IAR Embedded Workbench®

IDE Project Management and Building Guide

©IAR

UIDEEW-4 SYSTEMS

COPYRIGHT NOTICE
© 1996-2012 IAR Systems AB.

No part of this document may be reproduced without the prior written consent of IAR
Systems AB. The software described in this document is furnished under a license and
may only be used or copied in accordance with the terms of such a license.

DISCLAIMER

The information in this document is subject to change without notice and does not
represent a commitment on any part of IAR Systems. While the information contained
herein is assumed to be accurate, IAR Systems assumes no responsibility for any errors
or omissions.

In no event shall IAR Systems, its employees, its contractors, or the authors of this
document be liable for special, direct, indirect, or consequential damage, losses, costs,
charges, claims, demands, claim for lost profits, fees, or expenses of any nature or kind.

TRADEMARKS

IAR Systems, IAR Embedded Workbench, C-SPY, visualSTATE, The Code to Success,
IAR KickStart Kit, I-jet, IAR, and the logotype of IAR Systems are trademarks or
registered trademarks owned by IAR Systems AB.

Microsoft and Windows are registered trademarks of Microsoft Corporation.
Adobe and Acrobat Reader are registered trademarks of Adobe Systems Incorporated.

All other product names are trademarks or registered trademarks of their respective
owners.

EDITION NOTICE
Third edition: May 2012
Part number: UIDEEW-4

Together with the C-SPY® Debugging Guide, the IDE Project Management and
Building Guide replaces the |AR Embedded Workbench IDE User Guide.

Internal reference: M12 , Too6.4, ISUD.

Brief contents

TABIES ... 11
FIGUIES ..o 13
Preface ... s 17
Part |. Project management and building ... 23
The development environmMent ... 25
MaNAZING PrOJECLS ...t 31
BUIIAING ..o 61
EItiNG ...oooe s 69
Part 2. Reference information ... 99
Installed files ... 101
IAR Embedded Workbench IDE reference ... 107
GIOSSANY ..ot 165

4 IDE Project Management and Building Guide

Contents

TaADIES ..o 11
FIGUIES ..o 13
PrEfACe ... 17
Who should read this guide ... 17
How to use this guide ...
Some descriptions do not apply to your product ...
What this guide contains ...
Other documentation ...
User and reference guidescoceeveereeneeneeniennenieeieseeseenee e 20
The online help SYSteMccceveieieiierienienienieneneseseeee et 20
WED SIEES .oiviiiieiieiieieeteeie et et e st et et e et e esaeeeaesaaesaeesseesseesbeeseensaenns

Document conventions

Typographic conventions

Naming CONVENTIONSccueeueeuiruieieieieieneerieriesieseesiesteeseeseeseeeeeeseeneas 22
Part |. Project management and building ... 23
The development environNMent ... 25
The IAR Embedded Workbench IDE—an overview 25
The toOIChAINeviiieiieiieiieeeeee e 25
An extensible and modular environmentc..c.ccoceeceverenieiieeeneenne. 25
Window managementc.coeceeveevieerierienienieneenieenieeee e seeesieeees 25

Running the IDE
Customizing the environment ..., 27
Organizing the windows on the SCreenc..coceeveeveeriieneenceneennen. 27
Customizing the IDEc..cccoiiiiiniiiiiiiiiicienccencncncceeeceeene 28

Invoking external toOISccceouevieieienienienienenerere e 29

MaNAZING PrOJECLS ...t 31

Introduction to managing projects ... 31
Briefly about managing projectsc..cceceeververvierieniieneeneeneeneenees 31
How projects are organizedcocceeeeeeeieienieneneneneneneneceeeene 32

Interacting with version control SyStemsc.cceceveeverereneneeneennes 36
Procedures for managing projectsccccocoevinecncccncnnenn. 36
Creating and managing WOTrKSPaCesccccevuevververrenenienieneneeeenens 37
Viewing the WOTKSPACEccceeeririririnieieieteeseseenieseseeeeeeees 38
Displaying browse informationc...ceceeceerierieeneeneeneeneenienneennnes 39
Interacting with SCC-compatible SYStemsccceevererererereeeennne 40
Interacting with Subversion
Reference information on managing projects 42
WOrkspace WINAOWc..coceeeeiiiiieiiiniinienienienenenieseeee e 43
Create New Project dialog BOXc.cccceveveeeeiniienieiicnincnencnceeeene 47
Configurations for project dialog boXccccoeveeveriinveniienienieceen. 48
New Configuration dialog bOXcccccceverenenenininienieneneceeeeeeeene 49
Source Browser Windowccecueiriinieniieneeneeeeeeesceee e 50
Version Control System menu for SCCc.ccooveeviiniineinieencnenee, 53
Select Source Code Control Provider dialog boxccccccevevercncnne 55
Check In Files dialog BOXcccoevieviiniininininenenenenesenececeeeene 55
Check Out Files dialog BOXc..coccevcvirieriinieeniiieniceeniesieeseeeeen 57
Source code control states
Version Control System menu for SUbVersionc.ccceeeeveeeenennee 58
SUDVETSION SLALES ...cuvevviviiiiiiiieiieiieiieiieteterete et 59
BUIIAING ..o 61
Building your Project ... 61
SEttNG OPLIONS ...covvevrenriieiertirieeieeteeeeiteite ettt sbe s ebe et eneene 61
Building @ Projectcoceevevienererieeeeeeeeeeteee e 63
Building multiple configurations in a batchccccoceninininnnn. 63
Using pre- and post-build actionsccceeevevvevenenenenenencneneenes 64
Correcting errors found during buildccceeevenieniinininenenieene 64
Building from the command linecccccocevviiiiniiiniinienieeeee, 65

IDE Project Management and Building Guide

Contents °

Extending the toolchain ... 66
Tools that can be added to the toolchainccccoeeevinininininnnnnn. 66
Adding an external to0]c.ccoeviriririiiiiieiecc e 66

EItiNG ...oooe e 69

Introduction to the IAR Embedded Workbench editor 69
Briefly about the €ditorccoeeiririeieniecineneinceceeeeeeeeene 69

Using the editor ... 70
Editing a file .c..ooeviriniiiiiciccceee e 70
Using and adding code templatescccecveveierieneneneneneneeieienen 73
NAVIZALION ..eiiiiiiiiiieiieritest ettt sttt et sae e 75
SEAICRING ..cvviviiiierieeiee ettt 76
Customizing the editor enVIrONMENtcceveevuererenerienenieeeeeene 76

Using an external editor

Reference information on the editor ... 80
Editor WiNAOWcoeeuiriiiiieieiiiieteteteteee et 81
Find in Files WINAOWcccccovviiiiiiiiiiniiiininiincncceceecceeeeee 88
Find All Declarations Windowcc.ceceeevevieneneneneneneneneeeeeenee 89
Find All References Windowcccooererenenenenenenenceieeeceeene 90
Find dialog box
Replace dialog DOXcceeeeirieiiieieieiccceeee e 92
Find in Files dialog BOXcccccccviriiiniiiniincceccccceeeene 93
Incremental Search dialog boXcoceeveerieneenieniniiiienieeeeeee 95
Template dialog DOX ...c.eeeeueeieieieieieieeeererere e

Editor shortcut key summary

Part 2. Reference information ... 99
Installed files ... 101
Directory StrUCLUKE ..o s 101

Root directory .
The CPUNAME dITECLOTYeoveeueeuienieieieienienieniesieeie ettt 101
The coOMMON AIrECOTYovverviriiriieiieiieieietee ettt 102
The install-info direCtoryccecevievieveniniinininecectcececeeneenees 103

File tYPesoooicc e 103

Extending filename reCOgnitionc..ccoceeveeveenenrieriieneeneeneeneens 106
IAR Embedded Workbench IDE reference ..., 107
WINAOWS ... 107
IAR Embedded Workbench IDE windowccccccoeeviiiiiiiecnieenns 108
Build WInAOW ...ceeiiiiiiiiiiceeeeee e

Tool Output window

Project menu

Erase Memory dialog DOXcccceeeeeieieniinenienineneneeececienecnieene 125
Options dialog DOX ...cc.eeieiiiiiniirieiiiieeeeet e 126
Argument variablescocoveiiiiiinie e 127
Batch Build dialog BoXcoceeeeieieiiiiincnicneneeecteecceseee 129
Edit Batch Build dialog BOXcccoeeieuirieieieienieneneneeeeteeeieene 130
Tools menu

Common FONts OPHONS ..c..ccevererireeieieniiienienenieeieeieeieee e 132
Key Bindings OPHONSccccevereririeieieniinieneseeeieeeeiteee e 133
Language OPtONSccc.evieriereeniieieeieetesteeiee ettt 135
Editor OPHONS ..ceveueiiiiitiriieieeieeieeteeeet ettt

Configure Auto Indent dialog box

External EitOr OPtONSoocvevieriinieniiiieeieeeceieste et 140
Editor Setup Files Optionsccceceevveievierienenenienieneneeeeeeneeieeene 142
Editor Colors and FOnts Optionscccecueevevierenenenenenenneenieneens 143
MESSAZES OPLIONS ...eeuveeneeriiieieeieeiie sttt eie et e et s stesieesaeesaeens 144
Project OPLIONSovveuiriiriieiieiieiieiieteeeseeee ettt

Source Code Control options

DebUZEEr OPLIONSeouviveieiieriieieeie ettt 149
StACK OPLIONS ...ovveiiiiriiiiieiecietcteet ettt 151
Register Filter OPtionsScccceceeeeieieiienienienieseneeeeteeeeee e 153

8 IDE Project Management and Building Guide

Contents °

Terminal I/O options

Configure Tools dialog DOXcccueeverieriiniiniieneenieeeeieeeesteeee e 156
Filename Extensions dialog DOXccccoceeieverireecieiiiciecienenenenenne 159
Filename Extension Overrides dialog boXccccecevvivvienecnicncncnnene 160
Edit Filename Extensions dialog boXccccevervverienieneeneeniennienne 161
Configure Viewers dialog DOXc.ccocveveiieiininiineninencneeeeeen

Edit Viewer Extensions dialog box

WiINAOW MENU ..vviiiniiiiiiiieiiieeiieeiee e et e eieeeteeeseaeeseneesareeesseeesnees

10 IDE Project Management and Building Guide

Tables

1: Filename extensions in XLINK versus ILINKccoccoiiiiiiiicee 18
2: Typographic conventions used in this gUIdeccceeveeiriiriiriierieiiierereresenee 21
3: Naming conventions used in this GUIAEcc.ccceevirirviriiiiiiienineninenenenenenene 22
4: iarbuild.exe command lin€ OPHONSecvevueririeiirieriinienenieneeieeieeteeete e 65
5: Editor shortcut keys for insertion point navigation97
6: Editor shortcut keys for selecting teXtcecveeeeerierieniininenineeeeierercrenrenenienne 97
7: Editor shortcut keys for SCrollingcocevevererieinieiienenieneneseeceeteeeeseeene 97
8: Miscellaneous editor ShOItCUt KEYSc.ccovecveuerieinicinieieiicenieeeeeeeeeeev e 98
9: The CPUNAME dIT€CIOIY ..ooviviiriieiieiiiieieietitenteeeeie ettt st 101
10: The cOMMON QITECLOTYeovervierierieiieiieiieteiere st re ettt sr bbb 102
112 FILE LYPES vttt ettt st sttt et e a e et sate st e bt e b e enne s 103
12: Argument Variablesc..cocveveririniiieieieicteseteeeteeree ettt 127

12 IDE Project Management and Building Guide

Figures

1: IAR Embedded Workbench IDE Windowccccecueirieiienienenienenenenenencnene 26
2: Configure Tools dialog DOXcccocevieirieinieiiiricicceeec e 29
3: Customized TOOIS MENUc..coerereririiiiieieieteteteseee ettt ettt st 30
4: Examples of workspaces and Projectsccceeeeeveeeerienienieneneneneeeeeeneeneessennens 34
5: Displaying a project in the Workspace Windowcccceceeerieeieiinienienenenenenne 38
6: Workspace WindOW—an OVETVIEWc.ccceerueueniinuinrininintetetenrenrenieneesieeseeseeneens 39
T: WOrKSPace WINAOWccuevueruiriiriiniiniintieiieiietetete et st sttt ettt nae e b s s 43
8: Workspace WindOw CONLEXt MENUcc.eeieueieneeriinientieieeieetetetetenteseesieseesiesieene 45
9: Create New Project dialog DOXcceceeieiiivienininiineninenicecectccentesesee e 47
10: Configurations for project dialog box 48
11: New Configuration dialog DOXccceceriiriiniiniiiieiciieceteseeeeeeeeee 49
12: Source Browser WINAOWc..ccccoceverierinininieieieteiteteietesresre e sieeneene 50
13: Source Browser windOw CONtEXt MENUcc.eeveeueeueemieuierieieienienienenreniesienieneeeens 52
14: Version Control System menu for SCCccoccoviiriiniiiniiniinienteneeeeeeieee 53
15: Select Source Code Control Provider dialog boXcccccevevvevenienencnicnicncnenne 55
16: Check In Files dialog box

17: Check Out Files dialog DOXcocuerieriiriiniiniieniieieeieeeeeeeeste st 57
18: Version Control System menu for SUbVETSIioncccccccevevveeenienienenenienencneene 58
19: GENETAl OPLIONS ...cuviuviiiiieiiniieieeiiet ettt ettt bttt ettt see e b see e saeene 62
20: Parameter hints for overloaded versions of a functionc....cccccecevceencniecnnne. 70
21: Code COMPIELIONuveuriiiieiirierienieeiteitetetete ettt ettt et sresaesreseesaesaeene 71
22: Parenthesis matching in the editor Windowccccecevereeeriieiieiienencnenenenene 72
23: Splitter control in the top-right corner of the editor windowc.cccceceveeenee. 72
24: Editor windOW Status DATcccoueriiriiriiniiniinieiieiieiteeee ettt sre s 73
25: Inserting a code teMPIAtececeveeieierieniiiirieneteeteee ettt 74
26: Specifying an external command 1ine editorcccoeereriereeiierienienienieseseniene 79
27: External editor DDE settings ...

28: EditOr WINAOW ..c.eiuiriiriiriiiiiiiieitcietetetestest ettt ettt sttt sa e eseene
29: Editor window tab context MenUcccceceeuivuieieinieieieieienieneseniesene e 82
30: GO t0 FUNCHON MENoouiiiiiiiniinieieciiciteectcteccteer ettt s 83
31: Editor windOW CONtEXE MEMU ..cueeueeiirienienieniiereereeteeiteieetetetesestesieseessesiesiesseene 84

14

32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:

Find in Files window (message window)

Find in Files window CONEXt MENU ...c..ccuevuiviiriiniiniiriiieieieieiereiereie e
Find All Declarations window (message Window)cccccceveverenenienienenieneene 89
Find All Declarations windOw CONtEXt MENUcceeueeverrerierierenenenenienienieneene 90
Find All References window (message Window)coccevcveveenieenienneeniveneennens 90
Find All References window CONEXt MENUcceeuerueruerueererenienienenenenenenieene 91
Find dialog box

Replace dialog DOX ..c...ooieriiriiiiiiieieeetese et 92
Find in Files dialog DOXccccecveiiiiiniiniininineninieieeeteteetctere st 93
Incremental Search dialog DOXcocvererenininenieieeeeeeesesene e 95
Template dialog DOXcocueriiiiiiiieieeeeeete e 96
IAR Embedded Workbench IDE Windowc.cccccevenenineninencncneneneenne. 108
IDE LOOIDAT ...ttt sttt ettt s 109
IAR Embedded Workbench IDE window status barccccecceveeeeveriniennnn. 110
Build window (message WiNAOW)ccccecuerveierierienieneneneneneneecere oo 110
Build windOw CONtEXt MENUovveririeriiririirieeietetetenteneenre ettt ne 110
Tool Output window (message WINAOW)ccceevueerierienienieneeneerienieesienaens 111
Tool Output window context menu

Debug Log window (message Window)cccevererereneneneneneneneeeeeeeene 112
Debug Log window CONEXt MENUevueeruierieerieeiieieniesitenieenieenieesesaeeseeseenns 112
FIle MENU ..ottt
Edit MM ..ottt ettt s

VICW IMEIIUL ..oviiiniiieiiieeiiieciteeeite e et e et e estteesebeeeaeeesseeessseessseeesseeensseessseesssesanseens

Project menu ...

Erase Memory dialog DOXcccocuiririininieieieieietetet ettt 125
Options dIAlOZ DOX ..eevvveriiiriieiiiieeie sttt ettt et st 126
Batch Build dialog DOXc..ccuevuiriiriniinininininiciciccecteeetesese e 129
Edit Batch Build dialog DOXcoceveriiririiiiieieieieeeeeee e 130
Tools menu

Common FONtS OPLONS ...cc.eeueruiruiiiiieiiniereneniertrteee et 132
Key Bindings OPHONScc.eeieirieieieieriesiesiesiestee ettt e 133
Language OPLIONSc.c.eeverieriieriierieeieesteeteete sttt ettt sae e et seesine e 135
EditOr OPLIONS ...eoveeviiiieiieieiiciciciestenene sttt st 136
Configure Auto Indent dialog BOXccccoeoirineiincnieincincecrcecee e 139

IDE Project Management and Building Guide

66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
T7:
78:
79:
80:
81:
82:
83:
84:
85:

Figures __o

External Editor options

Editor Setup Files OPtionScccceeviiriieriinienienceieeieeeeieeee st 142
Editor Colors and FONts OPtionsc.ceceeveeieierienenenenenineeeeeeeeeesieseennenes 143
MESSAZES OPLIOMS ..eveevinrivieiieiieiietetetestesiesiesbesit et esteste st et et saesbesbeebesaesbseanene 144
Message dialog box containing a Don’t show again optionc..cceceeveernene 145
ProOjEct OPLIONSveuviriiiieiieiieiieietetet ettt s
Source Code Control options ...

DEbUZZET OPLIONSeeiiiiiiiieieeieeie sttt sttt et e et eaeeeaee e
StACK OPLIONS ..ottt ettt s
Register FIlter OPLIONSccceeeueeuiiieieienienienen ettt
Creating a NEW TEZISLET STOUD .e..vevueerueerieerierrteeiertenieesterseesseensessesssesneseesseenne 153
Terminal I/O OPLIONS ..c..covevuereiiiiiiiiiiiiiieeeeeee ettt 155
Configure Tools dialog DOXcoceverereririnieieeteeteeee e 156
Customized TOOIS MENUcc.ccveviiniiniiniiniiiiieettceeeeeeee e 157
Filename Extensions dialog BOXcccceceeveviiiiiiiinineninininineneneeeeeeee 159
Filename Extension Overrides dialog BOXc.ccccevevuininenenenicneneneneeceene 160
Edit Filename Extensions dialog DOXcccceviereiniiniiniinieneeieeieeeeeeeeee 161
Configure Viewers dialog box

Edit Viewer Extensions dialog DOXccecevieieriineninienininenceeeceeeeeeene 162

WINAOW IMENU ..eviviiiiiiieiiieeiieeieeeete ettt eeieeeteeeseeesebeesseeessaeessseessseessseaessseensnes 163

16 IDE Project Management and Building Guide

Preface

Welcome to the IDE Project Management and Building Guide. The purpose of
this guide is to help you fully use the features in IAR Embedded Workbench
with its integrated Windows development tools. The IAR Embedded
Workbench IDE is a very powerful Integrated Development Environment that
allows you to develop and manage a complete embedded application project.

This guide describes the processes of editing, project managing, and building,
and provides related reference information

Who should read this guide

Read this guide if you want to get the most out of the features and tools available in the
IDE. In addition, you should have working knowledge of:

o The C or C++ programming language

o Application development for embedded systems

o The architecture and instruction set of the processor (refer to the chip
manufacturer's documentation)

o The operating system of your host computer.

For more information about the other development tools incorporated in the IDE, refer
to their respective documentation, see Other documentation, page 19.

How to use this guide

If you are new to using this product, we suggest that you first read the guide Getting
Sarted with | AR Embedded Workbench® for an overview of the tools and the features
that the IDE offers. The tutorials, which you can find in IAR Information Center, will
help you get started using IAR Embedded Workbench.

The process of managing projects and building, as well as editing, is described in this
guide, whereas information about how to use C-SPY for debugging is described in the

C-SPY® Debugging Guide.

If you are an experienced user and need this guide only for reference information, see
the reference chapters in Part 2. Reference information and the online help system
available from the IAR Embedded Workbench IDE Help menu.

How to use this guide

Finally, we recommend the Glossary if you should encounter any unfamiliar terms in
the IAR Systems user documentation.

SOME DESCRIPTIONS DO NOT APPLY TO YOUR PRODUCT

This guide describes the IDE, which is a generic component in IAR Embedded
Workbench.

However, some functionality and some tools described do not apply to all IAR
Embedded Workbench product packages, for example:
o Not all product packages support C++

o IAR Embedded Workbench includes either the IAR ILINK Linker or the IAR
XLINK Linker, but not both

o IAR Embedded Workbench includes either the IAR DLIB Library, the IAR CLIB
Library, or both

o Not all product packages support invoking flash loaders based on the IAR flash
loader mechanism.

Descriptions that do not apply to all product packages have a brief disclaimer.

For a list of components used in your product package, see the Information Center.

Filename extensions

Depending on whether your IAR Embedded Workbench comes with the IAR XLINK
Linker or the IAR ILINK Linker, different sets of filename extensions will be used. In
this guide, all filename extensions in examples and in screenshots reflect the XLINK
linker. This table maps the different sets of filename extensions:

Filename extension for Filename extension for
Type of file) K
products with XLINK* products with ILINK
Target application axx out
Target application with debug dxx out
information
Object module rxx o
Library module rxx a
Assembler source code sxxors s

Table 1: Filename extensionsin XLINK versus ILINK
* xx is a numeric part that represents your product package.

For more information about filename extensions, see File types, page 103.

18 IDE Project Management and Building Guide

Preface __4

The terms segment versus section

In the UBROF object format—used by the XLINK linker—objects such as variables or
functions are contained in segments. In the ELF object format—used by the ILINK
linker—the corresponding containers are called sections. Whenever these two terms are
used in this guide, they relate to XLINK and ILINK, respectively.

What this guide contains

This is a brief outline and summary of the chapters in this guide.

Part I. Project management and building
This section describes the process of editing and building your application:

e The development environment introduces you to the IAR Embedded Workbench
development environment. The chapter also demonstrates the facilities available for
customizing the environment to meet your requirements.

e Managing projectsdescribes how you can create workspaces with multiple projects,
build configurations, groups, source files, and options that help you handle different
versions of your applications.

e Building discusses the process of building your application.

e Editing contains detailed descriptions of the IAR Embedded Workbench editor, how
to use it, and the facilities related to its usage. The final section also contains
information about how to integrate an external editor of your choice.

Part 2. Reference information

e Installed files describes the directory structure and the types of files it contains.

o |AR Embedded Workbench I DE reference contains detailed reference information
about the development environment, such as details about the graphical user
interface.

Other documentation

User documentation is available as hypertext PDFs and as a context-sensitive online
help system in HTML format. You can access the documentation from the Information
Center or from the Help menu in the TAR Embedded Workbench IDE. The online help
system is also available via the F1 key.

Other documentation

USER AND REFERENCE GUIDES

The complete set of IAR Systems development tools is described in a series of guides.
For information about:

System requirements and information about how to install and register the IAR
Systems products, refer to the booklet Quick Reference (available in the product
box) and the Installation and Licensing Guide.

Getting started using IAR Embedded Workbench and the tools it provides, see the
guide Getting Sarted with | AR Embedded Workbench®.

Using the IAR C-SPY® Debugger, see the C-SPY® Debugging Guide.
Programming for the IAR C/C++ Compiler, see the IAR C/C++ Compiler
Reference Guide if your product package includes the IAR XLINK Linker, and the
IAR C/C++ Development Guide if your product package includes the IAR ILINK
Linker.

Using the IAR XLINK Linker, the IAR XAR Library Builder, and the IAR XLIB
Librarian, see the IAR Linker and Library Tools Reference Guide. This guide is only
available if your product package includes the IAR XLINK Linker.

Programming for the AR Assembler, see the |AR Assembler Reference Guide.

Using the IAR DLIB Library, see the DLIB Library Reference information,
available in the online help system.

Using the IAR CLIB Library, see the |AR C Library Functions Reference Guide,
available in the online help system. This guide is only available if your product
package includes the CLIB library.

Developing safety-critical applications using the MISRA C guidelines, see the IAR
Embedded Workbench® MISRA C:2004 Reference Guide or the | AR Embedded
Workbench® MISRA C:1998 Reference Guide.

Note: Additional documentation might be available depending on your product
installation.

THE ONLINE HELP SYSTEM

The context-sensitive online help contains:

Comprehensive information about debugging using the IAR C-SPY® Debugger
Reference information about the menus, windows, and dialog boxes in the IDE
Compiler reference information

Keyword reference information for the DLIB library functions. To obtain reference
information for a function, select the function name in the editor window and press
F1. Note that if you select a function name in the editor window and press F1 while
using the CLIB library, you will get reference information for the DLIB library.

20 IDE Project Management and Building Guide

Preface __4

WEB SITES

Recommended web sites:

o The Chip manufacturer web site, that contains information and news about the
microcontroller.

o The IAR Systems web site, www.iar.com, that holds application notes and other
product information.

o The web site of the C standardization working group,
www.open-std.or g/jtcl/sc22/wgl4.
The web site of the C++ Standards Committee, www.open-std.or g/jtcl/sc22/wg21.

Finally, the Embedded C++ Technical Committee web site,
www.car avan.net/ec2plus, that contains information about the Embedded C++
standard.

Document conventions

When, in this guide, we refer to the programming language C, the text also applies to
C++, unless otherwise stated.

When referring to a directory in your product installation, for example cpuname\doc,
the full path to the location is assumed, for example c: \Program Files\IAR
Systems\Embedded Workbench 6 .n\ cpuname\doc.

TYPOGRAPHIC CONVENTIONS

This guide uses the following typographic conventions:

Style Used for

computer * Source code examples and file paths.
* Text on the command line.
* Binary, hexadecimal, and octal numbers.

parameter A placeholder for an actual value used as a parameter, for example
filename.h where £ilename represents the name of the file. Note
that this style is also used for cpuname, configfile,
libraryfile, and other labels representing your product, as well as
for the numeric part of filename extensions—xx.

[option] An optional part of a command.
[a]b|c] An optional part of a command with alternatives.
{a|b]|c} A mandatory part of a command with alternatives.

Table 2: Typographic conventions used in this guide

21

Document conventions

22

Style

Used for

bold

italic

Names of menus, menu commands, buttons, and dialog boxes that
appear on the screen.

* A cross-reference within this guide or to another guide.
* Emphasis.

An ellipsis indicates that the previous item can be repeated an arbitrary
number of times.

Identifies instructions specific to the IAR Embedded Workbench® IDE
interface.

Identifies instructions specific to the command line interface.

Identifies helpful tips and programming hints.

Identifies warnings.

Table 2: Typographic conventions used in this guide (Continued)

NAMING CONVENTIONS

The following naming conventions are used for the products and tools from IAR

Systems® referred to

Brand name

in this guide:

Generic term

IAR Embedded Workbe
IAR Embedded Workbe
IAR C-SPY® Debugger
IAR C-SPY® Simulator
IAR C/C++ Compiler™
IAR Assembler™

IAR XLINK Linker™
IAR ILINK Linker™

IAR XAR Library Builder™

IAR XLIB Librarian™
IAR DLIB Library™
IAR CLIB Library™

IAR Embedded Workbench®
the IDE
C-SPY, the debugger

nch®
nch® IDE

the simulator

the compiler

the assembler
XLINK, the linker
ILINK, the linker
the library builder
the librarian

the DLIB library
the CLIB library

Table 3: Naming conventions used in this guide

Note that some of these products and tools might not be available in the product package

you are using.

IDE Project Management and Building Guide

Part 1. Project
management and building

This part of the IDE Project Management and Building Guide contains these
chapters:

e The development environment
e Managing projects
o Building

o Editing.

: .hmuhhhhi

AAARRIE

4

o~

The development
environment

This chapter introduces you to the IAR Embedded Workbench® integrated
development environment (IDE). The chapter also demonstrates how you can
customize the environment to suit your requirements.

The IAR Embedded Workbench IDE—an overview
THE TOOLCHAIN

The IDE is the environment where all necessary tools—the toolchain—are integrated: a
C/C++ compiler, an assembler, a linker, an editor, a project manager with Make utility,
and the IAR C-SPY® Debugger. The tools used specifically for building your source
code are referred to as the build tools.

The compiler, assembler, and linker can also be run from a command line environment,
if you want to use them as external tools in an already established project environment.

You have the same user interface regardless of which microcontroller you have chosen
to work with—coupled with general and target-specific support for each device.

AN EXTENSIBLE AND MODULAR ENVIRONMENT

Although the IDE provides all the features required for your project, you can also
integrate other tools. For example, you can add IAR visualSTATE to the toolchain,
which means that you can add state machine diagrams directly to your project in the
IDE. Using a version control system is useful for keeping track of different versions of
your source code. The IDE can identify and access any third-party version control
system that conforms to the SCC interface published by Microsoft. The IDE can also
attach to files in a Subversion working copy. You can use the Custom Build mechanism
to incorporate also other tools to the toolchain, see Extending the toolchain, page 66.

WINDOW MANAGEMENT

To give you full and convenient control of the placement of the windows, each window
is dockable and you can optionally organize the windows in tab groups.

Part |. Project management and building 25

The IAR Embedded Workbench IDE—an overview

This illustration shows the IAR Embedded Workbench IDE window with various

components.

& tutorials - AR Embedded Workbench IDE =N ECR =<
Menu bar — | File Edit View Project Simulator Tools Window Help
Toolbar — | DS H @& | - S zEBe o W e LD
Workspace * | Tutor.c |Utiities.c e
project | - Debug hd /* Increase the 'callCount’ variable. #/ =
Filas o om /% Get and print the associated Fibona x/
* void DoForegroundProcess(void)
B2 Biutarials 1
clilprojectl -De... | v | | unsigned int £ib;
\ NextCounter () ;
| £ib = GetFib(callCount);
| Leaoutput PutFib(fib);
@ Fproject2 - Debug v 1
-8 @ project3-Debug v
Fprojectd-Debug v /% Main program. #/
@ (@ projects - Debug v /% Prints the Fibonacci ssquence. */
Ftutor_library-De.. v void main(void)
1
callCount = 07
Workspace
window TnitFib();
while (callCount < MAX_FIB)
1 E
DoForegroundProcess () ;
1
1
Overvizn _project! | proiect2| oo |, o v
x
Messages o
Updating build tree...
Tutor.c
Utilities.c
M Linking
I g E
windows Tatal number of errars: 0
Total number of warnings: 0 -
o« i B
3 Buld [Debug Log [Findin Files x
Status bar — | Ready Errors 0, Warnings 0 Ln4, Col 33 System

26

I Editor
window

Figure 1: 1AR Embedded Workbench I DE window

The window might look different depending on what additional tools you are using.

RUNNING THE IDE

Click the Start button on the Windows taskbar and choose All Programs>IAR
Systems>| AR Embedded Workbench for Chip manufacturer CPUNAME>IAR

Embedded Wor kbench.

The file TarIdePm. exe is located in the common\bin directory under your IAR
Systems installation, in case you want to start the program from the command line or

from within Windows Explorer.

IDE Project Management and Building Guide

The development environment ___¢

Double-clicking the workspace filename

The workspace file has the filename extension eww. If you double-click a workspace
filename, the IDE starts.

If you have several versions of IAR Embedded Workbench installed, the workspace file
is opened by the most recently used version of your IAR Embedded Workbench that
uses that file type, regardless of which version the project file was created in.

Customizing the environment

The IDE is a highly customizable environment. This section demonstrates how you can
work with and organize the windows on the screen, the possibilities for customizing the
IDE, and how you can set up the environment to communicate with external tools.

ORGANIZING THE WINDOWS ON THE SCREEN

In the IDE, you can position the windows and arrange a layout according to your
preferences. You can dock windows at specific places, and organize them in tab groups.
You can also make a window floating, which means it is always on top of other
windows. If you change the size or position of a floating window, other currently open
windows are not affected.

Each time you open a previously saved workspace, the same windows are open, and they
have the same sizes and positions.

For every project that is executed in the C-SPY environment, a separate layout is saved.
In addition to the information saved for the workspace, information about all open
debugger-specific windows is also saved.

Using docked versus floating windows

Each window that you open has a default location, which depends on other currently
open windows. To give you full and convenient control of window placement, each
window can either be docked or floating.

A docked window is locked to a specific area in the Embedded Workbench main
window, which you can decide. To keep many windows open at the same time, you can
organize the windows in tab groups. This means one area of the screen is used for several
concurrently open windows. The system also makes it easy to rearrange the size of the
windows. If you rearrange the size of one docked window, the sizes of any other docked
windows are adjusted accordingly.

Part |. Project management and building 27

Customizing the environment

A floating window is always on top of other windows. Its location and size does not
affect other currently open windows. You can move a floating window to any place on
your screen, also outside of the IAR Embedded Workbench IDE main window.

Note: The editor window is always docked. When you open the editor window, its
placement is decided automatically depending on other currently open windows. For
more information about how to work with the editor window, see Introduction to the
| AR Embedded Workbench editor, page 69.

Organizing windows
To place a window as a separate window, drag it next to another open window.

To place a window in the same tab group as another open window, drag the window you
want to locate and drop it in the middle of the other window.

To make a window floating, double-click on the window’s title bar.

The status bar, located at the bottom of the IAR Embedded Workbench IDE main
window, contains useful help about how to arrange windows.

CUSTOMIZING THE IDE

To customize the IDE, choose Tools>Optionsto get access to a wide variety of
commands for:

Configuring the editor

Configuring the editor colors and fonts

Configuring the project build command

Organizing the windows in C-SPY

Using an external editor

Changing common fonts

Changing key bindings

Configuring the amount of output to the Messages window.

In addition, you can increase the number of recognized filename extensions. By default,
each tool in the build toolchain accepts a set of standard filename extensions. If you have
source files with a different filename extension, you can modify the set of accepted
filename extensions. Choose Tools>FilenameExtensionsto get access to the necessary
commands.

For more information about the commands for customizing the IDE, see Tools menu,
page 131. For information about customizing the editor, see the section Customizing the
editor environment, page 76. For more information about customizations related to
C-SPY, see the C-SPY® Debugging Guide.

28 IDE Project Management and Building Guide

The development environment ___¢

INVOKING EXTERNAL TOOLS

The Tools menu is a configurable menu to which you can add external tools for
convenient access to these tools from within the IDE. For this reason, the menu might
look different depending on which tools you have preconfigured to appear as menu
commands.

To add an external tool to the menu, choose Tools>Configure Toolsto open the
Configure Tools dialog box.

Configure Tools

Menu Content:
(]
Cancel
Mew
Delete
Menu Text:
|&N otepad
Command:
|E:\W’INDDWS\n0tepad.exe Browse... |
Argument:

Initial Directary:

™ Redirect to Dutput Window

I~ Prompt for Command Line

Tool Available:

|Always j

Figure 2: Configure Tools dialog box

For more information about this dialog box, see Configure Tools dialog box, page 156.

Note: You cannot use the Configure Tools dialog box to extend the toolchain in the
IDE, see The toolchain, page 25.

Part |. Project management and building 29

Customizing the environment

After you have entered the appropriate information and clicked OK, the menu command
you have specified is displayed on the Tools menu.

Options. ..

Configure Tools, ..
Filename Extensions. ..
Configure Viewers. ..
Motepad

Figure 3: Customized Tools menu

Note: If you intend to add an external tool to the standard build toolchain, see
Extending the toolchain, page 66.
Adding command line commands

Command line commands and calls to batch files must be run from a command shell.
You can add command line commands to the Tools menu and execute them from there.

To add commands to the Tools menu, you must specify an appropriate command shell.
Type a command shell in the Command text box, for example cmd . exe.

Specity the command line command or batch file name in the Argument text box.
The Argument text should be specified as:

/C name

where name is the name of the command or batch file you want to run.

The /c option terminates the shell after execution, to allow the IDE to detect when the
tool has finished.

Example

To add the command Backup to the Tools menu to make a copy of the entire project
directory to a network drive, you would specify Command as cmd . exe (or
command . cmd depending on your host environment), and Argument as:

/C copy c:\project*.* F:
Alternatively, to use a variable for the argument to allow relocatable paths:

/C copy S$PROJ_DIRS*.* F:

30 IDE Project Management and Building Guide

Managing projects

This chapter describes how projects are organized and how you can specify
workspaces with multiple projects, build configurations, groups, source files,
and options that help you handle different versions of your applications. The
chapter also describes the steps involved in interacting with an external
third-party version control system.

More specifically, this means:
e Introduction to managing projects
e Procedures for managing projects

e Reference information on managing projects.

Introduction to managing projects

This section introduces project management in the IDE.
These topics are covered:

o Briefly about managing projects
o How projects are organized

e Interacting with version control systems.

BRIEFLY ABOUT MANAGING PROJECTS

In a large-scale development project, with hundreds of files, you must be able to
organize the files in a structure that is easily navigated and maintained by perhaps
several engineers.

The IDE comes with functions that will help you to stay in control of all project
modules, for example, C or C++ source code files, assembler files, include files, and
other related modules. You create workspaces and let them contain one or several
projects. Files can be grouped, and options can be set on all levels—project, group, or
file. Changes are tracked so that a request for rebuild will retranslate all required
modules, making sure that no executable files contain out-of-date modules.

Part |. Project management and building

31

Introduction to managing projects

This list shows some additional features:

o Project templates to create a project that can be built and executed for a smooth
development startup

Hierarchical project representation

Source browser with an hierarchical symbol presentation

Options can be set globally, on groups of source files, or on individual source files

The Make command automatically detects changes and performs only the required
operations

o Text-based project files
o Custom Build utility to expand the standard toolchain in an easy way

o Command line build with the project file as input.

Navigating between project files

There are two main different ways to navigate your project files: using the Workspace
window or the Source Browser window. The Workspace window displays an
hierarchical view of the source files, dependency files, and output files and how they are
logically grouped. The Source Browser window, on the other hand, displays information
about the build configuration that is currently active in the Workspace window. For that
configuration, the Source Browser window displays a hierarchical view of all globally
defined symbols, such as variables, functions, and type definitions. For classes,
information about any base classes is also displayed.

HOW PROJECTS ARE ORGANIZED

The IDE allows you to organize projects in an hierarchical tree structure showing the
logical structure at a glance.

The IDE has been designed to suit the way that software development projects are
typically organized. For example, perhaps you need to develop related versions of an
application for different versions of the target hardware, and you might also want to
include debugging routines into the early versions, but not in the final application.

Versions of your applications for different target hardware will often have source files
in common, and you might want to be able to maintain only one unique copy of these
files, so that improvements are automatically carried through to each version of the
application. Perhaps you also have source files that differ between different versions of
the application, such as those dealing with hardware-dependent aspects of the
application.

In the following sections the various levels of the hierarchy are described.

32 IDE Project Management and Building Guide

Managing projects °

Projects and workspaces
Typically you create one or several projects, where each project can contain either:

e Source code files, which you can use for producing your embedded application or a
library. For an example where a library project has been combined with an
application project, see the example about creating and using libraries in the
tutorials.

o An externally built executable file that you want to load in C-SPY. For information
about how to load executable files built outside of the IDE, see the C-SPY®
Debugging Guide.

If you have several related projects, you can access and work with them simultaneously.
To achieve this, you can organize related projects in workspaces.

Each workspace you define can contain one or more projects, and each project must be
part of at least one workspace.

Consider this example: two related applications—for instance A and B—are developed,
requiring one development team each (team A and B). Because the two applications are
related, they can share parts of the source code between them. The following project
model can be applied:

o Three projects—one for each application, and one for the common source code

o Two workspaces—one for team A and one for team B.

Part |. Project management and building 33

Introduction to managing projects

Collecting the common sources in a library project (compiled but not linked object code)
is both convenient and efficient, to avoid having to compile it unnecessarily.

ra > | R
Appl J [appl
A L B
Project for application A Project for application B
Vs
Utility
library

Library project for
common sources

Workspace for team A O @ Workspace for team B Om
Project for application A Project for application B
Project for utility library Project for utility library

Figure 4: Examples of workspaces and projects

Projects and build configurations

Often, you need to build several versions of your project, for example, for different
debug solutions that require different settings for the linker and debugger. Another
example is when you need a separately built executable file with special debug output
for execution trace, etc. The IAR Embedded Workbench lets you define multiple build
configurations for each project. In a simple case, you might need just two, called Debug
and Release, where the only differences are the options used for optimization, debug
information, and output format. In the Release configuration, the preprocessor symbol
NDEBUG is defined, which means the application will not contain any asserts.

Additional build configurations might be useful, for instance, if you intend to use the
application on different target devices. The application is the same, but hardware-related
parts of the code differ. Thus, depending on which target device you intend to build for,
you can exclude some source files from the build configuration. These build
configurations might fulfil these requirements for Project A:

e Project A - Device 1:Release

o Project A - Device 1:Debug

34 IDE Project Management and Building Guide

Managing projects °

e® Project A - Device 2:Release

o Project A - Device 2:Debug

Groups

Normally, projects contain hundreds of files that are logically related. You can define
each project to contain one or more groups, in which you can collect related source files.
You can also define multiple levels of subgroups to achieve a logical hierarchy. By
default, each group is present in all build configurations of the project, but you can also
specify a group to be excluded from a particular build configuration.

Source files and their paths

Source files can be located directly under the project node or in a hierarchy of groups.
The latter is convenient if the amount of files makes the project difficult to survey. By
default, each file is present in all build configurations of the project, but you can also
specify a file to be excluded from a particular build configuration.

Only the files that are part of a build configuration will actually be built and linked into
the output code.

Once a project has been successfully built, all include files and output files are displayed
in the structure below the source file that included or generated them.

Note: The settings for a build configuration can affect which include files that are used
during the compilation of a source file. This means that the set of include files associated
with the source file after compilation can differ between the build configurations.

The IDE supports relative source file paths to a certain degree, for:

e Project file

Paths to files part of the project file is relative if they are located on the same drive.
The path is relative either to $PROJ_DIRS or $EW_DIRS. The argument variable
$EW_DIRS is only used if the path refers to a file located in subdirectory to $EW_DIRS
and the distance from $EW_DIRS is shorter than the distance from $PROJ_DIRS.

Paths to files that are part of the project file are absolute if the files are located on
different drives.

o Workspace file

For files located on the same drive as the workspace file, the path is relative to
$PROJ_DIRS.

For files located on another drive as the workspace file, the path is absolute.
o Debug files

If your debug image file contains debug information, any paths in the file that refer
to source files are absolute.

Part |. Project management and building 35

Procedures for managing projects

Drag and drop

You can easily drag individual source files and project files from the Windows file
explorer to the Workspace window. Source files dropped on a group are added to that
group. Source files dropped outside the project tree—on the Workspace window
background—are added to the active project.

INTERACTING WITH VERSION CONTROL SYSTEMS
The IAR Embedded Workbench IDE can identify and access any:

o Installed third-party version control system that conforms to the Source Code
Control (SCC) interface published by Microsoft corporation

e Files that are in a Subversion (SVN) working copy.

From within the IDE you can connect an IAR Embedded Workbench project to an
external SCC or SVN project, and perform some of the most commonly used operations.

To connect your IAR Embedded Workbench project to a version control system you
should be familiar with the version control client application you are using. Note that
some of the windows and dialog boxes that appear when you work with version control
in the IDE originate from the version control system and are not described in the
documentation from IAR Systems. For information about details in the client
application, refer to the documentation supplied with that application.

Note: Different version control systems use very different terminology even for some
of the most basic concepts involved. You must keep this in mind when you read the
descriptions about interacting between the IDE and the version control system.

Procedures for managing projects

This section gives you step-by-step descriptions of how to use certain features related to
project management.

More specifically, you will get information about:
Creating and managing workspaces

Viewing the workspace

Displaying browse information

Interacting with SCC-compatible systems

Interacting with Subversion.

36 IDE Project Management and Building Guide

Managing projects °

CREATING AND MANAGING WORKSPACES

Here, you will get the overall procedure for creating the workspace, projects, groups,
files, and build configurations, but not the corresponding in-depth step-by-step
descriptions. The File menu provides the commands for creating workspaces. The
Project menu provides commands for creating projects, adding files to a project,
creating groups, specifying project options, and running the IAR Systems development
tools on the current projects.

The steps involved for creating and managing a workspace and its contents are:

e Creating a workspace.

An empty Workspace window appears, which is the place where you can view your
projects, groups, and files.

o Adding new or existing projects to the workspace.

When creating a new project, you can base it on a template project with
preconfigured project settings. Template projects are available for C applications,
C++ applications, assembler applications, and library projects.

o Creating groups.

A group can be added either to the project’s top node or to another group within the
project.

o Adding files to the project.
A file can be added either to the project’s top node or to a group within the project.
e Creating new build configurations.

By default, each project you add to a workspace will have two build configurations
called Debug and Release.

You can base a new configuration on an already existing configuration. Alternatively,
you can choose to create a default build configuration.

Note that you do not have to use the same toolchain for the new build configuration
as for other build configurations in the same project.

o Excluding groups and files from a build configuration (using the project Options
dialog box).

Note that the icon indicating the excluded group or file will change to white in the
Workspace window.

o Removing items from a project.
Note: It might not be necessary for you to perform all of these steps.

For a detailed example, see Creating an application project in the tutorials.

Part |. Project management and building 37

Procedures for managing projects

VIEWING THE WORKSPACE

The Workspace window is where you access your projects and files during the
application development.

To choose which project you want to view, click its tab at the bottom of the Workspace
window.

IDebug vl Configuration
drop-down menu
Files IE
El® project! - Debug * EX
B » Indicates that the file

=1 B Tutar.c ¢ !
2 2 Output will be rebuilt next
time the project is built

— [Tutar st

I
| — [Tutor.phi
|
|
|

L [Tutar.rx
— [Tutorh
L— [& Utilities.h
[Utilities.c v Indicator for
L@ G output option overrides
&1 @ project! dbe on file node
2 Ca Output
| — B project! map
— B dicpuname.rx
F— Bl Inkdevice xcl
— [Tutar.rx
L— [Utilities.roc
L— [& praject!.map

Tabs for choosing
workspace display

Owverview project] Iproiect2| proiect3|

Figure 5: Displaying a project in the Workspace window

For each file that has been built, an Output folder icon appears, containing generated
files, such as object files and list files. The latter is generated only if the list file option
is enabled. There is also an output folder related to the project node that contains
generated files related to the whole project, such as the executable file and the linker
map file (if the list file option is enabled).

Also, any included header files will appear, showing dependencies at a glance.

To display the project with a different build configuration, choose that build
configuration from the drop-down list at the top of the Workspace window.

The project and build configuration you have selected are displayed highlighted in the
Workspace window. It is the project and build configuration that you select from the
drop-down list that is built when you build your application.

38 IDE Project Management and Building Guide

Managing projects °

3 To display an overview of all projects in the workspace, click the Overview tab at the
bottom of the Workspace window.

An overview of all project members is displayed.

VWorkspace =

|pr0iect1 -Debug~ _ -
Files D
B Etutarials RS
= & project! - Debug * v = <
[Tutor.c 1 Indicates current selection

| : .

o B Lt in the configuration
I gﬂltl:::ﬁts.c drop-down list
(P project? - Debug
(P projects - Debug
(P projectd - Debug
(P projects - Debug
Ftutar_library - Debug

LU S S S

Owerview | project] | project? | project M

Figure 6: Workspace window—an overview

The current selection in the Build Configuration drop-down list is also highlighted
when an overview of the workspace is displayed.
DISPLAYING BROWSE INFORMATION

I To open the Source Browser window, choose View>Sour ce Browser.

The Source Browser window is, by default, docked with the Workspace window. Source
browse information is displayed for the active build configuration.

Note that you can choose a file filter and a type filter from the context menu that appears
when you right-click in the top pane of the window.

2 To display browse information in the Source Browser window, choose
Tools>Options>Prgject and select the option Generate browse information.

3 To see the definition of a global symbol or a function, you can use three alternative
methods:

e In the Source Browser window, right-click on a symbol, or function, and choose the
Go to definition command from the context menu that appears

o In the Source Browser window, double-click on a row

Part |. Project management and building 39

Procedures for managing projects

e In the editor window, right-click on a symbol, or function, and choose the Go to
definition command from the context menu that appears.

The definition of the symbol or function is displayed in the editor window.

The source browse information is continuously updated in the background. While you
are editing source files, or when you open a new project, there will be a short delay
before the information is up-to-date.

INTERACTING WITH SCC-COMPATIBLE SYSTEMS

In any SCC-compatible system, you use a client application to maintain a central
archive. In this archive you keep the working copies of the files of your project. The
version control integration in JAR Embedded Workbench allows you to conveniently
perform some of the most common version control operations directly from within the
IDE. However, several tasks must still be performed in the client application.

To connect an |AR Embedded Workbench project to an SCC system:
In the Microsoft SCC-compatible client application, set up an SCC project

In the IDE, connect your application project to the SCC project.

Setting up an SCC project in the SCC client application

Use your SCC client tools to set up a working directory for the files in your IAR
Embedded Workbench project that you want to control using your SCC system. The
files can be placed in one or more nested subdirectories, all located under a common
root. Specifically, all source files must reside in the same directory as the ewp project
file, or in subdirectories of this directory.

For information about the steps involved, refer to the documentation supplied with the
SCC client application.

To connect application projectsto the SCC project
In the Workspace window, select the project for which you have created an SCC

project.

From the Project menu, choose Version Control System>Connect Project To SCC
Project. This command is also available from the context menu that appears when you
right-click in the Workspace window.

Note: The commands on the Sour ce Code Control submenu are available when you
have successfully connected your application project to your SCC project.

If you have SCC-compatible systems from different vendors installed, you will be
prompted to choose which system you want to connect to.

40 IDE Project Management and Building Guide

Managing projects °

4 An SCC-specific dialog box will appear where you can navigate to the SCC project
that you have set up.

For more information about the commands available for accessing the SCC system, see
Version Control System menu for SCC, page 53.

Viewing the SCC states

When your IAR Embedded Workbench project has been connected to the SCC project,
a column that contains status information for version control will appear in the
Workspace window. Different icons are displayed depending on the state.

There are also icons for some combinations of these states. Note that the interpretation
of these states depends on the SCC client application you are using. For more
information about the icons and the different states they represent, see Source code
control states, page 58.

Configuring the interaction between the IDE and SCC

To configure the interaction between the IDE and SCC, choose Tools>Options and
click the Sour ce Code Control tab. For more information about the available
commands, see Source Code Control options, page 148.

INTERACTING WITH SUBVERSION

The version control integration in AR Embedded Workbench allows you to
conveniently perform some of the most common Subversion operations directly from
within the IDE, using the client applications svn. exe and TortoiseProc.exe.

To connect an |AR Embedded Workbench project to a Subversion
system:

I In the Subversion client application, set up a Subversion working copy.
2 In the IDE, connect your application project to the Subversion working copy.

To set up a Subversion working copy
I To use the Subversion integration in the IDE, make sure that svn . exe and
TortoiseProc.exe are in your path.

2 Check out a working copy from a Subversion repository.

The files that constitute your project do not have to come from the same working copy;
all files in the project are treated individually. However, note that TortoiseProc.exe
does not allow you to simultaneously, for example, check in files coming from different
repositories.

Part |. Project management and building 41

Reference information on managing projects

To connect application projectsto the Subversion working copy

In the Workspace window, select the project for which you have created a Subversion
working copy.

From the Project menu, choose Version Control System>Connect Project to
Subversion. This command is also available from the context menu that appears when
you right-click in the Workspace window.

For more information about the commands available for accessing the Subversion
working copy, see Version Control System menu for Subversion, page 58.

Viewing the Subversion states

When your IAR Embedded Workbench project has been connected to the Subversion
working copy, a column that contains status information for version control will appear
in the Workspace window. Various icons are displayed, where each icon reflects the
Subversion status, see Subversion states, page 59.

Reference information on managing projects

This section gives reference information about these windows and dialog boxes:

Workspace window, page 43

Create New Project dialog box, page 47
Configurations for project dialog box, page 48

New Configuration dialog box, page 49

Source Browser window, page 50

Version Control System menu for SCC, page 53
Select Source Code Control Provider dialog box, page 55
Check In Files dialog box, page 55

Check Out Files dialog box, page 57

Source code control states, page 58

Version Control System menu for Subversion, page 58
Subversion states, page 59.

See also:

Source Code Control options, page 143.

42 IDE Project Management and Building Guide

Managing projects °

Workspace window
The Workspace window is available from the View menu.

Configuration
drop-down menu

x
L Indicates that the file will
Project icon (currently Debug - be rebuilt the next time
|nd|caFes_muIt|-ﬂIe - — the project is built
compilation — Files |cM
[Er @project] - Debug
e m--
@ @ utilities.c
L@ 3 Output
Column containing
source code control
| _— status information
/
Tabs for choosing
workspace display \
Owverview project] Iproiect2| \
\
Column containing Column containing
status information build status
about option overrides information

Figure 7: Workspace window

Use the Workspace window to access your projects and files during the application
development.

Drop-down list

At the top of the window there is a drop-down list where you can choose a build
configuration to display in the window for a specific project.

The display area

This area contains four columns.

The Files column displays the name of the current workspace and a tree representation
of the projects, groups and files included in the workspace. One or more of these icons
are displayed:

Workspace
Project
Project with multi-file compilation

Group of files

[/ & O

Part |. Project management and building 43

Reference information on managing projects

FI03 [[[

[B

m Tiji m E

E=]

-
i3

Group excluded from the build

Group of files, part of multi-file compilation

Group of files, part of multi-file compilation, but excluded from the build
Object file or library

Assembler source file

C source file

C++ source file

Source file excluded from the build

Header file

Text file

HTML text file

Control file, for example the linker configuration file
IDE internal file

Other file

The column that contains status information about option overrides can have one of
three icons for each level in the project:

Blank There are no settings/overrides for this file/group.
Black check mark There are local settings/overrides for this file/group.

Red check mark There are local settings/overrides for this file/group, but they are
either identical to the inherited settings or they are ignored
because you use multi-file compilation, which means that the
overrides are not needed.

The column that contains build status information can have one of three icons for each
file in the project:

Blank The file will not be rebuilt next time the project is built.
Red star The file will be rebuilt next time the project is built.
Gearwheel The file is being rebuilt.

44 IDE Project Management and Building Guide

Context menu

Options. ..

ke
Compile
Retuild Al
Clean

Stop Build

Add

Remave
Rename. ..

‘Wersion Contral System

Open Containing Folder...

File Properties. ..

Sef as Active

Options

Make

Managing projects °

The column contains status information about version control. For information about the
various icons, see:

e Source code control states, page 58
e Subversion states, page 59.

Use the tabs at the bottom of the window to choose which project to display.
Alternatively, you can choose to display an overview of the entire workspace.

For more information about project management and using the Workspace window, see
the Introduction to managing projects, page 31.

This context menu is available:

Figure 8: Workspace window context menu

These commands are available:

Displays a dialog box where you can set options for each
build tool, for the selected item in the Workspace window.
You can set options for the entire project, for a group of files,
for on an individual file. See Setting options, page 61.

Brings the current target up to date by compiling, assembling,
and linking only the files that have changed since the last
build.

Part |. Project management and building 45

Reference information on managing projects

46

Compile

Rebuild All

Clean

Stop Build
Add>Add Files
Add>Add filename

Add>Add Group

Remove

Rename

Version Control
System

Open Containing
Folder
File Properties

Set asActive

IDE Project Management and Building Guide

Compiles or assembles the currently active file as
appropriate. You can choose the file either by selecting it in
the Workspace window, or by selecting the editor window
containing the file you want to compile.

Recompiles and relinks all files in the selected build
configuration.

Deletes intermediate files.
Stops the current build operation.
Displays a dialog box where you can add files to the project.

Adds the indicated file to the project. This command is only
available if there is an open file in the editor.

Displays the Add Group dialog box where you can add new
groups to the project. For more information about groups, see
Groups, page 35.

Removes selected items from the Workspace window.

Displays the Rename Group dialog box where you can
rename a group. For more information about groups, see
Groups, page 35.

Opens a submenu with commands for source code control,
see Version Control System menu for SCC, page 53.

Opens the File Explorer that displays the directory where the
selected file resides.

Displays a standard File Properties dialog box for the
selected file.

Sets the selected project in the overview display to be the
active project. It is the active project that will be built when
the Make command is executed.

Managing projects °

Create New Project dialog box
The Create New Project dialog box is available from the Project menu.

Create New Project E

Tool chain: [CPUNAME =

Project templates:

Description:

Creates an empty project.

()3 I Cancel |

Figure 9: Create New Project dialog box

Use this dialog box to create a new project based on a template project. Template
projects are available for C/C++ applications, assembler applications, and library
projects. You can also create your own template projects.

Tool chain

Selects the target to build for. If you have several versions of IAR Embedded Workbench
for different targets installed on your host computer, the drop-down list might contain
some or all of these targets.

Project templates

Select a template to base the new project on, from this list of available template projects.

Description

A description of the currently selected template.

Part |. Project management and building 47

Reference information on managing projects

Configurations for project dialog box

The Configurationsfor project dialog box is available by choosing Project>Edit
Configurations.

Configurations for "Project1™

Configurations:
Release New. |
Remove |

Figure 10: Configurations for project dialog box

Use this dialog box to define new build configurations for the selected project; either
entirely new, or based on a previous project.

Configurations

Lists existing configurations, which can be used as templates for new configurations.

New

Displays a dialog box where you can define new build configurations, see New
Configuration dialog box, page 49.

Remove

Removes the configuration that is selected in the Configurations list.

48 IDE Project Management and Building Guide

Managing projects °

New Configuration dialog box

Name

Tool chain

The New Configuration dialog box is available by clicking New in the Configur ations
for project dialog box.

New Configuration [%]

M ame: ok |
I Cancel |

Tool chain:

|cPUNAME 4|

Based on configuration:
I [ebug j

& Debug

Factory settings
’7 " Felease

Figure 11: New Configuration dialog box

Use this dialog box to define new build configurations; either entirely new, or based on
any currently defined configuration.

Type the name of the build configuration.

Specify the target to build for. If you have several versions of IAR Embedded
Workbench for different targets installed on your host computer, the drop-down list
might contain some or all of these targets.

Based on configuration

Factory settings

Selects a currently defined build configuration to base the new configuration on. The
new configuration will inherit the project settings and information about the factory
settings from the old configuration. If you select None, the new configuration will be
based strictly on the factory settings.

Select the default factory settings that you want to apply to your new build
configuration. These factory settings will be used by your project if you click the
Factory Settings button in the Options dialog box.

Part |. Project management and building 49

Reference information on managing projects

Choose between:

Debug Factory settings suitable for a debug build configuration.

Release Factory settings suitable for a release build configuration.

Source Browser window

The Source Browser window is available from the View menu.

Source [Funct es]
#; I MName
project] - Debug
< call_count
+ do_foreground_process
get_fib
+ init_fib
* main
4+ next_counter
*
w

put_fib
root

KN — i
Full name: get_fibling)

Symbol type: function

Filename: ChprojectsiUtilities.c

Source Browser

Figure 12: Source Browser window

The Source Browser window displays an hierarchical view in alphabetical order of all
symbols defined in the active build configuration. This means that source browse
information is available for symbols in source files and include files part of that
configuration. Source browse information is not available for symbols in linked
libraries. The window consists of two separate display areas.

For more information about how to use the Source Browser window, see Displaying
browse information, page 39.

The upper display area

The upper display area contains two columns:

- Anicon that corresponds to the Symbol type classification, see |consused
for the symbol types, page 51.

50 IDE Project Management and Building Guide

Name

Managing projects °

The names of global symbols and functions defined in the project. Note
that unnamed types, for example a struct or a union without a name,
will get a name based on the filename and line number where it is defined.

These pseudonames are enclosed in angle brackets.

If you click in the window header, you can sort the symbols either by name or by symbol

type.

In the upper display area you can also access a context menu; see Context menu, page

52.

The lower display area

For a symbol selected in the upper display area, the lower area displays its properties:

Full name

Symbol type

Filename

classname:.:membername.

symbol types, page 51.

Icons used for the symbol types

These are the icons used:

P A sHe oD d FE L

(Yellow rhomb)
(Purple rhomb)

Base class

Class
Configuration
Enumeration
Enumeration constant
Field of a struct
Function

Macro
Namespace
Template class
Template function

Type definition

Displays the unique name of each element, for instance
Displays the symbol type for each element, see |consused for the

Specifies the path to the file in which the element is defined.

Part |. Project management and building 51

Reference information on managing projects

52

o
2 (Yellow rhomb)

Context menu

Union

Variable

This context menu is available in the upper display area:

5o ko Definition
IMowve to Parent

v Al Symbols
All Functions & Yariables

Mon-Member Functions & ‘ariables

Types
Constants & Macros

Al Files
v Exclude System Includes
Only Project Members

Figure 13: Source Browser window context menu

These commands are available on the context menu:

Go to Definition

Move to Parent

All Symbols
All Functions &

Variables

Non-Member
Functions & Variables
Types

Congtants & Macros

All Files

IDE Project Management and Building Guide

The editor window will display the definition of the selected
item.

If the selected element is a member of a class, struct, union,
enumeration, or namespace, this menu command can be used
for moving to its enclosing element.

Type filter; displays all global symbols and functions defined
in the project.

Type filter; displays all functions and variables defined in the
project.

Type filter; displays all functions and variables that are not
members of a class.

Type filter; displays all types such as structures and classes
defined in the project.

Type filter; displays all constants and macros defined in the
project.

File filter; displays symbols from all files that you have
explicitly added to your project and all files included by
them.

Managing projects °

Exclude System File filter; displays symbols from all files that you have

Includes explicitly added to your project and all files included by
them, except the include files in the IAR Embedded
Workbench installation directory.

Only Project Members File filter; displays symbols from all files that you have
explicitly added to your project, but no include files.

Version Control System menu for SCC

The Version Control System submenu is available from the Pr oj ect menu and from the
context menu in the Workspace window.

This is the menu for SCC-compatible systems:

Check In...

Check Qut. ..
Undo Checkout
et Lakest Yersion
Compare. ..
History...
Properties...

Refresh

Copneck Project to SCC Project, ..

Disconnect Project from SCC Project...

Figure 14: Version Control System menu for SCC

Note: The contents of the Version Control System submenu reflect the version control
system in use, either an SCC-compatible system or Subversion.

For more information about interacting with an external version control system, see
Interacting with version control systems, page 36.

These commands are available for SCC:

Check In Displays the Check In Files dialog box where you can check in
the selected files; see Check In Files dialog box, page 55. Any
changes you have made in the files will be stored in the archive.
This command is enabled when currently checked-out files are
selected in the Workspace window.

Part |. Project management and building 53

Reference information on managing projects

54

Check Out

Undo Checkout

Get Latest Version

Compare

History

Properties

Refresh

Connect Project to
SCC Project

Disconnect Project
from SCC Project

IDE Project Management and Building Guide

Checks out the selected file or files. Depending on the SCC
(Source Code Control) system you are using, a dialog box might
appear; see Check Out Filesdialog box, page 57. This means you
get a local copy of the file(s), which you can edit. This command
is enabled when currently checked-in files are selected in the
Workspace window.

Reverts the selected files to the latest archived version; the files
are no longer checked out. Any changes you have made to the
files will be lost. This command is enabled when currently
checked-out files are selected in the Workspace window.

Replaces the selected files with the latest archived version.

Displays—in an SCC-specific window—the differences between
the local version and the most recent archived version.

Displays SCC-specific information about the revision history of
the selected file.

Displays information available in the version control system for
the selected file.

Updates the version control system display status for all the files
that are part of the project. This command is always enabled for
all projects under version control.

Displays a dialog box, which originates from the SCC client
application, to let you create a connection between the selected
IAR Embedded Workbench project and an SCC project; the [AR
Embedded Workbench project will then be an SCC-controlled
project. After creating this connection, a special column that
contains status information will appear in the Workspace
window.

Removes the connection between the selected IAR Embedded
Workbench project and an SCC project; your project will no
longer be an SCC-controlled project. The column in the
Workspace window that contains SCC status information will no
longer be visible for that project.

Managing projects °

Select Source Code Control Provider dialog box

The Select Sour ce Code Control Provider dialog box is displayed if several SCC
systems from different vendors are available.

Select Source Code Control Provider E
|
Cancel |

i M)
Microsoft Wisual SourceSafe

Figure 15: Select Source Code Control Provider dialog box

Use this dialog box to choose the SCC system you want to use.

Check In Files dialog box

The Check In Filesdialog box is available by choosing the Project>Sour ce Code
Control>Check In command, alternatively available from the Workspace window
context menu.

Check In Files E

Comment

K

Cancel

Ik

Advanced. .,
™ Keep checked out

Files

C:hprojectshtutor\Utilities. o

Figure 16: Check In Files dialog box

Part |. Project management and building 55

Reference information on managing projects

Comment

Specify a comment—typically a description of your changes—that will be stored in the
archive together with the file revision. This text box is only enabled if the SCC system
supports adding comments at check in.

Keep checked out

Specifies that the files will continue to be checked out after they have been checked in.
Typically, this is useful if you want to make your modifications available to other
members in your project team, without stopping your own work with the file.

Advanced
Displays a dialog box, originating from the SCC client application, that contains
advanced options. This button is only available if the SCC system supports setting
advanced options at check in.

Files

Lists the files that will be checked in. The list will contain all files that were selected in
the Workspace window when the Check In Files dialog box was opened.

56 IDE Project Management and Building Guide

Managing projects °

Check Out Files dialog box

Comment

Advanced

Files

The Check Out Files dialog box is available by choosing the Proj ect>Sour ce Code
Control>Check Out command, alternatively available from the Workspace window
context menu. However, this dialog box is only available if the SCC system supports
adding comments at check out or advanced options.

Check Dut Files E

Comment

K

Cancel

Advanced. .,

Ik

Files
C:hprojectshtutor\Utilities. o

Figure 17: Check Out Files dialog box

Specify a comment—typically the reason why the file is checked out—that will be
placed in the archive together with the file revision. This text box is only enabled if the
SCC system supports the adding of comments at check out.

Displays a dialog box, originating from the SCC client application, that contains
advanced options. This button is only available if the SCC system supports setting
advanced options at check out.

Lists files that will be checked out. The list will contain all files that were selected in the
Workspace window when the Check Out Files dialog box was opened.

Part |. Project management and building 57

Reference information on managing projects

Source code control states
Each source code-controlled file can be in one of several states.

[

(blank)
(checkmark)

(gray padlock)

(gray padlock)
(red padlock)

(red padlock)

Checked out to you. The file is editable.

Checked out to you. The file is editable and you have modified the
file.

Checked in. In many SCC systems this means that the file is
write-protected.

Checked in. A new version is available in the archive.

Checked out exclusively to another user. In many SCC systems this
means that you cannot check out the file.

Checked out exclusively to another user. A new version is available
in the archive. In many SCC systems this means that you cannot
check out the file.

Note: The source code control in the IAR Embedded Workbench IDE depends on the
information provided by the SCC system. If the SCC system provides incorrect or
incomplete information about the states, the IDE might display incorrect symbols.

Version Control System menu for Subversion

The Version Control System submenu is available from the Pr oj ect menu and from the
context menu in the Workspace window.

Comrait...

Revert...
Update. ..
Diff...

Log...
Properties...

Refresh

Figure 18: Version Control System menu for Subversion

Note: The contents of the Version Control System submenu reflect the version control
system in use, either an SCC-compatible system or Subversion.

58 IDE Project Management and Building Guide

Subversion states

=5 >

Managing projects °

For more information about interacting with an external version control system, see
Interacting with version control systems, page 36.

These commands are available for Subversion:

Commit
Add
Revert
Update
Diff
Log

Properties

Refresh

Connect Project to
SVN Project

Disconnect Project
from SVN Project

Displays Tortoise’s Commit dialog box for the selected file(s).
Displays Tortoise’s Add dialog box for the selected file(s).
Displays Tortoise’s Revert dialog box for the selected file(s).
Opens Tortoise’s Update window for the selected file(s).
Opens Tortoise’s Diff window for the selected file(s).

Opens Tortoise’s L og window for the selected file(s).

Displays information available in the version control system for
the selected file.

Updates the version control system display status for all files that
are part of the project. This command is always enabled for all
projects under the version control system.

Checks whether svn . exe and TortoiseProc.exe are in the
path and then enables the connection between the IAR
Embedded Workbench project and an existing checked-out
working copy. After this connection has been created, a special
column that contains status information appears in the
Workspace window. Note that you must check out the source files
from outside the IDE.

Removes the connection between the selected IAR Embedded
Workbench project and Subversion. The column in the
Workspace window that contains SVN status information will no
longer be visible for that project.

Each Subversion-controlled file can be in one of several states.

(blue A)
(red C)
(red D)

Added.
Conflicted.
Deleted.

Part |. Project management and building 59

Reference information on managing projects

1 (red I) Ignored.

D (blank) Not modified.

M eam Modified.

@ (redR) Replaced.

¥ (gray X) An unversioned directory created by an external definition.
7? (gray question mark) Item is not under version control.

' (black exclamation Item is missing—removed by a non-SVN command—or
mark) incomplete.
o (red tilde) Item obstructed by an item of a different type.

Note: The version control system in the IAR Embedded Workbench IDE depends on
the information provided by Subversion. If Subversion provides incorrect or incomplete
information about the states, the IDE might display incorrect symbols.

60 IDE Project Management and Building Guide

Building

This chapter briefly discusses the process of building your project, and
describes how you can extend the chain of build tools with tools from
third-party suppliers.

Building your project

The build process consists of these steps:

e Setting project options
o Building the project, either an application project or a library project

o Correcting any errors detected during the build procedure.

To make the build process more efficient, you can use the Batch Build command. This
gives you the possibility to perform several builds in one operation. If necessary, you can
also specity pre-build and post-build actions.

In addition to using the IAR Embedded Workbench IDE to build projects, you can also
use the command line utility iarbuild. exe.

For examples of building application and library projects, see the tutorials in the
Information Center. For further information about building library projects, see the |AR
C/C++ Compiler Reference Guide.

SETTING OPTIONS

To specify how your project should be built, you must define one or several build
configurations. Every build configuration has its own settings, which are independent of
the other configurations. All settings are indicated in a separate column in the
Workspace window.

For example, a configuration that is used for debugging would not be highly optimized,
and would produce output that suits the debugging. Conversely, a configuration for
building the final application would be highly optimized, and produce output that suits
a flash or PROM programmer.

For each build configuration, you can set options on the project level, group level, and
file level. Many options can only be set on the project level because they affect the entire
build configuration. Examples of such options are General Options, linker settings, and
debug settings. Other options, such as compiler and assembler options, that you set on
project level are default for the entire build configuration.

Part |. Project management and building

61

Building your project

To override project level settings, select the required item—for instance a specific group
of files—and then select the option Overrideinherited settings. The new settings will
affect all members of that group, that is, files and any groups of files. To restore all
settings to the default factory settings, click the Factory Settings button.

Note: There is one important restriction on setting options. If you set an option on
group or file level (group or file level override), no options on higher levels that operate
on files will affect that group or file.

Using the Options dialog box

The Options dialog box—available by choosing Project>Options—provides options
for the build tools. You set these options for the selected item in the Workspace window.
Options in the General Options, Linker, and Debugger categories can only be set for
the entire build configuration, and not for individual groups and files. However, the
options in the other categories can be set for the entire build configuration, a group of
files, or an individual file.

Options for node “projectl - Debug" E
Category:
General Options
C/C++ compiler Target Output | Library Configuration | Library Options | Stack/Heap
Azzembler)
Custom Build - Output file
Lirker % Executable
[ebugger Library
Simulator
r— Output directarie:
Executables/libraries:
IDebug\Exe
Object files:
|DebugiObi
List files:
|DebughList

()3 I Cancel |

Figure 19: General options

The Category list allows you to select which building tool to set options for. Which
tools that are available in the Category list depends on which tools are included in your
product. When you select a category, one or more pages containing options for that
component are displayed.

62 IDE Project Management and Building Guide

Building °

Click the tab corresponding to the type of options you want to view or change. To restore
all settings to the default factory settings, click the Factory Settings button, which is
available for all categories except General Optionsand Custom Build. Note that two
sets of factory settings are available: Debug and Release. Which one that is used depends
on your build configuration; see New Configuration dialog box, page 49.

For information about each option and how to set options, see the online help system.
For the debugger options you can also see the C-SPY® Debugging Guide.

Note: If you add to your project a source file with a non-recognized filename extension,
you cannot set options on that source file. However, you can add support for additional
filename extensions. For more information, see Filename Extensions dialog box, page
159.

BUILDING A PROJECT
You can build your project either as an application project or a library project.

Note: To build your project as a library project, choose Project>Options>Gener al
Options>Output>Output file>Library before you build your project. Then, Linker is
replaced by Library Builder in the Category list in the options dialog box, and the
result of the build will be a library. For an example, see the tutorials.

You have access to the build commands both from the Project menu and from the
context menu that appears if you right-click an item in the Workspace window.

The three build commands M ake, Compile, and Rebuild All run in the background, so
you can continue editing or working with the IDE while your project is being built.

For more information, see Project menu, page 121.

BUILDING MULTIPLE CONFIGURATIONS IN A BATCH

Use the batch build feature when you want to build more than one configuration at once.
A batch is an ordered list of build configurations. The Batch Build dialog
box—available from the Project menu—Iets you create, modify, and build batches of
configurations.

For workspaces that contain several configurations, it is convenient to define one or
more different batches. Instead of building the entire workspace, you can build only the
appropriate build configurations, for instance Release or Debug configurations.

For more information about the Batch Build dialog box, see Batch Build dialog box,
page 129.

Part |. Project management and building 63

Building your project

USING PRE- AND POST-BUILD ACTIONS

If necessary, you can specify pre-build and post-build actions that you want to occur
before or after the build. The Build Actions dialog box—available from the Project
menu—Ilets you specify the actions required.

For more information about the Build Actions dialog box, see the online help system.

Using pre-build actions for time stamping

You can use pre-build actions to embed a time stamp for the build in the resulting binary
file. Follow these steps:

Create a dedicated time stamp file, for example, timestamp.c and add it to your
project.

In this source file, use the preprocessor macros __TIME _ and __DATE__ to initialize
a string variable.

Choose Project>Options>Build Actions to open the Build Actions dialog box.
In the Pre-build command line text field, specify for example this pre-build action:
"touch $PROJ_DIRS\timestamp.c"

You can use the open source command line utility touch for this purpose or any other
suitable utility which updates the modification time of the source file.

If the project is not entirely up-to-date, the next time you use the M ake command, the
pre-build action will be invoked before the regular build process. Then the regular build
process must always recompile t imestamp . c and the correct timestamp will end up in
the binary file.

If the project already is up-to-date, the pre-build action will not be invoked. This means
that nothing is built, and the binary file still contains the timestamp for when it was last
built.

CORRECTING ERRORS FOUND DURING BUILD

The compiler, assembler, and debugger are fully integrated with the development
environment. If your source code contains errors, you can jump directly to the correct
position in the appropriate source file by double-clicking the error message in the error
listing in the Build message window, or selecting the error and pressing Enter.

After you have resolved any problems reported during the build process and rebuilt the
project, you can directly start debugging the resulting code at the source level.

64 IDE Project Management and Building Guide

Building °

To specify the level of output to the Build message window, choose Tools>Optionsto
open the | DE Optionsdialog box. Click the M essagestab and select the level of output
in the Show build messages drop-down list. Alternatively, you can right-click in the
Build M essages window and select Options from the context menu.

For more information about the Build messages window, see Build window, page 110.

BUILDING FROM THE COMMAND LINE

To build the project from the command line, use the IAR Command Line Build Utility
(iarbuild.exe) located in the common\bin directory. As input you use the project
file, and the invocation syntax is:

iarbuild project.ewp [—clean|—build|—make] <configuration>
[-log errors|warnings|info|all]

Parameter Description

project.ewp Your IAR Embedded Workbench project file.

-clean Removes any intermediate and output files.

-build Rebuilds and relinks all files in the current build configuration.

-make Brings the current build configuration up to date by compiling,
assembling, and linking only the files that have changed since the last
build.

configuration The name of the configuration you want to build, which can either be
one of the predefined configurations Debug or Release, or a name that
you define yourself. For more information about build configurations, see
Projects and build configurations, page 34.

-log errors Displays build error messages.
-log warnings Displays build warning and error messages.
-log info Displays build warning and error messages, and messages issued by the

#pragma message preprocessor directive.

-log all Displays all messages generated from the build, for example compiler
sign-on information and the full command line.

Table 4: iarbuild.exe command line options

If you run the application from a command shell without specifying a project file, you
will get a sign-on message describing available parameters and their syntax.

Part |. Project management and building 65

Extending the toolchain

66

Extending the toolchain

IAR Embedded Workbench provides a feature—Custom Build—which lets you extend
the standard toolchain. This feature is used for executing external tools (not provided by
IAR Systems). You can make these tools execute each time specific files in your project
have changed.

If you specify custom build options on the Custom tool configuration page, the build
commands treat the external tool and its associated files in the same way as the standard
tools within the IAR Embedded Workbench IDE and their associated files. The relation
between the external tool and its input files and generated output files is similar to the
relation between the C/C++ Compiler, c files, h files, and rxx files. For more
information about available custom build options, see the online help system.

You specify filename extensions of the files used as input to the external tool. If the input
file has changed since you last built your project, the external tool is executed; just as
the compiler executes if a c file has changed. In the same way, any changes in additional
input files (for instance include files) are detected.

You must specify the name of the external tool. You can also specify any necessary
command line options needed by the external tool, and the name of the output files
generated by the external tool. Note that you can use argument variables for substituting
file paths.

For some of the file information, you can use argument variables.

You can specify custom build options to any level in the project tree. The options you
specify are inherited by any sublevel in the project tree.

TOOLS THAT CAN BE ADDED TO THE TOOLCHAIN

Some examples of external tools, or types of tools, that you can add to the IAR
Embedded Workbench toolchain are:

o Tools that generate files from a specification, such as Lex and YACC

e Tools that convert binary files—for example files that contain bitmap images or
audio data—to a table of data in an assembler or C source file. This data can then be
compiled and linked together with the rest of your application.

ADDING AN EXTERNAL TOOL

The following example demonstrates how to add the tool Flex to the toolchain. The
same procedure can be used also for other tools.

In the example, Flex takes the file myFile.lex as input. The two files myFile.c and
myFile.h are generated as output.

Add the file you want to work with to your project, for example myFile. lex.

IDE Project Management and Building Guide

Building °

Select this file in the workspace window and choose Project>Options. Select Custom
Build from the list of categories.

In the Filename extensions field, type the filename extension . 1ex. Remember to
specify the leading period (.).

In the Command line field, type the command line for executing the external tool, for
example

flex $FILE_PATHS -o$FILE_BNAMES.c
During the build process, this command line is expanded to:
flex myFile.lex -omyFile.c

Note the usage of argument variables. Note specifically the use of $FILE_BNAMES
which gives the base name of the input file, in this example appended with the ¢
extension to provide a C source file in the same directory as the input file foo . 1ex. For
more information about these variables, see Argument variables, page 127.

In the Output filesfield, describe the output files that are relevant for the build. In this
example, the tool Flex would generate two files—one source file and one header file.
The text in the Output filestext box for these two files would look like this:

SFILE_BPATHS.C
SFILE_BPATHS.h

If the external tool uses any additional files during the build, these should be added in
the Additional input filesfield, for instance:

$TOOLKIT_DIR$\inc\stdio.h

This is important, because if the dependency files change, the conditions will no longer
be the same and the need for a rebuild is detected.

Click OK.
To build your application, choose Project>M ake.

Part |. Project management and building 67

Extending the toolchain

68 IDE Project Management and Building Guide

Editin

8
This chapter describes how to use and customize the IAR Embedded
Workbench editor, as well as how to use an external editor of your choice.
More specifically, this means:
e Introduction to the IAR Embedded Workbench editor
e Using the editor

e Reference information on the editor.

Introduction to the IAR Embedded Workbench editor
This section introduces the IAR Embedded Workbench editor.

These topics are covered:

e Briefly about the editor.

BRIEFLY ABOUT THE EDITOR

The integrated text editor allows you to edit multiple files in parallel, and provides both
basic editing features and functions specific to software development, like:

Automatic word and code completion, and indentation

Block indentation

Parenthesis and bracket matching

Function navigation within source files

Context-sensitive help system that can display reference information for DLIB
library functions and language extensions

Text styles and color that identifies the syntax of C or C++ programs and assembler
directives

Powerful search and replace commands, including multi-file search
Direct jump to context from error listing
Multibyte character support

Parameter hints

Bookmarks

Part |. Project management and building 69

Using the editor

o Unlimited undo and redo for each window.

Using the editor

This section describes various tasks related to using the editor.
More specifically, you will get information about:

Editing a file

Using and adding code templates

Navigation

Searching

Customizing the editor environment

Using an external editor.

EDITING A FILE

The editor window is where you write, view, and modify your source code.

Word completion

Word completion attempts to complete the word that you have started to type, basing the
assumption on the contents of the rest of your source file.

After writing one or more letters of a word, press Ctrl+Alt+Space or choose Complete
Word from the context menu to make the editor suggest and replace the current word.
If the suggestion is incorrect, repeat the command to get new suggestions.

Parameter hint

When you start typing the first parenthesis after a function name, the editor suggests
parameters as tooltip information.

When there are several overloaded versions of a function, you can choose which one to
use by clicking the arrows in the tooltip:

int overlcad(char c);
int overlecad(short 3);
int overlead(int i);

int function (wvoid)
{
cverlcadd
P1/3@ int overload(char cj |

Figure 20: Parameter hints for overloaded versions of a function

70 IDE Project Management and Building Guide

Editing °

Code completion

When you type ., ->, or : : after a class or object name, the editor shows a list of
symbols that are available in a class.

struct MyStruct
[=h
int a;
int by
-

m

int function (wvoid)
[=h

struct MyStruct myStruct;

myStruct I

b

Figure 21: Code completion

Click on a symbol name in the list or choose it with the arrow keys and press return to
insert it at the current insertion point.

Indenting text automatically

The text editor can perform various kinds of indentation. For assembler source files and
plain text files, the editor automatically indents a line to match the previous line. If you
want to indent several lines, select the lines and press the Tab key. Press Shift+Tab to
move a whole block of lines back to the left again.

For C/C++ source files, the editor indents lines according to the syntax of the C/C++
source code. This is performed whenever you:

e Press the Return key
o Type any of the special characters {, }, :, and #

o Have selected one or several lines, and choose the Edit>Auto | ndent command.

To enableor disabletheindentation:
Choose Tools>Options and select Editor.

Select or deselect the Auto indent option.
To customize the C/C++ automatic indentation, click the Configure button.

For more information, see Configure Auto Indent dialog box, page 139.

Part |. Project management and building 71

Using the editor

Matching brackets and parentheses

When the insertion point is located next to a parenthesis, the matching parentheses are
highlighted with a light gray color:

void NextCounter (void)

{
callCount += 1;

}
Figure 22: Parenthesis matching in the editor window

The highlight remains in place as long as the insertion point is located next to the
parenthesis.

To select all text between the brackets surrounding the insertion point, choose
Edit>Match Brackets. Every time you choose M atch Brackets (grow) or Match
Brackets (shrink) after that, the selection will increase or shrink, respectively, to the
next hierarchic pair of brackets.

Note: Both of these functions—automatic matching of corresponding parentheses and
selection of text between brackets—apply to (), [1, {}, and <> (requires Match All
Brackets).

Accessing online help for reference information

When you need to know the syntax for a library function, extended keyword, intrinsic
function, etc, type the name in the editor window and press F1. The documentation for
the item appears in a help window.

Splitting the editor window into panes

You can split the editor window horizontally or vertically into multiple panes, to look at
different parts of the same source file at once, or to move text between two different
panes.

To split the window vertically, double-click the splitter bar, or drag it to the middle of
the window.

) v x

=B

Figure 23: Splitter control in the top-right corner of the editor window

Alternatively, you can split a window into panes (horizontally or vertically) using the
Window>Split command.

72 IDE Project Management and Building Guide

H W N

Editing °

To revert to a single pane, double-click the splitter control or drag it back to the end of
the scroll bar.

Dragging text

You can easily move text within an editor window or copy between editor windows.
Select the text and drag it to the new location.

Displaying status information

The status bar—available by choosing View>Status Bar—shows the current line and
column number containing the insertion point, the currently used character encoding,
and the Caps Lock, Num Lock, and Overwrite status:

It

Errors 0, Warnings 0 Ln 23, Col 3 Systemn CAP NUM OVR

Figure 24: Editor window status bar

For more information, see Status bar, page 109.

USING AND ADDING CODE TEMPLATES

Code templates are a method of conveniently inserting frequently used source code
sequences, for example for loops and i £ statements. The code templates are defined in
a plain text file. By default, a few example templates are provided. In addition, you can
easily add your own code templates.

Enabling code templates

By default, code templates are enabled.

To enable and disable the use of code templates:
Choose Tools>Options.

Go to the Editor>Setup Files page.
Select or deselect the Use Code Templates option.

In the text field, specify which template file you want to use: either the default file or
one of your own template files. A browse button is available for your convenience.

Part |. Project management and building

73

Using the editor

Inserting a code template into your source code

To insert a code template into your source code, right-click where you want the template
to be inserted and choose I nsert Template. Choose a code template from the menu that
appears.

1 vold main (void)
2 {
3
4

| i3

Copy,
Faste

}

Complete Word
Complete Code
Parameter Hint
Match Brackets

Insert Template Stakement if |

. Corporate 3 far
Open HeaderfSource File

Edit Templates
5o ko definition .#

5o ko declaration
Find all references

Toggle Breakpoint {Code)
Toggle Breakpoint {Log)

Toggle Breakpoint {Trace Start)
Toggle Breakpoint {Trace Stop)
Enable/disable Ereakpaoint

Character Encoding 3

Options. ..

Figure 25: Inserting a code template

If the code template you choose requires any type of field input, as in the for loop
example which needs an end value and a count variable, an input dialog box appears.

Adding your own code templates

The source code templates are defined in a plain text file. The original template file
CodeTemplates. txt is located in the common\config directory of your product
installation. The first time you use [AR Embedded Workbench, the original template file
is copied to a directory for local settings, and this is the file that is used by default if code
templates are enabled. To use your own template file, follow the procedure described in
Enabling code templates, page 73.

To open the template file and define your own code templates, choose Edit>Code
Templates>Edit Templates.

The syntax for defining templates is described in the default template file.

74 IDE Project Management and Building Guide

o U1 AW

Editing °

Selecting the correct language version of the code template file

When you start the [AR Embedded Workbench IDE for the very first time, you are asked
to select a language version. This only applies if you are using an IDE that is available
in other languages than English.

Selecting a language creates a corresponding language version of the default code
template file in the Application Data\IAR Embedded Workbench subdirectory of
the current Windows user (for example CodeTemplates.ENU. txt for English and
CodeTemplates.JPN. txt for Japanese). The default code template file does not
change automatically if you change the language version of the IDE afterwards.

To change the code template:

Choose Tools>Options>Editor>Setup Files.

Click the browse button of the Use Code Templates option and select a different
template file.

If the code template file you want to select is not in the browsed directory, you must:
Delete the filename in the Use Code Templates text box.

Deselect the Use Code Templates option and click OK.

Restart the IAR Embedded Workbench IDE.

Then choose Tools>Options>Editor >Setup Files again.

The default code template file for the selected language version of the IDE should now
be displayed in the Use Code Templates text box. Select the check box to enable the
template.

NAVIGATION

The editor provides several functions for easy navigation within the files and between
files:

e Using shortcut keys, see Using and customizing editor commands and shortcut
keys, page 77.
o Switching between source and header files

If the insertion point is located on an #include line, you can choose the Open
"header.h" command from the context menu, which opens the header file in an
editor window. You can also choose the command Open Header /Sour ceFile, which
opens the header or source file with a corresponding filename to the current file, or
activates it if it is already open. This command is available if the insertion point is
located on any line except an #include line.

Part |. Project management and building

75

Using the editor

e Function navigation

Click the Go to function button in the top-right corner of the editor window to list
all functions defined in the source file displayed in the window. You can then choose
to go directly to one of the functions by clicking it in the list. Note that the list is
refreshed when you save the file.

o Adding bookmarks

Use the Edit>Navigate>T oggle Bookmark command to add and remove
bookmarks. To switch between the marked locations, choose
Edit>Navigate>Navigate Next Bookmark or Navigate Previous Bookmark.

SEARCHING

There are several standard search functions available in the editor:

Quick search text box
Find dialog box
Replace dialog box
Find in files dialog box

Incremental Sear ch dialog box.
To usethe Quick search text box on thetoolbar:
Type the text you want to search for and press Enter.

Press Esc to stop the search. This is a quick method of searching for text in the active
editor window.

TousetheFind, Replace, Find in Files, and I ncremental Sear ch functions:

Before you use the search commands, choose Tools>Options>Editor and make sure
the Show bookmarks option is selected.

Choose the appropriate search command from the Edit menu. For more information
about each search function, see Edit menu, page 115.

To remove the blue flag icons that have appeared in the left-hand margin, right-click in
the Find in Files window and choose Clear All from the context menu.

CUSTOMIZING THE EDITOR ENVIRONMENT

The IDE editor can be configured on the | DE Optionspages Editor and Editor>Colors
and Fonts. Choose Tools>Options to access the pages.

For information about these pages, see Tools menu, page 131.

76 IDE Project Management and Building Guide

Editing °

Using and customizing editor commands and shortcut keys

The Edit menu provides commands for editing and searching in editor windows, for
instance, unlimited undo/redo. You can also find some of these commands on the
context menu that appears when you right-click in the editor window. For more
information about each command, see Edit menu, page 115.

There are also editor shortcut keys for:
o moving the insertion point

e scrolling text

e selecting text.

For more information about these shortcut keys, see Editor shortcut key summary, page
97.

To change the default shortcut key bindings, choose Tools>Options, and click the Key
Bindings tab. For more information, see Key Bindings options, page 133.

Syntax coloring

If the Tools>Options>Editor>Syntax highlighting option is enabled, the IAR
Embedded Workbench editor automatically recognizes the syntax of:

C and C++ keywords

C and C++ comments

Assembler directives and comments (if the comments start with a semicolon)

Preprocessor directives

Strings.
The different parts of source code are displayed in different text styles.

To change these styles, choose Tools>Options, and use the Editor >Colorsand Fonts
options. For more information, see Editor Colors and Fonts options, page 143.

To define your own set of keywor dsthat should be syntax-colored
automatically:

In a text file, list all the keywords that you want to be automatically syntax-colored.
Separate each keyword with either a space or a new line.

Choose Tools>Options and select Editor>Setup Files.

Select the Use Custom Keyword File option and specify your newly created text file.
A browse button is available for your convenience.

Part |. Project management and building 77

Using the editor

Select Editor>Colors and Fontsand choose User Keyword from the Syntax
Coloring list. Specify the font, color, and type style of your choice. For more
information, see Editor Colors and Fonts options, page 143.

In the editor window, type any of the keywords you listed in your keyword file; see how
the keyword is colored according to your specification.

USING AN EXTERNAL EDITOR

The External Editor options—available by choosing T ools>Options>Editor—Ilet you
specify an external editor of your choice.

Note: While you are debugging using C-SPY, C-SPY will not use the external editor
for displaying the current debug state. Instead, the built-in editor will be used.

To specify an external editor of your choice:
Select the option Use Exter nal Editor.

An external editor can be called in one of two ways, using the Type drop-down menu:

e Command Linecalls the external editor by passing command line parameters.

o DDE calls the external editor by using DDE (Windows Dynamic Data Exchange).

If you use the command line, specify the command line to pass to the editor, that is, the
name of the editor and its path, for instance:

C:\Windows\NOTEPAD.EXE.

78 IDE Project Management and Building Guide

Editing °

To send an argument to the external editor, type the argument in the Arguments field.
For example, type SFILE_PATHS to start the editor with the active file (in editor, project,
or messages windows).

IDE Dptions [%]

- Cormmon Fonts
[T Use External Editor

Type;: I Command Line

oKey Bindings

[k

Editar: I

- Colors and Fonts
- Messages

- Project

- Source Code Control
- Debugger

- Stack

- Register Filker

- Terminal IjQ

Arguments: I

QK I Cancel | Apply | Help |

Figure 26: Specifying an external command line editor

Note: Options for Register Filter and Terminal I/O are only available when the C-SPY
debugger is running.

If you use DDE, specify the editor’s DDE service name in the Service field. In the
Command field, specify a sequence of command strings to send to the editor.

The service name and command strings depend on the external editor that you are using.
Refer to the user documentation of your external editor to find the appropriate settings.

The command strings should be entered as:

DDE-Topic CommandStringl
DDE-Topic CommandString2

Part |. Project management and building 79

Reference information on the editor

as in this example, which applies to Codewright®:

IDE Options E
- Cormmon Fonts
- Key Bindings [V Use External Editor
Editor Type: |DDE

Editor: |c:\cw32\cw32.exe

L L

-Setup Files

-Colors and Fonts Service: IEodewright
- Messages
- Project Command: |System BufEditFile $FILE_PATH$
- Source Code Contral $FILE_PATH$ MovToline $CUR_LINES
- Debugger

- Stack
- Register Filker
- Terminal IjQ

QK I Cancel | Apply | Help |

Figure 27: External editor DDE settings

The command strings used in this example will open the external editor with a dedicated
file activated. The cursor will be located on the current line as defined in the context
from where the file is open, for instance when searching for a string in a file, or when
double-clicking an error message in the Message window.

5 Click OK.

When you double-click a filename in the Workspace window, the file is opened by the
external editor.

Variables can be used in the arguments. For more information about the argument
variables that are available, see Argument variables, page 127.

Reference information on the editor

This section gives reference information about these windows and dialog boxes:

Editor window, page 81

Find in Files window, page 838

Find All Declarations window, page 89
Find All References window, page 90
Find dialog box, page 91

Replace dialog box, page 92

Find in Files dialog box, page 93

80 IDE Project Management and Building Guide

Editing °

e Incremental Search dialog box, page 95
o Template dialog box, page 96
e Editor shortcut key summary, page 97.

Editor window
The editor window is opened when you open or create a text file in the IDE.

Drop-down menu

Go to function listing all open files

AL

Window tabs —— | Tutor.c l.ltiliﬁ.n:| R
/* Initislizes MAX FIB Fibonacci numbers. */ =
void InitFib (void)

{
short 1 = 45;
Breakpoint icon ——|\@ Fib[0] = Fib[1] = 1;
Splitter control
for {i = 2; i < MAX FIB; i++)
f
Fib[i] = GetFib({i) + GetFib(i-1):
Bracket matching = 1
}
Insertion point / /* Returns the Fibonacci number 'n'. #/
P unsigned int GetFik({int n) =
{
Find in files icon Tk if ({n > 0) ss (n <= MRX FIB))
{
return (Fik[n-1]):
}
else
{
Bookmark ——— |+ return 0;
}
}
1] 1 ¥ -

Figure 28: Editor window

You can open one or several text files, either from the File menu, or by double-clicking
them in the Workspace window. All open files are also available from the drop-down
menu at the upper right corner of the editor window. Several editor windows can be open
at the same time.

Part |. Project management and building 81

Reference information on the editor

Source code files and HTML files are displayed in editor windows. From an open
HTML document, hyperlinks to HTML files work like in an ordinary web browser. A
link to an eww workspace file opens the workspace in the IDE, and closes any currently
open workspace and the open HTML document.

When you want to print a source file, it can be useful to enable the option Show line
number s—available by choosing Tools>Options>Editor.

The editor window is always docked, and its size and position depend on other currently
open windows.

For more information about using the editor, see Edit menu, page 115 and the IDE
Project Management and Building Guide.

Relative source file paths

The IDE has partial support for relative source file paths.

If a source file is located in the project file directory or in any subdirectory of the project
file directory, the IDE uses a path relative to the project file when accessing the source
file.

Window tabs, tab groups, and tab context menu

The name of the open file is displayed on the tab. If you open several files, they are

organized in a tab group. Click the tab for the file that you want to display. If a file has
been modified after it was last saved, an asterisk appears on the tab after the filename,
for example Utilities.c *.If afile is read-only, a padlock icon is visible on the tab.

The tab’s tooltip shows the full path and a remark if the file is not a member of the active
project.

A context menu appears if you right-click on a tab in the editor window.

Save Mew Text Document. bxt
Close

Open Containing Folder...
File Properties. ..

Figure 29: Editor window tab context menu

These commands are available:

Savefile Saves the file.
Close Closes the file.

Open Containing Opens the File Explorer that displays the directory where the
Folder selected file resides.

82 IDE Project Management and Building Guide

Editing °

File Properties Displays a standard file properties dialog box.

Multiple editor windows and splitter controls

You can have one or several editor windows open at the same time. The commands on
the Window menu allow you to split the editor window into panes and to open multiple
editor windows. There are also commands for moving files between editor windows.

To split the editor window vertically into multiple panes, you can also use the splitter
controls.

For more information about each command on the Window menu, see the IDE Project
Management and Building Guide.

Go to function

,F[] Click the Gotofunction button in the top right-hand corner of the editor window to list
all functions of the C or C++ editor window.

void MextCounter{void)
void DoForegroundProcess(void)

void main{void)
Figure 30: Go to Function men

Click the function that you want to show in the editor window.

Part |. Project management and building 83

Reference information on the editor

84

Context menu

This context menu is available:

i3

Copy,
Paste

Complete Word
Complete Code
Parameter Hint
Match Brackets
Insert Template 3

Open HeaderfSource File

5o ko definition
5o ko declaration
Find all references

Find i Tirace

Toggle Breakpoint {Code)
Toggle Breakpoint {Log)

Toggle Breakpoint {Trace Start)
Toggle Breakpoint {Trace Stop)
Enable/disable Ereakpaoint

Set Data Breakpoint For 's'

Set Data Log Breakpoint For 's'

Set Mext Statement

Quick \Watch
Add to Wakch

Move to PC
Run ko Cursor

Character Encoding 3

Options. ..

Figure 31: Editor window context menu

The contents of this menu depend on whether the debugger is started or not, and on the
C-SPY driver you are using. Typically, additional breakpoint types might be available

on this menu. For information about available breakpoints, see the C-SPY® Debugging
Guide.

These commands are available:

Cut, Copy, Paste Standard window commands.

Complete Word Attempts to complete the word you have begun to type, basing
the guess on the contents of the rest of the editor document.

IDE Project Management and Building Guide

Editing °

Complete Code Shows a list of symbols that are available in a class, when you
place the insertion point after ., ->, or : : and when these
characters are preceded by a class or object name. For more
information, see Code completion, page 71.

Parameter Hint Suggests parameters as tooltip information for the function
parameter list you have begun to type. When there are several
overloaded versions of a function, you can choose which one to
use by clicking the arrows in the tooltip. For more information,
see Parameter hint, page 70.

Match Brackets Selects all text between the brackets immediately surrounding
the insertion point, increases the selection to the next hierarchic
pair of brackets, or beeps if there is no higher bracket hierarchy.

Insert Template Displays a list in the editor window from which you can choose
a code template to be inserted at the location of the insertion
point. If the code template you choose requires any field input,
the Template dialog box appears; for information about this
dialog box, see Template dialog box, page 96. For information
about using code templates, see Using and adding code
templates, page 73.

Open " header.h" Opens the header file header.h in an editor window. This menu
command is only available if the insertion point is located on an
#include line when you open the context menu.

OpenHeader/Source Opens the header or source code file that has same base name

File as the current file. If the destination file is not open when you
choose the command, the file will first be opened. This menu
command is only available if the insertion point is located on
any line except an #include line when you open the context
menu. This command is also available from the File>Open
menu.

Goto Definition of ~ Puts the insertion point at the definition of the symbol. If no
symbol definition is found in the source code, the first declaration will
be used instead.

Goto Declaration of If only one declaration is found, the command puts the insertion

symbol point at the declaration of the symbol. If more than one
declaration is found, these declarations are listed in the Find All
Declarations window.

Part |. Project management and building 85

Reference information on the editor

86

Find All References
to symbol

Check In
Check Out
Undo Checkout

Toggle Breakpoint
(Code)

Toggle Breakpoint
(Log)

Toggle Breakpoint
(Trace Start)

Toggle Breakpoint
(Trace Stop)

Enable/disable
Breakpoint

Set Data Breakpoint

for 'variable

Findin Trace

IDE Project Management and Building Guide

If only one reference is found, the command puts the insertion
point at the reference of the symbol. If more than one reference
is found, these references are listed in the Find All References
window.

Commands for source code control; for more information, see
Version Control System menu for SCC, page 53. These menu
commands are only available if the current source file in the
editor window is SCC-controlled. The file must also be a
member of the current project.

Toggles a code breakpoint at the statement or instruction
containing or close to the cursor in the source window. For
information about code breakpoints, see the C-SPY®
Debugging Guide.

Toggles a log breakpoint at the statement or instruction
containing or close to the cursor in the source window. For
information about log breakpoints, see the C-SPY® Debugging
Guide.

Toggles a Trace Start breakpoint. When the breakpoint is
triggered, trace data collection starts. For information about
Trace Start breakpoints, see the C-SPY® Debugging Guide.
Note that this menu command is only available if the C-SPY
driver you are using supports trace.

Toggles a Trace Stop breakpoint. When the breakpoint is
triggered, trace data collection stops. For information about
Trace Stop breakpoints, see the C-SPY® Debugging Guide.
Note that this menu command is only available if the C-SPY
driver you are using supports trace.

Toggles a breakpoint between being disabled, but not actually
removed—making it available for future use—and being
enabled again.

Toggles a data breakpoint on variables with static storage
duration. Requires support in the C-SPY driver you are using.

Searches the contents of the Trace window for occurrences of
the given location—the position of the insertion point in the
source code—and reports the result in the Find in Trace
window. This menu command requires support for Trace in the
C-SPY driver you are using, see the C-SPY® Debugging Guide.

Editing °

Edit Breakpoint Displays the Edit Breakpoint dialog box to let you edit the
breakpoint available on the source code line where the insertion
point is located. If there is more than one breakpoint on the line,
a submenu is displayed that lists all available breakpoints on
that line.

Set Next Statement Sets the Program Counter directly to the selected statement or
instruction without executing any code. This menu command is
only available when you are using the debugger. For more
information, see the C-SPY® Debugging Guide.

Quick Watch Opens the Quick Watch window, see the C-SPY® Debugging
Guide. This menu command is only available when you are
using the debugger.

Add to Watch Adds the selected symbol to the Watch window. This menu

command is only available when you are using the debugger.

Moveto PC Moves the insertion point to the current PC position in the
editor window. This menu command is only available when you
are using the debugger.

Run to Cursor Executes from the current statement or instruction up to the
statement or instruction where the insertion point is located.
This menu command is only available when you are using the
debugger.

Part |. Project management and building 87

Reference information on the editor

Character Encoding Interprets the source file according to the specified character

Options

Find in Files window

encoding. Choose between:

System (uses the Windows settings)
Western European

UTF-8

Japanese (Shift-JIS)

Chinese Smplified (GB2312)
Korean (Unified Hangul Code)
Arabic

Baltic

Central European

Greek

Hebrew

Russian

Thai

Vietnamese

Convert to UTF-8 (converts the document to UTF-8)

Use one of these settings if the Auto-detect character
encoding option could not determine the correct encoding or if
the option is deselected. See File Encoding, page 137.

Displays the | DE Options dialog box, see Tools menu, page
131.

The Find in Files window is available by choosing View>M essages.

Find in Files B
Fath | Line | String -
Chprojectsh. ATutorc 4 * Ctutarial. Print the Fibonacci numbers.
Chprojectsh. ATutorc 14 int call_count;

Chprojectsh. ATutor.c 28 Getand printthe associated Fibonacci number.
Chprojectsh. ATutor.c 32 unsigned intfik;

Chprojectsh. ATutor.c 41 Prints the Fibonacci numbers.

Chproject. \Utilities.c 16 unsigned int root[MAx_FIB]:

Chproject. \Utilities.c 23 inti=45;

Chproject. \Utilities.c 35 unsigned int get_fib(intnr) -
« | _>l_I
Call Stack | Debug Lag |Builld Find in Files ITooI Cutput x

Figure 32: Find in Files window (message window)

88 IDE Project Management and Building Guide

Editing °

This window displays the output from the Edit>Find and Replace>Find in Files
command. When opened, this window is, by default, grouped together with the other
message windows, see Windows, page 107.

Double-click an entry in the window to open the appropriate file with the insertion point
positioned at the correct location. That source location is highlighted with a blue flag
icon. Choose Edit>Next Error/Tag or press F4 to jump to the next in sequence.

Context menu

This context menu is available:

Copy
Select Al

Clear Al

Figure 33: Find in Files window context menu

These commands are available:

Copy Copies the selected content of the window.
Select All Selects the contents of the window.
Clear All Deletes the contents of the window and any blue flag icons in

the left-side margin of the editor window.

Find All Declarations window
The Find All Declarations window is available by choosing View>M essages.

Find All Declarations =]
Fath Line String
CADocumentsilAR Embedded Workbenchy, \CppTutor.cpp 36 int callCount;
CADocumentsilAR Embedded Workbenchy, \CppTutor.cpp a7 extern int callCount;
CADocumentsilAR Embedded Workbenchy, \CppTutor.cpp 3 extern int callCount;

Figure 34: Find All Declarations window (message window)

This window displays the result from the Go to Declaration command on the editor
window context menu.

Part |. Project management and building 89

Reference information on the editor

When opened, this window is by default grouped together with the other message
windows, see Windows, page 107.

Double-click an entry in the window to open the appropriate file with the insertion point
positioned at the correct location. Choose Edit>Next Error/Tag or press F4 to jump to
the next in sequence.

Context menu

This context menu is available:

Copy
Select Al

Clear Al

Figure 35: Find All Declarations window context menu

These commands are available:

Copy Copies the contents of the window.
Select All Selects the contents of the window.
Clear All Deletes the contents of the window.

Find All References window
The Find All References window is available by choosing View>M essages.

Find All References =]
Fath Line String
CADocumentsilAR Embedded Woarkbenchy, \Fibonacci.cpp 42 return (msFib[n- 1]
CADocumentsilAR Embedded Woarkbenchy, \Fibonacci.cpp B4 msFib[n-1] =value;

Figure 36: Find All References window (message window)

This window displays the result from the Find All Refer ences commands on the editor
window context menu.

When opened, this window is by default grouped together with the other message
windows, see Windows, page 107.

90 IDE Project Management and Building Guide

Editing °

Double-click an entry in the window to open the appropriate file with the insertion point
positioned at the correct location. Choose Edit>Next Error/Tag or press F4 to jump to
the next in sequence.

Context menu

This context menu is available:

Copy
Select Al

Clear Al

Figure 37: Find All References window context menu

These commands are available:

Copy Copies the contents of the window.
Select All Selects the contents of the window.
Clear All Deletes the contents of the window.

Find dialog box

The Find dialog box is available from the Edit menu.

Find (=23
Find what: - Find Mext

| Match case Find Previous
Match whale word

Figure 38: Find dialog box

Note that the contents of the dialog box might be different if you search in an editor
window compared to if you search in the Memory window.

Find what Specify the text to search for. Use the drop-down list to use
old search strings.

Match case Searches only for occurrences that exactly match the case of
the specified text. Otherwise, specifying int will also find
INT and Int. This option is only available when you perform
the search in an editor window.

Part |. Project management and building 91

Reference information on the editor

92

Match whole word

Sear ch as hex

M Find next

Find previous

Stop

Replace dialog box

Searches for the specified text only if it occurs as a separate
word. Otherwise, specifying int will also find print,
sprintf£ etc. This option is only available when you perform
the search in an editor window.

Searches for the specified hexadecimal value. This option is
only available when you perform the search in the Memory
window.

Searches for the next occurrence of the selected text.
Searches for the previous occurrence of the selected text.

Stops an ongoing search. This button is only available during
a search in the Memory window.

The Replace dialog box is available from the Edit menu.

Replace

==l

Find what:

Feplace with:

| Match case

Match whale word

-]]
| Replace &l |

Figure 39: Replace dialog box

Note that the contents of the dialog box is different if you search in an editor window
compared to if you search in the Memory window.

Find what

Replace with

Match case

IDE Project Management and Building Guide

Specity the text to search for. Use the drop-down list to use old
search strings.

Specify the text to replace each found occurrence with. Use
the drop-down list to use old search strings.

Searches only for occurrences that exactly match the case of
the specified text. Otherwise, specitying int will also find
INT and Int. This option is only available when you perform
the search in an editor window.

Editing °

Match whole word Searches for the specified text only if it occurs as a separate
word. Otherwise, int will also find print, sprintf£ etc. This
option is only available when you search in an editor window.

Sear ch as hex Searches for the specified hexadecimal value. This option is
only available when you perform the search in the Memory
window.

Find next Searches for the next occurrence of the text you have
specified.

Replace Replaces the searched text with the specified text.

Replace all Replaces all occurrences of the searched text in the current

editor window.

Find in Files dialog box
The Find in Files dialog box is available from the Edit menu.

Find/in Files X

Find what:

| J Close
[~ Match case

I Match whale word

™ Match reqular expression

Look in
[v For all projects in workspace

+ Project files
" Project files and user include Files
" Project files and all include Files

" Directary:
v
File types
|*.c,'*.cpp,'*.cc,'*.h;*.hpp;*.s*;*.msa;*.asm j

Figure 40: Find in Files dialog box

Part |. Project management and building 93

Reference information on the editor

94

Find what

Look in

Use this dialog box to search for a string in files.

The result of the search appears in the Find in Files message window—available from
the View menu. You can then go to each occurrence by choosing the Edit>Next
Error/Tag command, alternatively by double-clicking the messages in the Find in Files
message window. This opens the corresponding file in an editor window with the
insertion point positioned at the start of the specified text. A blue flag in the left-hand
margin indicates the line with the string you searched for.

Specify the string you want to search for, or a regular expression. Use the drop-down list
to use old search strings/expressions. You can narrow the search down with one or more
of these conditions:

Match case Searches only for occurrences that exactly match the case of the
specified text. Otherwise, specifying int will also find INT and
Int.

Match wholeword Searches only for the string when it occurs as a separate word
(mnemonic &w). Otherwise, int will also find print, sprintf

and so on.
Match regular Interprets the search string as a the regular expression, which
expression must follow the standard for the Perl programming language.

Specify which files you want to search in. Choose between:

For all projectsin Searches all projects in the workspace, not just the active project.
wor kspace

Project files Searches all files that you have explicitly added to your project.

Project filesand Searches all files that you have explicitly added to your project
user includefiles and all files that they include, except the include files in the IAR
Embedded Workbench installation directory.

Project filesand all Searches all project files that you have explicitly added to your
includefiles project and all files that they include.

Directory Searches the directory that you specify. Recent search locations
are saved in the drop-down list. Locate the directory using the
browse button.

IDE Project Management and Building Guide

Editing °

Look in Searches the directory that you have specified and all its
subdirectories subdirectories.

File types

A filter for choosing which type of files to search; the filter applies to all Look in
settings. Choose the appropriate filter from the drop-down list. The text field is editable,
to let you add your own filters. Use the * character to indicate zero or more unknown
characters of the filters, and the ? character to indicate one unknown character.

Stop

Stops an ongoing search. This button is only available during an ongoing search.

Incremental Search dialog box
The Incremental Search dialog box is available from the Edit menu.

Incremental Search =

Find what: I j
[T Match case Cloze |

Figure 41: Incremental Search dialog box

Use this dialog box to gradually fine-tune or expand the search string.

Find what

Type the string to search for. The search is performed from the location of the insertion
point—the start point. Every character you add to or remove from the search string
instantly changes the search accordingly. If you remove a character, the search starts
over again from the start point.

If a word in the editor window is selected when you open the | ncremental Search
dialog box, this word will be displayed in the Find What text box.

Use the drop-down list to use old search strings.

Match case

Searches for occurrences that exactly match the case of the specified text. Otherwise,
searching for int will also find INT and Int.

Part |. Project management and building 95

Reference information on the editor

96

Find Next

Close

Template dialog box

Text fields

Display area

Searches for the next occurrence of the current search string. If the Find What text box
is empty when you click the Find Next button, a string to search for will automatically
be selected from the drop-down list. To search for this string, click Find Next.

Closes the dialog box.

The Template dialog box appears when you insert a code template that requires any
field input.

Template “for™ E

End Yalue I 10 ok I
‘ariable I i Cancel |

fForfink i =0; i < 10; +-+i)

+

Figure 42: Template dialog box

Use this dialog box to specify any field input that is required by the source code template
you insert.

Note: The figure reflects the default code template that can be used for automatically
inserting code for a for loop.

Specify the required input in the text fields. Which fields that appear depends on how
the code template is defined.

The display area shows the code that would result from the code template, using the
values you submit.

For more information about using code templates, see Using and adding codetemplates,
page 73.

IDE Project Management and Building Guide

Editor shortcut key summary

The following tables summarize the editor’s shortcut keys.

Moving the insertion point

Selecting text

Scrolling text

Editing °

To move the insertion point Press
One character to the left Left arrow
One character to the right Right arrow

One word to the left
One word to the right

Word part to the left; when using mixed cases,
for example mixedCaseName

Word part to the right; when using mixed
cases, for example mixedCaseName

One line up

One line down

To the previous paragraph
To the next paragraph

To the start of the line

To the end of the line

To the beginning of the file
To the beginning of the file

Ctrl +Left arrow
Ctrl + Right arrow

Ctrl + Alt + Left arrow

Ctrl + Alt + Right arrow

Up arrow

Down arrow

Ctrl + Alt + Up arrow
Ctrl + Alt + Down arrow
Home

End

Ctrl + Home

Ctrl + End

Table 5: Editor shortcut keys for insertion point navigation

To select text, press Shift and the corresponding command for moving the insertion
point. In addition, this command is available:

To select

Press

A column-based block

Shift + Alt + Arrow key

Table 6: Editor shortcut keys for selecting text

To scroll

Press

Up one line

Ctrl + Up arrow

Table 7: Editor shortcut keys for scrolling

Part |. Project management and building

97

Reference information on the editor

To scroll

Press

Down one line
Up one page

Down one page

Ctrl + Down arrow
Page Up

Page Down

Table 7: Editor shortcut keys for scrolling (Continued)

Miscellaneous commands

Command Press

Bracket matching: Expand selection to next Ctrl+B

level of matching of {}, [], or()-

Bracket matching: Expand selection to next Ctrl + Alt + B

level of matching of {}, [, (), or <>.

Bracket matching: Shrink selection to next
level of matching of {}, [], or()-

Bracket matching: Shrink selection to next
level of matching of {}, [, (), or <>.

Changing case for selected text to lower
Changing case for selected text to upper
Complete code

Complete word

Insert template

Parameter hint

Zooming

Zoom in

Zoom out

Zoom normal

Ctrl + Shift + B

Ctrl + Alt + Shift + B

Ctrl +u

Ctrl + U

Ctrl + Space

Ctrl + Alt + Space

Ctrl + Alt +V

Ctrl + Shift + Space
Mouse wheel

Ctrl + numeric keypad '+'
Ctrl + numeric keypad '-'

Ctrl + numeric keypad '/'

Table 8: Miscellaneous editor shortcut keys

98 IDE Project Management and Building Guide

Part 2. Reference
information

This part of the IDE Project Management and Building Guide contains these
chapters:

o Installed files

e |IAR Embedded Workbench IDE reference.

.hmuhhhhi

O

9

AAARRIE

100

Installed files

This chapter describes which directories that are created during installation
and which file types that are used.

Directory structure
The installation procedure creates several directories to contain the various types of files
used with the IAR Systems development tools. The following sections give a description
of the files contained by default in each directory.

ROOT DIRECTORY

The root directory created by the default installation procedure is the

x:\Program Files\IAR Systems\Embedded Workbench 6.n\ directory where x
is the drive where Microsoft Windows is installed and 6 . n is the version number of the
IDE.

In the root directory, there are two subdirectories—common and one named after the
processor you are using. The latter directory will hereafter be referred to as cpuname.

THE CPUNAME DIRECTORY
The cpuname directory contains all product-specific subdirectories.

Directory Description

cpuname\bin The cpuname\bin subdirectory contains executable files for
target-specific components, such as the compiler, the assembler, the
linker and the library tools, and the C-SPY® drivers.

cpuname\config The cpuname\config subdirectory contains files used for configuring
the development environment and projects, for example:
* Linker configuration files (* . xc1 for XLINK)(* . icf for ILINK)
* Special function register description files (* . sfr)
» C-SPY device description files (* . ddf)
* Device selection files (* . ixx, * .menu)
* Flash loader applications for various devices (* . dxx), depends on your
product package
* Syntax coloring configuration files (* . c£g)
* Project templates for both application and library projects (* . ewp),
and for the library projects, the corresponding library configuration files.

Table 9: The CPUNAME directory

Part 2. Reference information 101

Directory structure

102

Directory

Description

cpuname\doc

cpuname\drivers

The cpuname\doc subdirectory contains release notes with recent
additional information about the tools. We recommend that you read all
of these files. The directory also contains online versions in hypertext
PDF format of this user guide, and of the reference guides, as well as
online help files (* . chm).

The cpuname\drivers subdirectory contains low-level device
drivers, typically USB drivers required by the C-SPY drivers.

cpuname\examples The cpuname\examples subdirectory contains files related to

cpuname\inc

cpuname\lib

cpuname\plugins

cpuname\src

cpuname\tutor

example projects, which can be opened from the Information Center.

The cpuname\ inc subdirectory holds include files, such as the header
files for the standard C or C++ library. There are also specific header
files that define special function registers (SFRs); these files are used by
both the compiler and the assembler.

The cpuname\ 1ib subdirectory holds prebuilt libraries and the
corresponding library configuration files, used by the compiler.

The cpuname\plugins subdirectory contains executable files and
description files for components that can be loaded as plugin modules.

The cpuname\ src subdirectory holds source files for some
configurable library functions. This directory also holds the library
source code and the source code for ELF utilities (the latter only for the
ILINK linker).

If your product package includes the XLINK linker, the directory also
contains ource files for components common to all IAR Embedded
Workbench products, such as a sample reader of the IAR XLINK Linker
output format SIMPLE.

The cpuname\ tutor subdirectory contains the files used for the
tutorials in the Information Center.

Table 9: The CPUNAME directory (Continued)

THE COMMON DIRECTORY

The common directory contains subdirectories for components shared by all AR
Embedded Workbench products.

Directory

Description

common\bin

The common\bin subdirectory contains executable files for
components common to all IAR Embedded Workbench products, such
as the editor and the graphical user interface components. The
executable file for the IDE is also located here.

Table 10: The common directory

IDE Project Management and Building Guide

Directory

Description

Installed files °

common\config

common\doc

common\plugins

settings in the development environment.

The common\config subdirectory contains files used by the IDE for

The common\doc subdirectory contains release notes with recent

additional information about the components common to all AR
Embedded Workbench products. We recommend that you read these

files. The directory also contains documentation related to installation

and licensing, and getting started using IAR Embedded Workbench.

The common\plugins subdirectory contains executable files and

description files for components that can be loaded as plugin modules,

for example modules for code coverage.

Table 10: The common directory (Continued)

THE INSTALL-INFO DIRECTORY

The install-info directory contains metadata (version number, name, etc.) about the
installed product components. Do not modify these files.

File types

The IAR Systems development tools use the following default filename extensions to
identify the produced files and other recognized file types:

Ext. Type of file Output from Input to

a Library jarchive ILINK

axx Target application XLINK EPROM, C-SPY, etc.

asm Assembler source code Text editor Assembler

bat Windows command batch file C-SPY Windows

board Configuration file for flash loader, depends Text editor C-SPY

on your product package

c C source code Text editor Compiler

cfg Syntax coloring configuration Text editor IDE

cgx Call graph file ILINK -

chm Online help system file - IDE

cpp C++ source code Text editor Compiler

dxx Target application with debug information XLINK C-SPY and other
symbolic debuggers

dat Macros for formatting of STL containers IDE IDE

Table 11: File types

Part 2. Reference information 103

File types

104

Ext.

Type of file

Output from

Input to

dbg

dbgdt
ddf
dep
dni
ewd

ewp

ewplugin
eww

flash
flashdict

fmt

helpfiles
html, htm
i

ixx

ict

inc

ini

log

mac
map

menu

Target application with debug information

Debugger desktop settings

Device description file

Dependency information

Debugger initialization file

Project settings for C-SPY

IAR Embedded Workbench project

(current version)

IDE description file for plugin modules

Workspace file

Configuration file for flash loader
Flash loader redirection specification

Formatting information for the Locals and

Watch windows

C/C++ or assembler header source

Help menu configuration file

HTML document
Preprocessed source

Device selection file

Linker configuration file

Assembler header source

Project configuration
Log information

List output

C-SPY macro definition

List output
Device selection file

Object module

XLINK

C-SPY
Text editor
IDE

C-SPY

IDE

IDE

IDE
Text editor
Text editor

IDE

Text editor

Text editor
Text editor
Compiler

Text editor
Text editor

Text editor

IDE
IDE

Compiler and
assembler

Text editor
XLINK
Text editor

Compiler and
assembler

C-SPY and other
symbolic debuggers

C-SPY
C-SPY
IDE
C-SPY
IDE
IDE

IDE
IDE
C-SPY
C-SPY
IDE

Compiler or

assembler
#include
IDE

IDE
Comepiler
IDE

ILINK linker
Assembler
#include
C-SPY

IDE

ILINK

Table 11: File types (Continued)

IDE Project Management and Building Guide

Installed files °

Ext. Type of file Output from Input to
out Target application ILINK EPROM, C-SPY, etc.
out Target application with debug information ILINK C-SPY and other
symbolic debuggers
pbd Source browse information IDE IDE
pbi Source browse information IDE IDE
pew IAR Embedded Workbench project (old IDE IDE
project format)
prj IAR Embedded Workbench project (old IDE IDE
project format)
rxx Object module Compiler and XLINK, XAR, and
assembler XLIB
XX Library XAR, XLIB XLINK, XAR, and
XLIB
s Assembler source code Text editor Assembler
SXX Assembler source code Text editor Assembler
sfr Special function register definitions Text editor C-SPY
suc Stack usage control file Text editor ILINK
vsp visualSTATE project files IAR visualSTATE IAR visualSTATE
Designer Designer and IAR
Embedded
Workbench IDE
wsdt Workspace desktop settings IDE IDE
xcl Extended command line Text editor Assembler, compiler,
linker
x1b Extended librarian batch command Text editor XLIB

Table 11: File types (Continued)

Note: xx stands for two digits that identify the product you are using.

When you run the IDE, some files are created and located in dedicated directories under
your project directory, by default $PROJ_DIR$\Debug, $PROJ_DIRS\Release,
$PROJ_DIRS\settings, and the file * . dep under the installation directory. None of
these directories or files affect the execution of the IDE, which means you can safely
remove them if required.

Part 2. Reference information 105

File types

EXTENDING FILENAME RECOGNITION

In the IDE you can increase the number of recognized filename extensions using the
Filename Extensionsdialog box, available from the ToolSmenu. You can also connect
your filename extension to a specific tool in the toolchain. See Filename Extensions
dialog box, page 159.

@ To override the default filename extension from the command line, include an explicit
extension when you specify a filename.

@ Note: If you run the tools from the command line, the XLINK listings (map files) will,
by default, have the extension 1st, which might overwrite the list file generated by the
compiler. Therefore, we recommend that you name XLINK map files explicitly, for
example projectl.map.

106 IDE Project Management and Building Guide

IAR Embedded
Workbench IDE reference

This chapter contains reference information about the windows, menus, menu
commands, and the corresponding components that are found in the IDE. This
chapter contains the following sections:

e Windows, page 107
e Menus, page |13.

The IDE is a modular application. Which menus are available depends on
which components are installed.

Windows

The available windows are:

TAR Embedded Workbench IDE window
Workspace window
Editor window

Source Browser window

Message windows.

In addition, a set of C-SPY®-specific windows becomes available when you start the
debugger. For reference information about these windows, see the C-SPY® Debugging
Guide.

Part 2. Reference information

107

Windows

108

IAR Embedded Workbench IDE window

The main window of the IDE is displayed when you launch the IDE.

/% tutorials - IAR Embedded Workbench IDE ===
Menu bar —| File Edit View Project Simulstor Tools Window Help
Toolbar —| DZRA@ &| \ \ - wEP & BRIy
LS > | Tutor.c | Utiities.c @B
miaject] - Debug e /* Increase the varisble. */
Fles oo /% Get and pri ed Fibonacci number. +/ m
B void DoForegroundProcess (void)
=] tutorla\s I
e lproject! -De. |~ || unsigned int fib: ’
| Tutor.c NextCounter() : I .Ed":or
| Utilities.c fib = GetFik(callCount): window
| Laraoutput PUtFik (£ib);
|-m A projectz -Debug -« }
@ A projects - Debug - v
|-@ B projectd - Debug ~ « /% Main program. */
Ha Fprojects - Debug « /* Prints the Fibonacci seguence. */
L@ Ftutor_library-De... v void main(void)
{
Workspace callCount = 0;
window
InitFib();
while (callCount < MAX_FIE]
{ =
DoForegroundProceas () ;
1
1
Owerview project] | project2 JLEN D q = =
= Messages ‘
Updating build tree
Tutar.c
Utilities.c
M Linkirg
3 e
windows Total number of errors: 0
Total number of wamings: 0 e
- ‘ 1 »
2 Buid [Debug Log [Find in Fies *
Status bar — | Ready Errors 0, Warnings 0 Ln4, Col 33 System
Figure 43: 1AR Embedded Workbench IDE window
The figure shows the window and its various components. The window might look
different depending on which plugin modules you are using.
Menu bar
The menu bar contains:
File Commands for opening source and project files, saving and printing, and
exiting from the IDE.
Edit

and disabling breakpoints in C-SPY.

IDE Project Management and Building Guide

Commands for editing and searching in editor windows and for enabling

IAR Embedded Workbench IDE reference ___o

View Commands for opening windows and controlling which toolbars to
display.
Project Commands for adding files to a project, creating groups, and running the

IAR Systems tools on the current project.
Tools User-configurable menu to which you can add tools for use with the IDE.

Window Commands for manipulating the IDE windows and changing their
arrangement on the screen.

Help Commands that provide help about the IDE.

For more information about each menu, see Menus, page 113.

Toolbar

The IDE toolbar—available from the View menu—provides buttons for the most useful
commands on the IDE menus, and a text box for typing a string to do a quick search.

For a description of any button, point to it with the mouse button. When a command is
not available, the corresponding toolbar button is dimmed, and you will not be able to
click it.

This figure shows the menu commands corresponding to each of the toolbar buttons:

Debug without
Downloading

| Make Toggle ‘

Open Cut RS el [Nt id Toggle Bookmark Nayigate Forward

Next

Bookmark Breakpoint

Save All ‘ Replace

D dd & | | - S“mwEe e |BiE 98 G2 &

Find Gosio) Navigate Backward Stop Build
Previous . Download and
New Document Undo Find Previous Bookmark | Comepile Debug

Figure 44: IDE toolbar

& L

‘ Copy Quick Search text box

Save Print

¢l Note: When you start C-SPY, the Download and Debug button will change to a Make
and Debug button and the Debug without Downloading will change to a Restart
B Debugger button .

Status bar

The status bar at the bottom of the window displays the number of errors and warnings
generated during a build, the position of the insertion point in the editor window, and the
state of the modifier keys. The status bar can be enabled from the View menu.

Part 2. Reference information 109

Windows

Build window

Context menu

As you are editing, the status bar shows the current line and column number containing
the insertion point, and the Caps Lock, Num Lock, and Overwrite status. If your product
package is available in more languages than English, a flag in the corner shows the
language version you are using. Click the flag to change the language the next time you
launch the IDE.

Errors 2, Warnings 0 Ln 17, Col 50 cap MM jove | EEE

Figure 45: AR Embedded Workbench IDE window status bar

The Build window is available by choosing View>M essages.

Build B
| Messages | File | Line |

Tutar.c

A\ Warming[Pe0b4]: declaration does not declare amahing CAProgram File. ATutarc 17

Q Error[Pe0z0]: identifier "call_count" is undefined CAProgram File. \Tutorc 24

Q Error[Pe0z0]: identifier "call_count" is undefined CAProgram File. \Tutorc 35

Q Error[Pe0z0]: identifier "call_count" is undefined CAProgram File. \Tutorc 45
Dane. 3 errors). 1 warning(s)

Figure 46: Build window (message window)

The Build window displays the messages generated when building a build
configuration. When opened, this window is, by default, grouped together with the other
message windows, see Windows, page 107. Double-click a message in the Build window
to open the appropriate file for editing, with the insertion point at the correct position.

This context menu is available:

Gy
Select Al

Clear Al

Options. ..

Figure 47: Build window context menu

110 IDE Project Management and Building Guide

IAR Embedded Workbench IDE reference ___o

These commands are available:

Copy Copies the contents of the window.
Select All Selects the contents of the window.
Clear All Deletes the contents of the window.
Options Opens the M essages page of the | DE optionsdialog box. On

this page you can set options related to messages; see
Messages options, page 144.

Tool Output window
The Tool Output window is available by choosing View>M essages>T ool Output.

Output |

ukbput

Figure 48: Tool Output window (message window)

The Tool Output window displays any messages output by user-defined tools in the
Tools menu, provided that you have selected the option Redirect to Output Window
in the Configure Tools dialog box; see Configure Tools dialog box, page 156. When
opened, this window is, by default, grouped together with the other message windows,
see Windows, page 107.

Context menu
This context menu is available:

Copy
Select Al

Clear Al

Figure 49: Tool Output window context menu

Part 2. Reference information 11

Windows

112

Debug Log window

Context menu

These commands are available:

Copy Copies the contents of the window.
Select All Selects the contents of the window.
Clear All Deletes the contents of the window.

The Debug Log window is available by choosing View>M essages>Debug L og.

Log
Fri Feb 06 10:41:40 2004: Loaded module
Fri Felb 06 10:41:40 2004: Target reset

ol Cutput: Debug Log

Figure 50: Debug Log window (message window)

The Debug Log window displays debugger output, such as diagnostic messages and
trace information. When opened, this window is, by default, grouped together with the
other message windows, see Windows, page 107.

Double-click any rows in one of the following formats to display the corresponding
source code in the editor window:

<path> (<row>) :<message>
<path> (<row>,<column>) :<message>

This context menu is available:

Copy
Select Al

Clear Al

Figure 51: Debug Log window context menu

These commands are available:

Copy Copies the contents of the window.

IDE Project Management and Building Guide

IAR Embedded Workbench IDE reference ___o

Select All Selects the contents of the window.

Clear All Deletes the contents of the window.

Menus

The available menus are:

File menu
Edit menu
View menu
Project menu
Tools menu

Window menu

Help menu.

In addition, a set of C-SPY-specific menus become available when you start the
debugger. For more information about these menus, see the C-SPY® Debugging Guide.

File menu

The Filemenu provides commands for opening workspaces and source files, saving and
printing, and exiting from the IDE.

The menu also includes a numbered list of the most recently opened files and
workspaces. To open one of them, choose it from the menu.

Mew 3
Open 3
Close

Save Workspace
Close Workspace

Save CTRLES
Save fs..,

Save Al

Page Setup...

Print. .. CTRL+P
Recent Files 3
Recent Workspaces 3

Exit

Figure 52: File menu

Part 2. Reference information 113

Menus

114

B E EB

These commands are available:

New
Ctrl+N

Open>File
Ctrl+O

Open>Workspace

Displays a submenu with commands for creating a new
workspace, or a new text file.

Displays a submenu from which you can select a text file
or an HTML document to open. See Editor window, page
81.

Displays a submenu from which you can select a
workspace file to open. Before a new workspace is
opened you will be prompted to save and close any
currently open workspaces.

Open>Header/Source File Opens the header file or source file that corresponds to the

Ctrl+Shift+H

Close

Open Workspace

Save Workspace
Close Workspace

Save
Ctrl+S

Save As

Save All
Page Setup

Print
Ctrl+P

IDE Project Management and Building Guide

current file, and jumps from the current file to the newly
opened file. This command is also available from the
context menu available from the editor window.

Closes the active window. You will be given the
opportunity to save any files that have been modified
before closing.

Displays a dialog box where you can open a workspace
file.

You will be given the opportunity to save and close any
currently open workspace file that has been modified
before opening a new workspace.

Saves the current workspace file.
Closes the current workspace file.

Saves the current text file or workspace file.

Displays a dialog box where you can save the current file
with a new name.

Saves all open text documents and workspace files.
Displays a dialog box where you can set printer options.

Displays a dialog box where you can print a text
document.

IAR Embedded Workbench IDE reference ___o

Recent Files Displays a submenu where you can quickly open the most
recently opened text documents.

Recent Workspaces Displays a submenu where you can quickly open the most
recently opened workspace files.

Exit Exits from the IDE. You will be asked whether to save any
changes to text files before closing them. Changes to the
project are saved automatically.

Edit menu
The Edit menu provides commands for editing and searching.

Wrida Chrl+-Z

Redo Chrl-

Cuf: Chrl-

Copy Chrl+E

Faste Chrl

Faste Special, .,

Select Al Chrl4+4

Find and Replace 3
Mavigate 3
Code Templates 3
Mext ErrorfTag F4

Previous ErrorfTag Shift+F4

Complete Word Chrl+alt+Space
Complete Code Chrl+Space
Parameter Hint Chrl+5Shift+Space
Match Brackets 3
Auko Indent Chrl+T

Black Comment: Chrl K

Black Uncamment ChrltShiftHk

Toggle Breakpoink F2

Enable/Disable Breakpoint Ctrl+F9

Figure 53: Edit menu

These commands are available:

) | Undo Undoes the last edit made to the current editor window.
Ctrl+Z

cu | Redo Redoes the last Undo in the current editor window.
Ctrl+Y

You can undo and redo an unlimited number of edits
independently in each editor window.

Part 2. Reference information 115

Menus

116

Cut
Ctrl+X

Copy
Ctrl+C

Paste
Ctrl+V

Select All
Ctrl+A

B |2 =

Find and Replace>Find
Ctrl+F

[#

Find and Replace>Find Next
F3

Find and Replace>Find
Previous
Shift+F3

Al

Find and Replace>Find Next
(Selected)
Ctrl+F3

Find and Replace>Find
Previous (Selected)
Ctrl+Shift+F3

Find and Replace>Replace
Ctrl+H

e

IDE Project Management and Building Guide

The standard Windows command for cutting text in
editor windows and text boxes.

The standard Windows command for copying text in
editor windows and text boxes.

The standard Windows command for pasting text in
editor windows and text boxes.

Selects all text in the active editor window.

Displays the Find dialog box where you can search for
text within the current editor window; see Find dialog
box, page 91. Note that if the insertion point is located
in the Memory window when you choose the Find
command, the dialog box will contain a different set of
options than otherwise. If the insertion point is located
in the Trace window when you choose the Find
command, the Find in Tracedialog box is opened; the
contents of this dialog box depend on the C-SPY driver
you are using, see the C-SPY® Debugging Guide for
more information.

Finds the next occurrence of the specified string.

Finds the previous occurrence of the specified string.

Searches for the next occurrence of the currently
selected text or the word currently surrounding the
insertion point.

Searches for the previous occurrence of the currently
selected text or the word currently surrounding the
insertion point.

Displays a dialog box where you can search for a
specified string and replace each occurrence with
another string; see Replace dialog box, page 92. Note
that if the insertion point is located in the Memory
window when you choose the Replace command, the
dialog box will contain a different set of options than
otherwise.

Find and Replace>Find in
Files

Find and
Replace>I ncremental Search
Ctrl+I

Navigate>Go To
Cul+G

Navigate>Toggle Bookmark
Ctrl+F2

Navigate>Previous
Bookmark
Shift+F2

Navigate>Next Bookmark
F2

Navigate>Navigate
Backward
Alt+Left Arrow

Navigate>Navigate Forward
Alt+Right Arrow

Navigate>Go to Definition
F12

Code Templates>Insert
Template
Ctrl+Alt+V

IAR Embedded Workbench IDE reference ___o

Displays a dialog box where you can search for a
specified string in multiple text files; see Find in Files
window, page 88.

Displays a dialog box where you can gradually
fine-tune or expand the search by continuously
changing the search string; see Incremental Search
dialog box, page 95.

Displays the Go to Line dialog box where you can
move the insertion point to a specified line and column
in the current editor window.

Toggles a bookmark at the line where the insertion
point is located in the active editor window.

Moves the insertion point to the previous bookmark
that has been defined with the Toggle Bookmark
command.

Moves the insertion point to the next bookmark that
has been defined with the Toggle Bookmark command.

Navigates backward in the insertion point history. The
current position of the insertion point is added to the
history by actions like Goto definition and clicking on
a result from the Find in Files command.

Navigates forward in the insertion point history. The
current position of the insertion point is added to the
history by actions like Goto definition and clicking on
a result from the Find in Files command.

Shows the declaration of the selected symbol or the
symbol where the insertion point is placed. This menu
command is available when browse information has
been enabled, see Project options, page 146.

Displays a list in the editor window from which you
can choose a code template to be inserted at the
location of the insertion point. If the code template you
choose requires any field input, the Template dialog
box appears; see Template dialog box, page 96. For
information about using code templates, see Using and
adding code templates, page 73.

Part 2. Reference information 117

Menus

118

Code Templates>Edit
Templates

Next Error/Tag
F4

PreviousError/Tag
Shift+F4

Complete Word
Ctrl+Alt+Space

Complete Code
Ctrl+Space

Parameter Hint
Ctrl+Shift+Space

Match Brackets

Auto Indent
Ctrl+T

Block Comment
Ctrl+K

Block Uncomment
Ctrl+K

IDE Project Management and Building Guide

Opens the current code template file, where you can
modify existing code templates and add your own code
templates. For information about using code templates,
see Using and adding code templates, page 73.

If the message window contains a list of error messages
or the results from a Find in Files search, this
command displays the next item from that list in the
editor window.

If the message window contains a list of error messages
or the results from a Find in Files search, this
command displays the previous item from that list in
the editor window.

Attempts to complete the word you have begun to type,
basing the guess on the contents of the rest of the editor
document.

Shows a list of symbols that are available in a class,
when you place the insertion point after ., ->, or : :
and when these characters are preceded by a class or
object name. For more information, see Code
completion, page 71.

Suggests parameters as tooltip information for the
function parameter list you have begun to type. When
there are several overloaded versions of a function, you
can choose which one to use by clicking the arrows in
the tooltip. For more information, see Parameter hint,
page 70.

Selects all text between the brackets immediately
surrounding the insertion point, increases the selection
to the next hierarchic pair of brackets, or beeps if there
is no higher bracket hierarchy.

Indents one or several lines you have selected in a
C/C++ source file. To configure the indentation, see
Configure Auto Indent dialog box, page 139.

Places the C++ comment character sequence // at the
beginning of the selected lines.

Removes the C++ comment character sequence //
from the beginning of the selected lines.

View menu

Toggle Breakpoint
F9

IAR Embedded Workbench IDE reference ___o

Toggles a breakpoint at the statement or instruction
that contains or is located near the cursor in the source
window.

This command is also available as an icon button in the
debug bar.

Enable/Disable Breakpoint Toggles a breakpoint between being disabled, but not

Ctrl+F9

actually removed—making it available for future
use—and being enabled again.

The View menu provides several commands for opening windows and displaying
toolbars in the IDE. When C-SPY is running you can also open debugger-specific
windows from this menu. See the C-SPY® Debugging Guide for information about

these.

Messages 3
‘Warkspace
Source Browser

Breakpoints

Toolbars 3
v Status Bar

Figure 54: View menu

These commands are available:

M essages

Workspace

Sour ce Browser

Breakpoints

Disassembly

Displays a submenu which gives access to the message
windows—Build, Find in Files, Tool Output, Debug Log—that
display messages and text output from the IAR Embedded
Workbench commands. If the window you choose from the menu
is already open, it becomes the active window.

Opens the current Workspace window, see Workspace window,
page 43.

Opens the Source Browser window, see Source Browser window,
page 50.

Opens the Breakpoints window, see the C-SPY® Debugging
Guide.

Opens the Disassembly window. Only available when C-SPY is
running.

Part 2. Reference information 119

Menus

120

Memory

Symbolic Memory

Register

Watch

Locals

Statics

Auto
Live Watch

Quick Watch

Call Stack

Stack
Terminal 1/0

I mages

Code Coverage

Symbols

Toolbars

Status bar

IDE Project Management and Building Guide

Opens the Memory window. Only available when C-SPY is
running.

Opens the Symbolic Memory window. Only available when
C-SPY is running.

Opens the Register window. Only available when C-SPY is
running.

Opens the Watch window. Only available when C-SPY is
running.

Opens the Locals window. Only available when C-SPY is
running.

Opens the Statics window. Only available when C-SPY is
running.

Opens the Auto window. Only available when C-SPY is running.

Opens the Live Watch window. Only available when C-SPY is
running.

Opens the Quick Watch window. Only available when C-SPY is
running.

Opens the Call Stack window. Only available when C-SPY is
running.

Opens the Stack window. Only available when C-SPY is running.

Opens the Terminal I/O window. Only available when C-SPY is
running.

Opens the Images window. Only available when C-SPY is
running.

Opens the Code Coverage window. Only available when C-SPY
is running.

Opens the Symbols window. Only available when C-SPY is
running.

The options Main and Debug toggle the two toolbars on or off.

Toggles the status bar on or off.

IAR Embedded Workbench IDE reference ___o

Project menu

The Project menu provides commands for working with workspaces, projects, groups,
and files, and for specifying options for the build tools, and running the tools on the
current project.

Add Files...

Add Group...

Import File List...
Edit Configurations...

Remove

Create New Project...

Add Existing Project...

Options... Alt+F7
Version Control System 3
Make F7
Compile Ctrl+F7
Rebuild All

Clean

Batch build... F&
Stop Build Ctrl+Break
Download and Debug Ctrl+D
Debug without Downloading

Make & Restart Debugger Ctrl+R
Restart Debugger Ctrl+Shift+R
Download 3
SFR Setup

Open Device File 3

Figure 55: Project menu

These commands are available:

Add Files Displays a dialog box where you can select which files to
include in the current project.

Add Group Displays a dialog box where you can create a new group. In the
Group Nametext box, specify the name of the new group. For
more information about groups, see Groups, page 35.

Part 2. Reference information 121

Menus

122

Import FileList

Edit Configurations

Remove

Create New Project

Add Existing Project

Options
Alt+F7

Version Control
System

pop Make

=

IDE Project Management and Building Guide

Displays a standard Open dialog box where you can import
information about files and groups from projects created using
another IAR Systems toolchain.

To import information from project files which have one of the
older filename extensions pew or prj you must first have
exported the information using the context menu command
Export File List available in your current IAR Embedded
Workbench.

Displays the Configurationsfor project dialog box, where
you can define new or remove existing build configurations.
See Configurations for project dialog box, page 43.

In the Workspace window, removes the selected item from the
workspace.

Displays the Create New Project dialog box where you can
create a new project and add it to the workspace; see Create
New Project dialog box, page 47.

Displays a standard Open dialog box where you can add an
existing project to the workspace.

Displays the Options dialog box, where you can set options
for the build tools, for the selected item in the Workspace
window; see Options dialog box, page 126. You can set
options for the entire project, for a group of files, or for an
individual file.

Displays a submenu with commands for version control, see
Version Control System menu for SCC, page 53.

Brings the current build configuration up to date by compiling,
assembling, and linking only the files that have changed since
the last build.

= Compile
— " Cul+F7
Rebuild All
Clean
Batch Build
F8
« Stop Build
ﬁ Ctrl+Break
» Download and Debug
= Cul+D
[». Debugwithout
iy .
Downloading
Make & Restart
b
i Debugger
ol Restart Debugger
=

IAR Embedded Workbench IDE reference ___o

Compiles or assembles the currently selected file, files, or
group.

One or more files can be selected in the Workspace
window—all files in the same project, but not necessarily in
the same group. You can also select the editor window
containing the file you want to compile. The Compile
command is only enabled if all files in the selection can be
compiled or assembled.

You can also select a group, in which case the command is
applied to each file in the group (including inside nested
groups) that can be compiled, even if the group contains files
that cannot be compiled, such as header files.

If the selected file is part of a multi-file compilation group, the
command will still only affect the selected file.

Rebuilds and relinks all files in the current target.
Removes any intermediate files.

Displays the Batch Build dialog box where you can configure
named batch build configurations, and build a named batch.
See Batch Build dialog box, page 129.

Stops the current build operation.

Downloads the application and starts C-SPY so that you can
debug the project object file. If necessary, a make will be
performed before running C-SPY to ensure the project is up to
date. This command is not available during a debug session.

Starts C-SPY so that you can debug the project object file. This
menu command is a shortcut for the Suppress Download
option available on the Download page. The Debug without
Downloading command is not available during a debug
session.

Stops C-SPY, makes the active build configuration, and starts
the debugger again; all in a single command. This command is
only available during a debug session.

Stops C-SPY and starts the debugger again; all in a single
command. This command is only available during a debug
session.

Part 2. Reference information 123

Menus

124

Download

SFR Setup

Open DeviceFile

IDE Project Management and Building Guide

Commands for flash download and erase. Note that these
menu commands might not be applicable to the product
package you are using. Choose between these commands:

Download active application downloads the active
application to the target without launching a full debug
session. The result is roughly equivalent to launching a debug
session but exiting it again before the execution starts.

Download file opens a standard Open dialog box where you
can specify a file to be downloaded to the target system
without launching a full debug session.

Erase memory erases all parts of the flash memory.

If your product package supports erasing multiple flash
loaders, and in that case, if your . board file specifies only one
flash memory, a simple confirmation dialog box is displayed
where you confirm the erasure. However, if your .board file
specifies two or more flash memories, the Erase Memory
dialog box is displayed. See Erase Memory dialog box, page
125.

Opens the SFR Setup window which displays the currently
defined SFRs that C-SPY has information about. For more

information about this window, see the C-SPY® Debugging
Guide.

Opens a submenu with commands for opening the active file
that contains a device description or SFR definitions.

IAR Embedded Workbench IDE reference ___o

Erase Memory dialog box

The Erase Memory dialog box is displayed when you have chosen
Project>Download>Erase Memory and your flash memory system configuration file
(filename extension .board) specifies two or more flash memories.

Erase Memory @

Flash loader | Range]
CiiprojectsitutortActeliFlashA2Fxod3F, Flash 00 - DxFFF
CiiprojectsitutortActeliFlashAdH:ooM3F . Flash 01000 - 0x2000

Erase all | Erase | Cancel

Figure 56: Erase Memory dialog box
Use this dialog box to erase one or more of the flash memories.
Note: The Erase Memory dialog box is only available if your product package
supports the AR Embedded Workbench flash loader mechanism.
Display area
Each line lists the path to the flash memory device configuration file (filename extension

. £lash) and the associated memory range. Select the memory you want to erase.

Buttons

These buttons are available:

Eraseall All memories listed in the dialog box are erased, regardless
of individually selected lines.

Erase Erases the selected memories.

Cancel Closes the dialog box.

Part 2. Reference information 125

Menus

Options dialog box
The Options dialog box is available from the Project menu.

X

Options

Category:

CiC++ Compiler
Assembler
Output Converter Target Output | Library Configuration | Library Options Stack.-"Heap] ar
Custom Build §

Build Actions Output il

Linker (+ Executable

Debugger " Library

Emulator

Sirnulator

Output directories
Executables/libraries:
|Debug\E we

Object files:
|DebugtObi

List files:
| DebugtList

(] 8 | Cancel

Figure 57: Options dialog box

Use this dialog box to specify your project settings.

Category

Selects the build tool you want to set options for. The available categories will depend
on the tools installed in your IAR Embedded Workbench IDE, and will typically

include:

General Options General options.

C/C++ Compiler IAR C/C++ Compiler options.
Assembler IAR Assembler options.

126 IDE Project Management and Building Guide

IAR Embedded Workbench IDE reference ___o

Output Converter Options for converting ELF output to Motorola,
Intel-standard, or other simple formats. These options
are only available if your product package includes the

ILINK linker.

Custom Build Options for extending the toolchain.

Build Actions Options for pre-build and post-build actions.

Linker Linker options. This category is available for
application projects.

Library Builder Library builder options. This category is available for
library projects.

Debugger TAR C-SPY Debugger options.

Simulator Simulator-specific options.

C-SPY hardware drivers Options specific to additional hardware debuggers
might be available depending on the installed drivers.

Selecting a category displays one or more pages of options for that component of the
IDE.

For information about the options in each category, see the online help system. For the

debugger options, you can also find them in the C-SPY® Debugging Guide.

Factory Settings

Restores all settings to the default factory settings.

Argument variables

On many of the pages in the Options dialog box, you can use argument variables for
paths and arguments:

Variable Description

SCONFIG_NAMES The name of the current build configuration, for example Debug or
Release.

$CUR_DIRS Current directory

SCUR_LINES Current line

SDATES Today’s date

Table 12: Argument variables

Part 2. Reference information 127

Menus

128

Variable

Description

SEW_DIRS

$EXE_DIRS
$FILE_BNAMES
$FILE_BPATHS
$FILE_DIRS
$FILE_FNAMES
$FILE_PATHS
SLIST_DIRS
$OBJ_DIRS
$PROJ_DIRS
$PROJ_FNAMES
$PROJ_PATHS
$TARGET_DIRS
$TARGET_BNAMES$
$TARGET_BPATHS
$TARGET_FNAMES
$TARGET_PATHS
$TOOLKIT_DIRS

SUSER_NAMES

$_ENVVAR_S

Top directory of IAR Embedded Workbench, for example
c:\program files\iar systems\embedded workbench
6.n

Directory for executable output

Filename without extension

Full path without extension

Directory of active file, no filename

Filename of active file without path

Full path of active file (in Editor; Project, or Message window)
Directory for list output

Directory for object output

Project directory

Project filename without path

Full path of project file

Directory of primary output file

Filename without path of primary output file and without extension
Full path of primary output file without extension

Filename without path of primary output file

Full path of primary output file

Directory of the active product, for example c: \program
files\iar systems\embedded workbench
6 .n\ cpuname

Your host login name

The environment variable ENVVAR. Any name within $_and _$ will
be expanded to that system environment variable.

Table 12: Argument variables (Continued)

Argument variables can also be used on some pages in the | DE Optionsdialog box, see

Tools menu, page 131.

IDE Project Management and Building Guide

IAR Embedded Workbench IDE reference ___o

Batch Build dialog box
The Batch Build dialog box is available by choosing Project>Batch build.

Batches:

Mew..

Femove

Edit...

Cloze

il L

Cancel

— Build

Make Clean Rebuid Al |

Figure 58: Batch Build dialog box

This dialog box lists all defined batches of build configurations. For more information,
see Building multiple configurations in a batch, page 63.

Batches
Select the batch you want to build from this list of currently defined batches of build
configurations.
Build
Give the build command you want to execute:
e Make
e Clean
e Rebuild All.
New
Displays the Edit Batch Build dialog box, where you can define new batches of build
configurations; see Edit Batch Build dialog box, page 130.
Remove

Removes the selected batch.

Part 2. Reference information 129

Menus

Edit
Displays the Edit Batch Build dialog box, where you can edit existing batches of build
configurations.

Edit Batch Build dialog box
The Edit Batch Build dialog box is available from the Batch Build dialog box.

Edit Batch Build [%]

— Marne
|

Awailable configurations Configurations to build [drag to order]

project] - Debug
project] - Release 5
project? - Debug

project? - Release

Il

L4+

()3 I Cancel |

Figure 59: Edit Batch Build dialog box

Use this dialog box to create new batches of build configurations, and edit already
existing batches.

Name

Type a name for a batch that you are creating, or change the existing name (if you wish)
for a batch that you are editing.

Available configurations

Select the configurations you want to move to be included in the batch you are creating
or editing, from this list of all build configurations that belong to the workspace.

To move a build configuration from the Available configurationslist to the
Configurationsto build list, use the arrow buttons.

130 IDE Project Management and Building Guide

IAR Embedded Workbench IDE reference ___o

Configurations to build

Lists the build configurations that will be included in the batch you are creating or
editing. Drag the build configurations up and down to set the order between the
configurations.

Tools menu

The Toolsmenu provides commands for customizing the environment, such as changing
common fonts and shortcut keys.

It is a user-configurable menu to which you can add tools for use with IAR Embedded
Workbench. Thus, it might look different depending on which tools you have
preconfigured to appear as menu items.

Options. ..

Configure Tools, ..
Filename Extensions. ..
Configure Viewers. ..
Motepad

Figure 60: Tools menu

These commands are available:

Options Displays the | DE Optionsdialog box where you can customize
the IDE. See:

Common Fonts options, page 132

Key Bindings options, page 133

Language options, page 135

Editor options, page 136

Configure Auto Indent dialog box, page 139
External Editor options, page 140

Editor Setup Files options, page 142
Editor Colors and Fonts options, page 143
Messages options, page 144

Project options, page 146

Source Code Control options, page 148
Debugger options, page 149

Sack options, page 151

Register Filter options, page 153

Terminal 1/O options, page 155.

Part 2. Reference information 131

Menus

Configure Tools Displays the Configure T oolsdialog box where you can set up
the interface to use external tools; see Configure Tools dialog
box, page 156.

Filename Extensions Displays the Filename Extensions dialog box where you can
define the filename extensions to be accepted by the build tools;
see Filename Extensions dialog box, page 159.

Configure Viewers Displays the Configure Viewer s dialog box where you can
configure viewer applications to open documents with; see
Configure Viewers dialog box, page 161.

Notepad User-configured. This is an example of a user-configured
addition to the Tools menu.

Common Fonts options
The Common Fonts options are available by choosing Tools>Options.

IDE Dptions [%]

|'|I'|'||:| Fonts — Fined ‘Width Font
Key Bindings - i
Editar Fant... I IEouner, zize =10

Messages
Project — Proportional width Fant

Source Code Contral —
Debugger Font... | IMS Sans Serf, size = 10

Stack.
Register Filker
S Terminal 0

QK | Cancel | Apply | Help |

Figure 61: Common Fonts options

Use this page to configure the fonts used for all project windows except the editor
windows.

For information about how to change the font in the editor windows, see Editor Colors
and Fonts options, page 143.

Fixed Width Font

Selects which font to use in the Disassembly, Register, and Memory windows.

132 IDE Project Management and Building Guide

IAR Embedded Workbench IDE reference ___o

Proportional Width Font

Selects which font to use in all windows except the Disassembly, Register, Memory, and
editor windows.

Key Bindings options
The Key Bindings options are available by choosing Tools>Options.

IDE Dptions [%]
Comrmon Fonts
Menu: I File = l

Editar . "
Messages Command | Frimary | Alias -
Prai tg Mew document CTRL+M
rale Mew workspace
Source Code Control Open CTRL+0
Debugger Open ‘Workspace o
Stack. Header/Source File CTRL+5K...
- Register Filker Close
i Save Workspace
Terminal 1fO Claca Winrd enace LI

Prezz shortcut key: Frimary Aliaz

I St Al

[lear | [lear | HesetAIIl

QK I Cancel | Apply | Help |

Figure 62: Key Bindings options

Use this page to customize the shortcut keys used for the IDE menu commands.

Menu

Selects the menu to be edited. Any currently defined shortcut keys for the selected menu
are listed below the M enu drop-down list.

List of commands

Selects the menu command you want to configure your own shortcut keys for, from this
list of all commands available on the selected menu.

Press shortcut key

Type the key combination you want to use as shortcut key for the selected command.
You cannot set or add a shortcut if it is already used by another command.

Part 2. Reference information 133

Menus

Primary
Choose to:
Set Saves the key combination in the Press shortcut key field as a shortcut for
the selected command in the list.
Clear Removes the listed primary key combination as a shortcut for the selected
command in the list.
The new shortcut will be displayed next to the command on the menu.
Alias
Choose to:
Add Saves the key combination in the Press shortcut key field as an
alias—a hidden shortcut—for the selected command in the list.
Clear Removes the listed alias key combination as a shortcut for the selected
command in the list.
The new shortcut will be not displayed next to the command on the menu.
Reset All

Reverts the shortcuts for all commands to the factory settings.

134 IDE Project Management and Building Guide

IAR Embedded Workbench IDE reference ___o

Language options
The Language options are available by choosing Tools>Options.

X

IDE Options

Comrmon Fonts
Key Bindings
Language
Editar
Messages After changing to a different language,
you must restart the application.

Language

¥

Project

Source Code Contral
Debugger

Stack.

QK | Cancel | | Help |

Figure 63: Language options

Use this page to specify the language to be used in windows, menus, dialog boxes, etc.

Language
Selects the language to be used. The available languages depend on your product

package.

Note: If you have installed IAR Embedded Workbench for several different toolchains
in the same directory, the IDE might be in mixed languages if the toolchains are
available in different languages.

Part 2. Reference information 135

Menus

Editor options
The Editor options are available by choosing Tools>Options.

IDE Options ==

Common Fonts

Key Bindings Tab size: 8 Syntax highlighting
Language [¥] Auto indent
Indert size: 2
Messages Tab Key Function: [] Show line numbers
Project _
relee () Insert tab Scan for changed files
Source Code Control -
Debugger @) Indent with spaces Show bookmarks
[Enable virtual space
Stack Show right margin

[7] Remove trailing blanks

() Printing edge))

® Columns: a0 Auto code completion and parameter hints
[Show line break characters

File Encoding

Default character encoding:

(System =

Auto-detect character encoding

EOL characters: | PC hd

Figure 64: Editor options

Use this page to configure the editor.

For more information about the editor, see Editing, page 69.

Tab size

Specify how wide a tab character is, in terms of character spaces.

Indent size

Specify the number of spaces to be used when tabulating with an indentation.

Tab Key Function

Controls what happens when you press the Tab key. Choose between:

Insert tab Inserts a tab character when the Tab key is pressed.

Indent with spaces Inserts an indentation (space characters) when the Tab key is
pressed.

136 IDE Project Management and Building Guide

IAR Embedded Workbench IDE reference ___o

Show right margin
Displays the area of the editor window outside the right margin as a light gray field. If

this option is selected, you can set the width of the text area between the left margin and
the right margin. Choose to set the width based on:

Printing edge Bases the width on the printable area, which is taken from the
general printer settings.

Columns Bases the width based on the number of columns.

File Encoding

Controls file encoding. Choose between:

Default character ~ Selects the character encoding to be used by default for new
encoding files. Choose between:

System (uses the Windows settings)
Western European

UTF-8

Japanese (Shift-JIS)

Chinese Simplified (GB2312)
Korean (Unified Hangul Code)
Arabic

Baltic

Central European

Greek

Hebrew

Russian

Thai

Vietnamese

Note that if you have specified a character encoding from the
editor window context menu, that encoding will override this
setting for the specific document.

Auto-detect Detects automatically which character encoding that should be
character encoding used when you open an existing document.

Part 2. Reference information 137

Menus

EOL characters Selects which line break character to use when editor documents
are saved. Choose between:

PC (default), Windows and DOS end of line characters.

Unix, UNIX end of line characters.

Preserve, the same end of line character as the file had when it
was opened, either PC or UNIX. If both types or neither type
are present in the opened file, PC end of line characters are
used.

Syntax highlighting
Makes the editor display the syntax of C or C++ applications in different text styles.

To read more about syntax highlighting, see Editor Colorsand Fontsoptions, page 143,
and Syntax coloring, page 77.

Auto indent

Makes the editor indent the new line automatically when you press Return. For C/C++
source files, click the Configur e button to configure the automatic indentation; see
Configure Auto Indent dialog box, page 139. For all other text files, the new line will
have the same indentation as the previous line.

Show line numbers

Makes the editor display line numbers in the editor window.

Scan for changed files

Makes the editor reload files that have been modified by another tool.

If a file is open in the IDE, and the same file has concurrently been modified by another
tool, the file will be automatically reloaded in the IDE. However, if you already started
to edit the file, you will be prompted before the file is reloaded.
Show bookmarks
Makes the editor display a column on the left side in the editor window, with icons for
compiler errors and warnings, Find in Filesresults, user bookmarks, and breakpoints.
Enable virtual space

Allows the insertion point to move outside the text area.

138 IDE Project Management and Building Guide

IAR Embedded Workbench IDE reference ___o

Remove trailing blanks

Removes trailing blanks from files when they are saved to disk. Trailing blanks are blank
spaces between the last non-blank character and the end of line character.

Auto code completion and parameter hints
Enables code completion and parameter hints. For more information, see Editing afile,
page 70.

Show line break characters |

Toggles the display of carriage return and line feed characters in the editor window. |

Configure Auto Indent dialog box
The Configure Auto Indent dialog box is available from the | DE Options dialog box.

Configure Auto Indent [%]
Sample code
(Opening Brace () int fiint x)
|0 al i
] switch (%)
Body (b) al| {
|2 c case 0O:
] return 1;
Label {c) c defanlt:
ID—] EEetuUrn X:
+
+
[8]4 I Cancel |

Figure 65: Configure Auto Indent dialog box

Use this dialog box to configure the editor’s automatic indentation of C/C++ source
code.

For more information about indentation, see Indenting text automatically, page 71.

To open the Configure Auto Indent dialog box:
I Choose Tools>Options.

2 Open the Editor page.

3 Select the Auto indent option and click the Configur e button.

Opening Brace (a)

Specify the number of spaces used for indenting an opening brace.

Part 2. Reference information 139

Menus

Body (b)

Specify the number of additional spaces used for indenting code after an opening brace,
or a statement that continues onto a second line.

Label (c)

Specify the number of additional spaces used for indenting a label, including case labels.

Sample code

This area reflects the settings made in the text boxes for indentation. All indentations are
relative to the preceding line, statement, or other syntactic structures.

External Editor options
The External Editor options are available by choosing Tools>Options.

IDE Dptions [%]

- Cormmon Fonts
Key Bindings [V Use External Editor

) Edltor Type: |DDE =l

Editar: |c:\cw32\cw32.exe J
- Colors and Fonts Samvice: ICodewright
- Messages
- Project Command: [System BufEditFile $FILE_FATHS
- Source Code Contral $FILE_PATH$ MovToline $CUR_LINES
- Debugger
- Stack
- Register Filker
- Terminal IO

QK I Cancel | Apply | Help

Figure 66: External Editor options

Use this page to specify an external editor of your choice.
Note: The contents of this dialog box depends on the setting of the Type option.

See also Using an external editor, page 78.

Use External Editor

Enables the use of an external editor.

140 IDE Project Management and Building Guide

Type

Editor

Arguments

Service

Command

IAR Embedded Workbench IDE reference ___o

Selects the type of interface. Choose between:

e Command Line
o DDE (Windows Dynamic Data Exchange).

Specify the filename and path of your external editor. A browse button is available for
your convenience.

Specify any arguments to be passed to the editor. This is only applicable if you have
selected Command Line as the interface type, see Type, page 141.

Specify the DDE service name used by the editor. This is only applicable if you have
selected DDE as the interface type, see Type, page 141.

The service name depends on the external editor that you are using. Refer to the user
documentation of your external editor to find the appropriate settings.

Specify a sequence of command strings to be passed to the editor. The command strings
should be typed as:

DDE-Topic CommandStringl
DDE-Topic CommandString2

This is only applicable if you have selected DDE as the interface type, see Type, page
141.

The command strings depend on the external editor that you are using. Refer to the user
documentation of your external editor to find the appropriate settings.

Note: You can use variables in arguments. See Argument variables, page 127, for
information about available argument variables.

Part 2. Reference information 141

Menus

Editor Setup Files options
The Editor Setup Filesoptions are available by choosing Tools>Options.

IDE Dptions [%]

Comrmon Fonts
Key Bindings ™ Use Custom Keyword File

() Editar I
External Editor |

V¥ Use Code Templates
olars and Fants Iation DatablaR Embedded Warkbench\CodeT emplates.tst _I
- Messages
- Project
- Source Code Control
- Debugger
- Stack
- Register Filker
- Terminal IjQ

QK I Cancel | Apply Help

Figure 67: Editor Setup Files options

Use this page to specify setup files for the editor.

Use Custom Keyword File

Specify a text file containing keywords that you want the editor to highlight. For
information about syntax coloring, see Syntax coloring, page 77.

Use Code Templates

Specify a text file with code templates that you can use for inserting frequently used
code in your source file. For information about using code templates, see Using and
adding code templates, page 73.

142 IDE Project Management and Building Guide

IAR Embedded Workbench IDE reference ___o

Editor Colors and Fonts options
The Editor Colorsand Fonts options are available by choosing T ools>Options.

IDE Options
.. Common Fonts Editor Font
- Key Bindings Fort... Courier New, size = 9
- Language

Editor
. External Editor Syrtax Coloring

- Setup Files Default i Color
i
Strings Type Style:
Me.ssages Char e
- Project Preprocessor
- Source Code Control Number
C++ comment Sample
- Debugger Commert
.. Stack User keyword i

Background Color

[ok][cancel || pply Help

Figure 68: Editor Colorsand Fonts options
Use this page to specity the colors and fonts used for text in the editor windows. The
keywords controlling syntax highlighting for assembler and C or C++ source code are
specified in the files syntax_icc.cfgand syntax_asm.c£fg, respectively. These files
are located in the cpuname\config directory.

Editor Font
Click the Font button to open the standard Font dialog box where you can choose the
font and its size to be used in editor windows.

Syntax Coloring

Selects a syntax element in the list and sets the color and style for it:

Color Lists colors to choose from. Choose Custom from the list to
define your own color.

Type Style Select Normal, Bold, or Italic style for the selected element.

Sample Displays the current appearance of the selected element.

Part 2. Reference information 143

Menus

Background Color Click to set the background color of the editor window.

Note: The User keyword syntax element refers to the keywords that you have listed in
the custom keyword file; see Use Custom Keyword File, page 142.

Messages options
The M essages options are available by choosing Tools>Options.

IDE Options X
Comrmon Fonts
Key Bindings Show build messages: Wiarnings -
Language Login fle
+|- Editor
5 ™ Log build messages in file
Project {+
Source Code Contral -
Debugger

Stack. J

. Some dialog boxes can be suppressed by selecting a "Don't show
Enable)l Dialogs again' check box. Click "Enable All Dialogs" to enable all
suppreszed dialog boxes again.

QK | Cancel | | Help

Figure 69: Messages options

Use this page to choose the amount of output in the Build messages window.

Show build messages

Selects the amount of output to display in the Build messages window. Choose between:

All Shows all messages, including compiler and linker information.
M essages Shows messages, warnings, and errors.

Warnings Shows warnings and errors.

Errors Shows errors only.

144 IDE Project Management and Building Guide

IAR Embedded Workbench IDE reference ___o

Log in file

Select the L og build messagesin file option to write build messages to a log file.
Choose between:

Append toend of file Appends the messages at the end of the specified file.

Overwriteold file Replaces the contents in the file you specify.

Type the filename you want to use in the text box. A browse button is available for your
convenience.

Enable All Dialogs

Enables all dialog boxes you have suppressed by selecting a Don’t show again check
box, for example:

IAR Embedded Workbench IDE E
] E This will kerminate the debug session,
-

Ok I Cancel |

" Don't show again

Figure 70: Message dialog box containing a Don’t show again option

Part 2. Reference information 145

Menus

Project options
The Project options are available by choosing T ools>Options.

IDE Dptions [%]

Stop build operation on: INever 'l
Save editor windows before building: IAIways 'l

Save workspace and projects before IAIways vl
building:
Make before debugging: IAIways 'l

™ Reload last workspace at startup

¥ Play a sound after build operations

¥ Generate browss information

QK I Cancel | Apply | Help |

Figure 71: Project options

Use this page to set options for the M ake and Build commands.

Stop build operation on

Selects when the build operation should stop. Choose between:

Never Never stops.
Warnings Stops on warnings and errors.
Errors Stops on errors.

Save editor windows before building

Selects when the editor windows should be saved before a build operation. Choose

between:

Never Never saves.

Ask Prompts before saving.

Always Always saves before Make or Build.

146 IDE Project Management and Building Guide

IAR Embedded Workbench IDE reference ___o

Save workspace and projects before building

Selects when a workspace and included projects should be saved before a build
operation. Choose between:

Never Never saves.
Ask Prompts before saving.
Always Always saves before Make or Build.

Make before debugging

Selects when a Make operation should be performed as you start a debug session.
Choose between:

Never Never performs a Make operation before a debug session.
Ask Prompts before performing a Make operation.
Always Always performs a Make operation before a debug session.

Reload last workspace at startup

Loads the last active workspace automatically the next time you start the IAR Embedded
Workbench IDE.

Play a sound after build operations

Plays a sound when the build operations are finished.

Generate browse information
Enables the use of the Source Browser window, see Source Browser window, page 50.

Part 2. Reference information 147

Menus

Source Code Control options
The Source Code Control options are available by choosing Tools>Options.

IDE Dptions [%]

- Cormmon Fonts
Key Bindings

™ Keep items checked out when checking in

Save editor windows befare perfarming IAIways vl

source code contral commands:

- Register Filter
S Terminal 0

QK I Cancel | Apply | Help |

Figure 72: Source Code Control options

Use this page to configure the interaction between an IAR Embedded Workbench
project and an SCC project.

Keep items checked out when checking in

Determines the default setting for the option Keep Checked Out in the Check In Files
dialog box; see Check In Files dialog box, page 55.

Save editor windows before performing source code control commands

Determines whether editor windows should be saved before you perform any source
code control commands. Choose between:

Never Never saves editor windows before performing any source code
control commands.

Ask Prompts before performing any source code control commands.

Always Always saves editor windows before performing any source code
control commands.

148 IDE Project Management and Building Guide

IAR Embedded Workbench IDE reference ___o

Debugger options
The Debugger options are available by choosing Tools>Options.

IDE Options (=23

Common Fonts

When source resolves to multiple function instances

Key Bindings

Language [T Automatically choose all instances
Editor Source code color in disassembly window
Messages

Project -

Source Code Control

Step into functions STL container expansion
Debugger| .)
Stack @ All functions Depth: 10

() Functions with source only

Update intervals {miliseconds) Default integer format
Memory window: 1000

Window classification by background color

[ok][Ccancel

Figure 73: Debugger options

Use this page to configure the debugger environment.

When source resolves to multiple function instances

Some source code corresponds to multiple code instances, for example template code.
When specifying a source location in such code, for example when setting a source
breakpoint, you can make C-SPY act on all instances or a subset of instances. Use the
Automatically choose all instances option to let C-SPY act on all instances without
asking first.

Source code color in disassembly window

Click the Color button to select the color for source code in the Disassembly window.
To define your own color, choose Custom from the list.

Step into functions

Controls the behavior of the Step Into command. Choose between:

All functions Makes the debugger step into all functions.

Part 2. Reference information 149

Menus

150

Functionswith sourceonly Makes the debugger step only into functions for which
the source code is known. This helps you avoid
stepping into library functions or entering disassembly
mode debugging.

STL container expansion

Specify how many elements that are shown initially when a container value is expanded
in, for example, the Watch window.

Update intervals

Specify how often the contents of the Live Watch window and the Memory window are
updated.

These text boxes are only available if the C-SPY driver you are using has access to the
target system memory while executing your application.

Default integer format

Selects the default integer format in the Watch, Locals, and related windows.

Window classification by background color

Toggles background colors in some C-SPY windows on or off. Colors are used for
differentiating types of windows; for example, all interrupt-related windows have one
background color, and all watch-related windows have another color, etc.

IDE Project Management and Building Guide

IAR Embedded Workbench IDE reference ___o

Stack options
The Stack options are available by choosing Tools>Options or from the context menu
in the Memory window.

IDE Dptions [%]

Comrmon Fonts
Kev Bindings ¥ Enable graphical stack display and stack usage tracking

Editor I 90 % stack usage threshold
Messages

Project
Source Code Control [V ‘wam when stack pointer is out of bounds

[V ‘wam when exceeding stack threshold

Debugger [V Stack pointer(z] not valid until program reaches:

Register Filker Imaln
i Terminal IfO Warnings
& Log
" Log and alert
I~ Limit stack display to B2 bytes

QK I Cancel | Apply | Help

Figure 74: Sack options

Use this page to set options specific to the Stack window.

Enable graphical stack display and stack usage tracking

Enables the graphical stack bar available at the top of the Stack window. It also enables
detection of stack overflows. To read more about the stack bar and the information it
provides, see the C-SPY® Debugging Guide.

% stack usage threshold

Specify the percentage of stack usage above which C-SPY should issue a warning for
stack overflow.

Part 2. Reference information

151

Menus

152

Warn when exceeding stack threshold

Makes C-SPY issue a warning when the stack usage exceeds the threshold specified in
the % stack usage threshold option.

Warn when stack pointer is out of bounds

Makes C-SPY issue a warning when the stack pointer is outside the stack memory range.

Stack pointer(s) not valid until program reaches

Warnings

Specify a location in your application code from where you want the stack display and
verification to occur. The Stack window will not display any information about stack
usage until execution has reached this location.

By default, C-SPY will not track the stack usage before the main function. If your
application does not have a main function, for example, if it is an assembler-only
project, you should specify your own start label. If this option is selected, after each reset
C-SPY keeps a breakpoint on the given location until it is reached.

Typically, the stack pointer is set up in the system initialization code cstartup, but not
necessarily from the very first instruction. Select this option to avoid incorrect warnings
or misleading stack display for this part of the application.

Selects where warnings should be issued. Choose between:

Log Warnings are issued in the Debug Log window.

Log and alert Warnings are issued in the Debug Log window and as alert
dialog boxes.

Limit stack display to

Limits the amount of memory displayed in the Stack window by specifying a number of
bytes, counting from the stack pointer. This can be useful if you have a big stack or if
you are only interested in the topmost part of the stack. Using this option can improve
the Stack window performance, especially if reading memory from the target system is
slow. By default, the Stack window shows the whole stack, or in other words, from the
stack pointer to the bottom of the stack. If the debugger cannot determine the memory
range for the stack, the byte limit is used even if the option is not selected.

Note: The Stack window does not affect the execution performance of your
application, but it might read a large amount of data to update the displayed information
when the execution stops.

IDE Project Management and Building Guide

IAR Embedded Workbench IDE reference ___o

Register Filter options
The Register Filter options are available by choosing Tools>Options when C-SPY is

running.
IDE Dptions [%]

- Cormmon Fonts

IV Use register filter Groups:
IMyFiIter.fIt Filer Files...l I VI

Group members:

=- EI_F'U Registers

Register Filker
erminal IjO

Baze
[T Ovenide

QK | Cancel | Apply | Help |

Figure 75: Register Filter options

Use this page to define your own filters for application-specific register groups or to edit
predefined filters. The register groups can then be viewed in the Register window.

Defining application-specific register groups minimizes the amount of registers
displayed in the Register window and speeds up the debugging.

For more information about register groups, see the C-SPY® Debugging Guide.
To define application-specific register groups:
I Choose Tools>Options>Register Filter.

For information about the register filter options, see the IDE Project Management and
Building Guide.

2 Select Useregister filter and specify the filename and destination of the filter file for
your new group in the dialog box that appears.

3 Click New Group and specify the name of your group, for example My Timer Group.

New Group x|

IMy Timer Group

()8 I Cancel |

Figure 76: Creating a new register group

Part 2. Reference information 153

Menus

154

4 1In the register tree view on the Register Filter page, select a register and click the arrow
button to add it to your group. Repeat this process for all registers that you want to add
to your group.

5 Optionally, select any registers for which you want to change the integer base, and
choose a suitable base.

6 When you are done, click OK. Your new group is now available in the Register
window.

If you want to add more groups to your filter file, repeat this procedure for each group
you want to add.

Use register filter

Enables the use of register filters.

Filter Files
Displays a dialog box where you can select or create a new filter file. The file will be
created in the same directory as your active project.

Groups
Lists all available register groups in the filter file, alternatively displays the new register
group.

New Group

Click to create a new register group.

Group members

Shows the registers in the group currently selected in the Groups drop-down list.

To add registers to the group, select the registers you want to add in the list of all
available registers to the left and move them using the arrow button.

To remove registers from the group, select the registers you want to remove and move
them using the arrow button.

Base

Overrides the default integer base.

IDE Project Management and Building Guide

IAR Embedded Workbench IDE reference ___o

Terminal I/O options
The Terminal 1/O options are available by choosing T ools>Options when C-SPY is

running.
IDE Dptions [%]
- Cormmon Fonts
: o — Input mode
Key Bindings Py
Editor + Feyboard
Messages % Buffered
Project: " Direct
Source Code Control E
Debugger File
Stack. % Tiest
Reqister Filker | Binary
eminallio [(PROI_DIR$TemiDinput st |

Input echaing
’7|7 Log file [~ Teminal /0 windaw ‘

[~ Show target reset in Terminal 10 window

QK I Cancel | Apply | Help |

Figure 77: Terminal 1/O options

Use this page to configure the C-SPY terminal I/O functionality.

Input mode

Controls how the terminal I/O input is read.

Keyboard Makes the input characters be read from the keyboard. Choose between:

Buffered: Buffers input characters.
Direct: Does not buffer input characters.

File Makes the input characters be read from a file. Choose between:

Text: Reads input characters from a text file.
Binary: Reads input characters from a binary file.

A browse button is available for locating the input file.

Part 2. Reference information 155

Menus

Input echoing

Determines whether to echo the input characters and where to echo them. The choices
are:

e Logfile Requires that you have enabled the option Debug>L ogging>Enable log
file

e Terminal 1/0O window.

Show target reset in Terminal /O window

Displays a message in the C-SPY Terminal I/O window when the target resets.

Configure Tools dialog box
The Configure Tools dialog box is available from the Tools menu.

Configure Tools

Menu Content:
(]
Cancel
Mew
Delete
Menu Text:
|&N otepad
Command:
|E:\W’INDDWS\n0tepad.exe Browse... |
Argument:

Initial Directary:

™ Redirect to Dutput Window

I~ Prompt for Command Line

Tool Available:

|Always j

Figure 78: Configure Tools dialog box

156 IDE Project Management and Building Guide

IAR Embedded Workbench IDE reference ___o

Use this dialog box to specify a tool of your choice to add to the Tools menu, like this:

Options. ..

Configure Tools, ..
Filename Extensions. ..
Configure Viewers. ..
Motepad

Figure 79: Customized Tools menu

Note: If you intend to add an external tool to the standard build toolchain, see
Extending the toolchain, page 66.

@ You can use variables in the arguments, which allows you to set up useful tools such as
interfacing to a command line revision control system, or running an external tool on the
selected file.

Adding a command line command or batch file to the Tools menu:
I Specify or browse to the cmd. exe command shell in the Command text box.

2 Specify the command line command or batch file name in the Argument text box.
The Argument text should be specified as:
/C name
where name is the name of the command or batch file you want to run.

The /c option terminates the shell after execution, to allow the IDE to detect when the
tool has finished.

For an example, see Adding command line commands, page 30.

New

Creates a stub for a new menu command for you to configure using this dialog box.

Delete

Removes the command selected in the M enu Content list.

Menu Content

Lists all menu commands that you have defined.

Menu Text

Specify the name of the menu command. If you add the & sign anywhere in the name,
the following letter, N in this example, will appear as the mnemonic key for this
command. The text you specify will be reflected in the Menu Content list.

Part 2. Reference information 157

Menus

158

Command

Specify the tool and its path, to be run when you choose the command from the menu.
A browse button is available for your convenience.

Argument

Optional: Specify an argument for the command.

Initial Directory

Specify an initial working directory for the tool.

Redirect to Output window

Makes the IDE send any console output from the tool to the Tool Output page in the
message window. Tools that are launched with this option cannot receive any user input,
for instance input from the keyboard.

Tools that requireuser input or make special assumptions regarding the console that they
execute in, will not work at all if launched with this option.

Prompt for Command Line

Makes the IDE prompt for the command line argument when the command is chosen
from the Tools menu.

Tool Available
Specifies in which context the tool should be available. Choose between:
o Always
e When debugging
e When not debugging.

IDE Project Management and Building Guide

IAR Embedded Workbench IDE reference ___o

Filename Extensions dialog box
The Filename Extensions dialog box is available from the T0olS menu.

Taol chain

Cancel
Edit...

Figure 80: Filename Extensions dialog box

qu

Use this dialog box to customize the filename extensions recognized by the build tools.
This is useful if you have many source files with different filename extensions.

Toolchain
Lists the toolchains for which you have an IAR Embedded Workbench installed on your
host computer. Select the toolchain you want to customize filename extensions for.
Note the * character which indicates user-defined overrides. If there is no * character,
factory settings are used.

Edit

Displays the Filename Extension Overrides dialog box; see Filename Extension
Overrides dialog box, page 160.

Part 2. Reference information 159

Menus

Filename Extension Overrides dialog box

The Filename Extension Overrides dialog box is available from the Filename
Extensions dialog box.

Filename Extension Overrides

Tool Factory Setting Override QK
C/C++ Com... .c.ocpp.occ <Mones

Azzembler &7 asmmsass <Mone>
Output Con... ot <Mones

Browse Info... .c.occ.cpp <Monex

Linker .04 <Maone
Library Builder .0.a <Monex

Browse Info... .pbi <Mones

Figure 81: Filename Extension Overrides dialog box

This dialog box lists filename extensions recognized by the build tools.

Display area

This area contains these columns:

Tool The available tools in the build chain.
Factory Setting The filename extensions recognized by default by the build tool.
Override The filename extensions recognized by the build tool if there are
overrides to the default setting.
Edit
Displays the Edit Filename Extensions dialog box for the selected tool.

160 IDE Project Management and Building Guide

IAR Embedded Workbench IDE reference ___o

Edit Filename Extensions dialog box

Factory setting

Override

The Edit File Extensions dialog box is available from the Filename Extension
Overridesdialog box.

Edit Filename Extensions

Factaory setting

I.c:;.c:c:;.c:pp QK I
¥ Overide Cancel |
I.c;.cc;.cpp

Figure 82: Edit Filename Extensions dialog box

This dialog box lists the filename extensions recognized by the IDE and lets you add
new filename extensions.

Lists the filename extensions recognized by default.

Specify the filename extensions you want to be recognized. Extensions can be separated
by commas or semicolons, and should include the leading period.

Configure Viewers dialog box

The Configure Viewer sdialog box is available from the Tools menu.

Configure Yiewers [%]

Extensions | Ackion | Ok
Explorer Default
.htm Explorer Default Cancel

Mg

Edit...

Remave

g

Figure 83: Configure Viewers dialog box

This dialog box lists overrides to the default associations between the document formats
that IAR Embedded Workbench can handle and viewer applications.

Part 2. Reference information 161

Menus

Display area

This area contains these columns:

Extensions Explicitly defined filename extensions of document formats that
TAR Embedded Workbench can handle.

Action The viewer application that is used for opening the document type.
Explorer Default means that the default application associated
with the specified type in Windows Explorer is used.

New
Displays the Edit Viewer Extensions dialog box; see Edit Viewer Extensions dialog
box, page 162.

Edit
Displays the Edit Viewer Extensions dialog box; see Edit Viewer Extensions dialog
box, page 162.

Delete

Removes the association between the selected filename extensions and the viewer
application.

Edit Viewer Extensions dialog box
The Edit Viewer Extensions dialog box is available from the Configure Viewers

dialog box.
Edit Yiewer Extensions [%]
File name extensians:
| bl
Cancel |
Action

€ Buile-in text editor
& st file explorer associations

 Command line

| |

Figure 84: Edit Viewer Extensions dialog box

162 IDE Project Management and Building Guide

IAR Embedded Workbench IDE reference ___o

Use this dialog box to specify how to open a new document type or edit the setting for
an existing document type.

File name extensions

Specify the filename extension for the document type—including the separating
period (.).

Action

Selects how to open documents with the filename extension specified in the Filename
extensions text box. Choose between:

Built-in text editor Opens all documents of the specified type with the
IAR Embedded Workbench text editor.

Usefile explorer associations Opens all documents of the specified type with the
default application associated with the specified type
in Windows Explorer.

Command line Opens all documents of the specified type with the
viewer application you type or browse your way to.
You can give any command line options you would
like to the tool.

Window menu

The Window menu provides commands for manipulating the IDE windows and
changing their arrangement on the screen.

Close Tab
Close Window Chrl+F4

Split

Mew Vertical Editor Window
Mew Horizontal Editor Window
IMayve Tabs To Mext Windaw
IMave Tabs To Previous Window
Close All Tabs Except Active
Close All Editor Tabs

Figure 85: Window menu

The last section of the Window menu lists the currently open windows. Choose the
window you want to switch to.

Part 2. Reference information 163

Menus

164

These commands are available:

Close Tab

Close Window
Ctrl+F4

Split

New Vertical Editor Window

New Horizontal Editor
Window

Move Tabs To Next Window

Move Tabs To Previous
Window

Close All Tabs Except Active
Close All Editor Tabs

Help menu

Closes the active tab.

Closes the active editor window.

Splits an editor window horizontally or vertically into
two or four panes, which means that you can see more
parts of a file simultaneously.

Opens a new empty window next to the current editor
window.

Opens a new empty window under the current editor
window.

Moves all tabs in the current window to the next
window.

Moves all tabs in the current window to the previous
window.

Closes all the tabs except the active tab.

Closes all tabs currently available in editor windows.

The Help menu provides help about IAR Embedded Workbench and displays the
version numbers of the user interface and of the IDE.

You can also access the Information Center from the Help menu. The Information
Center is an integrated navigation system that gives easy access to the information
resources you need to get started and during your project development: tutorials,
example projects, user guides, support information, and release notes. It also provides
shortcuts to useful sections on the IAR Systems web site.

IDE Project Management and Building Guide

Glossary

This is a general glossary for terms relevant to embedded
systems programming. Some of the terms do not apply to the
IAR Embedded Workbench® version that you are using.

A

Absolute location

A specific memory address for an object specified in the
source code, as opposed to the object being assigned a location
by the linker.

Absolute segments
Segments that have fixed locations in memory before linking.

Address expression
An expression which has an address as its value.

AEABI
Embedded Application Binary Interface for ARM, defined by
ARM Limited.

Application

The program developed by the user of the IAR Systems toolkit
and which will be run as an embedded application on a target
Pprocessor.

Ar
The GNU binary utility for creating, modifying, and extracting
from archives, that is, libraries. See also larchive.

Architecture

A term used by computer designers to designate the structure
of complex information-processing systems. It includes the
kinds of instructions and data used, the memory organization
and addressing, and the methods by which the system is
implemented. The two main architecture types used in
processor design are Harvard architecture and von Neumann
architecture.

Archive
See Library.

Glossary °

Assembler directives

The set of commands that control how the assembler operates.

Assembler language

A machine-specific set of mnemonics used to specify
operations to the target processor and input or output registers
or data areas. Assembler language might sometimes be
preferred over C/C++ to save memory or to enhance the
execution speed of the application.

Assembler options
Parameters you can specify to change the default behavior of
the assembler.

Attributes
See Section attributes (ILINK).

Auto variables

The term refers to the fact that each time the function in which
the variable is declared is called, a new instance of the variable
is created automatically. This can be compared with the
behavior of local variables in systems using static overlay,
where a local variable only exists in one instance, even if the
function is called recursively. Also called local variables.
Compare Register variables.

Backtrace

Information for keeping call frame information up to date so
that the IAR C-SPY® Debugger can return from a function
correctly. See also Call frame information.

Bank
See Memory bank.

Bank switching

Switching between different sets of memory banks. This
software technique increases a computer's usable memory by
allowing different pieces of memory to occupy the same
address space.

165

Banked code
Code that is distributed over several banks of memory. Each
function must reside in only one bank.

Banked data
Data that is distributed over several banks of memory. Each
data object must fit inside one memory bank.

Banked memory
Has multiple storage locations for the same address. See also
Memory bank.

Bank-switching routines
Code that selects a memory bank.

Batch files

A text file containing operating system commands which are
executed by the command line interpreter. In Unix, this is
called a “shell script” because it is the Unix shell which
includes the command line interpreter. Batch files can be used
as a simple way to combine existing commands into new
commands.

Bitfield
A group of bits considered as a unit.

Block, in linker configuration file (ILINK)

A continuous piece of code or data. It is either built up of
blocks, overlays, and sections or it is empty. A block has a
name, and the start and end address of the block can be referred
to from the application. It can have attributes such as a
maximum size, a specific size, or a minimum alignment. The
contents can have a specific order or not.

Breakpoint

1. Code breakpoint. A point in a program that, when reached,
triggers some special behavior useful to the process of
debugging. Generally, breakpoints are used for stopping
program execution or dumping the values of some or all of the
program variables. Breakpoints can be part of the program
itself, or they can be set by the programmer as part of an
interactive session with a debugging tool for scrutinizing the
program's execution.

IDE Project Management and Building Guide

2. Data breakpoint. A point in memory that, when accessed,
triggers some special behavior useful to the process of
debugging. Generally, data breakpoints are used to stop
program execution when an address location is accessed either
by a read operation or a write operation.

3. Immediate breakpoint. A point in memory that, when
accessed, trigger some special behavior useful in the process of
debugging. Immediate breakpoints are generally used for
halting the program execution in the middle of a memory
access instruction (before or after the actual memory access
depending on the access type) while performing some
user-specified action. The execution is then resumed. This
feature is only available in the simulator version of C-SPY.

C

Call frame information

Information that allows the IAR C-SPY® Debugger to show,
without any runtime penalty, the complete stack of function
calls—call stack—wherever the program counter is, provided
that the code comes from compiled C functions. See also
Backtrace.

Calling convention

A calling convention describes the way one function in a
program calls another function. This includes how register
parameters are handled, how the return value is returned, and
which registers that will be preserved by the called function.
The compiler handles this automatically for all C and C++
functions. All code written in assembler language must
conform to the rules in the calling convention to be callable
from C or C++, or to be able to call C and C++ functions. The
C calling convention and the C++ calling conventions are not
necessarily the same.

Cheap

As in cheap memory access. A cheap memory access either
requires few cycles to perform, or few bytes of code to
implement. A cheap memory access is said to have a low cost.
See Memory access cost.

Checksum

A computed value which depends on the ROM content of the
whole or parts of the application, and which is stored along
with the application to detect corruption of the data. The
checksum is produced by the linker to be verified with the
application. Several algorithms are supported. Compare CRC
(cyclic redundancy checking).

Code banking
See Banked code.

Code model

The code model controls how code is generated for an
application. Typically, the code model controls behavior such
as how functions are called and in which code segment/section
functions will be located. All object files of an application
must be compiled using the same code model.

Code pointers

A code pointer is a function pointer. As many microcontrollers
allow several different methods of calling a function,
compilers for embedded systems usually provide the users
with the ability to use all these methods.

Do not confuse code pointers with data pointers.

Code segments/sections
Read-only segments/sections that contain code. See also
Segment (XLINK) and Section (ILINK).

Compilation unit
See Translation unit.

Compiler function directives (XLINK)

The compiler function directives are generated by the compiler
to pass information about functions and function calls to the
IAR XLINK Linker. To view these directives, you must create
an assembler list file. These directives are primarily intended
for compilers that support static overlay, a feature which is
useful in smaller microcontrollers.

Compiler options
Parameters you can specify to change the default behavior of
the compiler.

Glossary °

Context menu
A context menu appears when you right-click in the user
interface, and provides context-specific menu commands.

Cost
See Memory access cost.

CRC (cyclic redundancy checking)

A number derived from, and stored with, a block of data to
detect corruption. A CRC is based on polynomials and is a
more advanced way of detecting errors than a simple
arithmetic checksum. Compare Checksum.

C-SPY options
Parameters you can specify to change the default behavior of
the IAR C-SPY Debugger.

Cstartup
Code that sets up the system before the application starts
executing.

C-style preprocessor

A preprocessor is either a stand-alone application or an
integrated part of a compiler, that performs preprocessing of
the input stream before the actual compilation occurs. A
C-style preprocessor follows the rules set up in Standard C and
implements commands like #define, #if, and #include,
which are used to handle textual macro substitution,
conditional compilation, and inclusion of other files.

D

Data banking
See Banked data.

Data model

The data model specifies the default memory type. This means
that the data model typically controls one or more of the
following: The method used and the code generated to access
static and global variables, dynamically allocated data, and the
runtime stack. It also controls the default pointer type and in

167

168

which data segments/sections static and global variables will
be located. A project can only use one data model at a time,
and the same model must be used by all user modules and all
library modules in the project.

Data pointers

Many microcontrollers have different addressing modes to
access different memory types or address spaces. Compilers
for embedded systems usually have a set of different data
pointer types so they can access the available memory
efficiently.

Data representation
How different data types are laid out in memory and what
value ranges they represent.

Declaration

A specification to the compiler that an object, a variable or
function, exists. The object itself must be defined in exactly
one translation unit (source file). An object must either be
declared or defined before it is used. Normally an object that is
used in many files is defined in one source file. A declaration
is normally placed in a header file that is included by the files
that use the object.

For example:

/* Variable "a" exists somewhere. Function
"b" takes two int parameters and returns an
int. */

extern int a;
int b(int, int);

Definition

The variable or function itself. Only one definition can exist
for each variable or function in an application. See also
Tentative definition.

For example:
int a;
int b(int x, int y)

{

return x + y;

IDE Project Management and Building Guide

Demangling (ILINK)
To restore a mangled name to the more common C/C++ name.
See also Mangling (ILINK).

Device description file

A file used by C-SPY that contains various device-specific
information such as I/O register (SFR) definitions, interrupt
vectors, and control register definitions.

Device driver
Software that provides a high-level programming interface to
a particular peripheral device.

Digital signal processor (DSP)

A device that is similar to a microprocessor, except that the
internal CPU is optimized for use in applications involving
discrete-time signal processing. In addition to standard
microprocessor instructions, digital signal processors usually
support a set of complex instructions to perform common
signal-processing computations quickly.

Disassembly window

A C-SPY window that shows the memory contents
disassembled as machine instructions, interspersed with the
corresponding C source code (if available).

DWARF

An industry-standard debugging format which supports source
level debugging. This is the format used by the IAR ILINK
Linker for representing debug information in an object.

Dynamic initialization

Variables in a program written in C are initialized during the
initial phase of execution, before the main function is called.
These variables are always initialized with a static value,
which is determined either at compile time or at link time. This
is called static initialization. In C++, variables might require
initialization to be performed by executing code, for example,
running the constructor of global objects, or performing
dynamic memory allocation.

Dynamic memory allocation

There are two main strategies for storing variables: statically at
link time, or dynamically at runtime. Dynamic memory
allocation is often performed from the heap and it is the size of
the heap that determines how much memory that can be used
for dynamic objects and variables. The advantage of dynamic
memory allocation is that several variables or objects that are
not active at the same time can be stored in the same memory,
thus reducing the memory requirements of an application. See
also Heap memory.

Dynamic object

An object that is allocated, created, destroyed, and released at
runtime. Dynamic objects are almost always stored in memory
that is dynamically allocated. Compare Static object.

E

EEPROM

Electrically Erasable, Programmable Read-Only Memory. A
type of ROM that can be erased electronically, and then be
re-programmed.

ELF

Executable and Linking Format, an industry-standard object
file format. This is the format used by the IAR ILINK Linker.
The debug information is formatted using DWARF.

Embedded C++

A subset of the C++ programming language, which is intended
for embedded systems programming. The fact that
performance and portability are particularly important in
embedded systems development was considered when
defining the language.

Embedded system

A combination of hardware and software, designed for a
specific purpose. Embedded systems are often part of a larger
system or product.

Glossary °

Emulator

An emulator is a hardware device that performs emulation of
one or more derivatives of a processor family. An emulator can
often be used instead of the actual microcontroller and
connects directly to the printed circuit board—where the
microcontroller would have been connected—via a connecting
device. An emulator always behaves exactly as the processor it
emulates, and is used when debugging requires all systems
actuators, or when debugging device drivers.

Enea OSE Load module format
A specific ELF format that is loadable by the OSE operating
system. See also ELF.

Enumeration

A type which includes in its definition an exhaustive list of
possible values for variables of that type. Common examples
include Boolean, which takes values from the list [true, false],
and day-of-week which takes values [Sunday, Monday,
Tuesday, Wednesday, Thursday, Friday, Saturday].
Enumerated types are a feature of typed languages, including
C and Ada.

Characters, (fixed-size) integers, and even floating-point types
might be (but are not usually) considered to be (large)
enumerated types.

EPROM

Erasable, Programmable Read-Only Memory. A type of ROM
that can be erased by exposing it to ultraviolet light, and then
be re-programmed.

Executable image

Contains the executable image; the result of linking several
relocatable object files and libraries. The file format used for
an object file is UBROF for XLINK and for ILINK, ELF with
embedded DWAREF for debug information.

Exceptions

An exception is an interrupt initiated by the processor
hardware, or hardware that is tightly coupled with the
processor, for instance, a memory management unit (MMU).
The exception signals a violation of the rules of the
architecture (access to protected memory), or an extreme error
condition (division by zero).

169

170

Do not confuse this use of the word exception with the term
exception used in the C++ language (but not in Embedded
C++).

Expensive

As in expensive memory access. An expensive memory access
either requires many cycles to perform, or many bytes of code
to implement. An expensive memory access is said to have a
high cost. See Memory access cost.

Extended keywords

Non-standard keywords in C and C++. These usually control
the definition and declaration of objects (that is, data and
functions). See also Keywords.

F

Filling

How to fill up bytes—with a specific fill pattern—that exists
between the segments/sections in an executable image. These
bytes exist because of the alignment demands on the
segments/sections.

Format specifiers

Used to specify the format of strings sent by library functions
such as print£. In the following example, the function call
contains one format string with one format specifier, %c, that
prints the value of a as a single ASCII character:

printf("a = %c", a);

G

General options
Parameters you can specify to change the default behavior of
all tools that are included in the IDE.

Generic pointers

Pointers that have the ability to point to all different memory
types in, for example, a microcontroller based on the Harvard
architecture.

IDE Project Management and Building Guide

H

Harvard architecture

A microcontroller based on the Harvard architecture has
separate data and instruction buses. This allows execution to
occur in parallel. As an instruction is being fetched, the current
instruction is executing on the data bus. Once the current
instruction is complete, the next instruction is ready to go. This
theoretically allows for much faster execution than a von
Neumann architecture, but adds some silicon complexity.
Compare von Neumann architecture.

Heap memory

The heap is a pool of memory in a system that is reserved for
dynamic memory allocation. An application can request parts
of the heap for its own use; once memory is allocated from the
heap it remains valid until it is explicitly released back to the
heap by the application. This type of memory is useful when
the number of objects is not known until the application
executes. Note that this type of memory is risky to use in
systems with a limited amount of memory or systems that are
expected to run for a very long time.

Heap size
Total size of memory that can be dynamically allocated.

Host

The computer that communicates with the target processor.
The term is used to distinguish the computer on which the
debugger is running from the microcontroller the embedded
application you develop runs on.

larchive
The IAR Systems utility for creating archives, that is, libraries.
Tarchive is delivered with IAR Embedded Workbench.

IDE (integrated development environment)
A programming environment with all necessary tools
integrated into one single application.

lelffdumpcpuname
The IAR Systems utility for creating a text representation of
the contents of ELF relocatable or executable image.

lelftool

The IAR Systems utility for performing various
transformations on an ELF executable image, such as fill,
checksum, and format conversion.

ILINK
The IAR ILINK Linker which produces absolute output in the
ELF/DWARF format.

ILINK configuration

The definition of available physical memories and the
placement of sections—pieces of code and data—into those
memories. ILINK requires a configuration to build an
executable image.

Image
See Executable image.

Include file
A text file which is included into a source file. This is often
done by the preprocessor.

Initialization setup in linker configuration file (ILINK)
Defines how to initialize RAM sections with their initializers.
Normally, only non-constant non-noinit variables are
initialized but, for example, pieces of code can be initialized as
well.

Initialized segments/sections

Read-write segments/sections that should be initialized with
specific values at startup. See also Segment (XLINK) and
Section (ILINK).

Inline assembler
Assembler language code that is inserted directly between C
statements.

Inlining

An optimization that replaces function calls with the body of
the called function. This optimization increases the execution
speed and can even reduce the size of the generated code.

Glossary °

Instruction mnemonics

A word or acronym used in assembler language to represent a
machine instruction. Different processors have different
instruction sets and therefore use a different set of mnemonics
to represent them, such as, ADD, BR (branch), BLT (branch if
less than), MOVE, LDR (load register).

Interrupt vector
A small piece of code that will be executed, or a pointer that
points to code that will be executed when an interrupt occurs.

Interrupt vector table

A table containing interrupt vectors, indexed by interrupt type.
This table contains the processor's mapping between interrupts
and interrupt service routines and must be initialized by the
programmer.

Interrupts

In embedded systems, the use of interrupts is a method of
detecting external events immediately, for example a timer
overflow or the pressing of a button.

Interrupts are asynchronous events that suspend normal
processing and temporarily divert the flow of control through
an “interrupt handler” routine. Interrupts can be caused by
both hardware (I/O, timer, machine check) and software
(supervisor, system call or trap instruction). Compare Trap.

Intrinsic
An adjective describing native compiler objects, properties,
events, and methods.

Intrinsic functions

1. Function calls that are directly expanded into specific
sequences of machine code. 2. Functions called by the
compiler for internal purposes (that is, floating-point
arithmetic etc.).

lobjmanip
The IAR Systems utility for performing low-level
manipulation of ELF object files.

171

172

K

Key bindings
Key shortcuts for menu commands used in the IDE.

Keywords

A fixed set of symbols built into the syntax of a programming
language. All keywords used in a language are reserved—they
cannot be used as identifiers (in other words, user-defined
objects such as variables or procedures). See also Extended
keywords.

L

L-value

A value that can be found on the left side of an assignment and
thus be changed. This includes plain variables and
de-referenced pointers. Expressions like (x + 10) cannot be
assigned a new value and are therefore not L-values.

Language extensions
Target-specific extensions to the C language.

Library
See Runtime library.

Library configuration file

A file that contains a configuration of the runtime library. The
file contains information about what functionality is part of the
runtime environment. The file is used for tailoring a build of a
runtime library. See also Runtime library.

Linker configuration file (XLINK)

A file used by the IAR XLINK Linker. It contains command
line options which specify the locations where the memory
segments can be placed, thereby assuring that your application
fits on the target chip.

Because many of the chip-specific details are specified in the
linker configuration file and not in the source code, the linker
configuration file also helps to make the code portable.

In particular, the linker specifies the placement of segments,
the stack size, and the heap size.

IDE Project Management and Building Guide

Linker configuration file (ILINK)

A file that contains a configuration used by the IAR ILINK
Linker when building an executable image. See also ILINK
configuration.

Local variable
See Auto variables.

Location counter
See Program location counter (PLC).

Logical address
See Virtual address (logical address).

M

MAC (Multiply and accumulate)

A special instruction, or on-chip device, that performs a
multiplication together with an addition. This is very useful
when performing signal processing where many filters and
transforms have the form:

N
Yi = D G Xy
i=0

The accumulator of the MAC usually has a higher precision
(more bits) than normal registers. See also Digital signal
processor (DSP).

Macro

1. Assembler macros are user-defined sets of assembler lines
that can be expanded later in the source file by referring to the
given macro name. Parameters will be substituted if referred

to.

2. C macro. A text substitution mechanism used during
preprocessing of source files. Macros are defined using the
#define preprocessing directive. The replacement text of
each macro is then substituted for any occurrences of the
macro name in the rest of the translation unit.

3. C-SPY macros are programs that you can write to enhance
the functionality of C-SPY. A typical application of C-SPY
macros is to associate them with breakpoints; when such a
breakpoint is hit, the macro is run and can for example be used
to simulate peripheral devices, to evaluate complex conditions,
or to output a trace.

The C-SPY macro language is like a simple dialect of C, but is
less strict with types.

Mailbox

A mailbox in an RTOS is a point of communication between
two or more tasks. One task can send messages to another task
by placing the message in the mailbox of the other task.
Mailboxes are also known as message queues or message
ports.

Mangling (ILINK)

Mangling is a technique used for mapping a complex C/C++
name into a simple name. Both mangled and unmangled
names can be produced for C/C++ symbols in ILINK
messages.

Memory, in linker configuration file (ILINK)

A physical memory. The number of units it contains and how
many bits a unit consists of, are defined in the linker
configuration file. The memory is always addressable from
0x0 to size -1.

Memory access cost

The cost of a memory access can be in clock cycles, or in the
number of bytes of code needed to perform the access. A
memory which requires large instructions or many instructions
is said to have a higher access cost than a memory which can
be accessed with few, or small instructions.

Memory area
A region of the memory.

Memory bank

The smallest unit of continuous memory in banked memory.
One memory bank at a time is visible in a microcontroller’s
physical address space.

Glossary °

Memory map
A map of the different memory areas available to the
microcontroller.

Memory model

Specifies the memory hierarchy and how much memory the
system can handle. Your application must use only one
memory model at a time, and the same model must be used by
all user modules and all library modules.

Microcontroller

A microprocessor on a single integrated circuit intended to
operate as an embedded system. In addition to a CPU, a
microcontroller typically includes small amounts of RAM,
PROM, timers, and 1/O ports.

Microprocessor

A CPU contained on one (or a few) integrated circuits. A
single-chip microprocessor can include other components
such as memory, memory management, caches, floating-point
unit, I/O ports and timers. Such devices are also known as
microcontrollers.

Module

An object. An object file contains a module and library
contains one or more objects. The basic unit of linking. A
module contains definitions for symbols (exports) and
references to external symbols (imports). When you compile
C/C++, each translation unit produces one module.

Multi-file compilation

A technique which means that the compiler compiles several
source files as one compilation unit, which enables for
interprocedural optimizations such as inlining, cross call, and
cross jump on multiple source files in a compilation unit.

N

Nested interrupts
A system where an interrupt can be interrupted by another
interrupt is said to have nested interrupts.

173

174

Non-banked memory
Has a single storage location for each memory address in a
microcontroller’s physical address space.

Non-initialized memory
Memory that can contain any value at reset, or in the case of a
soft reset, can remember the value it had before the reset.

No-init segments/sections
Read-write segments/sections that should not be initialized at
startup. See also Segment (XLINK) and Section (ILINK).

Non-volatile storage

Memory devices such as battery-backed RAM, ROM,
magnetic tape and magnetic disks that can retain data when
electric power is shut off. Compare Volatile storage.

NOP

No operation. This is an instruction that does not do anything,
but is used to create a delay. In pipelined architectures, the NOP
instruction can be used for synchronizing the pipeline. See also
Pipeline.

o

Objcopy

A GNU binary utility for converting an absolute object file in
ELF format into an absolute object file, for example the format
Motorola-std or Intel-std. See also lelftool.

Object
An object file or a library member.

Object file, absolute
See Executable image.

Object file, relocatable

The result of compiling or assembling a source file. The file
format used for an object file is UBROF for XLINK and for
ILINK, ELF with embedded DWAREF for debug information.

IDE Project Management and Building Guide

Operator

A symbol used as a function, with infix syntax if it has two
arguments (+, for example) or prefix syntax if it has only one
(for instance, bitwise negation, ~). Many languages use
operators for built-in functions such as arithmetic and logic.

Operator precedence

Each operator has a precedence number assigned to it that
determines the order in which the operator and its operands are
evaluated. The highest precedence operators are evaluated
first. Use parentheses to group operators and operands to
control the order in which the expressions are evaluated.

Options

A set of commands that control the behavior of a tool, for
example the compiler or linker. The options can be specified
on the command line or via the IDE.

Output image
See Executable image.

Overlay, in linker configuration file (ILINK)

Like a block, but it contains several overlaid entities, each built
up of blocks, overlays, and sections. The size of an overlay is
determined by its largest constituent.

P

Parameter passing
See Calling convention.

Peripheral unit
A hardware component other than the processor, for example
memory or an I/O device.

Pipeline

A structure that consists of a sequence of stages through which
a computation flows. New operations can be initiated at the
start of the pipeline even though other operations are already
in progress through the pipeline.

Placement, in linker configuration file (ILINK)

How to place blocks, overlays, and sections into a region. It
determines how pieces of code and data are actually placed in
the available physical memory.

Pointer
An object that contains an address to another object of a
specified type.

#pragma

During compilation of a C/C++ program, the #pragma
preprocessing directive causes the compiler to behave in an
implementation-defined manner. This can include, for
example, producing output on the console, changing the
declaration of a subsequent object, changing the optimization
level, or enabling/disabling language extensions.

Pre-emptive multitasking

An RTOS task is allowed to run until a higher priority process
is activated. The higher priority task might become active as
the result of an interrupt. The term preemptive indicates that
although a task is allotted to run a given length of time (a
timeslice), it might lose the processor at any time. Each time
an interrupt occurs, the task scheduler looks for the highest
priority task that is active and switches to that task. If the
located task is different from the task that was executing before
the interrupt, the previous task is suspended at the point of
interruption.

Compare Round Robin.

Preprocessing directives
A set of directives that are executed before the parsing of the
actual code is started.

Preprocessor
See C-style preprocessor.

Processor variant
The different chip setups that the compiler supports.

Program counter (PC)
A special processor register that is used to address instructions.
Compare Program location counter (PLC).

Glossary °

Program location counter (PLC)

Used in the IAR Assembler to denote the code address of the
current instruction. The PLC is represented by a special symbol
(typically $) that can be used in arithmetic expressions. Also
called simply location counter (LC).

Project
The user application development project.

Project options
General options that apply to an entire project, for example the
target processor that the application will run on.

PROM
Programmable Read-Only Memory. A type of ROM that can
be programmed only once.

Q

Qualifiers
See Type qualifiers.

R

Range, in linker configuration file
A range of consecutive addresses in a memory. A region is
built up of ranges.

Read-only segments/sections
Segments/sections that contain code or constants. See also
Segment (XLINK) and Section (ILINK).

Real-time operating system (RTOS)

An operating system which guarantees the latency between an
interrupt being triggered and the interrupt handler starting, and
how tasks are scheduled. An RTOS is typically much smaller
than a normal desktop operating system. Compare Real-time
system.

Real-time system
A computer system whose processes are time-sensitive.
Compare Real-time operating system (RTOS).

175

176

Region, in linker configuration file

A set of non-overlapping ranges. The ranges can lie in one or
more memories. For ILINK, blocks, overlays, and sections are
placed into regions in the linker configuration file. For
XLINK, the segments are placed in regions.

Region expression, in linker configuration file (ILINK)
A region built up from region literals, regions, and the common
set operations possible in the linker configuration file.

Region literal, in linker configuration file (ILINK)
A literal that defines a set of one or more non-overlapping
ranges in a memory.

Register

A small on-chip memory unit, usually just one or a few bytes
in size, which is particularly efficient to access and therefore
often reserved as a temporary storage area during program
execution.

Register constant

A register constant is a value that is loaded into a dedicated
processor register when the system is initialized. The compiler
can then generate code that assumes that the constants are
present in the dedicated registers.

Register locking

Register locking means that the compiler can be instructed that
some processor registers shall not be used during normal code
generation. This is useful in many situations. For example,
some parts of a system might be written in assembler language
to gain speed. These parts might be given dedicated processor
registers. Or the register might be used by an operating system,
or by other third-party software.

Register variables

Typically, register variables are local variables that are placed
in registers instead of on the (stack) frame of the function.
Register variables are much more efficient than other variables
because they do not require memory accesses, so the compiler
can use shorter/faster instructions when working with them.
See also Auto variables.

Relay
A synonym to veneer, see Veneer.

IDE Project Management and Building Guide

Relocatable segments/sections
Segments/sections that have no fixed location in memory
before linking.

Reset

Areset is arestart from the initial state of a system. A reset can
originate from hardware (hard reset), or from software (soft
reset). A hard reset can usually not be distinguished from the
power-on condition, which a soft reset can be.

ROM-monitor

A piece of embedded software designed specifically for use as
adebugging tool. It resides in the ROM of the evaluation board
chip and communicates with a debugger via a serial port or
network connection. The ROM-monitor provides a set of
primitive commands to view and modify memory locations
and registers, create and remove breakpoints, and execute your
application. The debugger combines these primitives to fulfill
higher-level requests like program download and single-step.

Round Robin

Task scheduling in an operating system, where all tasks have
the same priority level and are executed in turn, one after the
other. Compare Pre-emptive multitasking.

RTOS
See Real-time operating system (RTOS).

Runtime library

A collection of relocatable object files that will be included in
the executable image only if referred to from an object file, in
other words conditionally linked.

Runtime model attributes

A mechanism that is designed to prevent modules that are not
compatible to be linked into an application. A runtime attribute
is a pair constituted of a named key and its corresponding
value.

For XLINK, two modules can only be linked together if they
have the same value for each key that they both define. ILINK
uses the runtime model attributes when automatically
choosing a library, to verify that the correct one is used.

R-value
A value that can be found on the right side of an assignment.
This is just a plain value. See also L-value.

S

Saturation arithmetics

Most, if not all, C and C++ implementations use mod—2N
2-complement-based arithmetics where an overflow wraps the
value in the value domain, that is, (127 + 1) = -128. Saturation
arithmetics, on the other hand, does not allow wrapping in the
value domain, for instance, (127 + 1) = 127, if 127 is the upper
limit. Saturation arithmetics is often used in signal processing,
where an overflow condition would have been fatal if value
wrapping had been allowed.

Scheduler

The part of an RTOS that performs task-switching. It is also
responsible for selecting which task that should be allowed to
run. Many scheduling algorithms exist, but most of them are
either based on static scheduling (performed at compile-time),
or on dynamic scheduling (where the actual choice of which
task to run next is taken at runtime, depending on the state of
the system at the time of the task-switch). Most real-time
systems use static scheduling, because it makes it possible to
prove that the system will not violate the real-time
requirements.

Scope

The section of an application where a function or a variable can
be referenced by name. The scope of an item can be limited to
file, function, or block.

Section (ILINK)

An entity that either contains data or text. Typically, one or
more variables, or functions. A section is the smallest linkable
unit.

Section attributes (ILINK)

Each section has a name and an attribute. The attribute defines
what a section contains, that is, if the section content is
read-only, read/write, code, data, etc.

Glossary °

Section fragment (ILINK)
A part of a section, typically a variable or a function.

Section selection (ILINK)

In the linker configuration file, defining a set of sections by
using section selectors. A section belongs to the most
restrictive section selector if it can be part of more than one
selection. Three different selectors can be used individually or
in conjunction to select the set of sections: section attribute
(selecting by the section content), section name (selecting by
the section name), and object name (selecting from a specific
object).

Segment (XLINK)

A chunk of data or code that should be mapped to a physical
location in memory. The segment can either be placed in RAM
or in ROM.

Segment map (XLINK)
A set of segments and their locations. This map is part of the
linker list file.

Segment part (XLINK)
A part of a segment, typically a variable or a function.

Semaphore

A semaphore is a type of flag that is used for guaranteeing
exclusive access to resources. The resource can be a hardware
port, a configuration memory, or a set of variables. If several
tasks must access the same resource, the parts of the code (the
critical sections) that access the resource must be made
exclusive for every task. This is done by obtaining the
semaphore that protects that resource, thus blocking all other
tasks from it. If another task wishes to use the resource, it also
must obtain the semaphore. If the semaphore is already in use,
the second task must wait until the semaphore is released.
After the semaphore is released, the second task is allowed to
execute and can obtain the semaphore for its own exclusive
access.

177

178

Severity level

The level of seriousness of the diagnostic response from the
assembler, compiler, or debugger, when it notices that
something is wrong. Typical severity levels are remarks,
warnings, errors, and fatal errors. A remark just points to a
possible problem, while a fatal error means that the
programming tool exits without finishing.

Sharing

A physical memory that can be addressed in several ways. For
ILINK, defined in the linker configuration file. For XLINK,
the command line option -U is used to define it.

Short addressing

Many microcontrollers have special addressing modes for
efficient access to internal RAM and memory mapped /0.
Short addressing is therefore provided as an extended feature
by many compilers for embedded systems. See also Data
pointers.

Side effect

An expression in C or C++ is said to have a side-effect if it
changes the state of the system. Examples are assignments to
avariable, or using a variable with the post-increment operator.
The C and C++ standards state that a variable that is subject to
a side-effect should not be used more that once in an
expression. As an example, this statement violates that rule:

*d++ = *d;

Signal

Signals provide event-based communication between tasks. A
task can wait for one or more signals from other tasks. Once a
task receives a signal it waits for, execution continues. A task
in an RTOS that waits for a signal does not use any processing
time, which allows other tasks to execute.

Simple format

The Simple output format is a format that supplies the bytes of
the application in a way that is easy to manipulate. If you want
to modify the contents of some addresses in the application but
the standard linker options are not sufficient, use the Simple
output format. Generate the application in the Simple format
and then write a small utility (example source code is delivered
with XLINK) that modifies the output.

IDE Project Management and Building Guide

Simulator

A debugging tool that runs on the host and behaves as similar
to the target processor as possible. A simulator is used for
debugging the application when the hardware is unavailable,
or not needed for proper debugging. A simulator is usually not
connected to any physical peripheral devices. A simulated
processor is often slower, or even much slower, than the real
hardware.

Single stepping
Executing one instruction or one C statement at a time in the
debugger.

Skeleton code
An incomplete code framework that allows the user to
specialize the code.

Special function register (SFR)
A register that is used to read and write to the hardware
components of the microcontroller.

Stack frames

Data structures containing data objects like preserved
registers, local variables, and other data objects that must be
stored temporary for a particular scope (usually a function).

Earlier compilers usually had a fixed size and layout on a stack
frame throughout a complete function, while modern
compilers might have a very dynamic layout and size that can
change anywhere and anytime in a function.

Stack segments/sections

The segment/section or segments/sections that reserve space
for the stack(s). Most processors use the same stack for calls
and parameters, but some have separate stacks.

Standard libraries

The C and C++ library functions as specified by the C and C++
standard, and support routines for the compiler, like
floating-point routines.

Static object

An object whose memory is allocated at link-time and is
created during system startup (or at first use). Compare
Dynamic object.

Static overlay (XLINK)

Instead of using a dynamic allocation scheme for parameters
and auto variables, the linker allocates space for parameters
and auto variables at link time. This generates a worst-case
scenario of stack usage, but might be preferable for small chips
with expensive stack access or no stack access at all.

Statically allocated memory

This kind of memory is allocated once and for all at link-time,
and remains valid all through the execution of the application.
Variables that are either global or declared static are
allocated this way.

Structure value

A collecting names for structs and unions. A struct is a
collection of data object placed sequentially in memory
(possibly with pad bytes between them). A union is a
collection of data sharing the same memory location.

Symbolic location
A location that uses a symbolic name because the exact
address is unknown.

T

Target

1. An architecture. 2. A piece of hardware. The particular
embedded system you are developing the application for. The
term is usually used to distinguish the system from the host
system.

Task (thread)

A task is an execution thread in a system. Systems that contain
many tasks that execute in parallel are called multitasking
systems. Because a processor only executes one instruction
stream at the time, most systems implement some sort of
task-switch mechanism (often called context switch) so that all
tasks get their share of processing time. The process of
determining which task that should be allowed to run next is
called scheduling. Two common scheduling methods are
Pre-emptive multitasking and Round Robin.

Glossary °

Tentative definition
A variable that can be defined in multiple files, provided that
the definition is identical and that it is an absolute variable.

Terminal /O
A simulated terminal window in C-SPY.

Timer
A peripheral that counts independent of the program
execution.

Timeslice

The (longest) time an RTOS allows a task to run without
running the task-scheduling algorithm. A task might be
allowed to execute during several consecutive timeslices
before being switched out. A task might also not be allowed to
use its entire time slice, for example if, in a preemptive system,
a higher priority task is activated by an interrupt.

Translation unit

A source file together with all the header files and source files
included via the preprocessor directive #include, except for
the lines skipped by conditional preprocessor directives such
as #if and #ifdef.

Trap

A trap is an interrupt initiated by inserting a special instruction
into the instruction stream. Many systems use traps to call
operating system functions. Another name for trap is software
interrupt.

Type qualifiers

In Standard C/C++, const or volatile. IAR Systems
compilers usually add target-specific type qualifiers for
memory and other type attributes.

U

UBROF (Universal Binary Relocatable Object
Format)

File format produced by some of the IAR Systems
programming tools, if your product package includes the
XLINK linker.

179

180

A\

Value expressions, in linker configuration file
A constant number that can be built up out of expressions that
has a syntax similar to C expressions.

Veneer
A small piece of code that is inserted as a springboard between
caller and callee when:

* There is a mismatch in mode, for example ARM and Thumb
* The call instruction does not reach its destination.

Virtual address (logical address)

An address that must be translated by the compiler, linker or
the runtime system into a physical memory address before it is
used. The virtual address is the address seen by the application,
which can be different from the address seen by other parts of
the system.

Virtual space

An IAR Embedded Workbench Editor feature which allows
you to place the insertion point outside of the area where there
are actual characters.

Volatile storage

Data stored in a volatile storage device is not retained when the
power to the device is turned off. To preserve data during a
power-down cycle, you should store it in non-volatile storage.
This should not be confused with the C keyword volatile.
Compare Non-volatile storage.

von Neumann architecture

A computer architecture where both instructions and data are
transferred over a common data channel. Compare Harvard
architecture.

W

Watchpoints

Watchpoints keep track of the values of C variables or
expressions in the C-SPY Watch window as the application is
being executed.

IDE Project Management and Building Guide

X

XAR
An IAR tool that creates archives (libraries) in the UBROF
format. XAR is delivered with JAR Embedded Workbench.

XLIB

An IAR tool that creates archives (libraries) in the UBROF
format, listing object code, converting and absolute object file
into an absolute object file in another format. XLIB is
delivered with IAR Embedded Workbench.

XLINK
The IAR XLINK Linker which uses the UBROF output
format.

Z

Zero-initialized segments/sections
Segments/sections that should be initialized to zero at startup.
See also Segment (XLINK) and Section (ILINK).

Zero-overhead loop

A loop in which the loop condition, including branching back
to the beginning of the loop, does not take any time at all. This
is usually implemented as a special hardware feature of the
processor and is not available in all architectures.

Zone

Different processors have widely differing memory
architectures. Zoneis the term C-SPY uses for a named
memory area. For example, on processors with separately
addressable code and data memory there would be at least two
zones. A processor with an intricate banked memory scheme
might have several zones.

A

a (filename extension).uviuiinen.... 103
absolute location, definitionof 165
absolute segments, definitionof 165
accelerator keys. See shortcut keys
Add Files (Workspace window context menu) 46
Add Group (Workspace window context menu) 46
Add (Subversion controlmenu) 59
address expression, definitionof.................... 165
AEABI, definitionof 165
Alias (Key bindings option) 134
application

definitionof i 165

EESHINE oot et et e 64
architecture, definitionof 165
archive, definitionof 165
argument variables 158

environment variables 128

SUMMATY &« o\ v vetete e e e et et e e e eeaenan 127
Arguments (External editor option) 141
ar, definitionof 165
asm (filename extension) 103
assembler comments, text style in editor. 77
assembler directives

definitionof 165

textstyleineditor il 77
assembler language, definitionof 165
assembler options, definitionof 165
Assembler source file (Workspace window icon) 44
assembler, command line version 25
assert, in built applications 34
assumptions, programming experience. 17
attributes on sections, definitionof 177
Auto code completion and parameter hints (editor option) 139
Auto indent (editoroption) 138
axx (filename extension). 103

Background color (IDE Tools option).
backtrace information, definitionof
bank switching, definitionof.
banked code, definitionof.............
banked data, definitionof
banked memory, definitionof
bank-switching routines, definitionof.
Base (Register filter option)
bat (filename extension)
BatchBuild.
Batch Build Configuration dialog box (Project menu) . . .
Batch Build dialog box (Project menu).

batch files

definitionof

specifying from the Tools menu.
bin, common (subdirectory)
bin, cpuname (subdirectory)
bitfield, definitionof
blank (source code controlicon)..................
Block, definitionof.
board (filename extension)
Body (b) (Configure auto indent option).
bold style,inthisguide.

bookmarks

adding
showingineditor..............
breakpoints, definitionof
-build (iarbuild command line option)
Build Actions,

build configuration

CEAtING . .ottt ettt e
definitionof
Build window (Viewmenu)

building

commandsfor
from the command line
OPLONS . « vttt et e

Index °

181

182

pre- and post-actionsiiiiiiaen... 64

the Process . .« oo v vt 61
C comments, text styleineditor 77
C keywords, text style ineditor. 77
C source file (Workspace window icon) 44
¢ (filename extension).c.covtinrnnen.... 103
call frame information, definitionof................. 166
calling convention, definitionof 166
category, in Options dialogbox. 62, 126
cfg (filename extension)vuvueenen.n. 103
cgx (filename exXtension).ovuven v e, 103
cheap memory access, definitionof 166
Check In Files dialogboxoooiina.. 55
Check In (Source code control menu). 53
Check Out Files dialogbox. 57
Check Out (Source code control menu) 54
checkmark (source code controlicon). 58
checksum, definitionof........................... 167
chm (filename extension)on... 103
-clean (iarbuild command line option) 65
Clean (Workspace window context menu) 46
CLIB, documentationo.ovuuunenenenan.. 20
Close Workspace (Filemenu). 114
code

banked, definitionof 166

skeleton, definitionof 178

EESHINE v vt et et e 64
code completion, ineditor., 71
COde INEEIILY . oo vttt et 36
code model, definitionof 167
code pointers, definitionof 167
code sections, definitionof 167
code templates, using ineditor 73
colors in C-SPY windows, switchingon oroff......... 150
command line options

specifying from the Tools menu. 30

IDE Project Management and Building Guide

typographic convention 21
command prompt icon, in this guide. 22
Command (External editor option) 141
Commit (Subversion controlmenu) 59
Common Fonts (IDE Options dialog box) 132
common (directory)c.cueninenenennenn.. 102
Compare (Source code control menu). 54
Compile (Workspace window context menu) 46
compiler function directives, definitionof 167
compiler options, definitionof 167
compiler, command line version. 25
computer style, typographic convention 21
configuration file for linker, definitionof 171
Configurations for project dialog box (Project menu). 48
Configure Auto Indent (IDE Options dialog box). 139
Configure Tools (Toolsmenu) 156
Configure Viewers dialog box (Tools menu)........... 161
$CONFIG_NAMES$ (argument variable) 127
config, common (subdirectory)..................... 103
config, cpuname (subdirectory). 101
Connect Project to SCC Project
(Source code controlmenu) 54
Connect Project to SVN Project
(Subversion controlmenu) 59
context menu, definitionof 167
Control file (Workspace window icon) 44
conventions, used inthisguide 21
Copy (BUtton)ot 109
COpyright notiCe i it 2
cost. See memory access cost
cpp (filename extension).c. . 103
cpunanme (directory) 101
CRC, definitionof. i 167
Create New Project dialog box (Project menu).......... 47
cstartup (system startup code)

definitionof L 167

stack pointers not valid until reaching 152
$CUR_DIRS (argument variable) 127
CUR_LINES (argument variable).................. 127

custombuild. 66
USINE oottt 66
custom tool configuration. 66
C-SPY options
definitionof 167
in Options dialog box. 127
SELHNG . ottt 61
C-style preprocessor, definitionof 167
C/C++ syntax, options for styles. 143
C++ comments, text styleineditor................... 77
C++ keywords, text style ineditor 77
C++ source file (Workspace window icon) 44
C++terminology. oo vt 21
dat (filename extension)c.c.ouun. .. 103
data model, definitionof, 167
data pointers, definitionof 168
data representation, definitionof.................... 168
$DATES$ (argument variable) 127
dbg (filename extension).ouvuernen.n. 104
dbgt (filename extension)ouven... 104
ddf (filename extension)ouiinn.... 104
Debug Log window (View menu). 112
Debug without downloading textbox 109
Debug (Configuration factory setting) 50
Debugger (IDE Options dialogbox)................. 149
declaration, definitionof.......................... 168
default installation path. 101
Default integer format (IDE option) 150
definition, definitionof 168
demangling, definitionof 168
dep (filename extension).oueuvuennen.n. 104
development environment, introduction 25
device descriptionfiles 101
definitionof 168
device driver, definitionof 168
device selectionfiles. 101

Index °

Diff (Subversion controlmenu) 59
digital signal processor, definitionof 168
directories
COMIMON . .« . ettt ettt et e et e aaene 102
CPUNAMIE. .« . e et ettt ettt e e e e e aaene 101
TOOL vttt et e et e e e e e 101
directory structure. 101
Disassembly window, definitionof.................. 168
disclaimer.t 2
Disconnect Project from SCC Project
(Source code controlmenu) 54
Disconnect Project from SVN Project
(Subversion controlmenu) 59
DLIB, documentation.c.uuuiuiunnn.... 20
dni (filename extension)coieinn... 104
dockable windows. i 27
document CONVENtIONS. . ..« v vt nen e 21
documentation i 101
online.t 102
overviewof guides. 19
overview of thisguide 19
thisguide........ ..., 17
doc, common (subdirectory). 103
doc, cpuname (subdirectory). 102
drag-and-drop
of files in workspace window. 36
textineditorwindow.......... 73
drivers, cpuname (subdirectory) 102
DSP. See digital signal processor
DWARE, definitionof............................ 168
dxx (filename extension).couuunnn. 103
Dynamic Data Exchange (DDE). 78
calling external editor 141
dynamic initialization, definitionof 168
dynamic memory allocation, definitionof 169
dynamic object, definitionof 169

183

184

E

Edit Filename Extensions dialog box (Tools menu) 161
Editmenu....... i 115
Edit Viewer Extensions (Tools menu)................ 162
editing source files 70
edition, of thisguide 2
editor
code completion. 71
codetemplatesouvtniii 73
commands 77
customizing the environment. 76
external 78
indentation.iiiiiii i 71
matching parentheses and brackets 72
OPLIONS .« ottt ettt 136
parameterhint, 70
shortcut Keyscovvvin i 97
shortcut to functions. 76, 83
splitter controls 83
status bar, usingino il 73
USINE © ottt et 69
word completion o il 70
Editor Colors and Fonts (IDE Options dialog box). 143
Editor Font (Editor colors and fonts option) 143
Editor Setup Files (IDE Options dialog box) 142
editor setup files, options 142
Editorwindow i 81
Editor (External editor option) 141
Editor (IDE Options dialog box). 136
EEPROM, definitionof. 169
Embedded C++ Technical Committee 21
Embedded C++, definitionof 169
embedded system, definitionof 169
Embedded Workbench
editor . .. oo 69
layout. .. .o 27
main window 26, 108
reference information. 107

IDE Project Management and Building Guide

TUNMINEZ. © ot v ettt et e e e e e e eee e 26

version number, displaying 164
emulator (C-SPY driver), definitionof 169
Enable graphical stack display and stack usage
tracking (Stackoption) oL 151
Enable virtual space (editor option) 138
encding, editor options 137
Enea OSE load module format, definitionof 169
enumeration, definitionof. 169
environment variables, as argument variables. 128
EOL character (editoroption).c...vun... 138
EPROM, definitionof. 169
Erase Memory dialogbox. 125
ewd (filename extension) 104
ewp (filename extension) 104
ewplugin (filename extension) 104
eww (filename extension) 104

the workspace file 27
$EW_DIRS (argument variable). 128
examples, cpuname (subdirectory) 102
exceptions, definitionof 169
executable image, definitionof 169
$EXE_DIRS (argument variable) 128
expensive memory access, definitionof 170
extended command linefile 105
extended keywords, definitionof 170
extensions. See filename extensions Or language extensions
External Editor (IDE Options dialog box). 140
external editor, using. oL 78
factory settings, restoring default settings. 63
File Encoding (editor option) 137
file extensions. See filename extensions
Filemenu 113
File Properties (Workspace window context menu) 46
file types

device descriptioniiiiiiiiaen.. 101

deviceselection, 101
documentationc. o, 102
AriVers .. .ovv it 102
extended command line 105
flash loader applications 101
header 102
include. oo 102
lbraryooiie 102
linker configuration files 101
projecttemplates 101
readme.ot 102
special function registers description files 101
syntax coloring configuration. 101
filename extensions. 103
cfg, syntax highlighting 143
eww, the workspacefile......................... 27
map, linker listing 106
other thandefault. 106
Filename Extensions dialog box (Tools menu) 159

Filename Extensions Overrides dialog box (Tools menu) . 160
files

editing . ..o ot 70

Navigating among.outet it 32
$FILE_DIRS (argument variable)................... 128
$FILE_FNAMES$ (argument variable) 128
$FILE_PATHS$ (argument variable) 128
filling, definitionof. 170
Filter Files (Register filter option). 154
Find All Declarations window (View menu)............ 89
Find All References window (View menu)............. 90
Find dialog box (Editmenu). 91
Find in Files dialog box (Editmenu). 93
Find in Files window (View menu). 88
Find Next (button)cutiiiinan... 109
Find Previous (button) 109
Find (button). 109
Fixed width font IDE option). 132
flash loader applications 101
flash (filename extension). 104

Index °

flashdict (filename extension). 104
floating windows, 27
fmt (filename extension). 104
font

Editor. 143

Fixedwidth 132

Proportional width L. 133
format specifiers, definitionof 170
functions

intrinsic, definition of., 171

shortcut to in editor windows. 76, 83
general options, definitionof 170
Generate browse information (IDE Project options). 147
generic pointers, definitionof 170
Get Latest Version (Source code control menu) 54
gloSSary. . .o 165
Go to function (editorbutton) 76, 83
Goto Line dialogbox, 117
GoTo(button)coiriiiirinnnnnan.. 109
gray padlock (source code controlicon) 58
Group excluded from the build (Workspace window icon) . 44
Group members (Register filter option) 154
Group of files (Workspace window icon) 43-44
Groups (Register filter option) 154
groups, definitionof 35
h (filename extension)., 104
Harvard architecture, definitionof 170
Header file (Workspace window icon) 44
headerfiles........ i 102

quick acCessto. .. v v i 75
heap memory, definitionof 170
heap size, definitionof 170
Helpmenu 164

185

186

helpfiles (filename extension)...................... 104
History (Source code controlmenu) 54
host, definitionof 170
htm (filename extension) 104
HTML text file (Workspace window icon) 44
html (filename extension) 104
i(filename extension)c.c.utiiinan... 104
iarbuild, building from the command line.............. 65
iarchive, definitionof 170
TarldePm.exe. 26
icf (filename extension)vuven.n. 104
icons

in Workspace window 43

SVN States . . oottt et 59
icons,inthisguide 22
IDE

definitionof 170

OVEIVIEW v vt ottt ettt e et ens 25
IDE internal file (Workspace window icon) 44
ielfdump, definitionof 171
ielftool, definitionof 171
ILINK, definitionof 171
inc (filename extension)c.o.ouu. .. 104
includefiles. i 102

definitionof 171
Incremental Search dialog box (Edit menu) 95
inc, cpuname (subdirectory), 102
Indent size (editor option).vuiinon... 136
Indent with spaces (Tab Key Function setting) 136
indentation, ineditor. 71
inherited settings, overriding. 62
ini (filename extension) 104
initialization in ILINK config file, definitionof 171
initialized sections, definitionof.................... 171
inline assembler, definitionof................. 171
inlining, definitionof 171

IDE Project Management and Building Guide

Insert tab (Tab Key Function setting) 136

insertion point, shortcut key for moving 77
installation directory i 21
installation path, default 101
installed files. 101
documentationi it 102
executable 102
include. 102
library 102
instruction mnemonics, definitionof. 171
Integrated Development Environment (IDE)
definitionof 170
interrupt vector table, definitionof 171
interrupt vector, definitionof 171
interrupts
definitionof 171
nested, definitionof 173
intrinsic functions, definitionof 171
intrinsic, definitionof 171
iobjmanip, definitionof 171
italic style, inthisguide 2122
ixx (filename extension) 104

/0O register. See SFR

K

Key bindings (IDE Options dialog box) 133
key bindings, definitionof 172
key summary, editoro 97
keyboard shortcuts. See shortcut keys
keywords
definitionof i 172
specity syntax color forineditor.................. 77
Label (c) (Configure auto indent option). 140
language extensions, definitionof................... 172
Language (IDE Options dialog box)................. 135

Language (Language option)
layout, of Embedded Workbench
library configuration file

definitionof i
library files i
library functions, configurable
library, definitionof
lib, cpuname (subdirectory)
lightbulb icon, in this guide.
linker

command line version

restrictions forinthisguide
linker command file. See linker configuration file
linker configuration file

definitionof L i

INdIreCtory. .« oottt
$LIST_DIRS (argument variable).
location counter, definitionof
-log (iarbuild command line option)
log (filename extension)oveuen...
Log (Subversion control menu).
logical address, definitionof.......................
Ist (filename extension).ouurunn..n.
L-value, definitionof

M

mac (filename extension)
macros, definitionof. L Lo il
MAC, definitionof o i
mailbox (RTOS), definitionof
-make (iarbuild command line option)
Make before debugging (IDE Project options)
Make (Workspace window context menu)
mangling, definitionof oL
map (filename extension)

linker listing. i
memory access cost, definitionof...............
memory area, definitionof

Index °

memory bank, definitionof. 173
memory map, definitionof 173
memory model, definitionof. 173
memory, definitionof L 173
menubar. 108
menu (filename extension) 104
Menu (Key bindings option) 133
107531 1L 113
Messages window, amount of output 144
Messages (IDE Options dialogbox) 144
metadata (subdirectory) 103
microcontroller, definitionof 173
microprocessor, definitionof 173
MISRA C, documentationouuu... 20
modules, definitionof 173
Multiply and accumulate, definitionof 172
multitasking, definitionof. 175
multi-file compilation, definitionof 173
NAMing CONVENLIONS . ..o v vt vttt e e e eenennnnn 22
Navigate Backward (button) 109
Navigate Forward (button) 109
NDEBUG, preprocessor symbol. 34
nested interrupts, definitionof 173
New Configuration dialog box (Project menu) 49
New Document (button)c.o.... 109
New Group (Register filter option) 154
Next Bookmark (button). 109
non-banked memory, definitionof 174
non-initialized memory, definitionof 174
non-volatile storage, definitionof................... 174
NOP (assembler instruction), definitionof 174
no-init sections, definitionof 174
o (filename extension).t 104

187

188

objcopy, definitionof
Object file or library (Workspace window icon)
object file (absolute), definitionof
object file (relocatable), definitionof
object, definitionof.
$OBJ_DIRS (argument variable)

online documentation

available from Helpmenu
target-specific, in directory
Open Containing Folder (editor window context menu). . .

Open Containing Folder (Workspace

window context menu)ouiurann...
Open Workspace (Filemenu)
Opening Brace (a) (Configure auto indent option)
operator precedence, definitionof.
operators, definitionof
Option name (category option)

options

setup files foreditor.
Options dialog box (Projectmenu)

USINE .ottt e e
Options (Workspace window context menu).
options, definitionof.
Other file (Workspace window icon).
out (filename extension)

output image. See executable image

overlay, definitionof............

P

padlock (source code controlicon)
parameter hint, ineditor

parameters

typographic convention
when building from command line
parentheses and brackets, matching (in editor)
part number, of this guide
Paste (button)t

IDE Project Management and Building Guide

paths

relative, in Embedded Workbench 35, 82

sourcefiles. i il 82
pbd (filename extension). 105
pbi (filename extension) 105
peripheral units, definitionof 174
peripherals register. See SFR
pew (filename extension) 105
pipeline, definitionof 174
placement, definitionof 175
Play a sound after build operations (IDE Project options). 147
pluginscpuname (subdirectory)..................... 102
plugins, common (subdirectory) 103
pointers

definitionof L L i 175

warn when stack pointer is out of range. 152
pop-up menu. See context menu
#pragma directive, definitionof 175
precedence, definitionof. 174
preemptive multitasking, definitionof 175
preprocessor

definition of. See C-style preprocessor

macros for initializing string variables. 64

NDEBUG symbolcociiiinininanan. 34
preprocessor directives

definitionof 175

textstyleineditor 77
prerequisites, programming experience. 17
Press shortcut key (Key bindings option) 133
Previous Bookmark (button). 109
Primary (Key bindings option) 134
prj (filename extension) oo, 105
processor variant, definitionof 175
product overview

directory structureiuiiiiiion.. 101

filetypes . ..oe i 103
program counter, definitionof. 175
program location counter, definitionof............... 175
programming eXperience.eu et et 17

program, see also application

Project Make, options.o 146
Projectmenu. i 121
projectmodel 31
project options, definitionof.......... 175
Project page (IDE Options dialog box)............... 146
Project with multi-file compilation
(Workspace window icon)., 43
Project (Workspace window icon). 43
projects
addingfilesto 37,121
build configuration, creating 37
building 63
inbatches oL 63
CIEALINE « o v vt ottt et ettt 37
definitionof 33,175
excluding groups and files 37
SrOUPS, CTEALNG . .« . v vttt ettt e ee e 37
MANAZING . « o v oe ettt e 31
moving files. 37
OFZANIZALION . . . ottt ettt 32
EMOVING itemSottt et 37
SEtting Optionsottt 61
source code control oLl 36
EESHNE oo ettt e e 64
version control systems 36
workspace, creating i 37
$PROJ_DIRS (argument variable) 128
$PROJ_FNAMES$ (argument variable) 128
$PROJ_PATHS (argument variable) 128
PROM, definitionof 175
Properties (Source code control menu) 54
Properties (Subversion controlmenu). 59
Proportional width font (IDE option) 133
publication date, of this guide. 2

Q

qualifiers, definition of. See type qualifiers

Index °

Quick Search textbox. 109
range, definitionof 175
reading guidelines. 17
readme files, Seerelease notes
read-only sections, definitionof 175
real-time operating system, definitionof. 175
real-time system, definitionof 175
Rebuild All (Workspace window context menu). 46
red padlock (source code controlicon)................ 58
Redo(button)t 109
reference information, typographic convention. 22
Refresh (Source code control menu). 54
Refresh (Subversion control menu). 59
region expression, definitionof. 176
region literal, definitionof 176
register constant, definitionof. 176
Register Filter (IDE Options dialogbox) 153
register locking, definitionof 176
register variables, definitionof 176
registered trademarks o oL 2
registers

definitionof 176

header files for in inc directory 102
relative paths. 35,82
relay, definitionof., 176
release NOeS . . . oo v ittt 102
Release (Configuration factory setting). 50
Reload last workspace at startup (IDE Project options) . . 147
relocatable segments, definitionof 176
Remove trailing blanks (editor option) 139
Remove (Workspace window context menu) 46
Rename Group dialogbox 46
Rename (Workspace window context menu) 46
Replace dialog box (Editmenu) 92
Replace (button) . ..ot 109
Reset All (Key bindings option) 134

189

190

reset, definitionof 176

restoring default factory settings. 63
Revert (Subversion control menu). 59
ROM-monitor, definitionof 176
TOOt dir€COTY . o\ vttt e 101
Round Robin, definitionof 176
RTOS, definitionof. 175
runtime libraries, definitionof 176
runtime model attributes, definitionof 176
rxx (filename extension)uii.... 105
R-value, definitionof 177
s (filename extension).ovurerenenn.n.. 105
saturation arithmetics, definitionof. 177
Save All (button).t 109
Save All (Filemenu). 114
Save As(Filemenu) 114
Save editor windows before building (IDE Project

OPLIONS) . vttt et e e e e e e 146
Save workspace and projects before building (IDE

Project options).ot 147
Save Workspace (Filemenu). 114
Save (button).o it 109
Save (Filemenu). i, 114
Scan for changed files (editor option) 138
SCC. See source code control systems

scheduler (RTOS), definitionof 177
scope, definitionof L ... 177
scrolling, shortcutkey for............. 77
searching in editor windows 76
section fragment, definitionof 177
section selection, definitionof 177
section, definitionof 177
segment map, definitionof 177
segment part, definitionof 177
segments, definitionof, 177
Select SCC Provider dialog box (Project menu) 55

IDE Project Management and Building Guide

selecting text, shortcutkey for 77
semaphores, definitionof 177
Service (External editor option) 141
Set as Active (Workspace window context menu). 46
settings (directory)t 105
severity level, definitionof 178
SFR
definitionof 178
inheaderfiles................................ 102
sfr (filename extension) 105
sharing, definitionof. 178
short addressing, definitionof. 178
shortcut Keys.o v 77
CUSTOMUZING .« . v vttt et 133
Show bookmarks (editor option). 138
Show line break characters (editor option) 139
Show line numbers (editor option) 138
Show right margin (editor option). 137
side-effect, definitionof 178
signals, definitionof 178
Simple format, definitionof 178
simulator, definitionof 178
skeleton code, definitionof. 178
Source Browser window 50
USING .« oot e 39
Source code color in Disassembly window (IDE option) . 149
source code control SyStems 36
Source Code Control (IDE Options dialog box) 148
source code, templates 73
Source file excluded from the build
(Workspace window icon).covuininin.. 44
source files
editingot 70
managing in projectsceeuenenen .. 35
pathsto 35, 82
special function registers (SFR)
definitionof 178
descriptionfiles o L. 101
inheaderfiles................................ 102
src, cpuname (subdirectory), 102

stack frames, definitionof. 178
stack segment, definitionof 178
Stack (IDE Options dialog box) 151
standard libraries, definitionof 178
static objects, definitionof 178
static overlay, definitionof 179
statically allocated memory, definitionof............. 178
status bar. 109
Step into functions (IDE option). 149
stepping, definitionof L. 178
STL container expansion (IDE option) 150
Stop build operation on (IDE Project options) 146
Stop Build (Workspace window context menu) 46
strings, text style ineditor. 77
structure value, definitionof 179
Subversion states and corresponding icons. 59
suc (filename extension)ouu..... 105
sxx (filename extension). 105
symbolic location, definitionof 179
symbols, definitionof L L L L. 179
syntax coloring

configurationfiles 101

Neditor . ..ot 77
Syntax Coloring (Editor colors and fonts option) 143
Syntax highlighting (editor option). 138
syntax highlighting, in editor window. 77
Tab Key Function (editor option) 136
Tab size (editoroption)ovvvnninenen... 136
$TARGET_BNAMES$ (argument variable)............ 128
$TARGET_BPATHS (argument variable). 128
$TARGET_DIRS (argument variable) 128
$TARGET_FNAMES (argument variable) 128
$TARGET_PATHS$ (argument variable) 128
target, definitionof 179
task, definitionof 179
Template dialog box (Editmenu) 96

Index °

templates for code, using 73
tentative definition, definitionof. 179
Terminal I/0 window, definitionof.................. 179
Terminal I/O (IDE Options dialogbox) 155
terminology. 21, 165
testing,ofcode 64
Text file (Workspace window icon). 44
thread, definitionof. 179
timer, definitionof 179
timeslice, definitionof 179
Toggle Bookmark (button) 109
Toggle Breakpoint (button). 109
Tool Output window, 111
toolbar, IDE 109
toolchain

extending 66

LS 17 15 2 25
$TOOLKIT_DIRS (argument variable) 128
toolsicon,inthisguide.............. 22
Toolsmenu.uuiiuiiineinnnnnnn. 131
tools, user-configured L L. 156
touch, open-source command line utility 64
trademarks 2
translation unit, definitionof. 179
trap, definitionof L .. 179
tutor, cpuname (subdirectory). 102
type qualifiers, definitionof 179
Type (External editoroption) 141
typographic conventions, 21
UBROF, definitionof 179
Undo Checkout (Source code control menu) 54
Undo (button)oov it 109
Update intervals (IDE option). 150
Update (Subversion controlmenu) 59
Use Code Templates (editor option) 142
Use colors (IDEoption)covvvivnenennnn.. 150

191

192

Use Custom Keyword File (editor option) 142

Use External Editor (External editor option). 140
Use register filter (Register filter option) 154
$USER_NAMES$ (argument variable). 128
value expressions, definitionof. 180
variables, using in arguments 158
veneer, definitionof 180
version

of Embedded Workbench. 164

ofthisguide.......... 2
Version Control Systemmenu. 53,58
Version Control System (Workspace
window contexXt Mmenu)uuienunennnan.. 46
version control Systems. i 36
VIEW MENU . o vttt et e e 119
virtual address, definitionof 180
virtual space

definitionof L i 180

enablingintheeditor.......................... 138
visualSTATE

partof the toolchain 25

projectfile 105
volatile storage, definitionof 180
von Neumann architecture, definitionof. 180
vsp (filename extension). 105

W

Warn when exceeding stack threshold (Stack option) 152
Warn when stack pointer is out of bounds (Stack option) . 152

warnings icon, inthisguide 22
watchpoints, definitionof 180
web sites, recommended.o oL 21
When source resolves to multiple function instances 149
Windowmenu. ..ot 163

IDE Project Management and Building Guide

WINAOWS . o .ot 107
organizingonthescreen 27
word completion, ineditor 70
Workspace window. i 43
drag-and-dropof files 36
Workspace windowiconsoiiiao... 43
Workspace (Workspace window icon) 43
workspaces
CIEALING . . ottt ettt e e e 37
USING .ottt 37
wsdt (filename extension). 105
XAR, definitionof 180
xcl (filename extension)cou.... 105
xIb (filename extension)couiinan... 105
XLIB, definitionof 180
XLINK, definitionof 180
xx,usedinthisguide 18
zero-initialized sections, definitionof................ 180
zero-overhead loop, definitionof 180
zone, definitionof L L i 180

Symbols

#pragma directive, definitionof 175
% stack usage threshold (Stack option). 151
$CONFIG_NAMES$ (argument variable) 127
CUR_DIRS (argument variable). 127
CUR_LINES (argument variable). 127
$DATES$ (argument variable) 127
$SEW_DIRS (argument variable) 128
EXE_DIRS (argument variable) 128
$FILE_DIRS (argument variable). 128

$FILE_FNAMES (argument variable) 128
$FILE_PATHS (argument variable) 128
$LIST_DIRS (argument variable). 128
$OBJ_DIRS (argument variable) 128
$PROJ_DIRS (argument variable) 128
$PROJ_FNAMES$ (argument variable) 128
$PROJ_PATHS (argument variable) 128
$TARGET_BNAMES$ (argument variable). 128
$TARGET_BPATHS (argument variable). 128
$TARGET_DIRS (argument variable) 128
$TARGET_FNAMES (argument variable) 128
$TARGET_PATHS (argument variable) 128
$TOOLKIT_DIRS (argument variable) 128
$USER_NAMES$ (argument variable). 128

Index °

193

	Brief contents
	Contents
	Tables
	Figures
	Preface
	Who should read this guide
	How to use this guide
	Some descriptions do not apply to your product
	Filename extensions
	The terms segment versus section

	What this guide contains
	Part 1. Project management and building
	Part 2. Reference information

	Other documentation
	User and reference guides
	The online help system
	Web sites

	Document conventions
	Typographic conventions
	Naming conventions

	Part 1. Project management and building
	The development environment
	The IAR Embedded Workbench IDE—an overview
	The toolchain
	An extensible and modular environment
	Window management
	Running the IDE
	Double-clicking the workspace filename

	Customizing the environment
	Organizing the windows on the screen
	Using docked versus floating windows
	Organizing windows

	Customizing the IDE
	Invoking external tools
	Adding command line commands

	Managing projects
	Introduction to managing projects
	Briefly about managing projects
	Navigating between project files

	How projects are organized
	Projects and workspaces
	Projects and build configurations
	Groups
	Source files and their paths
	Drag and drop

	Interacting with version control systems

	Procedures for managing projects
	Creating and managing workspaces
	Viewing the workspace
	Displaying browse information
	Interacting with SCC-compatible systems
	Setting up an SCC project in the SCC client application
	Viewing the SCC states
	Configuring the interaction between the IDE and SCC

	Interacting with Subversion
	Viewing the Subversion states

	Reference information on managing projects
	Workspace window
	Create New Project dialog box
	Configurations for project dialog box
	New Configuration dialog box
	Source Browser window
	Version Control System menu for SCC
	Select Source Code Control Provider dialog box
	Check In Files dialog box
	Check Out Files dialog box
	Source code control states
	Version Control System menu for Subversion
	Subversion states

	Building
	Building your project
	Setting options
	Using the Options dialog box

	Building a project
	Building multiple configurations in a batch
	Using pre- and post-build actions
	Using pre-build actions for time stamping

	Correcting errors found during build
	Building from the command line

	Extending the toolchain
	Tools that can be added to the toolchain
	Adding an external tool

	Editing
	Introduction to the IAR Embedded Workbench editor
	Briefly about the editor

	Using the editor
	Editing a file
	Word completion
	Parameter hint
	Code completion
	Indenting text automatically
	Matching brackets and parentheses
	Accessing online help for reference information
	Splitting the editor window into panes
	Dragging text
	Displaying status information

	Using and adding code templates
	Enabling code templates
	Inserting a code template into your source code
	Adding your own code templates
	Selecting the correct language version of the code template file

	Navigation
	Searching
	Customizing the editor environment
	Using and customizing editor commands and shortcut keys
	Syntax coloring

	Using an external editor

	Reference information on the editor
	Editor window
	Find in Files window
	Find All Declarations window
	Find All References window
	Find dialog box
	Replace dialog box
	Find in Files dialog box
	Incremental Search dialog box
	Template dialog box
	Editor shortcut key summary

	Part 2. Reference information
	Installed files
	Directory structure
	Root directory
	The cpuname directory
	The common directory
	The install-info directory

	File types
	Extending filename recognition

	IAR Embedded Workbench IDE reference
	Windows
	IAR Embedded Workbench IDE window
	Build window
	Tool Output window
	Debug Log window

	Menus
	File menu
	Edit menu
	View menu
	Project menu
	Erase Memory dialog box
	Options dialog box
	Argument variables
	Batch Build dialog box
	Edit Batch Build dialog box
	Tools menu
	Common Fonts options
	Key Bindings options
	Language options
	Editor options
	Configure Auto Indent dialog box
	External Editor options
	Editor Setup Files options
	Editor Colors and Fonts options
	Messages options
	Project options
	Source Code Control options
	Debugger options
	Stack options
	Register Filter options
	Terminal I/O options
	Configure Tools dialog box
	Filename Extensions dialog box
	Filename Extension Overrides dialog box
	Edit Filename Extensions dialog box
	Configure Viewers dialog box
	Edit Viewer Extensions dialog box
	Window menu
	Help menu

	Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z
	Symbols

