
UCSR32C-1

IAR Embedded Workbench®

C-SPY® Debugging Guide

for the Renesas
R32C/100 Microcomputer Family

AFE1_AFE2-1:1

2
C-SPY® Debugging Guide
for R32C

COPYRIGHT NOTICE
© 2008–2012 IAR Systems AB.

No part of this document may be reproduced without the prior written consent of IAR
Systems AB. The software described in this document is furnished under a license and
may only be used or copied in accordance with the terms of such a license.

DISCLAIMER
The information in this document is subject to change without notice and does not
represent a commitment on any part of IAR Systems. While the information contained
herein is assumed to be accurate, IAR Systems assumes no responsibility for any errors
or omissions.

In no event shall IAR Systems, its employees, its contractors, or the authors of this
document be liable for special, direct, indirect, or consequential damage, losses, costs,
charges, claims, demands, claim for lost profits, fees, or expenses of any nature or kind.

TRADEMARKS
IAR Systems, IAR Embedded Workbench, C-SPY, visualSTATE, The Code to Success,
IAR KickStart Kit, I-jet, IAR, and the logotype of IAR Systems are trademarks or
registered trademarks owned by IAR Systems AB.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

Renesas is a registered trademark of Renesas Electronics Corporation.

Adobe and Acrobat Reader are registered trademarks of Adobe Systems Incorporated.

All other product names are trademarks or registered trademarks of their respective
owners.

EDITION NOTICE
First edition: October 2012

Part number: UCSR32C-1

This guide applies to version 1.x of IAR Embedded Workbench® for the Renesas
R32C/100 microcomputer family.

The C-SPY® Debugging Guide for R32C replaces all debugging information in the IAR
Embedded Workbench IDE User Guide for R32C/100 and the hardware debugger guides
for R32C/100 and E8a.

Internal reference: M12, Too6.4, IMAE.

AFE1_AFE2-1:1

 3

Brief contents
Tables .. 11

Figures .. 13

Preface .. 17

The IAR C-SPY Debugger ... 23

Getting started using C-SPY ... 31

Executing your application ... 59

Variables and expressions .. 79

Breakpoints .. 101

Memory and registers .. 129

Trace .. 159

Profiling .. 183

Code coverage ... 191

Interrupts .. 195

C-SPY macros ... 215

The C-SPY Command Line Utility—cspybat 257

Debugger options ... 267

Additional information on C-SPY drivers .. 275

Index ... 289

AFE1_AFE2-1:1

4

AFE1_AFE2-1:1

 5

Contents
Tables .. 11

Figures .. 13

Preface .. 17

Who should read this guide ... 17

Required knowledge .. 17

What this guide contains ... 17

Other documentation ... 18

User and reference guides .. 18

The online help system .. 19

Web sites .. 19

Document conventions .. 20

Typographic conventions ... 20

Naming conventions .. 21

The IAR C-SPY Debugger ... 23

Introduction to C-SPY .. 23

An integrated environment ... 23

General C-SPY debugger features ... 24

RTOS awareness .. 25

Debugger concepts .. 26

C-SPY and target systems .. 26

The debugger .. 26

The target system ... 26

The application ... 27

C-SPY debugger systems ... 27

The ROM-monitor program ... 27

Third-party debuggers .. 27

C-SPY plugin modules ... 28

C-SPY drivers overview ... 28

Differences between the C-SPY drivers ... 28

AFE1_AFE2-1:1

6

The IAR C-SPY Simulator .. 29

Simulator features .. 29

The C-SPY Hardware debugger drivers 29

Communication overview .. 30

Getting started using C-SPY ... 31

Setting up C-SPY .. 31

Setting up for debugging .. 31

Executing from reset .. 32

Using a setup macro file ... 32

Selecting a device description file ... 33

Loading plugin modules ... 33

Starting C-SPY ... 33

Starting a debug session ... 34

Loading executable files built outside of the IDE 34

Starting a debug session with source files missing 34

Loading multiple images ... 35

Adapting for target hardware ... 36

Modifying a device description file ... 36

Initializing target hardware before C-SPY starts 37

Downloading firmware .. 38

Running example projects .. 38

Running an example project .. 38

Connecting to the target board, E8a ... 39

Maintaining the connection to the hardware 42

Connecting to the target board, E30/E30A 43

Reference information on starting C-SPY 45

Executing your application ... 59

Introduction to application execution ... 59

Briefly about application execution ... 59

Source and disassembly mode debugging ... 59

Single stepping ... 60

Stepping speed ... 62

Running the application ... 63

AFE1_AFE2-1:1

Contents

7

Highlighting ... 64

Call stack information .. 64

Terminal input and output .. 65

Debug logging .. 65

Reference information on application execution 66

Variables and expressions .. 79

Introduction to working with variables and expressions 79

Briefly about working with variables and expressions 79

C-SPY expressions ... 80

Limitations on variable information .. 82

Working with variables and expressions 83

Using the windows related to variables and expressions 83

Viewing assembler variables ... 84

Getting started using data logging ... 84

Reference information on working with variables and
expressions .. 85

Breakpoints .. 101

Introduction to setting and using breakpoints 101

Reasons for using breakpoints ... 101

Briefly about setting breakpoints ... 102

Breakpoint types .. 102

Breakpoint icons .. 104

Breakpoints in the C-SPY simulator .. 104

Breakpoints in the C-SPY hardware drivers 104

Breakpoint consumers .. 105

Setting breakpoints .. 106

Various ways to set a breakpoint ... 106

Toggling a simple code breakpoint .. 107

Setting breakpoints using the dialog box ... 107

Setting a data breakpoint in the Memory window 108

Setting breakpoints using system macros .. 109

Useful breakpoint hints .. 110

Reference information on breakpoints 111

AFE1_AFE2-1:1

8

Memory and registers .. 129

Introduction to monitoring memory and registers 129

Briefly about monitoring memory and registers 129

C-SPY memory zones .. 130

Stack display .. 131

Memory access checking ... 132

Monitoring memory and registers .. 133

Defining application-specific register groups 133

Reference information on memory and registers 134

Trace .. 159

Introduction to using trace .. 159

Reasons for using trace .. 159

Briefly about trace .. 159

Requirements for using trace ... 160

Collecting and using trace data .. 160

Getting started with trace ... 160

Trace data collection using breakpoints ... 161

Searching in trace data ... 161

Browsing through trace data .. 162

Reference information on trace ... 162

Profiling .. 183

Introduction to the profiler .. 183

Reasons for using the profiler .. 183

Briefly about the profiler .. 184

Requirements for using the profiler ... 184

Using the profiler .. 184

Getting started using the profiler on function level 185

Getting started using the profiler on instruction level 185

Reference information on the profiler .. 186

Code coverage ... 191

Introduction to code coverage ... 191

Reasons for using code coverage ... 191

AFE1_AFE2-1:1

Contents

9

Briefly about code coverage .. 191

Requirements for using code coverage .. 191

Reference information on code coverage 191

Interrupts .. 195

Introduction to interrupts .. 195

Briefly about interrupt logging .. 195

Briefly about the interrupt simulation system 196

Interrupt characteristics .. 197

Interrupt simulation states .. 197

C-SPY system macros for interrupt simulation 199

Target-adapting the interrupt simulation system 199

Using the interrupt system .. 200

Simulating a simple interrupt ... 200

Simulating an interrupt in a multi-task system 201

Getting started using interrupt logging .. 202

Reference information on interrupts ... 202

C-SPY macros ... 215

Introduction to C-SPY macros ... 215

Reasons for using C-SPY macros .. 215

Briefly about using C-SPY macros .. 216

Briefly about setup macro functions and files 216

Briefly about the macro language .. 217

Using C-SPY macros ... 217

Registering C-SPY macros—an overview 218

Executing C-SPY macros—an overview ... 218

Using the Macro Configuration dialog box 219

Registering and executing using setup macros and setup files 220

Executing macros using Quick Watch .. 221

Executing a macro by connecting it to a breakpoint 222

Reference information on the macro language 223

Macro functions ... 223

Macro variables .. 224

Macro strings .. 224

AFE1_AFE2-1:1

10

Macro statements ... 225

Formatted output .. 226

Reference information on reserved setup macro function
names ... 228

Reference information on C-SPY system macros 229

The C-SPY Command Line Utility—cspybat 257

Using C-SPY in batch mode ... 257

Invocation syntax ... 257

Output ... 259

Using an automatically generated batch file 259

Summary of C-SPY command line options 259

General cspybat options .. 259

Options available for all C-SPY drivers .. 260

Options available for the simulator driver 260

Options available for the C-SPY hardware driver 260

Reference information on C-SPY command line options ... 260

Debugger options ... 267

Setting debugger options .. 267

Reference information on debugger options 268

Reference information on C-SPY hardware driver
options ... 272

Additional information on C-SPY drivers .. 275

Reference information on the C-SPY simulator 275

Reference information on the C-SPY emulator drivers 277

Resolving problems .. 286

Write failure during load .. 286

No contact with the target hardware .. 287

Slow stepping speed ... 287

Index ... 289

AFE1_AFE2-1:1

 11

Tables
1: Typographic conventions used in this guide ... 20

2: Naming conventions used in this guide .. 21

3: Driver differences .. 28

4: Emulator mode debugging functions ... 57

5: C-SPY assembler symbols expressions .. 81

6: Handling name conflicts between hardware registers and assembler labels 81

7: Available breakpoints in C-SPY hardware drivers ... 105

8: C-SPY macros for breakpoints .. 109

9: Supported graphs in the Timeline window ... 169

10: Project options for enabling the profiler ... 185

11: Project options for enabling code coverage .. 192

12: Timer interrupt settings ... 201

13: Examples of C-SPY macro variables .. 224

14: C-SPY setup macros ... 228

15: Summary of system macros .. 229

16: __cancelInterrupt return values ... 231

17: __disableInterrupts return values .. 232

18: __driverType return values ... 233

19: __enableInterrupts return values ... 233

20: __evaluate return values ... 234

21: __isBatchMode return values ... 234

22: __loadImage return values .. 235

23: __openFile return values ... 238

24: __readFile return values ... 240

25: __setCodeBreak return values .. 243

26: __setDataBreak return values ... 244

27: __setDataLogBreak return values ... 245

28: __setLogBreak return values .. 246

29: __setSimBreak return values .. 248

30: __setTraceStartBreak return values .. 249

31: __setTraceStopBreak return values .. 250

AFE1_AFE2-1:1

12

32: __sourcePosition return values ... 251

33: __unloadImage return values .. 254

34: cspybat parameters .. 257

35: Options specific to the C-SPY drivers you are using .. 267

AFE1_AFE2-1:1

 13

Figures
1: C-SPY and target systems ... 26

2: C-SPY Hardware debugger communication overview ... 30

3: Get Alternative File dialog box ... 35

4: Example applications .. 38

5: The Emulator Setting dialog box for the E8a emulator .. 40

6: The Firmware Location page for the E8/E8a emulator ... 41

7: The Connecting dialog box ... 41

8: The Power Supply dialog box for the E8/E8a emulator 42

9: The ID Code verification dialog box for the E8/E8a emulator 42

10: Debug menu .. 47

11: Images window ... 50

12: Images window context menu ... 51

13: Get Alternative File dialog box ... 52

14: Emulator Hardware Setup dialog box ... 55

15: C-SPY highlighting source location .. 64

16: C-SPY Disassembly window .. 66

17: Disassembly window context menu .. 68

18: Call Stack window .. 71

19: Call Stack window context menu .. 71

20: Terminal I/O window .. 72

21: Ctrl codes menu ... 73

22: Input Mode dialog box .. 73

23: Terminal I/O Log File dialog box ... 74

24: Debug Log window (message window) .. 74

25: Debug Log window context menu .. 75

26: Log File dialog box ... 75

27: Report Assert dialog box ... 76

28: Autostep settings dialog box ... 77

29: Viewing assembler variables in the Watch window ... 84

30: Auto window ... 86

31: Locals window .. 86

AFE1_AFE2-1:1

14

32: Watch window .. 87

33: Watch window context menu .. 88

34: Live Watch window .. 89

35: Statics window .. 90

36: Statics window context menu .. 91

37: Quick Watch window .. 92

38: Symbols window ... 93

39: Symbols window context menu .. 94

40: Resolve Symbol Ambiguity dialog box .. 95

41: Data Log window ... 96

42: Data Log Summary window ... 98

43: Breakpoint icons .. 104

44: Modifying breakpoints via the context menu .. 108

45: Breakpoints window .. 112

46: Breakpoints window context menu ... 112

47: Breakpoint Usage window .. 114

48: Code breakpoints dialog box ... 115

49: Execution Address Breakpoint dialog box .. 116

50: Software Breakpoint dialog box .. 118

51: Log breakpoints dialog box ... 119

52: Data breakpoints dialog box .. 121

53: Data Break Event dialog box .. 123

54: Data Log breakpoints dialog box .. 124

55: Immediate breakpoints dialog box .. 125

56: Enter Location dialog box ... 126

57: Resolve Source Ambiguity dialog box ... 128

58: Zones in C-SPY ... 131

59: Register Filter options ... 133

60: Register Filter options ... 133

61: Memory window ... 135

62: Memory window context menu .. 137

63: Memory Save dialog box .. 139

64: Memory Restore dialog box .. 140

65: Fill dialog box ... 140

AFE1_AFE2-1:1

Figures

15

66: Symbolic Memory window ... 142

67: Symbolic Memory window context menu .. 143

68: Stack window .. 144

69: Stack window context menu ... 146

70: Register window .. 148

71: SFR Setup window .. 150

72: SFR Setup window context menu ... 152

73: Edit SFR dialog box .. 153

74: Memory Access Setup dialog box ... 154

75: Edit Memory Access dialog box ... 156

76: Trace Event dialog box ... 163

77: The Trace window ... 165

78: Function Trace window .. 168

79: Timeline window with Call Stack graph ... 170

80: Timeline window with Data Log graph .. 171

81: Timeline window with Interrupt Log graph .. 172

82: Timeline window context menu (for the Call Stack Graph context menu) 173

83: Viewing Range dialog box .. 175

84: Trace Start breakpoints dialog box ... 176

85: Trace Stop breakpoints dialog box .. 177

86: Trace Expressions window .. 178

87: Find in Trace dialog box ... 179

88: Find in Trace window ... 181

89: Instruction count in Disassembly window .. 186

90: Function Profiler window .. 186

91: Function Profiler window context menu ... 189

92: Code Coverage window .. 192

93: Code coverage window context menu .. 194

94: Simulated interrupt configuration ... 197

95: Simulation states - example 1 ... 198

96: Simulation states - example 2 ... 198

97: Interrupt Setup dialog box ... 203

98: Edit Interrupt dialog box ... 204

99: Forced Interrupt window ... 206

AFE1_AFE2-1:1

16

100: Forced Interrupt window context menu .. 206

101: Interrupt Status window .. 207

102: Interrupt Log window ... 209

103: Interrupt Log window context menu ... 211

104: Interrupt Log Summary window .. 212

105: Macro Configuration dialog box ... 219

106: Quick Watch window .. 221

107: Debugger setup options ... 268

108: Debugger extra options ... 269

109: Debugger images options .. 270

110: Debugger plugin options ... 271

111: Emulator communication options ... 272

112: Download page .. 273

113: Simulator menu ... 275

114: The Emulator menu ... 277

115: Events window .. 279

116: Time Measurement Event dialog box ... 282

117: Interval Time Measurement Event dialog box .. 283

118: Interval Time Measurement window .. 285

AFE1_AFE2-1:1

 17

Preface
Welcome to the C-SPY® Debugging Guide for R32C. The purpose of this guide
is to help you fully use the features in the IAR C-SPY® Debugger for debugging
your application based on the R32C/100 microcomputer.

Who should read this guide
Read this guide if you plan to develop an application using IAR Embedded Workbench
and want to get the most out of the features available in C-SPY.

REQUIRED KNOWLEDGE

To use the tools in IAR Embedded Workbench, you should have working knowledge of:

● The architecture and instruction set of the R32C/100 microcomputer (refer to the
chip manufacturer's documentation)

● The C or C++ programming language

● Application development for embedded systems

● The operating system of your host computer.

For more information about the other development tools incorporated in the IDE, refer
to their respective documentation, see Other documentation, page 18.

What this guide contains
This is a brief outline and summary of the chapters in this guide:

● The IAR C-SPY Debugger introduces you to the C-SPY debugger and to the
concepts that are related to debugging in general and to C-SPY in particular. The
chapter also introduces the various C-SPY drivers. The chapter briefly shows the
difference in functionality that the various C-SPY drivers provide.

● Getting started using C-SPY helps you get started using C-SPY, which includes
setting up, starting, and adapting C-SPY for target hardware.

● Executing your application describes the conceptual differences between source
and disassembly mode debugging, the facilities for executing your application, and
finally, how you can handle terminal input and output.

● Variables and expressions describes the syntax of the expressions and variables
used in C-SPY, as well as the limitations on variable information. The chapter also
demonstrates the various methods for monitoring variables and expressions.

AFE1_AFE2-1:1

18

Other documentation

C-SPY® Debugging Guide
for R32C

● Breakpoints describes the breakpoint system and the various ways to set
breakpoints.

● Memory and registers shows how you can examine memory and registers.

● Collecting and using trace data describes how you can inspect the program flow up
to a specific state using trace data.

● Using the profiler describes how the profiler can help you find the functions in your
application source code where the most time is spent during execution.

● Code coverage describes how the code coverage functionality can help you verify
whether all parts of your code have been executed, thus identifying parts which have
not been executed.

● Interrupts contains detailed information about the C-SPY interrupt simulation
system and how to configure the simulated interrupts to make them reflect the
interrupts of your target hardware.

● Using C-SPY macros describes the C-SPY macro system, its features, the purposes
of these features, and how to use them.

● The C-SPY Command Line Utility—cspybat describes how to use C-SPY in batch
mode.

● Debugger options describes the options you must set before you start the C-SPY
debugger.

● Additional information on C-SPY drivers describes menus and features provided by
the C-SPY drivers not described in any dedicated topics.

Other documentation
User documentation is available as hypertext PDFs and as a context-sensitive online
help system in HTML format. You can access the documentation from the Information
Center or from the Help menu in the IAR Embedded Workbench IDE. The online help
system is also available via the F1 key.

USER AND REFERENCE GUIDES

The complete set of IAR Systems development tools is described in a series of guides.
Information about:

● System requirements and information about how to install and register the IAR
Systems products, is available in the booklet Quick Reference (available in the
product box) and the Installation and Licensing Guide.

● Getting started using IAR Embedded Workbench and the tools it provides, is
available in the guide Getting Started with IAR Embedded Workbench®.

AFE1_AFE2-1:1

Preface

19

● Using the IDE for project management and building, is available in the IDE Project
Management and Building Guide.

● Using the IAR C-SPY® Debugger, is available in the C-SPY® Debugging Guide for
R32C.

● Programming for the IAR C/C++ Compiler for R32C, is available in the IAR
C/C++ Compiler Reference Guide for R32C.

● Using the IAR XLINK Linker, the IAR XAR Library Builder, and the IAR XLIB
Librarian, is available in the IAR Linker and Library Tools Reference Guide.

● Programming for the IAR Assembler for R32C, is available in the R32C IAR
Assembler Reference Guide.

● Using the IAR DLIB Library, is available in the DLIB Library Reference
information, available in the online help system.

● Developing safety-critical applications using the MISRA C guidelines, is available
in the IAR Embedded Workbench® MISRA C:2004 Reference Guide or the IAR
Embedded Workbench® MISRA C:1998 Reference Guide.

Note: Additional documentation might be available depending on your product
installation.

THE ONLINE HELP SYSTEM

The context-sensitive online help contains:

● Information about project management and building in the IDE

● Information about debugging using the IAR C-SPY® Debugger

● Information about using the editor

● Reference information about the menus, windows, and dialog boxes in the IDE

● Compiler reference information

● Keyword reference information for the DLIB library functions. To obtain reference
information for a function, select the function name in the editor window and press
F1.

WEB SITES

Recommended web sites:

● The Renesas web site, www.renesas.com, that contains information and news about
the R32C/100 microcomputers.

● The IAR Systems web site, www.iar.com, that holds application notes and other
product information.

● The web site of the C standardization working group,
www.open-std.org/jtc1/sc22/wg14.

AFE1_AFE2-1:1

20

Document conventions

C-SPY® Debugging Guide
for R32C

● The web site of the C++ Standards Committee, www.open-std.org/jtc1/sc22/wg21.

● Finally, the Embedded C++ Technical Committee web site,
www.caravan.net/ec2plus, that contains information about the Embedded C++
standard.

Document conventions
When, in the IAR Systems documentation, we refer to the programming language C, the
text also applies to C++, unless otherwise stated.

When referring to a directory in your product installation, for example r32c\doc, the
full path to the location is assumed, for example c:\Program Files\IAR
Systems\Embedded Workbench 6.n\r32c\doc.

TYPOGRAPHIC CONVENTIONS

The IAR Systems documentation set uses the following typographic conventions:

Style Used for

computer • Source code examples and file paths.
• Text on the command line.
• Binary, hexadecimal, and octal numbers.

parameter A placeholder for an actual value used as a parameter, for example
filename.h where filename represents the name of the file.

[option] An optional part of a command.

[a|b|c] An optional part of a command with alternatives.

{a|b|c} A mandatory part of a command with alternatives.

bold Names of menus, menu commands, buttons, and dialog boxes that
appear on the screen.

italic • A cross-reference within this guide or to another guide.
• Emphasis.

… An ellipsis indicates that the previous item can be repeated an arbitrary
number of times.

Identifies instructions specific to the IAR Embedded Workbench® IDE
interface.

Identifies instructions specific to the command line interface.

Identifies helpful tips and programming hints.

Table 1: Typographic conventions used in this guide

AFE1_AFE2-1:1

Preface

21

NAMING CONVENTIONS

The following naming conventions are used for the products and tools from IAR
Systems®, when referred to in the documentation:

Identifies warnings.

Brand name Generic term

IAR Embedded Workbench® for R32C IAR Embedded Workbench®

IAR Embedded Workbench® IDE for R32C the IDE

IAR C-SPY® Debugger for R32C C-SPY, the debugger

IAR C-SPY® Simulator the simulator

IAR C/C++ Compiler™ for R32C the compiler

IAR Assembler™ for R32C the assembler

IAR XLINK Linker™ XLINK, the linker

IAR XAR Library Builder™ the library builder

IAR XLIB Librarian™ the librarian

IAR DLIB Library™ the DLIB library

Table 2: Naming conventions used in this guide

Style Used for

Table 1: Typographic conventions used in this guide (Continued)

AFE1_AFE2-1:1

22

Document conventions

C-SPY® Debugging Guide
for R32C

AFE1_AFE2-1:1

 23

The IAR C-SPY Debugger
This chapter introduces you to the IAR C-SPY® Debugger and to the
concepts that are related to debugging in general and to C-SPY in particular.
The chapter also introduces the various C-SPY drivers. More specifically, this
means:

● Introduction to C-SPY

● Debugger concepts

● C-SPY drivers overview

● The IAR C-SPY Simulator

● The C-SPY Hardware debugger drivers

Introduction to C-SPY
This section covers these topics:

● An integrated environment

● General C-SPY debugger features

● RTOS awareness.

AN INTEGRATED ENVIRONMENT

C-SPY is a high-level-language debugger for embedded applications. It is designed for
use with the IAR Systems compilers and assemblers, and is completely integrated in the
IDE, providing development and debugging within the same application. This will give
you possibilities such as:

● Editing while debugging. During a debug session, you can make corrections directly
in the same source code window that is used for controlling the debugging. Changes
will be included in the next project rebuild.

● Setting breakpoints at any point during the development cycle. You can inspect and
modify breakpoint definitions also when the debugger is not running, and
breakpoint definitions flow with the text as you edit. Your debug settings, such as
watch properties, window layouts, and register groups will be preserved between
your debug sessions.

AFE1_AFE2-1:1

24

Introduction to C-SPY

C-SPY® Debugging Guide
for R32C

All windows that are open in the Embedded Workbench workspace will stay open when
you start the C-SPY Debugger. In addition, a set of C-SPY-specific windows are opened.

GENERAL C-SPY DEBUGGER FEATURES

Because IAR Systems provides an entire toolchain, the output from the compiler and
linker can include extensive debug information for the debugger, resulting in good
debugging possibilities for you.

C-SPY offers these general features:

● Source and disassembly level debugging

C-SPY allows you to switch between source and disassembly debugging as required,
for both C or C++ and assembler source code.

● Single-stepping on a function call level

Compared to traditional debuggers, where the finest granularity for source level
stepping is line by line, C-SPY provides a finer level of control by identifying every
statement and function call as a step point. This means that each function
call—inside expressions, and function calls that are part of parameter lists to other
functions—can be single-stepped. The latter is especially useful when debugging
C++ code, where numerous extra function calls are made, for example to object
constructors.

● Code and data breakpoints

The C-SPY breakpoint system lets you set breakpoints of various kinds in the
application being debugged, allowing you to stop at locations of particular interest.
For example, you set breakpoints to investigate whether your program logic is correct
or to investigate how and when the data changes.

● Monitoring variables and expressions

For variables and expressions there is a wide choice of facilities. You can easily
monitor values of a specified set of variables and expressions, continuously or on
demand. You can also choose to monitor only local variables, static variables, etc.

● Container awareness

When you run your application in C-SPY, you can view the elements of library data
types such as STL lists and vectors. This gives you a very good overview and
debugging opportunities when you work with C++ STL containers.

● Call stack information

The compiler generates extensive call stack information. This allows the debugger to
show, without any runtime penalty, the complete stack of function calls wherever the
program counter is. You can select any function in the call stack, and for each
function you get valid information for local variables and available registers.

AFE1_AFE2-1:1

The IAR C-SPY Debugger

25

● Powerful macro system

C-SPY includes a powerful internal macro system, to allow you to define complex
sets of actions to be performed. C-SPY macros can be used on their own or in
conjunction with complex breakpoints and—if you are using the simulator—the
interrupt simulation system to perform a wide variety of tasks.

Additional general C-SPY debugger features

This list shows some additional features:

● Threaded execution keeps the IDE responsive while running the target application

● Automatic stepping

● The source browser provides easy navigation to functions, types, and variables

● Extensive type recognition of variables

● Configurable registers (CPU and peripherals) and memory windows

● Graphical stack view with overflow detection

● Support for code coverage and function level profiling

● The target application can access files on the host PC using file I/O

● UBROF, Intel-extended, and Motorola input formats supported

● Optional terminal I/O emulation.

RTOS AWARENESS

C-SPY supports real-time OS aware debugging.

These operating systems are currently supported:

● SEGGER embOS

● Micrium uC/OS

RTOS plugin modules can be provided by IAR Systems, and by third-party suppliers.
Contact your software distributor or IAR Systems representative, alternatively visit the
IAR Systems web site, for information about supported RTOS modules.

A C-SPY RTOS awareness plugin module gives you a high level of control and visibility
over an application built on top of an RTOS. It displays RTOS-specific items like task
lists, queues, semaphores, mailboxes, and various RTOS system variables. Task-specific
breakpoints and task-specific stepping make it easier to debug tasks.

A loaded plugin will add its own menu, set of windows, and buttons when a debug
session is started (provided that the RTOS is linked with the application). For
information about other RTOS awareness plugin modules, refer to the manufacturer of
the plugin module.

AFE1_AFE2-1:1

26

Debugger concepts

C-SPY® Debugging Guide
for R32C

Debugger concepts
This section introduces some of the concepts and terms that are related to debugging in
general and to C-SPY in particular. This section does not contain specific information
related to C-SPY features. Instead, you will find such information in the other chapters
of this documentation. The IAR Systems user documentation uses the terms described
in this section when referring to these concepts.

C-SPY AND TARGET SYSTEMS

You can use C-SPY to debug either a software target system or a hardware target system.

This figure gives an overview of C-SPY and possible target systems:

Figure 1: C-SPY and target systems

Note: In IAR Embedded Workbench for R32C, there are no ROM-monitor drivers.

THE DEBUGGER

The debugger, for instance C-SPY, is the program that you use for debugging your
applications on a target system.

THE TARGET SYSTEM

The target system is the system on which you execute your application when you are
debugging it. The target system can consist of hardware, either an evaluation board or

AFE1_AFE2-1:1

The IAR C-SPY Debugger

27

your own hardware design. It can also be completely or partially simulated by software.
Each type of target system needs a dedicated C-SPY driver.

THE APPLICATION

A user application is the software you have developed and which you want to debug
using C-SPY.

C-SPY DEBUGGER SYSTEMS

C-SPY consists of both a general part which provides a basic set of debugger features,
and a target-specific back end. The back end consists of two components: a processor
module—one for every microcontroller, which defines the properties of the
microcontroller, and a C-SPY driver. The C-SPY driver is the part that provides
communication with and control of the target system. The driver also provides the user
interface—menus, windows, and dialog boxes—to the functions provided by the target
system, for instance, special breakpoints. Typically, there are three main types of C-SPY
drivers:

● Simulator driver

● ROM-monitor driver

● Emulator driver.

C-SPY is available with a simulator driver, and depending on your product package,
optional drivers for hardware debugger systems. For an overview of the available C-SPY
drivers and the functionality provided by each driver, see C-SPY drivers overview, page
28.

THE ROM-MONITOR PROGRAM

The ROM-monitor program is a piece of firmware that is loaded to non-volatile memory
on your target hardware; it runs in parallel with your application. The ROM-monitor
communicates with the debugger and provides services needed for debugging the
application, for instance stepping and breakpoints.

THIRD-PARTY DEBUGGERS

You can use a third-party debugger together with the IAR Systems toolchain as long as
the third-party debugger can read any of the output formats provided by XLINK, such
as UBROF, ELF/DWARF, COFF, Intel-extended, Motorola, or any other available
format. For information about which format to use with a third-party debugger, see the
user documentation supplied with that tool.

AFE1_AFE2-1:1

28

C-SPY drivers overview

C-SPY® Debugging Guide
for R32C

C-SPY PLUGIN MODULES

C-SPY is designed as a modular architecture with an open SDK that can be used for
implementing additional functionality to the debugger in the form of plugin modules.
These modules can be seamlessly integrated in the IDE.

Plugin modules are provided by IAR Systems, or can be supplied by third-party vendors.
Examples of such modules are:

● Code Coverage, which is integrated in the IDE.

● The various C-SPY drivers for debugging using certain debug systems.

● RTOS plugin modules for support for real-time OS aware debugging.

● C-SPYLink that bridges IAR visualSTATE and IAR Embedded Workbench to make
true high-level state machine debugging possible directly in C-SPY, in addition to
the normal C level symbolic debugging. For more information, see the
documentation provided with IAR visualSTATE.

For more information about the C-SPY SDK, contact IAR Systems.

C-SPY drivers overview
At the time of writing this guide, the IAR C-SPY Debugger for the R32C/100
microcomputers is available with drivers for these target systems and evaluation boards:

● Simulator

● E8a

● E30

● E30A.

DIFFERENCES BETWEEN THE C-SPY DRIVERS

This table summarizes the key differences between the C-SPY drivers:

Feature Simulator E8a E30 E30A

Code breakpoints Unlimited x x x

Data breakpoints x -- x x

Execution in real time -- x x x

Zero memory footprint x -- x x

Simulated interrupts x -- -- --

Real interrupts -- x x x

Interrupt logging x -- -- --

Table 3: Driver differences

AFE1_AFE2-1:1

The IAR C-SPY Debugger

29

1 Not during single stepping.

2 Limited during branch source and destination information about data accesses, and a
maximum of 512 recorded events.

The IAR C-SPY Simulator
The C-SPY Simulator simulates the functions of the target processor entirely in
software, which means that you can debug the program logic long before any hardware
is available. Because no hardware is required, it is also the most cost-effective solution
for many applications.

SIMULATOR FEATURES

In addition to the general features in C-SPY, the simulator also provides:

● Instruction-level simulation

● Memory configuration and validation

● Interrupt simulation

● Peripheral simulation (using the C-SPY macro system in conjunction with
immediate breakpoints).

The C-SPY Hardware debugger drivers
C-SPY can connect to a hardware debugger using a C-SPY Hardware debugger driver
as an interface. The C-SPY Hardware debugger drivers are automatically installed
during the installation of IAR Embedded Workbench.

IAR Embedded Workbench for R32C comes with several C-SPY Hardware debugger
drivers and you use the driver that matches the hardware debugger you are using.

Data logging x -- -- --

Live watch -- x x x

Cycle counter x -- x1 x1

Code coverage x -- -- --

Data coverage x -- -- --

Function/instruction profiling x -- -- --

Trace x -- x2 x2

Feature Simulator E8a E30 E30A

Table 3: Driver differences (Continued)

AFE1_AFE2-1:1

30

The C-SPY Hardware debugger drivers

C-SPY® Debugging Guide
for R32C

COMMUNICATION OVERVIEW

Most target systems have a debug probe or a debug adapter connected between the host
computer and the evaluation board.

The C-SPY Hardware debugger driver uses USB to communicate with the hardware
debugger. The hardware debugger communicates with the interface on the
microcontroller.

Figure 2: C-SPY Hardware debugger communication overview

For more information, refer to the documentation supplied with the hardware debugger.

When a debugging session is started, your application is automatically downloaded and
programmed into flash memory. You can disable this feature, if necessary.

Hardware installation

USB drivers are automatically installed during the installation of IAR Embedded
Workbench. If you need to re-install them, they are available both on the installation CD
and in the install_dir\drivers\Renesas directory of your IAR Systems product
installation.

C-SPY debugger
C-SPY driver

Emulator interface

Emulator

USB connection

AFE1_AFE2-1:1

 31

Getting started using
C-SPY
This chapter helps you get started using C-SPY®. More specifically, this means:

● Setting up C-SPY

● Starting C-SPY

● Adapting for target hardware

● Running example projects

● Reference information on starting C-SPY.

Setting up C-SPY
This section describes how to set up C-SPY.

More specifically, you will get information about:

● Setting up for debugging

● Executing from reset

● Using a setup macro file

● Selecting a device description file

● Loading plugin modules.

SETTING UP FOR DEBUGGING

1 Install a USB driver if your C-SPY driver requires it. For more information, see:

● Hardware installation, page 30

2 Before you start C-SPY, choose Project>Options>Debugger>Setup and select the
C-SPY driver that matches your debugger system: simulator or a hardware debugger
system.

Note: You can only choose a driver you have installed on your computer.

3 In the Category list, select the appropriate C-SPY driver and make your settings.

For information about these options, see Debugger options, page 267.

AFE1_AFE2-1:1

32

Setting up C-SPY

C-SPY® Debugging Guide
for R32C

4 Click OK.

5 Choose Tools>Options>Debugger to configure:

● The debugger behavior

● The debugger’s tracking of stack usage.

For more information about these options, see the IDE Project Management and
Building Guide.

See also Adapting for target hardware, page 36.

EXECUTING FROM RESET

The Run to option—available on the Debugger>Setup page—specifies a location you
want C-SPY to run to when you start a debug session as well as after each reset. C-SPY
will place a temporary breakpoint at this location and all code up to this point is executed
before stopping at the location.

The default location to run to is the main function. Type the name of the location if you
want C-SPY to run to a different location. You can specify assembler labels or whatever
can be evaluated to such, for instance function names.

If you leave the check box empty, the program counter will then contain the regular
hardware reset address at each reset.

If no breakpoints are available when C-SPY starts, a warning message notifies you that
single stepping will be required and that this is time-consuming. You can then continue
execution in single-step mode or stop at the first instruction. If you choose to stop at the
first instruction, the debugger starts executing with the PC (program counter) at the
default reset location instead of the location you typed in the Run to box.

Note: This message will never be displayed in the C-SPY Simulator, where breakpoints
are not limited.

USING A SETUP MACRO FILE

A setup macro file is a macro file that you choose to load automatically when C-SPY
starts. You can define the setup macro file to perform actions according to your needs,
using setup macro functions and system macros. Thus, if you load a setup macro file you
can initialize C-SPY to perform actions automatically.

For more information about setup macro files and functions, see Introduction to C-SPY
macros, page 215. For an example of how to use a setup macro file, see the chapter
Initializing target hardware before C-SPY starts, page 37.

To register a setup macro file:

1 Before you start C-SPY, choose Project>Options>Debugger>Setup.

AFE1_AFE2-1:1

Getting started using C-SPY

33

2 Select Use macro file and type the path and name of your setup macro file, for
example Setup.mac. If you do not type a filename extension, the extension mac is
assumed.

SELECTING A DEVICE DESCRIPTION FILE

C-SPY uses device description files to handle device-specific information.

A default device description file is automatically used based on your project settings. If
you want to override the default file, you must select your device description file. Device
description files are provided in the R32C\config directory and they have the filename
extension ddf.

For more information about device description files, see Adapting for target hardware,
page 36.

To override the default device description file:

1 Before you start C-SPY, choose Project>Options>Debugger>Setup.

2 Enable the use of a device description file and select a file using the Device
description file browse button.

LOADING PLUGIN MODULES

On the Plugins page you can specify C-SPY plugin modules to load and make available
during debug sessions. Plugin modules can be provided by IAR Systems, and by
third-party suppliers. Contact your software distributor or IAR Systems representative,
or visit the IAR Systems web site, for information about available modules.

For more information, see Plugins, page 271.

Starting C-SPY
When you have set up the debugger, you are ready to start a debug session; this section
describes various ways to start C-SPY.

More specifically, you will get information about:

● Starting a debug session

● Loading executable files built outside of the IDE

● Starting a debug session with source files missing

● Loading multiple images.

AFE1_AFE2-1:1

34

Starting C-SPY

C-SPY® Debugging Guide
for R32C

STARTING A DEBUG SESSION

You can choose to start a debug session with or without loading the current project.

To start C-SPY and load the current project, click the Download and Debug button.
Alternatively, choose Project>Download and Debug.

To start C-SPY without reloading the current project, click the Debug without
Downloading button. Alternatively, choose Project>Debug without Downloading.

LOADING EXECUTABLE FILES BUILT OUTSIDE OF THE IDE

You can also load C-SPY with an application that was built outside the IDE, for example
applications built on the command line. To load an externally built executable file and
to set build options you must first create a project for it in your workspace.

To create a project for an externally built file:

1 Choose Project>Create New Project, and specify a project name.

2 To add the executable file to the project, choose Project>Add Files and make sure to
choose All Files in the Files of type drop-down list. Locate the executable file.

3 To start the executable file, click the Download and Debug button. The project can be
reused whenever you rebuild your executable file.

The only project options that are meaningful to set for this kind of project are options in
the General Options and Debugger categories. Make sure to set up the general project
options in the same way as when the executable file was built.

STARTING A DEBUG SESSION WITH SOURCE FILES MISSING

Normally, when you use the IAR Embedded Workbench IDE to edit source files, build
your project, and start the debug session, all required files are available and the process
works as expected.

AFE1_AFE2-1:1

Getting started using C-SPY

35

However, if C-SPY cannot automatically find the source files, for example if the
application was built on another computer, the Get Alternative File dialog box is
displayed:

Figure 3: Get Alternative File dialog box

Typically, you can use the dialog box like this:

● The source files are not available: Click If possible, don’t show this dialog again
and then click Skip. C-SPY will assume that there simply is no source file available.
The dialog box will not appear again, and the debug session will not try to display
the source code.

● Alternative source files are available at another location: Specify an alternative
source code file, click If possible, don’t show this dialog again, and then click Use
this file. C-SPY will assume that the alternative file should be used. The dialog box
will not appear again, unless a file is needed for which there is no alternative file
specified and which cannot be located automatically.

If you restart the IAR Embedded Workbench IDE, the Get Alternative File dialog box
will be displayed again once even if you have clicked If possible, don’t show this
dialog again. This gives you an opportunity to modify your previous settings.

For more information, see Get Alternative File dialog box, page 52.

LOADING MULTIPLE IMAGES

Normally, a debuggable application consists of exactly one file that you debug.
However, you can also load additional debug files (images). This means that the
complete program consists of several images.

Typically, this is useful if you want to debug your application in combination with a
prebuilt ROM image that contains an additional library for some platform-provided
features. The ROM image and the application are built using separate projects in the
IAR Embedded Workbench IDE and generate separate output files.

AFE1_AFE2-1:1

36

Adapting for target hardware

C-SPY® Debugging Guide
for R32C

If more than one image has been loaded, you will have access to the combined debug
information for all the loaded images. In the Images window you can choose whether
you want to have access to debug information for one image or for all images.

To load additional images at C-SPY startup:

1 Choose Project>Options>Debugger>Images and specify up to three additional
images to be loaded. For more information, see Images, page 270.

2 Start the debug session.

To load additional images at a specific moment:

Use the __loadImage system macro and execute it using either one of the methods
described in Using C-SPY macros, page 217.

To display a list of loaded images:

Choose Images from the View menu. The Images window is displayed, see Images
window, page 50.

Adapting for target hardware
This section provides information about how to describe the target hardware to C-SPY,
and how you can make C-SPY initialize the target hardware before your application is
downloaded to memory.

More specifically, you will get information about:

● Modifying a device description file

● Initializing target hardware before C-SPY starts

MODIFYING A DEVICE DESCRIPTION FILE

C-SPY uses device description files provided with the product to handle several of the
target-specific adaptations, see Selecting a device description file, page 33. They contain
device-specific information such as:

● Memory information for device-specific memory zones, see C-SPY memory zones,
page 130.

● Definitions of memory-mapped peripheral units, device-specific CPU registers, and
groups of these

● Definitions for device-specific interrupts, which makes it possible to simulate these
interrupts in the C-SPY simulator; see Interrupts, page 195.

● Information used by the E8a, E30, and E30A emulators.

AFE1_AFE2-1:1

Getting started using C-SPY

37

Normally, you do not need to modify the device description file. However, if the
predefinitions are not sufficient for some reason, you can edit the file. Note, however,
that the format of these descriptions might be updated in future upgrade versions of the
product.

Make a copy of the device description file that best suits your needs, and modify it
according to the description in the file.

For information about how to load a device description file, see Selecting a device
description file, page 33.

INITIALIZING TARGET HARDWARE BEFORE C-SPY STARTS

You can use C-SPY macros to initialize target hardware before C-SPY starts. For
example, if your hardware uses external memory that must be enabled before code can
be downloaded to it, C-SPY needs a macro to perform this action before your
application can be downloaded. For example:

1 Create a new text file and define your macro function. For example, a macro that
enables external SDRAM might look like this:

/* Your macro function. */
enableExternalSDRAM()
{
 __message "Enabling external SDRAM\n";
 __writeMemory32(/* Place your code here. */);
 /* And more code here, if needed. */
}

/* Setup macro determines time of execution. */
execUserPreload()
{
 enableExternalSDRAM();
}

Because the built-in execUserPreload setup macro function is used, your macro
function will be executed directly after the communication with the target system is
established but before C-SPY downloads your application.

2 Save the file with the filename extension mac.

3 Before you start C-SPY, choose Project>Options>Debugger and click the Setup tab.

4 Select the option Use Setup file and choose the macro file you just created.

Your setup macro will now be loaded during the C-SPY startup sequence.

AFE1_AFE2-1:1

38

Running example projects

C-SPY® Debugging Guide
for R32C

DOWNLOADING FIRMWARE

If you need to download new firmware, for example if you are changing the processor
configuration or if you need to upgrade the firmware, choose Emulator>Download
Firmware. The emulator firmware files have the filename extension .s and are located
in subdirectories of the r32c\config\Renesas directory of your product installation.

Running example projects
IAR Embedded Workbench comes with example applications. You can use these
examples to get started using the development tools from IAR Systems or simply to
verify that contact has been established with your target board. You can also use the
examples as a starting point for your application project.

You can find the examples in the R32C\examples directory. The examples are ready to
be used as is. They are supplied with ready-made workspace files, together with source
code files and all other related files.

RUNNING AN EXAMPLE PROJECT

To run an example project:

1 Choose Help>Information Center and click EXAMPLE PROJECTS.

2 Browse to the example that matches the specific evaluation board or starter kit you are
using.

Figure 4: Example applications

Click the Open Project button.

AFE1_AFE2-1:1

Getting started using C-SPY

39

3 In the dialog box that appears, choose a destination folder for your project location.
Click Select to confirm your choice.

4 The available example projects are displayed in the workspace window. Select one of
the projects, and if it is not the active project (highlighted in bold), right-click it and
choose Set As Active from the context menu.

5 To view the project settings, select the project and choose Options from the context
menu. Verify the settings for Device and Debugger>Setup>Driver. As for other
settings, the project is set up to suit the target system you selected.

For more information about the C-SPY options and how to configure C-SPY to interact
with the target board, see Debugger options, page 267.

Click OK to close the project Options dialog box.

6 To compile and link the application, choose Project>Make or click the Make button.

7 To start C-SPY, choose Project>Debug or click the Download and Debug button. If
C-SPY fails to establish contact with the target system, see Resolving problems, page
286.

8 Choose Debug>Go or click the Go button to start the application.

Click the Stop button to stop execution.

Connecting to the target board, E8a
To establish a connection to the target board, you must follow this procedure:

1 To select the device that matches your target system, choose
Project>Options>General Options>Target.

2 Select the E8a driver from the Project>Options>Debugger>Setup>Driver dropdown
list.

3 Build the project if it has not been built and choose Project>Debug to start C-SPY.

AFE1_AFE2-1:1

40

Connecting to the target board, E8a

C-SPY® Debugging Guide
for R32C

4 The Emulator Setting dialog box is displayed.

Figure 5: The Emulator Setting dialog box for the E8a emulator

Select your MCU group and device from the drop-down lists. On the MCU Setting and
Communication Baud Rate pages, you do not need to make any settings at this point.
See also Emulator Setting, page 53.

5 If the Firmware Location & WDT dialog box is displayed, you must confirm the
placement of code and data on the target microcontroller. If your application uses a
watchdog timer, select the Debugging of program that uses WDT option to cause the
watchdog timer to be refreshed when your application is running.

If you use the default device-specific XLINK linker command file, you do not need to
change any settings.

AFE1_AFE2-1:1

Getting started using C-SPY

41

Note: Make sure that your application is not downloaded to the firmware location.

Figure 6: The Firmware Location page for the E8/E8a emulator

If this dialog box is not displayed, skip this step.

Click OK in the Emulator Setting dialog box to save your settings.

6 The Connecting dialog box is displayed and the emulator connection is started.

Figure 7: The Connecting dialog box

AFE1_AFE2-1:1

42

Connecting to the target board, E8a

C-SPY® Debugging Guide
for R32C

7 If you are prompted to confirm that the target board is supplied with power, select the
check box and the correct voltage.

Figure 8: The Power Supply dialog box for the E8/E8a emulator

If this dialog box is not displayed, skip this step.

Note: Before you connect the target board to a power supply, check the power
specifications and that there are no short circuits. Incorrect operation might damage the
board and the emulator.

8 If the ID Code verification dialog box is displayed, enter the hexadecimal ID security
code for the flash memory.

Figure 9: The ID Code verification dialog box for the E8/E8a emulator

When the emulator is ready to be used, Connected will be printed in the IAR
Embedded Workbench Debug Log window together with the number of available
hardware and software breakpoints.

MAINTAINING THE CONNECTION TO THE HARDWARE

When a debug session is started, a connection to the hardware is established and an
initialization routine is executed. The initialization sets the emulator options for your
target system.

When you start a debug session with the same hardware as the previous session and
without closing the IDE between the debug sessions, C-SPY can skip the initialization

AFE1_AFE2-1:1

Getting started using C-SPY

43

to save time. For information on how to set this behavior in C-SPY, see Emulator
Setting, page 53, specifically the description of the option Do not show this dialog box
again. If you set this option, the connection to the hardware is maintained and the
initialization is not repeated. This option is mirrored in the menu command Show
Emulator Setting, see the Emulator menu, page 277.

Connecting to the target board, E30/E30A
To establish a connection to the target board, you must follow this procedure:

1 To select the device that matches your target system, choose
Project>Options>General Options>Target.

2 Select the driver that matches your emulator on the
Project>Options>Debugger>Setup page. Click OK to close the Options dilog box.

3 To compile and link the application, choose Project>Make or click the Make button.

4 To start C-SPY, choose Project>Debug or click the Download and Debug button.

5 Before C-SPY is started for the first time in a new project, and when you change the
device, the hardware must be set up. If you have not already set up the hardware by
choosing Emulator>Hardware Setup, this dialog box will be displayed when you
start the debug session:

Click OK to enter the Hardware Setup dialog box.

AFE1_AFE2-1:1

44

Connecting to the target board, E30/E30A

C-SPY® Debugging Guide
for R32C

6 The Hardware Setup dialog box is displayed.

Make sure that the setting of Xin matches your hardware. The settings of PLL and CCR
must match the MCU initialization in your application code. See also Hardware Setup,
page 55.

Note: This figure reflects the C-SPY E30A driver. Some of the options are not available
when using the C-SPY E30 driver.

AFE1_AFE2-1:1

Getting started using C-SPY

45

7 A device can be read-protected with an ID code. If this is the case, the ID Code
Verification dialog box is displayed.

To debug a read-protected device, enter the correct seven bytes in hexadecimal notation.
To protect the device, redefine the ID Code symbols in the extended linker configuration
file. When the project is linked, this will reprogram the ID code in the internal flash
ROM.

8 When you are asked to reset the MCU, reset it and then click OK. C-SPY will
download your application to the target system.

Reference information on starting C-SPY
This section gives reference information about these windows and dialog boxes:

● C-SPY Debugger main window, page 45

● Images window, page 50

● Get Alternative File dialog box, page 52

● Emulator Setting, page 53

● Hardware Setup, page 55

See also:

● Tools options for the debugger in the IDE Project Management and Building Guide.

C-SPY Debugger main window
When you start a debug session, these debugger-specific items appear in the main IAR
Embedded Workbench IDE window:

● A dedicated Debug menu with commands for executing and debugging your
application

AFE1_AFE2-1:1

46

Reference information on starting C-SPY

C-SPY® Debugging Guide
for R32C

● Depending on the C-SPY driver you are using, a driver-specific menu, often
referred to as the Driver menu in this documentation. Typically, this menu contains
menu commands for opening driver-specific windows and dialog boxes.

● A special debug toolbar

● A special trace setup toolbar

● Several windows and dialog boxes specific to C-SPY.

The C-SPY main window might look different depending on which components of the
product installation you are using.

Menu bar

These menus are available during a debug session:

Debug

Provides commands for executing and debugging the source application. Most
of the commands are also available as icon buttons on the debug toolbar.

Simulator

Provides access to the dialog boxes for setting up interrupt simulation and
memory access checking. This menu is only available when the C-SPY
Simulator is used, see Simulator menu, page 275.

Emulator

Provides commands specific to the E8a, E30, and E30A emulator drivers. This
menu is only available when one of the C-SPY emulator drivers is used, see
Emulator menu, page 277.

AFE1_AFE2-1:1

Getting started using C-SPY

47

Debug menu

The Debug menu is available during a debug session. The Debug menu provides
commands for executing and debugging the source application. Most of the commands
are also available as icon buttons on the debug toolbar.

Figure 10: Debug menu

These commands are available:

Go F5

Executes from the current statement or instruction until a breakpoint or program
exit is reached.

Break

Stops the application execution.

Reset

Resets the target processor.

Stop Debugging (Ctrl+Shift+D)

Stops the debugging session and returns you to the project manager.

Step Over (F10)

Executes the next statement, function call, or instruction, without entering C or
C++ functions or assembler subroutines.

Step Into (F11)

Executes the next statement or instruction, or function call, entering C or C++
functions or assembler subroutines.

AFE1_AFE2-1:1

48

Reference information on starting C-SPY

C-SPY® Debugging Guide
for R32C

Step Out (Shift+F11)

Executes from the current statement up to the statement after the call to the
current function.

Next Statement

Executes directly to the next statement without stopping at individual function
calls.

Run to Cursor

Executes from the current statement or instruction up to a selected statement or
instruction.

Autostep

Displays a dialog box where you can customize and perform autostepping, see
Autostep settings dialog box, page 77.

Set Next Statement

Moves the program counter directly to where the cursor is, without executing
any source code. Note, however, that this creates an anomaly in the program
flow and might have unexpected effects.

C++ Exceptions>
Break on Throw

This menu command is not supported by your product package.

C++ Exceptions>
Break on Uncaught Exception

This menu command is not supported by your product package.

Memory>Save

Displays a dialog box where you can save the contents of a specified memory
area to a file, see Memory Save dialog box, page 139.

Memory>Restore

Displays a dialog box where you can load the contents of a file in, for example
Intel-extended or Motorola s-record format to a specified memory zone, see
Memory Restore dialog box, page 140.

Refresh

Refreshes the contents of all debugger windows. Because window updates are
automatic, this is needed only in unusual situations, such as when target memory
is modified in ways C-SPY cannot detect. It is also useful if code that is
displayed in the Disassembly window is changed.

AFE1_AFE2-1:1

Getting started using C-SPY

49

Macros

Displays a dialog box where you can list, register, and edit your macro files and
functions, see Using the Macro Configuration dialog box, page 219.

Logging>Set Log file

Displays a dialog box where you can choose to log the contents of the Debug
Log window to a file. You can select the type and the location of the log file. You
can choose what you want to log: errors, warnings, system information, user
messages, or all of these. See Log File dialog box, page 75.

Logging>
Set Terminal I/O Log file

Displays a dialog box where you can choose to log simulated target access
communication to a file. You can select the destination of the log file. See
Terminal I/O Log File dialog box, page 74

C-SPY windows

Depending on the C-SPY driver you are using, these windows specific to C-SPY are
available during a debug session:

● C-SPY Debugger main window

● Disassembly window

● Memory window

● Symbolic Memory window

● Register window

● Watch window

● Locals window

● Auto window

● Live Watch window

● Quick Watch window

● Statics window

● Call Stack window

● Trace window

● Function Trace window

● Timeline window

● Terminal I/O window

● Code Coverage window

● Function Profiler window

● Images window

AFE1_AFE2-1:1

50

Reference information on starting C-SPY

C-SPY® Debugging Guide
for R32C

● Stack window

● Symbols window.

Additional windows are available depending on which C-SPY driver you are using.

Editing in C-SPY windows

You can edit the contents of the Memory, Symbolic Memory, Register, Auto, Watch,
Locals, Statics, Live Watch, and Quick Watch windows.

Use these keyboard keys to edit the contents of these windows:

In windows where you can edit the Expression field, you can specify the number of
elements to be displayed in the field by adding a semicolon followed by an integer. For
example, to display only the three first elements of an array named myArray, or three
elements in sequence starting with the element pointed to by a pointer, write:

myArray;3

Optionally, add a comma and another integer that specifies which element to start with.
For example, to display elements 10–14, write:

myArray;5,10

Images window
The Images window is available from the View menu.

Figure 11: Images window

The Images window lists all currently loaded images (debug files).

Normally, a source application consists of exactly one image that you debug. However,
you can also load additional images. This means that the complete debuggable unit
consists of several images.

Enter Makes an item editable and saves the new value.

Esc Cancels a new value.

AFE1_AFE2-1:1

Getting started using C-SPY

51

Requirements

None; this window is always available.

Display area

C-SPY can either use debug information from all of the loaded images simultaneously,
or from one image at a time. Double-click on a row to show information only for that
image. The current choice is highlighted.

This area lists the loaded images in these columns:

Name

The name of the loaded image.

Path

The path to the loaded image.

Context menu

This context menu is available:

Figure 12: Images window context menu

These commands are available:

Show all images

Shows debug information for all loaded debug images.

Show only image

Shows debug information for the selected debug image.

Related information

For related information, see:

● Loading multiple images, page 35

● Images, page 270

● __loadImage, page 234.

AFE1_AFE2-1:1

52

Reference information on starting C-SPY

C-SPY® Debugging Guide
for R32C

Get Alternative File dialog box
The Get Alternative File dialog box is displayed if C-SPY cannot automatically find
the source files to be loaded, for example if the application was built on another
computer.

Figure 13: Get Alternative File dialog box

Could not find the following source file

The missing source file.

Suggested alternative

Specify an alternative file.

Use this file

After you have specified an alternative file, Use this file establishes that file as the alias
for the requested file. Note that after you have chosen this action, C-SPY will
automatically locate other source files if these files reside in a directory structure similar
to the first selected alternative file.

The next time you start a debug session, the selected alternative file will be preloaded
automatically.

Skip

C-SPY will assume that the source file is not available for this debug session.

If possible, don’t show this dialog again

Instead of displaying the dialog box again for a missing source file, C-SPY will use the
previously supplied response.

Related information

For related information, see Starting a debug session with source files missing, page 34.

AFE1_AFE2-1:1

Getting started using C-SPY

53

Emulator Setting
The Emulator Setting dialog box is available from the Emulator menu.

Use this dialog box to configure the emulator debugger. For more information, see
Connecting to the target board, E8a, page 39.

Requirements

A C-SPY E8a emulator.

MCU Group

Selects the MCU group to which your device belongs.

Device

Selects your device.

Erase Flash and Connect

Erases the flash memory data for the MCUs and simultaneously writes the E8a emulator
firmware.

AFE1_AFE2-1:1

54

Reference information on starting C-SPY

C-SPY® Debugging Guide
for R32C

Keep Flash and Connect

Retains the flash memory data for the MCUs.

Note: The area for the E8a emulator firmware and the vector area used by the E8a
emulator will change.

Program Flash

Writes your application to the flash memory. Debugging of the application is disabled.
Select this mode when using the E8a emulator as a flash memory programmer.

Note: It is necessary to input the ID code of the flash memory to the target device.

Debugging of CPU rewrite mode

Erases the flash memory data for the MCUs and simultaneously writes the E8a emulator
program, when starting the debugger. Select this setting when debugging a program that
rewrites the CPU.

Note: In this mode, it is not possible to set PC breakpoints or to change the contents of
the flash memory.

Execute the user program after ending the debugger

Executes your application when you stop the debugger. This option requires external
power supply.

Note: This option is only available when Program Flash has been selected.

Power target from Emulator

Powers the target from the emulator. Select this option only if the target board is not
connected to any power supply.

Do not show this dialog box again

If you select this option, the dialog box will not be displayed the next time the debugger
is launched. This option is mirrored in the E8a Emulator menu command Show
Emulator Setting. Use the menu command to display the dialog box again. See also
Maintaining the connection to the hardware, page 42.

Use ECC for E2 Data Flash (MCU Setting)

Select this option if you want to use ECC in the E2 Data Flash. You can only make this
setting when you start the debugger.

This option is invalid for an MCU that does not support the E2 Data Flash.

AFE1_AFE2-1:1

Getting started using C-SPY

55

Communication Baud Rate

Selects the communication baud rate between the emulator and the MCU.

Hardware Setup
The Hardware Setup dialog box is available from the Emulator menu when you are
using the C-SPY E30 emulator driver or the C-SPY E30A emulator driver.

Figure 14: Emulator Hardware Setup dialog box

Note: This figure reflects the C-SPY E30A driver. Some of the options are not available
when using the C-SPY E30 driver.

Use this dialog box to configure the emulator debugger.

AFE1_AFE2-1:1

56

Reference information on starting C-SPY

C-SPY® Debugging Guide
for R32C

The hardware setup is saved for each project and does not have to be set more than once.
If you want to change the setup for a project, choose Hardware Setup from the
Emulator menu.

Requirements

One of these alternatives:

● A C-SPY E30 emulator

● A C-SPY E30A emulator

Clock

Use the Clock options to set the CPU clock source:

Xin

Enter the frequency of the Xin clock and specify the clock source:
Generated uses a clock generated by the emulator
Internal uses the target oscillator circuit board

PLL

Enter the frequency of the internal phase-locked loop of the target
microcomputer.

CCR

Enter the hexadecimal value of the internal clock control register of the target
microcomputer.

Debug the program using the CPU rewrite mode

Select this option if you are debugging the target system using the CPU Rewrite Mode.

Note: When debugging in CPU Rewrite Mode, no software breakpoints can be set in the
internal ROM area.

Overwrite data in FLASH without erasing the FLASH area block

If you select this option, writing to the flash memory area will merge the new data with
the previous flash contents, and the addresses that are not being written to will keep their
previous contents.

E2 Data Flash is not erased on download

Select this option if you want to preserve the contents of the E2 data flash memory.

Use ECC for E2 Data Flash

Select this option if you want to use ECC in the the E2 Data Flash. You can only make
this setting when you start the debugger.

AFE1_AFE2-1:1

Getting started using C-SPY

57

This option is invalid for an MCU that does not support the E2 Data Flash.

Memory map

The Memory map list shows the emulation memory areas. These areas are set up in the
*.mcu files in the ..\r32c\config\Renesas\E30A\R32C\ directory, or for the E30
driver in the ..\r32c\config\Renesas\E30\R32C\ directory.

Monitor start address

Use this option to specify the start address of the internal RAM area that is used by the
debug monitor.

Note: Approximately 1 Kbyte of the internal RAM will be used for other purposes, for
instance to download your application. This means that you cannot specify a RAM area
that overlaps the stack or an area that is accessed using DMA, but because the memory
contents are saved before debugging starts it is not a problem otherwise.

Emulator mode

Use this option to specify debugging mode of the emulator debugger, choose between:

Note: The Emulator mode option is only available in the C-SPY E30A driver, not in
the C-SPY E30 driver.

This table lists the main differences between the modes:

Trace Enables the trace function.

RAM monitor Enables the RAM-monitor function.

Time measurement Enables the time measurement functions.

Debugging function

Trace mode:

Trace

priority

Trace mode:

MCU

Execution

priority

RAM monitor

mode

Time

measurement

mode

Break, execution PC Yes Yes Yes Yes

Break, data access Yes Yes Yes Yes

Break, address area No No Yes No

Break, data compare No Yes No No

Trace Yes Yes No No

Live watch No No Yes No

Table 4: Emulator mode debugging functions

AFE1_AFE2-1:1

58

Reference information on starting C-SPY

C-SPY® Debugging Guide
for R32C

Data acquisition interval of program execution

Use this option to specify the (byte or word) data acquisition interval by the RAM
monitor function during execution. The interval can be 1–10 milliseconds.

This option can only be changed when the RAM monitor Emulator mode is selected.

Do not communicate with MCU while target is executing

When your application is executing, the emulator communicates with the MCU, for
example, to check the operating status of the MCU or to collect trace data. The PLL
clock divided by the base clock divider is used for communication between the emulator
and the MCU. Therefore, when executing the STOP and WAIT instruction, or when
temporarily switching to the PLL self-oscillation mode, use this option to avoid
communication breakdown.

Disable Reset of Target

Disables the reset signal for the target system. This option is not available if the option
board is not connected.

Setting Extension Port

Generates a high output to RSTMSK to disable reset of the target system.

Factory Settings

Click the Factory Settings button to restore the factory settings.

Time measurement,
execution time

No No No Yes

Time measurement,
interval time

No No No Yes

Debugging function

Trace mode:

Trace

priority

Trace mode:

MCU

Execution

priority

RAM monitor

mode

Time

measurement

mode

Table 4: Emulator mode debugging functions (Continued)

AFE1_AFE2-1:1

 59

Executing your application
This chapter contains information about executing your application in
C-SPY®. More specifically, this means:

● Introduction to application execution

● Reference information on application execution.

Introduction to application execution
This section covers these topics:

● Briefly about application execution

● Source and disassembly mode debugging

● Single stepping

● Stepping speed

● Running the application

● Highlighting

● Call stack information

● Terminal input and output

● Debug logging.

BRIEFLY ABOUT APPLICATION EXECUTION

C-SPY allows you to monitor and control the execution of your application. By
single-stepping through it, and setting breakpoints, you can examine details about the
application execution, for example the values of variables and registers. You can also use
the call stack to step back and forth in the function call chain.

The terminal I/O and debug log features let you interact with your application.

You can find commands for execution on the Debug menu and on the toolbar.

SOURCE AND DISASSEMBLY MODE DEBUGGING

C-SPY allows you to switch between source mode and disassembly mode debugging as
needed.

AFE1_AFE2-1:1

60

Introduction to application execution

C-SPY® Debugging Guide
for R32C

Source debugging provides the fastest and easiest way of developing your application,
without having to worry about how the compiler or assembler has implemented the
code. In the editor windows you can execute the application one statement at a time
while monitoring the values of variables and data structures.

Disassembly mode debugging lets you focus on the critical sections of your application,
and provides you with precise control of the application code. You can open a
disassembly window which displays a mnemonic assembler listing of your application
based on actual memory contents rather than source code, and lets you execute the
application exactly one machine instruction at a time.

Regardless of which mode you are debugging in, you can display registers and memory,
and change their contents.

SINGLE STEPPING

C-SPY allows more stepping precision than most other debuggers because it is not
line-oriented but statement-oriented. The compiler generates detailed stepping
information in the form of step points at each statement, and at each function call. That
is, source code locations where you might consider whether to execute a step into or a
step over command. Because the step points are located not only at each statement but
also at each function call, the step functionality allows a finer granularity than just
stepping on statements.

There are several factors that can slow down the stepping speed. If you find it too slow,
see Slow stepping speed, page 287 for some tips.

The step commands

There are four step commands:

● Step Into

● Step Over

● Next Statement

● Step Out.

Using the Autostep settings dialog box, you can automate the single stepping. For more
information, see Autostep settings dialog box, page 77.

AFE1_AFE2-1:1

Executing your application

61

Consider this example and assume that the previous step has taken you to the f(i)
function call (highlighted):

extern int g(int);
int f(int n)
{
 value = g(n-1) + g(n-2) + g(n-3);
 return value;
}
int main()
{
 ...
 f(i);
 value ++;
}

Step Into

While stepping, you typically consider whether to step into a function and continue
stepping inside the function or subroutine. The Step Into command takes you to the first
step point within the subroutine g(n-1):

extern int g(int);
int f(int n)
{
 value = g(n-1) + g(n-2) + g(n-3);
 return value;
}

The Step Into command executes to the next step point in the normal flow of control,
regardless of whether it is in the same or another function.

Step Over

The Step Over command executes to the next step point in the same function, without
stopping inside called functions. The command would take you to the g(n-2) function
call, which is not a statement on its own but part of the same statement as g(n-1). Thus,
you can skip uninteresting calls which are parts of statements and instead focus on
critical parts:

extern int g(int);
int f(int n)
{
 value = g(n-1) + g(n-2) + g(n-3);
 return value;
}

AFE1_AFE2-1:1

62

Introduction to application execution

C-SPY® Debugging Guide
for R32C

Next Statement

The Next Statement command executes directly to the next statement, in this case
return value, allowing faster stepping:

extern int g(int);
int f(int n)
{
 value = g(n-1) + g(n-2) + g(n-3);
 return value;
}

Step Out

When inside the function, you can—if you wish—use the Step Out command to step
out of it before it reaches the exit. This will take you directly to the statement
immediately after the function call:

extern int g(int);
int f(int n)
{
 value = g(n-1) + g(n-2) g(n-3);
 return value;
}
int main()
{
 ...
 f(i);
 value ++;
}

The possibility of stepping into an individual function that is part of a more complex
statement is particularly useful when you use C code containing many nested function
calls. It is also very useful for C++, which tends to have many implicit function calls,
such as constructors, destructors, assignment operators, and other user-defined
operators.

This detailed stepping can in some circumstances be either invaluable or unnecessarily
slow. For this reason, you can also step only on statements, which means faster stepping.

STEPPING SPEED

Stepping in C-SPY is normally performed using breakpoints. When performing a step
command, a breakpoint is set on the next statement and the program executes until
reaching this breakpoint. If you are debugging using a hardware debugger system, the
number of hardware breakpoints—typically used for setting a stepping breakpoint, at
least in code that is located in flash/ROM memory—is limited. If you for example, step

AFE1_AFE2-1:1

Executing your application

63

into a C switch statement, breakpoints are set on each branch, and hence, this might
consume several hardware breakpoints. If the number of available hardware breakpoints
is exceeded, C-SPY switches into single stepping at assembly level, which can be very
slow.

For this reason, it can be helpful to keep track of how many hardware breakpoints are
used and make sure to some of them are left for stepping. For more information, see
Breakpoints in the C-SPY hardware drivers, page 104 and Breakpoint consumers, page
105.

In addition to limited hardware breakpoints, these issues might also affect stepping
speed:

● If Trace or Function profiling is enabled. This might slow down stepping because
collected Trace data is processed after each step. Note that it is not sufficient to
close the corresponding windows to disable Trace data collection. Instead, you must
disable the Enable/Disable button in both the Trace and the Function profiling
windows.

● If the Register window is open and displays SFR registers. This might slow down
stepping because all registers in the selected register group must be read from the
hardware after each step. To solve this, you can choose to view only a limited
selection of SFR register; you can choose between two alternatives. Either type
#SFR_name (where #SFR_name reflects the name of the SFR you want to monitor)
in the Watch window, or create your own filter for displaying a limited group of
SFRs in the Register window. See Defining application-specific register groups,
page 133.

● If any of the Memory or Symbolic memory windows is open. This might slow down
stepping because the visible memory must be read after each step.

● If any of the expression related windows such as Watch, Live Watch, Locals, Statics
is open. This might slow down stepping speed because all these windows reads
memory after each step.

● If the Stack window is open and especially if the option Enable graphical stack
display and stack usage tracking option is enabled. To disable this option, choose
Toools>Options>Stack and disable it.

● If a too slow communication speed has been set up between C-SPY and the target
board/emulator you should consider to increase the speed, if possible.

RUNNING THE APPLICATION

Go

The Go command continues execution from the current position until a breakpoint or
program exit is reached.

AFE1_AFE2-1:1

64

Introduction to application execution

C-SPY® Debugging Guide
for R32C

Run to Cursor

The Run to Cursor command executes to the position in the source code where you
have placed the cursor. The Run to Cursor command also works in the Disassembly
window and in the Call Stack window.

HIGHLIGHTING

At each stop, C-SPY highlights the corresponding C or C++ source or instruction with
a green color, in the editor and the Disassembly window respectively. In addition, a
green arrow appears in the editor window when you step on C or C++ source level, and
in the Disassembly window when you step on disassembly level. This is determined by
which of the windows is the active window. If none of the windows are active, it is
determined by which of the windows was last active.

Figure 15: C-SPY highlighting source location

For simple statements without function calls, the whole statement is typically
highlighted. When stopping at a statement with function calls, C-SPY highlights the first
call because this illustrates more clearly what Step Into and Step Over would mean at
that time.

Occasionally, you will notice that a statement in the source window is highlighted using
a pale variant of the normal highlight color. This happens when the program counter is
at an assembler instruction which is part of a source statement but not exactly at a step
point. This is often the case when stepping in the Disassembly window. Only when the
program counter is at the first instruction of the source statement, the ordinary highlight
color is used.

CALL STACK INFORMATION

The compiler generates extensive backtrace information. This allows C-SPY to show,
without any runtime penalty, the complete function call chain at any time.

Typically, this is useful for two purposes:

● Determining in what context the current function has been called

● Tracing the origin of incorrect values in variables and in parameters, thus locating
the function in the call chain where the problem occurred.

AFE1_AFE2-1:1

Executing your application

65

The Call Stack window shows a list of function calls, with the current function at the
top. When you inspect a function in the call chain, the contents of all affected windows
are updated to display the state of that particular call frame. This includes the editor,
Locals, Register, Watch and Disassembly windows. A function would normally not
make use of all registers, so these registers might have undefined states and be displayed
as dashes (---).

In the editor and Disassembly windows, a green highlight indicates the topmost, or
current, call frame; a yellow highlight is used when inspecting other frames.

For your convenience, it is possible to select a function in the call stack and click the
Run to Cursor command to execute to that function.

Assembler source code does not automatically contain any backtrace information. To
see the call chain also for your assembler modules, you can add the appropriate CFI
assembler directives to the assembler source code. For further information, see the R32C
IAR Assembler Reference Guide.

TERMINAL INPUT AND OUTPUT

Sometimes you might have to debug constructions in your application that use stdin
and stdout without an actual hardware device for input and output. The Terminal I/O
window lets you enter input to your application, and display output from it. You can also
direct terminal I/O to a file, using the Terminal I/O Log Files dialog box.

This facility is useful in two different contexts:

● If your application uses stdin and stdout

● For producing debug trace printouts.

For more information, see Terminal I/O window, page 72 and Terminal I/O Log File
dialog box, page 74.

DEBUG LOGGING

The Debug Log window displays debugger output, such as diagnostic messages,
macro-generated output, event log messages, and information about trace.

It can sometimes be convenient to log the information to a file where you can easily
inspect it. The two main advantages are:

● The file can be opened in another tool, for instance an editor, so you can navigate
and search within the file for particularly interesting parts

● The file provides history about how you have controlled the execution, for instance,
which breakpoints that have been triggered etc.

AFE1_AFE2-1:1

66

Reference information on application execution

C-SPY® Debugging Guide
for R32C

Reference information on application execution
This section gives reference information about these windows and dialog boxes:

● Disassembly window, page 66

● Call Stack window, page 71

● Terminal I/O window, page 72

● Terminal I/O Log File dialog box, page 74

● Debug Log window, page 74

● Log File dialog box, page 75

● Report Assert dialog box, page 76

● Autostep settings dialog box, page 77

See also Terminal I/O options in IDE Project Management and Building Guide.

Disassembly window
The C-SPY Disassembly window is available from the View menu.

Figure 16: C-SPY Disassembly window

This window shows the application being debugged as disassembled application code.

Go to memory address

Current position

Breakpoint

Zone display Toggle embedded source

Code coverage
information

AFE1_AFE2-1:1

Executing your application

67

To change the default color of the source code in the Disassembly window:

1 Choose Tools>Options>Debugger.

2 Set the default color using the Source code coloring in disassembly window option.

To view the corresponding assembler code for a function, you can select it in the editor
window and drag it to the Disassembly window.

Requirements

None; this window is always available.

Toolbar

The toolbar contains:

Go to

The memory location or symbol you want to view.

Zone

Selects a memory zone, see C-SPY memory zones, page 130.

Toggle Mixed-Mode

Toggles between displaying only disassembled code or disassembled code
together with the corresponding source code. Source code requires that the
corresponding source file has been compiled with debug information

Display area

The display area shows the disassembled application code.

AFE1_AFE2-1:1

68

Reference information on application execution

C-SPY® Debugging Guide
for R32C

This area contains these graphic elements:

If instruction profiling has been enabled from the context menu, an extra column in the
left-side margin appears with information about how many times each instruction has
been executed.

Context menu

This context menu is available:

Figure 17: Disassembly window context menu

Note: The contents of this menu are dynamic, which means it might look different
depending on your product package.

These commands are available:

Move to PC

Displays code at the current program counter location.

Green highlight Indicates the current position, that is the next assembler
instruction to be executed. To move the cursor to any line in
the Disassembly window, click the line. Alternatively, move
the cursor using the navigation keys.

Yellow highlight Indicates a position other than the current position, such as
when navigating between frames in the Call Stack window
or between items in the Trace window.

Red dot Indicates a breakpoint. Double-click in the gray left-side
margin of the window to set a breakpoint. For more
information, see Breakpoints, page 101.

Green diamond Indicates code that has been executed—that is, code
coverage.

AFE1_AFE2-1:1

Executing your application

69

Run to Cursor

Executes the application from the current position up to the line containing the
cursor.

Code Coverage

Displays a submenu that provides commands for controlling code coverage.
This command is only enabled if the driver you are using supports it.

Instruction Profiling

Displays a submenu that provides commands for controlling instruction
profiling. This command is only enabled if the driver you are using supports it.

Toggle Breakpoint (Code)

Toggles a code breakpoint. Assembler instructions and any corresponding label
at which code breakpoints have been set are highlighted in red. For more
information, see Code breakpoints dialog box, page 115.

Toggle Breakpoint (Address)

Toggles an execution address breakpoint. For more information, see Execution
Address Breakpoint dialog box, page 116.

Toggle Breakpoint (Software)

Toggles a software breakpoint. For more information, see Software Breakpoint
dialog box, page 118.

Toggle Breakpoint (Log)

Toggles a log breakpoint for trace printouts. Assembler instructions at which log
breakpoints have been set are highlighted in red. For more information, see Log
breakpoints dialog box, page 119.

Enable Toggles code coverage on or off.

Show Toggles the display of code coverage on or off.
Executed code is indicated by a green diamond.

Clear Clears all code coverage information.

Enable Toggles instruction profiling on or off.

Show Toggles the display of instruction profiling on or off.
For each instruction, the left-side margin displays
how many times the instruction has been executed.

Clear Clears all instruction profiling information.

AFE1_AFE2-1:1

70

Reference information on application execution

C-SPY® Debugging Guide
for R32C

Toggle Breakpoint (Trace Start)

Toggles a Trace Start breakpoint. When the breakpoint is triggered, the trace
data collection starts. Note that this menu command is only available if the
C-SPY driver you are using supports trace. For more information, see Trace
Start breakpoints dialog box, page 176.

Toggle Breakpoint (Trace Stop)

Toggles a Trace Stop breakpoint. When the breakpoint is triggered, the trace
data collection stops. Note that this menu command is only available if the
C-SPY driver you are using supports trace. For more information, see Trace
Stop breakpoints dialog box, page 177.

Enable/Disable Breakpoint

Enables and Disables a breakpoint. If there is more than one breakpoint at a
specific line, all those breakpoints are affected by the Enable/Disable
command.

Edit Breakpoint

Displays the breakpoint dialog box to let you edit the currently selected
breakpoint. If there is more than one breakpoint on the selected line, a submenu
is displayed that lists all available breakpoints on that line.

Set Next Statement

Sets the program counter to the address of the instruction at the insertion point.

Copy Window Contents

Copies the selected contents of the Disassembly window to the clipboard.

Mixed-Mode

Toggles between showing only disassembled code or disassembled code
together with the corresponding source code. Source code requires that the
corresponding source file has been compiled with debug information.

AFE1_AFE2-1:1

Executing your application

71

Call Stack window
The Call stack window is available from the View menu.

Figure 18: Call Stack window

This window displays the C function call stack with the current function at the top. To
inspect a function call, double-click it. C-SPY now focuses on that call frame instead.

If the next Step Into command would step to a function call, the name of the function is
displayed in the grey bar at the top of the window. This is especially useful for implicit
function calls, such as C++ constructors, destructors, and operators.

Requirements

None; this window is always available.

Display area

Provided that the command Show Arguments is enabled, each entry in the display area
has the format:

function(values)

where (values) is a list of the current value of the parameters, or empty if the function
does not take any parameters.

Context menu

This context menu is available:

Figure 19: Call Stack window context menu

Destination for Step Into

AFE1_AFE2-1:1

72

Reference information on application execution

C-SPY® Debugging Guide
for R32C

These commands are available:

Go to Source

Displays the selected function in the Disassembly or editor windows.

Show Arguments

Shows function arguments.

Run to Cursor

Executes until return to the function selected in the call stack.

Toggle Breakpoint (Code)

Toggles a code breakpoint.

Toggle Breakpoint (Log)

Toggles a log breakpoint.

Enable/Disable Breakpoint

Enables or disables the selected breakpoint

Terminal I/O window
The Terminal I/O window is available from the View menu.

Figure 20: Terminal I/O window

Use this window to enter input to your application, and display output from it.

To use this window, you must:

1 Link your application with the option With I/O emulation modules.

AFE1_AFE2-1:1

Executing your application

73

C-SPY will then direct stdin, stdout and stderr to this window. If the Terminal I/O
window is closed, C-SPY will open it automatically when input is required, but not for
output.

Requirements

None; this window is always available.

Input

Type the text that you want to input to your application.

Ctrl codes

Opens a menu for input of special characters, such as EOF (end of file) and NUL.

Figure 21: Ctrl codes menu

Input Mode

Opens the Input Mode dialog box where you choose whether to input data from the
keyboard or from a file.

Figure 22: Input Mode dialog box

For reference information about the options available in this dialog box, see Terminal
I/O options in IDE Project Management and Building Guide.

AFE1_AFE2-1:1

74

Reference information on application execution

C-SPY® Debugging Guide
for R32C

Terminal I/O Log File dialog box
The Terminal I/O Log File dialog box is available by choosing Debug>Logging>Set
Terminal I/O Log File.

Figure 23: Terminal I/O Log File dialog box

Use this dialog box to select a destination log file for terminal I/O from C-SPY.

Requirements

None; this dialog box is always available.

Terminal IO Log Files

Controls the logging of terminal I/O. To enable logging of terminal I/O to a file, select
Enable Terminal IO log file and specify a filename. The default filename extension is
log. A browse button is available for your convenience.

Debug Log window
The Debug Log window is available by choosing View>Messages.

Figure 24: Debug Log window (message window)

This window displays debugger output, such as diagnostic messages, macro-generated
output, event log messages, and information about trace. This output is only available
during a debug session. When opened, this window is, by default, grouped together with
the other message windows, see IDE Project Management and Building Guide.

AFE1_AFE2-1:1

Executing your application

75

Double-click any rows in one of the following formats to display the corresponding
source code in the editor window:

<path> (<row>):<message>
<path> (<row>,<column>):<message>

Requirements

None; this window is always available.

Context menu

This context menu is available:

Figure 25: Debug Log window context menu

These commands are available:

Copy

Copies the contents of the window.

Select All

Selects the contents of the window.

Clear All

Clears the contents of the window.

Log File dialog box
The Log File dialog box is available by choosing Debug>Logging>Set Log File.

Figure 26: Log File dialog box

Use this dialog box to log output from C-SPY to a file.

AFE1_AFE2-1:1

76

Reference information on application execution

C-SPY® Debugging Guide
for R32C

Requirements

None; this dialog box is always available.

Enable Log file

Enables or disables logging to the file.

Include

The information printed in the file is, by default, the same as the information listed in
the Log window. Use the browse button, to override the default file and location of the
log file (the default filename extension is log). To change the information logged,
choose between:

Errors

C-SPY has failed to perform an operation.

Warnings

An error or omission of concern.

Info

Progress information about actions C-SPY has performed.

User

Messages from C-SPY macros, that is, your messages using the __message
statement.

Report Assert dialog box
The Report Assert dialog box appears if you have a call to the assert function in your
application source code, and the assert condition is false. In this dialog box you can
choose how to proceed.

Figure 27: Report Assert dialog box

AFE1_AFE2-1:1

Executing your application

77

Abort

The application stops executing and the runtime library function abort, which is part
of your application on the target system, will be called. This means that the application
itself terminates its execution.

Debug

C-SPY stops the execution of the application and returns control to you.

Ignore

The assertion is ignored and the application continues to execute.

Autostep settings dialog box
The Autostep settings dialog box is available from the Debug menu.

Figure 28: Autostep settings dialog box

Use this dialog box to customize autostepping.

The drop-down menu lists the available step commands.

Requirements

None; this dialog box is always available.

Delay

Specify the delay between each step in milliseconds.

AFE1_AFE2-1:1

78

Reference information on application execution

C-SPY® Debugging Guide
for R32C

AFE1_AFE2-1:1

 79

Variables and expressions
This chapter describes how variables and expressions can be used in C-SPY®.
More specifically, this means:

● Introduction to working with variables and expressions

● Working with variables and expressions

● Reference information on working with variables and expressions.

Introduction to working with variables and expressions
This section covers these topics:

● Briefly about working with variables and expressions

● C-SPY expressions

● Limitations on variable information.

BRIEFLY ABOUT WORKING WITH VARIABLES AND
EXPRESSIONS

There are several methods for looking at variables and calculating their values:

● Tooltip watch—in the editor window—provides the simplest way of viewing the
value of a variable or more complex expressions. Just point at the variable with the
mouse pointer. The value is displayed next to the variable.

● The Auto window displays a useful selection of variables and expressions in, or
near, the current statement. The window is automatically updated when execution
stops.

● The Locals window displays the local variables, that is, auto variables and function
parameters for the active function. The window is automatically updated when
execution stops.

● The Watch window allows you to monitor the values of C-SPY expressions and
variables. The window is automatically updated when execution stops.

● The Live Watch window repeatedly samples and displays the values of expressions
while your application is executing. Variables in the expressions must be statically
located, such as global variables.

● The Statics window displays the values of variables with static storage duration. The
window is automatically updated when execution stops.

AFE1_AFE2-1:1

80

Introduction to working with variables and expressions

C-SPY® Debugging Guide
for R32C

● The Quick Watch window gives you precise control over when to evaluate an
expression.

● The Symbols window displays all symbols with a static location, that is, C/C++
functions, assembler labels, and variables with static storage duration, including
symbols from the runtime library.

● The Data Log window and the Data Log Summary window display logs of accesses
up to four different memory locations or areas you choose by setting Data Log
breakpoints. Data logging can help you locate frequently accessed data. You can
then consider whether you should place that data in more efficient memory.

● The Trace-related windows let you inspect the program flow up to a specific state.
For more information, see Trace, page 159.

C-SPY EXPRESSIONS

C-SPY expressions can include any type of C expression, except for calls to functions.
The following types of symbols can be used in expressions:

● C/C++ symbols

● Assembler symbols (register names and assembler labels)

● C-SPY macro functions

● C-SPY macro variables.

Expressions that are built with these types of symbols are called C-SPY expressions and
there are several methods for monitoring these in C-SPY. Examples of valid C-SPY
expressions are:

i + j
i = 42
myVar = cVar
cVar = myVar + 2
#asm_label
#R2
#PC
my_macro_func(19)

If you have a static variable with the same name declared in several different functions,
use the notation function::variable to specify which variable to monitor.

C/C++ symbols

C symbols are symbols that you have defined in the C source code of your application,
for instance variables, constants, and functions (functions can be used as symbols but
cannot be executed). C symbols can be referenced by their names. Note that C++
symbols might implicitly contain function calls which are not allowed in C-SPY
symbols and expressions.

AFE1_AFE2-1:1

Variables and expressions

81

Assembler symbols

Assembler symbols can be assembler labels or registers, for example the program
counter, the stack pointer, or other CPU registers. If a device description file is used, all
memory-mapped peripheral units, such as I/O ports, can also be used as assembler
symbols in the same way as the CPU registers. See Modifying a device description file,
page 36.

Assembler symbols can be used in C-SPY expressions if they are prefixed by #.

In case of a name conflict between a hardware register and an assembler label, hardware
registers have a higher precedence. To refer to an assembler label in such a case, you
must enclose the label in back quotes ` (ASCII character 0x60). For example:

Which processor-specific symbols are available by default can be seen in the Register
window, using the CPU Registers register group. See Register window, page 148.

C-SPY macro functions

Macro functions consist of C-SPY macro variable definitions and macro statements
which are executed when the macro is called.

For information about C-SPY macro functions and how to use them, see Briefly about
the macro language, page 217.

C-SPY macro variables

Macro variables are defined and allocated outside your application, and can be used in
a C-SPY expression. In case of a name conflict between a C symbol and a C-SPY macro
variable, the C-SPY macro variable will have a higher precedence than the C variable.
Assignments to a macro variable assign both its value and type.

Example What it does

#PC++ Increments the value of the program counter.

myVar = #SP Assigns the current value of the stack pointer register to your
C-SPY variable.

myVar = #label Sets myVar to the value of an integer at the address of label.

myptr = #label7 Sets myptr to an int * pointer pointing at label7.

Table 5: C-SPY assembler symbols expressions

Example What it does

#PC Refers to the program counter.

#`PC` Refers to the assembler label PC.

Table 6: Handling name conflicts between hardware registers and assembler labels

AFE1_AFE2-1:1

82

Introduction to working with variables and expressions

C-SPY® Debugging Guide
for R32C

For information about C-SPY macro variables and how to use them, see Reference
information on the macro language, page 223.

Using sizeof

According to standard C, there are two syntactical forms of sizeof:

sizeof(type)
sizeof expr

The former is for types and the latter for expressions.

Note: In C-SPY, do not use parentheses around an expression when you use the sizeof
operator. For example, use sizeof x+2 instead of sizeof (x+2).

LIMITATIONS ON VARIABLE INFORMATION

The value of a C variable is valid only on step points, that is, the first instruction of a
statement and on function calls. This is indicated in the editor window with a bright
green highlight color. In practice, the value of the variable is accessible and correct more
often than that.

When the program counter is inside a statement, but not at a step point, the statement or
part of the statement is highlighted with a pale variant of the ordinary highlight color.

Effects of optimizations

The compiler is free to optimize the application software as much as possible, as long
as the expected behavior remains. The optimization can affect the code so that
debugging might be more difficult because it will be less clear how the generated code
relates to the source code. Typically, using a high optimization level can affect the code
in a way that will not allow you to view a value of a variable as expected.

Consider this example:

myFunction()
{
 int i = 42;
 ...
 x = computer(i); /* Here, the value of i is known to C-SPY */
 ...
}

AFE1_AFE2-1:1

Variables and expressions

83

From the point where the variable i is declared until it is actually used, the compiler
does not need to waste stack or register space on it. The compiler can optimize the code,
which means that C-SPY will not be able to display the value until it is actually used. If
you try to view the value of a variable that is temporarily unavailable, C-SPY will
display the text:

Unavailable

If you need full information about values of variables during your debugging session,
you should make sure to use the lowest optimization level during compilation, that is,
None.

Working with variables and expressions
This section describes various tasks related to working with variables and expressions.

More specifically, you will get information about:

● Using the windows related to variables and expressions

● Viewing assembler variables

● Getting started using data logging

USING THE WINDOWS RELATED TO VARIABLES AND
EXPRESSIONS

Where applicable, you can add, modify, and remove expressions, and change the display
format in the windows related to variables and expressions.

To add a value you can also click in the dotted rectangle and type the expression you
want to examine. To modify the value of an expression, click the Value field and modify
its content. To remove an expression, select it and press the Delete key.

For text that is too wide to fit in a column—in any of the these windows, except the Trace
window—and thus is truncated, just point at the text with the mouse pointer and tooltip
information is displayed.

Right-click in any of the windows to access the context menu which contains additional
commands. Convenient drag-and-drop between windows is supported, except for in the
Locals window, Data logging windows, and the Quick Watch window where it is not
relevant.

AFE1_AFE2-1:1

84

Working with variables and expressions

C-SPY® Debugging Guide
for R32C

VIEWING ASSEMBLER VARIABLES

An assembler label does not convey any type information at all, which means C-SPY
cannot easily display data located at that label without getting extra information. To
view data conveniently, C-SPY by default treats all data located at assembler labels as
variables of type int. However, in the Watch, Quick Watch, and Live Watch windows,
you can select a different interpretation to better suit the declaration of the variables.

In this figure, you can see four variables in the Watch window and their corresponding
declarations in the assembler source file to the left:

Figure 29: Viewing assembler variables in the Watch window

Note that asmvar4 is displayed as an int, although the original assembler declaration
probably intended for it to be a single byte quantity. From the context menu you can
make C-SPY display the variable as, for example, an 8-bit unsigned variable. This has
already been specified for the asmvar3 variable.

GETTING STARTED USING DATA LOGGING

1 In the Breakpoints or Memory window, right-click and choose New
Breakpoints>Data Log to open the breakpoints dialog box. Set a Data Log breakpoint
on the data you want to collect log information for. You can set up to four Data Log
breakpoints.

2 Choose C-SPY driver>Data Log to open the Data Log window. Optionally, you can
also choose:

● C-SPY driver>Data Log Summary to open the Data Log Summary window

AFE1_AFE2-1:1

Variables and expressions

85

● C-SPY driver>Timeline to open the Timeline window to view the Data Log graph.

3 From the context menu, available in the Data Log window, choose Enable to enable
the logging.

4 Start executing your application program to collect the log information.

5 To view the data log information, look in any of the Data Log, Data Log Summary, or
the Data graph in the Timeline window.

6 If you want to save the log or summary to a file, choose Save to log file from the
context menu in the window in question.

7 To disable data and interrupt logging, choose Disable from the context menu in each
window where you have enabled it.

Reference information on working with variables and expressions
This section gives reference information about these windows and dialog boxes:

● Auto window, page 86

● Locals window, page 86

● Watch window, page 87

● Live Watch window, page 89

● Statics window, page 90

● Quick Watch window, page 92

● Symbols window, page 93

● Resolve Symbol Ambiguity dialog box, page 95

● Data Log window, page 96

● Data Log Summary window, page 98

For trace-related reference information, see Reference information on trace, page 162.

AFE1_AFE2-1:1

86

Reference information on working with variables and expressions

C-SPY® Debugging Guide
for R32C

Auto window
The Auto window is available from the View menu.

Figure 30: Auto window

This window displays a useful selection of variables and expressions in, or near, the
current statement. Every time execution in C-SPY stops, the values in the Auto window
are recalculated. Values that have changed since the last stop are highlighted in red.

Requirements

None; this window is always available.

Context menu

For more information about the context menu, see Watch window, page 87.

Locals window
The Locals window is available from the View menu.

Figure 31: Locals window

This window displays the local variables and parameters for the current function. Every
time execution in C-SPY stops, the values in the Locals window are recalculated. Values
that have changed since the last stop are highlighted in red.

Requirements

None; this window is always available.

AFE1_AFE2-1:1

Variables and expressions

87

Context menu

For more information about the context menu, see Watch window, page 87.

Watch window
The Watch window is available from the View menu.

Figure 32: Watch window

Use this window to monitor the values of C-SPY expressions or variables. You can open
up to four instances of this window, where you can view, add, modify, and remove
expressions. Tree structures of arrays, structs, and unions are expandable, which means
that you can study each item of these.

 Every time execution in C-SPY stops, the values in the Watch window are recalculated.
Values that have changed since the last stop are highlighted in red.

Requirements

None; this window is always available.

AFE1_AFE2-1:1

88

Reference information on working with variables and expressions

C-SPY® Debugging Guide
for R32C

Context menu

This context menu is available:

Figure 33: Watch window context menu

These commands are available:

Add

Adds an expression.

Remove

Removes the selected expression.

Default Format,
Binary Format,
Octal Format,
Decimal Format,
Hexadecimal Format,
Char Format

Changes the display format of expressions. The display format setting affects
different types of expressions in different ways. Your selection of display format
is saved between debug sessions. These commands are available if a selected
line in the window contains a variable.

The display format setting affects different types of expressions in these ways:

Variables The display setting affects only the selected variable, not
other variables.

Array elements The display setting affects the complete array, that is, the
same display format is used for each array element.

Structure fields All elements with the same definition—the same field
name and C declaration type—are affected by the
display setting.

AFE1_AFE2-1:1

Variables and expressions

89

Show As

Displays a submenu that provides commands for changing the default type
interpretation of variables. The commands on this submenu are mainly useful
for assembler variables—data at assembler labels—because these are, by
default, displayed as integers. For more information, see Viewing assembler
variables, page 84.

Live Watch window
The Live Watch window is available from the View menu.

Figure 34: Live Watch window

This window repeatedly samples and displays the value of expressions while your
application is executing. Variables in the expressions must be statically located, such as
global variables.

This window can only be used for hardware target systems supporting this feature.

Requirements

None; this window is always available.

Context menu

For more information about the context menu, see Watch window, page 87.

In addition, the menu contains the Options command, which opens the Debugger
dialog box where you can set the Update interval option. The default value of this
option is 1000 milliseconds, which means the Live Watch window will be updated once
every second during program execution.

AFE1_AFE2-1:1

90

Reference information on working with variables and expressions

C-SPY® Debugging Guide
for R32C

Statics window
The Statics window is available from the View menu.

Figure 35: Statics window

This window displays the values of variables with static storage duration that you have
selected. Typically, that is variables with file scope but it can also be static variables in
functions and classes. Note that volatile declared variables with static storage
duration will not be displayed.

 Every time execution in C-SPY stops, the values in the Statics window are recalculated.
Values that have changed since the last stop are highlighted in red.

To select variables to monitor:

1 In the window, right-click and choose Select statics from the context menu. The
window now lists all variables with static storage duration.

2 Either individually select the variables you want to be displayed, or choose Select All
or Deselect All from the context menu.

3 When you have made your selections, choose Select statics from the context menu to
toggle back to the normal display mode.

Requirements

None; this window is always available.

Display area

This area contains these columns:

Expression

The name of the variable. The base name of the variable is followed by the full
name, which includes module, class, or function scope. This column is not
editable.

AFE1_AFE2-1:1

Variables and expressions

91

Value

The value of the variable. Values that have changed are highlighted in red.

Dragging text or a variable from another window and dropping it on the Value
column will assign a new value to the variable in that row.

This column is editable.

Location

The location in memory where this variable is stored.

Type

The data type of the variable.

Context menu

This context menu is available:

Figure 36: Statics window context menu

These commands are available:

Default Format,
Binary Format,
Octal Format,
Decimal Format,
Hexadecimal Format,
Char Format

Changes the display format of expressions. The display format setting affects
different types of expressions in different ways. Your selection of display format
is saved between debug sessions. These commands are available if a selected
line in the window contains a variable.

AFE1_AFE2-1:1

92

Reference information on working with variables and expressions

C-SPY® Debugging Guide
for R32C

The display format setting affects different types of expressions in these ways:

Select Statics

Lists all variables with static storage duration. Select the variables you want to
be monitored. When you have made your selections, select this menu command
again to toggle back to normal display mode.

Select all

Selects all variables.

Deselect all

Deselects all variables.

Quick Watch window
The Quick Watch window is available from the View menu and from the context menu
in the editor window.

Figure 37: Quick Watch window

Use this window to watch the value of a variable or expression and evaluate expressions
at a specific point in time.

In contrast to the Watch window, the Quick Watch window gives you precise control
over when to evaluate the expression. For single variables this might not be necessary,
but for expressions with possible side effects, such as assignments and C-SPY macro
functions, it allows you to perform evaluations under controlled conditions.

Variables The display setting affects only the selected variable, not
other variables.

Array elements The display setting affects the complete array, that is, the
same display format is used for each array element.

Structure fields All elements with the same definition—the same field
name and C declaration type—are affected by the
display setting.

AFE1_AFE2-1:1

Variables and expressions

93

To evaluate an expression:

1 In the editor window, right-click on the expression you want to examine and choose
Quick Watch from the context menu that appears.

2 The expression will automatically appear in the Quick Watch window.

Alternatively:

3 In the Quick Watch window, type the expression you want to examine in the
Expressions text box.

4 Click the Recalculate button to calculate the value of the expression.

For an example, see Executing macros using Quick Watch, page 221.

Requirements

None; this window is always available.

Context menu

For more information about the context menu, see Watch window, page 87.

In addition, the menu contains the Add to Watch window command, which adds the
selected expression to the Watch window.

Symbols window
The Symbols window is available from the View menu.

Figure 38: Symbols window

This window displays all symbols with a static location, that is, C/C++ functions,
assembler labels, and variables with static storage duration, including symbols from the
runtime library.

AFE1_AFE2-1:1

94

Reference information on working with variables and expressions

C-SPY® Debugging Guide
for R32C

Requirements

None; this window is always available.

Display area

This area contains these columns:

Symbol

The symbol name.

Location

The memory address.

Full name

The symbol name; often the same as the contents of the Symbol column but
differs for example for C++ member functions.

Click the column headers to sort the list by symbol name, location, or full name.

Context menu

This context menu is available:

Figure 39: Symbols window context menu

These commands are available:

Functions

Toggles the display of function symbols on or off in the list.

Variables

Toggles the display of variables on or off in the list.

Labels

Toggles the display of labels on or off in the list.

AFE1_AFE2-1:1

Variables and expressions

95

Resolve Symbol Ambiguity dialog box
The Resolve Symbol Ambiguity dialog box appears, for example, when you specify a
symbol in the Disassembly window to go to, and there are several instances of the same
symbol due to templates or function overloading.

Figure 40: Resolve Symbol Ambiguity dialog box

Requirements

None; this window is always available.

Ambiguous symbol

Indicates which symbol that is ambiguous.

Please select one symbol

A list of possible matches for the ambiguous symbol. Select the one you want to use.

AFE1_AFE2-1:1

96

Reference information on working with variables and expressions

C-SPY® Debugging Guide
for R32C

Data Log window
The Data Log window is available from the C-SPY driver menu.

Figure 41: Data Log window

Use this window to log accesses to up to four different memory locations or areas.

See also Getting started using data logging, page 84.

Requirements

The C-SPY simulator.

Display area

Each row in the display area shows the time, the program counter, and, for every tracked
data object, its value and address in these columns:

Time

The time for the data access, based on the clock frequency.

If the time is displayed in italics, the target system has not been able to collect a
correct time, but instead had to approximate it.

This column is available when you have selected Show cycles from the context
menu.

Cycles

The number of cycles from the start of the execution until the event. This
information is cleared at reset.

White rows indicate
read accesses

Grey rows indicate
write accesses

AFE1_AFE2-1:1

Variables and expressions

97

If a cycle is displayed in italics, the target system has not been able to collect a
correct time, but instead had to approximate it.

This column is available when you have selected Show cycles from the context
menu.

Program Counter*

Displays one of these:

An address, which is the content of the PC, that is, the address of the instruction
that performed the memory access.

---, the target system failed to provide the debugger with any information.

Overflow in red, the communication channel failed to transmit all data from the
target system.

Value
Displays the access type and the value (using the access size) for the location or
area you want to log accesses to. For example, if zero is read using a byte access
it will be displayed as 0x00, and for a long access it will be displayed as
0x00000000.

To specify what data you want to log accesses to, use the Data Log breakpoint
dialog box. See Data Log breakpoints, page 103.

Address

The actual memory address that is accessed. For example, if only a byte of a
word is accessed, only the address of the byte is displayed. The address is
calculated as base address + offset, where the base address is retrieved from the
Data Log breakpoint dialog box and the offset is retrieved from the logs. If the
log from the target system does not provide the debugger with an offset, the
offset contains + ?.

* You can double-click a line in the display area. If the value of the PC for that line is
available in the source code, the editor window displays the corresponding source code
(this does not include library source code).

Context menu

Identical to the context menu of the Interrupt Log window, see Interrupt Log window,
page 209.

AFE1_AFE2-1:1

98

Reference information on working with variables and expressions

C-SPY® Debugging Guide
for R32C

Data Log Summary window
The Data Log Summary window is available from the C-SPY driver menu.

Figure 42: Data Log Summary window

This window displays a summary of data accesses to specific memory location or areas.

See also Getting started using data logging, page 84.

Requirements

The C-SPY simulator.

Display area

Each row in this area displays the type and the number of accesses to each memory
location or area in these columns:

Data

The name of the data object you have selected to log accesses to. To specify
what data object you want to log accesses to, use the Data Log breakpoint
dialog box. See Data Log breakpoints, page 103.

At the bottom of the column, the current time or cycles is displayed—execution
time since the start of execution or the number of cycles. Overflow count
displays the number of overflows.

Total accesses

The number of total accesses.

If the sum of read accesses and write accesses is less than the total accesses,
there have been a number of access logs for which the target system for some
reason did not provide valid access type information.

Read accesses

The number of total read accesses.

Write accesses

The number of total write accesses.

AFE1_AFE2-1:1

Variables and expressions

99

Context menu

Identical to the context menu of the Interrupt Log window, see Interrupt Log window,
page 209.

AFE1_AFE2-1:1

100

Reference information on working with variables and expressions

C-SPY® Debugging Guide
for R32C

AFE1_AFE2-1:1

 101

Breakpoints
This chapter describes breakpoints and the various ways to define and
monitor them. More specifically, this means:

● Introduction to setting and using breakpoints

● Setting breakpoints

● Reference information on breakpoints.

Introduction to setting and using breakpoints
This section introduces breakpoints.

These topics are covered:

● Reasons for using breakpoints

● Briefly about setting breakpoints

● Breakpoint types

● Breakpoint icons

● Breakpoints in the C-SPY simulator

● Breakpoints in the C-SPY hardware drivers

● Breakpoint consumers.

REASONS FOR USING BREAKPOINTS

C-SPY® lets you set various types of breakpoints in the application you are debugging,
allowing you to stop at locations of particular interest. You can set a breakpoint at a code
location to investigate whether your program logic is correct, or to get trace printouts.
In addition to code breakpoints, and depending on what C-SPY driver you are using,
additional breakpoint types might be available. For example, you might be able to set a
data breakpoint, to investigate how and when the data changes.

You can let the execution stop under certain conditions, which you specify. You can also
let the breakpoint trigger a side effect, for instance executing a C-SPY macro function,
by transparently stopping the execution and then resuming. The macro function can be
defined to perform a wide variety of actions, for instance, simulating hardware behavior.

All these possibilities provide you with a flexible tool for investigating the status of your
application.

AFE1_AFE2-1:1

102

Introduction to setting and using breakpoints

C-SPY® Debugging Guide
for R32C

BRIEFLY ABOUT SETTING BREAKPOINTS

You can set breakpoints in many various ways, allowing for different levels of
interaction, precision, timing, and automation. All the breakpoints you define will
appear in the Breakpoints window. From this window you can conveniently view all
breakpoints, enable and disable breakpoints, and open a dialog box for defining new
breakpoints. The Breakpoint Usage window also lists all internally used breakpoints,
see Breakpoint consumers, page 105.

Breakpoints are set with a higher precision than single lines, using the same mechanism
as when stepping; for more information about the precision, see Single stepping, page
60.

You can set breakpoints while you edit your code even if no debug session is active. The
breakpoints will then be validated when the debug session starts. Breakpoints are
preserved between debug sessions.

Note: For most hardware debugger systems it is only possible to set breakpoints when
the application is not executing.

BREAKPOINT TYPES

Depending on the C-SPY driver you are using, C-SPY supports different types of
breakpoints.

Code breakpoints

Code breakpoints are used for code locations to investigate whether your program logic
is correct or to get trace printouts. Code breakpoints are triggered when an instruction is
fetched from the specified location. If you have set the breakpoint on a specific machine
instruction, the breakpoint will be triggered and the execution will stop, before the
instruction is executed.

If you are using any of the C-SPY hardware drivers, code breakpoints are implemented
as two different types of breakpoints. If you set a code breakpoint by right-clicking in
the editor window, the default breakpoint type will be used, depending on if it is in ROM
or RAM memory:

● Execution address breakpoints are the default code breakpoints for ROM memory if
there are any free events to use. If there are no free events, a software code
breakpoint will be set. These software breakpoints are considerably slower than the
execution address breakpoints. The Breakpoint Usage window displays which
breakpoint types are actually used.

● Software breakpoints are the default code breakpoints for RAM memory.

AFE1_AFE2-1:1

Breakpoints

103

Log breakpoints

Log breakpoints provide a convenient way to add trace printouts without having to add
any code to your application source code. Log breakpoints are triggered when an
instruction is fetched from the specified location. If you have set the breakpoint on a
specific machine instruction, the breakpoint will be triggered and the execution will
temporarily stop and print the specified message in the C-SPY Debug Log window.

Trace breakpoints

Trace Start and Stop breakpoints start and stop trace data collection—a convenient way
to analyze instructions between two execution points.

When you are using the C-SPY E30 or E30A emulator driver, you can set trace events,
See Trace Event dialog box, page 163.

Data breakpoints

Data breakpoints are primarily useful for variables that have a fixed address in memory.
If you set a breakpoint on an accessible local variable, the breakpoint is set on the
corresponding memory location. The validity of this location is only guaranteed for
small parts of the code. Data breakpoints are triggered when data is accessed at the
specified location. The execution will usually stop directly after the instruction that
accessed the data has been executed.

When you are using the C-SPY E30 or E30A emulator driver, the data breakpoints are
represented as data break events, see Data Break Event dialog box, page 123.

Data Log breakpoints

Data Log breakpoints are triggered when data is accessed at the specified location. If
you have set a breakpoint on a specific address or a range, a log message is displayed in
the Data Log window for each access to that location. Data logs can also be displayed
on the Data Log graph in the Timeline window, if that window is enabled.

Immediate breakpoints

The C-SPY Simulator lets you set immediate breakpoints, which will halt instruction
execution only temporarily. This allows a C-SPY macro function to be called when the
simulated processor is about to read data from a location or immediately after it has
written data. Instruction execution will resume after the action.

This type of breakpoint is useful for simulating memory-mapped devices of various
kinds (for instance serial ports and timers). When the simulated processor reads from a
memory-mapped location, a C-SPY macro function can intervene and supply
appropriate data. Conversely, when the simulated processor writes to a memory-mapped
location, a C-SPY macro function can act on the value that was written.

AFE1_AFE2-1:1

104

Introduction to setting and using breakpoints

C-SPY® Debugging Guide
for R32C

BREAKPOINT ICONS

A breakpoint is marked with an icon in the left margin of the editor window, and the icon
varies with the type of breakpoint:

Figure 43: Breakpoint icons

If the breakpoint icon does not appear, make sure the option Show bookmarks is
selected, see Editor options in the IDE Project Management and Building Guide.

Just point at the breakpoint icon with the mouse pointer to get detailed tooltip
information about all breakpoints set on the same location. The first row gives user
breakpoint information, the following rows describe the physical breakpoints used for
implementing the user breakpoint. The latter information can also be seen in the
Breakpoint Usage window.

Note: The breakpoint icons might look different for the C-SPY driver you are using.

BREAKPOINTS IN THE C-SPY SIMULATOR

The C-SPY simulator supports all breakpoint types and you can set an unlimited amount
of breakpoints.

BREAKPOINTS IN THE C-SPY HARDWARE DRIVERS

Using the C-SPY drivers for hardware debugger systems you can set various breakpoint
types. The amount of breakpoints you can set depends on the number of hardware
breakpoints available on the target system.

Code
breakpoint

Log breakpoint

Tooltip
information

Disabled code
breakpoint

AFE1_AFE2-1:1

Breakpoints

105

This table summarizes the characteristics of breakpoints for the different target systems:

* These breakpoint types share the same breakpoint resources.

The debugger will first use any available hardware breakpoints before using software
breakpoints. Exceeding the number of available hardware breakpoints causes the
debugger to single step. This will significantly reduce the execution speed. For this
reason you must be aware of the different breakpoint consumers.

BREAKPOINT CONSUMERS

A debugger system includes several consumers of breakpoints.

User breakpoints

The breakpoints you define in the breakpoint dialog box or by toggling breakpoints in
the editor window often consume one physical breakpoint each, but this can vary greatly.
Some user breakpoints consume several physical breakpoints and conversely, several
user breakpoints can share one physical breakpoint. User breakpoints are displayed in
the same way both in the Breakpoint Usage window and in the Breakpoints window, for
example Data @[R] callCount.

C-SPY itself

C-SPY itself also consumes breakpoints. C-SPY will set a breakpoint if:

● The debugger option Run to has been selected, and any step command is used.
These are temporary breakpoints which are only set during a debug session. This
means that they are not visible in the Breakpoints window.

● The linker option With I/O emulation modules has been selected.

C-SPY hardware driver
Code and Log

breakpoints*

Trace

breakpoints*

Data

breakpoints*

E8a

 using 8 hardware breakpoints 8 -- --

 using software breakpoints 255 -- --

E30

 using 8 hardware breakpoints 8 4 8

 using software breakpoints 64 -- --

E30A

 using 8 hardware breakpoints 8 8 8

 using software breakpoints 256 -- --

Table 7: Available breakpoints in C-SPY hardware drivers

AFE1_AFE2-1:1

106

Setting breakpoints

C-SPY® Debugging Guide
for R32C

In the DLIB runtime environment, C-SPY will set a system breakpoint on the
__DebugBreak label.

These types of breakpoint consumers are displayed in the Breakpoint Usage window, for
example, C-SPY Terminal I/O & libsupport module.

C-SPY plugin modules

For example, modules for real-time operating systems can consume additional
breakpoints. Specifically, by default, the Stack window consumes one physical
breakpoint.

To disable the breakpoint used by the Stack window:

1 Choose Tools>Options>Stack.

2 Deselect the Stack pointer(s) not valid until program reaches: label option.

To disable the Stack window entirely, choose Project>Options>Debugger>Plugins
and deselect the Stack plugin.

Setting breakpoints
This section describes various tasks related to setting and using breakpoints.

More specifically, you will get information about:

● Various ways to set a breakpoint

● Toggling a simple code breakpoint

● Setting breakpoints using the dialog box

● Setting a data breakpoint in the Memory window

● Setting breakpoints using system macros

● Useful breakpoint hints.

VARIOUS WAYS TO SET A BREAKPOINT

You can set a breakpoint in various ways:

● Toggling a simple code breakpoint.

● Using the New Breakpoints dialog box and the Edit Breakpoints dialog box
available from the context menus in the editor window, Breakpoints window, and in
the Disassembly window. The dialog boxes give you access to all breakpoint
options.

● Setting a data breakpoint on a memory area directly in the Memory window.

● Using predefined system macros for setting breakpoints, which allows automation.

AFE1_AFE2-1:1

Breakpoints

107

The different methods offer different levels of simplicity, complexity, and automation.

TOGGLING A SIMPLE CODE BREAKPOINT

Toggling a code breakpoint is a quick method of setting a breakpoint. If you are using a
C-SPY hardware driver, the default breakpoint type will be used, depending on RAM or
ROM memory. The following methods are available both in the editor window and in
the Disassembly window:

● Click in the gray left-side margin of the window

● Place the insertion point in the C source statement or assembler instruction where
you want the breakpoint, and click the Toggle Breakpoint button in the toolbar

● Choose Edit>Toggle Breakpoint

● Right-click and choose Toggle Breakpoint from the context menu.

SETTING BREAKPOINTS USING THE DIALOG BOX

The advantage of using a breakpoint dialog box is that it provides you with a graphical
interface where you can interactively fine-tune the characteristics of the breakpoints.
You can set the options and quickly test whether the breakpoint works according to your
intentions.

All breakpoints you define using a breakpoint dialog box are preserved between debug
sessions.

You can open the dialog box from the context menu available in the editor window,
Breakpoints window, and in the Disassembly window.

To set a new breakpoint:

1 Choose View>Breakpoints to open the Breakpoints window.

2 In the Breakpoints window, right-click, and choose New Breakpoint from the context
menu.

3 On the submenu, choose the breakpoint type you want to set.

Depending on the C-SPY driver you are using, different breakpoint types are available.

4 In the breakpoint dialog box that appears, specify the breakpoint settings and click OK.

The breakpoint is displayed in the Breakpoints window.

AFE1_AFE2-1:1

108

Setting breakpoints

C-SPY® Debugging Guide
for R32C

To modify an existing breakpoint:

5 In the Breakpoints window, editor window, or in the Disassembly window, select the
breakpoint you want to modify and right-click to open the context menu.

Figure 44: Modifying breakpoints via the context menu

If there are several breakpoints on the same source code line, the breakpoints will be
listed on a submenu.

6 On the context menu, choose the appropriate command.

7 In the breakpoint dialog box that appears, specify the breakpoint settings and click OK.

The breakpoint is displayed in the Breakpoints window.

SETTING A DATA BREAKPOINT IN THE MEMORY WINDOW

You can set breakpoints directly on a memory location in the Memory window.
Right-click in the window and choose the breakpoint command from the context menu
that appears. To set the breakpoint on a range, select a portion of the memory contents.

The breakpoint is not highlighted in the Memory window; instead, you can see, edit, and
remove it using the Breakpoints window, which is available from the View menu. The
breakpoints you set in the Memory window will be triggered for both read and write
accesses. All breakpoints defined in this window are preserved between debug sessions.

AFE1_AFE2-1:1

Breakpoints

109

Note: Setting breakpoints directly in the Memory window is only possible if the driver
you use supports this.

SETTING BREAKPOINTS USING SYSTEM MACROS

You can set breakpoints not only in the breakpoint dialog box but also by using built-in
C-SPY system macros. When you use system macros for setting breakpoints, the
breakpoint characteristics are specified as macro parameters.

Macros are useful when you have already specified your breakpoints so that they fully
meet your requirements. You can define your breakpoints in a macro file, using built-in
system macros, and execute the file at C-SPY startup. The breakpoints will then be set
automatically each time you start C-SPY. Another advantage is that the debug session
will be documented, and that several engineers involved in the development project can
share the macro files.

Note: If you use system macros for setting breakpoints, you can still view and modify
them in the Breakpoints window. In contrast to using the dialog box for defining
breakpoints, all breakpoints that are defined using system macros are removed when you
exit the debug session.

These breakpoint macros are available:

For information about each breakpoint macro, see Reference information on C-SPY
system macros, page 229.

Setting breakpoints at C-SPY startup using a setup macro file

You can use a setup macro file to define breakpoints at C-SPY startup. Follow the
procedure described in Registering and executing using setup macros and setup files,
page 220.

C-SPY macro for breakpoints Simulator E8a E30 E30A

__setCodeBreak Yes Yes Yes Yes

__setDataBreak Yes -- -- --

__setLogBreak Yes Yes Yes Yes

__setDataLogBreak Yes -- -- --

__setSimBreak Yes -- -- --

__setTraceStartBreak Yes -- -- --

__setTraceStopBreak Yes -- -- --

__clearBreak Yes Yes Yes Yes

Table 8: C-SPY macros for breakpoints

AFE1_AFE2-1:1

110

Setting breakpoints

C-SPY® Debugging Guide
for R32C

USEFUL BREAKPOINT HINTS

Below are some useful hints related to setting breakpoints.

Tracing incorrect function arguments

If a function with a pointer argument is sometimes incorrectly called with a NULL
argument, you might want to debug that behavior. These methods can be useful:

● Set a breakpoint on the first line of the function with a condition that is true only
when the parameter is 0. The breakpoint will then not be triggered until the
problematic situation actually occurs. The advantage of this method is that no extra
source code is needed. The drawback is that the execution speed might become
unacceptably low.

● You can use the assert macro in your problematic function, for example:

int MyFunction(int * MyPtr)
{
 assert(MyPtr != 0); /* Assert macro added to your source
 code. */
 /* Here comes the rest of your function. */
}

The execution will break whenever the condition is true. The advantage is that the
execution speed is only very slightly affected, but the drawback is that you will get a
small extra footprint in your source code. In addition, the only way to get rid of the
execution stop is to remove the macro and rebuild your source code.

● Instead of using the assert macro, you can modify your function like this:

int MyFunction(int * MyPtr)
{
 if(MyPtr == 0)
 MyDummyStatement; /* Dummy statement where you set a
 breakpoint. */
 /* Here comes the rest of your function. */
}

You must also set a breakpoint on the extra dummy statement, so that the execution
will break whenever the condition is true. The advantage is that the execution speed
is only very slightly affected, but the drawback is that you will still get a small extra
footprint in your source code. However, in this way you can get rid of the execution
stop by just removing the breakpoint.

Performing a task and continuing execution

You can perform a task when a breakpoint is triggered and then automatically continue
execution.

AFE1_AFE2-1:1

Breakpoints

111

You can use the Action text box to associate an action with the breakpoint, for instance
a C-SPY macro function. When the breakpoint is triggered and the execution of your
application has stopped, the macro function will be executed. In this case, the execution
will not continue automatically.

Instead, you can set a condition which returns 0 (false). When the breakpoint is
triggered, the condition—which can be a call to a C-SPY macro that performs a task—
is evaluated and because it is not true, execution continues.

Consider this example where the C-SPY macro function performs a simple task:

__var my_counter;

count()
{
 my_counter += 1;
 return 0;
}

To use this function as a condition for the breakpoint, type count() in the Expression
text box under Conditions. The task will then be performed when the breakpoint is
triggered. Because the macro function count returns 0, the condition is false and the
execution of the program will resume automatically, without any stop.

Reference information on breakpoints
This section gives reference information about these windows and dialog boxes:

● Breakpoints window, page 112

● Breakpoint Usage window, page 114

● Code breakpoints dialog box, page 115

● Execution Address Breakpoint dialog box, page 116

● Software Breakpoint dialog box, page 118

● Log breakpoints dialog box, page 119

● Data breakpoints dialog box, page 121

● Data Log breakpoints dialog box, page 124

● Immediate breakpoints dialog box, page 125

● Enter Location dialog box, page 126

● Resolve Source Ambiguity dialog box, page 128.

See also:

● Reference information on C-SPY system macros, page 229

AFE1_AFE2-1:1

112

Reference information on breakpoints

C-SPY® Debugging Guide
for R32C

● Reference information on trace, page 162.

Breakpoints window
The Breakpoints window is available from the View menu.

Figure 45: Breakpoints window

The Breakpoints window lists all breakpoints you define.

Use this window to conveniently monitor, enable, and disable breakpoints; you can also
define new breakpoints and modify existing breakpoints.

Requirements

None; this window is always available.

Display area

This area lists all breakpoints you define. For each breakpoint, information about the
breakpoint type, source file, source line, and source column is provided.

Context menu

This context menu is available:

Figure 46: Breakpoints window context menu

AFE1_AFE2-1:1

Breakpoints

113

These commands are available:

Go to Source

Moves the insertion point to the location of the breakpoint, if the breakpoint has
a source location. Double-click a breakpoint in the Breakpoints window to
perform the same command.

Edit

Opens the breakpoint dialog box for the breakpoint you selected.

Delete

Deletes the breakpoint. Press the Delete key to perform the same command.

Enable

Enables the breakpoint. The check box at the beginning of the line will be
selected. You can also perform the command by manually selecting the check
box. This command is only available if the breakpoint is disabled.

Disable

Disables the breakpoint. The check box at the beginning of the line will be
deselected. You can also perform this command by manually deselecting the
check box. This command is only available if the breakpoint is enabled.

Enable All

Enables all defined breakpoints.

Disable All

Disables all defined breakpoints.

New Breakpoint

Displays a submenu where you can open the breakpoint dialog box for the
available breakpoint types. All breakpoints you define using this dialog box are
preserved between debug sessions.

AFE1_AFE2-1:1

114

Reference information on breakpoints

C-SPY® Debugging Guide
for R32C

Breakpoint Usage window
The Breakpoint Usage window is available from the menu specific to the C-SPY driver
you are using.

Figure 47: Breakpoint Usage window

The Breakpoint Usage window lists all breakpoints currently set in the target system,
both the ones you have defined and the ones used internally by C-SPY. The format of
the items in this dialog box depends on the C-SPY driver you are using.

The window gives a low-level view of all breakpoints, related but not identical to the list
of breakpoints displayed in the Breakpoints window.

C-SPY uses breakpoints when stepping. If your target system has a limited number of
hardware breakpoints exceeding the number of available hardware breakpoints will
cause the debugger to single step. This will significantly reduce the execution speed.
Therefore, in a debugger system with a limited amount of hardware breakpoints, you can
use the Breakpoint Usage dialog box for:

● Identifying all breakpoint consumers

● Checking that the number of active breakpoints is supported by the target system

● Configuring the debugger to use the available breakpoints in a better way, if
possible.

Requirements

None; this window is always available.

Display area

For each breakpoint in the list, the address and access type are displayed. Each
breakpoint in the list can also be expanded to show its originator.

AFE1_AFE2-1:1

Breakpoints

115

Code breakpoints dialog box
The Code breakpoints dialog box is available from the context menu in the editor
window, Breakpoints window, and in the Disassembly window.

Figure 48: Code breakpoints dialog box

Use the Code breakpoints dialog box to set a code breakpoint.

Note: The Code breakpoints dialog box depends on the C-SPY driver you are using.

Requirements

None; this dialog box is always available.

Break At

Specify the code location of the breakpoint in the text box. Alternatively, click the Edit
button to open the Enter Location dialog box, see Enter Location dialog box, page 126.

Size

Determines whether there should be a size—in practice, a range—of locations where the
breakpoint will trigger. Each fetch access to the specified memory range will trigger the
breakpoint. Select how to specify the size:

Auto

The size will be set automatically, typically to 1.

Manual

Specify the size of the breakpoint range in the text box.

Note: The Size option is only available for the C-SPY Simulator.

AFE1_AFE2-1:1

116

Reference information on breakpoints

C-SPY® Debugging Guide
for R32C

Action

Specify a valid C-SPY expression, which is evaluated when the breakpoint is triggered
and the condition is true. For more information, see Useful breakpoint hints, page 110.

Conditions

Specify simple or complex conditions:

Expression

Specify a valid C-SPY expression, see Expressions, page 225.

Condition true

The breakpoint is triggered if the value of the expression is true.

Condition changed

The breakpoint is triggered if the value of the expression has changed since it
was last evaluated.

Skip count

The number of times that the breakpoint condition must be fulfilled before the
breakpoint starts triggering. After that, the breakpoint will trigger every time the
condition is fulfilled.

Execution Address Breakpoint dialog box
The Execution Address Breakpoint dialog box is available from the context menu in
the Breakpoints window when you choose New Breakpoint>Address.

Figure 49: Execution Address Breakpoint dialog box

AFE1_AFE2-1:1

Breakpoints

117

Use this dialog box to set an execution address breakpoint. To modify an existing
breakpoint, select it in the Breakpoints window and choose Edit on the context menu.

When an execution address breakpoint is triggered, there is no need for instruction
rewrite/write back processing, which makes it fast. Up to eight address breakpoints can
be set. They share events with data breaks, trace, the RAM monitor, and time
measurement.

Requirements

One of these alternatives:

● A C-SPY E8a emulator

● A C-SPY E30 emulator

● A C-SPY E30A emulator

Break At

Specify the data location of the breakpoint in the text box. Alternatively, click the Edit
button to open the Enter Location dialog box, see Enter Location dialog box, page 126.

Action

Specify a valid C-SPY expression, which is evaluated when the breakpoint is triggered
and the condition is true. For more information, see Useful breakpoint hints, page 110.

Conditions

Specify simple or complex conditions:

Expression

Specify a valid C-SPY expression, see Expressions, page 225.

Condition true

The breakpoint is triggered if the value of the expression is true.

Condition changed

The breakpoint is triggered if the value of the expression has changed since it
was last evaluated.

Skip count

The number of times that the breakpoint condition must be fulfilled before the
breakpoint starts triggering. After that, the breakpoint will trigger every time the
condition is fulfilled.

AFE1_AFE2-1:1

118

Reference information on breakpoints

C-SPY® Debugging Guide
for R32C

Software Breakpoint dialog box
The Software Breakpoint dialog box is available from the context menu in the
Breakpoints window when you choose New Breakpoint>Software.

Figure 50: Software Breakpoint dialog box

Use this dialog box to set a software breakpoint.

To modify an existing breakpoint, select it in the Breakpoints window and choose Edit
on the context menu.

When a software breakpoint is set in the internal flash ROM of the target
microcomputer, a number of instructions must be rewritten and processed every time it
is triggered, which makes software code breakpoints slow.

Requirements

One of these alternatives:

● A C-SPY E8a emulator

● A C-SPY E30 emulator

● A C-SPY E30A emulator

Break At

Specify the code location of the breakpoint in the text box. Alternatively, click the Edit
button to open the Enter Location dialog box, see Enter Location dialog box, page 126.

Action

Specify a valid C-SPY expression, which is evaluated when the breakpoint is triggered
and the condition is true. For more information, see Useful breakpoint hints, page 110.

AFE1_AFE2-1:1

Breakpoints

119

Conditions

Specify simple or complex conditions:

Expression

Specify a valid C-SPY expression, see Expressions, page 225.

Condition true

The breakpoint is triggered if the value of the expression is true.

Condition changed

The breakpoint is triggered if the value of the expression has changed since it
was last evaluated.

Skip count

The number of times that the breakpoint condition must be fulfilled before the
breakpoint starts triggering. After that, the breakpoint will trigger every time the
condition is fulfilled.

Log breakpoints dialog box
The Log breakpoints dialog box is available from the context menu in the editor
window, Breakpoints window, and in the Disassembly window.

Figure 51: Log breakpoints dialog box

Use the Log breakpoints dialog box to set a log breakpoint.

Note: The Log breakpoints dialog box depends on the C-SPY driver you are using.

Requirements

None; this dialog box is always available.

AFE1_AFE2-1:1

120

Reference information on breakpoints

C-SPY® Debugging Guide
for R32C

Trigger at

Specify the code location of the breakpoint. Alternatively, click the Edit button to open
the Enter Location dialog box, see Enter Location dialog box, page 126.

Message

Specify the message you want to be displayed in the C-SPY Debug Log window. The
message can either be plain text, or—if you also select the option C-SPY macro
"__message" style—a comma-separated list of arguments.

C-SPY macro "__message" style

Select this option to make a comma-separated list of arguments specified in the Message
text box be treated exactly as the arguments to the C-SPY macro language statement
__message, see Formatted output, page 226.

Conditions

Specify simple or complex conditions:

Expression

Specify a valid C-SPY expression, see Expressions, page 225.

Condition true

The breakpoint is triggered if the value of the expression is true.

Condition changed

The breakpoint is triggered if the value of the expression has changed since it
was last evaluated.

AFE1_AFE2-1:1

Breakpoints

121

Data breakpoints dialog box
The Data breakpoints dialog box is available from the context menu in the editor
window, Breakpoints window, the Memory window, and in the Disassembly window.

Figure 52: Data breakpoints dialog box

Use the Data breakpoints dialog box to set a data breakpoint. Data breakpoints never
stop execution within a single instruction. They are recorded and reported after the
instruction is executed.

Requirements

The C-SPY simulator.

Break At

Specify the data location of the breakpoint in the text box. Alternatively, click the Edit
button to open the Enter Location dialog box, see Enter Location dialog box, page 126.

Access Type

Selects the type of memory access that triggers the breakpoint:

Read/Write

Reads from or writes to location.

Read

Reads from location.

Write

Writes to location.

AFE1_AFE2-1:1

122

Reference information on breakpoints

C-SPY® Debugging Guide
for R32C

Size

Determines whether there should be a size—in practice, a range—of locations where the
breakpoint will trigger. Each fetch access to the specified memory range will trigger the
breakpoint. Select how to specify the size:

Auto

The size will automatically be based on the type of expression the breakpoint is
set on. For example, if you set the breakpoint on a 12-byte structure, the size of
the breakpoint will be 12 bytes.

Manual

Specify the size of the breakpoint range in the text box.

For data breakpoints, this can be useful if you want the breakpoint to be triggered on
accesses to data structures, such as arrays, structs, and unions.

Action

Specify a valid C-SPY expression, which is evaluated when the breakpoint is triggered
and the condition is true. For more information, see Useful breakpoint hints, page 110.

Conditions

Specify simple or complex conditions:

Expression

Specify a valid C-SPY expression, see Expressions, page 225.

Condition true

The breakpoint is triggered if the value of the expression is true.

Condition changed

The breakpoint is triggered if the value of the expression has changed since it
was last evaluated.

Skip count

The number of times that the breakpoint condition must be fulfilled before the
breakpoint starts triggering. After that, the breakpoint will trigger every time the
condition is fulfilled.

AFE1_AFE2-1:1

Breakpoints

123

Data Break Event dialog box
In the Data Break Event dialog box is available from the Events window context menu.

Figure 53: Data Break Event dialog box

Use this dialog box to set up and modify data break events.

When you specify a break event for a memory access, you can specify the data to be
compared with the data written to/read from a specified address. You can also specify
mask bits for the comparison data.

Requirements

One of these alternatives:

● A C-SPY E30 emulator

● A C-SPY E30A emulator

Range

Selects a range condition. EQU means address match. IN means address range.

Address 1

Selects the start address of the address range or the address used for the address match.

Address 2

Selects the type of access that will trigger the event. The event is triggered when
memory is accessed in this way at the specified address or under conditions set for the
specified address range.

AFE1_AFE2-1:1

124

Reference information on breakpoints

C-SPY® Debugging Guide
for R32C

Access

Selects the end address of an address range.

Data compare

Creates a data compare break.

Data

The data that should match to trigger the event.

Mask

Mask for the data that compare break.

Data Log breakpoints dialog box
The Data Log breakpoints dialog box is available from the context menu in the editor
window, Breakpoints window, the Memory window, and in the Disassembly window.

Figure 54: Data Log breakpoints dialog box

Use the Data Log breakpoints dialog box to set a maximum of four data log breakpoints.

To get started using data logging, see Getting started using data logging, page 84

Requirements

The C-SPY simulator

Trigger at

Specify the data location of the breakpoint. Alternatively, click the Edit button to open
the Enter Location dialog box, see Enter Location dialog box, page 126.

AFE1_AFE2-1:1

Breakpoints

125

Access Type

Selects the type of memory access that triggers the breakpoint:

Read/Write

Reads from or writes to location.

Read

Reads from location.

Write

Writes to location.

Immediate breakpoints dialog box
The Immediate breakpoints dialog box is available from the context menu in the editor
window, Breakpoints window, the Memory window, and in the Disassembly window.

Figure 55: Immediate breakpoints dialog box

In the C-SPY simulator, use the Immediate breakpoints dialog box to set an immediate
breakpoint. Immediate breakpoints do not stop execution at all; they only suspend it
temporarily.

Requirements

The C-SPY simulator.

Trigger at

Specify the data location of the breakpoint. Alternatively, click the Edit button to open
the Enter Location dialog box, see Enter Location dialog box, page 126.

AFE1_AFE2-1:1

126

Reference information on breakpoints

C-SPY® Debugging Guide
for R32C

Access Type

Selects the type of memory access that triggers the breakpoint:

Read

Reads from location.

Write

Writes to location.

Action

Specify a valid C-SPY expression, which is evaluated when the breakpoint is triggered
and the condition is true. For more information, see Useful breakpoint hints, page 110.

Enter Location dialog box
The Enter Location dialog box is available from the breakpoints dialog box, either
when you set a new breakpoint or when you edit a breakpoint.

Figure 56: Enter Location dialog box

Use the Enter Location dialog box to specify the location of the breakpoint.

Note: This dialog box looks different depending on the Type you select.

Type

Selects the type of location to be used for the breakpoint, choose between:

Expression

A C-SPY expression, whose value evaluates to a valid code or data location.

A code location, for example the function main, is typically used for code
breakpoints.

AFE1_AFE2-1:1

Breakpoints

127

A data location is the name of a variable and is typically used for data
breakpoints. For example, my_var refers to the location of the variable my_var,
and arr[3] refers to the location of the fourth element of the array arr. For
static variables declared with the same name in several functions, use the syntax
my_func::my_static_variable to refer to a specific variable.

For more information about C-SPY expressions, see Expressions, page 225.

Absolute address

An absolute location on the form zone:hexaddress or simply hexaddress
(for example Memory:0x42). zone refers to C-SPY memory zones and
specifies in which memory the address belongs, see C-SPY memory zones, page
130.

Source location

A location in your C source code using the syntax:
{filename}.row.column.

filename specifies the filename and full path.

row specifies the row in which you want the breakpoint.

column specifies the column in which you want the breakpoint.

For example, {C:\src\prog.c}.22.3
sets a breakpoint on the third character position on row 22 in the source file
prog.c. Note that in quoted form, for example in a C-SPY macro, you must
instead write {C:\\src\\prog.c}.22.3.

Note that the Source location type is usually meaningful only for code locations
in code breakpoints.

AFE1_AFE2-1:1

128

Reference information on breakpoints

C-SPY® Debugging Guide
for R32C

Resolve Source Ambiguity dialog box
The Resolve Source Ambiguity dialog box appears, for example, when you try to set a
breakpoint on templates and the source location corresponds to more than one function.

Figure 57: Resolve Source Ambiguity dialog box

To resolve a source ambiguity, perform one of these actions:

● In the text box, select one or several of the listed locations and click Selected.

● Click All.

All

The breakpoint will be set on all listed locations.

Selected

The breakpoint will be set on the source locations that you have selected in the text box.

Cancel

No location will be used.

Automatically choose all

Determines that whenever a specified source location corresponds to more than one
function, all locations will be used.

Note that this option can also be specified in the IDE Options dialog box, see Debugger
options in the IDE Project Management and Building Guide.

AFE1_AFE2-1:1

 129

Memory and registers
This chapter describes how to use the features available in C-SPY® for
examining memory and registers. More specifically, this means information
about:

● Introduction to monitoring memory and registers

● Monitoring memory and registers

● Reference information on memory and registers.

Introduction to monitoring memory and registers
This section covers these topics:

● Briefly about monitoring memory and registers

● C-SPY memory zones

● Stack display

● Memory access checking.

BRIEFLY ABOUT MONITORING MEMORY AND REGISTERS

C-SPY provides many windows for monitoring memory and registers, each of them
available from the View menu:

● The Memory window

Gives an up-to-date display of a specified area of memory—a memory zone—and
allows you to edit it. Different colors are used for indicating data coverage along with
execution of your application. You can fill specified areas with specific values and
you can set breakpoints directly on a memory location or range. You can open several
instances of this window, to monitor different memory areas. The content of the
window can be regularly updated while your application is executing.

● The Symbolic memory window

Displays how variables with static storage duration are laid out in memory. This can
be useful for better understanding memory usage or for investigating problems
caused by variables being overwritten, for example by buffer overruns.

AFE1_AFE2-1:1

130

Introduction to monitoring memory and registers

C-SPY® Debugging Guide
for R32C

● The Stack window

Displays the contents of the stack, including how stack variables are laid out in
memory. In addition, some integrity checks of the stack can be performed to detect
and warn about problems with stack overflow. For example, the Stack window is
useful for determining the optimal size of the stack. You can open up to two instances
of this window, each showing different stacks or different display modes of the same
stack.

● The Register window

Gives an up-to-date display of the contents of the processor registers and SFRs, and
allows you to edit them. Due to the large amount of registers—memory-mapped
peripheral unit registers and CPU registers—it is inconvenient to show all registers
concurrently in the Register window. Instead you can divide registers into register
groups. You can choose to load either predefined register groups or define your own
application-specific groups. You can open several instances of this window, each
showing a different register group.

● The SFR Setup window

Displays the currently defined SFRs that C-SPY has information about. If required,
you can use this window to customize aspects of the SFRs.

To view the memory contents for a specific variable, simply drag the variable to the
Memory window or the Symbolic memory window. The memory area where the
variable is located will appear.

Reading the value of some registers might influence the runtime behavior of your
application. For example, reading the value of a UART status register might reset a
pending bit, which leads to the lack of an interrupt that would have processed a received
byte. To prevent this from happening, make sure that the Register window containing
any such registers is closed when debugging a running application.

C-SPY MEMORY ZONES

In C-SPY, the term zone is used for a named memory area. A memory address, or
location, is a combination of a zone and a numerical offset into that zone. By default,

AFE1_AFE2-1:1

Memory and registers

131

the R32C/100 architecture has five zones—SFR1, SFR2, RAM, ROM, and
DATA_FLASH—that cover the whole R32C/100 memory range.

Figure 58: Zones in C-SPY

Memory zones are used in several contexts, most importantly in the Memory and
Disassembly windows, and in C-SPY macros. In the windows, use the Zone box to
choose which memory zone to display.

Device-specific zones

Memory information for device-specific zones is defined in the device description files.
When you load a device description file, additional zones that adhere to the specific
memory layout become available.

See the device description file for information about available memory zones.

For more information, see Selecting a device description file, page 33 and Modifying a
device description file, page 36.

STACK DISPLAY

The Stack window displays the contents of the stack, overflow warnings, and it has a
graphical stack bar. These can be useful in many contexts. Some examples are:

● Investigating the stack usage when assembler modules are called from C modules
and vice versa

● Investigating whether the correct elements are located on the stack

SFR1

Internal RAM

Reserved

SFR2
Reserved

Internal ROM
(Data flash)

Reserved

External space

Reserved

Internal ROM

0xFFFFFFFF

0x00000000

AFE1_AFE2-1:1

132

Introduction to monitoring memory and registers

C-SPY® Debugging Guide
for R32C

● Investigating whether the stack is restored properly

● Determining the optimal stack size

● Detecting stack overflows.

For microcomputers with multiple stacks, you can select which stack to view.

Stack usage

When your application is first loaded, and upon each reset, the memory for the stack area
is filled with the dedicated byte value 0xCD before the application starts executing.
Whenever execution stops, the stack memory is searched from the end of the stack until
a byte with a value different from 0xCD is found, which is assumed to be how far the
stack has been used. Although this is a reasonably reliable way to track stack usage,
there is no guarantee that a stack overflow is detected. For example, a stack can
incorrectly grow outside its bounds, and even modify memory outside the stack area,
without actually modifying any of the bytes near the stack range. Likewise, your
application might modify memory within the stack area by mistake.

The Stack window cannot detect a stack overflow when it happens, but can only detect
the signs it leaves behind. However, when the graphical stack bar is enabled, the
functionality needed to detect and warn about stack overflows is also enabled.

Note: The size and location of the stack is retrieved from the definition of the segment
holding the stack, made in the linker configuration file. If you, for some reason, modify
the stack initialization made in the system startup code, cstartup, you should also
change the segment definition in the linker configuration file accordingly; otherwise the
Stack window cannot track the stack usage. For more information about this, see the IAR
C/C++ Compiler Reference Guide for R32C.

MEMORY ACCESS CHECKING

The C-SPY simulator can simulate various memory access types of the target hardware
and detect illegal accesses, for example a read access to write-only memory. If a memory
access occurs that does not agree with the access type specified for the specific memory
area, C-SPY will regard this as an illegal access. Also, a memory access to memory
which is not defined is regarded as an illegal access. The purpose of memory access
checking is to help you to identify any memory access violations.

The memory areas can either be the zones predefined in the device description file, or
memory areas based on the segment information available in the debug file. In addition
to these, you can define your own memory areas. The access type can be read and write,
read-only, or write-only. You cannot map two different access types to the same memory
area. You can check for access type violation and accesses to unspecified ranges. Any
violations are logged in the Debug Log window. You can also choose to have the
execution halted.

AFE1_AFE2-1:1

Memory and registers

133

Monitoring memory and registers
This section describes various tasks related to monitoring memory and registers.

● Defining application-specific register groups, page 133.

DEFINING APPLICATION-SPECIFIC REGISTER GROUPS

Defining application-specific register groups minimizes the amount of registers
displayed in the Register window and speeds up the debugging.

1 Choose Tools>Options>Register Filter.

Figure 59: Register Filter options

For information about the register filter options, see the IDE Project Management and
Building Guide.

2 Select Use register filter and specify the filename and destination of the filter file for
your new group in the dialog box that appears.

3 Click New Group and specify the name of your group, for example My Timer Group.

Figure 60: Register Filter options

AFE1_AFE2-1:1

134

Reference information on memory and registers

C-SPY® Debugging Guide
for R32C

4 In the register tree view on the Register Filter page, select a register and click the arrow
button to add it to your group. Repeat this process for all registers that you want to add
to your group.

5 Optionally, select any registers for which you want to change the integer base, and
choose a suitable base.

6 When you are done, click OK. Your new group is now available in the Register
window.

If you want to add more groups to your filter file, repeat this procedure for each group
you want to add.

Note: The registers that appear in the list of registers are retrieved from the ddf file that
is currently used. If a certain SFR that you need does not appear, you can register your
own SFRs. For more information, see SFR Setup window, page 150.

Reference information on memory and registers
This section gives reference information about these windows and dialog boxes:

● Memory window, page 135

● Memory Save dialog box, page 139

● Memory Restore dialog box, page 140

● Fill dialog box, page 140

● Symbolic Memory window, page 142

● Stack window, page 144

● Register window, page 148

● SFR Setup window, page 150

● Edit SFR dialog box, page 153

● Memory Access Setup dialog box, page 154

● Edit Memory Access dialog box, page 156.

AFE1_AFE2-1:1

Memory and registers

135

Memory window
The Memory window is available from the View menu.

Figure 61: Memory window

This window gives an up-to-date display of a specified area of memory—a memory
zone—and allows you to edit it. You can open several instances of this window, which
is very convenient if you want to keep track of several memory or register zones, or
monitor different parts of the memory.

To view the memory corresponding to a variable, you can select it in the editor window
and drag it to the Memory window.

Requirements

None; this window is always available.

Toolbar

The toolbar contains:

Go to

The memory location or symbol you want to view.

Zone

Selects a memory zone, see C-SPY memory zones, page 130.

Available zones

Memory
addresses

Context menu buttonMemory contents

Data coverage
information

Go to
location

Memory contents in ASCII
format

AFE1_AFE2-1:1

136

Reference information on memory and registers

C-SPY® Debugging Guide
for R32C

Context menu button

Displays the context menu.

Update Now

Updates the content of the Memory window while your application is executing.
This button is only enabled if the C-SPY driver you are using has access to the
target system memory while your application is executing.

Live Update

Updates the contents of the Memory window regularly while your application is
executing. This button is only enabled if the C-SPY driver you are using has
access to the target system memory while your application is executing. To set
the update frequency, specify an appropriate frequency in the IDE
Options>Debugger dialog box.

Display area

The display area shows the addresses currently being viewed, the memory contents in
the format you have chosen, and—provided that the display mode is set to
1x Units—the memory contents in ASCII format. You can edit the contents of the
display area, both in the hexadecimal part and the ASCII part of the area.

Data coverage is displayed with these colors:

Note: Data coverage is not supported by all C-SPY drivers. Data coverage is supported
by the C-SPY Simulator.

Yellow Indicates data that has been read.

Blue Indicates data that has been written

Green Indicates data that has been both read and written.

AFE1_AFE2-1:1

Memory and registers

137

Context menu

This context menu is available:

Figure 62: Memory window context menu

These commands are available:

Copy, Paste

Standard editing commands.

Zone

Selects a memory zone, see C-SPY memory zones, page 130.

1x Units

Displays the memory contents as single bytes.

2x Units

Displays the memory contents as 2-byte groups.

4x Units

Displays the memory contents as 4-byte groups.

8x Units

Displays the memory contents as 8-byte groups.

Little Endian

Displays the contents in little-endian byte order.

AFE1_AFE2-1:1

138

Reference information on memory and registers

C-SPY® Debugging Guide
for R32C

Big Endian

Displays the contents in big-endian byte order.

Data Coverage

Choose between:

Enable toggles data coverage on or off.

Show toggles between showing or hiding data coverage.

Clear clears all data coverage information.

These commands are only available if your C-SPY driver supports data
coverage.

Find

Displays a dialog box where you can search for text within the Memory
window; read about the Find dialog box in the IDE Project Management and
Building Guide.

Replace

Displays a dialog box where you can search for a specified string and replace
each occurrence with another string; read about the Replace dialog box in the
IDE Project Management and Building Guide.

Memory Fill

Displays a dialog box, where you can fill a specified area with a value, see Fill
dialog box, page 140.

Memory Save

Displays a dialog box, where you can save the contents of a specified memory
area to a file, see Memory Save dialog box, page 139.

Memory Restore

Displays a dialog box, where you can load the contents of a file in Intel-hex or
Motorola s-record format to a specified memory zone, see Memory Restore
dialog box, page 140.

Set Data Breakpoint

Sets breakpoints directly in the Memory window. The breakpoint is not
highlighted; you can see, edit, and remove it in the Breakpoints dialog box. The
breakpoints you set in this window will be triggered for both read and write
access. For more information, see Setting a data breakpoint in the Memory
window, page 108.

AFE1_AFE2-1:1

Memory and registers

139

Memory Save dialog box
The Memory Save dialog box is available by choosing Debug>Memory>Save or from
the context menu in the Memory window.

Figure 63: Memory Save dialog box

Use this dialog box to save the contents of a specified memory area to a file.

Requirements

None; this dialog box is always available.

Zone

Selects a memory zone, see C-SPY memory zones, page 130.

Start address

Specify the start address of the memory range to be saved.

End address

Specify the end address of the memory range to be saved.

File format

Selects the file format to be used, which is Intel-extended by default.

Filename

Specify the destination file to be used; a browse button is available for your convenience.

Save

Saves the selected range of the memory zone to the specified file.

AFE1_AFE2-1:1

140

Reference information on memory and registers

C-SPY® Debugging Guide
for R32C

Memory Restore dialog box
The Memory Restore dialog box is available by choosing Debug>Memory>Restore
or from the context menu in the Memory window.

Figure 64: Memory Restore dialog box

Use this dialog box to load the contents of a file in Intel-extended or Motorola S-record
format to a specified memory zone.

Requirements

None; this dialog box is always available.

Zone

Selects a memory zone, see C-SPY memory zones, page 130.

Filename

Specify the file to be read; a browse button is available for your convenience.

Restore

Loads the contents of the specified file to the selected memory zone.

Fill dialog box
The Fill dialog box is available from the context menu in the Memory window.

Figure 65: Fill dialog box

Use this dialog box to fill a specified area of memory with a value.

AFE1_AFE2-1:1

Memory and registers

141

Requirements

None; this dialog box is always available.

Start address

Type the start address—in binary, octal, decimal, or hexadecimal notation.

Length

Type the length—in binary, octal, decimal, or hexadecimal notation.

Zone

Selects a memory zone, see C-SPY memory zones, page 130.

Value

Type the 8-bit value to be used for filling each memory location.

Operation

These are the available memory fill operations:

Copy

Value will be copied to the specified memory area.

AND

An AND operation will be performed between Value and the existing contents of
memory before writing the result to memory.

XOR

An XOR operation will be performed between Value and the existing contents of
memory before writing the result to memory.

OR

An OR operation will be performed between Value and the existing contents of
memory before writing the result to memory.

AFE1_AFE2-1:1

142

Reference information on memory and registers

C-SPY® Debugging Guide
for R32C

Symbolic Memory window
The Symbolic Memory window is available from the View menu during a debug
session.

Figure 66: Symbolic Memory window

This window displays how variables with static storage duration, typically variables
with file scope but also static variables in functions and classes, are laid out in memory.
This can be useful for better understanding memory usage or for investigating problems
caused by variables being overwritten, for example buffer overruns. Other areas of use
are spotting alignment holes or for understanding problems caused by buffers being
overwritten.

To view the memory corresponding to a variable, you can select it in the editor window
and drag it to the Symbolic Memory window.

Requirements

None; this window is always available.

Toolbar

The toolbar contains:

Go to

The memory location or symbol you want to view.

Zone

Selects a memory zone, see C-SPY memory zones, page 130.

Previous

Highlights the previous symbol in the display area.

Next

Highlights the next symbol in the display area.

AFE1_AFE2-1:1

Memory and registers

143

Display area

This area contains these columns:

Location

The memory address.

Data

The memory contents in hexadecimal format. The data is grouped according to
the size of the symbol. This column is editable.

Variable

The variable name; requires that the variable has a fixed memory location. Local
variables are not displayed.

Value

The value of the variable. This column is editable.

Type

The type of the variable.

There are several different ways to navigate within the memory space:

● Text that is dropped in the window is interpreted as symbols

● The scroll bar at the right-side of the window

● The toolbar buttons Next and Previous

● The toolbar list box Go to can be used for locating specific locations or symbols.

Note: Rows are marked in red when the corresponding value has changed.

Context menu

This context menu is available:

Figure 67: Symbolic Memory window context menu

These commands are available:

Next Symbol

Highlights the next symbol in the display area.

Previous Symbol

Highlights the previous symbol in the display area.

AFE1_AFE2-1:1

144

Reference information on memory and registers

C-SPY® Debugging Guide
for R32C

1x Units

Displays the memory contents as single bytes. This applies only to rows which
do not contain a variable.

2x Units

Displays the memory contents as 2-byte groups.

4x Units

Displays the memory contents as 4-byte groups.

Add to Watch Window

Adds the selected symbol to the Watch window.

Stack window
The Stack window is available from the View menu.

Figure 68: Stack window

This window is a memory window that displays the contents of the stack. In addition,
some integrity checks of the stack can be performed to detect and warn about problems
with stack overflow. For example, the Stack window is useful for determining the
optimal size of the stack.

To view the graphical stack bar:

1 Choose Tools>Options>Stack.

2 Select the option Enable graphical stack display and stack usage.

You can open up to two Stack windows, each showing a different stack—if several
stacks are available—or the same stack with different display settings.

Note: By default, this window uses one physical breakpoint. For more information, see
Breakpoint consumers, page 105.

Current
stack pointer

Unused stack
memory, in light
gray

Current stack
pointer

Used stack memory, in dark gray
Stack view

The graphical stack
bar with tooltip
information

AFE1_AFE2-1:1

Memory and registers

145

For information about options specific to the Stack window, see the IDE Project
Management and Building Guide.

Requirements

None; this window is always available.

Toolbar

The toolbar contains:

Stack

Selects which stack to view. This applies to microcomputers with multiple
stacks.

The graphical stack bar

Displays the state of the stack graphically.

The left end of the stack bar represents the bottom of the stack, in other words, the
position of the stack pointer when the stack is empty. The right end represents the end
of the memory space reserved for the stack. The graphical stack bar turns red when the
stack usage exceeds a threshold that you can specify.

When the stack bar is enabled, the functionality needed to detect and warn about stack
overflows is also enabled.

Place the mouse pointer over the stack bar to get tooltip information about stack usage.

Display area

This area contains these columns:

Location

Displays the location in memory. The addresses are displayed in increasing
order. The address referenced by the stack pointer, in other words the top of the
stack, is highlighted in a green color.

Data

Displays the contents of the memory unit at the given location. From the Stack
window context menu, you can select how the data should be displayed; as a 1-,
2-, or 4-byte group of data.

Variable

Displays the name of a variable, if there is a local variable at the given location.
Variables are only displayed if they are declared locally in a function, and
located on the stack and not in registers.

AFE1_AFE2-1:1

146

Reference information on memory and registers

C-SPY® Debugging Guide
for R32C

Value

Displays the value of the variable that is displayed in the Variable column.

Frame

Displays the name of the function that the call frame corresponds to.

Context menu

This context menu is available:

Figure 69: Stack window context menu

These commands are available:

Show variables

Displays separate columns named Variables, Value, and Frame in the Stack
window. Variables located at memory addresses listed in the Stack window are
displayed in these columns.

Show offsets

Displays locations in the Location column as offsets from the stack pointer.
When deselected, locations are displayed as absolute addresses.

1x Units

Displays the memory contents as single bytes.

2x Units

Displays the memory contents as 2-byte groups.

4x Units

Displays the memory contents as 4-byte groups.

AFE1_AFE2-1:1

Memory and registers

147

Default Format,
Binary Format,
Octal Format,
Decimal Format,
Hexadecimal Format,
Char Format

Changes the display format of expressions. The display format setting affects
different types of expressions in different ways. Your selection of display format
is saved between debug sessions. These commands are available if a selected
line in the window contains a variable.

The display format setting affects different types of expressions in these ways:

Options

Opens the IDE Options dialog box where you can set options specific to the
Stack window, see the IDE Project Management and Building Guide.

Variables The display setting affects only the selected variable, not
other variables.

Array elements The display setting affects the complete array, that is, the
same display format is used for each array element.

Structure fields All elements with the same definition—the same field
name and C declaration type—are affected by the
display setting.

AFE1_AFE2-1:1

148

Reference information on memory and registers

C-SPY® Debugging Guide
for R32C

Register window
The Register window is available from the View menu.

Figure 70: Register window

This window gives an up-to-date display of the contents of the processor registers and
special function registers, and allows you to edit their contents. Optionally, you can
choose to load either predefined register groups or to define your own
application-specific groups.

You can open several instances of this window, which is very convenient if you want to
keep track of different register groups.

To enable predefined register groups:

1 Select a device description file that suits your device, see Selecting a device description
file, page 33.

2 The register groups appear in the Register window, provided that they are defined in
the device description file. Note that the available register groups are also listed on the
Register Filter page.

To define application-specific register groups:

See Defining application-specific register groups, page 133.

Requirements

None; this window is always available.

AFE1_AFE2-1:1

Memory and registers

149

Toolbar

The toolbar contains:

CPU Registers

Selects which register group to display, by default CPU Registers. Additional
register groups are predefined in the device description files that make SFR
registers available in the register window. The device description file contains a
section that defines the special function registers and their groups. If some of
your SFRs are missing, you can register your own SFRs in a Custom group, see
SFR Setup window, page 150.

Display area

Displays registers and their values. Every time C-SPY stops, a value that has changed
since the last stop is highlighted. To edit the contents of a register, click it, and modify
the value.

Some registers are expandable, which means that the register contains interesting bits or
subgroups of bits.

To change the display format, change the Base setting on the Register Filter
page—available by choosing Tools>Options.

If you are using the simulator, these additional support registers are available in the CPU
Registers group:

CYCLECOUNTER Cleared when an application is started or reset and is
incremented with the number of used cycles during
instruction simulation. This register is also available if you
are using the E30/E30A emulator driver.

CCSTEP Shows the number of used cycles during the last performed
C/C++ source or assembler step.

CCTIMER 1 and
CCTIMER2

Two trip counts that can be cleared manually at any given
time. They are incremented with the number of used cycles
during instruction simulation.

AFE1_AFE2-1:1

150

Reference information on memory and registers

C-SPY® Debugging Guide
for R32C

SFR Setup window
The SFR Setup window is available from the context menu from the Project menu.

Figure 71: SFR Setup window

This window displays the currently defined SFRs that C-SPY has information about.
You can choose to display only factory-defined or custom-defined SFRs, or both. If
required, you can use this window to customize the aspects of the SFRs. For
factory-defined SFRs (that is, retrieved from the ddf file that is currently used), you can
only customize the access type.

Any custom-defined SFRs are added to a dedicated register group called Custom, which
you can choose to display in the Register window. Your custom-defined SFRs are saved
in projectCustomSFR.sfr.

You can only add or modify SFRs when the C-SPY debugger is not running.

Requirements

None; this window is always available.

Display area

This area contains these columns:

Status

A character that signals the status of the SFR, which can be one of:

blank, a factory-defined SFR.

C, a factory-defined SFR that has been modified.

+, a custom-defined SFR.

?, an SFR that is ignored for some reason. An SFR can be ignored when a
factory-defined SFR has been modified, but the SFR is no longer available, or it
is located somewhere else or with a different size. Typically, this might happen
if you change to another device.

AFE1_AFE2-1:1

Memory and registers

151

Name

A unique name of the SFR.

Address

The memory address of the SFR.

Zone

Selects a memory zone, see C-SPY memory zones, page 130.

Size

The size of the register, which can be any of 8, 16, 32, or 64.

Access

The access type of the register, which can be one of Read/Write, Read only,
Write only, or None.

You can click a name or an address to change the value. The hexadecimal 0x prefix for
the address can be omitted, the value you enter will still be interpreted as hexadecimal.
For example, if you enter 4567, you will get 0x4567.

You can click a column header to sort the SFRs according to the column property.

Color coding used in the display area:

● Green, which indicates that the corresponding value has changed

● Red, which indicates an ignored SFR.

AFE1_AFE2-1:1

152

Reference information on memory and registers

C-SPY® Debugging Guide
for R32C

Context menu

This context menu is available:

Figure 72: SFR Setup window context menu

These commands are available:

Show All

Shows all SFR.

Show Custom SFRs only

Shows all custom-defined SFRs.

Show Factory SFRs only

Shows all factory-defined SFRs retrieved from the ddf file.

Add

Displays the Edit SFR dialog box where you can add a new SFR, see Edit SFR
dialog box, page 153.

Edit

Displays the Edit SFR dialog box where you can edit an SFR, see Edit SFR
dialog box, page 153.

Delete

Deletes an SFR. This command only works on custom-defined SFRs.

AFE1_AFE2-1:1

Memory and registers

153

Delete/revert All Custom SFRs

Deletes all custom-defined SFRs and reverts all modified factory-defined SFRs
to their factory settings.

Save Custom SFRs

Opens a standard save dialog box to save all custom-defined SFRs.

8|16|32|64 bits

Selects display format for the selected SFR, which can be 8, 16, 32, or 64 bits.
Note that the display format can only be changed for custom-defined SFRs.

Read/Write|Read only|Write only|None

Selects the access type of the selected SFR, which can be Read/Write, Read
only, Write only, or None. Note that for factory-defined SFRs, the default
access type is indicated.

Edit SFR dialog box
The Edit SFR dialog box is available from the SFR Setup window.

Figure 73: Edit SFR dialog box

Use this dialog box to define the SFRs.

Requirements

None; this window is always available.

Name

Specify the name of the SFR that you want to add or edit.

AFE1_AFE2-1:1

154

Reference information on memory and registers

C-SPY® Debugging Guide
for R32C

Address

Specify the address of the SFR that you want to add or edit. The hexadecimal 0x prefix
for the address can be omitted, the value you enter will still be interpreted as
hexadecimal. For example, if you enter 4567, you will get 0x4567.

Zone

Selects the memory zone for the SFR you want to add or edit. The list of zones is
retrieved from the ddf file that is currently used.

Size

Selects the size of the SFR. Choose between 8, 16, 32, or 64 bits. Note that the display
format can only be changed for custom-defined SFRs.

Access

Selects the access type of the SFR. Choose between Read/Write, Read only, Write
only, or None. Note that for factory-defined SFRs, the default access type is indicated.

Memory Access Setup dialog box
The Memory Access Setup dialog box is available from the C-SPY driver menu.

Figure 74: Memory Access Setup dialog box

AFE1_AFE2-1:1

Memory and registers

155

This dialog box lists all defined memory areas, where each column in the list specifies
the properties of the area. In other words, the dialog box displays the memory access
setup that will be used during the simulation.

Note: If you enable both the Use ranges based on and the Use manual ranges option,
memory accesses are checked for all defined ranges.

For information about the columns and the properties displayed, see Edit Memory
Access dialog box, page 156.

Requirements

The C-SPY simulator.

Use ranges based on

Selects any of the predefined alternatives for the memory access setup. Choose between:

Device description file

Loads properties from the device description file.

Debug file segment information

Properties are based on the segment information available in the debug file. This
information is only available while debugging. The advantage of using this
option, is that the simulator can catch memory accesses outside the linked
application.

Use manual ranges

Specify your own ranges manually via the Edit Memory Access dialog box. To open
this dialog box, choose New to specify a new memory range, or select a memory zone
and choose Edit to modify it. For more information, see Edit Memory Access dialog
box, page 156.

The ranges you define manually are saved between debug sessions.

Memory access checking

Check for determines what to check for;

● Access type violation

● Access to unspecified ranges.

Action selects the action to be performed if an access violation occurs; choose between:

● Log violations

● Log and stop execution.

Any violations are logged in the Debug Log window.

AFE1_AFE2-1:1

156

Reference information on memory and registers

C-SPY® Debugging Guide
for R32C

Buttons

These buttons are available:

New

Opens the Edit Memory Access dialog box, where you can specify a new
memory range and attach an access type to it, see Edit Memory Access dialog
box, page 156.

Edit

Opens the Edit Memory Access dialog box, where you can edit the selected
memory area. See Edit Memory Access dialog box, page 156.

Delete

Deletes the selected memory area definition.

Delete All

Deletes all defined memory area definitions.

Note that except for the OK and Cancel buttons, buttons are only available when the
option Use manual ranges is selected.

Edit Memory Access dialog box
The Edit Memory Access dialog box is available from the Memory Access Setup
dialog box.

Figure 75: Edit Memory Access dialog box

Requirements

The C-SPY simulator.

AFE1_AFE2-1:1

Memory and registers

157

Memory range

Defines the memory area specific to your device:

Zone

Selects a memory zone, see C-SPY memory zones, page 130.

Start address

Specify the start address for the memory area, in hexadecimal notation.

End address

Specify the end address for the memory area, in hexadecimal notation.

Access type

Selects an access type to the memory range; choose between:

● Read and write

● Read only

● Write only.

AFE1_AFE2-1:1

158

Reference information on memory and registers

C-SPY® Debugging Guide
for R32C

AFE1_AFE2-1:1

 159

Trace
This chapter gives you information about collecting and using trace data in
C-SPY®. More specifically, this means:

● Introduction to using trace

● Collecting and using trace data

● Reference information on trace.

Introduction to using trace
This section introduces trace.

These topics are covered:

● Reasons for using trace

● Briefly about trace

● Requirements for using trace.

See also:

● Getting started using data logging, page 84

● Getting started using interrupt logging, page 202

● Profiling, page 183.

REASONS FOR USING TRACE

By using trace, you can inspect the program flow up to a specific state, for instance an
application crash, and use the trace data to locate the origin of the problem. Trace data
can be useful for locating programming errors that have irregular symptoms and occur
sporadically.

BRIEFLY ABOUT TRACE

Your target system must be able to generate trace data. Once generated, C-SPY can
collect it and you can visualize and analyze the data in various windows and dialog
boxes.

Depending on your target system, different types of trace data can be generated.

AFE1_AFE2-1:1

160

Collecting and using trace data

C-SPY® Debugging Guide
for R32C

Trace data is a continuously collected sequence of every executed instruction for a
selected portion of the execution.

Trace features in C-SPY

In C-SPY, you can use the trace-related windows Trace, Function Trace, Timeline, and
Find in Trace. In the C-SPY simulator, you can also use the Trace Expressions window.
Depending on your C-SPY driver, you can set various types of trace breakpoints and
triggers to control the collection of trace data.

If you use the C-SPY Simulator driver, you have access to windows such as the Interrupt
Log, Interrupt Log Summary, Data Log, and Data Log Summary windows.

In addition, several other features in C-SPY also use trace data, features such as the
Profiler, Code coverage, and Instruction profiling.

REQUIREMENTS FOR USING TRACE

The C-SPY simulator supports trace-related functionality, and there are no specific
requirements.

To use trace in your hardware debugger system, you need one of these alternatives:

● An E30 emulator for limited trace.

● An E30A emulator for assembler trace.

Note: The specific set of debug components you are using (hardware, a debug probe,
and a C-SPY driver) determine which trace features in C-SPY that are supported.

Collecting and using trace data
This section describes various tasks related to collecting and using trace data.

More specifically, you will get information about:

● Getting started with trace

● Trace data collection using breakpoints

● Searching in trace data

● Browsing through trace data.

GETTING STARTED WITH TRACE

1 Before you start C-SPY:

● For the C-SPY simulator, no specific build settings are required before starting
C-SPY.

AFE1_AFE2-1:1

Trace

161

● For the C-SPY E30A emulator, you must choose E30A Emulator>Hardware
Setup and select Trace as the Emulator mode. If you are using the E30 emulator,
you do not need to perform this.

Note that the pins used on the hardware for the trace signals cannot be used by your
application.

2 Start C-SPY and choose Events from the C-SPY driver menu. In the Events window,
right-click and choose New Trace Event. In the Trace Event dialog box that appears,
create a new trace event.

If you are using the C-SPY simulator you can ignore this step.

3 Open the Trace window—available from the driver-specific menu—and click the
Activate button to enable collecting trace data. For the E30 emulator driver, it is
always activated.

4 Start the execution. When the execution stops, for instance because a breakpoint is
triggered, trace data is displayed in the Trace window. For more information about the
window, see Trace window, page 165.

TRACE DATA COLLECTION USING BREAKPOINTS

A convenient way to collect trace data between two execution points is to start and stop
the data collection using dedicated breakpoints. Choose between these alternatives:

● In the editor or Disassembly window, position your insertion point, right-click, and
toggle a Trace Start or Trace Stop breakpoint from the context menu.

● In the Breakpoints window, choose Trace Start or Trace Stop.

● The C-SPY system macros __setTraceStartBreak and
__setTraceStopBreak can also be used.

For more information about these breakpoints, see Trace Start breakpoints dialog box,
page 176 and Trace Stop breakpoints dialog box, page 177, respectively.

SEARCHING IN TRACE DATA

When you have collected trace data, you can perform searches in the collected data to
locate the parts of your code or data that you are interested in, for example, a specific
interrupt or accesses of a specific variable.

You specify the search criteria in the Find in Trace dialog box and view the result in the
Find in Trace window.

Note: The Find in Trace window is very similar to the Trace window, showing the same
columns and data, but only those rows that match the specified search criteria.
Double-clicking an item in the Find in Trace window brings up the same item in the
Trace window.

AFE1_AFE2-1:1

162

Reference information on trace

C-SPY® Debugging Guide
for R32C

To search in your trace data:

1 On the Trace window toolbar, click the Find button.

2 In the Find in Trace dialog box, specify your search criteria.

Typically, you can choose to search for:

● A specific piece of text, for which you can apply further search criteria

● An address range

● A combination of these, like a specific piece of text within a specific address range.

For more information about the various options, see Find in Trace dialog box, page 179.

3 When you have specified your search criteria, click Find. The Find in Trace window is
displayed, which means you can start analyzing the trace data. For more information,
see Find in Trace window, page 181.

BROWSING THROUGH TRACE DATA

To follow the execution history, simply look and scroll in the Trace window.
Alternatively, you can enter browse mode.

To enter browse mode, double-click an item in the Trace window, or click the Browse
toolbar button.

The selected item turns yellow and the source and disassembly windows will highlight
the corresponding location. You can now move around in the trace data using the up and
down arrow keys, or by scrolling and clicking; the source and Disassembly windows
will be updated to show the corresponding location. This is like stepping backward and
forward through the execution history.

Double-click again to leave browse mode.

Reference information on trace
This section gives reference information about these windows and dialog boxes:

● Trace Event dialog box, page 163

● Trace window, page 165

● Function Trace window, page 168

● Trace Expressions window, page 178

● Timeline window, page 168

● Viewing Range dialog box, page 175

● Trace Start breakpoints dialog box, page 176

AFE1_AFE2-1:1

Trace

163

● Trace Stop breakpoints dialog box, page 177

● Trace Expressions window, page 178

● Find in Trace dialog box, page 179

● Find in Trace window, page 181.

Trace Event dialog box
The Trace Event dialog box is available from the Events window context menu.

Figure 76: Trace Event dialog box

In this dialog box, you can set up and modify trace events.

A trace event can be either a branch or a data access, or a combination thereof.

Requirements

One of these alternatives:

● A C-SPY E30 emulator

● A C-SPY E30A emulator

AFE1_AFE2-1:1

164

Reference information on trace

C-SPY® Debugging Guide
for R32C

Trace Area

Use these options to specify the trace area modes:

Trace area

Selects the execution history that will be listed in the Trace window. Up to 512
cycles (branches or data accesses) can be listed with MCU Execution and up to
8,000,000 cycles with Trace priority.

Start address

The address for the trace start condition when using the AFTER trace area.

End address

The address for the trace end condition when using the BEFORE trace area.

Access

The access condition for the event.

Trace Point

The following Trace Point options are available:

Access

The access condition for the event.

Range

The trace point range condition.

(addr) == Address1 Address match. The address matches Address1
below.

Address1 <= (addr) <= Address2 Address range. The address is located
between Address1 and Address2 below.

Address 1

The start address of the trace point address range or the address used for the trace
point address match. Use the browse button to specify a predefined symbol
instead of a hardwired address. Note that the browse button is not available in
the C-SPY E30 driver.

BREAK Lists trace cycles before the target application stops.

BEFORE Lists trace cycles before the trace point.

AFTER Lists trace cycles after the trace point.

FULL Lists from the start until the trace memory is full.

AFE1_AFE2-1:1

Trace

165

Address 2

The end address of a trace point address range. Use the browse button to specify
a predefined symbol instead of a hardwired address. Note that the browse button
is not available in the C-SPY E30 driver.

Trace window
The Trace window is available from the C-SPY driver menu.

Figure 77: The Trace window

This window displays the collected trace data.

The Trace window depends on the C-SPY driver you are using.

Requirements

One of these alternatives:

● The C-SPY Simulator

● A C-SPY E30 emulator

● A C-SPY E30A emulator

Trace toolbar

The toolbar in the Trace window and in the Function trace window contains:

Enable/Disable

Enables and disables collecting and viewing trace data in this window. This
button is not available in the Function trace window.

Clear trace data

Clears the trace buffer. Both the Trace window and the Function trace window
are cleared.

AFE1_AFE2-1:1

166

Reference information on trace

C-SPY® Debugging Guide
for R32C

Toggle source

Toggles the Trace column between showing only disassembly or disassembly
together with the corresponding source code.

Browse

Toggles browse mode on or off for a selected item in the Trace window, see
Browsing through trace data, page 162.

Find

Displays a dialog box where you can perform a search, see Find in Trace dialog
box, page 179.

Save

Displays a standard Save As dialog box where you can save the collected trace
data to a text file, with tab-separated columns.

Edit Settings

In the C-SPY simulator, this button is not enabled.

For C-SPY emulators, this button opens the Events window.

Edit Expressions (C-SPY simulator only)

Opens the Trace Expressions window, see Trace Expressions window, page 178.

Display area

This area displays a collected sequence of executed machine instructions. In addition,
the window can display trace data for expressions.

This area contains these columns for the C-SPY simulator:

#

A serial number for each row in the trace buffer. Simplifies the navigation within
the buffer.

Cycles

The number of cycles elapsed to this point.

Trace

The collected sequence of executed machine instructions. Optionally, the
corresponding source code can also be displayed.

AFE1_AFE2-1:1

Trace

167

Expression
Each expression you have defined to be displayed appears in a separate column.
Each entry in the expression column displays the value after executing the
instruction on the same row. You specify the expressions for which you want to
collect trace data in the Trace Expressions window, see Trace Expressions
window, page 178.

Display area (in the C-SPY E30A emulator)

Index

A number that corresponds to each packet. Examples of packets are instructions,
synchronization points, and exception markers.

Trace

The collected sequence of executed machine instructions. Optionally, the
corresponding source code can also be displayed.

TCNT

Trace cycles, up to either 512 or 8,000,000 depending on used trace mode.

Label

Shows labels corresponding to address bus information.

Src

The state of the data bus.

Dest

The state of the address bus.

Size

The size of the data access:

B 8-bit

W 16-bit

L 32-bit

Q 64-bit

Status

Shows the instruction status between the memory and I/O:

JMP (jump) is Branch information (also for RTS). The address in the Address
column is the jump address. The address in the Data column is the branch
instruction address.

RD (read data) is Data access information.

AFE1_AFE2-1:1

168

Reference information on trace

C-SPY® Debugging Guide
for R32C

WD (write data) is Data access information.

JCnd

For conditional branches; 0 for jumps and 1 for non-jumps.

Function Trace window
The Function Trace window is available from the C-SPY driver menu during a debug
session.

Figure 78: Function Trace window

This window displays a subset of the trace data displayed in the Trace window. Instead
of displaying all rows, the Function Trace window only shows trace data corresponding
to calls to and returns from functions.

Requirements

The C-SPY simulator

Toolbar

For information about the toolbar, see Trace window, page 165.

Display area

For information about the columns in the display area, see Trace window, page 165

Timeline window
The Timeline window is available from the C-SPY driver menu during a debug session.

This window displays trace data in different graphs in relation to a common time axis:

● Call Stack graph

● Data Log graph

AFE1_AFE2-1:1

Trace

169

● Interrupt Log graph

To display a graph:

1 Choose Timeline from the C-SPY driver menu to open the Timeline window.

2 In the Timeline window, click in the graph area and choose Enable from the context
menu to enable a specific graph.

3 For the Data Log Graph, you need to set a Data Log breakpoint for each variable you
want a graphical representation of in the Timeline window. See Data Log breakpoints
dialog box, page 124.

4 Click Go on the toolbar to start executing your application. The graph appears.

To navigate in the graph, use any of these alternatives:

● Right-click and from the context menu choose Zoom In or Zoom Out.
Alternatively, use the + and - keys. The graph zooms in or out depending on which
command you used.

● Right-click in the graph and from the context menu choose Navigate and the
appropriate command to move backwards and forwards on the graph. Alternatively,
use any of the shortcut keys: arrow keys, Home, End, and Ctrl+End.

● Double-click on a sample of interest and the corresponding source code is
highlighted in the editor window and in the Disassembly window.

● Click on the graph and drag to select a time interval. Press Enter or right-click and
from the context menu choose Zoom>Zoom to Selection. The selection zooms in.

Point in the graph with the mouse pointer to get detailed tooltip information for that
location.

Requirements

The display area can be populated with different graphs:

For more information about requirements related to trace data, see Requirements for
using trace, page 160.

Graphs
Call Stack

Graph

Data Log

Graph

Interrupt

Log Graph

C-SPY simulator X X X

C-SPY hardware drivers -- -- --

Table 9: Supported graphs in the Timeline window

AFE1_AFE2-1:1

170

Reference information on trace

C-SPY® Debugging Guide
for R32C

Display area for the Call Stack Graph

The Call Stack Graph displays the sequence of calls and returns collected by trace.

Figure 79: Timeline window with Call Stack graph

At the bottom of the graph you will usually find main, and above it, the functions called
from main, and so on. The horizontal bars, which represent invocations of functions, use
four different colors:

● Medium green for normal C functions with debug information

● Light green for functions known to the debugger only through an assembler label

● Medium or light yellow for interrupt handlers, with the same distinctions as for
green.

The numbers represent the number of cycles spent in, or between, the function
invocations.

At the bottom of the window, there is a common time axis that uses seconds as the time
unit.

Common time axis Selection for current graph

AFE1_AFE2-1:1

Trace

171

Display area for the Data Log graph

The Data Log graph displays the data logs generated by trace, for up to four different
variables or address ranges specified as Data Log breakpoints.

Figure 80: Timeline window with Data Log graph

Where:

● Each graph is labeled with—in the left-side area—the variable name or address for
which you have specified the Data Log breakpoint.

● The graph itself displays how the value of the variable changes over time. The label
area also displays the limits, or range, of the Y-axis for a variable. You can use the
context menu to change these limits. The graph is a graphical representation of the
information in the Data Log window, see Data Log window, page 96.

● The graph can be displayed either as a thin line or as a color-filled solid graph.

● A red vertical line indicates overflow, which means that the communication channel
failed to transmit all data logs from the target system.

At the bottom of the window, there is a common time axis that uses seconds as the time
unit.

Common time axis

Solid Data Log
Graph

Data Log Graph as a
thin line

AFE1_AFE2-1:1

172

Reference information on trace

C-SPY® Debugging Guide
for R32C

Display area for the Interrupt Log graph

The Interrupt Log graph displays interrupts reported by the C-SPY simulator. In other
words, the graph provides a graphical view of the interrupt events during the execution
of your application.

Figure 81: Timeline window with Interrupt Log graph

Where:

● The label area at the left end of the graph shows the names of the interrupts.

● The graph itself shows active interrupts as a thick green horizontal bar where the
white figure indicates the time spent in the interrupt. This graph is a graphical
representation of the information in the Interrupt Log window, see Interrupt Log
window, page 209.

At the bottom of the window, there is a common time axis that uses seconds as the time
unit.

Selection and navigation

Click and drag to select. The selection extends vertically over all graphs, but appears
highlighted in a darker color for the selected graph. You can navigate backward and
forward in the selected graph using the left and right arrow keys. Use the Home and End
keys to move to the first or last relevant point, respectively. Use the navigation keys in
combination with the Shift key to extend the selection.

Common time axis

Active interrupts

AFE1_AFE2-1:1

Trace

173

Context menu

This context menu is available:

Figure 82: Timeline window context menu (for the Call Stack Graph context menu)

Note: The context menu contains some commands that are common to all graphs and
some commands that are specific to each graph. The figure reflects the context menu for
the Call Stack Graph, which means that the menu looks slightly different for the other
graphs.

These commands are available:

Navigate (All graphs)

Commands for navigating over the graph(s); choose between:

Next moves the selection to the next relevant point in the graph. Shortcut key:
right arrow.

Previous moves the selection backward to the previous relevant point in the
graph. Shortcut key: left arrow.

First moves the selection to the first data entry in the graph. Shortcut key:
Home.

Last moves the selection to the last data entry in the graph. Shortcut key: End.

End moves the selection to the last data in any displayed graph, in other words
the end of the time axis. Shortcut key: Ctrl+End.

Auto Scroll (All graphs)

Toggles auto scrolling on or off. When on, the most recently collected data is
automatically displayed if you have executed the command Navigate>End.

Zoom (All graphs)

Commands for zooming the window, in other words, changing the time scale;
choose between:

Zoom to Selection makes the current selection fit the window. Shortcut key:
Return.

Zoom In zooms in on the time scale. Shortcut key: +.

AFE1_AFE2-1:1

174

Reference information on trace

C-SPY® Debugging Guide
for R32C

Zoom Out zooms out on the time scale. Shortcut key: -.

10ns, 100ns, 1us, etc makes an interval of 10 nanoseconds, 100 nanoseconds, 1
microsecond, respectively, fit the window.

1ms, 10ms, etc makes an interval of 1 millisecond or 10 milliseconds,
respectively, fit the window.

10m, 1h, etc makes an interval of 10 minutes or 1 hour, respectively, fit the
window.

Data Log (Data Log Graph)

A heading that shows that the Data Log-specific commands below are available.

Call Stack (Call Stack Graph)

A heading that shows that the Call stack-specific commands below are available.

Interrupt (Interrupt Log Graph)

A heading that shows that the Interrupt Log-specific commands below are
available.

Enable (All graphs)

Toggles the display of the graph on or off. If you disable a graph, that graph will
be indicated as OFF in the Timeline window. If no trace data has been collected
for a graph, no data will appear instead of the graph.

Variable (Data Log Graph)
The name of the variable for which the Data Log-specific commands below
apply. This menu command is context-sensitive, which means it reflects the
Data Log Graph you selected in the Timeline window (one of up to four).

Solid Graph (Data Log Graph)

Displays the graph as a color-filled solid graph instead of as a thin line.

Viewing Range (Data Log Graph)

Displays a dialog box, see Viewing Range dialog box, page 175.

Size (Data Log Graph)

Determines the vertical size of the graph; choose between Small, Medium, and
Large.

Show Numerical Value (Data Log Graph)

Shows the numerical value of the variable, in addition to the graph.

Go To Source (Common)

Displays the corresponding source code in an editor window, if applicable.

AFE1_AFE2-1:1

Trace

175

Select Graphs (Common)

Selects which graphs to be displayed in the Timeline window.

Time Axis Unit (Common)

Selects the unit used in the time axis; choose between Seconds and Cycles.

Profile Selection

Enables profiling time intervals in the Function Profiler window. Note that this
command is only available if the C-SPY driver supports PC Sampling.

Viewing Range dialog box
The Viewing Range dialog box is available from the context menu that appears when
you right-click in the Data Log Graph in the Timeline window.

Figure 83: Viewing Range dialog box

Use this dialog box to specify the value range, that is, the range for the Y-axis for the
graph.

Requirements

The C-SPY simulator

Range for ...

Selects the viewing range for the displayed values:

Auto

Uses the range according to the range of the values that are actually collected,
continuously keeping track of minimum or maximum values. The currently
computed range, if any, is displayed in parentheses. The range is rounded to
reasonably even limits.

AFE1_AFE2-1:1

176

Reference information on trace

C-SPY® Debugging Guide
for R32C

Factory

For the Data Log Graph: Uses the range according to the value range of the
variable, for example 0–65535 for an unsigned 16-bit integer.

Custom

Use the text boxes to specify an explicit range.

Scale

Selects the scale type of the Y-axis:

● Linear

● Logarithmic.

Trace Start breakpoints dialog box
The Trace Start dialog box is available from the context menu that appears when you
right-click in the Breakpoints window.

Figure 84: Trace Start breakpoints dialog box

Use this dialog box to set a Trace Start breakpoint where you want to start collecting
trace data. If you want to collect trace data only for a specific range, you must also set a
Trace Stop breakpoint where you want to stop collecting data.

See also, Trace Stop breakpoints dialog box, page 177.

To set a Trace Start breakpoint:

1 In the editor or Disassembly window, right-click and choose Trace Start from the
context menu.

Alternatively, open the Breakpoints window by choosing View>Breakpoints.

2 In the Breakpoints window, right-click and choose New Breakpoint>Trace Start.

AFE1_AFE2-1:1

Trace

177

Alternatively, to modify an existing breakpoint, select a breakpoint in the Breakpoints
window and choose Edit on the context menu.

3 In the Trigger At text box, specify an expression, an absolute address, or a source
location. Click OK.

4 When the breakpoint is triggered, the trace data collection starts.

Requirements

The C-SPY simulator.

Trigger at

Specify the code location of the breakpoint. Alternatively, click the Edit button to open
the Enter Location dialog box, see Enter Location dialog box, page 126.

Trace Stop breakpoints dialog box
The Trace Stop dialog box is available from the context menu that appears when you
right-click in the Breakpoints window.

Figure 85: Trace Stop breakpoints dialog box

Use this dialog box to set a Trace Stop breakpoint where you want to stop collecting
trace data. If you want to collect trace data only for a specific range, you might also need
to set a Trace Start breakpoint where you want to start collecting data.

See also, Trace Start breakpoints dialog box, page 176.

To set a Trace Stop breakpoint:

1 In the editor or Disassembly window, right-click and choose Trace Stop from the
context menu.

Alternatively, open the Breakpoints window by choosing View>Breakpoints.

AFE1_AFE2-1:1

178

Reference information on trace

C-SPY® Debugging Guide
for R32C

2 In the Breakpoints window, right-click and choose New Breakpoint>Trace Stop.

Alternatively, to modify an existing breakpoint, select a breakpoint in the Breakpoints
window and choose Edit on the context menu.

3 In the Trigger At text box, specify an expression, an absolute address, or a source
location. Click OK.

4 When the breakpoint is triggered, the trace data collection stops.

Requirements

The C-SPY simulator.

Trigger at

Specify the code location of the breakpoint. Alternatively, click the Edit button to open
the Enter Location dialog box, see Enter Location dialog box, page 126.

Trace Expressions window
The Trace Expressions window is available from the Trace window toolbar.

Figure 86: Trace Expressions window

Use this window to specify, for example, a specific variable (or an expression) for which
you want to collect trace data.

Requirements

The C-SPY simulator.

Toolbar

The toolbar buttons change the order between the expressions:

Arrow up

Moves the selected row up.

AFE1_AFE2-1:1

Trace

179

Arrow down

Moves the selected row down.

Display area

Use the display area to specify expressions for which you want to collect trace data:

Expression

Specify any expression that you want to collect data from. You can specify any
expression that can be evaluated, such as variables and registers.

Format

Shows which display format that is used for each expression. Note that you can
change display format via the context menu.

Each row in this area will appear as an extra column in the Trace window.

Find in Trace dialog box
The Find in Trace dialog box is available by clicking the Find button on the Trace
window toolbar or by choosing Edit>Find and Replace>Find.

Note that the Edit>Find and Replace>Find command is context-dependent. It displays
the Find in Trace dialog box if the Trace window is the current window or the Find
dialog box if the editor window is the current window.

Figure 87: Find in Trace dialog box

Use this dialog box to specify the search criteria for advanced searches in the trace data.

The search results are displayed in the Find in Trace window—available by choosing the
View>Messages command, see Find in Trace window, page 181.

See also Searching in trace data, page 161.

AFE1_AFE2-1:1

180

Reference information on trace

C-SPY® Debugging Guide
for R32C

Requirements

One of these alternatives:

● The C-SPY Simulator

● A C-SPY E30 emulator

● A C-SPY E30A emulator

Text search

Specify the string you want to search for. To specify the search criteria, choose between:

Match Case

Searches only for occurrences that exactly match the case of the specified text.
Otherwise int will also find INT and Int and so on.

Match whole word

Searches only for the string when it occurs as a separate word. Otherwise int
will also find print, sprintf and so on.

Only search in one column

Searches only in the column you selected from the drop-down list.

Address Range

Specify the address range you want to display or search. The trace data within the
address range is displayed. If you also have specified a text string in the Text search
field, the text string is searched for within the address range.

AFE1_AFE2-1:1

Trace

181

Find in Trace window
The Find in Trace window is available from the View>Messages menu. Alternatively, it
is automatically displayed when you perform a search using the Find in Trace dialog
box or perform a search using the Find in Trace command available from the context
menu in the editor window.

Figure 88: Find in Trace window

This window displays the result of searches in the trace data. Double-click an item in the
Find in Trace window to bring up the same item in the Trace window.

Before you can view any trace data, you must specify the search criteria in the Find in
Trace dialog box, see Find in Trace dialog box, page 179.

For more information, see Searching in trace data, page 161.

Requirements

One of these alternatives:

● The C-SPY Simulator

● A C-SPY E30 emulator

● A C-SPY E30A emulator

Display area

The Find in Trace window looks like the Trace window and shows the same columns
and data, but only those rows that match the specified search criteria.

AFE1_AFE2-1:1

182

Reference information on trace

C-SPY® Debugging Guide
for R32C

AFE1_AFE2-1:1

 183

Profiling
This chapter describes how to use the profiler in C-SPY®. More specifically,
this means:

● Introduction to the profiler

● Using the profiler

● Reference information on the profiler.

Introduction to the profiler
This section introduces the profiler.

These topics are covered:

● Reasons for using the profiler

● Briefly about the profiler

● Requirements for using the profiler.

REASONS FOR USING THE PROFILER

Function profiling can help you find the functions in your source code where the most
time is spent during execution. You should focus on those functions when optimizing
your code. A simple method of optimizing a function is to compile it using speed
optimization. Alternatively, you can move the data used by the function into more
efficient memory. For detailed information about efficient memory usage, see the IAR
C/C++ Compiler Reference Guide for R32C.

Alternatively, you can use filtered profiling, which means that you can exclude, for
example, individual functions from being profiled. To profile only a specific part of your
code, you can select a time interval—using the Timeline window—for which C-SPY
produces profiling information.

Instruction profiling can help you fine-tune your code on a very detailed level, especially
for assembler source code. Instruction profiling can also help you to understand where
your compiled C/C++ source code spends most of its time, and perhaps give insight into
how to rewrite it for better performance.

AFE1_AFE2-1:1

184

Using the profiler

C-SPY® Debugging Guide
for R32C

BRIEFLY ABOUT THE PROFILER

Function profiling information is displayed in the Function Profiler window, that is,
timing information for the functions in an application. Profiling must be turned on
explicitly using a button on the window’s toolbar, and will stay enabled until it is turned
off.

Instruction profiling information is displayed in the Disassembly window, that is, the
number of times each instruction has been executed.

Profiling sources

The profiler can use different mechanisms, or sources, to collect profiling information.
Depending on the available trace source features, one or more of the sources can be used
for profiling:

● Trace (calls)

The full instruction trace is analyzed to determine all function calls and returns.
When the collected instruction sequence is incomplete or discontinuous, the
profiling information is less accurate.

● Trace (flat)

Each instruction in the full instruction trace or each PC Sample is assigned to a
corresponding function or code fragment, without regard to function calls or returns.
This is most useful when the application does not exhibit normal call/return
sequences, such as when you are using an RTOS, or when you are profiling code
which does not have full debug information.

REQUIREMENTS FOR USING THE PROFILER

The C-SPY simulator supports the profiler; there are no specific requirements.

Using the profiler
This section describes various tasks related to using the profiler.

More specifically, you will get information about:

● Getting started using the profiler on function level

● Getting started using the profiler on instruction level

AFE1_AFE2-1:1

Profiling

185

GETTING STARTED USING THE PROFILER ON FUNCTION
LEVEL

To display function profiling information in the Function Profiler window:

1 Build your application using these options:

2 When you have built your application and started C-SPY, choose
Driver-menu>Function Profiler to open the Function Profiler window, and click the
Enable button to turn on the profiler. Alternatively, choose Enable from the context
menu that is available when you right-click in the Function Profiler window.

3 Start executing your application to collect the profiling information.

4 Profiling information is displayed in the Function Profiler window. To sort, click on the
relevant column header.

5 When you start a new sampling, you can click the Clear button—alternatively, use the
context menu—to clear the data.

GETTING STARTED USING THE PROFILER ON INSTRUCTION
LEVEL

To display instruction profiling information in the Disassembly window:

1 When you have built your application and started C-SPY, choose View>Disassembly
to open the Disassembly window, and choose Instruction Profiling>Enable from the
context menu that is available when you right-click in the left-hand margin of the
Disassembly window.

2 Make sure that the Show command on the context menu is selected, to display the
profiling information.

3 Start executing your application to collect the profiling information.

Category Setting

C/C++ Compiler Output>Generate debug information

Linker Output>Format>Debug information for C-SPY

Table 10: Project options for enabling the profiler

AFE1_AFE2-1:1

186

Reference information on the profiler

C-SPY® Debugging Guide
for R32C

4 When the execution stops, for instance because the program exit is reached or a
breakpoint is triggered, you can view instruction level profiling information in the
left-hand margin of the window.

Figure 89: Instruction count in Disassembly window

For each instruction, the number of times it has been executed is displayed.

Reference information on the profiler
This section gives reference information about these windows and dialog boxes:

● Function Profiler window, page 186

● Disassembly window, page 66

Function Profiler window
The Function Profiler window is available from the C-SPY driver menu.

Figure 90: Function Profiler window

AFE1_AFE2-1:1

Profiling

187

This window displays function profiling information.

When Trace(flat) is selected, a checkbox appears on each line in the left-side margin of
the window. Use these checkboxes to include or exclude lines from the profiling.
Excluded lines are dimmed but not removed.

Requirements

The C-SPY simulator

Toolbar

The toolbar contains:

Enable/Disable

Enables or disables the profiler.

Clear

Clears all profiling data.

Save

Opens a standard Save As dialog box where you can save the contents of the
window to a file, with tab-separated columns. Only non-expanded rows are
sincluded in the list file.

Graphical view

Overlays the values in the percentage columns with a graphical bar.

Progress bar
Displays a backlog of profiling data that is still being processed. If the rate of
incoming data is higher than the rate of the profiler processing the data, a
backlog is accumulated. The progress bar indicates that the profiler is still
processing data, but also approximately how far the profiler has come in the
process. Note that because the profiler consumes data at a certain rate and the
target system supplies data at another rate, the amount of data remaining to be
processed can both increase and decrease. The progress bar can grow and shrink
accordingly.

Display area

The content in the display area depends on which source that is used for the profiling
information:

● For the Trace (calls) source, the display area contains one line for each function
compiled with debug information enabled. When some profiling information has
been collected, it is possible to expand rows of functions that have called other

AFE1_AFE2-1:1

188

Reference information on the profiler

C-SPY® Debugging Guide
for R32C

functions. The child items for a given function list all the functions that have been
called by the parent function and the corresponding statistics.

● For the Trace (flat) source, the display area contains one line for each C function of
your application, but also lines for sections of code from the runtime library or from
other code without debug information, denoted only by the corresponding
assembler labels. Each executed PC address from trace data is treated as a separate
sample and is associated with the corresponding line in the Profiling window. Each
line contains a count of those samples.

For information about which views that are supported in the C-SPY driver you are using,
see Requirements for using the profiler, page 184.

More specifically, the display area provides information in these columns:

Function (All sources)
The name of the profiled C function.

Calls (Trace (calls))

The number of times the function has been called.

Flat time (Trace (calls))

The time in number of executed instructions spent inside the function.

Flat time (%) (Trace (calls))

Flat time expressed as a percentage of the total time.

Acc. time (Trace (calls))

The time in number of executed instructions spent in this function and
everything called by this function.

Acc. time (%) (Trace (calls))

Accumulated time expressed as a percentage of the total time.

PC Samples (Trace (flat))

The number of PC samples associated with the function.

PC Samples (%) (Trace (flat))

The number of PC samples associated with the function as a percentage of the
total number of samples.

AFE1_AFE2-1:1

Profiling

189

Context menu

This context menu is available:

Figure 91: Function Profiler window context menu

The contents of this menu depend on the C-SPY driver you are using.

These commands are available:

Enable

Enables the profiler. The system will collect information also when the window
is closed.

Clear

Clears all profiling data.

Filtering

Selects which part of your code to profile. Choose between:

Check All—Excludes all lines from the profiling.

Uncheck All—Includes all lines in the profiling.

Load—Reads all excluded lines from a saved file.

Save—Saves all excluded lines to a file. Typically, this can be useful if you are
a group of engineers and want to share sets of exclusions.

These commands are only available when using Trace(flat).

Source*

Selects which source to be used for the profiling information. Choose between:

Trace (calls)—the instruction count for instruction profiling is only as complete
as the collected trace data.

Trace (flat)—the instruction count for instruction profiling is only as complete
as the collected trace data.

* The available sources depend on the C-SPY driver you are using.

For information about which views that are supported in the C-SPY driver you are using,
see Requirements for using the profiler, page 184.

AFE1_AFE2-1:1

190

Reference information on the profiler

C-SPY® Debugging Guide
for R32C

AFE1_AFE2-1:1

 191

Code coverage
This chapter describes the code coverage functionality in C-SPY®, which helps
you verify whether all parts of your code have been executed. More
specifically, this means:

● Introduction to code coverage

● Reference information on code coverage.

Introduction to code coverage
This section covers these topics:

● Reasons for using code coverage

● Briefly about code coverage

● Requirements for using code coverage.

REASONS FOR USING CODE COVERAGE

The code coverage functionality is useful when you design your test procedure to verify
whether all parts of the code have been executed. It also helps you identify parts of your
code that are not reachable.

BRIEFLY ABOUT CODE COVERAGE

The Code Coverage window reports the status of the current code coverage analysis. For
every program, module, and function, the analysis shows the percentage of code that has
been executed since code coverage was turned on up to the point where the application
has stopped. In addition, all statements that have not been executed are listed. The
analysis will continue until turned off.

REQUIREMENTS FOR USING CODE COVERAGE

Code coverage is supported by the C-SPY Simulator.

Reference information on code coverage
This section gives reference information about these windows and dialog boxes:

● Code Coverage window, page 192.

AFE1_AFE2-1:1

192

Reference information on code coverage

C-SPY® Debugging Guide
for R32C

See also Single stepping, page 60.

Code Coverage window
The Code Coverage window is available from the View menu.

Figure 92: Code Coverage window

This window reports the status of the current code coverage analysis. For every program,
module, and function, the analysis shows the percentage of code that has been executed
since code coverage was turned on up to the point where the application has stopped. In
addition, all statements that have not been executed are listed. The analysis will continue
until turned off.

An asterisk (*) in the title bar indicates that C-SPY has continued to execute, and that
the Code Coverage window must be refreshed because the displayed information is no
longer up to date. To update the information, use the Refresh command.

To get started using code coverage:

1 Before using the code coverage functionality you must build your application using
these options:

2 After you have built your application and started C-SPY, choose View>Code
Coverage to open the Code Coverage window.

Category Setting

C/C++ Compiler Output>Generate debug information

Linker Format>Debug information for C-SPY

Debugger Plugins>Code Coverage

Table 11: Project options for enabling code coverage

AFE1_AFE2-1:1

Code coverage

193

3 Click the Activate button, alternatively choose Activate from the context menu, to
switch on code coverage.

4 Start the execution. When the execution stops, for instance because the program exit is
reached or a breakpoint is triggered, click the Refresh button to view the code
coverage information.

Requirements

The C-SPY simulator

Display area

The code coverage information is displayed in a tree structure, showing the program,
module, function, and statement levels. The window displays only source code that was
compiled with debug information. Thus, startup code, exit code, and library code is not
displayed in the window. Furthermore, coverage information for statements in inlined
functions is not displayed. Only the statement containing the inlined function call is
marked as executed. The plus sign and minus sign icons allow you to expand and
collapse the structure.

These icons give you an overview of the current status on all levels:

The percentage displayed at the end of every program, module, and function line shows
the amount of statements that has been covered so far, that is, the number of executed
statements divided with the total number of statements.

For statements that have not been executed (yellow diamond), the information displayed
is the column number range and the row number of the statement in the source window,
followed by the address of the step point:

<column_start>-<column_end>:row address.

A statement is considered to be executed when one of its instructions has been executed.
When a statement has been executed, it is removed from the window and the percentage
is increased correspondingly.

Red diamond Signifies that 0% of the modules or functions has been
executed.

Green diamond Signifies that 100% of the modules or functions has been
executed.

Red and green diamond Signifies that some of the modules or functions have been
executed.

Yellow diamond Signifies a statement that has not been executed.

AFE1_AFE2-1:1

194

Reference information on code coverage

C-SPY® Debugging Guide
for R32C

Double-clicking a statement or a function in the Code Coverage window displays that
statement or function as the current position in the source window, which becomes the
active window. Double-clicking a module on the program level expands or collapses the
tree structure.

Context menu

This context menu is available:

Figure 93: Code coverage window context menu

These commands are available:

Activate

Switches code coverage on and off during execution.

Clear

Clears the code coverage information. All step points are marked as not
executed.

Refresh

Updates the code coverage information and refreshes the window. All step
points that have been executed since the last refresh are removed from the tree.

Auto-refresh

Toggles the automatic reload of code coverage information on and off. When
turned on, the code coverage information is reloaded automatically when
C-SPY stops at a breakpoint, at a step point, and at program exit.

Save As

Saves the current code coverage result in a text file.

Save session

Saves your code coverage session data to a *.dat file. This is useful if you for
some reason must abort your debug session, but want to continue the session
later on. This command is available on the toolbar.

Restore session

Restores previously saved code coverage session data. This is useful if you for
some reason must abort your debug session, but want to continue the session
later on. This command is available on the toolbar.

AFE1_AFE2-1:1

 195

Interrupts
This chapter describes how C-SPY® can help you test the logic of your
interrupt service routines and debug the interrupt handling in the target
system. Interrupt logging provides you with comprehensive information about
the interrupt events. More specifically, this chapter gives:

● Introduction to interrupts

● Using the interrupt system

● Reference information on interrupts.

Introduction to interrupts
This section introduces you to interrupt logging and to interrupt simulation.

This section covers these topics:

● Briefly about interrupt logging

● Briefly about the interrupt simulation system

● Interrupt characteristics

● Interrupt simulation states

● C-SPY system macros for interrupt simulation

● Target-adapting the interrupt simulation system.

See also:

● Reference information on C-SPY system macros, page 229

● Breakpoints, page 101

● The IAR C/C++ Compiler Reference Guide for R32C.

BRIEFLY ABOUT INTERRUPT LOGGING

Interrupt logging provides you with comprehensive information about the interrupt
events. This might be useful for example, to help you locate which interrupts you can
fine-tune to become faster. You can log entrances and exits to and from interrupts. You
can also log internal interrupt status information, such as triggered, expired, etc. The

AFE1_AFE2-1:1

196

Introduction to interrupts

C-SPY® Debugging Guide
for R32C

logs are displayed in the Interrupt Log window and a summary is available in the
Interrupt Log Summary window. The Interrupt Graph in the Timeline window provides
a graphical view of the interrupt events during the execution of your application
program.

Requirements for interrupt logging

Interrupt logging is supported by the C-SPY simulator.

BRIEFLY ABOUT THE INTERRUPT SIMULATION SYSTEM

By simulating interrupts, you can test the logic of your interrupt service routines and
debug the interrupt handling in the target system long before any hardware is available.
If you use simulated interrupts in conjunction with C-SPY macros and breakpoints, you
can compose a complex simulation of, for instance, interrupt-driven peripheral devices.

The C-SPY Simulator includes an interrupt simulation system where you can simulate
the execution of interrupts during debugging. You can configure the interrupt simulation
system so that it resembles your hardware interrupt system.

The interrupt system has the following features:

● Simulated interrupt support for the R32C/100 microcomputer

● Single-occasion or periodical interrupts based on the cycle counter

● Predefined interrupts for various devices

● Configuration of hold time, probability, and timing variation

● State information for locating timing problems

● Configuration of interrupts using a dialog box or a C-SPY system macro—that is,
one interactive and one automating interface. In addition, you can instantly force an
interrupt.

● A log window that continuously displays events for each defined interrupt.

● A status window that shows the current interrupt activities.

All interrupts you define using the Interrupt Setup dialog box are preserved between
debug sessions, unless you remove them. A forced interrupt, on the other hand, exists
only until it has been serviced and is not preserved between sessions.

The interrupt simulation system is activated by default, but if not required, you can turn
off the interrupt simulation system to speed up the simulation. To turn it off, use either
the Interrupt Setup dialog box or a system macro.

AFE1_AFE2-1:1

Interrupts

197

INTERRUPT CHARACTERISTICS

The simulated interrupts consist of a set of characteristics which lets you fine-tune each
interrupt to make it resemble the real interrupt on your target hardware. You can specify
a first activation time, a repeat interval, a hold time, a variance, and a probability.

Figure 94: Simulated interrupt configuration

The interrupt simulation system uses the cycle counter as a clock to determine when an
interrupt should be raised in the simulator. You specify the first activation time, which
is based on the cycle counter. C-SPY will generate an interrupt when the cycle counter
has passed the specified activation time. However, interrupts can only be raised between
instructions, which means that a full assembler instruction must have been executed
before the interrupt is generated, regardless of how many cycles an instruction takes.

To define the periodicity of the interrupt generation you can specify the repeat interval
which defines the amount of cycles after which a new interrupt should be generated. In
addition to the repeat interval, the periodicity depends on the two options
probability—the probability, in percent, that the interrupt will actually appear in a
period—and variance—a time variation range as a percentage of the repeat interval.
These options make it possible to randomize the interrupt simulation. You can also
specify a hold time which describes how long the interrupt remains pending until
removed if it has not been processed. If the hold time is set to infinite, the corresponding
pending bit will be set until the interrupt is acknowledged or removed.

INTERRUPT SIMULATION STATES

The interrupt simulation system contains status information that you can use for locating
timing problems in your application. The Interrupt Status window displays the available
status information. For an interrupt, these states can be displayed: Idle, Pending,
Executing, or Suspended.

AFE1_AFE2-1:1

198

Introduction to interrupts

C-SPY® Debugging Guide
for R32C

Normally, a repeatable interrupt has a specified repeat interval that is longer than the
execution time. In this case, the status information at different times looks like this:

Figure 95: Simulation states - example 1

Note: The interrupt activation signal—also known as the pending bit—is automatically
deactivated the moment the interrupt is acknowledged by the interrupt handler.

However, if the interrupt repeat interval is shorter than the execution time, and the
interrupt is reentrant (or non-maskable), the status information at different times looks
like this:

Figure 96: Simulation states - example 2

AFE1_AFE2-1:1

Interrupts

199

An execution time that is longer than the repeat interval might indicate that you should
rewrite your interrupt handler and make it faster, or that you should specify a longer
repeat interval for the interrupt simulation system.

C-SPY SYSTEM MACROS FOR INTERRUPT SIMULATION

Macros are useful when you already have sorted out the details of the simulated interrupt
so that it fully meets your requirements. If you write a macro function containing
definitions for the simulated interrupts, you can execute the functions automatically
when C-SPY starts. Another advantage is that your simulated interrupt definitions will
be documented if you use macro files, and if you are several engineers involved in the
development project you can share the macro files within the group.

The C-SPY Simulator provides these predefined system macros related to interrupts:

__enableInterrupts

__disableInterrupts

__orderInterrupt

__cancelInterrupt

__cancelAllInterrupts

__popSimulatorInterruptExecutingStack

The parameters of the first five macros correspond to the equivalent entries of the
Interrupts dialog box.

For more information about each macro, see Reference information on C-SPY system
macros, page 229.

TARGET-ADAPTING THE INTERRUPT SIMULATION SYSTEM

The interrupt simulation system is easy to use. However, to take full advantage of the
interrupt simulation system you should be familiar with how to adapt it for the processor
you are using.

The interrupt simulation has the same behavior as the hardware. This means that the
execution of an interrupt is dependent on the status of the global interrupt enable bit. The
execution of maskable interrupts is also dependent on the status of the individual
interrupt enable bits.

To perform these actions for various devices, the interrupt system must have detailed
information about each available interrupt. Except for default settings, this information
is provided in the device description files. The default settings are used if no device
description file has been specified.

AFE1_AFE2-1:1

200

Using the interrupt system

C-SPY® Debugging Guide
for R32C

For information about device description files, see Selecting a device description file,
page 33.

Using the interrupt system
This section describes various tasks related to interrupts.

More specifically, you will get information about:

● Simulating a simple interrupt

● Simulating an interrupt in a multi-task system

● Getting started using interrupt logging.

See also:

● Registering and executing using setup macros and setup files, page 220 for details
about how to use a setup file to define simulated interrupts at C-SPY startup

● The tutorial Simulating an interrupt in the Information Center.

SIMULATING A SIMPLE INTERRUPT

This example demonstrates the method for simulating a timer interrupt. However, the
procedure can also be used for other types of interrupts.

To simulate and debug an interrupt:

1 Assume this simple application which contains an interrupt service routine for a timer,
which increments a tick variable. The main function sets the necessary status registers.
The application exits when 100 interrupts have been generated.

#include "ior32c.h"
#include <intrinsics.h>

volatile int ticks = 0;
void main (void)
{
 /* Add your timer setup code here */

 while (ticks < 100); /* Endless loop */
 printf("Done\n");
}

#pragma vector = BASICTIMER_VECTOR
__interrupt void basic_timer(void)
{
 ticks += 1;
}

AFE1_AFE2-1:1

Interrupts

201

2 Add your interrupt service routine to your application source code and add the file to
your project.

3 Build your project and start the simulator.

4 Choose Simulator>Interrupt Setup to open the Interrupts Setup dialog box. Select
the Enable interrupt simulation option to enable interrupt simulation. Click New to
open the Edit Interrupt dialog box. For the BasicTimer example, verify these settings:

Click OK.

5 Execute your application. If you have enabled the interrupt properly in your application
source code, C-SPY will:

● Generate an interrupt when the cycle counter has passed 4000

● Continuously repeat the interrupt after approximately 2000 cycles.

6 To watch the interrupt in action, choose Simulator>Interrupt Log to open the
Interrupt Log window.

7 From the context menu, available in the Interrupt Log window, choose Enable to
enable the logging. If you restart program execution, status information about
entrances and exits to and from interrupts will now appear in the Interrupt Log window.

For information about how to get a graphical representation of the interrupts correlated
with a time axis, see Timeline window, page 168.

SIMULATING AN INTERRUPT IN A MULTI-TASK SYSTEM

If you are using interrupts in such a way that the normal instruction used for returning
from an interrupt handler is not used, for example in an operating system with
task-switching, the simulator cannot automatically detect that the interrupt has finished
executing. The interrupt simulation system will work correctly, but the status
information in the Interrupt Setup dialog box might not look as you expect. If too
many interrupts are executing simultaneously, a warning might be issued.

Option Settings

Interrupt BASICTIMER_VECTOR

First activation 4000

Repeat interval 2000

Hold time 10

Probability (%) 100

Variance (%) 0

Table 12: Timer interrupt settings

AFE1_AFE2-1:1

202

Reference information on interrupts

C-SPY® Debugging Guide
for R32C

To simulate a normal interrupt exit:

1 Set a code breakpoint on the instruction that returns from the interrupt function.

2 Specify the __popSimulatorInterruptExecutingStack macro as a condition to
the breakpoint.

When the breakpoint is triggered, the macro is executed and then the application
continues to execute automatically.

GETTING STARTED USING INTERRUPT LOGGING

1 Choose C-SPY driver>Interrupt Log to open the Interrupt Log window. Optionally,
you can also choose:

● C-SPY driver>Interrupt Log Summary to open the Interrupt Log Summary
window

● C-SPY driver>Timeline to open the Timeline window and view the Interrupt
graph.

2 From the context menu in the Interrupt Log window, choose Enable to enable the
logging.

3 Start executing your application program to collect the log information.

4 To view the interrupt log information, look in any of the Interrupt Log, Interrupt Log
Summary, or the Interrupt graph in the Timeline window.

5 If you want to save the log or summary to a file, choose Save to log file from the
context menu in the window in question.

6 To disable interrupt logging, from the context menu in the Interrupt Log window,
toggle Enable off.

Reference information on interrupts
This section gives reference information about these windows and dialog boxes:

● Interrupt Setup dialog box, page 203

● Edit Interrupt dialog box, page 204

● Forced Interrupt window, page 206

● Interrupt Status window, page 207

● Interrupt Log window, page 209

● Interrupt Log Summary window, page 212.

AFE1_AFE2-1:1

Interrupts

203

Interrupt Setup dialog box
The Interrupt Setup dialog box is available by choosing Simulator>Interrupt Setup.

Figure 97: Interrupt Setup dialog box

This dialog box lists all defined interrupts. Use this dialog box to enable or disable the
interrupt simulation system, as well as to enable or disable individual interrupts.

Requirements

The C-SPY simulator.

Enable interrupt simulation

Enables or disables interrupt simulation. If the interrupt simulation is disabled, the
definitions remain but no interrupts are generated. Note that you can also enable and
disable installed interrupts individually by using the check box to the left of the interrupt
name in the list of installed interrupts.

Display area

This area contains these columns:

Interrupt

Lists all interrupts. Use the checkbox to enable or disable the interrupt.

ID

A unique interrupt identifier.

Type

Shows the type of the interrupt. The type can be one of:

Forced, a single-occasion interrupt defined in the Forced Interrupt Window.

Single, a single-occasion interrupt.

AFE1_AFE2-1:1

204

Reference information on interrupts

C-SPY® Debugging Guide
for R32C

Repeat, a periodically occurring interrupt.

If the interrupt has been set from a C-SPY macro, the additional part (macro)
is added, for example: Repeat(macro).

Timing

The timing of the interrupt. For a Single and Forced interrupt, the activation
time is displayed. For a Repeat interrupt, the information has the form:
Activation Time + n*Repeat Time. For example, 2000 + n*2345. This
means that the first time this interrupt is triggered, is at 2000 cycles and after that
with an interval of 2345 cycles.

Buttons

These buttons are available:

New

Opens the Edit Interrupt dialog box, see Edit Interrupt dialog box, page 204.

Edit

Opens the Edit Interrupt dialog box, see Edit Interrupt dialog box, page 204.

Delete

Removes the selected interrupt.

Delete All

Removes all interrupts.

Edit Interrupt dialog box
The Edit Interrupt dialog box is available from the Interrupt Setup dialog box.

Figure 98: Edit Interrupt dialog box

AFE1_AFE2-1:1

Interrupts

205

Use this dialog box to interactively fine-tune the interrupt parameters. You can add the
parameters and quickly test that the interrupt is generated according to your needs.

Note: You can only edit or remove non-forced interrupts.

Requirements

The C-SPY simulator.

Interrupt

Selects the interrupt that you want to edit. The drop-down list contains all available
interrupts. Your selection will automatically update the Description box. The list is
populated with entries from the device description file that you have selected.

Description

A description of the selected interrupt, if available. The description is retrieved from the
selected device description file and consists of a string describing the vector table
format, the vector number, the base priority, the hardware priority, the SFR register and
request bit, separated by space characters. For interrupts specified using the system
macro __orderInterrupt, the Description box is empty.

First activation

Specify the value of the cycle counter after which the specified type of interrupt will be
generated.

Repeat interval

Specify the periodicity of the interrupt in cycles.

Variance %

Selects a timing variation range, as a percentage of the repeat interval, in which the
interrupt might occur for a period. For example, if the repeat interval is 100 and the
variance 5%, the interrupt might occur anywhere between T=95 and T=105, to simulate
a variation in the timing.

Hold time

Specify how long, in cycles, the interrupt remains pending until removed if it has not
been processed. If you select Infinite, the corresponding pending bit will be set until the
interrupt is acknowledged or removed.

Probability %

Selects the probability, in percent, that the interrupt will actually occur within the
specified period.

AFE1_AFE2-1:1

206

Reference information on interrupts

C-SPY® Debugging Guide
for R32C

Forced Interrupt window
The Forced Interrupt window is available from the C-SPY driver menu.

Figure 99: Forced Interrupt window

Use this window to force an interrupt instantly. This is useful when you want to check
your interrupt logistics and interrupt routines.

The hold time for a forced interrupt is infinite, and the interrupt exists until it has been
serviced or until a reset of the debug session.

To force an interrupt:

1 Enable the interrupt simulation system, see Interrupt Setup dialog box, page 203.

2 Double-click the interrupt in the Forced Interrupt window, or activate by using the
Force command available on the context menu.

Requirements

The C-SPY simulator.

Display area

This area lists all available interrupts and their definitions. The description field is
editable and the information is retrieved from the selected device description file. See
this file for a detailed description.

Context menu

This context menu is available:

Figure 100: Forced Interrupt window context menu

This command is available:

Force

Triggers the interrupt you selected in the display area.

AFE1_AFE2-1:1

Interrupts

207

Interrupt Status window
The Interrupt Status window is available from the C-SPY driver menu.

Figure 101: Interrupt Status window

This window shows the status of all the currently active interrupts, in other words
interrupts that are either executing or waiting to be executed.

Requirements

The C-SPY simulator.

Display area

This area contains these columns:

Interrupt

Lists all interrupts.

ID

A unique interrupt identifier.

Type

The type of the interrupt. The type can be one of:

Forced, a single-occasion interrupt defined in the Forced Interrupt window.

Single, a single-occasion interrupt.

Repeat, a periodically occurring interrupt.

If the interrupt has been set from a C-SPY macro, the additional part (macro)
is added, for example: Repeat(macro).

Status

The state of the interrupt:

Idle, the interrupt activation signal is low (deactivated).

AFE1_AFE2-1:1

208

Reference information on interrupts

C-SPY® Debugging Guide
for R32C

Pending, the interrupt activation signal is active, but the interrupt has not been
yet acknowledged by the interrupt handler.

Executing, the interrupt is currently being serviced, that is the interrupt handler
function is executing.

Suspended, the interrupt is currently suspended due to execution of an interrupt
with a higher priority.

(deleted) is added to Executing and Suspended if you have deleted a currently
active interrupt. (deleted) is removed when the interrupt has finished executing.

Next Time

The next time an idle interrupt is triggered. Once a repeatable interrupt stats
executing, a copy of the interrupt will appear with the state Idle and the next time
set. For interrupts that do not have a next time—that is pending, executing, or
suspended—the column will show --.

Timing

The timing of the interrupt. For a Single and Forced interrupt, the activation
time is displayed. For a Repeat interrupt, the information has the form:
Activation Time + n*Repeat Time. For example, 2000 + n*2345. This
means that the first time this interrupt is triggered, is at 2000 cycles and after that
with an interval of 2345 cycles.

AFE1_AFE2-1:1

Interrupts

209

Interrupt Log window
The Interrupt Log window is available from the C-SPY driver menu.

Figure 102: Interrupt Log window

This window logs entrances to and exits from interrupts. The C-SPY simulator also logs
internal state changes.

The information is useful for debugging the interrupt handling in the target system.
When the Interrupt Log window is open, it is updated continuously at runtime.

Note: There is a limit on the number of saved logs. When this limit is exceeded, the
entries in the beginning of the buffer are erased.

For more information, see Getting started using interrupt logging, page 202.

For information about how to get a graphical view of the interrupt events during the
execution of your application, see Timeline window, page 168.

Requirements

The C-SPY simulator

Darker rows indicate exits from
interrupts

Light-colored rows indicate
entrances to interrupts

AFE1_AFE2-1:1

210

Reference information on interrupts

C-SPY® Debugging Guide
for R32C

Display area

This area contains these columns:

Time

The time for the interrupt entrance, based on an internally specified clock
frequency.

This column is available when you have selected Show Time from the context
menu.

Cycles

The number of cycles from the start of the execution until the event.

This column is available when you have selected Show Cycles from the context
menu.

Interrupt

The interrupt as defined in the device description file.

Status

Shows the event status of the interrupt:

Triggered, the interrupt has passed its activation time.

Forced, the same as Triggered, but the interrupt was forced from the Forced
Interrupt window.

Enter, the interrupt is currently executing.

Leave, the interrupt has been executed.

Expired, the interrupt hold time has expired without the interrupt being
executed.

Rejected, the interrupt has been rejected because the necessary interrupt
registers were not set up to accept the interrupt.

Program Counter

The value of the program counter when the event occurred.

Execution Time/Cycles

The time spent in the interrupt, calculated using the Enter and Leave
timestamps. This includes time spent in any subroutines or other interrupts that
occurred in the specific interrupt.

AFE1_AFE2-1:1

Interrupts

211

Interrupt Log window context menu

This context menu is available in the Interrupt Log window and in the Interrupt Log
Summary window:

Figure 103: Interrupt Log window context menu

Note: The commands are the same in each window, but they only operate on the specific
window.

These commands are available:

Enable

Enables the logging system. The system will log information also when the
window is closed.

Clear

Deletes the log information. Note that this will happen also when you reset the
debugger.

Save to log file

Displays a standard file selection dialog box where you can select the
destination file for the log information. The entries in the log file are separated
by TAB and LF. An X in the Approx column indicates that the timestamp is an
approximation.

Show Time

Displays the Time column in the Data Log window and in the Interrupt Log
window, respectively.

Show Cycles

Displays the Cycles column in the Data Log window and in the Interrupt Log
window, respectively.

AFE1_AFE2-1:1

212

Reference information on interrupts

C-SPY® Debugging Guide
for R32C

Interrupt Log Summary window
The Interrupt Log Summary window is available from the C-SPY driver menu.

Figure 104: Interrupt Log Summary window

This window displays a summary of logs of entrances to and exits from interrupts.

For more information, see Getting started using interrupt logging, page 202.

For information about how to get a graphical view of the interrupt events during the
execution of your application, see Timeline window, page 168.

Requirements

The C-SPY simulator

Display area

Each row in this area displays statistics about the specific interrupt based on the log
information in these columns:

Interrupt

The type of interrupt that occurred.

At the bottom of the column, the current time or cycles is displayed—the
number of cycles or the execution time since the start of execution. Overflow
count and approximative time count is always zero.

Count

The number of times the interrupt occurred.

First time

The first time the interrupt was executed.

Total time**

The accumulated time spent in the interrupt.

Fastest**

The fastest execution of a single interrupt of this type.

AFE1_AFE2-1:1

Interrupts

213

Slowest**

The slowest execution of a single interrupt of this type.

Max interval

The longest time between two interrupts of this type.

The interval is specified as the time interval between the entry time for two
consecutive interrupts.

** Calculated in the same way as for the Execution time/cycles in the Interrupt Log
window.

Context menu

Identical to the context menu of the Interrupt Log window, see Interrupt Log window,
page 209.

AFE1_AFE2-1:1

214

Reference information on interrupts

C-SPY® Debugging Guide
for R32C

AFE1_AFE2-1:1

 215

C-SPY macros
C-SPY® includes a comprehensive macro language which allows you to
automate the debugging process and to simulate peripheral devices.

This chapter describes the C-SPY macro language, its features, for what
purpose these features can be used, and how to use them. More specifically,
this means:

● Introduction to C-SPY macros

● Using C-SPY macros

● Reference information on the macro language

● Reference information on reserved setup macro function names

● Reference information on C-SPY system macros.

Introduction to C-SPY macros
This section covers these topics:

● Reasons for using C-SPY macros

● Briefly about using C-SPY macros

● Briefly about setup macro functions and files

● Briefly about the macro language.

REASONS FOR USING C-SPY MACROS

You can use C-SPY macros either by themselves or in conjunction with complex
breakpoints and interrupt simulation to perform a wide variety of tasks. Some examples
where macros can be useful:

● Automating the debug session, for instance with trace printouts, printing values of
variables, and setting breakpoints.

● Hardware configuring, such as initializing hardware registers.

● Feeding your application with simulated data during runtime.

AFE1_AFE2-1:1

216

Introduction to C-SPY macros

C-SPY® Debugging Guide
for R32C

● Simulating peripheral devices, see the chapter Interrupts. This only applies if you
are using the simulator driver.

● Developing small debug utility functions, for instance reading I/O input from a file,
see the file setupsimple.mac located in the directory \R32C\tutor\.

BRIEFLY ABOUT USING C-SPY MACROS

To use C-SPY macros, you should:

● Write your macro variables and functions and collect them in one or several macro
files

● Register your macros

● Execute your macros.

For registering and executing macros, there are several methods to choose between.
Which method you choose depends on which level of interaction or automation you
want, and depending on at which stage you want to register or execute your macro.

BRIEFLY ABOUT SETUP MACRO FUNCTIONS AND FILES

There are some reserved setup macro function names that you can use for defining
macro functions which will be called at specific times, such as:

● Once after communication with the target system has been established but before
downloading the application software

● Once after your application software has been downloaded

● Each time the reset command is issued

● Once when the debug session ends.

To define a macro function to be called at a specific stage, you should define and register
a macro function with one of the reserved names. For instance, if you want to clear a
specific memory area before you load your application software, the macro setup
function execUserPreload should be used. This function is also suitable if you want
to initialize some CPU registers or memory-mapped peripheral units before you load
your application software.

You should define these functions in a setup macro file, which you can load before
C-SPY starts. Your macro functions will then be automatically registered each time you
start C-SPY. This is convenient if you want to automate the initialization of C-SPY, or
if you want to register multiple setup macros.

For more information about each setup macro function, see Reference information on
reserved setup macro function names, page 228.

AFE1_AFE2-1:1

C-SPY macros

217

BRIEFLY ABOUT THE MACRO LANGUAGE

The syntax of the macro language is very similar to the C language. There are:

● Macro statements, which are similar to C statements.

● Macro functions, which you can define with or without parameters and return
values.

● Predefined built-in system macros, similar to C library functions, which perform
useful tasks such as opening and closing files, setting breakpoints, and defining
simulated interrupts.

● Macro variables, which can be global or local, and can be used in C-SPY
expressions.

● Macro strings, which you can manipulate using predefined system macros.

For more information about the macro language components, see Reference information
on the macro language, page 223.

Example

Consider this example of a macro function which illustrates the various components of
the macro language:

__var oldVal;
CheckLatest(val)
{
 if (oldval != val)
 {
 __message "Message: Changed from ", oldval, " to ", val, "\n";
 oldval = val;
 }
}

Note: Reserved macro words begin with double underscores to prevent name conflicts.

Using C-SPY macros
This section describes various tasks related to registering and executing C-SPY macros.

More specifically, you will get information about:

● Registering C-SPY macros—an overview

● Executing C-SPY macros—an overview

● Registering and executing using setup macros and setup files

● Registering and executing using setup macros and setup files

● Executing macros using Quick Watch

AFE1_AFE2-1:1

218

Using C-SPY macros

C-SPY® Debugging Guide
for R32C

● Executing a macro by connecting it to a breakpoint

For more examples using C-SPY macros, see:

● The tutorial about simulating an interrupt, which you can find in the Information
Center

● Initializing target hardware before C-SPY starts, page 37.

REGISTERING C-SPY MACROS—AN OVERVIEW

C-SPY must know that you intend to use your defined macro functions, and thus you
must register your macros. There are various ways to register macro functions:

● You can register macros interactively in the Macro Configuration dialog box, see
Using the Macro Configuration dialog box, page 219.

● You can register macro functions during the C-SPY startup sequence, see
Registering and executing using setup macros and setup files, page 220.

● You can register a file containing macro function definitions, using the system
macro __registerMacroFile. This means that you can dynamically select which
macro files to register, depending on the runtime conditions. Using the system
macro also lets you register multiple files at the same moment. For information
about the system macro, see __registerMacroFile, page 242.

Which method you choose depends on which level of interaction or automation you
want, and depending on at which stage you want to register your macro.

EXECUTING C-SPY MACROS—AN OVERVIEW

There are various ways to execute macro functions:

● You can execute macro functions during the C-SPY startup sequence and at other
predefined stages during the debug session by defining setup macro functions in a
setup macro file, see Registering and executing using setup macros and setup files,
page 220.

● The Quick Watch window lets you evaluate expressions, and can thus be used for
executing macro functions. For an example, see Executing macros using Quick
Watch, page 221.

● A macro can be connected to a breakpoint; when the breakpoint is triggered the
macro is executed. For an example, see Executing a macro by connecting it to a
breakpoint, page 222.

Which method you choose depends on which level of interaction or automation you
want, and depending on at which stage you want to execute your macro.

AFE1_AFE2-1:1

C-SPY macros

219

USING THE MACRO CONFIGURATION DIALOG BOX

The Macro Configuration dialog box is available by choosing Debug>Macros.

Figure 105: Macro Configuration dialog box

Use this dialog box to list, register, and edit your macro files and functions. The dialog
box offers you an interactive interface for registering your macro functions which is
convenient when you develop macro functions and continuously want to load and test
them.

Macro functions that have been registered using the dialog box are deactivated when you
exit the debug session, and will not automatically be registered at the next debug session.

To register a macro file:

1 Select the macro files you want to register in the file selection list, and click Add or
Add All to add them to the Selected Macro Files list. Conversely, you can remove files
from the Selected Macro Files list using Remove or Remove All.

AFE1_AFE2-1:1

220

Using C-SPY macros

C-SPY® Debugging Guide
for R32C

2 Click Register to register the macro functions, replacing any previously defined macro
functions or variables. Registered macro functions are displayed in the scroll list under
Registered Macros.

Note: System macros cannot be removed from the list, they are always registered.

To list macro functions:

1 Select All to display all macro functions, select User to display all user-defined macros,
or select System to display all system macros.

2 Click either Name or File under Registered Macros to display the column contents
sorted by macro names or by file. Clicking a second time sorts the contents in the
reverse order.

To modify a macro file:

Double-click a user-defined macro function in the Name column to open the file where
the function is defined, allowing you to modify it.

REGISTERING AND EXECUTING USING SETUP MACROS AND
SETUP FILES

It can be convenient to register a macro file during the C-SPY startup sequence. To do
this, specify a macro file which you load before starting the debug session. Your macro
functions will be automatically registered each time you start the debugger.

If you use the reserved setup macro function names to define the macro functions, you
can define exactly at which stage you want the macro function to be executed.

To define a setup macro function and load it during C-SPY startup:

1 Create a new text file where you can define your macro function.

For example:

execUserSetup()
{
 ...
 __registerMacroFile("MyMacroUtils.mac");
 __registerMacroFile("MyDeviceSimulation.mac");

}

This macro function registers the additional macro files MyMacroUtils.mac and
MyDeviceSimulation.mac. Because the macro function is defined with the function
name execUserSetup, it will be executed directly after your application has been
downloaded.

2 Save the file using the filename extension mac.

AFE1_AFE2-1:1

C-SPY macros

221

3 Before you start C-SPY, choose Project>Options>Debugger>Setup. Select Use
Setup file and choose the macro file you just created.

The macros will now be registered during the C-SPY startup sequence.

EXECUTING MACROS USING QUICK WATCH

The Quick Watch window lets you dynamically choose when to execute a macro
function.

1 Consider this simple macro function that checks the status of a watchdog timer
interrupt enable bit:

WDTstatus()
{
 if ((WDreg & 0x01) != 0) /* Checks the status of WDreg */
 return "Timer enabled"; /* C-SPY macro string used */
 else
 return "Timer disabled"; /* C-SPY macro string used */
}

2 Save the macro function using the filename extension mac.

3 To register the macro file, choose Debug>Macros. The Macro Configuration dialog
box appears.

4 Locate the file, click Add and then Register. The macro function appears in the list of
registered macros.

5 Choose View>Quick Watch to open the Quick Watch window, type the macro call
WDTstatus() in the text field and press Return,

Alternatively, in the macro file editor window, select the macro function name
WDTstatus(). Right-click, and choose Quick Watch from the context menu that
appears.

Figure 106: Quick Watch window

The macro will automatically be displayed in the Quick Watch window.

For more information, see Quick Watch window, page 92.

AFE1_AFE2-1:1

222

Using C-SPY macros

C-SPY® Debugging Guide
for R32C

EXECUTING A MACRO BY CONNECTING IT TO A
BREAKPOINT

You can connect a macro to a breakpoint. The macro will then be executed when the
breakpoint is triggered. The advantage is that you can stop the execution at locations of
particular interest and perform specific actions there.

For instance, you can easily produce log reports containing information such as how the
values of variables, symbols, or registers change. To do this you might set a breakpoint
on a suspicious location and connect a log macro to the breakpoint. After the execution
you can study how the values of the registers have changed.

To create a log macro and connect it to a breakpoint:

1 Assume this skeleton of a C function in your application source code:

int fact(int x)
{
 ...
}

2 Create a simple log macro function like this example:

logfact()
{
 __message "fact(" ,x, ")";
}

The __message statement will log messages to the Log window.

Save the macro function in a macro file, with the filename extension mac.

3 To register the macro, choose Debug>Macros to open the Macro Configuration
dialog box and add your macro file to the list Selected Macro Files. Click Register
and your macro function will appear in the list Registered Macros. Close the dialog
box.

4 To set a code breakpoint, click the Toggle Breakpoint button on the first statement
within the function fact in your application source code. Choose View>Breakpoints
to open the Breakpoints window. Select your breakpoint in the list of breakpoints and
choose the Edit command from the context menu.

5 To connect the log macro function to the breakpoint, type the name of the macro
function, logfact(), in the Action field and click Apply. Close the dialog box.

6 Execute your application source code. When the breakpoint is triggered, the macro
function will be executed. You can see the result in the Log window.

AFE1_AFE2-1:1

C-SPY macros

223

● Note that the expression in the Action field is evaluated only when the breakpoint
causes the execution to really stop. If you want to log a value and then automatically
continue execution, you can either:

Use a Log breakpoint, see Log breakpoints dialog box, page 119

● Use the Condition field instead of the Action field. For an example, see Performing
a task and continuing execution, page 110.

7 You can easily enhance the log macro function by, for instance, using the __fmessage
statement instead, which will print the log information to a file. For information about
the __fmessage statement, see Formatted output, page 226.

For an example where a serial port input buffer is simulated using the method of
connecting a macro to a breakpoint, see the tutorial Simulating an interrupt in the
Information Center.

Reference information on the macro language
This section gives reference information on the macro language:

● Macro functions, page 223

● Macro variables, page 224

● Macro strings, page 224

● Macro statements, page 225

● Formatted output, page 226.

MACRO FUNCTIONS

C-SPY macro functions consist of C-SPY variable definitions and macro statements
which are executed when the macro is called. An unlimited number of parameters can
be passed to a macro function, and macro functions can return a value on exit.

A C-SPY macro has this form:

macroName (parameterList)
{
 macroBody
}

where parameterList is a list of macro parameters separated by commas, and
macroBody is any series of C-SPY variable definitions and C-SPY statements.

Type checking is neither performed on the values passed to the macro functions nor on
the return value.

AFE1_AFE2-1:1

224

Reference information on the macro language

C-SPY® Debugging Guide
for R32C

MACRO VARIABLES

A macro variable is a variable defined and allocated outside your application. It can then
be used in a C-SPY expression, or you can assign application data—values of the
variables in your application—to it. For more information about C-SPY expressions, see
Expressions, page 225.

The syntax for defining one or more macro variables is:

__var nameList;

where nameList is a list of C-SPY variable names separated by commas.

A macro variable defined outside a macro body has global scope, and it exists
throughout the whole debugging session. A macro variable defined within a macro body
is created when its definition is executed and destroyed on return from the macro.

By default, macro variables are treated as signed integers and initialized to 0. When a
C-SPY variable is assigned a value in an expression, it also acquires the type of that
expression. For example:

In case of a name conflict between a C symbol and a C-SPY macro variable, C-SPY
macro variables have a higher precedence than C variables. Note that macro variables
are allocated on the debugger host and do not affect your application.

MACRO STRINGS

In addition to C types, macro variables can hold values of macro strings. Note that
macro strings differ from C language strings.

When you write a string literal, such as "Hello!", in a C-SPY expression, the value is
a macro string. It is not a C-style character pointer char*, because char* must point to
a sequence of characters in target memory and C-SPY cannot expect any string literal to
actually exist in target memory.

You can manipulate a macro string using a few built-in macro functions, for example
__strFind or __subString. The result can be a new macro string. You can
concatenate macro strings using the + operator, for example str + "tail". You can
also access individual characters using subscription, for example str[3]. You can get the
length of a string using sizeof(str). Note that a macro string is not
NULL-terminated.

Expression What it means

myvar = 3.5; myvar is now type float, value 3.5.

myvar = (int*)i; myvar is now type pointer to int, and the value is the same as i.

Table 13: Examples of C-SPY macro variables

AFE1_AFE2-1:1

C-SPY macros

225

The macro function __toString is used for converting from a NULL-terminated C
string in your application (char* or char[]) to a macro string. For example, assume
this definition of a C string in your application:

char const *cstr = "Hello";

Then examine these macro examples:

__var str; /* A macro variable */
str = cstr /* str is now just a pointer to char */
sizeof str /* same as sizeof (char*), typically 2 or 4 */
str = __toString(cstr,512) /* str is now a macro string */
sizeof str /* 5, the length of the string */
str[1] /* 101, the ASCII code for 'e' */
str += " World!" /* str is now "Hello World!" */

See also Formatted output, page 226.

MACRO STATEMENTS

Statements are expected to behave in the same way as the corresponding C statements
would do. The following C-SPY macro statements are accepted:

Expressions

expression;

For more information about C-SPY expressions, see Expressions, page 225.

Conditional statements

if (expression)
 statement

if (expression)
 statement
else
 statement

Loop statements

for (init_expression; cond_expression; update_expression)
 statement

while (expression)
 statement

AFE1_AFE2-1:1

226

Reference information on the macro language

C-SPY® Debugging Guide
for R32C

do
 statement
while (expression);

Return statements

return;

return expression;

If the return value is not explicitly set, signed int 0 is returned by default.

Blocks

Statements can be grouped in blocks.

{
 statement1
 statement2
 .
 .
 .
 statementN
}

FORMATTED OUTPUT

C-SPY provides various methods for producing formatted output:

where argList is a comma-separated list of C-SPY expressions or strings, and file is
the result of the __openFile system macro, see __openFile, page 237.

To produce messages in the Debug Log window:

var1 = 42;
var2 = 37;
__message "This line prints the values ", var1, " and ", var2,
" in the Log window.";

This produces this message in the Log window:

This line prints the values 42 and 37 in the Log window.

__message argList; Prints the output to the Debug Log window.

__fmessage file, argList; Prints the output to the designated file.

__smessage argList; Returns a string containing the formatted output.

AFE1_AFE2-1:1

C-SPY macros

227

To write the output to a designated file:

__fmessage myfile, "Result is ", res, "!\n";

To produce strings:

myMacroVar = __smessage 42, " is the answer.";

myMacroVar now contains the string "42 is the answer.".

Specifying display format of arguments

To override the default display format of a scalar argument (number or pointer) in
argList, suffix it with a : followed by a format specifier. Available specifiers are:

These match the formats available in the Watch and Locals windows, but number
prefixes and quotes around strings and characters are not printed. Another example:

__message "The character '", cvar:%c, "' has the decimal value
", cvar;

Depending on the value of the variables, this produces this message:

The character 'A' has the decimal value 65

Note: A character enclosed in single quotes (a character literal) is an integer constant
and is not automatically formatted as a character. For example:

__message 'A', " is the numeric value of the character ",
'A':%c;

would produce:

65 is the numeric value of the character A

Note: The default format for certain types is primarily designed to be useful in the
Watch window and other related windows. For example, a value of type char is
formatted as 'A' (0x41), while a pointer to a character (potentially a C string) is
formatted as 0x8102 "Hello", where the string part shows the beginning of the string
(currently up to 60 characters).

%b for binary scalar arguments

%o for octal scalar arguments

%d for decimal scalar arguments

%x for hexadecimal scalar arguments

%c for character scalar arguments

AFE1_AFE2-1:1

228

Reference information on reserved setup macro function names

C-SPY® Debugging Guide
for R32C

When printing a value of type char*, use the %x format specifier to print just the pointer
value in hexadecimal notation, or use the system macro __toString to get the full
string value.

Reference information on reserved setup macro function names
There are reserved setup macro function names that you can use for defining your setup
macro functions. By using these reserved names, your function will be executed at
defined stages during execution. For more information, see Briefly about setup macro
functions and files, page 216.

This table summarizes the reserved setup macro function names:

Macro Description

execUserPreload Called after communication with the target system is
established but before downloading the target application.
Implement this macro to initialize memory locations
and/or registers which are vital for loading data properly.

execUserExecutionStarted Called when the debugger is about to start or resume
execution. The macro is not called when performing a
one-instruction assembler step, in other words, Step or
Step Into in the Disassembly window. This setup macro is
supported by the C-SPY E8a driver, the C-SPY E30 driver,
and the C-SPY E30A driver.

execUserExecutionStopped Called when the debugger has stopped execution. The
macro is not called when performing a one-instruction
assembler step, in other words, Step or Step Into in the
Disassembly window. This setup macro is supported by
the C-SPY E8a driver, the C-SPY E30 driver, and the
C-SPY E30A driver.

execUserSetup Called once after the target application is downloaded.
Implement this macro to set up the memory map,
breakpoints, interrupts, register macro files, etc.

execUserPreReset Called each time just before the reset command is issued.
Implement this macro to set up any required device state.

execUserReset Called each time just after the reset command is issued.
Implement this macro to set up and restore data.

execUserExit Called once when the debug session ends.
Implement this macro to save status data etc.

Table 14: C-SPY setup macros

AFE1_AFE2-1:1

C-SPY macros

229

If you define interrupts or breakpoints in a macro file that is executed at system start
(using execUserSetup) we strongly recommend that you also make sure that they are
removed at system shutdown (using execUserExit). An example is available in
SetupSimple.mac, see the tutorials in the Information Center.

The reason for this is that the simulator saves interrupt settings between sessions and if
they are not removed they will get duplicated every time execUserSetup is executed
again. This seriously affects the execution speed.

Reference information on C-SPY system macros
This section gives reference information about each of the C-SPY system macros.

This table summarizes the pre-defined system macros:

Macro Description

__cancelAllInterrupts Cancels all ordered interrupts

__cancelInterrupt Cancels an interrupt

__clearBreak Clears a breakpoint

__closeFile Closes a file that was opened by __openFile

__delay Delays execution

__disableInterrupts Disables generation of interrupts

__driverType Verifies the driver type

__enableInterrupts Enables generation of interrupts

__evaluate Interprets the input string as an expression and
evaluates it.

__isBatchMode Checks if C-SPY is running in batch mode or not.

__loadImage Loads an image.

__memoryRestore Restores the contents of a file to a specified memory
zone

__memorySave Saves the contents of a specified memory area to a
file

__openFile Opens a file for I/O operations

__orderInterrupt Generates an interrupt

__popSimulatorInterruptExec

utingStack

Informs the interrupt simulation system that an
interrupt handler has finished executing

__readFile Reads from the specified file

__readFileByte Reads one byte from the specified file

Table 15: Summary of system macros

AFE1_AFE2-1:1

230

Reference information on C-SPY system macros

C-SPY® Debugging Guide
for R32C

__readMemory8,

__readMemoryByte

Reads one byte from the specified memory location

__readMemory16 Reads two bytes from the specified memory location

__readMemory32 Reads four bytes from the specified memory
location

__registerMacroFile Registers macros from the specified file

__resetFile Rewinds a file opened by __openFile

__setCodeBreak Sets a code breakpoint

__setDataBreak Sets a data breakpoint

__setLogBreak Sets a log breakpoint

__setSimBreak Sets a simulation breakpoint

__setTraceStartBreak Sets a trace start breakpoint

__setTraceStopBreak Sets a trace stop breakpoint

__sourcePosition Returns the file name and source location if the
current execution location corresponds to a source
location

__strFind Searches a given string for the occurrence of
another string

__subString Extracts a substring from another string

__targetDebuggerVersion Returns the version of the target debugger

__toLower Returns a copy of the parameter string where all the
characters have been converted to lower case

__toString Prints strings

__toUpper Returns a copy of the parameter string where all the
characters have been converted to upper case

__unloadImage Unloads a debug image.

__writeFile Writes to the specified file

__writeFileByte Writes one byte to the specified file

__writeMemory8,

__writeMemoryByte

Writes one byte to the specified memory location

__writeMemory16 Writes a two-byte word to the specified memory
location

__writeMemory32 Writes a four-byte word to the specified memory
location

Macro Description

Table 15: Summary of system macros (Continued)

AFE1_AFE2-1:1

C-SPY macros

231

__cancelAllInterrupts

Syntax __cancelAllInterrupts()

Return value int 0

Applicability The C-SPY Simulator.

Description Cancels all ordered interrupts.

__cancelInterrupt

Syntax __cancelInterrupt(interrupt_id)

Parameters interrupt_id

The value returned by the corresponding __orderInterrupt macro call
(unsigned long).

Return value

Applicability The C-SPY Simulator.

Description Cancels the specified interrupt.

__clearBreak

Syntax __clearBreak(break_id)

Parameters break_id

The value returned by any of the set breakpoint macros.

Return value int 0

Description Clears a user-defined breakpoint.

See also Breakpoints, page 101.

Result Value

Successful int 0

Unsuccessful Non-zero error number

Table 16: __cancelInterrupt return values

AFE1_AFE2-1:1

232

Reference information on C-SPY system macros

C-SPY® Debugging Guide
for R32C

__closeFile

Syntax __closeFile(fileHandle)

Parameters fileHandle

A macro variable used as filehandle by the __openFile macro.

Return value int 0

Description Closes a file previously opened by __openFile.

__delay

Syntax __delay(value)

Parameters value

The number of milliseconds to delay execution.

Return value int 0

Description Delays execution the specified number of milliseconds.

__disableInterrupts

Syntax __disableInterrupts()

Return value

Applicability The C-SPY Simulator.

Description Disables the generation of interrupts.

Result Value

Successful int 0

Unsuccessful Non-zero error number

Table 17: __disableInterrupts return values

AFE1_AFE2-1:1

C-SPY macros

233

__driverType

Syntax __driverType(driver_id)

Parameters driver_id

A string corresponding to the driver you want to check for. Choose one of these:

"sim" corresponds to the simulator driver.

"emue8a" corresponds to the C-SPY E8a Emulator driver

"emue30" corresponds to the C-SPY E30 Emulator driver

"emue30a" corresponds to the C-SPY E30A Emulator driver

Return value

Description Checks to see if the current C-SPY driver is identical to the driver type of the
driver_id parameter.

Example __driverType("sim")

If the simulator is the current driver, the value 1 is returned. Otherwise 0 is returned.

__enableInterrupts

Syntax __enableInterrupts()

Return value

Applicability The C-SPY Simulator.

Description Enables the generation of interrupts.

Result Value

Successful 1

Unsuccessful 0

Table 18: __driverType return values

Result Value

Successful int 0

Unsuccessful Non-zero error number

Table 19: __enableInterrupts return values

AFE1_AFE2-1:1

234

Reference information on C-SPY system macros

C-SPY® Debugging Guide
for R32C

__evaluate

Syntax __evaluate(string, valuePtr)

Parameters string

Expression string.

valuePtr

Pointer to a macro variable storing the result.

Return value

Description This macro interprets the input string as an expression and evaluates it. The result is
stored in a variable pointed to by valuePtr.

Example This example assumes that the variable i is defined and has the value 5:

__evaluate("i + 3", &myVar)

The macro variable myVar is assigned the value 8.

__isBatchMode

Syntax __isBatchMode()

Return value

Description This macro returns True if the debugger is running in batch mode, otherwise it returns
False.

__loadImage

Syntax __loadImage(path, offset, debugInfoOnly)

Result Value

Successful int 0

Unsuccessful int 1

Table 20: __evaluate return values

Result Value

True int 1

False int 0

Table 21: __isBatchMode return values

AFE1_AFE2-1:1

C-SPY macros

235

Parameters path

A string that identifies the path to the image to download. The path must either
be absolute or use argument variables. For information about argument
variables, see the IDE Project Management and Building Guide.

offset

An integer that identifies the offset to the destination address for the downloaded
image.

debugInfoOnly

A non-zero integer value if no code or data should be downloaded to the target
system, which means that C-SPY will only read the debug information from the
debug file. Or, 0 (zero) for download.

Return value

Description Loads an image (debug file).

Example 1 Your system consists of a ROM library and an application. The application is your active
project, but you have a debug file corresponding to the library. In this case you can add
this macro call in the execUserSetup macro in a C-SPY macro file, which you
associate with your project:

__loadImage(ROMfile, 0x8000, 1);

This macro call loads the debug information for the ROM library ROMfile without
downloading its contents (because it is presumably already in ROM). Then you can
debug your application together with the library.

Example 2 Your system consists of a ROM library and an application, but your main concern is the
library. The library needs to be programmed into flash memory before a debug session.
While you are developing the library, the library project must be the active project in the
IDE. In this case you can add this macro call in the execUserSetup macro in a C-SPY
macro file, which you associate with your project:

__loadImage(ApplicationFile, 0x8000, 0);

The macro call loads the debug information for the application and downloads its
contents (presumably into RAM). Then you can debug your library together with the
application.

Value Result

Non-zero integer number A unique module identification.

int 0 Loading failed.

Table 22: __loadImage return values

AFE1_AFE2-1:1

236

Reference information on C-SPY system macros

C-SPY® Debugging Guide
for R32C

See also Images, page 270 and Loading multiple images, page 35.

__memoryRestore

Syntax __memoryRestore(zone, filename)

Parameters zone

A string that specifies the memory zone, see C-SPY memory zones, page 130.

filename

A string that specifies the file to be read. The filename must include a path,
which must either be absolute or use argument variables. For information about
argument variables, see the IDE Project Management and Building Guide.

Return value int 0

Description Reads the contents of a file and saves it to the specified memory zone.

Example __memoryRestore("Memory", "c:\\temp\\saved_memory.hex");

See also Memory Restore dialog box, page 140.

__memorySave

Syntax __memorySave(start, stop, format, filename)

Parameters start

A string that specifies the first location of the memory area to be saved.

stop

A string that specifies the last location of the memory area to be saved.

format

A string that specifies the format to be used for the saved memory. Choose
between:

intel-extended

motorola

motorola-s19

motorola-s28

AFE1_AFE2-1:1

C-SPY macros

237

motorola-s37.

filename

A string that specifies the file to write to. The filename must include a path,
which must either be absolute or use argument variables. For information about
argument variables, see the IDE Project Management and Building Guide.

Return value int 0

Description Saves the contents of a specified memory area to a file.

Example __memorySave("Memory:0x00", "Memory:0xFF", "intel-extended",
"c:\\temp\\saved_memory.hex");

See also Memory Save dialog box, page 139.

__openFile

Syntax __openFile(filename, access)

Parameters filename

The file to be opened. The filename must include a path, which must either be
absolute or use argument variables. For information about argument variables,
see the IDE Project Management and Building Guide.

access

The access type (string).

These are mandatory but mutually exclusive:

"a" append, new data will be appended at the end of the open file

"r" read

"w" write

These are optional and mutually exclusive:

"b" binary, opens the file in binary mode

"t" ASCII text, opens the file in text mode

This access type is optional:

"+" together with r, w, or a; r+ or w+ is read and write, while a+ is read and
append

AFE1_AFE2-1:1

238

Reference information on C-SPY system macros

C-SPY® Debugging Guide
for R32C

Return value

Description Opens a file for I/O operations. The default base directory of this macro is where the
currently open project file (*.ewp) is located. The argument to __openFile can
specify a location relative to this directory. In addition, you can use argument variables
such as $PROJ_DIR$ and $TOOLKIT_DIR$ in the path argument.

Example __var myFileHandle; /* The macro variable to contain */
 /* the file handle */
myFileHandle = __openFile("$PROJ_DIR$\\Debug\\Exe\\test.tst",
"r");
if (myFileHandle)
{
 /* successful opening */
}

See also For information about argument variables, see the IDE Project Management and
Building Guide.

__orderInterrupt

Syntax __orderInterrupt(specification, first_activation,
 repeat_interval, variance, infinite_hold_time,
 hold_time, probability)

Parameters specification

The interrupt (string). The specification can either be the full specification used
in the device description file (ddf) or only the name. In the latter case the
interrupt system will automatically get the description from the device
description file.

first_activation

The first activation time in cycles (integer)

repeat_interval

The periodicity in cycles (integer)

variance

The timing variation range in percent (integer between 0 and 100)

Result Value

Successful The file handle

Unsuccessful An invalid file handle, which tests as False

Table 23: __openFile return values

AFE1_AFE2-1:1

C-SPY macros

239

infinite_hold_time

1 if infinite, otherwise 0.

hold_time

The hold time (integer)

probability

The probability in percent (integer between 0 and 100)

Return value The macro returns an interrupt identifier (unsigned long).

If the syntax of specification is incorrect, it returns -1.

Applicability The C-SPY Simulator.

Description Generates an interrupt.

Example This example generates a repeating interrupt using an infinite hold time first activated
after 4000 cycles

__orderInterrupt("USARTR_VECTOR", 4000, 2000, 0, 1, 0, 100);

__popSimulatorInterruptExecutingStack

Syntax __popSimulatorInterruptExecutingStack(void)

Return value int 0

Applicability The C-SPY Simulator.

Description Informs the interrupt simulation system that an interrupt handler has finished executing,
as if the normal instruction used for returning from an interrupt handler was executed.

This is useful if you are using interrupts in such a way that the normal instruction for
returning from an interrupt handler is not used, for example in an operating system with
task-switching. In this case, the interrupt simulation system cannot automatically detect
that the interrupt has finished executing.

See also Simulating an interrupt in a multi-task system, page 201.

AFE1_AFE2-1:1

240

Reference information on C-SPY system macros

C-SPY® Debugging Guide
for R32C

__readFile

Syntax __readFile(fileHandle, valuePtr)

Parameters fileHandle

A macro variable used as filehandle by the __openFile macro.

valuePtr

A pointer to a variable.

Return value

Description Reads a sequence of hexadecimal digits from the given file and converts them to an
unsigned long which is assigned to the value parameter, which should be a pointer
to a macro variable.

Example __var number;
if (__readFile(myFileHandle, &number) == 0)
{
 // Do something with number
}

__readFileByte

Syntax __readFileByte(fileHandle)

Parameters fileHandle

A macro variable used as filehandle by the __openFile macro.

Return value -1 upon error or end-of-file, otherwise a value between 0 and 255.

Description Reads one byte from a file.

Example __var byte;
while ((byte = __readFileByte(myFileHandle)) != -1)
{
 /* Do something with byte */
}

Result Value

Successful 0

Unsuccessful Non-zero error number

Table 24: __readFile return values

AFE1_AFE2-1:1

C-SPY macros

241

__readMemory8, __readMemoryByte

Syntax __readMemory8(address, zone)
__readMemoryByte(address, zone)

Parameters address

The memory address (integer).

zone

A string that specifies the memory zone, see C-SPY memory zones, page 130.

Return value The macro returns the value from memory.

Description Reads one byte from a given memory location.

Example __readMemory8(0x0108, "Memory");

__readMemory16

Syntax __readMemory16(address, zone)

Parameters address

The memory address (integer).

zone

A string that specifies the memory zone, see C-SPY memory zones, page 130.

Return value The macro returns the value from memory.

Description Reads a two-byte word from a given memory location.

Example __readMemory16(0x0108, "Memory");

__readMemory32

Syntax __readMemory32(address, zone)

Parameters address

The memory address (integer).

zone

A string that specifies the memory zone, see C-SPY memory zones, page 130.

AFE1_AFE2-1:1

242

Reference information on C-SPY system macros

C-SPY® Debugging Guide
for R32C

Return value The macro returns the value from memory.

Description Reads a four-byte word from a given memory location.

Example __readMemory32(0x0108, "Memory");

__registerMacroFile

Syntax __registerMacroFile(filename)

Parameters filename

A file containing the macros to be registered (string). The filename must include
a path, which must either be absolute or use argument variables. For information
about argument variables, see the IDE Project Management and Building
Guide.

Return value int 0

Description Registers macros from a setup macro file. With this function you can register multiple
macro files during C-SPY startup.

Example __registerMacroFile("c:\\testdir\\macro.mac");

See also Registering and executing using setup macros and setup files, page 220.

__resetFile

Syntax __resetFile(fileHandle)

Parameters fileHandle

A macro variable used as filehandle by the __openFile macro.

Return value int 0

Description Rewinds a file previously opened by __openFile.

AFE1_AFE2-1:1

C-SPY macros

243

__setCodeBreak

Syntax __setCodeBreak(location, count, condition, cond_type, action)

Parameters location

A string that defines the code location of the breakpoint, either a valid C-SPY
expression whose value evaluates to a valid address, an absolute location, or a
source location. For more information about the location types, see Enter
Location dialog box, page 25.

count

The number of times that a breakpoint condition must be fulfilled before a break
occurs (integer).

condition

The breakpoint condition (string).

cond_type

The condition type; either "CHANGED" or "TRUE" (string).

action

An expression, typically a call to a macro, which is evaluated when the
breakpoint is detected.

Return value

Description Sets a code breakpoint, that is, a breakpoint which is triggered just before the processor
fetches an instruction at the specified location.

Examples __setCodeBreak("{D:\\src\\prog.c}.12.9", 3, "d>16", "TRUE",
"ActionCode()");

This example sets a code breakpoint on the label main in your source:

__setCodeBreak("main", 0, "1", "TRUE", "");

See also Breakpoints, page 101.

Result Value

Successful An unsigned integer uniquely identifying the breakpoint. This value
must be used to clear the breakpoint.

Unsuccessful 0

Table 25: __setCodeBreak return values

AFE1_AFE2-1:1

244

Reference information on C-SPY system macros

C-SPY® Debugging Guide
for R32C

__setDataBreak

Syntax __setDataBreak(location, count, condition, cond_type, access,
 action)

Parameters location

A string that defines the data location of the breakpoint, either a valid C-SPY
expression whose value evaluates to a valid address or an absolute location. For
more information about the location types, see Enter Location dialog box, page
25.

count

The number of times that a breakpoint condition must be fulfilled before a break
occurs (integer).

condition

The breakpoint condition (string).

cond_type

The condition type; either "CHANGED" or "TRUE" (string).

access

The memory access type: "R", for read, "W" for write, or "RW" for read/write.

action

An expression, typically a call to a macro, which is evaluated when the
breakpoint is detected.

Return value

Applicability The C-SPY Simulator.

Description Sets a data breakpoint, that is, a breakpoint which is triggered directly after the processor
has read or written data at the specified location.

Example __var brk;
brk = __setDataBreak("Memory:0x2710", 3, "d>6", "TRUE",
 "W", "ActionData()");
...
__clearBreak(brk);

Result Value

Successful An unsigned integer uniquely identifying the breakpoint. This value
must be used to clear the breakpoint.

Unsuccessful 0

Table 26: __setDataBreak return values

AFE1_AFE2-1:1

C-SPY macros

245

See also Breakpoints, page 101.

 __setDataLogBreak

Syntax __setDataLogBreak(location, access,,

Parameters location

A string that defines the data location of the breakpoint, either a valid C-SPY
expression whose value evaluates to a valid address or an absolute location. For
more information about the location types, see Enter Location dialog box, page
25.

access

The memory access type: "R", for read, "W" for write, or "RW" for read/write.

Return value

Applicability The C-SPY Simulator

Description Sets a data log breakpoint, that is, a breakpoint which is triggered when the processor
reads or writes data at the specified location. Note that a data log breakpoint does not
stop the execution it just generates a data log.

Example __var brk;
brk = __setDataLogBreak("Memory:0x4710", "R",);
...
__clearBreak(brk);

See also Breakpoints, page 101 and Getting started using data logging, page 84.

__setLogBreak

Syntax __setLogBreak(location, message, msg_type, condition,
 cond_type)

Result Value

Successful An unsigned integer uniquely identifying the breakpoint. This value
must be used to clear the breakpoint.

Unsuccessful 0

Table 27: __setDataLogBreak return values

AFE1_AFE2-1:1

246

Reference information on C-SPY system macros

C-SPY® Debugging Guide
for R32C

Parameters location

A string that defines the code location of the breakpoint, either a valid C-SPY
expression whose value evaluates to a valid address, an absolute location, or a
source location. For more information about the location types, see Enter
Location dialog box, page 25.

message

The message text.

msg_type

The message type; choose between:

TEXT, the message is written word for word.

ARGS, the message is interpreted as a comma-separated list.

of C-SPY expressions or strings.

condition

The breakpoint condition (string).

cond_type

The condition type; either "CHANGED" or "TRUE" (string).

Return value

Description Sets a log breakpoint, that is, a breakpoint which is triggered when an instruction is
fetched from the specified location. If you have set the breakpoint on a specific machine
instruction, the breakpoint will be triggered and the execution will temporarily halt and
print the specified message in the C-SPY Debug Log window.

Result Value

Successful An unsigned integer uniquely identifying the breakpoint. The same
value must be used when you want to clear the breakpoint.

Unsuccessful 0

Table 28: __setLogBreak return values

AFE1_AFE2-1:1

C-SPY macros

247

Example __var logBp1;
__var logBp2;

logOn()
{
 logBp1 = __setLogBreak ("{C:\\temp\\Utilities.c}.23.1",
 "\"Entering trace zone at :\", #PC:%X", "ARGS", "1", "TRUE");
 logBp2 = __setLogBreak ("{C:\\temp\\Utilities.c}.30.1",
 "Leaving trace zone...", "TEXT", "1", "TRUE");
}

logOff()
{
 __clearBreak(logBp1);
 __clearBreak(logBp2);
}

See also Formatted output, page 226 and Breakpoints, page 101.

 __setSimBreak

Syntax __setSimBreak(location, access, action)

Parameters location

A string that defines the data location of the breakpoint, either a valid C-SPY
expression whose value evaluates to a valid address or an absolute location. For
more information about the location types, see Enter Location dialog box, page
25.

count

The number of times that a breakpoint condition must be fulfilled before a break
occurs (integer).

condition

The breakpoint condition (string).

cond_type

The condition type; either "CHANGED" or "TRUE" (string).

action

An expression, typically a call to a macro, which is evaluated when the
breakpoint is detected.

AFE1_AFE2-1:1

248

Reference information on C-SPY system macros

C-SPY® Debugging Guide
for R32C

Return value

Applicability The C-SPY Simulator.

Description Use this system macro to set immediate breakpoints, which will halt instruction
execution only temporarily. This allows a C-SPY macro function to be called when the
processor is about to read data from a location or immediately after it has written data.
Instruction execution will resume after the action.

This type of breakpoint is useful for simulating memory-mapped devices of various
kinds (for instance serial ports and timers). When the processor reads at a
memory-mapped location, a C-SPY macro function can intervene and supply the
appropriate data. Conversely, when the processor writes to a memory-mapped location,
a C-SPY macro function can act on the value that was written.

__setTraceStartBreak

Syntax __setTraceStartBreak(location)

Parameters location

A string that defines the code location of the breakpoint, either a valid C-SPY
expression whose value evaluates to a valid address, an absolute location, or a
source location. For more information about the location types, see Enter
Location dialog box, page 25.

count

The number of times that a breakpoint condition must be fulfilled before a break
occurs (integer)

condition

The breakpoint condition (string)

cond_type

The condition type; either "CHANGED" or "TRUE" (string)

action

An expression, typically a call to a macro, which is evaluated when the
breakpoint is detected

Result Value

Successful An unsigned integer uniquely identifying the breakpoint. This value
must be used to clear the breakpoint.

Unsuccessful 0

Table 29: __setSimBreak return values

AFE1_AFE2-1:1

C-SPY macros

249

Return value

Applicability The C-SPY Simulator.

Description Sets a breakpoint at the specified location. When that breakpoint is triggered, the trace
system is started.

Example __var startTraceBp;
__var stopTraceBp;

traceOn()
{
 startTraceBp = __setTraceStartBreak
 ("{C:\\TEMP\\Utilities.c}.23.1");
 stopTraceBp = __setTraceStopBreak
 ("{C:\\temp\\Utilities.c}.30.1");
}

traceOff()
{
 __clearBreak(startTraceBp);
 __clearBreak(stopTraceBp);
}

See also Breakpoints, page 101.

__setTraceStopBreak

Syntax __setTraceStopBreak(location)

Parameters location

A string that defines the code location of the breakpoint, either a valid C-SPY
expression whose value evaluates to a valid address, an absolute location, or a
source location. For more information about the location types, see Enter
Location dialog box, page 25.

Result Value

Successful An unsigned integer uniquely identifying the breakpoint. The same
value must be used when you want to clear the breakpoint.

Unsuccessful 0

Table 30: __setTraceStartBreak return values

AFE1_AFE2-1:1

250

Reference information on C-SPY system macros

C-SPY® Debugging Guide
for R32C

count

The number of times that a breakpoint condition must be fulfilled before a break
occurs (integer)

condition

The breakpoint condition (string)

cond_type

The condition type; either "CHANGED" or "TRUE" (string)

action

An expression, typically a call to a macro, which is evaluated when the
breakpoint is detected

Return value

Applicability The C-SPY Simulator.

Description Sets a breakpoint at the specified location. When that breakpoint is triggered, the trace
system is stopped.

Example See __setTraceStartBreak, page 248.

See also Breakpoints, page 101.

 __sourcePosition

Syntax __sourcePosition(linePtr, colPtr)

Parameters linePtr

Pointer to the variable storing the line number

colPtr

Pointer to the variable storing the column number

Result Value

Successful An unsigned integer uniquely identifying the breakpoint. The same
value must be used when you want to clear the breakpoint.

Unsuccessful int 0

Table 31: __setTraceStopBreak return values

AFE1_AFE2-1:1

C-SPY macros

251

Return value

Description If the current execution location corresponds to a source location, this macro returns the
filename as a string. It also sets the value of the variables, pointed to by the parameters,
to the line and column numbers of the source location.

__strFind

Syntax __strFind(macroString, pattern, position)

Parameters macroString

A macro string.

pattern

The string pattern to search for

position

The position where to start the search. The first position is 0

Return value The position where the pattern was found or -1 if the string is not found.

Description This macro searches a given string (macroString) for the occurrence of another string
(pattern).

Example __strFind("Compiler", "pile", 0) = 3
__strFind("Compiler", "foo", 0) = -1

See also Macro strings, page 224.

__subString

Syntax __subString(macroString, position, length)

Parameters macroString

A macro string.

position

The start position of the substring. The first position is 0.

Result Value

Successful Filename string

Unsuccessful Empty ("") string

Table 32: __sourcePosition return values

AFE1_AFE2-1:1

252

Reference information on C-SPY system macros

C-SPY® Debugging Guide
for R32C

length

The length of the substring

Return value A substring extracted from the given macro string.

Description This macro extracts a substring from another string (macroString).

Example __subString("Compiler", 0, 2)

The resulting macro string contains Co.

__subString("Compiler", 3, 4)

The resulting macro string contains pile.

See also Macro strings, page 224.

__targetDebuggerVersion

Syntax __targetDebuggerVersion

Return value A string that represents the version number of the C-SPY debugger processor module.

Description This macro returns the version number of the C-SPY debugger processor module.

Example __var toolVer;
toolVer = __targetDebuggerVersion();
__message "The target debugger version is, ", toolVer;

__toLower

Syntax __toLower(macroString)

Parameters macroString

A macro string.

Return value The converted macro string.

Description This macro returns a copy of the parameter macroString where all the characters have
been converted to lower case.

Example __toLower("IAR")

The resulting macro string contains iar.

AFE1_AFE2-1:1

C-SPY macros

253

__toLower("Mix42")

The resulting macro string contains mix42.

See also Macro strings, page 224.

__toString

Syntax __toString(C_string, maxlength)

Parameters C_string

Any null-terminated C string.

maxlength

The maximum length of the returned macro string.

Return value Macro string.

Description This macro is used for converting C strings (char* or char[]) into macro strings.

Example Assuming your application contains this definition:

char const * hptr = "Hello World!";

this macro call:

__toString(hptr, 5)

would return the macro string containing Hello.

See also Macro strings, page 224.

__toUpper

Syntax __toUpper(macroString)

Parameters macroString

A macro string.

Return value The converted string.

Description This macro returns a copy of the parameter macroString where all the characters have
been converted to upper case.

AFE1_AFE2-1:1

254

Reference information on C-SPY system macros

C-SPY® Debugging Guide
for R32C

Example __toUpper("string")

The resulting macro string contains STRING.

See also Macro strings, page 224.

__unloadImage

Syntax __unloadImage(module_id)

Parameters module_id

An integer which represents a unique module identification, which is retrieved
as a return value from the corresponding __loadImage C-SPY macro.

Return value

Description Unloads debug information from an already downloaded image.

See also Loading multiple images, page 35 and Images, page 270.

__writeFile

Syntax __writeFile(fileHandle, value)

Parameters fileHandle

A macro variable used as filehandle by the __openFile macro.

value

An integer.

Return value int 0

Description Prints the integer value in hexadecimal format (with a trailing space) to the file file.

Note: The __fmessage statement can do the same thing. The __writeFile macro is
provided for symmetry with __readFile.

Value Result

module_id A unique module identification (the same as the input
parameter).

int 0 The unloading failed.

Table 33: __unloadImage return values

AFE1_AFE2-1:1

C-SPY macros

255

__writeFileByte

Syntax __writeFileByte(fileHandle, value)

Parameters fileHandle

A macro variable used as filehandle by the __openFile macro.

value

An integer.

Return value int 0

Description Writes one byte to the file fileHandle.

__writeMemory8, __writeMemoryByte

Syntax __writeMemory8(value, address, zone)
__writeMemoryByte(value, address, zone)

Parameters value

An integer.

address

The memory address (integer).

zone

A string that specifies the memory zone, see C-SPY memory zones, page 130.

Return value int 0

Description Writes one byte to a given memory location.

Example __writeMemory8(0x2F, 0x8020, "Memory");

__writeMemory16

Syntax __writeMemory16(value, address, zone)

Parameters value

An integer.

AFE1_AFE2-1:1

256

Reference information on C-SPY system macros

C-SPY® Debugging Guide
for R32C

address

The memory address (integer).

zone

A string that specifies the memory zone, see C-SPY memory zones, page 130.

Return value int 0

Description Writes two bytes to a given memory location.

Example __writeMemory16(0x2FFF, 0x8020, "Memory");

__writeMemory32

Syntax __writeMemory32(value, address, zone)

Parameters value

An integer.

address

The memory address (integer).

zone

A string that specifies the memory zone, see C-SPY memory zones, page 130.

Return value int 0

Description Writes four bytes to a given memory location.

Example __writeMemory32(0x5555FFFF, 0x8020, "Memory");

AFE1_AFE2-1:1

 257

The C-SPY Command
Line Utility—cspybat
This chapter describes how you can execute C-SPY® in batch mode, using the
C-SPY Command Line Utility—cspybat.exe. More specifically, this means:

● Using C-SPY in batch mode

● Summary of C-SPY command line options

● Reference information on C-SPY command line options.

Using C-SPY in batch mode
You can execute C-SPY in batch mode if you use the command line utility cspybat,
installed in the directory common\bin.

INVOCATION SYNTAX

The invocation syntax for cspybat is:

cspybat processor_DLL driver_DLL debug_file [cspybat_options]
 --backend driver_options

Note: In those cases where a filename is required—including the DLL files—you are
recommended to give a full path to the filename.

Parameters

The parameters are:

Parameter Description

processor_DLL The processor-specific DLL file; available in r32c\bin.

driver_DLL The C-SPY driver DLL file; available in r32c\bin.

debug_file The object file that you want to debug (filename extension d53).

cspybat_options The command line options that you want to pass to cspybat. Note
that these options are optional. For information about each option,
see Reference information on C-SPY command line options, page 260.

Table 34: cspybat parameters

AFE1_AFE2-1:1

258

Using C-SPY in batch mode

C-SPY® Debugging Guide
for R32C

Example

In the following example, EW_DIR represents the full path of the directory where you
have installed IAR Embedded Workbench and PROJ_DIR is the path of the project
directory.

Starting cspybat using the simulator driver

EW_DIR\common\bin\cspybat EW_DIR\r32c\bin\r32cproc.dll
EW_DIR\r32c\bin\r32csim.dll PROJ_DIR\myproject.d53 --plugin
EW_DIR\r32c\bin\r32cbat.dll --backend -d sim -p
EW_DIR\r32c\config\debugger\r32c.ddf

Starting cspybat using the E8a driver

EW_DIR\common\bin\cspybat EW_DIR\r32c\bin\r32cproc.dll
EW_DIR\r32c\bin\r32cemue8a.dll PROJ_DIR\myproject.d53 --plugin
EW_DIR\r32c\bin\r32cbat.dll --backend -d emue8a -p
EW_DIR\r32c\config\debugger\R5F64189.ddf

Starting cspybat using the E30A driver

To run cspybat for the E30A emulator, the following preparation steps must be
performed:

1 Start IAR Embedded Workbench and enter your emulator hardware settings in the
Hardware Setup dialog box. These settings will be stored in a file with the following
name and location: PROJ_DIR\settings\project_name.dni

2 Set up the environment variable CSPYBAT_INIFILE to point to the .dni file where
your hardware settings are stored. For example:

set CSPYBAT_INIFILE = PROJ_DIR\settings\project_name.dni

--backend Marks the beginning of the parameters to the C-SPY driver; all
options that follow will be sent to the driver. Note that this option is
mandatory.

driver_options The command line options that you want to pass to the C-SPY driver.
Note that some of these options are mandatory and some are
optional. For information about each option, see Reference information
on C-SPY command line options, page 260.

Parameter Description

Table 34: cspybat parameters (Continued)

AFE1_AFE2-1:1

The C-SPY Command Line Utility—cspybat

259

This example starts cspybat using the E30A emulator driver:

EW_DIR\common\bin\cspybat EW_DIR\r32c\bin\r32cproc.dll
EW_DIR\r32c\bin\r32cemue30a.dll PROJ_DIR\myproject.d53 --plugin
EW_DIR\r32c\bin\r32cbat.dll --backend -d emue30a -p
EW_DIR\r32c\config\debugger\R5F64213.ddf --drv_communication USB

OUTPUT

When you run cspybat, these types of output can be produced:

● Terminal output from cspybat itself

All such terminal output is directed to stderr. Note that if you run cspybat from
the command line without any arguments, the cspybat version number and all
available options including brief descriptions are directed to stdout and displayed
on your screen.

● Terminal output from the application you are debugging

All such terminal output is directed to stdout, provided that you have used the
--plugin option. See --plugin, page 264.

● Error return codes

cspybat return status information to the host operating system that can be tested in
a batch file. For successful, the value int 0 is returned, and for unsuccessful the value
int 1 is returned.

USING AN AUTOMATICALLY GENERATED BATCH FILE

When you use C-SPY in the IDE, C-SPY generates a batch file
projectname.cspy.bat every time C-SPY is initialized. You can find the file in the
directory $PROJ_DIR$\settings. This batch file contains the same settings as in the
IDE, and you can use it from the command line to start cspybat. The file also contains
information about required modifications.

Summary of C-SPY command line options
GENERAL CSPYBAT OPTIONS

--backend Marks the beginning of the parameters to be sent to the
C-SPY driver (mandatory).

--code_coverage_file Enables the generation of code coverage information and
places it in a specified file.

--cycles Specifies the maximum number of cycles to run.

AFE1_AFE2-1:1

260

Reference information on C-SPY command line options

C-SPY® Debugging Guide
for R32C

OPTIONS AVAILABLE FOR ALL C-SPY DRIVERS

OPTIONS AVAILABLE FOR THE SIMULATOR DRIVER

OPTIONS AVAILABLE FOR THE C-SPY HARDWARE DRIVER

Reference information on C-SPY command line options
This section gives detailed reference information about each cspybat option and each
option available to the C-SPY drivers.

-B

Syntax -B

Applicability All C-SPY drivers.

Description Use this option to enable batch mode.

--download_only Downloads a code image without starting a debug session
afterwards.

--macro Specifies a macro file to be used.

--plugin Specifies a plugin file to be used.

--silent Omits the sign-on message.

--timeout Limits the maximum allowed execution time.

-B Enables batch mode (mandatory).

-d Specifies the C-SPY driver to be used.

-p Specifies the device description file to be used.

--disable_interrupts Disables the interrupt simulation.

--mapu Activates memory access checking.

--drv_communication Specifies the communication link to be used.

--verify_download Verifies the executable image.

AFE1_AFE2-1:1

The C-SPY Command Line Utility—cspybat

261

--backend

Syntax --backend {driver options}

Parameters driver options

Any option available to the C-SPY driver you are using.

Applicability Sent to cspybat (mandatory).

Description Use this option to send options to the C-SPY driver. All options that follow --backend
will be passed to the C-SPY driver, and will not be processed by cspybat itself.

--code_coverage_file

Syntax --code_coverage_file file

Parameters file

The name of the destination file for the code coverage information.

Applicability Sent to cspybat.

Description Use this option to enable the generation of code coverage information. The code
coverage information will be generated after the execution has completed and you can
find it in the specified file.

Note that this option requires that the C-SPY driver you are using supports code
coverage. If you try to use this option with a C-SPY driver that does not support code
coverage, an error message will be directed to stderr.

See also Code coverage, page 191.

--cycles

Syntax --cycles cycles

Parameters cycles

The number of cycles to run.

Applicability Sent to cspybat.

AFE1_AFE2-1:1

262

Reference information on C-SPY command line options

C-SPY® Debugging Guide
for R32C

Description Use this option to specify the maximum number of cycles to run. If the target program
executes longer than the number of cycles specified, the target program will be aborted.
Using this option requires that the C-SPY driver you are using supports a cycle counter,
and that it can be sampled while executing.

-d

Syntax -d

Parameters

Applicability All C-SPY drivers.

Description Use this option to specify the C-SPY driver to be used.

--disable_interrupts

Syntax --disable_interrupts

Applicability The C-SPY Simulator driver.

Description Use this option to disable the interrupt simulation.

To set this option, choose Simulator>Interrupt Setup and deselect the Enable
interrupt simulation option.

--download_only

Syntax --download_only

Applicability Sent to cspybat.

Description Use this option to download the code image without starting a debug session afterwards.

To set related options, choose:

sim Specifies the simulator driver.

emue8a Specifies the E8a emulator driver.

emue30 Specifies the E30 emulator driver.

emue30a Specifies the E30A emulator driver.

AFE1_AFE2-1:1

The C-SPY Command Line Utility—cspybat

263

Project>Download

--drv_communication

Syntax --drv_communication=connection number

Parameters

Applicability The C-SPY E30 driver and the C-SPY E30A driver.

Description Use this option to choose a communication link.

Project>Options>Debugger>driver>Communication>USB

--macro

Syntax --macro filename

Parameters filename

The C-SPY macro file to be used (filename extension mac).

Applicability Sent to cspybat.

Description Use this option to specify a C-SPY macro file to be loaded before executing the target
application. This option can be used more than once on the command line.

See also Briefly about using C-SPY macros, page 216.

--mapu

Syntax --mapu

Applicability The C-SPY simulator driver.

connection Specifies the USB connection.

number Specifies the serial number of the USB connection.

AFE1_AFE2-1:1

264

Reference information on C-SPY command line options

C-SPY® Debugging Guide
for R32C

Description Specify this option to use the segment information in the debug file for memory access
checking. During the execution, the simulator will then check for accesses to
unspecified memory ranges. If any such access is found, the C function call stack and a
message will be printed on stderr and the execution will stop.

See also Memory access checking, page 132.

To set related options, choose:

Simulator>Memory Access Setup

-p

Syntax -p filename

Parameters filename

The device description file to be used.

Applicability All C-SPY drivers.

Description Use this option to specify the device description file to be used.

See also Selecting a device description file, page 33.

--plugin

Syntax --plugin filename

Parameters filename

The plugin file to be used (filename extension dll).

Applicability Sent to cspybat.

Description Certain C/C++ standard library functions, for example printf, can be supported by
C-SPY—for example, the C-SPY Terminal I/O window—instead of by real hardware
devices. To enable such support in cspybat, a dedicated plugin module called
r32cbat.dll located in the r32c\bin directory must be used.

Use this option to include this plugin during the debug session. This option can be used
more than once on the command line.

AFE1_AFE2-1:1

The C-SPY Command Line Utility—cspybat

265

Note: You can use this option to include also other plugin modules, but in that case the
module must be able to work with cspybat specifically. This means that the C-SPY
plugin modules located in the common\plugin directory cannot normally be used with
cspybat.

--silent

Syntax --silent

Applicability Sent to cspybat.

Description Use this option to omit the sign-on message.

--suppress_download

Syntax --suppress_download

Applicability All C-SPY hardware debugger drivers.

Description Use this option to suppress the downloading of the executable image to a non-volatile
type of target memory. The image corresponding to the debugged application must
already exist in the target.

If this option is combined with the option --verify_download, the debugger will read
back the executable image from memory and verify that it is identical to the debugged
application.

Project>Options>Debugger>driver>Download>Verify download

--timeout

Syntax --timeout milliseconds

Parameters milliseconds

The number of milliseconds before the execution stops.

Applicability Sent to cspybat.

Description Use this option to limit the maximum allowed execution time.

AFE1_AFE2-1:1

266

Reference information on C-SPY command line options

C-SPY® Debugging Guide
for R32C

This option is not available in the IDE.

--verify_download

Syntax --verify_download

Applicability All C-SPY hardware debugger drivers.

Description Use this option to verify that the downloaded code image can be read back from target
memory with the correct contents.

Project>Options>Debugger>driver>Download>Verify download

AFE1_AFE2-1:1

 267

Debugger options
This chapter describes the C-SPY® options available in the IAR Embedded
Workbench® IDE. More specifically, this means:

● Setting debugger options

● Reference information on debugger options

● Reference information on C-SPY hardware driver options.

Setting debugger options
Before you start the C-SPY debugger you might need to set some options—both C-SPY
generic options and options required for the target system (C-SPY driver-specific
options). This section gives detailed information about the options in the Debugger
category.

To set debugger options in the IDE:

1 Choose Project>Options to display the Options dialog box.

2 Select Debugger in the Category list.

For more information about the generic options, see Reference information on debugger
options, page 268.

3 On the Setup page, select the appropriate C-SPY driver from the Driver drop-down
list.

4 To set the driver-specific options, select the appropriate driver from the Category list.
Depending on which C-SPY driver you are using, different options are available.

5 To restore all settings to the default factory settings, click the Factory Settings button.

6 When you have set all the required options, click OK in the Options dialog box..

C-SPY driver Available options pages

C-SPY emulator Reference information on C-SPY hardware driver options, page 272

Table 35: Options specific to the C-SPY drivers you are using

AFE1_AFE2-1:1

268

Reference information on debugger options

C-SPY® Debugging Guide
for R32C

Reference information on debugger options
This section gives reference information on C-SPY debugger options.

Setup
The Setup options select the C-SPY driver, the setup macro file, and device description
file to use, and specify which default source code location to run to.

Figure 107: Debugger setup options

Driver

Selects the C-SPY driver for the target system you have.

Run to

Specifies the location C-SPY runs to when the debugger starts after a reset. By default,
C-SPY runs to the main function.

To override the default location, specify the name of a different location you want
C-SPY to run to. You can specify assembler labels or whatever can be evaluated as such,
for example function names.

If the option is deselected, the program counter will contain the regular hardware reset
address at each reset.

Setup macros

Registers the contents of a setup macro file in the C-SPY startup sequence. Select Use
macro file and specify the path and name of the setup file, for example
SetupSimple.mac. If no extension is specified, the extension mac is assumed. A
browse button is available for your convenience.

AFE1_AFE2-1:1

Debugger options

269

Device description file

A default device description fileis selected automatically based on your project settings.
To override the default file, select Override default and specify an alternative file. A
browse button is available for your convenience.

For information about the device description file, see Modifying a device description
file, page 36.

Device description files for each R32C device are provided in the directory
r32c\config and have the filename extension ddf.

Extra Options
The Extra Options page provides you with a command line interface to C-SPY.

Figure 108: Debugger extra options

Use command line options

Specify additional command line arguments to be passed to C-SPY (not supported by
the GUI).

AFE1_AFE2-1:1

270

Reference information on debugger options

C-SPY® Debugging Guide
for R32C

Images
The Images options control the use of additional debug files to be downloaded.

Figure 109: Debugger images options

Note: Flash loading will not be performed; you can only download images to RAM
using the Images options.

Download extra Images

Controls the use of additional debug files to be downloaded:

Path

Specify the debug file to be downloaded. A browse button is available for your
convenience.

Offset

Specify an integer that determines the destination address for the downloaded
debug file.

Debug info only

Makes the debugger download only debug information, and not the complete
debug file.

If you want to download more than three images, use the related C-SPY macro, see
__loadImage, page 234.

For more information, see Loading multiple images, page 35.

AFE1_AFE2-1:1

Debugger options

271

Plugins
The Plugins options select the C-SPY plugin modules to be loaded and made available
during debug sessions.

Figure 110: Debugger plugin options

Select plugins to load

Selects the plugin modules to be loaded and made available during debug sessions. The
list contains the plugin modules delivered with the product installation.

Description

Describes the plugin module.

Location

Informs about the location of the plugin module.

Generic plugin modules are stored in the common\plugins directory. Target-specific
plugin modules are stored in the r32c\plugins directory.

Originator

Informs about the originator of the plugin module, which can be modules provided by
IAR Systems or by third-party vendors.

Version

Informs about the version number.

AFE1_AFE2-1:1

272

Reference information on C-SPY hardware driver options

C-SPY® Debugging Guide
for R32C

Reference information on C-SPY hardware driver options
This section gives reference information on C-SPY hardware driver options.

Communication
With the options on the Communication page you can modify the behavior of the
communication with the emulator.

Figure 111: Emulator communication options

Note: This page is not available for the E8a emulator driver.

USB

Use this option if an emulator is connected to your host computer via a USB cable. If
more than one emulator is connected, choose which one to use with the Serial No
option.

Log communication

Use this option to log the communication between C-SPY and the target system to a file.
To interpret the result, a detailed knowledge of the communication protocol is required.

AFE1_AFE2-1:1

Debugger options

273

Download
The Download page contains the options related to downloading.

Figure 112: Download page

Verify download

Verifies that the downloaded code image can be read back from target memory with the
correct contents.

Suppress download

Disables the downloading of code, while preserving the present content of the flash.
This command is useful if you want to debug an application that already resides in target
memory.

If this option is combined with the Verify download option, the debugger will read back
the code image from non-volatile memory and verify that it is identical to the debugged
application.

AFE1_AFE2-1:1

274

Reference information on C-SPY hardware driver options

C-SPY® Debugging Guide
for R32C

AFE1_AFE2-1:1

 275

Additional information on
C-SPY drivers
This chapter describes the additional menus and features provided by the
C-SPY® drivers. You will also find some useful hints about resolving problems.

Reference information on the C-SPY simulator
This section gives additional reference information the C-SPY simulator, reference
information not provided elsewhere in this documentation.

More specifically, this means:

● Simulator menu, page 275

Simulator menu
When you use the simulator driver, the Simulator menu is added to the menu bar.

Figure 113: Simulator menu

AFE1_AFE2-1:1

276

Reference information on the C-SPY simulator

C-SPY® Debugging Guide
for R32C

Menu commands

These commands are available on the menu:

Interrupt Setup

Displays a dialog box where you can configure C-SPY interrupt simulation, see
Interrupt Setup dialog box, page 203.

Forced Interrupts

Opens a window from where you can instantly trigger an interrupt, see Forced
Interrupt window, page 206.

Interrupt Status

Opens a window from where you can instantly trigger an interrupt, see Interrupt
Status window, page 207.

Interrupt Log

Opens a window which displays the status of all defined interrupts, see Interrupt
Log window, page 209.

Interrupt Log Summary

Opens a window which displays a summary of the status of all defined
interrupts, see Interrupt Log Summary window, page 212.

Data Log

Opens a window which logs accesses to up to four different memory locations
or areas, see Data Log window, page 96.

Data Log Summary

Opens a window which displays a summary of data accesses to specific memory
location or areas, see Data Log Summary window, page 98.

Memory Access Setup

Displays a dialog box to simulate memory access checking by specifying
memory areas with different access types, see Memory Access Setup dialog box,
page 154.

Trace

Opens a window which displays the collected trace data, see Trace window,
page 165.

Function Trace

Opens a window which displays the trace data for function calls and function
returns, see Function Trace window, page 168.

AFE1_AFE2-1:1

Additional information on C-SPY drivers

277

Function Profiler

Opens a window which shows timing information for the functions, see
Function Profiler window, page 186.

Timeline

Opens a window which shows trace data for interrupt logs and for the call stack,
see Timeline window, page 168.

Breakpoint Usage

Displays a window which lists all active breakpoints, see Breakpoint Usage
window, page 114.

Reference information on the C-SPY emulator drivers
This section gives additional reference information on the C-SPY emulator drivers,
reference information not provided elsewhere in this documentation.

More specifically, this means:

● Emulator menu, page 277

● Time Measurement Event dialog box, page 282

● Interval Time Measurement Event dialog box, page 283

● Data Break Event dialog box, page 123

● Interval Time Measurement window, page 285

Emulator menu
When you are using the C-SPY emulator drivers, the Emulator menu is added to the
menu bar.

Figure 114: The Emulator menu

AFE1_AFE2-1:1

278

Reference information on the C-SPY emulator drivers

C-SPY® Debugging Guide
for R32C

Menu commands

These commands are available on the menu:

Hardware Setup

Displays the Hardware Setup dialog box, in which the basic configuration for
the emulator is done, see Hardware Setup, page 55.

Download Firmware

Opens the Download Firmware dialog box for selecting a firmware file to
download to the target board, see Downloading firmware, page 38.

Events

Opens the Events window where events can be viewed and modified, see Events
window, page 279.

Trace

Opens a window which displays the collected trace data, see Trace window,
page 165.

Interval Time Measurement (E30A only)

Opens a window which shows interval time measurement results, see Function
Profiler window, page 186.

Breakpoint Usage

Displays a window which lists all active breakpoints, see Breakpoint Usage
window, page 114.

Disable memory access by GUI when target is executing

Disables all memory accesses by the GUI when target is executing.

Show Emulator Setting (E8a only)

Displays the Emulator Setting dialog box, see Emulator Setting, page 53.

AFE1_AFE2-1:1

Additional information on C-SPY drivers

279

Events window
The Events window is available from the Emulator menu.

Figure 115: Events window

Use this window to display and set data break events, trace events, and RAM monitor
events.

A total of 8 events, comprised of break events, trace events, and RAM monitor events in
combination can be specified.

Execution time measurement uses two events—one that defines a Time Start action and
one that defines a Time End action—to measure the program execution time from the
start to the end of execution. The result in cycles will be displayed in the cycle counter
register. These events are set up automatically from the Events window context menu.

Requirements

One of these alternatives:

● A C-SPY E30 emulator

● A C-SPY E30A emulator

Toolbar

The toolbar contains:

Emulator mode

Displays the selected emulator mode. E30A only.

Edit settings

Opens the Hardware Setup dialog box where you can change the emulator
mode. This option is only available for E30A.

Trace area

Displays the selected trace area, for more information see Trace Event dialog
box, page 163.

AFE1_AFE2-1:1

280

Reference information on the C-SPY emulator drivers

C-SPY® Debugging Guide
for R32C

Trace mode

Selects the trace mode to be used. Trace modes are only available for the C-SPY
E30A emulator driver.

Choose between the following trace modes:

* For the trace priority and time measurement modes, pay attention to the
following:

1) C-SPY will not automatically stop on breakpoints. When the CPU stops, you
must click the Stop button to make C-SPY halt the execution.

2) If you do not want C-SPY to stop on main, disable the options
Project>Options>Debugger>Run to main and Tools>Options>Stack>Stack
pointer(s) not valid until program reaches main.

Save events to file

Saves the event log and the emulator mode setting to a file. This is available for
E30A only.

Load events from file

Loads the event log and the emulator mode setting from a file. This is available
for E30A only.

The display area

The Events window contains the following columns:

Event

The event number.

Address

The address of the event.

Action

The event type.

MCU execution Gives priority to the MCU execution, and the trace
range is 512 bytes.

MCU execution with
disassembler

Gives priority to the MCU execution, and the trace
range is 512 bytes. Includes disassembly.

Trace priority Gives priority to the trace data output, and the MCU
execution is delayed. *

Trace priority with
disassembler

Gives priority to the trace data output, and the MCU
execution is delayed. Includes disassembly. *

AFE1_AFE2-1:1

Additional information on C-SPY drivers

281

Access

The event access condition.

Range

The range condition. EQU means an address match event, IN means an address
range event.

Data

Data used in data compare break.

Mask

Mask used in data compare break.

The context menu

If you right-click an emulator event in the Events window, a context menu appears with
the following commands:

Edit Event

Edits the selected event.

Note: Address match breaks cannot be edited from the Events window. Use the
Breakpoints window (Edit>Breakpoints) to edit them.

Delete Event

Deletes the selected event.

Note: Address match breaks can not be deleted in the Events window. Use the
Breakpoints window (Edit>Breakpoints) to delete them.

New Trace Event

Opens the Trace Event dialog box, where you can create a new trace event. See
Trace Event dialog box, page 163.

New Data Break Event

Opens the Data Break Event dialog box, where you can create a new data break
event. See Data Break Event dialog box, page 123.

New RAM Monitor Event

Creates a new RAM monitor event. The variable values displayed in the Live
Watch window can be periodically updated by the RAM monitor function. In
this case, the real-time capability of execution is not lost. The RAM monitor
event must be set on event E5.

AFE1_AFE2-1:1

282

Reference information on the C-SPY emulator drivers

C-SPY® Debugging Guide
for R32C

New Execution Time Measurement Event

Creates two events, one at event E0 that defines the Time Start action and one at
event E4 that defines the Time End action, to use for execution time
measurement. This command is available for E30A only.

New Interval Time Measurement Event

Opens the Interval Time Measurement dialog box where you can specify an
interval time measurement event. See Interval Time Measurement Event dialog
box, page 283. E30A only.

Note: Some types of events cannot be edited. They must be deleted and then created as
new events.

Time Measurement Event dialog box
The Time Measurement Event dialog box is available from the Events window context
menu.

Figure 116: Time Measurement Event dialog box

Use this window to measure the maximum, minimum, and average execution times in
clock cycles and measurement counts of a specified memory section.

By specifying E0 as the start event and E4 as the end event, you can measure the
execution time in a specified interval.

AFE1_AFE2-1:1

Additional information on C-SPY drivers

283

The result of the measurement will be displayed in the cycle counters in the Register
window.

Requirements

A C-SPY E30 emulator.

Start address

The start address of the time measurement.

End address

The end address of the time measurement.

Access

EXECUTE specifies an instruction execution event. The event is established when an
instruction is executed from the specified address.

READ or WRITE or R/W specifies a memory access event. The event is established
when memory is accessed at the specified address or under conditions set for the
specified address range.

Interval Time Measurement Event dialog box
The Interval Time Measurement Event dialog box is available from the Events
window context menu.

Figure 117: Interval Time Measurement Event dialog box

Use this dialog box to set up events to measure the execution times in microseconds
between data accesses in a specified section of memory.

AFE1_AFE2-1:1

284

Reference information on the C-SPY emulator drivers

C-SPY® Debugging Guide
for R32C

In the Interval Time Measurement window, you specify which of the events to use as
start and stop events for the interval; see Interval Time Measurement window, page 285.
The result of the measurement is also displayed in the Interval Time Measurement
window.

Interval time measurement measures the execution time in microseconds between two
data accesses. You set up the events in this dialog box and the measurement in the
Interval Time Measrement window. See Interval Time Measurement window, page 285.

Requirements

A C-SPY E30A emulator.

Address

The address of the memory section to measure. Use the browse button to specify a
predefined symbol instead of a hardwired address.

Accress

Specifies a data memory access type. Choose between READ, WRITE, and
READ/WRITE.

Data compare

Turns on data comparison.

Data

Specifies the data that triggers the event if matched.

Mask

Specifies the mask for the data somparison.

AFE1_AFE2-1:1

Additional information on C-SPY drivers

285

Interval Time Measurement window
The Interval Time Measurement window is available from the Emulator menu.

Figure 118: Interval Time Measurement window

This window displays the time between data accesses in a specified section of memory.
This window is also used for setting the time measurement points.

Three check boxes allow you to specify up to three measurement points, numbered
MP1–MP3. For every measurement point, you must specify a start event and a stop
event. These events must be of the Interval Time Measurement Event type, see Interval
Time Measurement Event dialog box, page 283. When you are done, click Set.

Click the Clear button to clear the measurement data for the measurement point in
question.

Requirements

A C-SPY E30A emulator.

Display area

This area contains these columns:

MP

Identifies the measurement point.

Min

The fastest execution time for the measured interval, in microseconds.

Max

The slowest execution time for the measured interval, in microseconds.

Average

The average execution time for the measured interval, in microseconds.

Count

The number of times the time interval has been executed.

AFE1_AFE2-1:1

286

Resolving problems

C-SPY® Debugging Guide
for R32C

Resolving problems
Debugging using the C-SPY hardware debugger systems requires interaction between
many systems, independent from each other. For this reason, setting up this debug
system can be a complex task. If something goes wrong, it might at first be difficult to
locate the cause of the problem.

This section includes suggestions for resolving the most common problems that can
occur when debugging with the C-SPY hardware debugger systems.

For problems concerning the operation of the evaluation board, refer to the
documentation supplied with it, or contact your hardware distributor.

WRITE FAILURE DURING LOAD

There are several possible reasons for write failure during load. The most common is
that your application has been incorrectly linked:

● Check the contents of your linker configuration file and make sure that your
application has not been linked to the wrong address

● Check that you are using the correct linker configuration file.

If you are using the IAR Embedded Workbench IDE, the linker configuration file is
automatically selected based on your choice of device.

To choose a device:

1 Choose Project>Options.

2 Select the General Options category.

3 Click the Target tab.

4 Choose the appropriate device from the Device drop-down list.

To override the default linker configuration file:

5 Choose Project>Options.

6 Select the Linker category.

7 Click the Config tab.

8 Choose the appropriate linker configuration file in the Linker configuration file area.

AFE1_AFE2-1:1

Additional information on C-SPY drivers

287

NO CONTACT WITH THE TARGET HARDWARE

There are several possible reasons for C-SPY to fail to establish contact with the target
hardware. Do this:

● Check the communication devices on your host computer

● Verify that the cable is properly plugged in and not damaged or of the wrong type

● Make sure that the evaluation board is supplied with sufficient power

● Check that the correct options for communication have been specified in the IAR
Embedded Workbench IDE.

Examine the linker configuration file to make sure that the application has not been
linked to the wrong address.

SLOW STEPPING SPEED

If you find that the stepping speed is slow, these troubleshooting tips might speed up
stepping:

● If you are using a hardware debugger system, keep track of how many hardware
breakpoints that are used and make sure some of them are left for stepping.

Stepping in C-SPY is normally performed using breakpoints. When C-SPY performs
a step command, a breakpoint is set on the next statement and the application
executes until it reaches this breakpoint. If you are using a hardware debugger
system, the number of hardware breakpoints—typically used for setting a stepping
breakpoint in code that is located in flash/ROM memory—is limited. If you, for
example, step into a C switch statement, breakpoints are set on each branch; this
might consume several hardware breakpoints. If the number of available hardware
breakpoints is exceeded, C-SPY switches into single stepping on assembly level,
which can be very slow.

For more information, see Breakpoints in the C-SPY hardware drivers, page 104 and
Breakpoint consumers, page 105.

● Disable trace data collection, using the Enable/Disable button in both the Trace and
the Function Profiling windows. Trace data collection might slow down stepping
because the collected trace data is processed after each step. Note that it is not
sufficient to just close the corresponding windows to disable trace data collection.

● Choose to view only a limited selection of SFR registers. You can choose between
two alternatives. Either type #SFR_name (where SFR_name reflects the name of the
SFR you want to monitor) in the Watch window, or create your own filter for
displaying a limited group of SFRs in the Register window. Displaying many SFR
registers might slow down stepping because all registers must be read from the
hardware after each step. See Defining application-specific register groups, page
133.

AFE1_AFE2-1:1

288

Resolving problems

C-SPY® Debugging Guide
for R32C

● Close the Memory and Symbolic Memory windows if they are open, because the
visible memory must be read after each step and that might slow down stepping.

● Close any window that displays expressions such as Watch, Live Watch, Locals,
Statics if it is open, because all these windows read memory after each step and that
might slow down stepping.

● Close the Stack window if it is open. Choose Tools>Options>Stack and disable the
Enable graphical stack display and stack usage tracking option if it is enabled.

● If possible, increase the communication speed between C-SPY and the target
board/emulator.

CMYSTRO11-1:1

Index

289

A
Abort (Report Assert option) . 77
absolute location, specifying for a breakpoint. 127
Access Type (Data breakpoints option). 121, 125–126
Access type (Edit Memory Access option) 157
Access (Data Break Event option) 124
Access (Edit SFR option) . 154
Access (Interval Time Measurement Event option). 284
Access (Time Measurement Event option) 283
Action (Code breakpoints option) 116–118, 122, 126
Add to Watch Window (Symbolic Memory window context
menu) . 144
Add (SFR Setup window context menu). 152
Add (Watch window context menu) 88
address breakpoints. 116
Address Range (Find in Trace option) 180
Address (Edit SFR option) . 154
Address (Interval Time Measurement Event option). 284
Address 1 (Data Break Event option) 123
Address 2 (Data Break Event option) 123
Ambiguous symbol (Resolve Symbol Ambiguity option). . 95
application, built outside the IDE . 34
assembler labels, viewing . 84
assembler source code, fine-tuning 183
assembler symbols, using in C-SPY expressions 81
assembler variables, viewing. 84
assumptions, programming experience 17
Auto Scroll (Timeline window context menu) 173
Auto window . 86
Autostep settings dialog box . 77
Autostep (Debug menu) . 48

B
-B (C-SPY command line option). 260
--backend (C-SPY command line option) 261
backtrace information

generated by compiler . 64

viewing in Call Stack window . 71
batch mode, using C-SPY in . 257
Big Endian (Memory window context menu) 138
blocks, in C-SPY macros . 226
bold style, in this guide . 20
Break At (breakpoints option). 115, 117–118, 121
Break on Throw (Debug menu). 48
Break on Uncaught Exception (Debug menu). 48
Break (Debug menu). 47
breakpoint condition, example . 110
Breakpoint Usage window . 114
Breakpoint Usage (Emulator menu) 278
Breakpoint Usage (Simulator menu). 277
breakpoints

address . 116
code, example . 243
connecting a C-SPY macro . 222
consumers of . 105
data . 121
data log . 124
description of . 102
disabling used by Stack window 106
icons for in the IDE . 104
in Memory window . 108
listing all . 114
reasons for using . 101
setting

in memory window . 108
using system macros . 109
using the dialog box . 107

single-stepping if not available. 32
toggling . 107
types of . 102
useful tips. 110

Breakpoints dialog box
Code . 115
Data . 121
Data Log . 124
Execution Address . 116

Index

CMYSTRO11-1:1

290
C-SPY® Debugging Guide
for R32C

Immediate . 125
Log . 119
Software. 118
Trace Start . 176
Trace Stop . 177

Breakpoints window . 112
Browse (Trace toolbar) . 166
byte order, setting in Memory window 137

C
C function information, in C-SPY. 64
C symbols, using in C-SPY expressions 80
C variables, using in C-SPY expressions 80
call chain, displaying in C-SPY . 64
Call stack information. 64
Call Stack window . 71

for backtrace information. 65
Call Stack (Timeline window context menu) 174
__cancelAllInterrupts (C-SPY system macro) 231
__cancelInterrupt (C-SPY system macro). 231
CCR (E30A Emulator) . 56
Clear All (Debug Log window context menu) 75
Clear trace data (Trace toolbar). 165
Clear (Interrupt Log window context menu) 211
__clearBreak (C-SPY system macro) 231
clock control register (E30A Emulator) 56
Clock (E30A) (Hardware Setup option) 56
__closeFile (C-SPY system macro) 232
code breakpoints

overview . 102
toggling . 107

Code Coverage window . 192
Code Coverage (Disassembly window context menu) 69
--code_coverage_file (C-SPY command line option) 261
code, covering execution of . 192
command line options. 260

typographic convention . 20
command prompt icon, in this guide 20

Communication Baud Rate (Emulator Setting option) 55
computer style, typographic convention 20
conditional statements, in C-SPY macros 225
Conditions (Code breakpoints option) . . 116–117, 119–120,
122
Connecting dialog box, E8/E8a. 41
context menu, in windows. 83
conventions, used in this guide . 20
Copy Window Contents (Disassembly
window context menu) . 70
Copy (Debug Log window context menu) 75
copyright notice . 2
cspybat . 257
current position, in C-SPY Disassembly window 68
cursor, in C-SPY Disassembly window. 68
--cycles (C-SPY command line option) 261
C-SPY

batch mode, using in . 257
debugger systems, overview of 26
differences between drivers . 28
environment overview . 23
plugin modules, loading. 33
setting up . 31–32
starting the debugger . 33

C-SPY drivers
overview . 28
specifying . 268

C-SPY expressions . 80
evaluating. 92
in C-SPY macros . 225
Tooltip watch, using. 79
Watch window, using . 79

C-SPY macro "__message"
style (Log breakpoints option) . 120
C-SPY macros

blocks. 226
conditional statements . 225
C-SPY expressions . 225
dialog box, using . 219
examples . 217

CMYSTRO11-1:1

Index

291

checking status of register. 221
checking the status of WDT 221
creating a log macro . 222

executing . 217
connecting to a breakpoint 222
using Quick Watch . 221
using setup macro and setup file 220

functions . 81, 223
loop statements . 225
macro statements . 225
setup macro file . 216

executing. 220
setup macro functions . 216

summary . 228
system macros, summary of. 229
using . 215
variables. 81, 224

C-SPY options . 267
Extra Options. 269
Images . 270
Plugins . 271
Setup . 268

C-SPYLink . 28
C++ terminology. 20

D
-d (C-SPY command line option) 262
Data acquisition interval of program execution (E30A) (Hard-
ware Setup option) . 58
Data Break Event (E30A emulator dialog box). 123
data breakpoints, overview . 103
Data compare (Data Break Event option) 124
Data compare (Interval Time Measurement Event option) 284
Data Coverage (Memory window context menu) 138
data coverage, in Memory window 136
data log breakpoints, overview . 103
Data Log Summary window . 98
Data Log window . 96

Data Log (Timeline window context menu) 174
Data (Interval Time Measurement Event option) 284
ddf (filename extension), selecting a file. 33
Debug Log window. 74
Debug Log window context menu 75
Debug menu (C-SPY main window). 47
Debug the program using the CPU rewrite mode (E30A)
(Hardware Setup option). 56
Debug (Report Assert option) . 77
debugger concepts, definitions of . 26
debugger system overview . 26
Debugging of CPU rewrite mode (E8/E8a emulator
options). 54
Debugging of CPU rewrite mode
(Emulator Setting option) . 54
debugging projects

externally built applications . 34
loading multiple images. 35

debugging, RTOS awareness. 25
__delay (C-SPY system macro) . 232
Delay (Autostep Settings option) . 77
Delete (Breakpoints window context menu) 113
Delete (SFR Setup window context menu) 152
Delete/revert All Custom SFRs (SFR Setup window context
menu) . 153
Description (Edit Interrupt option) 205
description (interrupt property) . 205
Device description file (debugger option) 269
device description files . 33

definition of . 36
memory zones . 131
modifying . 36
register zone. 131
specifying interrupts . 238

Device (Emulator Setting option) . 53
Disable All (Breakpoints window context menu) 113
Disable memory access by GUI when target is executing
(Emulator menu). 278
Disable Reset of Target (E30A) (Hardware Setup option) . 58
Disable (Breakpoints window context menu) 113

CMYSTRO11-1:1

292
C-SPY® Debugging Guide
for R32C

__disableInterrupts (C-SPY system macro) 232
--disable_interrupts (C-SPY command line option) 262
Disassembly window . 66

context menu . 68
disclaimer . 2
DLIB

documentation . 19
Do not communicate with MCU while target is executing
(E30A) (Hardware Setup option) . 58
Do not show this dialog box again (E8/E8a emulator
options). 54
Do not show this dialog box again
(Emulator Setting option) . 54
do (macro statement) . 226
document conventions. 20
documentation

overview of guides . 18
overview of this guide . 17

Download Firmware (Emulator menu) 278
download options . 273
--download_only (C-SPY command line option) 262
Driver (debugger option). 268
__driverType (C-SPY system macro) 233
--drv_communication (C-SPY command line option). . . . 263

E
Edit Expressions (Trace toolbar). 166
Edit Interrupt dialog box. 204
Edit Memory Access dialog box . 156
Edit Memory Range dialog box . 153
Edit Settings (Trace toolbar) . 166
Edit (Breakpoints window context menu) 113
Edit (SFR Setup window context menu) 152
edition, of this guide . 2
Embedded C++ Technical Committee 20
Emulator mode (E30A) (Hardware Setup option). 57
Emulator Setting dialog box . 40
Emulator Setting dialog box (E8a) 53
Emulator, menu. 277

Enable All (Breakpoints window context menu). 113
Enable interrupt simulation (Interrupt Setup option). 203
Enable Log File (Log File option). 76
Enable (Breakpoints window context menu). 113
Enable (Interrupt Log window context menu). 211
Enable (Timeline window context menu) 174
__enableInterrupts (C-SPY system macro) 233
Enable/Disable Breakpoint (Call
Stack window context
menu) . 72
Enable/Disable Breakpoint (Disassembly window context
menu) . 70
Enable/Disable (Trace toolbar) . 165
End address (Edit Memory Access option) 157
End address (Time Measurement Event option) 283
endianness. See byte order
Enter Location dialog box. 126
Erase Flash and Connect (Emulator Setting option) 53
Erase Flash and Connect (E8/E8a emulator options) 53
__evaluate (C-SPY system macro) 234
Events (Emulator menu) . 278
Events (emulator window) . 279
examples

C-SPY macros . 217
interrupts

interrupt logging . 202
timer . 200

macros
checking status of register. 221
checking status of WDT . 221
creating a log macro . 222
using Quick Watch . 221

performing tasks and continue execution 110
tracing incorrect function arguments 110

execUserExit (C-SPY setup macro) 228
execUserFlashInit (C-SPY setup macro). 228
execUserPreload (C-SPY setup macro). 228
execUserPreReset (C-SPY setup macro). 228
execUserReset (C-SPY setup macro) 228
execUserSetup (C-SPY setup macro) 228

CMYSTRO11-1:1

Index

293

Execute the user program after ending the debugger (Emulator
Setting option) . 54
Execute the user program after ending the debugger (E8/E8a
emulator options) . 54
executed code, covering . 192
execution history, tracing . 162
execution time measurement. 279

creating events . 282
expressions. See C-SPY expressions
Extra Options, for C-SPY . 269
E2 Data Flash is not erased on download (E30A) (Hardware
Setup option) . 56
E30 Emulator, hardware setup . 55
E30A Emulator, hardware setup . 55
E30/E30A Emulator, setting up . 272
E30/E30A options

Log communication . 272
USB . 272

F
Factory Settings (E30A) (Hardware Setup option) 58
File format (Memory Save option) 139
file types

device description, specifying in IDE 33
macro . 33, 268

filename extensions
ddf, selecting device description file 33
mac, using macro file . 33

Filename (Memory Restore option) 140
Filename (Memory Save option). 139
Fill dialog box. 140
Find in Trace dialog box . 179
Find in Trace window . 181
Find (Memory window context menu) 138
Find (Trace toolbar) . 166
Firmware Location & WDT dialog box 40
first activation time (interrupt property)
definition of . 197
First activation (Edit Interrupt option). 205

flash memory, load library module to 235
for (macro statement) . 225
Forced Interrupt window. 206
Forced Interrupts (Simulator menu) 276
formats, C-SPY input . 25
Function Profiler window . 186
Function Profiler (Driver1 menu) 278
Function Profiler (Simulator menu) 277
Function Trace window. 168
Function Trace (Simulator menu) 276
functions

call stack information for . 64
C-SPY running to when starting 32, 268
most time spent in, locating . 183

G
Go to Source (Breakpoints window context menu) 113
Go to Source (Call Stack window context menu) 72
Go To Source (Timeline window context menu). 174
Go (Debug menu) . 47, 63

H
Hardware installation, E8a driver . 30
Hardware Setup dialog box (Emulator menu) 55
Hardware Setup (Emulator menu). 278
highlighting, in C-SPY . 64
Hold time (Edit Interrupt option) 205
hold time (interrupt property), definition of 197

I
icons, in this guide . 20
ID Code verification dialog box . 42
ID Code Verification dialog box (E30/E30A Emulator) . . . 45
if else (macro statement) . 225
if (macro statement) . 225
Ignore (Report Assert option) . 77

CMYSTRO11-1:1

294
C-SPY® Debugging Guide
for R32C

illegal memory accesses, checking for 132
Images window. 50
Images, loading multiple. 270
immediate breakpoints, overview 103
Include (Log File option) . 76
input formats, C-SPY . 25
Input Mode dialog box . 73
input, special characters in Terminal I/O window 73
installation directory . 20
Instruction Profiling (Disassembly window context menu). 69
Intel-extended, C-SPY input format 25
Intel-extended, C-SPY output format 27
Interrupt Log Summary window . 212
Interrupt Log Summary (Simulator menu) 276
Interrupt Log window . 209
Interrupt Log (Simulator menu) . 276
Interrupt Setup dialog box . 203
Interrupt Setup (Simulator menu) 276
Interrupt Status window . 207
interrupt system, using device description file 199
Interrupt (Edit Interrupt option) . 205
Interrupt (Timeline window context menu). 174
interrupts

adapting C-SPY system for target hardware 199
simulated, introduction to . 195
timer, example . 200
using system macros . 199

interval time measurement . 284
Interval Time Measurement Event (E30A emulator dialog
box). 283
Interval Time Measurement, emulator window. 285
__isBatchMode (C-SPY system macro) 234
italic style, in this guide . 20
I/O register. See SFR

K
Keep Flash and Connect (Emulator Setting option) 54

L
labels (assembler), viewing. 84
Length (Fill option). 141
lightbulb icon, in this guide. 20
Little Endian (Memory window context menu) 137
Live Watch window . 89
__loadImage (C-SPY system macro) 234
loading multiple debug files, list currently loaded. 50
loading multiple images . 35
Locals window . 86
log breakpoints, overview . 103
Log communication (E30/E30A option) 272
Log File dialog box. 75
Logging>Set Log file (Debug menu) 49
Logging>Set Terminal I/O Log file (Debug menu) 49
loop statements, in C-SPY macros 225

M
mac (filename extension), using a macro file 33
--macro (C-SPY command line option) 263
Macro Configuration dialog box . 219
macro files, specifying . 33, 268
macro statements . 225
macros

executing . 217
using . 215

Macros (Debug menu) . 49
main function, C-SPY running to when starting 32, 268
--mapu (C-SPY command line option) 263
Mask (Interval Time Measurement Event option) 284
MCU Group (Emulator Setting option). 53
mcu (filename extension) . 57
memory access checking. 132
Memory access checking (Memory Access Setup option) 155
Memory Access Setup dialog box. 154
Memory Access Setup (Simulator menu) 276
memory accesses, illegal. 132

CMYSTRO11-1:1

Index

295

Memory Fill (Memory window context menu) 138
memory map . 154
Memory map (E30A) (Hardware Setup option) 57
Memory range (Edit Memory Access option) 157
Memory Restore dialog box . 140
Memory Restore (Memory window context menu). 138
Memory Save dialog box . 139
Memory Save (Memory window context menu) 138
Memory window. 135
memory zones. 130

in device description file . 131
__memoryRestore (C-SPY system macro) 236
__memorySave (C-SPY system macro) 236
Memory>Restore (Debug menu) . 48
Memory>Save (Debug menu) . 48
menu bar, C-SPY-specific . 46
Message (Log breakpoints option) 120
MISRA C, documentation . 19
Mixed Mode (Disassembly window context menu) 70
Monitor start address (E30A) (Hardware Setup option) . . . 57
Motorola, C-SPY input format . 25
Motorola, C-SPY output format . 27
Move to PC (Disassembly window context menu) 68

N
Name (Edit SFR option) . 153
naming conventions . 21
Navigate (Timeline window context menu) 173
New Breakpoint (Breakpoints window context menu) . . . 113
Next Statement (Debug menu) . 48
Next Symbol (Symbolic Memory window context menu) 143

O
__openFile (C-SPY system macro). 237
Operation (Fill option) . 141
operators, sizeof in C-SPY . 82
optimizations, effects on variables 82

options
in the IDE . 267
on the command line . 260, 269

Options (Stack window context menu) 147
__orderInterrupt (C-SPY system macro). 238
Originator (debugger option) . 271
Overwrite data in FLASH without erasing the FLASH area
block (E30A) (Hardware Setup option) 56

P
-p (C-SPY command line option) 264
parameters

tracing incorrect values of . 64
typographic convention . 20

part number, of this guide . 2
peripheral units

device-specific . 36
peripherals register. See SFR
phase-locked loop (E30A Emulator). 56
Please select one symbol
(Resolve Symbol Ambiguity option) 95
PLL (E30A Emulator) . 56
--plugin (C-SPY command line option) 264
plugin modules (C-SPY). 28

loading . 33
Plugins (C-SPY options). 271
__popSimulatorInterruptExecutingStack (C-SPY
system macro). 239
pop-up menu. See context menu
Power Supply dialog box, E8/E8a. 42
Power target from Emulator (Emulator Setting option). . . . 54
Power target from Emulator (E8/E8a emulator options) . . . 54
prerequisites, programming experience. 17
Previous Symbol (Symbolic
Memory window context menu) . 143
probability (interrupt property) . 205

definition of . 197
Probability % (Edit Interrupt option) 205
Profile Selection (Timeline window context menu) 175

CMYSTRO11-1:1

296
C-SPY® Debugging Guide
for R32C

profiling
on function level . 185
on instruction level. 185

profiling information, on functions and instructions 184
profiling sources

trace (calls) . 184, 187
trace (flat) . 184, 188

program execution, in C-SPY . 59
Program Flash (Emulator Setting option) 54
Program Flash (E8/E8a emulator options) 54
programming experience. 17
program, see also application
projects, for debugging externally built applications. 34
publication date, of this guide . 2

Q
Quick Watch window . 92

executing C-SPY macros . 221

R
RAM monitor events, creating . 281
Range for (Viewing Range option) 175
Range (Data Break Event option) 123
__readFile (C-SPY system macro) 240
__readFileByte (C-SPY system macro) 240
__readMemoryByte (C-SPY system macro) 241
__readMemory8 (C-SPY system macro) 241
__readMemory16 (C-SPY system macro) 241
__readMemory32 (C-SPY system macro) 241
read-protected E30/E30A Emulator 45
reference information, typographic convention. 20
Refresh (Debug menu) . 48
register groups . 130

predefined, enabling. 148
Register window . 148
registered trademarks . 2
__registerMacroFile (C-SPY system macro). 242

registers, displayed in Register window 148
Remove (Watch window context menu) 88
Repeat interval (Edit Interrupt option) 205
repeat interval (interrupt property), definition of. 197
Replace (Memory window context menu) 138
Report Assert dialog box . 76
Reset (Debug menu) . 47
__resetFile (C-SPY system macro) 242
Resolve Source Ambiguity dialog box 128
Restore (Memory Restore option). 140
return (macro statement) . 226
ROM-monitor, definition of . 27
RTOS awareness debugging . 25
RTOS awareness (C-SPY plugin module). 25
Run to Cursor (Call Stack window context menu) 72
Run to Cursor (Debug menu) . 48
Run to Cursor (Disassembly window context menu) 69
Run to Cursor, command for executing. 64
Run to (C-SPY option) . 32
Run to (debugger option) . 268

S
Save Custom SFRs (SFR Setup window context menu) . . 153
Save to log file (Interrupt Log window context menu) . . . 211
Save (Memory Save option) . 139
Save (Trace toolbar) . 166
Scale (Viewing Range option). 176
Select All (Debug Log window context menu) 75
Select Graphs (Timeline window context menu). 175
Select plugins to load (debugger option). 271
Set Data Breakpoint (Memory window context menu) . . . 138
Set Next Statement (Debug menu) 48
Set Next Statement (Disassembly window context menu) . 70
__setCodeBreak (C-SPY system macro). 243
__setDataBreak (C-SPY system macro) 244
__setDataLogBreak (C-SPY system macro) 245
__setLogBreak (C-SPY system macro) 245
__setSimBreak (C-SPY system macro) 247

CMYSTRO11-1:1

Index

297

__setTraceStartBreak (C-SPY system macro). 248
__setTraceStopBreak (C-SPY system macro). 249
setup macro functions . 216

reserved names. 228
Setup macros (debugger option) . 268
Setup (C-SPY options) . 268
setupsimple.mac . 216
SFR

in Register window . 149
using as assembler symbols . 81

SFR Setup window . 150
shortcut menu. See context menu
Show all images (Images window context menu) 51
Show All (SFR Setup window context menu). 152
Show Arguments (Call Stack window context menu) 72
Show As (Watch window context menu) 89
Show Custom SFRs only (SFR Setup
window context menu) . 152
Show Cycles (Interrupt Log window context menu) 211
Show Factory SFRs only (SFR Setup
window context menu) . 152
Show Numerical Value (Timeline window context menu) 174
Show offsets (Stack window context menu) 146
Show only (Image window context menu) 51
Show Time (Interrupt Log window context menu) 211
Show variables (Stack window context menu) 146
--silent (C-SPY command line option) 265
simulating interrupts, enabling/disabling 203
Simulator menu. 275
simulator, introduction . 29
Size (breakpoints option) . 115, 122
Size (Edit SFR option) . 154
Size (Timeline window context menu) 174
sizeof . 82
software breakpoints

setting . 118
use of . 105

Solid Graph (Timeline window context menu) 174
__sourcePosition (C-SPY system macro) 250

special function registers (SFR)
in Register window . 149
using as assembler symbols . 81

stack usage, computing . 132
Stack window . 144
stack.mac . 216
standard C, sizeof operator in C-SPY 82
Start address (Edit Memory Access option) 157
Start address (Fill option) . 141
Start address (Memory Save option) 139
Start address (Time Measurement Event option). 283
Statics window . 90
stdin and stdout, redirecting to C-SPY window 72
Step Into (Debug menu) . 47
Step Into, description . 61
Step Out (Debug menu) . 48
Step Out, description. 62
Step Over (Debug menu) . 47
Step Over, description. 61
step points, definition of . 60
Stop address (Memory Save option) 139
Stop Debugging (Debug menu). 47
__strFind (C-SPY system macro) 251
__subString (C-SPY system macro) 251
Suppress download (debugger option) 273
--suppress_download (C-SPY command line option) 265
Symbolic Memory window. 142
Symbols window . 93
symbols, using in C-SPY expressions 80

T
target system, definition of . 26
__targetDebuggerVersion (C-SPY system macro) 252
Terminal IO Log Files (Terminal IO Log Files option) 74
Terminal I/O Log Files dialog box 74
Terminal I/O window . 65, 72
terminology. 20
Text search (Find in Trace option) 180

CMYSTRO11-1:1

298
C-SPY® Debugging Guide
for R32C

Time Axis Unit (Timeline window context menu) 175
Time Measurement Event (E30 emulator dialog box). . . . 282
Timeline window . 168
Timeline (Simulator menu) . 277
--timeout (C-SPY command line option) 265
timer interrupt, example . 200
Toggle Breakpoint (Code) (Call
Stack window context menu) . 72
Toggle Breakpoint (Code) (Disassembly
window context menu) . 69
Toggle Breakpoint (Log) (Call
Stack window context menu) . 72
Toggle Breakpoint (Log) (Disassembly
window context menu) . 69
Toggle Breakpoint (Trace Start) (Disassembly
window context menu) . 70
Toggle Breakpoint (Trace Stop) (Disassembly
window context menu) . 70
Toggle source (Trace toolbar) . 166
__toLower (C-SPY system macro) 252
tools icon, in this guide . 20
__toString (C-SPY system macro) 253
__toUpper (C-SPY system macro) 253
trace area (E30A emulator), setting up 164
Trace Event (E30A emulator dialog box) 163
Trace Expressions window . 178
trace point (E30A emulator), setting up 164
trace start and stop breakpoints, overview. 103
Trace Start breakpoints dialog box 176
Trace Stop breakpoints dialog box 177
Trace window . 165
trace (calls), profiling source. 184, 187
Trace (Emulator menu) . 278
trace (flat), profiling source. 184, 188
Trace (Simulator menu) . 276
trace, in Timeline window. 168
trademarks . 2
Trigger at (breakpoints option)120, 124–125, 177–178
Trigger (Forced Interrupt window context menu) 206
typographic conventions . 20

U
UBROF. 25
Unavailable, C-SPY message . 83
Universal Binary Relocatable Object Format. See UBROF
__unloadImage(C-SPY system macro) 254
USB (E30/E30A option) . 272
Use command line options (debugger option). 269
Use ECC for E2 Data Flash (Emulator Setting option) 54
Use ECC for E2 Data Flash (E30A)
(Hardware Setup option). 56
Use Extra Images (debugger option). 270
Use manual ranges (Memory Access Setup option) 155
Use ranges based on (Memory Access Setup option) 155
user application, definition of . 27

V
Value (Fill option). 141
variables

effects of optimizations . 82
information, limitation on . 82
using in C-SPY expressions . 80

variance (interrupt property), definition of 197
Variance % (Edit Interrupt option) 205
Verify download (debugger option). 273
--verify_download (C-SPY command line option) 266
version number

of this guide . 2
Viewing Range dialog box . 175
Viewing Range (Timeline window context menu) 174
visualSTATE, C-SPY plugin module for. 28

W
warnings icon, in this guide . 21
Watch window . 87

using . 79
web sites, recommended . 19

CMYSTRO11-1:1

Index

299

while (macro statement) . 225
windows, specific to C-SPY . 49
With I/O emulation modules (linker option), using. 72
__writeFile (C-SPY system macro) 254
__writeFileByte (C-SPY system macro) 255
__writeMemoryByte (C-SPY system macro) 255
__writeMemory8 (C-SPY system macro) 255
__writeMemory16 (C-SPY system macro) 255
__writeMemory32 (C-SPY system macro) 256

X
Xin clock (E30A Emulator) . 56

Z
zone

defined in device description file 131
in C-SPY . 130

Zone (Edit SFR option). 154
Zone (Memory Save option) 139–141
Zoom (Timeline window context menu) 173

Symbols
__cancelAllInterrupts (C-SPY system macro) 231
__cancelInterrupt (C-SPY system macro). 231
__clearBreak (C-SPY system macro) 231
__closeFile (C-SPY system macro) 232
__delay (C-SPY system macro) . 232
__disableInterrupts (C-SPY system macro) 232
__driverType (C-SPY system macro) 233
__enableInterrupts (C-SPY system macro) 233
__evaluate (C-SPY system macro) 234
__fmessage (C-SPY macro statement) 226
__isBatchMode (C-SPY system macro) 234
__loadImage (C-SPY system macro) 234
__memoryRestore (C-SPY system macro) 236
__memorySave (C-SPY system macro) 236

__message (C-SPY macro statement) 226
__openFile (C-SPY system macro). 237
__orderInterrupt (C-SPY system macro). 238
__popSimulatorInterruptExecutingStack (C-SPY
system macro). 239
__readFile (C-SPY system macro) 240
__readFileByte (C-SPY system macro) 240
__readMemoryByte (C-SPY system macro) 241
__readMemory8 (C-SPY system macro) 241
__readMemory16 (C-SPY system macro) 241
__readMemory32 (C-SPY system macro) 241
__registerMacroFile (C-SPY system macro). 242
__resetFile (C-SPY system macro) 242
__setCodeBreak (C-SPY system macro). 243
__setDataBreak (C-SPY system macro) 244
__setDataLogBreak (C-SPY system macro) 245
__setLogBreak (C-SPY system macro) 245
__setSimBreak (C-SPY system macro) 247
__setTraceStartBreak (C-SPY system macro). 248
__setTraceStopBreak (C-SPY system macro). 249
__smessage (C-SPY macro statement) 226
__sourcePosition (C-SPY system macro) 250
__strFind (C-SPY system macro) 251
__subString (C-SPY system macro) 251
__targetDebuggerVersion (C-SPY system macro) 252
__toLower (C-SPY system macro) 252
__toString (C-SPY system macro) 253
__toUpper (C-SPY system macro) 253
__unloadImage (C-SPY system macro) 254
__writeFile (C-SPY system macro) 254
__writeFileByte (C-SPY system macro) 255
__writeMemoryByte (C-SPY system macro) 255
__writeMemory8 (C-SPY system macro) 255
__writeMemory16 (C-SPY system macro) 255
__writeMemory32 (C-SPY system macro) 256
-B (C-SPY command line option). 260
-d (C-SPY command line option) 262
-p (C-SPY command line option) 264
--backend (C-SPY command line option) 261
--code_coverage_file (C-SPY command line option) 261

CMYSTRO11-1:1

300
C-SPY® Debugging Guide
for R32C

--cycles (C-SPY command line option) 261
--disable_interrupts (C-SPY command line option) 262
--download_only (C-SPY command line option) 262
--drv_communication (C-SPY command line option). . . . 263
--macro (C-SPY command line option) 263
--mapu (C-SPY command line option) 263
--plugin (C-SPY command line option) 264
--silent (C-SPY command line option) 265
--suppress_download (C-SPY command line option) 265
--timeout (C-SPY command line option) 265
--verify_download (C-SPY command line option) 266

Numerics
1x Units (Memory window context menu) 137, 146
1x Units (Symbolic Memory window context menu) 144
2x Units (Memory window context menu) 137, 144, 146
4x Units (Memory window context menu) 137, 144, 146
8x Units (Memory window context menu) 137

	Brief contents
	Tables 11
	Figures 13
	Preface 17
	The IAR C-SPY Debugger 23
	Getting started using C-SPY 31
	Executing your application 59
	Variables and expressions 79
	Breakpoints 101
	Memory and registers 129
	Trace 159
	Profiling 183
	Code coverage 191
	Interrupts 195
	C-SPY macros 215
	The C-SPY Command Line Utility—cspybat 257
	Debugger options 267
	Additional information on C-SPY drivers 275
	Index 289

	Contents
	Tables
	Figures
	Preface
	Who should read this guide
	Required knowledge

	What this guide contains
	Other documentation
	User and reference guides
	The online help system
	Web sites

	Document conventions
	Typographic conventions
	Naming conventions

	The IAR C-SPY Debugger
	Introduction to C-SPY
	An integrated environment
	General C-SPY debugger features
	Additional general C-SPY debugger features

	RTOS awareness

	Debugger concepts
	C-SPY and target systems
	The debugger
	The target system
	The application
	C-SPY debugger systems
	The ROM-monitor program
	Third-party debuggers
	C-SPY plugin modules

	C-SPY drivers overview
	Differences between the C-SPY drivers

	The IAR C-SPY Simulator
	Simulator features

	The C-SPY Hardware debugger drivers
	Communication overview
	Hardware installation

	Getting started using C-SPY
	Setting up C-SPY
	Setting up for debugging
	Executing from reset
	Using a setup macro file
	Selecting a device description file
	Loading plugin modules

	Starting C-SPY
	Starting a debug session
	Loading executable files built outside of the IDE
	Starting a debug session with source files missing
	Loading multiple images

	Adapting for target hardware
	Modifying a device description file
	Initializing target hardware before C-SPY starts
	Downloading firmware

	Running example projects
	Running an example project

	Connecting to the target board, E8a
	Maintaining the connection to the hardware

	Connecting to the target board, E30/E30A
	Reference information on starting C-SPY
	C-SPY Debugger main window
	Images window
	Get Alternative File dialog box
	Emulator Setting
	Hardware Setup

	Executing your application
	Introduction to application execution
	Briefly about application execution
	Source and disassembly mode debugging
	Single stepping
	The step commands
	Step Into
	Step Over
	Next Statement
	Step Out

	Stepping speed
	Running the application
	Go
	Run to Cursor

	Highlighting
	Call stack information
	Terminal input and output
	Debug logging

	Reference information on application execution
	Disassembly window
	Call Stack window
	Terminal I/O window
	Terminal I/O Log File dialog box
	Debug Log window
	Log File dialog box
	Report Assert dialog box
	Autostep settings dialog box

	Variables and expressions
	Introduction to working with variables and expressions
	Briefly about working with variables and expressions
	C-SPY expressions
	C/C++ symbols
	Assembler symbols
	C-SPY macro functions
	C-SPY macro variables
	Using sizeof

	Limitations on variable information
	Effects of optimizations

	Working with variables and expressions
	Using the windows related to variables and expressions
	Viewing assembler variables
	Getting started using data logging

	Reference information on working with variables and expressions
	Auto window
	Locals window
	Watch window
	Live Watch window
	Statics window
	Quick Watch window
	Symbols window
	Resolve Symbol Ambiguity dialog box
	Data Log window
	Data Log Summary window

	Breakpoints
	Introduction to setting and using breakpoints
	Reasons for using breakpoints
	Briefly about setting breakpoints
	Breakpoint types
	Code breakpoints
	Log breakpoints
	Trace breakpoints
	Data breakpoints
	Data Log breakpoints
	Immediate breakpoints

	Breakpoint icons
	Breakpoints in the C-SPY simulator
	Breakpoints in the C-SPY hardware drivers
	Breakpoint consumers
	User breakpoints
	C-SPY itself
	C-SPY plugin modules

	Setting breakpoints
	Various ways to set a breakpoint
	Toggling a simple code breakpoint
	Setting breakpoints using the dialog box
	Setting a data breakpoint in the Memory window
	Setting breakpoints using system macros
	Setting breakpoints at C-SPY startup using a setup macro file

	Useful breakpoint hints
	Tracing incorrect function arguments
	Performing a task and continuing execution

	Reference information on breakpoints
	Breakpoints window
	Breakpoint Usage window
	Code breakpoints dialog box
	Execution Address Breakpoint dialog box
	Software Breakpoint dialog box
	Log breakpoints dialog box
	Data breakpoints dialog box
	Data Break Event dialog box
	Data Log breakpoints dialog box
	Immediate breakpoints dialog box
	Enter Location dialog box
	Resolve Source Ambiguity dialog box

	Memory and registers
	Introduction to monitoring memory and registers
	Briefly about monitoring memory and registers
	C-SPY memory zones
	Device-specific zones

	Stack display
	Stack usage

	Memory access checking

	Monitoring memory and registers
	Defining application-specific register groups

	Reference information on memory and registers
	Memory window
	Memory Save dialog box
	Memory Restore dialog box
	Fill dialog box
	Symbolic Memory window
	Stack window
	Register window
	SFR Setup window
	Edit SFR dialog box
	Memory Access Setup dialog box
	Edit Memory Access dialog box

	Trace
	Introduction to using trace
	Reasons for using trace
	Briefly about trace
	Trace features in C-SPY

	Requirements for using trace

	Collecting and using trace data
	Getting started with trace
	Trace data collection using breakpoints
	Searching in trace data
	Browsing through trace data

	Reference information on trace
	Trace Event dialog box
	Trace window
	Function Trace window
	Timeline window
	Viewing Range dialog box
	Trace Start breakpoints dialog box
	Trace Stop breakpoints dialog box
	Trace Expressions window
	Find in Trace dialog box
	Find in Trace window

	Profiling
	Introduction to the profiler
	Reasons for using the profiler
	Briefly about the profiler
	Profiling sources

	Requirements for using the profiler

	Using the profiler
	Getting started using the profiler on function level
	Getting started using the profiler on instruction level

	Reference information on the profiler
	Function Profiler window

	Code coverage
	Introduction to code coverage
	Reasons for using code coverage
	Briefly about code coverage
	Requirements for using code coverage

	Reference information on code coverage
	Code Coverage window

	Interrupts
	Introduction to interrupts
	Briefly about interrupt logging
	Requirements for interrupt logging

	Briefly about the interrupt simulation system
	Interrupt characteristics
	Interrupt simulation states
	C-SPY system macros for interrupt simulation
	Target-adapting the interrupt simulation system

	Using the interrupt system
	Simulating a simple interrupt
	Simulating an interrupt in a multi-task system
	Getting started using interrupt logging

	Reference information on interrupts
	Interrupt Setup dialog box
	Edit Interrupt dialog box
	Forced Interrupt window
	Interrupt Status window
	Interrupt Log window
	Interrupt Log Summary window

	C-SPY macros
	Introduction to C-SPY macros
	Reasons for using C-SPY macros
	Briefly about using C-SPY macros
	Briefly about setup macro functions and files
	Briefly about the macro language
	Example

	Using C-SPY macros
	Registering C-SPY macros—an overview
	Executing C-SPY macros—an overview
	Using the Macro Configuration dialog box
	Registering and executing using setup macros and setup files
	Executing macros using Quick Watch
	Executing a macro by connecting it to a breakpoint

	Reference information on the macro language
	Macro functions
	Macro variables
	Macro strings
	Macro statements
	Expressions
	Conditional statements
	Loop statements
	Return statements
	Blocks

	Formatted output
	Specifying display format of arguments

	Reference information on reserved setup macro function names
	Reference information on C-SPY system macros
	_ _cancelAllInterrupts
	_ _cancelInterrupt
	_ _clearBreak
	_ _closeFile
	_ _delay
	_ _disableInterrupts
	_ _driverType
	_ _enableInterrupts
	_ _evaluate
	_ _isBatchMode
	_ _loadImage
	_ _memoryRestore
	_ _memorySave
	_ _openFile
	_ _orderInterrupt
	_ _popSimulatorInterruptExecutingStack
	_ _readFile
	_ _readFileByte
	_ _readMemory8, _ _readMemoryByte
	_ _readMemory16
	_ _readMemory32
	_ _registerMacroFile
	_ _resetFile
	_ _setCodeBreak
	_ _setDataBreak
	_ _setDataLogBreak
	_ _setLogBreak
	_ _setSimBreak
	_ _setTraceStartBreak
	_ _setTraceStopBreak
	_ _sourcePosition
	_ _strFind
	_ _subString
	_ _targetDebuggerVersion
	_ _toLower
	_ _toString
	_ _toUpper
	_ _unloadImage
	_ _writeFile
	_ _writeFileByte
	_ _writeMemory8, _ _writeMemoryByte
	_ _writeMemory16
	_ _writeMemory32

	The C-SPY Command Line Utility—cspybat
	Using C-SPY in batch mode
	Invocation syntax
	Parameters
	Example

	Output
	Using an automatically generated batch file

	Summary of C-SPY command line options
	General cspybat options
	Options available for all C-SPY drivers
	Options available for the simulator driver
	Options available for the C-SPY hardware driver

	Reference information on C-SPY command line options
	-B
	--backend
	--code_coverage_file
	--cycles
	-d
	--disable_interrupts
	--download_only
	--drv_communication
	--macro
	--mapu
	-p
	--plugin
	--silent
	--suppress_download
	--timeout
	--verify_download

	Debugger options
	Setting debugger options
	Reference information on debugger options
	Setup
	Extra Options
	Images
	Plugins

	Reference information on C-SPY hardware driver options
	Communication
	Download

	Additional information on C-SPY drivers
	Reference information on the C-SPY simulator
	Simulator menu

	Reference information on the C-SPY emulator drivers
	Emulator menu
	Events window
	Time Measurement Event dialog box
	Interval Time Measurement Event dialog box
	Interval Time Measurement window

	Resolving problems
	Write failure during load
	No contact with the target hardware
	Slow stepping speed

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z
	Symbols
	Numerics

