IAR C/C++ Compiler

Reference Guide

for the Renesas
R32C/100 Microcomputer Family

COPYRIGHT NOTICE
Copyright © 2007-2009 IAR Systems AB.

No part of this document may be reproduced without the prior written consent of IAR
Systems AB. The software described in this document is furnished under a license and
may only be used or copied in accordance with the terms of such a license.

DISCLAIMER

The information in this document is subject to change without notice and does not
represent a commitment on any part of IAR Systems. While the information contained
herein is assumed to be accurate, IAR Systems assumes no responsibility for any errors
or omissions.

In no event shall IAR Systems, its employees, its contractors, or the authors of this
document be liable for special, direct, indirect, or consequential damage, losses, costs,
charges, claims, demands, claim for lost profits, fees, or expenses of any nature or kind.

TRADEMARKS

IAR Systems, IAR Embedded Workbench, C-SPY, visualSTATE, From Idea To Target,
IAR KickStart Kit, IAR PowerPac, IAR YellowSuite, IAR Advanced Development Kit,
IAR, and the IAR Systems logotype are trademarks or registered trademarks owned by
IAR Systems AB. J-Link is a trademark licensed to IAR Systems AB.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

Renesas is a registered trademark of Renesas Technology Corporation. R32C/100 is a
trademark of Renesas Technology Corporation.

All other product names are trademarks or registered trademarks of their respective
owners.

EDITION NOTICE

Second edition: January 2009

Part number: CR32C-2

This guide applies to version 1.x of IAR Embedded Workbench® for R32C.
Internal reference: R7, 5.4, IJOA

Brief contents

TaABIES ... XXi
Preface ..o Xxiii
Part 1. Using the compiler ... 1
Getting STArted ..ot 3
Data STOrage ... 11
FUNCLIONS ... sssseseenens 21
Placing code and data ... 27
The DLIB runtime enviroNmMeNt ... 41
Assembler language interface ... 71
USING CHt s 91
Efficient coding for embedded applications ... 99
Part 2. Reference information ... 117
External interface details ... 119
COoMPIlEr OPLIONS ... 125
Data represSentation ... 153
ComPpiler @XTENSIONSccooooivveiiireeeeeeeeeeeeeeeeeee e 163
Extended keywords ... s 173
Pragma dir€CtiVes ... e 185
INtriNSIC FUNCLIONS ... 199
The PreProCESSOL ... 211
Library fuNCLiONS ... 217

iv

IAR C/C++ Compiler
Reference Guide

Contents

TaABIES ... XXi
Preface ..o Xxiii
Who should read this guide ... xxiii
How to use this guide ... xxiii
What this guide contains ... XXiv
Other documentation ... XXV
Further readingc.oooveviriiinieieeeeeeeeee e XXV
Document conventions ..., XXVi
Typographic CONVENTIONScc.eeverrerreriireeieiienteieneenienieseeseesneeneeneen XXVi
Naming CONVENTONScceeureruerrerierienrenieseeieeieetesteneestessessesiesiesaeene XXVil
Part |. Using the compiler ... 1
Getting STArted ...t 3
IAR language OVErVIEW ...t 3
Supported R32C/100 devices ... 4
Building applications—an overview ... 4
COMPILINEZ oviiiiiieiieiteeee ettt s e e e 4

Linking
Basic settings for project configuration ... 5
Data MOdelc..cooviiiiiiiiiiiiiiicic e 6
C0de MORLoovviiiiiriiriiriecieectc ettt 6
Size of double floating-point tYPeceerveeeeeeeenuerienienenenenenneneenes 6
Optimization for speed and S1Z€cc..cevveereevieriieeiieniienieneeseeneeieenae 7
RUNtime enVIrONMENtco.eeverieieieniiniinieniinerieeeceeeeeee et 7
Special support for embedded systems ... 8
Extended KEYWOTdScooievieiriiiiiiiienierie et 8
Pragma dir€CtiVesccccovevierieninininiiniirteceteeeeetee e 9
Predefined SymDbOISccevviririririeieieeeeceeee e 9
Special function types9

Accessing low-level featuresc.ccocvevenenenininceienenicnencecenenen 9

vi

Data STOrage ... 11

INtrodUCtion ... e 11
Different ways to Store datacceceeveereeneenerneniieeieeeeeesee e 11
Data models ... 12

Specifying a data modelc.ccocevereriniriieieiecceeeee 12
MeEMOKY tYPes ... 13
Datall ..o 14

Data2d ..ot e e e eans 14

Structures and MEMOTY LYPES .c.evververrerrereerieieeerererenrenienesenenenne 16

MOTE EXAMPIES ..ottt 16

C++ and MemMOry types ...t 17

Auto variables—on the stack ... 17

The SEACK ..eviiitiiieiieieeee e 18

Dynamic memory on the heap ..., 19
FUNCLIONS ... 21
Function-related extensions ... 21

Code models and memory attributes for function storage 21
Using function memory attributesceceeevereeriereneneneneneeieieneas 22

Primitives for interrupts, concurrency, and OS-related

PrOSFraMIMINGc.cooiiiiiiiiiiieceier e 22
Interrupt funCtionsccceevevieririnieineeee e 23

Monitor fUNCHONSc.ccoviiiiiiiiiiii s 24

C++ and special function typescccceceeveeveevuenienienenenienieneneeeeeene 26

Placing code and data ... 27
Segments and MEMOKY ... 27

WHhat is @ SEZMENL? ...c.eovuieiieiiiiieiieieieietee et 27

Placing segments in MemMOry ..., 28
Customizing the linker command filecccceeeverinennininnnncnnene 28

IAR C/C++ Compiler
Reference Guide

Contents °

Data SEZMENLScc.ooiiiiii s 31
Static MEMOTY SEZMENLS ..cc.veruririierieerieenteerierieeteeeestesieesieeseeenaeeneens 31
The internal data StACKcccceverereeieiiinieierieneneneseeeeeeeeeee 34
The INterrupt StACKccvevveriiriireriieirieeeteee e 35
The REAP ...eeveiiieiieieeee et 35
Located datac.coeveeveiririiieieieiecceeee e 37

Code segments ...

Startup code

NOrmMal COdeooiiiiiiiiiiiiiic e 37
INEEITUPE VECIOTS .ottt 38
C++ dynamic initialization ... 38
Verifying the linked result of code and data placement 38
Segment too long errors and range eIrorsc..coceeceeerereeeeeereenuens 38
Linker map file ...co.ooviiniiiiiiie e 39
The DLIB runtime environmMeNnt ... 41
Introduction to the runtime environmentc.cccoocenee. 41
Runtime environment functionalityc..cccceceevevenenenenenencneenee. 41
Library SElECtIONceeeueeuieieieiieieieiesteriesie sttt 42
Situations that require library buildingccccocevveviiniiniininnennen. 43
Library configurationscccceceeveeeeereeieieienieneneneneseseeeeneeneen 43
Debug support in the runtime libraryccocevcevevenencnieneceienne. 44
Using a prebuilt library ..., 44
Customizing a prebuilt library without rebuildingc..ccceveeeenee 46
Choosing formatters for printf and scanf ... 47
Choosing printf fOrmattercocceevverieriereenieneeeeereeee e 47
Choosing scanf fOrmattercccceecevererenienierienenieneneneeeeeeeeeene 48
Overriding library modules ... 49
Building and using a customized libraryc..ccccocccvivnnnc. 50
Setting up a library projectc.cceeeeeeeeeieeieienieneneneneneseeeeeeeeene
Modifying the library functionality
Using a customized lbrarycccccoceveenienienieninieneneeeieneeseee
System startup and termination ... 52
SYSEM STATLUP w.eveeuveeiieriierieiieeieete ettt et et sr et st sare s eneees 52

vii

System termination

Customizing system initialization ... 55
__dow_Ievel init ... 55
Modifying the file cStartup.S53ccceeeeeeieieiecieneneeseseeeeee 55

Standard streams for input and output ... 56
Implementing low-level character input and outputc..ccccccceeeneeee 56

Configuration symbols for printf and scanf ...

Customizing formatting capabilitiesc..ccecevvieriiereeneeneeneenieenen. 59
File input and outpuULt ... 59
LOCAIE ... 60
Locale support in prebuilt librariesc..ccoccevceeveeneenenienieneeneene. 60
Customizing the 10cale SUPPOITccceeeverieierieneneneneneneneeeneeene 60
Changing locales at TUNIME ...cc.eevevereemierieieienienienesenene e 61
Environment interaction ... 62
Signal and raise ... 63
THMIE ettt 63
SErEOM ... s 63
AASSEIL ... 64
Hardware SUPPOFt ... 64
Floating-point implementationccocceeverriersienienieneeneeneeneeenees 64
C-SPY runtime interface ... 65
Low-level debugger runtime interfacececceceeveveereneneneneeeenas 66
The debugger terminal I/O Windowceccevievieninninieniienieneene, 66
Checking module consistency ...
Runtime model attributesccccoceevieiriieieiienieieneneneseseeeeeen
Using runtime model attributesccccoveereenerneniieeiienienieneeneene 68
Predefined runtime attributescccceeerevenenenienieneneneceeeeeeeens 68
User-defined runtime model attributesccccovceveneneneneneneenee. 69
Assembler language interface ... 71
Mixing C and assembler ... 71
Intrinsic fUNCHioONSccocieiiiiiiiiiiiiiiiicccceceeee 71
Mixing C and assembler modulesccoeverenenenenencnieneeeeiennes 72
Inline asSEMDIETccooviviiriiriiiirieeeeetet e 73

IAR C/C++ Compiler
viii Reference Guide

Contents °

Calling assembler routines from C ..., 74
Creating skeleton COAEoviiniiriiiieriiinieniecte e 74
Compiling the COAEcoceviriririniiiiieieicctereee et 75

Calling assembler routines from C++ ... 76

Calling conNVENtioN ..o 77
Function declarationsccccooiiiiiiiiiniiiceccee 78

EXAMPIES ...oviiiriiriiiiiieetecteeeceer et 83
Function dir€Ctivescoccieiriiinicineieicececeee e 84
Calling fuNCtions ..o 85

Assembler instructions used for calling functionsccccecceverenenne 85
Memory access methods ... 86
The datal6 memory access methodccccceveeverieniieniieniieneeneene, 87
The data24 memory access methodcccccevevereninenencnceeenenee 87
The data32 memory access methodccccevverereneneneneneeieienes 87
The sbdatal6 memory access methodccoceevceeveenieineniieneennenne. 88
The sbdata24 memory access methodcccceceveveveneececeeeienennee 88
Call frame information ... 88
USING CHr st 91
OVEIVIEW ...t
Standard Embedded C++
Extended Embedded C++
Enabling CH+ SUPPOTT ..cc.eeueruiriieiieieieienierienie ettt 92
Feature descriptions ..., 93
CLASSES .ottt ettt ettt ettt et et sb s b sbe e bttt ese et e e eneene 93
FUNCHONS ..ttt 94
TEMPLALES ..eeneieiieiieieete ettt 94
Variants Of CASLS ..cvevverueruerieiriiniietetetet ettt ees 95

Mutable

NAMESPACE .eenvinverirenreeieetieieeiteit ettt sttt st sbe st e bttt neen 95

The STD NAMESPACE ...ceuverereriieriieieenieenieeteeee et sire st esieeseeetee e eareeaee 95
Using interrupts and EC++ destructorsc.ceceeveevevvenencnenienenenne 95
C++ language eXtensions ... 96
Efficient coding for embedded applications ... 99
Selecting data types ... 99
Using efficient data tyPescoceveeriereeneeneeneenieeieeieeee e 99
Floating-point types
Casting a floating-point value to an integercececeeveeveerererenne 101
Alignment of elements in @ SLIUCIUTEcocuevveriierieerieneeieeieenenne 101
Anonymous structs and UNIONScecveeverieriereriererenenieeeereereeneens 101
Controlling data and function placement in memory 103
Data placement at an absolute locationc.ccceceevienieneneninennne 104
Data and function placement in SEZMENLSccccoverererereereeruennene 105
Controlling compiler optimizations ... 106

Scope for performed optimizations

Optimization levelsc.cccceeenene ... 107
SPEEA VEISUS SIZE ..evereiriirieriiiieieienterteie sttt ettt ettt sae e e 108
Fine-tuning enabled transformationsccocceeceevevnieeneniieniienieenne 109
Writing efficient code ... 111
Saving stack space and RAM MemMOIYcccccevveeveeuenieieienienenienne 112
FUnction PrototyPesc.ceceereeriereenienieeieerieeeeeeeeite e st e e naeens 112
Integer types and bit NEZAIONcc.evvevveeerieieieieniererercneeeeeeene 113
Protecting simultaneously accessed variablesc..ccceeeerereneennene 113

Accessing special function registers ..

Non-initialized variablescc.coccevevenienieneninieeieieneneneseseeeen
Part 2. Reference information ... 117
External interface details ... 119
INVOCAtion SYNtAXccocoiiiiiiiiiiiieice s 119
Compiler inVOCation SYNTAXc.cceeerueuerrereruirreieneeenreeereseeneereneenene 119
PasSing OPLIONS ...c..coceverireriirieieieietetesteereee ettt 119

IAR C/C++ Compiler
Reference Guide

Contents °

Environment variables

Include file search procedurec..ccccovininiinnncncnes 120

Compiler OULPUL ..o

DiIagnostiCs ...
MeSSage FOIMAL ...c..eevueiiiiiieieeieeiecteeee et
SeVErity IEVEIS ..eviiriiriiriieiirecttccece e

Setting the severity level

Internal eITor ...
COoMPIlEr OPLIONS ... 125
OPLIONS SYNTAX ..ot 125
TYPES OF OPLIONS ...ttt 125
Rules for specifying parameterscceceeverererenereneneeneeneeneens 125
Summary of compiler options ... 128
Descriptions of Options ... 130
=—AlIGN_TUNC Lot 130
-=Char_1S_SIZNEAcovviiiiiiiiiieieteeee e 131
-—code_MOdElc.ciiiiiiiiiii e 131

—=d1aZ_T@MATKeeiieiieiiiicieee e
--diag_suppress

--diag_warning

--d1agnOSHCS_tabIES ...c.coveruieiiiiiiiiiiteeeee e 135
--discard_unused_publiCsccceveruerirerinienieieeeteee e 136
==dID_CONTIG ettt 136
==dOUDBIE ..o 137

xi

Xii

IAR C/C++ Compiler
Reference Guide

--migration_preprocessor_eXteNSIONSccceeververrerrenrenrereeeenenne 142

--MOAUIE_NAME ..c.veiiiiiirieiiiiicectectee ettt 142
=-N0_COAE_MOLION ...oeviiiiiiiiiiiiiieiieiieietetcreeeie et 143
=-N0_CTOSS_Call toviiiiiiiiiiiiicicicce e 143
SmTMO__CSC wrenvententententenieettes e et et et ettt b bbbt bt e bt b et ea et e st et e naenae et 143
=sNO0_INLINE oottt e 144
--no_path_in_file_macrosc.ccoceeeeeriniereniniiniieiieicniene e 144
SNO_tDAA ettt 145
--no_typedefs_in_diagnoStiCsccceveeviiriierieniieneeneeieneeie e 145
--no_unroll

“NO_WAITHNEZS .evervirieeiienteniententeneentesteeteeteeteeteeaeeseebestensessestessesseseenee 146
--NO_WIAP_dIAZNOSHICS ..eeveiniiiiieieniieiienieeie ettt 146
SO et s 147
20, mmOULPUL .ottt eiete st te sttt et et este b et e be bbb sbeebe bt eate e e e enee 147
“OIMIE_EYPES evenvientieteeieeiteeite et site st e et et estesitesatesie e st esaee bt enbeeseeane 148

--only_stdout ...

20, mmOULPUL .ottt sttt st ettt et et et et e be st b b sbeebe e bt eat e e e e enee 148
—PIedef_MACTOSovviriiiiiieriieriteeeeee ettt 149
--preinclude

--preprocess

--public_equ

T, =mAEDUZ oo
SmTEINATKS oveviiietieieeieeete ettt ettt ettt ettt ettt
~TEQUITE_PIOLOLYPES ..eenvrenvienierntieieriienitesieenteetessesiresatesseesseensesnseenne 151
SmSTIBIE ottt s 151
“=SETICT_AIIST veeieeviieiieeiieeeeeie ettt e e ettt e e e e et e s e eaaaeeseennaaeesenneeeeennnes 151

Contents °

--warnings_affect_exit_codeccceveveriineninininineeeeeee 152
“=WAININZS_ATE_EITOTS ..eeveereererrerurerirenueerseesseenseessessesseseesseenseenses 152
Data represSentation ... 153
AlIgNMENT ...t 153
Alignment on the R32C/100 microcOMpuUtercoceeeeereeevennenee 153
Basic data types ... 154
Integer typesc..ccc..... .. 154
Floating-point typescccccivviiiiiiiiiiiiciicecceecseecee e 156
POINter tYPEes ... 157
FUNCHON POINLETSeeueiiniiiiieieiieciie sttt 157
Data POINLELS ...veuvirvireieiietietieieietetetete sttt ettt s 158
CASLITNIZ .veuventeientenierie ettt ettt ettt eb et et et et et e sbesbesbesbeebene 158
SErUCLUNE tYPES ..ottt 158
ALGNMENT .ottt ettt s 159
General 1ayoutccooeeieirieinieireceeceee e 159
Packed Structure typescoceevveveerieneenieenieeieeeeete st seee e 159
Type qUAlIfiers ... 161
Declaring objects VOlatileccocevievenenienenineceeieieeeereesiene 161
Declaring objects const .
Data types in CH+ s
Compiler @XTENSIONS ... sessseeneons 163
Compiler extensions overview ...,
Enabling 1anguage eXtensionsccceceecververierierenereneneeneenuenuens
C language eXteNSIONSccocoviinirnineincencees s
Important language extensions ...
Useful 1anguage eXtensionsccceeeerererereneenienieneeneeneeseenennens
Minor 1anguage eXtenSIONScocceeereereerieeeeeeerererenesrenensenenne
Extended keywords ... s 173
General syntax rules for extended keywords 173
TYPE AUITDULES ..ottt sttt 173

Object attributesc.cceeceeveevernnene .. 176
Summary of extended keywords

xiii

Xiv

IAR C/C++ Compiler
Reference Guide

Summary of pragma directives

_COAB32 ot
_dAtA16 .o
_data2d e
_dataB2 e
__fast_interrupt
B 111055 4 41| o OO SO SRR P RPN
__INMTNSIC ittt
__INOMIEOT ettt ettt ettt ettt ettt saeseesbesbeebeebe e e eneeneens

U TIO_ANIE eiieiiiieeiieeiie et ee et e et e et e eetteeebe e e e ebeeebe e e tbeesabeeenbaeennaees

__SDBAAtAL6O ...oiieiie e
_SBAAta2d ..o e

Pragma dir€CtiVes ... 185

Descriptions of pragma directives ... 186

DILFICLAS .ottt 186
COMSESEE uveeuveeurerureestenitenitenteenteenteeutesstesatesttesbeenseenseenbesasesutesaeenaeenseens 187
data_aligNmMENtc..coeverererieieieieeesteeteee ettt 187
dataseg
diag_defaultcc.ooiiiiiie e 188
QIAZ_CTTOT ettt 189

diag remark ... 189
Q1A SUPPIESS uvrevieiieniieieeiteieete et site st e stee st et stesieesaeesbeenseebeenne 189
dIAZ_ WATNING ..oovvenveiinieniereeeeeceetet ettt s 190

include_alias

INIITNE ©oviiiiiieiieeeiie et ee ettt et et e et e e saeeebeeebeeestaeesbeessbeeenseeesneens 191
LANGUAZE .eveeiierierierieeee ettt 191
LOCALION .ottt ettt et eaaeeeae e 192

Contents °

message
ODJECE_ALITDULE ..eovviiiiiiiiieeieeiete ettt 193
OPHIMZE ..onvenviieiiierieeitetet ettt ettt sa et e et 193
PACK ettt ettt 194

__SCANT_ATES cuviiiiieiieieete ettt et st 196
SCEIMEIIL ..cveriiieiieneeieeitentetete sttt ebeebe st eat st enestesaesaestesaesaesaeeneeneene 197
EYPE_ALTIDULE ..eovviieniiiirieetieieeiieeie ettt 197
VECTOT .eeviiiinieiieitetetete et ettt ettt ettt a et besaesae b sbe ettt esnenenens 198
INtrinSic fUNCLIONSccoovvvoo e 199
Summary of intrinsic functions ... 199
Descriptions of intrinsic functions ... 201
U BTCAK oo
__delay_CYCIES ueeriieiiiiieieeee e
__diSable_INtEITUPL ..eeververvirrieririieiieiieietetete ettt
__eNable_INEITUPL ..eevevereiiieiietieieieteteete ettt et

__exchange_byte
__eXChange_long ...cccoeeiririeiieiccee e
__eXChange_wWordc.ccoeiirininieiieieeeeee et
8t DCR_ICZISIET ..eouviruiiiieriieeiiesiieieeieeeeeee ettt
86t DCT_TEZISLET .euvevvieieieeiieiieeeieiestestesie ettt
__get DDA _register
__8et_DDR_TEZISLEL ..eovviiiiiiiiiieieiierieritesieereeeieete et
__ 8t DMD_TEZISIET ..eevvervinuienieiieiieiieiieietenie ettt et
__ 8t DSA_TEZISIET .ouveveeeiiiieiieiieieiieieeee ettt
__ et DSR_IEZISLEr ...ooiiiiiiiiiiiecieceeeee et
__get_interrupt_leveloocooivieirieiiiieeeee
__get_interrupt_state ...
__get_INterrupt_tablecccoovieriiriirieiieeeeeeeee e

88 VCT_TEZISLET .euvevvevieieenieiieieieienieenie st

__il1egal_0OpCOdecc.eeueeuieiiieieeee e

XV

xvi

__interrupt_on_overflow ...

__10ad_CONLEXE .vviiiiiieiiieiie ettt et s

_ 8t DCR_TEZISLET ..cuveviviiieiieiieiieicieieeesenie ettt
__SCL DCT _IEGISIET ..euvevivieeeeiieiieieietenieeteste ettt
__SCL_DDA_TEZISIET ..eeveiiiiiieriieieeieeieeteeiee sttt
__Set_DDR_TEZISIET ...eevveviriieiieiieiieiicieicctesene ettt
__S€t_DMD_TEZISLET ..eveveviuieiieiieieieteniesenteseee ettt
__SEL_DSA_TEZISIET .eeevieiiiieeieeie ettt
__8€t_DSR_TEZISLET ..cvevivieiieiieiieicicieteerese et
__Set_interrupt_IeVelccccovieirieieieieicieenene e
__set_interrupt_state
__set_interrupt_table ...

__set_VCT_register

__store_context

__WaIt_fOT_INLETTUPL ...eeveeiiieeietieiieiieietetee sttt
The PrePrOCESSON ... 211

Overview of the preprocessorcvinnveennceenens 211
Descriptions of predefined preprocessor symbols 212
Descriptions of miscellaneous preprocessor extensions214
NDEBUG
_Pragma()

HWAINING MESSAZE ..vvenvenverinrinrinrietiesiettetestetensentesteseesiessesseeeesseneens 215
C VA ARGS__ ettt 215

IAR C/C++ Compiler
Reference Guide

Contents °

Library fUNCLIONS ... 217
INtroduction ... 217
Header filesc..coceviviiiiiiiiiiiiiciccieeee e 217

Library object filesc..coccveririririiiiiiiiieesceeseeeee e 217

RECNIIANCY ..ottt 218

IAR DLIB Library ..o 218

C header fllescocoeririniriiicieieccc e 219

C++ header filescocevirereeiiiiiiieeeeee e 220

Library functions as intrinsic functionsc..ccecceceereenerrieevennnenne 222

Added C functionalitycocceceeeeirreerierieninienenieieeeeeeereesenienne 222

Segment reference ... 225

Summary of segments

Descriptions of segments
CHECKSUM ..o
CODE24
CODE32
CSTACK
CSTART
DATATLO_AC ettt
DATATO_AN i
DATAl6_C
DATAI16_1
DATA16_ID
DATA16_N
DATAI16_Z
DATA24_AC ..o
DATA24_AN oo
DATA24_C oottt st
DATA24 T i
DATA24_ID ettt
DATA24 N ottt ettt st
DATA24 7 oo
DATAB2_AC ettt

xvii

xviii

IAR C/C++ Compiler
Reference Guide

DATA32_AN ...
DATASB2_C s
DATAB2 T e
DATASB2 ID s
DATASB2 N s

DATAB2 Z oo
DIFUNCT

NMIVEC ...
SBDATATGO_I o
SBDATA16_ID
SBDATATO_N ..o
SBDATATLG_Z ..o
SBDATAZ24_ T oo
SBDATA24_ID
SBDATA24_N

SBDATA24_Z

Implementation-defined behavior ... 239

Descriptions of implementation-defined behavior 239

Translationccccccviieiiieiiieeiieeiee et e e sbeeeaeeerae s 239
ENVIFONMENT ...oovviiiiiiiiiciic ettt e et 240

Identifiers

TNEEEETS e
FLOAting POINE ...c..ovviriiriieiieiieieieie ettt ettt s
Arrays and POINLETSecverueerierieniieniienieeieente et et etresaresaeesieenieenaeens
REGISTETS ..ttt
Structures, unions, enumerations, and bitfields
QUALITIETS Loovviiiiiiieiiieciee ettt e sbe et e e b e eaaeenane e e

DECIATAtOrSooieviieiieeciie ettt et et e

STAEIMENLS ..eiiieiriiieeeiiieeeeeieeeeeeieeeeeeetteeeeetreeeeeareeeeeesrsaeeeensreeeennnes

Contents °

Preprocessing directives
TAR DLIB Library functionscccccecueeierveenienieeneeneeneenieeseennenns 246

Xix

IAR C/C++ Compiler
XX Reference Guide

Tables

1: Typographic conventions used in this UIAEcc.ccceeirverieiieiienieniirencncnee XXVi
2: Naming conventions used in this gUIdecccceevimieririiriiniiniieieeeeeeseeene XXVii
3: Command line options for specifying library and dependency filesc........ 8
4: Data model CharaCteriStiCsccevirueiririiirieiiieeeiecereeee et 12
5: Memory types and their corresponding memory attributes 15
6: Code MOEIScoouiiiiiiiiiii s 22
7: Function MemOTry AtrIDULEScceceereeirerieieieientenieniesiestesie et ereetesteeeseeseeseeneeas 22
8: XLINK segment MEemOTY LYPESeecveeverrerueriienieenieesteenienresieenieesseenseesseesessesnees 28
9: Memory layout of a target system (€Xample)c..coceeveeveeruenierieneneneneneneneenees 29
10: Memory types with corresponding S€Zment SroUPsccceeverververrerereriereeeene 32
11: Segment Nname SUFFIXESccviveiiiiiieriiiiierierte ettt 32
12: Library CONfigUrationscocceveeereeeeieieienientenienestesseese oot e esenesresaesaenne 43
13: Levels of debugging support in runtime libraries44
14: Prebuilt librariesc..cccocvvieviiviniinininenenennn. ... 45
15: CuStomizable IteMScocoiiiiiiiiiiiiiiiiii e 46
16: Formatters for Printfcccocceveeiriiieieceneees et 47
17: Formatters for scanf ..o 48
18: Descriptions of printf configuration Symbolscccceceviverririieiiiniincnicnicnenenne 58
19: Descriptions of scanf configuration Symbolsc.ccccevereninininieenieiienenenene 58
20: Low-level I/O fIlesccoiiviiiiiiiiiiiiiiiiicicciecce e 59
21: Functions with special meanings when linked with debug infoc..c..coccc.cee. 65
22: Example of runtime model attributes

23: Predefined runtime model attributes

24: Registers used for passing PArametersccoeeeruervenrereereeeeeeeenrersessesienienienne 80
25: Registers used for returning vValuesc.coceveruerenineninieiieieienenenenenenieene 83
26: Specifying the size of a memory address in assembler instructions 86
27: Call frame information resources defined in a names blockccccccevenencnne 89
28: Compiler optimization 1€VELSc..coevieriririnirinieieeteecceeee e 107
29: Compiler environment variablescc..cocceeverrieriieriieniienieniereereeeeee e 120
30: Error return codes

31: Compiler Options SUMIMATYcoeeeereeieruerteruerierienienseeeeseeseeeeseessessessessessesseens 128

XXi

xXii

IAR C/C++ Compiler
Reference Guide

34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:

Extended Keywords SUMMATYc.coceeereeiriirenienieneneneneeceneeneeeeeennesnesnennes

Pragma direCtives SUMIMATYcccccvevierierienerenineeieteteteseeseesre e
Intrinsic functions SUMMATYccccocueiiiiriiiriienieneene et
Predefined SYymbOISccoceeiiiiiiiiiiiinin e
Traditional standard C header files—DLIB ...

Embedded C++ header files ..o 220
Additional Embedded C++ header files—DLIBc.ccoccocevininininencninnne 220
Standard template library header filesccccoevereneninininienenincnencecee 221
New standard C header files—DLIBccccoccoininininiiiiiiiiencceccee 221
SEZMENT SUMIMATY ..evevieuieiieireireirententenienierie st ereeteeesee et eressesnesbesbeebeseeennennenne 225
Message returned by strerror()—IAR DLIB libraryccceceeveeeeeneneniennne. 249

Preface

Welcome to the IAR C/C++ Compiler for R32C Reference Guide. The
purpose of this guide is to provide you with detailed reference information
that can help you to use the compiler to best suit your application
requirements. This guide also gives you suggestions on coding techniques so
that you can develop applications with maximum efficiency.

Who should read this guide

Read this guide if you plan to develop an application using the C or C++ language for
the R32C/100 microcomputer and need detailed reference information on how to use the
compiler. You should have working knowledge of:

o The architecture and instruction set of the R32C/100 microcomputer. Refer to the
documentation from Renesas for information about the R32C/100 microcomputer

® The C or C++ programming language

o Application development for embedded systems

o The operating system of your host computer.

How to use this guide

When you start using the IAR C/C++ Compiler for R32C, you should read Part 1. Using
the compiler in this guide.

When you are familiar with the compiler and have already configured your project, you
can focus more on Part 2. Reference information.

If you are new to using the IAR Systems build tools, we recommend that you first study
the IAR Embedded Workbench® IDE User Guide. This guide contains a product
overview, tutorials that can help you get started, conceptual and user information about
the IDE and the IAR C-SPY® Debugger, and corresponding reference information.

xxXiii

What this guide contains

XXiv

What this guide contains

Below is a brief outline and summary of the chapters in this guide.

IAR C/C++ Compiler
Reference Guide

Part I. Using the compiler

Getting started gives the information you need to get started using the compiler for
efficiently developing your application.

Data storage describes how to store data in memory, focusing on the different data
models and data memory type attributes.

Functions gives a brief overview of function-related extensions—mechanisms for
controlling functions—and describes some of these mechanisms in more detail.

Placing code and data describes the concept of segments, introduces the linker
command file, and describes how code and data are placed in memory.

The DLIB runtime environment describes the DLIB runtime environment in which
an application executes. It covers how you can modify it by setting options,
overriding default library modules, or building your own library. The chapter also
describes system initialization introducing the file cstartup, how to use modules
for locale, and file 1/0.

Assembler language interface contains information required when parts of an
application are written in assembler language. This includes the calling convention.

Using C++ gives an overview of the two levels of C++ support: The
industry-standard EC++ and IAR Extended EC++.

Efficient coding for embedded applications gives hints about how to write code that
compiles to efficient code for an embedded application.

Part 2. Reference information

External interface details provides reference information about how the compiler
interacts with its environment—the invocation syntax, methods for passing options
to the compiler, environment variables, the include file search procedure, and the
different types of compiler output. The chapter also describes how the compiler’s
diagnostic system works.

Compiler options explains how to set options, gives a summary of the options, and
contains detailed reference information for each compiler option.

Data representation describes the available data types, pointers, and structure types.
This chapter also gives information about type and object attributes.

Compiler extensions gives a brief overview of the compiler extensions to the
ISO/ANSI C standard. More specifically the chapter describes the available C
language extensions.

Preface __4

e Extended keywords gives reference information about each of the R32C-specific
keywords that are extensions to the standard C/C++ language.

® Pragma directives gives reference information about the pragma directives.

e [ntrinsic functions gives reference information about functions to use for accessing
R32C-specific low-level features.

o The preprocessor gives a brief overview of the preprocessor, including reference
information about the different preprocessor directives, symbols, and other related
information.

® Library functions gives an introduction to the C or C++ library functions, and
summarizes the header files.

o Segment reference gives reference information about the compiler’s use of
segments.

o [mplementation-defined behavior describes how the compiler handles the
implementation-defined areas of the C language standard.

Other documentation
The complete set of IAR Systems development tools for the R32C/100 microcomputer
is described in a series of guides. For information about:
o Using the IDE and the IAR C-SPY Debugger®, refer to the [AR Embedded
Workbench® IDE User Guide

o Programming for the R32C IAR Assembler, refer to the R32C IAR Assembler
Reference Guide

o Using the IAR XLINK Linker, the IAR XAR Library Builder, and the IAR XLIB
Librarian, refer to the /AR Linker and Library Tools Reference Guide

o Using the IAR DLIB Library functions, refer to the online help system

o Using the MISRA-C:1998 rules or the MISRA-C:2004 rules, refer to the /AR
Embedded Workbench® MISRA C:2004 Reference Guide or the IAR Embedded
Workbench® MISRA C:1998 Reference Guide, respectively.

All of these guides are delivered in hypertext PDF or HTML format on the installation
media. Some of them are also delivered as printed books.

FURTHER READING
These books might be of interest to you when using the IAR Systems development tools:

o Barr, Michael, and Andy Oram, ed. Programming Embedded Systems in C and
C++. O’Reilly & Associates.

XXV

Document conventions

o Harbison, Samuel P. and Guy L. Steele (contributor). C: 4 Reference Manual.
Prentice Hall.

e Kernighan, Brian W. and Dennis M. Ritchie. The C Programming Language.
Prentice Hall. [The later editions describe the ANSI C standard.]

o Labrosse, Jean J. Embedded Systems Building Blocks: Complete and Ready-To-Use
Modules in C. R&D Books.

e Lippman, Stanley B. and Josée Lajoie. C++ Primer. Addison-Wesley.

o Mann, Bernhard. C fiir Mikrocontroller. Franzis-Verlag. [Written in German.]

e Stroustrup, Bjarne. The C++ Programming Language. Addison-Wesley.

We recommend that you visit these web sites:

o The Renesas web site, www.renesas.com, contains information and news about the
R32C/100 microcomputers.

o The IAR Systems web site, www.iar.com, holds application notes and other
product information.

o Finally, the Embedded C++ Technical Committee web site,
www.caravan.net/ec2plus, contains information about the Embedded C++
standard.

Document conventions

When, in this text, we refer to the programming language C, the text also applies to C++,
unless otherwise stated.

When referring to a directory in your product installation, for example r32c\doc, the
full path to the location is assumed, for example c: \Program Files\IAR
Systems\Embedded Workbench 5.n\r32c\doc.

TYPOGRAPHIC CONVENTIONS
This guide uses the following typographic conventions:

Style Used for

computer * Source code examples and file paths.
* Text on the command line.
* Binary, hexadecimal, and octal numbers.

parameter A placeholder for an actual value used as a parameter, for example
filename.h where filename represents the name of the file.

[option] An optional part of a command.

alblc Alternatives in a command.

Table 1: Typographic conventions used in this guide

IAR C/C++ Compiler
xxvi Reference Guide

Preface __4

Style Used for
{a|b]|c} A mandatory part of a command with alternatives.
bold Names of menus, menu commands, buttons, and dialog boxes that

appear on the screen.

italic * A cross-reference within this guide or to another guide.
* Emphasis.

An ellipsis indicates that the previous item can be repeated an arbitrary
number of times.

Identifies instructions specific to the IAR Embedded Workbench® IDE
interface.

Identifies instructions specific to the command line interface.

Identifies helpful tips and programming hints.

Identifies warnings.

Table 1: Typographic conventions used in this guide (Continued)

NAMING CONVENTIONS

The following naming conventions are used for the products and tools from IAR
Systems® referred to in this guide:

Brand name Generic term

IAR Embedded Workbench® for R32C IAR Embedded Workbench®
IAR Embedded Workbench® IDE for R32C the IDE

IAR C-SPY® Debugger for R32C C-SPY, the debugger

IAR C/C++ Compiler™ for R32C the compiler

IAR Assembler™ for R32C the assembler

IAR XLINK™ Linker XLINK, the linker

IAR XAR Library builder™ the library builder

IAR XLIB Librarian™ the librarian

IAR DLIB Library™ the DLIB library

Table 2: Naming conventions used in this guide

xxvii

Document conventions

IAR C/C++ Compiler
xxviii Reference Guide

Part |. Using the compiler

This part of the IAR C/C++ Compiler for R32C Reference Guide includes these
chapters:

o Getting started

e Data storage

e Functions

o Placing code and data

e The DLIB runtime environment
e Assembler language interface

e Using C++

o Efficient coding for embedded applications.

- .hmuhhhhi

AARArA

Getting started

This chapter gives the information you need to get started using the compiler
for efficiently developing your application.

First you will get an overview of the supported programming languages,
followed by a description of the steps involved for compiling and linking an
application.

Next, the compiler is introduced. You will get an overview of the basic settings
needed for a project setup, including an overview of the techniques that enable
applications to take full advantage of the R32C/100 microcomputer. In the
following chapters, these techniques are studied in more detail.

IAR language overview

There are two high-level programming languages you can use with the IAR C/C++
Compiler for R32C:

o C, the most widely used high-level programming language in the embedded systems
industry. Using the R32C IAR C/C++ Compiler, you can build freestanding
applications that follow the standard ISO 9899:1990. This standard is commonly
known as ANSI C.

o C++, a modern object-oriented programming language with a full-featured library
well suited for modular programming. IAR Systems supports two levels of the C++
language:

o Embedded C++ (EC++), a subset of the C++ programming standard, which is
intended for embedded systems programming. It is defined by an industry

consortium, the Embedded C++ Technical committee. See the chapter Using
C++.

o IAR Extended Embedded C++, with additional features such as full template

support, multiple inheritance, namespace support, the new cast operators, as well
as the Standard Template Library (STL).

Each of the supported languages can be used in strict or relaxed mode, or relaxed with
IAR extensions enabled. The strict mode adheres to the standard, whereas the relaxed
mode allows some deviations from the standard. For more details, see the chapter
Compiler extensions.

Part |. Using the compiler

Supported R32C/100 devices

It is also possible to implement parts of the application, or the whole application, in
assembler language. See the R32C IAR Assembler Reference Guide.

For more information about the Embedded C++ language and Extended Embedded
C++, see the chapter Using C++.

Supported R32C/100 devices

The IAR C/C++ Compiler for R32C supports all devices based on the standard Renesas
R32C/100 microcomputer. Hardware floating-point units (FPUs) are also supported.

Building applications—an overview

IAR C/C++ Compiler
4 Reference Guide

A typical application is built from several source files and libraries. The source files can
be written in C, C++, or assembler language, and can be compiled into object files by
the compiler or the assembler.

A library is a collection of object files that are added at link time only if they are needed.
A typical example of a library is the compiler library containing the runtime
environment and the C/C++ standard library. Libraries can also be built using the IAR
XAR Library Builder, the IAR XLIB Librarian, or be provided by external suppliers.

The IAR XLINK Linker is used for building the final application. XLINK normally uses
a linker command file, which describes the available resources of the target system.

Below, the process for building an application on the command line is described. For
information about how to build an application using the IDE, see the /AR Embedded
Workbench® IDE User Guide.

COMPILING

In the command line interface, the following line compiles the source file myfile.c
into the object file myfile.r53 using the default settings:

iccr32c myfile.c

You must also specify some critical options, see Basic settings for project configuration,
page 5.

LINKING

The IAR XLINK Linker is used for building the final application. Normally, XLINK
requires the following information as input:

o Several object files and possibly certain libraries

Getting started ___o

o The standard library containing the runtime environment and the standard language
functions

® A program start label

® A linker command file that describes the placement of code and data into the
memory of the target system

e Information about the output format.
On the command line, the following line can be used for starting XLINK:

xlink myfile.r53 myfile2.r53 -s __program_start -f 1lnkr32c.xcl
dlr32cfhfn.r53 -o aout.ab3 -r

In this example, myfile.r53 and myfile2.r53 are object files, Inkr32c.xcl is the
linker command file, and d1r32cfhfn.r53 is the runtime library. The option -s
specifies the label where the application starts. The option -o specifies the name of the
output file, and the option -r is used for specifying the output format UBROF, which
can be used for debugging in C-SPY®.

The IAR XLINK Linker produces output according to your specifications. Choose the
output format that suits your purpose. You might want to load the output to a
debugger—which means that you need output with debug information. Alternatively,
you might want to load the output to a flash loader or a PROM programmer—in which
case you need output without debug information, such as Intel-hex or Motorola
S-records. The option -F can be used for specifying the output format. (The default
output format is Intel-extended.)

Basic settings for project configuration

This section gives an overview of the basic settings for the project setup that are needed
to make the compiler generate the best code for the R32C/100 device you are using. You
can specify the options either from the command line interface or in the IDE.

The basic settings are:

Data model

Code model

Floating-point model

Size of double floating-point type

Optimization settings

Runtime environment.

In addition to these settings, many other options and settings can fine-tune the result
even further. For details about how to set options and for a list of all available options,

Part |. Using the compiler 5

Basic settings for project configuration

IAR C/C++ Compiler
6 Reference Guide

see the chapters Compiler options and the IAR Embedded Workbench® IDE User
Guide, respectively.

DATA MODEL

One of the characteristics of the R32C/100 microcomputer is a trade-off in how memory
is accessed, between the range from cheap access to small memory areas, up to more
expensive access methods that can access any location.

In the compiler, you can set a default memory access method by selecting a data model.
However, you can use memory attributes to override the default access method for each
individual variable.

The following data models are supported:

o The Near data model can access up to 32 Kbytes of RAM memory
o The Far data model can access up to 8 Mbytes of RAM memory
o The Huge data model can access up to 4 Gbytes of RAM memory.

The chapter Data storage covers data models in greater detail. The chapter also covers
how to fine-tune the access method for individual variables.

CODE MODEL

The compiler supports code models that you can set on file- or function-level to control
which function calls are generated, which determines the size of the linked application.
The following code models are available:

o The Far code model has an upper limit of 8 Mbytes of code

o The Huge code model can access the entire 32-bit address space.

For detailed information about the code models, see the chapter Functions.

SIZE OF DOUBLE FLOATING-POINT TYPE

Floating-point values are represented by 32- and 64-bit numbers in standard
IEEE754-compliant format. If you use the compiler option --double={32|64}, you
can choose whether data declared as double should be represented with 32 bits or 64
bits. The data type £loat is always represented using 32 bits.

If there is a hardware floating-point unit (FPU) available, you can choose between using
the FPU’s own floating-point instructions, which do not comply with the IEEE-754
standard, and using library functions that are standards-compliant but slower. See
Floating-point implementation, page 64.

Getting started ___o

OPTIMIZATION FOR SPEED AND SIZE

The compiler is a state-of-the-art compiler with an optimizer that performs, among other
things, dead-code elimination, constant propagation, inlining, common sub-expression
elimination, and precision reduction. It also performs loop optimizations, such as
unrolling and induction variable elimination.

You can decide between several optimization levels and for the highest level you can
choose between different optimization goals—syize, speed, or balanced. Most
optimizations will make the application both smaller and faster. However, when this is
not the case, the compiler uses the selected optimization goal to decide how to perform
the optimization.

The optimization level and goal can be specified for the entire application, for individual
files, and for individual functions. In addition, some individual optimizations, such as
function inlining, can be disabled.

For details about compiler optimizations and for more information about efficient
coding techniques, see the chapter Efficient coding for embedded applications.

RUNTIME ENVIRONMENT

To create the required runtime environment you should choose a runtime library and set
library options. You might also need to override certain library modules with your own
customized versions.

The runtime library provided is the IAR DLIB Library, which supports ISO/ANSI C and
C++. This library also supports floating-point numbers in IEEE 754 format and it can
be configured to include different levels of support for locale, file descriptors, multibyte
characters, et cetera.

The runtime library you choose can be one of the prebuilt libraries, or a library that you
customized and built yourself. The IDE provides a library project template that you can
use for building your own library version. This gives you full control of the runtime
environment. If your project only contains assembler source code, you do not need to
choose a runtime library.

For detailed information about the runtime environment, see the chapter The DLIB
runtime environment.

The way you set up a runtime environment and locate all the related files differs
depending on which build interface you are using—the IDE or the command line.

Choosing a runtime library in the IDE

To choose a library, choose Project>Options, and click the Library Configuration tab
in the General Options category. Choose the appropriate library from the Library
drop-down menu.

Part |. Using the compiler 7

Special support for embedded systems

Note that for the DLIB library there are two different configurations—Normal and
Full—which include different levels of support for locale, file descriptors, multibyte
characters, et cetera. See Library configurations, page 43, for more information.

Based on which library configuration you choose and your other project settings, the
correct library file is used automatically. For the device-specific include files, a correct
include path is set up.

Choosing runtime environment from the command line

Use the following command line options to specify the library and the dependency files:

Command line Description

-I r32c\inc Specifies the include path to device-specific I/O definition
files.

libraryfile.r53 Specifies the library object file

--dlib_config Specifies the library configuration file

C:\...\configfile.h

Table 3: Command line options for specifying library and dependency files

For alist of all prebuilt library object files, see Table 14, Prebuilt libraries, page 45. The
table also shows how the object files correspond to the dependent project options, and
the corresponding configuration files. Make sure to use the object file that matches your
other project options.

Setting library and runtime environment options
You can set certain options to reduce the library and runtime environment size:

o The formatters used by the functions print£, scanf, and their variants, see
Choosing formatters for printf and scanf, page 47

o The size of the stack and the heap, see The internal data stack, page 34, and The
heap, page 35, respectively.

Special support for embedded systems

IAR C/C++ Compiler
8 Reference Guide

This section briefly describes the extensions provided by the compiler to support
specific features of the R32C/100 microcomputer.

EXTENDED KEYWORDS

The compiler provides a set of keywords that can be used for configuring how the code
is generated. For example, there are keywords for controlling the memory type for
individual variables as well as for declaring special function types.

Getting started ___o

By default, language extensions are enabled in the IDE.

The command line option -e makes the extended keywords available, and reserves them
so that they cannot be used as variable names. See, -e, page 137 for additional
information.

For detailed descriptions of the extended keywords, see the chapter Extended keywords.

PRAGMA DIRECTIVES

The pragma directives control the behavior of the compiler, for example how it allocates
memory, whether it allows extended keywords, and whether it issues warning messages.

The pragma directives are always enabled in the compiler. They are consistent with
ISO/ANSI C, and are very useful when you want to make sure that the source code is
portable.

For detailed descriptions of the pragma directives, see the chapter Pragma directives.

PREDEFINED SYMBOLS

With the predefined preprocessor symbols, you can inspect your compile-time
environment, for example time of compilation, and the code and data models.

For detailed descriptions of the predefined symbols, see the chapter The preprocessor.

SPECIAL FUNCTION TYPES

The special hardware features of the R32C/100 microcomputer are supported by the
compiler’s special function types: interrupt, monitor, and task. You can write a complete
application without having to write any of these functions in assembler language.

For detailed information, see Primitives for interrupts, concurrency, and OS-related
programming, page 22.
ACCESSING LOW-LEVEL FEATURES

For hardware-related parts of your application, accessing low-level features is essential.
The compiler supports several ways of doing this: intrinsic functions, mixing C and
assembler modules, and inline assembler. For information about the different methods,
see Mixing C and assembler, page 71.

Part |. Using the compiler 9

Special support for embedded systems

IAR C/C++ Compiler
10 Reference Guide

Data storage

This chapter gives a brief introduction to the memory layout of the R32C/100
microcomputer and the fundamental ways data can be stored in memory: on
the stack, in static (global) memory, or in heap memory. For efficient memory
usage, the compiler provides a set of data models and data memory attributes,
allowing you to fine-tune the access methods, resulting in smaller code size.

The concepts of data models and memory types are described in relation to
structures, Embedded C++ class objects, and non-initialized memory. Finally,

detailed information about data storage on the stack and the heap is provided.

Introduction

The R32C IAR C/C++ Compiler supports R32C/100 devices that have continuous
memory ranging from 0x00000000 to 0xFFFFFFFF. Different types of physical
memory can be placed in the memory range. A typical application will have both
read-only memory (ROM) and read/write memory (RAM). In addition, some parts of
the memory range contain processor control registers and peripheral units.

The compiler can access memory in different ways. The access methods range from
generic but expensive methods that can access the full memory space, to cheap methods
that can access limited memory areas. To read more about this, see Memory types, page
13.

DIFFERENT WAYS TO STORE DATA
In a typical application, data can be stored in memory in three different ways:

e Auto variables.

All variables that are local to a function, except those declared static, are stored on
the stack. These variables can be used as long as the function executes. When the
function returns to its caller, the memory space is no longer valid.

o Global variables and local variables declared static.

In this case, the memory is allocated once and for all. The word static in this context
means that the amount of memory allocated for this kind of variables does not change
while the application is running. For more information, see Data models, page 12 and
Memory types, page 13.

Part |. Using the compiler

Data models

12

o Dynamically allocated data.

An application can allocate data on the seap, where the data it remains valid until it
is explicitly released back to the system by the application. This type of memory is
useful when the number of objects is not known until the application executes. Note
that there are potential risks connected with using dynamically allocated data in
systems with a limited amount of memory, or systems that are expected to run for a
long time. For more information, see Dynamic memory on the heap, page 19.

Data models

IAR C/C++ Compiler
Reference Guide

Technically, the data model specifies the default memory type. This means that the data
model controls the default placement of static and global variables.

Note: The default placement of constant data is controlled by the code model, see Code
models and memory attributes for function storage, page 21.

The data model only specifies the default memory type. It is possible to override this for
individual variables. For information about how to specify a memory type for individual
objects, see Using data memory attributes, page 14.

SPECIFYING A DATA MODEL

Three data models are implemented: Near, Far, and Huge. These models are controlled
by the --data_model option. Each model has a default memory type. If you do not
specify a data model option, the compiler will use the Far data model.

Your project can only use one data model at a time, and the same model must be used
by all user modules and all library modules. However, you can override the default
memory type for individual data objects by explicitly specifying a memory attribute,
using either keywords or the #pragma type_attribute directive.

This table summarizes the different data models:

Default memory

Data model attribute Placement of variable data

Near __dataleé 0x0-0x7FFF, 0OXFFFF8000-0xFFFFFFFF
Far __data24 0x0-0x7FFFFF, 0xFF800000-0xFFFFFFFF
Huge __data32 0x0-0xFFFFFFFF

Table 4: Data model characteristics

See the IAR Embedded Workbench® IDE User Guide for information about setting
options in the IDE.

Data storage °

EI Use the --data_model option to specify the data model for your project; see

--data_model, page 132.

The Near data model

The Near data model places variables in the lowest or highest 32 Kbytes of memory.
This is the only memory type that can be accessed using 2-byte direct addressing.

The Far data model

The Far data model places variables in the lowest or highest 8 Mbytes of memory, using
3-byte direct addressing. It generates slightly more code than 2-byte-addressing using
the Near data model, but it is more flexible.

The Huge data model

The Huge data model can place variables anywhere in memory, using indirect
addressing. This is very convenient and flexible, but significantly less efficient
compared to the Near and Far data models.

Memory types

This section describes the concept of memory types used for accessing data by the
compiler. It also discusses pointers in the presence of multiple memory types. For each
memory type, the capabilities and limitations are discussed.

The compiler uses different memory types to access data that is placed in different areas
of the memory. There are different methods for reaching memory areas, and they have
different costs when it comes to code space, execution speed, and register usage. The
access methods range from generic but expensive methods that can access the full
memory space, to cheap methods that can access limited memory areas. Each memory
type corresponds to one memory access method. If you map different memories—or
part of memories—to memory types, the compiler can generate code that can access
data efficiently.

For example, the memory accessed using 16-bit addressing is called datal6 memory.

To choose a default memory type that your application will use, select a data model.
However, it is possible to specify—for individual variables—different memory types.
This makes it possible to create an application that can contain a large amount of data,
and at the same time make sure that variables that are used often are placed in memory
that can be efficiently accessed.

For more information about memory access methods, see Memory access methods, page
86.

Part |. Using the compiler 13

Memory types

14

IAR C/C++ Compiler
Reference Guide

DATAI6

The datal6 memory consists of the low 32 Kbytes and the high 32 Kbytes of memory.
In hexadecimal notation, this is the address ranges 0x0—0x7FFF and
0XFFFF8000—0xXFFFFFFFF.

A datal6 object can only be placed in datal6 memory, and the size of such an object is
limited to 32 Kbytes-1. By using objects of this type, the code generated by the compiler
to access them is minimized. This means a smaller memory footprint for the application.

DATA24

The data24 memory consists of the memory in the ranges 0x0—0x7FFFFF and
0xXFF800000—0xXFFFFFFFF.

The drawback of the data24 memory type is that the code generated to access the
memory is slightly larger than datal6 memory.

DATA32

Using this memory type, you can place the data objects anywhere in memory. The
drawback is that it can only use indirect addressing, which uses more processor registers
and might force local variables to be stored on the stack rather than being allocated in
registers. The resulting code is significantly larger and slower.

SBDATAI6

The sbdatal6 memory consists of the first 64 Kbytes of memory after the SB (static base)
register. In hexadecimal notation, this is the address range SB + (0x0—0xFFFF).

SBDATA24

The sbdata24 memory consists of the first 16 Mbytes of memory after the SB (static
base) register. In hexadecimal notation, this is the address range
SB + (0x0—O0xFFFFFF).

USING DATA MEMORY ATTRIBUTES

The compiler provides a set of extended keywords, which can be used as data memory
attributes. These keywords let you override the default memory type for individual data
objects, which means that you can place data objects in other memory areas than the
default memory. This also means that you can fine-tune the access method for each
individual data object, which results in smaller code size.

Note: Even though the default placement of constant data is controlled by the code
model, data memory attributes are used for overriding the default placement.

Data storage °

This table summarizes the available memory types and their corresponding keywords:

Address range for variables and Default in data
Memory type Keyword
constants model

Datal 6 __datale 0x0-0x7FFF Near
0xXFFFF8000-0xFFFFFFFF

Data24 __data24 0x0-0x7FFFFF Far
0xFF800000-0xFFFFFFFF

Data32 __data32 0x0-0xFFFFFFFF Huge

Sbdatal é __sbdatalé6 SB + 0x0-0xFFFF —

Sbdata24 __sbdata24 SB + 0x0-0xFFFFFF —

Table 5: Memory types and their corresponding memory attributes

All data pointers are 32 bits.
The keywords are only available if language extensions are enabled in the compiler.

In the IDE, language extensions are enabled by default.

Use the -e compiler option to enable language extensions. See -e, page 137 for
@ additional information.

For reference information about each keyword, see Descriptions of extended keywords,
page 177.

Syntax

The keywords follow the same syntax as the type qualifiers const and volatile. The
memory attributes are fype attributes and therefore they must be specified both when
variables are defined and in the declaration, see General syntax rules for extended
keywords, page 173.

The following declarations place the variable i and j in data24 memory. The variables
k and 1 will also be placed in data24 memory. The position of the keyword does not have
any effect in this case:

__data24 int i, j;
int __data24 k, 1;

Note that the keyword affects both identifiers. If no memory type is specified, the default
memory type is used.

In addition to the rules presented here—to place the keyword directly in the code—the
directive #pragma type_attribute can be used for specifying the memory attributes.
The advantage of using pragma directives for specifying keywords is that it offers you a
method to make sure that the source code is portable. Refer to the chapter Pragma

Part |. Using the compiler 15

Memory types

16

IAR C/C++ Compiler
Reference Guide

directives for details about how to use the extended keywords together with pragma
directives.

Type definitions

Storage can also be specified using type definitions. These two declarations are
equivalent:

typedef char __data24 Byte;
Byte b;

and

__data24 char b;

STRUCTURES AND MEMORY TYPES

For structures, the entire object is placed in the same memory type. It is not possible to
place individual structure members in different memory types.

In the example below, the variable gamma is a structure placed in data24 memory.

struct MyStruct
{
int alpha;
int beta;
}s
__data24 struct MyStruct gamma;

This declaration is incorrect:

struct MySecondStruct
{

int blue;

__data24 int green; /* Error! */
Y

MORE EXAMPLES

The following is a series of examples with descriptions. First, some integer variables are
defined and then pointer variables are introduced. It makes no difference whether the
memory attribute is placed before or after the data type.

To read the following examples, start from the left and add one qualifier at each step

int a; A variable defined in default memory
determined by the data model in use.

int __datalé b; A variable in datal6 memory.

Data storage °

__data24 int c; A variable in data24 memory.

int * d; A pointer stored in default memory. The pointer
points to an integer in default memory.

C++ and memory types

A C++ class object is placed in one memory type, in the same way as for normal C
structures. However, the class members that are considered to be part of the object are
the non-static member variables. The static member variables can be placed individually
in any kind of memory.

Remember, in C++ there is only one instance of each static member variable, regardless
of the number of class objects.

Also note that when calling class methods, the this pointer uses the default pointer
type.

Example

In the example below, an object, named delta, of the type MyClass is defined in datal6
memory. The class contains a static member variable that is stored in data24 memory.

// The class declaration (placed in a header file):
class MyClass
{
public:
int alpha;
int beta;

__data24 static int gamma;
Y

// Definitions needed (should be placed in a source file):
__data24 int MyClass::gamma;

// A variable definition:
__datal6 MyClass delta;

Auto variables—on the stack

Variables that are defined inside a function—and not declared static—are named auto
variables by the C standard. A few of these variables are placed in processor registers;
the rest are placed on the stack. From a semantic point of view, this is equivalent. The

Part |. Using the compiler 17

Auto variables—on the stack

18

IAR C/C++ Compiler
Reference Guide

main differences are that accessing registers is faster, and that less memory is required
compared to when variables are located on the stack.

Auto variables can only live as long as the function executes; when the function returns,
the memory allocated on the stack is released.

THE STACK

The stack can contain:

Local variables and parameters not stored in registers
Temporary results of expressions

The return value of a function (unless it is passed in registers)

Processor state during interrupts

Processor registers that should be restored before the function returns (callee-save
registers).

The stack is a fixed block of memory, divided into two parts. The first part contains
allocated memory used by the function that called the current function, and the function
that called it, etc. The second part contains free memory that can be allocated. The
borderline between the two areas is called the fop of stack and is represented by the stack
pointer, which is a dedicated processor register. Memory is allocated on the stack by
moving the stack pointer.

A function should never refer to the memory in the area of the stack that contains free
memory. The reason is that if an interrupt occurs, the called interrupt function can
allocate, modify, and—of course—deallocate memory on the stack.

Advantages

The main advantage of the stack is that functions in different parts of the program can
use the same memory space to store their data. Unlike a heap, a stack will never become
fragmented or suffer from memory leaks.

It is possible for a function to call itself—a recursive function—and each invocation can
store its own data on the stack.
Potential problems

The way the stack works makes it impossible to store data that is supposed to live after
the function returns. The following function demonstrates a common programming

Data storage °

mistake. It returns a pointer to the variable x, a variable that ceases to exist when the
function returns.

int * MyFunction/()
{
int x;
do something
return &x;

}

Another problem is the risk of running out of stack. This will happen when one function
calls another, which in turn calls a third, etc., and the sum of the stack usage of each
function is larger than the size of the stack. The risk is higher if large data objects are
stored on the stack, or when recursive functions—functions that call themselves either
directly or indirectly—are used.

Dynamic memory on the heap

Memory for objects allocated on the heap will live until the objects are explicitly
released. This type of memory storage is very useful for applications where the amount
of data is not known until runtime.

In C, memory is allocated using the standard library function malloc, or one of the
related functions calloc and realloc. The memory is released again using free.

In C++, a special keyword, new, allocates memory and runs constructors. Memory
allocated with new must be released using the keyword delete.

Potential problems

Applications that are using heap-allocated objects must be designed very carefully,
because it is easy to end up in a situation where it is not possible to allocate objects on
the heap.

The heap can become exhausted if your application uses too much memory. It can also
become full if memory that no longer is in use was not released.

For each allocated memory block, a few bytes of data for administrative purposes is
required. For applications that allocate a large number of small blocks, this
administrative overhead can be substantial.

There is also the matter of fragmentation; this means a heap where small sections of free
memory is separated by memory used by allocated objects. It is not possible to allocate
a new object if no piece of free memory is large enough for the object, even though the
sum of the sizes of the free memory exceeds the size of the object.

Part |. Using the compiler 19

Dynamic memory on the heap

Unfortunately, fragmentation tends to increase as memory is allocated and released. For
this reason, applications that are designed to run for a long time should try to avoid using
memory allocated on the heap.

IAR C/C++ Compiler
20 Reference Guide

Functions

This chapter contains information about functions. It gives a brief overview of
function-related extensions—mechanisms for controlling functions—and
describes some of these mechanisms in more detail.

Function-related extensions

In addition to the ISO/ANSI C standard, the compiler provides several extensions for
writing functions in C. Using these, you can:

Control the storage of functions in memory

°
o Use primitives for interrupts, concurrency, and OS-related programming
e Facilitate function optimization

°

Access hardware features.

The compiler uses compiler options, extended keywords, pragma directives, and
intrinsic functions to support this.

For more information about optimizations, see Writing efficient code, page 111. For
information about the available intrinsic functions for accessing hardware operations,
see the chapter Intrinsic functions.

Code models and memory attributes for function storage
By means of code models, the compiler supports placing functions and constant literals
in a default part of memory, or in other words, use a default address size for the functions
and constants. Technically, the code models control the following:
o The possible memory range for storing the function or constant
o The maximum module size
o The maximum application size
o The default memory attribute.
The compiler supports two code models. If you do not specify a code model, the
compiler will use the Far code model as default. Your project can only use one code

model at a time, and the same model must be used by all user modules and all library
modules.

Part |. Using the compiler

Primitives for interrupts, concurrency, and OS-related programming

22

These code models are available:

Code model Address range for placing functions and constant data
Far (default) 0xFF800000-0xFFFFFFFF
Huge 0x0-0xFFFFFFFF

Table 6: Code models

See the IAR Embedded Workbench® IDE User Guide for information about specifying
a code model in the IDE.

Use the --code_model option to specify the code model for your project; see
--code_model, page 131.

USING FUNCTION MEMORY ATTRIBUTES

It is possible to override the default placement for individual functions. Use the
appropriate function memory attribute to specify this. These attributes are available:

Function memory Default in
Address range Description

attribute code model

__code24 0xFF800000— Far The function can be placed in the high 8
OxFFFFFFFF Mbytes of memory.

__code32 0x0-0xFFFFFFFF Huge The function can be placed anywhere in

memory.

Table 7: Function memory attributes

For detailed syntax information and for detailed information about each attribute, see the
chapter Extended keywords.

Note: Even though the default placement of constant data is controlled by the code
model, data memory attributes are used for overriding the default placement of
constants.

Primitives for interrupts, concurrency, and OS-related programming

IAR C/C++ Compiler
Reference Guide

The IAR C/C++ Compiler for R32C provides the following primitives related to writing
interrupt functions, concurrent functions, and OS-related functions:

o The extended keywords __interrupt
_no_return, and __monitor

fast_interrupt, __task,

s —

o The pragma directive #pragma vector

® The intrinsic functions __enable_interrupt
__get_interrupt_state, _set_interrupt_state,

disable_interrupt,

[J—

Functions __4

__get_interrupt_level set_interrupt_level,

Jp—

__wait_for_interrupt interrupt_on_overflow,

s ——

__software_interrupt, __get_VCT_register set_VCT_register

J—

__get_interrupt_table, and __set_interrupt_table.

INTERRUPT FUNCTIONS

In embedded systems, using interrupts is a method for handling external events
immediately; for example, detecting that a button was pressed.

In general, when an interrupt occurs in the code, the microcomputer simply stops
executing the code it runs, and starts executing an interrupt routine instead. It is
extremely important that the environment of the interrupted function is restored after the
interrupt is handled; this includes the values of processor registers and the processor
status register. This makes it possible to continue the execution of the original code after
the code that handled the interrupt was executed.

The R32C/100 microcomputer supports many interrupt sources. For each interrupt
source, an interrupt routine can be written. Each interrupt routine is associated with a
vector number, which is specified in the R32C/100 microcomputer documentation from
the chip manufacturer. The interrupt vector is the offset into the interrupt vector table. If
you want to handle several different interrupts using the same interrupt function, you can
specify several interrupt vectors. For the R32C/100 microcomputer, the interrupt vector
table always starts at the address 0xFFFFFFDC for non-maskable interrupts and at the
base of the INTB register for all other interrupts.

The header file iodevice.h, where device corresponds to the selected device,
contains predefined names for the existing exception vectors.

To define an interrupt function, the __interrupt keyword and the #pragma vector
directive can be used. For example:

#pragma vector=TIMER A0 /* Symbol defined in I/O header file */
__interrupt void my_interrupt_routine (void)

{

/* Do something */

}

Note: An interrupt function must have the return type void, and it cannot specify any
parameters.

If a vector is specified in the definition of an interrupt function, the processor interrupt
vector table is populated. It is also possible to define an interrupt function without a
vector. This is useful if an application is capable of populating or changing the interrupt
vector table at runtime. See the chip manufacturer’s documentation for more
information about the interrupt vector table.

Part |. Using the compiler 23

Primitives for interrupts, concurrency, and OS-related programming

24

IAR C/C++ Compiler
Reference Guide

MONITOR FUNCTIONS

A monitor function causes interrupts to be disabled during execution of the function. At
function entry, the status register is saved and interrupts are disabled. At function exit,
the original status register is restored, and thereby the interrupt status that existed before
the function call is also restored.

To define a monitor function, you can use the __monitor keyword. For reference
information, see __monitor, page 180.

Avoid using the __monitor keyword on large functions, since the interrupt will
otherwise be turned off for too long.

Example of implementing a semaphore in C

In the following example, a semaphore is implemented using one static variable and two
monitor functions. A semaphore can be locked by one process, and is used for
preventing processes from simultaneously using resources that can only be used by one
process at a time, for example a USART. The __moni tor keyword assures that the lock
operation is atomic; in other words it cannot be interrupted.

/* When the_lock is non-zero, someone owns the lock. */
static volatile unsigned int the_lock = 0;

/* get_lock -- Try to lock the lock.
* Return 1 on success and 0 on failure. */

__monitor int get_lock(void)
{
if (the_lock == 0)
{
/* Success, we managed to lock the lock. */
the_lock = 1;
return 1;
}
else
{
/* Failure, someone else has locked the lock. */
return O;

/* release_lock -- Unlock the lock. */

__monitor void release_lock(void)
{
the_lock = 0;

Functions __4

This is an example of a program fragment that uses the semaphore:

void my_program(void)
{
if (get_lock()
{
/* ... Do something ... */

/* When done, release the lock. */
release_lock() ;

Example of implementing a semaphore in C++

In C++, it is common to implement small methods with the intention that they should be
inlined. However, the compiler does not support inlining of functions and methods that
are declared using the __monitor keyword.

In the following example in C++, an auto object is used for controlling the monitor
block, which uses intrinsic functions instead of the __monitor keyword.

#include <intrinsics.h>
volatile long tick_count = 0;

/* Class for controlling critical blocks */
class Mutex
{
public:
Mutex ()
{
_state = __get_interrupt_state();
__disable_interrupt () ;

~Mutex ()
{

__set_interrupt_state(_state);

private:
__istate_t _state;

Y

void f()

Part |. Using the compiler 25

Primitives for interrupts, concurrency, and OS-related programming

static long next_stop =
extern void do_stuff();
long tick;

/* A critical block */
{

Mutex m;

'tick_count' in a safe way

/* Read volatile variable
and put the value in a local variable */

tick = tick_count;

if (tick >= next_stop)
{
next_stop += 100;
do_stuff();

C++ AND SPECIAL FUNCTION TYPES

C++ member functions can be declared using special function types. However, interrupt
member functions must be static. When calling a non-static member function, it must be
applied to an object. When an interrupt occurs and the interrupt function is called, no

such object is available.

IAR C/C++ Compiler
26 Reference Guide

Placing code and data

This chapter describes how the linker handles memory and introduces the
concept of segments. It also describes how they correspond to the memory
and function types, and how they interact with the runtime environment. The
methods for placing segments in memory, which means customizing a linker
command file, are described.

The intended readers of this chapter are the system designers that are
responsible for mapping the segments of the application to appropriate
memory areas of the hardware system.

Segments and memory

In an embedded system, there are many different types of physical memory. Also, it is
often critical where parts of your code and data are located in the physical memory. For
this reason it is important that the development tools meet these requirements.

WHAT IS A SEGMENT?

A segment is a logical entity containing a piece of data or code that should be mapped
to a physical location in memory. Each segment consists of many segment parts.
Normally, each function or variable with static storage duration is placed in a segment
part. A segment part is the smallest linkable unit, which allows the linker to include only
those units that are referred to. The segment could be placed either in RAM or in ROM.
Segments that are placed in RAM do not have any content, they only occupy space.

The compiler has several predefined segments for different purposes. Each segment has
a name that describes the contents of the segment, and a segment memory type that
denotes the type of content. In addition to the predefined segments, you can define your
own segments.

At compile time, the compiler assigns each segment its contents. The IAR XLINK
Linker is responsible for placing the segments in the physical memory range, in
accordance with the rules specified in the linker command file. Ready-made linker
command files are provided, but, if necessary, they can be easily modified according to
the requirements of your target system and application. It is important to remember that,
from the linker's point of view, all segments are equal; they are simply named parts of
memory.

For detailed information about individual segments, see the chapter Segment reference.

Part |. Using the compiler

27

Placing segments in memory

28

Segment memory type

XLINK assigns a segment memory type to each of the segments. In some cases, the
individual segments have the same name as the segment memory type they belong to,
for example CODE. Make sure not to confuse the individual segment names with the
segment memory types in those cases.

By default, the compiler uses these XLINK segment memory types:

Segment memory type Description

CODE For executable code
CONST For data placed in ROM
DATA For data placed in RAM

Table 8: XLINK segment memory types

XLINK supports several other segment memory types than the ones described above.
However, they exist to support other types of microcontrollers.

For more details about segments, see the chapter Segment reference.

Placing segments in memory

IAR C/C++ Compiler
Reference Guide

The placement of segments in memory is performed by the IAR XLINK Linker. It uses
a linker command file that contains command line options which specify the locations
where the segments can be placed, thereby assuring that your application fits on the
target chip. To use the same source code with different derivatives, just rebuild the code
with the appropriate linker command file.

In particular, the linker command file specifies:

e The placement of segments in memory

o The maximum stack size

o The maximum heap size.

This section describes the methods for placing the segments in memory, which means

that you must customize the linker command file to suit the memory layout of your
target system. For showing the methods, fictitious examples are used.

CUSTOMIZING THE LINKER COMMAND FILE

The config directory contains ready-made linker command files for all supported
devices (filename extension xc1). The files contain the information required by the
linker, and are ready to be used. The only change you will normally have to make to a
supplied linker command file is to customize it so it fits the target system memory map.

Placing code and data ___4

If, for example, your application uses additional external RAM, you must add details
about the external RAM memory area.

As an example, we can assume that the target system has this memory layout:

Range Type
0x00000-0x5FFFF RAM
0x60000-0x7FFFF ROM
0xXFFEOOOOO-OXFFFFFFFF ROM

Table 9: Memory layout of a target system (example)

The ROM can be used for storing CONST and CODE segment memory types. The RAM
memory can contain segments of DATA type. The main purpose of customizing the linker
command file is to verify that your application code and data do not cross the memory
range boundaries, which would lead to application failure.

Remember not to change the original file. We recommend that you make a copy in the
working directory, and modify the copy instead.

The contents of the linker command file

Among other things, the linker command file contains three different types of XLINK
command line options:
o The CPU used:

-cr32c

This specifies your target microcomputer.

e Definitions of constants used in the file. These are defined using the XLINK option
-D.

o The placement directives (the largest part of the linker command file). Segments can
be placed using the -z and -P options. The former will place the segment parts in
the order they are found, while the latter will try to rearrange them to make better
use of the memory. The -P option is useful when the memory where the segment
should be placed is not continuous.

In the linker command file, all numbers are specified in hexadecimal format. However,
neither the prefix 0x nor the suffix h is used.

Note: The supplied linker command files include comments explaining the contents.

See the IAR Linker and Library Tools Reference Guide for more details.

Part |. Using the compiler 29

Placing segments in memory

30

IAR C/C++ Compiler
Reference Guide

Using the -Z command for sequential placement

Use the -Z command when you must keep a segment in one consecutive chunk, when
you must preserve the order of segment parts in a segment, or, more unlikely, when you
must put segments in a specific order.

The following illustrates how to use the -z command to place the segment MY SEGMENTA
followed by the segment MYSEGMENTB in CONST memory (that is, ROM) in the memory
range 0xFFF52000-0xFFF5CFFF.

-Z (CONST)MYSEGMENTA , MYSEGMENTB=FFF52000-FFF5CFFF

To place two segments of different types consecutively in the same memory area, do not
specify a range for the second segment. In the following example, the MYSEGMENTA
segment is first located in memory. Then, the rest of the memory range could be used by
MYCODE.

-Z (CONST)MYSEGMENTA=FFF52000-FFF5CFFF
-Z (CODE) MYCODE

Two memory ranges can overlap. This allows segments with different placement
requirements to share parts of the memory space; for example:

-Z (CONST)MYSMALLSEGMENT=FFF52000-FFF520FF
-Z (CONST) MYLARGESEGMENT=FFF52000-FFF5CFFF

Even though it is not strictly required, make sure to always specify the end of each
memory range. If you do this, the IAR XLINK Linker will alert you if your segments do
not fit in the available memory.

Using the -P command for packed placement

The -p command differs from -z in that it does not necessarily place the segments (or
segment parts) sequentially. With -p it is possible to put segment parts into holes left by
earlier placements.

The following example illustrates how the XLLINK -P option can be used for making
efficient use of the memory area. This command will place the data segment MYDATA in
DATA memory (that is, in RAM) in a fictitious memory range:

-P (DATA)MYDATA=0-1FFF, 0x30000-0x31000

If your application has an additional RAM area in the memory range
0x4F000-0x4F7FF, you can simply add that to the original definition:

-P (DATA)MYDATA=0-1FFF, 4F000-4F7FF, 0x30000-0x31000

The linker can then place some parts of the MYDATA segment in the first range, and some
parts in the second range. If you had used the -z command instead, the linker would
have to place all segment parts in the same range.

Placing code and data ___4

Note: Copy initialization segments—BASENAME T and BASENAME_ID—must be
placed using -z.

Symbols for available memory areas

To make things easier, the start and end addresses of the memory areas available for your
application are defined as symbols in the linker command file:

// Memory areas available for the application
-D_USER_RAM_BEGIN=00000400
-D_USER_RAM_END=0003FFFF
-D_USER_ROM_BEGIN=FFE00000
-D_USER_ROM_END=FFFFFFFF

-D_SB_START=1000

Data segments

This section contains descriptions of the segments used for storing the different types of
data: static, stack, heap, and located.

To understand how the data segments work, you must be familiar with the different
memory types and the different data models available in the compiler. If you need to
refresh these details, see the chapter Data storage.

STATIC MEMORY SEGMENTS

Static memory is memory that contains variables that are global or declared static, as
described in the chapter Data storage. Variables declared static can be divided into these
categories:

Variables that are initialized to a non-zero value

Variables that are initialized to zero

o Variables that are located by use of the @ operator or the #pragma location
directive

® Variables that are declared as const and therefore can be stored in ROM
e Variables defined with the __no_init keyword, meaning that they should not be
initialized at all.

For the static memory segments it is important to be familiar with:

o The segment naming

o How the memory types correspond to segment groups and the segments that are part
of the segment groups

e Restrictions for segments holding initialized data

Part |. Using the compiler 31

Data segments

32

IAR C/C++ Compiler
Reference Guide

o The placement and size limitation of the segments of each group of static memory
segments.

Segment naming

The names of the segments consist of two parts—the segment group name and a
suffix—for instance, DATA16_7. There is a segment group for each memory type, where
each segment in the group holds different categories of declared data. The names of the
segment groups are derived from the memory type and the corresponding keyword, for
example datal6 and __datal6. The following table summarizes the memory types and
the corresponding segment groups:

Memory type Segment group Memory range

Datal 6 DATAl6 0x0-0x7FFF and 0XFFFF8000-0xFFFFFFFF
Data24 DATA24 0x0-0x7FFFFF and 0xFF800000-0XFFFFFFFF
Data32 DATA32 0x0-0XFFFFFFFF

Sbdatalé SBDATAL6 SB + (0x0-0xXFFFF)

Sbdata24 SBDATA24 SB + (0x0-0xFFFFFF)

Table 10: Memory types with corresponding segment groups

Some of the declared data is placed in non-volatile memory, for example ROM, and
some of the data is placed in RAM. For this reason, it is also important to know the
XLINK segment memory type of each segment. For more details about segment
memory types, see Segment memory type, page 28.

This table summarizes the different suffixes, which XLINK segment memory type they
are, and which category of declared data they denote:

Categories of declared data Suffix Segment memory type
Non-initialized data N DATA

Zero-initialized data Z DATA

Non-zero initialized data I DATA

Initializers for the above ID CONST

Constants C CONST

Non-initialized absolute addressed data AN

Constant absolute addressed data AC

Table 11: Segment name suffixes

For a list of all supported segments, see Summary of segments, page 225.

Placing code and data ___4

Examples

These examples demonstrate how declared data is assigned to specific segments:

__datalé int jJ; The datal6 variables that are to be initialized to zero
__datalé int i = 0; when the system starts are placed in the segment
DATAL6_Z.

__no_init __datalé int j;The datal6 non-initialized variables are placed in the
segment DATA16_N.

__datalé int j = 4; The datal6 non-zero initialized variables are placed in
the segment DATA16_T in RAM, and the
corresponding initializer data in the segment
DATA16_ID in ROM.

Initialized data

When an application is started, the system startup code initializes static and global
variables in these steps:

It clears the memory of the variables that should be initialized to zero.

It initializes the non-zero variables by copying a block of ROM to the location of the
variables in RAM. This means that the data in the ROM segment with the suffix ID is
copied to the corresponding I segment.

This works when both segments are placed in continuous memory. However, if one of
the segments is divided into smaller pieces, it is important that:

o The other segment is divided in exactly the same way

e Itis legal to read and write the memory that represents the gaps in the sequence.
For example, if the segments are assigned these ranges, the copy will fail:
DATALG6_I 0x1000-0x10FF and 0x1200-0x12FF

DATAl16_1ID 0x4000-0x41FF

However, in this example, the linker will place the content of the segments in identical
order, which means that the copy will work appropriately:

DATAl6_TI 0x1000-0x10FF and 0x1200-0x12FF

DATA16_ID 0x4000-0x40FF and 0x4200-0x42FF

Part |. Using the compiler 33

Data segments

34

IAR C/C++ Compiler
Reference Guide

The 1D segment can, for all segment groups, be placed anywhere in memory, because it
is not accessed using the corresponding access method. Note that the gap between the
ranges will also be copied.

Finally, global C++ objects are constructed, if any.

Data segments for static memory in the default linker command file

The default linker command file contains these directives to place the static data
segments:

//First, the segments to be placed in ROM are defined:
-Z (CONST)DATAl6_C=FFFF8000-_USER_ROM_END

-Z (CONST)DATA24_C=_USER_ROM_BEGIN-_USER_ROM_END

-Z (CONST)DATA32_C

-Z (CONST)DATAl6_ID,DATA24_ID,DATA32_ID

//Then, the RAM data segments are placed in memory:

-Z (DATA)DATA16_N,DATAL16_Z,DATAl6_I=_USER_RAM BEGIN-04DF,
0500-_USER_RAM_END

-Z (DATA)DATA24_N,DATA24_7,DATA24_1T

-Z (DATA)DATA32_N,DATA32_Z,DATA32_TI

A line without a range assignment inherits the range from the previous line. All the data
segments are placed in the area used by on-chip RAM. For information about the
memory address symbols, see Symbols for available memory areas, page 31.

THE INTERNAL DATA STACK

The internal data stack is used by functions to store variables and other information that
is used locally by functions, as described in the chapter Data storage. It is a continuous
block of memory pointed to by the processor stack pointer register USP.

The data segment used for holding the stack is called cSTACK. The system startup code
initializes the stack pointer to the end of the stack segment.

Allocating a memory area for the stack is done differently using the command line
interface as compared to when using the IDE.

Stack size allocation in the IDE

Choose Project>Options. In the General Options category, click the Stack/Heap tab.

Add the required stack size in the Stack size text box.

Stack size allocation from the command line

The size of the CSTACK segment is defined in the linker command file.

Placing code and data ___4

The default linker file sets up a constant representing the size of the stack, at the
beginning of the linker file:

-D_CSTACK_SIZE=size

Note: Normally, this line is prefixed with the comment character //. To make the
directive take effect, remove the comment character.

Specify an appropriate size for your application. Note that the size is written
hexadecimally without the 0x notation.

Placement of stack segment

Further down in the linker file, the actual stack segment is defined in the memory area
available for the stack:

-7 (DATA) CSTACK+_CSTACK_SIZE#_USER_RAM_BEGIN-_USER_RAM_END
Note:

o This range does not specify the size of the stack; it specifies the range of the
available memory

o The # allocates the CSTACK segment at the end of the memory area. In practice,
this means that the stack will get all remaining memory at the same time as it is
guaranteed that it will be at least _CSTACK_SIZE bytes in size.

Stack size considerations

The compiler uses the internal data stack, CSTACK, for a variety of user program
operations, and the required stack size depends heavily on the details of these
operations. If the given stack size is too large, RAM is wasted. If the given stack size is
too small, two things can happen, depending on where in memory you located your
stack. Both alternatives are likely to result in application failure. Either program
variables will be overwritten, leading to undefined behavior, or the stack will fall outside
of the memory area, leading to an abnormal termination of your application. Because
the second alternative is easier to detect, you should consider placing your stack so that
it grows toward the end of the memory, if possible.

THE INTERRUPT STACK

In addition to the application stack segment, CSTACK, there is also a stack segment for
some interrupts, ISTACK, that uses the ISP stack pointer register. In other respects, the
information about CSTACK applies to ISTACK as well.

THE HEAP

The heap contains dynamic data allocated by the C function malloc (or one of its
relatives) or the C++ operator new.

Part |. Using the compiler 35

Data segments

36

IAR C/C++ Compiler
Reference Guide

If your application uses dynamic memory allocation, you should be familiar with:

e Linker segments used for the heap

o Allocating the heap size, which differs depending on which build interface you are
using
e Placing the heap segments in memory.

The memory allocated to the heap is placed in the segment HEAP, which is only included
in the application if dynamic memory allocation is actually used.

Heap size allocation in the IDE
Choose Project>Options. In the General Options category, click the Stack/Heap tab.

Add the required heap size in the Heap size text box.

Heap size allocation from the command line
The size of the heap segment is defined in the linker command file.

The default linker file sets up a constant, representing the size of the heap, at the
beginning of the linker file:

-D_HEAP_SIZE=size

Note: Normally, this line is prefixed with the comment character //. To make the
directive take effect, remove the comment character.

Specify the appropriate size for your application.

Placement of heap segment
The actual heap segment is allocated in the memory area available for the heap:
-Z (DATA) HEAP+_HEAP_SIZE=_USER_RAM_BEGIN-04DF, 0500-_USER_RAM_END

Note: This range does not specify the size of the heap; it specifies the range of the
available memory.

Heap size and standard 1/O

If you excluded FILE descriptors from the DLIB runtime environment, as in the Normal
configuration, there are no input and output buffers at all. Otherwise, as in the Full
configuration, be aware that the size of the input and output buffers is set to 512 bytes
in the stdio library header file. If the heap is too small, I/O will not be buffered, which
is considerably slower than when I/O is buffered. If you execute the application using
the simulator driver of the IAR C-SPY® Debugger, you are not likely to notice the speed
penalty, but it is quite noticeable when the application runs on an R32C/100

Placing code and data ___4

microcomputer. If you use the standard I/O library, you should set the heap size to a
value which accommodates the needs of the standard I/O buffer.

LOCATED DATA

A variable that is explicitly placed at an address, for example by using the #pragma
location directive or the @ syntax, is placed in either the DATA16_AC or the
DATA16_AN segment. The former is used for constant-initialized data, and the latter for
items declared as __no_init. The individual segment part of the segment knows its
location in the memory space, and it does not have to be specified in the linker command
file.

If you create your own segments, these must also be defined in the linker command file
using the -z or -P segment control directives.

Code segments

This section contains descriptions of the segments used for storing code, and the
interrupt vector table. For a complete list of all segments, see Summary of segments,
page 225. For information about the memory address symbols, see Symbols for
available memory areas, page 31.

STARTUP CODE

The segment CSTART contains code used during system setup and runtime initialization
(cstartup), and system termination (cexit). The segment must be placed into one
continuous memory space, which means that the -p segment directive cannot be used.

NORMAL CODE

Functions declared without a memory type attribute are placed in different segments,
depending on which code model you are using.

If you use the Far code model, or if the function is explicitly declared __code24, the
code is placed in CODE24 segment. If you use the Huge code model, or if the function is
explicitly declared __code32, the code is placed in CODE32 segment. Again, this is a
simple operation in the linker command file:

-P (CODE) CODE24=_USER_ROM_BEGIN-_USER_ROM_END
-P (CODE) CODE32=_USER_ROM_BEGIN-_USER_ROM_END

The -P linker directive is used because it allows XLINK to split up the segments and
pack their contents more efficiently. This is useful here, because the memory range is
non-consecutive.

Part |. Using the compiler 37

C++ dynamic initialization

38

INTERRUPT VECTORS

The interrupt vector table contains pointers to interrupt routines, including the reset
routine. The tables are placed in the segments INTVEC (normal interrupts) and NMIVEC
(non-maskable interrupts and the reset vector). You must place the NMIVEC segment at
a specific address, see Interrupt functions, page 23. The linker directives would then
look like this:

-Z (CONST)NMIVEC=FFFFFFDC-_USER_ROM_END
-Z (CONST) INTVEC=_USER_ROM_BEGIN-_USER_ROM_END

C++ dynamic initialization

In C++, all global objects are created before the main function is called. The creation of
objects can involve the execution of a constructor.

The DIFUNCT segment contains a vector of addresses that point to initialization code.
All entries in the vector are called when the system is initialized.

For example:
-7 (CODE) DIFUNCT=_USER_ROM_BEGIN-_USER_ROM_END

For additional information, see DIFUNCT, page 234.

Verifying the linked result of code and data placement

IAR C/C++ Compiler
Reference Guide

The linker has several features that help you to manage code and data placement, for
example, messages at link time and the linker map file.

SEGMENT TOO LONG ERRORS AND RANGE ERRORS

All code or data that is placed in relocatable segments will have its absolute addresses
resolved at link time. Note that it is not known until link time whether all segments will
fit in the reserved memory ranges. If the contents of a segment do not fit in the address
range defined in the linker command file, XLINK will issue a segment too long error.

Some instructions do not work unless a certain condition holds after linking, for
example that a branch must be within a certain distance or that an address must be even.
XLINK verifies that the conditions hold when the files are linked. If a condition is not
satisfied, XLINK generates a range error or warning and prints a description of the
erTor.

For further information about these types of errors, see the AR Linker and Library Tools
Reference Guide.

Placing code and data ___4

LINKER MAP FILE

XLINK can produce an extensive cross-reference listing, which can optionally contain
the following information:

e A segment map which lists all segments in dump order

o A module map which lists all segments, local symbols, and entries (public symbols)
for every module in the program. All symbols not included in the output can also be
listed

o A module summary which lists the contribution (in bytes) from each module
o A symbol list which contains every entry (global symbol) in every module.

Use the option Generate linker listing in the IDE, or the option -x on the command
line, and one of their suboptions to generate a linker listing.

Normally, XLINK will not generate an output file if any errors, such as range errors,
occur during the linking process. Use the option Range checks disabled in the IDE, or
the option -R on the command line, to generate an output file even if a range error was
encountered.

For further information about the listing options and the linker listing, see the /AR Linker
and Library Tools Reference Guide, and the IAR Embedded Workbench® IDE User
Guide.

Part |. Using the compiler

39

Verifying the linked result of code and data placement

IAR C/C++ Compiler
40 Reference Guide

The DLIB runtime
environment

This chapter describes the runtime environment in which an application
executes. In particular, the chapter covers the DLIB runtime library and how
you can modify it—setting options, overriding default library modules, or
building your own library—to optimize it for your application.

The chapter also covers system initialization and termination; how an
application can control what happens before the function main is called, and
how you can customize the initialization.

The chapter then describes how to configure functionality like locale and file
I/O, how to get C-SPY® runtime support, and how to prevent incompatible
modules from being linked together.

Introduction to the runtime environment

The runtime environment is the environment in which your application executes. The
runtime environment depends on the target hardware, the software environment, and the
application code. The IAR DLIB runtime environment can be used as is together with
the debugger. However, to be able to run the application on hardware, you must adapt
the runtime environment.

This section gives an overview of:

o The runtime environment and its components

e Library selection.

RUNTIME ENVIRONMENT FUNCTIONALITY

The runtime environment supports ISO/ANSI C and C++ including the standard
template library. The runtime environment consists of the runtime library, which
contains the functions defined by these standards, and include files that define the library
interface.

The runtime library is delivered both as prebuilt libraries and as source files, and you
can find them in the product subdirectories r32c\1lib and r32c\src\lib,
respectively.

Part |. Using the compiler

41

Introduction to the runtime environment

The runtime environment also consists of a part with specific support for the target
system, which includes:
o Support for hardware features:

o Direct access to low-level processor operations by means of intrinsic functions,
such as functions for register handling

Peripheral unit registers and interrupt definitions in include files

o Target-specific arithmetic support modules like hardware multipliers or
floating-point coprocessors.

e Runtime environment support, that is, startup and exit code and low-level interface
to some library functions.

o Special compiler support for some functions, for instance functions for
floating-point arithmetics.

The runtime environment support and the size of the heap must be tailored for the
specific hardware and application requirements.

For further information about the library, see the chapter Library functions.

LIBRARY SELECTION

To configure the most code-efficient runtime environment, you must determine your
application and hardware requirements. The more functionality you need, the larger
your code will become.

IAR Embedded Workbench comes with a set of prebuilt runtime libraries. To get the
required runtime environment, you can customize it by:

e Setting library options, for example, for choosing scanf input and print £ output
formatters, and for specifying the size of the stack and the heap

o Opverriding certain library functions, for example cstartup.s53, with your own
customized versions

o Choosing the level of support for certain standard library functionality, for example,
locale, file descriptors, and multibyte characters, by choosing a library
configuration: normal or full.

You can also make your own library configuration, but that requires that you rebuild the
library. This allows you to get full control of the runtime environment.

Note: Your application project must be able to locate the library, include files, and the
library configuration file.

IAR C/C++ Compiler
42 Reference Guide

The DLIB runtime environment __4

SITUATIONS THAT REQUIRE LIBRARY BUILDING

Building a customized library is complex. Therefore, consider carefully whether it is
really necessary.

You must build your own library when:

o There is no prebuilt library for the required combination of compiler options or
hardware support
You want to change the data model of the runtime library
You want to define your own library configuration with support for locale, file

descriptors, multibyte characters, et cetera.

For information about how to build a customized library, see Building and using a
customized library, page 50.

LIBRARY CONFIGURATIONS

It is possible to configure the level of support for, for example, locale, file descriptors,
multibyte characters. The runtime library configuration is defined in the /ibrary
configuration file. It contains information about what functionality is part of the runtime
environment. The configuration file is used for tailoring a build of a runtime library, and
tailoring the system header files used when compiling your application. The less
functionality you need in the runtime environment, the smaller it is.

These DLIB library configurations are available:

Library configuration Description

Normal DLIB No locale interface, C locale, no file descriptor support, no multibyte
characters in printf and scanf, and no hex floats in strtod.

Full DLIB Full locale interface, C locale, file descriptor support, multibyte characters
inprintf and scanf, and hex floats in strtod.

Table 12: Library configurations

You can also define your own configurations, which means that you must modify the
configuration file. Note that the library configuration file describes how a library was
built and thus cannot be changed unless you rebuild the library. For further information,
see Building and using a customized library, page 50.

The prebuilt libraries are based on the default configurations, see Table 14, Prebuilt
libraries, page 45. There is also a ready-made library project template that you can use
if you want to rebuild the runtime library.

Part |. Using the compiler 43

Using a prebuilt library

44

DEBUG SUPPORT IN THE RUNTIME LIBRARY

You can make the library provide different levels of debugging support—basic, runtime,
and I/O debugging.

This table describes the different levels of debugging support:

Debugging Linker option in Linker command L.
) . Description
support IDE line option
Basic debugging Debug information -Fubrof Debug support for C-SPY without any
for C-SPY runtime support
Runtime debugging With runtime -r The same as -Fubrof, but also
control modules includes debugger support for
handling program abort, exit, and
assertions.
1/O debugging With I/O emulation -rt The same as -, but also includes
modules debugger support for I/O handling,

which means that stdin and
stdout are redirected to the C-SPY
Terminal I/O window, and that it is
possible to access files on the host
computer during debugging.

Table 13: Levels of debugging support in runtime libraries

If you build your application project with the XLINK options With runtime control
modules or With I/0 emulation modules, certain functions in the library are replaced
by functions that communicate with the debugger. For further information, see C-SPY
runtime interface, page 65.

To set linker options for debug support in the IDE, choose Project>Options and select
the Linker category. On the Output page, select the appropriate Format option.

Using a prebuilt library

IAR C/C++ Compiler
Reference Guide

The prebuilt runtime libraries are configured for different combinations of these

features:
o Code model

o Floating-point implementation

o Size of the double floating-point type
°

Library configuration—Normal or Full.

The DLIB runtime environment __4

These prebuilt runtime libraries are available:

Library file Code model Floating-point Size of double Library
implementation configuration
dlr32cfhfn.r53 Far Hardware 32 bits Normal
dlr32cfhff.r53 Far Hardware 32 bits Full
dlr32cfhdn.r53 Far Hardware 64 bits Normal
dlr32cfhdf.r53 Far Hardware 64 bits Full
dlr32cfsfn.r53 Far Software 32 bits Normal
dlr32cfsff.r53 Far Software 32 bits Full
dlr32cfsdn.r53 Far Software 64 bits Normal
dlr32cfsdf.r53 Far Software 64 bits Full
dlr32chhfn.r53 Huge Hardware 32 bits Normal
dlr32chhff.r53 Huge Hardware 32 bits Full
dlr32chhdn.r53 Huge Hardware 64 bits Normal
dlr32chhdf.r53 Huge Hardware 64 bits Full
dlr32chsfn.r53 Huge Software 32 bits Normal
dlr32chsff.r53 Huge Software 32 bits Full
dlr32chsdn.r53 Huge Software 64 bits Normal
dlr32chsdf.r53 Huge Software 64 bits Full

Table 14: Prebuilt libraries

The names of the libraries are constructed in this way:
<type><target><code_model><float><double><library_config>.r53
where

<type> is d1 for the IAR DLIB runtime environment
<target> is r32c

<code_model> is either £ for Far or h for Huge

<float> is either h for hardware floating-point or s for software-emulated
floating-point
® <double> is either £ for 32 bits or d for 64 bits

® <Ilibrary config> is either n for Normal or £ for Full.
Note: The library configuration file has the same base name as the library.

The IDE will include the correct library object file and library configuration file based
on the options you select. See the JAR Embedded Workbench® IDE User Guide for
additional information.

Part |. Using the compiler 45

Using a prebuilt library

46

IAR C/C++ Compiler
Reference Guide

EI If you build your application from the command line, you must specify t items to get the

required runtime library:

o Specify which library object file to use on the XLINK command line, for instance:
dlr32cfhdn.r53

o Specify the include paths for the compiler and assembler:
-I r32c\inc\dlib

o Specify the library configuration file for the compiler:
--dlib_config C:\...\dlr32cfhdn.h

Note: All modules in the library have a name that starts with the character » (question
mark).

You can find the library object files and the library configuration files in the subdirectory
r32c\1lib\

CUSTOMIZING A PREBUILT LIBRARY WITHOUT REBUILDING

The prebuilt libraries delivered with the compiler can be used as is. However, it is
possible to customize parts of a library without rebuilding it. There are two different
methods:
e Setting options for:

o Formatters used by printf and scanf

o The sizes of the heap and the stack

o Overriding library modules with your own customized versions.

These items can be customized:

Items that can be customized Described in

Formatters for printf and scanf Choosing formatters for printf and scanf, page 47
Startup and termination code System startup and termination, page 52
Low-level input and output Standard streams for input and output, page 56
File input and output File input and output, page 59

Low-level environment functions Environment interaction, page 62

Low-level signal functions Signal and raise, page 63

Low-level time functions Time, page 63

Size of heaps, stacks, and segments Placing code and data, page 27

Table 15: Customizable items

The DLIB runtime environment __4

For a description about how to override library modules, see Overriding library
modules, page 49.

Choosing formatters for printf and scanf

To override the default formatter for all the print£- and scanf-related functions,
except for wprintf and wscanf variants, you simply set the appropriate library
options. This section describes the different options available.

Note: If you rebuild the library, it is possible to optimize these functions even further,
see Configuration symbols for printf and scanf, page 58.
CHOOSING PRINTF FORMATTER

The printf function uses a formatter called _Print£. The default version is quite
large, and provides facilities not required in many embedded applications. To reduce the
memory consumption, three smaller, alternative versions are also provided in the
standard C/EC++ library.

This table summarizes the capabilities of the different formatters:

Formatting capabilities _PrintfFull _PrintfLarge _PrintfSmall _PrintfTiny
Basic specifiers ¢, d, 1, 0,p, s, U, X, Yes Yes Yes Yes
x,and %

Multibyte support U t U No
Floating-point specifiers a, and A Yes No No No
Floating-point specifiers e, E, £, F, g, Yes Yes No No
and G

Conversion specifier n Yes Yes No No
Format flag space, +, -, #,and 0 Yes Yes Yes No
Length modifiers h, 1, L, s, t,and Z Yes Yes Yes No
Field width and precision, including * Yes Yes Yes No
long long support Yes Yes No No

Table 16: Formatters for printf
T Depends on the library configuration that is used.

For information about how to fine-tune the formatting capabilities even further, see
Configuration symbols for printf and scanf, page 58.

Part |. Using the compiler 47

Choosing formatters for printf and scanf

Specifying the print formatter in the IDE

To use any other formatter than the default (Full), choose Project>Options and select
the General Options category. Select the appropriate option on the Library options
page.

@ Specifying printf formatter from the command line

To use any other formatter than the default (_PrintfLarge), add one of these lines in
the linker command file you are using:

-e_PrintfFull=_Printf
-e_PrintfSmall=_Printf
-e_PrintfTiny=_Printf

CHOOSING SCANF FORMATTER

In a similar way to the print £ function, scanf uses a common formatter, called
_Scanf. The default version is very large, and provides facilities that are not required
in many embedded applications. To reduce the memory consumption, two smaller,
alternative versions are also provided in the standard C/C++ library.

This table summarizes the capabilities of the different formatters:

Formatting capabilities _ScanfFull _ScanfLarge _ScanfSmall
Basic specifiers ¢, d, 1, 0, p, s, u, X, Yes Yes Yes
x,and %

Multibyte support U U U
Floating-point specifiers a, and A Yes No No
Floating-point specifiers e, E, £, F, g, Yes No No
and G

Conversion specifier n Yes No No
Scan set [and] Yes Yes No
Assignment suppressing * Yes Yes No
long long support Yes No No

Table 17: Formatters for scanf
T Depends on the library configuration that is used.

For information about how to fine-tune the formatting capabilities even further, see
Configuration symbols for printf and scanf, page 58.

IAR C/C++ Compiler
48 Reference Guide

The DLIB runtime environment __4

Specifying scanf formatter in the IDE

To use any other formatter than the default (Full), choose Project>Options and select
the General Options category. Select the appropriate option on the Library options
page.

@ Specifying scanf formatter from the command line

To use any other variant than the default (_ScanfLarge), add one of these lines in the
linker command file you are using:

-e_ScanfFull=_Scanf
-e_ScanfSmall=_Scanf

Overriding library modules

The library contains modules which you probably need to override with your own
customized modules, for example functions for character-based I/O and cstartup.
This can be done without rebuilding the entire library. This section describes the
procedure for including your version of the module in the application project build
process. The library files that you can override with your own versions are located in the
r32c\src\1lib directory.

Note: If you override a default I/O library module with your own module, C-SPY
support for the module is turned off. For example, if you replace the module __write
with your own version, the C-SPY Terminal I/O window will not be supported.

Overriding library modules using the IDE

This procedure is applicable to any source file in the library, which means that
library_module.c in this example can be any module in the library.

I Copy the appropriate 1ibrary_module.c file to your project directory.

2 Make the required additions to the file (or create your own routine, using the default
file as a model), and make sure that it has the same module name as the original
module. The easiest way to achieve this is to save the new file under the same name as
the original file.

Add the customized file to your project.

4 Rebuild your project.

Part |. Using the compiler 49

Building and using a customized library

@ Overriding library modules from the command line

This procedure is applicable to any source file in the library, which means that
library_module.c in this example can be any module in the library.

I Copy the appropriate 1ibrary._module.c to your project directory.

2 Make the required additions to the file (or create your own routine, using the default
file as a model), and make sure that it has the same module name as the original
module. The easiest way to achieve this is to save the new file under the same name as
the original file.

3 Compile the modified file using the same options as for the rest of the project:
iccr32c library_module
This creates a replacement object module file named 1ibrary_module.r53.

Note: The size of the double floating-point type, the floating-point implementation,
and the include paths must be the same for 1ibrary module as for the rest of your
code.

4 Add library_module.r53 to the XLINK command line, either directly or by using
an extended linker command file, for example:

xlink library_module dlr32cfhdn.r53

Make sure that 1ibrary_module is placed before the library on the command line.
This ensures that your module is used instead of the one in the library.

Run XLINK to rebuild your application.

This will use your version of 1ibrary module.r53, instead of the one in the library.
For information about the XLINK options, see the IAR Linker and Library Tools
Reference Guide.

Building and using a customized library
In some situations, see Situations that require library building, page 43, it is necessary
to rebuild the library. In those cases you must:
e Set up a library project
o Make the required library modifications
e Build your customized library
e Finally, make sure your application project will use the customized library.

Information about the build process is described in the JAR Embedded Workbench® IDE
User Guide.

IAR C/C++ Compiler
50 Reference Guide

The DLIB runtime environment __4

Note: To build IAR Embedded Workbench projects from the command line, use the
IAR Command Line Build Utility (iarbuild.exe). However, no make or batch files
for building the library from the command line are provided.

SETTING UP A LIBRARY PROJECT

The IDE provides a library project template which can be used for customizing the
runtime environment configuration. This library template has Full library configuration,
see Table 12, Library configurations, page 43.

In the IDE, modify the generic options in the created library project to suit your
application, see Basic settings for project configuration, page 5.

Note: There is one important restriction on setting options. If you set an option on file
level (file level override), no options on higher levels that operate on files will affect that
file.

MODIFYING THE LIBRARY FUNCTIONALITY

You must modify the library configuration file and build your own library if you want
to modify support for, for example, locale, file descriptors, and multibyte characters.
This will include or exclude certain parts of the runtime environment.

The library functionality is determined by a set of configuration symbols. The default
values of these symbols are defined in the file D1ib_defaults.h. This read-only file
describes the configuration possibilities. Your library also has its own library
configuration file d1r32clibraryname.h, which sets up that specific library with full
library configuration. For more information, see Table 15, Customizable items, page 46.

The library configuration file is used for tailoring a build of the runtime library, and for
tailoring the system header files.
Modifying the library configuration file

In your library project, open the file d1r32clibraryname.h and customize it by
setting the values of the configuration symbols according to the application
requirements.

When you are finished, build your library project with the appropriate project options.

USING A CUSTOMIZED LIBRARY
After you build your library, you must make sure to use it in your application project.

In the IDE you must do these steps:

Choose Project>Options and click the Library Configuration tab in the General
Options category.

Part |. Using the compiler 51

System startup and termination

52

2 Choose Custom DLIB from the Library drop-down menu.
3 In the Library file text box, locate your library file.

4 1In the Configuration file text box, locate your library configuration file.

System startup and termination

IAR C/C++ Compiler
Reference Guide

This section describes the runtime environment actions performed during startup and
termination of your application.

The code for handling startup and termination is located in the source files
cstartup.s53, cexit.s53,and low_level_init.c located in the r32c\src\lib
directory.

For information about how to customize the system startup code, see Customizing
system initialization, page 55.
SYSTEM STARTUP

During system startup, an initialization sequence is executed before the main function
is entered. This sequence performs initializations required for the target hardware and
the C/C++ environment.

For the hardware initialization, it looks like this:

Library User Application
Start label: __low_level_init()
Hardware User hardware

Setup setup
(returns C/C++
static

[initialization flag)

___|

Initialization
Figure 1: Target hardware initialization phase

o When the CPU is reset it will jump to the program entry label __program_start
in the system startup code.

e Stack pointers, the SB register, and the interrupt vector base register are initialized

The DLIB runtime environment __4

o The function __low_level_ init is called if you defined it, giving the application
a chance to perform early initializations.

For the C/C++ initialization, it looks like this:

Library User application
Static C/C++ User hardware
initialization setup

i
Dynamic C++ main()
initialization
T User code
Return from
main
exit()

Figure 2: C/C++ initialization phase

e Static variables are initialized (if the return value of __low_level_initis
non-zero). Zero-initialized variables are cleared and the values of other initialized
variables are copied from ROM to RAM memory. For more details, see Initialized
data, page 33

e Static C++ objects are constructed

o The main function is called, which starts the application.

Part |. Using the compiler

53

System startup and termination

54

IAR C/C++ Compiler
Reference Guide

SYSTEM TERMINATION

This illustration shows the different ways an embedded application can terminate in a
controlled way:

Return from main via library

Library User application
exit()
Explicit call
|
_exit
Dynamic C++ abort()
and atexit code Explicit call
_Exit()
Explicit call
| P
__exit
Application
terminates

Figure 3: System termination phase

An application can terminate normally in two different ways:

o Return from the main function
o Call the exit function.
As the ISO/ANSI C standard states that the two methods should be equivalent, the

system startup code calls the exi t function if main returns. The parameter passed to the
exit function is the return value of main.

The default exit function is written in C. It calls a small assembler function _exit that
will perform these operations:

e Call functions registered to be executed when the application ends. This includes
C++ destructors for static and global variables, and functions registered with the
standard C function atexit

o Close all open files

o Call __exit

o When __exit is reached, stop the system.

An application can also exit by calling the abort or the _Exit function. The abort
function just calls __exit to halt the system, and does not perform any type of cleanup.

The _Exit function is equivalent to the abort function, except for the fact that _Exit
takes an argument for passing exit status information.

The DLIB runtime environment __4

If you want your application to do anything extra at exit, for example resetting the
system, you can write your own implementation of the __exit (int) function.

C-SPY interface to system termination

If your project is linked with the XLINK options With runtime control modules or
With I/O emulation modules, the normal __exit and abort functions are replaced
with special ones. C-SPY will then recognize when those functions are called and can
take appropriate actions to simulate program termination. For more information, see
C-SPY runtime interface, page 65.

Customizing system initialization

It is likely that you need to customize the code for system initialization. For example,
your application might need to initialize memory-mapped special function registers
(SFRs), or omit the default initialization of data segments performed by cstartup.

You can do this by providing a customized version of the routine __low_level_init,
which is called from cstartup.s53 before the data segments are initialized.
Modifying the file cstartup directly should be avoided.

The code for handling system startup is located in the source files cstartup.s53 and
low_level_init.c, located in the r32c\src\1ib directory.

Note: Normally, you do not need to customize the file cexit.s53.

If you intend to rebuild the library, the source files are available in the template library
project, see Building and using a customized library, page 50.

Note: Regardless of whether you modify the routine __low_level_init or the file
cstartup.s53, you do not have to rebuild the library.

__LOW_LEVEL_INIT

A skeleton low-level initialization file, low_level_init.c, is supplied with the
product. The value returned by __low_level_init determines whether or not data
segments should be initialized by the system startup code. If the function returns 0, the
data segments will not be initialized.

Note: The file intrinsics.h must be included by low_level init.c to assure
correct behavior of the __low_level_init routine.

MODIFYING THE FILE CSTARTUP.S53

As noted earlier, you should not modify the file cstartup.s53 if a customized version
of __low_level_init is enough for your needs. However, if you do need to modify

Part |. Using the compiler 55

Standard streams for input and output

the file cstartup.s53, we recommend that you follow the general procedure for
creating a modified copy of the file and adding it to your project, see Overriding library
modules, page 49.

Standard streams for input and output

Three standard communication channels (streams)—stdin, stdout, and stderr—are
defined in stdio.h. If any of these streams are used by your application, for example
by the functions printf and scanf, you must customize the low-level functionality to
suit your hardware.

There are primitive I/O functions, which are the fundamental functions through which
C and C++ performs all character-based I/O. For any character-based I/O to be available,
you must provide definitions for these functions using whatever facilities the hardware
environment provides.

IMPLEMENTING LOW-LEVEL CHARACTER INPUT AND
OUTPUT

To implement low-level functionality of the stdin and stdout streams, you must write
the functions __read and __write, respectively. You can find template source code for
these functions in the r32c\src\1ib directory.

If you intend to rebuild the library, the source files are available in the template library
project, see Building and using a customized library, page 50. Note that customizing the
low-level routines for input and output does not require you to rebuild the library.

Note: If you write your own variants of __read or __write, special considerations
for the C-SPY runtime interface are needed, see C-SPY runtime interface, page 65.
Example of using __write and __read

The code in this example uses memory-mapped I/O to write to an LCD display:
__no_init volatile unsigned char LCD_IO @ address;

size_t __write(int Handle, const unsigned char * Buf,

size_t Bufsize)

{

size_t nChars = 0;
/* Check for the command to flush all handles */
if (Handle == -1)
{
return 0;

IAR C/C++ Compiler
56 Reference Guide

The DLIB runtime environment __4

/* Check for stdout and stderr
(only necessary if FILE descriptors are enabled.) */

if (Handle != 1 && Handle != 2)
{

return -1;
}
for (/*Empty */; Bufsize > 0; --Bufsize)
{

LCD_IO = * Buf++;

++nChars;
}
return nChars;

}

Note: A call to __write where BUF has the value NULL is a command to flush the
handle.

The code in this example uses memory-mapped I/O to read from a keyboard:

__no_init volatile unsigned char KB_IO @ address;

size_t __read(int Handle, unsigned char *Buf, size_t BufSize)
{
size_t nChars = 0;
/* Check for stdin
(only necessary if FILE descriptors are enabled) */
if (Handle != 0)

{

return -1;
}
for (/*Empty*/; BufSize > 0; --BufSize)
{

unsigned char ¢ = KB_IO;

if (¢ == 0)

break;
*Buf++ = c;
++nChars;

}

return nChars;

}

For information about the @ operator, see Controlling data and function placement in
memory, page 103.

Part |. Using the compiler 57

Configuration symbols for printf and scanf

Configuration symbols for printf and scanf

IAR C/C++ Compiler
58 Reference Guide

When you set up your application project, you typically need to consider what printf
and scanf formatting capabilities your application requires, see Choosing formatters
for printf and scanf, page 47.

If the provided formatters do not meet your requirements, you can customize the full
formatters. However, that means you must rebuild the runtime library.

The default behavior of the printf and scanf formatters are defined by configuration
symbols in the file DLIB_Defaults.h.

These configuration symbols determine what capabilities the function print £ should
have:

Printf configuration symbols Includes support for

_DLIB_PRINTF_MULTIBYTE Multibyte characters

_DLIB_PRINTF_LONG_LONG
_DLIB_PRINTF_SPECIFIER_FLOAT
_DLIB_PRINTF_SPECIFIER_A
_DLIB_PRINTF_SPECIFIER_N
_DLIB_PRINTF_QUALIFIERS
_DLIB_PRINTF_FLAGS

_DLIB_PRINTF_WIDTH_AND_PRECISION

_DLIB_PRINTF_CHAR_BY_CHAR

Long long (11 qualifier)
Floating-point numbers
Hexadecimal floats

Output count (%)

Qualifiers h, 1, I, v, t, and z
Flags -, +, #,and 0

Width and precision

Output char by char or buffered

Table 18: Descriptions of printf configuration symbols

When you build a library, these configurations determine what capabilities the function

scanf should have:

Scanf configuration symbols

Includes support for

_DLIB_SCANF_MULTIBYTE
_DLIB_SCANF_LONG_LONG
_DLIB_SCANF_SPECIFIER_FLOAT
_DLIB_SCANF_SPECIFIER_N
_DLIB_SCANF_QUALIFIERS
_DLIB_SCANF_SCANSET

_DLIB_SCANF_WIDTH

Multibyte characters

Long long (11 qualifier)
Floating-point numbers
Output count (%)

Qualifiers h, j, 1, t, z,and L,
Scanset ([*])

Width

_DLIB_SCANF_ASSIGNMENT_ SUPPRESSING Assignment suppressing ([*1)

Table 19: Descriptions of scanf configuration symbols

The DLIB runtime environment __4

CUSTOMIZING FORMATTING CAPABILITIES

To customize the formatting capabilities, you must set up a library project, see Building
and using a customized library, page 50. Define the configuration symbols according to
your application requirements.

File input and output

The library contains a large number of powerful functions for file I/O operations. If you
use any of these functions, you must customize them to suit your hardware. To simplify
adaptation to specific hardware, all I/O functions call a small set of primitive functions,
each designed to accomplish one particular task; for example, __open opens a file, and
__write outputs characters.

J—

Note that file I/O capability in the library is only supported by libraries with full library
configuration, see Library configurations, page 43. In other words, file I/O is supported
when the configuration symbol __DLIB_FILE_DESCRIPTOR is enabled. If not enabled,
functions taking a FILE *argument cannot be used.

Template code for these 1/O files are included in the product:

1/0O function File Description

__close close.c Closes a file.

__lseek lseek.c Sets the file position indicator.
__open open.c Opens a file.

__read read.c Reads a character buffer.
__write write.c Writes a character buffer.
remove remove.c Removes a file.

rename rename.c Renames a file.

Table 20: Low-level 1/0 files

The primitive functions identify I/O streams, such as an open file, with a file descriptor
that is a unique integer. The I/O streams normally associated with stdin, stdout, and
stderr have the file descriptors 0, 1, and 2, respectively.

Note: If you link your library with I/O debugging support, C-SPY variants of the
low-level I/0 functions are linked for interaction with C-SPY. For more information,
see Debug support in the runtime library, page 44.

Part |. Using the compiler 59

Locale

60

Locale

IAR C/C++ Compiler
Reference Guide

Locale is a part of the C language that allows language- and country-specific settings for
several areas, such as currency symbols, date and time, and multibyte character
encoding.

Depending on what runtime library you are using you get different level of locale
support. However, the more locale support, the larger your code will get. It is therefore
necessary to consider what level of support your application needs.

The DLIB library can be used in two main modes:

o With locale interface, which makes it possible to switch between different locales
during runtime

e Without locale interface, where one selected locale is hardwired into the
application.

LOCALE SUPPORT IN PREBUILT LIBRARIES
The level of locale support in the prebuilt libraries depends on the library configuration.

o All prebuilt libraries support the C locale only

o All libraries with full library configuration have support for the locale interface. For
prebuilt libraries with locale interface, it is by default only supported to switch
multibyte character encoding during runtime.

e Libraries with normal library configuration do not have support for the locale
interface.

If your application requires a different locale support, you must rebuild the library.

CUSTOMIZING THE LOCALE SUPPORT
If you decide to rebuild the library, you can choose between these locales:

o The standard C locale
o The POSIX locale

o A wide range of European locales.

Locale configuration symbols

The configuration symbol _DLIB_FULL_LOCALE_SUPPORT, which is defined in the
library configuration file, determines whether a library has support for a locale interface

The DLIB runtime environment __4

or not. The locale configuration symbols _LOCALE_USE_LANG_REGION and
_ENCODING_USE_ENCODING define all the supported locales and encodings:

#define _DLIB_FULL_LOCALE_SUPPORT 1

#define _LOCALE_USE_C /* C locale */

#define _LOCALE_USE_EN_US /* US English */
#define _LOCALE_USE_EN_GB /* UK English */
#define _LOCALE_USE_SV_SE /* Swedish in Sweden */

See DLib_Defaults.h for a list of supported locale and encoding settings.

If you want to customize the locale support, you simply define the locale configuration
symbols required by your application. For more information, see Building and using a
customized library, page 50.

Note: If you use multibyte characters in your C or assembler source code, make sure
that you select the correct locale symbol (the local host locale).

Building a library without support for locale interface

The locale interface is not included if the configuration symbol
_DLIB_FULL_LOCALE_SUPPORT is set to O (zero). This means that a hardwired locale
is used—by default the standard C locale—but you can choose one of the supported
locale configuration symbols. The setlocale function is not available and can
therefore not be used for changing locales at runtime.

Building a library with support for locale interface

Support for the locale interface is obtained if the configuration symbol
_DLIB_FULL_LOCALE_SUPPORT is set to 1. By default, the standard C locale is used,
but you can define as many configuration symbols as required. Because the setlocale
function will be available in your application, it will be possible to switch locales at
runtime.

CHANGING LOCALES AT RUNTIME

The standard library function setlocale is used for selecting the appropriate portion
of the application’s locale when the application is running.

The setlocale function takes two arguments. The first one is a locale category that is
constructed after the pattern LC_CATEGORY. The second argument is a string that
describes the locale. It can either be a string previously returned by setlocale, or it
can be a string constructed after the pattern:

lang_ REGION
or

lang REGION.encoding

Part |. Using the compiler 61

Environment interaction

62

The 1ang part specifies the language code, and the REGTON part specifies a region
qualifier, and encoding specifies the multibyte character encoding that should be used.

The 1ang REGION part matches the _LOCALE_USE_LANG_REGION preprocessor
symbols that can be specified in the library configuration file.

Example

This example sets the locale configuration symbols to Swedish to be used in Finland and
UTF8 multibyte character encoding:

setlocale (LC_ALL, "sv_FI.Utf8");

Environment interaction

IAR C/C++ Compiler
Reference Guide

According to the C standard, your application can interact with the environment using
the functions getenv and system.

Note: The putenv function is not required by the standard, and the library does not
provide an implementation of it.

The getenv function searches the string, pointed to by the global variable __environ,
for the key that was passed as argument. If the key is found, the value of it is returned,
otherwise O (zero) is returned. By default, the string is empty.

To create or edit keys in the string, you must create a sequence of null terminated strings
where each string has the format:

key=value\0

The last string must be empty. Assign the created sequence of strings to the __environ
variable.

For example:

const char MyEnv[] = ”"Key=Value\0Key2=Value2\0”;
__environ = MyEnv;

If you need a more sophisticated environment variable handling, you should implement
your own getenv, and possibly putenv function. This does not require that you rebuild
the library. You can find source templates in the files getenv.c and environ.c in the
r32c\src\libdirectory. For information about overriding default library modules, see
Overriding library modules, page 49.

If you need to use the system function, you must implement it yourself. The system
function available in the library simply returns -1.

If you decide to rebuild the library, you can find source templates in the library project
template. For further information, see Building and using a customized library, page 50.

The DLIB runtime environment __4

Note: If you link your application with support for I/O debugging, the functions
getenv and system are replaced by C-SPY variants. For further information, see
Debug support in the runtime library, page 44.

Signal and raise

Default implementations of the functions signal and raise are available. If these
functions do not provide the functionality that you need, you can implement your own
versions.

This does not require that you rebuild the library. You can find source templates in the
files signal.c and raise.c in the r32c\src\1ib directory. For information about
overriding default library modules, see Overriding library modules, page 49.

If you decide to rebuild the library, you can find source templates in the library project
template. For further information, see Building and using a customized library, page 50.

To make the time and date functions work, you must implement the three functions
clock, time, and __getzone.

This does not require that you rebuild the library. You can find source templates in the
files clock.c and time.c, and getzone.c in the r32c\src\1ib directory. For
information about overriding default library modules, see Overriding library modules,
page 49.

If you decide to rebuild the library, you can find source templates in the library project
template. For further information, see Building and using a customized library, page 50.

The default implementation of __getzone specifies UTC as the time zone.

Note: If you link your application with support for I/O debugging, the functions clock
and time are replaced by C-SPY variants that return the host clock and time
respectively. For further information, see C-SPY runtime interface, page 65.

Strtod

The function strtod does not accept hexadecimal floating-point strings in libraries
with the normal library configuration. To make a library do so, you must rebuild the
library, see Building and using a customized library, page 50. Enable the configuration
symbol _DLIB_STRTOD_HEX_FLOAT in the library configuration file.

Part |. Using the compiler 63

Assert

64

Assert

If you linked your application with support for runtime debugging, C-SPY will be
notified about failed asserts. If this is not the behavior you require, you must add the
source file xreportassert.c to your application project. Alternatively, you can
rebuild the library. The __Reportassert function generates the assert notification.
You can find template code in the r32c\src\1ibdirectory. For further information, see
Building and using a customized library, page 50. To turn off assertions, you must define
the symbol NDEBUG.

In the IDE, this symbol NDEBUG is by default defined in a Release project and not
defined in a Debug project. If you build from the command line, you must explicitly
define the symbol according to your needs.

Hardware support

IAR C/C++ Compiler
Reference Guide

Some R32C/100 devices have a hardware floating-point unit (FPU). The R32C IAR
C/C++ Compiler can take advantage of this and produce code which is very fast in
floating-point operations.

FLOATING-POINT IMPLEMENTATION

The native floating-point operations of the FPU are not fully standards-compliant. For
this reason, there are three different implementations of floating-point support. These
are:

o Software-emulated floating-point operations

o Native FPU floating-point operations

o FPU floating-point operations with standards-compliant library functions

Software-emulated floating-point operations

If no FPU is available, you should specify the Full floating-point model,
--fp_model=£full. This will use the library routines that emulate floating-point
operations.

In the IAR Embedded Workbench IDE, select Project>Options>General
Options>Target>Float implementation>Software emulation.

Native FPU floating-point operations

If an FPU is available, you can specify --fp_model=fast. This will cause FPU
instructions to be inserted directly in the code. This is the fastest model. However, in this
model, the special numbers Not a number (NaN) and Infinity are not recognized.

The DLIB runtime environment __4

In the IAR Embedded Workbench IDE, choose Project>Options>General
Options>Target and select FPU only.

FPU with standards-compliant library functions

El If your application uses Not a number (NaN) or Infinity, you can use --fp_model=full
together with an extra linker command file fpu_compliant.xcl to use alternative
floating-point library functions that recognize Infinity and Not a Number, but still use
the FPU instructions to perform the operations. This creates a significant overhead
compared to the inlined FPU instructions of --fp_model=fast, but it is approximately
twice as fast as the software-emulating library.

Note: If you specify -- fp_model=£full without using the extra linker command file,
software-emulated floating-point operations will be used.

In the AR Embedded Workbench IDE, choose Project>Options>General
Options>Target and select Standards-compliant with FPU.

See also Floating-point types, page 156.

C-SPY runtime interface

To include support for runtime and I/O debugging, you must link your application with
the XLINK options With runtime control modules or With I/O emulation modules,
see Debug support in the runtime library, page 44.

In this case, C-SPY variants of these library functions are linked to the application:

Function Description

abort C-SPY notifies that the application has called abort *

clock Returns the clock on the host computer

__close Closes the associated host file on the host computer

__exit C-SPY notifies that the end of the application was reached *
__open Openis a file on the host computer

__read stdin, stdout, and stderr will be directed to the Terminal I/O

window; all other files will read the associated host file
remove Writes a message to the Debug Log window and returns -1
rename Writes a message to the Debug Log window and returns -1
_ReportAssert Handles failed asserts *
__seek Seeks in the associated host file on the host computer

system Writes a message to the Debug Log window and returns -1

Table 21: Functions with special meanings when linked with debug info

Part |. Using the compiler 65

C-SPY runtime interface

66

IAR C/C++ Compiler
Reference Guide

Function Description
time Returns the time on the host computer
__write stdin, stdout, and stderr will be directed to the Terminal I/O

window, all other files will write to the associated host file

Table 21: Functions with special meanings when linked with debug info (Continued)

* The linker option With I/O emulation modaules is not required for these functions.

LOW-LEVEL DEBUGGER RUNTIME INTERFACE

The low-level debugger runtime interface is used for communication between the
application being debugged and the debugger itself. The debugger provides runtime
services to the application via this interface; services that allow capabilities like file and
terminal I/O to be performed on the host computer.

These capabilities can be valuable during the early development of an application, for
example in an application using file I/O before any flash file system I/O drivers are
implemented. Or, if you need to debug constructions in your application that use stdin
and stdout without the actual hardware device for input and output being available.
Another debugging purpose can be to produce debug trace printouts.

The mechanism used for implementing this feature works as follows:

The debugger will detect the presence of the function __DebugBreak, which will be
part of the application if you linked it with the XLINK options for C-SPY runtime
interface. In this case, the debugger will automatically set a breakpoint at the
__DebugBreak function. When the application calls, for example open, the
__DebugBreak function is called, which will cause the application to break and
perform the necessary services. The execution will then resume.

THE DEBUGGER TERMINAL 1/O WINDOW

To make the Terminal I/O window available, the application must be linked with support
for I/O debugging, see Debug support in the runtime library, page 44. This means that
when the functions __read or __write are called to perform I/O operations on the
streams stdin, stdout, or stderr, data will be sent to or read from the C-SPY
Terminal I/0O window.

Note: The Terminal I/O window is not opened automatically just because __read or
__write is called; you must open it manually.

See the IAR Embedded Workbench® IDE User Guide for more information about the
Terminal I/O window.

The DLIB runtime environment __4

Speeding up terminal output

On some systems, terminal output might be slow because the host computer and the
target hardware must communicate for each character.

For this reason, a replacement for the __write function called __write_bufferedis
included in the DLIB library. This module buffers the output and sends it to the debugger
one line at a time, speeding up the output. Note that this function uses about 80 bytes of
RAM memory.

To use this feature you can either choose Project>Options>Linker>Output and select
the option Buffered terminal output in the IDE, or add this to the linker command line:

-e__write_buffered=__write

Checking module consistency

This section introduces the concept of runtime model attributes, a mechanism used by
the IAR compiler, assembler, and linker to ensure module consistency.

When developing an application, it is important to ensure that incompatible modules are
not used together. For example, in the compiler, it is possible to specify the size of the
double floating-point type. If you write a routine that only works for 64-bit doubles, it
is possible to check that the routine is not used in an application built using 32-bit
doubles.

The tools provided by IAR Systems use a set of predefined runtime model attributes.
You can use these predefined attributes or define your own to perform any type of
consistency check.

RUNTIME MODEL ATTRIBUTES

A runtime attribute is a pair constituted of a named key and its corresponding value. Two
modules can only be linked together if they have the same value for each key that they
both define.

There is one exception: if the value of an attribute is *, then that attribute matches any
value. The reason for this is that you can specify this in a module to show that you have
considered a consistency property, and this ensures that the module does not rely on that

property.

Example

In the following table, the object files could (but do not have to) define the two runtime
attributes color and taste. In this case, £ilel cannot be linked with any of the other
files, since the runtime attribute color does not match. Also, £ile4 and £ile5 cannot
be linked together, because the taste runtime attribute does not match.

Part |. Using the compiler 67

Checking module consistency

68

IAR C/C++ Compiler
Reference Guide

On the other hand, file2 and f£ile3 can be linked with each other, and with either
file4 or fileb5, but not with both.

Object file Color Taste
filel blue not defined
file2 red not defined
file3 red *

file4d red spicy
file5 red lean

Table 22: Example of runtime model attributes

USING RUNTIME MODEL ATTRIBUTES

To ensure module consistency with other object files, use the #pragma rtmodel
directive to specify runtime model attributes in your C/C++ source code. For example:

#pragma rtmodel="__rt_version", "1"
For detailed syntax information, see rtmodel, page 196.

You can also use the RTMODEL assembler directive to specify runtime model attributes
in your assembler source code. For example:

RTMODEL "color", "red"
For detailed syntax information, see the R32C IAR Assembler Reference Guide.

Note: The predefined runtime attributes all start with two underscores. Any attribute
names you specify yourself should not contain two initial underscores in the name, to
eliminate any risk that they will conflict with future IAR Systems runtime attribute
names.

At link time, the IAR XLINK Linker checks module consistency by ensuring that
modules with conflicting runtime attributes will not be used together. If conflicts are
detected, an error is issued.

PREDEFINED RUNTIME ATTRIBUTES

The table below shows the predefined runtime model attributes that are available for the
compiler. These can be included in assembler code or in mixed C/C++ and assembler
code.

Runtime model attribute Value Description

__core R32C Identifies the microcomputer core.

Table 23: Predefined runtime model attributes

The DLIB runtime environment __4

Runtime model attribute Value Description

__double_size 32 or 64 The size, in bits, of the double
floating-point type.

__rt_version n This runtime key is always present in all
modules generated by the R32C IAR C/C++
Compiler. If a major change in the runtime
characteristics occurs, the value of this key
changes.

Table 23: Predefined runtime model attributes (Continued)

The easiest way to find the proper settings of the RTMODEL directive is to compile a C or
C++ module to generate an assembler file, and then examine the file.

If you are using assembler routines in the C or C++ code, refer to the chapter Assembler
directives in the R32C IAR Assembler Reference Guide.

Example

The following assembler source code provides a function that increases the register R4
to count the number of times it was called. The routine assumes that the application does
not use R4 for anything else, that is, the register is locked for usage. To ensure this, a
runtime module attribute, __reg_r4, is defined with a value counter. This definition
will ensure that this specific module can only be linked with either other modules
containing the same definition, or with modules that do not set this attribute. Note that
the compiler sets this attribute to £ree, unless the register is locked.

RTMODEL "__reg_r4", "counter"

MODULE myCounter

PUBLIC myCounter

RSEG CODE : CODE : NOROOT (1)
myCounter: INC R4

RET

ENDMOD

END

If this module is used in an application that contains modules where the register R4 is
not locked, the linker issues an error:

Error[ell7]: Incompatible runtime models. Module myCounter
specifies that '__reg r4' must be 'counter', but module partl

has the value 'free'

USER-DEFINED RUNTIME MODEL ATTRIBUTES

In cases where the predefined runtime model attributes are not sufficient, you can use
the RTMODEL assembler directive to define your own attributes. For each property, select

Part |. Using the compiler 69

Checking module consistency

70

IAR C/C++ Compiler
Reference Guide

a key and a set of values that describe the states of the property that are incompatible.
Note that key names that start with two underscores are reserved by the compiler.

For example, if you have a UART that can run in two modes, you can specify a runtime
model attribute, for example uart. For each mode, specify a value, for example model
and mode2. Declare this in each module that assumes that the UART is in a particular
mode. This is how it could look like in one of the modules:

#pragma rtmodel="uart", "model"

Assembler language
interface

When you develop an application for an embedded system, there might be
situations where you will find it necessary to write parts of the code in
assembler, for example when using mechanisms in the R32C/100

microcomputer that require precise timing and special instruction sequences.

This chapter describes the available methods for this and some C alternatives,
with their advantages and disadvantages. It also describes how to write
functions in assembler language that work together with an application written
in C or C++.

Finally, the chapter covers how functions are called in the different code
models, the different memory access methods corresponding to the
supported memory types, and how you can implement support for call frame
information in your assembler routines for use in the C-SPY® Call Stack
window.

Mixing C and assembler

The IAR C/C++ Compiler for R32C provides several ways to mix C or C++ and
assembler:

o Modules written entirely in assembler
e Intrinsic functions (the C alternative)

o Inline assembler.

It might be tempting to use simple inline assembler. However, you should carefully
choose which method to use.

INTRINSIC FUNCTIONS

The compiler provides a few predefined functions that allow direct access to low-level
processor operations without having to use the assembler language. These functions are
known as intrinsic functions. They can be very useful in, for example, time-critical
routines.

Part |. Using the compiler

71

Mixing C and assembler

72

IAR C/C++ Compiler
Reference Guide

An intrinsic function looks like a normal function call, but it is really a built-in function
that the compiler recognizes. The intrinsic functions compile into inline code, either as
a single instruction, or as a short sequence of instructions.

The advantage of an intrinsic function compared to using inline assembler is that the
compiler has all necessary information to interface the sequence properly with register
allocation and variables. The compiler also knows how to optimize functions with such
sequences; something the compiler is unable to do with inline assembler sequences. The
result is that you get the desired sequence properly integrated in your code, and that the
compiler can optimize the result.

For detailed information about the available intrinsic functions, see the chapter Intrinsic
functions.

MIXING C AND ASSEMBLER MODULES

It is possible to write parts of your application in assembler and mix them with your C
or C++ modules. This gives several benefits compared to using inline assembler:

o The function call mechanism is well-defined

o The code will be easy to read

o The optimizer can work with the C or C++ functions.

This causes some overhead in the form of function call and return instruction sequences,
and the compiler will regard some registers as scratch registers. However, the compiler
will also assume that all scratch registers are destroyed by an inline assembler

instruction. In many cases, the optimizer compensates for the overhead of the extra
instructions.

An important advantage is that you will have a well-defined interface between what the
compiler produces and what you write in assembler. When using inline assembler, you
will not have any guarantees that your inline assembler lines do not interfere with the
compiler generated code.

When an application is written partly in assembler language and partly in C or C++, you
are faced with several questions:
How should the assembler code be written so that it can be called from C?

Where does the assembler code find its parameters, and how is the return value
passed back to the caller?

e How should assembler code call functions written in C?
How are global C variables accessed from code written in assembler language?

Why does not the debugger display the call stack when assembler code is being
debugged?

Assembler language interface ___4

The first issue is discussed in the section Calling assembler routines from C, page T4.
The following two are covered in the section Calling convention, page 77.

The section on memory access methods, page 86, covers how data in memory is
accessed.

The answer to the final question is that the call stack can be displayed when you run
assembler code in the debugger. However, the debugger requires information about the
call frame, which must be supplied as annotations in the assembler source file. For more
information, see Call frame information, page 88.

The recommended method for mixing C or C++ and assembler modules is described in
Calling assembler routines from C, page 74, and Calling assembler routines from C++,
page 76, respectively.

INLINE ASSEMBLER

It is possible to insert assembler code directly into a C or C++ function. The asm
keyword inserts the supplied assembler statement in-line. The following example
demonstrates the use of the asm keyword. This example also shows the risks of using
inline assembler.

bool flag;

void foo(void)
{
while (!flag)
{
asm("MOV PIND, flag") ;

}

In this example, the assignment to the global variable £1ag is not noticed by the
compiler, which means the surrounding code cannot be expected to rely on the inline
assembler statement.

The inline assembler instruction will simply be inserted at the given location in the
program flow. The consequences or side-effects the insertion might have on the
surrounding code are not taken into consideration. If, for example, registers or memory
locations are altered, they might have to be restored within the sequence of inline
assembler instructions for the rest of the code to work properly.

Inline assembler sequences have no well-defined interface with the surrounding code
generated from your C or C++ code. This makes the inline assembler code fragile, and

Part |. Using the compiler 73

Calling assembler routines from C

will possibly also become a maintenance problem if you upgrade the compiler in the
future. There are also several limitations to using inline assembler:

o The compiler’s various optimizations will disregard any effects of the inline
sequences, which will not be optimized at all

e In general, assembler directives will cause errors or have no meaning. Data
definition directives will however work as expected

e Alignment cannot be controlled; this means, for example, that DC32 directives
might be misaligned

o Auto variables cannot be accessed.

Inline assembler is therefore often best avoided. If no suitable intrinsic function is
available, we recommend that you use modules written in assembler language instead
of inline assembler, because the function call to an assembler routine normally causes
less performance reduction.

Calling assembler routines from C

An assembler routine that will be called from C must:

Conform to the calling convention
Have a PUBLIC entry-point label

o Be declared as external before any call, to allow type checking and optional
promotion of parameters, as in these examples:

extern int foo(void);
or
extern int foo(int i, int 3j);

One way of fulfilling these requirements is to create skeleton code in C, compile it, and
study the assembler list file.

CREATING SKELETON CODE

The recommended way to create an assembler language routine with the correct
interface is to start with an assembler language source file created by the C compiler.
Note that you must create skeleton code for each function prototype.

The following example shows how to create skeleton code to which you can easily add
the functional body of the routine. The skeleton source code only needs to declare the

IAR C/C++ Compiler
74 Reference Guide

Assembler language interface ___4

variables required and perform simple accesses to them. In this example, the assembler
routine takes an int and a double, and then returns an int:

extern int gInt;
extern double gDouble;

int func(int argl, double arg2)
{

int locInt = argl;

gInt = argl;

gbhouble = arg2;

return locInt;

int main()

{
int locInt = gInt;
gInt = func(locInt, gDouble) ;
return O;

}

Note: In this example we use a low optimization level when compiling the code to
show local and global variable access. If a higher level of optimization is used, the
required references to local variables could be removed during the optimization. The
actual function declaration is not changed by the optimization level.

COMPILING THE CODE

In the IDE, specity list options on file level. Select the file in the workspace window.
Then choose Project>Options. In the C/C++ Compiler category, select Override
inherited settings. On the List page, deselect Qutput list file, and instead select the
Output assembler file option and its suboption Include source. Also, be sure to specify
a low level of optimization.

EI Use these options to compile the skeleton code:
iccr32c skeleton -1A .

The -1a option creates an assembler language output file including C or C++ source
lines as assembler comments. The . (period) specifies that the assembler file should be
named in the same way as the C or C++ module (skeleton), but with the filename
extension s53. Also remember to specify:

e the code model

e the data model

o the floating point model
°

the size of the double type

Part |. Using the compiler 75

Calling assembler routines from C++

e alow level of optimization

o -e for enabling language extensions.
The result is the assembler source output file skeleton.s53.

Note: The -1a option creates a list file containing call frame information (CFI)
directives, which can be useful if you intend to study these directives and how they are
used. If you only want to study the calling convention, you can exclude the CFI
directives from the list file. In the IDE, choose Project>Options>C/C++
Compiler>List and deselect the suboption Include compiler runtime information.
On the command line, use the option -1B instead of -1A. Note that CFI information
must be included in the source code to make the C-SPY Call Stack window work.

The output file
The output file contains the following important information:

The calling convention
The return values

The global variables
The function parameters

How to create space on the stack (auto variables)

Call frame information (CFI).

The cF1 directives describe the call frame information needed by the Call Stack window
in the debugger.

Calling assembler routines from C++

The C calling convention does not apply to C++ functions. Most importantly, a function
name is not sufficient to identify a C++ function. The scope and the type of the function
are also required to guarantee type-safe linkage, and to resolve overloading.

Another difference is that non-static member functions get an extra, hidden argument,
the this pointer.

However, when using C linkage, the calling convention conforms to the C calling
convention. An assembler routine can therefore be called from C++ when declared in
this manner:

extern "C"
{
int my_routine(int x);

}

IAR C/C++ Compiler
76 Reference Guide

Assembler language interface ___4

Memory access layout of non-PODs (“plain old data structures”) is not defined, and
might change between compiler versions. Therefore, we do not recommend that you
access non-PODs from assembler routines.

To achieve the equivalent to a non-static member function, the implicit this pointer
must be made explicit:

class X;

extern "C"

{
void doit (X *ptr, int arg);
}

It is possible to “wrap” the call to the assembler routine in a member function. Using an
inline member function removes the overhead of the extra call—provided that function
inlining is enabled:

class X
{
public:
inline void doit(int arg) { ::doit(this, arg); }
Y

Note: Support for C++ names from assembler code is extremely limited. This means
that:

o Assembler list files resulting from compiling C++ files cannot, in general, be passed
through the assembler.

It is not possible to refer to or define C++ functions that do not have C linkage in
assembler.

Calling convention

A calling convention is the way a function in a program calls another function. The
compiler handles this automatically, but, if a function is written in assembler language,
you must know where and how its parameters can be found, how to return to the program
location from where it was called, and how to return the resulting value.

It is also important to know which registers an assembler-level routine must preserve. If
the program preserves too many registers, the program might be ineffective. If it
preserves too few registers, the result would be an incorrect program.

This section describes the calling convention used by the compiler. These items are
examined:

e Function declarations

Part |. Using the compiler 77

Calling convention

IAR C/C++ Compiler

78 Reference Guide

C and C++ linkage
Preserved versus scratch registers
Function entrance

Function exit

Return address handling.

At the end of the section, some examples are shown to describe the calling convention
in practice.

FUNCTION DECLARATIONS

In C, a function must be declared in order for the compiler to know how to call it. A
declaration could look as follows:

int a_function(int first, char * second);

This means that the function takes two parameters: an integer and a pointer to a
character. The function returns a value, an integer.

In the general case, this is the only knowledge that the compiler has about a function.
Therefore, it must be able to deduce the calling convention from this information.

USING C LINKAGE IN C++ SOURCE CODE

In C++, a function can have either C or C++ linkage. To call assembler routines from
C++, it is easiest if you make the C++ function have C linkage.

This is an example of a declaration of a function with C linkage:

extern "C"
{

int f(int);
}

It is often practical to share header files between C and C++. This is an example of a
declaration that declares a function with C linkage in both C and C++:

#ifdef __cplusplus

extern "C"

{
#endif

int f(int);
#ifdef __cplusplus
}
#endif

Assembler language interface ___4

PRESERVED VERSUS SCRATCH REGISTERS

The general R32C/100 CPU registers are divided into three separate sets, which are
described in this section.

Scratch registers

Any function is permitted to destroy the contents of a scratch register. If a function needs
the register value after a call to another function, it must store it during the call, for
example on the stack.

The registers R2R0 and A0, as well any registers used for parameters (for instance R3R1,
R7R5, A1, and A2), can be used as scratch registers by the function.

Preserved registers

Preserved registers, on the other hand, are preserved across function calls. The called
function can use the register for other purposes, but must save the value before using the
register and restore it at the exit of the function.

The registers R6R4 and A3 are preserved registers, and all non-parameter registers
except for R2R0 and AO0.

Special registers
For some registers, you must consider certain prerequisites:

o The stack pointer register must at all times point to or below the last element on the
stack. In the eventuality of an interrupt, everything below the point the stack pointer
points to, will be destroyed.

o The frame pointer register FB must be restored before returning from the function.

o The sB register (points to an area of data that is addressed with indexed addressing
modes) must never be changed. In the eventuality of an interrupt, the register must
have a specific value.

FUNCTION ENTRANCE

Parameters can be passed to a function using one of two basic methods: in registers or
on the stack. It is much more efficient to use registers than to take a detour via memory,
so the calling convention is designed to use registers as much as possible. Only a limited
number of registers can be used for passing parameters; when no more registers are
available, the remaining parameters are passed on the stack. The parameters are also
passed on the stack in these cases:

e Structure types: struct, union, and classes

Part |. Using the compiler 79

Calling convention

80

IAR C/C++ Compiler
Reference Guide

o Unnamed parameters to variable length (variadic) functions; in other words,
functions declared as foo(parami, . . .), for example print£.

Note: Interrupt functions cannot take any parameters.

Hidden parameters

In addition to the parameters visible in a function declaration and definition, there can
be hidden parameters:

If the function returns a structure, the memory location where the structure will be stored
is passed in the register A0 as a hidden parameter.
Register parameters

The registers available for passing parameters are RO—R3, R5, R7, and A0—A2.

Parameters Passed in registers

8-bit values ROL, ROH, R2L, R2H, R1L, R1H, R3L, R3H
1 6-bit values RO, R2, R1, R3, R5, R7

32-bit values R2RO0, R3R1, R7R5, AQ, Al, A2

32-bit values (pointer) A0, Al, A2

64-bit values R3R1R2R0, A1AQ

Table 24: Registers used for passing parameters

The assignment of registers to parameters is a straightforward process. Traversing the
parameters in strict order from left to right, the first parameter is assigned to the
available register or registers. Should there be no suitable register of the appropriate size
available, the parameter is passed on the stack.

The registers are selected in the order given in Table 24, Registers used for passing
parameters.

For example, the two functions g and h both take two int's, four char's and a short
parameter.

void g(int,int, char, char, char, char, short) ;
void h(char, char, char, char, short, int, int) ;

When the first two parameters of the function g have been allocated (to R2R0 and R3R1
respectively), there are no remaining 8-bit registers for passing the char parameters,
which will be passed on the stack. Register R5 is still free though, so the short
parameter will be passed in R5.

The function h on the other hand, will pass the char parameters in registers ROL, ROH,
R2L, and R2H. Because there are many parameter registers left, all parameters can be

Assembler language interface ___4

passed in registers. The short parameter goes into R1, and the two int parameters in
R7R5 and AO.

Both functions have the same types and number of parameters, but h will be
significantly more efficient because all parameters are passed in registers. The function
g will also use 16 bytes of stack space for passing the char parameters, whereas
function h does not need stack parameters.

Stack parameters and layout

Stack parameters are stored in the main memory, starting at the location pointed to by
the stack pointer. Below the stack pointer (toward low memory) there is free space that
the called function can use. The first stack parameter is stored at the location pointed to
by the stack pointer. The next one is stored at the next location on the stack that is
divisible by four, etc.

High
address
The caller’s stack frame
Parameter n
Parameter 1
Return address
Low
address Free stack memory

Figure 4: Stack image after the function call

Part |. Using the compiler 8l

Calling convention

82

IAR C/C++ Compiler
Reference Guide

And this is what the stack looks like when the execution has reached the first statement
in the function:

High
address The caller’s stack frame
Parameter n
Parameter |
Return address
Saved frame pointer 4——— Frame pointer
Auto variables
Saved registers
4——— Stack pointer
Low Free stack memory
address v

Figure 5: Stack image on the first statement of the function, after the function call

Aligning the function entry point

The runtime performance of a function depends on the entry address assigned by the
linker. To make the function execution time less dependent on the entry address, the
alignment of the function entry point can be specified explicitly using a compiler option,
see --align_func, page 130. A higher alignment does not necessarily make the function
faster, but the execution time will be more predictable.

FUNCTION EXIT

A function can return a value to the function or program that called it, or it can have the
return type void.

The return value of a function, if any, can be scalar (such as integers and pointers),
floating-point, or a structure.

Assembler language interface ___4

Registers used for returning values

These are the registers available for returning values:

Return values Returned in registers
8-bit values ROL
16-bit values RO
32-bit values R2RO (scalar)
AQ (pointer)
64-bit values R3R1R2R0
struct values implicit pointer in A0

Table 25: Registers used for returning values

Stack layout at function exit

It is the responsibility of the caller to clean the stack after the called function returns, by
adjusting the stack pointer.

Return address handling

A function written in assembler language should, when finished, return to the caller. At
a function call, the return address is stored on the stack.

Typically, a function returns by using the RTS instruction or the EXITD instruction if the
FB register is used for stack accesses. Interrupt functions return by using the REIT or
EXITI instructions, respectively, and fast interrupt functions (declared using the
__fast_interrupt keyword) return by using the FREIT instruction.

RESTRICTIONS FOR SPECIAL FUNCTION TYPES

Functions declared __moni tor save the status register together with the saved registers.
Functions declared __interrupt save all used registers. Functions declared __task
do not save any registers.

EXAMPLES

The following section shows a series of declaration examples and the corresponding
calling conventions. The complexity of the examples increases toward the end.
Example |

Assume this function declaration:

int addl (int) ;

Part |. Using the compiler 83

Calling convention

84

IAR C/C++ Compiler
Reference Guide

This function takes one parameter in the register R2R0, and the return value is passed
back to its caller in the register R2R0.

This assembler routine is compatible with the declaration; it will return a value that is
one number higher than the value of its parameter:

ADD.L #1,R2R0
RTS
Example 2
This example shows how structures are passed on the stack. Assume these declarations:

struct a_struct { int a; };
int a_function(struct a_struct x, int y);

The calling function must reserve 4 bytes on the top of the stack and copy the contents
of the struct to that location. The integer parameter y is passed in the register R2R0.
The return value is passed back to its caller in the register R2R0.

Example 3

The function below will return a struct.

struct a_struct { int a; };
struct a_struct a_function(int x);

It is the responsibility of the calling function to allocate a memory location for the return
value and pass a pointer to it as a hidden first parameter. The pointer to the location
where the return value should be stored is passed in A0. The parameter x is passed in
R2RO.

Assume that the function instead was declared to return a pointer to the structure:
struct a_struct * a_function(int x);

In this case, the return value is a scalar, so there is no hidden parameter. The parameter
x is passed in R2R0, and the return value is returned in A0.

FUNCTION DIRECTIVES

Note: This type of directive is primarily intended to support static overlay, a feature
which is useful in some smaller microcontrollers. The IAR C/C++ Compiler for R32C
does not use static overlay, because it has no use for it.

The function directives FUNCTION, ARGFRAME, LOCFRAME, and FUNCALL are generated
by the compiler to pass information about functions and function calls to the IAR
XLINK Linker. These directives can be seen if you use the compiler option Assembler
file (-12) to create an assembler list file.

Assembler language interface ___4

For reference information about the function directives, see the R32C IAR Assembler
Reference Guide.

Calling functions
In this section, we describe how functions are called in the different code models.
Functions can be called in two fundamentally different ways—directly or via a function

pointer. For each code model, we will discuss how both types of calls will be performed.

ASSEMBLER INSTRUCTIONS USED FOR CALLING
FUNCTIONS

This section presents the assembler instructions that can be used for calling and
returning from functions on the R32C/100 microcomputer. In the following sections we
will see how the different code models use these instructions to call code.

The normal function calling instruction is the JSR instruction:
JSR.A label:24

The location that the called function should return to (that is, the location immediately
after this instruction) is stored on the stack.

The destination label must not be further away than 8§ Mbytes. Larger jumps can be
made with the JSRI instruction.

MOV.L #label:32,A0

JSRI.L A0

Far code model

A direct call using this code model is simply:
JSR.A function:24

The JSR instruction can only reach + 8 Mbytes.

When a function returns control to the caller, the RTS instruction is used if no auto
variables were pushed at function entry and the EXITD instruction is used if auto
variables were saved at function entry.

When a function call is made via a function pointer, this code will be generated:
JSRI.L function_pointer:24 ; Location of function pointer

Calls via a function pointer reach the whole 32-bit address space.

Part |. Using the compiler 85

Memory access methods

86

Huge code model

In the Huge code model, a function generates an indirect call. This example shows a
simple call to the function func:

MOV.L #func:32,A0
JSRI.L A0

Returning from a function and assigning a function pointer work as in the Far code
model.

Memory access methods

IAR C/C++ Compiler
Reference Guide

This section describes the different memory types presented in the chapter Data storage.
In addition to just presenting the assembler code used for accessing data, it will be used
for explaining the reason behind the different memory types.

You should be familiar with the R32C/100 instruction set, in particular the different
addressing modes used by the instructions that can access memory.

The IAR Assembler for R32C uses the convention that the size of a memory address is
controlled by use of the suffixes : 8, : 16, and : 24. For example:

Suffix Size Instruction example

:8 | byte MOV.L -8:8[FB],R2R0
:16 2 bytes MOV.L foo:16[FB],R2R0
124 3 bytes MOV.L bar:24,R2R0

Tuble 26: Specifying the size of a memory address in assembler instructions
For each of the access methods described in the following sections, there are three
examples:

® Accessing a global variable

® Accessing a global array using an unknown index

® Accessing a structure using a pointer.
These three examples can be illustrated by this C program:

char x;
char y[10];

struct s
{
long a;
char b;
}i

Assembler language interface ___4

char test(int i, struct s * p)
{
return x + y[i] + p->b;

}

THE DATAI16 MEMORY ACCESS METHOD

Datal6 memory is located in the lowest and highest 32 Kbytes of memory. This is the
only memory type that can be accessed using 16-bit addresses.

Examples

These examples access datal6 memory in different ways:

MOV.B:S x:16,R0L Access the global variable x
ADD.B y:16[Al],ROL Access an entry in the global array y
ADD.B 0x4:8[A0],ROL Access through a pointer

THE DATA24 MEMORY ACCESS METHOD

The first 8§ Mbytes of memory can be accessed using 3-byte addresses.

Examples

These examples access data24 memory in different ways:

MOV.B x:24,ROL Access the global variable x
ADD.B v:24[Al1],ROL Access an entry in the global array y
ADD.B 0x4:8[A0],ROL Access through a pointer

THE DATA32 MEMORY ACCESS METHOD

The data32 memory access method can access the entire memory range. The drawback
of this access method is that only a few of the addressing modes can be used. This can
result in larger and slower code compared with code accessing other types of data.

Examples

These examples access data32 memory in different ways:

MOV.L #x:32,A1 Access the global variable x

MOV.B [A1],ROL

MOV. L #y:32,A1 Access an entry in the global array y
INDEX1.L R3R1

ADD.B [A1l],ROL

Part |. Using the compiler 87

Call frame information

88

ADD.B 0x4:8[A0],ROL Access through a pointer

THE SBDATAI6 MEMORY ACCESS METHOD

Sbdatal6 memory is addressed relative to the SB register. An address in this memory is
a 2-byte unsigned offset to the base address in the SB register. The start of the Sbdata
area is marked by the SBREF symbol, defined in the linker command file.

Examples

This example accesses sbdatal6 memory:

MOV.L x-SBREF:16[SB],R2R0 Accesses the __sbdatal6 variable x

THE SBDATA24 MEMORY ACCESS METHOD

Sbdata24 memory is addressed relative to the SB register. An address in this memory is
a 3-byte unsigned offset to the base address in the SB register. The start of the Sbdata
area is marked by the SBREF symbol, defined in the linker command file.

Examples

This example accesses sbdata24 memory:

MOV.L y-SBREF:24[SB],A0 Accesses the __sbdata24 variable y

Call frame information

IAR C/C++ Compiler
Reference Guide

When debugging an application using C-SPY, it is possible to view the call stack, that
is, the chain of functions that called the current function. To make this possible, the
compiler supplies debug information that describes the layout of the call frame, in
particular information about where the return address is stored.

If you want the call stack to be available when debugging a routine written in assembler
language, you must supply equivalent debug information in your assembler source using
the assembler directive CFI. This directive is described in detail in the R32C I4R
Assembler Reference Guide.

The CFI directives will provide C-SPY with information about the state of the calling
function(s). Most important of this is the return address, and the value of the stack
pointer at the entry of the function or assembler routine. Given this information, C-SPY
can reconstruct the state for the calling function, and thereby unwind the stack.

A full description about the calling convention might require extensive call frame
information. In many cases, a more limited approach will suffice.

Assembler language interface ___4

When describing the call frame information, the following three components must be
present:

® A names block describing the available resources to be tracked

® A common block corresponding to the calling convention

® A data block describing the changes that are performed on the call frame. This
typically includes information about when the stack pointer is changed, and when
permanent registers are stored or restored on the stack.

This table lists all the resources defined in the names block used by the compiler:

Resource Description

CFA_SP The call frame of the stack

R4-R7, ROL-R3L, ROH-R3H General purpose data registers

A0-A3 General purpose address registers

?RET32 The return address

SB The static base register

FB The frame base register

FLG The flag register

SP The active stack pointer (USB or ISB depending on the

FLG register U bit)

ISP The interrupt stack pointer

Table 27: Call frame information resources defined in a names block

Example

The header file cfi.m53 contains the macros XCFI_NAMES and XCFI_COMMON, which
declare a typical names block and a typical common block. These two macros declare
several resources, both concrete and virtual.

This is an example of an assembler routine that stores a permanent register and the return
register to the stack:

#include "cfi.m53"

XCFI_NAMES myNames
XCFI_COMMON myCommon, myNames

MODULE cfiexample
PUBLIC cfiexample
RSEG CODE24 : CODE : NOROOT

Part |. Using the compiler

89

Call frame information

CFI Block myBlock Using myCommon
CFI Function 'cfiexample'

// The common block does not declare the scratch
// registers as undefined.
CFI ROL Undefined

ROH Undefined

R2L Undefined

R2H Undefined

cfiexample:
PUSHM R3R1
CFI ?RET32 Frame (CFA_SP, -4)
CFI R3R1 Frame (CFA_SP, -8)
CFI CFA_SP SP+8

// Do something useless just to demonstrate the
// call stack.

MOV.L #0, R3R1

MOV.L #0, R2RO

POPM R3R1

CFI ?RET32 RA

CFI R3R1 SamevValue
CFI CFA_SP SP

// Do something else.

MOV.L #0, R2RO

RTS

CFI ENDBLOCK myBlock
ENDMOD

END

IAR C/C++ Compiler
90 Reference Guide

Using C++

IAR Systems supports two levels of the C++ language: The industry-standard
Embedded C++ and IAR Extended Embedded C++. They are described in this
chapter.

Overview

Embedded C++ is a subset of the C++ programming language which is intended for
embedded systems programming. It was defined by an industry consortium, the
Embedded C++ Technical Committee. Performance and portability are particularly
important in embedded systems development, which was considered when defining the
language.

STANDARD EMBEDDED C++
The following C++ features are supported:

o Classes, which are user-defined types that incorporate both data structure and
behavior; the essential feature of inheritance allows data structure and behavior to
be shared among classes

o Polymorphism, which means that an operation can behave differently on different
classes, is provided by virtual functions

o Opverloading of operators and function names, which allows several operators or
functions with the same name, provided that their argument lists are sufficiently
different

o Type-safe memory management using the operators new and delete

o Inline functions, which are indicated as particularly suitable for inline expansion.
C++ features that are excluded are those that introduce overhead in execution time or
code size that are beyond the control of the programmer. Also excluded are recent
additions to the ISO/ANSI C++ standard. This is because they represent potential
portability problems, due to that few development tools support the standard. Embedded

C++ thus offers a subset of C++ which is efficient and fully supported by existing
development tools.

Standard Embedded C++ lacks these features of C++:

o Templates
o Multiple and virtual inheritance

o Exception handling

Part |. Using the compiler

91

Overview

92

IAR C/C++ Compiler
Reference Guide

o Runtime type information

o New cast syntax (the operators dynamic_cast, static_cast,
reinterpret_cast, and const_cast)

o Namespaces

o The mutable attribute.

The exclusion of these language features makes the runtime library significantly more
efficient. The Embedded C++ library furthermore differs from the full C++ library in

that:

o The standard template library (STL) is excluded

e Streams, strings, and complex numbers are supported without the use of templates
e Library features which relate to exception handling and runtime type information

(the headers except, stdexcept, and typeinfo) are excluded.

Note: The library is not in the std namespace, because Embedded C++ does not
support namespaces.

EXTENDED EMBEDDED C++

IAR Systems’ Extended EC++ is a slightly larger subset of C++ which adds these
features to the standard EC++:

e Full template support

e Namespace support

o The mutable attribute

o The cast operators static_cast, const_cast, and reinterpret_cast.
All these added features conform to the C++ standard.

To support Extended EC++, this product includes a version of the standard template
library (STL), in other words, the C++ standard chapters utilities, containers, iterators,
algorithms, and some numerics. This STL is tailored for use with the Extended EC++
language, which means no exceptions, no multiple inheritance, and no support for
runtime type information (rtti). Moreover, the library is not in the std namespace.

Note: A module compiled with Extended EC++ enabled is fully link-compatible with
a module compiled without Extended EC++ enabled.
ENABLING C++ SUPPORT

In the compiler, the default language is C. To be able to compile files written in
Embedded C++, you must use the --ec++ compiler option. See --ec++, page 137.

To take advantage of Extended Embedded C++ features in your source code, you must
use the --eec++ compiler option. See --eec++, page 138.

Using C++ ___ 4

To set the equivalent option in the IDE, choose Project>Options>C/C++
Compiler>Language.

Feature descriptions

When you write C++ source code for the [AR C/C++ Compiler for R32C, you must be
aware of some benefits and some possible quirks when mixing C++ features—such as
classes, and class members—with IAR language extensions, such as IAR-specific
attributes.

CLASSES

A class type class and struct in C++ can have static and non-static data members,
and static and non-static function members. The non-static function members can be
further divided into virtual function members, non-virtual function members,
constructors, and destructors. For the static data members, static function members, and
non-static non-virtual function members the same rules apply as for statically linked
symbols outside of a class. In other words, they can have any applicable IAR-specific
type, memory, and object attribute.

The non-static virtual function members can have any applicable IAR-specific type,
memory, and object attribute as long as a pointer to the member function can be
implicitly converted to the default function pointer type. The constructors, destructors,
and non-static data members cannot have any IAR attributes.

The location operator @ can be used on static data members and on any type of function
members.

For further information about attributes, see Type qualifiers, page 161.

Example

class A {
public:
static __datal6 __no_init int i @ 60; //Located in datal6 at
//address 60

static __code24 void f(); //Located in code24 memory
__code24 void g(); //Located in code24 memory
virtual __code24 void h();//Located in code24 memory

Y
virtual void m() const volatile @ "SPECIAL"; //m() placed in
SPECIAL

Part |. Using the compiler 93

Feature descriptions

94

IAR C/C++ Compiler
Reference Guide

The this pointer

The this pointer used for referring to a class object or calling a member function of a
class object will by default have the data memory attribute for the default data pointer
type. This means that such a class object can only be defined to reside in memory from
which pointers can be implicitly converted to a default data pointer. This restriction
might also apply to objects residing on a stack, for example temporary objects and auto
objects.

Example

class B {

public:
void f£();

int i;

}i

FUNCTIONS

A function with extern "C" linkage is compatible with a function that has C++ linkage.

Example

extern "C" {
typedef void (*fpC) (void); // A C function typedef
}

void (*fpCpp) (void) ; // A C++ function typedef

fpC f1;

fpCpp £2;

void f (fpC) ;

£(£1); // Always works

£(£2); // fpCpp is compatible with fpC
TEMPLATES

Extended EC++ supports templates according to the C++ standard, except for the
support of the export keyword. The implementation uses a two-phase lookup which
means that the keyword typename must be inserted wherever needed. Furthermore, at
each use of a template, the definitions of all possible templates must be visible. This
means that the definitions of all templates must be in include files or in the actual source
file.

Using C++ ___ 4

The standard template library

The STL (standard template library) delivered with the product is tailored for Extended
EC++, as described in Extended Embedded C++, page 92.

STL and the IAR C-SPY® Debugger

C-SPY has built-in display support for the STL containers. The logical structure of
containers is presented in the watch views in a comprehensive way that is easy to
understand and follow.

Note: To be able to watch STL containers with many elements in a comprehensive
way, the STL container expansion option—available by choosing
Tools>Options>Debugger—is set to display only a few items at first.

VARIANTS OF CASTS
In Extended EC++ these additional C++ cast variants can be used:

const_cast<t2>(t)
static_cast<t2>(t)
reinterpret_cast<t2>(t)

MUTABLE

The mutable attribute is supported in Extended EC++. A mutable symbol can be
changed even though the whole class object is const.

NAMESPACE

The namespace feature is only supported in Extended EC++. This means that you can
use namespaces to partition your code. Note, however, that the library itself is not placed
in the std namespace.

THE STD NAMESPACE

The std namespace is not used in either standard EC++ or in Extended EC++. If you
have code that refers to symbols in the std namespace, simply define std as nothing;
for example:

#define std // Nothing here

USING INTERRUPTS AND EC++ DESTRUCTORS

If interrupts are enabled and the interrupt functions use class objects that have
destructors, there might be problems if the program exits either by using exit or by
returning from main. If an interrupt occurs after an object was destroyed, there is no
guarantee that the program will work properly.

Part |. Using the compiler 95

C++ language extensions

To avoid this, make sure that interrupts are disabled when returning from main or when
calling exit or abort.

To avoid interrupts, place a call to the intrinsic function __disable_interrupt before
the call to _exit.

C++ language extensions

When you use the compiler in C++ mode and enable IAR language extensions, the
following C++ language extensions are available in the compiler:

e Ina friend declaration of a class, the class keyword can be omitted, for example:

class B;
class A

{
friend B; //Possible when using IAR language
//extensions
friend class B; //According to standard
Y
e Constants of a scalar type can be defined within classes, for example:
class A {
const int size = 10;//Possible when using IAR language
//extensions
int alsize]l;
Y
According to the standard, initialized static data members should be used instead.
o In the declaration of a class member, a qualified name can be used, for example:
struct A {
int A::f(); //Possible when using IAR language extensions
int £(); //According to standard
Y
e It is permitted to use an implicit type conversion between a pointer to a function
with C linkage (extern "C") and a pointer to a function with C++ linkage
(extern "C++"), for example:
extern "C" void f();//Function with C linkage
void (*pf) () //pf points to a function with C++ linkage
= &f; //Implicit conversion of pointer.

According to the standard, the pointer must be explicitly converted.

IAR C/C++ Compiler
96 Reference Guide

Using C++ ___ 4

e If the second or third operands in a construction that contains the ? operator are
string literals or wide string literals (which in C++ are constants), the operands can
be implicitly converted to char * or wchar_t *, for example:

char *P = x ? "abc" : "def"; //Possible when using IAR
//language extensions
char const *P = x ? "abc" : "def"; //According to standard

o Default arguments can be specified for function parameters not only in the top-level
function declaration, which is according to the standard, but also in typedef
declarations, in pointer-to-function function declarations, and in pointer-to-member
function declarations.

o In a function that contains a non-static local variable and a class that contains a
non-evaluated expression (for example a sizeof expression), the expression can
reference the non-static local variable. However, a warning is issued.

Note: If you use any of these constructions without first enabling language extensions,
errors are issued.

Part |. Using the compiler 97

C++ language extensions

IAR C/C++ Compiler
98 Reference Guide

Efficient coding for
embedded applications

For embedded systems, the size of the generated code and data is very
important, because using smaller external memory or on-chip memory can
significantly decrease the cost and power consumption of a system.

The topics discussed are:

e Selecting data types

e Controlling data and function placement in memory
e Controlling compiler optimizations

o Writing efficient code.

As a part of this, the chapter also demonstrates some of the more common
mistakes and how to avoid them, and gives a catalog of good coding
techniques.

Selecting data types

For efficient treatment of data, you should consider the data types used and the most
efficient placement of the variables.

USING EFFICIENT DATA TYPES

The data types you use should be considered carefully, because this can have a large
impact on code size and code speed.

o Use unsigned data types, (unsigned char and unsigned short) unless your
application really requires signed values. This applies especially to loop variables.
o Try to avoid 64-bit data types, such as 64-bit double and long long.

e Bitfields with sizes other than 1 bit should be avoided because they will result in
inefficient code compared to bit operations.

e Declaring a pointer to const data tells the calling function that the data pointed to
will not change, which opens for better optimizations.

Part |. Using the compiler

929

Selecting data types

100

IAR C/C++ Compiler
Reference Guide

For details about representation of supported data types, pointers, and structures types,
see the chapter Data representation.

FLOATING-POINT TYPES

Using floating-point types on a microprocessor without a floating-point unit is very
inefficient, both in terms of code size and execution speed. The compiler supports two
floating-point formats—32 and 64 bits. The 32-bit floating-point type £1loat is more
efficient in terms of code size and execution speed. However, the 64-bit format double
supports higher precision and larger numbers.

For target devices equipped with a floating-point unit, you have two options with regard
to 32-bit floating-point numbers: using the FPU’s own floating-point instructions, which
do not comply fully with the IEEE-754 standard, or using library functions that are
standards-compliant but slower. See Floating-point implementation, page 64.

If available, use the FPU’s own floating-point instructions unless you absolutely cannot
manage without support for Infinity and Nan.

In the IAR C/C++ Compiler for R32C, the floating-point type £1oat always uses the
32-bit format. The format used by the double floating-point type depends on the setting
of the Size of type ‘double’ compiler option.

Unless the application requires the extra precision that 64-bit floating-point numbers
give, we recommend using 32-bit floats instead.

Note that a floating-point constant in the source code is treated as being of the type
double. This can cause innocent-looking expressions to be evaluated in double
precision. In the example below a is converted from a £1loat to a double, 1 is added
and the result is converted back to a float:

float test(float a)
{
return a + 1.0;

}

To treat a floating-point constant as a £1oat rather than as a double, add an £ to it, for
example:

float test(float a)
{

return a + 1.0f;

Efficient coding for embedded applications __¢

CASTING A FLOATING-POINT VALUE TO AN INTEGER

If you want the result of casting a £1oat to an int to be a rounded value instead of a
truncated value, use the intrinsic function __ROUND to insert a ROUND instruction
directly into the code. See __ ROUND, page 206.

ALIGNMENT OF ELEMENTS IN A STRUCTURE

The R32C/100 microcomputer requires that data in memory must be aligned. Each
element in a structure must be aligned according to its specified type requirements. This
means that the compiler might need to insert pad bytes to keep the alignment correct.

There are two reasons why this can be considered a problem:

o Due to external demands; for example, network communication protocols are
usually specified in terms of data types with no padding in between

® You need to save data memory.
For information about alignment requirements, see Alignment, page 153.
There are two ways to solve the problem:

o Use the #pragma pack directive or the __packed data type attribute for a tighter
layout of the structure. The drawback is that each access to an unaligned element in
the structure becomes slower.

o Write your own customized functions for packing and unpacking structures. This is
a more portable way, which will not produce any more code apart from your
functions. The drawback is the need for two views on the structure data—packed
and unpacked.

For further details about the #pragma pack directive, see pack, page 194.

ANONYMOUS STRUCTS AND UNIONS

When a structure or union is declared without a name, it becomes anonymous. The effect
is that its members will only be seen in the surrounding scope.

Anonymous structures are part of the C++ language; however, they are not part of the C
standard. In the IAR C/C++ Compiler for R32C they can be used in C if language
extensions are enabled.

In the IDE, language extensions are enabled by default.

Use the -e compiler option to enable language extensions. See -e, page 137, for
[additional information.

Part |. Using the compiler 101

Selecting data types

102

IAR C/C++ Compiler
Reference Guide

Example

In this example, the members in the anonymous union can be accessed, in function £,
without explicitly specifying the union name:

struct s
{
char tag;
union
{
long 1;
float £;
Y
} st;

void f(void)
{

st.1 = 5;
}

The member names must be unique in the surrounding scope. Having an anonymous
struct or union at file scope, as a global, external, or static variable is also allowed.
This could for instance be used for declaring I/O registers, as in this example:

__no_init volatile
union
{
unsigned char IOPORT;
struct
{
unsigned char way: 1;
unsigned char out: 1;
Y
} @ address;

This declares an I/O register byte TOPORT at address. The I/O register has 2 bits
declared, way and out. Note that both the inner structure and the outer union are
anonymous.

This example illustrates how variables declared this way can be used:

void test (void)
{
IOPORT = 0;
way = 1;
out = 1;

}

Anonymous structures and unions are implemented in terms of objects named after the
first field, with a prefix _a_ to place the name in the implementation part of the

Efficient coding for embedded applications __¢

namespace. In this example, the anonymous union will be implemented through an
object named _A_TOPORT.

Controlling data and function placement in memory

The compiler provides different mechanisms for controlling placement of functions and
data objects in memory. To use memory efficiently, you should be familiar with these
mechanisms to know which one is best suited for different situations. You can use:

o Code and data models

Use the different compiler options for code and data models, respectively, to take
advantage of the different addressing modes available for the microcomputer and
thereby also place functions and data objects in different parts of memory. To read
more about data and code models, see Data models, page 12, and Code models and
memory attributes for function storage, page 21, respectively.

e Memory attributes

Use memory attributes to override the default addressing mode and placement of
individual functions and data objects. To read more about memory attributes for data
and functions, see Using data memory attributes, page 14, and Using function
memory attributes, page 22, respectively.

o The @ operator and the #pragma location directive for absolute placement

Use the @ operator or the #pragma location directive to place individual global and
static variables at absolute addresses. The variables must be declared either
__no_init or const. This is useful for individual data objects that must be located
at a fixed address, for example variables with external requirements, or for
populating any hardware tables similar to interrupt vector tables. Note that it is not
possible to use this notation for absolute placement of individual functions.

o The @ operator and the #pragma location directive for segment placement

Use the @ operator or the #pragma location directive to place groups of functions
or global and static variables in named segments, without having explicit control of
each object. The variables must be declared either __no_init or const. The
segments can, for example, be placed in specific areas of memory, or initialized or
copied in controlled ways using the segment begin and end operators. This is also
useful if you want an interface between separately linked units, for example an
application project and a boot loader project. Use named segments when absolute
control over the placement of individual variables is not needed, or not useful.

At compile time, data and functions are placed in different segments as described in
Data segments, page 31, and Code segments, page 37, respectively. At link time, one of
the most important functions of the linker is to assign load addresses to the various
segments used by the application. All segments, except for the segments holding

Part |. Using the compiler 103

Controlling data and function placement in memory

absolute located data, are automatically allocated to memory according to the
specifications of memory ranges in the linker command file, as described in Placing
segments in memory, page 28.

DATA PLACEMENT AT AN ABSOLUTE LOCATION

The @ operator, alternatively the #pragma location directive, can be used for placing
global and static variables at absolute addresses. The variables must be declared using
one of these combinations of keywords:

® _ _no_init
® _ no_init and const (without initializers)

o const (with initializers).

To place a variable at an absolute address, the argument to the @ operator and the
#pragma location directive should be a literal number, representing the actual
address.

Note: A variable placed in an absolute location should be defined in an include file, to
be included in every module that uses the variable. An unused definition in a module
will be ignored. A normal extern declaration—one that does not use an absolute
placement directive—can refer to a variable at an absolute address; however,
optimizations based on the knowledge of the absolute address cannot be performed.

Examples

In this example, a __no_init declared variable is placed at an absolute address. This
is useful for interfacing between multiple processes, applications, etc:

__no_init volatile char alpha @ 0x2000;/* OK */

These examples contain two const declared objects. The first one is not initialized, and
the second one is initialized to a specific value. Both objects are placed in ROM. This is
useful for configuration parameters, which are accessible from an external interface.
Note that in the second case, the compiler is not obliged to actually read from the
variable, because the value is known.

#pragma location=0x60000
__no_init const int beta; /* OK */

const int gamma @ 0x60004 = 3; /* OK */

IAR C/C++ Compiler
104 Reference Guide

Efficient coding for embedded applications __¢

In the first case, the value is not initialized by the compiler; the value must be set by other
means. The typical use is for configurations where the values are loaded to ROM
separately, or for special function registers that are read-only.

These examples show incorrect usage:

int delta @ OxFF2006; /* Error, neither */
/* "__no_init" nor "const".*/

C++ considerations

In C++, module scoped const variables are static (module local), whereas in C they are
global. This means that each module that declares a certain const variable will contain
a separate variable with this name. If you link an application with several such modules
all containing (via a header file), for instance, the declaration:

volatile const __no_init int x @ 0x100; /* Bad in C++ */

the linker will report that more than one variable is located at address 0x100.

To avoid this problem and make the process the same in C and C++, you should declare
these variables extern, for example:

extern volatile const __no_init int x @ 0x100; /* the extern
/* keyword makes x public */

Note: C++ static member variables can be placed at an absolute address just like any
other static variable.

DATA AND FUNCTION PLACEMENT IN SEGMENTS

The @ operator, alternatively the #pragma location directive, can be used for placing
individual variables or individual functions in named segments. The named segment can
either be a predefined segment, or a user-defined segment. The variables must be
declared either __no_init or const. If declared const, they can have initializers.

C++ static member variables can be placed in named segments just like any other static
variable.

If you use your own segments, in addition to the predefined segments, the segments
must also be defined in the linker command file using the -z or the -p segment control
directives.

Note: Take care when explicitly placing a variable or function in a predefined segment
other than the one used by default. This is useful in some situations, but incorrect
placement can result in anything from error messages during compilation and linking to
amalfunctioning application. Carefully consider the circumstances; there might be strict
requirements on the declaration and use of the function or variable.

The location of the segments can be controlled from the linker command file.

Part |. Using the compiler 105

Controlling compiler optimizations

For more information about segments, see the chapter Segment reference.

Examples of placing variables in named segments

In the following three examples, a data object is placed in a user-defined segment. The
segment will be allocated in default memory depending on the used data model.

__no_init int alpha @ "NOINIT"; /* OK */

#pragma location="CONSTANTS"
const int beta; /* OK */

const int gamma @ "CONSTANTS" = 3; /* OK */

To override the default segment allocation, you can explicitly specify a memory attribute
other than the default:

__data32 __no_init int alpha @ "NOINIT";/* Placed in data32*/
This example shows incorrect usage:
int delta @ "NOINIT"; /* Error, neither */

/* "__no_init" nor "const" */
Examples of placing functions in named segments
void f(void) @ "FUNCTIONS";
void g(void) @ "FUNCTIONS"

{
}

#pragma location="FUNCTIONS"
void h(void) ;

To override the default segment allocation, you can explicitly specify a memory attribute
other than the default:

__code32 void f(void) @ "FUNCTIONS";

Controlling compiler optimizations

The compiler performs many transformations on your application to generate the best
possible code. Examples of such transformations are storing values in registers instead
of memory, removing superfluous code, reordering computations in a more efficient
order, and replacing arithmetic operations by cheaper operations.

IAR C/C++ Compiler
106 Reference Guide

Efficient coding for embedded applications __¢

The linker should also be considered an integral part of the compilation system, because
some optimizations are performed by the linker. For instance, all unused functions and
variables are removed and not included in the final output.

SCOPE FOR PERFORMED OPTIMIZATIONS

You can decide whether optimizations should be performed on your whole application
or on individual files. By default, the same types of optimizations are used for an entire
project, but you should consider using different optimization settings for individual files.
For example, put code that must execute very quickly into a separate file and compile it
for minimal execution time, and the rest of the code for minimal code size. This will give
a small program, which is still fast enough where it matters.

You can also exclude individual functions from the performed optimizations. The
#pragma optimize directive allows you to either lower the optimization level, or
specify another type of optimization to be performed. Refer to optimize, page 193, for
information about the pragma directive.

Multi-file compilation units

In addition to applying different optimizations to different source files or even functions,
you can also decide what a compilation unit consists of—one or several source code
files.

By default, a compilation unit consists of one source file, but you can also use multi-file
compilation to make several source files in a compilation unit. The advantage is that
interprocedural optimizations such as inlining, cross call, and cross jump have more
source code to work on. Ideally, the whole application should be compiled as one
compilation unit. However, for large applications this is not practical because of
resource restrictions on the host computer. For more information, see --mfc, page 141.

If the whole application is compiled as one compilation unit, it is very useful to make
the compiler also discard unused public functions and variables before the
interprocedural optimizations are performed. Doing this limits the scope of the
optimizations to functions and variables that are actually used. For more information,
see --discard_unused publics, page 136.

OPTIMIZATION LEVELS

The compiler supports different levels of optimizations. This table lists the
optimizations that are performed on each level:

Optimization level Description

None (Best debug support) Variables live through their entire scope

Table 28: Compiler optimization levels

Part |. Using the compiler 107

Controlling compiler optimizations

Optimization level Description

Low Dead code elimination
Redundant label elimination
Redundant branch elimination

Medium Same as above
Live-dead analysis and optimization
Code hoisting
Register content analysis and optimization
Constant propagation
Constant elimination
Common subexpression elimination

High (Balanced) Same as above
Peephole optimization
Cross jumping
Memory contents tracking
Copy propagation
Cross call (when optimizing for size)
Loop unrolling
Function inlining
Code motion
Type-based alias analysis

Table 28: Compiler optimization levels (Continued)

Note: Some of the performed optimizations can be individually enabled or disabled.
For more information about these, see Fine-tuning enabled transformations, page 109.

A high level of optimization might result in increased compile time, and will most likely
also make debugging more difficult, because it is less clear how the generated code
relates to the source code. For example, at the low, medium, and high optimization
levels, variables do not live through their entire scope, which means processor registers
used for storing variables can be reused immediately after they were last used. Due to
this, the C-SPY Watch window might not be able to display the value of the variable
throughout its scope. At any time, if you experience difficulties when debugging your
code, try lowering the optimization level.

SPEED VERSUS SIZE

At the high optimization level, the compiler balances between size and speed
optimizations. However, it is possible to fine-tune the optimizations explicitly for either
size or speed. They only differ in what thresholds that are used; speed will trade size for
speed, whereas size will trade speed for size. Note that one optimization sometimes
enables other optimizations to be performed, and an application might in some cases
become smaller even when optimizing for speed rather than size.

IAR C/C++ Compiler
108 Reference Guide

Efficient coding for embedded applications __¢

FINE-TUNING ENABLED TRANSFORMATIONS

At each optimization level you can disable some of the transformations individually. To
disable a transformation, use either the appropriate option, for instance the command
line option --no_inline, alternatively its equivalent in the IDE Function inlining, or
the #pragma optimize directive. These transformations can be disabled individually:
Common subexpression elimination

Loop unrolling

Function inlining

Code motion

Type-based alias analysis

Cross call.

Common subexpression elimination

Redundant re-evaluation of common subexpressions is by default eliminated at
optimization levels Medium and High. This optimization normally reduces both code
size and execution time. However, the resulting code might be difficult to debug.

Note: This option has no effect at optimization levels None and Low.

To read more about the command line option, see --no_cse, page 143.

Loop unrolling

It is possible to duplicate the loop body of a small loop, whose number of iterations can
be determined at compile time, to reduce the loop overhead.

This optimization, which can be performed at optimization level High, normally
reduces execution time, but increases code size. The resulting code might also be
difficult to debug.

The compiler heuristically decides which loops to unroll. Different heuristics are used
when optimizing for speed, size, or when balancing between size and speed.

Note: This option has no effect at optimization levels None, Low, and Medium.

To read more about the command line option, see --no_unroll, page 146.

Function inlining

Function inlining means that a simple function, whose definition is known at compile
time, is integrated into the body of its caller to eliminate the overhead of the call. This
optimization, which is performed at optimization level High, normally reduces
execution time, but increases code size. The resulting code might also be difficult to
debug.

Part |. Using the compiler 109

Controlling compiler optimizations

The compiler decides which functions to inline. Different heuristics are used when
optimizing for speed, size, or when balancing between size and speed.

Note: This option has no effect at optimization levels None, Low, and Medium.

To read more about the command line option, see --no_inline, page 144.

Code motion

Evaluation of loop-invariant expressions and common subexpressions are moved to
avoid redundant re-evaluation. This optimization, which is performed at optimization
level High, normally reduces code size and execution time. The resulting code might
however be difficult to debug.

Note: This option has no effect at optimization levels None, and Low.

Type-based alias analysis

When two or more pointers reference the same memory location, these pointers are said
to be aliases for each other. The existence of aliases makes optimization more difficult
because it is not necessarily known at compile time whether a particular value is being
changed.

Type-based alias analysis optimization assumes that all accesses to an object are
performed using its declared type or as a char type. This assumption lets the compiler
detect whether pointers can reference the same memory location or not.

Type-based alias analysis is performed at optimization level High. For ISO/ANSI
standard-conforming C or C++ application code, this optimization can reduce code size
and execution time. However, non-standard-conforming C or C++ code might result in
the compiler producing code that leads to unexpected behavior. Therefore, it is possible
to turn this optimization off.

Note: This option has no effect at optimization levels None, Low, and Medium.

To read more about the command line option, see --no_tbaa, page 145.

Example

short f(short * pl, long * p2)
{

*p2 = 0;

*pl = 1;

return *p2;

}

With type-based alias analysis, it is assumed that a write access to the short pointed to
by p1 cannot affect the Long value that p2 points to. Thus, it is known at compile time
that this function returns 0. However, in non-standard-conforming C or C++ code these

IAR C/C++ Compiler
110 Reference Guide

Efficient coding for embedded applications __¢

pointers could overlap each other by being part of the same union. If you use explicit
casts, you can also force pointers of different pointer types to point to the same memory
location.

Cross call

Common code sequences are extracted to local subroutines. This optimization, which is
performed at optimization level High, can reduce code size, sometimes dramatically, on
behalf of execution time and stack size. The resulting code might however be difficult

to debug. This optimization cannot be disabled using the #pragma optimize directive.

Note: This option has no effect at optimization levels None, Low, and Medium.

To read more about related command line options, see --no_cross_call, page 143.

Writing efficient code

This section contains general programming hints on how to implement functions to
make your applications robust, but at the same time facilitate compiler optimizations.

The following is a list of programming techniques that will, when followed, enable the
compiler to better optimize the application.

o Local variables—auto variables and parameters—are preferred over static or global
variables. The reason is that the optimizer must assume, for example, that called
functions can modify non-local variables. When the life spans for local variables
end, the previously occupied memory can then be reused. Globally declared
variables will occupy data memory during the whole program execution.

e Avoid taking the address of local variables using the & operator. This is inefficient
for two main reasons. First, the variable must be placed in memory, and thus cannot
be placed in a processor register. This results in larger and slower code. Second, the
optimizer can no longer assume that the local variable is unaffected over function
calls.

o Module-local variables—variables that are declared static—are preferred over
global variables. Also avoid taking the address of frequently accessed static
variables.

o The compiler is capable of inlining functions. This means that instead of calling a
function, the compiler inserts the content of the function at the location where the
function was called. The result is a faster, but often larger, application. Also,
inlining might enable further optimizations. The compiler often inlines small
functions declared static. The use of the #pragma inline directive and the C++
keyword inline gives you fine-grained control, and it is the preferred method
compared to the traditional way of using preprocessor macros. This feature can be
disabled using the --no_inline command line option; see --no_inline, page 144.

Part |. Using the compiler 111

Writing efficient code

112

IAR C/C++ Compiler
Reference Guide

e Avoid using inline assembler. Instead, try writing the code in C or C++, use intrinsic
functions, or write a separate module in assembler language. For more details, see
Mixing C and assembler, page 71.

SAVING STACK SPACE AND RAM MEMORY

The following is a list of programming techniques that will, when followed, save
memory and stack space:
e If stack space is limited, avoid long call chains and recursive functions

o Avoid using large non-scalar types, such as structures, as parameters or return type
To save stack space, you should instead pass them as pointers or, in C++, as
references

o Pass smaller parameters before larger ones, so that you avoid passing parameters on
the stack. See Register parameters, page 80.

FUNCTION PROTOTYPES
It is possible to declare and define functions using one of two different styles:

e Prototyped
o Kernighan & Ritchie C (K&R C)

Both styles are included in the C standard; however, it is recommended to use the
prototyped style, since it makes it easier for the compiler to find problems in the code.
Using the prototyped style will also make it possible to generate more efficient code,
since type promotion (implicit casting) is not needed. The K&R style is only supported
for compatibility reasons.

To make the compiler verify that all functions have proper prototypes, use the compiler
option Require prototypes (--require_prototypes).

Prototyped style

In prototyped function declarations, the type for each parameter must be specified.

int test(char, int); /* declaration */
int test(char a, int b) /* definition */

Kernighan & Ritchie style

In K&R style—traditional pre-ISO/ANSI C—it is not possible to declare a function
prototyped. Instead, an empty parameter list is used in the function declaration. Also,
the definition looks different.

Efficient coding for embedded applications __¢

int test(); /* old declaration */
int test(a,b) /* old definition */
char a;
int b;

INTEGER TYPES AND BIT NEGATION

In some situations, the rules for integer types and their conversion lead to possibly
confusing behavior. Things to look out for are assignments or conditionals (test
expressions) involving types with different size, and logical operations, especially bit
negation. Here, types also includes types of constants.

In some cases there might be warnings (for example, for constant conditional or
pointless comparison), in others just a different result than what is expected. Under
certain circumstances the compiler might warn only at higher optimizations, for
example, if the compiler relies on optimizations to identify some instances of constant
conditionals. In this example an 8-bit character, a 16-bit integer, and two’s complement
is assumed:

void f1 (unsigned char cl)
{

if (cl == ~0x80)
}
Here, the test is always false. On the right hand side, 0x80 is 0x0080, and ~0x0080
becomes 0xFFFFFF7F. On the left hand side, c1 is an 8-bit unsigned character, so it
cannot be larger than 255. It also cannot be negative, which means that the integral
promoted value can never have the topmost 8 bits set.

PROTECTING SIMULTANEOUSLY ACCESSED VARIABLES

Variables that are accessed asynchronously, for example by interrupt routines or by code
executing in separate threads, must be properly marked and have adequate protection.
The only exception to this is a variable that is always read-only.

To mark a variable properly, use the volatile keyword. This informs the compiler,
among other things, that the variable can be changed from other threads. The compiler
will then avoid optimizing on the variable (for example, keeping track of the variable in
registers), will not delay writes to it, and be careful accessing the variable only the
number of times given in the source code. To read more about the volatile type
qualifier, see Declaring objects volatile, page 161.

Part |. Using the compiler 113

Writing efficient code

114

IAR C/C++ Compiler
Reference Guide

A sequence that accesses a volatile declared variable must also not be interrupted.
Use the __monitor keyword in interruptible code to ensure this. This must be done for
both write and read sequences, otherwise you might end up reading a partially updated
variable. This is true for all variables of all sizes. Accessing a small-sized variable can
be an atomic operation, but this is not guaranteed and you should not rely on it unless
you continuously study the compiler output. It is safer to use the __monitor keyword
to ensure that the sequence is an atomic operation.

ACCESSING SPECIAL FUNCTION REGISTERS

Specific header files for several R32C/100 devices are included in the IAR product
installation. The header files are named iodevice.h and define the processor-specific
special function registers (SFRs).

Note: Each header file contains one section used by the compiler, and one section used
by the assembler.

SFRs with bitfields are declared in the header file. The following example is from
ior32cl2l.h:

/* uartO transmit receive mode Register */
__datal6 __no_init volatile union
{
unsigned char UOMR;
struct
{
unsigned char SMDO
unsigned char SMD1
unsigned char SMD2
unsigned char CKDIR
unsigned char STPS
unsigned char PRY
unsigned char PRYE
unsigned char IOPOL
} UOMR_bit;
} @ 0x0368;

[e S

By including the appropriate include file in your code, it is possible to access either the
whole register or any individual bit (or bitfields) from C code as follows:

/* Whole register access */
UOMR = 0x12;

/* Bitfield accesses */
UOMR_bit.CKDIR = 0;
UOMR_bit.IOPOL = 1;

Efficient coding for embedded applications __¢

You can also use the header files as templates when you create new header files for other
R32C/100 devices. For details about the @ operator, see Located data, page 37.

NON-INITIALIZED VARIABLES

Normally, the runtime environment will initialize all global and static variables when the
application is started.

The compiler supports the declaration of variables that will not be initialized, using the
__no_init type modifier. They can be specified either as a keyword or using the
#pragma object_attribute directive. The compiler places such variables in a
separate segment, according to the specified memory keyword. See the chapter Placing
code and data for more information.

For __no_init, the const keyword implies that an object is read-only, rather than that
the object is stored in read-only memory. It is not possible to give a__no_init object
an initial value.

Variables declared using the __no_init keyword could, for example, be large input
buffers or mapped to special RAM that keeps its content even when the application is
turned off.

For information about the __no_init keyword, see page 181. Note that to use this
keyword, language extensions must be enabled; see -e, page 137. For information about
the #pragma object_attribute, see page 193.

Part |. Using the compiler 115

Writing efficient code

IAR C/C++ Compiler
116 Reference Guide

Part 2. Reference

information

This part of the IAR C/C++ Compiler for R32C Reference Guide contains

these chapters:

e External interface details
e Compiler options

e Data representation

o Compiler extensions

e Extended keywords

e Pragma directives

e Intrinsic functions

e The preprocessor

e Library functions

e Segment reference

e Implementation-defined behavior.

.hmuhhhhi

7

AAARRIE

118

External interface details

This chapter provides reference information about how the compiler interacts
with its environment. The chapter briefly lists and describes the invocation
syntax, methods for passing options to the tools, environment variables, the

include file search procedure, and finally the different types of compiler output.

Invocation syntax

You can use the compiler either from the IDE or from the command line. Refer to the
IAR Embedded Workbench® IDE User Guide for information about using the compiler
from the IDE.

COMPILER INVOCATION SYNTAX
The invocation syntax for the compiler is:
iccr32c [options] [sourcefile] [options]

For example, when compiling the source file prog. c, use this command to generate an
object file with debug information:

iccr32c prog --debug

The source file can be a C or C++ file, typically with the filename extension c or cpp,
respectively. If no filename extension is specified, the file to be compiled must have the
extension c.

Generally, the order of options on the command line, both relative to each other and to
the source filename, is not significant. There is, however, one exception: when you use
the - option, the directories are searched in the same order that they are specified on the
command line.

If you run the compiler from the command line without any arguments, the compiler
version number and all available options including brief descriptions are directed to
stdout and displayed on the screen.

PASSING OPTIONS

There are three different ways of passing options to the compiler:

e Directly from the command line

Specify the options on the command line after the iccr32c command, either before
or after the source filename; see Invocation syntax, page 119.

Part 2. Reference information

19

Include file search procedure

120

Via environment variables

The compiler automatically appends the value of the environment variables to every
command line; see Environment variables, page 120.

Via a text file, using the - £ option; see -f, page 139.

For general guidelines for the option syntax, an options summary, and a detailed
description of each option, see the Compiler options chapter.

ENVIRONMENT VARIABLES

These environment variables can be used with the compiler:

Environment variable Description

C_INCLUDE Specifies directories to search for include files; for example:

C_INCLUDE=c:\program files\iar systems\embedded
workbench 5.n\r32c\inc;c:\headers

QCCR32C Specifies command line options; for example: QCCR32C=-1A

asm.lst

Table 29: Compiler environment variables

Include file search procedure

This is a detailed description of the compiler’s #include file search procedure:

IAR C/C++ Compiler
Reference Guide

If the name of the #include file is an absolute path, that file is opened.

If the compiler encounters the name of an #include file in angle brackets, such as:
#include <stdio.h>

it searches these directories for the file to include:

1 The directories specified with the - option, in the order that they were
specified, see -/, page 140.

2 The directories specified using the C_INCLUDE environment variable, if any, see
Environment variables, page 120.

If the compiler encounters the name of an #include file in double quotes, for
example:
#include "vars.h"

it searches the directory of the source file in which the #include statement occurs,
and then performs the same sequence as for angle-bracketed filenames.

External interface details ___¢

If there are nested #include files, the compiler starts searching the directory of the
file that was last included, iterating upwards for each included file, searching the
source file directory last. For example:

src.c in directory dir\src
#include "src.h"

src.h in directory dir\include
#include "config.h"

When dir\exe is the current directory, use this command for compilation:
iccr32c ..\src\src.c -I..\include -I..\debugconfig

Then the following directories are searched in the order listed below for the file
config.h, which in this example is located in the dir\debugconfig directory:

dir\include Current file is src.h.

dir\src File including current file (src. c).
dir\include As specified with the first -I option.
dir\debugconfig As specified with the second -T option.

Use angle brackets for standard header files, like stdio.h, and double quotes for files
that are part of your application.

Note: Both \ and / can be used as directory delimiters.

Compiler output

The compiler can produce the following output:

o A linkable object file

The object files produced by the compiler use a proprietary format called UBROF,
which stands for Universal Binary Relocatable Object Format. By default, the object
file has the filename extension r53.

o Optional list files

Different types of list files can be specified using the compiler option -1, see -/, page
140. By default, these files will have the filename extension 1st.

o Optional preprocessor output files

A preprocessor output file is produced when you use the --preprocess option; by
default, the file will have the filename extension i.

Part 2. Reference information 121

Diagnostics

122

o Diagnostic messages

Diagnostic messages are directed to stderr and displayed on the screen, and printed
in an optional list file. To read more about diagnostic messages, see Diagnostics,
page 122.

Error return codes

These codes provide status information to the operating system which can be tested
in a batch file, see Error return codes, page 122.

Size information

Information about the generated amount of bytes for functions and data for each
memory is directed to stdout and displayed on the screen. Some of the bytes might
be reported as shared.

Shared objects are functions or data objects that are shared between modules. If any
of these occur in more than one module, only one copy is retained. For example, in
some cases inline functions are not inlined, which means that they are marked as
shared, because only one instance of each function will be included in the final
application. This mechanism is sometimes also used for compiler-generated code or
data not directly associated with a particular function or variable, and when only one
instance is required in the final application.

Error return codes

The compiler returns status information to the operating system that can be tested in a
batch file.

These command line error codes are supported:

Code Description

0
|

Compilation successful, but there might have been warnings.

Warnings were produced and the option --warnings_affect_exit_code was
used.

Errors occurred.
Fatal errors occurred, making the compiler abort.

Internal errors occurred, making the compiler abort.

Table 30: Error return codes

Diagnostics

IAR C/C++ Compiler
Reference Guide

This section describes the format of the diagnostic messages and explains how
diagnostic messages are divided into different levels of severity.

External interface details ___¢

MESSAGE FORMAT

All diagnostic messages are issued as complete, self-explanatory messages. A typical
diagnostic message from the compiler is produced in the form:

filename, linenumber levelltag]: message

with these elements:

filename The name of the source file in which the issue was encountered
linenumber The line number at which the compiler detected the issue
level The level of seriousness of the issue

tag A unique tag that identifies the diagnostic message

message An explanation, possibly several lines long

Diagnostic messages are displayed on the screen, as well as printed in the optional list
file.

Use the option --diagnostics_tables to list all possible compiler diagnostic
messages.

SEVERITY LEVELS

The diagnostic messages are divided into different levels of severity:

Remark

A diagnostic message that is produced when the compiler finds a source code
construction that can possibly lead to erroneous behavior in the generated code.
Remarks are by default not issued, but can be enabled, see --remarks, page 150.

Warning

A diagnostic message that is produced when the compiler finds a programming error or
omission which is of concern, but not so severe as to prevent the completion of
compilation. Warnings can be disabled by use of the command line option
--no_warnings, see page 146.

Error

A diagnostic message that is produced when the compiler finds a construction which
clearly violates the C or C++ language rules, such that code cannot be produced. An
error will produce a non-zero exit code.

Part 2. Reference information 123

Diagnostics

124

IAR C/C++ Compiler
Reference Guide

Fatal error

A diagnostic message that is produced when the compiler finds a condition that not only
prevents code generation, but which makes further processing of the source code
pointless. After the message is issued, compilation terminates. A fatal error will produce
a non-zero exit code.

SETTING THE SEVERITY LEVEL

The diagnostic messages can be suppressed or the severity level can be changed for all
diagnostics messages, except for fatal errors and some of the regular errors.

See Summary of compiler options, page 128, for a description of the compiler options
that are available for setting severity levels.

See the chapter Pragma directives, for a description of the pragma directives that are
available for setting severity levels.

INTERNAL ERROR

An internal error is a diagnostic message that signals that there was a serious and
unexpected failure due to a fault in the compiler. It is produced using this form:

Internal error: message

where message is an explanatory message. If internal errors occur, they should be
reported to your software distributor or IAR Systems Technical Support. Include enough
information to reproduce the problem, typically:

The product name

The version number of the compiler, which can be seen in the header of the list files
generated by the compiler

Your license number
The exact internal error message text

The source file of the application that generated the internal error

A list of the options that were used when the internal error occurred.

Compiler options

This chapter describes the syntax of compiler options and the general syntax
rules for specifying option parameters, and gives detailed reference
information about each option.

Options syntax

Compiler options are parameters you can specify to change the default behavior of the
compiler. You can specify options from the command line—which is described in more
detail in this section—and from within the IDE.

Refer to the /AR Embedded Workbench® IDE User Guide for information about the
compiler options available in the IDE and how to set them.

TYPES OF OPTIONS

There are two types of names for command line options, short names and /ong names.
Some options have both.

e A short option name consists of one character, and it can have parameters. You
specify it with a single dash, for example -e

e A long option name consists of one or several words joined by underscores, and it
can have parameters. You specify it with double dashes, for example
--char_is_signed.

For information about the different methods for passing options, see Passing options,
page 119.
RULES FOR SPECIFYING PARAMETERS

There are some general syntax rules for specifying option parameters. First, the rules
depending on whether the parameter is optional or mandatory, and whether the option
has a short or a long name, are described. Then, the rules for specifying filenames and
directories are listed. Finally, the remaining rules are listed.

Rules for optional parameters

For options with a short name and an optional parameter, any parameter should be
specified without a preceding space, for example:

-0 or -Oh

Part 2. Reference information

125

Options syntax

126

IAR C/C++ Compiler
Reference Guide

For options with a long name and an optional parameter, any parameter should be
specified with a preceding equal sign (=), for example:

--misrac2004=n

Rules for mandatory parameters

For options with a short name and a mandatory parameter, the parameter can be
specified either with or without a preceding space, for example:

-I..\srcor-I ..\src\

For options with a long name and a mandatory parameter, the parameter can be specified
either with a preceding equal sign (=) or with a preceding space, for example:

--diagnostics_tables=filename
or

--diagnostics_tables filename

Rules for options with both optional and mandatory parameters

For options taking both optional and mandatory parameters, the rules for specifying the
parameters are:

e For short options, optional parameters are specified without a preceding space
e For long options, optional parameters are specified with a preceding equal sign (=)

e For short and long options, mandatory parameters are specified with a preceding
space.

For example, a short option with an optional parameter followed by a mandatory
parameter:

-1A filename

For example, a long option with an optional parameter followed by a mandatory
parameter:

--preprocess=n filename

Rules for specifying a filename or directory as parameters
These rules apply for options taking a filename or directory as parameters:

o Options that take a filename as a parameter can optionally also take a path. The path
can be relative or absolute. For example, to generate a listing to the file 1ist.1st
in the directory . .\listings\:

iccr32c prog -1 ..\listings\list.lst

Compiler options _o

e For options that take a filename as the destination for output, the parameter can be
specified as a path without a specified filename. The compiler stores the output in
that directory, in a file with an extension according to the option. The filename will
be the same as the name of the compiled source file, unless a different name was
specified with the option -o, in which case that name is used. For example:

iccr32c prog -1 ..\listings\

The produced list file will have the default name . .\1istings\prog.lst
o The current directory is specified with a period (.). For example:

iccr32c prog -1

/ can be used instead of \ as the directory delimiter.

By specifying -, input files and output files can be redirected to stdin and stdout,
respectively. For example:

iccr32c prog -1 -

Additional rules
These rules also apply:

e When an option takes a parameter, the parameter cannot start with a dash (-)
followed by another character. Instead, you can prefix the parameter with two
dashes; this example will create a list file called -r:

iccr32c prog -1 ---r

o For options that accept multiple arguments of the same type, the arguments can be
provided as a comma-separated list (without a space), for example:

--diag_warning=Be0001,Be0002

Alternatively, the option can be repeated for each argument, for example:

--diag_warning=Be0001
--diag_warning=Be0002

Part 2. Reference information 127

Summary of compiler options

128

Summary of compiler options

This table summarizes the compiler command line options:

IAR C/C++ Compiler
Reference Guide

Command line option

Description

--align_func
--char_is_signed
--code_model

-D

--data_model

--debug
--dependencies
--diag_error
--diag_remark
--diag_suppress
--diag_warning
--diagnostics_tables
--discard_unused_publics
--dlib_config
--double

-e

-—ec++

--eec++

--enable_multibytes

--error_limit

-f

--fp_model
--header_context
-I

-1
--library_module

--mfc

Specifies the alignment of the function entry point
Treats char as signed
Specifies the code model

Defines preprocessor symbols

Specifies the data model

Generates debug information

Lists file dependencies

Treats these as errors

Treats these as remarks

Suppresses these diagnostics

Treats these as warnings

Lists all diagnostic messages

Discards unused public symbols
Determines the library configuration file
Sets the size of the data type double
Enables language extensions

Enables Embedded C++ syntax

Enables Extended Embedded C++ syntax

Enables support for multibyte characters in source
files

Specifies the allowed number of errors before
compilation stops

Extends the command line

Specifies the floating-point implementation
Lists all referred source files and header files
Specifies include file path

Creates a list file

Creates a library module

Enables multi file compilation

Table 31: Compiler options summary

Compiler options °

Command line option Description

--migration_preprocessor Extends the preprocessor

_extensions

--misrac Enables error messages specific to MISRA-C:1998.

This option is a synonym of --misrac1998 and
is only available for backwards compatibility.

--misracl998 Enables error messages specific to MISRA-C:1998.
See the IAR Embedded Workbench® MISRA C:1998
Reference Guide.

--misrac2004 Enables error messages specific to MISRA-C:2004.
See the IAR Embedded Workbench® MISRA C:2004
Reference Guide.

--misrac_verbose Enables verbose logging of MISRA C checking. See
the IAR Embedded Workbench® MISRA C:2004
Reference Guide or the IAR Embedded Workbench®
MISRA C:1998 Reference Guide, respectively.

--module_name Sets the object module name
--no_code_motion Disables code motion optimization
--no_cross_call Disables cross-call optimization

--no_cse Disables common subexpression elimination
--no_inline Disables function inlining
--no_path_in_file_macros Removes the path from the return value of the

symbols __FILE _ and __BASE_FILE__
--no_tbaa Disables type-based alias analysis

--no_typedefs_in diagnostics Disables the use of typedef names in diagnostics

--no_unroll Disables loop unrolling
--no_warnings Disables all warnings
--no_wrap_diagnostics Disables wrapping of diagnostic messages
-0 Sets the optimization level

-0 Sets the object filename
--omit_types Excludes type information
--only_stdout Uses standard output only

--output Sets the object filename
--predef_macros Lists the predefined symbols.

Table 31: Compiler options summary (Continued)

Part 2. Reference information 129

Descriptions of options

130

Command line option Description

--preinclude Includes an include file before reading the source
file

--preprocess Generates preprocessor output

--public_equ Defines a global named assembler label

-r Generates debug information

--remarks Enables remarks

--require_prototypes Verifies that functions are declared before they are
defined

--silent Sets silent operation

--strict_ansi Checks for strict compliance with ISO/ANSI C

--warnings_affect_exit_code Warnings affects exit code

--warnings_are_errors Warnings are treated as errors

Table 31: Compiler options summary (Continued)

Descriptions of options

--align_func

Syntax

Parameters

Description

See also

IAR C/C++ Compiler
Reference Guide

A

The following section gives detailed reference information about each compiler option.

Note that if you use the options page Extra Options to specify specific command line
options, the IDE does not perform an instant check for consistency problems like
conflicting options, duplication of options, or use of irrelevant options.

--align_func={1]2]4|8}

1 (default) Sets the alignment of the function entry point to | byte.

2 Sets the alignment of the function entry point to 2 bytes.
4 Sets the alignment of the function entry point to 4 bytes.
8 Sets the alignment of the function entry point to 8 bytes.

Use this option to specify the alignment of the function entry point.
Aligning the function entry point, page 82.

Project>Options>C/C++ Compiler>Align functions

--char_is_signed

Syntax

Description

--code_model

Syntax

Parameters

Description

See also

Syntax

Parameters

Description

Compiler options _o

--char_is_signed
By default, the compiler interprets the char type as unsigned. Use this option to make

the compiler interpret the char type as signed instead. This can be useful when you, for
example, want to maintain compatibility with another compiler.

Note: The runtime library is compiled without the --char_is_signed option. If you
use this option, you might get type mismatch warnings from the linker, because the
library uses unsigned char.

Project>Options>C/C++ Compiler>Language>Plain ‘char’ is

--code_model={far|f |huge|h}

far (default) Functions and constant data can be placed in the high 8 Mbytes of memory

huge Functions and constant data can be placed anywhere

Use this option to select the code model for which the code will be generated. If you do
not select a code model option, the compiler uses the default code model.

Code models and memory attributes for function storage, page 21.

Project>Options>General Options>Target>Code model

-D symbol[=value]

symbol The name of the preprocessor symbol

value The value of the preprocessor symbol

Use this option to define a preprocessor symbol. If no value is specified, 1 is used. This
option can be used one or more times on the command line.

Part 2. Reference information 131

Descriptions of options

--data_model

Syntax

Parameters

Description

See also

--debug, -r

Syntax

Description

IAR C/C++ Compiler
132 Reference Guide

The option -D has the same effect as a #define statement at the top of the source file:
-Dsymbol

is equivalent to:

#define symbol 1

To get the equivalence of:

#define FOO

specify the = sign but nothing after, for example:

-DFO0=

Project>Options>C/C++ Compiler>Preprocessor>Defined symbols

--data_model={near |n|far|f|huge|h}

near Places variables in the lowest or highest 32 Kbytes of memory
far (default) Places variables in the lowest or highest 8 Mbytes of memory
huge Places variables anywhere in memory

Use this option to select the data model for which the code will be generated. If you do
not select a data model option, the compiler uses the default data model.

Data models, page 12.

Project>Options>General Options>Target>Data model

--debug
-r

Use the --debug or -r option to make the compiler include information in the object
modules required by the IAR C-SPY® Debugger and other symbolic debuggers.

Note: Including debug information will make the object files larger than otherwise.

Project>Options>C/C++ Compiler>Output>Generate debug information

--dependencies

Syntax

Parameters

Description

Example

Compiler options _o

--dependencies[=[i|m]] {filename|directory}
i (default) Lists only the names of files
m Lists in makefile style

For information about specifying a filename or a directory, see Rules for specifying a
filename or directory as parameters, page 126.

Use this option to make the compiler list all source and header files opened by the
compilation into a file with the default filename extension i.

If --dependencies or --dependencies=i is used, the name of each opened source
file, including the full path, if available, is output on a separate line. For example:

c:\lar\product\include\stdio.h
d:\myproject\include\foo.h

If --dependencies=mis used, the output uses makefile style. For each source file, one
line containing a makefile dependency rule is produced. Each line consists of the name
of the object file, a colon, a space, and the name of a source file. For example:

foo.r53: c:\iar\product\include\stdio.h
foo.r53: d:\myproject\include\foo.h

An example of using --dependencies with a popular make utility, such as gmake
(GNU make):

Set up the rule for compiling files to be something like:

%$.r53 : %.c
$(ICC) S$(ICCFLAGS) $< --dependencies=m $*.d

That is, in addition to producing an object file, the command also produces a
dependency file in makefile style (in this example, using the extension . d).

Include all the dependency files in the makefile using, for example:
-include $(sources:.c=.d)

Because of the dash (-) it works the first time, when the .4 files do not yet exist.

kg This option is not available in the IDE.

Part 2. Reference information 133

Descriptions of options

--diag_error

Syntax

Parameters

Description

--diag_remark

Syntax

Parameters

Description

--diag_suppress

Syntax

Parameters

IAR C/C++ Compiler
134 Reference Guide

--diag_error=tagl, tag, ...]

tag The number of a diagnostic message, for example the message
number Pell7

Use this option to reclassify certain diagnostic messages as errors. An error indicates a
violation of the C or C++ language rules, of such severity that object code will not be
generated. The exit code will be non-zero. This option may be used more than once on
the command line.

Project>Options>C/C++ Compiler>Diagnostics>Treat these as errors

--diag_remark=tagl, tag, ...]

tag The number of a diagnostic message, for example the message
number Pel77

Use this option to reclassify certain diagnostic messages as remarks. A remark is the
least severe type of diagnostic message and indicates a source code construction that
may cause strange behavior in the generated code. This option may be used more than
once on the command line.

Note: By default, remarks are not displayed; use the --remarks option to display
them.

Project>Options>C/C++ Compiler>Diagnostics>Treat these as remarks

--diag_suppress=tagl, tag, ...]

tag The number of a diagnostic message, for example the message
number Pel17

Compiler options _o

Description Use this option to suppress certain diagnostic messages. These messages will not be
displayed. This option may be used more than once on the command line.

Project>Options>C/C++ Compiler>Diagnostics>Suppress these diagnostics

--diag_warning

Syntax --diag_warning=tagl, tag, . ..]

Parameters
tag The number of a diagnostic message, for example the message
number Pe826

Description Use this option to reclassify certain diagnostic messages as warnings. A warning
indicates an error or omission that is of concern, but which will not cause the compiler
to stop before compilation is completed. This option may be used more than once on the
command line.

Project>Options>C/C++ Compiler>Diagnostics>Treat these as warnings

--diagnostics_tables

Syntax --diagnostics_tables {filename|directory}

Parameters For information about specifying a filename or a directory, see Rules for specifying a
filename or directory as parameters, page 208.

Description Use this option to list all possible diagnostic messages in a named file. This can be
convenient, for example, if you have used a pragma directive to suppress or change the
severity level of any diagnostic messages, but forgot to document why.

This option cannot be given together with other options.

This option is not available in the IDE.

Part 2. Reference information 135

Descriptions of options

136

--discard_unused_publics

Syntax

Description

See also

--dlib_config

Syntax

Parameters

Description

IAR C/C++ Compiler
Reference Guide

--discard_unused_publics

Use this option to discard unused public functions and variables from the compilation
unit. This enhances interprocedural optimizations such as inlining, cross call, and cross
jump by limiting their scope to public functions and variables that are actually used.

This option is only useful when a/l source files are compiled as one unit, which means
that the --mfc compiler option is used.

Note: Do not use this option only on parts of the application, as necessary symbols
might be removed from the generated output.

--mfc, page 141 and Multi-file compilation units, page 107.

Project>Options>C/C++ Compiler>Discard unused publics

--dlib_config filename

For information about specifying a filename, see Rules for specifying a filename or
directory as parameters, page 126.

Each runtime library has a corresponding library configuration file. Use this option to
specify the library configuration file for the compiler. Make sure that you specify a
configuration file that corresponds to the library you are using.

All prebuilt runtime libraries are delivered with corresponding configuration files. You
can find the library object files and the library configuration files in the directory
r32c\1ib. For examples and a list of prebuilt runtime libraries, see Using a prebuilt
library, page 44.

If you build your own customized runtime library, you should also create a
corresponding customized library configuration file, which must be specified to the
compiler. For more information, see Building and using a customized library, page 50.

To set related options, choose:

Project>Options>General Options>Library Configuration

--double

Syntax

Parameters

Description

See also

Syntax

Description

See also

-=@Cc++

Syntax

Description

Compiler options _o

--double={32]64}

32 (default) 32-bit doubles are used
64 64-bit doubles are used

Use this option to select the precision used by the compiler for representing the
floating-point types double and long double. The compiler can use either 32-bit or
64-bit precision. By default, the compiler uses 32-bit precision.

Floating-point types, page 156.

Project>Options>General Options>Target>Size of type 'double’

In the command line version of the compiler, language extensions are disabled by
default. If you use language extensions such as extended keywords and anonymous
structs and unions in your source code, you must use this option to enable them.

Note: The -e option and the --strict_ansi option cannot be used at the same time.
The chapter Compiler extensions.

Project>Options>C/C++ Compiler>Language>Allow IAR extensions

Note: By default, this option is enabled in the IDE.

--ec++

In the compiler, the default language is C. If you use Embedded C++, you must use this
option to set the language the compiler uses to Embedded C++.

Project>Options>C/C++ Compiler>Language>Embedded C++

Part 2. Reference information 137

Descriptions of options

--eec++

Syntax

Description

See also

--enable_multibytes

Syntax

Description

--error_limit

Syntax

Parameters

Description

IAR C/C++ Compiler
138 Reference Guide

--eec++
In the compiler, the default language is C. If you take advantage of Extended Embedded
C++ features like namespaces or the standard template library in your source code, you
must use this option to set the language the compiler uses to Extended Embedded C++.

Extended Embedded C++, page 92.

Project>Options>C/C++ Compiler>Language>Extended Embedded C++

--enable_multibytes
By default, multibyte characters cannot be used in C or C++ source code. Use this option

to make multibyte characters in the source code be interpreted according to the host
computer’s default setting for multibyte support.

Multibyte characters are allowed in C and C++ style comments, in string literals, and in
character constants. They are transferred untouched to the generated code.

Project>Options>C/C++ Compiler>Language>Enable multibyte support

-—error_limit=n

n The number of errors before the compiler stops the compilation. n
must be a positive integer; 0 indicates no limit.

Use the --error_1limit option to specify the number of errors allowed before the
compiler stops the compilation. By default, 100 errors are allowed.

This option is not available in the IDE.

Syntax

Parameters

Descriptions

--fp_model

Syntax

Parameters

Description

See also

Compiler options _o

-f filename

For information about specifying a filename, see Rules for specifying a filename or
directory as parameters, page 208.

Use this option to make the compiler read command line options from the named file,
with the default filename extension xc1.

In the command file, you format the items exactly as if they were on the command line
itself, except that you may use multiple lines, because the newline character acts just as
a space or tab character.

Both C and C++ style comments are allowed in the file. Double quotes behave in the
same way as in the Microsoft Windows command line environment.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--fp_model={fast|full}

(d faul) insert fast, but non-standa d, FPU instructions
fast efault,
d ectly in the code

full The compiler will use standard IEEE 754-compliant floating-point

instructions

Use this option to control the type of floating-point instructions that the compiler uses.
The more efficient Fast model requires a hardware floating-point unit (FPU). It is not
compliant with the IEEE-754 standard and does not support, for example, Infinity and
NaN.

The Full model is less efficient but fully supports the IEEE-754 standard. If the device
is equipped with an FPU, the Full model can use standards-compliant library functions
but still use the FPU instructions. If the device does not have an FPU, library routines
that emulate floating-point operations will be used.

Floating-point implementation, page 64.

To set related options, choose:

Project>Options>General Options>Target>Float implementation

Part 2. Reference information 139

Descriptions of options

140

--header_context

Syntax

Description

Syntax

Parameters

Description

See also

Syntax

Parameters

IAR C/C++ Compiler
Reference Guide

--header_context

Occasionally, to find the cause of a problem it is necessary to know which header file
that was included from which source line. Use this option to list, for each diagnostic
message, not only the source position of the problem, but also the entire include stack at

that point.

This option is not available in the IDE.

-1 path

path The search path for #include files

Use this option to specify the search paths for #include files. This option can be used
more than once on the command line.

Include file search procedure, page 120.

Project>Options>C/C++ Compiler>Preprocessor>Additional include directories

-1[la|A|b|B|c|C|D][N] [H] {filename|directory}

a Assembler list file
A Assembler list file with C or C++ source as comments
b Basic assembler list file. This file has the same contents as a list file

produced with —1a, except that no extra compiler-generated

information (runtime model attributes, call frame information, frame
*

size information) is included

B Basic assembler list file. This file has the same contents as a list file
produced with - 1A, except that no extra compiler generated
information (runtime model attributes, call frame information, frame
size information) is included ¥

Description

--library_module

Syntax

Description

--mfc

Syntax

Description

Compiler options _o

a Assembler list file

c C or C++ list file

C (default) C or C++ list file with assembler source as comments

D C or C++ list file with assembler source as comments, but without

instruction offsets and hexadecimal byte values
N No diagnostics in file

H Include source lines from header files in output. Without this
option, only source lines from the primary source file are included

* This makes the list file less useful as input to the assembler, but more useful for reading by a
human.

For information about specifying a filename or a directory, see Rules for specifying a
filename or directory as parameters, page 126.

Use this option to generate an assembler or C/C++ listing to a file. Note that this option
can be used one or more times on the command line.

To set related options, choose:

Project>Options>C/C++ Compiler>List

--library_module
Use this option to make the compiler generate a library module rather than a program
module. A program module is always included during linking. A library module will

only be included if it is referenced in your program.

Project>Options>C/C++ Compiler>Output>Module type>Library Module

--mfc
Use this option to enable multi-file compilation. This means that the compiler compiles

one or several source files specified on the command line as one unit, which makes
interprocedural optimizations such as inlining, cross call, and cross jump possible.

Part 2. Reference information 141

Descriptions of options

142

Example

See also

Note: The compiler will generate one object file per input source code file, where the
first object file contains all relevant data and the other ones are empty. If you want only
the first file to be produced, use the -o compiler option and specify a certain output file.

iccr32c myfilel.c myfile2.c myfile3.c --mfc

--discard unused publics, page 136, -o, --output, page 147, and Multi-file compilation
units, page 107.

Project>Options>C/C++ Compiler>Multi-file compilation

--migration_preprocessor_extensions

Syntax

Description

--module_name

Syntax

Parameters

IAR C/C++ Compiler
Reference Guide

--migration_preprocessor_extensions

If you need to migrate code from an earlier IAR Systems C or C/C++ compiler, you
might want to use this option. Use this option to use the following in preprocessor
expressions:

o Floating-point expressions

o Basic type names and sizeof

o All symbol names (including typedefs and variables).

Note: If you use this option, not only will the compiler accept code that does not

conform to the ISO/ANSI C standard, but it will also reject some code that does conform
to the standard.

Important! Do not depend on these extensions in newly written code, because support
for them might be removed in future compiler versions.

Project>Options>C/C++ Compiler>Language>Enable IAR migration
preprocessor extensions

--module_name=name

name An explicit object module name

Compiler options _o

Description Normally, the internal name of the object module is the name of the source file, without
a directory name or extension. Use this option to specify an object module name
explicitly.

This option is useful when several modules have the same filename, because the
resulting duplicate module name would normally cause a linker error; for example,
when the source file is a temporary file generated by a preprocessor.

Project>Options>C/C++ Compiler>Output>Object module name

--no_code_motion

Syntax --no_code_motion

Description Use this option to disable code motion optimizations. These optimizations, which are
performed at the optimization levels Medium and High, normally reduce code size and
execution time. However, the resulting code might be difficult to debug.

Note: This option has no effect at optimization levels below Medium.

Project>Options>C/C++ Compiler>Optimizations>Enable
transformations>Code motion

--no_cross_call

Syntax --no_cross_call

Description Use this option to disable the cross-call optimization. This optimization is performed at
size optimization, level High. Note that, although the option can drastically reduce the
code size, this option increases the execution time.

Project>Options>C/C++ Compiler>Optimizations>Enable
transformations>Cross call

=--NO_cCse
Syntax --no_cse
Description Use this option to disable common subexpression elimination. At the optimization

levels Medium and High, the compiler avoids calculating the same expression more than
once. This optimization normally reduces both code size and execution time. However,
the resulting code might be difficult to debug.

Part 2. Reference information 143

Descriptions of options

--no_inline
Syntax

Description

Note: This option has no effect at optimization levels below Medium.

Project>Options>C/C++ Compiler>Optimizations>Enable
transformations>Common subexpression elimination

--no_inline

Use this option to disable function inlining. Function inlining means that a simple
function, whose definition is known at compile time, is integrated into the body of its
caller to eliminate the overhead of the call.

This optimization, which is performed at optimization level High, normally reduces
execution time and increases code size. The resulting code might also be difficult to
debug.

The compiler heuristically decides which functions to inline. Different heuristics are
used when optimizing for speed than for size.

Note: This option has no effect at optimization levels below High.

Project>Options>C/C++ Compiler>Optimizations>Enable
transformations>Function inlining

--no_path_in_file_macros

Syntax

Description

See also

IAR C/C++ Compiler
144 Reference Guide

--no_path_in_file_macros

Use this option to exclude the path from the return value of the predefined preprocessor
symbols __FILE__ and __BASE_FILE__.

Descriptions of predefined preprocessor symbols, page 212.

This option is not available in the IDE.

--no_tbaa

Syntax

Description

See also

Compiler options _o

--no_tbaa

Use this option to disable type-based alias analysis. When this options is not used, the
compiler is free to assume that objects are only accessed through the declared type or
through unsigned char.

Type-based alias analysis, page 110.

Project>Options>C/C++ Compiler>Optimizations>Enable
transformations>Type-based alias analysis

--no_typedefs_in_diagnostics

Syntax

Description

Example

--no_typedefs_in_diagnostics

Use this option to disable the use of typedef names in diagnostics. Normally, when a
type is mentioned in a message from the compiler, most commonly in a diagnostic
message of some kind, the typedef names that were used in the original declaration are
used whenever they make the resulting text shorter.

typedef int (*MyPtr) (char const *);
MyPtr p = "foo";
will give an error message like this:

Error[Peldd]: a value of type "char *" cannot be used to
initialize an entity of type "MyPtr"

Ifthe --no_typedefs_in_diagnostics optionis used, the error message will be like
this:

Error[Peld4d]: a value of type "char *" cannot be used to
initialize an entity of type "int (*) (char const *)"

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

Part 2. Reference information 145

Descriptions of options

146

--no_unroll

Syntax

Description

--no_warnings

Syntax

Description

--no_wrap_diagnostics

Syntax

Description

IAR C/C++ Compiler
Reference Guide

--no_unroll

Use this option to disable loop unrolling. The code body of a small loop, whose number
of iterations can be determined at compile time, is duplicated to reduce the loop
overhead.

For small loops, the overhead required to perform the looping can be large compared
with the work performed in the loop body.

The loop unrolling optimization duplicates the body several times, reducing the loop
overhead. The unrolled body also opens up for other optimization opportunities.

This optimization, which is performed at optimization level High, normally reduces
execution time, but increases code size. The resulting code might also be difficult to
debug.

The compiler heuristically decides which loops to unroll. Different heuristics are used
when optimizing for speed and size.

Note: This option has no effect at optimization levels below High.

Project>Options>C/C++ Compiler>Optimizations>Enable
transformations>Loop unrolling

--no_warnings

By default, the compiler issues warning messages. Use this option to disable all warning
messages.

This option is not available in the IDE.

--no_wrap_diagnostics

By default, long lines in diagnostic messages are broken into several lines to make the
message easier to read. Use this option to disable line wrapping of diagnostic messages.

This option is not available in the IDE.

Syntax

Parameters

Description

See also

-0, --output

Syntax

Parameters

Description

Compiler options _o

-0[n|1l|m|h|hs|hz]

n None* (Best debug support)
1 (default) Low*

m Medium

h High, balanced

hs High, favoring speed

hz High, favoring size

*The most important difference between None and Low is that at None, all non-static variables
will live during their entire scope.

Use this option to set the optimization level to be used by the compiler when optimizing
the code. If no optimization option is specified, the optimization level Low is used by
default. If only -0 is used without any parameter, the optimization level High balanced
is used.

A low level of optimization makes it relatively easy to follow the program flow in the
debugger, and, conversely, a high level of optimization makes it relatively hard.

Controlling compiler optimizations, page 106.

Project>Options>C/C++ Compiler>Optimizations

-o {filename|directory}
--output {filename| directory}

For information about specifying a filename or a directory, see Rules for specifying a
filename or directory as parameters, page 208.

By default, the object code output produced by the compiler is located in a file with the
same name as the source file, but with the extension r53. Use this option to explicitly

specify a different output filename for the object code output.

This option is not available in the IDE.

Part 2. Reference information 147

Descriptions of options

--omit_types

Syntax

Description

--only_stdout

Syntax

Description

-0, --output

Syntax

Parameters

Description

IAR C/C++ Compiler
148 Reference Guide

--omit_types

By default, the compiler includes type information about variables and functions in the
object output. Use this option if you do not want the compiler to include this type
information in the output, which is useful when you build a library that should not
contain type information. The object file will then only contain type information that is
a part of a symbol’s name. This means that the linker cannot check symbol references
for type correctness.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--only_stdout

Use this option to make the compiler use the standard output stream (stdout) also for
messages that are normally directed to the error output stream (stderr).

This option is not available in the IDE.

-0 {filename|directory}
--output {filename|directory}

For information about specifying a filename or a directory, see Rules for specifying a
filename or directory as parameters, page 208.

By default, the object code output produced by the compiler is located in a file with the
same name as the source file, but with the extension r53. Use this option to explicitly

specify a different output filename for the object code output.

This option is not available in the IDE.

--predef_macros

Syntax

Parameters

Description

--preinclude

Syntax

Parameters

Description

--preprocess

Syntax

Parameters

Compiler options _o

--predef_macros {filename| directory}

For information about specifying a filename, see Rules for specifying a filename or
directory as parameters, page 126.

Use this option to list the predefined symbols. When using this option, make sure to also
use the same options as for the rest of your project.

If a filename is specified, the compiler stores the output in that file. If a directory is
specified, the compiler stores the output in that directory, in a file with the predef
filename extension.

This option is not available in the IDE.

--preinclude includefile

For information about specifying a filename, see Rules for specifying a filename or
directory as parameters, page 126.

Use this option to make the compiler include the specified include file before it starts to
read the source file. This is useful if you want to change something in the source code

for the entire application, for instance if you want to define a new symbol.

Project>Options>C/C++ Compiler>Preprocessor>Preinclude file

--preprocess[=[c][n][1]] {filename| directory}
c Preserve comments

n Preprocess only

1 Generate #1ine directives

For information about specifying a filename or a directory, see Rules for specifying a
filename or directory as parameters, page 126.

Part 2. Reference information 149

Descriptions of options

Description

--public_equ
Syntax

Parameters

Description

-r, --debug

Syntax

Description

--remarks

Syntax

Description

IAR C/C++ Compiler
150 Reference Guide

Use this option to generate preprocessed output to a named file.

Project>Options>C/C++ Compiler>Preprocessor>Preprocessor output to file

--public_equ symboll[=value]

symbol The name of the assembler symbol to be defined

value An optional value of the defined assembler symbol

This option is equivalent to defining a label in assembler language using the EQU
directive and exporting it using the PUBLIC directive. This option can be used more than
once on the command line.

This option is not available in the IDE.

-r
--debug

Use the -r or the --debug option to make the compiler include information in the
object modules required by the IAR C-SPY Debugger and other symbolic debuggers.

Note: Including debug information will make the object files larger than otherwise.

Project>Options>C/C++ Compiler>Output>Generate debug information

--remarks

The least severe diagnostic messages are called remarks. A remark indicates a source
code construct that may cause strange behavior in the generated code. By default, the
compiler does not generate remarks. Use this option to make the compiler generate
remarks.

Compiler options _o

See also Severity levels, page 204.

Project>Options>C/C++ Compiler>Diagnostics>Enable remarks

--require_prototypes

Syntax --require_prototypes

Description Use this option to force the compiler to verify that all functions have proper prototypes.
Using this option means that code containing any of the following will generate an error:

e A function call of a function with no declaration, or with a Kernighan & Ritchie
C declaration

e A function definition of a public function with no previous prototype declaration

e An indirect function call through a function pointer with a type that does not include
a prototype.

Note: This option only applies to functions in the C standard library.

Project>Options>C/C++ Compiler>Language>Require prototypes

--silent
Syntax --silent
Description By default, the compiler issues introductory messages and a final statistics report. Use

this option to make the compiler operate without sending these messages to the standard
output stream (normally the screen).

This option does not affect the display of error and warning messages.

This option is not available in the IDE.

--strict_ansi
Syntax --strict_ansi
Description By default, the compiler accepts a relaxed superset of ISO/ANSI C/C++, see Minor

language extensions, page 169. Use this option to ensure that the program conforms to
the ISO/ANSI C/C++ standard.

Part 2. Reference information 151

Descriptions of options

152

Note: The -e option and the --strict_ansi option cannot be used at the same time.

Project>Options>C/C++ Compiler>Language>Language conformances>Strict
ISO/ANSI

--warnings_affect_exit_code

Syntax

Description

--warnings_are_errors

Syntax

Description

See also

IAR C/C++ Compiler
Reference Guide

--warnings_affect_exit_code

By default, the exit code is not affected by warnings, because only errors produce a
non-zero exit code. With this option, warnings will also generate a non-zero exit code.

ep This option is not available in the IDE.

--warnings_are_errors

Use this option to make the compiler treat all warnings as errors. If the compiler
encounters an error, no object code is generated. Warnings that have been changed into
remarks are not treated as errors.

Note: Any diagnostic messages that have been reclassified as warnings by the option
--diag_warning or the #pragma diag_warning directive will also be treated as
errors when --warnings_are_errors is used.

diag warning, page 296.

Project>Options>C/C++ Compiler>Diagnostics>Treat all warnings as errors

Data representation

This chapter describes the data types, pointers, and structure types supported
by the compiler.

See the chapter Efficient coding for embedded applications for information about
which data types that provide the most efficient code for your application.

Alignment

Every C data object has an alignment that controls how the object can be stored in
memory. Should an object have an alignment of, for example, 4, it must be stored on an
address that is divisible by 4.

The reason for the concept of alignment is that some processors have hardware
limitations for how the memory can be accessed.

Assume that a processor can read 4 bytes of memory using one instruction, but only
when the memory read is placed on an address divisible by 4. Then, 4-byte objects, such
as long integers, will have alignment 4.

Another processor might only be able to read 2 bytes at a time; in that environment, the
alignment for a 4-byte 1ong integer might be 2.

A structure type will have the same alignment as the structure member with the most
strict alignment. To decrease the alignment requirements on the structure and its
members, use #pragma pack or the __packed data type attribute.

All data types must have a size that is a multiple of their alignment. Otherwise, only the
first element of an array would be guaranteed to be placed in accordance with the
alignment requirements.

Note that with the #pragma data_alignment directive you can increase the
alignment demands on specific variables.
ALIGNMENT ON THE R32C/100 MICROCOMPUTER

The R32C/100 microcomputer can access memory using 8- to 64-bit operations.
However, when an unaligned access is performed, more bus cycles are required. The
compiler avoids this by assigning an alignment to every data type.

Part 2. Reference information

153

Basic data types

Basic data types
The compiler supports both all ISO/ANSI C basic data types and some additional types.

INTEGER TYPES

This table gives the size and range of each integer data type:

Data type Size Range Alignment
bool 8 bits Oto | |
char 8 bits 0 to 255 |
signed char 8 bits -128 to 127 |
unsigned char 8 bits 0 to 255 |
signed short 16 bits -32768 to 32767 2
unsigned short 16 bits 0 to 65535 2
signed int 32 bits 23023 4
unsigned int 32 bits 0 to 2321 4
signed long 32 bits 23 10 23111 4
unsigned long 32 bits 0to 232 4
signed long long 64 bits 283 10 283 8
unsigned long long 64 bits 0to 264 8

Table 32: Integer types

Signed variables are represented using the two’s complement form.

Bool

The bool data type is supported by default in the C++ language. If you have enabled
language extensions, the bool type can also be used in C source code if you include the
file stdbool.h. This will also enable the boolean values false and true.

The enum type

The compiler will use the smallest type required to hold enum constants, preferring
signed rather than unsigned.

When IAR Systems language extensions are enabled, and in C++, the enum constants
and types can also be of the type 1long, unsigned long, long long, Or unsigned
long long.

IAR C/C++ Compiler
154 Reference Guide

Data representation __¢

To make the compiler use a larger type than it would automatically use, define an enum
constant with a large enough value. For example,

/* Disables usage of the char type for enum */
enum Cards{Spadel, Spade2,
DontUseChar=257};

The char type

The char type is by default unsigned in the compiler, but the --char_is_signed
compiler option allows you to make it signed. Note, however, that the library is compiled
with the char type as unsigned.

The wchar_t type

The wchar_t data type is an integer type whose range of values can represent distinct
codes for all members of the largest extended character set specified among the
supported locals.

The wchar_t data type is supported by default in the C++ language. To use the
wchar_t type also in C source code, you must include the file stddef . h from the
runtime library.

Bitfields

In ISO/ANSI C, int and unsigned int can be used as the base type for integer
bitfields. In the IAR C/C++ Compiler for R32C, any integer type can be used as the base
type when language extensions are enabled.

Bitfields in expressions will have the same data type as the integer base type.

By default, the compiler places bitfield members from the least significant to the most
significant bit in the container type.

If you use the directive #pragma bitfields=reversed, the bitfield members are
placed from the most significant to the least significant bit.

Part 2. Reference information 155

Basic data types

156

IAR C/C++ Compiler
Reference Guide

FLOATING-POINT TYPES

In the IAR C/C++ Compiler for R32C, floating-point values are represented in standard
IEEE 754 format. The sizes for the different floating-point types are:

Type Size if --double=32 Size if --double=64
float 32 bits 32 bits
double 32 bits (default) 64 bits
long double 32 bits 64 bits

Table 33: Floating-point types

Note: The size of double and long double depends on the --double={32|64}
option, see --double, page 137. The type long double uses the same precision as
double.

The compiler does not support subnormal numbers. All operations that should produce
subnormal numbers will instead generate zero.

Exception flags according to the IEEE 754 standard are not supported.

See also Floating-point implementation, page 64.
32-bit floating-point format

The representation of a 32-bit floating-point number as an integer is:

31 30 23 22 0
‘ S ’ Exponent Mantissa

The exponent is 8 bits, and the mantissa is 23 bits.
The value of the number is:
(-1)8 * 2(Bxponent-127) x 1 Mantissa
The range of the number is:

+1.18E-38 to *3.39E+38

The precision of the float operators (+, -, *, and /) is approximately 7 decimal digits.

Data representation __¢

64-bit floating-point format

The representation of a 64-bit floating-point number as an integer is:

63 62 5251 0
| S | Exponent Mantissa

The exponent is 11 bits, and the mantissa is 52 bits.

The value of the number is:

(_1)5 * 2(Exponent—1023) * 1.Mantissa

The range of the number is:
+2.23E-308 to *1.79E+308

The precision of the float operators (+, -, *, and /) is approximately 15 decimal digits.

Representation of special floating-point numbers

This list describes the representation of special floating-point numbers:

e Zero is represented by zero mantissa and exponent. The sign bit signifies positive or
negative zero.

e Infinity is represented by setting the exponent to the highest value and the mantissa
to zero. The sign bit signifies positive or negative infinity.

e Not a number (NaN) is represented by setting the exponent to the highest positive
value and the mantissa to a non-zero value. The value of the sign bit is ignored.

e If you are using the Fast floating-point model (--£fp_model=fast), Not a number
(NaN) and Infinity are not recognized. See Floating-point implementation, page 64.

Pointer types

The compiler has two basic types of pointers: function pointers and data pointers.

FUNCTION POINTERS

The function pointer of the R32C IAR C/C++ Compiler is __code32. It is a 32-bit
pointer that can address the entire memory. The internal representation of the function
pointer is the actual address it refers to.

Part 2. Reference information 157

Structure types

158

DATA POINTERS

The data pointer of the R32C IAR C/C++ Compiler is __data32. Itis a 32-bit
signed int pointer that can address the entire memory.

CASTING

Casts between pointers have these characteristics:

o Casting a value of an integer type to a pointer of a smaller type is performed by
truncation

e Casting a value of an integer type to a pointer of a larger type is performed by zero
extension

e Casting a value of an signed integer type to a pointer of a larger type is performed
by signed extension

Casting a pointer type to a smaller integer type is performed by truncation
Casting a pointer type to a larger integer type is performed by zero extension

Casting a data pointer to a function pointer and vice versa is illegal

Casting a function pointer to an integer type gives an undefined result.

size_t

size_t is the unsigned integer type required to hold the maximum size of an object. In
the IAR C/C++ Compiler for R32C, the size of size_t is 32 bits.

ptrdiff_t

ptrdiff_t is the type of the signed integer required to hold the difference between two
pointers to elements of the same array. In the IAR C/C++ Compiler for R32C, the size
of ptrdiff_t is 32 bits.

intptr_t

intptr_t is asigned integer type large enough to contain a void *. In the IAR C/C++
Compiler for R32C, the size of intptr_t is 32 bits.

uintptr_t

uintptr_t is equivalent to intptr_t, with the exception that it is unsigned.

Structure types

IAR C/C++ Compiler
Reference Guide

The members of a struct are stored sequentially in the order in which they are
declared: the first member has the lowest memory address.

Data representation __¢

ALIGNMENT

The struct and union types have the same alignment as the member with the highest
alignment requirement. The size of a struct is also adjusted to allow arrays of aligned
structure objects.

GENERAL LAYOUT

Members of a struct are always allocated in the order specified in the declaration.
Each member is placed in the struct according to the specified alignment (offsets).

Example

struct First {
char c;
short s;
}os;

This diagram shows the layout in memory:

c pad s

0 | 2 3
Figure 6: Structure layout

The alignment of the structure is 2 bytes, and a pad byte must be inserted to give
short s the correct alignment.

PACKED STRUCTURE TYPES

The #pragma pack attribute or the #pragma pack directive is used for relaxing the
alignment requirements of the members of a structure. This changes the layout of the
structure. The members are placed in the same order as when declared, but there might
be less pad space between members.

Note that accessing an object that is not correctly aligned requires code that is slower. If
such structure members are accessed many times, it is usually better to construct the
correct values in a struct that is not packed, and access this struct instead.

Part 2. Reference information 159

Structure types

160

IAR C/C++ Compiler
Reference Guide

Example
This example declares a packed structure:

#pragma pack(l)

struct S {
char c;
short s;

Y

#pragma pack()

In this example, the structure S has this memory layout:

c S

0 | 2
Figure 7: Packed structure layout

This example declares a new non-packed structure, S2, that contains the structure s
declared in the previous example:

struct S2 {
struct S s;
long 1;

}i

52 has this memory layout

c s pad 1

0 | 2 3 4 5! 6 7
Figure 8: Packed structure layout

The structure s will use the memory layout, size, and alignment described in the
previous example. The alignment of the member 1 is 4, which means that alignment of
the structure s2 will become 4.

For more information, see Alignment of elements in a structure, page 101.

Data representation __¢

Type qualifiers

According to the ISO/ANSI C standard, volatile and const are type qualifiers.

DECLARING OBJECTS VOLATILE

There are three main reasons for declaring an object volatile:

Shared access; the object is shared between several tasks in a multitasking
environment

Trigger access; as for a memory-mapped SFR where the fact that an access occurs
has an effect

Modified access; where the contents of the object can change in ways not known to
the compiler.

Definition of access to volatile objects

The ISO/ANSI standard defines an abstract machine, which governs the behavior of
accesses to volatile declared objects. In general and in accordance to the abstract
machine, the compiler:

Considers each read and write access to an object declared volatile as an access
The unit for the access is either the entire object or, for accesses to an element in a
composite object—such as an array, struct, class, or union—the element. For
example:

char volatile a;

a=>5; /* A write access */
a += 6; /* First a read then a write access */

An access to a bitfield is treated as an access to the underlaying type.

However, these rules are not detailed enough to handle the hardware-related
requirements. The rules specific to the IAR C/C++ Compiler for R32C are described
below.

Rules for accesses

In the IAR C/C++ Compiler for R32C, accesses to volatile declared objects are
subject to these rules:

All accesses are preserved
All accesses are complete, that is, the whole object is accessed
All accesses are performed in the same order as given in the abstract machine

All accesses are atomic, that is, they cannot be interrupted.

Part 2. Reference information 161

Data types in C++

162

The compiler adheres to these rules for all 8-bit data types and for 16- and 32-bit types
if they are aligned.

For all other object types, only the rule that states that all accesses are preserved applies.

DECLARING OBJECTS CONST

The const type qualifier is used for indicating that a data object, accessed directly or
via a pointer, is non-writable. A pointer to const declared data can point to both
constant and non-constant objects. It is good programming practice to use const
declared pointers whenever possible because this improves the compiler’s possibilities
to optimize the generated code and reduces the risk of application failure due to
erroneously modified data.

Static and global objects declared const and located in the memories datal6, data24,
and data32 are allocated in ROM. For sbdatal6 and sbdata24, the objects are allocated
in RAM and initialized by the runtime system at startup.

In C++, objects that require runtime initialization cannot be placed in ROM.

Data types in C++

IAR C/C++ Compiler
Reference Guide

In C++, all plain C data types are represented in the same way as described earlier in this
chapter. However, if any Embedded C++ features are used for a type, no assumptions
can be made concerning the data representation. This means, for example, that it is not
supported to write assembler code that accesses class members.

Compiler extensions

This chapter gives a brief overview of the compiler extensions to the
ISO/ANSI C standard. All extensions can also be used for the C++
programming language. More specifically the chapter describes the available C
language extensions.

Compiler extensions overview

The compiler offers the standard features of ISO/ANSI C and a wide set of extensions,
ranging from features specifically tailored for efficient programming in the embedded
industry to the relaxation of some minor standards issues.

You can find the extensions available as:

o C/C++ language extensions

For a summary of available language extensions, see C language extensions, page
164. For reference information about the extended keywords, see the chapter
Extended keywords. For information about C++, the two levels of support for the
language, and C++ language extensions; see the chapter Using C++.

e Pragma directives

The #pragma directive is defined by the ISO/ANSI C standard and is a mechanism
for using vendor-specific extensions in a controlled way to make sure that the source
code is still portable.

The compiler provides a set of predefined pragma directives, which can be used for
controlling the behavior of the compiler, for example how it allocates memory,
whether it allows extended keywords, and whether it outputs warning messages.
Most pragma directives are preprocessed, which means that macros are substituted
in a pragma directive. The pragma directives are always enabled in the compiler. For
several of them there is also a corresponding C/C++ language extension. For a list of
available pragma directives, see the chapter Pragma directives.

e Preprocessor extensions

The preprocessor of the compiler adheres to the ISO/ANSI standard. The compiler
also makes several preprocessor-related extensions available to you. For more
information, see the chapter The preprocessor.

e Intrinsic functions

The intrinsic functions provide direct access to low-level processor operations and
can be very useful in, for example, time-critical routines. The intrinsic functions
compile into inline code, either as a single instruction or as a short sequence of

Part 2. Reference information

163

C language extensions

164

instructions. To read more about using intrinsic functions, see Mixing C and
assembler, page 71. For a list of available functions, see the chapter Intrinsic
functions.

e Library functions

The IAR DLIB Library provides most of the important C and C++ library definitions
that apply to embedded systems. The library also provides some extensions, partly
taken from the C99 standard. For more information, see /AR DLIB Library, page 218.

Note: Any use of these extensions, except for the pragma directives, makes your
application inconsistent with the ISO/ANSI C standard.

ENABLING LANGUAGE EXTENSIONS

In the IDE, language extensions are enabled by default.

For information about how to enable and disable language extensions from the
command line, see the compiler options -e, page 137, and --strict_ansi, page 151.

C language extensions

IAR C/C++ Compiler
Reference Guide

This section gives a brief overview of the C language extensions available in the
compiler. The compiler provides a wide set of extensions, so to help you to find the
extensions required by your application, the extensions are grouped according to their
expected usefulness. In short, this means:

o Important language extensions—extensions specifically tailored for efficient
embedded programming, typically to meet memory restrictions

o Useful language extensions—features considered useful and typically taken from
related standards, such as C99 and C++

o Minor language extensions, that is, the relaxation of some minor standards issues
and also some useful but minor syntax extensions.

IMPORTANT LANGUAGE EXTENSIONS

The following language extensions available both in the C and the C++ programming
languages are well suited for embedded systems programming:
e Memory attributes, type attributes, and object attributes

For information about the related concepts, the general syntax rules, and for
reference information, see the chapter Extended keywords.

o Placement at an absolute address or in a named segment

The @ operator or the directive #pragma location can be used for placing global
and static variables at absolute addresses, or placing a variable or function in a named

Compiler extensions °

segment. For more information about using these primitives, see Controlling data
and function placement in memory, page 103, and location, page 192.

Alignment

Each data type has its own alignment, for more details, see Alignment, page 153. If
you want to change the alignment, the __packed data type attribute, and the
#pragma pack and #pragma data_alignment directives are available. If you
want to use the alignment of an object, use the __ALIGNOF__ () operator.

The __ALIGNOF__ operator is used for accessing the alignment of an object. It takes
one of two forms:

® _ ALIGNOF__ (type)

® __ALIGNOF__ (expression)

In the second form, the expression is not evaluated.

Anonymous structs and unions

C++ includes a feature named anonymous unions. The compiler allows a similar
feature for both structs and unions in the C programming language. For more
information, see Anonymous structs and unions, page 101.

Bitfields and non-standard types

In ISO/ANSI C, a bitfield must be of type int or unsigned int. Using IAR
Systems language extensions, any integer type or enumeration can be used. The
advantage is that the struct will sometimes be smaller. This matches G.5.8 in the
appendix of the ISO standard, ISO Portability Issues. For more information, see
Bitfields, page 155.

Dedicated segment operators __segment_begin and __segment_end
The syntax for these operators is:

void * __ segment_begin (segment)

void * __ segment_end (segment)
These operators return the address of the first byte of the named segment and the
first byte affer the named segment, respectively. This can be useful if you use the @
operator or the #pragma location directive to place a data object or a function in
a user-defined segment.

The named segment must be a string literal and segment must have been declared
earlier with the #pragma segment directive. If the segment was declared with a
memory attribute memattr, the type of the __segment_begin operator is a pointer
to memattr void. Otherwise, the type is a default pointer to void. Note that you
must enable language extensions to use these operators.

In this example, the type of the __segment_begin operator is void __huge *.

#pragma segment="MYSEGMENT" _ _huge

segment_start_address = __segment_begin ("MYSECTION") ;

Part 2. Reference information 165

C language extensions

166

IAR C/C++ Compiler
Reference Guide

See also segment, page 197, and location, page 192.

USEFUL LANGUAGE EXTENSIONS

This section lists and briefly describes useful extensions, that is, useful features typically
taken from related standards, such as C99 and C++:
o Inline functions

The #pragma inline directive, alternatively the inline keyword, advises the
compiler that the function whose declaration follows immediately after the directive
should be inlined. This is similar to the C++ keyword inline. For more information,
see inline, page 191.

o Mixing declarations and statements

It is possible to mix declarations and statements within the same scope. This feature
is part of the C99 standard and C++.

o Declaration in for loops

It is possible to have a declaration in the initialization expression of a for loop, for
example:

for (int i = 0; 1 < 10; ++1i)

(...}

This feature is part of the C99 standard and C++.
o The bool data type

To use the boo1l type in C source code, you must include the file stdbool .h. This
feature is part of the C99 standard and C++. (The boo1l data type is supported by
default in C++.)

o C++ style comments

C++ style comments are accepted. A C++ style comment starts with the character
sequence // and continues to the end of the line. For example:

// The length of the bar, in centimeters.
int length;

This feature is copied from the C99 standard and C++.

Inline assembler

Inline assembler can be used for inserting assembler instructions in the generated
function. This feature is part of the C99 standard and C++.

The asmand __asm extended keywords both insert an assembler instruction. However,
when compiling C source code, the asm keyword is not available when the option
--strict_ansi is used. The __asm keyword is always available.

Note: Not all assembler directives or operators can be inserted using this keyword.

Compiler extensions °

The syntax is:
asm ("string");

The string can be a valid assembler instruction or a data definition assembler directive,
but not a comment. You can write several consecutive inline assembler instructions, for
example:

asm ("Label: nop\n"
" jmp Label");

where \n (new line) separates each new assembler instruction. Note that you can define
and use local labels in inline assembler instructions.

For more information about inline assembler, see Mixing C and assembler, page 71.

Compound literals

To create compound literals you can use this syntax:

/* Create a pointer to an anonymous array */

int *p = (int []) {1,2,3};

/* Create a pointer to an anonymous structX */

structX *px = &(structX) {5,6,7};

Note:
o A compound literal can be modified unless it is declared const
o Compound literals are not supported in Embedded C++ and Extended EC++.
o This feature is part of the C99 standard.

Incomplete arrays at end of structs

The last element of a struct can be an incomplete array. This is useful for allocating a
chunk of memory that contains both the structure and a fixed number of elements of the
array. The number of elements can vary between allocations.

This feature is part of the C99 standard.

Note: The array cannot be the only member of the struct. If that was the case, then
the size of the struct would be zero, which is not allowed in ISO/ANSI C.
Example

struct str
{

char a;

unsigned long bl[];
}i

Part 2. Reference information 167

C language extensions

168

IAR C/C++ Compiler
Reference Guide

struct str * GetAStr(int size)

{
return malloc (sizeof (struct str) +
sizeof (unsigned long) * size);

void UseStr (struct str * s)

{
s->b[10] = 0;
}

The incomplete array will be aligned in the structure just like any other member of the
structure. For more information about structure alignment, see Structure types, page
158.

Hexadecimal floating-point constants

Floating-point constants can be given in hexadecimal style. The syntax is

OxMANTp{+ | -} EXP, where MANT is the mantissa in hexadecimal digits, including an
optional . (decimal point), and ExPis the exponent with decimal digits, representing an
exponent of 2. This feature is part of the C99 standard.

Examples

0x1p0 is 1

0xA.8p21810.5%272

Designated initializers in structures and arrays

Any initialization of either a structure (struct or union) or an array can have a
designation. A designation consists of one or more designators followed by an
initializer. A designator for a structure is specified as . elementname and for an array
[constant index expression].Using designated initializers is not supported in
CH+.

Compiler extensions °

Examples

This definition shows a struct and its initialization using designators:

struct{
int 1i;
int j;
int k;
int 1;
short array[10];
}u={
.1 =6, /* initialize 1 to 6 */
.j =6, /* initialize j to 6 */
8, /* initialize k to 8 */
.array[7] = 2, /* initialize element 7 to 2 */
.array[3] = 2, /* initialize element 3 to 2 */
5, /* arrayl[4] =5 */
k=4 /* reinitialize k to 4 */

Note that a designator specifies the destination element of the initialization. Note also
that if one element is initialized more than once, it is the last initialization that will be
used.

To initialize an element in a union other than the first, do like this:

union {
int i;
float £;
}y = {.f=5.0};
To set the size of an array by initializing the last element, do like this:

char array[] = {[10] = 'a'};

MINOR LANGUAGE EXTENSIONS

This section lists and briefly describes minor extensions, that is, the relaxation of some
standards issues and also some useful but minor syntax extensions:
e Arrays of incomplete types

An array can have an incomplete struct, union, or enum type as its element type.
The types must be completed before the array is used (if it is), or by the end of the
compilation unit (if it is not).

e Forward declaration of enum types

The IAR Systems language extensions allow that you first declare the name of an
enum and later resolve it by specifying the brace-enclosed list.

Part 2. Reference information 169

C language extensions

170

IAR C/C++ Compiler
Reference Guide

Missing semicolon at end of struct or union specifier

A warning is issued if the semicolon at the end of a struct or union specifier is
missing.

Null and void

In operations on pointers, a pointer to void is always implicitly converted to another
type if necessary, and a null pointer constant is always implicitly converted to a null
pointer of the right type if necessary. In ISO/ANSI C, some operators allow such
things, while others do not allow them.

Casting pointers to integers in static initializers

In an initializer, a pointer constant value can be cast to an integral type if the integral
type is large enough to contain it. For more information about casting pointers, see
Casting, page 158.

Taking the address of a register variable

In ISO/ANSI C, it is illegal to take the address of a variable specified as a register
variable. The compiler allows this, but a warning is issued.

Duplicated size and sign specifiers

Should the size or sign specifiers be duplicated (for example, short short or
unsigned unsigned), an error is issued.

long float means double
The type Llong float is accepted as a synonym for double.
Repeated typedef declarations

Redeclarations of typedef that occur in the same scope are allowed, but a warning
is issued.

Mixing pointer types

Assignment and pointer difference is allowed between pointers to types that are
interchangeable but not identical; for example, unsigned char * and char *. This
includes pointers to integral types of the same size. A warning is issued.
Assignment of a string constant to a pointer to any kind of character is allowed, and
no warning is issued.

Non-top level const

Assignment of pointers is allowed in cases where the destination type has added type

qualifiers that are not at the top level (for example, int ** to int const **).
Comparing and taking the difference of such pointers is also allowed.

Non-lvalue arrays

A non-lvalue array expression is converted to a pointer to the first element of the
array when it is used.

Compiler extensions °

o Comments at the end of preprocessor directives

This extension, which makes it legal to place text after preprocessor directives, is
enabled, unless strict ISO/ANSI mode is used. The purpose of this language
extension is to support compilation of legacy code; we do not recommend that you
write new code in this fashion.

® An extra comma at the end of enum lists

Placing an extra comma is allowed at the end of an enum list. In strict ISO/ANSI
mode, a warning is issued.

o A label preceding a }

In ISO/ANSI C, a label must be followed by at least one statement. Therefore, it is
illegal to place the label at the end of a block. In the IAR C/C++ Compiler for R32C,
a warning is issued.

Note: This also applies to the labels of switch statements.

e Empty declarations

An empty declaration (a semicolon by itself) is allowed, but a remark is issued
(provided that remarks are enabled).

e Single-value initialization

ISO/ANSI C requires that all initializer expressions of static arrays, structs, and
unions are enclosed in braces.

Single-value initializers are allowed to appear without braces, but a warning is
issued. In the IAR C/C++ Compiler for R32C, this expression is allowed:

struct str

{
int a;
} x = 10;

o Declarations in other scopes

External and static declarations in other scopes are visible. In the following example,
the variable y can be used at the end of the function, even though it should only be
visible in the body of the if statement. A warning is issued.

int test(int x)
{
if (x)
{
extern int vy;
y = 1;
}

return y;

}

Part 2. Reference information 171

C language extensions

o Expanding function names into strings with the function as context

Use any of the symbols __func__ or __FUNCTION__ inside a function body to
make the symbol expand into a string, with the function name as context. Use the
symbol __PRETTY_ FUNCTION__ to also include the parameter types and return
type. The result might, for example, look like this if you use the
__PRETTY_FUNCTION__ symbol:

"void func (char)"

These symbols are useful for assertions and other trace utilities and they require that
language extensions are enabled, see -e, page 137.

IAR C/C++ Compiler
172 Reference Guide

Extended keywords

This chapter describes the extended keywords that support specific features
of the R32C/100 microcomputer and the general syntax rules for the
keywords. Finally the chapter gives a detailed description of each keyword.

For information about the address ranges of the different memory areas, see
the chapter Segment reference.

General syntax rules for extended keywords
To understand the syntax rules for the extended keywords, it is important to be familiar
with some related concepts.

The compiler provides a set of attributes that can be used on functions or data objects to
support specific features of the R32C/100 microcomputer. There are two types of
attributes—type attributes and object attributes:

o Type attributes affect the external functionality of the data object or function

o Object attributes affect the internal functionality of the data object or function.

The syntax for the keywords differs slightly depending on whether it is a type attribute
or an object attribute, and whether it is applied to a data object or a function.

For information about how to use attributes to modify data, see the chapter Data storage.
For information about how to use attributes to modify functions, see the chapter
Functions. For detailed information about each attribute, see Descriptions of extended
keywords, page 177.

Note: The extended keywords are only available when language extensions are enabled
in the compiler.

In the IDE, language extensions are enabled by default.

Use the -e compiler option to enable language extensions. See -e, page 137 for
additional information.

TYPE ATTRIBUTES

Type attributes define how a function is called, or how a data object is accessed. This
means that if you use a type attribute, it must be specified both when a function or data
object is defined and when it is declared.

Part 2. Reference information 173

General syntax rules for extended keywords

174

IAR C/C++ Compiler
Reference Guide

You can either place the type attributes directly in your source code, or use the pragma
directive #pragma type_attribute.

Type attributes can be further divided into memory type attributes and general type
attributes. Memory type attributes are referred to as simply memory attributes in the rest
of the documentation.

Memory attributes

A memory attribute corresponds to a certain logical or physical memory in the
microcomputer.

o Available function memory attributes: __code24 and __code32

o Available data memory attributes: __datalé data24

__sbdatalé6, and __sbdata24

data32,

s —— Jp—

Data objects, functions, and destinations of pointers or C++ references always have a
memory attribute. If no attribute is explicitly specified in the declaration or by the
pragma directive #pragma type_attribute, an appropriate default attribute is used.
You can specify one memory attribute for each level of pointer indirection.

General type attributes

These general type attributes are available:

e Function type attributes affect how the function should be called: __interrupt,
__task,and __fast_interrupt

® Data type attributes: const, __packed, and volatile
You can specify as many type attributes as required for each level of pointer indirection.

To read more about the type qualifiers const and volatile, see Type qualifiers, page
161.

Syntax for type attributes used on data objects

In general, type attributes for data objects follow the same syntax as the type qualifiers
const and volatile.

The following declaration assigns the __data24 memory attribute to the variables i
and j; in other words, the variable i and j is placed in data24 memory. The variables k
and 1 behave in the same way:

__data24 int i, 3J;
int __data24 k, 1;

Note that the attribute affects both identifiers.

Extended keywords ___o

This declaration of i and j is equivalent with the previous one:

#pragma type_attribute=__data24
int 1, 3J;
The advantage of using pragma directives for specifying keywords is that it offers you a

method to make sure that the source code is portable. Note that the pragma directive has
no effect if a memory attribute is already explicitly declared.

For more examples of using memory attributes, see More examples, page 16.

An easier way of specifying storage is to use type definitions. These two declarations
are equivalent:

typedef char __data24 Byte;
Byte b;

and

__data24 char b;

Note that #pragma type_attribute can be used together with a typedef
declaration.

Syntax for type attributes on functions

The syntax for using type attributes on functions differs slightly from the syntax of type
attributes on data objects. For functions, the attribute must be placed either in front of
the return type, or in parentheses, for example:

__interrupt void my_handler (void) ;

or

void (__interrupt my_handler) (void) ;

This declaration of my_handler is equivalent with the previous one:
#pragma type_attribute=__interrupt

void my_handler (void) ;

Syntax for type attributes on function pointers

To declare a function pointer, use this syntax:

int (__code32 * fp) (double);

After this declaration, the function pointer £p points to code32 memory.
An easier way of specifying storage is to use type definitions:

typedef __code32 void FUNC_TYPE (int) ;
typedef FUNC_TYPE *FUNC_PTR_TYPE;

Part 2. Reference information 175

General syntax rules for extended keywords

FUNC_TYPE func() ;
FUNC_PTR_TYPE funcptr;

Note that #pragma type_attribute can be used together with a typedef
declaration.

OBJECT ATTRIBUTES

Object attributes affect the internal functionality of functions and data objects, but not
how the function is called or how the data is accessed. This means that an object attribute
does not need to be present in the declaration of an object.

These object attributes are available:

Object attributes that can be used for variables: __no_init

Object attributes that can be used for functions and variables: location, @, and
__root

o Object attributes that can be used for functions: __intrinsic, __monitor,
__noreturn, and vector.

You can specify as many object attributes as required for a specific function or data
object.

For more information about location and @, see Controlling data and function
placement in memory, page 103. For more information about vector, see vector, page
198.

Syntax for object attributes

The object attribute must be placed in front of the type. For example, to place myarray
in memory that is not initialized at startup:

__no_init int myarrayl[10];

The #pragma object_attribute directive can also be used. This declaration is
equivalent to the previous one:

#pragma object_attribute=__no_init
int myarray[10];

Note: Object attributes cannot be used in combination with the typedef keyword.

IAR C/C++ Compiler
176 Reference Guide

Extended keywords ___o

Summary of extended keywords

This table summarizes the extended keywords:

Extended keyword

Description

__code24
__code32
__dataleé
__data24
__data32

__fast_interrupt

_ _interrupt
__intrinsic
_ _monitor
__no_init

__noreturn

__packed

__root

__sbdatalé
__sbdata24

__task

Controls the storage of functions
Controls the storage of functions
Controls the storage of data objects
Controls the storage of data objects
Controls the storage of data objects
Supports fast interrupt functions
Supports interrupt functions

Reserved for compiler internal use only
Supports atomic execution of a function
Supports non-volatile memory

Informs the compiler that the declared function will not
return

Decreases data type alignment to |

Ensures that a function or variable is included in the object
code even if unused

Controls the storage of data objects
Controls the storage of data objects

Allows functions to exit without restoring registers

Table 34: Extended keywords summary

Descriptions of extended keywords

These sections give detailed information about each extended keyword.

__code24
Syntax Follows the generic syntax rules for memory type attributes that can be used on
functions, see Type attributes, page 173.
Description The __code24 memory attribute overrides the default storage of functions given by the
selected code model and places individual functions in code24 memory.
Storage information o Address range: 0xFF800000-0xFFFFFFFF (8 Mbytes)

Part 2. Reference information 177

Descriptions of extended keywords

Example

See also

__code32

Syntax

Description

Storage information

Example

See also

__datalé

Syntax

Description

Storage information

Example

See also

IAR C/C++ Compiler
178 Reference Guide

o Maximum size: 8 Mbytes

e Pointer size: 4 bytes
__code24 void myfunction (void) ;

Code models and memory attributes for function storage, page 21.

Follows the generic syntax rules for memory type attributes that can be used on
functions, see Type attributes, page 173.

The __code32 memory attribute overrides the default storage of functions given by the

selected code model and places individual functions in code32 memory.

® Address range: 0-0xFFFFFFFF (4 Gbytes)
o Maximum size: 4 Gbytes

e Pointer size: 4 bytes

__code32 void myfunction(void) ;

Code models and memory attributes for function storage, page 21.

Follows the generic syntax rules for memory type attributes that can be used on data
objects, see Type attributes, page 173.

The __datalé memory attribute overrides the default storage of variables and
constants given by the selected data model and code model, respectively, and places

individual variables and constants in datal6 memory.

® Address range: 0-0x7FFF, 0xFFFF8000-0xFFFFFFFF (32 Kbytes)
e Maximum object size: 32 Kbytes

e Pointer size: 4 bytes.
__datalé6 int x;

Memory types, page 13.

__data24

Syntax

Description

Storage information

Example

See also

__data32

Syntax

Description

Storage information

Example

See also

__fast_interrupt

Syntax

Description

Extended keywords ___o

Follows the generic syntax rules for memory type attributes that can be used on data
objects, see Type attributes, page 173.

The __data24 memory attribute overrides the default storage of variables and
constants given by the selected data model and code model, respectively, and places

individual variables and constants in data24 memory.

® Address range: 0-0x7FFFFF, 0xFF800000-0xFFFFFFFF (8§ Mbytes)
o Maximum object size: § Mbytes—1

e Pointer size: 4 bytes

__data24 int x;

Memory types, page 13.

Follows the generic syntax rules for memory type attributes that can be used on data
objects, see Type attributes, page 173.

The __data32 memory attribute overrides the default storage of variables and
constants given by the selected data model and code model, respectively, and places

individual variables and constants in data32 memory.

o Address range: 0-0xFFFFFFFF (4 Gbytes)
e Maximum object size: 2 Gbytes—1

e Pointer size: 4 bytes.
__data32 int x;

Memory types, page 13.

Follows the generic syntax rules for type attributes that can be used on functions, see
Type attributes, page 173.

The __fast_interrupt keyword specifies a very fast interrupt function of the highest
priority, using the FREIT return mechanism. The interrupt uses the VCT register as a

Part 2. Reference information 179

Descriptions of extended keywords

Example

See also

__interrupt

Syntax

Description

Example

See also

__intrinsic

Description

___monitor

Syntax

Description

IAR C/C++ Compiler
180 Reference Guide

vector. The register is set up during early initialization and will point to the fast interrupt
function in the application, if one has been declared.

A fast interrupt function must have a void return type and cannot have any parameters.

__fast_interrupt void my_interrupt_handler (void) ;

Interrupt functions, page 23, vector, page 198, INTVEC, page 235.

Follows the generic syntax rules for type attributes that can be used on functions, see
Type attributes, page 173.

The __interrupt keyword specifies interrupt functions. To specify one or several
interrupt vectors, use the #pragma vector directive. The range of the interrupt vectors
depends on the device used. It is possible to define an interrupt function without a vector,
but then the compiler will not generate an entry in the interrupt vector table.

An interrupt function must have a void return type and cannot have any parameters.

The header file iodevice.h, where device corresponds to the selected device,
contains predefined names for the existing interrupt vectors.

To override the non-maskable interrupts, use the template file fixedint.c in the
src\1lib directory. Non-maskable interrupts do not have a vector number and do not
use the #pragma vector directive.

#pragma vector=0x14
__interrupt void my_interrupt_handler (void) ;

Interrupt functions, page 23, vector, page 198, INTVEC, page 235.

The __intrinsic keyword is reserved for compiler internal use only.

Follows the generic syntax rules for object attributes, see Object attributes, page 176.

The __monitor keyword causes interrupts to be disabled during execution of the
function. This allows atomic operations to be performed, such as operations on

Extended keywords ___o

semaphores that control access to resources by multiple processes. A function declared
with the __monitor keyword is equivalent to any other function in all other respects.

Example __monitor int get_lock(void) ;
See also Monitor functions, page 24. Read also about the intrinsic functions __disable_interrupt,

page 201, _enable_interrupt, page 201, _ get interrupt state, page 203, and
__set_interrupt state, page 207.

__no_init
Syntax Follows the generic syntax rules for object attributes, see Object attributes, page 176.
Description Usethe __no_init keyword to place a data object in non-volatile memory. This means
that the initialization of the variable, for example at system startup, is suppressed.
Example __no_init int myarray[10];
___noreturn
Syntax Follows the generic syntax rules for object attributes, see Object attributes, page 176.
Description The __noreturn keyword can be used on a function to inform the compiler that the
function will not return. If you use this keyword on such functions, the compiler can
optimize more efficiently. Examples of functions that do not return are abort and exit.
Example __noreturn void terminate (void);
__packed
Syntax Follows the generic syntax rules for type attributes that can be used on data, see Type
attributes, page 173.
Description Use the __packed keyword to decrease the data type alignment to 1. __packed can be

used for two purposes:

o When used with a struct or union type definition, the maximum alignment of
members of that struct or union is set to 1, to eliminate any gaps between the
members. The type of each members also receives the __packed type attribute.

Part 2. Reference information 181

Descriptions of extended keywords

182

Example

See also

__root

Syntax

Description

Example

See also

__sbdatalé

Syntax

Description

Storage information

IAR C/C++ Compiler
Reference Guide

o When used with any other type, the resulting type is the same as the type without
the __packed type attribute, but with an alignment of 1. Types that already have an
alignment of 1 are not affected by the __packed type attribute.

A normal pointer can be implicitly converted to a pointer to __packed, but the reverse
conversion requires a cast.

Note: Accessing data types at other alignments than their natural alignment can result
in code that is significantly larger and slower.

__packed struct X {char ch; int i;}; /* No pad bytes */
void foo (struct X * xp) /* No need for __packed here */
{
int * pl = &xp->1;/* Error:"int *">"int __packed *" */
int __packed * p2 = &xp->i; /* OK */
char * p2 = &xp->ch; /* OK, char not affected */

pack, page 194.

Follows the generic syntax rules for object attributes, see Object attributes, page 176.
A function or variable with the __root attribute is kept whether or not it is referenced
from the rest of the application, provided its module is included. Program modules are
always included and library modules are only included if needed.

__root int myarray[10];

To read more about modules, segments, and the link process, see the /AR Linker and
Library Tools Reference Guide.

Follows the generic syntax rules for memory type attributes that can be used on data
objects, see Type attributes, page 173.

The __sbdatal6 memory attribute overrides the default storage of variables and
constants given by the selected data model and code model, respectively, and places

individual variables and constants in SB-relative memory.

® Address range: SB register + 0x0—0xFFFF (64 Kbytes)

Extended keywords ___o

o Maximum object size: 64 Kbytes

e Pointer size: 4 bytes.

Example __sbdatal6 int x;
See also Memory types, page 13.
__sbdata24
Syntax Follows the generic syntax rules for memory type attributes that can be used on data

objects, see Type attributes, page 173.

Description The __sbdata24 memory attribute overrides the default storage of variables and

constants given by the selected data model and code model, respectively, and places
individual variables and constants in SB-relative memory.

Storage information o Address range: SB register + OxFFFFFF (16 Mbytes)
o Maximum object size: 16 Mbytes

e Pointer size: 4 bytes

Example __sbdata24 int x;
See also Memory types, page 13.
__task
Syntax Follows the generic syntax rules for type attributes that can be used on functions, see

Type attributes, page 173.

Description This keyword allows functions to exit without restoring registers and it is typically used
for the main function.

By default, functions save the contents of used non-scratch registers (preserved
registers) on the stack upon entry, and restore them at exit. Functions declared __task
do not save any registers, and therefore require less stack space.

Because a function declared __task can corrupt registers needed by the calling
function, you should only use __task on functions that do not return.

The function main can be declared __task, unless it is explicitly called from the
application. In real-time applications with more than one task, the root function of each
task can be declared __task.

Part 2. Reference information 183

Descriptions of extended keywords

Example __task void my_ handler (void) ;

IAR C/C++ Compiler
184 Reference Guide

Pragma directives

This chapter describes the pragma directives of the compiler.

The #pragma directive is defined by the ISO/ANSI C standard and is a
mechanism for using vendor-specific extensions in a controlled way to make
sure that the source code is still portable.

The pragma directives control the behavior of the compiler, for example how
it allocates memory for variables and functions, whether it allows extended
keywords, and whether it outputs warning messages.

The pragma directives are always enabled in the compiler.

Summary of pragma directives

This table lists the pragma directives of the compiler that can be used either with the
#pragma preprocessor directive or the _Pragma () preprocessor operator:

Pragma directive

bitfields

Description

Controls the order of bitfield members
constseg Places constant variables in a named segment
data_alignment Gives a variable a higher (more strict) alignment
dataseg Places variables in a named segment
diag_default Changes the severity level of diagnostic messages
diag_error Changes the severity level of diagnostic messages
diag_remark Changes the severity level of diagnostic messages
diag_suppress Suppresses diagnostic messages
diag_warning Changes the severity level of diagnostic messages

include_alias Specifies an alias for an include file

inline Inlines a function

language Controls the IAR Systems language extensions

location Specifies the absolute address of a variable, or places groups
of functions or variables in named segments

message Prints a message

Table 35: Pragma directives summary

Part 2. Reference information

185

Descriptions of pragma directives

186

Pragma directive

Description

object_attribute
optimize
pack

__printf_args

required

rtmodel

__scanf_args

segment

type_attribute

vector

Changes the definition of a variable or a function
Specifies the type and level of an optimization
Specifies the alignment of structures and union members

Verifies that a function with a printf-style format string is
called with the correct arguments

Ensures that a symbol that is needed by another symbol is
included in the linked output

Adds a runtime model attribute to the module

Verifies that a function with a scanf-style format string is
called with the correct arguments

Declares a segment name to be used by intrinsic functions

Changes the declaration and definitions of a variable or
function

Specifies the vector of an interrupt function

Table 35: Pragma directives summary (Continued)

Note: For portability reasons, see also Recognized pragma directives (6.8.6), page 245.

Descriptions of pragma directives

This section gives detailed information about each pragma directive.

bitfields

Syntax

Parameters

Description

IAR C/C++ Compiler
Reference Guide

#pragma bitfields={reversed|default}

reversed

default

Bitfield members are placed from the most significant bit to the
least significant bit.

Bitfield members are placed from the least significant bit to the
most significant bit.

Use this pragma directive to control the order of bitfield members.

By default, the compiler places bitfield members from the least significant bit to the
most significant bit in the container type. Use the #pragma bitfields=reversed
directive to place the bitfield members from the most significant to the least significant

Pragma directives °

bit. This setting remains active until you turn it off again with the #pragma
bitfields=default directive.

See also Bitfields, page 155.

constseg
Syntax #pragma constseg=[__memoryattribute]{SEGMENT NAME|default}
Parameters

__memoryattribute An optional memory attribute denoting in what memory the
segment will be placed; if not specified, default memory is used.

SEGMENT NAME A user-defined segment name; cannot be a segment name
predefined for use by the compiler and linker.

default Uses the default segment for constants.

Description Use this pragma directive to place constant variables in a named segment. The segment
name cannot be a segment name predefined for use by the compiler and linker. The
setting remains active until you turn it off again with the #pragma constseg=default

directive.
Example #pragma constseg=__data24 MY_CONSTANTS
const int factorySettings([] = {42, 15, -128, 0};

#pragma constseg=default

data_alignment

Syntax #pragma data_alignment=expression

Parameters
expression A constant which must be a power of two (1, 2, 4, etc.).

Description Use this pragma directive to give a variable a higher (more strict) alignment than it
would otherwise have. It can be used on variables with static and automatic storage
duration.

When you use this directive on variables with automatic storage duration, there is an
upper limit on the allowed alignment for each function, determined by the calling
convention used.

Part 2. Reference information 187

Descriptions of pragma directives

dataseg

Syntax

Parameters

Description

Example

diag default

Syntax

Parameters

Description

See also

IAR C/C++ Compiler
188 Reference Guide

#pragma dataseg=[__memoryattribute] {SEGMENT_NAME\ default}

__memoryattribute An optional memory attribute denoting in what memory the
segment will be placed; if not specified, default memory is used.

SEGMENT_NAME A user-defined segment name; cannot be a segment name
predefined for use by the compiler and linker.

default Uses the default segment.

Use this pragma directive to place variables in a named segment. The segment name
cannot be a segment name predefined for use by the compiler and linker. The variable
will not be initialized at startup, and can for this reason not have an initializer, which
means it must be declared __no_init. The setting remains active until you turn it off
again with the #pragma constseg=default directive.

#pragma dataseg=__data24 MY_SEGMENT
__no_init char myBuffer[1000];
#pragma dataseg=default

#pragma diag_default=tagl, tag, ...]

tag The number of a diagnostic message, for example the message
number Pell7.

Use this pragma directive to change the severity level back to the default, or to the
severity level defined on the command line by any of the options --diag_error,
--diag_remark, --diag_suppress, Or --diag_warnings, for the diagnostic
messages specified with the tags.

Diagnostics, page 122.

Pragma directives °

diag error
Syntax #pragma diag_error=tagl, tag, ...]
Parameters
tag The number of a diagnostic message, for example the message
number Pell7.
Description Use this pragma directive to change the severity level to error for the specified
diagnostics.
See also Diagnostics, page 122.
diag remark
Syntax #pragma diag_remark=tagl, tag, ...]
Parameters
tag The number of a diagnostic message, for example the message
number Pel77.
Description Use this pragma directive to change the severity level to remark for the specified
diagnostic messages.
See also Diagnostics, page 122.

diag suppress

Syntax #pragma diag_suppress=tagl, tag,...]

Parameters
tag The number of a diagnostic message, for example the message
number Pell7.

Description Use this pragma directive to suppress the specified diagnostic messages.

See also Diagnostics, page 122.

Part 2. Reference information 189

Descriptions of pragma directives

diag_warning
Syntax #pragma diag warning=tagl, tag, ...]
Parameters

tag The number of a diagnostic message, for example the message
number Pe826.

Description Use this pragma directive to change the severity level to warning for the specified
diagnostic messages.

See also Diagnostics, page 122.

include_alias

Syntax #pragma include_alias ("orig header" , "subst_header")
#pragma include_alias (<orig header> , <subst_header>)

Parameters
orig header The name of a header file for which you want to create an alias.

subst_header The alias for the original header file.

Description Use this pragma directive to provide an alias for a header file. This is useful for
substituting one header file with another, and for specifying an absolute path to a relative
file.

This pragma directive must appear before the corresponding #include directives and

subst_header must match its corresponding #include directive exactly.

Example #pragma include_alias (<stdio.h> , <C:\MyHeaders\stdio.h>)
#include <stdio.h>
This example will substitute the relative file stdio.h with a counterpart located
according to the specified path.

See also Include file search procedure, page 120.

IAR C/C++ Compiler
190 Reference Guide

inline
Syntax

Parameters

Description

language
Syntax

Parameters

Description

Pragma directives °

#pragma inline[=forced]

forced Disables the compiler’s heuristics and forces inlining.

Use this pragma directive to advise the compiler that the function whose declaration
follows immediately after the directive should be inlined—that is, expanded into the
body of the calling function. Whether the inlining actually occurs is subject to the
compiler’s heuristics.

This is similar to the C++ keyword inline, but has the advantage of being available in
C code.

Specifying #pragma inline=forced disables the compiler’s heuristics and forces
inlining. If the inlining fails for some reason, for example if it cannot be used with the
function type in question (like print£), an error message is emitted.

Note: Because specifying #pragma inline=forced disables the compiler’s
heuristics, including the inlining heuristics, the function declared immediately after the
directive will not be inlined on optimization levels None or Low. No error or warning
message will be emitted.

#pragma language:{extended|default}

extended Turns on the IAR Systems language extensions and turns off the
--strict_ansi command line option.

default Uses the language settings specified by compiler options.

Use this pragma directive to enable the compiler language extensions or for using the
language settings specified on the command line.

Part 2. Reference information 191

Descriptions of pragma directives

location

Syntax

Parameters

Description

Example

See also

message

Syntax

Parameters

Description

Example:

IAR C/C++ Compiler
192 Reference Guide

#pragma location={address | NAME}

address The absolute address of the global or static variable for which you
want an absolute location.

NAME A user-defined segment name; cannot be a segment name
predefined for use by the compiler and linker.

Use this pragma directive to specify the location—the absolute address—of the global
or static variable whose declaration follows the pragma directive. The variable must be
declared either __no_init or const. Alternatively, the directive can take a string
specifying a segment for placing either a variable or a function whose declaration
follows the pragma directive.

#pragma location=0x2000
__no_init volatile char PORT1; /* PORT1 is located at address

0x2000 */

#pragma location="foo"
char PORT1; /* PORT1 is located in segment foo */

/* A better way 1s to use a corresponding mechanism */
#define FLASH _Pragma("location=\"FLASH\"")

FLASH int i; /* i1 is placed in the FLASH segment */

Controlling data and function placement in memory, page 103.

#pragma message (message)

message The message that you want to direct to stdout.

Use this pragma directive to make the compiler print a message to stdout when the file
is compiled.

#ifdef TESTING
#pragma message ("Testing")
#endif

object_attribute

Syntax

Parameters

Description

Example

See also

optimize
Syntax

Parameters

Description

Pragma directives °

#pragma object_attribute=object_attributel,object_attribute,...]

For a list of object attributes that can be used with this pragma directive, see Object
attributes, page 176.

Use this pragma directive to declare a variable or a function with an object attribute. This
directive affects the definition of the identifier that follows immediately after the
directive. The object is modified, not its type. Unlike the directive #pragma
type_attribute that specifies the storing and accessing of a variable or function, it is
not necessary to specify an object attribute in declarations.

#pragma object_attribute=__no_init
char bar;

General syntax rules for extended keywords, page 173.

#pragma optimize=param|[param...]

balanced|size|speed Optimizes balanced between speed and size,
optimizes for size, or optimizes for speed

none | low|medium|high Specifies the level of optimization
no_code_motion Turns off code motion

no_cse Turns off common subexpression elimination
no_inline Turns off function inlining

no_tbaa Turns off type-based alias analysis
no_unroll Turns off loop unrolling

Use this pragma directive to decrease the optimization level, or to turn off some specific
optimizations. This pragma directive only affects the function that follows immediately
after the directive.

The parameters speed, size, and balanced only have effect on the high optimization
level and only one of them can be used as it is not possible to optimize for speed and size
at the same time. It is also not possible to use preprocessor macros embedded in this
pragma directive. Any such macro will not be expanded by the preprocessor.

Part 2. Reference information 193

Descriptions of pragma directives

194

Example

pack

Syntax

Parameters

Description

See also

IAR C/C++ Compiler
Reference Guide

Note: If you use the #pragma optimize directive to specify an optimization level that
is higher than the optimization level you specify using a compiler option, the pragma
directive is ignored.

#pragma optimize=speed
int small_and_used_often()

{

#pragma optimize=size no_inline
int big_and_seldom_used()

{

#pragma pack (n)
#pragma pack()

#pragma pack ({push|pop}[,namel [,n])

n Sets an optional structure alignment; one of: 1, 2, 4, 8, or 16

Empty list Restores the structure alignment to default

push Sets a temporary structure alignment

pop Restores the structure alignment from a temporarily pushed alignment
name An optional pushed or popped alignment label

Use this pragma directive to specify the maximum alignment of struct and union
members.

The #pragma pack directive affects declarations of structures following the pragma
directive to the next #pragma pack or end of file.

Note: This can result in significantly larger and slower code when accessing members
of the structure.

Structure types, page 158.

__printf_args

Syntax

Description

Example

required

Syntax

Parameters

Description

Example

Pragma directives °

#pragma __printf_args

Use this pragma directive on a function with a printf-style format string. For any call to
that function, the compiler verifies that the argument to each conversion specifier (for
example %d) is syntactically correct.

#pragma __printf_args
int printf (char const *,...);

/* Function call */
printf("%d",x); /* Compiler checks that x is a double */

#pragma required=symbol

symbol Any statically linked function or variable.

Use this pragma directive to ensure that a symbol which is needed by a second symbol
is included in the linked output. The directive must be placed immediately before the
second symbol.

Use the directive if the requirement for a symbol is not otherwise visible in the
application, for example if a variable is only referenced indirectly through the segment
it resides in.

const char copyright[] = "Copyright by me";
#pragma required=copyright

int main ()

{...}

Even if the copyright string is not used by the application, it will still be included by the
linker and available in the output.

Part 2. Reference information 195

Descriptions of pragma directives

rtmodel

Syntax

Parameters

Description

Example

See also

__scanf_args

Syntax

Description

Example

IAR C/C++ Compiler
196 Reference Guide

#pragma rtmodel="key", "value"

"key" A text string that specifies the runtime model attribute.

"value" A text string that specifies the value of the runtime model attribute.
Using the special value * is equivalent to not defining the attribute at
all.

Use this pragma directive to add a runtime model attribute to a module, which can be
used by the linker to check consistency between modules.

This pragma directive is useful for enforcing consistency between modules. All modules
that are linked together and define the same runtime attribute key must have the same
value for the corresponding key, or the special value *. It can, however, be useful to state
explicitly that the module can handle any runtime model.

A module can have several runtime model definitions.

Note: The predefined compiler runtime model attributes start with a double underscore.
To avoid confusion, this style must not be used in the user-defined attributes.
#pragma rtmodel="I2C", "ENABLED"

The linker will generate an error if a module that contains this definition is linked with

a module that does not have the corresponding runtime model attributes defined.

Checking module consistency, page 67.

#pragma __scanf_args

Use this pragma directive on a function with a scanf-style format string. For any call to
that function, the compiler verifies that the argument to each conversion specifier (for
example %d) is syntactically correct.

#pragma __scanf_args
int printf(char const *,...);

/* Function call */
scanf ("%d",x); /* Compiler checks that x is a double */

segment

Syntax

Parameters

Description

Example

See also

type_attribute

Syntax

Parameters

Description

Example

Pragma directives °

#pragma segment="NAME" [__memoryattribute]l [align]

NAME The name of the segment

__memoryattribute An optional memory attribute identifying the memory the segment
will be placed in; if not specified, default memory is used.

align Specifies an alignment for the segment part. The value must be a
constant integer expression to the power of two.

Use this pragma directive to define a segment name that can be used by the segment
operators __segment_begin and __segment_end. All segment declarations for a
specific segment must have the same memory type attribute and alignment.

If an optional memory attribute is used, the return type of the segment operators
__segment_begin and __segment_end is:

void __memoryattribute *.
#pragma segment="MYHUGE" __data32 4

Important language extensions, page 164. For more information about segments and
segment parts, see the chapter Placing code and data.

#pragma type_attribute=type_attributel, type_attribute,...]

For a list of type attributes that can be used with this pragma directive, see Type
attributes, page 173.

Use this pragma directive to specify IAR-specific type attributes, which are not part of
the ISO/ANSI C language standard. Note however, that a given type attribute might not
be applicable to all kind of objects.

This directive affects the declaration of the identifier, the next variable, or the next
function that follows immediately after the pragma directive.
In this example, an int object with the memory attribute __datalé is defined:

#pragma type_attribute=__datal6
int x;

Part 2. Reference information 197

Descriptions of pragma directives

See also

vector

Syntax

Parameters

Description

Example!

IAR C/C++ Compiler
198 Reference Guide

This declaration, which uses extended keywords, is equivalent:

__datal6 int x;

See the chapter Extended keywords for more details.

#pragma vector=vectorl|[, vector2, vector3, ...]

vector The vector number(s) of an interrupt function.

Use this pragma directive to specify the vector(s) of an interrupt function whose
declaration follows the pragma directive. Note that several vectors can be defined for

each function.

#pragma vector=0x14
__interrupt void my_handler (void) ;

Intrinsic functions

This chapter gives reference information about the intrinsic functions, a
predefined set of functions available in the compiler.

The intrinsic functions provide direct access to low-level processor operations
and can be very useful in, for example, time-critical routines. The intrinsic
functions compile into inline code, either as a single instruction or as a short
sequence of instructions.

Summary of intrinsic functions

To use intrinsic functions in an application, include the header file intrinsics.h.
Note that the intrinsic function names start with double underscores, for example:
__disable_interrupt

This table summarizes the intrinsic functions:

Intrinsic function Description

__break Inserts a BRK instruction
__delay_cycles Inserts code to delay execution
__disable_interrupt Disables interrupts
__enable_interrupt Enables interrupts
__exchange_byte Inserts an XCHG instruction
__exchange_long Inserts an XCHG instruction
__exchange_word Inserts an XCHG instruction
__get_DCR_register Returns the value of the DCR register
__get_DCT_register Returns the value of the DCT register
__get_DDA_register Returns the value of the DDA register
__get_DDR_register Returns the value of the DDR register
__get_DMD_register Returns the value of the DMD register
__get_DSA_register Returns the value of the DSA register
__get_DSR_register Returns the value of the DSR register
__get_interrupt_level Returns the interrupt level

Table 36: Intrinsic functions summary

Part 2. Reference information 199

Summary of intrinsic functions

Intrinsic function Description
__get_interrupt_state Returns the interrupt state
__get_interrupt_table Returns the value of the INTB register
__get_VCT_register Returns the value of the VCT register
__illegal_opcode Inserts an UND instruction
__interrupt_on_overflow Inserts an INTO instruction
__load_context Inserts an LDCTX instruction
__low_level_init Low-level initialization
__no_operation Inserts a NOP instruction

__RMPA_B Inserts an RMPA instruction

__RMPA_L Inserts an RMPA instruction

__RMPA_W Inserts an RMPA instruction

_ _ROUND Inserts a ROUND instruction
__set_DCR_register Writes a specific value to the DCR register
__set_DCT_register Writes a specific value to the DCT register
__set_DDA_register Writes a specific value to the DDA register
__set_DDR_register Writes a specific value to the DDR register
__set_DMD_register Writes a specific value to the DMD register
__set_DSA_register Writes a specific value to the DSA register
__set_DSR_register Writes a specific value to the DSR register
__set_interrupt_level Sets the interrupt level
__set_interrupt_state Restores the interrupt state
__set_interrupt_table Writes a specific value to the INTB register
__set_VCT_register Writes a specific value to the VCT register
__SIN Inserts an SIN instruction
__software_interrupt Inserts an INT instruction

__souT Inserts an SOUT instruction

__STOP Inserts a STOP instruction
__store_context Inserts an STCTX instruction
__wait_for_interrupt Inserts a WAIT instruction

Table 36: Intrinsic functions summary (Continued)

IAR C/C++ Compiler
200 Reference Guide

Intrinsic functions __¢

Descriptions of intrinsic functions

This section gives reference information about each intrinsic function.

__break
Syntax void __break(void) ;
Description Inserts a BRK instruction.

__delay_cycles

Syntax void __delay _cycles(unsigned long cycles) ;

Description Inserts code to delay execution for cycles number of execution cycles.

__disable_interrupt

Syntax void __disable_interrupt (void) ;

Description Disables interrupts by clearing the I bit in the status register FLG.

__enable_interrupt

Syntax void __enable_interrupt (void) ;

Description Enables interrupts by setting the I bit in the status register FLG.

__exchange_byte

Syntax unsigned char __exchange_byte (unsigned char src,
unsigned char * dst);

Description Inserts an XCHG . B src, dst instruction.

Part 2. Reference information 201

Descriptions of intrinsic functions

__exchange_long

Syntax unsigned long __exchange_long(unsigned long src,
unsigned long * dst);

Description Inserts an XCHG . L src, dst instruction.

__exchange_word

_exchange_word (unsigned short src,
unsigned short * dst);

Syntax unsigned short

Description Inserts an XCHG.W src, dst instruction.

__get_DCR_register

Syntax unsigned long __get_ DCR_register (unsigned char n);

Description Returns the value of the DCRn register. The channel n can be either 0, 1, 2, or 3.

__get DCT_register

Syntax unsigned long __get_DCT_register (unsigned char n);

Description Returns the value of the DCTn register. The channel n can be either 0, 1, 2, or 3.

__get_ DDA register

Syntax unsigned long __get_DDA_register (unsigned char n);

Description Returns the value of the DDAn register. The channel n can be either 0, 1, 2, or 3.

__get_DDR_register

Syntax unsigned long __get_ DDR_register (unsigned char n);

Description Returns the value of the DDRn register. The channel n can be either 0, 1, 2, or 3.

IAR C/C++ Compiler
202 Reference Guide

Intrinsic functions __¢

__get DMD_register

Syntax unsigned long __get_DMD_register (unsigned char n);

Description Returns the value of the DMDn register. The channel n can be either 0, 1, 2, or 3.

__get_DSA _register

Syntax unsigned long __get_DSA_register (unsigned char n);

Description Returns the value of the DSAn register. The channel n can be either 0, 1, 2, or 3.

__get_DSR_register

Syntax unsigned long __get_DSR_register (unsigned char n);

Description Returns the value of the DSRn register. The channel n can be either 0, 1, 2, or 3.

__get_interrupt_level

Syntax __ilevel_t __get_interrupt_level (void) ;
Description Returns the current interrupt level. The return type __ilevel_t has the following
definition:

typedef unsigned char __ilevel_t;

The return value of __get_interrupt_level can be used as an argument to the
_set_interrupt_level intrinsic function.

__get_interrupt_state

Syntax __istate_t __get_interrupt_state(void);

Description Returns the global interrupt state. The return value can be used as an argument to the
__set_interrupt_state intrinsic function, which will restore the interrupt state.

Part 2. Reference information 203

Descriptions of intrinsic functions

Example

__get_interrupt_table

Syntax

Description

__get_VCT_register

Syntax

Description

__illegal_opcode

Syntax

Description

__istate_t s = __get_interrupt_state();
__disable_interrupt() ;

/* Do something */

_set_interrupt_state(s);

The advantage of using this sequence of code compared to using
__disable_interrupt and __enable_interrupt is that the code in this example
will not enable any interrupts disabled.

unsigned long __get_interrupt_table(void) ;

Returns the value of the INTB register.

unsigned long __get_VCT register (void) ;

Returns the value of the VCT register.

void __illegal_opcode (void) ;

Inserts an UND instruction.

__interrupt_on_overflow

Syntax

Description

__load_context

Syntax

Description

IAR C/C++ Compiler
204 Reference Guide

void __interrupt_on_overflow(void) ;

Inserts an INTO instruction.

void __load_context(void __datal6é * src, void __data24 * dst);

Inserts an LDCTX src, dst instruction.

__low_level init

Syntax

Description

__ho_operation

Syntax

Description

__RMPA_B

Syntax

Description

__RMPA_L

Syntax

Description

__RMPA_ W

Syntax

Description

Intrinsic functions __¢

int __low_level_init (void);

Gives the application a chance to perform early initializations. The function is called
from the file cstartup.s53. See Customizing system initialization, page 55.

void __no_operation (void) ;

Inserts a NOP instruction.

long long __RMPA_B(signed char * vl, signed char * v2, unsigned
long n, long long acc);

Inserts an RMPA . B instruction. The RMPA instruction sequentially multiplies the two
vectors v1 and v2 and adds each product to the accumulator acc. The length of the
vectors is n. You can supply an initial value for the accumulator acc, either variable or
a constant.

long long __RMPA_L(signed long * vl1, signed long * v2, unsigned
long n, long long acc);

Inserts an RMPA . L instruction. The RMPA instruction sequentially multiplies the two
vectors v1 and v2 and adds each product to the accumulator acc. The length of the
vectors is n. You can supply an initial value for the accumulator acc, either variable or
a constant.

long long __RMPA_W(signed short * v1, signed short * v2,
unsigned long n, long long acc);

Inserts an RMPA . W instruction. The RMPA instruction sequentially multiplies the two
vectors v1 and v2 and adds each product to the accumulator acc. The length of the

Part 2. Reference information 205

Descriptions of intrinsic functions

__ROUND

Syntax

Description

__set_DCR_register

Syntax

Description

__set_DCT_register

Syntax

Description

__set_DDA register

Syntax

Description

__set_DDR_register

Syntax

Description

__set_DMD_register

Syntax

Description

IAR C/C++ Compiler

206 Reference Guide

vectors is n. You can supply an initial value for the accumulator acc, either variable or

a constant.

int __ROUND(float) ;

Inserts a ROUND instruction. See Casting a floating-point value to an integer, page 101.

void __set_DCR_register (unsigned

char n, unsigned long value);

Writes a specific value to the DCRn register. The channel n can be either 0, 1, 2, or 3.

void __set_DCT_register (unsigned

char n, unsigned long value);

Writes a specific value to the DCTn register. The channel n can be either 0, 1, 2, or 3.

void __set_DDA_register (unsigned

char n, unsigned long value);

Writes a specific value to the DDAn register. The channel n can be either 0, 1, 2, or 3.

void __set_DDR_register (unsigned

char n, unsigned long value);

Writes a specific value to the DDRn register. The channel n can be either 0, 1, 2, or 3.

void __set_DMD_register (unsigned

char n, unsigned long value);

Writes a specific value to the DMDn register. The channel n can be either 0, 1, 2, or 3.

__set_DSA _register

Syntax

Description

__set_DSR_register

Syntax

Description

__set_interrupt_level

Syntax

Description

__set_interrupt_state

Syntax

Descriptions

__set_interrupt_table

Syntax

Description

__set_VCT_register

Syntax

Description

Intrinsic functions __¢

void __set_DSA_register (unsigned char n, unsigned long value) ;

Writes a specific value to the DSAn register. The channel n can be either 0, 1, 2, or 3.

void __set_DSR_register (unsigned char n, unsigned long value) ;

Writes a specific value to the DSRn register. The channel n can be either 0, 1, 2, or 3.

void __set_interrupt_level (__ilevel_t);

Sets the interrupt level. For information about the __ilevel t type, see
__get interrupt level, page 203.

void __set_interrupt_state(__istate_t);

Restores the interrupt state by setting the value returned by the
__get_interrupt_state function.

For information about the __istate_t type, see _get interrupt state, page 203.

void __set_interrupt_table(unsigned long address) ;

Writes a specific value to the INTB register.

void __set_VCT_register (unsigned long address) ;

Writes a specific value to the VCT register.

Part 2. Reference information

207

Descriptions of intrinsic functions

__SIN

Syntax

Description

__software_interrupt

Syntax

Description

__SOUT

Syntax

Description

__STOP

Syntax

Description

__store_context

Syntax

Description

IAR C/C++ Compiler

208 Reference Guide

void __SIN(char * src, char * dst,

Inserts an SIN.B instruction.

unsigned long n);

src The source register address

dst The destination char array pointer
n The number of bytes

void __software_interrupt (unsigned

Inserts an INT #n instruction.

void __SOUT(char * src, char * dst,

Inserts an SOUT. B instruction.

src The source char array pointer
dst The destination register address
n The number of bytes

void __STOP(void) ;

Inserts a STOP instruction.

void __store_context (void __datalé6

Inserts an STCTX src, dst instruction.

char n);

unsigned long n);

* src, void __data24 * dst);

Intrinsic functions __¢

__wait_for_interrupt

Syntax void _ wait_for_interrupt (void) ;

Description Inserts a WAIT instruction.

Part 2. Reference information 209

Descriptions of intrinsic functions

IAR C/C++ Compiler
210 Reference Guide

The preprocessor

This chapter gives a brief overview of the preprocessor, including reference

information about the different preprocessor directives, symbols, and other

related information.

Overview of the preprocessor
The preprocessor of the IAR C/C++ Compiler for R32C adheres to the ISO/ANSI

standard. The compiler also makes these preprocessor-related features available to you:

Predefined preprocessor symbols

These symbols allow you to inspect the compile-time environment, for example the
time and date of compilation. For details, see Descriptions of predefined
preprocessor symbols, page 212.

User-defined preprocessor symbols defined using a compiler option

In addition to defining your own preprocessor symbols using the #define directive,
you can also use the option -D, see -D, page 131.

Preprocessor extensions

There are several preprocessor extensions, for example many pragma directives; for

more information, see the chapter Pragma directives in this guide. Read also about
the corresponding _Pragma operator and the other extensions related to the

preprocessor, see Descriptions of miscellaneous preprocessor extensions, page 214.

Preprocessor output

Use the option --preprocess to direct preprocessor output to a named file, see
--preprocess, page 149.

Some parts listed by the ISO/ANSI standard are implementation-defined, for example
the character set used in the preprocessor directives and inclusion of bracketed and
quoted filenames. To read more about this, see Preprocessing directives, page 244.

Part 2. Reference information

211

Descriptions of predefined preprocessor symbols

212

Descriptions of predefined preprocessor symbols

This table describes the predefined preprocessor symbols:

Predefined symbol

Identifies

__BASE_FILE__

__BUILD_NUMBER_ _

__CODE_MODEL_ _

cplusplus

__DATA_MODEL_ _

__DATE_ _

__embedded_cplusplus

__FILE__

A string that identifies the name of the base source file (that is,
not the header file), being compiled. See also __ FTLE _,
page 212, and —-no_path_in_file_macros, page 144.

A unique integer that identifies the build number of the
compiler currently in use. The build number does not
necessarily increase with a compiler that is released later.

An integer that identifies the code model in use. The symbol
reflects the --code_model option and is defined to
__FAR__ or __HUGE__. These symbolic names can be used
when testing the __ CODE_MODEL___ symbol.

An integer which is defined when the compiler runs in any of
the C++ modes, otherwise it is undefined. When defined, its
value is 199711L. This symbol can be used with #ifdef to
detect whether the compiler accepts C++ code. It is
particularly useful when creating header files that are to be
shared by C and C++ code.”

An integer that identifies the data model in use. The symbol
reflects the --data_model option and can be defined to
__NEAR__,__FAR__,or__HUGE__. These symbolic
names can be used when testing the __DATA_MODEL_ _
symbol.

A string that identifies the date of compilation, which is
returned in the form "Mmm dd yyyy", for example "Oct 30
2005". "

An integer which is defined to 1 when the compiler runs in
any of the C++ modes, otherwise the symbol is undefined.
This symbol can be used with #ifdef to detect whether the
compiler accepts C++ code. It is particularly useful when
creating header files that are to be shared by C and C++
code.”

A string that identifies the name of the file being compiled,
which can be both the base source file and any included
header file. See also __ BASE_FILE__, page 212, and
—-no_path_in_file_macros, page 144

Table 37: Predefined symbols

IAR C/C++ Compiler
Reference Guide

The preprocessor Py

Predefined symbol Identifies

__func__ A string that identifies the name of the function in which the
symbol is used. This is useful for assertions and other trace
utilities. The symbol requires that language extensions are
enabled, see -e, page 137. See also
__PRETTY_FUNCTION.

S

page 213.

_ _FUNCTION_ _ A string that identifies the name of the function in which the
symbol is used. This is useful for assertions and other trace
utilities. The symbol requires that language extensions are
enabled, see -e, page 137. See also
__PRETTY_FUNCTION__, page 213.

__IAR_SYSTEMS_ICC__ An integer that identifies the IAR compiler platform. The
current value is 7. Note that the number could be higher in a
future version of the product. This symbol can be tested with
#1ifdef to detect whether the code was compiled by a
compiler from IAR Systems.

__ICCR32C__ An integer that is set to 1 when the code is compiled with the
IAR C/C++ Compiler for R32C, and otherwise to 0.

__LINE__

An integer that identifies the current source line number of
the file being compiled, which can be both the base source file
and any included header file."

__LITTLE_ENDIAN_ _ An integer that identifies the byte order of the
microcomputer. For the R32C/100 microcomputer families,
the value of this symbol is defined to 1 (TRUE), which means
that the byte order is little-endian.

_ _PRETTY_FUNCTION__ A string that identifies the function name, including parameter
types and return type, of the function in which the symbol is
used, for example "void func (char) ". This symbol is
useful for assertions and other trace utilities. The symbol
requires that language extensions are enabled, see -e, page
137. See also __ func__, page 213.

__STDC__ An integer that is set to 1, which means the compiler adheres
to the ISO/ANSI C standard. This symbol can be tested with
#ifdef to detect whether the compiler in use adheres to
ISO/ANSI C.”

__STDC_VERSION_ _ An integer that identifies the version of ISO/ANSI C standard
in use. The symbols expands to 199409L. This symbol does
not apply in EC++ mode.”

Table 37: Predefined symbols (Continued)

Part 2. Reference information 213

Descriptions of miscellaneous preprocessor extensions

214

Predefined symbol Identifies

_ _SUBVERSION_ _ An integer that identifies the version letter of the compiler
version number, for example the C in 4.21C, as an ASCII
character.

__TIME__ A string that identifies the time of compilation in the form

"hh:mm:ss".*

__VER__ An integer that identifies the version number of the IAR

compiler in use. The value of the number is calculated in this
way: (100 * the major version number + the
minor version number). For example, for compiler
version 3.34, 3 is the major version number and 34 is the
minor version number. Hence, the value of __VER_ _ is 334.

Table 37: Predefined symbols (Continued)
* This symbol is required by the ISO/ANSI standard.

Descriptions of miscellaneous preprocessor extensions

NDEBUG

Description

IAR C/C++ Compiler
Reference Guide

This section gives reference information about the preprocessor extensions that are
available in addition to the predefined symbols, pragma directives, and ISO/ANSI
directives.

This preprocessor symbol determines whether any assert macros you have written in
your application shall be included or not in the built application.

If this symbol is not defined, all assert macros are evaluated. If the symbol is defined,
all assert macros are excluded from the compilation. In other words, if the symbol is:

o defined, the assert code will not be included

o not defined, the assert code will be included

This means that if you write any assert code and build your application, you should
define this symbol to exclude the assert code from the final application.

Note that the assert macro is defined in the assert .h standard include file.

In the IDE, the NDEBUG symbol is automatically defined if you build your application in
the Release build configuration.

The preprocessor Py

_Pragma()
Syntax _Pragma ("string")
where string follows the syntax of the corresponding pragma directive.
Description This preprocessor operator is part of the C99 standard and can be used, for example, in
defines and is equivalent to the #pragma directive.
Note: The -e option—enable language extensions—does not have to be specified.
Example #if NO_OPTIMIZE
#define NOOPT _Pragma ("optimize=none")
#else
#define NOOPT
#endif
See also See the chapter Pragma directives.
#warning message
Syntax #warning message

where message can be any string.

Description Use this preprocessor directive to produce messages. Typically, this is useful for
assertions and other trace utilities, similar to the way the ISO/ANSI standard #error
directive is used.

__VA_ARGS__
Syntax #define P(...) __VA_ARGS_ _
#define P(x,vy,...) X + vy + __VA_ARGS_ _
__va_aRGS__ will contain all variadic arguments concatenated, including the
separating commas.
Description Variadic macros are the preprocessor macro equivalents of print £ style functions.

__VA_ARGS__ is part of the C99 standard.

Part 2. Reference information 215

Descriptions of miscellaneous preprocessor extensions

Example #if DEBUG
#define DEBUG_TRACE(S,...) printf(S,__VA_ARGS__)
#else
#define DEBUG_TRACE(S,...)
#endif
/* Place your own code here */
DEBUG_TRACE ("The value is:%d\n",value) ;

will result in:

printf ("The value is:%d\n",value) ;

IAR C/C++ Compiler
216 Reference Guide

Library functions

This chapter gives an introduction to the C and C++ library functions. It also
lists the header files used for accessing library definitions.

For detailed reference information about the library functions, see the online
help system.

Introduction

The compiler is delivered with the AR DLIB Library; a complete ISO/ANSI C and C++
library. This library also supports floating-point numbers in IEEE 754 format and it can
be configured to include different levels of support for locale, file descriptors, multibyte
characters, et cetera.

For detailed information about the library functions, see the online documentation
supplied with the product. There is also keyword reference information for the DLIB
library functions. To obtain reference information for a function, select the function
name in the editor window and press F1.

For additional information about library functions, see the chapter
Implementation-defined behavior in this guide.

HEADER FILES

Your application program gains access to library definitions through header files, which
it incorporates using the #include directive. The definitions are divided into several
different header files, each covering a particular functional area, letting you include just
those that are required.

It is essential to include the appropriate header file before making any reference to its
definitions. Failure to do so can cause the call to fail during execution, or generate error
or warning messages at compile time or link time.

LIBRARY OBJECT FILES

Most of the library definitions can be used without modification, that is, directly from
the library object files that are supplied with the product. For information about how to
choose a runtime library, see Basic settings for project configuration, page 5. The linker
will include only those routines that are required—directly or indirectly—by your
application.

Part 2. Reference information

217

IAR DLIB Library

218

REENTRANCY

A function that can be simultaneously invoked in the main application and in any
number of interrupts is reentrant. A library function that uses statically allocated data is
therefore not reentrant.

Most parts of the DLIB library are reentrant, but these functions and parts are not
reentrant because they need static data:

o Heap functions—malloc, free, realloc, calloc, and the C++ operators new
and delete
o Time functions—asctime, localtime, gmtime, mktime

o Multibyte functions—mbrlen, mbrtowc, mbsrtowc, wertomb, wesrtomb,
wctomb

® The miscellaneous functions setlocale, rand, atexit, strerror, strtok
o Functions that use files in some way. This includes printf, scanf, getchar, and
putchar. The functions sprintf and sscanf are not included.

Some functions also share the same storage for errno. These functions are not
reentrant, since an errno value resulting from one of these functions can be destroyed
by a subsequent use of the function before it is read. Among these functions are:

exp, expl0, ldexp, log, logl0, pow, sgrt, acos, asin, atan2,
cosh, sinh, strtod, strtol, strtoul

Remedies for this are:

o Do not use non-reentrant functions in interrupt service routines

o Guard calls to a non-reentrant function by a mutex, or a secure region, etc.

IAR DLIB Library

IAR C/C++ Compiler
Reference Guide

The IAR DLIB Library provides most of the important C and C++ library definitions
that apply to embedded systems. These are of the following types:

o Adherence to a free-standing implementation of the ISO/ANSI standard for the
programming language C. For additional information, see the chapter
Implementation-defined behavior in this guide.

o Standard C library definitions, for user programs.
Embedded C++ library definitions, for user programs.

CSTARTUP, the module containing the start-up code. It is described in the chapter
The DLIB runtime environment in this guide.

o Runtime support libraries; for example low-level floating-point routines.

Library functions __4

e Intrinsic functions, allowing low-level use of R32C/100 features. See the chapter

Intrinsic functions for more information.

In addition, the IAR DLIB Library includes some added C functionality, partly taken

from the C99 standard, see Added C functionality, page 222.

C HEADER FILES

This section lists the header files specific to the DLIB library C definitions. Header files
may additionally contain target-specific definitions; these are documented in the chapter

Compiler extensions.

The following table lists the C header files:

Header file Usage

assert.h Enforcing assertions when functions execute
ctype.h Classifying characters

errno.h Testing error codes reported by library functions
float.h Testing floating-point type properties
inttypes.h Defining formatters for all types defined in stdint.h
iso0646.h Using Amendment |—iso646.h standard header
limits.h Testing integer type properties

locale.h Adapting to different cultural conventions
math.h Computing common mathematical functions
setjmp.h Executing non-local goto statements

signal.h Controlling various exceptional conditions
stdarg.h Accessing a varying number of arguments
stdbool.h Adds support for the bool data type in C.
stddef.h Defining several useful types and macros
stdint.h Providing integer characteristics

stdio.h Performing input and output

stdlib.h Performing a variety of operations

string.h Manipulating several kinds of strings

time.h Converting between various time and date formats
wchar.h Support for wide characters

wctype.h Classifying wide characters

Table 38: Traditional standard C header files—DLIB

Part 2. Reference information 219

IAR DLIB Library

220

IAR C/C++ Compiler
Reference Guide

C++ HEADER FILES

This section lists the C++ header files.

Embedded C++
The following table lists the Embedded C++ header files:

Header file Usage

complex Defining a class that supports complex arithmetic

exception Defining several functions that control exception handling

fstream Defining several /O stream classes that manipulate external files
iomanip Declaring several I/O stream manipulators that take an argument

ios Defining the class that serves as the base for many I/O streams classes
iosfwd Declaring several /O stream classes before they are necessarily defined
iostream Declaring the 1/O stream objects that manipulate the standard streams
istream Defining the class that performs extractions

new Declaring several functions that allocate and free storage

ostream Defining the class that performs insertions

sstream Defining several /O stream classes that manipulate string containers
stdexcept Defining several classes useful for reporting exceptions

streambuf Defining classes that buffer I/O stream operations

string Defining a class that implements a string container

strstream Defining several /O stream classes that manipulate in-memory character

sequences

Table 39: Embedded C++ header files

The following table lists additional C++ header files:

Header file

Usage

fstream.h
iomanip.h
iostream.h

new.h

Defining several /O stream classes that manipulate external files
Declaring several I/O stream manipulators that take an argument
Declaring the 1/O stream objects that manipulate the standard streams

Declaring several functions that allocate and free storage

Table 40: Additional Embedded C++ header files—DLIB

Library functions °

Extended Embedded C++ standard template library

The following table lists the Extended EC++ standard template library (STL) header

files:

Header file Description

algorithm Defines several common operations on sequences
deque A deque sequence container

functional Defines several function objects

hash_map A map associative container, based on a hash algorithm
hash_set A set associative container, based on a hash algorithm
iterator Defines common iterators, and operations on iterators
list A doubly-linked list sequence container

map A map associative container

memory Defines facilities for managing memory

numeric Performs generalized numeric operations on sequences
queue A queue sequence container

set A set associative container

slist A singly-linked list sequence container

stack A stack sequence container

utility Defines several utility components

vector A vector sequence container

Table 41: Standard template library header files

Using standard C libraries in C++

The C++ library works in conjunction with 15 of the header files from the standard C
library, sometimes with small alterations. The header files come in two forms—new and
traditional—for example, cassert and assert.h.

The following table shows the new header files:

Header file Usage

cassert Enforcing assertions when functions execute

cctype Classifying characters

cerrno Testing error codes reported by library functions
cfloat Testing floating-point type properties

cinttypes Defining formatters for all types defined in stdint.h

Table 42: New standard C header files—DLIB

Part 2. Reference information 221

IAR DLIB Library

Header file Usage

climits Testing integer type properties

clocale Adapting to different cultural conventions
cmath Computing common mathematical functions
csetjmp Executing non-local goto statements
csignal Controlling various exceptional conditions
cstdarg Accessing a varying number of arguments
cstdbool Adds support for the bool data type in C.
cstddef Defining several useful types and macros
cstdint Providing integer characteristics

cstdio Performing input and output

cstdlib Performing a variety of operations
cstring Manipulating several kinds of strings

ctime Converting between various time and date formats
cwchar Support for wide characters

cwctype Classifying wide characters

Table 42: New standard C header files—DLIB (Continued)

LIBRARY FUNCTIONS AS INTRINSIC FUNCTIONS

Certain C library functions will under some circumstances be handled as intrinsic
functions and will generate inline code instead of an ordinary function call, for example
memcpy, memset, and strcat.

ADDED C FUNCTIONALITY

The IAR DLIB Library includes some added C functionality, partly taken from the C99
standard.

The following include files provide these features:

® ctype.h

® inttypes.h
® math.h

® stdbool.h
® stdint.h

® stdio.h

® stdlib.h

[]

wchar.h

IAR C/C++ Compiler
222 Reference Guide

Library functions __4

® wctype.h

ctype.h
In ctype.h, the C99 function isblank is defined.

inttypes.h

This include file defines the formatters for all types defined in stdint.h to be used by
the functions printf, scanf, and all their variants.

math.h

In math.h all functions exist in a float variant and a 1ong double variant, suffixed
by £ and 1 respectively. For example, sinf and sinl.

The following C99 macro symbols are defined:

HUGE_VALF, HUGE_VALL, INFINITY, NAN, FP_INFINITE, FP_NAN, FP_NORMAL,
FP_SUBNORMAL, FP_ZERO, MATH_ERRNO, MATH_ERREXCEPT, math_errhandling.

The following C99 macro functions are defined:

fpclassify, signbit, isfinite, isinf, isnan, isnormal, isgreater, isless,

islessequal, islessgreater, isunordered.
The following C99 type definitions are added:

float_t, double_t.

stdbool.h

This include file makes the bool type available if the Allow IAR extensions (-e) option
is used.

stdint.h

This include file provides integer characteristics.

stdio.h
In stdio.h, the following C99 functions are defined:
vscanf, viscanf, vsscanf, vsnprintf, snprintf

The functions printf, scanf, and all their variants have added functionality from the
C99 standard. For reference information about these functions, see the library reference
available from the Help menu.

Part 2. Reference information 223

IAR DLIB Library

The following functions providing I/O functionality for libraries built without FILE
support are definded:

__write_array Corresponds to fwrite on stdout.
__ungetchar Corresponds to ungetc on stdout.

__gets Corresponds to fgets on stdin.

stdlib.h
In stdlib.h, the following C99 functions are defined:
_Exit, 1llabs, 11div, strtoll, strtoull, atoll, strtof, strtold.

The function strtod has added functionality from the C99 standard. For reference
information about this functions, see the library reference available from the Help
menu.

The __gsortbbl function is defined; it provides sorting using a bubble sort algorithm.
This is useful for applications that have a limited stack.

wchar.h

In wchar . h, the following C99 functions are defined:

viwscanf, vswscanf, vwscanf, wcstof, wecstolb.

wctype.h

In wetype . h, the C99 function iswblank is defined.

IAR C/C++ Compiler
224 Reference Guide

Segment reference

The compiler places code and data into named segments which are referred

to by the IAR XLINK Linker. Details about the segments are required for

programming assembler language modules, and are also useful when

interpreting the assembler language output from the compiler.

For more information about segments, see the chapter Placing code and data.

Summary of segments

The table below lists the segments that are available in the compiler:

Segment Description

CHECKSUM Holds the checksum generated by the linker.

CODE24 Holds __code24 program code.

CODE32 Holds __code32 program code.

CSTACK Holds the stack used by C or C++ programs.

CSTART Holds the startup code.

DATAL16_AC Holds __datalé6 located constant data.

DATA16_AN Holds __datalé6 located uninitialized data.

DATA16_C Holds __datalé constant data.

DATAl6_T Holds __datalé6 static and global initialized variables.

DATA16_ID Holds initial values for __datalé static and global variables in
DATAl6_T.

DATA16_N Holds __no_init __datalé6 static and global variables.

DATAl6_Z Holds zero-initialized __datalé6 static and global variables.

DATA24_AC Holds __data24 located constant data.

DATA24_AN Holds __data24 located uninitialized data.

DATA24_C Holds __data24 constant data.

DATA24_T Holds __data24 static and global initialized variables.

DATA24_ID Holds initial values for __data24 static and global variables in
DATA24_T.

DATA24_N Holds __no_init __data?24 static and global variables.

Table 43: Segment summary

Part 2. Reference information

225

Descriptions of segments

226

Segment Description

DATA24_7 Holds zero-initialized __data24 static and global variables.

DATA32_AC Holds __data32 located constant data.

DATA32_AN Holds __data32 located uninitialized data.

DATA32_C Holds __data32 constant data.

DATA32_T Holds __data32 static and global initialized variables.

DATA32_ID Holds initial values for __data32 static and global variables in
DATA32_T.

DATA32_N Holds __no_init __data32 static and global variables.

DATA32_7Z Holds zero-initialized __data32 static and global variables.

DIFUNCT Holds pointers to code, typically C++ constructors, that should be
executed by the system startup code before main is called.

HEAP Holds the heap data used by malloc and free.

INTVEC Contains all interrupt vectors except for non-maskable interrupts

ISTACK Holds the interrupt stack used by C or C++ programs.

NMIVEC Contains the reset and non-maskable interrupt vectors.

SBDATAl6_I Holds __sbdatalé6 static and global initialized variables.

SBDATA16_1ID

SBDATA16_N
SBDATA16_7Z
SBDATA24_T
SBDATA24_ID

SBDATA24_N

SBDATA24_7

Holds initial values for __sbdatalé static and global variables in
SBDATAl6_T.

Holds __no_init __sbdatalé static and global variables.
Holds zero-initialized __sbdatalé static and global variables.
Holds __sbdata24 static and global initialized variables.

Holds initial values for __sbdata24 static and global variables in
SBDATA24_T.

Holds __no_init __sbdata24 static and global variables.

Holds zero-initialized __sbdata24 static and global variables.

Table 43: Segment summary (Continued)

IAR C/C++ Compiler

Reference Guide

Descriptions of segments

This section gives reference information about each segment.

The segments are placed in memory by the segment placement linker directives -z and
-p, for sequential and packed placement, respectively. Some segments cannot use
packed placement, as their contents must be continuous.

CHECKSUM

Description
Segment memory type
Memory placement

Access type

CODE24

Description
Segment memory type
Memory placement

Access type

CODE32

Description
Segment memory type
Memory placement

Access type

Segment reference ___4

In each description, the segment memory type—CODE, CONST, or DATA—indicates
whether the segment should be placed in ROM or RAM memory; see Table 8, XLINK
segment memory types, page 28.

For information about the -z and the - P directives, see the AR Linker and Library Tools
Reference Guide.

For information about how to define segments in the linker command file, see
Customizing the linker command file, page 28.

For detailed information about the extended keywords mentioned here, see the chapter
Extended keywords.

Holds the checksum generated by the linker.

CONST
This segment can be placed anywhere in ROM memory.

Read-only

Holds __code24 program code.

CODE
This segment must be placed in the highest 8§ Mbytes of memory.

Read-only

Holds __code32 program code.

CODE
This segment can be placed anywhere in memory.

Read-only

Part 2. Reference information

227

Descriptions of segments

CSTACK

Description

Segment memory type
Memory placement
Access type

See also

CSTART

Description

Segment memory type
Memory placement

Access type

DATAI6_AC

Description

DATAI16_AN

Description

IAR C/C++ Compiler
228 Reference Guide

Holds the internal data stack, the user stack referred to by the Usp stack pointer.

DATA
This segment can be placed anywhere in RAM memory.
Read/write

The internal data stack, page 34.

Holds the startup code.

This segment cannot be placed in memory by using the -p directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker command file, the -z directive must be used.

CODE
This segment must be placed in the highest 8 Mbytes of memory.

Read-only

Holds __data16 located constant data.

Segments containing located data need no further configuration because they have
already been assigned addresses prior to linking. Located means being placed at an
absolute location using the @ operator or the #pragma location directive.

Holds __no_init __datalé located data.

Segments containing located data need no further configuration because they have
already been assigned addresses prior to linking. Located means being placed at an
absolute location using the @ operator or the #pragma location directive.

DATAI6_C

Description
Segment memory type
Memory placement

Access type

DATAI6_I

Description

Segment memory type
Memory placement

Access type

DATAI6_ID

Description

Segment memory type
Memory placement

Access type

Segment reference ___4

Holds __datal6 constant data.
CONST
This segment must be placed in the highest 32 Kbytes of ROM memory.

Read-only

Holds __datalé6 static and global initialized variables initialized by copying from the
segment DATA16_ID at application startup.

This segment cannot be placed in memory by using the -p directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker command file, the -z directive must be used.

DATA

This segment must be placed in the lowest 32 Kbytes of RAM memory.

Read/write

Holds initial values for __datal6 static and global variables in the DATA16_T segment.
These values are copied from DATA16_ID to DATAL6_T at application startup.

This segment cannot be placed in memory by using the -p directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker command file, the -z directive must be used.

CONST

This segment can be placed anywhere in ROM memory.

Read-only

Part 2. Reference information 229

Descriptions of segments

DATAI6_N

Description
Segment memory type
Memory placement

Access type

DATAI6 Z

Description

Segment memory type
Memory placement

Access type

DATA24_AC

Description

DATA24_AN

Description

IAR C/C++ Compiler
230 Reference Guide

Holds static and global __no_init __datalé6 variables.

DATA
This segment must be placed in the lowest 32 Kbytes of RAM memory.

Read/write

Holds zero-initialized __datal6 static and global variables.

This segment cannot be placed in memory by using the -p directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker command file, the -z directive must be used.

DATA
This segment must be placed in the lowest 32 Kbytes of RAM memory.

Read/write

Holds __data24 located constant data.

Segments containing located data need no further configuration because they have
already been assigned addresses prior to linking. Located means being placed at an
absolute location using the @ operator or the #pragma location directive.

Holds __no_init __data24 located data.

Segments containing located data need no further configuration because they have
already been assigned addresses prior to linking. Located means being placed at an
absolute location using the @ operator or the #pragma location directive.

DATA24_C

Description
Segment memory type
Memory placement

Access type

DATA24_1

Description

Segment memory type
Memory placement

Access type

DATA24_ID

Description

Segment memory type
Memory placement

Access type

Segment reference ___4

Holds __data24 constant data.
CONST
This segment must be placed in the lowest or highest § Mbytes of ROM memory.

Read-only

Holds __data24 static and global initialized variables initialized by copying from the
segment DATA24_ID at application startup.

This segment cannot be placed in memory by using the -p directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker command file, the -z directive must be used.

DATA

This segment must be placed in the lowest or highest 8 Mbytes of RAM memory.

Read/write

Holds initial values for __data24 static and global variables in the DATA24_T segment.
These values are copied from DATA24_ID to DATA24_T at application startup.

This segment cannot be placed in memory by using the -p directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker command file, the -z directive must be used.

CONST

This segment can be placed anywhere in ROM memory.

Read-only

Part 2. Reference information 231

Descriptions of segments

DATA24_N

Description
Segment memory type
Memory placement

Access type

DATA24 Z

Description

Segment memory type
Memory placement

Access type

DATA32_AC

Description

DATA32_AN

Description

IAR C/C++ Compiler
232 Reference Guide

Holds static and global __no_init __data24 variables.

DATA
This segment must be placed in the lowest or highest 8§ Mbytes of RAM memory.

Read/write

Holds zero-initialized __data24 static and global variables.

This segment cannot be placed in memory by using the -p directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker command file, the -z directive must be used.

DATA
This segment must be placed in the lowest or highest 8§ Mbytes of RAM memory.

Read/write

Holds __data32 located constant data.

Segments containing located data need no further configuration because they have
already been assigned addresses prior to linking. Located means being placed at an
absolute location using the @ operator or the #pragma location directive.

Holds __no_init __data32 located data.

Segments containing located data need no further configuration because they have
already been assigned addresses prior to linking. Located means being placed at an
absolute location using the @ operator or the #pragma location directive.

DATA32_C

Description
Segment memory type
Memory placement

Access type

DATA32_1

Description

Segment memory type
Memory placement

Access type

DATA32_ID

Description

Segment memory type
Memory placement

Access type

Segment reference ___4

Holds __data32 constant data.
CONST
This segment can be placed anywhere in ROM memory.

Read-only

Holds __data32 static and global initialized variables initialized by copying from the
segment DATA32_ID at application startup.

This segment cannot be placed in memory by using the -p directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker command file, the -z directive must be used.

DATA
This segment can be placed anywhere in RAM memory.

Read/write

Holds initial values for __data32 static and global variables in the DATA32_T segment.
These values are copied from DATA32_ID to DATA32_T at application startup.

This segment cannot be placed in memory by using the -p directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker command file, the -z directive must be used.

CONST

This segment can be placed anywhere in ROM memory.

Read-only

Part 2. Reference information 233

Descriptions of segments

DATA32_N

Description
Segment memory type
Memory placement

Access type

DATA32 Z

Description

Segment memory type
Memory placement

Access type

DIFUNCT

Description
Segment memory type
Memory placement

Access type

HEAP

Description

Segment memory type

IAR C/C++ Compiler
234 Reference Guide

Holds static and global __no_init __data32 variables.
DATA
This segment can be placed anywhere in RAM memory.

Read/write

Holds zero-initialized __data32 static and global variables.

This segment cannot be placed in memory by using the -p directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker command file, the -z directive must be used.

DATA

This segment can be placed anywhere in RAM memory.

Read/write

Holds the dynamic initialization vector used by C++.
CONST
This segment can be placed anywhere in memory.

Read-only

Holds the heap used for dynamically allocated data, in other words data allocated by
malloc and free, and in C++, new and delete.

DATA

Memory placement
Access type

See also

INTVEC

Description

Segment memory type
Memory placement

Access type

ISTACK

Description

Segment memory type
Memory placement
Access type

See also

NMIVEC

Description
Segment memory type
Memory placement

Access type

Segment reference ___4

This segment can be placed anywhere in RAM memory.
Read/write

The heap, page 35.

Holds the interrupt vector table generated by the use of the __interrupt extended
keyword in combination with the #pragma vector directive.

CONST
This segment can be placed anywhere in ROM memory.

Read-only

Holds the interrupt stack, referred to by the Tsp stack pointer. It is used for
non-maskable interrupts and interrupts 0—127.

DATA
This segment can be placed anywhere in RAM memory.
Read/write

The internal data stack, page 34.

Holds the non-maskable interrupt vector table and the reset vector.

CONST

This segment must be placed in the memory range 0xFFFFFFDC—0xXFFFFFFFF.

Read-only

Part 2. Reference information

235

Descriptions of segments

SBDATAI6_1

Description

Segment memory type

Memory placement

Access type

SBDATAI6_ID

Description

Segment memory type
Memory placement

Access type

SBDATAI6_N

Description
Segment memory type

Memory placement

Access type

IAR C/C++ Compiler
236 Reference Guide

Holds __sbdatalé static and global initialized variables initialized by copying from
the segment SBDATA16_1D at application startup. Also holds __sbdatal6 constant
data.

This segment cannot be placed in memory by using the -p directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker command file, the -z directive must be used.

DATA

This segment must be placed within the first 64 Kbytes of memory after the static base
reference point (SBREF).

Read/write

Holds initial values for __sbdatalé6 static and global variables in the SBDATA16_T
segment. These values are copied from SBDATA16_ID to SBDATAL6_TI at application
startup.

This segment cannot be placed in memory by using the -p directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker command file, the -z directive must be used.

CONST

This segment can be placed anywhere in ROM memory.

Read-only

Holds static and global __no_init __sbdatalé6 variables.

DATA

This segment must be placed within the first 64 Kbytes of memory after the static base
reference point (SBREF).

Read/write

SBDATAI6 Z

Description

Segment memory type

Memory placement

Access type

SBDATA24 |

Description

Segment memory type

Memory placement

Access type

SBDATA24_ID

Description

Segment memory type

Segment reference ___4

Holds zero-initialized __sbdatalé6 static and global variables.

This segment cannot be placed in memory by using the -p directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker command file, the -z directive must be used.

DATA

This segment must be placed within the first 64 Kbytes of memory after the static base
reference point (SBREF).

Read/write

Holds __sbdata24 static and global initialized variables initialized by copying from
the segment SBDATA24_ID at application startup. Also holds __sbdata24 constant
data.

This segment cannot be placed in memory by using the -p directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker command file, the -z directive must be used.

DATA

This segment must be placed within the first 16 Mbytes of memory after the static base
reference point (SBREF).

Read/write

Holds initial values for __sbdata24 static and global variables in the SBDATA24_T
segment. These values are copied from SBDATA24_ID to SBDATA24_T at application
startup.

This segment cannot be placed in memory by using the -p directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker command file, the -z directive must be used.

CONST

Part 2. Reference information 237

Descriptions of segments

Memory placement

Access type

SBDATA24_N

Description
Segment memory type

Memory placement

Access type

SBDATA24 Z

Description

Segment memory type

Memory placement

Access type

IAR C/C++ Compiler
238 Reference Guide

This segment can be placed anywhere in ROM memory.

Read-only

Holds static and global __no_init __sbdata24 variables.

DATA

This segment must be placed within the first 16 Mbytes of memory after the static base
reference point (SBREF).

Read/write

Holds zero-initialized __sbdata24 static and global variables.

This segment cannot be placed in memory by using the -p directive for packed
placement, because the contents must be continuous. Instead, when you define this
segment in the linker command file, the -z directive must be used.

DATA

This segment must be placed within the first 16 Mbytes of memory after the static base
reference point (SBREF).

Read/write

Implementation-defined
behavior

This chapter describes how the compiler handles the implementation-defined
areas of the C language.

ISO 9899:1990, the International Organization for Standardization standard -
Programming Languages - C (revision and redesign of ANSI X3.159-1989,
American National Standard), changed by the ISO Amendment |:1994,
Technical Corrigendum [, and Technical Corrigendum 2, contains an appendix
called Portability Issues. The ISO appendix lists areas of the C language that ISO
leaves open to each particular implementation.

Note: The compiler adheres to a freestanding implementation of the ISO
standard for the C programming language. This means that parts of a standard
library can be excluded in the implementation.

Descriptions of implementation-defined behavior

Translation

This section follows the same order as the ISO appendix. Each item covered includes
references to the ISO chapter and section (in parenthesis) that explains the
implementation-defined behavior.

Diagnostics (5.1.1.3)
Diagnostics are produced in the form:
filename, linenumber levell[tag]: message

where £ilename is the name of the source file in which the error was encountered,
linenumber is the line number at which the compiler detected the error, Ievel is the
level of seriousness of the message (remark, warning, error, or fatal error), tag is a
unique tag that identifies the message, and message is an explanatory message, possibly
several lines.

Part 2. Reference information

239

Descriptions of implementation-defined behavior

240

Environment

Identifiers

Characters

IAR C/C++ Compiler
Reference Guide

Arguments to main (5.1.2.2.2.1)

The function called at program startup is called main. No prototype was declared for
main, and the only definition supported for main is:

int main(void)

To change this behavior for the IAR DLIB runtime environment, see Customizing
system initialization, page 55.

Interactive devices (5.1.2.3)

The streams stdin and stdout are treated as interactive devices.

Significant characters without external linkage (6.1.2)

The number of significant initial characters in an identifier without external linkage is
200.

Significant characters with external linkage (6.1.2)

The number of significant initial characters in an identifier with external linkage is 200.

Case distinctions are significant (6.1.2)

Identifiers with external linkage are treated as case-sensitive.

Source and execution character sets (5.2.1)

The source character set is the set of legal characters that can appear in source files. The
default source character set is the standard ASCII character set. However, if you use the
command line option --enable_multibytes, the source character set will be the host
computer’s default character set.

The execution character set is the set of legal characters that can appear in the execution
environment. The default execution character set is the standard ASCII character set.
However, if you use the command line option --enable_multibytes, the execution
character set will be the host computer’s default character set. The IAR DLIB Library
needs a multibyte character scanner to support a multibyte execution character set.

Implementation-defined behavior ___¢

See Locale, page 60.

Bits per character in execution character set (5.2.4.2.1)

The number of bits in a character is represented by the manifest constant CHAR_BIT. The
standard include file 1imits.h defines CHAR_BIT as 8.

Mapping of characters (6.1.3.4)

The mapping of members of the source character set (in character and string literals) to
members of the execution character set is made in a one-to-one way. In other words, the
same representation value is used for each member in the character sets except for the
escape sequences listed in the ISO standard.

Unrepresented character constants (6.1.3.4)

The value of an integer character constant that contains a character or escape sequence
not represented in the basic execution character set or in the extended character set for
a wide character constant generates a diagnostic message, and will be truncated to fit the
execution character set.

Character constant with more than one character (6.1.3.4)

An integer character constant that contains more than one character will be treated as an
integer constant. The value will be calculated by treating the leftmost character as the
most significant character, and the rightmost character as the least significant character,
in an integer constant. A diagnostic message will be issued if the value cannot be
represented in an integer constant.

A wide character constant that contains more than one multibyte character generates a
diagnostic message.
Converting multibyte characters (6.1.3.4)

The only locale supported—that is, the only locale supplied with the IAR C/C++
Compiler—is the ‘C’ locale. If you use the command line option
--enable_multibytes, the JAR DLIB Library will support multibyte characters if
you add a locale with multibyte support or a multibyte character scanner to the library.

See Locale, page 60.

Range of 'plain’ char (6.2.1.1)

A ‘plain’ char has the same range as an unsigned char.

Part 2. Reference information 241

Descriptions of implementation-defined behavior

Integers

Range of integer values (6.1.2.5)

The representation of integer values are in the two's complement form. The most
significant bit holds the sign; 1 for negative, O for positive and zero.

See Basic data types, page 154, for information about the ranges for the different integer
types.
Demotion of integers (6.2.1.2)

Converting an integer to a shorter signed integer is made by truncation. If the value
cannot be represented when converting an unsigned integer to a signed integer of equal
length, the bit-pattern remains the same. In other words, a large enough value will be
converted into a negative value.

Signed bitwise operations (6.3)
Bitwise operations on signed integers work the same way as bitwise operations on
unsigned integers; in other words, the sign-bit will be treated as any other bit.

Sign of the remainder on integer division (6.3.5)

The sign of the remainder on integer division is the same as the sign of the dividend.

Negative valued signed right shifts (6.3.7)

The result of a right-shift of a negative-valued signed integral type preserves the sign-bit.
For example, shifting 0xFF00 down one step yields 0xFF80.

Floating point

Representation of floating-point values (6.1.2.5)

The representation and sets of the various floating-point numbers adheres to IEEE
854-1987. A typical floating-point number is built up of a sign-bit (s), a biased
exponent (e), and a mantissa (m).

See Floating-point types, page 156, for information about the ranges and sizes for the
different floating-point types: £loat and double.
Converting integer values to floating-point values (6.2.1.3)

When an integral number is cast to a floating-point value that cannot exactly represent
the value, the value is rounded (up or down) to the nearest suitable value.

IAR C/C++ Compiler
242 Reference Guide

Implementation-defined behavior ___¢

Demoting floating-point values (6.2.1.4)

When a floating-point value is converted to a floating-point value of narrower type that
cannot exactly represent the value, the value is rounded (up or down) to the nearest
suitable value.

Arrays and pointers

size_t (6.3.3.4, 7.1.1)

See size_t, page 158, for information about size_t.

Conversion from/to pointers (6.3.4)

See Casting, page 158, for information about casting of data pointers and function
pointers.

ptrdiff_t (6.3.6, 7.1.1)

See ptrdiff t, page 158, for information about the ptrdiff_t.

Registers

Honoring the register keyword (6.5.1)

User requests for register variables are not honored.

Structures, unions, enumerations, and bitfields

Improper access to a union (6.3.2.3)

If a union gets its value stored through a member and is then accessed using a member
of a different type, the result is solely dependent on the internal storage of the first
member.

Padding and alignment of structure members (6.5.2.1)

See the section Basic data types, page 154, for information about the alignment
requirement for data objects.

Sign of 'plain’ bitfields (6.5.2.1)

A 'plain’ int bitfield is treated as a signed int bitfield. All integer types are allowed as
bitfields.

Part 2. Reference information 243

Descriptions of implementation-defined behavior

244

Qualifiers

Declarators

Statements

Allocation order of bitfields within a unit (6.5.2.1)

Bitfields are allocated within an integer from least-significant to most-significant bit.

Can bitfields straddle a storage-unit boundary (6.5.2.1)

Bitfields cannot straddle a storage-unit boundary for the chosen bitfield integer type.

Integer type chosen to represent enumeration types (6.5.2.2)

The chosen integer type for a specific enumeration type depends on the enumeration
constants defined for the enumeration type. The chosen integer type is the smallest
possible.

Access to volatile objects (6.5.3)

Any reference to an object with volatile qualified type is an access.

Maximum numbers of declarators (6.5.4)

The number of declarators is not limited. The number is limited only by the available
memory.

Maximum number of case statements (6.6.4.2)

The number of case statements (case values) in a switch statement is not limited. The
number is limited only by the available memory.

Preprocessing directives

IAR C/C++ Compiler
Reference Guide

Character constants and conditional inclusion (6.8.1)

The character set used in the preprocessor directives is the same as the execution
character set. The preprocessor recognizes negative character values if a 'plain' character
is treated as a signed character.

Implementation-defined behavior ___¢

Including bracketed filenames (6.8.2)

For file specifications enclosed in angle brackets, the preprocessor does not search
directories of the parent files. A parent file is the file that contains the #include
directive. Instead, it begins by searching for the file in the directories specified on the
compiler command line.

Including quoted filenames (6.8.2)

For file specifications enclosed in quotes, the preprocessor directory search begins with
the directories of the parent file, then proceeds through the directories of any
grandparent files. Thus, searching begins relative to the directory containing the source
file currently being processed. If there is no grandparent file and the file is not found,
the search continues as if the filename was enclosed in angle brackets.

Character sequences (6.8.2)

Preprocessor directives use the source character set, except for escape sequences. Thus,
to specify a path for an include file, use only one backslash:

#include "mydirectory\myfile"
Within source code, two backslashes are necessary:

file = fopen("mydirectory\\myfile", "rt");

Recognized pragma directives (6.8.6)

In addition to the pragma directives described in the chapter Pragma directives, the
following directives are recognized and will have an indeterminate effect:
alignment

baseaddr

building runtime

can_instantiate

codeseg

cCspy_support

define_type_info

do_not_instantiate

early_dynamic_initialization

function

hdrstop

important_typedef

instantiate

keep_definition

Part 2. Reference information 245

Descriptions of implementation-defined behavior

memory
module_name
no_pch

once
__printf_args
public_equ
__scanf_args
section

STDC
system_include

warnings

Default __DATE__and __TIME__ (6.8.8)

The definitions for __TIME _ and __DATE__ are always available.

IAR DLIB Library functions

The information in this section is valid only if the runtime library configuration you have
chosen supports file descriptors. See the chapter The DLIB runtime environment for
more information about runtime library configurations.

NULL macro (7.1.6)

The NULL macro is defined to 0.

Diagnostic printed by the assert function (7.2)
The assert () function prints:
filename: linenr expression -- assertion failed

when the parameter evaluates to zero.

Domain errors (7.5.1)

NaN (Not a Number) will be returned by the mathematic functions on domain errors.

Underflow of floating-point values sets errno to ERANGE (7.5.1)

The mathematics functions set the integer expression errno to ERANGE (a macro in
errno.h) on underflow range errors.

IAR C/C++ Compiler
246 Reference Guide

Implementation-defined behavior ___¢

fmod() functionality (7.5.6.4)

If the second argument to £mod () is zero, the function returns NaN; errno is set to
EDOM.

signal() (7.7.1.1)

The signal part of the library is not supported.

Note: Low-level interface functions exist in the library, but will not perform anything.
Use the template source code to implement application-specific signal handling. See
Signal and raise, page 63.

Terminating newline character (7.9.2)

stdout stream functions recognize either newline or end of file (EOF) as the
terminating character for a line.

Blank lines (7.9.2)

Space characters written to the stdout stream immediately before a newline character
are preserved. There is no way to read the line through the stdin stream that was
written through the stdout stream.

Null characters appended to data written to binary streams (7.9.2)

No null characters are appended to data written to binary streams.

Files (7.9.3)

Whether a write operation on a text stream causes the associated file to be truncated
beyond that point, depends on the application-specific implementation of the low-level
file routines. See File input and output, page 59.

remove() (7.9.4.1)

The effect of a remove operation on an open file depends on the application-specific
implementation of the low-level file routines. See File input and output, page 59.

rename() (7.9.4.2)

The effect of renaming a file to an already existing filename depends on the
application-specific implementation of the low-level file routines. See File input and
output, page 59.

Part 2. Reference information 247

Descriptions of implementation-defined behavior

%p in printf() (7.9.6.1)

The argument to a $p conversion specifier, print pointer, to printf () is treated as
having the type void *. The value will be printed as a hexadecimal number, similar to
using the $x conversion specifier.

%p in scanf() (7.9.6.2)

The %p conversion specifier, scan pointer, to scanf () reads a hexadecimal number and
converts it into a value with the type void *.

Reading ranges in scanf() (7.9.6.2)

A - (dash) character is always treated as a range symbol.

File position errors (7.9.9.1, 7.9.9.4)

On file position errors, the functions fgetpos and £tell store EFPOS in errno.

Message generated by perror() (7.9.10.4)
The generated message is:

usersuppliedprefix: errormessage

Allocating zero bytes of memory (7.10.3)

The calloc (), malloc (), and realloc () functions accept zero as an argument.
Memory will be allocated, a valid pointer to that memory is returned, and the memory
block can be modified later by realloc.

Behavior of abort() (7.10.4.1)

The abort () function does not flush stream buffers, and it does not handle files,
because this is an unsupported feature.

Behavior of exit() (7.10.4.3)

The argument passed to the exit function will be the return value returned by the main
function to cstartup.

Environment (7.10.4.4)

The set of available environment names and the method for altering the environment list
is described in Environment interaction, page 62.

IAR C/C++ Compiler
248 Reference Guide

Implementation-defined behavior ___¢

system() (7.10.4.5)

How the command processor works depends on how you have implemented the system
function. See Environment interaction, page 62.

Message returned by strerror() (7.11.6.2)

The messages returned by strerror () depending on the argument is:

Argument Message

EZERO no error

EDOM domain error

ERANGE range error

EFPOS file positioning error
EILSEQ multi-byte encoding error
<0 || >99 unknown error

all others error nnn

Table 44: Message returned by strerror()—IAR DLIB library

The time zone (7.12.1)

The local time zone and daylight savings time implementation is described in Time, page
63.

clock() (7.12.2.1)

From where the system clock starts counting depends on how you have implemented the
clock function. See Time, page 63.

Part 2. Reference information 249

Descriptions of implementation-defined behavior

IAR C/C++ Compiler
250 Reference Guide

A

abort
implementation-defined behavior (DLIB) 248
System termination.c.oueuerenennen.. 54
absolute location
data, placingat (@), 104
language supportfor, 165
#pragmalocation............, 192

addressing. See memory types, data models,
and code models

algorithm (STL headerfile) 221
alignmentt 153
forcing stricter (#pragma data_alignment).......... 187
in structures (#pragmapack) 194
in structures, causing problems 101
of an object (_ ALIGNOF__) 165
of datatypes. . ..ot 153
restrictions for inline assembler. 74
alignment (pragma directive) 245
__ALIGNOF__(operator)coouvuenenan.. 165
--align_func (compiler option) 130
ANONYMOUS SLIUCIUIES & . oo v v vt vt e e e e e ee e e 101
anonymous symbols, creating. 167
application
building, overview of L. oL 4
startup and termination 52
architecture
of R32C 11
ARGFRAME (assembler directive) 84
arrays
designated initializersin 168
global, accessing 86
implementation-defined behavior. 243
incomplete atend of structs 167
non-lvalue i 170
of incomplete typesot 169
single-value initialization. 171
asm, __asm (language extension) 167

Index °

assembler code

callingfrom C 74
callingfrom C++. i 76
insertinginline., 73
assembler directives
using in inline assemblercode 74
assembler instructions
insertinginline. L ..., 73
used for calling functions. 85
assembler labels, making public (--public_equ) 150
assembler language interface 71
calling convention. See assembler code
assembler list file, generating 140
assembleroutputfile............ 76
assembler,inline. 166
ASSCITS . ¢ ettt e 64
implementation-defined behavior of, (DLIB). 246
including in application 214
assert.h (DLIB headerfile) 219
atoll, C99 extensionouuiiiiinnnnnn... 224
atOMIC OPETALIONS . . o v vt et et e e e e eens 24
CMOMILOT .« vttt et e 180
attributes
ODJCt . vt 176
14 01PN 173
autovariables L e 17-18
atfunctionentrancecooiininan... 79
programming hints for efficientcode. 111
using in inline assemblercode.................... 74
Barr,Michael i L XXV
baseaddr (pragma directive) 245
__BASE_FILE__ (predefined symbol)............... 212
basic type names, using in preprocessor expressions
(--migration_preprocessor_extensions). 142
binary streams (DLIB) 247
bitnegation.ouiui it 113

251

252

bitfields

data representationof. L L L. 155
hints. 99
implementation-defined behaviorof 243
non-standard typesin............, 165
specifying order of members (#pragma bitfields). 186
bitfields (pragma directive). 186
bold style, inthis guide. XX Vil
bool (datatype).oouenenineniinn.. 154
adding support forin DLIB 219, 222
making availableinCcode 223
__break (intrinsic function). 201
BRK (assembler instruction). 201
bubble sort function, defined in stdlib.h 224
building_runtime (pragma directive). 245
_ BUILD_NUMBER___ (predefined symbol) 212
byte order, identifying (__LITTLE_ENDIAN_)....... 213

C

CandC++1linkaget 78
C/C++ calling convention. See calling convention
Cheaderfiles, 219
call frame information 88

inassembler listfile............................ 76

in assembler list file (-1A) 140
call stack. . ..o vt 88
callee-save registers, stored on stack. 18
calling convention

C++, requiring C linkage 76

incompiler. 77

See also assembler code
calloc (library function)covivnn.. 19

See also heap

implementation-defined behavior of (DLIB) 248
can_instantiate (pragma directive) 245
cassert (DLIB headerfile). 221
cast operators

inExtended EC++........ it 92

IAR C/C++ Compiler
Reference Guide

missing from Embedded C++ 92
casting, pointers and integers 158
cctype (DLIB header file). 221
cerrno (DLIB headerfile) 221
cexit (system terminationcode) 52

placementinsegment. 37
CFI (assembler directive)couuin... 88
cfi.m53 (CFI header example file) 89
cfloat (DLIB header file). 221
char (datatype).ouvuiininn i 154

changing default representation (--char_is_signed) . . . 131

signed and unsigned. L L 155
characters, implementation-defined behaviorof 240
character-based /O. L 56

overriding in runtime library 49
--char_is_signed (compiler option). 131
CHECKSUM (segment)ovvenunenenenen .. 227
cinttypes (DLIB header file) 221
ClaSSeS. . vt e 93
climits (DLIB header file). 222
clocale (DLIB headerfile) 222
clock (DLIB library function),
implementation-defined behaviorof 249
ClocK.C .« v 63
__close (library function)t 59
cmath (DLIB headerfile) 222
code

executionof L 6

interruption of execution 23

verifying linked result 38
codemodels 21

calling functionsin. 85

configuration i 6

controlling default placement of constants. 21

identifying (_ CODE_MODEL_) 212

specifying on command line (--code_model). 131
code motion (compiler transformation). 110

disabling (--no_code_motion) 143
code pointers. See function pointers
code segments, used for placement. 37

codeseg (pragma directive) 245
_ CODE_MODEL__ (predefined symbol). 212
--code_model (compiler option) 131
__code24 (extended keyword), 177
CODE24 (Segment). vvue e, 227
__code32 (extended keyword) 178
__code32 (function pointer)c.coeuvnn... 157
CODE32 (Segment).vvveeeeeeeenenen. 227

command line options
See also compiler options

part of compiler invocation syntax. 119
PASSING. . ottt 119
typographic convention XXVi
command prompt icon, in this guide. XX Vil
comments
after preprocessor directives. 171
C++style,usinginCcode. 166
common block (call frame information) 89
common subexpr elimination (compiler transformation) . 109
disabling (--n0_CS€)ot vt 143
compilation date
exacttimeof (_ TIME_)...................... 214
identifying (_ DATE_) 212
compiler
environment variables 120
INVOCAtION SYNTAX . . . vt vttt e e e 119
output from 121
compiler listing, generating (-1). 140
compiler object file
including debug information in (--debug, -r) 132
compiler optimization levels. 107
compiler OptionSo vt 125
passing tocompiler 119
reading from file (-f) 139
specifying parameterso.onaL.. 127
SUMMATY &« o v v ev ettt e e e e e e et e e e e 128
SYNEAX Of . o\ v ettt 125
PP 75
--warnings_affect_exit_code 122

Index °

compiler platform, identifying 213
compiler subversion number. 214
compiler transformations 106
compiler version number 214
compiling

from the command line 4

SYMEAX. « v e v e ettt e e e e 119
complex numbers, supported in Embedded C++. 92
complex (library header file). 220
compound literals L L . 167
computer style, typographic convention XXVi
configuration

basic project settingst 5

_dow_level init oL 55
configuration symbols, in library configuration files. 51
consistency, module i, 67
const

declaring objects i 162

non-toplevel L., 170
constants

default placement inmemory. 21

overriding default placementof 14

placing in named segment 187
constseg (pragma directive)ii.... 187
const_cast (Cast Operator)c..eueeuenennnn.. 92
contents, of thisguide. XXiV
conventions, used inthis guide XXvi
Copyright noticeottt ii
__core (runtime model attribute). 68
__cplusplus (predefined symbol) 212
cross call (compiler transformation) 111
csetjmp (DLIB headerfile). 222
csignal (DLIB headerfile) 222
cspy_support (pragma directive). 245
CSTACK (segment)ouvuvinunenenenen... 228

example 34

See also stack
CSTART (segment).ovvvnienininnenan.. 37,228

253

254

cstartup (system startupcode). 37

CUSTOMIZING .« . v ettt e 55
overriding in runtime library 49
CStartUP.SS3. o e 52
cstdarg (DLIB headerfile) 222
cstdbool (DLIB headerfile) 222
cstddef (DLIB headerfile) 222
cstdio (DLIB headerfile) 222
cstdlib (DLIB headerfile). 222
cstring (DLIB header file). 222
ctime (DLIB headerfile). 222
ctype.h (library header file). 219
added C functionality. 223
cwctype.h (library headerfile) 222
C++
See also Embedded C++ and Extended Embedded C++
absolute location 105
callingconvention 76
dynamic initializationin 38
features excluded from EC++ 91
headerfiles. 220
language extensions.oiuiiiiinn... 96
special function types.c. ... 26
static member variables 105
SUPPOIt fOr . . o oo 3
C++ names, in assemblercode 77
C++ objects, placing in memory type 17
C++terminology. vv i XXVi
C++-stylecomments.covneninnnnenenen... 166
C-SPY
low-levelinterface 65
STL container supportc.oeunennon.. 95
C_INCLUDE (environment variable) 120
C99 standard, added functionality from 222
-D (compileroption)., 131
--data_model (compiler option) 132

IAR C/C++ Compiler
Reference Guide

data
alignmentof. 153
different ways of storing 11
located, declaringextern 105
placing........ i 103, 188, 225
at absolute location. 104
representation of oo, 153
SEOTAZE « + v v v e et e et e e e 11
verifying linked result 38
data block (call frame information). 89
data memory attributes, using 14
datamodels. 12
configuration 6
Far. 13
Huge o 13
identifying (__ DATA_MODEL_) 212
Near.o 13
data pointersuti e 158
data sSegmentst 31
data typesot e 154
avoiding signed oo 99
floatingpoint 156
INCH 162
INEEEEIS « .t ettt et e e e 154
dataseg (pragma directive)c.a.... 188
data_alignment (pragma directive) 187
__DATA_MODEL__ (predefined symbol)............ 212
__datal6 (extended keyword) 178
datal6 (Memory type). .« o oo v vttt 14
DATA16_AC (Segment)covueenenennnnn.. 228
DATA16_AN (segment)oovenvenenennnnn.. 228
DATA16_C (segment).oovinenienenannnnn.. 229
DATA16_I(segment)ccvininenenannnnnn. 229
DATA16_ID (segment)covuenvenenennnnn.. 229
DATA16_N (segment).vteneenenennnnn.. 230
DATA16_Z (segment).o.uunenienenennnnn.. 230
__data24 (extended keyword) 179
data24 (Memory type). . . .« ov vttt e 14
DATA24 _AC (Segment)coeuvuenenennnnnn. 230

DATA24 AN (Segment)c.vuenennnnunenen... 230
DATA24_C(segment).covuvnennunnnenenen... 231
DATA24 T(segment)cuvuenennnnenenen... 231
DATA24 ID (segment)covuvenennnnenenen... 231
DATA24 N (segment).c.vuvrennunnnenenen... 232
DATA24 Z (segment).c.ouvuvununenenen... 232
__data32 (extended keyword) 179
__data32 (datapointer)..............coeuiueninan.. 158
data32 (Memory type). - « v v o v ettt 14
DATA32 _AC (Segment)cuvuenennnnenenen... 232
DATA32 AN (Segment)covenennnnenenen... 232
DATA32 _C(segment).vovenennunnnnenen... 233
DATA32 I(segment)cuvuenennnnunenen... 233
DATA32 ID (Segment) ovvvvenenenneenenn.. 233
DATA32 N(segment).c.ovuvrennunnnenenen... 234
DATA32 Z (segment).c.oueuvununenenen... 234
_ DATE__ (predefined symbol).................... 212
date (library function), configuring support for.......... 63
DCR (register)

getting the value of (__get DCR_register). 202

writing a value to (__set_ DCR_register) 206
DCT (register)

getting the value of (__get DCT_register). 202

writing a value to (__set_ DCT _register) 206
DC32 (assembler directive). 74
DDA (register)

getting the value of (__get. DDA_register) 202

writing a value to (__set_ DDA_register) 206
DDR (register)

getting the value of (__get. DDR_register) 202

writing a value to (__set_DDR_register) 206
--debug (compileroption), 132
debug information, including in object file 132, 150
declarations

CINPLY « o v vttt et e e e e 171

inforloops. 166

Kernighan & Ritchie 112

of functions i 78
declarations and statements, mixing 166

Index °

declarators, implementation-defined behavior 244
define_type_info (pragma directive). 245
delay code, inserting, 201
__delay_cycles (intrinsic function) 201
delete (keyword) 19
--dependencies (compiler option) 133
deque (STL headerfile) 221
destructors and interrupts, using 95
diagnostic MeSSAZES . . .« oo e 122
classifying as compilation errors 134
classifying as compilation remarks 134
classifying as compiler warnings 135
disabling compiler warnings 146
disabling wrapping of in compiler................ 146
enabling compiler remarks. 150
listing all used by compiler 135
suppressing incompiler. 134
--diagnostics_tables (compiler option) 135
diag_default (pragma directive) 188
--diag_error (compileroption) 134
diag_error (pragma directive) 189
--diag_remark (compiler option). 134
diag_remark (pragma directive) 189
--diag_suppress (compiler option) 134
diag_suppress (pragma directive) 189
--diag_warning (compiler option). 135
diag_warning (pragma directive) 190
DIFUNCT (segment)coeueuenenennn... 38, 234
directives
function for staticoverlay 84
Pragma.oviiiti it 9, 185
directory, specifying as parameter. 126
__disable_interrupt (intrinsic function). 201
--discard_unused_publics (compiler option). 136
disclaimer.oiiii e ii
DLIB. ..ottt e e 7,218
See also runtime library
configuring. . ..ot 136
reference information. See the online help system. . . .217

255

256

--dlib_config (compiler option). 136
Dlib_defaults.h (library configuration file) 51
dir32clibnameh oL 51
DMD (register)
getting the value of (__get DMD_register) 203
writing a value to (__set_ DMD_register). 206
document CONVeNtions.covuvenenennnnenen.. XXVi
documentation, library 217
domain errors, implementation-defined behavior 246
--double (compiler option) 137
double (datatype).o, 156
avoidingo 99
configuring size of floating-point type............... 6
__double_size (runtime model attribute). 69
double_t, C99 extensioncovviiiinnnn... 223
do_not_instantiate (pragma directive). 245
DSA (register)
getting the value of (__get DSA_register). 203
writing a value to (__set_DSA_register) 207
DSR (register)
getting the value of (__get DSR_register).......... 203
writing a value to (__set_ DSR_register) 207
dynamic initialization L L. 52
N CH o e 38
dynamic memoryiiiiiii.. 19
-e (compileroption) 137
early_initialization (pragma directive) 245
--ec++ (compiler option). 137
EC++headerfiles............ 220
edition, of thisguide i, ii
--eec++ (compileroption). 138
Embedded C++. ... 91
differences from C++. i 91
enabling. 137
function linkage. 78
language extensionsttt 91

IAR C/C++ Compiler
Reference Guide

OVEIVIEW . ottt ettt et e e 91

Embedded C++ Technical Committee XXVi
embedded systems, IAR special supportfor............. 8
__embedded_cplusplus (predefined symbol) 212
__enable_interrupt (intrinsic function) 201
--enable_multibytes (compiler option) 138
entry label, program i 52
enumerations, implementation-defined behavior. 243
enums
datarepresentation.i ... 154
forward declarationsof 169
environment
implementation-defined behavior. 240
TUNLIME. . . oottt ettt 41
environment variables
C_INCLUDE.ttt 120
QCCR32C ..ot 120
EQU (assembler directive) 150
errno.h (library header file). 219
CITOT MESSAZES « - ¢ v e e et e e e e eeeeene 123
classifying for compiler........................ 134
eITOr TetUrN COdeS . v v ettt e e e e et 122
--error_limit (compiler option) 138
exception handling, missing from Embedded C++. 91
EXCEPLION VECLOTS . o vttt et ee e eaene 38
exception (library header file). 220
__exchange_byte (intrinsic function) 201
__exchange_long (intrinsic function) 202
__exchange_word (intrinsic function). 202
_Exit (library function) 54
exit (library function), 54
implementation-defined behavior. 248
_exit (library function) 54
__exit(library function) 54
export keyword, missing from Extended EC++ 94
extended command line file
forcompiler......... 139
Extended Embedded C++. o... 92
enabling.......... ... i 138

standard template library (STL). 221
extended keywords L il 173
enabling (-€).ot 137
OVEIVIEWttt 8
SUMMATY « « v v e v e et ettt e e e et e e e eene 177
3 1172 . GO 15
object attributes. 176
type attributes on data objects. 174
type attributes on function pointers. 175
type attributes on functions. 175
__code32 (function pointer). 157
__data32 (datapointer)coeon... 158
extern "C"linkage. 94
-f (compiler option). 139
Far (codemodel). 22
__fast_interrupt (extended keyword). 179
fatal error messages 124
FB (register), considerations. 79
fgetpos (library function), implementation-defined
behavior 248
__FILE__ (predefined symbol)..................... 212
file dependencies, tracking 133
file paths, specifying for #include files 140
filenames, specifying as parameter.................. 126
FLG (re@ister)o ov ettt e 201
float (datatype).covieni i 156
floating-point constants
hexadecimal notation. 168
hints. 100
floating-point expressions,
using in preprocessor extensions. 142
floating-point format. 156
CaStiNg tO INLEEET .« . v\ v vt et e e e 101
hints. 100
implementation-defined behavior. 242
special Cases. i i 157

Index °

32-DItS oot 156

64-DItS ..ot 157
floating-point implementation. 64
floating-pointmodels 64

SEHNG .« oo vttt 139
floating-point operations, hardware supportfor 64
floating-point type, configuring size of double 6
float.h (library header file) 219
float_t, C99 extension.c.oviriinunnnnn. 223
fmod (library function),
implementation-defined behavior 247
for loops, declarationsin. 166
formats

floating-point values 156

standard IEEE (floating point) 156
fpclassify, C99 extension, 223
FPU, IEEE-754 supportc.couuiuiununenen.. 64
fpu_compliant.xcl (linker command file) 65
FP_INFINITE, C99 extensiono.... 223
--fp_model (compileroption) 139
FP_NAN, C99 extension.uuvnneeunnnnn. 223
FP_NORMAL, C99 extensioncoouuu.. 223
FP_SUBNORMAL, C99 extension 223
FP_ZERO, C99 eXtension.uouvueeeeunnnnn. 223
fragmentation, of heapmemory 19
frame pointer register, considerations 79
free (library function). See alsoheap 19
fstream (library header file) 220
fstream.h (library headerfile) 220
ftell (library function), implementation-defined behavior . 248
Full DLIB (library configuration) 43
__func__ (predefined symbol) 172,213
FUNCALL (assembler directive) 84
_ FUNCTION__ (predefined symbol)........... 172,213
function calls

calling convention 77

Farcodemodel 85

Hugecodemodel............. 86

stackimage after 81
function declarations, Kernighan & Ritchie 112

257

258

function directives for staticoverlay 84
function entry point, forcing alignmentof 82,130
function inlining (compiler transformation) 109
disabling (--no_inline) 144
function pointers.t 157
function prototypes.ot 112
enforcing 151
function return addresses 83
function type information, omitting in object output. 148
FUNCTION (assembler directive) 84
function (pragma directive). 245
functional (STL headerfile) 221
functions.t 21
calling in different code models. 85
C++ and special functiontypes 26
declared without attribute, placement. 37
declaring 78,112
inlining. o oL 109, 111, 166, 191
INEETTUPL . o oo et e et 23-24
INMEANSIC .« v v et 71,112
MONIEOT « e vttt e ettt e e 24
omitting typeinfo 148
PArAMELerSottt e 79
placinginmemory........................ 103, 105
recursive
avoiding 112
storing dataonstack 18-19
reentrancy (DLIB) oo o... 218
related eXtensions. 21
return values from il 82
special function types.c. .. 22
verifying linked result 38
getenv (library function), configuring support for. 62
getzone (library function), configuring support for. 63
GOLZOME.C. v o v et e et e e e et 63
__get_DCR _register (intrinsic function). 202

IAR C/C++ Compiler
Reference Guide

__get DCT_register (intrinsic function).............. 202

__get_ DDA _register (intrinsic function). 202
__get DDR_register (intrinsic function). 202
__get DMD_register (intrinsic function) 203
__get DSA_register (intrinsic function).............. 203
__get_ DSR_register (intrinsic function) 203
__get_interrupt_level (intrinsic function) 203
__get_interrupt_state (intrinsic function) 203
__get_interrupt_table (intrinsic function) 204
__get_VCT_register (intrinsic function).............. 204
global arrays, accessingc.ciininiiiaan 86
global variables
ACCESSING . o vttt et 86
initialization. 33
guidelines, reading xxiii
Harbison, Samuel P. XXVi
hardware support in compiler....................... 42
hash_map (STL headerfile) 221
hash_set (STL headerfile) 221
hdrstop (pragma directive), 245
header files
C o 219
G 220
ECH . 220
libraryoui 217
special function registers, 114
STL e 221
Dlib_defaults.h. i 51
dir32clibnameh. o o 51
intrinsics.h L L 199
stdbool.h 154,219
stddef.h ..o 155
--header_context (compiler option). 140
heap
dynamic Mmemoryovvieee e 19
segmentfor 35

storingdata 12
heap segment

HEAP (segment), 234

placing. 36
heap size

andstandard /O. oL, 36

changingdefault. 36
HEAP (segment).ttt 36
hints, optimization 111
Huge (codemodel) 22

functioncalls i 86
HUGE_VALF, C99 extension.ouuuuno... 223
HUGE_VALL, C99 extension.c.oo..... 223
-I (compileroption).c. i 140
IAR Command Line Build Utility. 51
IAR Systems Technical Support.................... 124
iarbuild.exe (utility)ot 51
__TAR_SYSTEMS_ICC__ (predefined symbol) 213
__ICCR32C__ (predefined symbol) 213
icons,inthisguide, XXVii
identifiers, implementation-defined behavior 240
IEEE format, floating-point values 156
__illegal_opcode (intrinsic function) 204
implementation-defined behavior 239
important_typedef (pragma directive). 245
include files

including before source files 149

SPeCifyingvii 120
include_alias (pragma directive) 190
INFINILY .« 157
INFINITY, C99 extension.c..coueunuen... 223
inheritance, in Embedded C++ 91
initialization

Aynamic.ovt i e 52

single-value i 171
initialized datasegments.coeen... 33

Index °

initializers, StatiC.o oo 170
inlineassembler 73, 166
avoiding 112
See also assembler language interface
inline functions L i 166
incompiler. L i 109
inline (pragma directive). L. 191
instantiate (pragma directive) 245
INT (assembler instruction) 208
INTB (register)
getting the value of (__get_interrupt_table)......... 204
writing a value to (__set_interrupt_table) 207
integer characteristics, adding. 223
INEEEETS « « v v e vttt e e e e e e e 154
CaSHING . o vttt e 158
implementation-defined behavior. 242
11017070 o N 158
ptrdiff t.... 158
SIZE .ottt 158
UINEPEE b .ot 158
integral promotionc.c.iuiininiaa. 113
INternal eITor. . ..o o v ettt e 124
__interrupt (extended keyword) 23,180
using in pragma directives 198
interrupt functions. i 23
placement in MemMOry.ouvueninenann.n. 38
interrupt state, TeStOringovnvnenenennnnn.. 207
interrupt vector
specifying with pragma directive 198
interrupt vectortable. i 23
in linker command file.......................... 38
INTVECsegmentc.ouiuiiienenen.. 235
NMIVECsegment.ovuiinenenan... 235
interrupts
disabling i 180
during function execution 24
PrOCESSOL StALE .« . v v e ettt et 18
using with EC++ destructors 95
__interrupt_on_overflow (intrinsic function) 204

259

260

INTO (assembler instruction) 204

INEPLr_t (INtEEr tyPe) « o v oo et 158
__intrinsic (extended keyword). 180
intrinsic functions 112
OVEIVIEW o\ vttt ettt e ettt ens 71
SUMMATY « « v v e v e et ettt e e e et e e e eene 199
_get interrupt_State 203
intrinsics.h (headerfile) 199
inttypes.h (library header file). 219
inttypes.h, added C functionality 223
INTVEC (segment).c.covninennnnnnenen.. 38, 235
INVOCAtION SYNEAX . vt ve st e 119
iomanip (library header file) 220
iomanip.h (library header file) 220
ios (library header file) 220
iosfwd (library headerfile) 220
iostream (library header file). 220
iostream.h (library header file) 220
isblank, C99 extensionc.vviiiinnnn... 223
isfinite, C99 extensionc.uviiininnnn... 223
isgreater, CO9 extensionooion... 223
isinf, C99 extensionuuiiiiuianinann. 223
islessequal, C99 extension 223
islessgreater, C99 extension 223
isless, C99 exXtension.ov vt iiie i 223
isnan, C99 extension.t 223
isnormal, C99 extensionouuunin..n. 223
ISO/ANSI C
compiler eXtensionst 163
C++ features excluded from EC++ 91
specifying strict usageviiiiennan.. 151
i50646.h (library header file). 219
ISP (stack pointer)c.iiiiiin... 235
ISTACK (segment)cvvnenee .. 235
See also stack
istream (library header file). 220
isunordered, C99 extension. 223
iswblank, C99 extension. 224
italic style, inthisguide XXVi-XXVii

IAR C/C++ Compiler
Reference Guide

iterator (STL headerfile) 221
1/0 debugging, supportfor 65
1/0 module, overriding in runtime library.............. 49
keep_definition (pragma directive) 245
Kernighan & Ritchie function declarations. 112
disallowing. oo et 151
Kernighan, Brian W............................. XXVi
keywords
extended. 8
-1 (compiler option). i 75, 140
labels. . ..o 171
assembler, making public. 150
_ PrOgram_Start.c.venen e 52
Labrosse,JeanJ......... o . XXVi
Lajoie, Joséeot XXVi
language extensions
descriptions 163
Embedded C++ i 91
enabling (compiler option). 137
enabling (pragma directive) 191
language overviewl 3
language (pragma directive) 191
LDCTX (assembler instruction) 204
libraries
building 43
definitionof L L 4
TUNGIMC. « o e vttt e et e e e e e e e 44
standard template library, 221
library configuration files
Dlib_defaults.h. 51
dir32clibnameh. o 51
modifying 51
runtime libraryo o 43

Specifyingo 136
library documentation. on... 217
library features, missing from Embedded C++.......... 92
library functions i 217

reference information. XXV

summary, DLIB.......... 219
library header files 217
library modules

CIEALING « v v v vttt e ettt 141

overriding. 49
library objectfiles. 217
library options, Settingc.cueuiuiunnnenonn 8
library project template. 7,51
--library_module (compiler option) 141
lightbulb icon, in this guide. XXVii
limits.h (library header file) 219
__LINE__ (predefined symbol) 213
linkage, Cand CH++.o 78
linker commandfiles. 28

CUSTOMIZING .« . v ve ettt 28

fpu_compliant.xcl L 65

using the -Pcommandin........................ 30

using the -Zcommandin........................ 30
linkermapfile............ 39
linker segment. See segment
linking

from the commandline 5

required inpUL. 4
Lippman, Stanley B. XXVi
list (STL headerfile). 221
listing, generatingonii 140
literals, compound. 167
literature, recommended, XXV
__LITTLE_ENDIAN__ (predefined symbol).......... 213
llabs, C99 exXtensionoiiueiineennnnn. 224
Ildiv, C99 extensionuuiiiuruninnnn. 224
__load_context (intrinsic function) 204

local variables, See auto variables

Index °

locale SUPPOIt . . . oottt 60
adding 61
changingatruntime 61
TEMOVING . . v v v e ittt et ettt et 61

locale.h (library header file) 219

located datasegmentscovueninenann. 37

located data, declaringextern 105

location (pragma directive) 104, 192

LOCFRAME (assembler directive). 84

long double (datatype)..........coovuiineninan .. 156

long float (data type), synonym for double 170

long long (data type), avoiding 99

loop overhead, reducing 146

loop unrolling (compiler transformation) 109
disabling i 146

loop-invariant eXpressions.cueieninon ... 110

low-level processor operations 163, 199
ACCESSING .« o v vttt 71

dow level imit. ... i 53
CUSTOMUZING .« . v\ttt e ettt e 55

__low_level_init (intrinsic function). 205

low_level dnit.c. ... i 52

__Iseek (library function) 59

macros
variadic 215

main (function), definition 240

malloc (library function)

Seealsoheap i 19
implementation-defined behavior. 248

Mann,Bernhard oL XXVi

map (STL header file). 221

map, linker 39

math.h (library header file) 219

math.h, added C functionality...................... 223

MATH_ERREXCEPT, C99 extension 223

math_errhandling, C99 extension 223

261

262

MATH_ERRNO, C99 extension. 223

memory
ACCESSINE .« o v vt e et 6, 13, 86
using datalémethod 87
using data24 method 87
using data32method 87
using sbdatalé method 88
using sbdata24 method 88
allocating inCH++. i 19
dynamic. ...t 19
heap 19
non-initialized L L., 115
RAM,Savingoviini it 112
releasing in C++.o 19
Stack. 17
SAVINE « v v ettt e e e 112
used by global or static variables 11
memory layout, R32C. L .. 11
memory management, type-safe 91
memory placement
using pragma directive. 15
using type definitions. 16, 175
memory segment. See segment
MEMOTY EYPES « « e v ettt et e et e e e e e e e eeeaen 13
G 17
datald 14
data24 ... 14
datad2 ... 14
placing variablesin 17
sbdatal6. 14
sbdata2d. 14
specifying 14
SEIUCTUIES &« + v v vt e et et e e e e e e e e e e 16
SUMMATY © e v vttt et et et et e e e e e 15
memory (pragma directive). 246
memory (STL header file). 221
message (pragma directive). 192
messages
disabling i 151

IAR C/C++ Compiler
Reference Guide

forcing 192
--mfc (compileroption). 141
--migration_preprocessor_extensions (compiler option). . 142
--misrac (compileroption) 129
--misrac_verbose (compiler option) 129
--misrac1998 (compiler option) 129
--misrac2004 (compiler option) 129
module consistency. 67

rtmodel. 196
module map, in linkermapfile................... ... 39
module name, specifying 142
module summary, in linker map file 39
--module_name (compiler option) 142
module_name (pragma directive) 246
__monitor (extended keyword) 114, 180
monitor functions, 24, 180
multibyte character support. 138
multiple inheritance, missing from Embedded C++ 91
multi-file compilation. 107
mutable attribute, in Extended EC++ 92,95
names block (call frame information)................. 89
namespace support

inExtended EC++.......................... 92,95

missing from Embedded C++ 92
Naming CONVENtIONSvvvr v v ennnnenennn.. XXVii
NAN, C99 extension.coueuninnennennen... 223
NDEBUG (preprocessor symbol) 214
new (keyword) 19
new (library headerfile) 220
new.h (library header file). 220
NMIVEC (segment)vvvienenenennn... 38,235
non-initialized variables, hints for. 115
non-scalar parameters, avoiding 112
NOP (assembler instruction).oouvun... 205
__noreturn (extended keyword) 181
Normal DLIB (library configuration) 43

Notanumber (NaN)....................... 64-65, 157
--no_code_motion (compiler option) 143
--no_cse (compileroption) 143
__no_init (extended keyword) 115, 181
--no_inline (compileroption) 144
__no_operation (intrinsic function). 205
--no_path_in_file_macros (compiler option). 144
no_pch (pragma directive) 246
--no_typedefs_in_diagnostics (compiler option). 145
--no_unroll (compileroption) 146
--no_warnings (compiler option) 146
--no_wrap_diagnostics (compiler option) 146
NULL (macro), implementation-defined behavior 246
numeric (STL header file). 221
-O (compileroption)coviniinnninen... 147
-0 (compileroption) 147-148
object attributes.vt 176
object filename
specifying in compiler 147-148
object module name, specifying 142
object_attribute (pragma directive) 115,193
--omit_types (compiler option) 148
once (pragma directive)ovuiiiiin.. 246
--only_stdout (compileroption) 148
__open (library function) 59
operators
See also @ (operator)
optimization
code motion, disabling. 143
common sub-expression elimination, disabling 143
configurationu i 7
disabling 109
function inlining, disabling (--no_inline)........... 144
hints. 111
loop unrolling, disabling 146
specifying (-O). . ..o it 147

Index °

SUMMATY « o v oov et et et et e e e et e e ee i eenn 107
techniques 109
type-based alias analysis (compiler option) 110
disabling i 145
using inline assemblercode 74
using pragma directive. oL 193
optimizationlevels 107
optimize (pragma directive) 193
OpLiON PArAMELerS . . .« vt v vt e e et e ee e e 125
options, compiler. See compiler options
Oram, Andyt XXV
ostream (library header file) 220
output files, from XLINK 5
OULPUL (PIEPIOCESSOT) « v v vt et e et e e e en e 149
overhead, reducing 109
pack (pragma directive) 159, 194
__packed (extended keyword). 181
packed Structure types.ovvv e 159
parameters
function 79
hidden 80
non-scalar, avoiding.o L. 112
TEZISIET . v v vt ettt e e 79-80
rules for specifying a file or directory 126
Specifying 127
StACK. . . o 79, 81
parameters, typographic convention XXVi
part number, of thisguide ii
Permanent regiSterS. . . . v .vvv v et 79
perror (library function),
implementation-defined behavior 248
placement
codeanddata............... .. 225
innamed segments. 105
POINEET EYPES « v o v et e et e e e e e 157
MEXING .« ottt e e 170

263

264

pointers

CASHING .« v v e vttt e 158
data 158
function L 157
implementation-defined behavior. 243
polymorphism, in Embedded C++ 91
porting, code containing pragma directives. 186
_Pragma (predefined symbol). 215
pragma dir€Ctiveso vtn it 9
SUMMATY &« « v v e v e et et et e e e et e e e e 185
bitfields 155
for absolute located data 104
list of all recognized. oo, 245
Pack . .. 159, 194
type_attribute, USing. 15
predefined symbols
OVEIVIEWttt 9
SUMMATY &« « v v e v e et et et e e e et e e e e 212
--predef_macro (compiler option). 149
--preinclude (compiler option) 149
--preprocess (compiler option) 149
preprocessor
OULPUL. . . vttt 149
OVEIVIBW e ottt e ettt e e e e 211

preprocessor directives

implementation-defined behavior. 244
preprocessor extensions
compatibility 142
H#Warning mMessSageo v vttt 215
_ VA ARGS_ .. 215
preprocessor symbols i 212
defining 131
preserved registerso.iiiniii 79
__ PRETTY_FUNCTION__ (predefined symbol). 213
primitives, for special functions 22
print formatter, selecting. 48
printf (library function). 47
choosing formatter. 47
configuration symbols 58

IAR C/C++ Compiler
Reference Guide

implementation-defined behavior. 248
processor operations

ACCESSING .« o vttt e 71

low-level ... 163, 199
programentry label. L. 52
programming hints 111
__program_start (label). 52
projects

basic settings for i L. 5
prototypes, enforcing 151
ptrdiff_t (integer type).o oiii i 158
PUBLIC (assembler directive) 150
publication date, of this guide. ii
--public_equ (compiler option) 150
public_equ (pragma directive) 246
putenv (library function), absent from DLIB 62
QCCR32C (environment variable) 120
qualifiers

implementation-defined behavior. 244
queue (STL headerfile) 221
-r (compileroption). i 150
raise (library function), configuring support for 63
TAISE.C . o v vt e et ettt e e e 63
RAM

non-zero initialized variables. 33

SAVING MEMOTY. . ¢ . ettt e e et eee e eeeenn 112
range errors, inlinker L oLt 38
_ read (library function). 59

CUStOMUZING « . oot ettt e 56
read formatter, selecting 49
reading guidelines. oL Xxiii
reading, recommended oL XXV

realloc (library function)

implementation-defined behavior. 248
Seealsoheap i i 19
recursive functions
avoiding oot 112
storing dataonstack 18-19
reentrancy (DLIB). 218
reference information, typographic convention. XXvii
TegISter PAramMetersot ee e 79-80
registered trademarksol ii
registers
assigning to parametersooueuen.a... 80
callee-save, storedonstack 18
for functionreturns 83
implementation-defined behavior. 243
in assembler-level routines. 77
Preservedot e 79
scratch 79
DCR, getting the value of (__get_ DCR_register). 202
DCR, writing a value to (__set_DCR_register) 206
DCT, getting the value of (__get DCT _register). 202
DCT, writing a value to (__set_DCT_register). 206
DDA, getting the value of (__get. DDA_register)202
DDA, writing a value to (__set_DDA_register) 206
DDR, getting the value of (__get. DDR_register)202
DDR, writing a value to (__set_ DDR_register) 206
DMD, getting the value of (__get_ DMD_register) . ..203
DMD, writing a value to (__set_DMD_register) 206
DSA, getting the value of (__get_ DSA_register). 203
DSA, writing a value to (__set_DSA_register) 207
DSR, getting the value of (__get_ DSR_register) 203
DSR, writing a value to (__set_DSR_register). 207
INTB, getting the value of (__get_interrupt_table) . . .204
INTB, writing a value to (__set_interrupt_table) 207
VCT, getting the value of (__get VCT _register). 204
VCT, writing a value to (__set_VCT_register). 207
reinterpret_cast (cast operator) 92

remark (diagnostic message)
classifying for compiler........................ 134

Index °

enabling incompiler 150
--remarks (compiler option) 150
remarks (diagnostic message) 123
remove (library function) 59

implementation-defined behavior. 247
rename (library function) 59

implementation-defined behavior. 247
__ReportAssert (library function). 64
required (pragma directive). 195
--require_prototypes (compiler option). 151
return addresses 83
return values, from functions 82
Ritchie, Dennis M. un.. XXVi
RMPA B (assembler instruction) 205
RMPA.L (assembler instruction). 205
RMPA.W (assembler instruction) 205
_ RMPA_B (intrinsic function) 205
_ RMPA_L (intrinsic function) 205
_ RMPA_W (intrinsic function). 205
__root (extended keyword) oL 182
ROUND (assembler instruction). 206
__ROUND (intrinsic function) 101, 206
routines, time-critical 71,163, 199
RTMODEL (assembler directive) 68
rtmodel (pragma directive), .. 196
rtti support, missing from STL 92
__rt_version (runtime model attribute) 69
ruNtime enViroNMenNt.vvvvn e e e ennenenen.. 41

SELHNG OPLONS .« . oo vttt 8
runtime libraries

building customized. 43

chooSIng.ot 8,45

configurationsuiiiiiiiiian... 43

configuring.t 42

customizing without rebuilding 46

debug support. 44

DLIB ..ottt 44

overridingmodulesin........................ 49

INtroductionooiiii i 217

265

266

Naming Convention.o.vueunenenenen .. 45

runtime model attributes 67
N 0) 1 68
_double_size 69
TE VeISION. « ottt et e 69

runtime model definitions. 196

runtime type information, missing from Embedded C++ . .92
R32C

TNETNOTY ACCESS. « « e v vt vt et et e e e e ieeeeen e 6

memory layout. L L 11

supported devices. i 4
R32C/100, instruction Set vovi i 86
SB (register), considerations. 79
__sbdatal6 (extended keyword) 182
sbdatal6 (MemMory type)o vvvv e eeeaens 14
SBDATAI16_I(segment)..........coovvuvnenennn... 236
SBDATAI16_ID (segment)couueuennn... 236
SBDATAI6_N(segment)oouveuvnenenen... 236
SBDATAI16_Z (segment)coouveuuuenenen... 237
__sbdata24 (extended keyword) 183
sbdata24 (MemMOry type) . . o« oo v e e eenens 14
SBDATA24_I(segment)..........couuveuuuenenen... 237
SBDATA24_ID (segment)cuouueuennenn.. 237
SBDATA24 N (segment)ouveuuuenenen... 238
SBDATA24_7Z (segment)c.oouveuuuenenen... 238
SB_START (linker symbol) 31
scanf (library function)

choosing formatter., 48

configuration symbols 58

implementation-defined behavior. 248
SCIatCh TE@ISIErS .« . v v vttt e e et ee et 79
section (pragma directive). 246
SEZMENt GrOUP NAME . « .« v v v v v e v e e ee e eeeeenenns 32
segment map

inlinkermapfile 39
segment memory types, in XLINK 28

IAR C/C++ Compiler
Reference Guide

segment names, declaring. 197
segment (pragma directive).c. ..., 197
SEEIMEILS . « . v vttt ettt et e e e e 225
COde . .ot 37
data ... 31
definitionof L L i 27
initialized data L L oLl 33
introduction L L il 27
locateddata 37
NAMING . « . ettt et e 32
packing inmemoryc..iiiiiann 30
placinginsequencec... i 30
StAtiC MEMOTY . v vttt e e ene 31
SUMMATY « o v ov ettt et et e e e et e e e e eenns 225
too long for addressrange 38
toolong,inlinker............ 38
CODE24 ...t 227
CODE32 ..ot 227
CSTACK . .ottt 228
CSTART ..o e 228
DATALIO_AC ..o 228
DATALO_AN . ..ot 228
DATALI6_C ..o 229
DATAL6 I 229
DATAL6_ID. ... o 229
DATALIO N .. e 230
DATALG Z. . oo i 230
DATA24 AC ...t 230
DATA24 AN . ..ottt 230
DATA24 C .ot e 231
DATA24 1. oo 231
DATA24 ID. ..ottt e 231
DATA24 N .o e 232
DATA24 Z. ..ot 232
DATA32 AC ..o e 232
DATA32 AN . ..ttt 232
DATA32 C .ot e 233
DATA32 T ..ot 233
DATA32 ID. ..ottt 233

DATA32 N . e 234
DATA32 Z. ..o 234
INTVEC ... e e 38
ISTACK . ..o e 235
NMIVEC. i 38, 235
SBDATAILG L. ... 236
SBDATAIG_IDot 236
SBDATAIG N . ..o e 236
SBDATALG_Z . ..o e 237
SBDATA24 1. ... 237
SBDATA24 ID 237
SBDATA24 N . ..ot e 238
SBDATA24 7 ... oo e 238
__segment_begin (extended operator). 165
__segment_end (extended operator) 165
semaphores
Cexample 24
CH+example 25
OPETAtIONS ON .« . v v vt vttt et e e e ee e 180
set (STL headerfile)............................. 221
setjmp.h (library header file). 219
setlocale (library function) 61
settings, basic for project configuration 5
__set_DCR _register (intrinsic function) 206
__set_DCT_register (intrinsic function) 206
__set_DDA_register (intrinsic function). 206
__set_ DDR_register (intrinsic function). 206
__set_ DMD_register (intrinsic function) 206
__set_ DSA_register (intrinsic function) 207
__set_DSR_register (intrinsic function) 207
__set_interrupt_level (intrinsic function) 207
__set_interrupt_state (intrinsic function) 207
__set_interrupt_table (intrinsic function) 207
__set_VCT_register (intrinsic function) 207
severity level
of diagnostic MesSages.o vv v 123
specifying 124
SFR (special function registers) 114
declaring exXternooven i 105

Index °

shared object. i 122
short (datatype)o, 154
signal (library function)

configuring supportfor 63

implementation-defined behavior. 247
Signal.c 63
signal.h (library header file) 219
signbit, C99 extension., 223
signed char (datatype) 154-155

Specifying 131
signed int (data type).ottt 154
signed long long (datatype) 154
signed long (datatype), 154
signed short (datatype).ccoiveinnan .. 154
signed values, avoiding. 99
--silent (compiler option) 151
silent operation

specifyingincompiler 151
__SIN (intrinsic function). 208
SIN (assembler instruction) 208
64-bits (floating-point format) 157
sizeof, using in preprocessor extensions 142
SiZe_t (INLEZET LYP) v v v o v e e e e e e e e e 158
skeleton code

creating for assembler language interface 74
skeleton.s53 (assembler source output). 76
slist (STL headerfile). 221
snprintf, C99 extension. 223
__software_interrupt (intrinsic function) 208
source files, list all referred. 140
__SOUT (intrinsic function) 208
SOUT.B (assembler instruction) 208
special function registers (SFR) 114
special function types v vt 22

OVEIVIEW . ottt ettt et e e ettt et ee e 9
sprintf (library function) 47

choosing formatter. 47

sscanf (library function)
choosing formatter. 48

267

268

StACK © v v 17, 34
advantages and problems using 18
changing defaultsizeof 34
cleaning after functionreturn. 83
contentsof 18
forinterruptsot 35
internaldata............ 228
INEETTUPL .« o v et e e et e et e e e 235
layout. .. .ot 81
SAVINE SPACE. .+« v v v e vttt e e e 112
SIZB. . ot 35

stack parameters i 79, 81

stack pointert 18

stack pointer register, considerations. 79

stack segment
placinginmemory............ 35

stack (STL headerfile) 221

standard error
redirecting in compiler. 148

standard input. 56

standard output 56
specifying in compiler 148

standard template library (STL)
in Extended EC++...................... 92,95, 221
missing from Embedded C++ 92

startup code
placementof il 37
See also CSTART

StArtup, SYStEIM . . . oottt e e e 52

statements, implementation-defined behavior. 244

static data, in linker commandfile 34

static MemMOry SEZMENtS vvvvnen e e eeennenenn 31

staticoverlay.t 84

static variables 11
initialization. i 33
taking the addressof 111

static_cast (Cast OPErator)cuvuvrerennnnenenn 92

STCTX (assembler instruction) 208

IAR C/C++ Compiler
Reference Guide

std namespace, missing from EC++

and Extended EC++ i 95
stdarg.h (library header file) 219
stdbool.h (library header file) 154, 219
added C functionality. 223
STDC__ (predefined symbol).................... 213
STDC (pragma directive)covinen .. 246
STDC_VERSION__ (predefined symbol) 213
stddef.h (library header file) 155, 219
Stderr. . ..o 59, 148
stdexcept (library headerfile) 220
SEAIN « .o 59
implementation-defined behavior. 247
stdint.h (library header file). 219, 222
stdint.h, added C functionality 223
stdio.h (library header file) 219
stdio.h, additional C functionality................... 223
stdlib.h (library header file). 219
stdlib.h, additional C functionality 224
StAOUL . .ot 59, 148
implementation-defined behavior. 247
Steele, Guy L..o XXVi
STL. et 95
__STOP (intrinsic function) 208
STOP (assembler instruction) 208
__store_context (intrinsic function) 208
streambuf (library header file). 220
streams, supported in Embedded C++. 92
strerror (library function)
implementation-defined behavior 249
--strict_ansi (compiler option). 151
string (library header file) 220
strings, supported in Embedded C++ 92
string.h (library headerfile) 219
Stroustrup, Bjarne.o oLt XXVi
strstream (library header file) 220
strtod (library function), configuring support for 63
strtod, instdlibh. oL 224
strtof, C99 extension.t 224
strtold, C99 extension.ouvuiiiiinnan.. 224

strtoll, C99 extensionc.oviiiiinnnnn. 224
strtoull, C99 extensioncovviun.n.. 224
structure types
alignment. i 159
layoutof. 159
packed 159
structures
accessing usingapointer 86
aligning 194
ANONYMOUS. « + v v v vt e ee e e e eeeeeneaene 101, 165
implementation-defined behavior. 243
incomplete arrays as lastelement. 167
packing and unpacking 101
placing in memory type 16
subnormal numbers. L. 156
__SUBVERSION__ (predefined symbol). 214
support, technical 124
symbol names, using in preprocessor extensions 142
symbols
AnoONYMOUS, CIeatiNgo vuve v enenenan . 167
includinginoutput. 195
listing in linkermap file. 39
overview of predefined. 9
preprocessor, defining 131
syntax
command line options, 125
extended keywords. 15, 174-176
invoking compiler oL L. 119
SYSEEM STATTUP « « « v v oottt et et e e e e e et 52
CUSTOMIZING .« . vt ettt ettt e et 55
System terminationc.euenitinaiaenenn 54
C-SPY interface to.oiuiiinenen .. 55
system (library function)
configuring supportfor 62
implementation-defined behavior. 249
system_include (pragma directive) 246

Index °

T

__task (extended keyword) L, 183
technical support, [AR Systems 124
template support

inExtended EC++.......................... 92,94

missing from Embedded C++ 91
Terminal I/O window, making available 66
terminal output, speedingup. 67
termination, of SyStem. it 54
terminology. ov i XXVi
32-bits (floating-point format) 156
this (POINET) vt vttt et 76

referring toaclassobject. 94
__TIME__ (predefined symbol) 214
time zone (library function)
implementation-defined behavior 249
time (library function), configuring support for 63
time-critical routines. 71,163, 199
HME.C oottt e 63
time.h (library headerfile) 219
tips, Programming.ovu v e e e enenenen.n. 111
tools icon, inthis guide. XXVii
trademarks ii
transformations, compiler. 106
translation, implementation-defined behavior. 239
trap vectors, specifying with pragma directive 198
type attributeso ov e e 173

Specifying 197
type definitions, used for specifying memory storage. 16, 175
type information, omitting 148
type qualifiers

constand volatile. 161

implementation-defined behavior. 244
typedefs

excluding from diagnostics 145

repeated 170

using in preprocessor extensions 142

269

270

type-based alias analysis (compiler transformation) 110

disabling 145
type-safe memory management 91
type_attribute (pragma directive) 15, 197
typographic conventions XXVi
uintptr_t (INteZEr tyPe) . . v v v e e 158
UND (assembler instruction) 204
underflow range errors,
implementation-defined behavior 246
unions

ANONYMOUS. « + ¢ vt vt vt e e e e e eeeeeeeene 101, 165

implementation-defined behavior. 243
unsigned char (datatype) 154-155

changing tosignedchar........................ 131
unsigned int (data type). 154
unsigned long long (datatype) 154
unsigned long (datatype)co ... 154
unsigned short (datatype)., 154
USER_RAM_BEGIN (linker symbol) 31
USER_RAM_END (linker symbol) 31
USER_ROM_BEGIN (linker symbol) 31
USER_ROM_END (linker symbol) 31
USP (stack pointer).covenininnnen... 228
utility (STL headerfile) 221
variable type information, omitting in object output. 148
variables

AULO ..ot 17-18

defined inside afunction 17

global

ACCESSING. « vt v ettt e 86
placementinmemory 11
hints for choosing 111

local. See auto variables

IAR C/C++ Compiler
Reference Guide

non-initialized L oL 115
omitting typeinfo L. 148
placing at absolute addresses 105
placing in named segments 105
static
placement in memoryc.c.o.o.... 11
taking the addressof 111
static and global, initializing 33
VCT (register)
getting the value of (__get VCT _register). 204
writing a value to (__set_VCT _register) 207
vector (pragma directive) 23,198
vector (STL headerfile) 221
__VER__ (predefined symbol)..................... 214
version
compiler. 214
IAR Embedded Workbench ii
viscanf, C99 extensioncovvuuun. .. 223
viwscanf, C99 extension.ccovu.... 224
VOid, POINEEIS tO « oo vt e 170
volatile (keyword). 113
volatile, declaring objects 161
vscanf, C99 extension., 223
vsnprintf, C99 extension. 223
vsscanf, C99 extension, 223
vswscanf, C99 extension.c.c..uu.... 224
vwscanf, C99 extension 224
WAIT (assembler instruction). 209
__wait_for_interrupt (intrinsic function). 209
#warning message (preprocessor extension) 215
WATTHNES « « vt vt et ettt e e et e e e e e e e 123
classifying incompiler. 135
disablingincompiler. 146
exitcode. 152
warnings icon, in thisguide XXVii
warnings (pragma directive) 246

--warnings_affect_exit_code (compiler option)122, 152
--warnings_are_errors (compiler option) 152
wchar.h (library header file) 219, 222
wchar.h, added C functionality 224
wchar_t (data type), adding support forinC........... 155
westof, C99 extension. vt 224
wcestolb, C99 extension. 224
wetype.h (library header file) 219
wetype.h, added C functionality 224
web sites, recommended. XXVi
__write (library function) 59

CUSTOMIZING .« . v ettt e 56
XCFI_COMMON (call frame information macro). 89
XCFI_NAMES (call frame information macro) 89
XCHG.B (assembler instruction) 201
XCHG.L (assembler instruction) 202
XCHG.W (assembler instruction). 202
XLINK errors

FANZE CTTOT « v o v e et et et et et e e e e e e 38

segmenttoolong i 38
XLINK outputfiles.ooviiei . 5
XLINK segment memory typesc.euoeun.. 28
XIEPOTLASSCIT.C. v v v v v et e e ettt et et e e e e eeeeenan 64

Symbols

#include files, specifying 120, 140
#warning message (preprocessor extension). 215
-D (compileroption). oL 131
-e (compileroption) i 137
-f (compileroption). oLl 139
-I (compileroption). i 140
-1 (compiler option). oL 75, 140
-O (compileroption).cooiiiiiiii.. 147
-0 (compileroption) 147-148
-r (compileroption). il 150

Index °

--align_func (compileroption) 130
--char_is_signed (compiler option). 131
--code_model (compiler option) 131
--data_model (compiler option) 132
--debug (compiler option) L. 132
--dependencies (compiler option) 133
--diagnostics_tables (compiler option) 135
--diag_error (compileroption) 134
--diag_remark (compiler option). 134
--diag_suppress (compiler option) 134
--diag_warning (compiler option). 135
--discard_unused_publics (compiler option). 136
--dlib_config (compiler option). 136
--double (compiler option) 137
--ec++ (compileroption). oL 137
--eec++ (compiler option). L. 138
--enable_multibytes (compiler option) 138
--error_limit (compiler option) 138
--fp_model (compiler option) 139
--header_context (compiler option). 140
--library_module (compiler option) 141
--mfc (compileroption). 141
--migration_preprocessor_extensions (compiler option). . 142
--misrac (compileroption) 129
--misrac_verbose (compiler option) 129
--misrac1998 (compiler option) 129
--misrac2004 (compiler option) 129
--module_name (compiler option) 142
--no_code_motion (compiler option) 143
--no_cross_call (compiler option). 143
--no_cse (compileroption) 143
--no_inline (compiler option) 144
--no_path_in_file_macros (compiler option). 144
--no_tbaa (compileroption) 145
--no_typedefs_in_diagnostics (compiler option). 145
--no_unroll (compileroption) 146
--no_warnings (compiler option) 146
--no_wrap_diagnostics (compiler option) 146
--omit_types (compiler option). 148

271

272

--only_stdout (compiler option)
--predef_macro (compiler option).
--preinclude (compiler option)
--preprocess (compiler option)
--remarks (compileroption)
--require_prototypes (compiler option).
--silent (compiler option)
--strict_ansi (compiler option).
--warnings_affect_exit_code (compiler option)122,
--warnings_are_errors (compiler option)
@ (operator)

placing at absolute address.

placinginsegments,
_Exit (library function)
_exit (library function)
_Exit, C99 extension.oovi e
_Pragma (predefined symbol).
__ALIGNOF__(operator)cueueuenenan..
__asm (language extension)c.......
_ BASE_FILE__ (predefined symbol)...............
__break (intrinsic function).
__BUILD_NUMBER___ (predefined symbol)
__close (library function)c.c.iu....
__CODE_MODEL__ (predefined symbol).
__code24 (extended keyword)
__code32 (extended keyword)
__code32 (function pointer)c.covueunn..
__core (runtime model attribute).
__cplusplus (predefined symbol)
_ DATA_MODEL__ (predefined symbol)............
__datal6 (extended keyword)
__data24 (extended keyword)
__data32 (datapointer).ueuiuenenan..
__data32 (extended keyword)
__DATE__ (predefined symbol)....................
__delay_cycles (intrinsic function)
__disable_interrupt (intrinsic function).
__double_size (runtime model attribute).
__embedded_cplusplus (predefined symbol)

IAR C/C++ Compiler
Reference Guide

__enable_interrupt (intrinsic function) 201
__exchange_byte (intrinsic function) 201
__exchange_long (intrinsic function) 202
__exchange_word (intrinsic function). 202
_exit(library function) 54
__fast_interrupt (extended keyword). 179
__FILE__ (predefined symbol)..................... 212
_ FUNCTION__ (predefined symbol)........... 172,213
__func__ (predefined symbol) 172,213
_gets,instdioh. ... 224
__get_ DCR _register (intrinsic function). 202
__get DCT_register (intrinsic function).............. 202
__get_ DDA _register (intrinsic function). 202
__get DDR_register (intrinsic function). 202
__get DMD_register (intrinsic function) 203
__get DSA_register (intrinsic function).............. 203
__get_ DSR_register (intrinsic function) 203
__get_interrupt_level (intrinsic function) 203
__get_interrupt_state (intrinsic function) 203
__get_interrupt_table (intrinsic function) 204
__get_VCT_register (intrinsic function).............. 204
__TAR_SYSTEMS_ICC__ (predefined symbol) 213
__ICCR32C__ (predefined symbol) 213
__illegal_opcode (intrinsic function) 204
__interrupt (extended keyword) 23,180

using in pragma directives 198
__interrupt_on_overflow (intrinsic function) 204
__intrinsic (extended keyword). 180
__LINE__ (predefined symbol) 213
__LITTLE_ENDIAN__ (predefined symbol).......... 213
__load_context (intrinsic function) 204
Cdow devel inmit. 53
__low_level_init (intrinsic function). 205
__low_level_init, customizing 55
__Iseek (library function) 59
__monitor (extended keyword) 114, 180
__noreturn (extended keyword) 181
__no_init (extended keyword) 115, 181
__no_operation (intrinsic function). 205

__open (library function) 59
__packed (extended keyword). 181
_ PRETTY_FUNCTION__ (predefined symbol). 213
__printf_args (pragma directive). 195, 246
__program_start (label). 52
__gsortbbl, C99 extension.c.coenin... 224
__read (library function). 59

CUSTOMIZING .« . v ettt e 56
__ReportAssert (library function). 64
_ RMPA_B (intrinsic function) 205
_ RMPA_L (intrinsic function) 205
_ RMPA_W (intrinsic function). 205
__root (extended keyword) L Ll 182
__ROUND (intrinsic function) 101, 206
__rt_version (runtime model attribute) 69
__sbdatal6 (extended keyword) 182
__sbdata24 (extended keyword) 183
__scanf_args (pragma directive) 196, 246
__segment_begin (extended operator 165
__segment_end (extended operators) 165
__set_DCR _register (intrinsic function) 206
__set_DCT_register (intrinsic function) 206
__set_DDA_register (intrinsic function). 206
__set_ DDR_register (intrinsic function). 206
__set_ DMD_register (intrinsic function) 206
__set_ DSA_register (intrinsic function) 207
__set_DSR_register (intrinsic function) 207
__set_interrupt_level (intrinsic function) 207
__set_interrupt_state (intrinsic function) 207
__set_interrupt_table (intrinsic function) 207
__set_VCT_register (intrinsic function) 207
__SIN (intrinsic function) 208
__software_interrupt (intrinsic function) 208
_ SOUT (intrinsic function) 208
__STDC_VERSION___ (predefined symbol) 213
__ STDC__ (predefined symbol). 213
__STOP (intrinsic function) 208
__store_context (intrinsic function) 208
__SUBVERSION__ (predefined symbol). 214

Index °

_ task (extended keyword) oL 183
__TIME__ (predefined symbol) 214
_ungetchar,instdioh L oL 224
__VA_ARGS__ (preprocessor extension). 215
__VER__ (predefined symbol)..................... 214
__wait_for_interrupt (intrinsic function). 209
__write (library function) 59

CUSTOMUZING .« . v\ttt e ettt e 56
__write_array,instdio.h. L Lo L 224
__write_buffered (library function). 67

Numerics

32-bits (floating-point format) 156
64-bit data types, avoiding, 99
64-bits (floating-point format) 157

273

	Brief contents
	Contents
	Tables
	Preface
	Who should read this guide
	How to use this guide
	What this guide contains
	Part 1. Using the compiler
	Part 2. Reference information

	Other documentation
	Further reading

	Document conventions
	Typographic conventions
	Naming conventions

	Part 1. Using the compiler
	Getting started
	IAR language overview
	Supported R32C/100 devices
	Building applications-an overview
	Compiling
	Linking

	Basic settings for project configuration
	Data model
	Code model
	Size of double floating-point type
	Optimization for speed and size
	Runtime environment
	Choosing a runtime library in the IDE
	Choosing runtime environment from the command line
	Setting library and runtime environment options

	Special support for embedded systems
	Extended keywords
	Pragma directives
	Predefined symbols
	Special function types
	Accessing low-level features

	Data storage
	Introduction
	Different ways to store data

	Data models
	Specifying a data model
	The Near data model
	The Far data model
	The Huge data model

	Memory types
	Data16
	Data24
	Data32
	Sbdata16
	Sbdata24
	Using data memory attributes
	Syntax
	Type definitions

	Structures and memory types
	More examples

	C++ and memory types
	Auto variables-on the stack
	The stack
	Advantages
	Potential problems

	Dynamic memory on the heap
	Potential problems

	Functions
	Function-related extensions
	Code models and memory attributes for function storage
	Using function memory attributes

	Primitives for interrupts, concurrency, and OS-related programming
	Interrupt functions
	Monitor functions
	C++ and special function types

	Placing code and data
	Segments and memory
	What is a segment?
	Segment memory type

	Placing segments in memory
	Customizing the linker command file
	The contents of the linker command file
	Using the -Z command for sequential placement
	Using the -P command for packed placement
	Symbols for available memory areas

	Data segments
	Static memory segments
	Segment naming
	Initialized data
	Data segments for static memory in the default linker command file

	The internal data stack
	Stack size allocation in the IDE
	Stack size allocation from the command line
	Placement of stack segment
	Stack size considerations

	The interrupt stack
	The heap
	Heap size allocation in the IDE
	Heap size allocation from the command line
	Placement of heap segment
	Heap size and standard I/O

	Located data

	Code segments
	Startup code
	Normal code
	Interrupt vectors

	C++ dynamic initialization
	Verifying the linked result of code and data placement
	Segment too long errors and range errors
	Linker map file

	The DLIB runtime environment
	Introduction to the runtime environment
	Runtime environment functionality
	Library selection
	Situations that require library building
	Library configurations
	Debug support in the runtime library

	Using a prebuilt library
	Customizing a prebuilt library without rebuilding

	Choosing formatters for printf and scanf
	Choosing printf formatter
	Specifying the print formatter in the IDE
	Specifying printf formatter from the command line

	Choosing scanf formatter
	Specifying scanf formatter in the IDE
	Specifying scanf formatter from the command line

	Overriding library modules
	Overriding library modules using the IDE
	Overriding library modules from the command line

	Building and using a customized library
	Setting up a library project
	Modifying the library functionality
	Modifying the library configuration file

	Using a customized library

	System startup and termination
	System startup
	System termination
	C-SPY interface to system termination

	Customizing system initialization
	_ _low_level_init
	Modifying the file cstartup.s53

	Standard streams for input and output
	Implementing low-level character input and output
	Example of using _ _write and _ _read

	Configuration symbols for printf and scanf
	Customizing formatting capabilities

	File input and output
	Locale
	Locale support in prebuilt libraries
	Customizing the locale support
	Locale configuration symbols
	Building a library without support for locale interface
	Building a library with support for locale interface

	Changing locales at runtime
	Example

	Environment interaction
	Signal and raise
	Time
	Strtod
	Assert
	Hardware support
	Floating-point implementation
	Software-emulated floating-point operations
	Native FPU floating-point operations
	FPU with standards-compliant library functions

	C-SPY runtime interface
	Low-level debugger runtime interface
	The debugger terminal I/O window
	Speeding up terminal output

	Checking module consistency
	Runtime model attributes
	Using runtime model attributes
	Predefined runtime attributes
	Example

	User-defined runtime model attributes

	Assembler language interface
	Mixing C and assembler
	Intrinsic functions
	Mixing C and assembler modules
	Inline assembler

	Calling assembler routines from C
	Creating skeleton code
	Compiling the code
	The output file

	Calling assembler routines from C++
	Calling convention
	Function declarations
	Using C linkage in C++ source code
	Preserved versus scratch registers
	Scratch registers
	Preserved registers
	Special registers

	Function entrance
	Hidden parameters
	Register parameters
	Stack parameters and layout
	Aligning the function entry point

	Function exit
	Registers used for returning values
	Stack layout at function exit
	Return address handling

	Restrictions for special function types
	Examples
	Function directives

	Calling functions
	Assembler instructions used for calling functions
	Far code model
	Huge code model

	Memory access methods
	The data16 memory access method
	The data24 memory access method
	The data32 memory access method
	The sbdata16 memory access method
	The sbdata24 memory access method

	Call frame information

	Using C++
	Overview
	Standard Embedded C++
	Extended Embedded C++
	Enabling C++ support

	Feature descriptions
	Classes
	The this pointer

	Functions
	Templates
	The standard template library
	STL and the IAR C-SPY® Debugger

	Variants of casts
	Mutable
	Namespace
	The STD namespace
	Using interrupts and EC++ destructors

	C++ language extensions

	Efficient coding for embedded applications
	Selecting data types
	Using efficient data types
	Floating-point types
	Casting a floating-point value to an integer
	Alignment of elements in a structure
	Anonymous structs and unions

	Controlling data and function placement in memory
	Data placement at an absolute location
	Examples
	C++ considerations

	Data and function placement in segments
	Examples of placing variables in named segments
	Examples of placing functions in named segments

	Controlling compiler optimizations
	Scope for performed optimizations
	Multi-file compilation units

	Optimization levels
	Speed versus size
	Fine-tuning enabled transformations
	Common subexpression elimination
	Loop unrolling
	Function inlining
	Code motion
	Type-based alias analysis
	Cross call

	Writing efficient code
	Saving stack space and RAM memory
	Function prototypes
	Prototyped style
	Kernighan & Ritchie style

	Integer types and bit negation
	Protecting simultaneously accessed variables
	Accessing special function registers
	Non-initialized variables

	Part 2. Reference information
	External interface details
	Invocation syntax
	Compiler invocation syntax
	Passing options
	Environment variables

	Include file search procedure
	Compiler output
	Error return codes

	Diagnostics
	Message format
	Severity levels
	Remark
	Warning
	Error
	Fatal error

	Setting the severity level
	Internal error

	Compiler options
	Options syntax
	Types of options
	Rules for specifying parameters
	Rules for optional parameters
	Rules for mandatory parameters
	Rules for options with both optional and mandatory parameters
	Rules for specifying a filename or directory as parameters
	Additional rules

	Summary of compiler options
	Descriptions of options
	--align_func
	--char_is_signed
	--code_model
	-D
	--data_model
	--debug, -r
	--dependencies
	--diag_error
	--diag_remark
	--diag_suppress
	--diag_warning
	--diagnostics_tables
	--discard_unused_publics
	--dlib_config
	--double
	-e
	--ec++
	--eec++
	--enable_multibytes
	--error_limit
	-f
	--fp_model
	--header_context
	-I
	-l
	--library_module
	--mfc
	--migration_preprocessor_extensions
	--module_name
	--no_code_motion
	--no_cross_call
	--no_cse
	--no_inline
	--no_path_in_file_macros
	--no_tbaa
	--no_typedefs_in_diagnostics
	--no_unroll
	--no_warnings
	--no_wrap_diagnostics
	-O
	-o, --output
	--omit_types
	--only_stdout
	-o, --output
	--predef_macros
	--preinclude
	--preprocess
	--public_equ
	-r, --debug
	--remarks
	--require_prototypes
	--silent
	--strict_ansi
	--warnings_affect_exit_code
	--warnings_are_errors

	Data representation
	Alignment
	Alignment on the R32C/100 microcomputer

	Basic data types
	Integer types
	Bool
	The enum type
	The char type
	The wchar_t type
	Bitfields

	Floating-point types
	32-bit floating-point format
	64-bit floating-point format
	Representation of special floating-point numbers

	Pointer types
	Function pointers
	Data pointers
	Casting
	size_t
	ptrdiff_t
	intptr_t
	uintptr_t

	Structure types
	Alignment
	General layout
	Packed structure types

	Type qualifiers
	Declaring objects volatile
	Definition of access to volatile objects
	Rules for accesses

	Declaring objects const

	Data types in C++

	Compiler extensions
	Compiler extensions overview
	Enabling language extensions

	C language extensions
	Important language extensions
	Useful language extensions
	Inline assembler
	Compound literals
	Incomplete arrays at end of structs
	Hexadecimal floating-point constants
	Designated initializers in structures and arrays

	Minor language extensions

	Extended keywords
	General syntax rules for extended keywords
	Type attributes
	Memory attributes
	General type attributes
	Syntax for type attributes used on data objects
	Syntax for type attributes on functions
	Syntax for type attributes on function pointers

	Object attributes
	Syntax for object attributes

	Summary of extended keywords
	Descriptions of extended keywords
	_ _code24
	_ _code32
	_ _data16
	_ _data24
	_ _data32
	_ _fast_interrupt
	_ _interrupt
	_ _intrinsic
	_ _monitor
	_ _no_init
	_ _noreturn
	_ _packed
	_ _root
	_ _sbdata16
	_ _sbdata24
	_ _task

	Pragma directives
	Summary of pragma directives
	Descriptions of pragma directives
	bitfields
	constseg
	data_alignment
	dataseg
	diag_default
	diag_error
	diag_remark
	diag_suppress
	diag_warning
	include_alias
	inline
	language
	location
	message
	object_attribute
	optimize
	pack
	_ _printf_args
	required
	rtmodel
	_ _scanf_args
	segment
	type_attribute
	vector

	Intrinsic functions
	Summary of intrinsic functions
	Descriptions of intrinsic functions
	_ _break
	_ _delay_cycles
	_ _disable_interrupt
	_ _enable_interrupt
	_ _exchange_byte
	_ _exchange_long
	_ _exchange_word
	_ _get_DCR_register
	_ _get_DCT_register
	_ _get_DDA_register
	_ _get_DDR_register
	_ _get_DMD_register
	_ _get_DSA_register
	_ _get_DSR_register
	_ _get_interrupt_level
	_ _get_interrupt_state
	_ _get_interrupt_table
	_ _get_VCT_register
	_ _illegal_opcode
	_ _interrupt_on_overflow
	_ _load_context
	_ _low_level_init
	_ _no_operation
	_ _RMPA_B
	_ _RMPA_L
	_ _RMPA_W
	_ _ROUND
	_ _set_DCR_register
	_ _set_DCT_register
	_ _set_DDA_register
	_ _set_DDR_register
	_ _set_DMD_register
	_ _set_DSA_register
	_ _set_DSR_register
	_ _set_interrupt_level
	_ _set_interrupt_state
	_ _set_interrupt_table
	_ _set_VCT_register
	_ _SIN
	_ _software_interrupt
	_ _SOUT
	_ _STOP
	_ _store_context
	_ _wait_for_interrupt

	The preprocessor
	Overview of the preprocessor
	Descriptions of predefined preprocessor symbols
	Descriptions of miscellaneous preprocessor extensions
	NDEBUG
	_Pragma()
	#warning message
	_ _VA_ARGS_ _

	Library functions
	Introduction
	Header files
	Library object files
	Reentrancy

	IAR DLIB Library
	C header files
	C++ header files
	Embedded C++
	Extended Embedded C++ standard template library
	Using standard C libraries in C++

	Library functions as intrinsic functions
	Added C functionality
	ctype.h
	inttypes.h
	math.h
	stdbool.h
	stdint.h
	stdio.h
	stdlib.h
	wchar.h
	wctype.h

	Segment reference
	Summary of segments
	Descriptions of segments
	CHECKSUM
	CODE24
	CODE32
	CSTACK
	CSTART
	DATA16_AC
	DATA16_AN
	DATA16_C
	DATA16_I
	DATA16_ID
	DATA16_N
	DATA16_Z
	DATA24_AC
	DATA24_AN
	DATA24_C
	DATA24_I
	DATA24_ID
	DATA24_N
	DATA24_Z
	DATA32_AC
	DATA32_AN
	DATA32_C
	DATA32_I
	DATA32_ID
	DATA32_N
	DATA32_Z
	DIFUNCT
	HEAP
	INTVEC
	ISTACK
	NMIVEC
	SBDATA16_I
	SBDATA16_ID
	SBDATA16_N
	SBDATA16_Z
	SBDATA24_I
	SBDATA24_ID
	SBDATA24_N
	SBDATA24_Z

	Implementation-defined behavior
	Descriptions of implementation-defined behavior
	Translation
	Diagnostics (5.1.1.3)

	Environment
	Arguments to main (5.1.2.2.2.1)
	Interactive devices (5.1.2.3)

	Identifiers
	Significant characters without external linkage (6.1.2)
	Significant characters with external linkage (6.1.2)
	Case distinctions are significant (6.1.2)

	Characters
	Source and execution character sets (5.2.1)
	Bits per character in execution character set (5.2.4.2.1)
	Mapping of characters (6.1.3.4)
	Unrepresented character constants (6.1.3.4)
	Character constant with more than one character (6.1.3.4)
	Converting multibyte characters (6.1.3.4)
	Range of 'plain' char (6.2.1.1)

	Integers
	Range of integer values (6.1.2.5)
	Demotion of integers (6.2.1.2)
	Signed bitwise operations (6.3)
	Sign of the remainder on integer division (6.3.5)
	Negative valued signed right shifts (6.3.7)

	Floating point
	Representation of floating-point values (6.1.2.5)
	Converting integer values to floating-point values (6.2.1.3)
	Demoting floating-point values (6.2.1.4)

	Arrays and pointers
	size_t (6.3.3.4, 7.1.1)
	Conversion from/to pointers (6.3.4)
	ptrdiff_t (6.3.6, 7.1.1)

	Registers
	Honoring the register keyword (6.5.1)

	Structures, unions, enumerations, and bitfields
	Improper access to a union (6.3.2.3)
	Padding and alignment of structure members (6.5.2.1)
	Sign of 'plain' bitfields (6.5.2.1)
	Allocation order of bitfields within a unit (6.5.2.1)
	Can bitfields straddle a storage-unit boundary (6.5.2.1)
	Integer type chosen to represent enumeration types (6.5.2.2)

	Qualifiers
	Access to volatile objects (6.5.3)

	Declarators
	Maximum numbers of declarators (6.5.4)

	Statements
	Maximum number of case statements (6.6.4.2)

	Preprocessing directives
	Character constants and conditional inclusion (6.8.1)
	Including bracketed filenames (6.8.2)
	Including quoted filenames (6.8.2)
	Character sequences (6.8.2)
	Recognized pragma directives (6.8.6)
	Default _ _DATE_ _ and _ _TIME_ _ (6.8.8)

	IAR DLIB Library functions
	NULL macro (7.1.6)
	Diagnostic printed by the assert function (7.2)
	Domain errors (7.5.1)
	Underflow of floating-point values sets errno to ERANGE (7.5.1)
	fmod() functionality (7.5.6.4)
	signal() (7.7.1.1)
	Terminating newline character (7.9.2)
	Blank lines (7.9.2)
	Null characters appended to data written to binary streams (7.9.2)
	Files (7.9.3)
	remove() (7.9.4.1)
	rename() (7.9.4.2)
	%p in printf() (7.9.6.1)
	%p in scanf() (7.9.6.2)
	Reading ranges in scanf() (7.9.6.2)
	File position errors (7.9.9.1, 7.9.9.4)
	Message generated by perror() (7.9.10.4)
	Allocating zero bytes of memory (7.10.3)
	Behavior of abort() (7.10.4.1)
	Behavior of exit() (7.10.4.3)
	Environment (7.10.4.4)
	system() (7.10.4.5)
	Message returned by strerror() (7.11.6.2)
	The time zone (7.12.1)
	clock() (7.12.2.1)

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Symbols
	Numerics

