits]

STACKFRAME cfa resource type [, cfa resource type]

STATICOVERLAYFRAME cfa segment [, cfa segment]

BASEADDRESS cfa type [, cfa typel

Extended names block directives

CFI
CFI
CFI

NAMES name EXTENDS namesblock

ENDNAMES name

FRAMECELL cell cfa(offset). size [, cell cfa (offset): size]

Common block directives

CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI
CFI

COMMON name USING namesblock
ENDCOMMON name

CODEALIGN codealignfactor
DATAALIGN dataalignfactor
RETURNADDRESS resource type
cfa { NOTUSED | USED }

cfa { resource | resource + constant \ resource - constant }

cfa cfiexpr

resource { UNDEFINED | SAMEVALUE | CONCAT }

resource { resource | FRAME (cfa, offset)

resource cfiexpr

Extended common block directives

}

CFI COMMON name EXTENDS commonblock USING namesblock

CFI

ENDCOMMON name

87

Call frame information directives

88

R32C IAR Assembler
Reference Guide

Data block directives

CFI BLOCK name USING commonblock

CFI ENDBLOCK name

CFI { NOFUNCTION | FUNCTION label }

CFI { INVALID | VALID }

CFI { REMEMBERSTATE | RESTORESTATE }

CFI PICKER

CFI CONDITIONAL label [, labell

CFI cfa { resource | resource + constant | resource - constant }

CFI cfa cfiexpr

CFI resource { UNDEFINED ‘ SAMEVALUE ‘ CONCAT }

CFI resource { resource | FRAME(cfa, offset) }

CFI resource cfiexpr

PARAMETERS
bits

cell

cfa

cfiexpr

codealignfactor

commonblock

constant

dataalignfactor

label

name

The size of the resource in bits.

The name of a frame cell.

The name of a CFA (canonical frame address).

A CFI expression (see CFI expressions, page 95).

The smallest factor of all instruction sizes. Each CFI directive for
a data block must be placed according to this alignment. 1 is the
default and can always be used, but a larger value will shrink the
produced backtrace information in size. The possible range is
1-256.

The name of a previously defined common block.

A constant value or an assembler expression that can be evaluated
to a constant value.

The smallest factor of all frame sizes. If the stack grows towards
higher addresses, the factor is negative; if it grows towards lower
addresses, the factor is positive. 1 is the default, but a larger value
will shrink the produced backtrace information in size. The
possible ranges are -256 to -1 and 1 to 256.

A function label.

The name of the block.

Assembler directives __¢

namesblock The name of a previously defined names block.
offset The offset relative the CFA. An integer with an optional sign.
part A part of a composite resource. The name of a previously

declared resource.

resource The name of a resource.

segment The name of a segment.

size The size of the frame cell in bytes.

type The memory type, such as CODE, CONST or DATA. In addition, any

of the memory types supported by the IAR XLINK Linker. It is
used solely for the purpose of denoting an address space.

DESCRIPTIONS

The call frame information directives (CFI directives) are an extension to the debugging
format of the IAR C-SPY® Debugger. The CFI directives are used for defining the
backtrace information for the instructions in a program. The compiler normally
generates this information, but for library functions and other code written purely in
assembler language, backtrace information has to be added if you want to use the call
frame stack in the debugger.

The backtrace information is used to keep track of the contents of resources, such as
registers or memory cells, in the assembler code. This information is used by the IAR
C-SPY Debugger to go “back” in the call stack and show the correct values of registers
or other resources before entering the function. In contrast with traditional approaches,
this permits the debugger to run at full speed until it reaches a breakpoint, stop at the
breakpoint, and retrieve backtrace information at that point in the program. The
information can then be used to compute the contents of the resources in any of the
calling functions—assuming they have call frame information as well.

Backtrace rows and columns

At each location in the program where it is possible for the debugger to break execution,
there is a backtrace row. Each backtrace row consists of a set of columns, where each
column represents an item that should be tracked. There are three kinds of columns:

o The resource columns keep track of where the original value of a resource can be
found.

® The canonical frame address columns (CFA columns) keep track of the top of the
function frames.

o The return address column keeps track of the location of the return address.

89

Call frame information directives

90

R32C IAR Assembler
Reference Guide

There is always exactly one return address column and usually only one CFA column,
although there may be more than one.

Defining a names block

A names block is used to declare the resources available for a processor. Inside the
names block, all resources that can be tracked are defined.

Start and end a names block with the directives:

CFI NAMES name
CFI ENDNAMES name

where name is the name of the block.
Only one names block can be open at a time.

Inside a names block, four different kinds of declarations may appear: a resource
declaration, a stack frame declaration, a static overlay frame declaration, or a base
address declaration:

o To declare a resource, use one of the directives:
CFI RESOURCE resource : bits
CFI VIRTUALRESOURCE resource : bits

The parameters are the name of the resource and the size of the resource in bits. A
virtual resource is a logical concept, in contrast to a “physical” resource such as a
processor register. Virtual resources are usually used for the return address.

More than one resource can be declared by separating them with commas.

A resource may also be a composite resource, made up of at least two parts. To
declare the composition of a composite resource, use the directive:

CFI RESOURCEPARTS resource part, part,

The parts are separated with commas. The resource and its parts must have been
previously declared as resources, as described above.

o To declare a stack frame CFA, use the directive:
CFI STACKFRAME cfa resource type

The parameters are the name of the stack frame CFA, the name of the associated
resource (the stack pointer), and the segment type (to get the address space). More
than one stack frame CFA can be declared by separating them with commas.
When going “back” in the call stack, the value of the stack frame CFA is copied into
the associated stack pointer resource to get a correct value for the previous function
frame.

o To declare a static overlay frame CFA, use the directive:

CFI STATICOVERLAYFRAME cfa segment

Assembler directives __¢

The parameters are the name of the CFA and the name of the segment where the static
overlay for the function is located. More than one static overlay frame CFA can be
declared by separating them with commas.

o To declare a base address CFA, use the directive:
CFI BASEADDRESS cfa type

The parameters are the name of the CFA and the segment type. More than one base
address CFA can be declared by separating them with commas.

A base address CFA is used to conveniently handle a CFA. In contrast to the stack
frame CFA, there is no associated stack pointer resource to restore.

Extending a names block

In some special cases you have to extend an existing names block with new resources.
This occurs whenever there are routines that manipulate call frames other than their
own, such as routines for handling, entering, and leaving C or C++ functions; these
routines manipulate the caller’s frame. Extended names blocks are normally used only
by compiler developers.

Extend an existing names block with the directive:
CFI NAMES name EXTENDS namesblock

where namesblock is the name of the existing names block and name is the name of
the new extended block. The extended block must end with the directive:

CFI ENDNAMES name

Defining a common block

The common block is used for declaring the initial contents of all tracked resources.
Normally, there is one common block for each calling convention used.

Start a common block with the directive:
CFI COMMON name USING namesblock

where name is the name of the new block and namesbIock is the name of a previously
defined names block.

Declare the return address column with the directive:
CFI RETURNADDRESS resource type

where resource is a resource defined in namesblock and type is the segment type.
You have to declare the return address column for the common block.

End a common block with the directive:

CFI ENDCOMMON name

91

Call frame information directives

92

R32C IAR Assembler
Reference Guide

where name is the name used to start the common block.

Inside a common block you can declare the initial value of a CFA or a resource by using
the directives listed last in Common block directives, page 87. For more information on
these directives, see Simple rules, page 93, and CF1I expressions, page 95.

Extending a common block

Since you can extend a names block with new resources, it is necessary to have a
mechanism for describing the initial values of these new resources. For this reason, it is
also possible to extend common blocks, effectively declaring the initial values of the
extra resources while including the declarations of another common block. Just as in the
case of extended names blocks, extended common blocks are normally only used by
compiler developers.

Extend an existing common block with the directive:
CFI COMMON name EXTENDS commonblock USING namesblock

where name is the name of the new extended block, commonblock is the name of the
existing common block, and namesblock is the name of a previously defined names
block. The extended block must end with the directive:

CFI ENDCOMMON name

Defining a data block

The data block contains the actual tracking information for one continuous piece of
code. No segment control directive may appear inside a data block.

Start a data block with the directive:
CFI BLOCK name USING commonblock

where name is the name of the new block and commonblock is the name of a previously
defined common block.

If the piece of code is part of a defined function, specify the name of the function with
the directive:

CFI FUNCTION label

where Iabel is the code label starting the function.

If the piece of code is not part of a function, specify this with the directive:
CFI NOFUNCTION

End a data block with the directive:

CFI ENDBLOCK name

Assembler directives __¢

where name is the name used to start the data block.

Inside a data block you may manipulate the values of the columns by using the directives
listed last in Data block directives, page 88. For more information on these directives,
see Simple rules, page 93, and CFI expressions, page 95.

SIMPLE RULES

To describe the tracking information for individual columns, there is a set of simple rules
with specialized syntax:

CFI cfa { NOTUSED | USED }
CFI cfa { resource | resource + constant | resource - constant }
CFI resource { UNDEFINED | SAMEVALUE | CONCAT }

CFI resource { resource | FRAME(cfa, offset) }

These simple rules can be used both in common blocks to describe the initial
information for resources and CFAs, and inside data blocks to describe changes to the
information for resources or CFAs.

In those rare cases where the descriptive power of the simple rules are not enough, a full
CFI expression can be used to describe the information (see CFI expressions, page 95).
However, whenever possible, you should always use a simple rule instead of a CFI
expression.

There are two different sets of simple rules: one for resources and one for CFAs.

Simple rules for resources

The rules for resources conceptually describe where to find a resource when going back
one call frame. For this reason, the item following the resource name in a CFI directive
is referred to as the /ocation of the resource.

To declare that a tracked resource is restored, that is, already correctly located, use
SAMEVALUE as the location. Conceptually, this declares that the resource does not have
to be restored since it already contains the correct value. For example, to declare that a
register REG is restored to the same value, use the directive:

CFI REG SAMEVALUE

To declare that a resource is not tracked, use UNDEFINED as location. Conceptually, this
declares that the resource does not have to be restored (when going back one call frame)
since it is not tracked. Usually it is only meaningful to use it to declare the initial location
of a resource. For example, to declare that REG is a scratch register and does not have to
be restored, use the directive:

CFI REG UNDEFINED

93

Call frame information directives

94

R32C IAR Assembler
Reference Guide

To declare that a resource is temporarily stored in another resource, use the resource
name as its location. For example, to declare that a register REG1 is temporarily located
in a register REG2 (and should be restored from that register), use the directive:

CFI REG1l REG2

To declare that a resource is currently located somewhere on the stack, use FRAME (cfa,
offset) as location for the resource, where cfa is the CFA identifier to use as “frame
pointer” and of fset is an offset relative the CFA. For example, to declare that a register
REG is located at offset -4 counting from the frame pointer CFA_SP, use the directive:

CFI REG FRAME (CFA_SP, -4)

For a composite resource there is one additional location, CONCAT, which declares that
the location of the resource can be found by concatenating the resource parts for the
composite resource. For example, consider a composite resource RET with resource
parts RETLO and RETHI. To declare that the value of RET can be found by investigating
and concatenating the resource parts, use the directive:

CFI RET CONCAT

This requires that at least one of the resource parts has a definition, using the rules
described above.

Simple rules for CFAs

In contrast with the rules for resources, the rules for CFAs describe the address of the
beginning of the call frame. The call frame often includes the return address pushed by
the subroutine calling instruction. The CFA rules describe how to compute the address
to the beginning of the current call frame. There are two different forms of CFAs, stack
frames and static overlay frames, each declared in the associated names block. See
Names block directives, page 87.

Each stack frame CFA is associated with a resource, such as the stack pointer. When
going back one call frame the associated resource is restored to the current CFA. For
stack frame CFAs there are two possible simple rules: an offset from a resource (not
necessarily the resource associated with the stack frame CFA) or NOTUSED.

To declare that a CFA is not used, and that the associated resource should be tracked as
anormal resource, use NOTUSED as the address of the CFA. For example, to declare that
the CFA with the name CFA_SP is not used in this code block, use the directive:

CFI CFA_SP NOTUSED

To declare that a CFA has an address that is offset relative the value of a resource, specify
the resource and the offset. For example, to declare that the CFA with the name CFA_sp
can be obtained by adding 4 to the value of the SP resource, use the directive:

CFI CFA_SP SP + 4

Assembler directives __¢

For static overlay frame CFAs, there are only two possible declarations inside common
and data blocks: USED and NOTUSED.

CFI EXPRESSIONS

Call frame information expressions (CFI expressions) can be used when the descriptive
power of the simple rules for resources and CFAs is not enough. However, you should
always use a simple rule when one is available.

CFI expressions consist of operands and operators. Only the operators described below
are allowed in a CFI expression. In most cases, they have an equivalent operator in the
regular assembler expressions.

In the operand descriptions, c£iexpr denotes one of the following:

o A CFI operator with operands
® A numeric constant

o A CFA name

® A resource name.

Unary operators

Overall syntax: OPERATOR (operand)

Operator Operand Description

COMPLEMENT cfiexpr Performs a bitwise NOT on a CFl expression.

LITERAL expr Get the value of the assembler expression. This can insert
the value of a regular assembler expression into a CFl
expression.

NOT cfiexpr Negates a logical CFl expression.

UMINUS cfiexpr Performs arithmetic negation on a CFl expression.

Table 27: Unary operators in CFI expressions

Binary operators

Overall syntax: OPERATOR (operandl, operand?2)

Operator Operands Description
ADD cfiexpr,cfiexpr Addition
AND cfiexpr,cfiexpr Bitwise AND
DIV cfiexpr,cfiexpr Division

EQ cfiexpr,cfiexpr Equal

Table 28: Binary operators in CFI expressions

95

Call frame information directives

96

R32C IAR Assembler
Reference Guide

Operator Operands Description

GE cfiexpr,cfiexpr Greater than or equal

GT cfiexpr,cfiexpr Greater than

LE cfiexpr,cfiexpr Less than or equal

LSHIFT cfiexpr,cfiexpr Logical shift left of the left operand. The number of
bits to shift is specified by the right operand. The sign
bit will not be preserved when shifting.

LT cfiexpr,cfiexpr Less than

MOD cfiexpr,cfiexpr Modulo

MUL cfiexpr,cfiexpr Multiplication

NE cfiexpr,cfiexpr Not equal

OR cfiexpr,cfiexpr Bitwise OR

RSHIFTA cfiexpr,cfiexpr Arithmetic shift right of the left operand. The number
of bits to shift is specified by the right operand. In
contrast with RSHIFTL the sign bit will be preserved
when shifting.

RSHIFTL cfiexpr,cfiexpr Logical shift right of the left operand. The number of
bits to shift is specified by the right operand. The sign
bit will not be preserved when shifting.

SUB cfiexpr,cfiexpr Subtraction

XOR cfiexpr,cfiexpr Bitwise XOR

Table 28: Binary operators in CFI expressions (Continued)

Ternary operators

Overall syntax: OPERATOR (operandl, operand2, operand3)

Operator Operands

Description

FRAME cfa,size,offset

Gets the value from a stack frame. The operands are:

cfa An identifier denoting a previously declared CFA.

size A constant expression denoting a size in bytes.

offset A constant expression denoting an offset in
bytes.

Gets the value at address cfa+offset of size size.

Table 29: Ternary operators in CFI expressions

Assembler directives __¢

Operator Operands Description

IF cond, true, false Conditional operator. The operands are:
cond A CFA expression denoting a condition.
true Any CFA expression.
false Any CFA expression.
If the conditional expression is non-zero, the result is the
value of the true expression; otherwise the result is the
value of the false expression.

LOAD size, type,addr Gets the value from memory. The operands are:
size A constant expression denoting a size in bytes.
type A memory type.
addr A CFA expression denoting a memory address.
Gets the value at address addr in segment type type of
size size.

Table 29: Ternary operators in CFI expressions (Continued)

EXAMPLE

The following is a generic example and not an example specific to the R32C/100
microcomputer. This will simplify the example and clarity the usage of the CFI
directives. A target-specific example can be obtained by generating assembler output
when compiling a C source file.

Consider a generic processor with a stack pointer Sp, and two registers RO and R1.
Register RO will be used as a scratch register (the register is destroyed by the function
call), whereas register R1 has to be restored after the function call. For reasons of
simplicity, all instructions, registers, and addresses will have a width of 16 bits.

Consider the following short code sample with the corresponding backtrace rows and
columns. At entry, assume that the stack contains a 16-bit return address. The stack
grows from high addresses towards zero. The CFA denotes the top of the call frame, that
is, the value of the stack pointer after returning from the function.

Address CFA SP RO RI RET Assembler code

0000 SP+2 — SAME CFA -2 funcl: PUSH R1
0002 SP+4 CFA - 4 MOV RL1, #4
0004 CALL func2
0006 POP RO
0008 SP+2 RO MOV RI1,RO
000A SAME RET

Table 30: Code sample with backtrace rows and columns

97

Call frame information directives

98

R32C IAR Assembler
Reference Guide

Each backtrace row describes the state of the tracked resources before the execution of
the instruction. As an example, for the MOV R1, RO instruction the original value of the
R1 register is located in the RO register and the top of the function frame (the CFA
column) is SP + 2. The backtrace row at address 0000 is the initial row and the result
of the calling convention used for the function.

The SP column is empty since the CFA is defined in terms of the stack pointer. The RET
column is the return address column—that is, the location of the return address. The RO
column has a ‘—’ in the first line to indicate that the value of RO is undefined and does
not need to be restored on exit from the function. The R1 column has SAME in the initial
row to indicate that the value of the R1 register will be restored to the same value it
already has.

Defining the names block
The names block for the small example above would be:

CFI NAMES trivialNames
CFI RESOURCE SP:16, R0O:16, R1l:16
CFI STACKFRAME CFA SP DATA

;; The virtual resource for the return address column
CFI VIRTUALRESOURCE RET:16
CFI ENDNAMES trivialNames

Defining the common block

The common block for the simple example above would be:

CFI COMMON trivialCommon USING trivialNames

CFI RETURNADDRESS RET DATA

CFI CFA SP + 2

CFI RO UNDEFINED

CFI R1 SAMEVALUE

CFI RET FRAME (CFA,-2) ; Offset -2 from top of frame
CFI ENDCOMMON trivialCommon

Note: sp may not be changed using a CFI directive since it is the resource associated
with CFA.

Defining the data block

Continuing the simple example, the data block would be:

RSEG CODE : CODE

CFI BLOCK funclblock USING trivialCommon
CFI FUNCTION funcl
funcl:

Assembler directives __¢

PUSH R1

CFI CFA SP + 4
CFI R1 FRAME (CFA, -4)
MOV R1, #4

CALL func2

POP RO

CFI R1 RO

CFI CFA SP + 2
MOV R1,RO

CFI R1 SAMEVALUE
RET

CFI ENDBLOCK funclblock

Note that the CFI directives are placed affer the instruction that affects the backtrace
information.

99

Call frame information directives

R32C IAR Assembler
100 Reference Guide

Pragma directives

This chapter describes the pragma directives of the R32C IAR Assembler.

The pragma directives control the behavior of the assembler, for example
whether it outputs warning messages. The pragma directives are

preprocessed, which means that macros are substituted in a pragma directive.

Summary of pragma directives

The following table shows the pragma directives of the assembler:

#pragma directive Description

#pragma diag_default Changes the severity level of diagnostic messages
#pragma diag_error Changes the severity level of diagnostic messages
#pragma diag_remark Changes the severity level of diagnostic messages
#pragma diag_suppress Suppresses diagnostic messages

#pragma diag_warning Changes the severity level of diagnostic messages
#pragma message Prints a message

Table 31: Pragma directives summary

Descriptions of pragma directives

#pragma diag_default

All pragma directives using = for value assignment should be entered like:
#pragma pragmaname=pragmavalue
or

#pragma pragmaname = pragmavalue

#pragma diag_default=tag, tag, ...

Changes the severity level back to default or as defined on the command line for the
diagnostic messages with the specified tags. For example:

#pragma diag _default=Pell?7

See the chapter Diagnostics for more information about diagnostic messages.

101

Descriptions of pragma directives

102

#pragma diag_error

#pragma diag_remark

#pragma diag_suppress

#pragma diag_warning

#pragma message

R32C IAR Assembler
Reference Guide

#pragma diag_error=tag, tag, ...
Changes the severity level to error for the specified diagnostics. For example:
#pragma diag_error=Pell?7

See the chapter Diagnostics for more information about diagnostic messages.

#pragma diag_remark=tag, tag, ...
Changes the severity level to remark for the specified diagnostics. For example:
#pragma diag_remark=Pel77

See the chapter Diagnostics for more information about diagnostic messages.

#pragma diag_suppress=tag, tag, ...
Suppresses the diagnostic messages with the specified tags. For example:
#pragma diag_suppress=Pell7,Pel77

See the chapter Diagnostics for more information about diagnostic messages.

#pragma diag_warning=tag, tag, ...
Changes the severity level to warning for the specified diagnostics. For example:
#pragma diag_warning=Pe826

See the chapter Diagnostics for more information about diagnostic messages.

#pragma message (string)

Makes the assembler print a message on stdout when the file is assembled. For
example:

#ifdef TESTING
#pragma message ("Testing")
#endif

Diagnostics

This chapter describes the format of the diagnostic messages and explains how
diagnostic messages are divided into different levels of severity.

Message format

All diagnostic messages are issued as complete, self-explanatory messages. A typical
diagnostic message from the assembler is produced in the form:

filename, linenumber levell[tag]: message

where filename is the name of the source file in which the error was encountered;
1inenumber is the line number at which the assembler detected the error; l1evel is the
level of seriousness of the diagnostic; tag is a unique tag that identifies the diagnostic
message; message is a self-explanatory message, possibly several lines long.

Diagnostic messages are displayed on the screen, as well as printed in the optional list
file. In the IAR Embedded Workbench IDE, diagnostic messages are displayed in the
Build messages window.

Severity levels

The diagnostics are divided into different levels of severity:

Remark

A diagnostic message that is produced when the assembler finds a source code construct
that can possibly lead to erroneous behavior in the generated code. Remarks are by
default not issued but can be enabled, see --remarks, page 32.

Warning

A diagnostic message that is produced when the assembler finds a programming error
or omission which is of concern but not so severe as to prevent the completion of
compilation. Warnings can be disabled by use of the command-line option
--no_warnings, see --no_warnings, page 29.

Error

A diagnostic message that is produced when the assembler has found a construct which
clearly violates the language rules, such that code cannot be produced. An error will
produce a non-zero exit code.

103

Severity levels

104

R32C IAR Assembler
Reference Guide

Fatal error

A diagnostic message that is produced when the assembler has found a condition that
not only prevents code generation, but which makes further processing of the source
code pointless. After the diagnostic has been issued, compilation terminates. A fatal
error will produce a non-zero exit code.

SETTING THE SEVERITY LEVEL

The diagnostic messages can be suppressed or the severity level can be changed for all
types of diagnostics except for fatal errors and some of the regular errors.

See Summary of assembler options, page 19, for a description of the assembler options
that are available for setting severity levels.

See the chapter Pragma directives, for a description of the pragma directives that are
available for setting severity levels.

INTERNAL ERROR

An internal error is a diagnostic message that signals that there has been a serious and
unexpected failure due to a fault in the assembler. It is produced using the following
form:

Internal error: message

where message is an explanatory message. If internal errors occur, they should be
reported to your software distributor or IAR Technical Support. Please include
information enough to reproduce the problem. This would typically include:

o The product name

o The version number of the assembler, which can be seen in the header of the list
files generated by the assembler

Your license number
The exact internal error message text

The source file of the program that generated the internal error

A list of the options that were used when the internal error occurred.

Index °

A DC8 . 81
DC16 81

absolute EXPreSSions ovv vt vt vt 12 DC24. o 81
absolute SegMentsSo vttt 60 DC32. i 81
ADD (CFI Operator) 95 DC64 81
address field, in assembler listfile 13 DEFINE. ... 63
ALIGN (assembler directive) 58 DE32 .o 81
alignment, of segments, 61 DF64 ..o 81
ALIGNRAM (assembler directive). 58 DQIS. .o 81
AND (assembler operator)ooueuernan.. 38 DQ3L..ovi 81
AND (CFI Operator) 95 DSS .. 81
architecture, R32C/100.oooooii. ix DSI6 ..o 81
_args (predefined macro symbol) 71 DS24 . 81
__AR32C__ (predefined symbol).................... 10 DS32 81
AR32C_INC (environment Varlable) 4 DS64 82
ASCII character constants.c.couvnennen.n.. 7 ELSE.....ooii 66
ASEG (assembler directive), 58 ELSEIF ... 66
ASEGN (assembler directive). 58 END. ..o 53
asm (filename extension)i.iu.n. 3 ENDIF. ... 66
ASMR32C (environment variable) 4 ENDM. ..o 68
assembler BLOCK (assembler directive) 56 ENDMODooii 53
assembler control directives 83 ENDR ... 68
assembler diagnosticso 103 EQU....oovviii 63
assembler dlreCtheS EVEN 59
ALIGN.t 58 EXITM ..o 68
ALIGNRAM 58 IF .. 66
ASEG. ..\ 58 LIBRARY ... 53
ASEGN . . o oo 58 LIMIT ... e 63
assembler controlo oo oo 83 listfilecontrol, 73
ASSIGN.t 63 LOCAL ... 68
call frame information 86 LSTCND ..o 73
CASEOFF . . . o o oo 83 LSTCOD e 73
CASEON . . o oo oo 84 LSTEXP e 74
CEIdirectives.o ve et 86 LSTMAC. ..o 74
COMMON. . . o oo 58 LSTOUT e 74
conditional assembly 66 LSTREP. ... 74
See also C-style preprocessor directives LSTXRE ..ot 74
Cstyle PIEPrOCEsSOr .+ v v v oo 76 MACRO. . ..ottt 68
data definition or allocation 81 MACTO PrOCESSING . - ..ot 68

105

106

modulecontrol. 52
NAME . .. e 53
ODD .. 59
ORG ... 59
PROGRAM i 53
PUBLIC. ... e 56
PUBWEAK i 56
RADIX ... 84
REPT . ..o 68
REPTC. e e 68
REPTI e 68
REQUIRE i 56
RSEG. ..o 59
RTMODEL 53
segmentcontrol Lol 58
SET .o 63
SUMMATY « o v v e vttt ettt e e et eeenes 49
SYMBOL 56
symbolcontrol 56
value assignment, 63
VAR. .o 63
#define........ 76
Helif .o 76
HelSe. v 76
#endif. 76
HOITOT . o v ettt e 76
HE 76
#ifdef. 76
#ifndef 76
#include.......... 77
HNe. ... 77
HPragma.ii e 77,101
#undef 77
S 83
I e 83
A 63
assembler environment variables 4
assembler EXTERN (assembler directive) 56

R32C IAR Assembler
Reference Guide

assembler IMPORT (assembler directive). 56
assembler instructions. 5
assemblerlabels i L 8
formatof 5
assembler list files
addressfield. L L, 13
COMIMENES. . . ettt et et et e e e e 84
conditional code and strings. 74
cross-references, generating. 27,75
datafield L 13
disabling 74
enabling....... ... i 74
filename, specifying. 27
generated lines, controlling 75
macro-generated lines, controlling. 75
symbol and cross-reference table. 14
assembler macros
arguments, passing to.ottt 71
defining i 69
generated lines, controlling in listfile 75
in-lineroutines. 72
predefined symbol L 71
PrOCESSING . v vttt ettt et 71
quote characters, specifying. 28
special characters, using. 70
assembler object file
specifying filename 29
assembler Operators 33
AND o 38
BINAND ..ottt e 38
BINNOT ..ot e 38
BINOR. 39
BINXORo 39
BYTEL. ... 39
BYTE2. ... 39
BYTE3. ..o 40
BYTE4. ..o 40
DATE. . .ottt e 40
EQ . 40

Index °

GE ... 41 DN 41
GT .o 41 D N 41
HIGH. i 41 > 45
HWRD. 41 38
1N EXPIESSIONS. .« « v v vttt ettt e 6 PP 39
LE . 42 b 39
LOW 42 e 43
LT e 42 S PP 38
LWRD 42 assembler options

MOD ... 43 passingtoassembler L., 3
NE .o 43 specifying parametersc.....i.i... 18
NOT . .o e 43 SUMMATY « + v v v tete e et e et ee e e e ee s 19
OR . 43 typographic convention xi
precedence. e 33 D 21
SEB .t 44 S PP 26
SEE . o 44 PP 27
SHL . .o 45 PP 27
SHR . ..o 45 M 28
SIZEOF . . . oo 45 S0 e e 29
UGT. .ot e 46 PP 31
ULT ..o 46 --case_insensitive. L. 20
UPPER. 46 ——debug. L. 22
XOR 47 --dependencies. 22
D e 43 --diagnostics_tables o .. 25
o e 43 ——diag erIror . .. v 24
DO . e 43 -~diag_remark 24
2 38 --diag_SUPPIESS . .o v ot 24
Q& oo 38 -—diag_Warning. 24
O e e 36 —dir first 25
e 36 —double 25
e e 36-37 --enable_multibytes L .. 26
e e e 37 —error_limit.t 26
L e 37 --header_context 26
et e e e 42 —mnem_first 29
L et e 45 --no_path_in_file_macros 29
Qo e e 42 SNO_WAITNES « o . ovvte e ettt e e e e e 29
> 43 --no_wrap_diagnostics.ol 29
P 40 —only_stdout 30
S 40 -preinclude 30

107

108

SSPIEPIOCESS « « v v v et et et et e e 30
STeMATKS . .o e 32
—silent L 32
--warnings_affect_exit_code 4,32
--WaIniNgS_are_EITorS «.vv v vvvenenenenen... 32
assembler output, including debug information 22,31
assembler OVERLAY (assembler directive)............ 56
assembler source files, including 78
assembler source format, 5
assembler subversionnumber. 11
assembler symbols L i 8
EXPOTING « o vt ettt e e 57
IMPOTHING . . .ottt 57
in relocatable expressions 12
local. 65
predefined 10
redefining. 65
ASSIGN (assembler directive) 63
assumptions (programming experience) ix
backtrace information, defining 86
BINAND (assembler operator) 38
BINNOT (assembler operator) 38
BINOR (assembler operator) 39
BINXOR (assembler operator)ouuun.. 39
BLOCK (assembler directive). 56
__BUILD_NUMBER___ (predefined symbol) 10
BYTEI (assembler operator) 39
BYTE2 (assembler operator) 39
BYTES3 (assembler operator) 40
BYTE4 (assembler operator) 40
call frame information directives 86
case sensitivity, controlling. 20, 84
CASEOFF (assembler directive). 83

R32C IAR Assembler
Reference Guide

CASEON (assembler directive) 84

--case_insensitive (assembler option) 20
CFIdirectives it 86
CFILexpressionscuoeuenenenennenenenenen.. 95
CFLOPeratorsuuuenenen e 95
character constants, ASCII 7
code models

identifying (_ CODE_MODEL_) 10

specifying on command line (--code_model). 21
_ CODE_MODEL__ (predefined symbol). 10
--code_model (assembler option) 21
command line options

part of invocation Syntaxc.c.ono... 2

PASSING. . ot it 3
command line, extending 26
comments

inassembler listfile......... 84

in assembler sourcecode 5

multi-line, using with assembler directives 85
comments, in C-style preprocessor directives 79
COMMON SEZMENTS .« . v vt ev et et e eee e 61
COMMON (assembler directive) 58
compiler, invocation SYNtaxc.... 2
COMPLEMENT (CFloperator).coovuu.... 95
computer style, typographic convention xi
conditional assembly directives 66

See also C-style preprocessor directives
conditional code and strings, listing 74
constants, defaultbaseof 84
CONSLANTS, INLEZET .« . o v vttt e e e e et eeeeen 6
conventions, typographic xi
CRC, inassemblerlistfile 14
cross-references, in assembler listfile. 27,75
C-style preprocessor directivescoeuenn.. 76
-D (assembleroption) i 21
data allocation directives. 81

data definition directives. 81
data field, in assembler listfile 13
--data_model (assembler option). 22
_ DATA_MODEL__ (predefined symbol)............. 11
_ DATE__ (predefined symbol)..................... 11
DATE (assembler operator).covuenennenenen.. 40
DCS8 (assembler directive).t 81
DCI16 (assembler directive).coviinn.. 81
DC24 (assembler directive)., 81
DC32 (assembler directive)., 81
DC64 (assembler directive)., 81
--debug (assembleroption) 22
debug information, including in assembler output22, 31
default base, forconstants. 84
#define (assembler directive) 76
DEFINE (assembler directive) 63
--dependencies (assembler option) 22
DF32 (assembler directive). 81
DF64 (assembler directive). 81
diagnostic MeSSAZES . . .« oot e 103

classifying aserrors 24

classifyingasremarks 24

classifying as warnings 24

disabling warnings. 29

disabling wrappingof 29

enablingremarks oL 32

listingall 0 i, 25

SUPPIESSING . vttt et it e 24
--diagnostics_tables (assembler option) 25
diag_default (#pragma directive) 101
--diag_error (assembler option). 24
diag_error (#pragma directive), .. 102
--diag_remark (assembler option). 24
diag_remark (#pragma directive) 102
--diag_suppress (assembler option). 24
diag_suppress (#pragma directive) 102
--diag_warning (assembler option) 24
diag_warning (#pragma directive) 102

directives. See assembler directives

Index °

--dir_first (assembler option) 25
DIV (CFLOPerator) vovee e eeeaene 95
document CoONVentions.uuurernnennnnnn.. xi
_ DOUBLE__ (predefined symbol).................. 11
--double (assembleroption) 25
DQI15 (assembler directive) 81
DQ31 (assembler directive) 81
DSB8 (assembler directive). 81
DS16 (assembler directive). 81
DS24 (assembler directive). 81
DS32 (assembler directive). 81
DS64 (assembler directive). 82
efficient coding techniques 14
#elif (assembler directive).t 76
#else (assembler directive) 76
ELSE (assembler directive). 66
ELSEIF (assembler directive). 66
--enable_multibytes (assembler option) 26
END (assembler directive) 53
#endif (assembler directive) 76
ENDIF (assembler directive) 66
ENDM (assembler directive) 68
ENDMOD (assembler directive). 53
ENDR (assembler directive) 68
environment variables
AR32C_INC ... 4
ASMR32C. ... 4
assembler. 4
EQ (assembler operator).vuvunenenn.. 40
EQ (CFLoperator).vvvue e eeeaannn 95
EQU (assembler directive)coovu.... 63
#error (assembler directive) 76
CITOT MESSAZES « - ¢ v e et et et e e et eeeeenn 103
classifyingooitin i 24
#error, using todisplay. L. 79
--error_limit (assembler option) 26

109

110

EVEN (assembler directive) 59

EXITM (assembler directive) 68
experience, programmingc.euenenenaenen.. ix
EXPIESSIONS & . o v v ettt et et e e 6
expressions. See assembler expressions
extended command line file (extend.xcl). 26
EXTERN (assembler directive). 56
-f (assembler option).o i 26
false value, in assembler expressions 8
fatal error messagesiiiiiii e 104
__FILE__ (predefined symbol). 11
file dependencies, tracking 22
file extensions. See filename extensions
file types
assembler SOUICe vt v 3
extended commandline......................... 26
#include, specifyingpath........................ 27
filename extensions
ASTIL ettt et e e 3
00T 3
803 3
XCl o 26
filenames, specifying for assembler output............. 29
filename, of objectfile 29
floating-point constants., 7
formats, assembler source code. 5
fractionsttt 8
FRAME (CFLoperator).covveienenennnnennn.. 96
GE (assembler operator)t 41
GE (CFLoperator). ovvvnee e 96
global value, defining 64
GlOSSATY. o\ttt ix
GT (assembler operator)ovuenenenennnn. 41

R32C IAR Assembler
Reference Guide

GT (CFLOperator). vv v e eaene 96
header files, SFR. L. 14
--header_context (assembler option). 26
HIGH (assembler operator).ocvvuennn.. 41
HWRD (assembler operator) 41
-I (assembler option). 27
IAR Systems Technical Support.................... 104
_ IAR_SYSTEMS_ASM__ (predefined symbol) 11
#if (assembler directive) i 76
IF (assembler directive)cvvuvrennnnn. 66
IF (CFLOperator).vovu vt eeieeaens 97
#ifdef (assembler directive)., 76
#ifndef (assembler directive). 76
immediate operands, specifying 15
#immex (operand encoding format) 15
IMPORT (assembler directive) 56
#include files, specifying 27
#include (assembler directive) 77
include paths, specifying. 27
instruction set, R32C/100 ix
INteger CONStANtSo vt v ettt 6
internal error. 104
INVOCALION SYNEAX « . vt v ettt e et eaene 2
in-line coding, using macros. 72
-1 (assembleroption). i 27
labels. See assembler labels

LE (assembler operator)vuvuninenenan.. 42
LE (CFLoperator)couunen .. 96
library modules.t 54
LIBRARY (assembler directive). 53

Index °

LIMIT (assembler directive). 63 --mnem_first (assembler option). 29
__LINE__ (predefined symbol) 11 MOD (assembler Operator)veenenenn.. 43
#line (assembler directive) 77 MOD (CFLOpPerator). vvvee e eeeeeeeeeeaennn 96
listfileformat......... ... i, 13 module ConsiStency.cvvit i 55
body. ... 13 module control directives 52
CRC. .. 14 MODULE (assembler directive) 53
header 13 modules
symbol and cross reference assembling multi-modules files 54
listing control directives 73 terminating.v it e 54
LITERAL (CFLoperator)cuovuerennenenen.. 95 msa (filename extension) 3
LOAD (CFLoperator)ocueieneeaenenen.. 97 MUL (CFLOpPerator) vvvee e eieeeeeeeeaennn 96
local value, defining, 64 multibyte character support. 26
LOCAL (assembler directive). 68
location counter. See program location counter N
LOW (assembler operator)c..c.ouvuvene... 42
LSHIFT (CFloperator). 96 NAME (assembler directive). 53
LSTCND (assembler directive). 73 NE (assembler Operator)ooueuenennnn.. 43
LSTCOD (assembler directive). 73 NE (CFL OPErator).o v oeee e 926
LSTEXP (assembler directives) 74 NOT (assembler Operator).oueueenenn.. 43
LSTMAC (assembler directive) 74 NOT (CFI OPErator)voeeeee e 95
LSTOUT (assembler directive). 74 --no_path_in_file_macros (assembler option). 29
LSTREP (assembler directive) 74 --no_warnings (assembler option). 29
LSTXRF (assembler directive) 74 --no_wrap_diagnostics (assembler option) 29
LT (assembler operator)c..c.uueueunenen.. 42
LT (CFLOperator) . . . «.vvvvne e e e eeeeeene 96
LWRD (assembler operator)oueueenen.. 42 o
-0 (assembleroption), 29
M ODD (assembler directive)o, 59
--only_stdout (assembler option) 30
-M (assembler option). 28 operands
macro processing directives 68 FOrMAt OF - o v o oo oo e e 5
macro quote characters. 70 IMMEdiate . .. oo oo 15
specifying ... 28 in assembler expressions 6
MACRO (assembler directive) 68 operations, formatof. 5
macros. See assembler macros operation, silent L i 32
memory space, reserving and initializing 82 operators. See assembler operators
Memory, reserving space in. 81 OPLiON SUMMATY . o\ vttt vttt e e e e eeeaenen 19
message (#pragma directive). ...l 102 OR (assembler operator).c.oouvuvunenenen.. 43
messages, excluding from standard output stream 32 OR (CFLOperator).ouuueinneneaeennn.n 96

112

ORG (assembler directive) 59

OVERLAY (assembler directive) 56
parameters
specifying 18
typographic conventionc........ xi
PLC. See program location counter
#pragma (assembler directive) 77,101
precedence, of assembler operators. 33
predefined register symbols 9
predefined symbols. i 10
in assemblermacros. 71
_AR32C . 10
_ BUILD NUMBER__ 10
_CODE_MODEL__coiiiiiiiiin... 10
_DATA MODEL__.........., 11
DATE 11
_DOUBLE__........ ...t 11
_FILE ... 11
_IAR SYSTEMS_ASM__ 11
_LINE .o 11
_SUBVERSION__ 11
TIME ... 11
_VER ... 11
--preinclude (assembler option) 30
--preprocess (assembler option) 30
preprocessor symbols
defining and undefining 78
defining on command line 21
prerequisites (programming exXperience). ix
program counter. See program location counter
program location counter (PLC) 8
SEUHNG &« vttt e 61
program modules, beginning. 54
PROGRAM (assembler directive). 53
programming experience, required ix
programming hints L o ... 14

R32C IAR Assembler
Reference Guide

PUBLIC (assembler directive) 56
PUBWEAK (assembler directive). 56
-r (assembler option). 31
RADIX (assembler directive) 84
reference information, typographic convention. xi
registered trademarks, ii
TEISTEIS . o vttt ittt et e e e 9
relocatable expressions 12
relocatable segments, beginning 60
remark (diagnostic message).o, 103
classifyingoviii i 24
enabling. 32
--remarks (assembler option) 32
repeating statements 71
REPT (assembler directive) 68
REPTC (assembler directive) 68
REPTI (assembler directive).covuvn.... 68
REQUIRE (assembler directive). 56
RSEG (assembler directive) 59
RSHIFTA (CFIoperator)ovuvuninenenan.. 96
RSHIFTL (CFILoperator)ouvuiinenennn.. 96
RTMODEL (assembler directive) 53
rules, in CFl directives, 93
runtime model attributes, declaring. 55
R32C/100 architecture and instruction set ix
segment control directives. 58
segments
absoluteo 60
aligning 61
common, beginningouuiiii .. 61
relocatable 60
SET (assembler directive).ccoou... 63

severity level, of diagnostic messages. 103

specifying 104
SFB (assembler operator)c.cueuenen.. 44
SFE (assembler operator)c.c.vuenenna.. 44
SFR. See special function registers
SHL (assembler operator).coeueuenennn.. 45
SHR (assembler operator).c.covuenen.n.. 45
--silent (assembler option) 32
silent operation, specifying............ 32
simple rules, in CFl directives. 93
SIZEOF (assembler operator)c.c.ouvunn.. 45
source files

including o 78

listallreferred 26
source format, assembler 5
special function registers. 14
standard error 30
standard output stream, disabling messagesto 32
standard output, specifying. 30
statements, TePeating.ottt 71
SEACIT. v ottt e 30
SEAOUL .ot 30
SUB (CFIoperator)c.ouuuiieeneneenenn.. 96
__SUBVERSION__ (predefined symbol). 11
Support, Technical 104

symbol and cross-reference table, in assembler list file. . . . 14
See also Include cross-reference

symbol control directives 56
symbol values, checking. 64
SYMBOL (assembler directive) 56
symbols

See also assembler symbols

exporting to other modules. 57

predefined, in assembler 10

predefined, in assembler macro 71

user-defined, case sensitive 20
SYNtAX CONVENLIONS &« .+ . vt vvv e et e e e e eeaeannn xi
s53 (filename extension)oiutiinn... 3

Index °

T

Technical Support, AR Systems 104
temporary values, defining 64
terminology.t ix
__TIME__ (predefined symbol) 11
time-criticalcode il 72
trademarks ii
true value, in assembler expressions 8
typographic conventionsc..oueiuenenn.n.. xi
UGT (assembler operator)c.cueuen.. 46
ULT (assembler operator)o.venenenenn.. 46
UMINUS (CFILoperator). ovovenenennnenen.. 95
#undef (assembler directive). 77
UPPER (assembler operator) 46
user symbols, case sensitive 20
value assignment directives. 63
values, defining. i 81
VAR (assembler directive) 63
__VER__ (predefined symbol)...................... 11
version, of assembler 11
WATDINEZS « ¢ o v ov ettt e e e e 103

classifying 24

disabling 29

eXitcode. . ..ot 32

treating as @ITOTS . ..ot vttt et ettt e eaen 32
--warnings_affect_exit_code (assembler option). 4,32
--warnings_are_errors (assembler option). 32

113

114

X

xcl (filename extension)cooivnin.. 26
XOR (assembler operator)c..o.iiein... 47
XOR (CFLOperator)vvveneneeeeeeeenenn. 96

Symbols

! (assembler operator). 43
I=(assembler operator)., 43
#define (assembler directive) 76
#elif (assembler directive). 76
#else (assembler directive) 76
#endif (assembler directive) 76
#error (assembler directive) 76
#if (assembler directive) 76
#ifdef (assembler directive). 76
#ifndef (assembler directive). 76
#immex (operand encoding format) 15
#include files, specifying 27
#include (assembler directive) 77
#line (assembler directive) 77
#pragma (assembler directive) 77,101
#undef (assembler directive). 77
$ (program location counter).iiai.... 8
% (assembler Operator). 43
& (assembler Operator)o vt 38
&& (assembler operator) 38
() (assembler Operator)vuveen e 36
* (assembler Operator) 36
+ (assembler operator) 36-37
- (assembler Operator) 37
-D (assembler option) 21
-f (assembler option). il 26
-I (assembler option).t 27
-1 (assembleroption). il 27
-M (assembler option). 28
-0 (assembler option)l 29
-r (assembler option). 31

R32C IAR Assembler
Reference Guide

--case_insensitive (assembler option) 20
--code_model (assembler option) 21
--data_model (assembler option). 22
--debug (assembler option) 22
--dependencies (assembler option) 22
--diagnostics_tables (assembler option) 25
--diag_error (assembler option). 24
--diag_remark (assembler option). 24
--diag_suppress (assembler option). 24
--diag_warning (assembler option) 24
--dir_first (assembler option) 25
--double (assembleroption) 25
--enable_multibytes (assembler option) 26
--error_limit (assembler option) 26
--header_context (assembler option). 26
--mnem_first (assembler option). 29
--no_path_in_file_macros (assembler option). 29
--no_warnings (assembler option). 29
--no_wrap_diagnostics (assembler option) 29
--only_stdout (assembler option) 30
--preinclude (assembler option) 30
--preprocess (assembler option) 30
--remarks (assembler option) 32
--silent (assembler option), 32
--warnings_affect_exit_code (assembler option). 4,32
--warnings_are_errors (assembler option). 32
/ (assembler Operator)iii i 37
/*...%/ (assembler directive). i 83
// (assembler directive), 83
< (assembler Operator)ouiiiiienenan.. 42
<< (assembler Operator)ouvinenenan.. 45
<= (assembler Operator)ouuinenenan.. 42
<> (assembler Operator)oueuiinenenan.. 43
= (assemblerdirective), 63
= (assembler Operator)ouiiiiienenan.. 40
== (assembler Operator)uiienienan.. 40
> (assembler Operator)ouiiiinneenan.. 41
>= (assembler Operator)iuiinienan.. 41
>> (assembler Operator)ouitiiinnean.. 45

Index °

?7: (assembler Operator) 38
A (assembler Operator). v it 39
_args (predefined macro symbol) 71
__AR32C__ (predefined symbol).................... 10
_ BUILD_NUMBER___ (predefined symbol) 10
_ CODE_MODEL__ (predefined symbol). 10
_ DATA_MODEL__ (predefined symbol)............. 11
_ DATE__ (predefined symbol)..................... 11
_ DOUBLE__ (predefined symbol).................. 11
__FILE__ (predefined symbol). 11
_ TAR_SYSTEMS_ASM__ (predefined symbol) 11
__LINE__ (predefined symbol) 11
__SUBVERSION__ (predefined symbol). 11
__TIME__ (predefined symbol) 11
__VER__ (predefined symbol)...................... 11
| (assembler operator) i 39
Il (assembler operator).c..coiiii . 43
~ (assembler operator) 38

115

	Contents
	Preface
	Who should read this guide
	How to use this guide
	What this guide contains
	Other documentation
	Document conventions

	Introduction to the R32C IAR Assembler
	Introduction to assembler programming
	Getting started

	Modular programming
	External interface details
	Assembler invocation syntax
	Passing options
	Environment variables
	Error return codes

	Source format
	Assembler instructions
	Expressions, operands, and operators
	Integer constants
	ASCII character constants
	Floating-point constants
	TRUE and FALSE
	Symbols
	Labels
	Program location counter (PLC)

	Register symbols
	Predefined symbols
	Including symbol values in code
	Testing symbols for conditional assembly

	Absolute and relocatable expressions
	Expression restrictions
	No forward
	No external
	Absolute
	Fixed

	List file format
	Header
	Body
	Summary
	Symbol and cross-reference table

	Programming hints
	Accessing special function registers
	Using C-style preprocessor directives
	Specifying immediate operands

	Assembler options
	Setting assembler options
	Specifying parameters

	Summary of assembler options
	Description of assembler options
	--case_insensitive
	--code_model
	-D
	--data_model
	--debug, -r
	--dependencies
	--diag_error
	--diag_remark
	--diag_suppress
	--diag_warning
	--diagnostics_tables
	--dir_first
	--double
	--enable_multibytes
	--error_limit
	-f
	--header_context
	-I
	-l
	-M
	--mnem_first
	--no_path_in_file_macros
	--no_warnings
	--no_wrap_diagnostics
	-o
	--only_stdout
	--preinclude
	--preprocess
	-r, --debug
	--remarks
	--silent
	--warnings_affect_exit_code
	--warnings_are_errors

	Assembler operators
	Precedence of operators
	Summary of assembler operators
	Parenthesis operator - 1
	Function operators - 2
	Unary operators - 3
	Multiplicative arithmetic operators - 4
	Additive arithmetic operators - 5
	Shift operators - 6
	Comparison operators - 7
	Equivalence operators - 8
	Logical operators - 9-14
	Conditional operator - 15

	Description of assembler operators
	()
	*
	+
	+
	-
	-
	/
	?:
	Syntax

	AND [&&]
	BINAND [&]
	BINNOT [~]
	BINOR [|]
	BINXOR [^]
	BYTE1
	BYTE2
	BYTE3
	BYTE4
	DATE
	EQ [=] [==]
	GE [>=]
	GT [>]
	HIGH
	HWRD
	LE [<=]
	LOW
	LT [<]
	LWRD
	MOD [%]
	NE [<>] [!=]
	NOT [!]
	OR [||]
	SFB
	Syntax
	Parameters

	SFE
	Syntax
	Parameters

	SHL [<<]
	SHR [>>]
	SIZEOF
	Syntax
	Parameters

	UGT
	ULT
	UPPER
	XOR

	Assembler directives
	Summary of assembler directives
	Module control directives
	Syntax
	Parameters
	Descriptions
	Beginning a program module
	Beginning a library module
	Terminating a module
	Terminating the source file
	Assembling multi-module files
	Declaring runtime model attributes

	Symbol control directives
	Syntax
	Parameters
	Descriptions
	Exporting symbols to other modules
	Exporting symbols with multiple definitions to other modules
	Importing symbols
	Referring to scoped C/C++ symbols

	Examples

	Segment control directives
	Syntax
	Parameters
	Descriptions
	Beginning an absolute segment
	Beginning a named absolute segment
	Beginning a relocatable segment
	Beginning a common segment
	Setting the program location counter (PLC)
	Aligning a segment

	Examples
	Beginning an absolute segment
	Beginning a relocatable segment
	Beginning a common segment
	Aligning a segment

	Value assignment directives
	Syntax
	Parameters
	Descriptions
	Defining a temporary value
	Defining a permanent local value
	Defining a permanent global value
	Checking symbol values

	Examples
	Redefining a symbol
	Using local and global symbols
	Using the LIMIT directive

	Conditional assembly directives
	Syntax
	Parameters
	Descriptions
	Examples

	Macro processing directives
	Syntax
	Parameters
	Descriptions
	Defining a macro
	Passing special characters
	Predefined macro symbols
	How macros are processed
	Repeating statements

	Examples
	Coding inline for efficiency
	Using REPTC and REPTI

	Listing control directives
	Syntax
	Descriptions
	Turning the listing on or off
	Listing conditional code and strings
	Controlling the listing of macros
	Controlling the listing of generated lines
	Generating a cross-reference table

	Examples
	Turning the listing on or off
	Listing conditional code and strings
	Controlling the listing of macros

	C-style preprocessor directives
	Syntax
	Parameters
	Descriptions
	Defining and undefining preprocessor symbols
	Conditional preprocessor directives
	Including source files
	Displaying errors
	Comments in C-style preprocessor directives

	Examples
	Using conditional preprocessor directives
	Including a source file

	Data definition or allocation directives
	Syntax
	Parameters
	Descriptions
	Examples
	Defining strings
	Reserving space

	Assembler control directives
	Syntax
	Parameters
	Descriptions
	Controlling case sensitivity

	Examples
	Defining comments
	Changing the base
	Controlling case sensitivity

	Call frame information directives
	Syntax
	Names block directives
	Extended names block directives
	Common block directives
	Extended common block directives
	Data block directives

	Parameters
	Descriptions
	Backtrace rows and columns
	Defining a names block
	Extending a names block
	Defining a common block
	Extending a common block
	Defining a data block

	Simple rules
	Simple rules for resources
	Simple rules for CFAs

	CFI expressions
	Unary operators
	Binary operators
	Ternary operators

	Example
	Defining the names block
	Defining the common block
	Defining the data block

	Pragma directives
	Summary of pragma directives
	Descriptions of pragma directives
	#pragma diag_default
	#pragma diag_error
	#pragma diag_remark
	#pragma diag_suppress
	#pragma diag_warning
	#pragma message

	Diagnostics
	Message format
	Severity levels
	Remark
	Warning
	Error
	Fatal error
	Setting the severity level
	Internal error

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Symbols

