

IAR C/C++ Development
Guide
Compiling and Linking

for
RISC-V
DRISCV-9

2

COPYRIGHT NOTICE
© 2019–2023 IAR Systems AB.

No part of this document may be reproduced without the prior written consent of IAR
Systems AB. The software described in this document is furnished under a license and
may only be used or copied in accordance with the terms of such a license.

DISCLAIMER
The information in this document is subject to change without notice and does not
represent a commitment on any part of IAR Systems. While the information contained
herein is assumed to be accurate, IAR Systems assumes no responsibility for any errors
or omissions.

In no event shall IAR Systems, its employees, its contractors, or the authors of this
document be liable for special, direct, indirect, or consequential damage, losses, costs,
charges, claims, demands, claim for lost profits, fees, or expenses of any nature or kind.

TRADEMARKS
IAR Systems, IAR Embedded Workbench, Embedded Trust, C-Trust, IAR Connect,
C-SPY, C-RUN, C-STAT, IAR Visual State, IAR KickStart Kit, I-jet, I-jet Trace,
I-scope, IAR Academy, IAR, and the logotype of IAR Systems are trademarks or
registered trademarks owned by IAR Systems AB.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

RISC-V is a registered trademark of RISC-V International.

Adobe and Acrobat Reader are registered trademarks of Adobe Systems Incorporated.

All other product names are trademarks or registered trademarks of their respective
owners.

EDITION NOTICE
Ninth edition: October 2023

Part number: DRISCV-9

This guide applies to version 3.30.x of IAR Embedded Workbench® for RISC-V.

Internal reference: BB15, FF9.2.5, tut2009.1, csrct2010.1, V_110411, ISHP.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Brief contents
Tables ... 33

Preface .. 35

Part 1. Using the build tools ... 43

Introduction to the IAR build tools .. 45

Developing embedded applications .. 51

Data storage .. 65

Functions ... 69

Linking using ILINK .. 79

Linking your application .. 97

The DLIB runtime environment ... 113

Assembler language interface ... 153

Using C .. 175

Using C++ .. 185

Application-related considerations ... 193

Efficient coding for embedded applications 207

Part 2. Reference information ... 225

External interface details .. 227

Compiler options ... 237

Linker options .. 281

Data representation .. 315

Extended keywords .. 329
AFE1_AFE2-1:1

3

4

Pragma directives ... 343

Intrinsic functions ... 369

The preprocessor .. 381

C/C++ standard library functions .. 395

The linker configuration file .. 409

Section reference ... 447

The stack usage control file .. 455

IAR utilities .. 463

Implementation-defined behavior for Standard C++ 513

Implementation-defined behavior for Standard C 551

Implementation-defined behavior for C89 571

Index ... 583
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Contents
Tables ... 33

Preface .. 35

Who should read this guide ... 35

Required knowledge .. 35

How to use this guide .. 35

What this guide contains ... 36

Part 1. Using the build tools ... 36

Part 2. Reference information .. 36

Other documentation .. 37

User and reference guides .. 38

The online help system .. 38

Further reading ... 38

Web sites .. 39

Document conventions .. 39

Typographic conventions ... 40

Naming conventions .. 41

Part 1. Using the build tools ... 43

Introduction to the IAR build tools .. 45

The IAR build tools—an overview .. 45

The IAR C/C++ Compiler .. 45

The IAR Assembler ... 46

The IAR ILINK Linker .. 46

Specific ELF tools .. 46

External tools ... 46

IAR language overview ... 46

Device support ... 47

Supported RISC-V devices .. 47

Preconfigured support files .. 48

Examples for getting started .. 49
AFE1_AFE2-1:1

5

6

Special support for embedded systems .. 49

Extended keywords .. 49

Pragma directives ... 49

Predefined symbols .. 50

Accessing low-level features ... 50

Developing embedded applications .. 51

Developing embedded software using IAR build tools 51

CPU features and constraints ... 51

Mapping of memory ... 51

Communication with peripheral units .. 52

Event handling ... 52

System startup .. 52

Real-time operating systems .. 53

Interoperability with other build tools ... 53

The build process—an overview .. 54

The translation process ... 54

The linking process .. 55

After linking ... 56

Application execution—an overview ... 56

The initialization phase .. 57

The execution phase ... 60

The termination phase .. 60

Building applications—an overview .. 61

Basic project configuration .. 61

Core .. 62

Code model (RV64 only) ... 62

Optimization for speed and size ... 62

Data storage .. 65

Introduction ... 65

Different ways to store data ... 65

Storage of auto variables and parameters 66

The stack .. 66
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Contents

Dynamic memory on the heap ... 67

Potential problems .. 67

Functions ... 69

Function-related extensions .. 69

Code models (RV64 only) .. 69

The Medlow (medium-low) code model ... 70

The Medany (medium-any) code model .. 70

Primitives for interrupts, concurrency, and OS-related
programming .. 70

Interrupt functions ... 71

Monitor functions ... 72

Inlining functions ... 75

C versus C++ semantics ... 76

Features controlling function inlining .. 76

Stack protection ... 77

Stack protection in the IAR C/C++ Compiler 77

Using stack protection in your application .. 78

Linking using ILINK .. 79

Linker overview ... 79

Modules and sections .. 80

The linking process in detail .. 81

Placing code and data—the linker configuration file 83

A simple example of a configuration file ... 84

Initialization at system startup ... 86

The initialization process ... 87

C++ dynamic initialization ... 88

Stack usage analysis ... 89

Introduction to stack usage analysis ... 89

Performing a stack usage analysis ... 89

Result of an analysis—the map file contents 90

Specifying additional stack usage information 92

Limitations ... 93

Situations where warnings are issued .. 94
AFE1_AFE2-1:1

7

8

Call graph log ... 94

Call graph XML output .. 95

Linking your application .. 97

Linking considerations .. 97

Choosing a linker configuration file .. 97

Defining your own memory areas .. 98

Placing sections .. 99

Reserving space in RAM ... 100

Keeping modules .. 100

Keeping symbols and sections ... 101

Application startup ... 101

Setting up stack memory .. 101

Setting up heap memory .. 101

Setting up the atexit limit ... 102

Changing the default initialization ... 102

Interaction between ILINK and the application 106

Standard library handling ... 106

Producing output formats other than ELF/DWARF 107

Hints for troubleshooting .. 107

Relocation errors .. 107

Checking module consistency ... 108

Runtime model attributes .. 109

Using runtime model attributes .. 109

Linker optimizations ... 110

Virtual function elimination ... 110

Duplicate section merging ... 111

Instruction relaxation ... 111

The DLIB runtime environment ... 113

Introduction to the runtime environment 113

Runtime environment functionality ... 113

Briefly about input and output (I/O) .. 114

Briefly about C-SPY emulated I/O .. 116

Briefly about retargeting .. 116
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Contents

Setting up the runtime environment .. 117

Setting up your runtime environment .. 118

Retargeting—Adapting for your target system 119

Overriding library modules ... 121

Customizing and building your own runtime library 122

Additional information on the runtime environment 123

Bounds checking functionality ... 124

Runtime library configurations ... 124

Prebuilt runtime libraries ... 125

Formatters for printf ... 128

Formatters for scanf .. 129

The C-SPY emulated I/O mechanism .. 130

Replacing the debug write mechanism .. 131

Math functions ... 131

System startup and termination .. 132

System initialization ... 135

The DLIB low-level I/O interface .. 136

abort ... 137

clock ... 137

__close ... 138

__exit ... 138

getenv ... 138

__getzone ... 139

__iar_ReportAssert .. 140

__lseek ... 140

__open .. 140

raise .. 141

__read .. 141

remove .. 143

rename .. 143

signal .. 143

system ... 144

__time32, __time64 ... 144

__write ... 144
AFE1_AFE2-1:1

9

10

Configuration symbols for file input and output 146

Locale ... 146

Strtod .. 147

Managing a multithreaded environment 148

Multithread support in the DLIB runtime environment 148

Enabling multithread support ... 149

Setting up thread-local storage (TLS) .. 150

Assembler language interface ... 153

Mixing C and assembler ... 153

Intrinsic functions .. 153

Inline assembler .. 154

Mixing C and assembler modules .. 155

Reference information for inline assembler 156

An example of how to use clobbered memory 160

Calling assembler routines from C ... 161

Creating skeleton code ... 161

Compiling the skeleton code .. 162

Calling assembler routines from C++ .. 163

Calling convention .. 164

Function declarations .. 165

Using C linkage in C++ source code ... 165

Preserved versus scratch registers ... 165

Function entrance .. 166

Function exit ... 168

Examples .. 169

Assembler instructions used for calling functions 171

Call frame information ... 171

CFI directives ... 171

Creating assembler source with CFI support 172

Using C .. 175

C language overview ... 175

Extensions overview .. 175

Enabling language extensions .. 177
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Contents

IAR C language extensions ... 177

Extensions for embedded systems programming 177

Relaxations to Standard C .. 179

Using C++ .. 185

Overview—Standard C++ ... 185

Exceptions and RTTI ... 185

Enabling support for C++ .. 186

C++ feature descriptions ... 186

Using IAR attributes with classes .. 186

Templates .. 186

Function types .. 187

Using static class objects in interrupts ... 187

Using New handlers ... 187

Debug support in C-SPY .. 188

C++ language extensions ... 188

Migrating from the DLIB C++ library to the Libc++ C++
library ... 191

Application-related considerations ... 193

Output format considerations ... 193

Stack considerations ... 194

Stack size considerations ... 194

Heap considerations .. 194

Heap memory handlers .. 194

Heap sections in DLIB ... 195

Heap size and standard I/O .. 195

Interaction between the tools and your application 196

Checksum calculation for verifying image integrity 197

Briefly about checksum calculation ... 198

Calculating and verifying a checksum ... 200

Troubleshooting checksum calculation .. 205

Patching symbol definitions using $Super$$ and $Sub$$... 206

An example using the $Super$$ and $Sub$$ patterns 206
AFE1_AFE2-1:1

11

12

Efficient coding for embedded applications 207

Selecting data types .. 207

Using efficient data types ... 207

Floating-point types ... 207

Alignment of elements in a structure ... 208

Anonymous structs and unions .. 209

Controlling data and function placement in memory 210

Data placement at an absolute location .. 211

Data and function placement in sections ... 212

Controlling compiler optimizations ... 213

Scope for performed optimizations .. 214

Multi-file compilation units ... 214

Optimization levels .. 215

Speed versus size ... 216

Fine-tuning enabled transformations ... 216

Facilitating good code generation ... 219

Writing optimization-friendly source code 220

Saving stack space and RAM memory .. 220

Function prototypes .. 220

Integer types and bit negation .. 221

Protecting simultaneously accessed variables 222

Accessing special function registers .. 222

Passing values between C and assembler objects 224

Non-initialized variables .. 224

Part 2. Reference information ... 225

External interface details .. 227

Invocation syntax ... 227

Compiler invocation syntax ... 227

Linker invocation syntax .. 228

Passing options ... 228

Environment variables ... 229
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Contents

Include file search procedure .. 229

Compiler output ... 230

Linker output ... 231

Text encodings .. 232

Characters and string literals .. 233

Reserved identifiers ... 233

Diagnostics ... 234

Message format for the compiler ... 234

Message format for the linker .. 234

Severity levels .. 235

Setting the severity level .. 235

Internal error .. 235

Error return codes ... 236

Compiler options ... 237

Options syntax ... 237

Types of options ... 237

Rules for specifying parameters ... 237

Summary of compiler options .. 239

Descriptions of compiler options .. 243

--allow_misaligned_data_access .. 244

--c89 ... 244

--char_is_signed ... 244

--char_is_unsigned ... 245

--code_model ... 245

--core .. 245

--c++ ... 248

-D ... 248

--debug, -r ... 248

--dependencies ... 249

--deprecated_feature_warnings .. 250

--diag_error .. 251

--diag_remark ... 251

--diag_suppress .. 251
AFE1_AFE2-1:1

13

14

--diag_warning ... 252

--diagnostics_tables .. 252

--discard_unused_publics ... 253

--dlib_config ... 253

--do_explicit_zero_opt_in_named_sections 254

-e .. 254

--enable_restrict ... 255

--error_limit .. 255

-f ... 255

--f .. 256

--guard_calls ... 257

--header_context ... 257

-I ... 257

-l ... 258

--libc++ ... 259

--macro_positions_in_diagnostics ... 259

--max_cost_constexpr_call .. 259

--max_depth_constexpr_call .. 260

--mfc ... 260

--no_alt_link_reg_opt ... 260

--no_bom .. 261

--no_call_frame_info ... 261

--no_clustering ... 261

--no_code_motion .. 262

--no_cross_call ... 262

--no_cross_jump ... 262

--no_cse .. 263

--no_default_fp_contract .. 263

--no_exceptions .. 263

--no_fragments ... 263

--no_inline .. 264

--no_label_padding .. 264

--no_normalize_file_macros .. 264

--no_path_in_file_macros .. 265
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Contents

--no_rtti .. 265

--no_scheduling .. 265

--no_size_constraints ... 265

--no_static_destruction ... 266

--no_system_include .. 266

--no_tbaa .. 266

--no_typedefs_in_diagnostics .. 267

--no_uniform_attribute_syntax .. 267

--no_unroll ... 267

--no_warnings .. 268

--no_wrap_diagnostics ... 268

--nonportable_path_warnings .. 268

-O ... 269

--only_stdout .. 269

--output, -o ... 270

--pending_instantiations ... 270

--predef_macros ... 270

--preinclude ... 271

--preprocess .. 271

--public_equ ... 272

--relaxed_fp .. 272

--remarks .. 273

--require_prototypes ... 273

--set_default_interrupt_alignment .. 273

--short_enums ... 274

--silent .. 274

--source_encoding .. 274

--stack_protection ... 275

--strict ... 275

--system_include_dir .. 275

--text_out .. 276

--uniform_attribute_syntax .. 276

--use_c++_inline .. 277

--use_paths_as_written ... 277
AFE1_AFE2-1:1

15

16

--use_unix_directory_separators .. 277

--utf8_text_in ... 278

--version ... 278

--vla .. 278

--warn_about_c_style_casts ... 279

--warn_about_incomplete_constructors ... 279

--warn_about_missing_field_initializers ... 279

--warnings_affect_exit_code .. 280

--warnings_are_errors .. 280

Linker options .. 281

Summary of linker options ... 281

Descriptions of linker options ... 284

--accurate_math .. 284

--advanced_heap .. 284

--allow_misaligned_data_access .. 285

--auto_vector_setup .. 285

--basic_heap ... 285

--call_graph .. 286

--config ... 286

--config_def .. 286

--config_search ... 287

--core .. 287

--cpp_init_routine ... 287

--debug_lib ... 288

--default_to_complex_ranges ... 288

--define_symbol ... 289

--dependencies ... 289

--diag_error .. 290

--diag_remark ... 290

--diag_suppress .. 291

--diag_warning ... 291

--diagnostics_tables .. 292

--disable_codense_jal ... 292
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Contents

--disable_relaxation .. 292

--enable_stack_usage ... 293

--entry ... 293

--entry_list_in_address_order .. 294

--error_limit .. 294

--export_builtin_config .. 294

-f ... 294

--f .. 295

--force_output ... 296

--image_input ... 296

--keep ... 297

--log .. 298

--log_file ... 299

--mangled_names_in_messages ... 299

--manual_dynamic_initialization ... 299

--map .. 300

--merge_duplicate_sections ... 301

--no_bom .. 301

--no_entry ... 302

--no_fragments ... 302

--no_free_heap ... 302

--no_library_search .. 303

--no_locals .. 303

--no_range_reservations ... 303

--no_remove ... 304

--no_vfe .. 304

--no_warnings .. 304

--no_wrap_diagnostics ... 305

--only_stdout .. 305

--output, -o ... 305

--place_holder .. 305

--preconfig .. 306

--printf_multibytes ... 306

--redirect ... 307
AFE1_AFE2-1:1

17

18

--remarks .. 307

--scanf_multibytes .. 307

--search, -L ... 308

--silent .. 308

--small_math .. 308

--stack_usage_control .. 309

--strip .. 309

--text_out .. 309

--threaded_lib ... 310

--timezone_lib .. 310

--use_full_std_template_names ... 311

--use_optimized_variants ... 311

--utf8_text_in ... 312

--version ... 312

--vfe .. 313

--warnings_affect_exit_code .. 313

--warnings_are_errors .. 313

--whole_archive ... 314

Data representation .. 315

Alignment .. 315

Alignment on RISC-V .. 316

Basic data types—integer types .. 316

Integer types—an overview ... 316

Bool .. 317

The enum type .. 317

The char type ... 317

The wchar_t type ... 318

The char16_t type ... 318

The char32_t type ... 318

Bitfields .. 318

Basic data types—floating-point types 321

Floating-point environment .. 321

32-bit floating-point format ... 321
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Contents

64-bit floating-point format ... 322

Representation of special floating-point numbers 322

Pointer types .. 323

Function pointers .. 323

Data pointers .. 323

Casting ... 323

Structure types ... 324

Alignment of structure types .. 324

General layout ... 324

Packed structure types ... 324

Type qualifiers .. 326

Declaring objects volatile .. 326

Declaring objects volatile and const .. 327

Declaring objects const .. 327

Data types in C++ ... 327

Extended keywords .. 329

General syntax rules for extended keywords 329

Type attributes .. 329

Object attributes .. 331

Summary of extended keywords ... 332

Descriptions of extended keywords ... 333

__interrupt .. 333

__intrinsic .. 333

__machine .. 333

__monitor ... 334

__nmi ... 334

__no_alloc, __no_alloc16 ... 334

__no_alloc_str, __no_alloc_str16 ... 335

__no_init .. 336

__noreturn .. 336

__packed .. 336

__preemptive ... 338

__root ... 338
AFE1_AFE2-1:1

19

20

__ro_placement .. 339

__supervisor ... 339

__task ... 340

__user ... 340

__weak ... 340

Supported GCC attributes ... 341

Pragma directives ... 343

Summary of pragma directives .. 343

Descriptions of pragma directives .. 345

bitfields ... 345

calls .. 346

call_graph_root .. 347

data_alignment ... 347

default_function_attributes .. 348

default_variable_attributes ... 349

deprecated .. 350

diag_default .. 351

diag_error ... 351

diag_remark ... 352

diag_suppress ... 352

diag_warning .. 352

enter_leave ... 353

error .. 353

function_category ... 354

include_alias ... 354

inline ... 355

language ... 355

location ... 356

message .. 357

no_stack_protect .. 357

object_attribute ... 358

once .. 358

optimize .. 358
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Contents

pack ... 360

preemptive .. 361

__printf_args .. 361

public_equ .. 362

required .. 362

rtmodel ... 363

__scanf_args .. 363

section .. 364

stack_protect .. 364

STDC CX_LIMITED_RANGE ... 365

STDC FENV_ACCESS ... 365

STDC FP_CONTRACT .. 365

type_attribute ... 366

unroll .. 366

vector .. 367

weak ... 367

Intrinsic functions ... 369

Summary of intrinsic functions ... 369

Intrinsic functions for bit manipulation ... 370

Intrinsic functions for the P extension ... 371

Intrinsic functions for the Cache Management extensions 371

Intrinsic functions for Scalar cryptography 371

Intrinsic functions for AndeStar™ extensions 371

Descriptions of the intrinsic functions ... 372

__clear_bits_csr ... 372

__disable_interrupt .. 372

__enable_interrupt ... 372

__fp_absNN ... 372

__fp_classNN .. 373

__fp_copy_signNN .. 373

__fp_maxNN ... 374

__fp_minNN .. 374

__fp_negate_signNN ... 374
AFE1_AFE2-1:1

21

22

__fp_sqrtNN .. 374

__fp_xor_signNN .. 374

__get_interrupt_state ... 375

__iar_riscv_cbo_clean ... 375

__iar_riscv_cbo_flush .. 376

__iar_riscv_cbo_inval .. 376

__iar_riscv_cbo_zero ... 376

__iar_riscv_prefetch_i ... 376

__iar_riscv_prefetch_r ... 376

__iar_riscv_prefetch_w ... 377

__nds__clrov .. 377

__nds__rdov .. 377

__no_operation .. 377

__read_csr .. 377

__return_address .. 378

__riscv_ffb .. 378

__riscv_ffmism ... 378

__riscv_ffzmism ... 378

__riscv_flmism ... 378

__set_bits_csr .. 379

__set_interrupt_state .. 379

__wait_for_interrupt ... 379

__write_csr .. 379

The preprocessor .. 381

Overview of the preprocessor .. 381

Description of predefined preprocessor symbols 382

__BASE_FILE__ .. 382

__BUILD_NUMBER__ .. 382

__COUNTER__ .. 382

__cplusplus .. 382

__DATE__ .. 383

__EXCEPTIONS ... 383

__FILE__ ... 383
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Contents

__func__ .. 383

__FUNCTION__ ... 383

__IAR_SYSTEMS_ICC__ ... 384

__ICCRISCV__ ... 384

__LIBCPP .. 384

_LIBCPP_ENABLE_CXX17_REMOVED_FEATURES 384

__LINE__ .. 384

__PRETTY_FUNCTION__ .. 384

__riscv .. 385

__riscv_32e .. 385

__riscv_a ... 385

__riscv_arch_test .. 385

__riscv_atomic .. 385

__riscv_b ... 385

__riscv_bitmanip .. 386

__riscv_c ... 386

__riscv_cmodel_medany ... 386

__riscv_cmodel_medlow ... 386

__riscv_compressed ... 386

__riscv_d ... 386

__riscv_div ... 386

__riscv_dsp .. 387

__riscv_e ... 387

__riscv_f ... 387

__riscv_fdiv .. 387

__riscv_flen ... 387

__riscv_fsqrt ... 387

__riscv_i ... 388

__riscv_m ... 388

__riscv_mul .. 388

__riscv_muldiv ... 388

__riscv_p ... 388

__riscv_xbcountzeroes ... 388

__riscv_xlen ... 389
AFE1_AFE2-1:1

23

24

__riscv_zba ... 389

__riscv_zbb ... 389

__riscv_zbc ... 389

__riscv_zbpbo ... 389

__riscv_zbs ... 389

__riscv_zdinx .. 390

__riscv_zfinx .. 390

__riscv_zicbom ... 390

__riscv_zicbop .. 390

__riscv_zicboz .. 390

__riscv_zpsfoperand ... 390

__riscv_zpn ... 391

__RTTI__ .. 391

__STDC__ ... 391

__STDC_LIB_EXT1__ ... 391

__STDC_NO_ATOMICS__ ... 391

__STDC_NO_THREADS__ ... 391

__STDC_NO_VLA__ ... 391

__STDC_UTF16__ ... 392

__STDC_UTF32__ ... 392

__STDC_VERSION__ ... 392

__SUBVERSION__ .. 392

__TIME__ ... 392

__TIMESTAMP__ .. 392

__VER__ ... 392

Descriptions of miscellaneous preprocessor extensions 393

#include_next ... 393

NDEBUG .. 393

__STDC_WANT_LIB_EXT1__ ... 393

#warning ... 394

C/C++ standard library functions .. 395

C/C++ standard library overview ... 395

Header files .. 396
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Contents

Library object files ... 396

Alternative more accurate library functions 396

Reentrancy ... 396

The longjmp function ... 397

DLIB runtime environment—implementation details 397

Briefly about the DLIB runtime environment 397

C header files ... 398

C++ header files ... 399

Library functions as intrinsic functions ... 403

Not supported C/C++ functionality .. 403

Atomic operations .. 404

Added C functionality .. 404

Non-standard implementations .. 407

Symbols used internally by the library .. 408

The linker configuration file .. 409

Overview .. 409

Declaring the build type .. 410

build for directive ... 411

Defining memories and regions ... 411

define memory directive .. 412

define region directive ... 412

logical directive .. 413

Regions .. 415

Region literal .. 415

Region expression .. 416

Empty region .. 417

Section handling .. 418

define block directive ... 419

define section directive .. 421

define overlay directive .. 424

initialize directive ... 425

do not initialize directive .. 428

keep directive ... 429
AFE1_AFE2-1:1

25

26

place at directive .. 429

place in directive .. 431

reserve region ... 432

use init table directive .. 432

Section selection ... 434

section-selectors ... 435

extended-selectors .. 438

Using symbols, expressions, and numbers 439

check that directive .. 440

define symbol directive .. 440

export directive .. 441

expressions ... 442

keep symbol directive .. 443

numbers .. 443

Structural configuration .. 444

error directive ... 444

if directive .. 445

include directive ... 445

Section reference ... 447

Summary of sections ... 447

Descriptions of sections and blocks .. 448

.bss .. 448

CSTACK .. 449

.cstartup .. 449

.data .. 449

.data_init ... 449

HEAP ... 449

.iar.dynexit ... 450

.iar.locale_table .. 450

__iar_tls$$DATA .. 450

__iar_tls$$INITDATA .. 450

.init_array ... 451

.itim .. 451
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Contents

.jumptable ... 451

.mtext .. 451

.noinit ... 451

.preinit_array .. 452

.rodata ... 452

.stext ... 452

.tbss .. 452

.tdata ... 452

.text ... 453

.utext ... 453

The stack usage control file .. 455

Overview .. 455

C++ names ... 455

Stack usage control directives .. 455

call graph root directive ... 456

exclude directive .. 456

function directive ... 456

max recursion depth directive .. 457

no calls from directive .. 458

possible calls directive ... 458

Syntactic components .. 459

category .. 459

func-spec .. 459

module-spec ... 459

name ... 460

call-info .. 460

stack-size .. 460

size .. 461

IAR utilities .. 463

The IAR Archive Tool—iarchive .. 463

Invocation syntax ... 463

Summary of iarchive commands .. 464

Summary of iarchive options ... 465
AFE1_AFE2-1:1

27

28

Diagnostic messages .. 465

The IAR ELF Tool—ielftool ... 467

Invocation syntax ... 467

Summary of ielftool options .. 468

Specifying ielftool address ranges .. 468

The IAR ELF Dumper—ielfdump ... 469

Invocation syntax ... 469

Summary of ielfdump options .. 470

The IAR ELF Object Tool—iobjmanip .. 471

Invocation syntax ... 471

Summary of iobjmanip options .. 472

Diagnostic messages .. 472

The IAR Absolute Symbol Exporter—isymexport 474

Invocation syntax ... 474

Summary of isymexport options .. 475

Steering files .. 476

Hide directive ... 476

Rename directive .. 477

Show directive .. 477

Show-root directive .. 478

Show-weak directive .. 478

Diagnostic messages .. 478

Descriptions of options .. 480

-a ... 480

--all ... 481

--bin .. 481

--bin-multi .. 481

--checksum ... 482

--code ... 486

--core .. 487

--create ... 487

--delete, -d .. 487

--disasm_data ... 488

--edit ... 488
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Contents

--export_locals ... 489

--extract, -x ... 489

-f ... 490

--f .. 490

--fake_time ... 491

--fill .. 491

--front_headers ... 492

--generate_vfe_header .. 492

--ihex .. 493

--ihex-len .. 493

--no_bom .. 493

--no_header .. 494

--no_rel_section ... 494

--no_strtab .. 494

--no_utf8_in ... 495

--offset .. 495

--output, -o ... 496

--parity .. 496

--ram_reserve_ranges ... 497

--range .. 498

--raw ... 498

--remove_file_path ... 499

--remove_section .. 499

--rename_section .. 500

--rename_symbol ... 500

--replace, -r ... 500

--reserve_ranges ... 501

--section, -s ... 502

--segment, -g .. 502

--self_reloc ... 503

--show_entry_as ... 503

--silent .. 503

--simple .. 504

--simple-ne ... 504
AFE1_AFE2-1:1

29

30

--source ... 504

--srec ... 505

--srec-len .. 505

--srec-s3only ... 505

--strip .. 506

--symbols .. 506

--text_out .. 507

--titxt ... 507

--toc, -t .. 508

--update_symbol ... 508

--update_typeless_globals .. 509

--use_full_std_template_names ... 509

--utf8_text_in ... 510

--verbose, -V .. 510

--version ... 510

--vtoc .. 511

Implementation-defined behavior for Standard C++ 513

Descriptions of implementation-defined behavior for C++ 513

List of topics ... 513

Implementation quantities ... 548

Implementation-defined behavior for Standard C 551

Descriptions of implementation-defined behavior 551

J.3.1 Translation ... 551

J.3.2 Environment .. 552

J.3.3 Identifiers ... 553

J.3.4 Characters .. 553

J.3.5 Integers .. 555

J.3.6 Floating point ... 556

J.3.7 Arrays and pointers .. 557

J.3.8 Hints .. 557

J.3.9 Structures, unions, enumerations, and bitfields 557

J.3.10 Qualifiers ... 558

J.3.11 Preprocessing directives .. 558
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Contents

J.3.12 Library functions ... 561

J.3.13 Architecture ... 566

J.4 Locale ... 567

Implementation-defined behavior for C89 571

Descriptions of implementation-defined behavior 571

Translation ... 571

Environment ... 571

Identifiers ... 572

Characters ... 572

Integers ... 573

Floating point ... 574

Arrays and pointers .. 574

Registers ... 575

Structures, unions, enumerations, and bitfields 575

Qualifiers .. 576

Declarators ... 576

Statements .. 576

Preprocessing directives ... 576

Library functions for the IAR DLIB runtime environment 578

Index ... 583
AFE1_AFE2-1:1

31

32

AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Tables
1: Typographic conventions used in this guide ... 40

2: Naming conventions used in this guide .. 41

3: Code models .. 70

4: Sections holding initialized data ... 87

5: Description of a relocation error ... 107

6: Example of runtime model attributes .. 109

7: Library configurations ... 124

8: Explanations of the first element of runtime library names 126

9: Formatters for printf .. 128

10: Formatters for scanf .. 129

11: Library objects using TLS ... 149

12: Inline assembler operand constraints .. 157

13: Supported constraint modifiers ... 158

14: List of valid clobbers ... 160

15: Operand modifiers and transformations .. 160

16: Registers used for passing parameters .. 167

17: Registers used for returning values ... 168

18: Language extensions ... 177

19: Section operators and their symbols ... 179

20: Compiler optimization levels .. 215

21: Compiler environment variables ... 229

22: ILINK environment variables ... 229

23: Error return codes .. 236

24: Compiler options summary ... 239

25: Supported named extensions ... 246

26: Linker options summary ... 281

27: Integer types .. 316

28: Floating-point types .. 321

29: Extended keywords summary ... 332

30: Pragma directives summary .. 343

31: Intrinsic functions summary .. 369
AFE1_AFE2-1:1

33

34

32: Traditional Standard C header files—DLIB ... 398

33: C++ header files .. 399

34: New Standard C header files—DLIB ... 402

35: Examples of section selector specifications .. 437

36: Section summary ... 447

37: iarchive parameters ... 464

38: iarchive commands summary .. 464

39: iarchive options summary ... 465

40: ielftool parameters ... 467

41: ielftool options summary ... 468

42: ielfdumpriscv parameters .. 470

43: ielfdumpriscv options summary .. 470

44: iobjmanip parameters .. 471

45: iobjmanip options summary .. 472

46: isymexport parameters .. 474

47: isymexport options summary .. 475

48: Execution character sets and their encodings .. 515

49: C++ implementation quantities ... 549

50: Execution character sets and their encodings .. 554

51: Translation of multibyte characters in the extended source character set 567

52: Message returned by strerror()—DLIB runtime environment 568

53: Execution character sets and their encodings .. 572

54: Message returned by strerror()—DLIB runtime environment 581
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Preface
Welcome to the IAR C/C++ Development Guide for RISC-V. The purpose of this
guide is to provide you with detailed reference information that can help you
to use the build tools to best suit your application requirements. This guide
also gives you suggestions on coding techniques so that you can develop
applications with maximum efficiency.

Who should read this guide
Read this guide if you plan to develop an application using the C or C++ language for
RISC-V, and need detailed reference information on how to use the build tools.

REQUIRED KNOWLEDGE

To use the tools in IAR Embedded Workbench, you should have working knowledge of:

● The architecture and instruction set of the RISC-V core you are using (refer to the
chip manufacturer's documentation)

● The C or C++ programming language

● Application development for embedded systems

● The operating system of your host computer.

For more information about the other development tools incorporated in the IDE, refer
to their respective documentation, see Other documentation, page 37.

How to use this guide
When you start using the IAR C/C++ Compiler and Linker for RISC-V, you should read
Part 1. Using the build tools in this guide.

When you are familiar with the compiler and linker and have already configured your
project, you can focus more on Part 2. Reference information.

If you are new to using IAR Embedded Workbench, we suggest that you first go through
the tutorials, which you can find in IAR Information Center in the product, under
Product Explorer. They will help you get started.
AFE1_AFE2-1:1

35

36

What this guide contains

What this guide contains
Below is a brief outline and summary of the chapters in this guide.

PART 1. USING THE BUILD TOOLS

● Introduction to the IAR build tools gives an introduction to the IAR build tools,
which includes an overview of the tools, the programming languages, the available
device support, and extensions provided for supporting specific features of RISC-V.

● Developing embedded applications gives the information you need to get started
developing your embedded software using the IAR build tools.

● Data storage describes how to store data in memory.

● Functions gives a brief overview of function-related extensions—mechanisms for
controlling functions—and describes some of these mechanisms in more detail.

● Linking using ILINK describes the linking process using the IAR ILINK Linker and
the related concepts.

● Linking your application lists aspects that you must consider when linking your
application, including using ILINK options and tailoring the linker configuration
file.

● The DLIB runtime environment describes the DLIB runtime environment in which
an application executes. It covers how you can modify it by setting options,
overriding default library modules, or building your own library. The chapter also
describes system initialization introducing the file cstartup.s, how to use
modules for locale, and file I/O.

● Assembler language interface contains information required when parts of an
application are written in assembler language. This includes the calling convention.

● Using C gives an overview of the two supported variants of the C language, and an
overview of the compiler extensions, such as extensions to Standard C.

● Using C++ gives an overview of the level of C++ support.

● Application-related considerations discusses a selected range of application issues
related to using the compiler and linker.

● Efficient coding for embedded applications gives hints about how to write code that
compiles to efficient code for an embedded application.

PART 2. REFERENCE INFORMATION

● External interface details provides reference information about how the compiler
and linker interact with their environment—the invocation syntax, methods for
passing options to the compiler and linker, environment variables, the include file
search procedure, and the different types of compiler and linker output. The chapter
also describes how the diagnostic system works.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Preface

● Compiler options explains how to set options, gives a summary of the options, and
contains detailed reference information for each compiler option.

● Linker options gives a summary of the options, and contains detailed reference
information for each linker option.

● Data representation describes the available data types, pointers, and structure types.
This chapter also gives information about type and object attributes.

● Extended keywords gives reference information about each of the RISC-V-specific
keywords that are extensions to the standard C/C++ language.

● Pragma directives gives reference information about the pragma directives.

● Intrinsic functions gives reference information about functions to use for accessing
RISC-V-specific low-level features.

● The preprocessor gives a brief overview of the preprocessor, including reference
information about the different preprocessor directives, symbols, and other related
information.

● C/C++ standard library functions gives an introduction to the C or C++ library
functions, and summarizes the header files.

● The linker configuration file describes the purpose of the linker configuration file,
and describes its contents.

● Section reference gives reference information about the use of sections.

● The stack usage control file describes the syntax and semantics of stack usage
control files.

● IAR utilities describes the IAR utilities that handle the ELF and DWARF object
formats.

● Implementation-defined behavior for Standard C++ describes how the compiler
handles the implementation-defined areas of Standard C++.

● Implementation-defined behavior for Standard C describes how the compiler
handles the implementation-defined areas of Standard C.

● Implementation-defined behavior for C89 describes how the compiler handles the
implementation-defined areas of the C language standard C89.

Other documentation
User documentation is available as hypertext PDFs and as a context-sensitive online
help system in HTML format. You can access the documentation from the Information
Center or from the Help menu in the IAR Embedded Workbench IDE. The online help
system is also available via the F1 key.
AFE1_AFE2-1:1

37

38

Other documentation

USER AND REFERENCE GUIDES

The complete set of IAR development tools is described in a series of guides.
Information about:

● System requirements and information about how to install and register the IAR
products are available in the Installation and Licensing Quick Reference Guide and
the Licensing Guide.

● Using the IDE for project management and building, is available in the IDE Project
Management and Building Guide for RISC-V.

● Using the IAR C-SPY® Debugger, is available in the C-SPY® Debugging Guide
for RISC-V.

● Programming for the IAR C/C++ Compiler for RISC-V and linking, is available in
the IAR C/C++ Development Guide for RISC-V.

● Programming for the IAR Assembler for RISC-V, is available in the IAR Assembler
User Guide for RISC-V.

● Performing a static analysis using C-STAT and the required checks, is available in
the C-STAT® Static Analysis Guide.

● Using I-jet, refer to the IAR Debug probes User Guide for I-jet®.

Note: Additional documentation might be available depending on your product
installation.

THE ONLINE HELP SYSTEM

The context-sensitive online help contains information about:

● IDE project management and building

● Debugging using the IAR C-SPY® Debugger

● The IAR C/C++ Compiler and Linker

● The IAR Assembler

● C-STAT

FURTHER READING

These books might be of interest to you when using the IAR development tools:

● Barr, Michael, and Andy Oram, ed. Programming Embedded Systems in C and
C++ . O’Reilly & Associates.

● Harbison, Samuel P. and Guy L. Steele (contributor). C: A Reference Manual.
Prentice Hall.

● Labrosse, Jean J. Embedded Systems Building Blocks: Complete and Ready-To-Use
Modules in C. R&D Books.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Preface

● Mann, Bernhard. C für Mikrocontroller. Franzis-Verlag. [Written in German.]

● Meyers, Scott. Effective C++. Addison-Wesley.

● Meyers, Scott. More Effective C++. Addison-Wesley.

● Meyers, Scott. Effective STL. Addison-Wesley.

● Sutter, Herb. Exceptional C++: 47 Engineering Puzzles, Programming Problems,
and Solutions. Addison-Wesley.

The web site isocpp.org also has a list of recommended books about C++ programming.

WEB SITES

Recommended web sites:

● The chip manufacturer’s web site.

● The RISC-V International web site, www.riscv.org, that contains information and
news about the RISC-V ISA. This includes the most recent specifications.

● The IAR web site, www.iar.com, that holds application notes and other product
information.

● The web site of the C standardization working group,
www.open-std.org/jtc1/sc22/wg14.

● The web site of the C++ Standards Committee, www.open-std.org/jtc1/sc22/wg21.

● The C++ programming language web site, isocpp.org. This web site also has a list
of recommended books about C++ programming.

● The C and C++ reference web site, en.cppreference.com.

Document conventions
When, in the IAR documentation, we refer to the programming language C, the text also
applies to C++, unless otherwise stated.

When referring to a directory in your product installation, for example riscv\doc, the
full path to the location is assumed, for example c:\Program Files\IAR
Systems\Embedded Workbench N.n\riscv\doc, where the initial digit of the
version number reflects the initial digit of the version number of the IAR Embedded
Workbench shared components.
AFE1_AFE2-1:1

39

40

Document conventions

TYPOGRAPHIC CONVENTIONS

The IAR documentation set uses the following typographic conventions:

Style Used for

computer • Source code examples and file paths.
• Text on the command line.
• Binary, hexadecimal, and octal numbers.

parameter A placeholder for an actual value used as a parameter, for example
filename.h where filename represents the name of the file.

[option] An optional part of a linker or stack usage control directive, where [
and] are not part of the actual directive, but any [,], {, or } are part
of the directive syntax.

{option} A mandatory part of a linker or stack usage control directive, where {
and } are not part of the actual directive, but any [,], {, or } are part
of the directive syntax.

[option] An optional part of a command line option, pragma directive, or library
filename.

[a|b|c] An optional part of a command line option, pragma directive, or library
filename with alternatives.

{a|b|c} A mandatory part of a command line option, pragma directive, or
library filename with alternatives.

bold Names of menus, menu commands, buttons, and dialog boxes that
appear on the screen.

italic • A cross-reference within this guide or to another guide.
• Emphasis.

… An ellipsis indicates that the previous item can be repeated an arbitrary
number of times.

Identifies instructions specific to the IAR Embedded Workbench® IDE
interface.

Identifies instructions specific to the command line interface.

Identifies helpful tips and programming hints.

Identifies warnings.

Table 1: Typographic conventions used in this guide
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Preface

NAMING CONVENTIONS

The following naming conventions are used for the products and tools from IAR, when
referred to in the documentation:

Brand name Generic term

IAR Embedded Workbench® for RISC-V IAR Embedded Workbench®

IAR Embedded Workbench® IDE for RISC-V the IDE

IAR C-SPY® Debugger for RISC-V C-SPY, the debugger

IAR C-SPY® Simulator the simulator

IAR C/C++ Compiler™ for RISC-V the compiler

IAR Assembler™ for RISC-V the assembler

IAR ILINK Linker™ ILINK, the linker

IAR DLIB Runtime Environment™ the DLIB runtime environment

Table 2: Naming conventions used in this guide
AFE1_AFE2-1:1

41

42

Document conventions

AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Part 1. Using the build
tools
This part of the IAR C/C++ Development Guide for RISC-V includes these
chapters:

● Introduction to the IAR build tools

● Developing embedded applications

● Data storage

● Functions

● Linking using ILINK

● Linking your application

● The DLIB runtime environment

● Assembler language interface

● Using C

● Using C++

● Application-related considerations

● Efficient coding for embedded applications
43

44

Introduction to the IAR
build tools
● The IAR build tools—an overview

● IAR language overview

● Device support

● Special support for embedded systems

The IAR build tools—an overview
In the IAR product installation you can find a set of tools, code examples, and user
documentation, all suitable for developing software for RISC-V-based embedded
applications. The tools allow you to develop your application in C, C++, or in assembler
language.

IAR Embedded Workbench® is a powerful Integrated Development Environment (IDE)
that allows you to develop and manage complete embedded application projects. It
provides an easy-to-learn and highly efficient development environment with maximum
code inheritance capabilities, and comprehensive and specific target support. IAR
Embedded Workbench promotes a useful working methodology, and therefore a
significant reduction in development time.

For information about the IDE, see the IDE Project Management and Building Guide
for RISC-V.

The compiler, assembler, and linker can also be run from a command line environment,
if you want to use them as external tools in an already established project environment.

THE IAR C/C++ COMPILER

The IAR C/C++ Compiler for RISC-V is a state-of-the-art compiler that offers the
standard features of the C and C++ languages, plus extensions designed to take
advantage of the RISC-V-specific facilities.
AFE1_AFE2-1:1

45

46

IAR language overview

THE IAR ASSEMBLER

The IAR Assembler for RISC-V is a powerful relocating macro assembler with a
versatile set of directives and expression operators. The assembler features a built-in C
language preprocessor, and supports conditional assembly.

THE IAR ILINK LINKER

The IAR ILINK Linker for RISC-V is a powerful, flexible software tool for use in the
development of embedded controller applications. It is equally well suited for linking
small, single-file, absolute assembler programs as it is for linking large, relocatable
input, multi-module, C/C++, or mixed C/C++ and assembler programs.

SPECIFIC ELF TOOLS

ILINK both uses and produces industry-standard ELF and DWARF as object format,
additional IAR utilities that handle these formats are provided:

● The IAR Archive Tool—iarchive—creates and manipulates a library (archive) of
several ELF object files

● The IAR ELF Tool—ielftool—performs various transformations on an ELF
executable image (such as, fill, checksum, format conversion etc)

● The IAR ELF Dumper for RISC-V—ielfdumpriscv—creates a text
representation of the contents of an ELF relocatable or executable image

● The IAR ELF Object Tool—iobjmanip—is used for performing low-level
manipulation of ELF object files

● The IAR Absolute Symbol Exporter—isymexport—exports absolute symbols
from a ROM image file, so that they can be used when linking an add-on
application.

EXTERNAL TOOLS

For information about how to extend the tool chain in the IDE, see the IDE Project
Management and Building Guide for RISC-V.

IAR language overview
The IAR C/C++ Compiler for RISC-V supports:

● C, the most widely used high-level programming language in the embedded systems
industry. You can build freestanding applications that follow these standards:

● Standard C—also known as C18. Hereafter, this standard is referred to as
Standard C in this guide.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Introduction to the IAR build tools

● C89—also known as C94, C90, and ANSI C.

● Standard C++—also known as C++17. A well-established object-oriented
programming language with a full-featured library well suited for modular
programming. The IAR implementation of Standard C++ does not support
exceptions and runtime type information (RTTI), and offers a choice of two
different standard libraries:

● DLIB, which is a C++14 library, and which comes in two configurations:
Normal and Full. The Normal configuration is smaller and offers slightly less
functionality.

● Libc++, which is a C++17 library. It has only one configuration, corresponding
to the Full configuration of the DLIB library.

Each of the supported languages can be used in strict or relaxed mode, or relaxed with
IAR extensions enabled. The strict mode adheres to the standard, whereas the relaxed
mode allows some common deviations from the standard. Both the strict and the relaxed
mode might contain support for features in future versions of the C/C++ standards.

For more information about C, see the chapter Using C.

For more information about C++, see the chapter Using C++.

For information about how the compiler handles the implementation-defined areas of
the languages, see the chapters Implementation-defined behavior for Standard C and
Implementation-defined behavior for Standard C++.

It is also possible to implement parts of the application, or the whole application, in
assembler language. See the IAR Assembler User Guide for RISC-V.

Device support
To get a smooth start with your product development, the IAR product installation
comes with a wide range of device-specific support.

SUPPORTED RISC-V DEVICES

The IAR C/C++ Compiler for RISC-V supports these standard extensions to the
RISC-V architecture:

● Standard extension for Integer Multiplication and Division (M)

● Standard extension for Atomic Instructions (A)

● Standard extensions for Single-Precision Floating-Point operations on dedicated
floating-point registers (F) and on integer registers (Zfinx)

● Standard extensions for Double-Precision Floating-Point operations on dedicated
floating-point registers (D) and on integer registers (Zdinx)
AFE1_AFE2-1:1

47

48

Device support

● Standard extension for Compressed Instructions (C)

● Standard extension for Bit Manipulation (B)

(Zba, Zbb, Zbc, and Zbs)

● Standard extension for Packed-SIMD Instructions (P), including the three subsets
Zbpbo, Zpfsoperand, and Zpn

● Standard extension for User-Level Interrupts (N)

● Standard extensions for Cache Maintenance Operations (CMO): Zicbom, Zicbop,
and Zicboz

In addition, the non-standard AndeStar™ extensions CoDense, DSP, and V5
Performance are supported.

The RV32I, RV32E, and RV64I base integer instruction sets are supported.

Use the --core option to select the architecture extensions for which the code will be
generated, see --core, page 245.

In the IDE, choose Project>Options>General Options>Target and choose your
device from the Device drop-down list. The supported architecture extensions will then
be automatically selected.

PRECONFIGURED SUPPORT FILES

The IAR product installation contains preconfigured files for supporting different
devices. If you need additional files for device support, they can be created using one of
the provided ones as a template.

Header files for I/O

Standard peripheral units are defined in device-specific I/O header files with the
filename extension h. The product package supplies I/O files for a number of devices
that are available at the time of the product release. You can find these files in the
riscv\inc directory. Make sure to include the appropriate include file in your
application source files. If you need additional I/O header files, they can be created using
one of the provided ones as a template.

Linker configuration files

The riscv\config\linker directory contains ready-made linker configuration files
for all supported devices. The files have the filename extension icf and contain the
information required by the linker. For more information about the linker configuration
file, see Placing code and data—the linker configuration file, page 83, and for reference
information, the chapter The linker configuration file.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Introduction to the IAR build tools

Device description files

The debugger handles several of the device-specific requirements, such as definitions of
available memory areas, peripheral registers and groups of these, by using device
description files. These files are located in the riscv\config\debugger directory and
they have the filename extension ddf. The peripheral registers and groups of these can
be defined in separate files (filename extension sfr), which in that case are included in
the ddf file. For more information about these files, see the C-SPY® Debugging Guide
for RISC-V.

EXAMPLES FOR GETTING STARTED

Example applications are provided with IAR Embedded Workbench. You can use these
examples to get started using the development tools from IAR. You can also use the
examples as a starting point for your application project.

You can find the examples in the riscv\examples directory. The examples are ready
to be used as is. They are supplied with ready-made workspace files, together with
source code files and all other related files. For information about how to run an example
project, see the IDE Project Management and Building Guide for RISC-V.

Special support for embedded systems
This section briefly describes the extensions provided by the compiler to support
specific features of RISC-V.

EXTENDED KEYWORDS

The compiler provides a set of keywords that can be used for configuring how the code
is generated. For example, there are keywords for controlling how to access and store
data objects, as well as for controlling how a function should work internally and how
it should be called/returned.

By default, language extensions are enabled in the IDE.

The compiler command line option -e makes the extended keywords available, and
reserves them so that they cannot be used as variable names. See -e, page 254 for
additional information.

For more information, see the chapter Extended keywords. See also Data storage and
Functions.

PRAGMA DIRECTIVES

The pragma directives control the behavior of the compiler, for example how it allocates
memory, whether it allows extended keywords, and whether it issues warning messages.
AFE1_AFE2-1:1

49

50

Special support for embedded systems

The pragma directives are always enabled in the compiler. They are consistent with
standard C, and are useful when you want to make sure that the source code is portable.

For more information about the pragma directives, see the chapter Pragma directives.

PREDEFINED SYMBOLS

With the predefined preprocessor symbols, you can inspect your compile-time
environment, for example time of compilation or the build number of the compiler.

For more information about the predefined symbols, see the chapter The preprocessor.

ACCESSING LOW-LEVEL FEATURES

For hardware-related parts of your application, accessing low-level features is essential.
The compiler supports several ways of doing this: intrinsic functions, mixing C and
assembler modules, and inline assembler. For information about the different methods,
see Mixing C and assembler, page 153.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Developing embedded
applications
● Developing embedded software using IAR build tools

● The build process—an overview

● Application execution—an overview

● Building applications—an overview

● Basic project configuration

Developing embedded software using IAR build tools
Typically, embedded software written for a dedicated microcontroller is designed as an
endless loop waiting for some external events to happen. The software is located in
ROM and executes on reset. You must consider several hardware and software factors
when you write this kind of software. To assist you, compiler options, extended
keywords, pragma directives, etc., are included.

CPU FEATURES AND CONSTRAINTS

A basic feature of RISC-V is its open Instruction Set Architecture (ISA) that is available
for anyone to use and to some extent customize. It is a modular design based upon
standard base parts with added optional extensions. This allows for a very wide range of
different CPU and microcontroller implementations.

When developing software for RISC-V, you must consider some CPU constraints, such
as the available instruction set extensions, and features like the memory protection unit
and the memory configuration.

The compiler supports this by means of compiler options, extended keywords, pragma
directives, etc.

MAPPING OF MEMORY

Embedded systems typically contain various types of memory, such as on-chip RAM,
external DRAM or SRAM, ROM, EEPROM, or flash memory.
AFE1_AFE2-1:1

51

52

Developing embedded software using IAR build tools

As an embedded software developer, you must understand the features of the different
types of memory. For example, on-chip RAM is often faster than other types of
memories, and variables that are accessed often would in time-critical applications
benefit from being placed here. Conversely, some configuration data might be seldom
accessed but must maintain its value after power off, so it should be saved in EEPROM
or flash memory.

For efficient memory usage, the compiler provides several mechanisms for controlling
placement of functions and data objects in memory. For more information, see
Controlling data and function placement in memory, page 210.

The linker places sections of code and data in memory according to the directives you
specify in the linker configuration file, see Placing code and data—the linker
configuration file, page 83.

COMMUNICATION WITH PERIPHERAL UNITS

If external devices are connected to the microcontroller, you might need to initialize and
control the signaling interface, for example by using chip select pins, and detect and
handle external interrupt signals. Typically, this must be initialized and controlled at
runtime. The normal way to do this is to use special function registers (SFR). These are
typically available at dedicated addresses, containing bits that control the chip
configuration.

Standard peripheral units are defined in device-specific I/O header files with the
filename extension h. See Device support, page 47. For an example, see Accessing
special function registers, page 222.

EVENT HANDLING

In embedded systems, using interrupts is a method for handling external events
immediately, for example, detecting that a button was pressed. In general, when an
interrupt occurs in the code, the core immediately stops executing the code it runs, and
starts executing an interrupt routine instead.

The compiler provides various primitives for managing hardware and software
interrupts, which means that you can write your interrupt routines in C, see Primitives
for interrupts, concurrency, and OS-related programming, page 70.

SYSTEM STARTUP

In all embedded systems, system startup code is executed to initialize the system—both
the hardware and the software system—before the main function of the application is
called.

As an embedded software developer, you must ensure that the startup code is located at
the dedicated memory addresses, or can be accessed using a pointer from the vector
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Developing embedded applications

table. This means that startup code and the initial vector table must be placed in
non-volatile memory, such as ROM, EPROM, or flash.

A C/C++ application further needs to initialize all global variables. This initialization is
handled by the linker in conjunction with the system startup code. For more information,
see Application execution—an overview, page 56.

REAL-TIME OPERATING SYSTEMS

In many cases, the embedded application is the only software running in the system.
However, using an RTOS has some advantages.

For example, the timing of high-priority tasks is not affected by other parts of the
program which are executed in lower priority tasks. This typically makes a program
more deterministic and can reduce power consumption by using the CPU efficiently and
putting the CPU in a lower-power state when idle.

Using an RTOS can make your program easier to read and maintain, and in many cases
smaller as well. Application code can be cleanly separated into tasks that are
independent of each other. This makes teamwork easier, as the development work can
be easily split into separate tasks which are handled by one developer or a group of
developers.

Finally, using an RTOS reduces the hardware dependence and creates a clean interface
to the application, making it easier to port the program to different target hardware.

See also Managing a multithreaded environment, page 148.

INTEROPERABILITY WITH OTHER BUILD TOOLS

For various reasons, one of which is to be able to generate better code, the IAR compiler
and linker are not fully compliant with the RISC-V ABI specification, and linking with
libraries compiled with GCC is not supported. Note that the current RISC-V ABI
specification is incomplete—it does not define all the support functions that other tools
use, only a calling convention.

The IAR Compiler for RISC-V is not in all respects compatible with the GCC calling
convention for RISC-V. In particular, the conventions differ in these important areas:

● vararg's (that is, printf-like functions)

● Functions that take or return small structs. The IAR Compiler passes these on the
stack, not in registers.

The set of support functions that the IAR Compiler for RISC-V uses is different from
what GCC and other tools use.

For more information about the compiler's calling convention, see Calling convention,
page 164.
AFE1_AFE2-1:1

53

54

The build process—an overview

The build process—an overview
This section gives an overview of the build process—how the various build tools
(compiler, assembler, and linker) fit together, going from source code to an executable
image.

To become familiar with the process in practice, you should go through the tutorials
available from the IAR Information Center.

THE TRANSLATION PROCESS

There are two tools in the IDE that translate application source files to intermediary
object files—the IAR C/C++ Compiler and the IAR Assembler. Both produce
relocatable object files in the industry-standard format ELF, including the DWARF
format for debug information.

Note: The compiler can also be used for translating C source code into assembler source
code. If required, you can modify the assembler source code which can then be
assembled into object code. For more information about the IAR Assembler, see the IAR
Assembler User Guide for RISC-V.

This illustration shows the translation process:

After the translation, you can choose to pack any number of modules into an archive, or
in other words, a library. The important reason you should use libraries is that each
module in a library is conditionally linked in the application, or in other words, is only
included in the application if the module is used directly or indirectly by a module
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Developing embedded applications

supplied as an object file. Optionally, you can create a library, then use the IAR utility
iarchive.

THE LINKING PROCESS

The relocatable modules in object files and libraries, produced by the IAR compiler and
assembler cannot be executed as is. To become an executable application, they must be
linked.

The IAR ILINK Linker (ilinkriscv.exe) is used for building the final application.
Normally, the linker requires the following information as input:

● Several object files and possibly certain libraries

● A program start label (set by default)

● The linker configuration file that describes placement of code and data in the
memory of the target system

This illustration shows the linking process:

Note: The Standard C/C++ library contains support routines for the compiler, and the
implementation of the C/C++ standard library functions.

While linking, the linker might produce error messages and logging messages on
stdout and stderr. The log messages are useful for understanding why an application
was linked the way it was, for example, why a module was included or a section
removed.
AFE1_AFE2-1:1

55

56

Application execution—an overview

For more information about the linking process, see The linking process in detail, page
81.

AFTER LINKING

The IAR ILINK Linker produces an absolute object file in ELF format that contains the
executable image. After linking, the produced absolute executable image can be used
for:

● Loading into the IAR C-SPY Debugger or any other compatible external debugger
that reads ELF and DWARF.

● Programming to a flash/PROM using a flash/PROM programmer. Before this is
possible, the actual bytes in the image must be converted into the standard Motorola
32-bit S-record format or the Intel Hex-32 format. For this, use ielftool, see The
IAR ELF Tool—ielftool, page 467.

This illustration shows the possible uses of the absolute output ELF/DWARF file:

Application execution—an overview
This section gives an overview of the execution of an embedded application divided into
three phases, the:

● Initialization phase

● Execution phase

● Termination phase.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Developing embedded applications

THE INITIALIZATION PHASE

Initialization is executed when an application is started (the CPU is reset) but before the
main function is entered. For simplicity, the initialization phase can be divided into:

● Hardware initialization, which as a minimum, generally initializes the stack pointer.

The hardware initialization is typically performed in the system startup code
cstartup.s and if required, by an extra low-level routine that you provide. It might
include resetting/restarting the rest of the hardware, setting up the CPU, etc, in
preparation for the software C/C++ system initialization.

● Software C/C++ system initialization

Typically, this includes assuring that every global (statically linked) C/C++ symbol
receives its proper initialization value before the main function is called.

● Application initialization

This depends entirely on your application. It can include setting up an RTOS kernel
and starting initial tasks for an RTOS-driven application. For a bare-bone application,
it can include setting up various interrupts, initializing communication, initializing
devices, etc.

For a ROM/flash-based system, constants and functions are already placed in ROM. The
linker has already divided the available RAM into different areas for variables, stack,
heap, etc. All symbols placed in RAM must be initialized before the main function is
called.
AFE1_AFE2-1:1

57

58

Application execution—an overview

The following sequence of illustrations gives a simplified overview of the different
stages of the initialization.

1 When an application is started, the system startup code first performs hardware
initialization, such as initialization of the stack pointer to point at the end of the
predefined stack area:
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Developing embedded applications

2 Then, memories that should be zero-initialized are cleared, in other words, filled with
zeros:

Typically, this is data referred to as zero-initialized data—variables declared as, for
example, int i = 0;

3 For initialized data, data declared, for example, like int i = 6; the initializers are
copied from ROM to RAM
AFE1_AFE2-1:1

59

60

Application execution—an overview

Then, dynamically initialized static objects are constructed, such as C++ objects.

4 Finally, the main function is called:

For more information about each stage, see System startup and termination, page 132.
For more information about data initialization, see Initialization at system startup, page
86.

THE EXECUTION PHASE

The software of an embedded application is typically implemented as a loop, which is
either interrupt-driven, or uses polling for controlling external interaction or internal
events. For an interrupt-driven system, the interrupts are typically initialized at the
beginning of the main function.

In a system with real-time behavior and where responsiveness is critical, a multi-task
system might be required. This means that your application software should be
complemented with a real-time operating system (RTOS). In this case, the RTOS and
the different tasks must also be initialized at the beginning of the main function.

THE TERMINATION PHASE

Typically, the execution of an embedded application should never end. If it does, you
must define a proper end behavior.

To terminate an application in a controlled way, either call one of the Standard C library
functions exit, _Exit, quick_exit, or abort, or return from main. If you return
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Developing embedded applications

from main, the exit function is executed, which means that C++ destructors for static
and global variables are called (C++ only) and all open files are closed.

Of course, in case of incorrect program logic, the application might terminate in an
uncontrolled and abnormal way—a system crash.

For more information about this, see System termination, page 134.

Building applications—an overview
In the command line interface, the following line compiles the source file myfile.c
into the object file myfile.o using the default settings:

iccriscv myfile.c

You must also specify some critical options, see Basic project configuration, page 61.

On the command line, the following line can be used for starting the linker:

ilinkriscv myfile.o myfile2.o -o a.out --config my_configfile.icf

In this example, myfile.o and myfile2.o are object files, and my_configfile.icf
is the linker configuration file. The option -o specifies the name of the output file.

Note: By default, the label where the application starts is __iar_program_start.
You can use the --entry command line option to change this.

When building a project, the IAR Embedded Workbench IDE can produce extensive
build information in the Build messages window. This information can be useful, for
example, as a base for producing batch files for building on the command line. You can
copy the information and paste it in a text file. To activate extensive build information,
right-click in the Build messages window, and select All on the context menu.

Basic project configuration
This section gives an overview of the basic settings needed to generate the best code for
the RISC-V device you are using. You can specify the options either from the command
line interface or in the IDE. On the command line, you must specify each option
separately, but if you use the IDE, many options will be set automatically, based on your
settings of some of the fundamental options.

You need to make settings for:

● Processor core, including the supported extensions

● Code model (only for RV64)

● Optimization settings
AFE1_AFE2-1:1

61

62

Basic project configuration

● Runtime environment, see Setting up the runtime environment, page 117

● Customizing the ILINK configuration, see the chapter Linking your application.

In addition to these settings, you can use many other options and settings to fine-tune
the result even further. For information about how to set options and for a list of all
available options, see the chapters Compiler options, Linker options, and the IDE
Project Management and Building Guide for RISC-V, respectively.

CORE

To make the compiler generate optimum code, you should configure it for the RISC-V
device you are using.

The compiler supports RV32I, RV32E, and RV64I devices, including some extensions.

Use the --core option to select the architecture extensions for which the code will be
generated, see --core, page 245.

In the IDE, choose Project>Options>General Options>Target and choose an
appropriate device from the Device drop-down list. The supported architecture
extensions will then be automatically selected.

Note: Device-specific configuration files for the linker and the debugger will also be
automatically selected.

CODE MODEL (RV64 ONLY)

The compiler supports code models that you can set on file level to control how
generated code and data is addressed and linked, and which instructions that are used to
generate addresses for global symbols. These code models are available:

● The Medlow (medium-low) code model enforces the same behavior as for RV32.
The generated code can be up to 2 Gbytes and must lie between absolute addresses
–0x8000'0000 and +0x8000'0000, generally linked around address
0x0000'0000.

● The Medany (medium-any) code model allows for generated code up to 2 Gbytes,
placed within any single 2 Gbytes address range anywhere in memory. This is the
default code model.

For more information about the code models, see the chapter Functions.

OPTIMIZATION FOR SPEED AND SIZE

The compiler’s optimizer performs, among other things, dead-code elimination,
constant propagation, inlining, common sub-expression elimination, and precision
reduction. It also performs loop optimizations, such as unrolling and induction variable
elimination.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Developing embedded applications

You can choose between several optimization levels, and for the highest level you can
choose between different optimization goals—size, speed, or balanced. Most
optimizations will make the application both smaller and faster. However, when this is
not the case, the compiler uses the selected optimization goal to decide how to perform
the optimization.

The optimization level and goal can be specified for the entire application, for individual
files, and for individual functions. In addition, some individual optimizations, such as
function inlining, can be disabled.

For information about compiler optimizations and for more information about efficient
coding techniques, see the chapter Efficient coding for embedded applications.
AFE1_AFE2-1:1

63

64

Basic project configuration

AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Data storage
● Introduction

● Storage of auto variables and parameters

● Dynamic memory on the heap

Introduction
A 32-bit RISC-V core can address continuous memory ranging from 0x0000'0000 to
0xFFFF'FFFF. A 64-bit RISC-V core can address continuous memory ranging from
0x0000'0000'0000'0000 to 0xFFFF'FFFF'FFFF'FFFF. Different types of physical
memory can be placed in the memory range. A typical application will have both
read-only memory (ROM) and read/write memory (RAM). In addition, some parts of
the memory range contain processor control registers and peripheral units.

DIFFERENT WAYS TO STORE DATA

In a typical application, data can be stored in memory in three different ways:

● Auto variables
All variables that are local to a function, except those declared static, are stored either
in registers or on the stack. These variables can be used as long as the function
executes. When the function returns to its caller, the memory space is no longer valid.
For more information, see Storage of auto variables and parameters, page 66.

● Global variables, module-static variables, and local variables declared static
In this case, the memory is allocated once and for all. The word static in this context
means that the amount of memory allocated for this kind of variables does not change
while the application is running. RISC-V has one single address space and the
compiler supports full memory addressing.

● Dynamically allocated data
An application can allocate data on the heap, where the data remains valid until it is
explicitly released back to the system by the application. This type of memory is
useful when the number of objects is not known until the application executes.

Note: There are potential risks connected with using dynamically allocated data in
systems with a limited amount of memory, or systems that are expected to run for a
long time. For more information, see Dynamic memory on the heap, page 67.
AFE1_AFE2-1:1

65

66

Storage of auto variables and parameters

Storage of auto variables and parameters
Variables that are defined inside a function—and not declared static—are named auto
variables by the C standard. A few of these variables are placed in processor registers,
while the rest are placed on the stack. From a semantic point of view, this is equivalent.
The main differences are that accessing registers is faster, and that less memory is
required compared to when variables are located on the stack.

Auto variables can only live as long as the function executes—when the function
returns, the memory allocated on the stack is released.

THE STACK

The stack can contain:

● Local variables and parameters not stored in registers

● Temporary results of expressions

● The return value of a function (unless it is passed in registers)

● Processor state during interrupts

● Processor registers that should be restored before the function returns (callee-save
registers).

● Canaries, used in stack-protected functions. See Stack protection, page 77.

The stack is a fixed block of memory, divided into two parts. The first part contains
allocated memory used by the function that called the current function, and the function
that called it, etc. The second part contains free memory that can be allocated. The
borderline between the two areas is called the top of stack and is represented by the stack
pointer, which is a dedicated processor register. Memory is allocated on the stack by
moving the stack pointer.

A function should never refer to the memory in the area of the stack that contains free
memory. The reason is that if an interrupt occurs, the called interrupt function can
allocate, modify, and—of course—deallocate memory on the stack.

See also Stack considerations, page 194 and Setting up stack memory, page 101.

Advantages

The main advantage of the stack is that functions in different parts of the program can
use the same memory space to store their data. Unlike a heap, a stack will never become
fragmented or suffer from memory leaks.

It is possible for a function to call itself either directly or indirectly—a recursive
function—and each invocation can store its own data on the stack.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Data storage

Potential problems

The way the stack works makes it impossible to store data that is supposed to live after
the function returns. The following function demonstrates a common programming
mistake. It returns a pointer to the variable x, a variable that ceases to exist when the
function returns.

int *MyFunction()
{
 int x;
 /* Do something here. */
 return &x; /* Incorrect */
}

Another problem is the risk of running out of stack space. This will happen when one
function calls another, which in turn calls a third, etc., and the sum of the stack usage of
each function is larger than the size of the stack. The risk is higher if large data objects
are stored on the stack, or when recursive functions are used.

Dynamic memory on the heap
Memory for objects allocated on the heap will live until the objects are explicitly
released. This type of memory storage is very useful for applications where the amount
of data is not known until runtime.

In C, memory is allocated using the standard library function malloc, or one of the
related functions calloc and realloc. The memory is released again using free.

In C++, a special keyword, new, allocates memory and runs constructors. Memory
allocated with new must be released using the keyword delete.

For information about how to set up the size for heap memory, see Setting up heap
memory, page 101.

POTENTIAL PROBLEMS

Applications that use heap-allocated data objects must be carefully designed, as it is
easy to end up in a situation where it is not possible to allocate objects on the heap.

The heap can become exhausted if your application uses too much memory. It can also
become full if memory that no longer is in use was not released.

For each allocated memory block, a few bytes of data for administrative purposes is
required. For applications that allocate a large number of small blocks, this
administrative overhead can be substantial.

There is also the matter of fragmentation—this means a heap where small pieces of free
memory are separated by memory used by allocated objects. It is not possible to allocate
AFE1_AFE2-1:1

67

68

Dynamic memory on the heap

a new object if no piece of free memory is large enough for the object, even though the
sum of the sizes of the free memory exceeds the size of the object.

Unfortunately, fragmentation tends to increase as memory is allocated and released. For
this reason, applications that are designed to run for a long time should try to avoid using
memory allocated on the heap.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Functions
● Function-related extensions

● Code models (RV64 only)

● Primitives for interrupts, concurrency, and OS-related programming

● Inlining functions

● Stack protection

Function-related extensions
In addition to supporting Standard C, the compiler provides several extensions for
writing functions in C. Using these, you can:

● Use primitives for interrupts, concurrency, and OS-related programming

● Write interrupt functions for the different devices

● Control function inlining

● Facilitate function optimization

● Access hardware features.

The compiler uses compiler options, extended keywords, pragma directives, and
intrinsic functions to support this.

For more information about optimizations, see Efficient coding for embedded
applications, page 207. For information about the available intrinsic functions for
accessing hardware operations, see the chapter Intrinsic functions.

Code models (RV64 only)
Use code models to specify how functions are called on RV64 devices. Technically, the
code models control the following:

● Where in memory functions can be stored

● The instruction sequences used for generating addresses for global symbols

● The size of function pointers.
AFE1_AFE2-1:1

69

70

Primitives for interrupts, concurrency, and OS-related programming

Your project can only use one code model at a time, and all user modules and all library
modules must be code model compatible—if you mix Medlow and Medany modules in
your project, you must link all modules to the Medlow area.

These code models are available:

Both code models restrict the generated code to be 2 Gbytes or less. Additionally, both
code models require that global symbols reside within ± 2 Gbytes (a 32-bit signed
offset) from the generated code. If you do not specify a code model, the compiler will
use the Medany code model as default.

See the IDE Project Management and Building Guide for RISC-V for information about
specifying a code model in the IDE.

Use the --code_model option to specify the code model for your project; see
--code_model, page 245.

THE MEDLOW (MEDIUM-LOW) CODE MODEL

This code model enforces the same behavior as for 32-bit architectures. The generated
code (and data) must lie within a single 2 Gbytes address range and must lie between
the absolute addresses –0x8000'0000 and +0x8000'0000, which covers a 32-bit
address range. Code is generally linked around address 0x0000'0000.

THE MEDANY (MEDIUM-ANY) CODE MODEL

The generated code must lie within a single 2 Gbytes address range. This code model
also generates a 32-bit signed offset to refer to global symbols. Linked code can reside
at any address, and global symbol addresses are generated in a ±2 Gbytes range from
the code area. This is the default code model.

For 32-bit architectures, the full address range is available for your application. By using
the code model Medany, applications on 64-bit architectures can link code at any base
address, but linked global symbols must be within 2 Gbytes from the code area.

Primitives for interrupts, concurrency, and OS-related programming
The IAR C/C++ Compiler for RISC-V provides the following primitives related to
writing interrupt functions, concurrent functions, and OS-related functions:

● The extended keywords: __interrupt, __task, __monitor

Code model name Memory placement

Medlow 2 Gbytes between -0x8000'0000 and +0x8000'0000

Medany (default) 2 Gbytes anywhere in memory

Table 3: Code models
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Functions

● The pragma directives: #pragma enter_leave, #pragma no_epilogue,
#pragma vector

● The intrinsic functions: __enable_interrupt, __disable_interrupt,
__get_interrupt_state, __set_interrupt_state.

INTERRUPT FUNCTIONS

In embedded systems, using interrupts is a method for handling external events
immediately; for example, detecting that a button was pressed.

Interrupt service routines

In general, when an interrupt occurs in the code, the core immediately stops executing
the code it runs, and starts executing an interrupt routine instead. It is important that the
environment of the interrupted function is restored after the interrupt is handled (this
includes the values of processor registers and the processor status register). This makes
it possible to continue the execution of the original code after the code that handled the
interrupt was executed.

RISC-V supports many interrupt sources. For each interrupt source, an interrupt routine
can be written. Each interrupt routine is associated with a vector number, which is
specified in the documentation from the chip manufacturer. If you want to handle several
different interrupts using the same interrupt routine, you can specify several interrupt
vectors.

Note: The interrupt system for RISC-V varies from core to core. Consult the chip
manufacturer’s hardware documentation.

Interrupt vectors and the interrupt vector table

For supported devices, the vector table is by default populated with a default interrupt
handler which calls the abort function. For each interrupt source that has no explicit
interrupt service routine, the default interrupt handler will be called. If you write your
own service routine for a specific vector, that routine will override the default interrupt
handler.

For a list of devices that support interrupt vectors and default interrupt handlers, see the
release notes in the Information Center.
AFE1_AFE2-1:1

71

72

Primitives for interrupts, concurrency, and OS-related programming

Defining an interrupt function—an example

To define an interrupt function, the __interrupt keyword and the #pragma vector
directive can be used. For example:

#pragma vector = 0x7
__interrupt void MyInterruptRoutine(void)
{
 /* Do something */
}

Note: An interrupt function must have the return type void, and it cannot specify any
parameters.

Interrupt and C++ member functions

Only static member functions can be interrupt functions.

Special function types can be used for static member functions. For example, in the
following example, the function handler is declared as an interrupt function:

class Device
{
 static __interrupt void handler();
};

MONITOR FUNCTIONS

A monitor function causes interrupts to be disabled during execution of the function. At
function entry, the status register is saved and interrupts are disabled. At function exit,
the original status register is restored, and thereby the interrupt status that existed before
the function call is also restored.

To define a monitor function, you can use the __monitor keyword. For more
information, see __monitor, page 334.

Avoid using the __monitor keyword on large functions, since the interrupt will
otherwise be turned off for too long.

Example of implementing a semaphore in C

In the following example, a binary semaphore—that is, a mutex—is implemented using
one static variable and two monitor functions. A monitor function works like a critical
region, that is no interrupt can occur and the process itself cannot be swapped out. A
semaphore can be locked by one process, and is used for preventing processes from
simultaneously using resources that can only be used by one process at a time, for
example a USART. The __monitor keyword assures that the lock operation is atomic;
in other words it cannot be interrupted.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Functions

/* This is the lock-variable. When non-zero, someone owns it. */
static volatile unsigned int sTheLock = 0;

/* Function to test whether the lock is open, and if so take it.
 * Returns 1 on success and 0 on failure.
 */

__monitor int TryGetLock(void)
{
 if (sTheLock == 0)
 {
 /* Success, nobody has the lock. */

 sTheLock = 1;
 return 1;
 }
 else
 {
 /* Failure, someone else has the lock. */

 return 0;
 }
}

/* Function to unlock the lock.
 * It is only callable by one that has the lock.
 */

__monitor void ReleaseLock(void)
{
 sTheLock = 0;
}

/* Function to take the lock. It will wait until it gets it. */

void GetLock(void)
{
 while (!TryGetLock())
 {
 /* Normally, a sleep instruction is used here. */
 }
}

AFE1_AFE2-1:1

73

74

Primitives for interrupts, concurrency, and OS-related programming

/* An example of using the semaphore. */

void MyProgram(void)
{
 GetLock();

 /* Do something here. */

 ReleaseLock();
}

Example of implementing a semaphore in C++

In C++, it is common to implement small methods with the intention that they should be
inlined. However, the compiler does not support inlining of functions and methods that
are declared using the __monitor keyword.

In the following example in C++, an auto object is used for controlling the monitor
block, which uses intrinsic functions instead of the __monitor keyword.

#include <intrinsics.h>

// Class for controlling critical blocks.

class Mutex
{
public:
 Mutex()
 {
 // Get hold of current interrupt state.
 mState = __get_interrupt_state();

 // Disable all interrupts.
 __disable_interrupt();
 }

 ~Mutex()
 {
 // Restore the interrupt state.
 __set_interrupt_state(mState);
 }

private:
 __istate_t mState;
};
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Functions

class Tick
{
public:
 // Function to read the tick count safely.
 static long GetTick()
 {
 long t;

 // Enter a critical block.
 {
 Mutex m; // Interrupts are disabled while m is in scope.

 // Get the tick count safely,
 t = smTickCount;
 }
 // and return it.
 return t;
 }

private:
 static volatile long smTickCount;
};

volatile long Tick::smTickCount = 0;

extern void DoStuff();

void MyMain()
{
 static long nextStop = 100;

 if (Tick::GetTick() >= nextStop)
 {
 nextStop += 100;
 DoStuff();
 }
}

Inlining functions
Function inlining means that a function, whose definition is known at compile time, is
integrated into the body of its caller to eliminate the overhead of the function call. This
optimization, which is performed at optimization level High, normally reduces
execution time, but might increase the code size. The resulting code might become more
AFE1_AFE2-1:1

75

76

Inlining functions

difficult to debug. Whether the inlining actually occurs is subject to the compiler’s
heuristics.

The compiler heuristically decides which functions to inline. Different heuristics are
used when optimizing for speed, size, or when balancing between size and speed.
Normally, code size does not increase when optimizing for size.

C VERSUS C++ SEMANTICS

In C++, all definitions of a specific inline function in separate translation units must be
exactly the same. If the function is not inlined in one or more of the translation units,
then one of the definitions from these translation units will be used as the function
implementation.

In C, you must manually select one translation unit that includes the non-inlined version
of an inline function. You do this by explicitly declaring the function as extern in that
translation unit. If you declare the function as extern in more than one translation unit,
the linker will issue a multiple definition error. In addition, in C, inline functions cannot
refer to static variables or functions.

For example:

// In a header file.
static int sX;
inline void F(void)
{
 //static int sY; // Cannot refer to statics.
 //sX; // Cannot refer to statics.
}

// In one source file.
// Declare this F as the non-inlined version to use.
extern inline void F();

FEATURES CONTROLLING FUNCTION INLINING

There are several mechanisms for controlling function inlining:

● The inline keyword.

If you compile your function in C or C++ mode, the keyword will be interpreted
according to its definition in Standard C or Standard C++, respectively.

The main difference in semantics is that in Standard C you cannot (in general) simply
supply an inline definition in a header file. You must supply an external definition in
one of the compilation units, by designating the inline definition as being external in
that compilation unit.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Functions

● #pragma inline is similar to the inline keyword, but with the difference that the
compiler always uses C++ inline semantics.

By using the #pragma inline directive you can also disable the compiler’s
heuristics to either force inlining or completely disable inlining. For more
information, see inline, page 355.

● --use_c++_inline forces the compiler to use C++ semantics when compiling a
Standard C source code file.

● --no_inline, #pragma optimize=no_inline, and #pragma inline=never
all disable function inlining. By default, function inlining is enabled at optimization
level High.

The compiler can only inline a function if the definition is known. Normally, this is
restricted to the current translation unit. However, when the --mfc compiler option for
multi-file compilation is used, the compiler can inline definitions from all translation
units in the multi-file compilation unit. For more information, see Multi-file compilation
units, page 214.

For more information about the function inlining optimization, see Function inlining,
page 217.

Stack protection
In software, a stack buffer overflow occurs when a program writes to a memory address
on the program’s call stack outside of the intended data structure, which is usually a
fixed-length buffer. The result is, almost always, corruption of nearby data, and it can
even change which function to return to. If it is deliberate, it is often called stack
smashing. One method to guard against stack buffer overflow is to use stack canaries,
named for their analogy to the use of canaries in coal mines.

STACK PROTECTION IN THE IAR C/C++ COMPILER

The IAR C/C++ Compiler for RISC-V supports stack protection.

To enable stack protection for functions considered needing it, use the compiler option
--stack_protection. For more information, see --stack_protection, page 275.

The IAR implementation of stack protection uses a heuristic to determine whether a
function needs stack protection or not. If any defined local variable has the array type or
a structure type that contains a member of array type, the function will need stack
protection. In addition, if the address of any local variable is propagated outside of a
function, such a function will also need stack protection.

If a function needs stack protection, the local variables are sorted to let the variables with
array type to be placed as high as possible in the function stack block. After those
AFE1_AFE2-1:1

77

78

Stack protection

variables, a canary element is placed. The canary is initialized at function entrance. The
initialization value is taken from the global variable __stack_chk_guard. At function
exit, the code verifies that the canary element still contains the original value. If not, the
function __stack_chk_fail is called.

USING STACK PROTECTION IN YOUR APPLICATION

To use stack protection, you must define these objects in your application:

● extern uint32_t __stack_chk_guard

The global variable __stack_chk_guard must be initialized prior to first use. If
the initialization value is randomized, it will be more secure.

● __nounwind __noreturn void __stack_chk_fail(void)

The purpose of the function __stack_chk_fail is to notify about the problem and
then terminate the application.

Note: The return address from this function will point into the function that failed.

The file stack_protection.c in the directory riscv\src\lib\runtime can be
used as a template for both __stack_chk_guard and __stack_chk_fail.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Linking using ILINK
● Linker overview

● Modules and sections

● The linking process in detail

● Placing code and data—the linker configuration file

● Initialization at system startup

● Stack usage analysis

Linker overview
The IAR ILINK Linker is a powerful, flexible software tool for use in the development
of embedded applications. It is equally well suited for linking small, single-file, absolute
assembler programs as it is for linking large, relocatable, multi-module, C/C++, or
mixed C/C++ and assembler programs.

The linker combines one or more relocatable object files—produced by the IAR
compiler or assembler—with selected parts of one or more object libraries to produce
an executable image in the industry-standard format Executable and Linking Format
(ELF).

The linker will automatically load only those library modules—user libraries and
Standard C or C++ library variants—that are actually needed by the application you are
linking. Furthermore, the linker eliminates duplicate sections and sections that are not
required. The linker will also perform some optimizations at link time, that rewrite
instructions to save space or execution time.

The linker uses a configuration file where you can specify separate locations for code
and data areas of your target system memory map. This file also supports automatic
handling of the application’s initialization phase, which means initializing global
variable areas and code areas by copying initializers and possibly decompressing them
as well.

The final output produced by ILINK is an absolute object file containing the executable
image in the ELF (including DWARF for debug information) format. The file can be
downloaded to C-SPY or any other compatible debugger that supports ELF/DWARF, or
it can be stored in EPROM or flash.
AFE1_AFE2-1:1

79

80

Modules and sections

To handle ELF files, various tools are included. For information about included utilities,
see Specific ELF tools, page 46.

Note: The default output format in IAR Embedded Workbench is DEBUG.

Modules and sections
Each relocatable object file contains one module, which consists of:

● Several sections of code or data

● Runtime attributes specifying various types of information, for example, the version
of the runtime environment

● Optionally, debug information in DWARF format

● A symbol table of all global symbols and all external symbols used.

Note: In a library, each module (source file) should only contain one single function.
This is important if you want to override a function in a library with a function in your
own application. The linker includes modules only if they are referred to from the rest
of the application. If the linker includes a library module that contains several functions
because one function is referred to, and another function in that module should be
overridden by a function defined by your application, the linker issues a “duplicate
definitions” error.

A section is a logical entity containing a piece of data or code that should be placed at a
physical location in memory. A section can consist of several section fragments,
typically one for each variable or function (symbols). A section can be placed either in
RAM or in ROM. In a normal embedded application, sections that are placed in RAM
do not have any content, they only occupy space.

Each section has a name and a type attribute that determines the content. The type
attribute is used (together with the name) for selecting sections for the ILINK
configuration.

The main purpose of section attributes is to distinguish between sections that can be
placed in ROM and sections that must be placed in RAM:

In each category, sections can be further divided into those that contain code and those
that contain data, resulting in four main categories:

ro|readonly ROM sections

rw|readwrite RAM sections

ro code Normal code

ro data Constants
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Linking using ILINK

readwrite data also has a subcategory—zi|zeroinit—for sections that are
zero-initialized at application startup.

Note: In addition to these section types—sections that contain the code and data that are
part of your application—a final object file will contain many other types of sections,
for example, sections that contain debugging information or other type of meta
information.

A section is the smallest linkable unit—but if possible, ILINK can exclude smaller
units—section fragments—from the final application. For more information, see
Keeping modules, page 100, and Keeping symbols and sections, page 101.

At compile time, data and functions are placed in different sections. At link time, one of
the most important functions of the linker is to assign addresses to the various sections
used by the application.

The IAR build tools have many predefined section names. For more information about
each section, see the chapter Section reference.

You can group sections together for placement by using blocks. See define block
directive, page 419.

The linking process in detail
The relocatable modules in object files and libraries, produced by the IAR compiler and
assembler, cannot be executed as is. To become an executable application, they must be
linked.

The linker is used for the link process. It normally performs the following procedure
(note that some of the steps can be turned off by command line options or by directives
in the linker configuration file):

● Determine which modules to include in the application. Modules provided in object
files are always included. A module in a library file is only included if it provides a
definition for a global symbol that is referenced from an included module.

● Select which standard library files to use. The selection is based on attributes of the
included modules. These libraries are then used for satisfying any still outstanding
undefined symbols.

● Handle symbols with more than one definition. If there is more than one non-weak
definition, an error is emitted. Otherwise, one of the definitions is picked (the
non-weak one, if there is one) and the others are suppressed. Weak definitions are

rw code Code copied to RAM

rw data Variables
AFE1_AFE2-1:1

81

82

The linking process in detail

typically used for inline and template functions. If you need to override some of the
non-weak definitions from a library module, you must ensure that the library
module is not included (typically by providing alternate definitions for all the
symbols your application uses in that library module).

● Determine which sections/section fragments from the included modules to include
in the application. Only those sections/section fragments that are actually needed by
the application are included. There are several ways to determine which
sections/section fragments that are needed, for example, the __root object
attribute, the #pragma required directive, and the keep linker directive. In case
of duplicate sections, only one is included.

● Where appropriate, arrange for the initialization of initialized variables and code in
RAM. The initialize directive causes the linker to create extra sections to
enable copying from ROM to RAM. Each section that will be initialized by copying
is divided into two sections—one for the ROM part, and one for the RAM part. If
manual initialization is not used, the linker also arranges for the startup code to
perform the initialization.

● Determine where to place each section according to the section placement directives
in the linker configuration file. Sections that are to be initialized by copying appear
twice in the matching against placement directives, once for the ROM part and once
for the RAM part, with different attributes.

● Produce an absolute file that contains the executable image and any debug
information provided. The contents of each needed section in the relocatable input
files is calculated using the relocation information supplied in its file and the
addresses determined when placing sections. This process can result in one or more
relocation failures if some of the requirements for a particular section are not met,
for instance if placement resulted in the destination address for a PC-relative jump
instruction being out of range for that instruction.

● Handle linker optimizations in the form of call and memory access relaxations via
the GP register, if the static base GPREL has been defined.

● Optionally, produce a map file that lists the result of the section placement, the
address of each global symbol, and finally, a summary of memory usage for each
module and library.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Linking using ILINK

This illustration shows the linking process:

During the linking, ILINK might produce error and logging messages on stdout and
stderr. The log messages are useful for understanding why an application was linked
as it was. For example, why a module or section (or section fragment) was included.

Note: To see the actual content of an ELF object file, use ielfdumpriscv. See The IAR
ELF Dumper—ielfdump, page 469.

Placing code and data—the linker configuration file
The placement of sections in memory is performed by the IAR ILINK Linker. It uses the
linker configuration file where you can define how ILINK should treat each section and
how they should be placed into the available memories.

A typical linker configuration file contains definitions of:

● Available addressable memories

● Populated regions of those memories

● How to treat input sections

● Created sections

● How to place sections into the available regions
AFE1_AFE2-1:1

83

84

Placing code and data—the linker configuration file

The file consists of a sequence of declarative directives. This means that the linking
process will be governed by all directives at the same time.

To use the same source code with different derivatives, just rebuild the code with the
appropriate configuration file.

A SIMPLE EXAMPLE OF A CONFIGURATION FILE

Assume a simple 32-bit architecture that has these memory prerequisites:

● There are 4 Gbytes of addressable memory.

● There is ROM memory in the address range 0x0000–0x10000.

● There is RAM memory in the range 0x20000–0x30000.

● The stack has an alignment of 16.

● The system startup code must be located at a fixed address.

Note: The following examples of linker configuration files are generic assumptions or
theoretical examples that show how different directives work for ILINK.

A simple configuration file for this assumed architecture can look like this:

/* The memory space denoting the maximum possible amount
 of addressable memory */
define memory Mem with size = 4G;

/* Memory regions in an address space */
define region ROM = Mem:[from 0x00000 size 0x10000];
define region RAM = Mem:[from 0x20000 size 0x10000];

/* Create a stack */
define block STACK with size = 0x1000, alignment = 16 { };

/* Handle initialization */
initialize by copy { readwrite }; /* Initialize RW sections */

/* Place startup code at a fixed address */
place at start of ROM { readonly section .cstartup };

/* Place code and data */
place in ROM { readonly }; /* Place constants and initializers in
 ROM: .rodata and .data_init */
place in RAM { readwrite, /* Place .data, .bss, and .noinit */
 block STACK }; /* and STACK */

This configuration file defines one addressable memory Mem with the maximum of
4 Gbytes of memory. Furthermore, it defines a ROM region and a RAM region in Mem,
namely ROM and RAM. Each region has the size of 64 Kbytes.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Linking using ILINK

The file then creates an empty block called STACK with a size of 4 Kbytes in which the
application stack will reside. To create a block is the basic method which you can use to
get detailed control of placement, size, etc. It can be used for grouping sections, but also
as in this example, to specify the size and placement of an area of memory.

Next, the file defines how to handle the initialization of variables, read/write type
(readwrite) sections. In this example, the initializers are placed in ROM and copied at
startup of the application to the RAM area. By default, ILINK may compress the
initializers if this appears to be advantageous.

The last part of the configuration file handles the actual placement of all the sections into
the available regions. First, the startup code—defined to reside in the read-only
(readonly) section .cstartup—is placed at the start of the ROM region, that is at
address 0x10000.

Note: The part within {} is referred to as section selection and it selects the sections for
which the directive should be applied to. Then the rest of the read-only sections are
placed in the ROM region.

Note: The section selection { readonly section .cstartup } takes precedence
over the more generic section selection { readonly }.

Finally, the read/write (readwrite) sections and the STACK block are placed in the RAM
region.
AFE1_AFE2-1:1

85

86

Initialization at system startup

This illustration gives a schematic overview of how the application is placed in memory:

In addition to these standard directives, a configuration file can contain directives that
define how to:

● Map a memory that can be addressed in multiple ways

● Handle conditional directives

● Create symbols with values that can be used in the application

● More in detail, select the sections a directive should be applied to

● More in detail, initialize code and data.

For more details and examples about customizing the linker configuration file, see the
chapter Linking your application.

For more information about the linker configuration file, see the chapter The linker
configuration file.

Initialization at system startup
In Standard C, all static variables—variables that are allocated at a fixed memory
address—must be initialized by the runtime system to a known value at application
startup. This value is either an explicit value assigned to the variable, or if no value is
given, it is cleared to zero. In the compiler, there are exceptions to this rule, for example,
variables declared __no_init, which are not initialized at all.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Linking using ILINK

The compiler generates a specific type of section for each type of variable initialization:

For information about all supported sections, see the chapter Section reference.

THE INITIALIZATION PROCESS

Initialization of data is handled by ILINK and the system startup code in conjunction.

To configure the initialization of variables, you must consider these issues:

● Sections that should be zero-initialized, or not initialized at all (__no_init) are
handled automatically by ILINK.

● Sections that should be initialized, except for zero-initialized sections, should be
listed in an initialize directive.

Normally during linking, a section that should be initialized is split into two sections,
where the original initialized section will keep the name. The contents are placed in
the new initializer section, which will get the original name suffixed with _init. The
initializers should be placed in ROM and the initialized sections in RAM, by means
of placement directives. The most common example is the .data section which the
linker splits into .data and .data_init.

● Sections that contains constants should not be initialized—they should only be
placed in flash/ROM.

Categories of

declared data
Source Section type Section name

Section

content

Zero-initialized
data

int i; Read/write
data, zero-init

.bss None

Zero-initialized
data

int i = 0; Read/write
data, zero-init

.bss None

Initialized data
(non-zero)

int i = 6; Read/write
data

.data The
initializer

Non-initialized
data

__no_init int i; Read/write
data, zero-init

.noinit None

Constants const int i = 6; Read-only data .rodata The
constant

Table 4: Sections holding initialized data
AFE1_AFE2-1:1

87

88

Initialization at system startup

In the linker configuration file, it can look like this:

/* Handle initialization */
initialize by copy { readwrite }; /* Initialize RW sections */

/* Place startup code at a fixed address */
place at start of ROM { readonly section .cstartup };

/* Place code and data */
place in ROM { readonly }; /* Place constants and initializers in
 ROM: .rodata and .data_init */
place in RAM { readwrite, /* Place .data, .bss, and .noinit */
 block STACK }; /* and STACK */

Note: When compressed initializers are used (see initialize directive, page 425), the
contents sections (that is, sections with the _init suffix) are not listed as separate
sections in the map file. Instead, they are combined into aggregates of “initializer bytes”.
You can place the contents sections the usual way in the linker configuration file,
however, this affects the placement—and possibly the number—of the “initializer
bytes” aggregates.

For more information about and examples of how to configure the initialization, see
Linking considerations, page 97.

C++ DYNAMIC INITIALIZATION

The compiler places subroutine pointers for performing C++ dynamic initialization into
sections of the ELF section types SHT_PREINIT_ARRAY and SHT_INIT_ARRAY. By
default, the linker will place these into a linker-created block, ensuring that all sections
of the section type SHT_PREINIT_ARRAY are placed before those of the type
SHT_INIT_ARRAY. If any such sections were included, code to call the routines will also
be included.

The linker-created blocks are only generated if the linker configuration does not contain
section selector patterns for the preinit_array and init_array section types. The
effect of the linker-created blocks will be very similar to what happens if the linker
configuration file contains this:

define block SHT$$PREINIT_ARRAY { preinit_array };
define block SHT$$INIT_ARRAY { init_array };
define block CPP_INIT with fixed order { block
 SHT$$PREINIT_ARRAY,
 block SHT$$INIT_ARRAY };

If you put this into your linker configuration file, you must also mention the CPP_INIT
block in one of the section placement directives. If you wish to select where the
linker-created block is placed, you can use a section selector with the name
".init_array".
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Linking using ILINK

See also section-selectors, page 435.

Stack usage analysis
This section describes how to perform a stack usage analysis using the linker.

In the riscv\src directory, you can find an example project that demonstrates stack
usage analysis.

INTRODUCTION TO STACK USAGE ANALYSIS

Under the right circumstances, the linker can accurately calculate the maximum stack
usage for each call graph, starting from the program start, interrupt functions, tasks etc.
(each function that is not called from another function, in other words, the root).

If you enable stack usage analysis, a stack usage chapter will be added to the linker map
file, listing for each call graph root the particular call chain which results in the
maximum stack depth.

The analysis is only accurate if there is accurate stack usage information for each
function in the application.

In general, the compiler will generate this information for each C function, but if there
are indirect calls—calls using function pointers—in your application, you must supply
a list of possible functions that can be called from each calling function.

If you use a stack usage control file, you can also supply stack usage information for
functions in modules that do not have stack usage information.

You can use the check that directive in your stack usage control file to check that the
stack usage calculated by the linker does not exceed the stack space you have allocated.

PERFORMING A STACK USAGE ANALYSIS

1 Enable stack usage analysis:

In the IDE, choose Project>Options>Linker>Advanced>Enable stack usage
analysis.

On the command line, use the linker option --enable_stack_usage.

See --enable_stack_usage, page 293.

2 Enable the linker map file:

In the IDE, choose Project>Options>Linker>List>Generate linker map file.
AFE1_AFE2-1:1

89

90

Stack usage analysis

On the command line, use the linker option --map.

3 Link your project.

Note: The linker will issue warnings related to stack usage under certain circumstances,
see Situations where warnings are issued, page 94.

4 Review the linker map file, which now contains a stack usage chapter with a summary
of the stack usage for each call graph root. For more information, see Result of an
analysis—the map file contents, page 90.

5 For more details, analyze the call graph log, see Call graph log, page 94.

Note: There are limitations and sources of inaccuracy in the analysis, see Limitations,
page 93.

You might need to specify more information to the linker to get a more representative
result. See Specifying additional stack usage information, page 92.

In the IDE, choose Project>Options>Linker>Advanced>Enable stack usage
analysis>Control file.

On the command line, use the linker option --stack_usage_control.

See --stack_usage_control, page 309.

6 To add an automatic check that you have allocated memory enough for the stack, use
the check that directive in your linker configuration file. For example, assuming a
stack block named MY_STACK, you can write like this:

check that size(block MY_STACK) >=maxstack("Program entry")
 + totalstack("interrupt") + 100;

When linking, the linker emits an error if the check fails. In this example, an error will
be emitted if the sum of the following exceeds the size of the MY_STACK block:

● The maximum stack usage in the category Program entry (the main program).

● The sum of each individual maximum stack usage in the category interrupt
(assuming that all interrupt routines need space at the same time).

● A safety margin of 100 bytes (to account for stack usage not visible to the analysis).

See also check that directive, page 440 and Stack considerations, page 194.

RESULT OF AN ANALYSIS—THE MAP FILE CONTENTS

When stack usage analysis is enabled, the linker map file contains a stack usage chapter
with a summary of the stack usage for each call graph root category, and lists the call
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Linking using ILINK

chain that results in the maximum stack depth for each call graph root. This is an
example of what the stack usage chapter in the map file might look like:

 *** STACK USAGE

 Call Graph Root Category Max Use Total Use
 ------------------------ ------- ---------
 interrupt 104 136
 Program entry 168 168

Program entry
 "__iar_program_start": 0x000085ac
 Maximum call chain 168 bytes

 "__iar_program_start" 0
 "__cmain" 0
 "main" 8
 "printf" 24
 "_PrintfTiny" 56
 "_Prout" 16
 "putchar" 16
 "__write" 0
 "__dwrite" 0
 "__iar_sh_stdout" 24
 "__iar_get_ttio" 24
 "__iar_lookup_ttioh" 0

interrupt
 "FaultHandler": 0x00008434

 Maximum call chain 32 bytes

 "FaultHandler" 32

interrupt
 "IRQHandler": 0x00008424

 Maximum call chain 104 bytes

 "IRQHandler" 24
 "do_something" in suexample.o [1] 80

The summary contains the depth of the deepest call chain in each category as well as the
sum of the depths of the deepest call chains in that category.
AFE1_AFE2-1:1

91

92

Stack usage analysis

Each call graph root belongs to a call graph root category to enable convenient
calculations in check that directives.

SPECIFYING ADDITIONAL STACK USAGE INFORMATION

To specify additional stack usage information you can use either a stack usage control
file (suc) where you specify stack usage control directives or annotate the source code.

You can:

● Specify complete stack usage information (call graph root category, stack usage,
and possible calls) for a function, by using the stack usage control directive
function. Typically, you do this if stack usage information is missing, for example
in an assembler module. In your suc file you can, for example, write like this:

function MyFunc: 32,
 calls MyFunc2,
 calls MyFunc3, MyFunc4: 16;

function [interrupt] MyInterruptHandler: 44;

See also function directive, page 456.

● Exclude certain functions from stack usage analysis, by using the stack usage
control directive exclude. In your suc file you can, for example, write like this:

exclude MyFunc5, MyFunc6;

See also exclude directive, page 456.

● Specify a list of possible destinations for indirect calls in a function, by using the
stack usage control directive possible calls. Use this for functions which are
known to perform indirect calls and where you know exactly which functions that
might be called in this particular application. In your suc file you can, for example,
write like this:

possible calls MyFunc7: MyFunc8, MyFunc9;

If the information about which functions that might be called is available at compile
time, consider using the #pragma calls directive instead.

See also possible calls directive, page 458 and calls, page 346.

● Specify that functions are call graph roots, including an optional call graph root
category, by using the stack usage control directive call graph root or the
#pragma call_graph_root directive. In your suc file you can, for example,
write like this:

call graph root [task]: MyFunc10, MyFunc11;

If your interrupt functions have not already been designated as call graph roots by the
compiler, you must do so manually. You can do this either by using the #pragma
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Linking using ILINK

call_graph_root directive in your source code or by specifying a directive in your
suc file, for example:

call graph root [interrupt]: Irq1Handler, Irq2Handler;

See also call graph root directive, page 456 and call_graph_root, page 347.

● Specify a maximum number of iterations through any of the cycles in the recursion
nest of which the function is a member. In your suc file you can, for example, write
like this:

max recursion depth MyFunc12: 10;

● Selectively suppress the warning about unmentioned functions referenced by a
module for which you have supplied stack usage information in the stack usage
control file. Use the no calls from directive in your suc file, for example, like
this:

no calls from [file.o] to MyFunc13, MyFunc14;

● Instead of specifying stack usage information about assembler modules in a stack
usage control file, you can annotate the assembler source with call frame
information. For more information, see the IAR Assembler User Guide for RISC-V.

For more information, see the chapter The stack usage control file.

LIMITATIONS

Apart from missing or incorrect stack usage information, there are also other sources of
inaccuracy in the analysis:

● The linker cannot always identify all functions in object modules that lack stack
usage information. In particular, this might be a problem with object modules
written in assembler language or produced by non-IAR tools. You can provide stack
usage information for such modules using a stack usage control file, and for
assembler language modules you can also annotate the assembler source code with
CFI directives to provide stack usage information. See the IAR Assembler User
Guide for RISC-V.

● If you use inline assembler to change the frame size or to perform function calls,
this will not be reflected in the analysis.

● Extra space consumed by other sources (the processor, an operating system, etc) is
not accounted for.

● If you use other forms of function calls, they will not be reflected in the call graph.

● Using multi-file compilation (--mfc) can interfere with using a stack usage control
file to specify properties of module-local functions in the involved files.

Note: Stack usage analysis produces a worst case result. The program might not actually
ever end up in the maximum call chain, by design, or by coincidence. In particular, the
set of possible destinations for a virtual function call in C++ might sometimes include
AFE1_AFE2-1:1

93

94

Stack usage analysis

implementations of the function in question which cannot, in fact, be called from that
point in the code.

Stack usage analysis is only a complement to actual measurement. If the result is
important, you need to perform independent validation of the results of the analysis.

SITUATIONS WHERE WARNINGS ARE ISSUED

When stack usage analysis is enabled in the linker, warnings will be generated in the
following circumstances:

● There is a function without stack usage information.

● There is an indirect call site in the application for which a list of possible called
functions has not been supplied.

● There are no known indirect calls, but there is an uncalled function that is not
known to be a call graph root.

● The application contains recursion (a cycle in the call graph) for which no
maximum recursion depth has been supplied, or which is of a form for which the
linker is unable to calculate a reliable estimate of stack usage.

● There are calls to a function declared as a call graph root.

● You have used the stack usage control file to supply stack usage information for
functions in a module that does not have such information, and there are functions
referenced by that module which have not been mentioned as being called in the
stack usage control file.

CALL GRAPH LOG

To help you interpret the results of the stack usage analysis, there is a log output option
that produces a simple text representation of the call graph (--log call_graph).
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Linking using ILINK

Example output:

 Program entry:
 0 __iar_program_start [168]
 0 __cmain [168]
 0 __iar_data_init3 [16]
 8 __iar_zero_init3 [8]
 16 - [0]
 8 __iar_copy_init3 [8]
 16 - [0]
 0 __low_level_init [0]
 0 main [168]
 8 printf [160]
 32 _PrintfTiny [136]
 88 _Prout [80]
 104 putchar [64]
 120 __write [48]
 120 __dwrite [48]
 120 __iar_sh_stdout [48]
 144 __iar_get_ttio [24]
 168 __iar_lookup_ttioh [0]
 120 __iar_sh_write [24]
 144 - [0]
 88 __aeabi_uidiv [0]
 88 __aeabi_idiv0 [0]
 88 strlen [0]
 0 exit [8]
 0 _exit [8]
 0 __exit [8]
 0 __iar_close_ttio [8]
 8 __iar_lookup_ttioh [0] ***
 0 __exit [8] ***

Each line consists of this information:

● The stack usage at the point of call of the function

● The name of the function, or a single '-' to indicate usage in a function at a point
with no function call (typically in a leaf function)

● The stack usage along the deepest call chain from that point. If no such value could
be calculated, "[---]" is output instead. "***" marks functions that have already
been shown.

CALL GRAPH XML OUTPUT

The linker can also produce a call graph file in XML format. This file contains one node
for each function in your application, with the stack usage and call information relevant
AFE1_AFE2-1:1

95

96

Stack usage analysis

to that function. It is intended to be input for post-processing tools and is not particularly
human-readable.

For more information about the XML format used, see the callGraph.txt file in your
product installation.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Linking your application
● Linking considerations

● Hints for troubleshooting

● Checking module consistency

● Linker optimizations

Linking considerations
Before you can link your application, you must set up the configuration required by
ILINK. Typically, you must consider:

● Choosing a linker configuration file

● Defining your own memory areas

● Placing sections

● Reserving space in RAM

● Keeping modules

● Keeping symbols and sections

● Application startup

● Setting up stack memory

● Setting up heap memory

● Setting up the atexit limit

● Changing the default initialization

● Interaction between ILINK and the application

● Standard library handling

● Producing output formats other than ELF/DWARF

CHOOSING A LINKER CONFIGURATION FILE

The config/linker directory contains ready-made linker configuration files for all
supported devices. The files contain the information required by ILINK. The only
change, if any, you will normally have to make to the supplied configuration file is to
customize the start and end addresses of each region so they fit the target system
memory map. If, for example, your application uses additional external RAM, you must
also add details about the external RAM memory area.
AFE1_AFE2-1:1

97

98

Linking considerations

Device-specific configuration files are automatically selected.

To edit a linker configuration file, use the editor in the IDE, or any other suitable editor.

Do not change the original template file. We recommend that you make a copy in the
working directory, and modify the copy instead.

Each project in the IDE should have a reference to one, and only one, linker
configuration file. This file can be edited, but for the majority of all projects it is
sufficient to configure the vital parameters in Project>Options>Linker>Config.

DEFINING YOUR OWN MEMORY AREAS

The default configuration file that you selected has predefined ROM and RAM regions.
This example will be used as a starting-point for all further examples in this chapter:

/* Define the addressable memory */
define memory Mem with size = 4G;

/* Define a region named ROM with start address 0 and to be 64
Kbytes large */
define region ROM = Mem:[from 0 size 0x10000];

/* Define a region named RAM with start address 0x20000 and to be
64 Kbytes large */
define region RAM = Mem:[from 0x20000 size 0x10000];

Each region definition must be tailored for the actual hardware.

To find out how much of each memory that was filled with code and data after linking,
inspect the memory summary in the map file (command line option --map).

Adding an additional region

To add an additional region, use the define region directive, for example:

/* Define a 2nd ROM region to start at address 0x80000 and to be
128 Kbytes large */
define region ROM2 = Mem:[from 0x80000 size 0x20000];

Merging different areas into one region

If the region is comprised of several areas, use a region expression to merge the different
areas into one region, for example:

/* Define the 2nd ROM region to have two areas. The first with
the start address 0x80000 and 128 Kbytes large, and the 2nd with
the start address 0xC0000 and 32 Kbytes large */
define region ROM2 = Mem:[from 0x80000 size 0x20000]
 | Mem:[from 0xC0000 size 0x08000];
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Linking your application

or equivalently

define region ROM2 = Mem:[from 0x80000 to 0xC7FFF]
 –Mem:[from 0xA0000 to 0xBFFFF];

PLACING SECTIONS

The default configuration file that you selected places all predefined sections in memory,
but there are situations when you might want to modify this. For example, if you want
to place the section that holds constant symbols in the CONSTANT region instead of in
the default place. In this case, use the place in directive, for example:

/* Place sections with readonly content in the ROM region */
place in ROM {readonly};

/* Place the constant symbols in the CONSTANT region */
place in CONSTANT {readonly section .rodata};

Note: Placing a section—used by the IAR build tools—in a different memory which use
a different way of referring to its content, will fail.

For the result of each placement directive after linking, inspect the placement summary
in the map file (the command line option --map).

Placing a section at a specific address in memory

To place a section at a specific address in memory, use the place at directive, for
example:

/* Place section .vectors at address 0 */
place at address Mem:0x0 {readonly section .vectors};

Placing a section first or last in a region

To place a section first or last in a region is similar, for example:

/* Place section .vectors at start of ROM */
place at start of ROM {readonly section .vectors};

Declare and place your own sections

To declare new sections—in addition to the ones used by the IAR build tools—to hold
specific parts of your code or data, use mechanisms in the compiler and assembler. For
example:

/* Place a variable in that section. */
const short MyVariable @ "MYOWNSECTION" = 0xF0F0;
AFE1_AFE2-1:1

99

100

Linking considerations

This is the corresponding example in assembler language:

 name createSection
 section MYOWNSECTION:CONST ; Create a section,
 ; and fill it with
 dc16 0xF0F0 ; constant bytes.
 end

To place your new section, the original place in ROM {readonly}; directive is
sufficient.

However, to place the section MyOwnSection explicitly, update the linker configuration
file with a place in directive, for example:

/* Place MyOwnSection in the ROM region */
place in ROM {readonly section MyOwnSection};

RESERVING SPACE IN RAM

Often, an application must have an empty uninitialized memory area to be used for
temporary storage, for example, a heap or a stack. It is easiest to achieve this at link time.
You must create a block with a specified size and then place it in a memory.

In the linker configuration file, it can look like this:

define block TempStorage with size = 0x1000, alignment = 4 { };
place in RAM { block TempStorage };

To retrieve the start of the allocated memory from the application, the source code could
look like this:

/* Define a section for temporary storage. */
#pragma section = "TempStorage"
char *GetTempStorageStartAddress()
{
 /* Return start address of section TempStorage. */
 return __section_begin("TempStorage");
}

KEEPING MODULES

If a module is linked as an object file, it is always kept. That is, it will contribute to the
linked application. However, if a module is part of a library, it is included only if it is
symbolically referred to from other parts of the application. This is true, even if the
library module contains a root symbol. To assure that such a library module is always
included, use iarchive to extract the module from the library, see The IAR Archive
Tool—iarchive, page 463.

For information about included and excluded modules, inspect the log file (the
command line option --log modules).
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Linking your application

For more information about modules, see Modules and sections, page 80.

KEEPING SYMBOLS AND SECTIONS

By default, ILINK removes any sections, section fragments, and global symbols that are
not needed by the application. To retain a symbol that does not appear to be needed—or
actually, the section fragment it is defined in—you can either use the root attribute on
the symbol in your C/C++ or assembler source code, or use the ILINK option --keep.
To retain sections based on attribute names or object names, use the directive keep in
the linker configuration file.

To prevent ILINK from excluding sections and section fragments, use the command line
options --no_remove or --no_fragments, respectively.

For information about included and excluded symbols and sections, inspect the log file
(the command line option --log sections).

For more information about the linking procedure for keeping symbols and sections, see
The linking process, page 55.

APPLICATION STARTUP

By default, the point where the application starts execution is defined by the
__iar_program_start label, which is defined to point at the start of the cstartup.s
file. The label is also communicated via ELF to any debugger that is used.

To change the start point of the application to another label, use the ILINK option
--entry, see --entry, page 293.

SETTING UP STACK MEMORY

The size of the CSTACK block is defined in the linker configuration file. To change the
allocated amount of memory, change the block definition for CSTACK:

define block CSTACK with size = 0x2000, alignment = 16{ };

Specify an appropriate size for your application.

For more information about the stack, see Stack considerations, page 194.

SETTING UP HEAP MEMORY

The size of the heap is defined in the linker configuration file as a block:

define block HEAP with size = 0x1000, alignment = 16{ };
place in RAM {block HEAP};

Specify the appropriate size for your application. If you use a heap, you must allocate at
least 50 bytes for it.
AFE1_AFE2-1:1

101

102

Linking considerations

For more information, see Heap memory handlers, page 194.

SETTING UP THE ATEXIT LIMIT

By default, the atexit function can be called a maximum of 32 times from your
application. To either increase or decrease this number, add a line to your configuration
file. For example, to reserve room for 10 calls instead, write:

define symbol __iar_maximum_atexit_calls = 10;

CHANGING THE DEFAULT INITIALIZATION

By default, memory initialization is performed during application startup. ILINK sets
up the initialization process and chooses a suitable packing method. If the default
initialization process does not suit your application and you want more precise control
over the initialization process, these alternatives are available:

● Suppressing initialization

● Choosing the packing algorithm

● Manual initialization

● Initializing code—copying ROM to RAM.

For information about the performed initializations, inspect the log file (the command
line option --log initialization).

Suppressing initialization

If you do not want the linker to arrange for initialization by copying, for some or all
sections, make sure that those sections do not match a pattern in an initialize by
copy directive—or use an except clause to exclude them from matching. If you do not
want any initialization by copying at all, you can omit the initialize by copy
directive entirely.

This can be useful if your application, or just your variables, are loaded into RAM by
some other mechanism before application startup.

Choosing a packing algorithm

To override the default packing algorithm, write for example:

initialize by copy with packing = lz77 { readwrite };

For more information about the available packing algorithms, see initialize directive,
page 425.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Linking your application

Manual initialization

In the usual case, the initialize by copy directive is used for making the linker
arrange for initialization by copying—with or without packing—of sections with
content at application startup. The linker achieves this by logically creating an
initialization section for each such section, holding the content of the section, and
turning the original section into a section without content. The name of this initialization
section is the name of the original section with the added suffix _init. For example, the
initialization section for the .data section is called .data_init. Then, the linker adds
table elements to the initialization table so that the initialization will be performed at
application startup.

You can use initialize manually to suppress the creation of table elements to take
control over when and how the elements are copied. This is useful for overlays, but also
in other circumstances.

For sections without content (zero-initialized sections), the situation is reversed. The
linker arranges for zero initialization of all such sections at application startup, except
for those that are mentioned in a do not initialize directive.

Simple copying example with an automatic block

Assume that you have some initialized variables in MYSECTION. If you add this directive
to your linker configuration file:

initialize manually { section MYSECTION };

you can use this source code example to initialize the section:

#pragma section = "MYSECTION"
#pragma section = "MYSECTION_init"
void DoInit()
{
 char * from = __section_begin("MYSECTION_init");
 char * to = __section_begin("MYSECTION");
 memcpy(to, from, __section_size("MYSECTION"));
}

This piece of source code takes advantage of the fact that if you use __section_begin
(and related operators) with a section name, an automatic block is created by the linker
for those sections.

Note: Automatic blocks override the normal section selection process and forces
everything that matches the section name to form one block.
AFE1_AFE2-1:1

103

104

Linking considerations

Example with explicit blocks

Assume that you instead of needing manual initialization for variables in a specific
section, you need it for all initialized variables from a particular library. In that case, you
must create explicit blocks for both the variables and the content. Like this:

initialize manually { section .data object mylib.a };
define block MYBLOCK { section .data object mylib.a };
define block MYBLOCK_init { section .data_init object mylib.a };

You must also place the two new blocks using one of the section placement directives,
the block MYBLOCK in RAM and the block MYBLOCK_init in ROM.

Then you can initialize the sections using the same source code as in the previous
example, only with MYBLOCK instead of MYSECTION.

Note: When using manual initialization, you must handle each copy init batch
explicitly. The linker will create a separate batch for each combination of source block
or placement directive and destination block or placement directive. To see which
batches are created, use initialization logging (--log initialization).

In some cases, blocks are created automatically by the linker, which can affect the
number of batches. This can happen when using a block with fixed order and when
using the first, last, or midway modifiers in extended section selectors.

Overlay example

This is a simple overlay example that takes advantage of automatic block creation:

initialize manually { section MYOVERLAY* };

define overlay MYOVERLAY { section MYOVERLAY1 };
define overlay MYOVERLAY { section MYOVERLAY2 };

You must also place overlay MYOVERLAY somewhere in RAM. The copying could
look like this:

#pragma section = "MYOVERLAY"
#pragma section = "MYOVERLAY1_init"
#pragma section = "MYOVERLAY2_init"
void SwitchToOverlay1()
{
 char * from = __section_begin("MYOVERLAY1_init");
 char * to = __section_begin("MYOVERLAY");
 memcpy(to, from, __section_size("MYOVERLAY1_init"));
}

AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Linking your application

void SwitchToOverlay2()
{
 char * from = __section_begin("MYOVERLAY2_init");
 char * to = __section_begin("MYOVERLAY");
 memcpy(to, from, __section_size("MYOVERLAY2_init"));
}

Initializing code—copying ROM to RAM

Sometimes, an application copies pieces of code from flash/ROM to RAM. You can
direct the linker to arrange for this to be done automatically at application startup, or do
it yourself at some later time using the techniques described in Manual initialization,
page 103.

You need to list the code sections that should be copied in an initialize by copy
directive. The easiest way is usually to place the relevant functions in a particular
section—for example, RAMCODE— and add section RAMCODE to your initialize
by copy directive. For example:

initialize by copy { rw, section RAMCODE };

If you need to place the RAMCODE functions in some particular location, you must
mention them in a placement directive, otherwise they will be placed together with other
read/write sections.

If you need to control the manner and/or time of copying, you must use an initialize
manually directive instead. See Manual initialization, page 103.

Running all code from RAM

If you want to copy the entire application from ROM to RAM at program startup, use
the initilize by copy directive, for example:

initialize by copy { readonly, readwrite };

The readwrite pattern will match all statically initialized variables and arrange for
them to be initialized at startup. The readonly pattern will do the same for all read-only
code and data, except for code and data needed for the initialization.

Because the function __low_level_init, if present, is called before initialization, it
and anything it needs, will not be copied from ROM to RAM either. In some
circumstances—for example, if the ROM contents are no longer available to the
program after startup—you might need to avoid using the same functions during startup
and in the rest of the code.

If anything else should not be copied, include it in an except clause. This can apply to,
for example, the interrupt vector table.
AFE1_AFE2-1:1

105

106

Linking considerations

It is also recommended to exclude the C++ dynamic initialization table from being
copied to RAM, as it is typically only read once and then never referenced again. For
example, like this:

initialize by copy { readonly, readwrite }
 except { section .intvec, /* Don’t copy
 interrupt table */
 section .init_array }; /* Don’t copy
 C++ init table */

INTERACTION BETWEEN ILINK AND THE APPLICATION

ILINK provides the command line options --config_def and --define_symbol to
define symbols which can be used for controlling the application. You can also use
symbols to represent the start and end of a continuous memory area that is defined in the
linker configuration file. For more information, see Interaction between the tools and
your application, page 196.

To change a reference to one symbol to another symbol, use the ILINK command line
option --redirect. This is useful, for example, to redirect a reference from a
non-implemented function to a stub function, or to choose one of several different
implementations of a certain function, for example, how to choose the DLIB formatter
for the standard library functions printf and scanf.

The compiler generates mangled names to represent complex C/C++ symbols. If you
want to refer to these symbols from assembler source code, you must use the mangled
names.

For information about the addresses and sizes of all global (statically linked) symbols,
inspect the entry list in the map file (the command line option --map).

For more information, see Interaction between the tools and your application, page 196.

STANDARD LIBRARY HANDLING

By default, ILINK determines automatically which variant of the standard library to
include during linking. The decision is based on the sum of the runtime attributes
available in each object file and the library options passed to ILINK.

To disable the automatic inclusion of the library, use the option
--no_library_search. In this case, you must explicitly specify every library file to
be included. For information about available library files, see Prebuilt runtime libraries,
page 125.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Linking your application

PRODUCING OUTPUT FORMATS OTHER THAN ELF/DWARF

ILINK can only produce an output file in the ELF/DWARF format. To convert that
format into a format suitable for programming PROM/flash, see The IAR ELF Tool—
ielftool, page 467.

Hints for troubleshooting
ILINK has several features that can help you manage code and data placement correctly,
for example:

● Messages at link time, for examples when a relocation error occurs

● The --log option that makes ILINK log information to stdout, which can be
useful to understand why an executable image became the way it is, see --log, page
298

● The --map option that makes ILINK produce a memory map file, which contains
the result of the linker configuration file, see --map, page 300.

RELOCATION ERRORS

For each instruction that cannot be relocated correctly, ILINK will generate a relocation
error. This can occur for instructions where the target is out of reach or is of an
incompatible type, or for many other reasons.

A relocation error produced by ILINK can look like this:

Error[Lp002]: relocation failed: out of range or illegal value
 Kind : R_XXX_YYY[0x1]
 Location : 0x40000448
 "myfunc" + 0x2c
 Module: somecode.o
 Section: 7 (.text)
 Offset: 0x2c
 Destination: 0x9000000c
 "read"
 Module: read.o(iolib.a)
 Section: 6 (.text)
 Offset: 0x0

The message entries are described in this table:

Message entry Description

Kind The relocation directive that failed. The directive depends on the
instruction used.

Table 5: Description of a relocation error
AFE1_AFE2-1:1

107

108

Checking module consistency

Possible solutions

In this case, the distance from the instruction in myfunc to __read is too long for the
branch instruction.

Possible solutions include ensuring that the two .text sections are allocated closer to
each other or using some other calling mechanism that can reach the required distance.
It is also possible that the referring function tried to refer to the wrong target and that
this caused the range error.

Different range errors have different solutions. Usually, the solution is a variant of the
ones presented above, in other words modifying either the code or the section
placement.

Checking module consistency
This section introduces the concept of runtime model attributes, a mechanism used by
the tools provided by IAR to ensure that modules that are linked into an application are
compatible, in other words, are built using compatible settings. The tools use a set of
predefined runtime model attributes. In addition to these, you can define your own that
you can use to ensure that incompatible modules are not used together.

Location The location where the problem occurred, described with these details:
• The instruction address, expressed both as a hexadecimal value and as

a label with an offset. In this example, 0x40000448 and
"myfunc" + 0x2c.

• The module, and the file. In this example, the module somecode.o.
• The section number and section name. In this example, section number

7 with the name .text.
• The offset, specified in number of bytes, in the section. In this example,

0x2c.

Destination The target of the instruction, described with these details:
• The instruction address, expressed both as a hexadecimal value and as

a label with an offset. In this example, 0x9000000c and "read"—
therefore, no offset.

• The module, and when applicable the library. In this example, the
module read.o and the library iolib.a.

• The section number and section name. In this example, section number
6 with the name .text.

• The offset, specified in number of bytes, in the section. In this example,
0x0.

Message entry Description

Table 5: Description of a relocation error (Continued)
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Linking your application

For example, in the compiler, it is possible to specify for which core extensions the code
should be generated. If you write a routine that only works for an RV32IMF core, it is
possible to check that the routine is not used in an application built for an RV32IMFD
core.

RUNTIME MODEL ATTRIBUTES

A runtime attribute is a pair constituted of a named key and its corresponding value. In
general, two modules can only be linked together if they have the same value for each
key that they both define.

There is one exception—if the value of an attribute is *, then that attribute matches any
value. The reason for this is that you can specify this in a module to show that you have
considered a consistency property, and this ensures that the module does not rely on that
property.

Note: For IAR predefined runtime model attributes, the linker checks them in several
ways.

Example

In this table, the object files could (but do not have to) define the two runtime attributes
color and taste:

In this case, file1 cannot be linked with any of the other files, because the runtime
attribute color does not match. Also, file4 and file5 cannot be linked together,
because the taste runtime attribute does not match.

On the other hand, file2 and file3 can be linked with each other, and with either
file4 or file5, but not with both.

USING RUNTIME MODEL ATTRIBUTES

To ensure module consistency with other object files, use the #pragma rtmodel
directive to specify runtime model attributes in your C/C++ source code. For example,
if you have a UART that can run in two modes, you can specify a runtime model
attribute, for example uart. For each mode, specify a value, for example mode1 and

Object file Color Taste

file1 blue not defined

file2 red not defined

file3 red *

file4 red spicy

file5 red lean

Table 6: Example of runtime model attributes
AFE1_AFE2-1:1

109

110

Linker optimizations

mode2. Declare this in each module that assumes that the UART is in a particular mode.
This is how it could look like in one of the modules:

#pragma rtmodel="uart", "mode1"

Alternatively, you can also use the rtmodel assembler directive to specify runtime
model attributes in your assembler source code. For example:

 rtmodel "uart", "mode1"

Note: Key names that start with two underscores are reserved by the compiler. For more
information about the syntax, see rtmodel, page 363 and the IAR Assembler User Guide
for RISC-V.

At link time, the IAR ILINK Linker checks module consistency by ensuring that
modules with conflicting runtime attributes will not be used together. If conflicts are
detected, an error is issued.

Linker optimizations
This section contains information about:

● Virtual function elimination

● Duplicate section merging

● Instruction relaxation

VIRTUAL FUNCTION ELIMINATION

Virtual Function Elimination (VFE) is a linker optimization that removes unneeded
virtual functions and dynamic runtime type information.

In order for Virtual Function Elimination to work, all relevant modules must provide
information about virtual function table layout, which virtual functions are called, and
for which classes dynamic runtime type information is needed. If one or more modules
do not provide this information, a warning is generated by the linker and Virtual
Function Elimination is not performed.

If you know that modules that lack such information do not perform any virtual function
calls and do not define any virtual function tables, you can use the --vfe=forced
linker option to enable Virtual Function Elimination anyway.

In the IDE, select Project>Options>Linker>Optimizations>Perform C++ Virtual
Function Elimination to enable this optimization.

Currently, tools from IAR provide the information needed for Virtual Function
Elimination in a way that the linker can use.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Linking your application

Note: You can disable Virtual Function Elimination entirely by using the --no_vfe
linker option. In this case, no warning will be issued for modules that lack VFE
information.

For more information, see --vfe, page 313 and --no_vfe, page 304.

DUPLICATE SECTION MERGING

The linker can detect read-only sections with identical contents and keep only one copy
of each such section, redirecting all references to any of the duplicate sections to the
retained section.

In the IDE, select Project>Options>Linker>Optimizations>Merge duplicate
sections to enable this optimization.

Use the linker option --merge_duplicate_sections.

Note: This optimization can cause different functions or constants to have the same
address, so if your application depends on the addresses being different, for example, by
using the addresses as keys into a table, you should not enable this optimization.

INSTRUCTION RELAXATION

Certain instructions and sequences are tagged by the compiler or assembler as
candidates to be removed or transformed at link time, with the detailed knowledge the
linker has. One example is when a function call uses an auipc –jalr instruction pair
to guarantee 32-bit reach. Because the linker knows how far the destination is, it can
often replace the two instructions with a single jal instruction.

To disable instruction relaxation, use the linker option --disable_relaxation.
AFE1_AFE2-1:1

111

112

Linker optimizations

AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

The DLIB runtime
environment
● Introduction to the runtime environment

● Setting up the runtime environment

● Additional information on the runtime environment

● Managing a multithreaded environment

Introduction to the runtime environment
A runtime environment is the environment in which your application executes.

This section contains information about:

● Runtime environment functionality

● Briefly about input and output (I/O)

● Briefly about C-SPY emulated I/O

● Briefly about retargeting

RUNTIME ENVIRONMENT FUNCTIONALITY

The DLIB runtime environment supports Standard C and C++ and consists of:

● The C/C++ standard library, both its interface (provided in the system header files)
and its implementation.

● Startup and exit code.

● Low-level I/O interface for managing input and output (I/O).

● Special compiler support, for instance functions for switch handling or integer
arithmetics.

● Support for hardware features:

● Direct access to low-level processor operations by means of intrinsic functions,
such as functions for interrupt mask handling

● Peripheral unit registers and interrupt definitions in include files

● 32-bit floating-point unit (F devices) and 64-bit floating-point unit (D devices)

● Compressed instructions (C devices)
AFE1_AFE2-1:1

113

114

Introduction to the runtime environment

Runtime environment functions are provided in one or more runtime libraries.

The runtime library is delivered both as prebuilt libraries and (depending on your
product package) as source files. The prebuilt libraries are available in different
configurations to meet various needs, see Runtime library configurations, page 124.
You can find the libraries in the product subdirectories riscv\lib and
riscv\src\lib, respectively.

For more information about the library, see the chapter C/C++ standard library
functions.

BRIEFLY ABOUT INPUT AND OUTPUT (I/O)

Every application must communicate with its environment. The application might for
example display information on an LCD, read a value from a sensor, get the current date
from the operating system, etc. Typically, your application performs I/O via the C/C++
standard library or some third-party library.

There are many functions in the C/C++ standard library that deal with I/O, including
functions for standard character streams, file system access, time and date,
miscellaneous system actions, and termination and assert. This set of functions is
referred to as the standard I/O interface.

On a desktop computer or a server, the operating system is expected to provide I/O
functionality to the application via the standard I/O interface in the runtime
environment. However, in an embedded system, the runtime library cannot assume that
such functionality is present, or even that there is an operating system at all. Therefore,
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

The DLIB runtime environment

the low-level part of the standard I/O interface is not completely implemented by
default:

To make the standard I/O interface work, you can:

● Let the C-SPY debugger emulate I/O operations on the host computer, see Briefly
about C-SPY emulated I/O, page 116

● Retarget the standard I/O interface to your target system by providing a suitable
implementation of the interface, see Briefly about retargeting, page 116.

It is possible to mix these two approaches. You can, for example, let debug printouts and
asserts be emulated by the C-SPY debugger, but implement your own file system. The
debug printouts and asserts are useful during debugging, but no longer needed when
running the application stand-alone (not connected to the C-SPY debugger).
AFE1_AFE2-1:1

115

116

Introduction to the runtime environment

BRIEFLY ABOUT C-SPY EMULATED I/O

C-SPY emulated I/O is a mechanism which lets the runtime environment interact with
the C-SPY debugger to emulate I/O actions on the host computer:

For example, when C-SPY emulated I/O is enabled:

● Standard character streams are directed to the C-SPY Terminal I/O window

● File system operations are performed on the host computer

● Time and date functions return the time and date of the host computer

● The C-SPY debugger notifies when the application terminates or an assert fails.

This behavior can be valuable during the early development of an application, for
example in an application that uses file I/O before any flash file system I/O drivers are
implemented, or if you need to debug constructions in your application that use stdin
and stdout without the actual hardware device for input and output being available.

See Setting up your runtime environment, page 118 and The C-SPY emulated I/O
mechanism, page 130.

BRIEFLY ABOUT RETARGETING

Retargeting is the process where you adapt the runtime environment so that your
application can execute I/O operations on your target system.

The standard I/O interface is large and complex. To make retargeting easier, the DLIB
runtime environment is designed so that it performs all I/O operations through a small
set of simple functions, which is referred to as the DLIB low-level I/O interface. By
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

The DLIB runtime environment

default, the functions in the low-level interface lack usable implementations. Some are
unimplemented, others have stub implementations that do not perform anything except
returning error codes.

To retarget the standard I/O interface, all you have to do is to provide implementations
for the functions in the DLIB low-level I/O interface.

For example, if your application calls the functions printf and fputc in the standard
I/O interface, the implementations of those functions both call the low-level function
__write to output individual characters. To make them work, you just need to provide
an implementation of the __write function—either by implementing it yourself, or by
using a third-party implementation.

For information about how to override library modules with your own implementations,
see Overriding library modules, page 121. See also The DLIB low-level I/O interface,
page 136 for information about the functions that are part of the interface.

Setting up the runtime environment
This section contains these tasks:

● Setting up your runtime environment

A runtime environment with basic project settings to be used during the initial phase
of development.

● Retargeting—Adapting for your target system

● Overriding library modules
AFE1_AFE2-1:1

117

118

Setting up the runtime environment

● Customizing and building your own runtime library

See also:

● Managing a multithreaded environment—for information about how to adapt the
runtime environment to treat all library objects according to whether they are global
or local to a thread.

SETTING UP YOUR RUNTIME ENVIRONMENT

You can set up the runtime environment based on some basic project settings. It is also
often convenient to let the C-SPY debugger manage things like standard streams, file
I/O, and various other system interactions. This basic runtime environment can be used
for simulation before you have any target hardware.

To set up the runtime environment:
1 Before you build your project, choose Project>Options>General Options to open the

Options dialog box.

2 On the Library Configuration page, verify the following settings:

● Library—choose which library configuration to use. Typically, choose Normal or
Full. For library support for C++17, choose Libc++, which uses the Full library
configuration.

For information about the various library configurations, see Runtime library
configurations, page 124.

3 On the Library Options page, select Auto with multibyte support or Auto without
multibyte support for both Printf formatter and Scanf formatter. This means that
the linker will automatically choose the appropriate formatters based on information
from the compiler. For more information about the available formatters and how to
choose one manually, see Formatters for printf, page 128 and Formatters for scanf,
page 129, respectively.

4 To enable C-SPY emulated I/O, choose Project>Options>Linker>Library and select
Include C-SPY debugging support. See Briefly about C-SPY emulated I/O, page 116.

On the command line, use the linker option --debug_lib.

Note: The C-SPY Terminal I/O window is not opened automatically—you must open
it manually. For more information about this window, see the C-SPY® Debugging Guide
for RISC-V.

Note: If you enable debug information before compiling, this information will be
included also in the linker output, unless you use the linker option --strip.

5 On some systems, terminal output might be slow because the host computer and the
target system must communicate for each character.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

The DLIB runtime environment

For this reason, a replacement for the __write function called __write_buffered is
included in the runtime library. This module buffers the output and sends it to the
debugger one line at a time, speeding up the output.

Note: This function uses about 80 bytes of RAM memory.

To use this feature in the IDE, choose Project>Options>Linker>Library and select
the option Buffered write.

To enable this function on the command line, add this to the linker command line:

--redirect __write=__write_buffered

6 Some math functions are available in different versions—default versions, smaller than
the default versions, and larger but more accurate than default versions. Consider
which versions you should use.

To specify which set of the math functions to use, choose Project>Options>General
Options>Library Options 1>Math functions and choose which set to use. You can
also specify individual functions.

For more information, see Math functions, page 131.

7 When you build your project, a suitable prebuilt library and library configuration file
are automatically used based on the project settings you made.

For information about which project settings affect the choice of library file, see
Runtime library configurations, page 124.

You have now set up a runtime environment that can be used while developing your
application source code.

RETARGETING—ADAPTING FOR YOUR TARGET SYSTEM

Before you can run your application on your target system, you must adapt some parts
of the runtime environment, typically the system initialization and the DLIB low-level
I/O interface functions.

To adapt your runtime environment for your target system:
1 Adapt system initialization.

It is likely that you must adapt the system initialization, for example, your application
might need to initialize interrupt handling, I/O handling, watchdog timers, etc. You do
this by implementing the routine __low_level_init, which is executed before the
data sections are initialized. See System startup and termination, page 132 and System
initialization, page 135.

Note: You can find device-specific examples on this in the example projects provided in
the product installation, see the Information Center.
AFE1_AFE2-1:1

119

120

Setting up the runtime environment

2 Adapt the runtime library for your target system. To implement such functions, you
need a good understanding of the DLIB low-level I/O interface, see Briefly about
retargeting, page 116.

Typically, you must implement your own functions if your application uses:

● Standard streams for input and output

If any of these streams are used by your application, for example by the functions
printf and scanf, you must implement your versions of the low-level functions
__read and __write.

The low-level functions identify I/O streams, such as an open file, with a file handle
that is a unique integer. The I/O streams normally associated with stdin, stdout,
and stderr have the file handles 0, 1, and 2, respectively. When the handle is -1,
all streams should be flushed. Streams are defined in stdio.h.

● File input and output

The library contains a large number of powerful functions for file I/O operations,
such as fopen, fclose, fprintf, fputs, etc. All these functions call a small set of
low-level functions, each designed to accomplish one particular task, for example,
__open opens a file, and __write outputs characters. Implement your version of
these low-level functions.

● signal and raise

If the default implementation of these functions does not provide the functionality
you need, you can implement your own versions.

● Time and date

To make the time and date functions work, you must implement the functions clock,
__time32, __time64, and __getzone. Whether you use __time32 or __time64
depends on which interface you use for time_t, see time.h, page 406.

● Assert, see __iar_ReportAssert, page 140.

● Environment interaction

If the default implementation of system or getenv does not provide the
functionality you need, you can implement your own versions.

For more information about the functions, see The DLIB low-level I/O interface, page
136.

The library files that you can override with your own versions are located in the
riscv\src\lib directory.

3 When you have implemented your functions of the low-level I/O interface, you must
add your version of these functions to your project. For information about this, see
Overriding library modules, page 121.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

The DLIB runtime environment

Note: If you have implemented a DLIB low-level I/O interface function and added it to
a project that you have built with support for C-SPY emulated I/O, your low-level
function will be used and not the functions provided with C-SPY emulated I/O. For
example, if you implement your own version of __write, output to the C-SPY
Terminal I/O window will not be supported. See Briefly about C-SPY emulated I/O,
page 116.

4 Before you can execute your application on your target system, you must rebuild your
project with a Release build configuration. This means that the linker will not include
the C-SPY emulated I/O mechanism and the low-level I/O functions it provides. If your
application calls any of the low-level functions of the standard I/O interface, either
directly or indirectly, and your project does not contain these, the linker will issue an
error for every missing low-level function.

Note: By default, the NDEBUG symbol is defined in a Release build configuration, which
means asserts will no longer be checked. For more information, see
__iar_ReportAssert, page 140.

OVERRIDING LIBRARY MODULES

To override a library function and replace it with your own
implementation:

1 Use a template source file—a library source file or another template—and place a copy
of it in your project directory.

The library files that you can override with your own versions are located in the
riscv\src\lib directory.

2 Modify the file.

Note: To override the functions in a module, you must provide alternative
implementations for all the needed symbols in the overridden module. Otherwise you
will get error messages about duplicate definitions.

3 Add the modified file to your project, like any other source file.

Note: If you have implemented a DLIB low-level I/O interface function and added it to
a project that you have built with support for C-SPY emulated I/O, your low-level
function will be used and not the functions provided with C-SPY emulated I/O. For
example, if you implement your own version of __write, output to the C-SPY
Terminal I/O window will not be supported. See Briefly about C-SPY emulated I/O,
page 116.

You have now finished the process of overriding the library module with your version.
AFE1_AFE2-1:1

121

122

Setting up the runtime environment

CUSTOMIZING AND BUILDING YOUR OWN RUNTIME
LIBRARY

If the prebuilt library configurations do not meet your requirements, you can customize
your own library configuration, but that requires that you rebuild relevant parts of the
library.

Note: Customizing and building your own runtime library requires access to the library
source code, which is not available for all types of IAR Embedded Workbench licenses.

Building a customized library is a complex process. Therefore, consider carefully
whether it is really necessary. You must build your own runtime library when:

● You want to define your own library configuration with support for locale, file
descriptors, multibyte characters, etc. This will include or exclude certain parts of
the DLIB runtime environment.

In those cases, you must:

● Make sure that you have installed the library source code (src\lib). If not already
installed, you can install it using the IAR License Manager, see the Licensing
Guide.

● Set up a library project

● Make the required library customizations

● Build your customized runtime library

● Finally, make sure your application project will use the customized runtime library.

To set up a library project:
1 In the IDE, choose Project>Create New Project and use any of the library project

templates that are available for the prebuilt libraries and that matches the project
settings you need as closely as possible. See Prebuilt runtime libraries, page 125.

Note: When you create a new library project from a template, the majority of the files
included in the new project are the original installation files. If you are going to modify
these files, make copies of them first and replace the original files in the project with
these copies.

2 Modify the generic options in the created library project to suit your application, see
Basic project configuration, page 61.

To customize the library functionality:
1 The library functionality is determined by a set of configuration symbols. The default

values of these symbols are defined in the file DLib_Defaults.h which you can find
in riscv\inc\c. This read-only file describes the configuration possibilities. Note
that you should not modify this file.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

The DLIB runtime environment

In addition, you can create your own library configuration file by making a copy of the
file DLib_Config_configuration.h—which you can find in the directory—and
customize it by setting the values of the configuration symbols according to the
application requirements.

For information about configuration symbols that you might want to customize, see:

● Configuration symbols for file input and output, page 146

● Locale, page 146

● Strtod, page 147

● Managing a multithreaded environment, page 148

2 When you are finished, build your library project with the appropriate project options.

After you build your library, you must make sure to use it in your application project.

To build IAR Embedded Workbench projects from the command line, use the IAR
Command Line Build Utility (iarbuild.exe). However, no make or batch files for
building the library from the command line are provided.

For information about the build process and the IAR Command Line Build Utility, see
the IDE Project Management and Building Guide for RISC-V.

To use the customized runtime library in your application project:
1 In the IDE, choose Project>Options>General Options and click the Library

Configuration tab.

2 From the Library drop-down menu, choose Custom.

3 In the Configuration file text box, locate your library configuration file.

4 Click the Library tab, also in the Linker category. Use the Additional libraries text
box to locate your library file.

Additional information on the runtime environment
This section gives additional information on the runtime environment:

● Bounds checking functionality, page 124

● Runtime library configurations, page 124

● Prebuilt runtime libraries, page 125

● Formatters for printf, page 128

● Formatters for scanf, page 129

● The C-SPY emulated I/O mechanism, page 130

● Replacing the debug write mechanism, page 131
AFE1_AFE2-1:1

123

124

Additional information on the runtime environment

● Math functions, page 131

● System startup and termination, page 132

● System initialization, page 135

● The DLIB low-level I/O interface, page 136

● Configuration symbols for file input and output, page 146

● Locale, page 146

● Strtod, page 147

BOUNDS CHECKING FUNCTIONALITY

To enable the bounds checking functions specified in Annex K (Bounds-checking
interfaces) of the C standard, define the preprocessor symbol
__STDC_WANT_LIB_EXT1__ to 1 prior to including any system headers. See C
bounds-checking interface, page 405.

RUNTIME LIBRARY CONFIGURATIONS

The runtime library is provided with different library configurations, where each
configuration is suitable for different application requirements.

The runtime library configuration is defined in the library configuration file. It contains
information about what functionality is part of the runtime environment. The less
functionality you need in the runtime environment, the smaller the environment
becomes.

These predefined library configurations are available:

Note: In addition to these predefined library configurations, you can provide your own
configuration, see Customizing and building your own runtime library, page 122

If you do not specify a library configuration explicitly you will get the default
configuration. If you use a prebuilt runtime library, a configuration file that matches the
runtime library file will automatically be used. See Setting up the runtime environment,
page 117.

Library configuration Description

Normal DLIB (default) C locale, but no locale interface, no file descriptor support, no
multibyte characters in printf and scanf, and no hexadecimal
floating-point numbers in strtod.

Full DLIB Full locale interface, C locale, file descriptor support, and optionally
multibyte characters in printf and scanf, and hexadecimal
floating-point numbers in strtod.

Table 7: Library configurations
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

The DLIB runtime environment

Note: If you use the Libc++ library, you will automatically get the Full configuration.
This is the only configuration that exists for Libc++.

To override the default library configuration, use one of these methods:
1 Use a prebuilt configuration of your choice—to specify a runtime configuration

explicitly:

Choose Project>Options>General Options>Library Configuration>Library and
change the default setting.

Use the --dlib_config compiler option, see --dlib_config, page 253.

The prebuilt libraries are based on the default configurations, see Runtime library
configurations, page 124.

2 If you have built your own customized library, choose Project>Options>General
Options>Library Configuration>Library and choose Custom to use your own
configuration. For more information, see Customizing and building your own runtime
library, page 122.

PREBUILT RUNTIME LIBRARIES

The prebuilt runtime libraries are configured for different combinations of these options:

● The C/C++ library (DLIB or Libc++)

● Base integer instruction set—RV32E, RV32I, or RV64I

● Support for multiplication and division instructions

● Support for atomic operations

● FPU support

● Support for compressed instructions

● Library configuration—Normal or Full

The linker will automatically include the correct library files and library configuration
file. To explicitly specify a library configuration, use the --dlib_config compiler
option. (This is not possible for Standard C++ libraries compiled with support for
C++17—they only exist in the Full configuration.)

Note: The prebuilt runtime libraries for the RV64I instruction set are built using the
Medany code model, but are compatible with both code models.

To see which runtime library files that the linker includes, use the linker option
--log library, see --log, page 298.
AFE1_AFE2-1:1

125

126

Additional information on the runtime environment

Library filename syntax

The names of the prebuilt runtime libraries consist of two main elements, separated by
a hyphen (-), for example, canx-rv32ic, dl-rv32imc, and
dllibcppmathf-rv32im. The first element—before the hyphen—describes the kind
of library and type of feature support, and the second element—after the hyphen—
describes which RISC-V core extensions that are supported, where fx and dx
correspond to the Zfinx and Zdinx extensions, respectively. Note that some kinds of
libraries support more core extensions than are explicitly indicated by the filename.

First element of library

name
Kind of library and feature support

ap A handful of carefully tailored string functions that make use of the
AndeStar™ V5 Performance extension for RV32. If the linker’s
automatic library selection is not used, this library should be specified
before the standard dl library. In addition to what the filename
indicates, all ap libraries can be used with 32-bit cores that also support
the A and/or M extensions.

atomic Functions that support atomic operations.

bm String and memory routines for the Zbb bitmanip extension. In addition
to what the filename indicates, all bm libraries can be used with cores
that also support the A and/or M extensions.

c{a|anx|c|g|n|t} Functions that initialize the interrupt vector table before the execution
reaches the main function. The appropriate library will be used if the
linker option --auto_vector_setup is used and the linker
configuration file supports the functionality. The letter(s) after the c
identifies the method used.
In addition to what the filename indicates, all c{a|anx|c|g|n|t}
libraries can be used with cores that also support the A and/or M
extensions.

dbg Functions for C-SPY emulated I/O. In addition to what the filename
indicates, all dbg libraries can be used with cores that also support the
A and/or M extensions.

di Libraries with a default interrupt handler. In addition to what the
filename indicates, all di libraries can be used with cores that also
support the A and/or M extensions.

dl Functions defined by Standard C, for example functions like printf
and scanf. Note that this library does not include mathematical
functions. In addition to what the filename indicates, all dl libraries can
be used with cores that also support the A extension.

Table 8: Explanations of the first element of runtime library names
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

The DLIB runtime environment

For example, the library dlmathn-rv32imdc.a contains C standard library
mathematical functions in the Normal DLIB configuration, for RV32IMDC and
RV32IMDAC cores.

You can find the library object files in the directory riscv\lib\ and the library
configuration files in the directory riscv\inc\c\.

dl{f|n} C standard library functions in the Full (f) or Normal (n) DLIB
configuration. In addition to what the filename indicates, all dl{f|n}
libraries can be used with cores that also support the A extension.

dllibcppf Libc++ functions defined by C++, compiled with support for C++17.
This kind of library only exists in the Full DLIB configuration. In addition
to what the filename indicates, all dllibcppf libraries can be used
with cores that also support the A extension.

dllibcppmathf Libc++ mathematical functions defined by C++, compiled with support
for C++17. This kind of library only exists in the Full DLIB
configuration. In addition to what the filename indicates, all
dllibcppmathf libraries can be used with cores that also support
the A extension.

dlmath C standard library mathematical functions. In addition to what the
filename indicates, all dlmath libraries can be used with cores that also
support the A extension.

dlmath{f|n} The C standard library mathematical functions in the Full (f) or Normal
(n) DLIB configuration. In addition to what the filename indicates, all
dlmath{f|n} libraries can be used with cores that also support the
A extension.

dlpp{f|n} Functions defined by C++, compiled with support for C++14, in the Full
(f) or Normal (n) DLIB configuration. In addition to what the filename
indicates, all dlpp{f|n} libraries can be used with cores that also
support the A extension.

th{f|n} Thread support functions in the Full (f) or Normal (n) DLIB
configuration. In addition to what the filename indicates, all th{f|n}
libraries can be used with cores that also support the A extension.

tz Timezone and daylight saving time functions. In addition to what the
filename indicates, all tz libraries can be used with cores that also
support the A extension.

First element of library

name
Kind of library and feature support

Table 8: Explanations of the first element of runtime library names (Continued)
AFE1_AFE2-1:1

127

128

Additional information on the runtime environment

FORMATTERS FOR PRINTF

The printf function uses a formatter called _Printf. The full version is quite large,
and provides facilities not required in many embedded applications. To reduce the
memory consumption, three smaller, alternative versions are also provided. Note that
the wprintf variants are not affected.

This table summarizes the capabilities of the different formatters:

† NoMb means without multibytes.

The compiler can automatically detect which formatting capabilities are needed in a
direct call to printf, if the formatting string is a string literal. This information is
passed to the linker, which combines the information from all modules to select a
suitable formatter for the application. However, if the formatting string is a variable, or
if the call is indirect through a function pointer, the compiler cannot perform the
analysis, forcing the linker to select the Full formatter. In this case, you might want to
override the automatically selected printf formatter.

To override the automatically selected printf formatter in the IDE:
1 Choose Project>Options>General Options to open the Options dialog box.

2 On the Library Options page, select the appropriate formatter.

Formatting capabilities Tiny
Small/

SmallNoMb†

Large/

LargeNoMb†

Full/

FullNoMb†

Basic specifiers c, d, i, o, p, s, u, X, x, and % Yes Yes Yes Yes

Multibyte support No Yes/No Yes/No Yes/No

Floating-point specifiers a, and A No No No Yes

Floating-point specifiers e, E, f, F, g, and G No No Yes Yes

Conversion specifier n No No Yes Yes

Format flag +, -, #, 0, and space No Yes Yes Yes

Length modifiers h, l, L, s, t, and Z No Yes Yes Yes

Field width and precision, including * No Yes Yes Yes

long long support No No Yes Yes

wchar_t support No No No Yes

Table 9: Formatters for printf
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

The DLIB runtime environment

To override the automatically selected printf formatter from the command
line:

1 Use one of these ILINK command line options:

--redirect _Printf=_PrintfFull
--redirect _Printf=_PrintfFullNoMb
--redirect _Printf=_PrintfLarge
--redirect _Printf=_PrintfLargeNoMb
--redirect _Printf=_PrintfSmall
--redirect _Printf=_PrintfSmallNoMb
--redirect _Printf=_PrintfTiny
--redirect _Printf=_PrintfTinyNoMb

If the compiler does not recognize multibyte support, you can enable it:

Select Project>Options>General Options>Library Options 1>Enable multibyte
support.

Use the linker option --printf_multibytes.

FORMATTERS FOR SCANF

In a similar way to the printf function, scanf uses a common formatter, called
_Scanf. The full version is quite large, and provides facilities that are not required in
many embedded applications. To reduce the memory consumption, two smaller,
alternative versions are also provided. Note that the wscanf versions are not affected.

This table summarizes the capabilities of the different formatters:

† NoMb means without multibytes.

Formatting capabilities
Small/

SmallNoMb†

Large/

LargeNoMb†

Full/

FullNoMb†

Basic specifiers c, d, i, o, p, s, u, X, x, and % Yes Yes Yes

Multibyte support Yes/No Yes/No Yes/No

Floating-point specifiers a, and A No No Yes

Floating-point specifiers e, E, f, F, g, and G No No Yes

Conversion specifier n No No Yes

Scan set [and] No Yes Yes

Assignment suppressing * No Yes Yes

long long support No No Yes

wchar_t support No No Yes

Table 10: Formatters for scanf
AFE1_AFE2-1:1

129

130

Additional information on the runtime environment

The compiler can automatically detect which formatting capabilities are needed in a
direct call to scanf, if the formatting string is a string literal. This information is passed
to the linker, which combines the information from all modules to select a suitable
formatter for the application. However, if the formatting string is a variable, or if the call
is indirect through a function pointer, the compiler cannot perform the analysis, forcing
the linker to select the full formatter. In this case, you might want to override the
automatically selected scanf formatter.

To manually specify the scanf formatter in the IDE:
1 Choose Project>Options>General Options to open the Options dialog box.

2 On the Library Options page, select the appropriate formatter.

To manually specify the scanf formatter from the command line:
1 Use one of these ILINK command line options:

--redirect _Scanf=_ScanfFull
--redirect _Scanf=_ScanfFullNoMb
--redirect _Scanf=_ScanfLarge
--redirect _Scanf=_ScanfLargeNoMb
--redirect _Scanf=_ScanfSmall
--redirect _Scanf=_ScanfSmallNoMb

If the compiler does not recognize multibyte support, you can enable it:

Select Project>Options>General Options>Library Options 1>Enable multibyte
support.

Use the linker option --scanf_multibytes.

THE C-SPY EMULATED I/O MECHANISM

The C-SPY emulated I/O mechanism works as follows:

1 The debugger will detect the presence of the function __DebugBreak, which will
be part of the application if you linked it with the linker option for C-SPY emulated
I/O.

2 In this case, the debugger will automatically set a breakpoint at the __DebugBreak
function.

3 When your application calls a function in the DLIB low-level I/O interface, for
example, open, the __DebugBreak function is called, which will cause the
application to stop at the breakpoint and perform the necessary services.

4 The execution will then resume.

See also Briefly about C-SPY emulated I/O, page 116.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

The DLIB runtime environment

REPLACING THE DEBUG WRITE MECHANISM

When your application runs in C-SPY, printf style output is sent to Terminal I/O. To
instead send text strings character by character to the trace output stream via the ITC
register, available for SiFive devices with an Instrumentation Trace Component (ITC),
specify this option on the ILINK command line:

--redirect __dwrite=__dwrite_itc

This replaces the standard C-SPY debug write string support routine __dwrite with the
ITC debug write string support routine.

MATH FUNCTIONS

Some C/C++ standard library math functions are available in different versions:

● The default versions

● Smaller versions (but less accurate)

● More accurate versions (but larger).

Smaller versions

The functions cos, exp, log, log2, log10, pow, sin, and tan exist in additional,
smaller versions in the library. They are about 20% smaller and about 20% faster than
the default versions. The functions handle INF and NaN values. The drawbacks are that
they almost always lose some precision and they do not have the same input range as the
default versions.

The names of the functions are constructed like:

__iar_xxx_small<f|l>

where f is used for float variants, l is used for long double variants, and no suffix
is used for double variants.

To specify which set of math functions to use:
1 Choose Project>Options>General Options>Library Options 1>Math functions

and choose which set to use.

2 Link your application and the chosen set will be used.

To specify smaller math functions on the command line:
1 Specify the command line option --small_math to the linker.

2 Link your application and the complete set will be used.
AFE1_AFE2-1:1

131

132

Additional information on the runtime environment

More accurate versions

The functions cos, pow, sin, and tan exist in versions in the library that are more exact
and can handle larger argument ranges. The drawback is that they are larger and slower
than the default versions.

The names of the functions are constructed like:

__iar_xxx_accurate<f|l>

where f is used for float variants, l is used for long double variants, and no suffix
is used for double variants.

To specify more accurate math functions on the command line:
1 Specify the command line option --accurate_math to the linker.

2 Link your application and the complete set will be used.

SYSTEM STARTUP AND TERMINATION

This section describes the runtime environment actions performed during startup and
termination of your application.

The code for handling startup and termination is located in the source files
cstartup.s, cexit.s, and low_level_init.c located in the riscv\src\lib
directory.

For information about how to customize the system startup code, see System
initialization, page 135.

System startup

During system startup, an initialization sequence is executed before the main function
is entered. This sequence performs initializations required for the target hardware and
the C/C++ environment.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

The DLIB runtime environment

For the hardware initialization, it looks like this:

● When the CPU is reset it will start executing at the program entry label
__iar_program_start in the system startup code.

● The stack pointer is initialized to the end of the CSTACK block

● The function __low_level_init is called if you defined it, giving the application
a chance to perform early initializations.

For the C/C++ initialization, it looks like this:

● Static and global variables are initialized. That is, zero-initialized variables are
cleared and the values of other initialized variables are copied from ROM to RAM
memory. This step is skipped if __low_level_init returns zero. For more
information, see Initialization at system startup, page 86.

● Static C++ objects are constructed
AFE1_AFE2-1:1

133

134

Additional information on the runtime environment

● The main function is called, which starts the application.

For information about the initialization phase, see Application execution—an overview,
page 56.

System termination

This illustration shows the different ways an embedded application can terminate in a
controlled way:

An application can terminate normally in two different ways:

● Return from the main function

● Call the exit function.

Because the C standard states that the two methods should be equivalent, the system
startup code calls the exit function if main returns. The parameter passed to the exit
function is the return value of main.

The default exit function is written in C. It calls a small assembler function _exit that
will:

● Call functions registered to be executed when the application ends. This includes
C++ destructors for static and global variables, and functions registered with the
standard function atexit. See also Setting up the atexit limit, page 102.

● Close all open files

● Call __exit

● When __exit is reached, stop the system.

An application can also exit by calling the abort, the _Exit, or the quick_exit
function. The abort function just calls __exit to halt the system, and does not perform
any type of cleanup. The _Exit function is equivalent to the abort function, except for
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

The DLIB runtime environment

the fact that _Exit takes an argument for passing exit status information. The
quick_exit function is equivalent to the _Exit function, except that it calls each
function passed to at_quick_exit before calling __exit.

If you want your application to do anything extra at exit, for example, resetting the
system (and if using atexit is not sufficient), you can write your own implementation
of the __exit(int) function.

The library files that you can override with your own versions are located in the
riscv\src\lib directory. See Overriding library modules, page 121.

C-SPY debugging support for system termination

If you have enabled C-SPY emulated I/O during linking, the normal __exit and abort
functions are replaced with special ones. C-SPY will then recognize when those
functions are called and can take appropriate actions to emulate program termination.
For more information, see Briefly about C-SPY emulated I/O, page 116.

SYSTEM INITIALIZATION

It is likely that you need to adapt the system initialization. For example, your application
might need to initialize memory-mapped special function registers (SFRs), or omit the
default initialization of data sections performed by the system startup code.

You can do this by implementing your own version of the routine __low_level_init,
which is called from the cstartup.s file before the data sections are initialized.
Modifying the cstartup.s file directly should be avoided.

The code for handling system startup is located in the source files cstartup.s and
low_level_init.c, located in the riscv\src\lib directory.

Note that normally, you do not need to customize cexit.s.

Note: Regardless of whether you implement your own version of __low_level_init
or the file cstartup.s, you do not have to rebuild the library.

Customizing __low_level_init

A skeleton low-level initialization file is supplied with the product—
low_level_init.c.

Note: Static initialized variables cannot be used within the file, because variable
initialization has not been performed at this point.

The value returned by __low_level_init determines whether or not data sections
should be initialized by the system startup code. If the function returns 0, the data
sections will not be initialized.
AFE1_AFE2-1:1

135

136

Additional information on the runtime environment

Modifying the cstartup file

As noted earlier, you should not modify the cstartup.s file if implementing your own
version of __low_level_init is enough for your needs. However, if you do need to
modify the cstartup.s file, we recommend that you follow the general procedure for
creating a modified copy of the file and adding it to your project, see Overriding library
modules, page 121.

Note: You must make sure that the linker uses the start label used in your version of
cstartup.s. For information about how to change the start label used by the linker, see
--entry, page 293.

THE DLIB LOW-LEVEL I/O INTERFACE

The runtime library uses a set of low-level functions—which are referred to as the DLIB
low-level I/O interface—to communicate with the target system. Most of the low-level
functions have no implementation.

For more information, see Briefly about input and output (I/O), page 114.

These are the functions in the DLIB low-level I/O interface:

● abort

● clock

● __close

● __exit

● getenv

● __getzone

● __iar_ReportAssert

● __lseek

● __open

● raise

● __read

● remove

● rename

● signal

● system

● __time32, __time64

● __write

Note: You should normally not use the low-level functions prefixed with __ directly in
your application. Instead you should use the standard library functions that use these
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

The DLIB runtime environment

functions. For example, to write to stdout, you should use standard library functions
like printf or puts, which in turn calls the low-level function __write. If you have
forgot to implement a low-level function and your application calls that function via a
standard library function, the linker issues an error when you link in release build
configuration.

Note: If you implement your own variants of the functions in this interface, your
variants will be used even though you have enabled C-SPY emulated I/O, see Briefly
about C-SPY emulated I/O, page 116.

abort

Source file riscv\src\lib\runtime\abort.c

Declared in stdlib.h

Description Standard C library function that aborts execution.

C-SPY debug action Notifies that the application has called abort.

Default implementation Calls __exit(EXIT_FAILURE).

See also Briefly about retargeting, page 116

System termination, page 134.

clock

Source file riscv\src\lib\time\clock.c

Declared in time.h

Description Standard C library function that accesses the processor time.

It is assumed that clock counts seconds. If this is not the case, and CLOCKS_PER_SEC
is used, CLOCKS_PER_SEC should be set to the actual number of ticks per second prior
to using time.h. The C++ header chrono uses CLOCKS_PER_SEC when implementing
the function now().

C-SPY debug action Returns the clock on the host computer.

Default implementation Returns -1 to indicate that processor time is not available.
AFE1_AFE2-1:1

137

138

Additional information on the runtime environment

See also Briefly about retargeting, page 116.

__close

Source file riscv\src\lib\file\close.c

Declared in LowLevelIOInterface.h

Description Low-level function that closes a file.

C-SPY debug action Closes the associated host file on the host computer.

Default implementation None.

See also Briefly about retargeting, page 116.

__exit

Source file riscv\src\lib\runtime\xxexit.c

Declared in LowLevelIOInterface.h

Description Low-level function that halts execution.

C-SPY debug action Notifies that the end of the application was reached.

Default implementation Loops forever.

See also Briefly about retargeting, page 116

System termination, page 134.

getenv

Source file riscv\src\lib\runtime\getenv.c
riscv\src\lib\runtime\environ.c

Declared in Stdlib.h and LowLevelIOInterface.h

C-SPY debug action Accesses the host environment.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

The DLIB runtime environment

Default implementation The getenv function in the library searches the string pointed to by the global variable
__environ, for the key that was passed as argument. If the key is found, the value of it
is returned, otherwise 0 (zero) is returned. By default, the string is empty.

To create or edit keys in the string, you must create a sequence of null-terminated strings
where each string has the format:

key=value\0

End the string with an extra null character (if you use a C string, this is added
automatically). Assign the created sequence of strings to the __environ variable.

For example:

const char MyEnv[] = "Key=Value\0Key2=Value2\0";
__environ = MyEnv;

If you need a more sophisticated environment variable handling, you should implement
your own getenv, and possibly putenv function.

Note: The putenv function is not required by the standard, and the library does not
provide an implementation of it.

See also Briefly about retargeting, page 116.

__getzone

Source file riscv\src\lib\time\getzone.c

Declared in LowLevelIOInterface.h

Description Low-level function that returns the current time zone.

Note: You must enable the time zone functionality in the library by using the linker
option --timezone_lib.

C-SPY debug action Not applicable.

Default implementation Returns ":".

See also Briefly about retargeting, page 116 and --timezone_lib, page 310.

For more information, see the source file getzone.c.
AFE1_AFE2-1:1

139

140

Additional information on the runtime environment

__iar_ReportAssert

Source file riscv\src\lib\runtime\xreportassert.c

Declared in assert.h

Description Low-level function that handles a failed assert.

C-SPY debug action Notifies the C-SPY debugger about the failed assert.

Default implementation Failed asserts are reported by the function __iar_ReportAssert. By default, it prints
an error message and calls abort. If this is not the behavior you require, you can
implement your own version of the function.

The assert macro is defined in the header file assert.h. To turn off assertions, define
the symbol NDEBUG.

In the IDE, the symbol NDEBUG is by default defined in a Release project and not defined
in a Debug project. If you build from the command line, you must explicitly define the
symbol according to your needs. See NDEBUG, page 393.

See also Briefly about retargeting, page 116.

__lseek

Source file riscv\src\lib\file\lseek.c

Declared in LowLevelIOInterface.h

Description Low-level function for changing the location of the next access in an open file.

C-SPY debug action Searches in the associated host file on the host computer.

Default implementation None.

See also Briefly about retargeting, page 116.

__open

Source file riscv\src\lib\file\open.c

Declared in LowLevelIOInterface.h
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

The DLIB runtime environment

Description Low-level function that opens a file.

C-SPY debug action Opens a file on the host computer.

Default implementation None.

See also Briefly about retargeting, page 116.

raise

Source file riscv\src\lib\runtime\raise.c

Declared in signal.h

Description Standard C library function that raises a signal.

C-SPY debug action Not applicable.

Default implementation Calls the signal handler for the raised signal, or terminates with call to
__exit(EXIT_FAILURE).

See also Briefly about retargeting, page 116.

__read

Source file riscv\src\lib\file\read.c

Declared in LowLevelIOInterface.h

Description Low-level function that reads characters from stdin and from files.

C-SPY debug action Directs stdin to the Terminal I/O window. All other files will read the associated host
file.

Default implementation None.
AFE1_AFE2-1:1

141

142

Additional information on the runtime environment

Example The code in this example uses memory-mapped I/O to read from a keyboard, whose port
is assumed to be located at 0x8:

#include <stddef.h>
#include <LowLevelIOInterface.h>

__no_init volatile unsigned char kbIO @ 8;

size_t __read(int handle,
 unsigned char *buf,
 size_t bufSize)
{
 size_t nChars = 0;

 /* Check for stdin
 (only necessary if FILE descriptors are enabled) */
 if (handle != 0)
 {
 return -1;
 }

 for (/*Empty*/; bufSize > 0; --bufSize)
 {
 unsigned char c = kbIO;
 if (c == 0)
 break;

 *buf++ = c;
 ++nChars;
 }

 return nChars;
}

For information about the handles associated with the streams, see Retargeting—
Adapting for your target system, page 119.

For information about the @ operator, see Controlling data and function placement in
memory, page 210.

See also Briefly about retargeting, page 116.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

The DLIB runtime environment

remove

Source file riscv\src\lib\file\remove.c

Declared in stdio.h

Description Standard C library function that removes a file.

C-SPY debug action Writes a message to the Debug Log window and returns -1.

Default implementation Returns 0 to indicate success, but without removing a file.

See also Briefly about retargeting, page 116.

rename

Source file riscv\src\lib\file\rename.c

Declared in stdio.h

Description Standard C library function that renames a file.

C-SPY debug action None.

Default implementation Returns -1 to indicate failure.

See also Briefly about retargeting, page 116.

signal

Source file riscv\src\lib\runtime\signal.c

Declared in signal.h

Description Standard C library function that changes signal handlers.

C-SPY debug action Not applicable.

Default implementation As specified by Standard C. You might want to modify this behavior if the environment
supports some kind of asynchronous signals.

See also Briefly about retargeting, page 116.
AFE1_AFE2-1:1

143

144

Additional information on the runtime environment

system

Source file riscv\src\lib\runtime\system.c

Declared in stdlib.h

Description Standard C library function that executes commands.

C-SPY debug action Notifies the C-SPY debugger that system has been called and then returns -1.

Default implementation The system function available in the library returns 0 if a null pointer is passed to it to
indicate that there is no command processor, otherwise it returns -1 to indicate failure.
If this is not the functionality that you require, you can implement your own version.
This does not require that you rebuild the library.

See also Briefly about retargeting, page 116.

__time32, __time64

Source file riscv\src\lib\time\time.c
riscv\src\lib\time\time64.c

Declared in time.h

Description Low-level functions that return the current calendar time.

C-SPY debug action Returns the time on the host computer.

Default implementation Returns -1 to indicate that calendar time is not available.

See also Briefly about retargeting, page 116.

__write

Source file riscv\src\lib\file\write.c

Declared in LowLevelIOInterface.h

Description Low-level function that writes to stdout, stderr, or a file.

C-SPY debug action Directs stdout and stderr to the Terminal I/O window. All other files will write to
the associated host file.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

The DLIB runtime environment

Default implementation None.

Example The code in this example uses memory-mapped I/O to write to an LCD display, whose
port is assumed to be located at address 0x8:

#include <stddef.h>
#include <LowLevelIOInterface.h>

__no_init volatile unsigned char lcdIO @ 8;

size_t __write(int handle,
 const unsigned char *buf,
 size_t bufSize)
{
 size_t nChars = 0;

 /* Check for the command to flush all handles */
 if (handle == -1)
 {
 return 0;
 }

 /* Check for stdout and stderr
 (only necessary if FILE descriptors are enabled.) */
 if (handle != 1 && handle != 2)
 {
 return -1;
 }

 for (/* Empty */; bufSize > 0; --bufSize)
 {
 lcdIO = *buf;
 ++buf;
 ++nChars;
 }

 return nChars;
}

For information about the handles associated with the streams, see Retargeting—
Adapting for your target system, page 119.

See also Briefly about retargeting, page 116.
AFE1_AFE2-1:1

145

146

Additional information on the runtime environment

CONFIGURATION SYMBOLS FOR FILE INPUT AND OUTPUT

File I/O is only supported by libraries with the Full library configuration, see Runtime
library configurations, page 124, or in a customized library when the configuration
symbol __DLIB_FILE_DESCRIPTOR is defined. If this symbol is not defined, functions
taking a FILE * argument cannot be used.

To customize your library and rebuild it, see Customizing and building your own
runtime library, page 122.

LOCALE

Locale is a part of the C language that allows language and country-specific settings for
several areas, such as currency symbols, date and time, and multibyte character
encoding.

Depending on which library configuration you are using, you get different levels of
locale support. However, the more locale support, the larger your code will get. It is
therefore necessary to consider what level of support your application needs. See
Runtime library configurations, page 124.

The DLIB runtime library can be used in two main modes:

● Using a full library configuration that has a locale interface, which makes it possible
to switch between different locales during runtime

The application starts with the C locale. To use another locale, you must call the
setlocale function or use the corresponding mechanisms in C++. The locales that
the application can use are set up at linkage.

● Using a normal library configuration that does not have a locale interface, where the
C locale is hardwired into the application.

Note: If multibytes are to be printed, you must make sure that the implementation of
__write in the DLIB low-level I/O interface can handle them.

Specifying which locales that should be available in your application

Choose Project>Options>General Options>Library Options 2>Locale support.

Use the linker option --keep with the tag of the locale as the parameter, for example:

--keep _Locale_cs_CZ_iso8859_2

The available locales are listed in the file SupportedLocales.json in the
riscv\config directory, for example:

['Czech language locale for Czech Republic', 'iso8859-2',

'cs_CZ.iso8859-2', '_Locale_cs_CZ_iso8859_2'],
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

The DLIB runtime environment

The line contains the full locale name, the encoding for the locale, the abbreviated locale
name, and the tag to be used as parameter to the linker option --keep.

Changing locales at runtime

The standard library function setlocale is used for selecting the appropriate portion
of the application’s locale when the application is running.

The setlocale function takes two arguments. The first one is a locale category that is
constructed after the pattern LC_CATEGORY. The second argument is a string that
describes the locale. It can either be a string previously returned by setlocale, or it
can be a string constructed after the pattern:

lang_REGION

or

lang_REGION.encoding

The lang part specifies the language code, and the REGION part specifies a region
qualifier, and encoding specifies the multibyte character encoding that should be used.
The available encodings are ISO-8859-1, ISO-8859-2, ISO-8859-4, ISO-8859-5,
ISO-8859-7, ISO-8859-8, ISO-8859-9, ISO-8859-15, CP932, and UTF-8.

For a complete list of the available locales and their respective encoding, see the file
SupportedLocales.json in the riscv\config directory.

Example

This example sets the locale configuration symbols to Swedish to be used in Finland and
UTF8 multibyte character encoding:

setlocale (LC_ALL, "sv_FI.UTF8");

STRTOD

The function strtod does not accept hexadecimal floating-point strings in libraries
with the normal library configuration. To make strtod accept hexadecimal
floating-point strings, you must:

1 Enable the configuration symbol _DLIB_STRTOD_HEX_FLOAT in the library
configuration file.

2 Rebuild the library, see Customizing and building your own runtime library, page 122.
AFE1_AFE2-1:1

147

148

Managing a multithreaded environment

Managing a multithreaded environment
This section contains information about:

● Multithread support in the DLIB runtime environment, page 148

● Enabling multithread support, page 149

● Setting up thread-local storage (TLS), page 150

In a multithreaded environment, the standard library must treat all library objects
according to whether they are global or local to a thread. If an object is a true global
object, any updates of its state must be guarded by a locking mechanism to make sure
that only one thread can update it at any given time. If an object is local to a thread, the
static variables containing the object state must reside in a variable area local to that
thread. This area is commonly named thread-local storage (TLS).

The low-level implementations of locks and TLS are system-specific, and is not
included in the DLIB runtime environment. If you are using an RTOS, check if it
provides some or all of the required functions. Otherwise, you must provide your own.

MULTITHREAD SUPPORT IN THE DLIB RUNTIME
ENVIRONMENT

The DLIB runtime environment uses two kinds of locks—system locks and file stream
locks. The file stream locks are used as guards when the state of a file stream is updated,
and are only needed in the Full library configuration. The following objects are guarded
with system locks:

● The heap (in other words when malloc, new, free, delete, realloc, or calloc
is used).

● The C file system (only available in the Full library configuration), but not the file
streams themselves. The file system is updated when a stream is opened or closed,
in other words when fopen, fclose, fdopen, fflush, or freopen is used.

● The signal system (in other words when signal is used).

● The temporary file system (in other words when tmpnam is used).

● C++ dynamically initialized function-local objects with static storage duration.

● C++ locale facet handling

● C++ regular expression handling

● C++ terminate and unexpected handling
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

The DLIB runtime environment

These library objects use TLS:

Note: If you are using printf/scanf (or any variants) with formatters, each individual
formatter will be guarded, but the complete printf/scanf invocation will not be
guarded.

If C++ is used in a runtime environment with multithread support, the compiler option
--guard_calls must be used to make sure that function-static variables with dynamic
initializers are not initialized simultaneously by several threads.

ENABLING MULTITHREAD SUPPORT

To configure multithread support for use with threaded applications:
1 To enable multithread support:

On the command line, use the linker option --threaded_lib.

If C++ is used, the compiler option --guard_calls should be used as well to make
sure that function-static variables with dynamic initializers are not initialized
simultaneously by several threads.

In the IDE, choose Project>Options>General Options>Library
Configuration>Enable thread support in the library. This will invoke the linker
option --threaded_lib and if C++ is used, the IDE will automatically use the
compiler option --guard_calls to make sure that function-static variables with
dynamic initializers are not initialized simultaneously by several threads.

2 To complement the built-in multithread support in the runtime library, you must also:

● Implement code for the library’s system locks interface.

● If file streams are used, implement code for the library’s file stream locks interface.

● Implement code that handles thread creation, thread destruction, and TLS access
methods for the library.

You can find the required declaration of functions in the DLib_Threads.h file. There
you will also find more information.

3 Build your project.

Note: If you are using a third-party RTOS, check their guidelines for how to enable
multithread support with IAR tools.

Library objects using TLS When these functions are used

Error functions errno, strerror

Table 11: Library objects using TLS
AFE1_AFE2-1:1

149

150

Managing a multithreaded environment

SETTING UP THREAD-LOCAL STORAGE (TLS)

Thread-local storage (TLS) is supported in both C (via the _Thread_local type
specifier introduced in C11) and C++ (via the thread_local type specifier introduced
in C++11). TLS variables reside in the thread-local storage area, a memory area that
must be set up when the thread is created. Any resources used must be returned when
the thread is destroyed. In a C++ environment, any TLS object must be created after the
thread-local storage area has been set up, and destroyed before the thread-local storage
area is destroyed.

If you are using an operating system, refer to the relevant TLS documentation.
Additional information can be found in the IAR library header file DLib_Threads.h.
Information from such specific sources takes precedence over this general overview.

The main thread

If the linker option --threaded_lib has been specified, TLS is active. The regular
system startup handles the initialization of the main thread’s thread-local storage area.
The initialized TLS variables in the main thread are placed in the linker section .tdata
and the zero-initialized TLS variables are placed in the section .tbss. All other threads
must set up their thread-local storage area when they are created. If --threaded_lib
was not specified, content in the .tdata and .tbss sections is handled as if they were
.data and .bss. However, accesses to such variables are still TLS accesses.

Acquiring memory for TLS

TLS variables must be placed in memory. Exactly how this is handled does not matter
as long as the memory remains available for the duration of the thread’s lifetime. The
size of the thread-local storage area can be obtained by calling the function
__iar_tls_size (declared in DLib_Threads.h).

Some options for acquiring memory for TLS are:

● Acquire memory from the OS

● Allocate heap memory

● Use space on the stack of a function that does not return until the thread is done

● Use space in a dedicated section.

Initializing TLS memory

To initialize the TLS memory, call the function __iar_tls_init (declared in
DLib_Threads.h) with a pointer to the memory area.

The initialization function copies the contents of the linker section
__iar_tls$$INIT_DATA to the memory, and then zero-initializes the remaining
memory up to the size of the section __iar_tls$$DATA. In a C++ environment, the
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

The DLIB runtime environment

function __iar_call_tls_ctors is also called—it executes all constructors in the
section __iar_tls$$PREINIT_ARRAY. When the initialization has been performed,
the thread-local storage area is ready to use, all TLS variables have their initial values,
and in a C++ environment all thread-local objects have been constructed.

Deallocating TLS memory

When it is time to destroy the thread, the thread-local storage area must also be handled.
In a C++ environment, the thread-local objects must be destroyed before the memory
itself is processed. This is achieved by calling the function __call_thread_dtors
(declared in DLib_Threads.h). If the memory was acquired from a handler (like the
heap or the OS), that memory must be returned.

As an example, this code snippet allocates the thread-local storage area on the heap. tp
is a pointer to a thread-control object:

/* creating a new thread */
 ...
 /* initialize TLS */
 void * tls_mem = malloc(__iar_tls_size()); /* get memory */
 __iar_tls_init(tls_mem); /* init TLS in the */
 /* new memory */
 tp->tls_area = tls_mem; /* set the thread’s */
 /* TLS area to the new memory */
 ...
 /* destroying a thread */
 ...
 /* destroy the TLS area */
 __call_thread_dtors(); /* only if C++ is used */
 free(tp->tls_area); /* return memory */
 ...
AFE1_AFE2-1:1

151

152

Managing a multithreaded environment

AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Assembler language
interface
● Mixing C and assembler

● Calling assembler routines from C

● Calling assembler routines from C++

● Calling convention

● Assembler instructions used for calling functions

● Call frame information

Mixing C and assembler
The IAR C/C++ Compiler for RISC-V provides several ways to access low-level
resources:

● Modules written entirely in assembler

● Intrinsic functions (the C alternative)

● Inline assembler.

It might be tempting to use simple inline assembler. However, you should carefully
choose which method to use.

INTRINSIC FUNCTIONS

The compiler provides a few predefined functions that allow direct access to low-level
processor operations without having to use the assembler language. These functions are
known as intrinsic functions. They can be useful in, for example, time-critical routines.

An intrinsic function looks like a normal function call, but it is really a built-in function
that the compiler recognizes. The intrinsic functions compile into inline code, either as
a single instruction, or as a short sequence of instructions.

For more information about the available intrinsic functions, see the chapter Intrinsic
functions.
AFE1_AFE2-1:1

153

154

Mixing C and assembler

INLINE ASSEMBLER

Inline assembler can be used for inserting assembler instructions directly into a C or
C++ function. Typically, this can be useful if you need to:

● Access hardware resources that are not accessible in C (in other words, when there
is no definition for an SFR or there is no suitable intrinsic function available).

● Manually write a time-critical sequence of code that if written in C will not have the
right timing.

● Manually write a speed-critical sequence of code that if written in C will be too
slow.

An inline assembler statement is similar to a C function in that it can take input
arguments (input operands), have return values (output operands), and read or write to
C symbols (via the operands). An inline assembler statement can also declare clobbered
resources (that is, values in registers and memory that have been overwritten).

Limitations

Most things you can to do in normal assembler language are also possible with inline
assembler, with the following differences:

● Alignment cannot be controlled; this means, for example, that DC32 directives
might be misaligned.

● In general, assembler directives will cause errors or have no meaning. However,
data definition directives will work as expected.

● Resources used (registers, memory, etc) that are also used by the C compiler must
be declared as operands or clobbered resources.

● If you do not want to risk that the inline assembler statement to be optimized away
by the compiler, you must declare it volatile.

● Accessing a C symbol or using a constant expression requires the use of operands.

● Dependencies between the expressions for the operands might result in an error.

Risks with inline assembler

Without operands and clobbered resources, inline assembler statements have no
interface with the surrounding C source code. This makes the inline assembler code
fragile, and might also become a maintenance problem if you update the compiler in the
future. There are also several limitations to using inline assembler without operands and
clobbered resources:

● Inlining of functions with assembler statements without declared side-effects will
not be done.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Assembler language interface

● The inline assembler statement will be volatile and clobbered memory is not
implied. This means that the compiler will not remove the assembler statement. It
will simply be inserted at the given location in the program flow. The consequences
or side-effects that the insertion might have on the surrounding code are not taken
into consideration. If, for example, registers or memory locations are altered, they
might have to be restored within the sequence of inline assembler instructions for
the rest of the code to work properly.

The following example demonstrates the risks of using the asm keyword without
operands and clobbers:

int Add(int term1, int term2)
{
 asm("add a0,a0,a1");
 return term1;
}

In this example, the function Add assumes that values are passed and returned in
registers in a way that they might not always be, for example if the function is inlined.

Inline assembler without using operands or clobbered resources is therefore often best
avoided. The compiler will issue a remark for them.

MIXING C AND ASSEMBLER MODULES

It is possible to write parts of your application in assembler and mix them with your C
or C++ modules.

This causes some overhead in the form of function call and return instruction sequences,
and the compiler will regard some registers as scratch registers. In many cases, the
overhead of the extra instructions can be removed by the optimizer.

An important advantage is that you will have a well-defined interface between what the
compiler produces and what you write in assembler. When using inline assembler, you
will not have any guarantees that your inline assembler lines do not interfere with the
compiler generated code.

When an application is written partly in assembler language and partly in C or C++, you
are faced with several questions:

● How should the assembler code be written so that it can be called from C?

● Where does the assembler code find its parameters, and how is the return value
passed back to the caller?

● How should assembler code call functions written in C?

● How are global C variables accessed from code written in assembler language?

● Why does not the debugger display the call stack when assembler code is being
debugged?
AFE1_AFE2-1:1

155

156

Mixing C and assembler

The first question is discussed in the section Calling assembler routines from C, page
161. The following two are covered in the section Calling convention, page 164.

The answer to the final question is that the call stack can be displayed when you run
assembler code in the debugger. However, the debugger requires information about the
call frame, which must be supplied as annotations in the assembler source file. For more
information, see Call frame information, page 171.

The recommended method for mixing C or C++ and assembler modules is described in
Calling assembler routines from C, page 161, and Calling assembler routines from
C++, page 163, respectively.

Reference information for inline assembler

The asm and __asm keywords both insert inline assembler instructions. However, when
you compile C source code, the asm keyword is not available when the option
--strict is used. The __asm keyword is always available.

Syntax The syntax of an inline assembler statement is (similar to the one used by GNU GCC):

asm [volatile](string [assembler-interface])

A string can contain one or more operations, separated by \n. Each operation can be
a valid assembler instruction or a data definition assembler directive prefixed by an
optional label. There can be no whitespace before the label and it must be followed by :.

For example:

asm("label:nop\n"
 "j label");

Note: Any labels you define in the inline assembler statement will be local to that
statement. You can use this for loops or conditional code.

If you define a label in an inline assembler statement using two colons—for example,
"label:: nop\n"—instead of one, the label will be public, not only in the inline
assembler statement, but in the module as well. This feature is intended for testing only.

An assembler statement without declared side-effects will be treated as a volatile
assembler statement, which means it cannot be optimized at all. The compiler will issue
a remark for such an assembler statement.

assembler-interface is:

 : comma-separated list of output operands /* optional */
 : comma-separated list of input operands /* optional */
 : comma-separated list of clobbered resources /* optional */
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Assembler language interface

Operands An inline assembler statement can have one input and one output comma-separated list
of operands. Each operand consists of an optional symbolic name in brackets, a quoted
constraint, followed by a C expression in parentheses.

Syntax of operands [[symbolic-name]] "[modifiers]constraint" (expr)

For example:

int Add(int term1, int term2)
{
 int sum;

 asm("add %0,%1,%2"
 : "=r"(sum)
 : "r" (term1), "r" (term2));

 return sum;
}

In this example, the assembler instruction uses one output operand, sum, two input
operands, term1 and term2, and no clobbered resources.

It is possible to omit any list by leaving it empty. For example:

int matrix[M][N];

void MatrixPreloadRow(int row)
{
 asm volatile ("lw zero, 0(%0)" : : "r" (&matrix[row][0]));
}

Operand constraints
Constraint Description

A The address of an object

f Uses a general purpose floating-point register

i A 32-bit integer

I A 12-bit signed integer

J The constant zero

K A 5-bit unsigned integer

m Memory

r Uses a general purpose integer register for the expression:
x1-x31

register_name Uses this specific register for the expression

Table 12: Inline assembler operand constraints
AFE1_AFE2-1:1

157

158

Mixing C and assembler

Constraint modifiers Constraint modifiers can be used together with a constraint to modify its meaning. This
table lists the supported constraint modifiers:

Referring to operands Assembler instructions refer to operands by prefixing their order number with %. The
first operand has order number 0 and is referred to by %0.

If the operand has a symbolic name, you can refer to it using the syntax
%[operand.name]. Symbolic operand names are in a separate namespace from C/C++
code and can be the same as a C/C++ variable names. Each operand name must however
be unique in each assembler statement. For example:

int Add(int term1, int term2)
{
 int sum;

 asm("add %[Rd],%[Rn],%[Rm]"
 : [Rd]"=r"(sum)
 : [Rn]"r" (term1), [Rm]"r" (term2));

 return sum;
}

Input operands Input operands cannot have any constraint modifiers, but they can have any valid C
expression as long as the type of the expression fits the register.

The C expression will be evaluated just before any of the assembler instructions in the
inline assembler statement and assigned to the constraint, for example a register.

Output operands Output operands must have = as a constraint modifier and the C expression must be an
l-value and specify a writable location. For example, =r for a write-only general purpose
register. The constraint will be assigned to the evaluated C expression (as an l-value)
immediately after the last assembler instruction in the inline assembler statement. Input

digit The input must be in the same location as the output operand digit.
The first output operand is 0, the second 1, etc. (Not valid as output)

Constraint Description

Table 12: Inline assembler operand constraints (Continued)

Modifier Description

= Write-only operand

+ Read-write operand

& Early clobber output operand which is written to before the instruction
has processed all the input operands.

Table 13: Supported constraint modifiers
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Assembler language interface

operands are assumed to be consumed before output is produced and the compiler may
use the same register for an input and output operand. To prohibit this, prefix the output
constraint with & to make it an early clobber resource, for example =&r. This will ensure
that the output operand will be allocated in a different register than the input operands.

Input/output operands An operand that should be used both for input and output must be listed as an output
operand and have the + modifier. The C expression must be an l-value and specify a
writable location. The location will be read immediately before any assembler
instructions and it will be written to right after the last assembler instruction.

This is an example of using a read-write operand:

int Double(int value)
{
 asm("add %0,%0,%0" : "+r"(value));

 return value;
}

In the example above, the input value for value will be placed in a general purpose
register. After the assembler statement, the result from the ADD instruction will be placed
in the same register.

Clobbered resources An inline assembler statement can have a list of clobbered resources.

"resource1", "resource2", ...

Specify clobbered resources to inform the compiler about which resources the inline
assembler statement destroys. Any value that resides in a clobbered resource and that is
needed after the inline assembler statement will be reloaded.

Clobbered resources will not be used as input or output operands.

This is an example of how to use clobbered resources:

int Add0x10000(int term)
{
 int sum;

 asm("lui s0, 0x10\n"
 "add %0, %1, s0"
 : "=r"(sum)
 : "r" (term)
 : "s0");

 return sum;
}

AFE1_AFE2-1:1

159

160

Mixing C and assembler

This table lists valid clobbered resources:

Operand modifiers An operand modifier is a single letter between the % and the operand number, which is
used for transforming the operand.

 In the example below, an instruction like ‘and a0, a0, zero’ is generated if the
function is inlined, and 0 is passed as the second argument to Mask:

int Mask(int term1, int term2)
{
 int sum;

 asm("and %0, %1, %z2"
 : "=r"(sum)
 : "r" (term1), "r" (term2));

 return sum;
}

This table describes the transformation performed by the modifier:

AN EXAMPLE OF HOW TO USE CLOBBERED MEMORY

void Store(unsigned long * location, unsigned long value)
{
 asm("sw %1, 0(%0)"
 :
 : "r"(location), "r"(value)
 : "memory");
}

Clobber Description

x1-x31, a0-a7, s0-s11, t0-t6 General purpose integer registers

f0-f31, fa0-fa7, fs0-fs11, ft0-ft11 General purpose floating-point registers

memory To be used if the instructions modify any
memory. This will avoid keeping memory
values cached in registers across the inline
assembler statement.

Table 14: List of valid clobbers

Modifier Description

z If the input value is equal to the integer constant 0, the register zero
will be generated.

Table 15: Operand modifiers and transformations
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Assembler language interface

Calling assembler routines from C
An assembler routine that will be called from C must:

● Conform to the calling convention

● Have a PUBLIC entry-point label

● Be declared as external before any call, to allow type checking and optional
promotion of parameters, as in these examples:

extern int foo(void);

or

extern int foo(int i, int j);

One way of fulfilling these requirements is to create skeleton code in C, compile it, and
study the assembler list file.

CREATING SKELETON CODE

The recommended way to create an assembler language routine with the correct
interface is to start with an assembler language source file created by the C compiler.

Note: You must create skeleton code for each function prototype.

The following example shows how to create skeleton code to which you can easily add
the functional body of the routine. The skeleton source code only needs to declare the
variables required and perform simple accesses to them. In this example, the assembler
routine takes an int and a char, and then returns an int:

extern int gInt;
extern char gChar;

int Func(int arg1, char arg2)
{
 int locInt = arg1;
 gInt = arg1;
 gChar = arg2;
 return locInt;
}

int main()
{
 int locInt = gInt;
 gInt = Func(locInt, gChar);
 return 0;
}

Note: In this example, we use a low optimization level when compiling the code to show
local and global variable access. If a higher level of optimization is used, the required
AFE1_AFE2-1:1

161

162

Calling assembler routines from C

references to local variables could be removed during the optimization. The actual
function declaration is not changed by the optimization level.

COMPILING THE SKELETON CODE

In the IDE, specify list options on file level. Select the file in the workspace window.
Then choose Project>Options. In the C/C++ Compiler category, select Override
inherited settings. On the List page, deselect Output list file, and instead select the
Output assembler file option and its suboption Include source. Also, be sure to specify
a low level of optimization.

Use these options to compile the skeleton code:

iccriscv skeleton.c -lA . -On -e

The -lA option creates an assembler language output file including C or C++ source
lines as assembler comments. The . (period) specifies that the assembler file should be
named in the same way as the C or C++ module (skeleton), but with the filename
extension s. The -On option means that no optimization will be used and -e enables
language extensions. In addition, make sure to use relevant compiler options, usually the
same as you use for other C or C++ source files in your project.

The result is the assembler source output file skeleton.s.

Note: The -lA option creates a list file containing call frame information (CFI)
directives, which can be useful if you intend to study these directives and how they are
used. If you only want to study the calling convention, you can exclude the CFI
directives from the list file.

In the IDE, to exclude the CFI directives from the list file, choose
Project>Options>C/C++ Compiler>List and deselect the suboption Include call
frame information.

On the command line, to exclude the CFI directives from the list file, use the option -lB
instead of -lA.

Note: CFI information must be included in the source code to make the C-SPY Call
Stack window work.

The output file

The output file contains the following important information:

● The calling convention

● The return values

● The global variables

● The function parameters
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Assembler language interface

● How to create space on the stack (auto variables)

● Call frame information (CFI).

The CFI directives describe the call frame information needed by the Call Stack
window in the debugger. For more information, see Call frame information, page 171.

Calling assembler routines from C++
The C calling convention does not apply to C++ functions. Most importantly, a function
name is not sufficient to identify a C++ function. The scope and the type of the function
are also required to guarantee type-safe linkage, and to resolve overloading.

Another difference is that non-static member functions get an extra, hidden argument,
the this pointer.

However, when using C linkage, the calling convention conforms to the C calling
convention. An assembler routine can therefore be called from C++ when declared in
this manner:

extern "C"
{
 int MyRoutine(int);
}

In C++, data structures that only use C features are known as PODs (“plain old data
structures”), they use the same memory layout as in C. However, we do not recommend
that you access non-PODs from assembler routines.

The following example shows how to achieve the equivalent to a non-static member
function, which means that the implicit this pointer must be made explicit. It is also
possible to “wrap” the call to the assembler routine in a member function. Use an inline
AFE1_AFE2-1:1

163

164

Calling convention

member function to remove the overhead of the extra call—this assumes that function
inlining is enabled:

class MyClass;

extern "C"
{
 void DoIt(MyClass *ptr, int arg);
}

class MyClass
{
public:
 inline void DoIt(int arg)
 {
 ::DoIt(this, arg);
 }
};

Calling convention
A calling convention is the way a function in a program calls another function. The
compiler handles this automatically, but, if a function is written in assembler language,
you must know where and how its parameters can be found, how to return to the program
location from where it was called, and how to return the resulting value.

It is also important to know which registers an assembler-level routine must preserve. If
the program preserves too many registers, the program might be ineffective. If it
preserves too few registers, the result would be an incorrect program.

This section describes the calling convention used by the compiler. These items are
examined:

● Function declarations

● Using C linkage in C++ source code

● Preserved versus scratch registers

● Function entrance

● Function exit

● Return address handling

At the end of the section, some examples are shown to describe the calling convention
in practice.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Assembler language interface

FUNCTION DECLARATIONS

In C, a function must be declared in order for the compiler to know how to call it. A
declaration could look as follows:

int MyFunction(int first, char * second);

This means that the function takes two parameters: an integer and a pointer to a
character. The function returns a value, an integer.

In the general case, this is the only knowledge that the compiler has about a function.
Therefore, it must be able to deduce the calling convention from this information.

USING C LINKAGE IN C++ SOURCE CODE

In C++, a function can have either C or C++ linkage. To call assembler routines from
C++, it is easiest if you make the C++ function have C linkage.

This is an example of a declaration of a function with C linkage:

extern "C"
{
 int F(int);
}

It is often practical to share header files between C and C++. This is an example of a
declaration that declares a function with C linkage in both C and C++:

#ifdef __cplusplus
extern "C"
{
#endif

int F(int);

#ifdef __cplusplus
}
#endif

PRESERVED VERSUS SCRATCH REGISTERS

The general RISC-V CPU registers are divided into three separate sets, which are
described in this section.

Scratch registers

Any function is permitted to destroy the contents of a scratch register. If a function needs
the register value after a call to another function, it must store it during the call, for
example on the stack.
AFE1_AFE2-1:1

165

166

Calling convention

Any of the registers t0 to t6, ft0–ft11, a0–a7, fa0–fa7, and the return address
registers, can be used as a scratch register by the function.

Preserved registers

Preserved registers, on the other hand, are preserved across function calls. The called
function can use the register for other purposes, but must save the value before using the
register and restore it at the exit of the function.

The registers s0–s11 and fs0–fs11, but not including the return address registers, are
preserved registers.

Special registers

For some registers, you must consider certain prerequisites:

● The stack pointer register (sp/x2) must at all times point to or below the last
element on the stack, and be aligned to an even 16-byte boundary.

● The global pointer register (gp/x3) and thread pointer register (tp/x4) must never
be changed. They are set up by the runtime environment. In the eventuality of an
interrupt, the register must have a specific value.

● The return address register (ra/x1) holds the return address at the entrance of a
function.

FUNCTION ENTRANCE

Parameters can be passed to a function using one of these basic methods:

● In registers

● On the stack

It is much more efficient to use registers than to take a detour via memory, so the calling
convention is designed to use registers as much as possible. Only a limited number of
registers can be used for passing parameters; when no more registers are available, the
remaining parameters are passed on the stack. The parameters are also passed on the
stack in these cases:

● Structure types: struct, union, and classes

● Unnamed parameters to variable length (variadic) functions; in other words,
functions declared as myFunc(param1, ...), for example printf.

Note: Interrupt functions cannot take any parameters.

Hidden parameters

In addition to the parameters visible in a function declaration and definition, there can
be hidden parameters: If the function returns an aggregate value, the memory location
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Assembler language interface

where the structure will be stored is passed in the register a0 (in effect as the first
parameter).

Register parameters

The registers available for passing parameters are:

The assignment of registers to parameters is a straightforward process. Traversing the
parameters from left to right, each is assigned to the available argument registers. Integer
and pointer values are passed in registers a0–a7. Floating-point values are passed in
registers fa0–fa7 if the corresponding floating-point type is supported by an FPU
extension (soft-fpu values are treated as integer scalars of the same size).

Scalars smaller than 32 bits are zero- or sign-extended, depending on their type. On
RV64, 32-bit scalars are sign-extended to 64 bits, regardless of type.

Scalars of 2*XLEN bits are passed in register pairs (ai, ai+1) where i is even. The least
significant half is in ai. A register that is “skipped” by a register pair parameter is used
for the first following parameter that fits in a register. (XLEN is the width of an x register
in bits. For an RV32 core, this is 32, for an RV64 core, it is 64.)

If no more registers are available, remaining parameters are passed as stack parameters.

Stack parameters and layout

Stack parameters are stored in the main memory, starting at the location pointed to by
the stack pointer register (sp). Below the stack pointer (toward low memory) there is
free space that the called function can use. The first stack parameter is stored at the
location pointed to by the stack pointer. The next one is stored at the location on the
stack, aligned to the largest of alignment of the parameter type and 4.

The stack pointer itself is always aligned to 16 bytes.

Parameters Passed in registers

Integer and pointer values a0–a7

Floating-point values (if supported by an FPU extension,
see below)

fa0–fa7

Table 16: Registers used for passing parameters
AFE1_AFE2-1:1

167

168

Calling convention

This figure illustrates how parameters are stored on the stack:

FUNCTION EXIT

A function can return a value to the function or program that called it, or it can have the
return type void.

The return value of a function, if any, can be scalar (such as integers and pointers),
floating-point, or a structure.

Registers used for returning values

The registers available for returning values are:

Aggregate values are returned by a hidden (first) pointer parameter to the function.

Return types Returned in registers

8- to 32-bit scalar values a0

64-bit scalar values (on RV32) a0,a1

64-bit scalar values (on RV64) a0

Floating-point values (if supported by an FPU extension) fa0

Table 17: Registers used for returning values
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Assembler language interface

Scalars smaller than 32 bits are zero- or sign-extended, depending on their type. On
RV64, 32-bit scalars are sign-extended to 64 bits, regardless of type.

Stack layout at function exit

It is the responsibility of the caller to clean the stack after the called function returns.

Return address handling

A function written in assembler language should, when finished, return to the caller. At
a function call, the return address is stored in the return address register (ra).

Typically, a function returns by using the ret instruction.

If a function is to call another function, the original return address must be stored
somewhere. This is normally done on the stack, for example:

 name call
 section `.text`:CODE
 extern func

 addi sp, sp, -16
 sw ra, 12(sp)

 ; Do something here.

 lw ra, 12(sp)
 addi sp, sp, 16

 ret

 end

EXAMPLES

The following section shows a series of declaration examples and the corresponding
calling conventions. The complexity of the examples increases toward the end.

Example 1

Assume this function declaration:

int add1(int);

This function takes one parameter in the register a0, and the return value is passed back
to its caller in the same register.
AFE1_AFE2-1:1

169

170

Calling convention

This assembler routine is compatible with the declaration; it will return a value that is
one number higher than the value of its parameter:

 name return
 section `.text`:CODE(2)
 addi a0, a0, 1
 ret
 end

Example 2

This example shows how structures are passed on the stack. Assume these declarations:

struct MyStruct
{
 short a;
 short b;
 short c;
 short d;
 short e;
};

int MyFunction(struct MyStruct x, int y);

The calling function must place the contents of the structure at the top of the stack. The
y parameter is put in register a0. The return value is passed back to its caller in the a0
register.

Example 3

The function below will return a structure of type struct MyStruct.

struct MyStruct
{
 int mA[20];
};

struct MyStruct MyFunction(int x);

It is the responsibility of the calling function to allocate a memory location for the return
value and pass a pointer to it as a hidden first parameter. The pointer to the location
where the return value should be stored is passed in a0. The caller is not required to
preserve the value in a0. The parameter x is passed in a1.

Assume that the function instead was declared to return a pointer to the structure:

struct MyStruct *MyFunction(int x);

In this case, the return value is a scalar, so there is no hidden parameter. The parameter
x is passed in a0, and the return value is returned in a0.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Assembler language interface

Assembler instructions used for calling functions
This section presents the assembler instructions that can be used for calling and
returning from functions on RISC-V.

Functions can be called in different ways—directly or via a function pointer. In this
section we will discuss how these types of calls will be performed.

The normal function calling instruction is the call instruction:

 call label

This is an assembler pseudo instruction that expands to two instructions in object files:

 auipc ra, %hi(label)
 jalr ra, ra, %lo(label)

When the linker resolves addresses, it might replace this sequence with a shorter (and
faster) option if the destination is within range. Possible replacements are c.jal and
jalr.

Call frame information
When you debug an application using C-SPY, you can view the call stack, that is, the
chain of functions that called the current function. To make this possible, the compiler
supplies debug information that describes the layout of the call frame, in particular
information about where the return address is stored.

If you want the call stack to be available when debugging a routine written in assembler
language, you must supply equivalent debug information in your assembler source using
the assembler directive CFI. This directive is described in detail in the IAR Assembler
User Guide for RISC-V.

CFI DIRECTIVES

The CFI directives provide C-SPY with information about the state of the calling
function(s). Most important of this is the return address, and the value of the stack
pointer at the entry of the function or assembler routine. Given this information, C-SPY
can reconstruct the state for the calling function, and thereby unwind the stack.

A full description about the calling convention might require extensive call frame
information. In many cases, a more limited approach will suffice.

When describing the call frame information, the following three components must be
present:

● A names block describing the available resources to be tracked

● A common block corresponding to the calling convention
AFE1_AFE2-1:1

171

172

Call frame information

● A data block describing the changes that are performed on the call frame. This
typically includes information about when the stack pointer is changed, and when
permanent registers are stored or restored on the stack.

CREATING ASSEMBLER SOURCE WITH CFI SUPPORT

The recommended way to create an assembler language routine that handles call frame
information correctly is to start with an assembler language source file created by the
compiler.

1 Start with suitable C source code, for example:

int F(int);
int cfiExample(int i)
{
 return i + F(i);
}

2 Compile the C source code, and make sure to create a list file that contains call frame
information—the CFI directives.

On the command line, use the option -lA.

In the IDE, choose Project>Options>C/C++ Compiler>List and make sure the
suboption Include call frame information is selected.

For the source code in this example, the list file looks like this:

 EXTERN F

 PUBLIC cfiExample

 CFI Names cfiNames0
 CFI StackFrame CFA sp DATA
 CFI Resource ra:32, sp:32, gp:32, tp:32, t0:32, t1:32,
 t2:32, s0:32
 CFI Resource s1:32, a0:32, a1:32, a2:32, a3:32, a4:32,
 a5:32, a6:32
 CFI Resource a7:32, s2:32, s3:32, s4:32, s5:32, s6:32,
 s7:32, s8:32
 CFI Resource s9:32, s10:32, s11:32, t3:32, t4:32,
 t5:32, t6:32
 CFI VirtualResource ?RET:32
 CFI EndNames cfiNames0
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Assembler language interface

 CFI Common cfiCommon0 Using cfiNames0
 CFI CodeAlign 1
 CFI DataAlign 1
 CFI ReturnAddress ?RET CODE
 CFI CFA sp+0
 CFI ra SameValue
 CFI gp SameValue
 CFI tp SameValue
 CFI t0 Undefined
 CFI t1 Undefined
 CFI t2 Undefined
 CFI s0 SameValue
 CFI s1 SameValue
 CFI a0 Undefined
 CFI a1 Undefined
 CFI a2 Undefined
 CFI a3 Undefined
 CFI a4 Undefined
 CFI a5 Undefined
 CFI a6 Undefined
 CFI a7 Undefined
 CFI s2 SameValue
 CFI s3 SameValue
 CFI s4 SameValue
 CFI s5 SameValue
 CFI s6 SameValue
 CFI s7 SameValue
 CFI s8 SameValue
 CFI s9 SameValue
 CFI s10 SameValue
 CFI s11 SameValue
 CFI t3 Undefined
 CFI t4 Undefined
 CFI t5 Undefined
 CFI t6 Undefined
 CFI ?RET ra
 CFI EndCommon cfiCommon0
AFE1_AFE2-1:1

173

174

Call frame information

 SECTION `.text`:CODE:REORDER:NOROOT(2)
 CFI Block cfiBlock0 Using cfiCommon0
 CFI Function cfiExample
 CODE
cfiExample:
 // ---------- prologue ----------
 addi sp, sp, -0x10
 CFI CFA sp+16
 sw ra, 0xc(sp)
 CFI ?RET Frame(CFA, -4)
 sw s0, 0x8(sp)
 CFI s0 Frame(CFA, -8)
 // ---------- body ----------
 mv s0, a0

 CFI FunCall F
 call F
 add a0, s0, a0
 // ---------- epilogue ----------
 lw ra, 0xc(sp)
 CFI ?RET ra
 lw s0, 0x8(sp)
 CFI s0 SameValue
 addi sp, sp, 0x10
 CFI CFA sp+0
 ret
 CFI EndBlock cfiBlock0

 SECTION `.iar_vfe_header`:DATA:NOALLOC:NOROOT(2)
 SECTION_TYPE SHT_PROGBITS, 0
 DATA
 DC32 0

 END

Note: The header file iarCfi.m defines a names block, and provides the macro
CfiCom that declares a typical common block. This macro declares several resources,
both concrete and virtual.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Using C
● C language overview

● Extensions overview

● IAR C language extensions

C language overview
The IAR C/C++ Compiler for RISC-V supports the INCITS/ISO/IEC 9899:2018
standard, also known as C18. C18 addresses defects in C11 (INCITS/ISO/IEC
9899:2012) without introducing any new language features. This means that the C11
standard is also supported. In this guide, the C18 standard is referred to as Standard C
and is the default standard used in the compiler. This standard is stricter than C89.

The compiler will accept source code written in the C18 standard or a superset thereof.

In addition, the compiler also supports the ISO 9899:1990 standard (including all
technical corrigenda and addenda), also known as C94, C90, C89, and ANSI C. In this
guide, this standard is referred to as C89. Use the --c89 compiler option to enable this
standard.

With Standard C enabled, the IAR C/C++ Compiler for RISC-V can compile all
C18/C11 source code files, except for those that depend on atomic or thread-related
system header files.

The floating-point standard that Standard C binds to is IEC 60559—known as
ISO/IEC/IEEE 60559—which is nearly identical to the IEEE 754 format.

Annex K (Bounds-checking interfaces) of the C standard is supported. See Bounds
checking functionality, page 124.

For an overview of the differences between the various versions of the C standard, see
the Wikipedia articles C18 (C standard revision), C11 (C standard revision), or C99.

Extensions overview
The compiler offers the features of Standard C and a wide set of extensions, ranging
from features specifically tailored for efficient programming in the embedded industry
to the relaxation of some minor standards issues.
AFE1_AFE2-1:1

175

176

Extensions overview

This is an overview of the available extensions:

● IAR C language extensions
For information about available language extensions, see IAR C language extensions,
page 177. For more information about the extended keywords, see the chapter
Extended keywords. For information about C++, the two levels of support for the
language, and C++ language extensions, see the chapter Using C++.

● Pragma directives
The #pragma directive is defined by Standard C and is a mechanism for using
vendor-specific extensions in a controlled way to make sure that the source code is
still portable.

The compiler provides a set of predefined pragma directives, which can be used for
controlling the behavior of the compiler, for example, how it allocates memory,
whether it allows extended keywords, and whether it outputs warning messages.
Most pragma directives are preprocessed, which means that macros are substituted
in a pragma directive. The pragma directives are always enabled in the compiler. For
several of them there is also a corresponding C/C++ language extension. For
information about available pragma directives, see the chapter Pragma directives.

● Preprocessor extensions
The preprocessor of the compiler adheres to Standard C. The compiler also makes
several preprocessor-related extensions available to you. For more information, see
the chapter The preprocessor.

● Intrinsic functions
The intrinsic functions provide direct access to low-level processor operations and
can be useful in, for example, time-critical routines. The intrinsic functions compile
into inline code, either as a single instruction or as a short sequence of instructions.
For more information about using intrinsic functions, see Mixing C and assembler,
page 153. For information about available functions, see the chapter Intrinsic
functions.

● Library functions
The DLIB runtime environment provides the C and C++ library definitions in the
C/C++ standard library that apply to embedded systems. For more information, see
DLIB runtime environment—implementation details, page 397.

Note: Any use of these extensions, except for the pragma directives, makes your source
code inconsistent with Standard C.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Using C

ENABLING LANGUAGE EXTENSIONS

You can choose different levels of language conformance by means of project options:

* In the IDE, choose Project>Options>C/C++ Compiler>Language 1>Language
conformance and select the appropriate option. Note that language extensions are
enabled by default.

IAR C language extensions
The compiler provides a wide set of C language extensions. To help you to find the
extensions required by your application, they are grouped like this in this section:

● Extensions for embedded systems programming—extensions specifically tailored
for efficient embedded programming for the specific core you are using, typically to
meet memory restrictions

● Relaxations to Standard C—that is, the relaxation of some minor Standard C issues
and also some useful but minor syntax extensions, see Relaxations to Standard C,
page 179.

EXTENSIONS FOR EMBEDDED SYSTEMS PROGRAMMING

The following language extensions are available both in the C and the C++
programming languages and they are well suited for embedded systems programming:

● Type attributes and object attributes
For information about the related concepts, the general syntax rules, and for
reference information, see the chapter Extended keywords.

● Placement at an absolute address or in a named section
The @ operator or the directive #pragma location can be used for placing global
and static variables at absolute addresses, or placing a variable or function in a named

Command line IDE* Description

--strict Strict All IAR C language extensions are disabled—
errors are issued for anything that is not part
of Standard C.

None Standard All relaxations to Standard C are enabled, but no
extensions for embedded systems programming.
For information about extensions, see IAR C
language extensions, page 177.

-e Standard with IAR
extensions

All IAR C language extensions are enabled.

Table 18: Language extensions
AFE1_AFE2-1:1

177

178

IAR C language extensions

section. For more information about using these features, see Controlling data and
function placement in memory, page 210, and location, page 356.

● Alignment control
Each data type has its own alignment. For more information, see Alignment, page
315. If you want to change the alignment, the __packed data type attribute, the
#pragma pack directive, and the #pragma data_alignment directive are
available. If you want to check the alignment of an object, use the __ALIGNOF__()
operator.

The __ALIGNOF__ operator is used for accessing the alignment of an object. It takes
one of two forms:

● __ALIGNOF__ (type)

● __ALIGNOF__ (expression)

In the second form, the expression is not evaluated.

See also the Standard C file stdalign.h.

● Bitfields and non-standard types
In Standard C, a bitfield must be of the type int or unsigned int. Using IAR C
language extensions, any integer type or enumeration can be used. The advantage is
that the struct will sometimes be smaller. For more information, see Bitfields, page
318.

Dedicated section operators

The compiler supports getting the start address, end address, and size for a section with
these built-in section operators:

Note: The aliases __segment_begin/__sfb, __segment_end/__sfe, and
__segment_size/__sfs can also be used.

The operators can be used on named sections or on named blocks defined in the linker
configuration file.

These operators behave syntactically as if declared like:

void * __section_begin(char const * section)
void * __section_end(char const * section)
size_t __section_size(char const * section)

__section_begin Returns the address of the first byte of the named section or
block.

__section_end Returns the address of the first byte after the named section
or block.

__section_size Returns the size of the named section or block in bytes.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Using C

When you use the @ operator or the #pragma location directive to place a data object
or a function in a user-defined section, or when you use named blocks in the linker
configuration file, the section operators can be used for getting the start and end address
of the memory range where the sections or blocks were placed.

The named section must be a string literal and it must have been declared earlier with
the #pragma section directive. The type of the __section_begin operator is a
pointer to void. Note that you must enable language extensions to use these operators.

The operators are implemented in terms of symbols with dedicated names, and will
appear in the linker map file under these names:

Note: The linker will not necessarily place sections with the same name consecutively
when these operators are not used. Using one of these operators (or the equivalent
symbols) will cause the linker to behave as if the sections were in a named block. This
is to assure that the sections are placed consecutively, so that the operators can be
assigned meaningful values. If this is in conflict with the section placement as specified
in the linker configuration file, the linker will issue an error.

Example

In this example, the type of the __section_begin operator is void *.

#pragma section="MYSECTION"
...
section_start_address = __section_begin("MYSECTION");

See also section, page 364, and location, page 356.

RELAXATIONS TO STANDARD C

This section lists and briefly describes the relaxation of some Standard C issues and also
some useful but minor syntax extensions:

● Arrays of incomplete types

An array can have an incomplete struct, union, or enum type as its element type.
The types must be completed before the array is used (if it is), or by the end of the
compilation unit (if it is not).

Operator Symbol

__section_begin(sec) sec$$Base

__section_end(sec) sec$$Limit

__section_size(sec) sec$$Length

Table 19: Section operators and their symbols
AFE1_AFE2-1:1

179

180

IAR C language extensions

● Zero-length arrays

A zero-length array as the last member of a structure has similar behavior as the ISO
C99 flexible array member. This is an extension found in the GNU C compiler.

● Structures with flexible array members

A structure with a flexible array member can appear as a member of another structure
or as an array element. This is an extension found in the GNU C compiler.

● Forward declaration of enum types

The extensions allow you to first declare the name of an enum and later resolve it by
specifying the brace-enclosed list.

● Accepting missing semicolon at the end of a struct or union specifier

A warning—instead of an error—is issued if the semicolon at the end of a struct
or union specifier is missing.

● Null and void

In operations on pointers, a pointer to void is always implicitly converted to another
type if necessary, and a null pointer constant is always implicitly converted to a null
pointer of the right type if necessary. In Standard C, some operators allow this kind
of behavior, while others do not allow it.

● Casting pointers to integers in static initializers

In an initializer, a pointer constant value can be cast to an integral type if the integral
type is large enough to contain it. For more information about casting pointers, see
Casting, page 323.

● Taking the address of a register variable

In Standard C, it is illegal to take the address of a variable specified as a register
variable. The compiler allows this, but a warning is issued.

● long float means double

The type long float is accepted as a synonym for double.

● Binary integer literals (0b...) are supported.

● Digit separators for integer literals (1'000'000) are supported.

● Repeated typedef declarations

Redeclarations of typedef that occur in the same scope are allowed, but a warning
is issued.

● Mixing pointer types

Assignment and pointer difference is allowed between pointers to types that are
interchangeable but not identical, for example, unsigned char * and char *. This
includes pointers to integral types of the same size. A warning is issued.

Assignment of a string constant to a pointer to any kind of character is allowed, and
no warning is issued.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Using C

● Non-lvalue arrays

A non-lvalue array expression is converted to a pointer to the first element of the
array when it is used.

● Comments at the end of preprocessor directives

This extension, which makes it legal to place text after preprocessor directives, is
enabled unless the strict Standard C mode is used. The purpose of this language
extension is to support compilation of legacy code—we do not recommend that you
write new code in this fashion.

● An extra comma at the end of enum lists

Placing an extra comma is allowed at the end of an enum list. In strict Standard C
mode, a warning is issued.

● A label preceding a }

In Standard C, a label must be followed by at least one statement. Therefore, it is
illegal to place the label at the end of a block. The compiler allows this, but issues a
warning. Note that this also applies to the labels of switch statements.

● Empty declarations

An empty declaration (a semicolon by itself) is allowed, but a remark is issued
(provided that remarks are enabled).

● Single-value initialization

Standard C requires that all initializer expressions of static arrays, structs, and unions
are enclosed in braces.

Single-value initializers are allowed to appear without braces, but a warning is
issued. The compiler accepts this expression:

struct str
{
 int a;
} x = 10;
AFE1_AFE2-1:1

181

182

IAR C language extensions

● Declarations in other scopes

External and static declarations in other scopes are visible. In the following example,
the variable y can be used at the end of the function, even though it should only be
visible in the body of the if statement. A warning is issued.

int test(int x)
{
 if (x)
 {
 extern int y;
 y = 1;
 }

 return y;
}

● Static functions in function and block scopes

Static functions may be declared in function and block scopes. Their declarations are
moved to the file scope.

● Numbers scanned according to the syntax for numbers

Numbers are scanned according to the syntax for numbers rather than the
pp-number syntax. Therefore, 0x123e+1 is scanned as three tokens instead of one
valid token. (If the --strict option is used, the pp-number syntax is used instead.)

● Empty translation unit

A translation unit (input file) might be empty of declarations.

● Assignment of pointer types

Assignment of pointer types is allowed in cases where the destination type has added
type qualifiers that are not at the top level, for example, int ** to const int **.
Comparisons and pointer difference of such pairs of pointer types are also allowed.
A warning is issued.

● Pointers to different function types

Pointers to different function types might be assigned or compared for equality (==)
or inequality (!=) without an explicit type cast. A warning is issued. This extension
is not allowed in C++ mode.

● Assembler statements

Assembler statements are accepted. This is disabled in strict C mode because it
conflicts with the C standard for a call to the implicitly declared asm function.

● #include_next

The non-standard preprocessing directive #include_next is supported. This is a
variant of the #include directive. It searches for the named file only in the
directories on the search path that follow the directory in which the current source
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Using C

file (the one containing the #include_next directive) is found. This is an extension
found in the GNU C compiler.

● #warning

The non-standard preprocessing directive #warning is supported. It is similar to the
#error directive, but results in a warning instead of a catastrophic error when
processed. This directive is not recognized in strict mode. This is an extension found
in the GNU C compiler.

● Concatenating strings

Mixed string concatenations are accepted.

wchar_t * str="a" L "b";

● GNU style statement expressions (a sequence of statements enclosed by braces) are
accepted.

● GNU style case ranges are accepted (case 1..5:).

● GNU style designated initializer ranges are accepted.

Example: int widths[] = {[0...9] = 1, [10...99] = 2, [100] = 3};

● typeof

The non-standard operator typeof is supported when IAR extensions are enabled,
as a way of referring to the type of an expression. The syntax is like that of sizeof,
but it behaves semantically like a type name defined with typedef. This is an
extension found in the GNU C compiler.

● __auto_type

The non-standard keyword __auto_type is supported when IAR extensions are
enabled. Declaring a variable with the __auto_type keyword automatically causes
its type to be derived based on the type of its initializer. __auto_type is similar to
the auto keyword in C++11, but more limited in when it can be used. This is an
extension found in the GNU C compiler.
AFE1_AFE2-1:1

183

184

IAR C language extensions

AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Using C++
● Overview—Standard C++

● Enabling support for C++

● C++ feature descriptions

● C++ language extensions

● Migrating from the DLIB C++ library to the Libc++ C++ library

Overview—Standard C++
The IAR C++ implementation fully complies with the ISO/IEC 14882:2014 C++
(“C++14”) or 14882:2017 C++ (“C++17”) standard, except for source code that
depends on thread-related system headers, or the filesystem header. In this guide, the
ISO/IEC 14882:2017 C++ standard is referred to as Standard C++.

Atomic operations are available. See Atomic operations, page 404.

The IAR C/C++ compiler accepts source code written in the C++17 standard or a
superset thereof.

● When using the DLIB C++14 library, those features of C++17 that require library
support are not available.

● When using the Libc++ C++17 library, all features of C++17 are available, unless
otherwise noted.

For an overview of the differences between the various versions of the C++ standard, see
the Wikipedia articles C++17, C++14, C++11, or C++ (for information about C++98).

Note: There is also a set of C++ Standard Template Library (STL) headers from an older
version of the DLIB library (DLIB5). They have fewer features, but can in some cases
result in significantly smaller code for map/set and vector. See the documentation in
the file riscv/doc/HelpDLIB5.html.

EXCEPTIONS AND RTTI

Exceptions and RTTI are not supported. Thus, the following are not allowed:

● throw expressions

● try-catch statements
AFE1_AFE2-1:1

185

186

Enabling support for C++

● Exception specifications on function definitions

● The typeid operator

● The dynamic_cast operator

Enabling support for C++
In the compiler, the default language is C.

To compile files written in Standard C++, use the --c++ compiler option. See --c++,
page 248.

To enable C++ in the IDE, choose
Project>Options>C/C++ Compiler>Language 1>Language>C++.

C++ feature descriptions
When you write C++ source code for the IAR C/C++ Compiler for RISC-V, you must
be aware of some benefits and some possible quirks when mixing C++ features—such
as classes, and class members—with IAR language extensions, such as IAR-specific
attributes.

USING IAR ATTRIBUTES WITH CLASSES

Static data members of C++ classes are treated the same way global variables are, and
can have any applicable IAR type and object attribute.

Member functions are in general treated the same way free functions are, and can have
any applicable IAR type and object attributes. Virtual member functions can only have
attributes that are compatible with default function pointers, and constructors and
destructors cannot have any such attributes.

The location operator @ and the #pragma location directive can be used on static data
members and with all member functions.

TEMPLATES

C++ supports templates according to the C++ standard. The implementation uses a
two-phase lookup which means that the keyword typename must be inserted wherever
needed. Furthermore, at each use of a template, the definitions of all possible templates
must be visible. This means that the definitions of all templates must be in include files
or in the actual source file.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Using C++

FUNCTION TYPES

A function type with extern "C" linkage is compatible with a function that has C++
linkage.

Example

extern "C"
{
 typedef void (*FpC)(void); // A C function typedef
}

typedef void (*FpCpp)(void); // A C++ function typedef

FpC F1;
FpCpp F2;
void MyF(FpC);

void MyG()
{
 MyF(F1); // Always works
 MyF(F2); // FpCpp is compatible with FpC
}

USING STATIC CLASS OBJECTS IN INTERRUPTS

If interrupt functions use static class objects that need to be constructed (using
constructors) or destroyed (using destructors), your application will not work properly
if the interrupt occurs before the objects are constructed, or, during or after the objects
are destroyed.

To avoid this, make sure that these interrupts are not enabled until the static objects have
been constructed, and are disabled when returning from main or calling exit. For
information about system startup, see System startup and termination, page 132.

Function local static class objects are constructed the first time execution passes through
their declaration, and are destroyed when returning from main or when calling exit.

USING NEW HANDLERS

To handle memory exhaustion, you can use the set_new_handler function.

If you do not call set_new_handler, or call it with a NULL new handler, and
operator new fails to allocate enough memory, it will call abort. The nothrow
variant of the new operator will instead return NULL.

If you call set_new_handler with a non-NULL new handler, the provided new
handler will be called by operator new if operator new fails to allocate memory. The
AFE1_AFE2-1:1

187

188

C++ language extensions

new handler must then make more memory available and return, or abort execution in
some manner. The nothrow variant of operator new will never return NULL in the
presence of a new handler.

This is the same behavior as using the nothrow variants of new.

DEBUG SUPPORT IN C-SPY

The C-SPY debugger has built-in display support for the STL containers. The logical
structure of containers is presented in the watch views in a comprehensive way that is
easy to understand and follow.

For more information, see the C-SPY® Debugging Guide for RISC-V.

C++ language extensions
When you use the compiler in C++ mode and enable IAR language extensions, the
following C++ language extensions are available in the compiler:

● In a friend declaration of a class, the class keyword can be omitted, for example:

class B;
class A
{
 friend B; //Possible when using IAR language
 //extensions
 friend class B; //According to the standard
};

● In the declaration of a class member, a qualified name can be used, for example:

struct A
{
 int A::F(); // Possible when using IAR language extensions
 int G(); // According to the standard
};

● It is permitted to use an implicit type conversion between a pointer to a function
with C linkage (extern "C") and a pointer to a function with C++ linkage
(extern "C++"), for example:

extern "C" void F(); // Function with C linkage
void (*PF)() // PF points to a function with C++ linkage
 = &F; // Implicit conversion of function pointer.

According to the standard, the pointer must be explicitly converted.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Using C++

● If the second or third operands in a construction that contains the ? operator are
string literals or wide string literals—which in C++ are constants—the operands can
be implicitly converted to char * or wchar_t *, for example:

bool X;

char *P1 = X ? "abc" : "def"; //Possible when using IAR
 //language extensions
char const *P2 = X ? "abc" : "def";//According to the standard

● Default arguments can be specified for function parameters not only in the top-level
function declaration, which is according to the standard, but also in typedef
declarations, in pointer-to-function function declarations, and in pointer-to-member
function declarations.

● In a function that contains a non-static local variable and a class that contains a
non-evaluated expression—for example a sizeof expression—the expression can
reference the non-static local variable. However, a warning is issued.

● An anonymous union can be introduced into a containing class by a typedef name.
It is not necessary to first declare the union. For example:

typedef union
{
 int i,j;
} U; // U identifies a reusable anonymous union.

class A
{
public:
 U; // OK -- references to A::i and A::j are allowed.
};

In addition, this extension also permits anonymous classes and anonymous structs,
as long as they have no C++ features—for example, no static data members or
member functions, and no non-public members—and have no nested types other
than other anonymous classes, structs, or unions. For example:

struct A
{
 struct
 {
 int i,j;
 }; // OK -- references to A::i and A::j are allowed.
};
AFE1_AFE2-1:1

189

190

C++ language extensions

● The friend class syntax allows non-class types as well as class types expressed
through a typedef without an elaborated type name. For example:

typedef struct S ST;

class C
{
public:
 friend S; // Okay (requires S to be in scope)
 friend ST; // Okay (same as "friend S;")
 // friend S const; // Error, cv-qualifiers cannot
 // appear directly
};

● It is allowed to specify an array with no size or size 0 as the last member of a struct.
For example:

typedef struct
{
 int i;
 char ir[0]; // Zero-length array
};

typedef struct
{
 int i;
 char ir[]; // Zero-length array
};

● Arrays of incomplete types

An array can have an incomplete struct, union, enum, or class type as its element
type. The types must be completed before the array is used—if it is— or by the end
of the compilation unit—if it is not.

● Concatenating strings

Mixed string literal concatenations are accepted.

wchar_t * str = "a" L "b";

● Trailing comma

A trailing comma in the definition of an enumeration type is silently accepted.

Except where noted, all of the extensions described for C are also allowed in C++ mode.

Note: If you use any of these constructions without first enabling language extensions,
errors are issued.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Using C++

Migrating from the DLIB C++ library to the Libc++ C++ library
There is no Normal configuration of the Libc++ library. Support for locale, file
descriptors, etc, is always included.

The Libc++ library is a C++17 library. In C++17, some functionality that was
deprecated in C++14 is now removed. Examples include std::auto_ptr,
std::random_shuffle, and std::mem_fun. You can define the preprocessor symbol
_LIBCPP_ENABLE_CXX17_REMOVED_FEATURES to enable support for these features
when using the Libc++ library.

Note: Some system headers from the DLIB C++14 library are not supported in Libc++,
and vice versa, see the descriptions in C++ header files, page 399.
AFE1_AFE2-1:1

191

192

Migrating from the DLIB C++ library to the Libc++ C++ library

AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Application-related
considerations
● Output format considerations

● Stack considerations

● Heap considerations

● Interaction between the tools and your application

● Checksum calculation for verifying image integrity

● Patching symbol definitions using $Super$$ and $Sub$$

Output format considerations
The linker produces an absolute executable image in the ELF/DWARF object file
format.

You can use the IAR ELF Tool—ielftool— to convert an absolute ELF image to a
format more suitable for loading directly to memory, or burning to a PROM or flash
memory etc.

ielftool can produce these output formats:

● Plain binary

● Motorola S-records

● Intel hex.

For a complete list of supported output formats, run ielftool without options.

Note: ielftool can also be used for other types of transformations, such as filling and
calculating checksums in the absolute image.

The source code for ielftool is provided in the riscv/src directory. For more
information about ielftool, see The IAR ELF Tool—ielftool, page 467.
AFE1_AFE2-1:1

193

194

Stack considerations

Stack considerations
To make your application use stack memory efficiently, there are some considerations
to be made.

STACK SIZE CONSIDERATIONS

The required stack size depends heavily on the application’s behavior. If the given stack
size is too large, RAM will be wasted. If the given stack size is too small, one of two
things can happen, depending on where in memory you located your stack:

● Variable storage will be overwritten, leading to undefined behavior

● The stack will fall outside of the memory area, leading to an abnormal termination
of your application.

Both alternatives are likely to result in application failure. Because the second
alternative is easier to detect, you should consider placing your stack so that it grows
toward the end of the memory.

For more information about the stack size, see Setting up stack memory, page 101, and
Saving stack space and RAM memory, page 220.

Heap considerations
The heap contains dynamic data allocated by use of the C function malloc (or a
corresponding function) or the C++ operator new.

If your application uses dynamic memory allocation, you should be familiar with:

● The use of basic, advanced, and no-free heap memory allocation

● Linker sections used for the heap

● Allocating the heap size, see Setting up heap memory, page 101.

HEAP MEMORY HANDLERS

The system library contains three separate heap memory handlers—the basic, the
advanced, and the no-free heap handler.

You can use a linker option to explicitly specify which handler you want to use:

● The basic heap (--basic_heap) is a simple heap allocator, suitable for use in
applications that do not use the heap very much. In particular, it can be used in
applications that only allocate heap memory and never free it. The basic heap is not
particularly speedy, and using it in applications that repeatedly free memory is quite
likely to lead to unneeded fragmentation of the heap. The code for the basic heap is
significantly smaller than that for the advanced heap. See --basic_heap, page 285.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Application-related considerations

● The advanced heap (--advanced_heap) provides efficient memory management
for applications that use the heap extensively. In particular, applications that
repeatedly allocate and free memory will likely get less overhead in both space and
time. The code for the advanced heap is significantly larger than that for the basic
heap. See --advanced_heap, page 284. For information about the definition, see
iar_dlmalloc.h, page 405.

● The no-free heap (--no_free_heap) is the smallest possible heap implementation.
This heap does not support free or realloc. See --no_free_heap, page 302.

If no heap option has been specified, the linker automatically chooses a heap handler:

● If there are calls to heap memory allocation routines in your application, but no calls
to heap deallocation routines, the linker automatically chooses the no-free heap.

● If there are calls to heap memory allocation routines in your application, the linker
automatically chooses the advanced heap if the majority of the modules are
optimized for speed (Medium, High Balanced, or High Speed).

● If there are calls to heap memory allocation routines in, for example, the library, or
if the majority of the application modules use optimization level None or are
optimized for size (Low or High Size), the linker automatically chooses the basic
heap.

The optimization goal used for selecting a heap handler is not always available to the
linker—particularly not in object files that were not compiled with an IAR compiler.
Such modules are ignored for the decision.

Note: If your product has a size-limited KickStart license, the basic heap is
automatically chosen.

HEAP SECTIONS IN DLIB

The memory allocated to the heap is placed in the section HEAP, which is only included
in the application if dynamic memory allocation is actually used.

HEAP SIZE AND STANDARD I/O

If you excluded FILE descriptors from the DLIB runtime environment, as in the Normal
configuration, there are no input and output buffers at all. Otherwise, as in the Full
configuration, be aware that the size of the input and output buffers is set to 512 bytes
in the stdio library header file. If the heap is too small, I/O will not be buffered, which
is considerably slower than when I/O is buffered. If you execute the application using
the simulator driver of the IAR C-SPY® Debugger, you are not likely to notice the speed
penalty, but it is quite noticeable when the application runs on an RISC-V core. If you
use the standard I/O library, you should set the heap size to a value which accommodates
the needs of the standard I/O buffer.
AFE1_AFE2-1:1

195

196

Interaction between the tools and your application

Interaction between the tools and your application
The linking process and the application can interact symbolically in four ways:

● Creating a symbol by using the linker command line option --define_symbol.
The linker will create a public absolute constant symbol that the application can use
as a label, as a size, as setup for a debugger, etc.

● Creating an exported configuration symbol by using the command line option
--config_def or the configuration directive define symbol, and exporting the
symbol using the export symbol directive. ILINK will create a public absolute
constant symbol that the application can use as a label, as a size, as setup for a
debugger, etc.

One advantage of this symbol definition is that this symbol can also be used in
expressions in the configuration file, for example, to control the placement of
sections into memory ranges.

● Using the compiler operators __section_begin, __section_end, or
__section_size, or the assembler operators SFB, SFE, or SIZEOF on a named
section or block. These operators provide access to the start address, end address,
and size of a contiguous sequence of sections with the same name, or of a linker
block specified in the linker configuration file.

● The command line option --entry informs the linker about the start label of the
application. It is used by the linker as a root symbol and to inform the debugger
where to start execution.

The following lines illustrate how to use -D to create a symbol. If you need to use this
mechanism, add these options to your command line like this:

--define_symbol NrOfElements=10
--config_def MY_HEAP_SIZE=1024

The linker configuration file can look like this:

define memory Mem with size = 4G;
define region ROM = Mem:[from 0x00000 size 0x10000];
define region RAM = Mem:[from 0x20000 size 0x10000];

/* Export of symbol */
export symbol MY_HEAP_SIZE;

/* Setup a heap area with a size defined by an ILINK option */
define block MyHEAP with size = MY_HEAP_SIZE, alignment = 16 {};

place in RAM { block MyHEAP };
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Application-related considerations

Add these lines to your application source code:

#include <stdlib.h>

/* Use symbol defined by ILINK option to dynamically allocate an
array of elements with specified size. The value takes the form
of a label.
 */
extern int NrOfElements;

typedef char Elements;
Elements *GetElementArray()
{
 return malloc(sizeof(Elements) * (long) &NrOfElements);
}

/* Use a symbol defined by ILINK option, a symbol that in the
 * configuration file was made available to the application.
 */
extern char MY_HEAP_SIZE;

/* Declare the section that contains the heap. */
#pragma section = "MYHEAP"

char *MyHeap()
{
 /* First get start of statically allocated section, */
 char *p = __section_begin("MYHEAP");

 /* ...then we zero it, using the imported size. */
 for (int i = 0; i < (int) &MY_HEAP_SIZE; ++i)
 {
 p[i] = 0;
 }
 return p;
}

Checksum calculation for verifying image integrity
This section contains information about checksum calculation:

● Briefly about checksum calculation

● Calculating and verifying a checksum

● Troubleshooting checksum calculation

For more information, see also The IAR ELF Tool—ielftool, page 467.
AFE1_AFE2-1:1

197

198

Checksum calculation for verifying image integrity

BRIEFLY ABOUT CHECKSUM CALCULATION

You can use a checksum to verify that the image is the same at runtime as when the
image’s original checksum was generated. In other words, to verify that the image has
not been corrupted.

This works as follows:

● You need an initial checksum.

You can either use the IAR ELF Tool—ielftool—to generate an initial checksum
or you might have a third-party checksum available.

● You must generate a second checksum during runtime.

You can either add specific code to your application source code for calculating a
checksum during runtime or you can use some dedicated hardware on your device
for calculating a checksum during runtime.

● You must add specific code to your application source code for comparing the two
checksums and take an appropriate action if they differ.

If the two checksums have been calculated in the same way, and if there are no errors
in the image, the checksums should be identical. If not, you should first suspect that
the two checksums were not generated in the same way.

No matter which solutions you use for generating the two checksum, you must make
sure that both checksums are calculated in the exact same way. If you use ielftool for
the initial checksum and use a software-based calculation during runtime, you have full
control of the generation for both checksums. However, if you are using a third-party
checksum for the initial checksum or some hardware support for the checksum
calculation during runtime, there might be additional requirements that you must
consider.

For the two checksums, there are some choices that you must always consider and there
are some choices to make only if there are additional requirements. Still, all of the details
must be the same for both checksums.

Always consider:

● Checksum range
The memory range (or ranges) that you want to verify by means of checksums.
Typically, you might want to calculate a checksum for all ROM memory. However,
you might want to calculate a checksum only for specific ranges. Remember that:

● It is OK to have several ranges for one checksum.

● The checksum must be calculated from the lowest to the highest address for
every memory range.

● Each memory range must be verified in the same order as defined, for example,
0x100–0x1FF,0x400–0x4FF is not the same as 0x400–0x4FF,0x100–0x1FF.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Application-related considerations

● If several checksums are used, you should place them in sections with unique
names and use unique symbol names.

● A checksum should never be calculated on a memory range that contains a
checksum or a software breakpoint.

● Algorithm and size of checksum
You should consider which algorithm is most suitable in your case. There are two
basic choices, Sum—a simple arithmetic algorithm—or CRC—which is the most
commonly used algorithm. For CRC there are different sizes to choose for the
checksum, 2, 4, or 8 bytes where the predefined polynomials are wide enough to suit
the size, for more error detecting power. The predefined polynomials work well for
most, but possibly not for all data sets. If not, you can specify your own polynomial.
If you just want a decent error detecting mechanism, use the predefined CRC
algorithm for your checksum size, typically CRC16 or CRC32.

Note: For an n-bit polynomial, the n:th bit is always considered to be set. For a 16-bit
polynomial—for example, CRC16—this means that 0x11021 is the same as
0x1021.

For more information about selecting an appropriate polynomial for data sets with
non-uniform distribution, see for example section 3.5.3 in Tannenbaum, A.S.,
Computer Networks, Prentice Hall 1981, ISBN: 0131646990.

● Fill
Every byte in the checksum range must have a well-defined value before the
checksum can be calculated. Typically, bytes with unknown values are pad bytes that
have been added for alignment. This means that you must specify which fill pattern
to be used during calculation, typically 0xFF or 0x00.

● Initial value
The checksum must always have an explicit initial value.

● Alignment
Because the compiler and linker have alignment requirements for data accesses, you
must specify the same alignment for the checksum.

In addition to these mandatory details, there might be other details to consider.
Typically, this might happen when you have a third-party checksum, you want the
checksum be compliant with the Rocksoft™ checksum model, or when you use
hardware support for generating a checksum during runtime. ielftool also provides
support for controlling alignment, complement, bit order, byte order within words, and
checksum unit size.
AFE1_AFE2-1:1

199

200

Checksum calculation for verifying image integrity

CALCULATING AND VERIFYING A CHECKSUM

In this example procedure, a checksum is calculated for ROM memory from 0x8002 up
to 0x8FFF and the 2-byte calculated checksum is placed at 0x8000.

1 If you are using ielftool from the command line, you must first allocate a memory
location for the calculated checksum.

Note: If you instead are using the IDE (and not the command line), the __checksum,
__checksum_begin, and __checksum_end symbols, and the .checksum section are
automatically allocated when you calculate the checksum, which means that you can
skip this step.

You can allocate the memory location in two ways:

● By creating a global C/C++ or assembler constant symbol with a proper size,
residing in a specific section—in this example, .checksum

● By using the linker option --place_holder.

For example, to allocate a 2-byte space for the symbol __checksum in the section
.checksum, with alignment 4, specify:

--place_holder __checksum,2,.checksum,4

2 The .checksum section will only be included in your application if the section appears
to be needed. If the checksum is not needed by the application itself, use the linker
option --keep=__checksum (or the linker directive keep) to force the section to be
included.

Alternatively, choose Project>Options>Linker>Input and specify __checksum:
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Application-related considerations

3 To control the placement of the .checksum section, you must modify the linker
configuration file. For example, it can look like this (note the handling of the block
CHECKSUM):

define block CHECKSUM { ro section .checksum };
place in ROM_region { ro, first block CHECKSUM };

Note: It is possible to skip this step, but in that case the .checksum section will
automatically be placed with other read-only data.

4 When configuring ielftool to calculate a checksum, there are some basic choices to
make:

● Checksum algorithm

Choose which checksum algorithm you want to use. In this example, the CRC16
algorithm is used.

● Memory range

Using the IDE, you can specify one memory range for which the checksum should
be calculated. From the command line, you can specify any ranges.

● Fill pattern

Specify a fill pattern—typically 0xFF or 0x00—for bytes with unknown values. The
fill pattern will be used in all checksum ranges.

● Specify an alignment that matches the alignment requirement.

For more information, see Briefly about checksum calculation, page 198.

To run ielftool from the IDE, choose Project>Options>Linker>Checksum and
make your settings, for example:
AFE1_AFE2-1:1

201

202

Checksum calculation for verifying image integrity

In the simplest case, you can ignore (or leave with default settings) these options:
Alignment, Complement, Bit order, Reverse byte order within word, and
Checksum unit size.

To run ielftool from the command line, specify the command, for example, like this:

ielftool --fill=0x00;0x8002–0x8FFF
--checksum=__checksum:2,crc16;0x8002–0x8FFF sourceFile.out
destinationFile.out

Note: ielftool needs an unstripped input ELF image. If you use the linker option
--strip, remove it and use the ielftooloption --strip instead.

The checksum will be created later on when you build your project and will be
automatically placed in the specified symbol __checksum in the section .checksum.

5 You can specify several ranges instead of only one range.

If you are using the IDE, perform these steps:

● Choose Project>Options>Linker>Checksum and make sure to deselect Fill
unused code memory.

● Choose Project>Options>Build Actions and specify the ranges together with the
rest of the required commands in the Post-build command line text field, for
example like this:

$TOOLKIT_DIR$\bin\ielftool "$TARGET_PATH$" "$TARGET_PATH$"
--fill 0x00;0x0-0x3FF;0x8002-0x8FFF
--checksum=__checksum:2,crc16;0x0-0x3FF;0x8002-0x8FFF

In your example, replace output.out with the name of your output file.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Application-related considerations

If you are using the command line, specify the ranges, for example like this:

ielftool output.out output.out
--fill 0x00;0x0-0x3FF;0x8002-0x8FFF
--checksum=__checksum:2,crc16;0x0-0x3FF;0x8002-0x8FFF

In your example, replace output.out with the name of your output file.

6 Add a function for checksum calculation to your source code. Make sure that the
function uses the same algorithm and settings as for the checksum calculated by
ielftool. For example, a variant of the crc16 algorithm with small memory footprint
(in contrast to the fast variant that uses more memory):

unsigned short SmallCrc16(uint16_t
 sum,
 unsigned char *p,
 unsigned int len)
{
 while (len--)
 {
 int i;
 unsigned char byte = *(p++);

 for (i = 0; i < 8; ++i)
 {
 unsigned long oSum = sum;
 sum <<= 1;
 if (byte & 0x80)
 sum |= 1;
 if (oSum & 0x8000)
 sum ^= 0x1021;
 byte <<= 1;
 }
 }
 return sum;
}

You can find the source code for this checksum algorithm in the riscv\src\linker
directory of your product installation.
AFE1_AFE2-1:1

203

204

Checksum calculation for verifying image integrity

7 Make sure that your application also contains a call to the function that calculates the
checksum, compares the two checksums, and takes appropriate action if the checksum
values do not match.

This code gives an example of how the checksum can be calculated for your application
and to be compared with the ielftool generated checksum:

/* The calculated checksum */

/* Linker generated symbols */
extern unsigned short const __checksum;
extern int __checksum_begin;
extern int __checksum_end;

void TestChecksum()
{
 unsigned short calc = 0;
 unsigned char zeros[2] = {0, 0};

 /* Run the checksum algorithm */
 calc = SmallCrc16(0,
 (unsigned char *) &__checksum_begin,
 ((unsigned char *) &__checksum_end -
 ((unsigned char *) &__checksum_begin)+1));

 /* Fill the end of the byte sequence with zeros. */
 calc = SmallCrc16(calc, zeros, 2);

 /* Test the checksum */
 if (calc != __checksum)
 {
 printf("Incorrect checksum!\n");
 abort(); /* Failure */
 }

 /* Checksum is correct */
}

8 Build your application project and download it.

During the build, ielftool creates a checksum and places it in the specified symbol
__checksum in the section .checksum.

9 Choose Download and Debug to start the C-SPY Debugger.

During execution, the checksum calculated by ielftool and the checksum calculated
by your application should be identical.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Application-related considerations

TROUBLESHOOTING CHECKSUM CALCULATION

If the two checksums do not match, there are several possible causes. These are some
troubleshooting hints:

● If possible, start with a small example when trying to get the checksums to match.

● Verify that the exact same memory range or ranges are used in both checksum
calculations.

To help you do this, ielftool lists the ranges for which the checksum is calculated
on stdout about the exact addresses that were used and the order in which they were
accessed.

● Make sure that all checksum symbols are excluded from all checksum calculations.

Compare the checksum placement with the checksum range and make sure they do
not overlap. You can find information in the Build message window after ielftool
has generated a checksum.

● Verify that the checksum calculations use the same polynomial.

● Verify that the bits in the bytes are processed in the same order in both checksum
calculations, from the least to the most significant bit or the other way around. You
control this with the Bit order option (or from the command line, the -m parameter
of the --checksum option).

● If you are using the small variant of CRC, check whether you need to feed
additional bytes into the algorithm.

The number of zeros to add at the end of the byte sequence must match the size of
the checksum, in other words, one zero for a 1-byte checksum, two zeros for a 2-byte
checksum, four zeros for a 4-byte checksum, and eight zeros for an 8-byte checksum.

● Any breakpoints in flash memory change the content of the flash. This means that
the checksum which is calculated by your application will no longer match the
initial checksum calculated by ielftool. To make the two checksums match
again, you must disable all your breakpoints in flash and any breakpoints set in flash
by C-SPY internally. The stack plugin and the debugger option Run to both require
C-SPY to set breakpoints. Read more about possible breakpoint consumers in the
C-SPY® Debugging Guide for RISC-V.

● By default, a symbol that you have allocated in memory by using the linker option
--place_holder is considered by C-SPY to be of the type int. If the size of the
checksum is different than the size of an int, you can change the display format of
the checksum symbol to match its size.

In the C-SPY Watch window, select the symbol and choose Show As from the
context menu. Choose the display format that matches the size of the checksum
symbol.
AFE1_AFE2-1:1

205

206

Patching symbol definitions using $Super$$ and $Sub$$

Patching symbol definitions using $Super$$ and $Sub$$
Using the $Sub$$ and $Super$$ special patterns, you can patch existing symbol
definitions in situations where you would otherwise not be able to modify the symbol,
for example, when a symbol is located in an external library or in ROM code.

The $Super$$ special pattern identifies the original unpatched function used for calling
the original function directly.

The $Sub$$ special pattern identifies the new function that is called instead of the
original function. You can use the $Sub$$ special pattern to add processing before or
after the original function.

AN EXAMPLE USING THE $SUPER$$ AND $SUB$$ PATTERNS

The following example shows how to use the $Super$$ and $Sub$$ patterns to insert
a call to the function ExtraFunc() before the call to the legacy function foo().

extern void ExtraFunc(void);
extern void $Super$$foo(void);

/* this function is called instead of the original foo() */
void $Sub$$foo(void)
{
 ExtraFunc(); /* does some extra setup work */
 $Super$$foo(); /* calls the original foo() function */
 /* To avoid calling the original foo() function
 * omit the $Super$$foo(); function call.
 */
}

AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Efficient coding for
embedded applications
● Selecting data types

● Controlling data and function placement in memory

● Controlling compiler optimizations

● Facilitating good code generation

Selecting data types
For efficient treatment of data, you should consider the data types used and the most
efficient placement of the variables.

USING EFFICIENT DATA TYPES

The data types you use should be considered carefully, because this can have a large
impact on code size and code speed.

● Use small and unsigned data types, (unsigned char and unsigned short)
unless your application really requires signed values.

● Use register-sized data types (int, unsigned int)

● Bitfields with sizes other than 1 bit should be avoided because they will result in
inefficient code compared to bit operations.

● Using floating-point types on a microprocessor without a math co-processor is
inefficient, both in terms of code size and execution speed.

● Declaring a pointer parameter to point to const data might open for better
optimizations in the calling function.

For information about representation of supported data types, pointers, and structures
types, see the chapter Data representation.

FLOATING-POINT TYPES

Using floating-point types on a microprocessor without a math coprocessor is
inefficient, both in terms of code size and execution speed. Therefore, you should
consider replacing code that uses floating-point operations with code that uses integers,
because these are more efficient.
AFE1_AFE2-1:1

207

208

Selecting data types

The compiler supports two floating-point formats—32 and 64 bits. The 32-bit
floating-point type float is more efficient in terms of code size and execution speed.
The 64-bit format double supports higher precision and larger numbers.

Unless the application requires the extra precision that 64-bit floating-point numbers
give, we recommend using 32-bit floating-point numbers instead. Also, consider
replacing code using floating-point operations with code using integers because these
are more efficient.

By default, a floating-point constant in the source code is treated as being of the type
double. This can cause innocent-looking expressions to be evaluated in double
precision. In the example below a is converted from a float to a double, the double
constant 1.0 is added and the result is converted back to a float:

double Test(float a)
{
 return a + 1.0;
}

To treat a floating-point constant as a float rather than as a double, add the suffix f
to it, for example:

double Test(float a)
{
 return a + 1.0f;
}

For more information about floating-point types, see Basic data types—floating-point
types, page 321.

ALIGNMENT OF ELEMENTS IN A STRUCTURE

The compiler and linker require that when accessing data in memory, the data must be
aligned. Each element in a structure must be aligned according to its specified type
requirements. This means that the compiler might need to insert pad bytes to keep the
alignment correct.

There are situations when this can be a problem:

● There are external demands, for example, network communication protocols are
usually specified in terms of data types with no padding in between

● You need to save data memory.

For information about alignment requirements, see Alignment, page 315.

Use the #pragma pack directive or the __packed data type attribute for a tighter
layout of the structure. The drawback is that each access to an unaligned element in the
structure will use more code.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Efficient coding for embedded applications

Alternatively, write your own customized functions for packing and unpacking
structures. This is a more portable way, which will not produce any more code apart
from your functions. The drawback is the need for two views on the structure data—
packed and unpacked.

For more information about the #pragma pack directive, see pack, page 360.

ANONYMOUS STRUCTS AND UNIONS

When a structure or union is declared without a name, it becomes anonymous. The effect
is that its members will only be seen in the surrounding scope.

Example

In this example, the members in the anonymous union can be accessed, in function F,
without explicitly specifying the union name:

struct S
{
 char mTag;
 union
 {
 long mL;
 float mF;
 };
} St;

void F(void)
{
 St.mL = 5;
}

AFE1_AFE2-1:1

209

210

Controlling data and function placement in memory

The member names must be unique in the surrounding scope. Having an anonymous
struct or union at file scope, as a global, external, or static variable is also allowed.
This could for instance be used for declaring I/O registers, as in this example:

__no_init volatile
union
{
 unsigned char IOPORT;
 struct
 {
 unsigned char way: 1;
 unsigned char out: 1;
 };
} @ 8;

/* The variables are used here. */
void Test(void)
{
 IOPORT = 0;
 way = 1;
 out = 1;
}

This declares an I/O register byte IOPORT at address 8. The I/O register has 2 bits
declared, way and out. Note that both the inner structure and the outer union are
anonymous.

Anonymous structures and unions are implemented in terms of objects named after the
first field, with a prefix _A_ to place the name in the implementation part of the
namespace. In this example, the anonymous union will be implemented through an
object named _A_IOPORT.

Controlling data and function placement in memory
The compiler provides different mechanisms for controlling placement of functions and
data objects in memory. To use memory efficiently, you should be familiar with these
mechanisms and know which one is best suited for different situations. You can use:

● The @ operator and the #pragma location directive for absolute placement.

Using the @ operator or the #pragma location directive, you can place individual
global and static variables at absolute addresses. Note that it is not possible to use this
notation for absolute placement of individual functions. For more information, see
Data placement at an absolute location, page 211.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Efficient coding for embedded applications

● The @ operator and the #pragma location directive for section placement.

Using the @ operator or the #pragma location directive, you can place individual
functions, variables, and constants in named sections. The placement of these
sections can then be controlled by linker directives. For more information, see Data
and function placement in sections, page 212.

DATA PLACEMENT AT AN ABSOLUTE LOCATION

The @ operator, alternatively the #pragma location directive, can be used for placing
global and static variables at absolute addresses.

To place a variable at an absolute address, the argument to the @ operator and the
#pragma location directive should be a literal number, representing the actual
address. The absolute location must fulfill the alignment requirement for the variable
that should be located.

Note: All declarations of __no_init variables placed at an absolute address are
tentative definitions. Tentatively defined variables are only kept in the output from the
compiler if they are needed in the module being compiled. Such variables will be
defined in all modules in which they are used, which will work as long as they are
defined in the same way. The recommendation is to place all such declarations in header
files that are included in all modules that use the variables.

Other variables placed at an absolute address use the normal distinction between
declaration and definition. For these variables, you must provide the definition in only
one module, normally with an initializer. Other modules can refer to the variable by
using an extern declaration, with or without an explicit address.

Examples

In this example, a __no_init declared variable is placed at an absolute address. This
is useful for interfacing between multiple processes, applications, etc:

__no_init volatile char alpha @ 0xFF2000;/* OK */

The next example contains two const declared objects. The first one is not initialized,
and the second one is initialized to a specific value. (The first case is useful for
configuration parameters, because they are accessible from an external interface.) Both
objects are placed in ROM. Note that in the second case, the compiler is not obliged to
actually read from the variable, because the value is known.

#pragma location=0xFF2004
__no_init const int beta; /* OK */

const int gamma @ 0xFF2004 = 3; /* OK */
AFE1_AFE2-1:1

211

212

Controlling data and function placement in memory

In the first case, the value is not initialized by the compiler—the value must be set by
other means. The typical use is for configurations where the values are loaded to ROM
separately, or for special function registers that are read-only.

This shows incorrect usage:

__no_init int epsilon @ 0xFF2007; /* Error, misaligned. */

C++ considerations

In C++, module scoped const variables are static (module local), whereas in C they are
global. This means that each module that declares a certain const variable will contain
a separate variable with this name. If you link an application with several such modules
all containing (via a header file), for instance, the declaration:

volatile const __no_init int x @ 0x100; /* Bad in C++ */

the linker will report that more than one variable is located at address 0x100.

To avoid this problem and make the process the same in C and C++, you should declare
these variables extern, for example:

/* The extern keyword makes x public. */
extern volatile const __no_init int x @ 0x100;

Note: C++ static member variables can be placed at an absolute address just like any
other static variable.

DATA AND FUNCTION PLACEMENT IN SECTIONS

The following method can be used for placing data or functions in named sections other
than default:

● The @ operator, alternatively the #pragma location directive, can be used for
placing individual variables or individual functions in named sections. The named
section can either be a predefined section, or a user-defined section.

C++ static member variables can be placed in named sections just like any other static
variable.

If you use your own sections, in addition to the predefined sections, the sections must
also be defined in the linker configuration file.

Note: Take care when explicitly placing a variable or function in a predefined section
other than the one used by default. This is useful in some situations, but incorrect
placement can result in anything from error messages during compilation and linking to
a malfunctioning application. Carefully consider the circumstances—there might be
strict requirements on the declaration and use of the function or variable.

The location of the sections can be controlled from the linker configuration file.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Efficient coding for embedded applications

For more information about sections, see the chapter Section reference.

Examples of placing variables in named sections

In the following examples, a data object is placed in a user-defined section. Note that
you must as always ensure that the section is placed in the appropriate memory area
when linking.

__no_init int alpha @ "MY_NOINIT"; /* OK */

#pragma location="MY_CONSTANTS"
const int beta = 42; /* OK */

const int gamma @ "MY_CONSTANTS" = 17; /* OK */
int theta @ "MY_ZEROS"; /* OK */
int phi @ "MY_INITED" = 4711; /* OK */

The linker will normally arrange for the correct type of initialization for each variable.
If you want to control or suppress automatic initialization, you can use the initialize
and do not initialize directives in the linker configuration file.

Examples of placing functions in named sections

void f(void) @ "MY_FUNCTIONS";

void g(void) @ "MY_FUNCTIONS"
{
}

#pragma location="MY_FUNCTIONS"
void h(void);

Controlling compiler optimizations
The compiler performs many transformations on your application to generate the best
possible code. Examples of such transformations are storing values in registers instead
of memory, removing superfluous code, reordering computations in a more efficient
order, and replacing arithmetic operations by cheaper operations.

The linker should also be considered an integral part of the compilation system, because
some optimizations are performed by the linker. For instance, all unused functions and
variables are removed and not included in the final output.
AFE1_AFE2-1:1

213

214

Controlling compiler optimizations

SCOPE FOR PERFORMED OPTIMIZATIONS

You can decide whether optimizations should be performed on your whole application
or on individual files. By default, the same types of optimizations are used for an entire
project, but you should consider using different optimization settings for individual files.
For example, put code that must execute quickly into a separate file and compile it for
minimal execution time, and the rest of the code for minimal code size. This will give a
small program, which is still fast enough where it matters.

You can also exclude individual functions from the performed optimizations. The
#pragma optimize directive allows you to either lower the optimization level, or
specify another type of optimization to be performed. See optimize, page 358, for
information about the pragma directive.

MULTI-FILE COMPILATION UNITS

In addition to applying different optimizations to different source files or even functions,
you can also decide what a compilation unit consists of—one or several source code
files.

By default, a compilation unit consists of one source file, but you can also use multi-file
compilation to make several source files in a compilation unit. The advantage is that
interprocedural optimizations such as inlining and cross jump have more source code to
work on. Ideally, the whole application should be compiled as one compilation unit.
However, for large applications this is not practical because of resource restrictions on
the host computer. For more information, see --mfc, page 260.

Note: Only one object file is generated, and therefore all symbols will be part of that
object file.

If the whole application is compiled as one compilation unit, it is useful to make the
compiler also discard unused public functions and variables before the interprocedural
optimizations are performed. Doing this limits the scope of the optimizations to
functions and variables that are actually used. For more information, see
--discard_unused_publics, page 253.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Efficient coding for embedded applications

OPTIMIZATION LEVELS

The compiler supports different levels of optimizations. This table lists optimizations
that are typically performed on each level:

Note: Some of the performed optimizations can be individually enabled or disabled. For
more information, see Fine-tuning enabled transformations, page 216.

A high level of optimization might result in increased compile time, and will also most
likely make debugging more difficult, because it is less clear how the generated code
relates to the source code. For example, at the low, medium, and high optimization
levels, variables do not live through their entire scope, which means processor registers
used for storing variables can be reused immediately after they were last used. Due to
this, the C-SPY Watch window might not be able to display the value of the variable
throughout its scope, or even occasionally display an incorrect value. At any time, if you
experience difficulties when debugging your code, try lowering the optimization level.

Optimization level Description

None (Best debug support) Variables live through their entire scope
Dead code elimination
Redundant label elimination
Redundant branch elimination

Low Same as above but variables only live for as long as they are
needed, not necessarily through their entire scope

Medium Same as above, and:
Live-dead analysis and optimization
Code hoisting
Peephole optimization
Register content analysis and optimization
Common subexpression elimination
Code motion
Static clustering

High (Balanced) Same as above, and:
Instruction scheduling
Cross jumping
Cross call
Loop unrolling
Function inlining
Type-based alias analysis

Table 20: Compiler optimization levels
AFE1_AFE2-1:1

215

216

Controlling compiler optimizations

SPEED VERSUS SIZE

At the high optimization level, the compiler balances between size and speed
optimizations. However, it is possible to fine-tune the optimizations explicitly for either
size or speed. They only differ in what thresholds that are used—speed will trade size
for speed, whereas size will trade speed for size.

If you use the optimization level High speed, the --no_size_constraints compiler
option relaxes the normal restrictions for code size expansion and enables more
aggressive optimizations.

You can choose an optimization goal for each module, or even individual functions,
using command line options and pragma directives (see -O, page 269 and optimize, page
358). For a small embedded application, this makes it possible to achieve acceptable
speed performance while minimizing the code size—Typically, only a few places in the
application need to be fast, such as the most frequently executed inner loops, or the
interrupt handlers.

Rather than compiling the whole application with High (Balanced) optimization, you
can use High (Size) in general, but override this to get High (Speed) optimization only
for those functions where the application needs to be fast.

Note: Because of the unpredictable way in which different optimizations interact, where
one optimization can enable other optimizations, sometimes a function becomes smaller
when compiled with High (Speed) optimization than if High (Size) is used. Also, using
multi-file compilation (see --mfc, page 260) can enable many optimizations to improve
both speed and size performance. It is recommended that you experiment with different
optimization settings so that you can pick the best ones for your project.

FINE-TUNING ENABLED TRANSFORMATIONS

At each optimization level you can disable some of the transformations individually. To
disable a transformation, use either the appropriate option, for instance the command
line option --no_inline, alternatively its equivalent in the IDE Function inlining, or
the #pragma optimize directive. These transformations can be disabled individually:

● Common subexpression elimination

● Loop unrolling

● Function inlining

● Code motion

● Type-based alias analysis

● Static clustering

● Cross call

● Cross jump
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Efficient coding for embedded applications

● Instruction scheduling

Common subexpression elimination

Redundant re-evaluation of common subexpressions is by default eliminated at
optimization levels Medium and High. This optimization normally reduces both code
size and execution time. However, the resulting code might be difficult to debug.

Note: This option has no effect at optimization levels None and Low.

For more information about the command line option, see --no_cse, page 263.

Loop unrolling

Loop unrolling means that the code body of a loop, whose number of iterations can be
determined at compile time, is duplicated. Loop unrolling reduces the loop overhead by
amortizing it over several iterations.

This optimization is most efficient for smaller loops, where the loop overhead can be a
substantial part of the total loop body.

Loop unrolling, which can be performed at optimization level High, normally reduces
execution time, but increases code size. The resulting code might also be difficult to
debug.

The compiler heuristically decides which loops to unroll. Only relatively small loops
where the loop overhead reduction is noticeable will be unrolled. Different heuristics are
used when optimizing for speed, size, or when balancing between size and speed.

Note: This option has no effect at optimization levels None, Low, and Medium.

To disable loop unrolling, use the command line option --no_unroll, see --no_unroll,
page 267.

Function inlining

Function inlining means that a function, whose definition is known at compile time, is
integrated into the body of its caller to eliminate the overhead of the call. This
optimization normally reduces execution time, but might increase the code size.

For more information, see Inlining functions, page 75.

To disable function inlining, use the command line option --no_inline, see
--no_inline, page 264.

Code motion

Evaluation of loop-invariant expressions and common subexpressions are moved to
avoid redundant re-evaluation. This optimization, which is performed at optimization
AFE1_AFE2-1:1

217

218

Controlling compiler optimizations

level Medium and above, normally reduces code size and execution time. The resulting
code might however be difficult to debug.

Note: This option has no effect at optimization levels below Medium.

For more information about the command line option, see --no_code_motion, page 262.

Type-based alias analysis

When two or more pointers reference the same memory location, these pointers are said
to be aliases for each other. The existence of aliases makes optimization more difficult
because it is not necessarily known at compile time whether a particular value is being
changed.

Type-based alias analysis optimization assumes that all accesses to an object are
performed using its declared type or as a char type. This assumption lets the compiler
detect whether pointers can reference the same memory location or not.

Type-based alias analysis is performed at optimization level High. For application code
conforming to standard C or C++ application code, this optimization can reduce code
size and execution time. However, non-standard C or C++ code might result in the
compiler producing code that leads to unexpected behavior. Therefore, it is possible to
turn this optimization off.

Note: This option has no effect at optimization levels None, Low, and Medium.

For more information about the command line option, see --no_tbaa, page 266.

Example

short F(short *p1, long *p2)
{
 *p2 = 0;
 *p1 = 1;
 return *p2;
}

With type-based alias analysis, it is assumed that a write access to the short pointed to
by p1 cannot affect the long value that p2 points to. Therefore, it is known at compile
time that this function returns 0. However, in non-standard-conforming C or C++ code
these pointers could overlap each other by being part of the same union. If you use
explicit casts, you can also force pointers of different pointer types to point to the same
memory location.

Static clustering

When static clustering is enabled, static and global variables that are defined within the
same module are arranged so that variables that are accessed in the same function are
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Efficient coding for embedded applications

stored close to each other. This makes it possible for the compiler to use the same base
pointer for several accesses.

Note: This option has no effect at optimization levels None and Low.

For more information about the command line option, see --no_clustering, page 261.

Cross call

Common code sequences are extracted to local subroutines. This optimization, which is
performed at optimization level High, can reduce code size, sometimes dramatically, on
behalf of execution time. The resulting code might however be difficult to debug.

For more information about related command line options, see --no_cross_call, page
262.

Instruction scheduling

The compiler features an instruction scheduler to increase the performance of the
generated code. To achieve that goal, the scheduler rearranges the instructions to
minimize the number of pipeline stalls emanating from resource conflicts within the
microprocessor.

Note: This option has no effect at optimization levels None, Low and Medium.

For more information about the command line option, see --no_scheduling, page 265.

Facilitating good code generation
This section contains hints on how to help the compiler generate good code:

● Writing optimization-friendly source code

● Saving stack space and RAM memory

● Function prototypes

● Integer types and bit negation

● Protecting simultaneously accessed variables

● Accessing special function registers

● Passing values between C and assembler objects

● Non-initialized variables
AFE1_AFE2-1:1

219

220

Facilitating good code generation

WRITING OPTIMIZATION-FRIENDLY SOURCE CODE

The following is a list of programming techniques that will, when followed, enable the
compiler to better optimize the application.

● Local variables—auto variables and parameters—are preferred over static or global
variables. The reason is that the optimizer must assume, for example, that called
functions can modify non-local variables. When the life spans for local variables
end, the previously occupied memory can then be reused. Globally declared
variables will occupy data memory during the whole program execution.

● Avoid taking the address of local variables using the & operator. This is inefficient
for two main reasons. First, the variable must be placed in memory, and therefore
cannot be placed in a processor register. This results in larger and slower code.
Second, the optimizer can no longer assume that the local variable is unaffected
over function calls.

● Module-local variables—variables that are declared static—are preferred over
global variables (non-static). Also, avoid taking the address of frequently accessed
static variables.

● The compiler is capable of inlining functions, see Function inlining, page 217. To
maximize the effect of the inlining transformation, it is good practice to place the
definitions of small functions called from more than one module in the header file
rather than in the implementation file. Alternatively, you can use multi-file
compilation. For more information, see Multi-file compilation units, page 214.

● Avoid using inline assembler without operands and clobbered resources. Instead,
use SFRs or intrinsic functions if available. Otherwise, use inline assembler with
operands and clobbered resources or write a separate module in assembler
language. For more information, see Mixing C and assembler, page 153.

SAVING STACK SPACE AND RAM MEMORY

The following is a list of programming techniques that save memory and stack space:

● If stack space is limited, avoid long call chains and recursive functions.

● Avoid using large non-scalar types, such as structures, as parameters or return type.
To save stack space, you should instead pass them as pointers or, in C++, as
references.

FUNCTION PROTOTYPES

It is possible to declare and define functions using one of two different styles:

● Prototyped

● Kernighan & Ritchie C (K&R C)
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Efficient coding for embedded applications

Both styles are valid C, however it is strongly recommended to use the prototyped style,
and provide a prototype declaration for each public function in a header that is included
both in the compilation unit defining the function and in all compilation units using it.

The compiler will not perform type checking on parameters passed to functions declared
using K&R style. Using prototype declarations will also result in more efficient code in
some cases, as there is no need for type promotion for these functions.

To make the compiler require that all function definitions use the prototyped style, and
that all public functions have been declared before being defined, use the
Project>Options>C/C++ Compiler>Language 1>Require prototypes compiler
option (--require_prototypes).

Prototyped style

In prototyped function declarations, the type for each parameter must be specified.

int Test(char, int); /* Declaration */

int Test(char ch, int i) /* Definition */
{
 return i + ch;
}

Kernighan & Ritchie style

In K&R style—pre-Standard C—it is not possible to declare a function prototyped.
Instead, an empty parameter list is used in the function declaration. Also, the definition
looks different.

For example:

int Test(); /* Declaration */

int Test(ch, i) /* Definition */
char ch;
int i;
{
 return i + ch;
}

INTEGER TYPES AND BIT NEGATION

In some situations, the rules for integer types and their conversion lead to possibly
confusing behavior. Things to look out for are assignments or conditionals (test
expressions) involving types with different size, and logical operations, especially bit
negation. Here, types also includes types of constants.
AFE1_AFE2-1:1

221

222

Facilitating good code generation

In some cases there might be warnings—for example, for constant conditional or
pointless comparison—in others just a different result than what is expected. Under
certain circumstances the compiler might warn only at higher optimizations, for
example, if the compiler relies on optimizations to identify some instances of constant
conditionals. In this example, an 8-bit character, a 32-bit integer, and two’s complement
is assumed:

void F1(unsigned char c1)
{
 if (c1 == ~0x80)
 ;
}

Here, the test is always false. On the right hand side, 0x80 is 0x00000080, and
~0x00000080 becomes 0xFFFFFF7F. On the left hand side, c1 is an 8-bit unsigned
character in the range 0–255, which can never be equal to 0xFFFFFF7F. Furthermore,
it cannot be negative, which means that the integral promoted value can never have the
topmost 24 bits set.

PROTECTING SIMULTANEOUSLY ACCESSED VARIABLES

Variables that are accessed asynchronously, for example, by interrupt routines or by
code executing in separate threads, must be properly marked and have adequate
protection. The only exception to this is a variable that is always read-only.

To mark a variable properly, use the volatile keyword. This informs the compiler,
among other things, that the variable can be changed from other threads. The compiler
will then avoid optimizing on the variable—for example, keeping track of the variable
in registers—will not delay writes to it, and be careful accessing the variable only the
number of times given in the source code.

For sequences of accesses to variables that you do not want to be interrupted, use the
__monitor keyword. This must be done for both write and read sequences, otherwise
you might end up reading a partially updated variable. Accessing a small-sized
volatile variable can be an atomic operation, but you should not rely on it unless you
continuously study the compiler output. It is safer to use the __monitor keyword to
ensure that the sequence is an atomic operation. For more information, see __monitor,
page 334.

For more information about the volatile type qualifier and the rules for accessing
volatile objects, see Declaring objects volatile, page 326.

ACCESSING SPECIAL FUNCTION REGISTERS

Specific header files for several RISC-V devices are included in the IAR product
installation. The header files are named iodevice.h and define the processor-specific
special function registers (SFRs).
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Efficient coding for embedded applications

Note: Each header file contains one section used by the compiler, and one section used
by the assembler.

SFRs with bitfields are declared in the header file.

__no_init volatile union
{
 unsigned short mwctl2;
 struct
 {
 unsigned short edr: 1;
 unsigned short edw: 1;
 unsigned short lee: 2;
 unsigned short lemd: 2;
 unsigned short lepl: 2;
 } mwctl2bit;
} @ 8;

/* By including the appropriate include file in your code,
 * it is possible to access either the whole register or any
 * individual bit (or bitfields) from C code as follows.
 */

void Test()
{
 /* Whole register access */
 mwctl2 = 0x1234;

 /* Bitfield accesses */
 mwctl2bit.edw = 1;
 mwctl2bit.lepl = 3;
}

You can also use the header files as templates when you create new header files for other
RISC-V devices. For information about the @ operator, see Controlling data and
function placement in memory, page 210.
AFE1_AFE2-1:1

223

224

Facilitating good code generation

PASSING VALUES BETWEEN C AND ASSEMBLER OBJECTS

The following example shows how you in your C source code can use inline assembler
to set and get values from a special purpose register:

unsigned long get_csr(void)
{
 unsigned long value;
 asm volatile("csrr %0, 0x300" : "=r"(value));
 return value;
}

void set_csr(unsigned long value)
{
 asm volatile("csrw 0x300, %0" :: "r"(value));
}

The general purpose register is used for getting and setting the value of the special
purpose register CSR. The same method can also be used for accessing other special
purpose registers and specific instructions.

To read more about inline assembler, see Inline assembler, page 154.

NON-INITIALIZED VARIABLES

Normally, the runtime environment will initialize all global and static variables when the
application is started.

The compiler supports the declaration of variables that will not be initialized, using the
__no_init type modifier. They can be specified either as a keyword or using the
#pragma object_attribute directive. The compiler places such variables in a
separate section.

For __no_init, the const keyword implies that an object is read-only, rather than that
the object is stored in read-only memory. It is not possible to give a __no_init object
an initial value.

Variables declared using the __no_init keyword could, for example, be large input
buffers or mapped to special RAM that keeps its content even when the application is
turned off.

For more information, see __no_init, page 336.

Note: To use this keyword, language extensions must be enabled, see -e, page 254. For
more information, see object_attribute, page 358.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Part 2. Reference
information
This part of the IAR C/C++ Development Guide for RISC-V contains these
chapters:

● External interface details

● Compiler options

● Linker options

● Data representation

● Extended keywords

● Pragma directives

● Intrinsic functions

● The preprocessor

● C/C++ standard library functions

● The linker configuration file

● Section reference

● The stack usage control file

● IAR utilities

● Implementation-defined behavior for Standard C++

● Implementation-defined behavior for Standard C

● Implementation-defined behavior for C89
225

226

External interface details
● Invocation syntax

● Include file search procedure

● Compiler output

● Linker output

● Text encodings

● Reserved identifiers

● Diagnostics

Invocation syntax
You can use the compiler and linker either from the IDE or from the command line. See
the IDE Project Management and Building Guide for RISC-V for information about
using the build tools from the IDE.

COMPILER INVOCATION SYNTAX

The invocation syntax for the compiler is:

iccriscv [options] [sourcefile] [options]

For example, when compiling the source file prog.c, use this command to generate an
object file with debug information:

iccriscv prog.c --debug

The source file can be a C or C++ file, typically with the filename extension c or cpp,
respectively. If no filename extension is specified, the file to be compiled must have the
extension c.

Generally, the order of options on the command line, both relative to each other and to
the source filename, is not significant. There is, however, one exception: when you use
the -I option, the directories are searched in the same order as they are specified on the
command line.
AFE1_AFE2-1:1

227

228

Invocation syntax

If you run the compiler from the command line without any arguments, the compiler
version number and all available options including brief descriptions are directed to
stdout and displayed on the screen.

LINKER INVOCATION SYNTAX

The invocation syntax for the linker is:

ilinkriscv [arguments]

Each argument is either a command line option, an object file, or a library.

For example, when linking the object file prog.o, use this command:

ilinkriscv prog.o --config configfile

If no filename extension is specified for the linker configuration file, the configuration
file must have the extension icf.

Generally, the order of arguments on the command line is not significant. There is,
however, one exception: when you supply several libraries, the libraries are searched in
the same order that they are specified on the command line. Any default libraries are
always searched last.

The output executable image will be placed in a file named a.out, unless the linker
option --output or -o is used.

If you run ILINK from the command line without any arguments, the ILINK version
number and all available options including brief descriptions are directed to stdout and
displayed on the screen.

PASSING OPTIONS

There are three different ways of passing options to the compiler and linker:

● Directly from the command line

Specify the options on the command line after the iccriscv or ilinkriscv
commands, see Invocation syntax, page 227.

● Via environment variables

The compiler or linker automatically appends the value of the environment variables
to every command line, see Environment variables, page 229.

● Via a text file, using the -f option, see -f, page 255.

For general guidelines for the options syntax, an options summary, and a detailed
description of each option, see Compiler options, page 237 and Linker options, page
281.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

External interface details

ENVIRONMENT VARIABLES

These environment variables can be used with the compiler:

This environment variable can be used with ILINK:

Include file search procedure
This is a detailed description of the compiler’s #include file search procedure:

● The string found between the "" and <> in the #include directive is used verbatim
as a source file name.

● If the name of the #include file is an absolute path specified in angle brackets or
double quotes, that file is opened.

● If the compiler encounters the name of an #include file in angle brackets, such as:

#include <stdio.h>

it searches these directories for the file to include:

1 The directories specified with the -I option, in the order that they were
specified, see -I, page 257.

2 The directories specified using the C_INCLUDE environment variable, if any, see
Environment variables, page 229.

3 The automatically set up library system include directories. See --dlib_config,
page 253.

● If the compiler encounters the name of an #include file in double quotes, for
example:

#include "vars.h"

Environment variable Description

C_INCLUDE Specifies directories to search for include files, for example:
C_INCLUDE=c:\my_programs\embedded

workbench 9.n\riscv\inc;c:\headers

QCCRISCV Specifies command line options, for example:
QCCRISCV=-lA asm.lst

Table 21: Compiler environment variables

Environment variable Description

ILINKRISCV_CMD_LINE Specifies command line options, for example:
ILINKRISCV_CMD_LINE=--config full.icf

--silent

Table 22: ILINK environment variables
AFE1_AFE2-1:1

229

230

Compiler output

it searches the directory of the source file in which the #include statement occurs,
and then performs the same sequence as for angle-bracketed filenames.

If there are nested #include files, the compiler starts searching the directory of the file
that was last included, iterating upwards for each included file, searching the source file
directory last. For example:

src.c in directory dir\src
#include "src.h"
...

src.h in directory dir\include
#include "config.h"
...

When dir\exe is the current directory, use this command for compilation:

iccriscv ..\src\src.c -I..\include -I..\debugconfig

Then the following directories are searched in the order listed below for the file
config.h, which in this example is located in the dir\debugconfig directory:

Use angle brackets for standard header files, like stdio.h, and double quotes for files
that are part of your application.

Note: Both \ and / can be used as directory delimiters.

For more information, see Overview of the preprocessor, page 381.

Compiler output
The compiler can produce the following output:

● A linkable object file

The object files produced by the compiler use the industry-standard format ELF. By
default, the object file has the filename extension o.

● Optional list files

Various kinds of list files can be specified using the compiler option -l, see -l, page
258. By default, these files will have the filename extension lst.

dir\include Current file is src.h.

dir\src File including current file (src.c).

dir\include As specified with the first -I option.

dir\debugconfig As specified with the second -I option.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

External interface details

● Optional preprocessor output files

A preprocessor output file is produced when you use the --preprocess option. The
file will have the filename extension i, by default.

● Diagnostic messages

Diagnostic messages are directed to the standard error stream and displayed on the
screen, and printed in an optional list file. For more information about diagnostic
messages, see Diagnostics, page 234.

● Error return codes

These codes provide status information to the operating system which can be tested
in a batch file, see Error return codes, page 236.

● Size information

Information about the generated amount of bytes for functions and data for each
memory is directed to the standard output stream and displayed on the screen. Some
of the bytes might be reported as shared.

Shared objects are functions or data objects that are shared between modules. If any
of these occur in more than one module, only one copy is retained. For example, in
some cases inline functions are not inlined, which means that they are marked as
shared, because only one instance of each function will be included in the final
application. This mechanism is sometimes also used for compiler-generated code or
data not directly associated with a particular function or variable, and when only one
instance is required in the final application.

Linker output
The linker can produce the following output:

● An absolute executable image

The final output produced by the linker is an absolute object file containing the
executable image that can be put into an EPROM, downloaded to a hardware
emulator, or executed on your PC using the IAR C-SPY Debugger Simulator. By
default, the file has the filename extension out. The output format is always in ELF,
which optionally includes debug information in the DWARF format.

● Optional logging information

During operation, the linker logs its decisions on stdout, and optionally to a file.
For example, if a library is searched, whether a required symbol is found in a library
module, or whether a module will be part of the output. Timing information for each
ILINK subsystem is also logged.
AFE1_AFE2-1:1

231

232

Text encodings

● Optional map files

A linker map file—containing summaries of linkage, runtime attributes, memory,
and placement, as well as an entry list— can be generated by the linker option --map,
see --map, page 300. By default, the map file has the filename extension map.

● Diagnostic messages

Diagnostic messages are directed to stderr and displayed on the screen, as well as
printed in the optional map file. For more information about diagnostic messages, see
Diagnostics, page 234.

● Error return codes

The linker returns status information to the operating system which can be tested in
a batch file, see Error return codes, page 236.

● Size information about used memory and amount of time

Information about the generated number of bytes for functions and data for each
memory is directed to stdout and displayed on the screen.

Text encodings
Text files read or written by IAR tools can use a variety of text encodings:

● Raw

This is a backward-compatibility mode for C/C++ source files. Only 7-bit ASCII
characters can be used in symbol names. Other characters can only be used in
comments, literals, etc. This is the default source file encoding if there is no Byte
Order Mark (BOM).

● The system default locale

The locale that you have configured your Windows OS to use.

● UTF-8

Unicode encoded as a sequence of 8-bit bytes, with or without a Byte Order Mark.

● UTF-16

Unicode encoded as a sequence of 16-bit words using a big-endian or little-endian
representation. These files always start with a Byte Order Mark.

In any encoding other than Raw, you can use Unicode characters of the appropriate kind
(alphabetic, numeric, etc) in the names of symbols.

When an IAR tool reads a text file with a Byte Order Mark, it will use the appropriate
Unicode encoding, regardless of the any options set for input file encoding.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

External interface details

For source files without a Byte Order Mark, the compiler will use the Raw encoding,
unless you specify the compiler option --source_encoding. See --source_encoding,
page 274.

For other text input files, like the extended command line (.xcl files), without a Byte
Order Mark, the IAR tools will use the system default locale unless you specify the
compiler option --utf8_text_in, in which case UTF-8 will be used. See
--utf8_text_in, page 278.

For compiler list files and preprocessor output, the same encoding as the main source
file will be used by default. Other tools that generate text output will use the UTF-8
encoding by default. You can change this by using the compiler options --text_out
and --no_bom. See --text_out, page 276 and --no_bom, page 261.

CHARACTERS AND STRING LITERALS

When you compile source code, characters (x) and string literals (xx) are handled as
follows:

Reserved identifiers
Some identifiers are reserved for use by the implementation. Some of the more
important identifiers that the C/C++ standards reserve for any use are:

● Identifiers that contain a double underscore (__)

● Identifiers that begin with an underscore followed by an uppercase letter

In addition to this, the IAR tools reserve for any use:

● Identifiers that contain a double dollar sign ($$)

● Identifiers that contain a question mark (?)

'x', "xx" Characters in untyped character and string literals are copied
verbatim, using the same encoding as in the source file.

u8"xx" Characters in UTF-8 string literals are converted to UTF-8.

u'x', u"xx" Characters in UTF-16 character and string literals are converted
to UTF-16.

U'x', U"xx" Characters in UTF-32 character and string literals are converted
to UTF-32.

L'x', L"xx" Characters in wide character and string literals are converted to
UTF-32.
AFE1_AFE2-1:1

233

234

Diagnostics

More specific reservations are in effect in particular circumstances, see the C/C++
standards for more information.

Diagnostics
This section describes the format of the diagnostic messages and explains how
diagnostic messages are divided into different levels of severity.

MESSAGE FORMAT FOR THE COMPILER

All diagnostic messages are issued as complete, self-explanatory messages. A typical
diagnostic message from the compiler is produced in the form:

filename, linenumber level[tag]: message

with these elements:

Diagnostic messages are displayed on the screen, as well as printed in the optional list
file.

Use the option --diagnostics_tables to list all possible compiler diagnostic
messages.

MESSAGE FORMAT FOR THE LINKER

All diagnostic messages are issued as complete, self-explanatory messages. A typical
diagnostic message from ILINK is produced in the form:

level[tag]: message

with these elements:

Diagnostic messages are displayed on the screen and printed in the optional map file.

filename The name of the source file in which the issue was encountered

linenumber The line number at which the compiler detected the issue

level The level of seriousness of the issue

tag A unique tag that identifies the diagnostic message

message An explanation, possibly several lines long

level The level of seriousness of the issue

tag A unique tag that identifies the diagnostic message

message An explanation, possibly several lines long
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

External interface details

Use the option --diagnostics_tables to list all possible linker diagnostic messages.

SEVERITY LEVELS

The diagnostic messages are divided into different levels of severity:

Remark

A diagnostic message that is produced when the compiler or linker finds a construct that
can possibly lead to erroneous behavior in the generated code. Remarks are by default
not issued, but can be enabled, see --remarks, page 273.

Warning

A diagnostic message that is produced when the compiler or linker finds a potential
problem which is of concern, but which does not prevent completion of the compilation
or linking. Warnings can be disabled by use of the command line option
--no_warnings.

Error

A diagnostic message that is produced when the compiler or linker finds a serious error.
An error will produce a non-zero exit code.

Fatal error

A diagnostic message produced when the compiler or linker finds a condition that not
only prevents code generation, but also makes further processing pointless. After the
message is issued, compilation or linking terminates. A fatal error will produce a
non-zero exit code.

SETTING THE SEVERITY LEVEL

The diagnostic messages can be suppressed or the severity level can be changed for all
diagnostics messages, except for fatal errors and some of the regular errors.

For information about the compiler options that are available for setting severity levels,
see the chapter Compiler options.

For information about the pragma directives that are available for setting severity levels
for the compiler, see the chapter Pragma directives.

INTERNAL ERROR

An internal error is a diagnostic message that signals that there was a serious and
unexpected failure due to a fault in the compiler or linker. It is produced using this form:

Internal error: message
AFE1_AFE2-1:1

235

236

Diagnostics

where message is an explanatory message. If internal errors occur, they should be
reported to your software distributor or IAR Technical Support. Include enough
information to reproduce the problem, typically:

● The product name

● The version number of the compiler or linker, which can be seen in the header of the
list or map files generated by the compiler or linker, respectively

● Your license number

● The exact internal error message text

● The files involved of the application that generated the internal error

● A list of the options that were used when the internal error occurred.

ERROR RETURN CODES

The compiler and linker return status information to the operating system that can be
tested in a batch file.

These command line error codes are supported:

Code Description

0 Compilation or linking successful, but there might have been warnings.

1 Warnings were produced and the option
--warnings_affect_exit_code was used.

2 Errors occurred.

3 Fatal errors occurred, making the tool abort.

4 Internal errors occurred, making the tool abort.

Table 23: Error return codes
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Compiler options
● Options syntax

● Summary of compiler options

● Descriptions of compiler options

Options syntax
Compiler options are parameters you can specify to change the default behavior of the
compiler. You can specify options from the command line—which is described in more
detail in this section—and from within the IDE.

See the online help system for information about the compiler options available in the
IDE and how to set them.

TYPES OF OPTIONS

There are two types of names for command line options, short names and long names.
Some options have both.

● A short option name consists of one character, and it can have parameters. You
specify it with a single dash, for example -e

● A long option name consists of one or several words joined by underscores, and it
can have parameters. You specify it with double dashes, for example
--char_is_signed.

For information about the different methods for passing options, see Passing options,
page 228.

RULES FOR SPECIFYING PARAMETERS

There are some general syntax rules for specifying option parameters. First, the rules
depending on whether the parameter is optional or mandatory, and whether the option
has a short or a long name, are described. Then, the rules for specifying filenames and
directories are listed. Finally, the remaining rules are listed.

Rules for optional parameters

For options with a short name and an optional parameter, any parameter should be
specified without a preceding space, for example:

-O or -Oh
AFE1_AFE2-1:1

237

238

Options syntax

For options with a long name and an optional parameter, any parameter should be
specified with a preceding equal sign (=), like this:

--example_option=value

Rules for mandatory parameters

For options with a short name and a mandatory parameter, the parameter can be
specified either with or without a preceding space, for example:

-I..\src or -I ..\src\

For options with a long name and a mandatory parameter, the parameter can be specified
either with a preceding equal sign (=) or with a preceding space, for example:

--diagnostics_tables=MyDiagnostics.lst

or

--diagnostics_tables MyDiagnostics.lst

Rules for options with both optional and mandatory parameters

For options taking both optional and mandatory parameters, the rules for specifying the
parameters are:

● For short options, optional parameters are specified without a preceding space

● For long options, optional parameters are specified with a preceding equal sign (=)

● For short and long options, mandatory parameters are specified with a preceding
space.

For example, a short option with an optional parameter followed by a mandatory
parameter:

-lA MyList.lst

For example, a long option with an optional parameter followed by a mandatory
parameter:

--preprocess=n PreprocOutput.lst

Rules for specifying a filename or directory as parameters

These rules apply for options taking a filename or directory as parameters:

● Options that take a filename as a parameter can optionally take a file path. The path
can be relative or absolute. For example, to generate a listing to the file List.lst
in the directory ..\listings\:

iccriscv prog.c -l ..\listings\List.lst
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Compiler options

● For options that take a filename as the destination for output, the parameter can be
specified as a path without a specified filename. The compiler stores the output in
that directory, in a file with an extension according to the option. The filename will
be the same as the name of the compiled source file, unless a different name was
specified with the option -o, in which case that name is used. For example:

iccriscv prog.c -l ..\listings\

The produced list file will have the default name ..\listings\prog.lst

● The current directory is specified with a period (.). For example:

iccriscv prog.c -l .

● / can be used instead of \ as the directory delimiter.

● By specifying -, input files and output files can be redirected to the standard input
and output stream, respectively. For example:

iccriscv prog.c -l -

Additional rules

These rules also apply:

● When an option takes a parameter, the parameter cannot start with a dash (-)
followed by another character. Instead, you can prefix the parameter with two
dashes—this example will create a list file called -r:

iccriscv prog.c -l ---r

● For options that accept multiple arguments of the same type, the arguments can be
provided as a comma-separated list (without a space), for example:

--diag_warning=Be0001,Be0002

Alternatively, the option can be repeated for each argument, for example:

--diag_warning=Be0001
--diag_warning=Be0002

Summary of compiler options
This table summarizes the compiler command line options:

Command line option Description

--allow_misaligned_data_acces

s

Allows misaligned data accesses

--c89 Specifies the C89 dialect

--char_is_signed Treats char as signed

--char_is_unsigned Treats char as unsigned

Table 24: Compiler options summary
AFE1_AFE2-1:1

239

240

Summary of compiler options

--code_model Specifies the code model

--core Specifies the RISC-V ISA to generate code for

--c++ Specifies Standard C++

-D Defines preprocessor symbols

--debug Generates debug information

--dependencies Lists file dependencies

--deprecated_feature_warnings Enables/disables warnings for deprecated features

--diag_error Treats these as errors

--diag_remark Treats these as remarks

--diag_suppress Suppresses these diagnostics

--diag_warning Treats these as warnings

--diagnostics_tables Lists all diagnostic messages

--discard_unused_publics Discards unused public symbols

--dlib_config Uses the system include files for the DLIB library
and determines which configuration of the library
to use

--do_explicit_zero_opt_in_nam

ed_sections

For user-named sections, treats explicit
initializations to zero as zero initializations

-e Enables language extensions

--enable_restrict Enables the Standard C keyword restrict

--error_limit Specifies the allowed number of errors before
compilation stops

-f Extends the command line

--f Extends the command line, optionally with a
dependency.

--guard_calls Enables guards for function static variable
initialization

--header_context Lists all referred source files and header files

-I Specifies include file path

-l Creates a list file

--libc++ Makes the compiler and linker use the Libc++
library.

--macro_positions_in

_diagnostics

Obtains positions inside macros in diagnostic
messages

Command line option Description

Table 24: Compiler options summary (Continued)
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Compiler options

--max_cost_constexpr_call Specifies the limit for constexpr evaluation cost

--max_depth_constexpr_call Specifies the limit for constexpr recursion
depth

--mfc Enables multi-file compilation

--no_alt_link_reg_opt Disables an optimization that can change the link
register used for static functions.

--no_bom Omits the Byte Order Mark for UTF-8 output files

--no_call_frame_info Disables output of call frame information

--no_clustering Disables static clustering optimizations

--no_code_motion Disables code motion optimization

--no_cross_call Disables cross-call optimization

--no_cross_jump Disables cross-jump optimization

--no_cse Disables common subexpression elimination

--no_default_fp_contract Sets the default value for STDC FP_CONTRACT
to OFF.

--no_exceptions This option has no effect and is included for
portability reasons

--no_fragments Disables section fragment handling

--no_inline Disables function inlining

--no_label_padding Disables loop label optimization

--no_normalize_file_macros Disables normalization of paths in the symbols
__FILE__ and __BASE_FILE__

--no_path_in_file_macros Removes the path from the return value of the
symbols __FILE__ and __BASE_FILE__

--no_rtti This option has no effect and is included for
portability reasons

--no_scheduling Disables the instruction scheduler

--no_size_constraints Relaxes the normal restrictions for code size
expansion when optimizing for speed.

--no_static_destruction Disables destruction of C++ static variables at
program exit

--no_system_include Disables the automatic search for system include
files

--no_tbaa Disables type-based alias analysis

Command line option Description

Table 24: Compiler options summary (Continued)
AFE1_AFE2-1:1

241

242

Summary of compiler options

--no_typedefs_in_diagnostics Disables the use of typedef names in diagnostics

--no_uniform_attribute_syntax Specifies the default syntax rules for IAR type
attributes

--no_unroll Disables loop unrolling

--no_warnings Disables all warnings

--no_wrap_diagnostics Disables wrapping of diagnostic messages

--nonportable_path_warnings Generates a warning when the path used for
opening a source header file is not in the same
case as the path in the file system.

-O Sets the optimization level

-o Sets the object filename. Alias for --output.

--only_stdout Uses standard output only

--output Sets the object filename

--pending_instantiations Sets the maximum number of instantiations of a
given C++ template.

--predef_macros Lists the predefined symbols.

--preinclude Includes an include file before reading the source
file

--preprocess Generates preprocessor output

--public_equ Defines a global named assembler label

-r Generates debug information. Alias for --debug.

--relaxed_fp Relaxes the rules for optimizing floating-point
expressions

--remarks Enables remarks

--require_prototypes Verifies that functions are declared before they are
defined

--set_default_interrupt_align

ment

Changes the alignment of the default interrupt

--short_enums Uses the smallest possible type for enum
constants

--silent Sets silent operation

--source_encoding Specifies the encoding for source files

--stack_protection Enables stack protection

Command line option Description

Table 24: Compiler options summary (Continued)
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Compiler options

Descriptions of compiler options
The following section gives detailed reference information about each compiler option.

If you use the options page Extra Options to specify specific command line options,
the IDE does not perform an instant check for consistency problems like conflicting
options, duplication of options, or use of irrelevant options.

--strict Checks for strict compliance with Standard
C/C++

--system_include_dir Specifies the path for system include files

--text_out Specifies the encoding for text output files

--uniform_attribute_syntax Specifies the same syntax rules for IAR type
attributes as for const and volatile

--use_c++_inline Uses C++ inline semantics in C

--use_paths_as_written Use paths as written in debug information

--use_unix_directory_

separators

Uses / as directory separator in paths

--utf8_text_in Uses the UTF-8 encoding for text input files

--version Sends compiler output to the console and then
exits.

--vla Enables VLA support

--warn_about_c_style_casts Makes the compiler warn when C-style casts are
used in C++ source code

--warn_about_incomplete_const

ructors

Makes the compiler warn about constructors that
do not initialize all members

--warn_about_missing_field_in

itializers

Makes the compiler warn about fields without
explicit initializers

--warnings_affect_exit_code Warnings affect exit code

--warnings_are_errors Warnings are treated as errors

Command line option Description

Table 24: Compiler options summary (Continued)
AFE1_AFE2-1:1

243

244

Descriptions of compiler options

--allow_misaligned_data_access

Syntax --allow_misaligned_data_access

Description Use this option to make it possible to access misaligned data objects. The option can be
used in conjunction with the #pragma pack directive for structs with misaligned
members.

Typically, using this option is more efficient than a normal access to a packed structure.
However, a misaligned access is slower than an aligned access.

See also #pragma pack, page 360 for more information about using the #pragma pack directive.

Project>Options>General Options>Code Generation>Allow misaligned data
accesses

--c89

Syntax --c89

Description Use this option to enable the C89 C dialect instead of Standard C.

See also C language overview, page 175.

Project>Options>C/C++ Compiler>Language 1>C dialect>C89

--char_is_signed

Syntax --char_is_signed

Description By default, the compiler interprets the plain char type as unsigned. Use this option to
make the compiler interpret the plain char type as signed instead. This can be useful
when you, for example, want to maintain compatibility with another compiler.

Note: The runtime library is compiled without the --char_is_signed option and
cannot be used with code that is compiled with this option.

Project>Options>C/C++ Compiler>Language 2>Plain ‘char’ is
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Compiler options

--char_is_unsigned

Syntax --char_is_unsigned

Description Use this option to make the compiler interpret the plain char type as unsigned. This is
the default interpretation of the plain char type.

Project>Options>C/C++ Compiler>Language 2>Plain ‘char’ is

--code_model

Syntax --code_model={medlow|medany}

Parameters

Description Use this option to select the code model. If you do not select a code model, the compiler
uses the default code model. Note that all modules of your application must be code
model compatible—if you mix Medlow and Medany modules in your project, you must
link all modules to the Medlow area.

Note: This option is only available for RV64 devices.

See also Code models (RV64 only), page 69.

Project>Options>General Options>Target>Code model

--core

Syntax --core=RV32{E|G|I}[M][A][F][D][C][P][N][_NamedExt[_NamedExt1…]]
--core=RV64{G|I}[M][A][F][D][C][P][N][_NamedExt[_NamedExt1…]]

Parameters

medlow Uses the Medlow (medium-low) code model.

medany (default) Uses the Medany (medium-any) code model.

RV32 Generates code for 32-bit RISC-V devices

RV64 Generates code for 64-bit RISC-V devices

E Supports the RV32E Base Integer Instruction Set
AFE1_AFE2-1:1

245

246

Descriptions of compiler options

G Supports the RV32I/RV64I Base Integer Instruction Set and the M, A, F,
and D extensions.

I Supports the RV32I/RV64I Base Integer Instruction Set

M Supports the Standard Extension for Integer Multiplication and Division
(M)

A Supports the Standard Extension for Atomic Instructions (A)

F Supports the Standard Extension for Single-Precision Floating-Point (F)

D Supports the Standard Extension for Double-Precision Floating-Point (D)

C Supports the Standard Extension for Compressed Instructions (C)

P Supports the Standard Extension for Packed-SIMD Instructions (P)

N Supports the Standard Extension for User-Level Interrupts (N)

NamedExt Supports the named extension. Standard extensions begin with a Z and
non-standard extensions with an X. Use underscores to separate multiple
extensions. For a list of supported named extensions, see the table below.

Named extension Description

Xandesdsp AndeStar™ DSP

Xandesperf AndeStar™ V5 Performance

Xbcountzeroes A subset of the standard extension Zbb with count leading/trailing zero
instructions

Xcodense AndeStar™ V5 CoDense extension for code size compaction)

Zba “Base” bit manipulation instructions)

Zbb “Best of” bit manipulation instructions

Zbc “Carry-less” bit manipulation instructions

Zbkb Bit manipulation instructions for cryptography

Zbkc “Carry-less” multiply instructions

Zbkx “Cross-bar” permutation instructions

Zbpbo A subset of bit manipulation instructions required by the P extension

Zbs “Single bit” bit manipulation instructions

Zcb Basic code size assembler instructions

Zcmp Instructions to push and pop multiple registers

Table 25: Supported named extensions
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Compiler options

Description Use this option to select the instruction set architecture (ISA) for which the code will be
generated. If you do not use this option, the compiler generates code for RV32IM. Note
that all modules of your application must use the same parameters.

Single letter parameters corresponding to non-supported standard extensions are
accepted but ignored.

See also The linker option --core, --core, page 287.

Project>Options>General Options>Target

Zdinx Double-precision floating-point instructions that operate on the integer
(x) registers

Zfinx Single-precision floating-point instructions that operate on the integer
(x) registers

Zicbom Cache block management operations

Zicbop Cache block prefetch operations

Zicboz Cache block zero operations

Zkne AES encryption instructions

Zknd AES decryption instructions

Zknh SHA2 hash function instructions

Zksed SM4 block cipher instructions

Zksh SM3 hash function instructions

Zkn NIST Algorithm Suite. Equivalent to
Zbkb_Zbkc_Zbkx_Zkne_Zknd_Zkn

Zks ShangMi Algorithm Suite. Equivalent to
Zbkb_Zbkc_Zbkx_Zksed_Zks

Zpsfoperand A subset of P extension instructions for accessing register pairs—
optional on RV32, mandatory on RV64

Zpn The remaining P extension instructions that are not included in Zbpbo
or Zpsfoperand)

Legal subset combinations of the P extension:

● Zpn + Zbpbo (on RV32 but not on RV64)

● Zpn + Zbpbo + Zpsfoperand

Named extension Description

Table 25: Supported named extensions (Continued)
AFE1_AFE2-1:1

247

248

Descriptions of compiler options

--c++

Syntax --c++

Description By default, the language supported by the compiler is C. If you use Standard C++, you
must use this option to set the language the compiler uses to C++.

See also Using C++, page 185.

Project>Options>C/C++ Compiler>Language 1>C++

-D

Syntax -D symbol[=value]

Parameters

Description Use this option to define a preprocessor symbol. If no value is specified, 1 is used. This
option can be used one or more times on the command line.

The option -D has the same effect as a #define statement at the top of the source file:

-Dsymbol

is equivalent to:

#define symbol 1

To get the equivalence of:

#define FOO

specify the = sign but nothing after, for example:

-DFOO=

Project>Options>C/C++ Compiler>Preprocessor>Defined symbols

--debug, -r

Syntax --debug
-r

symbol The name of the preprocessor symbol

value The value of the preprocessor symbol
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Compiler options

Description Use the --debug or -r option to make the compiler include information in the object
modules required by the IAR C-SPY® Debugger and other symbolic debuggers.

Note: Including debug information will make the object files larger than otherwise.

Project>Options>C/C++ Compiler>Output>Generate debug information

--dependencies

Syntax --dependencies[=[i|m|n][s][l|w][b]] {filename|directory|+}

Parameters

See also Rules for specifying a filename or directory as parameters, page 238.

Description Use this option to make the compiler list the names of all source and header files opened
for input into a file with the default filename extension i.

Example If --dependencies or --dependencies=i is used, the name of each opened input
file, including the full path, if available, is output on a separate line. For example:

 c:\iar\product\include\stdio.h
 d:\myproject\include\foo.h

If --dependencies=m is used, the output is in makefile style. For each input file, one
line containing a makefile dependency rule is produced. Each line consists of the name
of the object file, a colon, a space, and the name of an input file. For example:

 foo.o: c:\iar\product\include\stdio.h
 foo.o: d:\myproject\include\foo.h

i (default) Lists only the names of files

m Lists in makefile style (multiple rules)

n Lists in makefile style (one rule)

s Suppresses system files

l Uses the locale encoding instead of UTF-8

w Uses little-endian UTF-16 instead of UTF-8

b Uses a Byte Order Mark (BOM) in UTF-8 output

+ Gives the same output as -o, but with the filename extension d
AFE1_AFE2-1:1

249

250

Descriptions of compiler options

An example of using --dependencies with a popular make utility, such as GMake
(GNU make):

1 Set up the rule for compiling files to be something like:

 %.o : %.c
 $(ICC) $(ICCFLAGS) $< --dependencies=m $*.d

That is, in addition to producing an object file, the command also produces a
dependency file in makefile style—in this example, using the extension .d.

2 Include all the dependency files in the makefile using, for example:

 -include $(sources:.c=.d)

Because of the dash (-) it works the first time, when the .d files do not yet exist.

This option is not available in the IDE.

--deprecated_feature_warnings

Syntax --deprecated_feature_warnings=[+|-]feature[,[+|-]feature,...]

Parameters

Description Use this option to disable or enable warnings for the use of a deprecated feature. The
deprecated features are:

● attribute_syntax

See --uniform_attribute_syntax, page 276, --no_uniform_attribute_syntax, page
267, and Syntax for type attributes used on data objects, page 330.

● preprocessor_extensions

● segment_pragmas

See the pragma directives dataseg, constseg, and memory. Use the #pragma
location and #pragma default_variable_attributes directives instead.

Because the deprecated features will be removed in a future version of the IAR C/C++
compiler, it is prudent to remove the use of them in your source code. To do this, enable
warnings for a deprecated feature. For each warning, rewrite your code so that the
deprecated feature is no longer used.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

feature A feature can be attribute_syntax,
preprocessor_extensions, or segment_pragmas.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Compiler options

--diag_error

Syntax --diag_error=tag[,tag,...]

Parameters

Description Use this option to reclassify certain diagnostic messages as errors. An error indicates a
violation of the C or C++ language rules, of such severity that object code will not be
generated. The exit code will be non-zero. This option may be used more than once on
the command line.

Project>Options>C/C++ Compiler>Diagnostics>Treat these as errors

--diag_remark

Syntax --diag_remark=tag[,tag,...]

Parameters

Description Use this option to reclassify certain diagnostic messages as remarks. A remark is the
least severe type of diagnostic message and indicates a source code construction that
may cause strange behavior in the generated code. This option may be used more than
once on the command line.

Note: By default, remarks are not displayed—use the --remarks option to display
them.

Project>Options>C/C++ Compiler>Diagnostics>Treat these as remarks

--diag_suppress

Syntax --diag_suppress=tag[,tag,...]

Parameters

tag The number of a diagnostic message, for example, the
message number Pe117

tag The number of a diagnostic message, for example, the
message number Pe177

tag The number of a diagnostic message, for example, the
message number Pe117
AFE1_AFE2-1:1

251

252

Descriptions of compiler options

Description Use this option to suppress certain diagnostic messages. These messages will not be
displayed. This option may be used more than once on the command line.

Project>Options>C/C++ Compiler>Diagnostics>Suppress these diagnostics

--diag_warning

Syntax --diag_warning=tag[,tag,...]

Parameters

Description Use this option to reclassify certain diagnostic messages as warnings. A warning
indicates an error or omission that is of concern, but which will not cause the compiler
to stop before compilation is completed. This option may be used more than once on the
command line.

Project>Options>C/C++ Compiler>Diagnostics>Treat these as warnings

--diagnostics_tables

Syntax --diagnostics_tables {filename|directory}

Parameters See Rules for specifying a filename or directory as parameters, page 238.

Description Use this option to list all possible diagnostic messages to a named file. This can be
convenient, for example, if you have used a pragma directive to suppress or change the
severity level of any diagnostic messages, but forgot to document why.

Typically, this option cannot be given together with other options.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

tag The number of a diagnostic message, for example, the
message number Pe826
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Compiler options

--discard_unused_publics

Syntax --discard_unused_publics

Description Use this option to discard unused public functions and variables when compiling with
the --mfc compiler option.

Note: Do not use this option only on parts of the application, as necessary symbols
might be removed from the generated output. Use the object attribute __root to keep
symbols that are used from outside the compilation unit, for example, interrupt handlers.
If the symbol does not have the __root attribute and is defined in the library, the library
definition will be used instead.

See also --mfc, page 260 and Multi-file compilation units, page 214.

Project>Options>C/C++ Compiler>Discard unused publics

--dlib_config

Syntax --dlib_config filename.h|config

Parameters

See also Rules for specifying a filename or directory as parameters, page 238.

Description Use this option to specify which library configuration to use, either by specifying an
explicit file or by specifying a library configuration—in which case the default file for
that library configuration will be used. Make sure that you specify a configuration that
corresponds to the library you are using. If you do not specify this option, the default
library configuration file will be used.

Note: This option cannot be used if the compiler option --libc++ has been specified.

filename A DLIB configuration header file, see below the table.

config The default configuration file for the specified configuration
will be used. Choose between:

none, no configuration will be used

normal, the normal library configuration will be used
(default)

full, the full library configuration will be used.
AFE1_AFE2-1:1

253

254

Descriptions of compiler options

You can find the library object files in the directory riscv\lib and the library
configuration files in the directory riscv\inc\c. For examples and information about
prebuilt runtime libraries, see Prebuilt runtime libraries, page 125.

If you build your own customized runtime library, you can also create a corresponding
customized library configuration file to specify to the compiler. For more information,
see Customizing and building your own runtime library, page 122.

To set related options, choose:

Project>Options>General Options>Library Configuration

--do_explicit_zero_opt_in_named_sections

Syntax --do_explicit_zero_opt_in_named_sections

Description By default, the compiler treats static initialization of variables explicitly and implicitly
initialized to zero the same, except for variables which are to be placed in user-named
sections. For these variables, an explicit zero initialization is treated as a copy
initialization, that is the same way as variables statically initialized to something other
than zero.

Use this option to disable the exception for variables in user-named sections, and thus
treat explicit initializations to zero as zero initializations, not copy initializations.

Example int var1; // Implicit zero init -> zero inited
int var2 = 0; // Explicit zero init -> zero inited
int var3 = 7; // Not zero init -> copy inited
int var4 @ "MYDATA"; // Implicit zero init -> zero inited
int var5 @ "MYDATA" = 0; // Explicit zero init -> copy inited
 // If option specified, then zero inited
int var6 @ "MYDATA" = 7; // Not zero init -> copy inited

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

-e

Syntax -e

Description In the command line version of the compiler, language extensions are disabled by
default. If you use language extensions such as extended keywords and anonymous
structs and unions in your source code, you must use this option to enable them.

Note: The -e option and the --strict option cannot be used at the same time.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Compiler options

See also Enabling language extensions, page 177.

Project>Options>C/C++ Compiler>Language 1>Standard with IAR extensions

Note: By default, this option is selected in the IDE.

--enable_restrict

Syntax --enable_restrict

Description Enables the Standard C keyword restrict in C89 and C++. By default, restrict is
recognized in Standard C and __restrict is always recognized.

This option can be useful for improving analysis precision during optimization.

To set this option, use Project>Options>C/C++ Compiler>Extra options

--error_limit

Syntax --error_limit=n

Parameters

Description Use the --error_limit option to specify the number of errors allowed before the
compiler stops the compilation. By default, 100 errors are allowed.

This option is not available in the IDE.

-f

Syntax -f filename

Parameters See Rules for specifying a filename or directory as parameters, page 238.

Description Use this option to make the compiler read command line options from the named file,
with the default filename extension xcl.

n The number of errors before the compiler stops the
compilation. n must be a positive integer. 0 indicates no
limit.
AFE1_AFE2-1:1

255

256

Descriptions of compiler options

In the command file, you format the items exactly as if they were on the command line
itself, except that you may use multiple lines, because the newline character acts just as
a space or tab character.

Both C and C++ style comments are allowed in the file. Double quotes behave in the
same way as in the Microsoft Windows command line environment.

If you use the compiler option --dependencies, extended command line files
specified using -f will not generate a dependency, but those specified using --f will
generate a dependency.

See also --dependencies, page 249 and --f, page 256.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--f

Syntax --f filename

Parameters See Rules for specifying a filename or directory as parameters, page 238.

Description Use this option to make the compiler read command line options from the named file,
with the default filename extension xcl.

In the command file, you format the items exactly as if they were on the command line
itself, except that you may use multiple lines, because the newline character acts just as
a space or tab character.

Both C and C++ style comments are allowed in the file. Double quotes behave in the
same way as in the Microsoft Windows command line environment.

If you use the compiler option --dependencies, extended command line files
specified using --f will generate a dependency, but those specified using -f will not
generate a dependency.

See also --dependencies, page 249 and -f, page 255.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Compiler options

--guard_calls

Syntax --guard_calls

Description Use this option to enable guards for function static variable initialization. This option
should be used in a threaded C++ environment.

See also Managing a multithreaded environment, page 148.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--header_context

Syntax --header_context

Description Occasionally, to find the cause of a problem it is necessary to know which header file
that was included from which source line. Use this option to list, for each diagnostic
message, not only the source position of the problem, but also the entire include stack at
that point.

This option is not available in the IDE.

-I

Syntax -I path

Parameters

Description Use this option to specify the search paths for #include files. This option can be used
more than once on the command line.

See also Include file search procedure, page 229.

Project>Options>C/C++ Compiler>Preprocessor>Additional include directories

path The search path for #include files
AFE1_AFE2-1:1

257

258

Descriptions of compiler options

-l

Syntax -l[a|A|b|B|c|C|D][N][H] {filename|directory}

Parameters

* This makes the list file less useful as input to the assembler, but more useful for reading
by a human.

See also Rules for specifying a filename or directory as parameters, page 238.

Description Use this option to generate an assembler or C/C++ listing to a file.

Note: This option can be used one or more times on the command line.

To set related options, choose:

Project>Options>C/C++ Compiler>List

a Assembler list file

A Assembler list file with C or C++ source as comments

b Basic assembler list file. This file has the same contents as a
list file produced with -la, except that no extra
compiler-generated information (runtime model attributes,
call frame information, frame size information) is included *

B Basic assembler list file. This file has the same contents as a
list file produced with -lA, except that no extra compiler
generated information (runtime model attributes, call frame
information, frame size information) is included *

c C or C++ list file

C (default) C or C++ list file with assembler source as comments

D C or C++ list file with assembler source as comments, but
without instruction offsets and hexadecimal byte values

N No diagnostics in file

H Include source lines from header files in output. Without this
option, only source lines from the primary source file are
included
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Compiler options

--libc++

Syntax --libc++

Description Use this option to make the compiler use Libc++ system headers and to make the linker
use the Libc++ library, with support for C++17. A Full library configuration will be used
and the header file DLib_Config_Full.h will be referenced.

Note: This option cannot be used together with the compiler option --dlib_config.

See also Overview—Standard C++, page 185.

Project>Options>General Options>Library Configuration>Library>Libc++

--macro_positions_in_diagnostics

Syntax --macro_positions_in_diagnostics

Description Use this option to obtain position references inside macros in diagnostic messages. This
is useful for detecting incorrect source code constructs in macros.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--max_cost_constexpr_call

Syntax --max_cost_constexpr_call=limit

Parameters

Description Use this option to specify an upper limit for the cost for folding a top-level constexpr
call (function or constructor). The cost is a combination of the number of calls
interpreted and the number of loop iterations preformed during the interpretation of a
top-level call.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

limit The number of calls and loop iterations. The default is 2000000.
AFE1_AFE2-1:1

259

260

Descriptions of compiler options

--max_depth_constexpr_call

Syntax --max_depth_constexpr_call=limit

Parameters

Description Use this option to specify the maximum depth of recursion for folding a top-level
constexpr call (function or constructor).

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--mfc

Syntax --mfc

Description Use this option to enable multi-file compilation. This means that the compiler compiles
one or several source files specified on the command line as one unit, which enhances
interprocedural optimizations.

Note: The compiler will generate one object file per input source code file, where the
first object file contains all relevant data and the other ones are empty. If you want only
the first file to be produced, use the -o compiler option and specify a certain output file.

Example iccriscv myfile1.c myfile2.c myfile3.c --mfc

See also --discard_unused_publics, page 253, --output, -o, page 270, and Multi-file compilation
units, page 214.

Project>Options>C/C++ Compiler>Multi-file compilation

--no_alt_link_reg_opt

Syntax --no_alt_link_reg_opt

Description Use this option to disable an optimization that can change the link register used for static
functions.

Using non-standard registers as link registers allows for smaller and faster calls, but can
also make it impossible for some trace interfaces to analyze the program flow.

limit The depth of recursion. The default is 1000.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Compiler options

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--no_bom

Syntax --no_bom

Description Use this option to omit the Byte Order Mark (BOM) when generating a UTF-8 output
file.

See also --text_out, page 276, and Text encodings, page 232.

Project>Options>C/C++ Compiler>Encodings>Text output file encoding

--no_call_frame_info

Syntax --no_call_frame_info

Description Normally, the compiler always generates call frame information in the output, to enable
the debugger to display the call stack even in code from modules with no debug
information. Use this option to disable the generation of call frame information.

See also Call frame information, page 171.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--no_clustering

Syntax --no_clustering

Description Use this option to disable static clustering optimizations.

Note: This option has no effect at optimization levels below High.

See also Static clustering, page 218.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.
AFE1_AFE2-1:1

261

262

Descriptions of compiler options

--no_code_motion

Syntax --no_code_motion

Description Use this option to disable code motion optimizations.

Note: This option has no effect at optimization levels below Medium.

See also Code motion, page 217.

Project>Options>C/C++ Compiler>Optimizations>Enable
transformations>Code motion

--no_cross_call

Syntax --no_cross_call

Description Use this option to disable the cross-call optimization.

This optimization is performed at optimization level High. Note that, although the
optimization can drastically reduce the code size, this optimization increases the
execution time.

See also Cross call, page 219.

Project>Options>C/C++ Compiler>Optimizations>Enable
transformations>Cross call

--no_cross_jump

Syntax --no_cross_jump

Description Use this option to disable the cross-jumping optimization.

See also Controlling compiler optimizations, page 213

Project>Options>C/C++ Compiler>Optimizations>Enable
transformations>Cross jumping
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Compiler options

--no_cse

Syntax --no_cse

Description Use this option to disable common subexpression elimination.

See also Common subexpression elimination, page 217.

Project>Options>C/C++ Compiler>Optimizations>Enable
transformations>Common subexpression elimination

--no_default_fp_contract

Syntax --no_default_fp_contract

Description The pragma directive STDC FP_CONTRACT specifies whether the compiler is allowed to
contract floating-point expressions. The default for this pragma directive is ON (allowing
contraction). Use this option to change the default to OFF (disallowing contraction).

See also STDC FP_CONTRACT, page 365.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--no_exceptions

Syntax --no_exceptions

Description This option has no effect and is included for portability reasons.

--no_fragments

Syntax --no_fragments

Description Use this option to disable section fragment handling. Normally, the toolset uses IAR
proprietary information for transferring section fragment information to the linker. The
linker uses this information to remove unused code and data, and further minimize the
size of the executable image. When you use this option, this information is not output in
the object files.

See also Keeping symbols and sections, page 101.
AFE1_AFE2-1:1

263

264

Descriptions of compiler options

To set this option, use Project>Options>C/C++ Compiler>Extra Options

--no_inline

Syntax --no_inline

Description Use this option to disable function inlining.

See also Inlining functions, page 75.

Project>Options>C/C++ Compiler>Optimizations>Enable
transformations>Function inlining

--no_label_padding

Syntax --no_label_padding

Description Use this option to disable an optimization that places loop labels on a 32-bit aligned
address.

Note: This option has no effect at optimization levels below High, or when optimizing
for Size.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--no_normalize_file_macros

Syntax --no_normalize_file_macros

Description Normally, apparently unneeded uses of .. and . components are collapsed in the paths
returned by the predefined preprocessor symbols __FILE__ and __BASE_FILE__. Use
this option to prevent this.

Example The path "D:\foo\..\bar\baz.c" will be returned as "D:\bar\baz.c" by the
symbols __FILE__ and __BASE_FILE__ unless this option is used.

See also Description of predefined preprocessor symbols, page 382.

This option is not available in the IDE.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Compiler options

--no_path_in_file_macros

Syntax --no_path_in_file_macros

Description Use this option to exclude the path from the return value of the predefined preprocessor
symbols __FILE__ and __BASE_FILE__.

See also Description of predefined preprocessor symbols, page 382.

This option is not available in the IDE.

--no_rtti

Syntax --no_rtti

Description This option has no effect and is included for portability reasons.

--no_scheduling

Syntax --no_scheduling

Description Use this option to disable the instruction scheduler.

Note: This option has no effect at optimization levels below High.

See also Instruction scheduling, page 219.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--no_size_constraints

Syntax --no_size_constraints

Description Use this option to relax the normal restrictions for code size expansion when optimizing
for high speed.

Note: This option has no effect unless used with -Ohs.

See also Speed versus size, page 216.
AFE1_AFE2-1:1

265

266

Descriptions of compiler options

Project>Options>C/C++ Compiler>Optimizations>Enable transformations>No
size constraints

--no_static_destruction

Syntax --no_static_destruction

Description Normally, the compiler emits code to destroy C++ static variables that require
destruction at program exit. Sometimes, such destruction is not needed.

Use this option to suppress the emission of such code.

See also Setting up the atexit limit, page 102.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--no_system_include

Syntax --no_system_include

Description By default, the compiler automatically locates the system include files. Use this option
to disable the automatic search for system include files. In this case, you might need to
set up the search path by using the -I compiler option.

See also --dlib_config, page 253, and --system_include_dir, page 275.

Project>Options>C/C++ Compiler>Preprocessor>Ignore standard include
directories

--no_tbaa

Syntax --no_tbaa

Description Use this option to disable type-based alias analysis.

Note: This option has no effect at optimization levels below High.

See also Type-based alias analysis, page 218.

Project>Options>C/C++ Compiler>Optimizations>Enable
transformations>Type-based alias analysis
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Compiler options

--no_typedefs_in_diagnostics

Syntax --no_typedefs_in_diagnostics

Description Use this option to disable the use of typedef names in diagnostics. Normally, when a
type is mentioned in a message from the compiler, most commonly in a diagnostic
message of some kind, the typedef names that were used in the original declaration are
used whenever they make the resulting text shorter.

Example typedef int (*MyPtr)(char const *);
MyPtr p = "My text string";

will give an error message like this:

Error[Pe144]: a value of type "char *" cannot be used to
initialize an entity of type "MyPtr"

If the --no_typedefs_in_diagnostics option is used, the error message will be like
this:

Error[Pe144]: a value of type "char *" cannot be used to
initialize an entity of type "int (*)(char const *)"

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--no_uniform_attribute_syntax

Syntax --no_uniform_attribute_syntax

Description Use this option to apply the default syntax rules to IAR type attributes specified before
a type specifier.

See also --uniform_attribute_syntax, page 276 and Syntax for type attributes used on data
objects, page 330.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--no_unroll

Syntax --no_unroll

Description Use this option to disable loop unrolling.
AFE1_AFE2-1:1

267

268

Descriptions of compiler options

Note: This option has no effect at optimization levels below High.

See also Loop unrolling, page 217.

Project>Options>C/C++ Compiler>Optimizations>Enable
transformations>Loop unrolling

--no_warnings

Syntax --no_warnings

Description By default, the compiler issues warning messages. Use this option to disable all warning
messages.

This option is not available in the IDE.

--no_wrap_diagnostics

Syntax --no_wrap_diagnostics

Description By default, long lines in diagnostic messages are broken into several lines to make the
message easier to read. Use this option to disable line wrapping of diagnostic messages.

This option is not available in the IDE.

--nonportable_path_warnings

Syntax --nonportable_path_warnings

Description Use this option to make the compiler generate a warning when characters in the path
used for opening a source file or header file are lower case instead of upper case, or vice
versa, compared with the path in the file system.

This option is not available in the IDE.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Compiler options

-O

Syntax -O[n|l|m|h|hs|hz]

Parameters

*All optimizations performed at level Low will be performed also at None. The only
difference is that at level None, all non-static variables will live during their entire scope.

Description Use this option to set the optimization level to be used by the compiler when optimizing
the code. If no optimization option is specified, the optimization level Low is used by
default. If only -O is used without any parameter, the optimization level High balanced
is used.

A low level of optimization makes it relatively easy to follow the program flow in the
debugger, and, conversely, a high level of optimization makes it relatively hard.

See also Controlling compiler optimizations, page 213.

Project>Options>C/C++ Compiler>Optimizations

--only_stdout

Syntax --only_stdout

Description Use this option to make the compiler use the standard output stream (stdout), and
messages that are normally directed to the error output stream (stderr).

This option is not available in the IDE.

n None* (Best debug support)

l (default) Low*

m Medium

h High, balanced

hs High, favoring speed

hz High, favoring size
AFE1_AFE2-1:1

269

270

Descriptions of compiler options

--output, -o

Syntax --output {filename|directory}
-o {filename|directory}

Parameters See Rules for specifying a filename or directory as parameters, page 238.

Description By default, the object code output produced by the compiler is located in a file with the
same name as the source file, but with the extension o. Use this option to explicitly
specify a different output filename for the object code output.

This option is not available in the IDE.

--pending_instantiations

Syntax --pending_instantiations number

Parameters

Description Use this option to specify the maximum number of instantiations of a given C++
template that is allowed to be in process of being instantiated at a given time. This is
used for detecting recursive instantiations.

Project>Options>C/C++ Compiler>Extra Options

--predef_macros

Syntax --predef_macros[=n] {filename|directory}

Parameters

See also Rules for specifying a filename or directory as parameters, page 238.

Description Use this option to list all symbols defined by the compiler or on the command line.
(Symbols defined in the source code are not listed.) When using this option, make sure
to also use the same options as for the rest of your project.

number An integer that specifies the limit, where 64 is default. If 0
is used, there is no limit.

n Suppresses compilation.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Compiler options

If a filename is specified, the compiler stores the output in that file. If a directory is
specified, the compiler stores the output in that directory, in a file with the predef
filename extension.

If you just want the list of symbols, but do not want to compile, specify the parameter n.

Note: This option requires that you specify a source file on the command line.

This option is not available in the IDE.

--preinclude

Syntax --preinclude includefile

Parameters See Rules for specifying a filename or directory as parameters, page 238.

Description Use this option to make the compiler read the specified include file before it starts to
read the source file. This is useful if you want to change something in the source code
for the entire application, for instance if you want to define a new symbol.

Project>Options>C/C++ Compiler>Preprocessor>Preinclude file

--preprocess

Syntax --preprocess[=[c][n][s]] {filename|directory}

Parameters

See also Rules for specifying a filename or directory as parameters, page 238.

Description Use this option to generate preprocessed output to a named file.

Project>Options>C/C++ Compiler>Preprocessor>Preprocessor output to file

c Include comments

n Preprocess only

s Suppress #line directives
AFE1_AFE2-1:1

271

272

Descriptions of compiler options

--public_equ

Syntax --public_equ symbol[=value]

Parameters

Description This option is equivalent to defining a label in assembler language using the EQU
directive and exporting it using the PUBLIC directive. This option can be used more than
once on the command line.

This option is not available in the IDE.

--relaxed_fp

Syntax --relaxed_fp

Description Use this option to allow the compiler to relax the language rules and perform more
aggressive optimization of floating-point expressions. This option improves
performance for floating-point expressions that fulfill these conditions:

● The expression consists of both single and double-precision values

● The double-precision values can be converted to single precision without loss of
accuracy

● The result of the expression is converted to single precision.

Note: Performing the calculation in single precision instead of double precision might
cause a loss of accuracy.

When the --relaxed_fp option is used, errno might not be set according to Standard
C for negative arguments to the functions sqrtf, sqrt, and sqrtl. Therefore, your
source code should not rely on errno.

Example float F(float a, float b)
{
 return a + b * 3.0;
}

The C standard states that 3.0 in this example has the type double and therefore the
whole expression should be evaluated in double precision. However, when the
--relaxed_fp option is used, 3.0 will be converted to float and the whole expression
can be evaluated in float precision.

symbol The name of the assembler symbol to be defined

value An optional value of the defined assembler symbol
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Compiler options

To set related options, choose:

Project>Options>C/C++ Compiler>Language 2>Floating-point semantics

--remarks

Syntax --remarks

Description The least severe diagnostic messages are called remarks. A remark indicates a source
code construct that may cause strange behavior in the generated code. By default, the
compiler does not generate remarks. Use this option to make the compiler generate
remarks.

See also Severity levels, page 235.

Project>Options>C/C++ Compiler>Diagnostics>Enable remarks

--require_prototypes

Syntax --require_prototypes

Description Use this option to force the compiler to verify that all functions have proper prototypes.
Using this option means that code containing any of the following will generate an error:

● A function call of a function with no declaration, or with a Kernighan & Ritchie
C declaration

● A function definition of a public function with no previous prototype declaration

● An indirect function call through a function pointer with a type that does not include
a prototype.

Project>Options>C/C++ Compiler>Language 1>Require prototypes

--set_default_interrupt_alignment

Syntax --set_default_interrupt_alignment alignment

Parameters
alignment The alignment of the default interrupt
AFE1_AFE2-1:1

273

274

Descriptions of compiler options

Description By default, the alignment of the default interrupt is 128. Use this option to change the
alignment.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--short_enums

Syntax --short_enums

Description Forces the compiler to use the smallest type required to hold enum constants.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--silent

Syntax --silent

Description By default, the compiler issues introductory messages and a final statistics report. Use
this option to make the compiler operate without sending these messages to the standard
output stream (normally the screen).

This option does not affect the display of error and warning messages.

This option is not available in the IDE.

--source_encoding

Syntax --source_encoding {locale|utf8}

Parameters

Description When reading a source file with no Byte Order Mark (BOM), use this option to specify
the encoding. If this option is not specified and the source file does not have a BOM, the
Raw encoding will be used.

See also Text encodings, page 232.

locale The default source encoding is the system locale encoding.

utf8 The default source encoding is the UTF-8 encoding.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Compiler options

Project>Options>C/C++ Compiler>Encodings>Default source file encoding

--stack_protection

Syntax --stack_protection

Description Use this option to enable stack protection for the functions that are considered to need it.

See also Stack protection, page 77.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--strict

Syntax --strict

Description By default, the compiler accepts a relaxed superset of Standard C and C++. Use this
option to ensure that the source code of your application instead conforms to strict
Standard C and C++.

Note: The -e option and the --strict option cannot be used at the same time.

See also Enabling language extensions, page 177.

Project>Options>C/C++ Compiler>Language 1>Language conformance>Strict

--system_include_dir

Syntax --system_include_dir path

Parameters To specify the path to the system include files, see Rules for specifying a filename or
directory as parameters, page 238.

Description By default, the compiler automatically locates the system include files. Use this option
to explicitly specify a different path to the system include files. This might be useful if
you have not installed IAR Embedded Workbench in the default location.

See also --dlib_config, page 253, and --no_system_include, page 266.
AFE1_AFE2-1:1

275

276

Descriptions of compiler options

This option is not available in the IDE.

--text_out

Syntax --text_out {utf8|utf16le|utf16be|locale}

Parameters

Description Use this option to specify the encoding to be used when generating a text output file.

The default for the compiler list files is to use the same encoding as the main source file.
The default for all other text files is UTF-8 with a Byte Order Mark (BOM).

If you want text output in UTF-8 encoding without a BOM, use the option --no_bom.

See also --no_bom, page 261 and Text encodings, page 232.

Project>Options>C/C++ Compiler>Encodings>Text output file encoding

--uniform_attribute_syntax

Syntax --uniform_attribute_syntax

Description By default, an IAR type attribute specified before the type specifier applies to the object
or typedef itself, and not to the type specifier, as const and volatile do. If you specify
this option, IAR type attributes obey the same syntax rules as const and volatile.

The default for IAR type attributes is to not use uniform attribute syntax.

See also --no_uniform_attribute_syntax, page 267 and Syntax for type attributes used on data
objects, page 330.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

utf8 Uses the UTF-8 encoding

utf16le Uses the UTF-16 little-endian encoding

utf16be Uses the UTF-16 big-endian encoding

locale Uses the system locale encoding
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Compiler options

--use_c++_inline

Syntax --use_c++_inline

Description Standard C uses slightly different semantics for the inline keyword than C++ does.
Use this option if you want C++ semantics when you are using C.

See also Inlining functions, page 75.

Project>Options>C/C++ Compiler>Language 1>C dialect>C++ inline semantics

--use_paths_as_written

Syntax --use_paths_as_written

Description By default, the compiler ensures that all paths in the debug information are absolute,
even if not originally specified that way.

If you use this option, paths that were originally specified as relative will be relative in
the debug information.

The paths affected by this option are:

● the paths to source files

● the paths to header files that are found using an include path that was specified as
relative

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--use_unix_directory_separators

Syntax --use_unix_directory_separators

Description Use this option to make DWARF debug information use / (instead of \) as directory
separators in file paths.

This option can be useful if you have a debugger that requires directory separators in
UNIX style.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.
AFE1_AFE2-1:1

277

278

Descriptions of compiler options

--utf8_text_in

Syntax --utf8_text_in

Description Use this option to specify that the compiler shall use UTF-8 encoding when reading a
text input file with no Byte Order Mark (BOM).

Note: This option does not apply to source files.

See also Text encodings, page 232.

Project>Options>C/C++ Compiler>Encodings>Default input file encoding

--version

Syntax --version

Description Use this option to make the compiler send version information to the console and then
exit.

This option is not available in the IDE.

--vla

Syntax --vla

Description Use this option to enable support for variable length arrays in C code. Such arrays are
located on the heap. This option requires Standard C and cannot be used together with
the --c89 compiler option.

Note: --vla should not be used together with the longjmp library function, as that can
lead to memory leakages.

See also C language overview, page 175.

Project>Options>C/C++ Compiler>Language 1>C dialect>Allow VLA
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Compiler options

--warn_about_c_style_casts

Syntax --warn_about_c_style_casts

Description Use this option to make the compiler warn when C-style casts are used in C++ source
code.

This option is not available in the IDE.

--warn_about_incomplete_constructors

Syntax --warn_about_incomplete_constructors

Description Use this option to make the compiler warn if a constructor does not provide an initializer
for each data member.

This option is not available in the IDE.

--warn_about_missing_field_initializers

Syntax --warn_about_missing_field_initializers

Description Use this option to make the compiler warn if the initializer for a structure does not
provide explicit initializers for all fields in the structure.

No warning is emitted for the universal zero initializer { 0 }, or—in C++—for the
empty initializer {}.

In C, initializers that use one or more designated initializers are not checked.

In Standard C++17, designated initializers are not available. When language extensions
are enabled (by using -e or #pragma language) they are supported, but, as in C++20,
only if the designated initializers are in field order. In this case, the structure is checked
for missing initializers.

This option is not available in the IDE.
AFE1_AFE2-1:1

279

280

Descriptions of compiler options

--warnings_affect_exit_code

Syntax --warnings_affect_exit_code

Description By default, the exit code is not affected by warnings, because only errors produce a
non-zero exit code. With this option, warnings will also generate a non-zero exit code.

This option is not available in the IDE.

--warnings_are_errors

Syntax --warnings_are_errors

Description Use this option to make the compiler treat all warnings as errors. If the compiler
encounters an error, no object code is generated. Warnings that have been changed into
remarks are not treated as errors.

Note: Any diagnostic messages that have been reclassified as warnings by the option
--diag_warning or the #pragma diag_warning directive will also be treated as
errors when --warnings_are_errors is used.

See also --diag_warning, page 252.

Project>Options>C/C++ Compiler>Diagnostics>Treat all warnings as errors
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Linker options
● Summary of linker options

● Descriptions of linker options

For general syntax rules, see Options syntax, page 237.

Summary of linker options
This table summarizes the linker options:

Command line option Description

--accurate_math Uses more accurate math functions

--advanced_heap Uses an advanced heap

--allow_misaligned_data_acces

s

Allows misaligned data accesses

--auto_vector_setup Initializes the interrupt vector table before the
execution reaches main

--basic_heap Uses a basic heap

--call_graph Produces a call graph file in XML format

--config Specifies the linker configuration file to be used by
the linker

--config_def Defines symbols for the configuration file

--config_search Specifies more directories to search for linker
configuration files

--core Specifies the ISA to link for

--cpp_init_routine Specifies a user-defined C++ dynamic initialization
routine

--debug_lib Uses the C-SPY debug library

--default_to_complex_ranges Makes complex ranges the default
decompressor in initialize directives

--define_symbol Defines symbols that can be used by the
application

--dependencies Lists file dependencies

--diag_error Treats these message tags as errors

Table 26: Linker options summary
AFE1_AFE2-1:1

281

282

Summary of linker options

--diag_remark Treats these message tags as remarks

--diag_suppress Suppresses these diagnostic messages

--diag_warning Treats these message tags as warnings

--diagnostics_tables Lists all diagnostic messages

--disable_codense_jal Disables CoDense optimization for call
instructions

--disable_relaxation Disables link-time instruction relaxation

--enable_stack_usage Enables stack usage analysis

--entry Treats the symbol as a root symbol and as the
start of the application

--entry_list_in_address_order Generates an additional entry list in the map file
sorted in address order

--error_limit Specifies the allowed number of errors before
linking stops

--export_builtin_config Produces an icf file for the default configuration

-f Extends the command line

--f Extends the command line, optionally with a
dependency.

--force_output Produces an output file even if errors occurred

--image_input Puts an image file in a section

--keep Forces a symbol to be included in the application

-L Specifies more directories to search for object and
library files. Alias for --search.

--log Enables log output for selected topics

--log_file Directs the log to a file

--mangled_names_in_messages Adds mangled names in messages

--manual_dynamic_initializati

on

Suppresses automatic initialization during system
startup

--map Produces a map file

--merge_duplicate_sections Merges equivalent read-only sections

--no_bom Omits the Byte Order Mark from UTF-8 output
files

--no_entry Sets the entry point to zero

--no_fragments Disables section fragment handling

Command line option Description

Table 26: Linker options summary (Continued)
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Linker options

--no_free_heap Uses the smallest possible heap implementation

--no_library_search Disables automatic runtime library search

--no_locals Removes local symbols from the ELF executable
image.

--no_range_reservations Disables range reservations for absolute symbols

--no_remove Disables removal of unused sections

--no_vfe Disables Virtual Function Elimination

--no_warnings Disables generation of warnings

--no_wrap_diagnostics Does not wrap long lines in diagnostic messages

-o Sets the object filename. Alias for --output.

--only_stdout Uses standard output only

--output Sets the object filename

--place_holder Reserve a place in ROM to be filled by some other
tool, for example, a checksum calculated by
ielftool.

--preconfig Reads the specified file before reading the linker
configuration file

--printf_multibytes Makes the printf formatter support multibytes

--redirect Redirects a reference to a symbol to another
symbol

--remarks Enables remarks

--scanf_multibytes Makes the scanf formatter support multibytes

--search Specifies more directories to search for object and
library files

--silent Sets silent operation

--small_math Uses smaller math functions

--stack_usage_control Specifies a stack usage control file

--strip Removes debug information from the executable
image

--text_out Specifies the encoding for text output files

--threaded_lib Configures the runtime library for use with
threads

--timezone_lib Enables the time zone and daylight savings time
functionality in the library

Command line option Description

Table 26: Linker options summary (Continued)
AFE1_AFE2-1:1

283

284

Descriptions of linker options

Descriptions of linker options
The following section gives detailed reference information about each linker option.

If you use the options page Extra Options to specify specific command line options,
the IDE does not perform an instant check for consistency problems like conflicting
options, duplication of options, or use of irrelevant options.

--accurate_math

Syntax --accurate_math

Description Use this option to use math library versions designed to provide better accuracy (but
which are larger) than the default versions.

See also Math functions, page 131.

Project>Options>General Options>Library Options 1>Math functions

--advanced_heap

Syntax --advanced_heap

Description Use this option to use an advanced heap.

--use_full_std_template_names Enables full names for standard C++ templates

--use_optimized_variants Controls the use of optimized variants of DLIB
library functions

--utf8_text_in Uses the UTF-8 encoding for text input files

--version Sends version information to the console and then
exits

--vfe Controls Virtual Function Elimination

--warnings_affect_exit_code Warnings affects exit code

--warnings_are_errors Warnings are treated as errors

--whole_archive Treats every object file in the archive as if it was
specified on the command line.

Command line option Description

Table 26: Linker options summary (Continued)
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Linker options

See also Heap memory handlers, page 194.

Project>Options>General Options>Library options 2>Heap selection

--allow_misaligned_data_access

Syntax --allow_misaligned_data_access

Description Use this option to make it possible to access misaligned data objects. The linker can
select variants of standard functions like memcpy and strcat that are not restricted to
accessing memory only on aligned boundaries.

Potentially, this allows the routines to run faster. This option corresponds to using the
misaligned_ prefix of the --use_optimized_variants command line option.

Project>Options>General Options>Code Generation>Allow misaligned data
accesses

--auto_vector_setup

Syntax --auto_vector_setup

Description Makes the linker add startup code that initializes the interrupt vector table before the
execution reaches the main function. This option is not available for all devices.

See also Interrupt vectors and the interrupt vector table, page 71.

Project>Options>General Options>Target>Automatic setup of interrupt vector
table

--basic_heap

Syntax --basic_heap

Description Use this option to use the basic heap handler.

See also Heap memory handlers, page 194.

Project>Options>General Options>Library options 2>Heap selection
AFE1_AFE2-1:1

285

286

Descriptions of linker options

--call_graph

Syntax --call_graph {filename|directory}

Parameters See Rules for specifying a filename or directory as parameters, page 238.

Description Use this option to produce a call graph file. If no filename extension is specified, the
extension cgx is used. This option can only be used once on the command line.

Using this option enables stack usage analysis in the linker.

See also Stack usage analysis, page 89

Project>Options>Linker>Advanced>Enable stack usage analysis>Call graph
output (XML)

--config

Syntax --config filename

Parameters See Rules for specifying a filename or directory as parameters, page 238.

Description Use this option to specify the configuration file to be used by the linker (the default
filename extension is icf). If no configuration file is specified, a default configuration
is used. This option can only be used once on the command line.

See also The chapter The linker configuration file.

Project>Options>Linker>Config>Linker configuration file

--config_def

Syntax --config_def symbol=constant_value

Parameters

Description Use this option to define a constant configuration symbol to be used in the configuration
file. This option has the same effect as the define symbol directive in the linker
configuration file. This option can be used more than once on the command line.

symbol The name of the symbol to be used in the configuration file.

constant_value The constant value of the configuration symbol.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Linker options

See also --define_symbol, page 289 and Interaction between ILINK and the application, page
106.

Project>Options>Linker>Config>Defined symbols for configuration file

--config_search

Syntax --config_search path

Parameters

Description Use this option to specify more directories to search for files when processing an
include directive in a linker configuration file.

By default, the linker searches for configuration include files only in the system
configuration directory. To specify more than one search directory, use this option for
each path.

See also include directive, page 445.

To set this option, use Project>Options>Linker>Extra Options.

--core

Description By default, the ISA that your application is linked for is deduced from the constituent
program modules. Use the linker option --core to specify the ISA explicitly, or to
override the linker’s deduction. For a syntax description, see the compiler option
--core, --core, page 245.

Project>Options>General Options>Target>Device

--cpp_init_routine

Syntax --cpp_init_routine routine

Parameters

path A path to a directory where the linker should search for
linker configuration include files.

routine A user-defined C++ dynamic initialization routine.
AFE1_AFE2-1:1

287

288

Descriptions of linker options

Description When using the IAR C/C++ compiler and the standard library, C++ dynamic
initialization is handled automatically. In other cases you might need to use this option.

If any sections with the section type INIT_ARRAY or PREINIT_ARRAY are included in
your application, the C++ dynamic initialization routine is considered to be needed. By
default, this routine is named __iar_cstart_call_ctors and is called by the startup
code in the standard library. Use this option if you require another routine to handle the
initialization, for instance if you are not using the standard library.

To set this option, use Project>Options>Linker>Extra Options.

--debug_lib

Syntax --debug_lib

Description Use this option to enable C-SPY emulated I/O.

See also Briefly about C-SPY emulated I/O, page 116.

Project>Options>General Options>Library Configuration>Library low-level
interface implementation>IAR Breakpoint

--default_to_complex_ranges

Syntax --default_to_complex_ranges

Description Normally, if initialize directives in a linker configuration file do not specify simple
ranges or complex ranges, the linker uses simple ranges if the associated
section placement directives use single range regions.

Use this option to make the linker always use complex ranges by default. This was
the behavior of the linker before the introduction of simple ranges and complex
ranges.

See also initialize directive, page 425.

To set this option, use Project>Options>Linker>Extra Options
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Linker options

--define_symbol

Syntax --define_symbol symbol=constant_value

Parameters

Description Use this option to define a constant symbol, that is a label, that can be used by your
application. This option can be used more than once on the command line.

Note: This option is different from the define symbol directive.

See also --config_def, page 286 and Interaction between ILINK and the application, page 106.

Project>Options>Linker>#define>Defined symbols

--dependencies

Syntax --dependencies[=[i|m|n][s][l|w][b]] {filename|directory|+}

Parameters

See also Rules for specifying a filename or directory as parameters, page 238.

Description Use this option to make the linker list the names of the linker configuration, object, and
library files opened for input into a file with the default filename extension i.

symbol The name of the constant symbol that can be used by the
application.

constant_value The constant value of the symbol.

i (default) Lists only the names of files

m Lists in makefile style (multiple rules)

n Lists in makefile style (one rule)

s Suppresses system files

l Uses the locale encoding instead of UTF-8

w Uses little-endian UTF-16 instead of UTF-8

b Uses a Byte Order Mark (BOM) in UTF-8 output

+ Gives the same output as -o, but with the filename extension d
AFE1_AFE2-1:1

289

290

Descriptions of linker options

Example If --dependencies or --dependencies=i is used, the name of each opened input
file, including the full path, if available, is output on a separate line. For example:

 c:\myproject\foo.o
 d:\myproject\bar.o

If --dependencies=m is used, the output is in makefile style. For each input file, one
line containing a makefile dependency rule is produced. Each line consists of the name
of the output file, a colon, a space, and the name of an input file. For example:

 a.out: c:\myproject\foo.o
 a.out: d:\myproject\bar.o

This option is not available in the IDE.

--diag_error

Syntax --diag_error=tag[,tag,...]

Parameters

Description Use this option to reclassify certain diagnostic messages as errors. An error indicates a
problem of such severity that an executable image will not be generated. The exit code
will be non-zero. This option may be used more than once on the command line.

Project>Options>Linker>Diagnostics>Treat these as errors

--diag_remark

Syntax --diag_remark=tag[,tag,...]

Parameters

Description Use this option to reclassify certain diagnostic messages as remarks. A remark is the
least severe type of diagnostic message and indicates a construction that may cause
strange behavior in the executable image.

tag The number of a diagnostic message, for example, the
message number Pe117

tag The number of a diagnostic message, for example, the
message number Go109
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Linker options

Note: Not all diagnostic messages can be reclassified. This option may be used more
than once on the command line.

Note: By default, remarks are not displayed—use the --remarks option to display
them.

Project>Options>Linker>Diagnostics>Treat these as remarks

--diag_suppress

Syntax --diag_suppress=tag[,tag,...]

Parameters

Description Use this option to suppress certain diagnostic messages. These messages will not be
displayed. This option may be used more than once on the command line.

Note: Not all diagnostic messages can be reclassified.

Project>Options>Linker>Diagnostics>Suppress these diagnostics

--diag_warning

Syntax --diag_warning=tag[,tag,...]

Parameters

Description Use this option to reclassify certain diagnostic messages as warnings. A warning
indicates an error or omission that is of concern, but which will not cause the linker to
stop before linking is completed. This option may be used more than once on the
command line.

Note: Not all diagnostic messages can be reclassified.

Project>Options>Linker>Diagnostics>Treat these as warnings

tag The number of a diagnostic message, for example, the
message number Pa180

tag The number of a diagnostic message, for example, the
message number Li004
AFE1_AFE2-1:1

291

292

Descriptions of linker options

--diagnostics_tables

Syntax --diagnostics_tables {filename|directory}

Parameters See Rules for specifying a filename or directory as parameters, page 238.

Description Use this option to list all possible diagnostic messages in a named file. This can be
convenient, for example, if you have used a pragma directive to suppress or change the
severity level of any diagnostic messages, but forgot to document why.

This option cannot be given together with other options.

This option is not available in the IDE.

--disable_codense_jal

Syntax --disable_codense_jal

Description Call instruction pairs are normally used as candidates for being replaced with exec.it
instructions during CoDense optimization in the linker. However, each such instruction
pair can only be replaced with an exec.it instruction if it has been relaxed to a single
jal instruction, and if this jal instruction is on the same 2Mbyte page as the call
destination. In some applications, this can result in bad use of the CoDense table.

Use this option to exclude all call instructions from being candidates for replacement
with exec.it instructions.

To set this option, use Project>Options>Target>CoDense>Exclude JAL instruction

--disable_relaxation

Syntax --disable_relaxation

Description Use this option to disable the automatic link-time removal or transformation of certain
instructions and sequences, performed to save space or execution time.

See also Instruction relaxation, page 111.

Project>Options>Linker>Optimizations>Disable relaxations
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Linker options

--enable_stack_usage

Syntax --enable_stack_usage

Description Use this option to enable stack usage analysis. If a linker map file is produced, a stack
usage chapter is included in the map file.

Note: If you use at least one of the --stack_usage_control or --call_graph
options, stack usage analysis is automatically enabled.

See also Stack usage analysis, page 89.

Project>Options>Linker>Advanced>Enable stack usage analysis

--entry

Syntax --entry symbol

Parameters

Description Use this option to make a symbol be treated as a root symbol and the start label of the
application. This is useful for loaders. If this option is not used, the default start symbol
is __iar_program_start. A root symbol is kept whether or not it is referenced from
the rest of the application, provided its module is included. A module in an object file is
always included but a module part of a library is only included if needed.

Note: The label referred to must be available in your application. You must also make
sure that the reset vector refers to the new start label, for example --redirect
__iar_program_start=_myStartLabel.

See also --no_entry, page 302.

Project>Options>Linker>Library>Override default program entry

symbol The name of the symbol to be treated as a root symbol and
start label
AFE1_AFE2-1:1

293

294

Descriptions of linker options

--entry_list_in_address_order

Syntax --entry_list_in_address_order

Description Use this option to generate an additional entry list in the map file. This entry list will be
sorted in address order.

To set this option, use Project>Options>Linker>Extra Options

--error_limit

Syntax --error_limit=n

Parameters

Description Use the --error_limit option to specify the number of errors allowed before the
linker stops the linking. By default, 100 errors are allowed.

This option is not available in the IDE.

--export_builtin_config

Syntax --export_builtin_config filename

Parameters See Rules for specifying a filename or directory as parameters, page 238.

Description Exports the configuration used by default to a file.

This option is not available in the IDE.

-f

Syntax -f filename

Parameters See Rules for specifying a filename or directory as parameters, page 238.

n The number of errors before the linker stops linking. n must
be a positive integer. 0 indicates no limit.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Linker options

Description Use this option to make the linker read command line options from the named file, with
the default filename extension xcl.

In the command file, you format the items exactly as if they were on the command line
itself, except that you may use multiple lines, because the newline character acts just as
a space or tab character.

Both C and C++ style comments are allowed in the file. Double quotes behave in the
same way as in the Microsoft Windows command line environment.

See also --f, page 295.

To set this option, use Project>Options>Linker>Extra Options.

--f

Syntax --f filename

Parameters See Rules for specifying a filename or directory as parameters, page 238.

Description Use this option to make the linker read command line options from the named file, with
the default filename extension xcl.

In the command file, you format the items exactly as if they were on the command line
itself, except that you may use multiple lines, because the newline character acts just as
a space or tab character.

Both C and C++ style comments are allowed in the file. Double quotes behave in the
same way as in the Microsoft Windows command line environment.

If you use the linker option --dependencies, extended command line files specified
using --f will generate a dependency, but those specified using -f will not generate a
dependency.

See also --dependencies, page 289 and -f, page 294.

To set this option, use Project>Options>Linker>Extra Options.
AFE1_AFE2-1:1

295

296

Descriptions of linker options

--force_output

Syntax --force_output

Description Use this option to produce an output executable image regardless of any non-fatal
linking errors.

To set this option, use Project>Options>Linker>Extra Options

--image_input

Syntax --image_input filename[,symbol[,section[,alignment]]]

Parameters

Description Use this option to link pure binary files in addition to the ordinary input files. The file’s
entire contents are placed in the section, which means it can only contain pure binary
data.

Note: Just as for sections from object files, sections created by using the
--image_input option are not included unless actually needed. You can either specify
a symbol in the option and reference this symbol in your application (or use a --keep
option), or you can specify a section name and use the keep directive in a linker
configuration file to ensure that the section is included.

Example --image_input bootstrap.abs,Bootstrap,CSTARTUPCODE,4

The contents of the pure binary file bootstrap.abs are placed in the section
CSTARTUPCODE. The section where the contents are placed is 4-byte aligned and will
only be included if your application (or the command line option --keep) includes a
reference to the symbol Bootstrap.

See also --keep, page 297.

filename The pure binary file containing the raw image you want to
link. See Rules for specifying a filename or directory as
parameters, page 238.

symbol The symbol which the binary data can be referenced with.

section The section where the binary data will be placed. The default
is .text.

alignment The alignment of the section. The default is 1.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Linker options

Project>Options>Linker>Input>Raw binary image

--keep

Syntax --keep symbol[,symbol1,...]

Parameters

Description Normally, the linker keeps a symbol only if it is needed by your application. Use this
option to make global symbols always be included in the final application.

Project>Options>Linker>Input>Keep symbols

symbol The name of the global symbols to be treated as root
symbols.
AFE1_AFE2-1:1

297

298

Descriptions of linker options

--log

Syntax --log topic[,topic,...]

Parameters topic can be one of:

call_graph Lists the call graph as seen by stack usage analysis.

codense Lists some CoDense optimization statistics.

crt_routine_select

ion

Lists details of the selection process for runtime routines—
what definitions were available, what the requirements were,
and which decision the process resulted in.

demangle Uses demangled names instead of mangled names for
C/C++ symbols in the log output, for example,
void h(int, char) instead of _Z1hic.

fragment_info Lists all fragments by number. The information contains the
section they correspond to (name, section number and file)
and the fragment size.

initialization Lists copy batches and the compression selected for each
batch.

libraries Lists all decisions made by the automatic library selector.
This might include extra symbols needed (--keep),
redirections (--redirect), as well as which runtime
libraries that were selected.

merging Lists the sections (name, section number and file) that were
merged and which symbol redirections this resulted in. Note
that section merging must be enabled by the
--merge_duplicate_sections linker option. See
--merge_duplicate_sections, page 301.

modules Lists the modules that were selected for inclusion in the
application, and which symbol that caused them to be
included.

redirects Lists redirected symbols.

sections Lists the symbols and section fragments that were selected
for inclusion in the application, and the dependence that
caused them to be included.

unused_fragments Lists those section fragments that were not included in the
application.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Linker options

Description Use this option to make the linker log information to stdout. The log information can
be useful for understanding why an executable image became the way it is.

See also --log_file, page 299.

Project>Options>Linker>List>Generate log

--log_file

Syntax --log_file filename

Parameters See Rules for specifying a filename or directory as parameters, page 238.

Description Use this option to direct the log output to the specified file.

See also --log, page 298.

Project>Options>Linker>List>Generate log

--mangled_names_in_messages

Syntax --mangled_names_in_messages

Description Use this option to produce both mangled and demangled names for C/C++ symbols in
messages. Mangling is a technique used for mapping a complex C name or a C++
name—for example, for overloading—into a simple name. For example, void h(int,
char) becomes _Z1hic.

This option is not available in the IDE.

--manual_dynamic_initialization

Syntax --manual_dynamic_initialization

Description Normally, dynamic initialization (typically initialization of C++ objects with static
storage duration) is performed automatically during application startup. If you use
--manual_dynamic_initialization, you must call
__iar_dynamic_initialization at some later point for this initialization to be
done.
AFE1_AFE2-1:1

299

300

Descriptions of linker options

The function __iar_dynamic_initialization is declared in the header file
iar_dynamic_init.h.

In a threaded application, --manual_dynamic_initialization also suppresses the
automatic initialization of thread-local variables for the main thread. In that case, you
must call __iar_cstart_tls_init(NULL) before using any thread-local variables,
and before calling __iar_dynamic_initialization.

The function __iar_cstart_tls_init is declared in the header file
DLib_Threads.h.

To set this option use Project>Options>Linker>Extra Options.

--map

Syntax --map {filename|directory|-|+}

Parameters

See also Rules for specifying a filename or directory as parameters, page 238.

Description Use this option to produce a linker memory map file. The map file has the default
filename extension map. The map file contains:

● Linking summary in the map file header which lists the version of the linker, the
current date and time, and the command line that was used.

● Runtime attribute summary which lists runtime attributes.

● Placement summary which lists each section/block in address order, sorted by
placement directives.

● Initialization table layout which lists the data ranges, packing methods, and
compression ratios.

● Module summary which lists contributions from each module to the image, sorted
by directory and library.

● Entry list which lists all public and some local symbols in alphabetical order,
indicating which module they came from.

● Some of the bytes might be reported as shared.

- Sends the entire linker memory map to stdout.

+ Generates a map file in the same directory as the output file and
with the same name as the output file, but with the filename
extension .map
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Linker options

Shared objects are functions or data objects that are shared between modules. If any
of these occur in more than one module, only one copy is retained. For example, in
some cases inline functions are not inlined, which means that they are marked as
shared, because only one instance of each function will be included in the final
application. This mechanism is also sometimes used for compiler-generated code or
data not directly associated with a particular function or variable, and when only one
instance is required in the final application.

 This option can only be used once on the command line.

Project>Options>Linker>List>Generate linker map file

--merge_duplicate_sections

Syntax --merge_duplicate_sections

Description Use this option to keep only one copy of equivalent read-only sections.

Note: This can cause different functions or constants to have the same address, so an
application that depends on the addresses being different will not work correctly with
this option enabled.

See also Duplicate section merging, page 111.

Project>Options>Linker>Optimizations>Merge duplicate sections

--no_bom

Syntax --no_bom

Description Use this option to omit the Byte Order Mark (BOM) when generating a UTF-8 output
file.

See also --text_out, page 309 and Text encodings, page 232.

Project>Options>Linker>Encodings>Text output file encoding
AFE1_AFE2-1:1

301

302

Descriptions of linker options

--no_entry

Syntax --no_entry

Description Use this option to set the entry point field to zero for produced ELF files.

See also --entry, page 293.

Project>Options>Linker>Library>Override default program entry

--no_fragments

Syntax --no_fragments

Description Use this option to disable section fragment handling. Normally, the toolset uses IAR
proprietary information for transferring section fragment information to the linker. The
linker uses this information to remove unused code and data, and further minimize the
size of the executable image. Use this option to disable the removal of fragments of
sections, instead including or not including each section in its entirety, usually resulting
in a larger application.

See also Keeping symbols and sections, page 101.

To set this option, use Project>Options>Linker>Extra Options

--no_free_heap

Syntax --no_free_heap

Description Use this option to use the smallest possible heap implementation. Because this heap
does not support free or realloc, it is only suitable for applications that in the startup
phase allocate heap memory for various buffers, etc, and for applications that never
deallocate memory.

See also Heap memory handlers, page 194

Project>Options>General Options>Library Options 2>Heap selection
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Linker options

--no_library_search

Syntax --no_library_search

Description Use this option to disable the automatic runtime library search. This option turns off the
automatic inclusion of the correct standard libraries. This is useful, for example, if the
application needs a user-built standard library, etc.

Note: The option disables all steps of the automatic library selection, some of which
might need to be reproduced if you are using the standard libraries. Use the
--log libraries linker option together with automatic library selection enabled to
determine which the steps are.

Project>Options>Linker>Library>Automatic runtime library selection

--no_locals

Syntax --no_locals

Description Use this option to remove all local symbols from the ELF executable image.

Note: This option does not remove any local symbols from the DWARF information in
the executable image.

Project>Options>Linker>Output

--no_range_reservations

Syntax --no_range_reservations

Description Normally, the linker reserves any ranges used by absolute symbols with a non-zero size,
excluding them from consideration for place in commands.

When this option is used, these reservations are disabled, and the linker is free to place
sections in such a way as to overlap the extent of absolute symbols.

To set this option, use Project>Options>Linker>Extra Options.
AFE1_AFE2-1:1

303

304

Descriptions of linker options

--no_remove

Syntax --no_remove

Description When this option is used, unused sections are not removed. In other words, each module
that is included in the executable image contains all its original sections.

See also Keeping symbols and sections, page 101.

To set this option, use Project>Options>Linker>Extra Options.

--no_vfe

Syntax --no_vfe

Description Use this option to disable the Virtual Function Elimination optimization. All virtual
functions in all classes with at least one instance will be kept, and Runtime Type
Information data will be kept for all polymorphic classes. Also, no warning message will
be issued for modules that lack VFE information.

See also --vfe, page 313 and Virtual function elimination, page 110.

To set related options, choose:

Project>Options>Linker>Optimizations>Perform C++ Virtual Function
Elimination

--no_warnings

Syntax --no_warnings

Description By default, the linker issues warning messages. Use this option to disable all warning
messages.

This option is not available in the IDE.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Linker options

--no_wrap_diagnostics

Syntax --no_wrap_diagnostics

Description By default, long lines in diagnostic messages are broken into several lines to make the
message easier to read. Use this option to disable line wrapping of diagnostic messages.

This option is not available in the IDE.

--only_stdout

Syntax --only_stdout

Description Use this option to make the linker use the standard output stream (stdout) for messages
that are normally directed to the error output stream (stderr).

This option is not available in the IDE.

--output, -o

Syntax --output {filename|directory}
-o {filename|directory}

Parameters See Rules for specifying a filename or directory as parameters, page 238.

Description By default, the object executable image produced by the linker is located in a file with
the name aout.out. Use this option to explicitly specify a different output filename,
which by default will have the filename extension out.

Project>Options>Linker>Output>Output file

--place_holder

Syntax --place_holder symbol[,size[,section[,alignment]]]

Parameters
symbol The name of the symbol to create

size Size in ROM. Default is 4 bytes
AFE1_AFE2-1:1

305

306

Descriptions of linker options

Description Use this option to reserve a place in ROM to be filled by some other tool, for example,
a checksum calculated by ielftool. Each use of this linker option results in a section
with the specified name, size, and alignment. The symbol can be used by your
application to refer to the section.

Note: Like any other section, sections created by the --place_holder option will only
be included in your application if the section appears to be needed. The --keep linker
option, or the keep linker directive can be used for forcing such section to be included.

See also IAR utilities, page 463.

To set this option, use Project>Options>Linker>Extra Options

--preconfig

Syntax --preconfig filename

Parameters See Rules for specifying a filename or directory as parameters, page 238.

Description Use this option to make the linker read the specified file before reading the linker
configuration file.

To set this option, use Project>Options>Linker>Extra Options.

--printf_multibytes

Syntax --printf_multibytes

Description Use this option to make the linker automatically select a printf formatter that supports
multibytes.

Project>Options>General Options>Library options 1>Printf formatter

section Section name to use. Default is .text

alignment Alignment of section. Default is 1
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Linker options

--redirect

Syntax --redirect from_symbol=to_symbol

Parameters

Description Use this option to change references to an external symbol so that they refer to another
symbol.

Note: Redirection will normally not affect references within a module.

To set this option, use Project>Options>Linker>Extra Options

--remarks

Syntax --remarks

Description The least severe diagnostic messages are called remarks. A remark indicates a source
code construct that may cause strange behavior in the generated code. By default, the
linker does not generate remarks. Use this option to make the linker generate remarks.

See also Severity levels, page 235.

Project>Options>Linker>Diagnostics>Enable remarks

--scanf_multibytes

Syntax --scanf_multibytes

Description Use this option to make the linker automatically select a scanf formatter that supports
multibytes.

Project>Options>General Options>Library options 1>Scanf formatter

from_symbol The name of the source symbol

to_symbol The name of the destination symbol
AFE1_AFE2-1:1

307

308

Descriptions of linker options

--search, -L

Syntax --search path

-L path

Parameters

Description Use this option to specify more directories for the linker to search for object and library
files in.

By default, the linker searches for object and library files only in the working directory.
Each use of this option on the command line adds another search directory.

See also The linking process in detail, page 81.

This option is not available in the IDE.

--silent

Syntax --silent

Description By default, the linker issues introductory messages and a final statistics report. Use this
option to make the linker operate without sending these messages to the standard output
stream (normally stdout).

This option does not affect the display of error and warning messages.

This option is not available in the IDE.

--small_math

Syntax --small_math

Description Use this option to use smaller versions of the math libraries (but less accurate) than the
default versions.

See also Math functions, page 131.

path A path to a directory where the linker should search for
object and library files.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Linker options

Project>Options>General Options>Library Options 1>Math functions

--stack_usage_control

Syntax --stack_usage_control=filename

Parameters See Rules for specifying a filename or directory as parameters, page 238.

Description Use this option to specify a stack usage control file. This file controls stack usage
analysis, or provides more stack usage information for modules or functions. You can
use this option multiple times to specify multiple stack usage control files. If no filename
extension is specified, the extension suc is used.

Using this option enables stack usage analysis in the linker.

See also Stack usage analysis, page 89.

Project>Options>Linker>Advanced>Enable stack usage analysis>Control file

--strip

Syntax --strip

Description By default, the linker retains the debug information from the input object files in the
output executable image. Use this option to remove that information.

To set related options, choose:

Project>Options>Linker>Output>Include debug information in output

--text_out

Syntax --text_out{utf8|utf16le|utf16be|locale}

Parameters
utf8 Uses the UTF-8 encoding

utf16le Uses the UTF-16 little-endian encoding

utf16be Uses the UTF-16 big-endian encoding

locale Uses the system locale encoding
AFE1_AFE2-1:1

309

310

Descriptions of linker options

Description Use this option to specify the encoding to be used when generating a text output file.

The default for the linker list files is to use the same encoding as the main source file.
The default for all other text files is UTF-8 with a Byte Order Mark (BOM).

If you want text output in UTF-8 encoding without BOM, you can use the option
--no_bom as well.

See also --no_bom, page 301 and Text encodings, page 232.

Project>Options>Linker>Encodings>Text output file encoding

--threaded_lib

Syntax --threaded_lib

Description Use this option to automatically configure the runtime library for use with threads.

When this option is used, the linker creates the sections __iar_tls$$DATA and
__iar_tls$$INIT_DATA. Thread-local data that resides in sections that have the TLS
bit set is placed in sections called .tdata and .tbss. If the option --threaded_lib
is not used, thread-local data will be placed with the non-threaded data as usual.

Project>Options>General Options>Library Configuration>Enable thread
support in library

--timezone_lib

Syntax --timezone_lib

Description Use this option to enable the time zone and daylight savings time functionality in the
DLIB library.

Note: You must implement the time zone functionality yourself.

See also __getzone, page 139.

To set this option, use Project>Options>Linker>Extra Options.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Linker options

--use_full_std_template_names

Syntax --use_full_std_template_names

Description In the demangled names of C++ entities, the linker by default uses shorter names for
some classes. For example, "std::string" instead of
"std::basic_string<char,

std::char_traits<char>,std::allocator<char>>". Use this option to make
the linker instead use the full, unabbreviated names.

This option is not available in the IDE.

--use_optimized_variants

Syntax --use_optimized_variants=[misaligned_]{no|auto|tiny|small|medium|
fast}

Parameters
misaligned_ Uses variants that are reliant on the device allowing misaligned

memory accesses. This can, in some cases, make the code slightly
faster or smaller. This prefix cannot be used with the parameter no.

no Always uses the default variant with standard optimizations. The
prefix misaligned_ cannot be used with this parameter.

auto Uses variants based on runtime model attributes that indicate the
requested optimization goal:

If a module is compiled with -Ohs, and the DLIB library contains
a fast variant of a function that is referenced in the module,
that variant is used.

If all modules referencing a function are compiled with -Ohz, and
the DLIB library contains a small variant of that function, that
variant is used.

This is the default behavior of the linker.

tiny Always uses a tiny variant (minimum code size) if there is one in
the DLIB library.

small Always uses a small variant (balances code size and execution
speed, favoring size) if there is one in the DLIB library.

medium Always uses a medium variant (balances code size and execution
speed, favoring speed) if there is one in the DLIB library.
AFE1_AFE2-1:1

311

312

Descriptions of linker options

Description Use this option to control the use of optimized variants of some DLIB library functions.
(Some DLIB libraries delivered with the product contain optimized variants, in
particular implementations of string.h functions and 64-bit integer functions.)

To see which variants that this option selected, inspect the list of redirects in the linker
map file.

To set this option, use Project>Options>Linker>Extra Options.

--utf8_text_in

Syntax --utf8_text_in

Description Use this option to specify that the linker shall use the UTF-8 encoding when reading a
text input file with no Byte Order Mark (BOM).

Note: This option does not apply to source files.

See also Text encodings, page 232.

Project>Options>Linker>Encodings>Default input file encoding

--version

Syntax --version

Description Use this option to make the linker send version information to the console and then exit.

This option is not available in the IDE.

fast Always uses a fast variant (maximum execution speed) if there is
one in the DLIB library.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Linker options

--vfe

Syntax --vfe[=forced]

Parameters

Description By default, Virtual Function Elimination is always performed but requires that all object
files contain the necessary virtual function elimination information. Use
--vfe=forced to perform Virtual Function Elimination even if one or more modules
do not have the necessary information.

Forcing the use of Virtual Function Elimination can be unsafe if some of the modules
that lack the needed information perform virtual function calls or use dynamic Runtime
Type Information.

See also --no_vfe, page 304 and Virtual function elimination, page 110.

To set related options, choose:

Project>Options>Linker>Optimizations>Perform C++ Virtual Function
Elimination

--warnings_affect_exit_code

Syntax --warnings_affect_exit_code

Description By default, the exit code is not affected by warnings, because only errors produce a
non-zero exit code. With this option, warnings will also generate a non-zero exit code.

This option is not available in the IDE.

--warnings_are_errors

Syntax --warnings_are_errors

Description Use this option to make the linker treat all warnings as errors. If the linker encounters
an error, no executable image is generated. Warnings that have been changed into
remarks are not treated as errors.

forced Performs Virtual Function Elimination even if one or more
modules lack the needed virtual function elimination
information.
AFE1_AFE2-1:1

313

314

Descriptions of linker options

Note: Any diagnostic messages that have been reclassified as warnings by the option
--diag_warning will also be treated as errors when --warnings_are_errors is
used.

See also --diag_warning, page 252 and --diag_warning, page 291.

Project>Options>Linker>Diagnostics>Treat all warnings as errors

--whole_archive

Syntax --whole_archive filename

Parameters See Rules for specifying a filename or directory as parameters, page 238.

Description Use this option to make the linker treat every object file in the archive as if it was
specified on the command line. This is useful when an archive contains root content that
is always included from an object file (filename extension o), but only included from an
archive if some entry from the module is referred to.

Example If archive.a contains the object files file1.o, file2.o, and file3.o, using
--whole_archive archive.a is equivalent to specifying file1.o file2.o
file3.o.

See also Keeping modules, page 100.

To set this option, use Project>Options>Linker>Extra Options
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Data representation
● Alignment

● Basic data types—integer types

● Basic data types—floating-point types

● Pointer types

● Structure types

● Type qualifiers

● Data types in C++

See the chapter Efficient coding for embedded applications for information about
which data types provide the most efficient code for your application.

Alignment
Every C data object has an alignment that controls how the object can be stored in
memory. Should an object have an alignment of, for example, 4, it must be stored on an
address that is divisible by 4.

The reason for the concept of alignment is that some processors have hardware
limitations for how the memory can be accessed.

Assume that a processor can read 4 bytes of memory using one instruction, but only
when the memory read is placed on an address divisible by 4. Then, 4-byte objects, such
as long integers, will have alignment 4.

Another processor might only be able to read 2 bytes at a time—in that environment, the
alignment for a 4-byte long integer might be 2.

A structure type will have the same alignment as the structure member with the strictest
alignment. To decrease the alignment requirements on the structure and its members,
use #pragma pack or the __packed data type attribute.

All data types must have a size that is a multiple of their alignment. Otherwise, only the
first element of an array would be guaranteed to be placed in accordance with the
alignment requirements. This means that the compiler might add pad bytes at the end of
AFE1_AFE2-1:1

315

316

Basic data types—integer types

the structure. For more information about pad bytes, see Packed structure types, page
324.

Note: With the #pragma data_alignment directive, you can increase the alignment
demands on specific variables.

See also the Standard C file stdalign.h.

ALIGNMENT ON RISC-V

The compiler and linker require that when accessing data in memory, the data must be
aligned. For this reason, the compiler assigns an alignment to every data type.

Basic data types—integer types
The compiler supports both all Standard C basic data types and some additional types.

These topics are covered:

● Integer types—an overview

● Bool

● The enum type

● The char type

● The wchar_t type

● The char16_t type

● The char32_t type

● Bitfields

INTEGER TYPES—AN OVERVIEW

This table gives the size and range of each integer data type:

Data type Size Range Alignment

bool 8 bits 0 to 1 1

char 8 bits 0 to 255 1

signed char 8 bits -128 to 127 1

unsigned char 8 bits 0 to 255 1

signed short 16 bits -32768 to 32767 2

unsigned short 16 bits 0 to 65535 2

signed int 32 bits -231 to 231-1 4

Table 27: Integer types
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Data representation

Signed variables are represented using the two’s complement form.

BOOL

The bool data type is supported by default in the C++ language. If you have enabled
language extensions, the bool type can also be used in C source code if you include the
file stdbool.h. This will also enable the boolean values false and true.

THE ENUM TYPE

The compiler will try to use the type int to hold enum constants, preferring signed
rather than unsigned. To force the compiler to use the smallest type, use the option
--short_enums, see --short_enums, page 274.

When IAR language extensions are enabled, and in C++, the enum constants and types
can also be of the type unsigned int, long long, or unsigned long long.

To make the compiler use a larger type than it would automatically use, define an enum
constant with a large enough value. For example:

/* Define enum as an unsigned long long */
enum Cards{Spade1, Spade2,
 DontUseInt=0x0FFFF'FFFF'FFFF'FFFF};

See also the C++ enum struct syntax.

THE CHAR TYPE

The char type is by default unsigned in the compiler, but the --char_is_signed
compiler option allows you to make it signed.

Note: The library is compiled with the char type as unsigned.

unsigned int 32 bits 0 to 232-1 4

signed long

RV32
RV64

32 bits
64 bits

-231 to 231-1
-263 to 263-1

4
8

unsigned long
RV32
RV64

32 bits
64 bits

0 to 232-1
0 to 264-1

4
8

signed long long 64 bits -263 to 263-1 8

unsigned long long 64 bits 0 to 264-1 8

Data type Size Range Alignment

Table 27: Integer types (Continued)
AFE1_AFE2-1:1

317

318

Basic data types—integer types

THE WCHAR_T TYPE

The wchar_t data type is 4 bytes and the encoding used for it is UTF-32.

THE CHAR16_T TYPE

The char16_t data type is 2 bytes and the encoding used for it is UTF-16.

THE CHAR32_T TYPE

The char32_t data type is 4 bytes and the encoding used for it is UTF-32.

BITFIELDS

In Standard C, int, signed int, and unsigned int can be used as the base type for
integer bitfields. In standard C++, and in C when language extensions are enabled in the
compiler, any integer or enumeration type can be used as the base type. It is
implementation defined whether a plain integer type (char, short, int, etc) results in
a signed or unsigned bitfield.

In the IAR C/C++ Compiler for RISC-V, plain integer types are treated as signed.

Bitfields in expressions are treated as int if int can represent all values of the bitfield.
Otherwise, they are treated as the bitfield base type.

Each bitfield is placed in the next suitably aligned container of its base type that has
enough available bits to accommodate the bitfield. Within each container, the bitfield is
placed in the first available byte or bytes, taking the byte order into account. Note that
containers can overlap if needed, as long as they are suitably aligned for their type.

In addition, the compiler supports an alternative bitfield allocation strategy (disjoint
types), where bitfield containers of different types are not allowed to overlap. Using this
allocation strategy, each bitfield is placed in a new container if its type is different from
that of the previous bitfield, or if the bitfield does not fit in the same container as the
previous bitfield. Within each container, the bitfield is placed from the least significant
bit to the most significant bit (disjoint types) or from the most significant bit to the least
significant bit (reverse disjoint types). This allocation strategy will never use less space
than the default allocation strategy (joined types), and can use significantly more space
when mixing bitfield types.

Use the #pragma bitfields directive to choose which bitfield allocation strategy to
use, see bitfields, page 345.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Data representation

Assume this example:

struct BitfieldExample
{
 uint32_t a : 12;
 uint16_t b : 3;
 uint16_t c : 7;
 uint8_t d;
};

The example in the joined types bitfield allocation strategy

To place the first bitfield, a, the compiler allocates a 32-bit container at offset 0 and puts
a into the first and second bytes of the container.

For the second bitfield, b, a 16-bit container is needed and because there are still four
bits free at offset 0, the bitfield is placed there.

For the third bitfield, c, as there is now only one bit left in the first 16-bit container, a
new container is allocated at offset 2, and c is placed in the first byte of this container.

The fourth member, d, can be placed in the next available full byte, which is the byte at
offset 3.

In each case, each bitfield is allocated starting from the least significant free bit of its
container to ensure that it is placed into bytes from left to right.

The example in the disjoint types bitfield allocation strategy

To place the first bitfield, a, the compiler allocates a 32-bit container at offset 0 and puts
a into the least significant 12 bits of the container.
AFE1_AFE2-1:1

319

320

Basic data types—integer types

To place the second bitfield, b, a new container is allocated at offset 4, because the type
of the bitfield is not the same as that of the previous one. b is placed into the least
significant three bits of this container.

The third bitfield, c, has the same type as b and fits into the same container.

The fourth member, d, is allocated into the byte at offset 6. d cannot be placed into the
same container as b and c because it is not a bitfield, it is not of the same type, and it
would not fit.

When using reverse order (reverse disjoint types), each bitfield is instead placed starting
from the most significant bit of its container.

This is the layout of bitfield_example:

Padding

Padding is usually added to the end of structures to accommodate reading/writing an
entire bitfield container when accessing bitfields, as shown above. However, when bits
are allocated from low to high addresses, padding is only added if it is needed to
accommodate the alignment of the field.

Example:

struct X { uint32_t x1 : 5; };

When the alignment of the uint32_t bitfield is 4, the size of struct X is 4, to enable
reading/writing the entire bitfield container (uint32_t) at its natural alignment.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Data representation

However, if the alignment of the field is lower (for example, by using #pragma pack),
and bits are allocated from low addresses, the size of struct X is also correspondingly
less.

Basic data types—floating-point types
In the IAR C/C++ Compiler for RISC-V, floating-point values are represented in
standard IEC 60559 format. The sizes for the different floating-point types are:

FLOATING-POINT ENVIRONMENT

The feraiseexcept function does not raise any exceptions, it just sets the
corresponding exception flags.

Exception flags for floating-point values are supported for operations performed by the
FPU. For devices with a 64-bit FPU, they are defined in the fenv.h file.

32-BIT FLOATING-POINT FORMAT

The representation of a 32-bit floating-point number as an integer is:

The exponent is 8 bits, and the mantissa is 23 bits.

The value of the number is:

(-1)S * 2(Exponent-127) * 1.Mantissa

The range of the number is at least:

±1.18E-38 to ±3.39E+38

The precision of the float operators (+, -, *, and /) is approximately 7 decimal digits.

Type Size Range (+/-) Decimals Exponent Mantissa Alignment

float 32 bits ±1.18E-38 to ±3.40E+38 7 8 bits 23 bits 4

double 64 bits ±2.23E-308 to ±1.79E+308 15 11 bits 52 bits 8

long
double

64 bits ±2.23E-308 to ±1.79E+308 15 11 bits 52 bits 8

Table 28: Floating-point types
AFE1_AFE2-1:1

321

322

Basic data types—floating-point types

64-BIT FLOATING-POINT FORMAT

The representation of a 64-bit floating-point number as an integer is:

The exponent is 11 bits, and the mantissa is 52 bits.

The value of the number is:

(-1)S * 2(Exponent-1023) * 1.Mantissa

The range of the number is at least:

±2.23E-308 to ±1.79E+308

The precision of the float operators (+, -, *, and /) is approximately 15 decimal digits.

REPRESENTATION OF SPECIAL FLOATING-POINT NUMBERS

This list describes the representation of special floating-point numbers:

● Zero is represented by zero mantissa and exponent. The sign bit signifies positive or
negative zero.

● Infinity is represented by setting the exponent to the highest value and the mantissa
to zero. The sign bit signifies positive or negative infinity.

● Not a number (NaN) is represented by setting the exponent to the highest positive
value and the mantissa to a non-zero value. The value of the sign bit is ignored.

● Subnormal numbers are used for representing values smaller than what can be
represented by normal values. The drawback is that the precision will decrease with
smaller values. The exponent is set to 0 to signify that the number is subnormal,
even though the number is treated as if the exponent was 1. Unlike normal numbers,
subnormal numbers do not have an implicit 1 as the most significant bit (the MSB)
of the mantissa. The value of a subnormal number is:

(-1)S * 2(1-BIAS) * 0.Mantissa

where BIAS is 127 and 1023 for 32-bit and 64-bit floating-point values, respectively.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Data representation

Pointer types
The compiler has two basic types of pointers: function pointers and data pointers.
Pointer types have the same alignment as the corresponding integer type.

FUNCTION POINTERS

For the RV32 architecture, function pointers are always 32 bits. For the RV64
architecture, function pointers are always 64 bits.

DATA POINTERS

There is one data pointer available for the RV32 architecture and one data pointer for the
RV64 architecture. The RV32 data pointer is 32 bits and its range is 0x0–
0xFFFF'FFFF.The RV64 data pointer is 64 bits and its range is 0x0–
0xFFFF'FFFF'FFFF'FFFF.

CASTING

Casts between pointers have these characteristics:

● Casting a value of an integer type to a pointer of a smaller type is performed by
truncation

● Casting a value of an unsigned integer type to a pointer of a larger type is performed
by zero extension

● Casting a value of a signed integer type to a pointer of a larger type is performed by
sign extension

● Casting a pointer type to a smaller integer type is performed by truncation

● Casting a pointer type to a larger integer type is performed by zero extension

● Casting a data pointer to a function pointer and vice versa is illegal

● Casting a function pointer to an integer type gives an undefined result

size_t

size_t is the unsigned integer type of the result of the sizeof operator. In the IAR
C/C++ Compiler for RISC-V, the type used for size_t is unsigned int.

ptrdiff_t

ptrdiff_t is the signed integer type of the result of subtracting two pointers. In the
IAR C/C++ Compiler for RISC-V, the type used for ptrdiff_t is the signed integer
variant of the size_t type.
AFE1_AFE2-1:1

323

324

Structure types

intptr_t

intptr_t is a signed integer type large enough to contain a void *. In the IAR C/C++
Compiler for RISC-V, the type used for intptr_t is signed long int.

uintptr_t

uintptr_t is equivalent to intptr_t, with the exception that it is unsigned.

Structure types
The members of a struct are stored sequentially in the order in which they are
declared—the first member has the lowest memory address.

ALIGNMENT OF STRUCTURE TYPES

The struct and union types have the same alignment as the member with the highest
alignment requirement—this alignment requirement also applies to a member that is a
structure. To allow arrays of aligned structure objects, the size of a struct is adjusted
to an even multiple of the alignment.

GENERAL LAYOUT

Members of a struct are always allocated in the order specified in the declaration.
Each member is placed in the struct according to the specified alignment (offsets).

struct First
{
 char c;
 short s;
} s;

This diagram shows the layout in memory:

The alignment of the structure is 2 bytes, and a pad byte must be inserted to give
short s the correct alignment.

PACKED STRUCTURE TYPES

The __packed data type attribute or the #pragma pack directive is used for relaxing
the alignment requirements of the members of a structure. This changes the layout of the
structure. The members are placed in the same order as when declared, but there might
be less pad space between members.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Data representation

Note: Accessing an object that is not correctly aligned requires code that is both larger
and slower. If such structure members are accessed many times, it is usually better to
construct the correct values in a struct that is not packed, and access this struct
instead.

Special care is also needed when creating and using pointers to misaligned members.
For direct access to misaligned members in a packed struct, the compiler will emit the
correct (but slower and larger) code when needed. However, when a misaligned member
is accessed through a pointer to the member, the normal (smaller and faster) code is
used. In the general case, this will not work, because the normal code might depend on
the alignment being correct.

This example declares a packed structure:

#pragma pack(1)
struct S
{
 char c;
 short s;
};

#pragma pack()

The structure S has this memory layout:

The next example declares a new non-packed structure, S2, that contains the structure s
declared in the previous example:

struct S2
{
 struct S s;
 long l;
};

The structure S2 has this memory layout

The structure S will use the memory layout, size, and alignment described in the
previous example. The alignment of the member l is 4, which means that alignment of
the structure S2 will become 4.
AFE1_AFE2-1:1

325

326

Type qualifiers

For more information, see Alignment of elements in a structure, page 208.

Type qualifiers
According to the C standard, volatile and const are type qualifiers.

DECLARING OBJECTS VOLATILE

By declaring an object volatile, the compiler is informed that the value of the object
can change beyond the compiler’s control. The compiler must also assume that any
accesses can have side effects—therefore all accesses to the volatile object must be
preserved.

There are three main reasons for declaring an object volatile:

● Shared access—the object is shared between several tasks in a multitasking
environment

● Trigger access—as for a memory-mapped SFR where the fact that an access occurs
has an effect

● Modified access—where the contents of the object can change in ways not known to
the compiler.

Definition of access to volatile objects

The C standard defines an abstract machine, which governs the behavior of accesses to
volatile declared objects. In general and in accordance to the abstract machine:

● The compiler considers each read and write access to an object declared volatile
as an access

● The unit for the access is either the entire object or, for accesses to an element in a
composite object—such as an array, struct, class, or union—the element. For
example:

char volatile a;
a = 5; /* A write access */
a += 6; /* First a read then a write access */

● An access to a bitfield is treated as an access to the underlying type

● Adding a const qualifier to a volatile object will make write accesses to the
object impossible. However, the object will be placed in RAM as specified by the C
standard.

However, these rules are not detailed enough to handle the hardware-related
requirements. The rules specific to the IAR C/C++ Compiler for RISC-V are described
below.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Data representation

Rules for accesses

In the IAR C/C++ Compiler for RISC-V, accesses to volatile declared objects are
always preserved. In addition, for accesses to all 8-, 16-, and 32-bit (and 64-bit on RV64)
scalar types, except for accesses to unaligned 16- and 32-bit fields in packed structures:

● All accesses are complete, that is, the whole object is accessed

● All accesses are performed in the same order as given in the abstract machine

● All accesses are atomic, that is, they cannot be interrupted.

DECLARING OBJECTS VOLATILE AND CONST

If you declare a volatile object const, it will be write-protected but it will still be
stored in RAM memory as the C standard specifies.

To store the object in read-only memory instead, but still make it possible to access it as
a const volatile object, define the variable like this:

const volatile int x @ "FLASH";

The compiler will generate the read/write section FLASH. That section should be placed
in ROM and is used for manually initializing the variables when the application starts
up.

Thereafter, the initializers can be reflashed with other values at any time.

DECLARING OBJECTS CONST

The const type qualifier is used for indicating that a data object, accessed directly or
via a pointer, is non-writable. A pointer to const declared data can point to both
constant and non-constant objects. It is good programming practice to use const
declared pointers whenever possible because this improves the compiler’s possibilities
to optimize the generated code and reduces the risk of application failure due to
erroneously modified data.

Static and global objects declared const are allocated in ROM.

In C++, objects that require runtime initialization cannot be placed in ROM.

Data types in C++
In C++, all plain C data types are represented in the same way as described earlier in this
chapter. However, if any C++ features are used for a type, no assumptions can be made
concerning the data representation. This means, for example, that it is not supported to
write assembler code that accesses class members.
AFE1_AFE2-1:1

327

328

Data types in C++

AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Extended keywords
● General syntax rules for extended keywords

● Summary of extended keywords

● Descriptions of extended keywords

● Supported GCC attributes

General syntax rules for extended keywords
The compiler provides a set of attributes that can be used on functions or data objects to
support specific features of RISC-V. There are two types of attributes—type attributes
and object attributes:

● Type attributes affect the external functionality of the data object or function

● Object attributes affect the internal functionality of the data object or function.

The syntax for the keywords differs slightly depending on whether it is a type attribute
or an object attribute, and whether it is applied to a data object or a function.

For more information about each attribute, see Descriptions of extended keywords, page
333.

Note: The extended keywords are only available when language extensions are enabled
in the compiler.

In the IDE, language extensions are enabled by default.

Use the -e compiler option to enable language extensions. See -e, page 254.

TYPE ATTRIBUTES

Type attributes define how a function is called, or how a data object is accessed. This
means that if you use a type attribute, it must be specified both when a function or data
object is defined and when it is declared.

You can either place the type attributes explicitly in your declarations, or use the pragma
directive #pragma type_attribute.
AFE1_AFE2-1:1

329

330

General syntax rules for extended keywords

General type attributes

Available function type attributes (affect how the function should be called):

__interrupt, __machine, __monitor, __nmi, __no_save, __preemptive,
__supervisor, __task, and __user.

Available data type attributes:

__packed

You can specify as many type attributes as required for each level of pointer indirection.

Note: Data type attributes (except __packed) are not allowed on structure type fields.

Syntax for type attributes used on data objects

If you select the uniform attribute syntax, data type attributes use the same syntax rules
as the type qualifiers const and volatile.

If not, data type attributes use almost the same syntax rules as the type qualifiers const
and volatile. For example:

__packed int i;
int __packed j;

Both i and j will be accessed using alignment 1.

Using a type definition can sometimes make the code clearer:

typedef __packed int packed_int;
packed_int *q1;

packed_int is a typedef for packed integers. The variable q1 can point to such integers.

You can also use the #pragma type_attributes directive to specify type attributes
for a declaration. The type attributes specified in the pragma directive are applied to the
data object or typedef being declared.

#pragma type_attribute=__packed
int * q2;

The variable q2 is packed.

For more information about the uniform attribute syntax, see
--uniform_attribute_syntax, page 276 and --no_uniform_attribute_syntax, page 267.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Extended keywords

Syntax for type attributes used on functions

The syntax for using type attributes on functions differs slightly from the syntax of type
attributes on data objects. For functions, the attribute must be placed either in front of
the return type, or inside the parentheses for function pointers, for example:

__interrupt void my_handler(void);

or

void (__interrupt * my_fp)(void);

You can also use #pragma type_attribute to specify the function type attributes:

#pragma type_attribute=__interrupt
void my_handler(void);

#pragma type attribute=__interrupt
typedef void my_fun_t(void);
my_fun_t * my_fp;

OBJECT ATTRIBUTES

Normally, object attributes affect the internal functionality of functions and data objects,
but not directly how the function is called or how the data is accessed. This means that
an object attribute does not normally need to be present in the declaration of an object.
Any exceptions to this rule are noted in the description of the attribute.

These object attributes are available:

● Object attributes that can be used for variables:

__no_alloc, __no_alloc16, __no_alloc_str, __no_alloc_str16,
__no_init, __ro_placement

● Object attributes that can be used for functions and variables:

location, @, __root, __weak

● Object attributes that can be used for functions:

__intrinsic, __noreturn, vector

You can specify as many object attributes as required for a specific function or data
object.

For more information about location and @, see Controlling data and function
placement in memory, page 210. For more information about vector, see vector, page
367.
AFE1_AFE2-1:1

331

332

Summary of extended keywords

Syntax for object attributes

The object attribute must be placed in front of the type. For example, to place myarray
in memory that is not initialized at startup:

__no_init int myarray[10];

The #pragma object_attribute directive can also be used. This declaration is
equivalent to the previous one:

#pragma object_attribute=__no_init
int myarray[10];

Note: Object attributes cannot be used in combination with the typedef keyword.

Summary of extended keywords
This table summarizes the extended keywords:

Extended keyword Description

__interrupt Specifies interrupt functions

__intrinsic Reserved for compiler internal use only

__machine Places an interrupt function in the linker section .mtext

__monitor Specifies atomic execution of a function

__nmi Makes it possible to set up interrupts correctly for GigaDevice
devices when using --auto_vector_setup.

__no_alloc,

__no_alloc16

Makes a constant available in the execution file

__no_alloc_str,

__no_alloc_str16

Makes a string literal available in the execution file

__no_init Places a data object in non-volatile memory

__noreturn Informs the compiler that the function will not return

__packed Decreases data type alignment to 1

__preemptive Saves CSR registers during interrupts, and enables global
interrupts.

__root Ensures that a function or variable is included in the object code
even if unused

__ro_placement Places const volatile data in read-only memory.

__supervisor Places an interrupt function in the linker section .stext

__task Relaxes the rules for preserving registers

Table 29: Extended keywords summary
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Extended keywords

Descriptions of extended keywords
This section gives detailed information about each extended keyword.

__interrupt

Syntax See Syntax for type attributes used on functions, page 331.

Description The __interrupt keyword specifies interrupt functions. To specify one or several
interrupt vectors, use the #pragma vector directive. The range of the interrupt vectors
depends on the device used. It is possible to define an interrupt function without a vector,
but then the compiler will not generate an entry in the interrupt vector table.

An interrupt function must have a void return type and cannot have any parameters.

To make sure that the interrupt handler executes as fast as possible, you should compile
it with -Ohs, or use #pragma optimize=speed if the module is compiled with another
optimization goal.

Example #pragma vector=0x14
__interrupt void my_interrupt_handler(void);

See also Interrupt functions, page 71, vector, page 367.

__intrinsic

Description The __intrinsic keyword is reserved for compiler internal use only.

__machine

Syntax See Syntax for type attributes used on functions, page 331.

Description The __machine keyword specifies that an interrupt function will be stored in the
.mtext section, and makes the function use the return instruction mret.

Example __machine __interrupt void myInterruptFunction(void);

__user Places an interrupt function in the linker section .utext

__weak Declares a symbol to be externally weakly linked

Extended keyword Description

Table 29: Extended keywords summary (Continued)
AFE1_AFE2-1:1

333

334

Descriptions of extended keywords

See also .mtext, page 451

__monitor

Syntax See Syntax for type attributes used on functions, page 331.

Description The __monitor keyword causes interrupts to be disabled during execution of the
function. This allows atomic operations to be performed, such as operations on
semaphores that control access to resources by multiple processes. A function declared
with the __monitor keyword is equivalent to any other function in all other respects.

Example __monitor int get_lock(void);

See also Monitor functions, page 72. For information about related intrinsic functions, see
__disable_interrupt, page 372, __enable_interrupt, page 372, __get_interrupt_state,
page 375, and __set_interrupt_state, page 379, respectively.

__nmi

Syntax See Syntax for type attributes used on functions, page 331.

Description When used on an interrupt function, the __nmi keyword makes it possible for the linker
to set up interrupts correctly for GigaDevice devices, when using the option for
automated interrupt vector setup.

Note: This keyword is only intended for use by GigaDevice devices.

Example __nmi __interrupt void my_handler(void);

See also --auto_vector_setup, page 285

__no_alloc, __no_alloc16

Syntax See Syntax for object attributes, page 332.

Description Use the __no_alloc or __no_alloc16 object attribute on a constant to make the
constant available in the executable file without occupying any space in the linked
application.

You cannot access the contents of such a constant from your application. You can take
its address, which is an integer offset to the section of the constant. The type of the offset
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Extended keywords

is unsigned long when __no_alloc is used, and unsigned short when
__no_alloc16 is used.

Example __no_alloc const struct MyData my_data @ "XXX" = {...};

See also __no_alloc_str, __no_alloc_str16, page 335.

__no_alloc_str, __no_alloc_str16

Syntax __no_alloc_str(string_literal @ section)

and

__no_alloc_str16(string_literal @ section)

where:

Description Use the __no_alloc_str or __no_alloc_str16 operators to make string literals
available in the executable file without occupying any space in the linked application.

The value of the expression is the offset of the string literal in the section. For
__no_alloc_str, the type of the offset is unsigned long. For __no_alloc_str16,
the type of the offset is unsigned short.

Example #define MYSEG "YYY"
#define X(str) __no_alloc_str(str @ MYSEG)

extern void dbg_printf(unsigned long fmt, ...)

#define DBGPRINTF(fmt, ...) dbg_printf(X(fmt), __VA_ARGS__)

void
foo(int i, double d)
{
 DBGPRINTF("The value of i is: %d, the value of d is: %f",i,d);
}

Depending on your debugger and the runtime support, this could produce trace output
on the host computer.

Note: There is no such runtime support in C-SPY, unless you use an external plugin
module.

string_literal The string literal that you want to make available in the
executable file.

section The name of the section to place the string literal in.
AFE1_AFE2-1:1

335

336

Descriptions of extended keywords

See also __no_alloc, __no_alloc16, page 334.

__no_init

Syntax See Syntax for object attributes, page 332.

Description Use the __no_init keyword to place a data object in non-volatile memory. This means
that the initialization of the variable, for example at system startup, is suppressed.

Example __no_init int myarray[10];

See also Non-initialized variables, page 224 and do not initialize directive, page 428.

__noreturn

Syntax See Syntax for object attributes, page 332.

Description The __noreturn keyword can be used on a function to inform the compiler that the
function will not return. If you use this keyword on such functions, the compiler can
optimize more efficiently. Examples of functions that do not return are abort and exit.

Note: At optimization levels Medium or High, the __noreturn keyword might cause
incorrect call stack debug information at any point where it can be determined that the
current function cannot return.

Note: The extended keyword __noreturn has the same meaning as the Standard C
keyword _Noreturn or the macro noreturn (if stdnoreturn.h has been included)
and as the Standard C++ attribute [[noreturn]].

Example __noreturn void terminate(void);

__packed

Syntax See Syntax for type attributes used on data objects, page 330. An exception is when the
keyword is used for modifying the structure type in a struct or union declarations,
see below.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Extended keywords

Description Use the __packed keyword to specify a data alignment of 1 for a data type. __packed
can be used in two ways:

● When used before the struct or union keyword in a structure definition, the
maximum alignment of each member in the structure is set to 1, eliminating the
need for gaps between the members.

You can also use the __packed keyword with structure declarations, but it is illegal
to refer to a structure type defined without the __packed keyword using a structure
declaration with the __packed keyword.

● When used in any other position, it follows the syntax rules for type attributes, and
affects a type in its entirety. A type with the __packed type attribute is the same as
the type attribute without the __packed type attribute, except that it has a data
alignment of 1. Types that already have an alignment of 1 are not affected by the
__packed type attribute.

A normal pointer can be implicitly converted to a pointer to __packed, but the reverse
conversion requires a cast.

Note: Accessing data types at other alignments than their natural alignment can result
in code that is significantly larger and slower.

Use either __packed or #pragma pack to relax the alignment restrictions for a type
and the objects defined using that type. Mixing __packed and #pragma pack might
lead to unexpected behavior.

Example /* No pad bytes in X: */
__packed struct X { char ch; int i; };
/* __packed is optional here: */
struct X * xp;

/* NOTE: no __packed: */
struct Y { char ch; int i; };
/* ERROR: Y not defined with __packed: */
__packed struct Y * yp ;

/* Member 'i' has alignment 1: */
struct Z { char ch; __packed int i; };
AFE1_AFE2-1:1

337

338

Descriptions of extended keywords

void Foo(struct X * xp)
{
 /* Error:"int __packed *" -> "int *" not allowed: */
 int * p1 = &xp->1;
 /* OK: */
 int __packed * p2 = &xp->i;
 /* OK, char not affected */
 char * p3 = &xp->ch;
}

See also pack, page 360.

__preemptive

Syntax See Syntax for type attributes used on functions, page 331.

Description When the __preemptive keyword is used on an interrupt function, the enter sequence
saves some control and status registers (CSR) and enables global interrupts. This allows
nested interrupts. The values will be automatically restored when the function exits.

These CSRs are saved:

● For machine interrupts: mcause and mepc

● For supervisor interrupts: scause and sepc

● For user interrupts: ucause and uepc

If the device needs to save additional CSRs, use the #pragma preemptive directive.

Example __preemptive __interrupt void myInterruptFunction(void);

See also preemptive, page 361

__root

Syntax See Syntax for object attributes, page 332.

Description A function or variable with the __root attribute is kept whether or not it is referenced
from the rest of the application, provided its module is included. Program modules are
always included and library modules are only included if needed.

Example __root int myarray[10];
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Extended keywords

See also For more information about root symbols and how they are kept, see Keeping symbols
and sections, page 101.

__ro_placement

Syntax See Syntax for object attributes, page 332.

Description The __ro_placement attribute specifies that a data object should be placed in
read-only memory. There are two cases where you might want to use this object
attribute:

● Data objects declared const volatile are by default placed in read-write
memory. Use the __ro_placement object attribute to place the data object in
read-only memory instead.

● In C++, a data object declared const and that needs dynamic initialization is placed
in read-write memory and initialized at system startup. If you use the
__ro_placement object attribute, the compiler will give an error message if the
data object needs dynamic initialization.

You can only use the __ro_placement object attribute on const objects.

You can use the __ro_placement attribute with C++ objects if the compiler can
optimize the C++ dynamic initialization of the data objects into static initialization. This
is possible only for relatively simple constructors that have been defined in the header
files of the relevant class definitions, so that they are visible to the compiler. If the
compiler cannot find the constructor, or if the constructor is too complex, an error
message will be issued (Error[Go023]) and the compilation will fail.

Example __ro_placement const volatile int x = 10;

__supervisor

Syntax See Syntax for type attributes used on functions, page 331.

Description The __supervisor keyword specifies that an interrupt function will be stored in the
.stext section, and makes the function use the return instruction sret.

Example __supervisor __interrupt void myInterruptFunction(void);

See also .stext, page 452
AFE1_AFE2-1:1

339

340

Descriptions of extended keywords

__task

Syntax See Syntax for type attributes used on functions, page 331.

Description This keyword allows functions to relax the rules for preserving registers. Typically, the
keyword is used on the start function for a task in an RTOS.

By default, functions save the contents of used preserved registers on the stack upon
entry, and restore them at exit. Functions that are declared __task do not save all
registers, and therefore require less stack space.

Because a function declared __task can corrupt registers that are needed by the calling
function, you should only use __task on functions that do not return or call such a
function from assembler code.

The function main can be declared __task, unless it is explicitly called from the
application. In real-time applications with more than one task, the root function of each
task can be declared __task.

Example __task void my_handler(void);

__user

Syntax See Syntax for type attributes used on functions, page 331.

Description The __user keyword specifies that an interrupt function will be stored in the .utext
section, and makes the function use the return instruction uret. Use of this keyword
requires that the support for the Standard Extension for User-Level Interrupts (N) is
enabled, see --core, page 245.

Note: Automatic interrupt vector setup works only for machine-level interrupts. This
means that the user interrupt vector table must be set up manually.

Example __user __interrupt void myInterruptFunction(void);

See also .utext, page 453

__weak

Syntax See Syntax for object attributes, page 332.

Description Using the __weak object attribute on an external declaration of a symbol makes all
references to that symbol in the module weak.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Extended keywords

Using the __weak object attribute on a public definition of a symbol makes that
definition a weak definition.

The linker will not include a module from a library solely to satisfy weak references to
a symbol, nor will the lack of a definition for a weak reference result in an error. If no
definition is included, the address of the object will be zero.

When linking, a symbol can have any number of weak definitions, and at most one
non-weak definition. If the symbol is needed, and there is a non-weak definition, this
definition will be used. If there is no non-weak definition, one of the weak definitions
will be used.

Example extern __weak int foo; /* A weak reference. */

__weak void bar(void) /* A weak definition. */
{
 /* Increment foo if it was included. */
 if (&foo != 0)
 ++foo;
}

Supported GCC attributes
In extended language mode, the IAR C/C++ Compiler also supports a limited selection
of GCC-style attributes. Use the __attribute__ ((attribute-list)) syntax for
these attributes.

The following attributes are supported in part or in whole. For more information, see the
GCC documentation.

● alias

● aligned

● always_inline

● const

● constructor

● deprecated

● format

● noinline

● noreturn

● packed

● pcs (for IAR type attributes used on functions)
AFE1_AFE2-1:1

341

342

Supported GCC attributes

● pure

● section

● target (for IAR object attributes used on functions)

● unused

● used

● volatile

● warn_unused_result

● weak
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Pragma directives
● Summary of pragma directives

● Descriptions of pragma directives

Summary of pragma directives
The #pragma directive is defined by Standard C and is a mechanism for using
vendor-specific extensions in a controlled way to make sure that the source code is still
portable.

The pragma directives control the behavior of the compiler, for example, how it allocates
memory for variables and functions, whether it allows extended keywords, and whether
it outputs warning messages.

The pragma directives are always enabled in the compiler.

This table lists the pragma directives of the compiler that can be used either with the
#pragma preprocessor directive or the _Pragma() preprocessor operator:

Pragma directive Description

bitfields Controls the order of bitfield members.

calls Lists possible called functions for indirect calls.

call_graph_root Specifies that the function is a call graph root.

cstat_disable See the C-STAT® Static Analysis Guide.

cstat_enable See the C-STAT® Static Analysis Guide.

cstat_restore See the C-STAT® Static Analysis Guide.

cstat_suppress See the C-STAT® Static Analysis Guide.

data_alignment Gives a variable a higher (more strict) alignment.

default_function_attributes Sets default type and object attributes for
declarations and definitions of functions.

default_variable_attributes Sets default type and object attributes for
declarations and definitions of variables.

deprecated Marks an entity as deprecated.

diag_default Changes the severity level of diagnostic messages.

diag_error Changes the severity level of diagnostic messages.

diag_remark Changes the severity level of diagnostic messages.

Table 30: Pragma directives summary
AFE1_AFE2-1:1

343

344

Summary of pragma directives

diag_suppress Suppresses diagnostic messages.

diag_warning Changes the severity level of diagnostic messages.

enter_leave Controls the generation of prologue and epilogue
code in functions.

error Signals an error while parsing.

function_category Declares function categories for stack usage analysis.

include_alias Specifies an alias for an include file.

inline Controls inlining of a function.

language Controls the IAR language extensions.

location Specifies the absolute address of a variable, or places
groups of functions or variables in named sections.

message Prints a message.

no_epilogue This directive is an alias for #pragma
enter_leave=inline.

no_stack_protect Disables stack protection for the following function.

object_attribute Adds object attributes to the declaration or
definition of a variable or function.

once Prevents a header file from being processed more
than once.

optimize Specifies the type and level of an optimization.

pack Specifies the alignment of structures and union
members.

preemptive Saves additional CSR registers for __preemptive
interrupt functions during interrupts.

__printf_args Verifies that a function with a printf-style format
string is called with the correct arguments.

public_equ Defines a public assembler label and gives it a value.

required Ensures that a symbol that is needed by another
symbol is included in the linked output.

rtmodel Adds a runtime model attribute to the module.

__scanf_args Verifies that a function with a scanf-style format
string is called with the correct arguments.

section Declares a section name to be used by intrinsic
functions.

Pragma directive Description

Table 30: Pragma directives summary (Continued)
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Pragma directives

Note: For portability reasons, see also Recognized pragma directives (6.10.6), page
559.

Descriptions of pragma directives
This section gives detailed information about each pragma directive.

bitfields

Syntax #pragma bitfields={disjoint_types|joined_types|
 reversed_disjoint_types|reversed|default}

Parameters

segment This directive is an alias for #pragma section.

stack_protect Forces stack protection for the function that follows.

STDC CX_LIMITED_RANGE Specifies whether the compiler can use normal
complex mathematical formulas or not.

STDC FENV_ACCESS Specifies whether your source code accesses the
floating-point environment or not.

STDC FP_CONTRACT Specifies whether the compiler is allowed to contract
floating-point expressions or not.

type_attribute Adds type attributes to a declaration or to
definitions.

unroll Unrolls loops.

vector Specifies the vector of an interrupt function.

weak Makes a definition a weak definition, or creates a
weak alias for a function or a variable.

Pragma directive Description

Table 30: Pragma directives summary (Continued)

disjoint_types Bitfield members are placed from the least significant
bit to the most significant bit in the container type.
Storage containers of bitfields with different base
types will not overlap.

joined_types Bitfield members are placed depending on the byte
order. Storage containers of bitfields will overlap other
structure members. For more information, see
Bitfields, page 318.
AFE1_AFE2-1:1

345

346

Descriptions of pragma directives

Description Use this pragma directive to control the layout of bitfield members.

Example #pragma bitfields=disjoint_types
/* Structure that uses disjoint bitfield types. */
struct S
{
 unsigned char error : 1;
 unsigned char size : 4;
 unsigned short code : 10;
};
#pragma bitfields=default /* Restores to default setting. */

See also Bitfields, page 318.

calls

Syntax #pragma calls=arg[, arg...]

Parameters arg can be one of these:

Description Use this pragma directive to specify all functions that can be indirectly called in the
following statement. This information can be used for stack usage analysis in the linker.
You can specify individual functions or function categories. Specifying a category is
equivalent to specifying all included functions in that category.

reversed_disjoint_types Bitfield members are placed from the most significant
bit to the least significant bit in the container type.
Storage containers of bitfields with different base
types will not overlap.

reversed This is an alias for reversed_disjoint_types.

default Restores the default layout of bitfield members. The
default behavior for the compiler is joined_types.

function A declared function

category A string that represents the name of a function category
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Pragma directives

Example void Fun1(), Fun2();

void Caller(void (*fp)(void))
{
#pragma calls = Fun1, Fun2, "Cat1"
 (*fp)(); // Can call Fun1, Fun2, and all
 // functions in category "Cat1"
}

See also function_category, page 354 and Stack usage analysis, page 89.

call_graph_root

Syntax #pragma call_graph_root[=category]

Parameters

Description Use this pragma directive to specify that, for stack usage analysis purposes, the
immediately following function is a call graph root. You can also specify an optional
category. The compiler will usually automatically assign a call graph root category to
interrupt and task functions. If you use the #pragma call_graph_root directive on
such a function you will override the default category. You can specify any string as a
category.

Example #pragma call_graph_root="interrupt"

See also Stack usage analysis, page 89.

data_alignment

Syntax #pragma data_alignment=expression

Parameters

Description Use this pragma directive to give the immediately following variable a higher (more
strict) alignment of the start address than it would otherwise have. This directive can be
used on variables with static and automatic storage duration.

category A string that identifies an optional call graph root category

expression A constant which must be a power of two (1, 2, 4, etc.).
AFE1_AFE2-1:1

347

348

Descriptions of pragma directives

When you use this directive on variables with automatic storage duration, there is an
upper limit on the allowed alignment for each function, determined by the calling
convention used.

Note: Normally, the size of a variable is a multiple of its alignment. The
data_alignment directive only affects the alignment of the variable’s start address,
and not its size, and can therefore be used for creating situations where the size is not a
multiple of the alignment.

Note: To comply with the ISO C11 standard and later, it is recommended to use the
alignment specifier _Alignas for C code. To comply with the C++11 standard and later,
it is recommended to use the alignment specifier alignas for C++ code.

default_function_attributes

Syntax #pragma default_function_attributes=[attribute...]

where attribute can be:

type_attribute
object_attribute
@ section_name

Parameters

Description Use this pragma directive to set default section placement, type attributes, and object
attributes for function declarations and definitions. The default settings are only used for
declarations and definitions that do not specify type or object attributes or location in
some other way.

Specifying a default_function_attributes pragma directive with no attributes,
restores the initial state where no such defaults have been applied to function
declarations and definitions.

Example /* Place following functions in section MYSEC" */
#pragma default_function_attributes = @ "MYSEC"
int fun1(int x) { return x + 1; }
int fun2(int x) { return x - 1;
/* Stop placing functions into MYSEC */
#pragma default_function_attributes =

type_attribute See Type attributes, page 329.

object_attribute See Object attributes, page 331.

@ section_name See Data and function placement in sections, page 212.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Pragma directives

has the same effect as:

int fun1(int x) @ "MYSEC" { return x + 1; }
int fun2(int x) @ "MYSEC" { return x - 1; }

See also location, page 356.

object_attribute, page 358.

type_attribute, page 366.

default_variable_attributes

Syntax #pragma default_variable_attributes=[attribute...]

where attribute can be:

type_attribute
object_attribute
@ section_name

Parameters

Description Use this pragma directive to set default section placement, type attributes, and object
attributes for declarations and definitions of variables with static storage duration. The
default settings are only used for declarations and definitions that do not specify type or
object attributes or location in some other way.

Specifying a default_variable_attributes pragma directive with no attributes
restores the initial state of no such defaults being applied to variables with static storage
duration.

Note: The extended keyword __packed can be used in two ways—as a normal type
attribute and in a structure type definition. The pragma directive
default_variable_attributes only affects the use of __packed as a type
attribute. Structure definitions are not affected by this pragma directive. See __packed,
page 336.

type_attribute See Type attributes, page 329.

object_attributes See Object attributes, page 331.

@ section_name See Data and function placement in sections, page 212.
AFE1_AFE2-1:1

349

350

Descriptions of pragma directives

Example /* Place following variables in section MYSEC" */
#pragma default_variable_attributes = @ "MYSEC"
int var1 = 42;
int var2 = 17;
/* Stop placing variables into MYSEC */
#pragma default_variable_attributes =

has the same effect as:

int var1 @ "MYSEC" = 42;
int var2 @ "MYSEC" = 17;

See also location, page 356.

object_attribute, page 358.

type_attribute, page 366.

deprecated

Syntax #pragma deprecated=entity

Description If you place this pragma directive immediately before the declaration of a type, variable,
function, field, or constant, any use of that type, variable, function, field, or constant will
result in a warning.

The deprecated pragma directive has the same effect as the C++ attribute
[[deprecated]], but is available in C as well.

Example #pragma deprecated
typedef int * intp_t; // typedef intp_t is deprecated

#pragma deprecated
extern int fun(void); // function fun is deprecated

#pragma deprecated
struct xx { // struct xx is deprecated
 int x;
};
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Pragma directives

struct yy {
#pragma deprecated
 int y; // field y is deprecated
};

intp_t fun(void) // Warning here
{
 struct xx ax; // Warning here
 struct yy ay;
 fun(); // Warning here
 return ay.y; // Warning here
}

See also Annex K (Bounds-checking interfaces) of the C standard.

diag_default

Syntax #pragma diag_default=tag[,tag,...]

Parameters

Description Use this pragma directive to change the severity level back to the default, or to the
severity level defined on the command line by any of the options --diag_error,
--diag_remark, --diag_suppress, or --diag_warnings, for the diagnostic
messages specified with the tags. This level remains in effect until changed by another
diagnostic-level pragma directive.

See also Diagnostics, page 234.

diag_error

Syntax #pragma diag_error=tag[,tag,...]

Parameters

Description Use this pragma directive to change the severity level to error for the specified
diagnostics. This level remains in effect until changed by another diagnostic-level
pragma directive.

tag The number of a diagnostic message, for example, the
message number Pe177.

tag The number of a diagnostic message, for example, the
message number Pe177.
AFE1_AFE2-1:1

351

352

Descriptions of pragma directives

See also Diagnostics, page 234.

diag_remark

Syntax #pragma diag_remark=tag[,tag,...]

Parameters

Description Use this pragma directive to change the severity level to remark for the specified
diagnostic messages. This level remains in effect until changed by another
diagnostic-level pragma directive.

See also Diagnostics, page 234.

diag_suppress

Syntax #pragma diag_suppress=tag[,tag,...]

Parameters

Description Use this pragma directive to suppress the specified diagnostic messages. This level
remains in effect until changed by another diagnostic-level pragma directive.

See also Diagnostics, page 234.

diag_warning

Syntax #pragma diag_warning=tag[,tag,...]

Parameters

Description Use this pragma directive to change the severity level to warning for the specified
diagnostic messages. This level remains in effect until changed by another
diagnostic-level pragma directive.

tag The number of a diagnostic message, for example, the
message number Pe177.

tag The number of a diagnostic message, for example, the
message number Pe117.

tag The number of a diagnostic message, for example, the
message number Pe826.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Pragma directives

See also Diagnostics, page 234.

enter_leave

Syntax #pragma enter_leave={inline|subroutine}

Parameters

Description Use this pragma directive to control whether to inline the prologue and epilogue
sequences or to perform calls to subroutines. Inlining these sequences can be used when
a function needs to exist on its own as in, for example, a boot loader that needs to be
independent of the libraries it is replacing.

Example #pragma enter_leave=inline
void bootloader(void) @"BOOTSECTOR"
{
 ...
}

error

Syntax #pragma error message

Parameters

Description Use this pragma directive to cause an error message when it is parsed. This mechanism
is different from the preprocessor directive #error, because the #pragma error
directive can be included in a preprocessor macro using the _Pragma form of the
directive and only causes an error if the macro is used.

Example #if FOO_AVAILABLE
#define FOO ...
#else
#define FOO _Pragma("error\"Foo is not available\"")
#endif

If FOO_AVAILABLE is zero, an error will be signaled if the FOO macro is used in actual
source code.

inline Inlines the prologue and epilogue code in functions.

subroutine Performs calls to prologue and epilogue subroutines from
functions.

message A string that represents the error message.
AFE1_AFE2-1:1

353

354

Descriptions of pragma directives

function_category

Syntax #pragma function_category=category[, category...]

Parameters

Description Use this pragma directive to specify one or more function categories that the
immediately following function belongs to. When used together with #pragma calls,
the function_category directive specifies the destination for indirect calls for stack
usage analysis purposes.

Example #pragma function_category="Cat1"

See also calls, page 346 and Stack usage analysis, page 89.

include_alias

Syntax #pragma include_alias ("orig_header" , "subst_header")
#pragma include_alias (<orig_header> , <subst_header>)

Parameters

Description Use this pragma directive to provide an alias for a header file. This is useful for
substituting one header file with another, and for specifying an absolute path to a relative
file.

This pragma directive must appear before the corresponding #include directives and
subst_header must match its corresponding #include directive exactly.

Example #pragma include_alias (<stdio.h> , <C:\MyHeaders\stdio.h>)
#include <stdio.h>

This example will substitute the relative file stdio.h with a counterpart located
according to the specified path.

See also Include file search procedure, page 229.

category A string that represents the name of a function category.

orig_header The name of a header file for which you want to create an
alias.

subst_header The alias for the original header file.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Pragma directives

inline

Syntax #pragma inline[=forced|=never|=no_body|=forced_no_body]

Parameters

Description Use #pragma inline to advise the compiler that the function defined immediately after
the directive should be inlined according to C++ inline semantics.

Specifying #pragma inline=forced or #pragma inline=forced_no_body will
always inline the defined function. If the compiler fails to inline the function for some
reason, for example due to recursion, a warning message is emitted.

Inlining is normally performed only on the High optimization level. Specifying
#pragma inline=forced or #pragma inline=forced_no_body will inline the
function on all optimization levels or result in an error due to recursion, etc.

See also Inlining functions, page 75.

language

Syntax #pragma language={extended|default|save|restore}

Parameters

No parameter Has the same effect as the inline keyword.

forced Disables the compiler’s heuristics and forces inlining.

never Disables the compiler’s heuristics and makes sure that the
function will not be inlined.

no_body Has the same effect as the inline keyword, but the
generated function will not have a body.

forced_no_body Disables the compiler’s heuristics and forces inlining. The
generated function will not have a body.

extended Enables the IAR language extensions from the first use of the
pragma directive and onward.

default From the first use of the pragma directive and onward,
restores the settings for the IAR language extensions to
whatever that was specified by compiler options.
AFE1_AFE2-1:1

355

356

Descriptions of pragma directives

Description Use this pragma directive to control the use of language extensions.

Example At the top of a file that needs to be compiled with IAR extensions enabled:

#pragma language=extended
/* The rest of the file. */

Around a particular part of the source code that needs to be compiled with IAR
extensions enabled, but where the state before the sequence cannot be assumed to be the
same as that specified by the compiler options in use:

#pragma language=save
#pragma language=extended
/* Part of source code. */
#pragma language=restore

See also -e, page 254 and --strict, page 275.

location

Syntax #pragma location={address|NAME}

Parameters

Description Use this pragma directive to specify the location—the absolute address—of the global
or static variable whose declaration follows the pragma directive. The variables must be
declared __no_init. Alternatively, the directive can take a string specifying a section
for placing either a variable or a function whose declaration follows the pragma
directive. Do not place variables that would normally be in different sections—for
example, variables declared as __no_init and variables declared as const—in the
same named section.

save|restore Saves and restores, respectively, the IAR language
extensions setting around a piece of source code.

Each use of save must be followed by a matching restore
in the same file without any intervening #include directive.

address The absolute address of the global or static variable for which
you want an absolute location.

NAME A user-defined section name—cannot be a section name
predefined for use by the compiler and linker.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Pragma directives

Example #pragma location=0xFF2000
__no_init volatile char PORT1; /* PORT1 is located at address
 0xFF2000 */

#pragma segment="FLASH"
#pragma location="FLASH"
__no_init char PORT2; /* PORT2 is located in section FLASH */

/* A better way is to use a corresponding mechanism */
#define FLASH _Pragma("location=\"FLASH\"")
/* ... */
FLASH __no_init int i; /* i is placed in the FLASH section */

See also Controlling data and function placement in memory, page 210 and Declare and place
your own sections, page 99.

message

Syntax #pragma message(message)

Parameters

Description Use this pragma directive to make the compiler print a message to the standard output
stream when the file is compiled.

Example #ifdef TESTING
#pragma message("Testing")
#endif

no_stack_protect

Syntax #pragma no_stack_protect

Description Use this pragma directive to disable stack protection for the defined function that
follows.

This pragma directive only has effect if the compiler option --stack_protection has
been used.

See also Stack protection, page 77.

message The message that you want to direct to the standard output
stream.
AFE1_AFE2-1:1

357

358

Descriptions of pragma directives

object_attribute

Syntax #pragma object_attribute=object_attribute[object_attribute...]

Parameters For information about object attributes that can be used with this pragma directive, see
Object attributes, page 331.

Description Use this pragma directive to add one or more IAR-specific object attributes to the
declaration or definition of a variable or function. Object attributes affect the actual
variable or function and not its type. When you define a variable or function, the union
of the object attributes from all declarations including the definition, is used.

Example #pragma object_attribute=__no_init
char bar;

is equivalent to:

__no_init char bar;

See also General syntax rules for extended keywords, page 329.

once

Syntax #pragma once

Description Place this pragma directive at the beginning of a header file to prevent the header file
from being included more than once in a compilation. If it is included more than once,
all inclusions after the first one will be ignored.

optimize

Syntax #pragma optimize=[goal][level][disable]

Parameters
goal Choose between:

size, optimizes for size

balanced, optimizes balanced between speed and size

speed, optimizes for speed.

no_size_constraints, optimizes for speed, but relaxes the
normal restrictions for code size expansion.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Pragma directives

Description Use this pragma directive to decrease the optimization level, or to turn off some specific
optimizations. This pragma directive only affects the function that follows immediately
after the directive.

The parameters size, balanced, speed, and no_size_constraints only have
effect on the high optimization level and only one of them can be used as it is not
possible to optimize for speed and size at the same time. It is also not possible to use
preprocessor macros embedded in this pragma directive. Any such macro will not be
expanded by the preprocessor.

Note: If you use the #pragma optimize directive to specify an optimization level that
is higher than the optimization level you specify using a compiler option, the pragma
directive is ignored.

level Specifies the level of optimization—choose between none,
low, medium, or high.

disable Disables one or several optimizations (separated by spaces).
Choose from:

no_code_motion, disables code motion

no_crosscall, disables interprocedural cross call

no_crossjump, disables interprocedural cross jump

no_constant_multiplication, disables multiplication
with constant optimization

no_cse, disables common subexpression elimination

no_inline, disables function inlining

no_relaxed_fp, disables the language relaxation that
optimizes floating-point expressions more aggressively

no_tbaa, disables type-based alias analysis

no_scheduling, disables instruction scheduling

no_unroll, disables loop unrolling
AFE1_AFE2-1:1

359

360

Descriptions of pragma directives

Example #pragma optimize=speed
int SmallAndUsedOften()
{
 /* Do something here. */
}

#pragma optimize=size
int BigAndSeldomUsed()
{
 /* Do something here. */
}

See also Fine-tuning enabled transformations, page 216.

pack

Syntax #pragma pack(n)
#pragma pack()
#pragma pack({push|pop}[,name] [,n])

Parameters

Description Use this pragma directive to specify the maximum alignment of struct and union
members.

The #pragma pack directive affects declarations of structures following the pragma
directive to the next #pragma pack or the end of the compilation unit.

Note: This can result in significantly larger and slower code when accessing members
of the structure.

Use either __packed or #pragma pack to relax the alignment restrictions for a type
and the objects defined using that type. Mixing __packed and #pragma pack might
lead to unexpected behavior.

See also Structure types, page 324 and __packed, page 336.

n Sets an optional structure alignment—one of 1, 2, 4, 8, or 16

Empty list Restores the structure alignment to default

push Sets a temporary structure alignment

pop Restores the structure alignment from a temporarily pushed
alignment

name An optional pushed or popped alignment label
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Pragma directives

preemptive

Syntax #pragma preemptive=addr1[,addr2,...]

Parameters

Description Use this pragma directive with interrupt functions declared __preemptive to make the
interrupt enter sequence save additional control and status registers (CSR) for the
__preemptive interrupt function that follows.

Example #pragma preemptive=0x102,0x104
__preemptive __interrupt void myInterruptFunction(void);
{
 ...
}

See also __preemptive, page 338.

__printf_args

Syntax #pragma __printf_args

Description Use this pragma directive on a function with a printf-style format string. For any call to
that function, the compiler verifies that the argument to each conversion specifier, for
example %d, is syntactically correct.

You cannot use this pragma directive on functions that are members of an overload set
with more than one member.

Example #pragma __printf_args
int printf(char const *,...);

void PrintNumbers(unsigned short x)
{
 printf("%d", x); /* Compiler checks that x is an integer */
}

addrN The address of an additional CSR to save in addition to the
registers saved by using the __preemptive attribute. The
available memory range for CSRs is 0–4095.
AFE1_AFE2-1:1

361

362

Descriptions of pragma directives

public_equ

Syntax #pragma public_equ="symbol",value

Parameters

Description Use this pragma directive to define a public assembler label and give it a value.

Example #pragma public_equ="MY_SYMBOL",0x123456

See also --public_equ, page 272.

required

Syntax #pragma required=symbol

Parameters

Description Use this pragma directive to ensure that a symbol which is needed by a second symbol
is included in the linked output. The directive must be placed immediately before the
second symbol.

Use the directive if the requirement for a symbol is not otherwise visible in the
application, for example, if a variable is only referenced indirectly through the section
it resides in.

Example const char copyright[] = "Copyright by me";

#pragma required=copyright
int main()
{
 /* Do something here. */
}

Even if the copyright string is not used by the application, it will still be included by the
linker and available in the output.

symbol The name of the assembler symbol to be defined (string).

value The value of the defined assembler symbol (integer constant
expression).

symbol Any statically linked function or variable.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Pragma directives

rtmodel

Syntax #pragma rtmodel="key","value"

Parameters

Description Use this pragma directive to add a runtime model attribute to a module, which can be
used by the linker to check consistency between modules.

This pragma directive is useful for enforcing consistency between modules. All modules
that are linked together and define the same runtime attribute key must have the same
value for the corresponding key, or the special value *. It can, however, be useful to state
explicitly that the module can handle any runtime model.

A module can have several runtime model definitions.

Note: The predefined compiler runtime model attributes start with a double underscore.
To avoid confusion, this style must not be used in the user-defined attributes.

Example #pragma rtmodel="I2C","ENABLED"

The linker will generate an error if a module that contains this definition is linked with
a module that does not have the corresponding runtime model attributes defined.

__scanf_args

Syntax #pragma __scanf_args

Description Use this pragma directive on a function with a scanf-style format string. For any call to
that function, the compiler verifies that the argument to each conversion specifier, for
example %d, is syntactically correct.

You cannot use this pragma directive on functions that are members of an overload set
with more than one member.

"key" A text string that specifies the runtime model attribute.

"value" A text string that specifies the value of the runtime model
attribute. Using the special value * is equivalent to not
defining the attribute at all.
AFE1_AFE2-1:1

363

364

Descriptions of pragma directives

Example #pragma __scanf_args
int scanf(char const *,...);

int GetNumber()
{
 int nr;
 scanf("%d", &nr); /* Compiler checks that
 the argument is a
 pointer to an integer */

 return nr;
}

section

Syntax #pragma section="NAME"

alias

#pragma segment="NAME"

Parameters

Description Use this pragma directive to define a section name that can be used by the section
operators __section_begin, __section_end, and __section_size. All section
declarations for a specific section must have the same alignment.

Note: To place variables or functions in a specific section, use the #pragma location
directive or the @ operator.

Example #pragma section="MYSECTION"

See also Dedicated section operators, page 178, and the chapter Linking your application.

stack_protect

Syntax #pragma stack_protect

Description Use this pragma directive to force stack protection for the defined function that follows.

See also Stack protection, page 77.

NAME The name of the section.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Pragma directives

STDC CX_LIMITED_RANGE

Syntax #pragma STDC CX_LIMITED_RANGE {ON|OFF|DEFAULT}

Parameters

Description Use this pragma directive to specify that the compiler can use the normal complex
mathematic formulas for * (multiplication), / (division), and abs.

Note: This directive is required by Standard C. The directive is recognized but has no
effect in the compiler.

STDC FENV_ACCESS

Syntax #pragma STDC FENV_ACCESS {ON|OFF|DEFAULT}

Parameters

Description Use this pragma directive to specify whether your source code accesses the
floating-point environment or not.

Note: This directive is required by Standard C.

STDC FP_CONTRACT

Syntax #pragma STDC FP_CONTRACT {ON|OFF|DEFAULT}

Parameters

ON Normal complex mathematic formulas can be used.

OFF Normal complex mathematic formulas cannot be used.

DEFAULT Sets the default behavior, that is OFF.

ON Source code accesses the floating-point environment.

Note: This argument is not supported by the compiler.

OFF Source code does not access the floating-point environment.

DEFAULT Sets the default behavior, that is OFF.

ON The compiler is allowed to contract floating-point
expressions.

OFF The compiler is not allowed to contract floating-point
expressions.
AFE1_AFE2-1:1

365

366

Descriptions of pragma directives

Description Use this pragma directive to specify whether the compiler is allowed to contract
floating-point expressions or not. This directive is required by Standard C.

Example #pragma STDC FP_CONTRACT ON

See also --no_default_fp_contract, page 263

type_attribute

Syntax #pragma type_attribute=type_attr[type_attr...]

Parameters For information about type attributes that can be used with this pragma directive, see
Type attributes, page 329.

Description Use this pragma directive to specify IAR-specific type attributes, which are not part of
Standard C. Note however, that a given type attribute might not be applicable to all kind
of objects.

This directive affects the declaration of the identifier, the next variable, or the next
function that follows immediately after the pragma directive.

Example For an example of how to use this pragma directive, see Type attributes, page 329.

See also The chapter Extended keywords.

unroll

Syntax #pragma unroll=n

Parameters

Description Use this pragma directive to specify that the loop following immediately after the
directive should be unrolled and that the unrolled loop should have n copies of the loop
body. The pragma directive can only be placed immediately before a for, do, or while
loop, whose number of iterations can be determined at compile time.

DEFAULT Sets the default behavior, that is ON. To change the default
behavior, use the option --no_default_fp_contract.

n The number of loop bodies in the unrolled loop, a constant
integer. #pragma unroll = 1 will prevent the unrolling of
a loop.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Pragma directives

Normally, unrolling is most effective for relatively small loops. However, in some cases,
unrolling larger loops can be beneficial if it exposes opportunities for further
optimizations between the unrolled loop iterations, for example, common subexpression
elimination or dead code elimination.

The #pragma unroll directive can be used to force a loop to be unrolled if the
unrolling heuristics are not aggressive enough. The pragma directive can also be used to
reduce the aggressiveness of the unrolling heuristics.

Example #pragma unroll=4
for (i = 0; i < 64; ++i)
{
 foo(i * k, (i + 1) * k);
}

See also Loop unrolling, page 217

vector

Syntax #pragma vector=vector1[, vector2, vector3, ...]

Parameters

Description Use this pragma directive to specify the vector(s) of an interrupt function whose
declaration follows the pragma directive. Note that several vectors can be defined for
each function.

Example #pragma vector=0x14
__interrupt void my_handler(void);

weak

Syntax #pragma weak symbol1[=symbol2]

Parameters

vectorN The vector number(s) of an interrupt function.

symbol1 A function or variable with external linkage.

symbol2 A defined function or variable.
AFE1_AFE2-1:1

367

368

Descriptions of pragma directives

Description This pragma directive can be used in one of two ways:

● To make the definition of a function or variable with external linkage a weak
definition. The __weak attribute can also be used for this purpose.

● To create a weak alias for another function or variable. You can make more than one
alias for the same function or variable.

Example To make the definition of foo a weak definition, write:

#pragma weak foo

To make NMI_Handler a weak alias for Default_Handler, write:

#pragma weak NMI_Handler=Default_Handler

If NMI_Handler is not defined elsewhere in the program, all references to
NMI_Handler will refer to Default_Handler.

See also __weak, page 340.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Intrinsic functions
● Summary of intrinsic functions

● Descriptions of the intrinsic functions

Summary of intrinsic functions
The intrinsic functions provide direct access to low-level processor operations and can
be very useful in, for example, time-critical routines. The intrinsic functions compile
into inline code, either as a single instruction or as a short sequence of instructions.

The IAR C/C++ Compiler for RISC-V can be used with more than one set of intrinsic
functions.

To use the IAR generic intrinsic functions in an application, include the header file
intrinsics.h.

Note that the intrinsic function names start with double underscores, for example:

__disable_interrupt

This table summarizes the generic intrinsic functions:

Intrinsic function Description

__clear_bits_csr Clears bits in a control and status register.

__disable_interrupt Disables interrupts

__enable_interrupt Enables interrupts

__fp_absNN Returns the absolute value.

__fp_classNN Classifies a floating-point value.

__fp_copy_signNN Returns an argument value with the sign of another
argument.

__fp_maxNN Returns the largest of two values.

__fp_minNN Returns the smallest of two values.

__fp_negate_signNN Returns an argument value with the inverted sign of
another argument.

__fp_sqrtNN Returns the square root of an argument.

__fp_xor_signNN Returns an argument value with the sign bit combined
from the sign bits of that argument and another
argument.

Table 31: Intrinsic functions summary
AFE1_AFE2-1:1

369

370

Summary of intrinsic functions

INTRINSIC FUNCTIONS FOR BIT MANIPULATION

The header file iar_bitmanip_intrinsics.h defines three groups of bitmanip
intrinsic functions:

● __rv_XXX functions that operate on the long data type

● __rv32_XXX functions that operate on the int32_t data type

● __rv64_XXX functions that operate on the int64_t data type

The __rv64_XXX functions are only available on RV64.

These bitmanip functions are taken from the header file rvintrin.h.

__get_interrupt_state Returns the interrupt state

__iar_riscv_cbo_clean Inserts the cbo.clean instructions.

__iar_riscv_cbo_flush Inserts the cbo.flush instructions.

__iar_riscv_cbo_inval Inserts the cbo.inval instructions.

__iar_riscv_cbo_zero Inserts the cbo.zero instructions.

__iar_riscv_prefetch_i Inserts the prefetch.i instructions.

__iar_riscv_prefetch_r Inserts the prefetch.r instructions.

__iar_riscv_prefetch_w Inserts the prefetch.w instructions.

__nds__clrov Clears the Xandesdsp extension overflow bit.

__nds__rdov Reads the Xandesdsp extension overflow bit.

__no_operation Inserts a nop instruction

__read_csr Reads a control and status register.

__return_address Returns the return address.

__riscv_ffb Inserts an ffb instruction

__riscv_ffmism Inserts an ffmism instruction

__riscv_ffzmism Inserts an ffzmism instruction

__riscv_flmism Inserts an flmism instruction

__set_bits_csr Sets bits in a control and status register.

__set_interrupt_state Restores the interrupt state

__wait_for_interrupt Inserts a wfi instruction

__write_csr Writes a value to a control and status register.

Intrinsic function Description

Table 31: Intrinsic functions summary (Continued)
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Intrinsic functions

INTRINSIC FUNCTIONS FOR THE P EXTENSION

The header file pext_intrinsic.h defines intrinsic functions for Packed-SIMD
Instructions (the P extension). The P extension intrinsic functions use the prefix __rv_.

INTRINSIC FUNCTIONS FOR THE CACHE MANAGEMENT
EXTENSIONS

By including the header file intrinsics.h, you also get access to intrinsic functions
for CMO instructions (the standard extensions Zicbom, Zicbop, and Zicboz). The cache
management extensions intrinsic functions use the prefix __iar_riscv_.

INTRINSIC FUNCTIONS FOR SCALAR CRYPTOGRAPHY

The header file iar_cryptography_intrinsics.h, defines __rv_xxx_ functions
that operate on the long data type, with the exceptions __rv_sm4e and __rv_sm4ks,
whose parameters are unsigned int on all architectures. Depending on the target
architecture, that is RV32 or RV64, the appropriate intrinsic functions will be enabled,
using the corresponding parameter sizes.

INTRINSIC FUNCTIONS FOR ANDESTAR™ EXTENSIONS

The instructions in the Xandesdsp (AndeStar™ DSP) instruction set extension can be
accessed directly in your code, via a set of intrinsic functions, by including the header
file nds_intrinsic.h. For information about the functions and instructions, see the
AndeStar V5 DSP ISA Extension Specification, available at www.andestech.com. The
IAR C/C++ Compiler for RISC-V supports the intrinsic functions on the formats
__nds__instruction() and __nds__v_instruction().

The __nds__v_instruction() functions use vector types, for example uint8xt_t,
which behave like arrays, but which can be placed in processor registers. In addition,
arithmetical operations like + can be applied to vector types.

The header file iar_andesperf_intrinsics.h contains a small number of intrinsic
functions that can be used when the Andes Performance Extension is enabled. Include
this file if you want to use these functions.
AFE1_AFE2-1:1

371

372

Descriptions of the intrinsic functions

Descriptions of the intrinsic functions
This section gives reference information about each IAR intrinsic function.

__clear_bits_csr

Syntax unsigned int __clear_bits_csr(unsigned int reg,
 unsigned long value);

Description Clears bits in the control and status register (CSR) reg and returns the original value of
the register.

The register reg can be specified by a number, or by using preprocessor symbols named
_CSR_xxx, defined in the file intrinsics.h.

__disable_interrupt

Syntax __istate_t __disable_interrupt(void);

Description Disables interrupts by inserting the csrc or csrrc instruction, to clear the MIE bit in
the MSTATUS register, and returns the previous interrupt state.

For information about the __istate_t type, see __get_interrupt_state, page 375.

__enable_interrupt

Syntax void __enable_interrupt(void);

Description Enables interrupts by inserting the csrs instruction, to set the MIE bit in the MSTATUS
register.

__fp_absNN

Syntax float __fp_abs32(float);
double __fp_abs64(double);

Description Returns the absolute value (the original value with the sign bit cleared). When a
compatible FPU is available, this is done using the instruction fabs.s (32-bit FPU) or
fabs.d (64-bit FPU). If no compatible FPU is available, a pair of shift instructions is
used instead.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Intrinsic functions

__fp_classNN

Syntax unsigned int __fp_class32(float);
unsigned int __fp_class64(double);

Description Classifies a floating-point value, using the instruction fclass.s (32-bit FPU) or
fclass.d (64-bit FPU). A compatible FPU must be available.

A bit mask with exactly one bit set is returned. The possible values are:

Example if (__fp_class32(value)
 & (_FP_NEGATIVE_SUBNORMAL
 | _FP_POSITIVE_SUBNORMAL))
{
 /* value is subnormal */
}

__fp_copy_signNN

Syntax float __fp_copy_sign32(float value, float sign);
double __fp_copy_sign64(double value, double sign);

Description Returns the argument value with the sign of the argument sign, using the instruction
sgnj.s (32-bit FPU) or sgnj.d (64-bit FPU). A compatible FPU must be available.

_FP_NEGATIVE_INF Negative infinity

_FP_NEGATIVE_NORMAL Negative normal number

_FP_NEGATIVE_SUBNORMAL Negative subnormal number

_FP_NEGATIVE_ZERO Negative zero

_FP_POSITIVE_INF Positive infinity

_FP_POSITIVE_NORMAL Positive normal number

_FP_POSITIVE_SUBNORMAL Positive subnormal number

_FP_POSITIVE_ZERO Positive zero

_FP_SIGNALING_NAN Signaling NaN

_FP_QUIET_NAN Quiet NaN
AFE1_AFE2-1:1

373

374

Descriptions of the intrinsic functions

__fp_maxNN

Syntax float __fp_max32(float value1, float value2);
double __fp_max64(double value1, double value2);

Description Returns the largest value of value1 and value2, using the instruction fmax.s (32-bit
FPU) or fmax.d (64-bit FPU). A compatible FPU must be available.

__fp_minNN

Syntax float __fp_min32(float value1, float value2);
double __fp_min64(double value1, double value2);

Description Returns the smallest value of value1 and value2, using the instruction fmin.s (32-bit
FPU) or fmin.d (64-bit FPU). A compatible FPU must be available.

__fp_negate_signNN

Syntax float __fp_negate_sign32(float value, float sign);
double __fp_negate_sign64(double value, double sign);

Description Returns the argument value with the inverted sign of the argument sign, using the
instruction sgnjn.s (32-bit FPU) or sgnjn.d (64-bit FPU). A compatible FPU must
be available.

__fp_sqrtNN

Syntax float __fp_sqrt32(float);
double __fp_sqrt64(double);

Description Returns the square root of the argument, using the instruction fsqrt.s (32-bit FPU) or
fsqrt.d (64-bit FPU). A compatible FPU must be available.

Note: This function does not set errno.

__fp_xor_signNN

Syntax float __fp_xor_sign32(float value, float sign);
double __fp_xor_sign64(double value, double sign);
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Intrinsic functions

Description Returns the argument value with the sign bit combined from the sign bits of value and
sign (using the exclusive operator), using the instruction sgnjx.s (32-bit FPU) or
sgnjx.d (64-bit FPU). A compatible FPU must be available.

Example __fp_xor_sign64(1.0, 3.0) => 1.0
__fp_xor_sign64(1.0, -3.0) => -1.0
__fp_xor_sign64(-1.0, 3.0) => -1.0
__fp_xor_sign64(-1.0, -3.0) => 1.0

__get_interrupt_state

Syntax __istate_t __get_interrupt_state(void);

Description Returns the global interrupt state. The return value can be used as an argument to the
__set_interrupt_state intrinsic function, which will restore the interrupt state.

Example #include "intrinsics.h"

void CriticalFn()
{
 __istate_t s = __get_interrupt_state();
 __disable_interrupt();

 /* Do something here. */

 __set_interrupt_state(s);
}

The advantage of using this sequence of code compared to using
__disable_interrupt and __enable_interrupt is that the code in this example
will not enable any interrupts disabled before the call of __get_interrupt_state.

__iar_riscv_cbo_clean

Syntax void __iar_riscv_cbo_clean(void const *);

Description Inserts the cbo.clean instructions. This intrinsic function requires the Zicbom
extension.

To use this intrinsic function in an application, include the header file intrinsics.h.
AFE1_AFE2-1:1

375

376

Descriptions of the intrinsic functions

__iar_riscv_cbo_flush

Syntax void __iar_riscv_cbo_flush(void const *);

Description Inserts the cbo.flush instructions. This intrinsic function requires the Zicbom
extension.

To use this intrinsic function in an application, include the header file intrinsics.h.

__iar_riscv_cbo_inval

Syntax void __iar_riscv_cbo_inval(void const *);

Description Inserts the cbo.inval instructions. This intrinsic function requires the Zicbom
extension.

To use this intrinsic function in an application, include the header file intrinsics.h.

__iar_riscv_cbo_zero

Syntax void __iar_riscv_cbo_zero(void const *);

Description Inserts the cbo.zero instructions. This intrinsic function requires the Zicboz extension.

To use this intrinsic function in an application, include the header file intrinsics.h.

__iar_riscv_prefetch_i

Syntax void __iar_riscv_prefetch_i(void const *);

Description Inserts the prefetch.i instructions. This intrinsic function requires the Zicbop
extension.

To use this intrinsic function in an application, include the header file intrinsics.h.

__iar_riscv_prefetch_r

Syntax void __iar_riscv_prefetch_r(void const *);

Description Inserts the prefetch.r instructions. This intrinsic function requires the Zicbop
extension.

To use this intrinsic function in an application, include the header file intrinsics.h.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Intrinsic functions

__iar_riscv_prefetch_w

Syntax void __iar_riscv_prefetch_w(void const *);

Description Inserts the prefetch.w instructions. This intrinsic function requires the Zicbop
extension.

To use this intrinsic function in an application, include the header file intrinsics.h.

__nds__clrov

Syntax void __nds__clrov(void);

Description Clears the Xandesdsp extension overflow bit.

To use this intrinsic function in an application, include the header file
nds_intrinsic.h.

__nds__rdov

Syntax unsigned long __nds__rdov(void);

Description Reads the Xandesdsp extension overflow bit. Returns 1 if an overflow has occurred and
0 otherwise.

To use this intrinsic function in an application, include the header file
nds_intrinsic.h.

__no_operation

Syntax void __no_operation(void);

Description Inserts a nop instruction.

__read_csr

Syntax unsigned int __read_csr(unsigned int reg);

Description Reads the control and status register (CSR) reg.

The register reg can be specified by a number, or by using preprocessor symbols named
_CSR_xxx, defined in the file intrinsics.h.
AFE1_AFE2-1:1

377

378

Descriptions of the intrinsic functions

__return_address

Syntax void * __return_address(void);

Description Returns the address that the function will return to. For interrupt functions, the
appropriate control and status register (CSR) will be read.For regular functions, the
value is fetched from the link register—usually ra, but it can be a different register for
static functions.

__riscv_ffb

Syntax unsigned long __riscv_ffb(unsigned long, unsigned long);

Description Inserts an ffb instruction (“Find first byte”). This instruction is part of the Andes
Performance Extension and requires that you have included the header file
iar_andesperf_intrinsics.h.

__riscv_ffmism

Syntax unsigned long __riscv_ffmism(unsigned long, unsigned long);

Description Inserts an ffmism instruction (“Find first mismatch”). This instruction is part of the
Andes Performance Extension and requires that you have included the header file
iar_andesperf_intrinsics.h.

__riscv_ffzmism

Syntax unsigned long __riscv_ffzmism(unsigned long, unsigned long);

Description Inserts an ffzmism instruction (“Find first zero or mismatch”). This instruction is part
of the Andes Performance Extension and requires that you have included the header file
iar_andesperf_intrinsics.h.

__riscv_flmism

Syntax unsigned long __riscv_flmism(unsigned long, unsigned long);

Description Inserts an flmism instruction (“Find last mismatch”). This instruction is part of the
Andes Performance Extension and requires that you have included the header file
iar_andesperf_intrinsics.h.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Intrinsic functions

__set_bits_csr

Syntax unsigned int __set_bits_csr(unsigned int reg,
 unsigned long value);

Description Sets bits in the control and status register (CSR) reg and returns the original value of
the register.

The register reg can be specified by a number, or by using preprocessor symbols named
_CSR_xxx, defined in the file intrinsics.h.

__set_interrupt_state

Syntax void __set_interrupt_state(__istate_t);

Description Restores the interrupt state to a value previously returned by the
__get_interrupt_state function.

For information about the __istate_t type, see “__get_interrupt_state” on page 375.

__wait_for_interrupt

Syntax void __wait_for_interrupt(void);

Description Inserts a wfi instruction.

__write_csr

Syntax unsigned int __write_csr(unsigned int reg,
 unsigned long value);

Description Writes value to the control and status register (CSR) reg and returns the original value
of the register.

The register reg can be specified by a number, or by using preprocessor symbols named
_CSR_xxx, defined in the file intrinsics.h.
AFE1_AFE2-1:1

379

380

Descriptions of the intrinsic functions

AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

The preprocessor
● Overview of the preprocessor

● Description of predefined preprocessor symbols

● Descriptions of miscellaneous preprocessor extensions

Overview of the preprocessor
The preprocessor of the IAR C/C++ Compiler for RISC-V adheres to Standard C. The
compiler also makes these preprocessor-related features available to you:

● Predefined preprocessor symbols

These symbols allow you to inspect the compile-time environment, for example, the
time and date of compilation. For more information, see Description of predefined
preprocessor symbols, page 382.

● User-defined preprocessor symbols defined using a compiler option

In addition to defining your own preprocessor symbols using the #define directive,
you can also use the option -D, see -D, page 248.

● Predefined preprocessor macro symbols

Use the option --predef_macros to see the predefined preprocessor macro
symbols and their values for a specific command line. For more information, see
--predef_macros, page 270.

● Preprocessor extensions

There are several preprocessor extensions, for example, many pragma directives. For
more information, see the chapter Pragma directives. For information about other
extensions related to the preprocessor, see Descriptions of miscellaneous
preprocessor extensions, page 393.

● Preprocessor output

Use the option --preprocess to direct preprocessor output to a named file, see
--preprocess, page 271.

To specify a path for an include file, use forward slashes:

#include "mydirectory/myfile"

In source code, use forward slashes:

file = fopen("mydirectory/myfile","rt");
AFE1_AFE2-1:1

381

382

Description of predefined preprocessor symbols

Backslashes can also be used—use one in include file paths and two in source code
strings.

Description of predefined preprocessor symbols
This section lists and describes the preprocessor symbols.

Note: To list the predefined preprocessor symbols, use the compiler option
--predef_macros. See --predef_macros, page 270.

__BASE_FILE__

Description A string that identifies the name of the base source file (that is, not the header file), being
compiled.

See also __FILE__, page 383, --no_normalize_file_macros, page 264, and
--no_path_in_file_macros, page 265.

__BUILD_NUMBER__

Description A unique integer that identifies the build number of the compiler currently in use. The
build number does not necessarily increase with a compiler that is released later.

__COUNTER__

Description A macro that expands to a new integer each time it is expanded, starting at zero (0) and
counting up.

__cplusplus

Description An integer which is defined when the compiler runs in any of the C++ modes, otherwise
it is undefined. When defined, its value is 201703L. This symbol can be used with
#ifdef to detect whether the compiler accepts C++ code. It is particularly useful when
creating header files that are to be shared by C and C++ code.

This symbol is required by Standard C.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

The preprocessor

__DATE__

Description A string that identifies the date of compilation, which is returned in the form "Mmm dd
yyyy", for example, "Oct 30 2018".

This symbol is required by Standard C.

__EXCEPTIONS

Description A symbol that is defined when exceptions are supported in C++.

__FILE__

Description A string that identifies the name of the file being compiled, which can be both the base
source file and any included header file.

This symbol is required by Standard C.

See also __BASE_FILE__, page 382, --no_normalize_file_macros, page 264, and
--no_path_in_file_macros, page 265.

__func__

Description A predefined string identifier that is initialized with the name of the function in which
the symbol is used. This is useful for assertions and other trace utilities. The symbol
requires that language extensions are enabled.

See also -e, page 254 and __PRETTY_FUNCTION__, page 384.

__FUNCTION__

Description A predefined string identifier that is initialized with the name of the function in which
the symbol is used, similar to char _FUNCTION_[]="main"; if used in main(). This
is useful for assertions and other trace utilities. The symbol requires that language
extensions are enabled.

See also -e, page 254 and __PRETTY_FUNCTION__, page 384.
AFE1_AFE2-1:1

383

384

Description of predefined preprocessor symbols

__IAR_SYSTEMS_ICC__

Description An integer that identifies the IAR compiler platform. The current value is 9—the
number could be higher in a future version of the product. This symbol can be tested
with #ifdef to detect whether the code was compiled by a compiler from IAR.

__ICCRISCV__

Description An integer that is set to 1 when the code is compiled with the IAR C/C++ Compiler for
RISC-V.

__LIBCPP

Description A symbol that is defined when the Libc++ library is used.

_LIBCPP_ENABLE_CXX17_REMOVED_FEATURES

Description By default, the Libc++ library does not support deprecated C++17 features. To enable
support for these, define the preprocessor symbol
_LIBCPP_ENABLE_CXX17_REMOVED_FEATURES prior to including the relevant system
header. For a list of some of these deprecated features, see Not supported C/C++
functionality, page 403.

__LINE__

Description An integer that identifies the current source line number of the file being compiled,
which can be both the base source file and any included header file.

This symbol is required by Standard C.

__PRETTY_FUNCTION__

Description A predefined string identifier that is initialized with the function name, including
parameter types and return type, of the function in which the symbol is used, for
example, "void func(char)". This symbol is useful for assertions and other trace
utilities. The symbol requires that language extensions are enabled.

See also -e, page 254 and__func__, page 383.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

The preprocessor

__riscv

Description An integer that is set to 1 when the code is compiled for RISC-V.

__riscv_32e

Description An integer that is set to 1 when the code is compiled for the RV32E base instruction set.

__riscv_a

Description This is an architecture extension test macro. It is defined when the code is compiled for
a RISC-V core with the A extension. The value of the symbol is an integer that identifies
the version of the extension.

See also __riscv_arch_test, page 385.

__riscv_arch_test

Description An integer that is set to 1 when the compiler supports architecture extension test macros.
The value of an architecture extension test macro is computed based on its version
number, using this formula:

major_v * 1000000 + minor_v * 1000 + revision_v

Example If the F extension is version 2.2, __riscv_f is defined to 2002000.

If the B extension is version 0.92, __riscv_b is defined to 92000.

__riscv_atomic

Description An integer that is set to 1 when the code is compiled for a RISC-V core with the A
extension. This symbol is deprecated. Use the symbol __riscv_a instead.

__riscv_b

Description This is an architecture extension test macro. It is defined when the code is compiled for
a RISC-V core with the B extension. The value of the symbol is an integer that identifies
the version of the extension.

See also __riscv_arch_test, page 385.
AFE1_AFE2-1:1

385

386

Description of predefined preprocessor symbols

__riscv_bitmanip

Description An integer that is set to 1 when the code is compiled for a RISC-V core with the B
extension. This symbol is deprecated. Use the symbol __riscv_b instead.

__riscv_c

Description This is an architecture extension test macro. It is defined when the code is compiled for
a RISC-V core with the C extension. The value of the symbol is an integer that identifies
the version of the extension.

See also __riscv_arch_test, page 385.

__riscv_cmodel_medany

Description An integer that is set to 1 when the code is compiled for the Medany code model.

__riscv_cmodel_medlow

Description An integer that is set to 1 when the code is compiled for the Medlow code model.

__riscv_compressed

Description An integer that is set to 1 when the code is compiled for a RISC-V core with the C
extension. This symbol is deprecated. Use the symbol __riscv_c instead.

__riscv_d

Description This is an architecture extension test macro. It is defined when the code is compiled for
a RISC-V core with the D extension. The value of the symbol is an integer that identifies
the version of the extension.

See also __riscv_arch_test, page 385.

__riscv_div

Description An integer that is set to 1 when the code is compiled for a RISC-V core with the M
extension. This symbol is deprecated. Use the symbol __riscv_m instead.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

The preprocessor

__riscv_dsp

Description An integer that is set to 1 when the code is compiled for a RISC-V core with the
Xandesdsp extension.

__riscv_e

Description This is an architecture extension test macro. It is defined when the code is compiled for
the RV32E base instruction set. The value of the symbol is an integer that identifies the
version of the instruction set.

See also __riscv_arch_test, page 385.

__riscv_f

Description This is an architecture extension test macro. It is defined when the code is compiled for
a RISC-V core with the F extension. The value of the symbol is an integer that identifies
the version of the extension.

See also __riscv_arch_test, page 385.

__riscv_fdiv

Description An integer that is set to 1 when the code is compiled for a RISC-V core with the F
extension. This symbol is deprecated. Use one of the symbols __riscv_d or
__riscv_f instead.

__riscv_flen

Description An integer that is set to 32 when the code is compiled for a RISC-V core with the F (but
not the D) extension, and to 64 when the code is compiled for a core with the FD
extensions (implicitly or explicitly). If the code is compiled for neither extension, this
symbol is undefined.

__riscv_fsqrt

Description An integer that is set to 1 when the code is compiled for a RISC-V core with the F
extension. This symbol is deprecated. Use one of the symbols __riscv_d or
__riscv_f instead.
AFE1_AFE2-1:1

387

388

Description of predefined preprocessor symbols

__riscv_i

Description This is an architecture extension test macro. It is defined when the code is compiled for
the RV32I base instruction set. The value of the symbol is an integer that identifies the
version of the instruction set.

See also __riscv_arch_test, page 385.

__riscv_m

Description This is an architecture extension test macro. It is defined when the code is compiled for
a RISC-V core with the M extension. The value of the symbol is an integer that identifies
the version of the extension.

See also __riscv_arch_test, page 385.

__riscv_mul

Description An integer that is set to 1 when the code is compiled for a RISC-V core with the M
extension. This symbol is deprecated. Use the symbol __riscv_m instead.

__riscv_muldiv

Description An integer that is set to 1 when the code is compiled for a RISC-V core with the M
extension. This symbol is deprecated. Use the symbol __riscv_m instead.

__riscv_p

Description This is an architecture extension test macro. It is defined when the code is compiled for
a RISC-V core with the P extension. The value of the symbol is an integer that identifies
the version of the extension.

See also __riscv_arch_test, page 385.

__riscv_xbcountzeroes

Description An integer that is set to 1 when the code is compiled for a RISC-V core with the
extension Xbcountzeroes (a subset of the standard extension Zbb with count
leading/trailing zero instructions).
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

The preprocessor

__riscv_xlen

Description An integer that is set to the integer register size of the current base instruction set. This
is 32 for RV32 and 64 for RV64.

__riscv_zba

Description An integer that is set to the version number of the B extension when the code is compiled
for a RISC-V core with the standard extension Zba (“base” bit manipulation
instructions).

__riscv_zbb

Description An integer that is set to the version number of the B extension when the code is compiled
for a RISC-V core with the standard extension Zbb (“best of” bit manipulation
instructions).

__riscv_zbc

Description An integer that is set to the version number of the B extension when the code is compiled
for a RISC-V core with the standard extension Zbc (“carry-less” bit manipulation
instructions).

__riscv_zbpbo

Description An integer that is set to the version number of the P extension when the code is compiled
for a RISC-V core with the standard extension Zbpbo (bit manipulation instructions
required by the P extension).

__riscv_zbs

Description An integer that is set to the version number of the B extension when the code is compiled
for a RISC-V core with the standard extension Zbs (“single bit” bit manipulation
instructions).
AFE1_AFE2-1:1

389

390

Description of predefined preprocessor symbols

__riscv_zdinx

Description An integer that is set to the version number of the Zdinx extension when the code is
compiled for a RISC-V core with the standard extension Zdinx (double-precision
floating-point in integer registers).

__riscv_zfinx

Description An integer that is set to the version number of the Zfinx extension when the code is
compiled for a RISC-V core with the standard extension Zfinx (single-precision
floating-point in integer registers).

__riscv_zicbom

Description An integer that is set to the version number of the RISC-V CMO standard when the code
is compiled for a RISC-V core with the standard extension Zicbom (cache block
management operations).

__riscv_zicbop

Description An integer that is set to the version number of the RISC-V CMO standard when the code
is compiled for a RISC-V core with the standard extension Zicbop (cache block prefetch
operations).

__riscv_zicboz

Description An integer that is set to the version number of the RISC-V CMO standard when the code
is compiled for a RISC-V core with the standard extension Zicboz (cache block zero
operations).

__riscv_zpsfoperand

Description An integer that is set to the version number of the P extension when the code is compiled
for a RISC-V core with the standard extension Zpsfoperand (P extension instructions for
accessing register pairs).
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

The preprocessor

__riscv_zpn

Description An integer that is set to the version number of the P extension when the code is compiled
for a RISC-V core with the standard extension Zpn (P extension instructions that are not
included in Zbpbo or Zpsfoperand).

__RTTI__

Description A symbol that is defined when runtime type information (RTTI) is supported in C++.

__STDC__

Description An integer that is set to 1, which means the compiler adheres to Standard C. This symbol
can be tested with #ifdef to detect whether the compiler in use adheres to Standard C.*

This symbol is required by Standard C.

__STDC_LIB_EXT1__

Description An integer that is set to 201112L and that signals that Annex K, Bounds-checking
interfaces, of the C standard is supported.

See also __STDC_WANT_LIB_EXT1__, page 393.

__STDC_NO_ATOMICS__

Description Set to 1 if the compiler does not support atomic types nor stdatomic.h.

See also Atomic operations, page 404.

__STDC_NO_THREADS__

Description Set to 1 to indicate that the implementation does not support threads.

__STDC_NO_VLA__

Description Set to 1 to indicate that C variable length arrays, VLAs, are not enabled.

See also --vla, page 278.
AFE1_AFE2-1:1

391

392

Description of predefined preprocessor symbols

__STDC_UTF16__

Description Set to 1 to indicate that the values of type char16_t are UTF-16 encoded.

__STDC_UTF32__

Description Set to 1 to indicate that the values of type char32_t are UTF-32 encoded.

__STDC_VERSION__

Description An integer that identifies the version of the C standard in use. The symbol expands to
201710L, unless the --c89 compiler option is used, in which case the symbol expands
to 199409L.

This symbol is required by Standard C.

__SUBVERSION__

Description An integer that identifies the subversion number of the compiler version number, for
example 3 in 1.2.3.4.

__TIME__

Description A string that identifies the time of compilation in the form "hh:mm:ss".

This symbol is required by Standard C.

__TIMESTAMP__

Description A string constant that identifies the date and time of the last modification of the current
source file. The format of the string is the same as that used by the asctime standard
function (in other words, "Tue Sep 16 13:03:52 2014").

__VER__

Description An integer that identifies the version number of the IAR compiler in use. The value of
the number is calculated in this way: (100 * the major version number + the
minor version number). For example, for compiler version 3.34, 3 is the major
version number and 34 is the minor version number. Hence, the value of __VER__ is
334.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

The preprocessor

Descriptions of miscellaneous preprocessor extensions
This section gives reference information about the preprocessor extensions that are
available in addition to the predefined symbols, pragma directives, and Standard C
directives.

#include_next

Description This is a variant of the #include directive. It searches for the named file only in the
directories on the search path that follow the directory in which the current source file
(the one containing the #include_next directive) is found.

NDEBUG

Description This preprocessor symbol determines whether any assert macros you have written in
your application shall be included or not in the built application.

If this symbol is not defined, all assert macros are evaluated. If the symbol is defined,
all assert macros are excluded from the compilation. In other words, if the symbol is:

● defined, the assert code will not be included

● not defined, the assert code will be included

This means that if you write any assert code and build your application, you should
define this symbol to exclude the assert code from the final application.

Note: The assert macro is defined in the assert.h standard include file.

In the IDE, the NDEBUG symbol is automatically defined if you build your application in
the Release build configuration.

See also __iar_ReportAssert, page 140.

__STDC_WANT_LIB_EXT1__

Description If this symbol is defined to 1 prior to any inclusions of system header files, it will enable
the use of functions from Annex K, Bounds-checking interfaces, of the C standard.

See also Bounds checking functionality, page 124 and C bounds-checking interface, page 405.
AFE1_AFE2-1:1

393

394

Descriptions of miscellaneous preprocessor extensions

#warning

Syntax #warning message

where message can be any string.

Description Use this preprocessor directive to produce messages. Typically, this is useful for
assertions and other trace utilities, similar to the way the Standard C #error directive
is used. This directive is not recognized when the --strict compiler option is used.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

C/C++ standard library
functions
● C/C++ standard library overview

● DLIB runtime environment—implementation details

For detailed reference information about the library functions, see the online
help system.

C/C++ standard library overview
The compiler comes with two different implementations of the C/C++ standard library.

The IAR DLIB runtime environment offers low-level support for C as well as C++.
When using this runtime environment, you have a choice of two libraries:

● The IAR DLIB C/C++ library is a complete implementation of the C/C++ standard
library, compliant with standard C and C++14, except for thread-related
functionality. It can be configured to include different levels of support for locale,
file descriptors, multibyte characters, etc.

● The IAR Libc++ library is a complete implementation of the C/C++ standard
library, compliant with standard C and C++17, except for thread-related and
filesystem functionality. The Libc++ library is taken from LLVM under an open
source license and is used as is, with extensions and limitations from the C++17
standard.

Both these implementations are built on top of the IAR DLIB runtime environment and
both implementations support floating-point numbers in IEC 60559 format. For more
information about this environment, and about how to customize the DLIB library, see
the chapter The DLIB runtime environment.

For detailed information about the DLIB library functions, see the documentation
supplied with the product in the riscv\doc directory in the file HelpDLIB6.chm.
There is no reference information available for the Libc++ library functions.

For more information about library functions, see the chapters about
implementation-defined behavior.
AFE1_AFE2-1:1

395

396

C/C++ standard library overview

HEADER FILES

Your application program gains access to library definitions through header files, which
it incorporates using the #include directive. The definitions are divided into several
different header files, each covering a particular functional area, letting you include just
those that are required.

It is essential to include the appropriate header file before making any reference to its
definitions. Failure to do so can cause the call to fail during execution, or generate error
or warning messages at compile time or link time.

LIBRARY OBJECT FILES

Most of the library definitions can be used without modification, that is, directly from
the library object files that are supplied with the product. For information about how to
set up a runtime library, see Setting up the runtime environment, page 117. The linker
will include only those routines that are required—directly or indirectly—by your
application.

For information about how you can override library modules with your own versions,
see Overriding library modules, page 121.

ALTERNATIVE MORE ACCURATE LIBRARY FUNCTIONS

The default implementation of cos, sin, tan, and pow is designed to be fast and small.
As an alternative, there are versions designed to provide better accuracy. They are
named __iar_xxx_accuratef for float variants of the functions and
__iar_xxx_accuratel for long double variants of the functions, and where xxx is
cos, sin, etc.

To use these more accurate versions, use the --accurate_math linker option.

REENTRANCY

A function that can be simultaneously invoked in the main application and in any
number of interrupts is reentrant. A library function that uses statically allocated data is
therefore not reentrant.

Most parts of the DLIB runtime environment are reentrant, but the following functions
and parts are not reentrant because they need static data:

● Heap functions—malloc, free, realloc, calloc, etc. and the C++ operators
new and delete

● Locale functions—localeconv, setlocale

● Multibyte functions—mblen, mbrlen, mbrtowc, mbsrtowc, mbtowc, wcrtomb,
wcsrtomb, wctomb
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

C/C++ standard library functions

● Rand functions—rand, srand

● Time functions—asctime, localtime, gmtime, mktime

● The miscellaneous functions atexit, perror, strerror, strtok

● Functions that use files or the heap in some way. This includes scanf, sscanf,
getchar, getwchar, putchar, and putwchar. In addition, if you are using the
options --printf_multibytes and --dlib_config=Full, the printf and
sprintf functions (or any variants) can also use the heap.

Functions that can set errno are not reentrant, because an errno value resulting from
one of these functions can be destroyed by a subsequent use of the function before it is
read. This applies to math and string conversion functions, among others.

Remedies for this are:

● Do not use non-reentrant functions in interrupt service routines

● Guard calls to a non-reentrant function by a mutex, or a secure region, etc.

THE LONGJMP FUNCTION

A longjmp is in effect a jump to a previously defined setjmp. Any variable length
arrays or C++ objects residing on the stack during stack unwinding will not be
destroyed. This can lead to resource leaks or incorrect application behavior.

DLIB runtime environment—implementation details
These topics are covered:

● Briefly about the DLIB runtime environment

● C header files

● C++ header files

● Library functions as intrinsic functions

● Not supported C/C++ functionality

● Atomic operations

● Added C functionality

● Non-standard implementations

● Symbols used internally by the library

BRIEFLY ABOUT THE DLIB RUNTIME ENVIRONMENT

The DLIB runtime environment provides most of the important C and C++ standard
library definitions that apply to embedded systems. These are of the following types:
AFE1_AFE2-1:1

397

398

DLIB runtime environment—implementation details

● Adherence to a free-standing implementation of Standard C. The library supports
most of the hosted functionality, but you must implement some of its base
functionality. For more information, see the chapter Implementation-defined
behavior for Standard C.

● Standard C library definitions, for user programs.

● C++ library definitions, for user programs.

● CSTARTUP, the module containing the start-up code, see the chapter The DLIB
runtime environment.

● Runtime support libraries, for example, low-level floating-point routines.

● Intrinsic functions, allowing low-level use of RISC-V features. For more
information, see the chapter Intrinsic functions.

In addition, the DLIB runtime environment includes some added C functionality, see
Added C functionality, page 404.

C HEADER FILES

This section lists the C header files specific to the DLIB runtime environment. Header
files may additionally contain target-specific definitions, which are documented in the
chapter Using C.

This table lists the C header files:

Header file Usage

assert.h Enforcing assertions when functions execute

complex.h Computing common complex mathematical functions

ctype.h Classifying characters

errno.h Testing error codes reported by library functions

fenv.h Floating-point exception flags

float.h Testing floating-point type properties

inttypes.h Defining formatters for all types defined in stdint.h

iso646.h Alternative spellings

limits.h Testing integer type properties

locale.h Adapting to different cultural conventions

math.h Computing common mathematical functions

setjmp.h Executing non-local goto statements

signal.h Controlling various exceptional conditions

stdalign.h Handling alignment on data objects

Table 32: Traditional Standard C header files—DLIB
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

C/C++ standard library functions

C++ HEADER FILES

This section lists the C++ header files:

● The C++ library header files

The header files that constitute the Standard C++ library.

● The C++ C header files

The C++ header files that provide the resources from the C library.

The C++ library header files

This table lists the header files that can be used in C++:

stdarg.h Accessing a varying number of arguments

stdatomic.h Adding support for atomic operations.

stdbool.h Adds support for the bool data type in C.

stddef.h Defining several useful types and macros

stdint.h Providing integer characteristics

stdio.h Performing input and output

stdlib.h Performing a variety of operations

stdnoreturn.h Adding support for non-returning functions

string.h Manipulating several kinds of strings

tgmath.h Type-generic mathematical functions

threads.h Adding support for multiple threads of execution
This functionality is not supported.

time.h Converting between various time and date formats

uchar.h Unicode functionality

wchar.h Support for wide characters

wctype.h Classifying wide characters

Header file Usage

algorithm Defines several common operations on containers and other
sequences

any Adding support for the std::any class. Requires Libc++.

array Adding support for the array sequencer container

atomic Adding support for atomic operations

Table 33: C++ header files

Header file Usage

Table 32: Traditional Standard C header files—DLIB (Continued)
AFE1_AFE2-1:1

399

400

DLIB runtime environment—implementation details

bitset Defining a container with fixed-sized sequences of bits

charconv Adding support for the std::to_chars and
std::from_chars routines. Requires Libc++.

chrono Adding support for time utilities. Note that the
steady_clock class in not available in Libc++.

codecvt Adding support for conversions between encodings

complex Defining a class that supports complex arithmetic

condition_variable Adding support for thread condition variables.
This functionality is not supported.

deque A deque sequence container

exception Defining several functions that control exception handling

forward_list Adding support for the forward list sequence container

fstream Defining several I/O stream classes that manipulate external files

functional Defines several function objects

future Adding support for passing function information between threads
This functionality is not supported.

hash_map A map associative container, based on a hash algorithm. This is a
C++14 header—it is not available in Libc++.

hash_set A set associative container, based on a hash algorithm. This is a
C++14 header—it is not available in Libc++.

initializer_list Adding support for the initializer_list class

iomanip Declaring several I/O stream manipulators that take an argument

ios Defining the class that serves as the base for many I/O streams
classes

iosfwd Declaring several I/O stream classes before they are necessarily
defined

iostream Declaring the I/O stream objects that manipulate the standard
streams

istream Defining the class that performs extractions

iterator Defines common iterators, and operations on iterators

limits Defining numerical values

list A doubly-linked list sequence container

locale Adapting to different cultural conventions

map A map associative container

Header file Usage

Table 33: C++ header files (Continued)
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

C/C++ standard library functions

memory Defines facilities for managing memory

mutex Adding support for the data race protection object mutex.
This functionality is not supported.

new Declaring several functions that allocate and free storage

numeric Performs generalized numeric operations on sequences

optional Adding support for the std::optional class template.
Requires Libc++.

ostream Defining the class that performs insertions

queue A queue sequence container

random Adding support for random numbers

ratio Adding support for compile-time rational arithmetic

regex Adding support for regular expressions

scoped_allocator Adding support for the memory resource
scoped_allocator_adaptor

set A set associative container

shared_mutex Adding support for the data race protection object
shared_mutex.
This functionality is not supported.

slist A singly-linked list sequence container. This is a C++14 header—
it is not available in Libc++.

sstream Defining several I/O stream classes that manipulate string
containers

stack A stack sequence container

stdexcept Defining several classes useful for reporting exceptions

streambuf Defining classes that buffer I/O stream operations

string Defining a class that implements a string container

string_view Adding support for the std::basic_string_view class
template. Requires Libc++.

strstream Defining several I/O stream classes that manipulate in-memory
character sequences

system_error Adding support for global error reporting

thread Adding support for multiple threads of execution.
This functionality is not supported.

tuple Adding support for the tuple class

Header file Usage

Table 33: C++ header files (Continued)
AFE1_AFE2-1:1

401

402

DLIB runtime environment—implementation details

Using Standard C libraries in C++

The C++ library works in conjunction with some of the header files from the Standard
C library, sometimes with small alterations. The header files come in two forms—new
and traditional—for example, cassert and assert.h. The former puts all declared
symbols in the global and std namespace, whereas the latter puts them in the global
namespace only.

This table shows the new header files:

typeinfo Defining type information support

typeindex Adding support for type indexes

typetraits Adding support for traits on types

unordered_map Adding support for the unordered map associative container

unordered_set Adding support for the unordered set associative container

utility Defines several utility components

valarray Defining varying length array container

variant Adding support for the std::variant class template.
Requires Libc++.

vector A vector sequence container

Header file Usage

cassert Enforcing assertions when functions execute

ccomplex Computing common complex mathematical functions

cctype Classifying characters

cerrno Testing error codes reported by library functions

cfenv Floating-point exception flags

cfloat Testing floating-point type properties

cinttypes Defining formatters for all types defined in stdint.h

ciso646 Alternative spellings

climits Testing integer type properties

clocale Adapting to different cultural conventions

cmath Computing common mathematical functions

csetjmp Executing non-local goto statements

csignal Controlling various exceptional conditions

Table 34: New Standard C header files—DLIB

Header file Usage

Table 33: C++ header files (Continued)
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

C/C++ standard library functions

LIBRARY FUNCTIONS AS INTRINSIC FUNCTIONS

Certain C library functions will under some circumstances be handled as intrinsic
functions and will generate inline code instead of an ordinary function call, for example,
memcpy, memset, and strcat.

NOT SUPPORTED C/C++ FUNCTIONALITY

The following files have contents that are not supported by the IAR C/C++ Compiler:

● threads.h, condition_variable, future, mutex, shared_mutex, thread,
cthreads

● exception, stdexcept, typeinfo

● memory_resource

● filesystem

Some library functions will have the same address. This occurs, most notably, when the
library function parameters differ in type but not in size, as for example, cos(double)
and cosl(long double).

cstdalign Handling alignment on data objects

cstdarg Accessing a varying number of arguments

cstdatomic Adding support for atomic operations

cstdbool Adds support for the bool data type in C.

cstddef Defining several useful types and macros

cstdint Providing integer characteristics

cstdio Performing input and output

cstdlib Performing a variety of operations

cstdnoreturn Adding support for non-returning functions

cstring Manipulating several kinds of strings

ctgmath Type-generic mathematical functions

cthreads Adding support for multiple threads of execution.
This functionality is not supported.

ctime Converting between various time and date formats

cuchar Unicode functionality

cwchar Support for wide characters

cwctype Classifying wide characters

Header file Usage

Table 34: New Standard C header files—DLIB (Continued)
AFE1_AFE2-1:1

403

404

DLIB runtime environment—implementation details

The IAR C/C++ Compiler does not support threads as described in the C11 and C++14
standards. However, using DLib_Threads.h and an RTOS, you can build an
application with thread support. For more information, see Managing a multithreaded
environment, page 148.

C++17 parallel algorithms for containers with the header execution are not supported in
Libc++.

By default, the Libc++ library does not support deprecated C++17 features such as
auto_ptr(), auto_ptr_ref(), random_shuffle, set_unexpected(),
get_unexpected(), unary_function(), binary_function(),
const_mem_fun(), and const_mem_fun_ref_t().

To enable support for deprecated C++17 features, define the preprocessor symbol
_LIBCPP_ENABLE_CXX17_REMOVED_FEATURES prior to including the relevant system
header.

ATOMIC OPERATIONS

The standard C and C++ atomic operations are available in the files stdatomic.h and
atomic. If atomic operations are not available, the predefined preprocessor symbol
__STDC_NO_ATOMICS__ is defined to 1. This is true both in C and C++.

Atomic operations are either supported by hardware—if the RISC-V extension A is
available—or by software.

For devices with hardware support for atomic operations, the primitive type
atomic_flag and 32-bit types are lock-free. Other types are implemented using locks.
For devices without hardware support for atomic operations, all atomic operations are
guarded by locks. The locks are implemented using two functions (that you can
override):

unsigned int __iar_atomic_acquire_lock(void volatile* addr);
__iar_atomic_release_lock(unsigned int acq_token);

For devices that support the A extension, the default lock implementation is based on
spin locks. For devices without support for the A extension, the locks enable and disable
interrupts.

ADDED C FUNCTIONALITY

The DLIB runtime environment includes some added C functionality:

● C bounds-checking interface

● DLib_Threads.h

● fenv.h

● iar_dlmalloc.h
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

C/C++ standard library functions

● LowLevelIOInterface.h

● stdio.h

● stdlib.h

● string.h

● time.h (time32.h, time64.h)

C bounds-checking interface

The C library supports Annex K (Bounds-checking interfaces) of the C standard. It adds
symbols, types, and functions in the header files errno.h, stddef.h, stdint.h,
stdio.h, stdlib.h, string.h, time.h (time32.h, time64.h), and wchar.h.

To enable the interface, define the preprocessor extension __STDC_WANT_LIB_EXT1__
to 1 prior to including any system header file. See __STDC_WANT_LIB_EXT1__, page
393.

As an added benefit, the compiler will issue warning messages for the use of unsafe
functions for which the interface has a safer version. For example, using strcpy instead
of the safer strcpy_s will make the compiler issue a warning message.

DLib_Threads.h

The DLib_Threads.h header file contains support for locks and thread-local storage
(TLS) variables. This is useful for implementing thread support. For more information,
see the header file.

fenv.h

In fenv.h, trap handling support for floating-point numbers is defined with the
functions fegettrapenable and fegettrapdisable. Note that floating-point
rounding modes and exception flags are only supported for operations performed by an
FPU.

iar_dlmalloc.h

The iar_dlmalloc.h header file contains support for the advanced (dlmalloc) heap
handler. For more information, see Heap considerations, page 194.

LowLevelIOInterface.h

The header file LowLevelInterface.h contains declarations for the low-level I/O
functions used by DLIB. See The DLIB low-level I/O interface, page 136.
AFE1_AFE2-1:1

405

406

DLIB runtime environment—implementation details

stdio.h

These functions provide additional I/O functionality:

string.h

These are the additional functions defined in string.h:

time.h

There are two interfaces for using time_t and the associated functions time, ctime,
difftime, gmtime, localtime, and mktime:

● The 32-bit interface supports years from 1900 up to 2035 and uses a 32-bit integer
for time_t. The type and function have names like __time32_t, __time32, etc.
This variant is mainly available for backwards compatibility.

● The 64-bit interface supports years from -9999 up to 9999 and uses a signed
long long for time_t. The type and function have names like __time64_t,
__time64, etc.

The interfaces are defined in three header files:

● time32.h defines __time32_t, time_t, __time32, time, and associated
functions.

● time64.h defines __time64_t, time_t, __time64, time, and associated
functions.

fdopen Opens a file based on a low-level file descriptor.

fileno Gets the low-level file descriptor from the file descriptor
(FILE*).

__gets Corresponds to fgets on stdin.

getw Gets a wchar_t character from stdin.

putw Puts a wchar_t character to stdout.

__ungetchar Corresponds to ungetc on stdout.

__write_array Corresponds to fwrite on stdout.

strdup Duplicates a string on the heap.

strcasecmp Compares strings case-insensitive.

strncasecmp Compares strings case-insensitive and bounded.

strnlen Bounded string length.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

C/C++ standard library functions

● time.h includes time32.h or time64.h depending on the definition of
_DLIB_TIME_USES_64.

If _DLIB_TIME_USES_64 is:

● defined to 1, it will include time64.h.

● defined to 0, it will include time32.h.

● undefined, it will include time64.h.

In both interfaces, time_t starts at the year 1970.

An application can use either interface, and even mix them by explicitly using the 32 or
64-bit variants.

See also __time32, __time64, page 144.

clock_t is 8 bytes if long is 8 bytes and 64-bit time.h is used, otherwise it is 4 bytes.

By default, the time library does not support the timezone and daylight saving time
functionality. To enable that functionality, use the linker option --timezone_lib. See
--timezone_lib, page 310.

There are two functions that can be used for loading or force-loading the timezone and
daylight saving time information from __getzone:

● int _ReloadDstRules (void)

● int _ForceReloadDstRules (void)

Both these functions return 0 for DST rules found and -1 for DST rules not found.

NON-STANDARD IMPLEMENTATIONS

These functions do not work as specified by the C or C++ standards:

● fopen_s and freopen

These C functions will not propagate the u exclusivity attribute to the low-level
interface.

● towupper and towlower

These C functions will only handle A, ..., Z and a, ..., z.

● iswalnum, ..., iswxdigit

These C functions will only handle arguments in the range 0 to 127.

● The collate C functions strcoll and strxfrm will not work as intended. The same
applies to the C++ equivalent functionality.

● now

This C++ function in the C++ header chrono uses the _Xtime_get_ticks()
function and the C time.h macro CLOCKS_PER_SEC. By default,
AFE1_AFE2-1:1

407

408

DLIB runtime environment—implementation details

_Xtime_get_ticks() calls __clock(). If this is not applicable, you must
override the setting of the macro _XTIME_NSECS_PER_TICK prior to using chrono
or clock_t _Xtime_get_ticks().

SYMBOLS USED INTERNALLY BY THE LIBRARY

The system header files use intrinsic functions, symbols, pragma directives etc. Some
are defined in the library and some in the compiler. These reserved symbols start with
__ (double underscores) and should only be used by the library.

Use the compiler option --predef_macros to determine the value for any predefined
symbols.

The symbols used internally by the library are not listed in this guide.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

The linker configuration
file
● Overview

● Declaring the build type

● Defining memories and regions

● Regions

● Section handling

● Section selection

● Using symbols, expressions, and numbers

● Structural configuration

Before you read this chapter, you must be familiar with the concept of sections,
see Modules and sections, page 80.

Overview
To link and locate an application in memory according to your requirements, ILINK
needs information about how to handle sections and how to place them into the available
memory regions. In other words, ILINK needs a configuration, passed to it by means of
the linker configuration file.

This file consists of a sequence of directives and typically, provides facilities for:

● Declaring the build type

informing the linker of whether the build is for a traditional ROM system or for a
RAM system, helping the linker check that only suitable sections are placed in the
different memory regions.

● Defining available addressable memories

giving the linker information about the maximum size of possible addresses and
defining the available physical memory, as well as dealing with memories that can be
addressed in different ways.
AFE1_AFE2-1:1

409

410

Declaring the build type

● Defining the regions of the available memories that are populated with ROM or
RAM

giving the start and end address for each region.

● Section groups

dealing with how to group sections into blocks and overlays depending on the section
requirements.

● Defining how to handle initialization of the application

giving information about which sections that are to be initialized, and how that
initialization should be made.

● Memory allocation

defining where—in what memory region—each set of sections should be placed.

● Using symbols, expressions, and numbers

expressing addresses and sizes, etc, in the other configuration directives. The
symbols can also be used in the application itself.

● Structural configuration

meaning that you can include or exclude directives depending on a condition, and to
split the configuration file into several different files.

● Special characters in names

When specifying the name of a symbol or section that uses non-identifier characters,
you can enclose the name in back quotes. Example: ‘My Name‘.

Comments can be written either as C comments (/*...*/) or as C++ comments
(//...).

Declaring the build type
Declaring the build type in the linker configuration files specifies to the linker whether
the build is for a traditional ROM system (with, among other things, variable
initialization at program start) or for a RAM system to be used for debugging (where
other styles of initialization can be used).
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

The linker configuration file

build for directive

Syntax build for { ram | rom };

Parameters

Description If you declare a build type of rom—and especially if you also declare which memory
regions are ROM or RAM—the linker can perform better checking that only suitable
sections are placed in the different memory regions. If you do not explicitly specify an
initialize directive (see initialize directive, page 425), the linker will behave as if
you had specified initialize by copy { rw };.

If you declare a build type of ram, the linker does not check which section types are
placed in which memory region.

If you do not include the build for directive in the linker configuration file, the linker
only performs limited checking. This is useful primarily for backward compatibility
purposes.

See also define region directive, page 412.

Defining memories and regions
ILINK needs information about the available memory spaces, or more specifically it
needs information about:

● The maximum size of possible addressable memories

The define memory directive defines a memory space with a given size, which is
the maximum possible amount of addressable memory, not necessarily physically
available. See define memory directive, page 412.

● Available physical memory

The define region directive defines a region in the available memories in which
specific sections of application code and sections of application data can be placed.
You can also use this directive to declare whether a region contains RAM or ROM
memory. This is primarily useful when building for a traditional ROM system. See
define region directive, page 412.

ram The build is assumed to be a debugging or experimental
setup, where some or all variable initialization can be
performed at load time.

rom The build is assumed to be a traditional ROM build, where
all variable initialization is performed at program start.
AFE1_AFE2-1:1

411

412

Defining memories and regions

A region consists of one or several memory ranges. A range is a continuous sequence
of bytes in a memory and several ranges can be expressed by using region
expressions. See Region expression, page 416.

This section gives detailed information about each linker directive specific to defining
memories and regions.

define memory directive

Syntax define memory [name] with size = size_expr [,unit-size];

where unit-size is one of:

unitbitsize = bitsize_expr
unitbytesize = bytesize_expr

and where expr is an expression, see expressions, page 442.

Parameters

Description The define memory directive defines a memory space with a given size, which is the
maximum possible amount of addressable memory, not necessarily physically available.
This sets the limits for the possible addresses to be used in the linker configuration file.
For many microcontrollers, one memory space is sufficient. However, some
microcontrollers require two or more. For example, a Harvard architecture usually
requires two different memory spaces, one for code and one for data. If only one
memory is defined, the memory name is optional. If no unit-size is given, the unit
contains 8 bits.

Example /* Declare the memory space Mem of four Gigabytes */
define memory Mem with size = 4G;

define region directive

Syntax define [ram | rom] region name = region-expr;

where region-expr is a region expression, see also Regions, page 415.

size_expr Specifies how many units the memory space
contains—always counted from address zero.

bitsize_expr Specifies how many bits each unit contains.

bytesize_expr Specifies how many bytes each unit contains. Each
byte contains 8 bits.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

The linker configuration file

Parameters

Description The define region directive defines a region in which specific sections of code and
sections of data can be placed. A region consists of one or several memory ranges, where
each memory range consists of a continuous sequence of bytes in a specific memory.
Several ranges can be combined by using region expressions—these ranges do not need
to be consecutive or even in the same memory.

If you declare regions as being ROM or RAM, the linker can check that only suitable
sections are placed in the regions if you are building a traditional ROM-based system
(see build for directive, page 411).

Example /* Define the 0x10000-byte code region ROM located at address
 0x10000 */
define rom region ROM = [from 0x10000 size 0x10000];

logical directive

Syntax logical range-list = physical range-list

where range-list is one of

[region-expr,...]region-expr
[region-expr,...]from address-expr

Parameters

Description The logical directive maps logical addresses to physical addresses. The physical
address is typically used when loading or burning content into memory, while the logical
address is the one seen by your application. The physical address is the same as the
logical address, if no logical directives are used, or if the address is in a range
specified in a logical directive.

When generating ELF output, the mapping affects the physical address in program
headers. When generating output in the Intel hex or Motorola S-records formats, the
physical address is used.

ram The region contains RAM memory.

rom The region contains ROM memory.

name The name of the region.

region-expr A region expression, see also Regions, page 415.

address-expr An address expression
AFE1_AFE2-1:1

413

414

Defining memories and regions

Each address in the logical range list, in the order specified, is mapped to the
corresponding address in the physical range list, in the order specified.

Unless one or both of the range lists end with the from form, the total size of the logical
ranges and the physical ranges must be the same. If one side ends with the from form
and not the other, the side that ends with the from form will include a final range of a
size that makes the total sizes match, if possible. If both sides end with a from form, the
ranges will extend to the highest possible address that makes the total sizes match.

Setting up a mapping from logical to physical addresses can affect how sections and
other content are placed. No content will be placed to overlap more than one individual
logical or physical range. Also, if there is a mapping from a different logical range to the
corresponding physical range, any logical range for which no mapping to physical
ranges has been specified—by not being mentioned in a logical directive—is
excluded from placement.

All logical directives are applied together. Using one or using several directives to
specify the same mapping makes no difference to the result.

Example // Logical range 0x8000-0x8FFF maps to physical 0x10000-0x10FFF.
// No content can be placed in the logical range 0x10000-0x10FFF.
logical [from 0x8000 size 4K] = physical [from 0x10000 size 4K];

// Another way to specify the same mapping
logical [from 0x8000 size 4K] = physical from 0x10000;

// Logical range 0x8000-0x8FFF maps to physical 0x10000-0x10FFF.
// Logical range 0x10000-0x10FFF maps to physical 0x8000-0x8FFF.
// No logical range is excluded from placement because of
// this mapping.
logical [from 0x8000 size 4K] = physical [from 0x10000 size 4K];
logical [from 0x10000 size 4K] = physical [from 0x8000 size 4K];

// Logical range 0x1000-0x13FF maps to physical 0x8000-0x83FF.
// Logical range 0x1400-0x17FF maps to physical 0x9000-0x93FF.
// Logical range 0x1800-0x1BFF maps to physical 0xA000-0xA3FF.
// Logical range 0x1C00-0x1FFF maps to physical 0xB000-0xB3FF.
// No content can be placed in the logical ranges 0x8000-0x83FF,
// 0x9000-0x9FFF, 0xA000-0xAFFF, or 0xB000-0xBFFF.
logical [from 0x1000 size 4K] =
 physical [from 0x8000 size 1K repeat 4 displacement 4K];
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

The linker configuration file

// Another way to specify the same mapping.
logical [from 0x1000 to 0x13FF] = physical [from 0x8000 to
0x83FF];
logical [from 0x1400 to 0x17FF] = physical [from 0x9000 to
0x93FF];
logical [from 0x1800 to 0x1BFF] = physical [from 0xA000 to
0xA3FF];
logical [from 0x1C00 to 0x1FFF] = physical [from 0xB000 to
0xB3FF];

Regions
A region is s a set of non-overlapping memory ranges. A region expression is built up
out of region literals and set operations (union, intersection, and difference) on regions.

Region literal

Syntax [memory-name:][from expr { to expr | size expr }

 [repeat expr [displacement expr]]]

where expr is an expression, see expressions, page 442.

Parameters

Description A region literal consists of one memory range. When you define a range, the memory it
resides in, a start address, and a size must be specified. The range size can be stated
explicitly by specifying a size, or implicitly by specifying the final address of the range.
The final address is included in the range and a zero-sized range will only contain an

memory-name The name of the memory space in which the region literal
will be located. If there is only one memory, the name is
optional.

from expr expr is the start address of the memory range (inclusive).

to expr expr is the end address of the memory range (inclusive).

size expr expr is the size of the memory range.

repeat expr expr defines several ranges in the same memory for the
region literal.

displacement expr expr is the displacement from the previous range start in the
repeat sequence. Default displacement is the same value as
the range size.
AFE1_AFE2-1:1

415

416

Regions

address. A range can span over the address zero and such a range can even be expressed
by unsigned values, because it is known where the memory wraps.

The repeat parameter will create a region literal that contains several ranges, one for
each repeat. This is useful for banked or far regions.

Example /* The 5-byte size range spans over the address zero */
Mem:[from -2 to 2]

/* The 512-byte size range spans over zero, in a 64-Kbyte memory
*/
Mem:[from 0xFF00 to 0xFF]

/* Defining several ranges in the same memory, a repeating
 literal */
Mem:[from 0 size 0x100 repeat 3 displacement 0x1000]

/* Resulting in a region containing:
 Mem:[from 0 size 0x100]
 Mem:[from 0x1000 size 0x100]
 Mem:[from 0x2000 size 0x100]
*/

See also define region directive, page 412, and Region expression, page 416.

Region expression

Syntax region-operand
 | region-expr | region-operand
 | region-expr - region-operand
 | region-expr & region-operand

where region-operand is one of:

(region-expr)
region-name
region-literal
empty-region

where region-name is a region, see define region directive, page 412

where region-literal is a region literal, see Region literal, page 415

and where empty-region is an empty region, see Empty region, page 417.

Description Normally, a region consists of one memory range, which means a region literal is
sufficient to express it. When a region contains several ranges, possibly in different
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

The linker configuration file

memories, it is instead necessary to use a region expression to express it. Region
expressions are actually set expressions on sets of memory ranges.

To create region expressions, three operators are available: union (|), intersection (&),
and difference (-). These operators work as in set theory. For example, if you have the
sets A and B, then the result of the operators would be:

● A | B: all elements in either set A or set B

● A & B: all elements in both set A and B

● A - B: all elements in set A but not in B.

Example /* Resulting in a range starting at 1000 and ending at 2FFF, in
 memory Mem */
Mem:[from 0x1000 to 0x1FFF] | Mem:[from 0x1500 to 0x2FFF]

/* Resulting in a range starting at 1500 and ending at 1FFF, in
 memory Mem */
Mem:[from 0x1000 to 0x1FFF] & Mem:[from 0x1500 to 0x2FFF]

/* Resulting in a range starting at 1000 and ending at 14FF, in
 memory Mem */
Mem:[from 0x1000 to 0x1FFF] - Mem:[from 0x1500 to 0x2FFF]

/* Resulting in two ranges. The first starting at 1000 and ending
 at 1FFF, the second starting at 2501 and ending at 2FFF.
 Both located in memory Mem */
Mem:[from 0x1000 to 0x2FFF] - Mem:[from 0x2000 to 0x24FF]

Empty region

Syntax []

Description The empty region does not contain any memory ranges. If the empty region is used in a
placement directive that actually is used for placing one or more sections, ILINK will
issue an error.
AFE1_AFE2-1:1

417

418

Section handling

Example define region Code = Mem:[from 0 size 0x10000];
if (Banked) {
 define region Bank = Mem:[from 0x8000 size 0x1000];
} else {
 define region Bank = [];
}
define region NonBanked = Code - Bank;

/* Depending on the Banked symbol, the NonBanked region is either
 one range with 0x10000 bytes, or two ranges with 0x8000 and
 0x7000 bytes, respectively. */

See also Region expression, page 416.

Section handling
Section handling describes how ILINK should handle the sections of the execution
image, which means:

● Placing sections in regions

The place at and place in directives place sets of sections with similar attributes
into previously defined regions. See place at directive, page 429 and place in
directive, page 431.

● Reserving regions of memory

The reserve region directive specifies that no content may be placed in certain
memory regions. See reserve region, page 432.

● Making sets of sections with special requirements

The block directive makes it possible to create empty sections with specific or
expanding sizes, specific alignments, sequentially sorted sections of different types,
etc.

The overlay directive makes it possible to create an area of memory that can
contain several overlay images. See define block directive, page 419, and define
overlay directive, page 424.

● Initializing the application

The directives initialize and do not initialize control how the application
should be started. With these directives, the application can initialize global symbols
at startup, and copy pieces of code. The initializers can be stored in several ways, for
example, they can be compressed. See initialize directive, page 425 and do not
initialize directive, page 428.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

The linker configuration file

● Keeping removed sections

The keep directive retains sections even though they are not referred to by the rest
of the application, which means it is equivalent to the root concept in the assembler
and compiler. See keep directive, page 429.

● Specifying the contents of linker-generated sections

The define section directive can be used for creating specific sections with
content and calculations that are only available at link time.

● Additional more specialized directives:

use init table directive

This section gives detailed information about each linker directive specific to section
handling.

define block directive

Syntax define block name
 [with param, param...]
{
 extended-selectors
}
[except
 {
 section-selectors
 }];

where param can be one of:

size = expr
minimum size = expr
maximum size = expr
expanding size
alignment = expr
end alignment = expr
fixed order
alphabetical order
static base [basename]

and where the rest of the directive selects sections to include in the block, see Section
selection, page 434.

Parameters
name The name of the block to be defined.

size Customizes the size of the block. By default, the size of
a block is the sum of its parts dependent of its contents.
AFE1_AFE2-1:1

419

420

Section handling

Description The block directive defines a contiguous area of memory that contains a possibly
empty set of sections or other blocks. Blocks with no content are useful for allocating

minimum size Specifies a lower limit for the size of the block. The block
is at least this large, even if its contents would otherwise
not require it.

maximum size Specifies an upper limit for the size of the block. An error
is generated if the sections in the block do not fit.

expanding size The block will expand to use all available space in the
memory range where it is placed.

alignment Specifies a minimum alignment for the block. If any
section in the block has a higher alignment than the
minimum alignment, the block will have that alignment.

end alignment Specifies a minimum alignment for the end of the block.
Normally, the end address of a block is determined by its
start address and its size (which can depend on its
contents), but if this parameter is used, the end address is
increased to comply with the specified alignment if
needed.

fixed order Places sections in the specified order. Each
extended-selector is added in a separate nested
block, and these blocks are kept in the specified order.

alphabetical order Places sections in alphabetical order by section name.
Onlysection-selector patterns are allowed in
alphabetical order blocks, for example, no nested
blocks. All sections in a particular alphabetical
order block must use the same kind of initialization
(read-only, zero-init, copy-init, or no-init, and otherwise
equivalent). You cannot use __section_begin, etc on
individual sections contained in an alphabetical
order block.

static base
[basename]

Specifies that the static base with the name basename
will be placed at the start of the block or in the middle of
the block, as appropriate for the particular static base.
The startup code must ensure that the register that holds
the static base is initialized to the correct value. If there
is only one static base, the name can be omitted.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

The linker configuration file

space for stacks or heaps. Blocks with content are usually used to group together
sections that must to be consecutive.

You can access the start, end, and size of a block from an application by using the
__section_begin, __section_end, or __section_size operators. If there is no
block with the specified name, but there are sections with that name, a block will be
created by the linker, containing all such sections.

Blocks with expanding size are most often used for heaps or stacks.

Note: You cannot place a block with expanding size inside another block with
expanding size, inside a block with a maximum size, or inside an overlay.

Example /* Create a block with a minimum size for the heap that will use
all remaining space in its memory range */
define block HEAP with minimum size = 4K, expanding size,
alignment = 16 { };

See also Interaction between the tools and your application, page 196. For an accessing example,
see define overlay directive, page 424.

define section directive

Syntax define [root] section name
 [with alignment = sec-align]
{
 section-content-item...
};

where each section-content-item can be one of:

udata8 { data | string };
sdata8 data [,data] ...;
udata16 data [,data] ...;
sdata16 data [,data] ...;
udata24 data [,data] ...;
sdata24 data [,data] ...;
udata32 data [,data] ...;
sdata32 data [,data] ...;
udata64 data [,data] ...;
sdata64 data [,data] ...;
pad_to data-align;
[public] label:
if-item;

where if-item is:
AFE1_AFE2-1:1

421

422

Section handling

if (condition) {
 section-content-item...
[} else if (condition] {
 section-content-item...]...
[} else {
 section-content-item...]
}

Parameters
name The name of the section.

sec-align The alignment of the section, an expression.

root Optional. If root is specified, the section is always
included, even if it is not referenced.

udata8 {data|string}; If the parameter is an expression (data), it generates an
unsigned one-byte member in the section. The data
expression is only evaluated during relocation and only if
the value is needed. It causes a relocation error if the
value of data is too large to fit in a byte. The possible
range of values is 0 to 0xFF.

If the parameter is a quoted string, it generates one
one-byte member in the section for each character in the
string.

sdata8 data; As udata8 data, except that it generates a signed
one-byte member.

The possible range of values is –0x80 to 0x7F.

udata16 data; As sdata8, except that it generates an unsigned
two-byte member. The possible range of values is 0 to
0xFFFF.

sdata16 data; As sdata8, except that it generates a signed two-byte
member. The possible range of values is –0x8000 to
0x7FFF.

udata24 data; As sdata8, except that it generates an unsigned
three-byte member. The possible range of values is 0 to
0xFFFF'FF.

sdata24 data; As sdata8, except that it generates a signed three-byte
member. The possible range of values is –0x8000'00 to
0x7FFF'FF.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

The linker configuration file

Description Use the define section directive to create sections with content that is not available
from assembler language or C/C++. Examples of this are the results of stack usage
analysis, the size of blocks, and arithmetic operations that do not exist as relocations.

Unknown identifiers in data expressions are assumed to be labels.

Note: Only data expressions can use labels, stack usage analysis results, etc. All the
other expressions are evaluated immediately when the configuration file is read.

udata32 data; As sdata8, except that it generates an unsigned
four-byte member. The possible range of values is 0 to
0xFFFF'FFFF.

sdata32 data; As sdata8, except that it generates a signed four-byte
member.

The possible range of values is –0x8000'0000 to
0x7FFF'FFFF.

udata64 data; As sdata8, except that it generates an unsigned
eight-byte member. The possible range of values is 0 to
0xFFFF'FFFF'FFFF'FFFF.

sdata64 data; As sdata8, except that it generates a signed eight-byte
member. The possible range of values is
-0x8000'0000'0000'0000 to
0x7FFF'FFFF'FFFF'FFFF.

pad_to data_align; Generates pad bytes to make the current offset from the
start of the section to be aligned to the expression
data-align.

[public] label: Defines a label at the current offset from the start of the
section. If public is specified, the label is visible to
other program modules. If not, it is only visible to other
data expressions in the linker configuration file.

if-item Configuration-time selection of items.

condition An expression.

data An expression that is only evaluated during relocation
and only if the value is needed.
AFE1_AFE2-1:1

423

424

Section handling

Example define section data {
 /* The application entry in a 16-bit word, provided it is less
 than 256K and 4-byte aligned. */
 udata16 __iar_program_start >> 2;
 /* The maximum stack usage in the program entry category. */
 udata16 maxstack("Application entry");
 /* The size of the DATA block */
 udata32 size(block DATA);
};

define overlay directive

Syntax define overlay name [with param, param...]
{
 extended-selectors;
}
[except
 {
 section-selectors
 }];

For information about extended selectors and except clauses, see Section selection, page
434.

Parameters

Description The overlay directive defines a named set of sections. In contrast to the block
directive, the overlay directive can define the same name several times. Each definition
will then be grouped in memory at the same place as all other definitions of the same
name. This creates an overlaid memory area, which can be useful for an application that
has several independent sub-applications.

name The name of the overlay.

size Customizes the size of the overlay. By default, the size of a
overlay is the sum of its parts dependent of its contents.

maximum size Specifies an upper limit for the size of the overlay. An error
is generated if the sections in the overlay do not fit.

alignment Specifies a minimum alignment for the overlay. If any
section in the overlay has a higher alignment than the
minimum alignment, the overlay will have that alignment.

fixed order Places sections in fixed order—if not specified, the order of
the sections will be arbitrary.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

The linker configuration file

Place each sub-application image in ROM and reserve a RAM overlay area that can hold
all sub-applications. To execute a sub-application, first copy it from ROM to the RAM
overlay.

Note: ILINK does not help you with managing interdependent overlay definitions, apart
from generating a diagnostic message for any reference from one overlay to another
overlay.

The size of an overlay will be the same size as the largest definition of that overlay name
and the alignment requirements will be the same as for the definition with the highest
alignment requirements.

Note: Sections that were overlaid must be split into a RAM and a ROM part and you
must take care of all the copying needed.

Code in overlaid memory areas cannot be debugged—the C-SPY Debugger cannot
determine which code is currently loaded.

See also Manual initialization, page 103.

initialize directive

Syntax initialize { by copy | manually }
 [with param, param...]
{
 section-selectors
}
[except
 {
 section-selectors
 }];

where param can be one of:

packing = algorithm
simple ranges
complex ranges
no exclusions

For information about section selectors and except clauses, see Section selection, page
434.

Parameters
by copy Splits the section into sections for initializers and initialized

data, and handles the initialization at application startup
automatically.
AFE1_AFE2-1:1

425

426

Section handling

Description The initialize directive splits each selected section into one section that holds
initializer data and another section that holds the space for the initialized data. The
section that holds the space for the initialized data retains the original section name, and
the section that holds initializer data gets the name suffix _init. You can choose
whether the initialization at startup should be handled automatically (initialize by
copy) or whether you should handle it yourself (initialize manually).

When you use the packing method auto (default for initialize by copy), ILINK
will automatically choose an appropriate packing algorithm for the initializers. To
override this, specify a different packing method. The --log initialization
option shows how ILINK decided which packing algorithm to use.

When initializers are compressed, a decompressor is automatically added to the image.

Each decompressor has two variants: one that can only handle a single source and
destination range at a time, and one that can handle more complex cases. By default, the
linker chooses a decompressor variant based on whether the associated section
placement directives specify a single or multi-range memory region. In general, this is
the desired behavior, but you can use the with complex ranges or the with simple
ranges modifier on an initialize directive to specify which decompressor variant

manually Splits the section into sections for initializers and initialized
data. The initialization at application startup is not handled
automatically.

algorithm Specifies how to handle the initializers. Choose between:

none, Disables compression of the selected section contents.
This is the default method for initialize manually.

zeros, Compresses consecutive bytes with the value zero.

packbits, Compresses with the PackBits algorithm. This
method generates good results for data with many identical
consecutive bytes.

lz77, Compresses with the Lempel-Ziv-77 algorithm. This
method handles a larger variety of inputs well, but has a
slightly larger decompressor.

auto, ILINK estimates the resulting size using each packing
method (except for auto), and then chooses the packing
method that produces the smallest estimated size. Note that
the size of the decompressor is also included. This is the
default method for initialize by copy.

smallest, This is a synonym for auto.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

The linker configuration file

to use. You can also use the command line option --default_to_complex_ranges
to make initialize directives by default use complex ranges. The simple ranges
decompressors are normally hundreds of bytes smaller than the complex ranges
variants.

When initializers are compressed, the exact size of the compressed initializers is
unknown until the exact content of the uncompressed data is known. If this data contains
other addresses, and some of these addresses are dependent on the size of the
compressed initializers, the linker fails with error Lp017. To avoid this, place
compressed initializers last, or in a memory region together with sections whose
addresses do not need to be known.

Due to an internal dependence, generation of compressed initializers can also fail (with
error LP021) if the address of the initialized area depends on the size of its initializers.
To avoid this, place the initializers and the initialized area in different parts of the
memory (for example, the initializers are placed in ROM and the initialized area in
RAM).

If you specify the parameter no exclusions, an error is emitted if any sections are
excluded (because they are needed for the initialization). no exclusions can only be
used with initialize by copy (automatic initialization), not with initialize
manually.

Unless initialize manually is used, ILINK will arrange for initialization to occur
during system startup by including an initialization table. Startup code calls an
initialization routine that reads this table and performs the necessary initializations.

Zero-initialized sections are not affected by the initialize directive.

The initialize directive is normally used for initialized variables, but can be used for
copying any sections, for example, copying executable code from slow ROM to fast
RAM, or for overlays. For another example, see define overlay directive, page 424.

Sections that are needed for initialization are not affected by the initialize by copy
directive. This includes the __low_level_init function and anything it references.

Anything reachable from the program entry label is considered needed for initialization
unless reached via a section fragment with a label starting with __iar_init$$done.
The --log sections option, in addition to logging the marking of section fragments
to be included in the application, also logs the process of determining which sections are
needed for initialization.

Example /* Copy all read-write sections automatically from ROM to RAM at
 program start */
initialize by copy { rw };
place in RAM { rw };
place in ROM { ro };
AFE1_AFE2-1:1

427

428

Section handling

See also Initialization at system startup, page 86, and do not initialize directive, page 428.

do not initialize directive

Syntax do not initialize
{
 section-selectors
}
[except
 {
 section-selectors
 }];

For information about section selectors and except clauses, see Section selection, page
434.

Description Use the do not initialize directive to specify the sections that you do not want to be
automatically zero-initialized by the system startup code. The directive can only be used
on zeroinit sections.

Typically, this is useful if you want to handle zero-initialization in some other way for
all or some zeroinit sections.

This can also be useful if you want to suppress zero-initialization of variables entirely.
Normally, this is handled automatically for variables specified as __no_init in the
source, but if you link with object files produced by older tools from IAR or other tool
vendors, you might need to suppress zero-initialization specifically for some sections.

Example /* Do not initialize read-write sections whose name ends with
 _noinit at program start */
do not initialize { rw section .*_noinit };
place in RAM { rw section .*_noinit };

See also Initialization at system startup, page 86, and initialize directive, page 425.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

The linker configuration file

keep directive

Syntax keep
{
 [{ section-selectors | block name }
 [, {section-selectors | block name }...]]
}
[except
 {
 section-selectors
 }];

For information about selectors and except clauses, see Section selection, page 434.

Description The keep directive can be used for including blocks, overlays, or sections in the
executable image that would otherwise be discarded because no references to them exist
in the included parts of the application. Note that this directive always causes entire
input sections to be included, and not just the relevant section fragment, when matching
against a symbol name.

Furthermore, only sections from included modules are considered. The keep directive
does not cause any additional modules to be included in your application.

To cause a module that defines a specific symbol to be included, or only the section
fragment that defines a symbol, use the Keep symbols linker option (or the --keep
option on the command line), or the linker directive keep symbol.

Example keep { section .keep* } except {section .keep};

place at directive

Syntax ["name":]
place [noload] at { address [memory:] address |
 start of region_expr [with mirroring to mirror_address] |
 end of region_expr [with mirroring to mirror_address] }

{
 extended-selectors
}
[except
 {
 section-selectors
 }];

For information about extended selectors and except clauses, see Section selection, page
434.
AFE1_AFE2-1:1

429

430

Section handling

Parameters

Description The place at directive places sections and blocks either at a specific address or, at the
beginning or the end of a region. The same address cannot be used for two different
place at directives. It is also not possible to use an empty region in a place at
directive. If placed in a region, the sections and blocks will be placed before any other
sections or blocks placed in the same region with a place in directive.

Note: with mirroring to can be used only together with start of and end of.

Example /* Place the RO section .startup at the start of code_region */
"START": place at start of ROM { readonly section .startup };

See also place in directive, page 431.

name Optional. If it is specified, it is used in the map file, in
some log messages, and is part of the name of any ELF
output sections resulting from the directive. (This is
entirely a matter of presentation. There is no connection
to names used in the application.)

noload Optional. If it is specified, it prevents the sections in the
directive from being loaded to the target system. To use
the sections, you must put them into the target system in
some other way. noload can only be used when a name
is specified.

memory: address A specific address in a specific memory. The address must
be available in the supplied memory defined by the
define memory directive. The memory specifier is
optional if there is only one memory.

start of region_expr A region expression that results in a single-internal
region. The start of the interval is used.

end of region_expr A region expression that results in a single-internal
region. The end of the interval is used.

mirror_address If with mirroring to is specified, the contents of any
sections are assumed to be mirrored to this address,
therefore debug information and symbols will appear in
the mirrored range, but the actual content bytes are placed
as if with mirroring to was not specified.

Note: This functionality is intended to support external
(target-specific) mirroring.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

The linker configuration file

place in directive

Syntax ["name":]
place [noload] in region-expr
 [with mirroring to mirror_address]
{
 extended-selectors
}
 [except{
 section-selectors
 }];

where region-expr is a region expression, see also Regions, page 415.

and where the rest of the directive selects sections to include in the block. See Section
selection, page 434.

Parameters

Description The place in directive places sections and blocks in a specific region. The sections and
blocks will be placed in the region in an arbitrary order.

To specify a specific order, use the block directive. The region can have several ranges.

Note: When with mirroring to is specified, the region-expr must result in a
single range.

name Optional. If it is specified, it is used in the map file, in
some log messages, and is part of the name of any ELF
output sections resulting from the directive. (This is
entirely a matter of presentation. There is no connection
to names used in the application.)

noload Optional. If it is specified, it prevents the sections in the
directive from being loaded to the target system. To use
the sections, you must put them into the target system in
some other way. noload can only be used when a name
is specified.

mirror_address If with mirroring to is specified, the contents of any
sections are assumed to be mirrored to this address,
therefore debug information and symbols will appear in
the mirrored range, but the actual content bytes are placed
as if with mirroring to was not specified.

Note: This functionality is intended to support external
(target-specific) mirroring.
AFE1_AFE2-1:1

431

432

Section handling

Example /* Place the read-only sections in the code_region */
"ROM": place in ROM { readonly };

See also place at directive, page 429.

reserve region

Syntax reserve region "name" = region-expr;

where region-expr is a region expression, see also Regions, page 415.

Parameters

Description The reserve region directive excludes a region from being used in place in
directives. If any absolute sections or place at directives overlap the reserved regions,
an error is emitted.

Reserved regions cannot overlap.

Example reserve region "Stay out" = [from 0x1000 size 0x100];

See also place in directive, page 431.

use init table directive

Syntax use init table name for
{
 section-selectors
}
[except
 {
 section-selectors
 }];

For information about section selectors and except clauses, see Section selection, page
434.

Parameters

Description Normally, all initialization entries are generated into a single initialization table (called
Table). Use this directive to cause some of the entries to be put into a separate table.

name The name of the reserved region

name The name of the init table.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

The linker configuration file

You can then use this initialization table at another time, or under different
circumstances, than the normal initialization table.

Initialization entries for all variables not mentioned in a use init table directive are
put into the normal initialization table. By having multiple use init table directives
you can have multiple initialization tables.

The start, end, and size of the init table can be accessed in the application program by
using __section_begin, __section_end, or __section_size of
"Region$$name", respectively, or via the symbols Region$$name$$Base,
Region$$name$$Limit, and Region$$name$$Length.

An initialization function, IAR_TABLE_INIT, which operates on the start and end
addresses of an initialization table, is available in the include file stdlib.h. Calling the
function with start and end addresses of an initialization table created with use init
table will initialize all initialization entries in that table.

Note: Stack usage analysis handles all initialization entries as if they were called by the
normal initialization routine (IAR_DATA_INIT). This will result in stack usage
information for initialization entries that are called from another place, such as
IAR_TABLE_INIT, being incorrect. If such a function is called when almost all stack has
been used, it is possible that too much stack will be used without the stack usage analysis
detecting this. Initialization functions and routines for dynamic initialization typically
use little stack space, so this would most likely not be a serious problem.

Example In this example, the use init table directive resides in the linker configuration file,
while the rest of the example resides in a C file.
AFE1_AFE2-1:1

433

434

Section selection

use init table Core2 for { section *.core2};

/* This code example needs IAR language extensions to handle
 __section_begin. */

#include <stdlib.h>

/* This sets up the name of the table and ensures that pointers
 to it have the correct attributes. */

#pragma section="Region$$Core2" const _DLIB_ELF_INIT_TABLE_MEMORY

/* Calling this function will result in all initialization
 functions in the Core2 table being called. This must be called
 before any of the data/objects are accessed. Nothing prevents
 the data/objects from being accessed before they are
 initialized and nothing prevents the data from being
 initialized more than once (data is typically overwritten by
 the initial values if it is initialized more than once). */

void HandleCore2Init()
{
 IAR_TABLE_INIT(__section_begin("Region$$Core2"),
 __section_end ("Region$$Core2"));
}

Section selection
The purpose of section selection is to specify—by means of section selectors and except
clauses—the sections that an ILINK directive should be applied to. All sections that
match one or more of the section selectors will be selected, and none of the sections
selectors in the except clause, if any. Each section selector can match sections on section
attributes, section name, and object or library name.

Some directives provide functionality that requires more detailed selection capabilities,
for example, directives that can be applied on both sections and blocks. In this case, the
extended-selectors are used.

This section gives detailed information about each linker directive specific to section
selection.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

The linker configuration file

section-selectors

Syntax [section-selector [, section-selector...]]

section-selector is:

 [section-attribute][section-type]
 [symbol symbol-name][section section-name]
 [object module-spec]

section-attribute is:

 ro [code | data] | rw [code | data] | zi

section-type is:

 [preinit_array | init_array]

Parameters
section-attribute Only sections with the specified attribute will be selected.

section-attribute can consist of:

ro|readonly, for ROM sections.
rw|readwrite, for RAM sections.

In each category, sections can be further divided into those
that contain code and those that contain data, resulting in
four main categories:

ro code, for normal code
ro data, for constants
rw code, for code copied to RAM
rw data, for variables

readwrite data also has a subcategory—
zi|zeroinit—for sections that are zero-initialized at
application startup.

section-type Only sections with that ELF section type will be selected.
section-type can be:

preinit_array, sections of the ELF section type
SHT_PREINIT_ARRAY.

init_array, sections of the ELF section type
SHT_INIT_ARRAY.
AFE1_AFE2-1:1

435

436

Section selection

Description A section selector selects all sections that match the section attribute, section type,
symbol name, section name, and the name of the module. Up to four of the five
conditions can be omitted.

It is also possible to use only { } without any section selectors, which can be useful
when defining blocks.

Note: Like all section selectors, symbol selects sections, not symbols. If you specify the
symbol __mySymbol, you select the section that contains the public symbol
__mySymbol. If that section contains more public symbols, those will also be selected.
If a section contains more than one public symbol, for instance symbA and symbB, you

symbol symbol-name Only sections that define at least one public symbol that
matches the symbol name pattern will be selected.
symbol-name is the symbol name pattern. For example,
specifying symbol __mySymbol selects the section that
contains __mySymbol. Two wildcards are allowed:

? matches any single character
* matches zero or more characters

See the note below for a more detailed description.

section section-name Only sections whose names match the section-name
will be selected. Two wildcards are allowed:

? matches any single character
* matches zero or more characters.

object module-spec Only sections that originate from library modules or object
files that matches module-spec will be selected.
module-spec can be in one of two forms:

module, a name in the form
objectname(libraryname). Sections from object
modules where both the object name and the library
name match their respective patterns are selected. An
empty library name pattern selects only sections from
object files. If libraryname is :sys, the pattern will
match only sections from the system library.

filename, the name of an object file, or an object in a
library.

Two wildcards are allowed:

? matches any single character
* matches zero or more characters.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

The linker configuration file

cannot select symbol symbA to one section selector and symbol symbB to another. A
section can only match one section selector, and the match is case sensitive. Static
symbols are not affected by this directive.

You can inspect the symbol table of object files with the command
ielfdumpriscv -s .symtab file.o. The number of the containing section will be
listed for each symbol. If two public symbols reside in the same section, they cannot be
matched by two section selectors that use the two symbols—the single section must be
matched by one section selector.

Which section a symbol resides in might change with the optimization level. The
compiler uses an optimization called static clustering on optimization levels High and
higher. Clustering typically places several data symbols in the same section, which
typically reduces both the size and the execution time of the generated code. You can
disable static clustering (using the compiler option --no_clustering) to get symbols
into different sections (which allows you to match them individually with different
symbol section selectors), but the generated code will typically be larger and slower.

Note: A section selector with narrower scope has higher priority than a more generic
section selector. If more than one section selector matches for the same purpose, one of
them must be more specific. A section selector is more specific than another one if in
priority order:

● It specifies a public symbol name with no wildcards and the other one does not.

● It specifies a section name or object name with no wildcards and the other one does
not

● It specifies a section type and the other one does not

● There could be sections that match the other selector that also match this one,
however, the reverse is not true.

Selector 1 Selector 2 More specific

ro ro code Selector 2

symbol mysym section foo Selector 1

ro code section f* ro section f* Selector 1

section foo* section f* Selector 1

section *x section f* Neither

init_array section f* Selector 1

section .intvec ro section .int* Selector 1

section .intvec object foo.o Neither

Table 35: Examples of section selector specifications
AFE1_AFE2-1:1

437

438

Section selection

Example { rw } /* Selects all read-write sections */

{ section .mydata* } /* Selects only .mydata* sections */
/* Selects .mydata* sections available in the object special.o */
{ section .mydata* object special.o }

Assuming a section in an object named foo.o in a library named lib.a, any of these
selectors will select that section:

object foo.o(lib.a)
object f*(lib*)
object foo.o
object lib.a

See also initialize directive, page 425, do not initialize directive, page 428, and keep directive,
page 429.

extended-selectors

Syntax [extended-selector [, extended-selector...]]

where extended-selector is:

 [first | last | midway]
 { section-selector |
 block name [inline-block-def] |
 overlay name }

where inline-block-def is:

 [block-params] extended-selectors

Parameters
first Places the selected sections, block, or overlay first in the

containing placement directive, block, or overlay.

last Places the selected sections, block or overlay last in the
containing placement directive, block, or overlay.

midway Places the selected sections, block, or overlay so that they are
no further than half the maximum size of the containing
block away from either edge of the block. Note that this
parameter can only be used inside a block that has a
maximum size.

name The name of the block or overlay.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

The linker configuration file

Description Use extended-selectors to select content for inclusion in a placement directive,
block, or overlay. In addition to using section selection patterns, you can also explicitly
specify blocks or overlays for inclusion.

Using the first or last keyword, you can specify one pattern, block, or overlay that
is to be placed first or last in the containing placement directive, block, or overlay. If you
need more precise control of the placement order you can instead use a block with fixed
order.

Blocks can be defined separately, using the define block directive, or inline, as part
of an extended-selector.

The midway parameter is primarily useful together with a static base that can have both
negative and positive offsets.

Example define block First { ro section .f* }; /* Define a block holding
 any read-only section*/
 matching ".f*" */
define block Table { first block First, ro section .b* };
 /* Define a block where
 the block First comes
 before the sections
 matching ".b*". */

You can also define the block First inline, instead of in a separate define block
directive:

define block Table { first block First { ro section .f* },
 ro section .b* };

See also define block directive, page 419, define overlay directive, page 424, and place at
directive, page 429.

Using symbols, expressions, and numbers
In the linker configuration file, you can also:

● Define and export symbols
The define symbol directive defines a symbol with a specified value that can be
used in expressions in the configuration file. The symbol can also be exported to be
used by the application or the debugger. See define symbol directive, page 440, and
export directive, page 441.

● Use expressions and numbers
In the linker configuration file, expressions and numbers are used for specifying
addresses, sizes, etc. See expressions, page 442.
AFE1_AFE2-1:1

439

440

Using symbols, expressions, and numbers

This section gives detailed information about each linker directive specific to defining
symbols, expressions and numbers.

check that directive

Syntax check that expression;

Parameters

Description You can use the check that directive to compare the results of stack usage analysis
against the sizes of blocks and regions. If the expression evaluates to zero, an error is
emitted.

Three extra operators are available for use only in check that expressions:

Example check that maxstack("Program entry")
 + totalstack("interrupt")
 + 1K
 <= size(block CSTACK);

See also Stack usage analysis, page 89.

define symbol directive

Syntax define [exported] symbol name = expr;

Parameters

expression A boolean expression.

maxstack(category) The stack depth of the deepest call chain for any call
graph root function in the category.

totalstack(category) The sum of the stack depths of the deepest call chains
for each call graph root function in the category.

size(block) The size of the block.

exported Exports the symbol to be usable by the executable
image.

name The name of the symbol.

expr The symbol value.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

The linker configuration file

Description The define symbol directive defines a symbol with a specified value. The symbol can
then be used in expressions in the configuration file. The symbols defined in this way
work exactly like the symbols defined with the option --config_def outside of the
configuration file.

The define exported symbol variant of this directive is a shortcut for using the
directive define symbol in combination with the export symbol directive. On the
command line this would require both a --config_def option and a
--define_symbol option to achieve the same effect.

Note:

● A symbol cannot be redefined

● Symbols that are either prefixed by _X, where X is a capital letter, or that contain __
(double underscore) are reserved for toolset vendors.

● The symbol value will be listed in the Address column of the entry list of the
generated map file.

Example /* Define the symbol my_symbol with the value 4 */
define symbol my_symbol = 4;

See also export directive, page 441 and Interaction between ILINK and the application, page
106.

export directive

Syntax export symbol name;

Parameters

Description The export directive defines a symbol to be exported, so that it can be used both from
the executable image and from a global label. The application, or the debugger, can then
refer to it for setup purposes etc.

Note: The symbol value will be listed in the Address column of the entry list of the
generated map file.

Example /* Define the symbol my_symbol to be exported */
export symbol my_symbol;

name The name of the symbol.
AFE1_AFE2-1:1

441

442

Using symbols, expressions, and numbers

expressions

Syntax An expression is built up of the following constituents:

expression binop expression
unop expression
expression ? expression : expression
(expression)
number
symbol
func-operator

where binop is one of these binary operators:

+, -, *, /, %, <<, >>, <, >, ==, !=, &, ^, |, &&, ||

where unop is one of this unary operators:

+, -, !, ~

where number is a number, see numbers, page 443

where symbol is a defined symbol, see define symbol directive, page 440 and
--config_def, page 286

and where func-operator is one of these function-like operators, available in all
expressions:

where align and expr are expressions, and region is a region expression, see Region
expression, page 416.

aligndown(expr, align) The value of expr rounded down to the nearest
multiple of align. align must be a power of two.

alignup(expr, align) The value of expr rounded up to the nearest multiple
of align. align must be a power of two.

end(region) The highest address in the region.

isdefinedsymbol(name) True (1) if the symbol name is defined, otherwise
False (0).

isempty(region) True (1) if the region is empty, otherwise False (0).

max(expr [, expr...]) The largest of the parameters.

min(expr [, expr...]) The smallest of the parameters.

size(region) The total size of all ranges in the region.

start(region) The lowest address in the region.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

The linker configuration file

func-operator can also be one of these operators, which are only available in
expressions for the size or alignment of a block or overlay, in check that expressions,
and in data expressions in define section directives:

Description In the linker configuration file, an expression is a 65-bit value with the range -2^64 to
2^64. The expression syntax closely follows C syntax with some minor exceptions.
There are no assignments, casts, pre or post-operations, and no address operations (*, &,
[], ->, and .). Some operations that extract a value from a region expression, etc, use a
syntax resembling that of a function call. A boolean expression returns 0 (False) or 1
(True).

keep symbol directive

Syntax keep symbol name;

Parameters

Description Normally, the linker keeps a symbol only if it is needed by your application. Use this
directive to ensure that a symbol is always included in the final application.

See also keep directive, page 429 and --keep, page 297.

numbers

Syntax nr [nr-suffix]

where nr is either a decimal number or a hexadecimal number (0x... or 0X...).

and where nr-suffix is one of:

imp(name) If name is the name of a symbol with a constant value,
this operator is that value. This operator can be used
together with #pragma public_equ (see public_equ,
page 362) to import values from modules in your
application, for example the size of a particular struct
type.

tlsalignment() The alignment of the thread-local storage area.

tlssize() The size of the thread-local storage area.

name The name of the symbol.
AFE1_AFE2-1:1

443

444

Structural configuration

K /* Kilo = (1 << 10) 1024 */
M /* Mega = (1 << 20) 1048576 */
G /* Giga = (1 << 30) 1073741824 */
T /* Tera = (1 << 40) 1099511627776 */
P /* Peta = (1 << 50) 1125899906842624 */

Description A number can be expressed either by normal C means or by suffixing it with a set of
useful suffixes, which provides a compact way of specifying numbers.

Example 1024 is the same as 0x400, which is the same as 1K.

Structural configuration
The structural directives provide means for creating structure within the configuration,
such as:

● Conditional inclusion

An if directive includes or excludes other directives depending on a condition,
which makes it possible to have directives for several different memory
configurations in the same file. See if directive, page 445.

● Dividing the linker configuration file into several different files

The include directive makes it possible to divide the configuration file into several
logically distinct files. See include directive, page 445.

● Signaling an error for unsupported cases

This section gives detailed information about each linker directive specific to structural
configuration.

error directive

Syntax error string

Parameters

Description An error directive can be used for signaling an error if the directive occurs in the active
part of a conditional directive.

Example error "Unsupported configuration"

string The error message.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

The linker configuration file

if directive

Syntax if (expr) {
 directives
[} else if (expr) {
 directives]
[} else {
 directives]
}

where expr is an expression, see expressions, page 442.

Parameters

Description An if directive includes or excludes other directives depending on a condition, which
makes it possible to have directives for several different memory configurations, for
example, both a banked and non-banked memory configuration, in the same file.

The text inside a non-selected part of an if directive is not checked for syntax. The only
requirements for such text, is that it can be tokenized, and that any open brace ({) token
has a matching close brace (}) token.

Example See Empty region, page 417.

include directive

Syntax include "filename";

Parameters

Description The include directive makes it possible to divide the configuration file into several
logically distinct parts, each in a separate file. For instance, there might be parts that you
need to change often and parts that you seldom edit.

Normally, the linker searches for configuration include files in the system configuration
directory. You can use the --config_search linker option to add more directories to
search.

See also --config_search, page 287

directives Any ILINK directive.

filename A path where both / and \ can be used as the directory
delimiter.
AFE1_AFE2-1:1

445

446

Structural configuration

AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Section reference
● Summary of sections

● Descriptions of sections and blocks

For more information, see Modules and sections, page 80.

Summary of sections
The compiler places code and data into sections. Based on a configuration specified in
the linker configuration file, ILINK places sections in memory.

This table lists the ELF sections and blocks that are used by the IAR build tools:

Section Description

.bss Holds zero-initialized static and global variables.

CSTACK Holds the stack used by C or C++ programs.

.cstartup Holds the startup code.

.data Holds static and global initialized variables.

.data_init Holds initial values for .data sections when the linker directive
initialize is used.

HEAP Holds the heap.

.iar.dynexit Holds the atexit table.

.iar.locale_table Holds the locale table for the selected locales.

__iar_tls$$DATA Holds the TLS area for the primary thread.

__iar_tls$$INITDATA Holds initial values for the TLS area.

.init_array Holds a table of dynamic initialization functions.

.itim Holds functions and variables for the SiFive ITIM RAM area.

.jumptable Holds jump tables for switch statements.

.mtext Holds __machine interrupt functions.

.noinit Holds __no_init static and global variables.

.preinit_array Holds a table of dynamic initialization functions.

.rodata Holds constant data.

.stext Holds __supervisor interrupt functions.

Table 36: Section summary
AFE1_AFE2-1:1

447

448

Descriptions of sections and blocks

In addition to the ELF sections used for your application, the tools use a number of other
ELF sections for a variety of purposes:

● Sections starting with .debug generally contain debug information in the DWARF
format

● Sections starting with .iar.debug contain supplemental debug information in an
IAR format

● The section .comment contains the tools and command lines used for building the
file

● Sections starting with .rel or .rela contain ELF relocation information

● The section .symtab contains the symbol table for a file

● The section .strtab contains the names of the symbol in the symbol table

● The section .shstrtab contains the names of the sections.

Descriptions of sections and blocks
This section gives reference information about each section, where the:

● Description describes what type of content the section is holding and, where
required, how the section is treated by the linker

● Memory placement describes memory placement restrictions.

For information about how to allocate sections in memory by modifying the linker
configuration file, see Placing code and data—the linker configuration file, page 83.

.bss

Description Holds zero-initialized static and global variables. Sections with this name can have the
TLS bit set. Such a section will be renamed to .tbss if the linker option
--threaded_lib is used.

.tbss Holds thread-local zero-initialized static and global variables for
the primary thread.

.tdata Holds thread-local initialized static and global variables for the
primary thread.

.text Holds the program code.

.utext Holds __user interrupt functions.

Section Description

Table 36: Section summary (Continued)
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Section reference

Memory placement This section can be placed anywhere in memory.

CSTACK

Description Block that holds the internal data stack.

Memory placement This block can be placed anywhere in memory.

See also Setting up stack memory, page 101.

.cstartup

Description Holds the startup code.

Memory placement This section must be placed at the address where the device starts executing after reset.

.data

Description Holds static and global initialized variables. In object files, this includes the initial
values. When the linker directive initialize is used, a corresponding .data_init
section is created for each .data section, holding the possibly compressed initial
values. Sections with this name can have the TLS bit set. Such a section will be renamed
to .tdata if the linker option --threaded_lib is used.

Memory placement This section can be placed anywhere in memory.

.data_init

Description Holds the possibly compressed initial values for .data sections. This section is created
by the linker if the initialize linker directive is used.

Memory placement This section can be placed anywhere in ROM memory.

HEAP

Description Holds the heap used for dynamically allocated data, in other words data allocated by
malloc and free, and in C++, new and delete.

Memory placement This section can be placed anywhere in memory.
AFE1_AFE2-1:1

449

450

Descriptions of sections and blocks

See also Setting up heap memory, page 101.

.iar.dynexit

Description Holds the table of calls to be made at exit.

Memory placement This section can be placed anywhere in memory.

See also Setting up the atexit limit, page 102.

.iar.locale_table

Description Holds the locale table for the selected locales.

Memory placement This section can be placed anywhere in memory.

See also Locale, page 146.

__iar_tls$$DATA

Description Holds the thread-local storage area for the primary thread. The main use for this section
is to use a size operator (__section_size, see Dedicated section operators, page 178)
on it to obtain the size of the thread-local storage area. You can also use the operator
__iar_tls$$DATA$$Align to obtain the alignment of the thread-local storage.

This section is created by the linker if the linker option --threaded_lib is used.

See also Managing a multithreaded environment, page 148

__iar_tls$$INITDATA

Description Holds initial values for the thread-local storage area. The main use for this section is to
copy it to a thread’s thread-local storage area when the thread is created. The difference
between the size of this section and the total size of the thread-local storage area (the
section __iar_tls$$DATA) is the number of bytes in the thread-local storage area that
should be initialized to zero.

This section is created by the linker if the linker option --threaded_lib is used.

See also Managing a multithreaded environment, page 148
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Section reference

.init_array

Description Holds pointers to routines to call for initializing one or more C++ objects with static
storage duration.

Memory placement This section can be placed anywhere in memory.

.itim

Description Holds functions and variables for the ITIM RAM area on some SiFive devices. At
application startup, ITIM memory is zeroed and after that, functions and variables are
copied over from this section.

Memory placement This section can be placed anywhere in memory where the device allows.

See also Data and function placement in sections, page 212.

.jumptable

Description Holds jump tables for switch statements.

Memory placement This section can be placed anywhere in ROM memory.

.mtext

Description Holds interrupt functions declared using the function type attribute __machine. This
section is created by the compiler.

Memory placement This section can be placed anywhere in memory, but must be reachable from the
machine interrupt vector table if that table is used.

See also Interrupt functions, page 71 and __machine, page 333.

.noinit

Description Holds static and global __no_init variables.

Memory placement This section can be placed anywhere in memory.
AFE1_AFE2-1:1

451

452

Descriptions of sections and blocks

.preinit_array

Description Like .init_array, but is used by the library to make some C++ initializations happen
before the others.

Memory placement This section can be placed anywhere in memory.

See also .init_array, page 451.

.rodata

Description Holds constant data. This can include constant variables, string and aggregate literals,
etc.

Memory placement This section can be placed anywhere in memory.

.stext

Description Holds interrupt functions declared using the function type attribute __supervisor.
This section is created by the compiler.

Memory placement This section can be placed anywhere in memory, but must be reachable from the
supervisor interrupt vector table if that table is used.

See also Interrupt functions, page 71 and __supervisor, page 339.

.tbss

Description Holds thread-local zero-initialized static and global variables for the primary thread.
This section only exists in output from the linker and only when the --threaded_lib
option is used.

.tdata

Description Holds thread-local initialized static and global variables for the primary thread. This
section only exists in output from the linker and only when the --threaded_lib
option is used.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Section reference

.text

Description Holds program code.

Memory placement This section can be placed anywhere in memory.

.utext

Description Holds interrupt functions declared using the function type attribute __user. This
section is created by the compiler.

Memory placement This section can be placed anywhere in memory, but must be reachable from the user
interrupt vector table if that table is used.

See also Interrupt functions, page 71 and __user, page 340.
AFE1_AFE2-1:1

453

454

Descriptions of sections and blocks

AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

The stack usage control
file
● Overview

● Stack usage control directives

● Syntactic components

Before you read this chapter, see Stack usage analysis, page 89.

Overview
A stack usage control file consists of a sequence of directives that control stack usage
analysis. You can use C ("/*...*/") and C++ ("//...") comments in these files.

The default filename extension for stack usage control files is suc.

C++ NAMES

When you specify the name of a C++ function in a stack usage control file, you must
use the name exactly as used by the linker. Both the number and names of parameters,
as well as the names of types must match. However, most non-significant white-space
differences are accepted. In particular, you must enclose the name in quote marks
because all C++ function names include non-identifier characters.

You can also use wildcards in function names. "#*" matches any sequence of characters,
and "#?" matches a single character. This makes it possible to write function names that
will match any instantiation of a template function.

Examples:

"operator new(unsigned int)"
"std::ostream::flush()"
"operator <<(std::ostream &, char const *)"
"void _Sort<#*>(#*, #*, #*)"

Stack usage control directives
This section gives detailed reference information about each stack usage control
directive.
AFE1_AFE2-1:1

455

456

Stack usage control directives

call graph root directive

Syntax call graph root [category] : func-spec [, func-spec...];

Parameters See the information on syntactic components:

category, page 459

func-spec, page 459

Description Specifies that the listed functions are call graph roots. You can optionally specify a call
graph root category. Call graph roots are listed under their category in the Stack Usage
chapter in the linker map file.

The linker will normally issue a warning for functions needed in the application that are
not call graph roots and which do not appear to be called.

Example call graph root [task]: MyFunc10, MyFunc11;

See also call_graph_root, page 347.

exclude directive

Syntax exclude func-spec [, func-spec...];

Parameters See the information on syntactic components:

func-spec, page 459

Description Excludes the specified functions, and call trees originating with them, from stack usage
calculations.

Example exclude MyFunc5, MyFunc6;

function directive

Syntax [override] function [category] func-spec : stack-size
[, call-info...];

Parameters See the information on syntactic components:

category, page 459

func-spec, page 459
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

The stack usage control file

call-info, page 460

stack-size, page 460

Description Specifies what the maximum stack usage is in a function and which other functions that
are called from that function.

Normally, an error is issued if there already is stack usage information for the function,
but if you start with override, the error will be suppressed and the information
supplied in the directive will be used instead of the previous information.

Example function MyFunc1: 32,
 calls MyFunc2,
 calls MyFunc3, MyFunc4: 16;

function [interrupt] MyInterruptHandler: 44;

max recursion depth directive

Syntax max recursion depth func-spec : size;

Parameters See the information on syntactic components:

func-spec, page 459

size, page 461

Description Specifies the maximum number of iterations through any of the cycles in the recursion
nest of which the function is a member.

A recursion nest is a set of cycles in the call graph where each cycle shares at least one
node with another cycle in the nest.

Stack usage analysis will base its result on the max recursion depth multiplied by the
stack usage of the deepest cycle in the nest. If the nest is not entered on a point along
one of the deepest cycles, no stack usage result will be calculated for such calls.

Example max recursion depth MyFunc12: 10;
AFE1_AFE2-1:1

457

458

Stack usage control directives

no calls from directive

Syntax no calls from module-spec to func-spec [, func-spec...];

Parameters See the information on syntactic components:

func-spec, page 459

module-spec, page 459

Description When you provide stack usage information for some functions in a module without
stack usage information, the linker warns about functions that are referenced from the
module but not listed as called. This is primarily to help avoid problems with C runtime
routines, calls to which are generated by the compiler, beyond user control.

If there actually is no call to some of these functions, use the no calls from directive
to selectively suppress the warning for the specified functions. You can also disable the
warning entirely (--diag_suppress or
Project>Options>Linker>Diagnostics>Suppress these diagnostics).

Example no calls from [file.o] to MyFunc13, MyFun14;

possible calls directive

Syntax possible calls calling-func : called-func [, called-func...];

Parameters See the information on syntactic components:

func-spec, page 459

Description Specifies an exhaustive list of possible destinations for all indirect calls in one function.
Use this for functions which are known to perform indirect calls and where you know
exactly which functions that might be called in this particular application. Consider
using the #pragma calls directive if the information about which functions that might
be called is available when compiling.

Example possible calls MyFunc7: MyFunc8, MyFunc9;

When the function does not perform any calls, the list is empty:

possible calls MyFunc8: ;

See also calls, page 346.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

The stack usage control file

Syntactic components
This section describes the syntactical components that can be used by the stack usage
control directives.

category

Syntax [name]

Description A call graph root category. You can use any name you like. Categories are not
case-sensitive.

Example category examples:

[interrupt]
[task]

func-spec

Syntax [?] name [module-spec]

Description Specifies the name of a symbol, and for module-local symbols, the name of the module
it is defined in. Normally, if func-spec does not match a symbol in the program, a
warning is emitted. Prefixing with ? suppresses this warning.

Example func-spec examples:

xFun
MyFun [file.o]
?"fun1(int)"

module-spec

Syntax [name [(name)]]

Description Specifies the name of a module, and optionally, in parentheses, the name of the library
it belongs to. To distinguish between modules with the same name, you can specify:

● The complete path of the file ("D:\C1\test\file.o")

● As many path elements as are needed at the end of the path ("test\file.o")

● Some path elements at the start of the path, followed by "...", followed by some
path elements at the end ("D:\...\file.o").
AFE1_AFE2-1:1

459

460

Syntactic components

Note: When using multi-file compilation (--mfc), multiple files are compiled into a
single module, named after the first file.

Example module-spec examples:

[file.o]
[file.o(lib.a)]
["D:\C1\test\file.o"]

name

Description A name can be either an identifier or a quoted string.

The first character of an identifier must be either a letter or one of the characters "_",
"$", or ".". The rest of the characters can also be digits.

A quoted string starts and ends with " and can contain any character. Two consecutive
" characters can be used inside a quoted string to represent a single ".

Example name examples:

MyFun
file.o
"file-1.o"

call-info

Syntax calls func-spec [, func-spec...][: stack-size]

Description Specifies one or more called functions, and optionally, the stack size at the calls.

Example call-info examples:

calls MyFunc1 : stack 16
calls MyFunc2, MyFunc3, MyFunc4

stack-size

Syntax [stack] size
([stack] size)

Description Specifies the size of a stack frame. A stack may not be specified more than once.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

The stack usage control file

Example stack-size examples:

24
stack 28

size

Description A decimal integer, or 0x followed by a hexadecimal integer. Either alternative can
optionally be followed by a suffix indicating a power of two (K=210, M=220, G=230,
T=240, P=250).

Example size examples:

24
0x18
2048
2K
AFE1_AFE2-1:1

461

462

Syntactic components

AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

IAR utilities
● The IAR Archive Tool—iarchive—creates and manipulates a library (an

archive) of several ELF object files

● The IAR ELF Tool—ielftool—performs various transformations on an ELF
executable image (such as fill, checksum, format conversions, etc)

● The IAR ELF Dumper—ielfdump—creates a text representation of the
contents of an ELF relocatable or executable image

● The IAR ELF Object Tool—iobjmanip—is used for performing low-level
manipulation of ELF object files

● The IAR Absolute Symbol Exporter—isymexport—exports absolute
symbols from a ROM image file, so that they can be used when you link an
add-on application.

● Descriptions of options—detailed reference information about each
command line option available for the different utilities.

The IAR Archive Tool—iarchive
The IAR Archive Tool, iarchive, can create a library (an archive) file from several
ELF object files. You can also use iarchive to manipulate ELF libraries.

A library file contains several relocatable ELF object modules, each of which can be
independently used by a linker. In contrast with object modules specified directly to the
linker, each module in a library is only included if it is needed.

For information about how to build a library in the IDE, see the IDE Project
Management and Building Guide for RISC-V.

INVOCATION SYNTAX

The invocation syntax for the archive builder is:

iarchive [command] [libraryfile] [objectfiles] [options]
AFE1_AFE2-1:1

463

464

The IAR Archive Tool—iarchive

Parameters

The parameters are:

Examples

This example creates a library file called mylibrary.a from the source object files
module1.o, module.2.o, and module3.o:

iarchive mylibrary.a module1.o module2.o module3.o.

This example lists the contents of mylibrary.a:

iarchive --toc mylibrary.a

This example replaces module3.o in the library with the content in the module3.o file
and appends module4.o to mylibrary.a:

iarchive --replace mylibrary.a module3.o module4.o

SUMMARY OF IARCHIVE COMMANDS

This table summarizes the iarchive commands:

Parameter Description

command A command line option that defines the operation to be
performed. If the command is omitted, --create is used
by default. You can specify the command anywhere on the
command line.

libraryfile The library file to be operated on. If specified like this, it must
appear before the first object file, if any. You can also specify
the library file using the option -o.

objectfiles One or more object files as arguments to the command.
Note that some commands take no object file arguments.

options Optional command line options that modify the behavior of
the archive tool. These options can be placed anywhere on
the command line.

Table 37: iarchive parameters

Command line option Description

--create Creates a library that contains the listed object files.

--delete, -d Deletes the listed object files from the library.

--extract, -x Extracts the listed object files from the library.

--replace, -r Replaces or appends the listed object files to the library.

Table 38: iarchive commands summary
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

IAR utilities

For more information, see Descriptions of options, page 480.

SUMMARY OF IARCHIVE OPTIONS

This table summarizes the iarchive command line options:

For more information, see Descriptions of options, page 480.

DIAGNOSTIC MESSAGES

This section lists the messages produced by iarchive:

La001: could not open file filename

iarchive failed to open an object file.

La002: illegal path pathname

The path pathname is not a valid path.

La006: too many parameters to cmd command

A list of object modules was specified as parameters to a command that only accepts a
single library file.

--symbols Lists all symbols defined by files in the library.

--toc, -t Lists all files in the library.

Command line option Description

-f Extends the command line.

--f Extends the command line, optionally with a dependency.

--fake_time Generates library files with identical timestamps.

--no_bom Omits the byte order mark from UTF-8 output files.

--output, -o Specifies the library file.

--text_out Specifies the encoding for text output files.

--utf8_text_in Uses the UTF-8 encoding for text input files.

--verbose, -V Reports all performed operations.

--version Sends tool output to the console and then exits.

--vtoc Produces a verbose list of files in the library.

Table 39: iarchive options summary

Command line option Description

Table 38: iarchive commands summary (Continued)
AFE1_AFE2-1:1

465

466

The IAR Archive Tool—iarchive

La007: too few parameters to cmd command

A command that takes a list of object modules was issued without the expected modules.

La008: lib is not a library file

The library file did not pass a basic syntax check. Most likely the file is not the intended
library file.

La009: lib has no symbol table

The library file does not contain the expected symbol information. The reason might be
that the file is not the intended library file, or that it does not contain any ELF object
modules.

La010: no library parameter given

The tool could not identify which library file to operate on. The reason might be that a
library file has not been specified.

La011: file file already exists

The file could not be created because a file with the same name already exists.

La013: file confusions, lib given as both library and object

The library file was also mentioned in the list of object modules.

La014: module module not present in archive lib

The specified object module could not be found in the archive.

La015: internal error

The invocation triggered an unexpected error in iarchive.

Ms003: could not open file filename for writing

iarchive failed to open the archive file for writing. Make sure that it is not write
protected.

Ms004: problem writing to file filename

An error occurred while writing to file filename. A possible reason for this is that the
volume is full.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

IAR utilities

Ms005: problem closing file filename

An error occurred while closing the file filename.

The IAR ELF Tool—ielftool
The IAR ELF Tool, ielftool, can generate a checksum on specific ranges of
memories. This checksum can be compared with a checksum calculated on your
application.

The source code for ielftool and a CMake configuration file are available in the
riscv\src\elfutils directory. If you have specific requirements for how the
checksum should be generated or requirements for format conversion, you can modify
the source code accordingly. The CMake file can be used as a Microsoft Visual Studio
project or it can be used to generate makefiles for use on Linux, etc.

INVOCATION SYNTAX

The invocation syntax for the IAR ELF Tool is:

ielftool [options] inputfile outputfile [options]

The ielftool tool will first process all the fill options, then it will process all the
checksum options (from left to right).

Parameters

The parameters are:

See also Rules for specifying a filename or directory as parameters, page 238.

Example

This example fills a memory range with 0xFF and then calculates a checksum on the
same range:

ielftool my_input.out my_output.out --fill 0xFF;0–0xFF
 --checksum __checksum:4,crc32;0–0xFF

Parameter Description

inputfile An absolute ELF executable image produced by the ILINK linker.

options Any of the available command line options, see Summary of ielftool
options, page 468.

outputfile An absolute ELF executable image, or if one of the relevant command
line options is specified, an image file in another format.

Table 40: ielftool parameters
AFE1_AFE2-1:1

467

468

The IAR ELF Tool—ielftool

SUMMARY OF IELFTOOL OPTIONS

This table summarizes the ielftool command line options:

For more information, see Descriptions of options, page 480.

SPECIFYING IELFTOOL ADDRESS RANGES

At the most basic level, an address range for ielftool consists of two hexadecimal
numbers—0x8000-0x87FF—which includes both 0x8000 and 0x87FF.

You can specify ELF symbols that are present in the processed ELF file as a start or end
address using __checksum_begin-__checksum_end. This range begins on the byte
that has the address value of the __checksum_begin symbol and ends (inclusive) on

Command line option Description

--bin Sets the format of the output file to raw binary.

--bin-multi Produces output to multiple raw binary files.

--checksum Generates a checksum.

--fill Specifies fill requirements.

--front_headers Outputs headers in the beginning of the file.

--ihex Sets the format of the output file to 32-bit linear Intel Extended hex.

--ihex-len Sets the number of data bytes in Intel Hex records.

--offset Adds (or subtracts) an offset to all addresses in the generated output
file.

--parity Generates parity bits.

--self_reloc Not for general use.

--silent Sets silent operation.

--simple Sets the format of the output file to Simple-code.

--simple-ne As --simple, but without an entry record.

--srec Sets the format of the output file to Motorola S-records.

--srec-len Sets the number of data bytes in each S-record.

--srec-s3only Restricts the S-record output to contain only a subset of records.

--strip Removes debug information.

--titxt Sets the format of the output file to Texas Instruments TI-TXT.

--update_symbol Replaces the ELF file content for the specified symbol.

--verbose, -V Prints all performed operations.

--version Sends tool output to the console and then exits.

Table 41: ielftool options summary
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

IAR utilities

the byte that has the address value of the __checksum_end symbol. Symbol values of
0x40 and 0x3FD would equate to specifying 0x40-0x3FD.

You can add offsets to symbolic values using __start+3-__end+0x10. The
calculation is done in modulo 64-bits, therefore adding 0xFFFF'FFFF'FFFF'FFFF is
equivalent to subtracting 1.

You can specify blocks from an .icf file that are present in the processed ELF file using
{BLOCKNAME}. A block started on 0x400 and ending (inclusively) on 0x535, would
equate to specifying 0x400-0x535.

You can combine several address ranges, as long as they do not overlap, separated by
0x800-1FFF {FARCODE_BLOCK}.

You can specify __FLASH_BASE-__FLASH_END as a legal range (as long as there is no
overlap).

The IAR ELF Dumper—ielfdump
The IAR ELF Dumper for RISC-V, ielfdumpriscv, can be used for creating a text
representation of the contents of a relocatable or absolute ELF file.

ielfdumpriscv can be used in one of three ways:

● To produce a listing of the general properties of the input file and the ELF segments
and ELF sections it contains. This is the default behavior when no command line
options are used.

● To also include a textual representation of the contents of each ELF section in the
input file. To specify this behavior, use the command line option --all.

● To produce a textual representation of selected ELF sections from the input file. To
specify this behavior, use the command line option --section.

INVOCATION SYNTAX

The invocation syntax for ielfdumpriscv is:

ielfdumpriscv input_file [output_file]
AFE1_AFE2-1:1

469

470

The IAR ELF Dumper—ielfdump

Note: ielfdumpriscv is a command line tool which is not primarily intended to be
used in the IDE.

Parameters

The parameters are:

See also Rules for specifying a filename or directory as parameters, page 238.

SUMMARY OF IELFDUMP OPTIONS

This table summarizes the ielfdumpriscv command line options:

Parameter Description

input_file An ELF relocatable or executable file to use as input.

output_file A file or directory where the output is emitted. If absent and
no --output option is specified, output is directed to the
console.

Table 42: ielfdumpriscv parameters

Command line option Description

-a Generates output for all sections except string table sections.

--all Generates output for all input sections regardless of their
names or numbers.

--code Dumps all sections that contain executable code.

--core Specifies the ISA to ielfdumpriscv.

--disasm_data Dumps data sections as code sections.

-f Extends the command line.

--f Extends the command line, optionally with a dependency.

--no_bom Omits the Byte Order Mark from UTF-8 output files.

--no_header Suppresses production of a list header in the output.

--no_rel_section Suppresses dumping of .rel/.rela sections.

--no_strtab Suppresses dumping of string table sections.

--no_utf8_in Do not assume UTF-8 for non-IAR ELF files.

--output, -o Specifies an output file.

--range Disassembles only addresses in the specified range.

--raw Uses the generic hexadecimal/ASCII output format for the
contents of any selected section, instead of any dedicated
output format for that section.

Table 43: ielfdumpriscv options summary
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

IAR utilities

For more information, see Descriptions of options, page 480.

The IAR ELF Object Tool—iobjmanip
Use the IAR ELF Object Tool, iobjmanip, to perform low-level manipulation of ELF
object files.

INVOCATION SYNTAX

The invocation syntax for the IAR ELF Object Tool is:

iobjmanip options inputfile outputfile

Parameters

The parameters are:

See also Rules for specifying a filename or directory as parameters, page 238.

--section, -s Generates output for selected input sections.

--segment, -g Generates output for segments with specified numbers.

--source Includes source with disassembled code in executable files.

--text_out Specifies the encoding for text output files.

--use_full_std_templat

e_names

Uses full short full names for some Standard C++ templates.

--utf8_text_in Uses the UTF-8 encoding for text input files.

--version Sends tool output to the console and then exits.

Command line option Description

Table 43: ielfdumpriscv options summary (Continued)

Parameter Description

options Command line options that define actions to be performed.
These options can be placed anywhere on the command line.
At least one of the options must be specified.

inputfile A relocatable ELF object file.

outputfile A relocatable ELF object file with all the requested
operations applied.

Table 44: iobjmanip parameters
AFE1_AFE2-1:1

471

472

The IAR ELF Object Tool—iobjmanip

Examples

This example renames the section .example in input.o to .example2 and stores the
result in output.o:

iobjmanip --rename_section .example=.example2 input.o output.o

SUMMARY OF IOBJMANIP OPTIONS

This table summarizes the iobjmanip options:

For more information, see Descriptions of options, page 480.

DIAGNOSTIC MESSAGES

This section lists the messages produced by iobjmanip:

Lm001: No operation given

None of the command line parameters specified an operation to perform.

Lm002: Expected nr parameters but got nr

Too few or too many parameters. Check invocation syntax for iobjmanip and for the
used command line options.

Command line option Description

-f Extends the command line.

--f Extends the command line, optionally with a
dependency.

--no_bom Omits the Byte Order Mark from UTF-8 output files.

--remove_file_path Removes path information from the file symbol.

--remove_section Removes one or more section.

--rename_section Renames a section.

--rename_symbol Renames a symbol.

--strip Removes debug information.

--text_out Specifies the encoding for text output files.

--update_typeless_globals Updates the type of global symbols in an object file.

--utf8_text_in Uses the UTF-8 encoding for text input files.

--version Sends tool output to the console and then exits.

Table 45: iobjmanip options summary
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

IAR utilities

Lm003: Invalid section/symbol renaming pattern pattern

The pattern does not define a valid renaming operation.

Lm004: Could not open file filename

iobjmanip failed to open the input file.

Lm005: ELF format error msg

The input file is not a valid ELF object file.

Lm006: Unsupported section type nr

The object file contains a section that iobjmanip cannot handle. This section will be
ignored when generating the output file.

Lm007: Unknown section type nr

iobjmanip encountered an unrecognized section. iobjmanip will try to copy the
content as is.

Lm008: Symbol symbol has unsupported format

iobjmanip encountered a symbol that cannot be handled. iobjmanip will ignore this
symbol when generating the output file.

Lm009: Group type nr not supported

iobjmanip only supports groups of type GRP_COMDAT. If any other group type is
encountered, the result is undefined.

Lm010: Unsupported ELF feature in file: msg

The input file uses a feature that iobjmanip does not support.

Lm011: Unsupported ELF file type

The input file is not a relocatable object file.

Lm012: Ambiguous rename for section/symbol name (alt1 and alt2)

An ambiguity was detected while renaming a section or symbol. One of the alternatives
will be used.
AFE1_AFE2-1:1

473

474

The IAR Absolute Symbol Exporter—isymexport

Lm013: Section name removed due to transitive dependency on
name

A section was removed as it depends on an explicitly removed section.

Lm014: File has no section with index nr

A section index, used as a parameter to --remove_section or --rename_section,
did not refer to a section in the input file.

Ms003: could not open file filename for writing

iobjmanip failed to open the output file for writing. Make sure that it is not write
protected.

Ms004: problem writing to file filename

An error occurred while writing to file filename. A possible reason for this is that the
volume is full.

Ms005: problem closing file filename

An error occurred while closing the file filename.

The IAR Absolute Symbol Exporter—isymexport
The IAR Absolute Symbol Exporter, isymexport, can export absolute symbols from a
ROM image file, so that they can be used when you link an add-on application.

To keep symbols from your symbols file in your final application, the symbols must be
referred to, either from your source code or by using the linker option --keep.

INVOCATION SYNTAX

The invocation syntax for the IAR Absolute Symbol Exporter is:

isymexport [options] inputfile outputfile

Parameters

The parameters are:

Parameter Description

inputfile A ROM image in the form of an executable ELF file (output
from linking).

Table 46: isymexport parameters
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

IAR utilities

See also Rules for specifying a filename or directory as parameters, page 238.

In the IDE, to add the export of library symbols, choose Project>Options>Build
Actions and specify your command line in the Post-build command line text field, for
example:

$TOOLKIT_DIR$\bin\isymexport.exe "$TARGET_PATH$"

"$PROJ_DIR$\const_lib.symbols"

SUMMARY OF ISYMEXPORT OPTIONS

This table summarizes the isymexport command line options:

options Any of the available command line options, see Summary of
isymexport options, page 475.

outputfile A relocatable ELF file that can be used as input to linking, and
which contains all or a selection of the absolute symbols in the
input file. The output file contains only the symbols, not the
actual code or data sections. A steering file can be used for
controlling which symbols are included, and if desired, for also
renaming some of the symbols.

Parameter Description

Table 46: isymexport parameters (Continued)

Command line option Description

--edit Specifies a steering file.

--export_locals Exports local symbols.

-f Extends the command line.

--f Extends the command line, optionally with a dependency.

--generate_vfe_header Declares that the image does not contain any virtual function
calls to potentially discarded functions.

--no_bom Omits the Byte Order Mark from UTF-8 output files.

--ram_reserve_ranges Generates symbols for the areas in RAM that the image uses.

--reserve_ranges Generates symbols to reserve the areas in ROM and RAM
that the image uses.

--show_entry_as Exports the entry point of the application with the given
name.

--text_out Specifies the encoding for text output files.

--utf8_text_in Uses the UTF-8 encoding for text input files.

--version Sends tool output to the console and then exits.

Table 47: isymexport options summary
AFE1_AFE2-1:1

475

476

The IAR Absolute Symbol Exporter—isymexport

For more information, see Descriptions of options, page 480.

STEERING FILES

A steering file can be used for controlling which symbols are included, and if desired,
for also renaming some of the symbols. In the file, you can use show and hide directives
to select which public symbols from the input file that are to be included in the output
file. rename directives can be used for changing the names of symbols in the input file.

When you use a steering file, only actively exported symbols will be available in the
output file. Therefore, a steering file without show directives will generate an output file
without symbols.

Syntax

The following syntax rules apply:

● Each directive is specified on a separate line.

● C comments (/*...*/) and C++ comments (//...) can be used.

● Patterns can contain wildcard characters that match more than one possible
character in a symbol name.

● The * character matches any sequence of zero or more characters in a symbol name.

● The ? character matches any single character in a symbol name.

Example

rename xxx_* as YYY_* /*Change symbol prefix from xxx_ to YYY_ */
show YYY_* /* Export all symbols from YYY package */
hide *_internal /* But do not export internal symbols */
show zzz? /* Export zzza, but not zzzaaa */
hide zzzx /* But do not export zzzx */

Hide directive

Syntax hide pattern

Parameters

Description A symbol with a name that matches the pattern will not be included in the output file
unless this is overridden by a later show directive.

Example /* Do not include public symbols ending in _sys. */
hide *_sys

pattern A pattern to match against a symbol name.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

IAR utilities

Rename directive

Syntax rename pattern1 as pattern2

Parameters

Description Use this directive to rename symbols from the output file to the input file. No exported
symbol is allowed to match more than one rename pattern.

rename directives can be placed anywhere in the steering file, but they are executed
before any show and hide directives. Therefore, if a symbol will be renamed, all show
and hide directives in the steering file must refer to the new name.

If the name of a symbol matches a pattern1 pattern that contains no wildcard
characters, the symbol will be renamed pattern2 in the output file.

If the name of a symbol matches a pattern1 pattern that contains a wildcard character,
the symbol will be renamed pattern2 in the output file, with part of the name matching
the wildcard character preserved.

Example /* xxx_start will be renamed Y_start_X in the output file,
 xxx_stop will be renamed Y_stop_X in the output file. */
rename xxx_* as Y_*_X

Show directive

Syntax show pattern

Parameters

Description A symbol with a name that matches the pattern will be included in the output file unless
this is overridden by a later hide directive.

Example /* Include all public symbols ending in _pub. */
show *_pub

pattern1 A pattern used for finding symbols to be renamed. The pattern
can contain no more than one * or ? wildcard character.

pattern2 A pattern used for the new name for a symbol. If the pattern
contains a wildcard character, it must be of the same kind as in
pattern1.

pattern A pattern to match against a symbol name.
AFE1_AFE2-1:1

477

478

The IAR Absolute Symbol Exporter—isymexport

Show-root directive

Syntax show-root pattern

Parameters

Description A symbol with a name that matches the pattern will be included in the output file,
marked as root, unless this is overridden by a later hide directive.

When linking with the module produced by isymexport, the symbol will be included
in the final executable file, even if no references to the symbol are present in the build.

Example /* Export myVar making sure that it is included when linking */
show-root myVar

Show-weak directive

Syntax show-weak pattern

Parameters

Description A symbol with a name that matches the pattern will be included in the output file as a
weak symbol unless this is overridden by a later hide directive.

When linking, no error will be reported if the new code contains a definition for a
symbol with the same name as the exported symbol.

Note: Any internal references in the isymexport input file are already resolved and
cannot be affected by the presence of definitions in the new code.

Example /* Export myFunc as a weak definition */
show-weak myFunc

DIAGNOSTIC MESSAGES

This section lists the messages produced by isymexport:

Es001: could not open file filename

isymexport failed to open the specified file.

pattern A pattern to match against a symbol name.

pattern A pattern to match against a symbol name.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

IAR utilities

Es002: illegal path pathname

The path pathname is not a valid path.

Es003: format error: message

A problem occurred while reading the input file.

Es004: no input file

No input file was specified.

Es005: no output file

An input file, but no output file was specified.

Es006: too many input files

More than two files were specified.

Es007: input file is not an ELF executable

The input file is not an ELF executable file.

Es008: unknown directive: directive

The specified directive in the steering file is not recognized.

Es009: unexpected end of file

The steering file ended when more input was required.

Es010: unexpected end of line

A line in the steering file ended before the directive was complete.

Es011: unexpected text after end of directive

There is more text on the same line after the end of a steering file directive.

Es012: expected text

The specified text was not present in the steering file, but must be present for the
directive to be correct.
AFE1_AFE2-1:1

479

480

Descriptions of options

Es013: pattern can contain at most one * or ?

Each pattern in the current directive can contain at most one * or one ? wildcard
character.

Es014: rename patterns have different wildcards

Both patterns in the current directive must contain exactly the same kind of wildcard.
That is, both must either contain:

● No wildcards

● Exactly one *

● Exactly one ?

This error occurs if the patterns are not the same in this regard.

Es015: ambiguous pattern match: symbol matches more than one
rename pattern

A symbol in the input file matches more than one rename pattern.

Es016: the entry point symbol is already exported

The option --show_entry_as was used with a name that already exists in the input
file.

Descriptions of options
This section gives detailed reference information about each command line option
available for the different utilities.

-a

Syntax -a

For use with ielfdumpriscv

Description Use this option as a shortcut for --all --no_strtab.

This option is not available in the IDE.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

IAR utilities

--all

Syntax --all

For use with ielfdumpriscv

Description Use this option to include the contents of all ELF sections in the output, in addition to
the general properties of the input file. Sections are output in index order, except that
each relocation section is output immediately after the section it holds relocations for.

By default, no section contents are included in the output.

This option is not available in the IDE.

--bin

Syntax --bin[=range]

Parameters See Specifying ielftool address ranges, page 468.

For use with ielftool

Description Sets the format of the output file to raw binary, a binary format that includes only the
raw bytes, with no address information. If no range is specified, the output file will
include all the bytes from the lowest address for which there is content in the ELF file
to the highest address for which there is content. If a range is specified, only bytes from
that range are included. Note that in both cases, any gaps for which there is no content
will be generated as zeros.

Note: If a range with no content is specified, no output file is created.

To set related options, choose:

Project>Options>Output converter

--bin-multi

Syntax --bin-multi[=range[;range...]]

Parameters See Specifying ielftool address ranges, page 468.

For use with ielftool
AFE1_AFE2-1:1

481

482

Descriptions of options

Description Use this option to produce one or more raw binary output files. If no ranges are
specified, a raw binary output file is generated for each range for which there is content
in the ELF file. If ranges are specified, a raw binary output file is generated for each
range specified for which there is content. In each case, the name of each output file will
include the start address of its range. For example, if the output file is specified as
out.bin and the ranges 0x0-0x1F and 0x8000-0x8147 are output, there will be two
files, named out-0x0.bin and out-0x8000.bin.

This option is not available in the IDE.

--checksum

Syntax --checksum {symbol[{+|-}offset]|address}:size,
algorithm[:[1|2][a|m|z][W|L|Q][x][r][R][o][i|p]]
[,start];range[;range...]

Parameters
symbol The name of the symbol where the checksum value should be

stored. Note that it must exist in the symbol table in the input
ELF file.

offset The offset will be added (or subtracted if a negative offset (-) is
specified) to the symbol. Address expressions using + and - are
supported in a limited fashion. For example:
(start+7)-(end-2).

address The absolute address where the checksum value should be
stored.

size The number of bytes in the checksum—1, 2, or 4. The number
cannot be larger than the size of the checksum symbol.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

IAR utilities

algorithm The checksum algorithm used. Choose between:

sum, a byte-wise calculated arithmetic sum. The result is
truncated to 8 bits.

sum8wide, a byte-wise calculated arithmetic sum. The result is
truncated to the size of the symbol.

sum32, a word-wise (32 bits) calculated arithmetic sum.

crc16, CRC16 (generating polynomial 0x1021)—used by
default.

crc32, CRC32 (generating polynomial 0x04C11DB7).

crc64iso, CRC64iso (generating polynomial 0x1B).

crc64ecma, CRC64ECMA (generating polynomial
0x42F0E1EBA9EA3693).

crc=n, CRC with a generating polynomial of n.

1|2 If specified, choose between:

1, specifies one’s complement.

2, specifies two’s complement.

a|m|z Reverses the order of the bits for the checksum. Choose between:

a, reverses the input bytes (but nothing else).

m, reverses the input bytes and the final checksum.

z, reverses the final checksum (but nothing else).

Note that using a and z in combination has the same effect as m.
AFE1_AFE2-1:1

483

484

Descriptions of options

W|L|Q Specifies the size of the unit for which a checksum should be
calculated. Choose between:

W, calculates a checksum on 16 bits in every iteration.

L, calculates a checksum on 32 bits in every iteration.

Q, calculates a checksum on 64 bits in every iteration.

If you do not specify a unit size, 8 bits will be used by default.

The input byte sequence will processed as:

● 8-bit checksum unit size—byte0, byte1, byte2, byte3, etc.

● 16-bit checksum unit size—byte1, byte0, byte3, byte2, etc.

● 32-bit checksum unit size—byte3, byte2, byte1, byte0,
byte7, byte6, byte5, byte4, etc.

● 64-bit checksum unit size—byte7, byte6, byte5, byte4,
byte3, byte2, byte1, byte0, byte15, byte14, etc.

Note: The checksum unit size only affects the order in which the
input byte sequence is processed. It does not affect the size of the
checksum symbol, the polynomial, the initial value, the width of
the processor’s address bus, etc.

Most software CRC implementations use a checksum unit size
of 1 byte (8 bits). The W, L, and Q parameters are almost
exclusively used when a software CRC implementation has to
match the checksum computed by the hardware CRC
implementation. If you are not trying to cooperate with a
hardware CRC implementation, the W, L, or Q parameter will
simply compute a different checksum, because it processes the
input byte sequence in a different order.

x Reverses the byte order of the checksum. This only affects the
checksum value.

r Reverses the byte order of the input data. This has no effect
unless the number of bits per iteration has been set using the L or
W parameters.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

IAR utilities

For use with ielftool

Description Use this option to calculate a checksum with the specified algorithm for the specified
ranges. If you have an external definition for the checksum—for example, a hardware
CRC implementation—use the appropriate parameters to the --checksum option to
match the external design. In this case, learn more about that design in the hardware
documentation. The checksum will then replace the original value in symbol. A new
absolute symbol will be generated, with the symbol name suffixed with _value
containing the calculated checksum. This symbol can be used for accessing the
checksum value later when needed, for example, during debugging.

R Traverses the checksum range(s) in reverse order.

If the range is, for example, 0x100–0xFFF;0x2000–0x2FFF,
the checksum calculation will normally start on 0x100 and then
calculate every byte up to and including 0xFFF, followed by
calculating the byte on 0x2000 and continue to 0x2FFF.

Using the R parameter, the calculation instead starts on 0x2FFF
and continues by calculating every byte down to 0x2000, then
from 0xFFF down to and including 0x100.

o Outputs the Rocksoft model specification for the checksum.

i|p Use either i or p, if the start value is bigger than 0. Choose
between:

i, initializes the checksum value with the start value.

p, prefixes the input data with a word of size size that contains
the start value.

start By default, the initial value of the checksum is 0. If necessary,
use start to supply a different initial value. If not 0, then either
i or p must be specified.

range range is one or more memory ranges for which the checksum
will be calculated.

It is typically advisable to use symbols or blocks if the memory
range can change. If you use explicit addresses, for example,
0x8000-0x8347, and the code then changes, you need to update
the end address to the new value. If you instead use {CODE} or a
symbol located at the end of the code, you do not need to update
the --checksum command.

See also Specifying ielftool address ranges, page 468.
AFE1_AFE2-1:1

485

486

Descriptions of options

If the --checksum option is used more than once on the command line, the options are
evaluated from left to right. If a checksum is calculated for a symbol that is specified in
a later evaluated --checksum option, an error is issued.

Example This example shows how to use the crc16 algorithm with the start value 0 over the
address range 0x8000–0x8FFF:

ielftool --checksum=__checksum:2,crc16;0x8000-0x8FFF
sourceFile.out destinationFile.out

The input data i read from sourceFile.out, and the resulting checksum value of size
2 bytes will be stored at the symbol __checksum. The modified ELF file is saved as
destinationFile.out leaving sourceFile.out untouched.

In the next example, a symbol is used for specifying the start of the range:

ielftool --checksum=__checksum:2,crc16;__checksum_begin-0x8FFF
sourceFile.out destinationFile.out

If BLOCK1 occupies 0x4000-0x4337 and BLOCK2 occupies 0x8000-0x87FF, this
example will compute the checksum for the bytes on 0x4000 to 0x4337 and from
0x8000 to 0x87FF:

ielftool --checksum __checksum:2,crc16;{BLOCK1};{BLOCK2}
BlxTest.out BlxTest2.out

See also Checksum calculation for verifying image integrity, page 197

Specifying ielftool address ranges, page 468

To set related options, choose:

Project>Options>Linker>Checksum

--code

Syntax --code

For use with ielfdumpriscv

Description Use this option to dump all sections that contain executable code—sections with the
ELF section attribute SHF_EXECINSTR.

This option is not available in the IDE.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

IAR utilities

--core

For use with ielfdumpriscv

Description By default, the ISA that the input file was linked for is deduced automatically by
ielfdumpriscv. Use the option --core to specify the ISA explicitly, or to override
the automatic deduction. For a syntax description, see the compiler option --core,
--core, page 245.

Project>Options>General Options>Target>Device

--create

Syntax --create libraryfile objectfile1 ... objectfileN

Parameters

See also Rules for specifying a filename or directory as parameters, page 238

For use with iarchive

Description Use this command to build a new library from a set of object files (modules) and/or
archive files. The modules are added to the library in the order that they are specified on
the command line.

If no command is specified on the command line, --create is used by default.

This option is not available in the IDE.

--delete, -d

Syntax --delete libraryfile objectfile1 ... objectfileN
-d libraryfile objectfile1 ... objectfileN

Parameters

libraryfile The library file that the command operates on.

objectfile1 ...

objectfileN

The object file(s) to build the library from. The arguments can
also be archive files, in which case each member in the archive
file is processed as if specified separately.

libraryfile The library file that the command operates on.
AFE1_AFE2-1:1

487

488

Descriptions of options

See also Rules for specifying a filename or directory as parameters, page 238

For use with iarchive

Description Use this command to remove object files (modules) from an existing library. All object
files that are specified on the command line will be removed from the library.

This option is not available in the IDE.

--disasm_data

Syntax --disasm_data

For use with ielfdumpriscv

Description Use this command to instruct the dumper to dump data sections as if they were code
sections.

This option is not available in the IDE.

--edit

Syntax --edit steering_file

Parameters See Rules for specifying a filename or directory as parameters, page 238

For use with isymexport

Description Use this option to specify a steering file for controlling which symbols are included in
the isymexport output file, and if desired, also for renaming some of the symbols.

See also Steering files, page 476.

This option is not available in the IDE.

objectfile1 ...

objectfileN

The object file(s) that the command operates on.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

IAR utilities

--export_locals

Syntax --export_locals [=symbol_prefix]

Parameters

For use with isymexport

Description Use this option to export local symbols from a ROM image file, in addition to absolute
symbols. The default name of the exported symbol is LOCAL_filename_symbolname.
Use the optional parameter symbol_prefix to replace LOCAL with your custom prefix.

Example When exported from the ROM image file, the symbol symb in the source file myFile.c
becomes LOCAL_myFile_c_symb.

This option is not available in the IDE.

--extract, -x

Syntax --extract libraryfile [objectfile1 ... objectfileN]
-x libraryfile [objectfile1 ... objectfileN]

Parameters

See also Rules for specifying a filename or directory as parameters, page 238

For use with iarchive

Description Use this command to extract object files (modules) from an existing library. If a list of
object files is specified, only these files are extracted. If a list of object files is not
specified, all object files in the library are extracted.

This option is not available in the IDE.

symbol_prefix A custom prefix to the names of exported symbols that
replaces the default prefix LOCAL.

libraryfile The library file that the command operates on.

objectfile1 ...

objectfileN

The object file(s) that the command operates on.
AFE1_AFE2-1:1

489

490

Descriptions of options

-f

Syntax -f filename

Parameters See Rules for specifying a filename or directory as parameters, page 238

For use with iarchive, ielfdumpriscv, iobjmanip, and isymexport.

Description Use this option to make the tool read command line options from the named file, with
the default filename extension xcl.

In the command file, you format the items exactly as if they were on the command line
itself, except that you can use multiple lines, because the newline character acts just as
a space or tab character.

Both C and C++ style comments are allowed in the file. Double quotes behave in the
same way as in the Microsoft Windows command line environment.

This option is not available in the IDE.

--f

Syntax --f filename

Parameters See Rules for specifying a filename or directory as parameters, page 238

For use with iarchive, ielfdumpriscv, iobjmanip, and isymexport.

Description Use this option to make the tool read command line options from the named file, with
the default filename extension xcl.

In the command file, you format the items exactly as if they were on the command line
itself, except that you may use multiple lines, because the newline character acts just as
a space or tab character.

Both C and C++ style comments are allowed in the file. Double quotes behave in the
same way as in the Microsoft Windows command line environment.

If you also specify --dependencies on the command line for the tool, extended
command line files specified using --f will generate a dependency, but those specified
using -f will not generate a dependency.

See also -f, page 490.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

IAR utilities

This option is not available in the IDE.

--fake_time

Syntax --fake_time

For use with iarchive

Description Use this option to generate library files with identical timestamps. The value used is
0x5CF00000, which corresponds to approximately 30th May 2019 at 18:08:32 (the
exact time will vary depending on the time settings). This option enables you to generate
identical libraries for identical object files. Without this option, the timestamp will
generate unique library files from the same input files.

This option is not available in the IDE.

--fill

Syntax --fill [v;]pattern;range[;range...]

Parameters

See also Specifying ielftool address ranges, page 468.

For use with ielftool

v Generates virtual fill for the fill command. Virtual fill is filler
bytes that are included in checksumming, but that are not
included in the output file. The primary use for this is certain
types of hardware where bytes that are not specified by the image
have a known value—typically, 0xFF or 0x0.

pattern A hexadecimal string with the 0x prefix, for example, 0xEF,
interpreted as a sequence of bytes, where each pair of digits
corresponds to one byte, for example 0x123456, for the
sequence of bytes 0x12, 0x34, and 0x56. This sequence is
repeated over the fill area. If the length of the fill pattern is
greater than 1 byte, it is repeated as if it started at address 0.

range Specifies the address range for the fill.
AFE1_AFE2-1:1

491

492

Descriptions of options

Description Use this option to fill all gaps in one or more ranges with a pattern, which can be either
an expression or a hexadecimal string. The contents will be calculated as if the fill
pattern was repeatedly filled from the start address until the end address is passed, and
then the real contents will overwrite that pattern.

You might want to take alignment into consideration. If you generate fill that will be
accessed by half-word or word accesses, you should ensure that the addresses in the
filler range are half-word or word aligned.

If the --fill option is used more than once on the command line, the fill ranges cannot
overlap each other.

To set related options, choose:

Project>Options>Linker>Checksum

--front_headers

Syntax --front_headers

For use with ielftool

Description Use this option to output ELF program and section headers in the beginning of the file,
instead of at the end.

This option is not available in the IDE.

--generate_vfe_header

Syntax --generate_vfe_header

For use with isymexport

Description Use this option to declare that the image does not contain any virtual function calls to
potentially discarded functions.

When the linker performs virtual function elimination, it discards virtual functions that
appear not to be needed. For the optimization to be applied correctly, there must be no
virtual function calls in the image that affect the functions that are discarded.

See also Virtual function elimination, page 110.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

IAR utilities

To set this options, use:

Project>Options>Linker>Extra Options

--ihex

Syntax --ihex

For use with ielftool

Description Sets the format of the output file to 32-bit linear Intel Extended hex, a hexadecimal text
format defined by Intel.

Note: Intel Extended cannot express addresses larger than 232-1. If your application
contains such addresses, you must use another format.

To set related options, choose:

Project>Options>Linker>Output converter

--ihex-len

Syntax --ihex-len=length

Parameters

For use with ielftool

Description Sets the maximum number of data bytes in an Intel Hex record. This option can only be
used together with the --ihex option. By default, the number of data bytes in an Intel
Hex record is 16.

This option is not available in the IDE.

--no_bom

Syntax --no_bom

For use with iarchive, ielfdumpriscv, iobjmanip, and isymexport

length The number of data bytes in the record.
AFE1_AFE2-1:1

493

494

Descriptions of options

Description Use this option to omit the Byte Order Mark (BOM) when generating a UTF-8 output
file.

See also --text_out, page 507 and Text encodings, page 232

This option is not available in the IDE.

--no_header

Syntax --no_header

For use with ielfdumpriscv

Description By default, a standard list header is added before the actual file content. Use this option
to suppress output of the list header.

This option is not available in the IDE.

--no_rel_section

Syntax --no_rel_section

For use with ielfdumpriscv

Description By default, whenever the content of a section of a relocatable file is generated as output,
the associated section, if any, is also included in the output. Use this option to suppress
output of the relocation section.

This option is not available in the IDE.

--no_strtab

Syntax --no_strtab

For use with ielfdumpriscv

Description Use this option to suppress dumping of string table sections (sections of type
SHT_STRTAB).
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

IAR utilities

This option is not available in the IDE.

--no_utf8_in

Syntax --no_utf8_in

For use with ielfdumpriscv

Description The dumper can normally determine whether ELF files produced by IAR tools use the
UTF-8 text encoding or not, and produce the correct output. For ELF files produced by
non-IAR tools, the dumper will assume UTF-8 encoding unless this option is used, in
which case the encoding is assumed to be according to the current system default locale.

Note: This only makes a difference if any characters beyond 7-bit ASCII are used in
paths, symbols, etc.

See also Text encodings, page 232

This option is not available in the IDE.

--offset

Syntax --offset [-]offset

Parameters

For use with ielftool

Description Use this option to add or subtract an offset to the address of each output record in the
generated output file. The option only works on Motorola S-records, Intel Hex, TI-Txt,
and Simple-Code. The option has no effect when generating an ELF file or when binary
files (--bin contain no address information) are generated. No content, including the
entry point, will be changed by using this option, only the addresses in the output format.

Example --offset 0x30000

This will add an offset of 0x30000 to all addresses. As a result, content that was linked
at address 0x4000 will be placed at 0x34000.

offset The offset will be added (or subtracted if - is specified) to
all addresses in the generated output file.
AFE1_AFE2-1:1

495

496

Descriptions of options

This option is not available in the IDE.

--output, -o

Syntax -o {filename|directory}
--output {filename|directory}

Parameters See Rules for specifying a filename or directory as parameters, page 238

For use with iarchive and ielfdumpriscv.

Description iarchive

By default, iarchive assumes that the first argument after the iarchive command is
the name of the destination library. Use this option to explicitly specify a different
filename for the library.

ielfdumpriscv

By default, output from the dumper is directed to the console. Use this option to direct
the output to a file instead. The default name of the output file is the name of the input
file with an added id filename extension

You can also specify the output file by specifying a file or directory following the name
of the input file.

This option is not available in the IDE.

--parity

Syntax --parity{symbol[+offset]|address}:size,algo:flashbase[:flags];ran
ge[;range...]

Parameters
symbol The name of the symbol where the parity bytes should be

stored. Note that it must exist in the symbol table in the
input ELF file.

offset An offset to the symbol. By default, 0.

address The absolute address where the parity bytes should be
stored.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

IAR utilities

For use with ielftool

Description Use this option to generate parity bytes over specified ranges. The range is traversed left
to the right and the parity bits are generated using the odd or even algorithm. The parity
bits are finally stored in the specified symbol where they can be accessed by your
application.

This option is not available in the IDE.

--ram_reserve_ranges

Syntax --ram_reserve_ranges[=symbol_prefix]

Parameters

size The maximum number of bytes that the parity generation
can use. An error will be issued if this value is exceeded.
Note that the size must fit in the specified symbol in the ELF
file.

algo Choose between:

odd, uses odd parity.
even, uses even parity.

flashbase The start address of the flash memory. Parity bits will not be
generated for the addresses between flashbase and the
start address of the range. If flashbase and the start
address of the range coincide, parity bits will be generated
for all addresses

flags Choose between:

r, reverses the byte order within each word.
L, processes 4 bytes at a time.
W, processes 2 bytes at a time.
B, processes 1 byte at a time.

range The address range over which the parity bytes should be
generated.

See also Specifying ielftool address ranges, page 468.

symbol_prefix The prefix of symbols created by this option.
AFE1_AFE2-1:1

497

498

Descriptions of options

For use with isymexport

Description Use this option to generate symbols for the areas in RAM that the image uses. One
symbol will be generated for each such area. The name of each symbol is based on the
name of the area and is prefixed by the optional parameter symbol_prefix.

Generating symbols that cover an area in this way prevents the linker from placing other
content at the affected addresses. This can be useful when linking against an existing
image.

If --ram_reserve_ranges is used together with --reserve_ranges, the RAM
areas will get their prefix from the --ram_reserve_ranges option and the non-RAM
areas will get their prefix from the --reserve_ranges option.

See also --reserve_ranges, page 501.

This option is not available in the IDE.

--range

Syntax --range start-end

Parameters

For use with ielfdumpriscv

Description Use this option to specify a range for which code from an executable will be dumped.

This option is not available in the IDE.

--raw

Syntax --raw

For use with ielfdumpriscv

Description By default, many ELF sections will be dumped using a text format specific to a
particular kind of section. Use this option to dump each selected ELF section using the
generic text format.

start-end Disassemble code where the start address is greater than or
equal to start, and where the end address is less than end.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

IAR utilities

The generic text format dumps each byte in the section in hexadecimal format, and
where appropriate, as ASCII text.

Note: Raw-binary does not have any problems with 64-bit addresses.

This option is not available in the IDE.

--remove_file_path

Syntax --remove_file_path

For use with iobjmanip

Description Use this option to make iobjmanip remove information about the directory structure
of the project source tree from the generated object file, which means that the file
symbol in the ELF object file is modified.

This option must be used in combination with --remove_section ".comment".

This option is not available in the IDE.

--remove_section

Syntax --remove_section {section|number}

Parameters

For use with iobjmanip

Description Use this option to make iobjmanip omit the specified section when generating the
output file.

This option is not available in the IDE.

section The section—or sections, if there are more than one section with
the same name—to be removed.

number The number of the section to be removed. Section numbers can
be obtained from an object dump created using
ielfdumpriscv.
AFE1_AFE2-1:1

499

500

Descriptions of options

--rename_section

Syntax --rename_section {oldname|oldnumber}=newname

Parameters

For use with iobjmanip

Description Use this option to make iobjmanip rename the specified section when generating the
output file.

This option is not available in the IDE.

--rename_symbol

Syntax --rename_symbol oldname =newname

Parameters

For use with iobjmanip

Description Use this option to make iobjmanip rename the specified symbol when generating the
output file.

This option is not available in the IDE.

--replace, -r

Syntax --replace libraryfile objectfile1 ... objectfileN
-r libraryfile objectfile1 ... objectfileN

oldname The section—or sections, if there are more than one section with
the same name—to be renamed.

oldnumber The number of the section to be renamed. Section numbers can
be obtained from an object dump created using
ielfdumpriscv.

newname The new name of the section.

oldname The symbol to be renamed.

newname The new name of the symbol.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

IAR utilities

Parameters

See also Rules for specifying a filename or directory as parameters, page 238

For use with iarchive

Description Use this command to replace or add object files (modules) and/or archive files to an
existing library. The modules specified on the command line either replace existing
modules in the library—if they have the same name—or are appended to the library.

This option is not available in the IDE.

--reserve_ranges

Syntax --reserve_ranges[=symbol_prefix]

Parameters

For use with isymexport

Description Use this option to generate symbols for the areas in ROM and RAM that the image uses.
One symbol will be generated for each such area. The name of each symbol is based on
the name of the area and is prefixed by the optional parameter symbol_prefix.

Generating symbols that cover an area in this way prevents the linker from placing other
content at the affected addresses. This can be useful when linking against an existing
image.

If --reserve_ranges is used together with --ram_reserve_ranges, the RAM
areas will get their prefix from the --ram_reserve_ranges option and the non-RAM
areas will get their prefix from the --reserve_ranges option.

See also --ram_reserve_ranges, page 497.

This option is not available in the IDE.

libraryfile The library file that the command operates on.

objectfile1 ...

objectfileN

The object file(s) that the command operates on. The arguments
can also be archive files, in which case each member in the
archive file is processed as if specified separately.

symbol_prefix The prefix of symbols created by this option.
AFE1_AFE2-1:1

501

502

Descriptions of options

--section, -s

Syntax --section section_number|section_name[,...]
--s section_number|section_name[,...]

Parameters

For use with ielfdumpriscv

Description Use this option to dump the contents of a section with the specified number, or any
section with the specified name. If a relocation section is associated with a selected
section, its contents are output as well.

If you use this option, the general properties of the input file will not be included in the
output.

You can specify multiple section numbers or names by separating them with commas,
or by using this option more than once.

By default, no section contents are included in the output.

Example -s 3,17 /* Sections #3 and #17
-s .debug_frame,42 /* Any sections named .debug_frame and
 also section #42 */

This option is not available in the IDE.

--segment, -g

Syntax --segment segment_number[,...]

-g segment_number[,...]

Parameters

For use with ielfdumpriscv

Description Use this option to select specific segments—parts of an executable image indicated by
program headers—for inclusion in the output.

section_number The number of the section to be dumped.

section_name The name of the section to be dumped.

segment_number The number of a segment whose contents will be included
in the output.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

IAR utilities

This option is not available in the IDE.

--self_reloc

Syntax --self_reloc

For use with ielftool

Description This option is intentionally not documented as it is not intended for general use.

This option is not available in the IDE.

--show_entry_as

Syntax --show_entry_as name

Parameters

For use with isymexport

Description Use this option to export the entry point of the application given as input under the name
name.

This option is not available in the IDE.

--silent

Syntax --silent

For use with ielftool

Description Causes the tool to operate without sending any messages to the standard output stream.

By default, the tool sends various messages via the standard output stream. You can use
this option to prevent this. The tool sends error and warning messages to the error output
stream, so they are displayed regardless of this setting.

name The name to give to the program entry point in the output file.
AFE1_AFE2-1:1

503

504

Descriptions of options

This option is not available in the IDE.

--simple

Syntax --simple

For use with ielftool

Description Sets the format of the output file to Simple-code, a binary format that includes address
information.

Note: Simple-code can express addresses larger than 232-1. If your application contains
such addresses, a Simple-code file with a higher version number will be generated. Such
files can only be read by Simple-code readers that can handle this higher version.

To set related options, choose:

Project>Options>Output converter

--simple-ne

Syntax --simple-ne

For use with ielftool

Description Sets the format of the output file to Simple code, but no entry record is generated.

To set related options, choose:

Project>Options>Output converter

--source

Syntax --source

For use with ielfdumpriscv

Description Use this option to make ielftool include source for each statement before the code
for that statement, when dumping code from an executable file. To make this work, the
executable image must be built with debug information, and the source code must still
be accessible in its original location.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

IAR utilities

This option is not available in the IDE.

--srec

Syntax --srec

For use with ielftool

Description Sets the format of the output file to Motorola S-records, a hexadecimal text format
defined by Motorola. Note that you can use the ielftool options --srec-len and
--srec-s3only to modify the exact format used.

Note: Motorola S-records cannot express addresses larger than 232-1. If your
application contains such addresses, you must use another format.

To set related options, choose:

Project>Options>Output converter

--srec-len

Syntax --srec-len=length

Parameters

For use with ielftool

Description Sets the maximum number of data bytes in an S-record. This option can only be used
together with the --srec option. By default, the number of data bytes in an S-record is
16.

This option is not available in the IDE.

--srec-s3only

Syntax --srec-s3only

For use with ielftool

length The number of data bytes in each S-record.
AFE1_AFE2-1:1

505

506

Descriptions of options

Description Restricts the S-record output to contain only a subset of records, that is S0, S3 and S7
records. This option can be used in combination with the --srec option.

This option is not available in the IDE.

--strip

Syntax --strip

For use with iobjmanip and ielftool.

Description Use this option to remove all sections containing debug information before the output
file is written. iobjmanip will also remove the names of all module-local function,
variable, and section symbols.

Note: ielftool needs an unstripped input ELF image. If you use the --strip option
in the linker, remove it and use the --strip option in ielftool instead.

To set related options, choose:

Project>Options>Linker>Output>Include debug information in output

--symbols

Syntax --symbols libraryfile

Parameters

See also Rules for specifying a filename or directory as parameters, page 238

For use with iarchive

Description Use this command to list all external symbols that are defined by any object file
(module) in the specified library, together with the name of the object file (module) that
defines it.

In silent mode (--silent), this command performs symbol table-related syntax checks
on the library file and displays only errors and warnings.

This option is not available in the IDE.

libraryfile The library file that the command operates on.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

IAR utilities

--text_out

Syntax --text_out{utf8|utf16le|utf16be|locale}

Parameters

For use with iarchive, ielfdumpriscv, iobjmanip, and isymexport

Description Use this option to specify the encoding to be used when generating a text output file.

The default for the list files is to use the same encoding as the main source file. The
default for all other text files is UTF-8 with a Byte Order Mark (BOM).

If you want text output in UTF-8 encoding without BOM, you can use the option
--no_bom as well.

See also --no_bom, page 493 and Text encodings, page 232

This option is not available in the IDE.

--titxt

Syntax --titxt

For use with ielftool

Description Sets the format of the output file to Texas Instruments TI–TXT, a hexadecimal text
format defined by Texas Instruments.

Note: Texas Instruments TI–TXT can express addresses larger than 232-1.

To set related options, choose:

Project>Options>Output converter

utf8 Uses the UTF-8 encoding

utf16le Uses the UTF-16 little-endian encoding

utf16be Uses the UTF-16 big-endian encoding

locale Uses the system locale encoding
AFE1_AFE2-1:1

507

508

Descriptions of options

--toc, -t

Syntax --toc libraryfile
-t libraryfile

Parameters

See also Rules for specifying a filename or directory as parameters, page 238

For use with iarchive

Description Use this command to list the names of all object files (modules) in a specified library.

In silent mode (--silent), this command performs basic syntax checks on the library
file, and displays only errors and warnings.

This option is not available in the IDE.

--update_symbol

Syntax --update_symbol symbol,{hexstring|(filename)}[,force]

Parameters

For use with ielftool

Description This option replaces the ELF file content for the specified symbol. ielftool checks
that the number of new content bytes (specified by a hexadecimal string, or read from a
file) matches the current size of the symbol in the ELF file. If the sizes do not match, the
operation is aborted.

libraryfile The library file that the command operates on.

symbol A symbol whose content you want to replace.

hexstring A hexadecimal string with the 0x prefix, for example, 0xEF,
interpreted as a sequence of bytes where each pair of digits
corresponds to one byte. 0x123456, for example, is
interpreted as the sequence of bytes 0x12, 0x34, and 0x56.
The specified bytes become the new content for the symbol.

(filename) A file containing the new content for the symbol. All bytes in
the file are inserted as they are in the ELF file.

force Forces the update if there are warnings.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

IAR utilities

Use the force parameter to make ielftool perform the operation even if the sizes do
not match—some ELF symbols do not have sizes (typically assembler-generated, or
generated by a toolchain that does not set symbol sizes in general). If you force the
operation, you must be careful so you do not accidentally use the file you are updating
as input, because that will corrupt it.

This option is not available in the IDE.

--update_typeless_globals

Syntax --update_typeless_globals[=codeSectionName,dataSectionName]

Parameters

For use with iobjmanip

Description Use this option to update the type of relevant global symbols in an object file.

A global symbol that does not have an ELF type (ELF attribute STT_NOTYPE) will have
its type set to Code (STT_FUNC) or Data (STT_OBJECT). When no parameters are
specified, the attributes of the section that contains the symbol are used to determine if
this is a Code or a Data symbol.

If the optional section names are used, then the symbols in sections that match the
dataSectionName will be treated as Data. Similarly, the symbols in sections that
match the codeSectionName will be treated as Code. If a section does not match either
the dataSectionName or the codeSectionName, then a warning will be generated
and any symbols in that section will not be updated.

This option is not available in the IDE.

--use_full_std_template_names

Syntax --use_full_std_template_names

For use with ielfdumpriscv

Description Normally, the names of some standard C++ templates are used in the output in an
abbreviated form in the demangled names of symbols, for example, "std::string"

codeSectionName The name of the code section.

dataSectionName The name of the data section.
AFE1_AFE2-1:1

509

510

Descriptions of options

instead of "std::basic_string<char, std::char_traits<char>,
std_::allocator<char>>". Use this option to make ielfdump use the
unabbreviated form.

This option is not available in the IDE.

--utf8_text_in

Syntax --utf8_text_in

For use with iarchive, ielfdumpriscv, iobjmanip, and isymexport

Description Use this option to specify that the tool shall use the UTF-8 encoding when reading a text
input file with no Byte Order Mark (BOM).

Note: This option does not apply to source files.

See also Text encodings, page 232

This option is not available in the IDE.

--verbose, -V

Syntax --verbose
-V (iarchive only)

For use with iarchive and ielftool.

Description Use this option to make the tool report which operations it performs, in addition to
giving diagnostic messages.

This option is not available in the IDE because this setting is always enabled.

--version

Syntax --version

For use with iarchive, ielfdumpriscv, ielftool, iobjmanip, isymexport

Description Use this option to make the tool send version information to the console and then exit.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

IAR utilities

This option is not available in the IDE.

--vtoc

Syntax --vtoc libraryfile

Parameters

See also Rules for specifying a filename or directory as parameters, page 238

For use with iarchive

Description Use this command to list the names, sizes, and modification times of all object files
(modules) in a specified library.

In silent mode (--silent), this command performs basic syntax checks on the library
file, and displays only errors and warnings.

This option is not available in the IDE.

libraryfile The library file that the command operates on.
AFE1_AFE2-1:1

511

512

Descriptions of options

AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Implementation-defined
behavior for Standard C++
● Descriptions of implementation-defined behavior for C++

● Implementation quantities

If you are using C instead of C++, see Implementation-defined behavior for
Standard C, page 551 or Implementation-defined behavior for C89, page 571,
respectively.

Descriptions of implementation-defined behavior for C++
This section follows the same order as the C++ 17 standard. Each item specifies (in
parenthesis) whether it is related to the compiler (including the linker, etc) or to one or
both libraries. Each heading starts with a reference to the ISO chapter and section that
explains the implementation-defined behavior. A corresponding reference to the C++14
standard is also given for each item, if one exists.

Note: The IAR implementation adheres to a freestanding implementation of Standard
C++. This means that parts of a standard library can be excluded from the
implementation. The compiler adheres to the C++17 standard, with some additional
features from later C++ standards.

LIST OF TOPICS

3.8 Diagnostics (Compiler)

Diagnostics are produced in the form:

filename,linenumber level[tag]: message

where filename is the name of the source file in which the error was encountered,
linenumber is the line number at which the compiler detected the error, level is the
level of seriousness of the message (remark, warning, error, or fatal error), tag is a
unique tag that identifies the message, and message is an explanatory message, possibly
several lines.

C++14 reference: 1.3.6
AFE1_AFE2-1:1

513

514

Descriptions of implementation-defined behavior for C++

4.1 Required libraries for freestanding implementation
(C++14/C++17 libraries)

See C++ header files, page 399 and Not supported C/C++ functionality, page 403,
respectively, for information about which Standard C++ system headers that the IAR
C/C++ Compiler does not support.

C++14 reference: 1.4

4.4 Bits in a byte (Compiler)

A byte contains 8 bits.

C++14 reference: 1.7

4.6 Interactive devices (C++14/C++17 libraries)

The streams stdin, stdout, and stderr are treated as interactive devices.

C++14 reference: 1.9

4.7 Number of threads in a program under a freestanding
implementation (Compiler)

By default, the IAR runtime environment does not support more than one thread of
execution. With an optional third-party RTOS, it might support several threads of
execution.

C++14 reference: 1.10

4.7.2 Requirement that the thread that executes main and the
threads created by std::thread provide concurrent forward progress
guarantees (Compiler)

The thread system header is not supported.

C++14 reference: Not part of the implementation-defined behavior in C++14.

5.2, C.4.1 Mapping physical source file characters to the basic source
character set (Compiler)

The source character set is the same as the physical source file multibyte character set.
By default, the standard ASCII character set is used. However, it can be UTF-8, UTF-16,
or the system locale. See Text encodings, page 232.

C++14 reference: 2.2
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Implementation-defined behavior for Standard C++

5.2 Physical source file characters (Compiler)

The source character set is the same as the physical source file multibyte character set.
By default, the standard ASCII character set is used. However, it can be UTF-8, UTF-16,
or the system locale. See Text encodings, page 232.

C++14 reference: 2.2

5.2 Converting characters from a source character set to the
execution character set (Compiler)

The source character set is the set of legal characters that can appear in source files. It is
dependent on the chosen encoding for the source file. See Text encodings, page 232. By
default, the source character set is Raw.

The execution character set is the set of legal characters that can appear in the execution
environment. These are the execution character sets for character constants and string
literals, and their encoding types:

The DLIB runtime environment needs a multibyte character scanner to support a
multibyte execution character set. See Locale, page 146.

C++14 reference: 2.2

5.2 Required availability of the source of translation units to locate
template definitions (Compiler)

When locating the template definition related to template instantiations, the source of
the translation units that define the template is not required.

C++14 reference: 2.2

5.3 The execution character set and execution wide-character set
(Compiler)

The values of the members of the execution character set are the values of the ASCII
character set, which can be augmented by the values of the extra characters in the source

Execution character set Encoding type

L UTF-32

u UTF-16

U UTF-32

u8 UTF-8

none The source character set

Table 48: Execution character sets and their encodings
AFE1_AFE2-1:1

515

516

Descriptions of implementation-defined behavior for C++

file character set. The source file character set is determined by the chosen encoding for
the source file. See Text encodings, page 232.

The wide character set consists of all the code points defined by ISO/IEC 10646.

C++14 reference: 2.3

5.8 Mapping header names to headers or external source files
(Compiler)

The header name is interpreted and mapped into an external source file in the most
intuitive way. In both forms of the #include preprocessing directive, the character
sequences that specify header names are interpreted exactly in the same way as for other
source constructs. They are then mapped to external header source file names.

C++14 reference: 2.9

5.8 The meaning of ’, \, /*, or // in a q-char-sequence or an
h-char-sequence (Compiler)

Characters in a q-char-sequence and a h-char-sequence are interpreted as a string literal.

C++14 reference: 2.9

5.13.3 The value of multi-character literals (Compiler)

An integer character constant that contains more than one character will be treated as an
integer constant. The value will be calculated by treating the leftmost character as the
most significant character, and the rightmost character as the least significant character,
in an integer constant. A diagnostic message is issued if the value cannot be represented
in an integer constant.

C++14 reference: 2.14.3

5.13.3 The value of wide-character literals with single c-char that
are not in the execution wide-character set (Compiler)

All possible c-chars have a representation in the execution wide-character set.

C++14 reference: 2.14.3

5.13.3 The value of wide-character literal containing multiple
characters (Compiler)

A diagnostic message is issued, and all but the first c-char is ignored.

C++14 reference: 2.14.3
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Implementation-defined behavior for Standard C++

5.13.3 The semantics of non-standard escape sequences (Compiler)

No non-standard escape sequences are supported.

C++14 reference: 2.14.3

5.13.3 The value of character literal outside range of corresponding
type (Compiler)

The value is truncated to fit the type.

C++14 reference: 2.14.3

5.13.3 The encoding of universal character name not in execution
character set (Compiler)

A diagnostic message is issued.

C++14 reference: 2.14.3

5.13.3 The range defined for character literals (Compiler)

The range is the same as an int.

C++14 reference: 2.14.3

5.13.4 The choice of larger or smaller value of floating-point literal
(Compiler)

For a floating-point literal whose scaled value cannot be represented as a floating-point
value, the nearest even floating point-value is chosen.

C++14 reference: 2.14.4

5.13.5 Concatenation of various types of string literals (Compiler)

Differently prefixed string literal tokens cannot be concatenated, except for those
specified by the ISO C++ standard.

C++14 reference: 2.14.5

6.6.1 Defining main in a freestanding environment (Compiler)

The main function must be defined.

C++14 reference: 3.6.1
AFE1_AFE2-1:1

517

518

Descriptions of implementation-defined behavior for C++

6.6.1 Startup and termination in a freestanding environment
(C++14/C++17 libraries)

See Application execution—an overview, page 56 and System startup and termination,
page 132, for descriptions of the startup and termination of applications.

C++14 reference: 3.6.1

6.6.1 Parameters to main (C++14/C++17 libraries)

The only two permitted definitions for main are:

int main()
int main(int, char **)

C++14 reference: 3.6.1

6.6.1 Linkage of main (C++14/C++17 libraries)

The main function has external linkage.

C++14 reference: 3.6.1

6.6.3 Dynamic initialization of static variables before main
(C++14/C++17 libraries)

Static variables are initialized before the first statement of main, except when the linker
option --manual_dynamic_initialization is used.

C++14 reference: 3.6.2

6.6.3 Dynamic initialization of threaded local variables before entry
(C++14/C++17 libraries)

By default, the IAR runtime environment does not support more than one thread of
execution. With an optional third-party RTOS, it might support several threads of
execution.

Thread-local variables are treated as static variables except when the linker option
--threaded_lib is used. Then they are initialized by the RTOS.

C++14 reference: 3.6.2

6.6.3 Dynamic initialization of static inline variables before main
(C++14/C++17 libraries)

Static inline variables are initialized before the first statement of main, except when the
linker option --manual_dynamic_initialization is used.

C++14 reference: 3.6.2
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Implementation-defined behavior for Standard C++

6.6.3 Threads and program points at which deferred dynamic
initialization is performed (C++14/C++17 libraries)

Dynamic initialization is not deferred, except when the linker option
--manual_dynamic_initialization is used.

C++14 reference: 3.6.2

6.7 Use of an invalid pointer (Compiler)

Any other use of an invalid pointer than indirection through it and passing it to a
deallocation function works as for a valid pointer.

C++14 reference: 3.7.4.2

6.7.4.3 Relaxed or strict pointer safety for the implementation
(Compiler)

The IAR implementation of Standard C++ has relaxed pointer safety.

C++14 reference: 3.7.4.3

6.9 The value of trivially copyable types (Compiler)

All bits in basic types are part of the value representation. Padding between basic types
is copied verbatim.

C++14 reference: 3.9

6.9.1 Representation and signage of char (Compiler)

A plain char is treated as an unsigned char. See --char_is_signed, page 244 and
--char_is_unsigned, page 245.

C++14 reference: 3.9.1

6.9.1 Extended signed integer types (Compiler)

No extended signed integer types exist in the implementation.

C++14 reference: 3.9.1

6.9.1 Value representation of floating-point types (Compiler)

See Basic data types—floating-point types, page 321.

C++14 reference: 3.9.1
AFE1_AFE2-1:1

519

520

Descriptions of implementation-defined behavior for C++

6.9.2 Value representation of pointer types (Compiler)

See Pointer types, page 323.

C++14 reference: 3.9.2

6.11 Alignment (Compiler)

See Alignment, page 315.

C++14 reference: 3.11

6.11 Alignment additional values (Compiler)

See Alignment, page 315.

C++14 reference: 3.11

6.11 alignof expression additional values (Compiler)

See Alignment, page 315.

C++14 reference: 3.11

7.1 lvalue-to-rvalue conversion for objects that contain an invalid
pointer (Compiler)

The conversion is made, but it is undefined what happens if the pointer value is used.

C++14 reference: 4.1

7.8 The value of the result of unsigned to signed conversion
(Compiler)

When an integer value is converted to a value of signed integer type, but cannot be
represented by the destination type, the value is truncated to the number of bits of the
destination type and then reinterpreted as a value of the destination type.

C++14 reference: 4.7

7.9 The result of inexact floating-point conversion (Compiler)

When a floating-point value is converted to a value of a different floating-point type, and
the value is within the range of the destination type but cannot be represented exactly,
the value is rounded to the nearest floating-point value by default.

C++14 reference: 4.8
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Implementation-defined behavior for Standard C++

7.10 The value of the result of an inexact integer to floating-point
conversion (Compiler)

When an integer value is converted to a value of a floating-point type, and the value is
within the range of the destination type but cannot be represented exactly, the value is
rounded to the nearest floating-point value by default.

C++14 reference: 4.9

7.15 The rank of extended signed integer types (Compiler)

The implementation has no extended signed integer types.

C++14 reference: 4.13

8.2.2 Passing argument of class type through ellipsis (Compiler)

The result is a diagnostic and is then treated as a trivially copyable object.

C++14 reference: 5.2.2

8.2.2 Ending the lifetime of a parameter when the callee returns or
at the end of the enclosing full-expression (Compiler)

The lifetime of a parameter ends when the callee returns.

C++14 reference: 5.2.2

8.2.6 The value of a bitfield that cannot represent its incremented
value (Compiler)

The value is truncated to the correct number of bits.

C++14 reference: Not part of the implementation-defined behavior in C++14.

8.2.8 The derived type for typeid (C++14/C++17 libraries)

The type of a typeid expression is an expression with dynamic type
std::type_info.

C++14 reference: 5.2.8

8.2.10 Conversion from a pointer to an integer (Compiler)

See Casting, page 323.

C++14 reference: 5.2.10
AFE1_AFE2-1:1

521

522

Descriptions of implementation-defined behavior for C++

8.2.10 Conversion from an integer to a pointer (Compiler)

See Casting, page 323.

C++14 reference: 5.2.10

8.2.10 Converting a function pointer to an object pointer and vice
versa (Compiler)

See Casting, page 323.

C++14 reference: 5.2.10

8.3.3 sizeof applied to fundamental types other than char, signed
char, and unsigned char (Compiler)

See Basic data types—integer types, page 316, Basic data types—floating-point types,
page 321, and Pointer types, page 323.

C++14 reference: 5.3.3

8.3.4, 21.6.3.2 The maximum size of an allocated object
(C++14/C++17 library)

The maximum size of an allocated object is theoretically the maximum value of
size_t, but in practice it is bounded by how much memory is allocated to the heap. See
Setting up heap memory, page 101.

C++14 reference: 5.3.4

8.7, 21.2.4 The type of ptrdiff_t (Compiler)

See ptrdiff_t, page 323.

C++14 reference: 5.7, 18.2

8.8 The result of right shift of negative value (Compiler)

In a bitwise right shift operation of the form E1 >> E2, if E1 is of signed type and has
a negative value, the value of the result is the integral part of the quotient E1/(2**E2),
except when E1 is –1.

C++14 reference: 5.8

8.18 The value of a bitfield that cannot represent its assigned value
(Compiler)

The value is truncated to the correct number of bits.

C++14 reference: Not part of the implementation-defined behavior in C++14.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Implementation-defined behavior for Standard C++

10 The meaning of the attribute declaration (Compiler)

There are no other attributes supported than what is specified in the C++ standard. See
Extended keywords, page 329, for supported attributes and ways to use them with
objects.

C++14 reference: 7

10.1.7.1 Access to an object that has volatile-qualified type
(Compiler)

See Declaring objects volatile, page 326.

C++14 reference: 7.1.6.1

10.2 The underlying type for enumeration (Compiler)

See The enum type, page 317.

C++14 reference: 7.2

10.4 The meaning of the asm declaration (Compiler)

An asm declaration enables the direct use of assembler instructions.

C++14 reference: 7.4

10.5 The semantics of linkage specifiers (Compiler)

Only the string-literals "C" and "C++" can be used in a linkage specifier.

C++14 reference: 7.5

10.5 Linkage of objects to other languages (Compiler)

They should have "C" linkage.

C++14 reference: 7.5

10.6.1 The behavior of non-standard attributes (Compiler)

There are no other attributes supported other than what is specified in the C++ standard.
See Extended keywords, page 329, for a list supported attributes and ways to use them
with objects.

C++14 reference: 7.6.1

11.4.1 The string resulting from __func__ (Compiler)

The value of _ _func_ _ is the C++ function name.
AFE1_AFE2-1:1

523

524

Descriptions of implementation-defined behavior for C++

C++14 reference: 8.4.1

11.6 The value of a bitfield that cannot represent its initializer
(Compiler)

The value is truncated to the correct number of bits.

C++14 reference: Not part of the implementation-defined behavior in C++14.

12.2.4 Allocation of bitfields within a class object (Compiler)

See Bitfields, page 318.

C++14 reference: 9.6

17 The semantics of linkage specification on templates (Compiler)

Only the string-literals "C" and "C++" can be used in a linkage specifier.

C++14 reference: 14

17.7.1 The maximum depth of recursive template instantiations
(Compiler)

The default maximum depth is 64. To change it, use the compiler option
--pending_instantiations, page 270.

C++14 reference: 14.7.1

18.3, 18.5.1 Stack unwinding before calling std::terminate()
(C++14/C++17 libraries)

When no suitable catch handler is found, the stack is not unwound before calling
std::terminate().

C++14 reference: 15.3, 15.5.1

18.5.1 Stack unwinding before calling std::terminate() when a
noexcept specification is violated (C++14/C++17 libraries)

When a noexcept specification is violated, the stack is not unwound before calling
std::terminate().

C++14 reference: 15.5.1
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Implementation-defined behavior for Standard C++

19 Additional supported forms of preprocessing directives
(Compiler)

The preprocessor directives #warning and #include_next are supported. See
#warning, page 394 and #include_next, page 393.

C++14 reference: 16

19.1 The numeric values of character literals in #if directives
(Compiler)

Numeric values of character literals in the #if and #elif preprocessing directives
match the values that they have in other expressions.

C++14 reference: 16.1

19.1 Negative value of character literal in preprocessor (Compiler)

A plain char is treated as an char. See --char_is_signed, page 244 and
--char_is_unsigned, page 245. If a char is treated as a signed character, then character
literals in #if and #elif preprocessing directives can be negative.

C++14 reference: 16.1

19.2 Search locations for < > header (Compiler)

See Include file search procedure, page 229.

C++14 reference: 16.2

19.2 The search procedure for included source file (Compiler)

See Include file search procedure, page 229.

C++14 reference: 16.2

19.2 Search locations for "" header (Compiler)

See Include file search procedure, page 229.

C++14 reference: 16.2

19.2 The sequence of places searched for a header (Compiler)

See Include file search procedure, page 229.

C++14 reference: 16.2
AFE1_AFE2-1:1

525

526

Descriptions of implementation-defined behavior for C++

19.2 Nesting limit for #include directives (Compiler)

The amount of available memory sets the limit.

C++14 reference: 16.2

19.6 #pragma (Compiler)

See Recognized pragma directives (6.10.6), page 559.

C++14 reference: 16.6

19.8, C.1.10 The definition and meaning of __STDC__ (Compiler)

_ _STDC_ _ is predefined to 1.

C++14 reference: 16.8

19.8 The text of __DATE__ when the date of translation is not
available (Compiler)

The date of the translation is always available.

C++14 reference: 16.8

19.8 The text of __TIME__ when the time of translation is not
available (Compiler)

The time of the translation is always available.

C++14 reference: 16.8

19.8 The definition and meaning of __STDC_VERSION__
(Compiler)

_ _STDC_VERSION_ _ is predefined to 201710L.

C++14 reference: 16.8

20.5.1.2 Declaration of functions from Annex K of the C standard
library when C++ headers are included (C++17 library)

See C bounds-checking interface, page 405.

C++14 reference: Not part of the implementation-defined behavior in C++14.

20.5.1.3 Headers for a freestanding implementation (C++14/C++17
libraries)

See DLIB runtime environment—implementation details, page 397.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Implementation-defined behavior for Standard C++

C++14 reference: 17.6.1.3

20.5.2.3 Linkage of names from Standard C library (C++14/C++17
libraries)

Declarations from the C library have "C" linkage.

C++14 reference: 17.6.2.3

20.5.5.8 Functions in Standard C++ library that can be recursively
reentered (C++14/C++17 libraries)

Functions can be recursively reentered, unless specified otherwise by the ISO C++
standard.

C++14 reference: 17.6.5.8

20.5.5.12 Exceptions thrown by standard library functions that do
not have an exception specification (C++14/C++17 libraries)

These functions do not throw any additional exceptions.

C++14 reference: 17.6.5.12

20.5.5.14 error_category for errors originating outside of the
operating system (C++14/C++17 libraries)

There is no additional error category.

C++14 reference: 17.6.5.14

21.2.3, C.5.2.7 Definition of NULL (C++14/C++17 libraries)

NULL is predefined as 0.

C++14 reference: 18.2

21.2.4 The type of ptrdiff_t (Compiler)

See ptrdiff_t, page 323.

C++14 reference: 18.2

21.2.4 The type of size_t (Compiler)

See size_t, page 323.

C++14 reference: 18.2
AFE1_AFE2-1:1

527

528

Descriptions of implementation-defined behavior for C++

21.2.4 The type of ptrdiff_t (Compiler)

See 8.7, 21.2.4 The type of ptrdiff_t (Compiler), page 522.

21.5 Exit status (C++14/C++17 libraries)

Control is returned to the _ _exit library function. See _ _exit, page 138.

C++14 reference: 18.5

21.6.3.1 The return value of bad_alloc::what (C++14/C++17
libraries)

The return value is a pointer to "bad allocation".

C++14 reference: 18.6.2.1

21.6.3.2 The return value of bad_array_new_length::what
(C++14/C++17 libraries)

C++17: The return value is a pointer to "bad array new length". C++14: The return
value is a pointer to "bad allocation".

C++14 reference: 18.6.2.2

21.6.3.2 The maximum size of an allocated object (C++14/C++17
library)

See 8.3.4, 21.6.3.2 The maximum size of an allocated object (C++14/C++17 library),
page 522.

21.7.2 The return value of type_info::name() (C++14/C++17
libraries)

The return value is a pointer to a C string containing the name of the type.

C++14 reference: 18.7.1

21.7.3 The return value of bad_cast::what (C++14/C++17 libraries)

The return value is a pointer to "bad cast".

C++14 reference: 18.7.2

21.7.4 The return value of bad_typeid::what (C++14/C++17
libraries)

The return value is a pointer to "bad typeid".

C++14 reference: 18.7.3
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Implementation-defined behavior for Standard C++

21.8.2 The return value of exception::what (C++14/C++17 libraries)

C++17: The return value is a pointer to "unknown". C++14: The return value is a
pointer to std::exception.

C++14 reference: 18.8.1

21.8.3 The return value of bad_exception::what (C++14/C++17
libraries)

The return value is a pointer to "bad exception".

C++14 reference: 18.8.2

21.10 The use of non-POF functions as signal handlers
(C++14/C++17 libraries)

Non-Plain Old Functions (POF) can be used as signal handlers if no uncaught
exceptions are thrown in the handler, and if the execution of the signal handler does not
trigger undefined behavior.

C++14 reference: 18.10

23.6.5 The return value of bad_optional_access::what (C++17
library)

The return value is a pointer to bad_optional_access.

C++14 reference: Not part of the implementation-defined behavior in C++14.

23.7.3 variant support of over-aligned types (C++17 library)

variant supports over-aligned types.

C++14 reference: Not part of the implementation-defined behavior in C++14.

23.7.11 The return value of bad_variant_access::what (C++17
library)

The return value is a pointer to bad_variant_access.

C++14 reference: Not part of the implementation-defined behavior in C++14.

23.8.2 The return value of bad_any_access::what (C++17 library)

The return value is a pointer to "bad any cast".

C++14 reference: Not part of the implementation-defined behavior in C++14.
AFE1_AFE2-1:1

529

530

Descriptions of implementation-defined behavior for C++

23.10.4 get_pointer_safety returning pointer_safety::relaxed or
pointer_safety::preferred when the implementation has relaxed
pointer safety (C++14/C++17 libraries)

The function get_pointer_safety always returns
std::pointer_safety::relaxed.

C++14 reference: 20.7.4

23.11.2.1 The return value of bad_weak_ptr::what (C++17 library)

The return value is a pointer to bad_weak_ptr.

C++14 reference: Not part of the implementation-defined behavior in C++14.

23.11.2.2.1 The exception type when a shared_ptr constructor fails
(C++14/C++17 libraries)

Only std::bad_alloc is thrown.

C++14 reference: 20.8.2.2.1

23.12.5.2 The largest supported value to configure the largest
allocation satisfied directly by a pool (C++17 library)

Pool resource objects are not supported.

C++14 reference: Not part of the implementation-defined behavior in C++14.

23.12.5.2 The largest supported value to configure the maximum
number of blocks to replenish a pool (C++17 library)

Pool resource objects are not supported.

C++14 reference: Not part of the implementation-defined behavior in C++14.

23.12.5.4 The default configuration of a pool (C++17 library)

Pool resource objects are not supported.

C++14 reference: Not part of the implementation-defined behavior in C++14.

23.12.6.1 The default next_buffer_size for a
monotonic_buffer_resource (C++17 library)

monotonic_buffer_resource is not supported.

C++14 reference: Not part of the implementation-defined behavior in C++14.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Implementation-defined behavior for Standard C++

23.12.6.2 The growth factor for monotonic_buffer_resource (C++17
library)

monotonic_buffer_resource is not supported.

C++14 reference: Not part of the implementation-defined behavior in C++14.

23.14.11, 23.14.11.4 The number of placeholders for bind
expressions (C++17 library)

There are ten placeholder objects.

C++14 reference: Not part of the implementation-defined behavior in C++14.

23.14.11.4 The assignability of placeholder objects (C++14/C++17
libraries)

Placeholder objects are CopyAssignable.

C++14 reference: 20.9.9.1.4

23.14.13.1.1 The return value of bad_function_call::what (C++17
library)

The return value is a pointer to std::bad_function_call.

C++14 reference: Not part of the implementation-defined behavior in C++14.

23.15.4.3 Scalar types that have unique object representations
(C++17 library)

All integer types, booleans, and characters have unique object representations.

C++14 reference: Not part of the implementation-defined behavior in C++14.

23.15.7.6 Support for extended alignment (C++14/C++17 libraries)

Extended alignment is supported.

C++14 reference: 20.10.7.6

23.17.7.1 Rounding or truncating values to the required precision
when converting between time_t values and time_point objects
(C++14/C++17 libraries)

Values are truncated to the required precision when converting between time_t values
and time_point objects.

C++14 reference: 20.12.7.1
AFE1_AFE2-1:1

531

532

Descriptions of implementation-defined behavior for C++

23.19.3, 28.4.3 Additional execution policies supported by parallel
algorithms (C++17 library)

Parallel algorithms are not supported.

C++14 reference: Not part of the implementation-defined behavior in C++14.

24.2.3.1 The type of streampos (C++14/C++17 libraries)

The type of streampos is std::fpos<mbstate_t>.

C++14 references: 21.2.3.1, D.6

24.2.3.1 The type of streamoff (C++14/C++17 libraries)

The type of streamoff is long.

C++14 references: 21.2.3.1, D.6

24.2.3.1, 24.2.3.4 Supported multibyte character encoding rules
(C++14/C++17 libraries)

See Locale, page 146.

C++14 references: 21.2.3.1, 21.2.3.4

24.2.3.2 The type of u16streampos (C++14/C++17 libraries)

The type of u16streampos is streampos.

C++14 reference: 21.2.3.2

24.2.3.2 The return value of char_traits<char16_t>::eof
(C++14/C++17 libraries)

The return value of char_traits<char16_t>::eof is EOF.

C++14 reference: 21.2.3.2

24.2.3.3 The type of u32streampos (C++14/C++17 libraries)

The type of u32streampos is streampos.

C++14 reference: 21.2.3.3

24.2.3.3 The return value of char_traits<char32_t>::eof
(C++14/C++17 libraries)

The return value of char_traits<char32_t>::eof is EOF.

C++14 reference: 21.2.3.3
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Implementation-defined behavior for Standard C++

24.2.3.4 The type of wstreampos (C++14/C++17 libraries)

The type of wstreampos is streampos.

C++14 reference: 21.2.3.4

24.2.3.4 The return value of char_traits<wchar_t>::eof
(C++14/C++17 libraries)

The return value of char_traits<wchar_t>::eof is EOF.

C++14 reference: 21.2.3.4

24.2.3.4 Supported multibyte character encoding rules
(C++14/C++17 libraries)

See 24.2.3.1, 24.2.3.4 Supported multibyte character encoding rules (C++14/C++17
libraries), page 532.

24.3.2 The type of basic_string::const_iterator (C++17 library)

The type of basic_string::const_iterator is
_ _wrap_iter<const_pointer>.

C++14 reference: Not part of the implementation-defined behavior in C++14.

24.3.2 The type of basic_string::iterator (C++17 library)

The type of basic_string::iterator is _ _wrap_iter<pointer>.

C++14 reference: Not part of the implementation-defined behavior in C++14.

24.4.2 The type of basic_string_view::const_iterator (C++17 library)

The type of basic_string_view::const_iterator is T const *.

C++14 reference: Not part of the implementation-defined behavior in C++14.

25.3.1 Locale object being global or per-thread (C++14/C++17
libraries)

There is one global locale object for the entire application.

C++14 reference: 22.3.1

25.3.1.1.1, 30.2.2 The set of character types that iostreams
templates can be instantiated for (C++17 library)

iostreams templates can be instantiated for char, char16_t, char32_t, and
wchar_t.
AFE1_AFE2-1:1

533

534

Descriptions of implementation-defined behavior for C++

C++14 reference: Not part of the implementation-defined behavior in C++14.

25.3.1.2 Locale names (C++14/C++17 libraries)

See Locale, page 146.

C++14 reference: 22.3.1.2

25.3.1.5 The effects on the C locale of calling locale::global
(C++14/C++17 libraries)

Calling this function with an unnamed locale has no effect.

C++14 reference: 22.3.1.5

25.3.1.5 The value of ctype<char>::table_size (C++14/C++17
libraries)

The value of ctype<char>::table_size is 256.

C++14 reference: 25.4.1.3

25.4.5.1.2 Additional formats for time_get::do_get_date
(C++14/C++17 libraries)

No additional formats are accepted for time_get::do_get_date.

C++14 reference: 22.4.5.1.2

25.4.5.1.2 time_get::do_get_year and two-digit year numbers
(C++14/C++17 libraries)

Two-digit year numbers are accepted by time_get::do_get_year. Years from 0 to
68 are parsed as meaning 2000 to 2068, and years from 69 to 99 are parsed as meaning
1969 to 1999.

C++14 reference: 22.4.5.1.2

25.4.5.3.2 Formatted character sequences generated by
time_put::do_put in the C locale (C++14/C++17 libraries)

The behavior is the same as that of the library function strftime.

C++14 reference: 22.4.5.3.2

25.4.7.1.2 Mapping from name to catalog when calling
messages::do_open (C++14/C++17 libraries)

No mapping occurs because this function does not open a catalog.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Implementation-defined behavior for Standard C++

C++14 reference: 22.4.7.1.2

25.4.7.1.2 Mapping to message when calling messages::do_get
(C++14/C++17 libraries)

No mapping occurs because this function does not open a catalog. dflt is returned.

C++14 reference: 22.4.7.1.2

25.4.7.1.2 Mapping to message when calling messages::do_close
(C++14/C++17 libraries)

The function cannot be called because no catalog can be open.

C++14 reference: 22.4.7.1.2

25.4.7.1.2 Resource limits on a message catalog (C++17 library)

The message catalog is not supported.

C++14 reference: Not part of the implementation-defined behavior in C++14.

26.3.7.1 The type of array::const_iterator (C++14/C++17 libraries)

The type of array::const_iterator is T const *.

C++14 reference: 23.3.2.1

26.3.7.1 The type of array::iterator (C++14/C++17 libraries)

The type of array::iterator is T *.

C++14 reference: 23.3.2.1

26.3.8.1 The type of deque::const_iterator (C++17 library)

The type of deque::const_iterator is _ _deque_iterator<T,
const_pointer, T const&, _ _map_const_pointer, difference_type>.

C++14 reference: Not part of the implementation-defined behavior in C++14.

26.3.8.1 The type of deque::iterator (C++17 library)

The type of deque::iterator is __deque_iterator<T, pointer, T&,
__map_pointer, difference_type>.

C++14 reference: Not part of the implementation-defined behavior in C++14.
AFE1_AFE2-1:1

535

536

Descriptions of implementation-defined behavior for C++

26.3.9.1 The type of forward_list::const_iterator (C++17 library)

The type of forward_list::const_iterator is _ _base::const_iterator.

C++14 reference: Not part of the implementation-defined behavior in C++14.

26.3.9.1 The type of forward_list::iterator (C++17 library)

The type of forward_list::iterator is _ _base::iterator.

C++14 reference: Not part of the implementation-defined behavior in C++14.

26.3.10.1 The type of list::const_iterator (C++17 library)

The type of list::const_iterator is _ _list_const_iterator<value_type,
__void_pointer>.

C++14 reference: Not part of the implementation-defined behavior in C++14.

26.3.10.1 The type of list::iterator (C++17 library)

The type of list::iterator is _ _list_iterator<value_type,
__void_pointer>.

C++14 reference: Not part of the implementation-defined behavior in C++14.

26.3.11.1 The type of vector::const_iterator (C++17 library)

The type of vector::const_iterator is _ _wrap_iter<const_pointer>.

C++14 reference: Not part of the implementation-defined behavior in C++14.

26.3.11.1 The type of vector::iterator (C++17 library)

The type of vector::iterator is __wrap_iter<pointer>.

C++14 reference: Not part of the implementation-defined behavior in C++14.

26.3.12 The type of vector<bool>::const_iterator (C++17 library)

The type of vector<bool>::const_iterator is const_pointer.

C++14 reference: Not part of the implementation-defined behavior in C++14.

26.3.12 The type of vector<bool>::iterator (C++17 library)

The type of vector<bool>::iterator is pointer.

C++14 reference: Not part of the implementation-defined behavior in C++14.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Implementation-defined behavior for Standard C++

26.4.4.1 The type of map::const_iterator (C++17 library)

The type of map::const_iterator is __map_const_iterator<typename
__base::const_iterator>.

C++14 reference: Not part of the implementation-defined behavior in C++14.

26.4.4.1 The type of map::iterator (C++17 library)

The type of map::iterator is __map_iterator<typename __base::iterator>.

C++14 reference: Not part of the implementation-defined behavior in C++14.

26.4.5.1 The type of multimap::const_iterator (C++17 library)

The type of multimap::const_iterator is __map_const_iterator<typename
__base::const_iterator>.

C++14 reference: Not part of the implementation-defined behavior in C++14.

26.4.5.1 The type of multimap::iterator (C++17 library)

The type of multimap::iterator is __map_iterator<typename
__base::iterator>.

C++14 reference: Not part of the implementation-defined behavior in C++14.

26.4.6.1 The type of set::const_iterator (C++17 library)

The type of set::const_iterator is __base::const_iterator.

C++14 reference: Not part of the implementation-defined behavior in C++14.

26.4.6.1 The type of set::iterator (C++17 library)

The type of set::iterator is __base::const_iterator.

C++14 reference: Not part of the implementation-defined behavior in C++14.

26.4.7.1 The type of multiset::const_iterator (C++17 library)

The type of multiset::const_iterator is __base::const_iterator.

C++14 reference: Not part of the implementation-defined behavior in C++14.

26.4.7.1 The type of multiset::iterator (C++17 library)

The type of multiset::iterator is __base::const_iterator.

C++14 reference: Not part of the implementation-defined behavior in C++14.
AFE1_AFE2-1:1

537

538

Descriptions of implementation-defined behavior for C++

26.5.4.1 The type of unordered_map::const_iterator (C++17 library)

The type of unordered_map::const_iterator is
__hash_map_const_iterator<typename __table::const_iterator>.

C++14 reference: Not part of the implementation-defined behavior in C++14.

26.5.4.1 The type of unordered_map::const_local_iterator (C++17
library)

The type of unordered_map::const_local_iterator is
__hash_map_const_iterator<typename

__table::const_local_iterator>.

C++14 reference: Not part of the implementation-defined behavior in C++14.

26.5.4.1 The type of unordered_map::iterator (C++17 library)

The type of unordered_map::iterator is __hash_map_iterator<typename
__table::iterator>.

C++14 reference: Not part of the implementation-defined behavior in C++14.

26.5.4.1 The type of unordered_map::local_iterator (C++17 library)

The type of unordered_map::local_iterator is
__hash_map_iterator<typename __table::local_iterator>.

C++14 reference: Not part of the implementation-defined behavior in C++14.

26.5.4.2 The default number of buckets in unordered_map
(C++14/C++17 libraries)

The IAR C/C++ Compiler for RISC-V makes a default construction of the
unordered_map before inserting the elements.

C++14 reference: 23.5.4.2

26.5.5.2 The default number of buckets in unordered_multimap
(C++14/C++17 libraries)

The IAR C/C++ Compiler for RISC-V makes a default construction of the
unordered_multimap before inserting the elements.

C++14 reference: 23.5.5.2

26.5.6.1 The type of unordered_set::const_iterator (C++17 library)

The type of unordered_set::const_iterator is __table::const_iterator.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Implementation-defined behavior for Standard C++

C++14 reference: Not part of the implementation-defined behavior in C++14.

26.5.6.1 The type of unordered_set::const_local_iterator (C++17
library)

The type of unordered_set::const_local_iterator is
__table::const_local_iterator.

C++14 reference: Not part of the implementation-defined behavior in C++14.

26.5.6.1 The type of unordered_set::iterator (C++17 library)

The type of unordered_set::iterator is __table::const_iterator.

C++14 reference: Not part of the implementation-defined behavior in C++14.

26.5.6.1 The type of unordered_set::local_iterator (C++17 library)

The type of unordered_set::local_iterator is
__table::const_local_iterator.

C++14 reference: Not part of the implementation-defined behavior in C++14.

26.5.6.2 The default number of buckets in unordered_set
(C++14/C++17 libraries)

The IAR C/C++ Compiler for RISC-V makes a default construction of the
unordered_set before inserting the elements.

C++14 reference: 23.5.6.2

26.5.7.1 The type of unordered_multiset::const_iterator (C++17
library)

The type of unordered_multiset::const_iterator is
__table::const_iterator.

C++14 reference: Not part of the implementation-defined behavior in C++14.

26.5.7.1 The type of unordered_multiset::const_local_iterator
(C++17 library)

The type of unordered_multiset::const_local_iterator is
__table::const_local_iterator.

C++14 reference: Not part of the implementation-defined behavior in C++14.
AFE1_AFE2-1:1

539

540

Descriptions of implementation-defined behavior for C++

26.5.7.1 The type of unordered_multiset::iterator (C++17 library)

The type of unordered_multiset::iterator is __table::const_iterator.

C++14 reference: Not part of the implementation-defined behavior in C++14.

26.5.7.1 The type of unordered_multiset::local_iterator (C++17
library)

The type of unordered_multiset::local_iterator is
__table::const_local_iterator.

C++14 reference: Not part of the implementation-defined behavior in C++14.

26.5.7.2 The default number of buckets in unordered_multiset
(C++14/C++17 libraries)

The IAR C/C++ Compiler for RISC-V makes a default construction of the
unordered_multiset before inserting the elements.

C++14 reference: 23.5.7.2

26.6.5.1 The type of unordered_multimap::const_iterator (C++17
library)

The type of unordered_multimap::const_iterator is
__hash_map_const_iterator<typename __table::const_iterator>.

C++14 reference: Not part of the implementation-defined behavior in C++14.

26.6.5.1 The type of unordered_multimap::const_local_iterator
(C++17 library)

The type of unordered_multimap::const_local_iterator is
__hash_map_const_iterator<typename

__table::const_local_iterator>.

C++14 reference: Not part of the implementation-defined behavior in C++14.

26.6.5.1 The type of unordered_multimap::iterator (C++17 library)

The type of unordered_multimap::iterator is
__hash_map_iterator<typename __table::iterator>.

C++14 reference: Not part of the implementation-defined behavior in C++14.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Implementation-defined behavior for Standard C++

26.6.5.1 The type of unordered_multimap::local_iterator (C++17
library)

The type of unordered_multimap::local_iterator is
__hash_map_iterator<typename __table::local_iterator>.

C++14 reference: Not part of the implementation-defined behavior in C++14.

28.4.3 Forward progress guarantees for implicit threads of parallel
algorithms (if not defined for thread) (C++17 library)

Parallel algorithms are not supported.

C++14 reference: Not part of the implementation-defined behavior in C++14.

28.4.3 The semantics of parallel algorithms invoked with
implementation-defined execution policies (C++17 library)

Parallel algorithms are not supported.

C++14 reference: Not part of the implementation-defined behavior in C++14.

28.4.3 Additional execution policies supported by parallel
algorithms (C++17 library)

See 23.19.3, 28.4.3 Additional execution policies supported by parallel algorithms
(C++17 library), page 532.

28.6.13 The underlying source of random numbers for
random_shuffle (C++14/C++17 libraries)

The underlying source is rand().

C++14 reference: 25.3.12

29.4.1 The use of <cfenv> functions for managing floating-point
status (C++17 library)

See STDC FENV_ACCESS, page 365 and Floating-point environment, page 321.?

C++14 reference: Not part of the implementation-defined behavior in C++14.

29.4.1 Support for #pragma FENV_ACCESS (C++17 library)

See STDC FENV_ACCESS, page 365.

C++14 reference: Not part of the implementation-defined behavior in C++14.
AFE1_AFE2-1:1

541

542

Descriptions of implementation-defined behavior for C++

29.5.8 The value of pow(0,0) (C++17 library)

pow(0,0) produces an ERANGE and returns NaN.

C++14 reference: Not part of the implementation-defined behavior in C++14.

29.6.5 The type of default_random_engine (C++17 library)

The type of default_random_engine is
linear_congruential_engine<uint_fast32_t, 48271, 0, 2147483647>.

C++14 reference: Not part of the implementation-defined behavior in C++14.

29.6.6 The semantics and default value of a token parameter to
random_device constructor (C++17 library)

The token is not used.

C++14 reference: Not part of the implementation-defined behavior in C++14.

29.6.6 The exception type when random_device constructor fails
(C++17 library)

The constructor cannot fail.

C++14 reference: Not part of the implementation-defined behavior in C++14.

29.6.6 The exception type when random_device::operator() fails
(C++17 library)

The operator() cannot fail.

C++14 reference: Not part of the implementation-defined behavior in C++14.

29.6.6 The way that random_device::operator() generates values
(C++17 library)

random_device::operator() generates values using std::rand().

C++14 reference: Not part of the implementation-defined behavior in C++14.

29.6.8.1 The algorithm used for producing the standard random
number distributions (C++17 library)

A linear congruential engine produces the standard random number distributions.

C++14 reference: Not part of the implementation-defined behavior in C++14.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Implementation-defined behavior for Standard C++

29.6.9 rand() and the introduction of data races (C++17 library)

rand() does not introduce a data race.

C++14 reference: Not part of the implementation-defined behavior in C++14.

29.9.5.1 The effects of calling associated Laguerre polynomials with
n>=128 or m>=128 (C++17 library)

cmath assoc_laguerre functions are not supported.

C++14 reference: Not part of the implementation-defined behavior in C++14.

29.9.5.2 The effects of calling associated Legendre polynomials with
l>=128 (C++17 library)

cmath assoc_legendre functions are not supported.

C++14 reference: Not part of the implementation-defined behavior in C++14.

29.9.5.7 The effects of calling regular modified cylindrical Bessel
functions with nu>=128 (C++17 library)

cyl_bessel_i functions are not supported.

C++14 reference: Not part of the implementation-defined behavior in C++14.

29.9.5.8 The effects of calling cylindrical Bessel functions of the first
kind with nu>=128 (C++17 library)

cyl_bessel_j functions are not supported.

C++14 reference: Not part of the implementation-defined behavior in C++14.

29.9.5.9 The effects of calling irregular modified cylindrical Bessel
functions with nu>=128 (C++17 library)

cyl_bessel_k functions are not supported.

C++14 reference: Not part of the implementation-defined behavior in C++14.

29.9.5.10 The effects of calling cylindrical Neumann functions with
nu>=128 (C++17 library)

cyl_neumann functions are not supported.

C++14 reference: Not part of the implementation-defined behavior in C++14.
AFE1_AFE2-1:1

543

544

Descriptions of implementation-defined behavior for C++

29.9.5.15 The effects of calling Hermite polynomials with n>=128
(C++17 library)

hermite functions are not supported.

C++14 reference: Not part of the implementation-defined behavior in C++14.

29.9.5.16 The effects of calling Laguerre polynomials with n>=128
(C++17 library)

laguerre functions are not supported.

C++14 reference: Not part of the implementation-defined behavior in C++14.

29.9.5.17 The effects of calling Legendre polynomials with l>=128
(C++17 library)

legendre functions are not supported.

C++14 reference: Not part of the implementation-defined behavior in C++14.

29.9.5.19 The effects of calling spherical Bessel functions with
n>=128 (C++17 library)

sph_bessel functions are not supported.

C++14 reference: Not part of the implementation-defined behavior in C++14.

29.9.5.20 The effects of calling spherical associated Legendre
functions with l>=128 (C++17 library)

sph_legendre functions are not supported.

C++14 reference: Not part of the implementation-defined behavior in C++14.

29.9.5.21 The effects of calling spherical Neumann functions with
n>=128 (C++17 library)

sph_neumann functions are not supported.

C++14 reference: Not part of the implementation-defined behavior in C++14.

30.2.2 The behavior of iostream classes when traits::pos_type is not
streampos or when traits::off_type is not streamoff (C++14/C++17
libraries)

No specific behavior has been implemented for this case.

C++14 reference: 27.2.2
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Implementation-defined behavior for Standard C++

30.2.2 The set of character types that iostreams templates can be
instantiated for (C++17 library)

See 25.3.1.1.1, 30.2.2 The set of character types that iostreams templates can be
instantiated for (C++17 library), page 533.

30.5.3.4 The effects of calling ios_base::sync_with_stdio after any
input or output operation on standard streams (C++14/C++17
libraries)

Previous input/output is not handled in any special way.

C++14 reference: 27.5.3.4

30.5.5.4 Argument values to construct basic_ios::failure
(C++14/C++17 libraries)

When basic_ios::clear throws an exception, it throws an exception of type
basic_ios::failure constructed with the badbit/failbit/eofbit set.

C++14 reference: 27.5.5.4

30.7.5.2.3 NTCTS in basic_ostream<charT, traits>&
operator<<(nullptr_t) (C++17 library)

s is nullptr.

C++14 reference: Not part of the implementation-defined behavior in C++14.

30.8.2.1 The basic_stringbuf move constructor and the copying of
sequence pointers (C++14/C++17 libraries)

The constructor copies the sequence pointers.

C++14 reference: 27.8.2.1

30.8.2.4 The effects of calling basic_streambuf::setbuf with non-zero
arguments (C++14/C++17 libraries)

This function has no effect.

C++14 reference: 27.8.2.4

30.9.2.1 The basic_filebuf move constructor and the copying of
sequence pointers (C++14/C++17 libraries)

The constructor copies the sequence pointers.

C++14 reference: 27.9.1.2
AFE1_AFE2-1:1

545

546

Descriptions of implementation-defined behavior for C++

30.9.2.4 The effects of calling basic_filebuf::setbuf with non-zero
arguments (C++14/C++17 libraries)

C++17: The supplied buffer will be used in the basic_filebuf. C++14: This will offer
the buffer to the C stream by calling setvbuf() with the associated file. If anything
goes wrong, the stream is reinitialized.

C++14 reference: 27.9.1.5

30.9.2.4 The effects of calling basic_filebuf::sync when a get area
exists (C++14/C++17 libraries)

A get area cannot exist.

C++14 reference: 27.9.1.5

30.10.2.2 The operating system on which the implementation
depends (C++17 library)

The system header filesystem is not supported.

C++14 reference: Not part of the implementation-defined behavior in C++14.

30.10.6 The type of the filesystem trivial clock (C++17 library)

The system header filesystem is not supported.

C++14 reference: Not part of the implementation-defined behavior in C++14.

30.10.8.1 Supported root names in addition to any operating system
dependent root names (C++17 library)

The system header filesystem is not supported.

C++14 reference: Not part of the implementation-defined behavior in C++14.

30.10.8.2.1 The meaning of dot-dot in the root directory (C++17
library)

The system header filesystem is not supported.

C++14 reference: Not part of the implementation-defined behavior in C++14.

30.10.10.1 The interpretation of the path character sequence with
format path::auto_format (C++17 library)

The system header filesystem is not supported.

C++14 reference: Not part of the implementation-defined behavior in C++14.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Implementation-defined behavior for Standard C++

30.10.10.4 Additional file_type enumerators for file systems
supporting additional types of file (C++17 library)

The system header filesystem is not supported.

C++14 reference: Not part of the implementation-defined behavior in C++14.

30.10.13 The type of a directory-like file (C++17 library)

The system header filesystem is not supported.

C++14 reference: Not part of the implementation-defined behavior in C++14.

30.10.15.3 The effect of filesystem::copy (C++17 library)

The system header filesystem is not supported.

C++14 reference: Not part of the implementation-defined behavior in C++14.

30.10.15.14 The result of filesystem::file_size (C++17 library)

The system header filesystem is not supported.

C++14 reference: Not part of the implementation-defined behavior in C++14.

30.10.15.35 The file type of the file argument of filesystem::status
(C++17 library)

The system header filesystem is not supported.

C++14 reference: Not part of the implementation-defined behavior in C++14.

31.5.1 The type of syntax_option_type (C++17 library)

The type for syntax_option_type is enum. See The enum type, page 317.

C++14 reference: Not part of the implementation-defined behavior in C++14.

31.5.2 The type of regex_constants::match_flag_type (C++17
library)

The type for match_flag_type is enum. See The enum type, page 317.

C++14 reference: Not part of the implementation-defined behavior in C++14.

31.5.3 The type of regex_constants::error_type (C++14/C++17
libraries)

The type is an enum. See The enum type, page 317.

C++14 reference: 28.5.3
AFE1_AFE2-1:1

547

548

Implementation quantities

32.5 The values of various ATOMIC_..._LOCK_FREE macros
(C++14/C++17 libraries)

In cases where atomic operations are supported, these macros will have the value 2. See
Atomic operations, page 404.

C++14 reference: 29.4

32.6, 32.6.1, 32.6.2, 32.6.3 Lock free operation of atomic types
(C++17 library)

See Atomic operations, page 404.

C++14 reference: Not part of the implementation-defined behavior in C++14.

33.2.3 The presence and meaning of native_handle_type and
native_handle (C++14/C++17 libraries)

The thread system header is not supported.

C++14 reference: 30.2.3

C.1.10 The definition and meaning of __STDC__ (Compiler)

See 19.8, C.1.10 The definition and meaning of __STDC__ (Compiler), page 526.

C.4.1 Mapping physical source file characters to the basic source
character set (Compiler)

See 5.2, C.4.1 Mapping physical source file characters to the basic source character set
(Compiler), page 514.

C.5.2.7 Definition of NULL (C++14/C++17 libraries)

See 21.2.3, C.5.2.7 Definition of NULL (C++14/C++17 libraries), page 527.

D.9 Support for over-aligned types (Compiler, C++17/C++14
libraries)

Over-aligned types are supported in new expressions and by the default allocator.

C++14 references: 5.3.4, 20.7.9.1, 20.7.11

Implementation quantities
The IAR implementation of C++ is, like all implementations, limited in the size of the
applications it can successfully process.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Implementation-defined behavior for Standard C++

These limitations apply:

C++ feature Limitation

Nesting levels of compound statements, iteration control
structures, and selection control structures.

Limited only by memory.

Nesting levels of conditional inclusion. Limited only by memory.

Pointer, array, and function declarators (in any
combination) modifying a class, arithmetic, or incomplete
type in a declaration.

Limited only by memory.

Nesting levels of parenthesized expressions within a
full-expression.

Limited only by memory.

Number of characters in an internal identifier or macro
name.

Limited only by memory.

Number of characters in an external identifier. Limited only by memory.

External identifiers in one translation unit. Limited only by memory.

Identifiers with block scope declared in a block. Limited only by memory.

Macro identifiers simultaneously defined in one
translation unit.

Limited only by memory.

Parameters in one function definition. Limited only by memory.

Arguments in one function call. Limited only by memory.

Parameters in one macro definition. Limited only by memory.

Arguments in one macro invocation. Limited only by memory.

Characters in one logical source line. Limited only by memory.

Characters in a string literal (after concatenation). Limited only by memory.

Size of an object. Limited only by memory.

Nesting levels for #include files. Limited only by memory.

Case labels for a switch statement (excluding those for
any nested switch statements).

Limited only by memory.

Data members in a single class. Limited only by memory.

Enumeration constants in a single enumeration. Limited only by memory.

Levels of nested class definitions in a single
member-specification.

Limited only by memory.

Functions registered by atexit. Limited by heap memory in the built
application.

Functions registered by at_quick_exit. Limited by heap memory in the built
application.

Table 49: C++ implementation quantities
AFE1_AFE2-1:1

549

550

Implementation quantities

Direct and indirect base classes. Limited only by memory.

Direct base classes for a single class. Limited only by memory.

Members declared in a single class. Limited only by memory.

Final overriding virtual functions in a class, accessible or
not.

Limited only by memory.

Direct and indirect virtual bases of a class. Limited only by memory.

Static members of a class. Limited only by memory.

Friend declarations in a class. Limited only by memory.

Access control declarations in a class. Limited only by memory.

Member initializers in a constructor definition. Limited only by memory.

Scope qualifiers of one identifier. Limited only by memory.

Nested external specifications. Limited only by memory.

Recursive constexpr function invocations. 1000. This limit can be changed by
using the compiler option
--max_cost_constexpr_call.

Full-expressions evaluated within a core constant
expression.

Limited only by memory.

Template arguments in a template declaration. Limited only by memory.

Recursively nested template instantiations, including
substitution during template argument deduction (14.8.2).

64 for a specific template. This limit
can be changed by using the
compiler option
--pending_instantiations.

Handlers per try block. Limited only by memory.

Throw specifications on a single function declaration. Limited only by memory.

Number of placeholders (20.9.9.1.4). 20 placeholders from _1 to _20.

C++ feature Limitation

Table 49: C++ implementation quantities (Continued)
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Implementation-defined
behavior for Standard C
● Descriptions of implementation-defined behavior

If you are using C89 instead of Standard C, see Implementation-defined behavior
for C89, page 571.

Descriptions of implementation-defined behavior
This section follows the same order as the C standard. Each item includes references to
the ISO chapter and section (in parenthesis) that explains the implementation-defined
behavior.

Note: The IAR implementation adheres to a freestanding implementation of Standard
C. This means that parts of a standard library can be excluded in the implementation.

J.3.1 TRANSLATION

Diagnostics (3.10, 5.1.1.3)

Diagnostics are produced in the form:

filename,linenumber level[tag]: message

where filename is the name of the source file in which the error was encountered,
linenumber is the line number at which the compiler detected the error, level is the
level of seriousness of the message (remark, warning, error, or fatal error), tag is a
unique tag that identifies the message, and message is an explanatory message, possibly
several lines.

White-space characters (5.1.1.2)

At translation phase three, each non-empty sequence of white-space characters is
retained.
AFE1_AFE2-1:1

551

552

Descriptions of implementation-defined behavior

J.3.2 ENVIRONMENT

The character set (5.1.1.2)

The source character set is the same as the physical source file multibyte character set.
By default, the standard ASCII character set is used. However, it can be UTF-8, UTF-16,
or the system locale. See Text encodings, page 232.

Main (5.1.2.1)

The function called at program startup is called main. No prototype is declared for
main, and the only definition supported for main is:

int main(void)

To change this behavior, see System initialization, page 135.

The effect of program termination (5.1.2.1)

Terminating the application returns the execution to the startup code (just after the call
to main).

Alternative ways to define main (5.1.2.2.1)

There is no alternative ways to define the main function.

The argv argument to main (5.1.2.2.1)

The argv argument is not supported.

Streams as interactive devices (5.1.2.3)

The streams stdin, stdout, and stderr are treated as interactive devices.

Multithreaded environment (5.1.2.4)

By default, the IAR runtime environment does not support more than one thread of
execution. With an optional third-party RTOS, it might support several threads of
execution.

Signals, their semantics, and the default handling (7.14)

In the DLIB runtime environment, the set of supported signals is the same as in Standard
C. A raised signal will do nothing, unless the signal function is customized to fit the
application.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Implementation-defined behavior for Standard C

Signal values for computational exceptions (7.14.1.1)

In the DLIB runtime environment, there are no implementation-defined values that
correspond to a computational exception.

Signals at system startup (7.14.1.1)

In the DLIB runtime environment, there are no implementation-defined signals that are
executed at system startup.

Environment names (7.22.4.6)

In the DLIB runtime environment, there are no implementation-defined environment
names that are used by the getenv function.

The system function (7.22.4.8)

The system function is not supported.

J.3.3 IDENTIFIERS

Multibyte characters in identifiers (6.4.2)

Additional multibyte characters may appear in identifiers depending on the chosen
encoding for the source file. The supported multibyte characters must be translatable to
one Universal Character Name (UCN).

Significant characters in identifiers (5.2.4.1, 6.4.2)

The number of significant initial characters in an identifier with or without external
linkage is guaranteed to be no less than 200.

J.3.4 CHARACTERS

Number of bits in a byte (3.6)

A byte contains 8 bits.

Execution character set member values (5.2.1)

The values of the members of the execution character set are the values of the ASCII
character set, which can be augmented by the values of the extra characters in the source
file character set. The source file character set is determined by the chosen encoding for
the source file. See Text encodings, page 232.
AFE1_AFE2-1:1

553

554

Descriptions of implementation-defined behavior

Alphabetic escape sequences (5.2.2)

The standard alphabetic escape sequences have the values \a–7, \b–8, \f–12, \n–10,
\r–13, \t–9, and \v–11.

Characters outside of the basic executive character set (6.2.5)

A character outside of the basic executive character set that is stored in a char is not
transformed.

Plain char (6.2.5, 6.3.1.1)

A plain char is treated as an unsigned char. See --char_is_signed, page 244 and
--char_is_unsigned, page 245.

Source and execution character sets (6.4.4.4, 5.1.1.2)

The source character set is the set of legal characters that can appear in source files. It is
dependent on the chosen encoding for the source file. See Text encodings, page 232. By
default, the source character set is Raw.

The execution character set is the set of legal characters that can appear in the execution
environment. These are the execution character set for character constants and string
literals and their encoding types:

The DLIB runtime environment needs a multibyte character scanner to support a
multibyte execution character set. See Locale, page 146.

Integer character constants with more than one character (6.4.4.4)

An integer character constant that contains more than one character will be treated as an
integer constant. The value will be calculated by treating the leftmost character as the
most significant character, and the rightmost character as the least significant character,
in an integer constant. A diagnostic message will be issued if the value cannot be
represented in an integer constant.

Execution character set Encoding type

L UTF-32

u UTF-16

U UTF-32

u8 UTF-8

none The source character set

Table 50: Execution character sets and their encodings
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Implementation-defined behavior for Standard C

Wide character constants with more than one character (6.4.4.4)

A wide character constant that contains more than one multibyte character generates a
diagnostic message.

Locale used for wide character constants (6.4.4.4)

See Source and execution character sets (6.4.4.4, 5.1.1.2), page 554.

Concatenating wide string literals with different encoding types
(6.4.5)

Wide string literals with different encoding types cannot be concatenated.

Locale used for wide string literals (6.4.5)

See Source and execution character sets (6.4.4.4, 5.1.1.2), page 554.

Source characters as executive characters (6.4.5)

All source characters can be represented as executive characters.

Encoding of wchar_t, char16_t, and char32_t (6.10.8.2)

wchar_t has the encoding UTF-32, char16_t has the encoding UTF-16, and
char32_t has the encoding UTF-32.

J.3.5 INTEGERS

Extended integer types (6.2.5)

There are no extended integer types.

Range of integer values (6.2.6.2)

The representation of integer values are in the two's complement form. The most
significant bit holds the sign—1 for negative, 0 for positive and zero.

For information about the ranges for the different integer types, see Basic data types—
integer types, page 316.

The rank of extended integer types (6.3.1.1)

There are no extended integer types.

Signals when converting to a signed integer type (6.3.1.3)

No signal is raised when an integer is converted to a signed integer type.
AFE1_AFE2-1:1

555

556

Descriptions of implementation-defined behavior

Signed bitwise operations (6.5)

Bitwise operations on signed integers work the same way as bitwise operations on
unsigned integers—in other words, the sign-bit will be treated as any other bit, except
for the operator >> which will behave as an arithmetic right shift.

J.3.6 FLOATING POINT

Accuracy of floating-point operations (5.2.4.2.2)

The accuracy of floating-point operations is unknown.

Accuracy of floating-point conversions (5.2.4.2.2)

The accuracy of floating-point conversions is unknown.

Rounding behaviors (5.2.4.2.2)

There are no non-standard values of FLT_ROUNDS.

Evaluation methods (5.2.4.2.2)

There are no non-standard values of FLT_EVAL_METHOD.

Converting integer values to floating-point values (6.3.1.4)

When an integer value is converted to a floating-point value that cannot exactly
represent the source value, the round-to-nearest rounding mode is used (FLT_ROUNDS is
defined to 1).

Converting floating-point values to floating-point values (6.3.1.5)

When a floating-point value is converted to a floating-point value that cannot exactly
represent the source value, the round-to-nearest rounding mode is used (FLT_ROUNDS is
defined to 1).

Denoting the value of floating-point constants (6.4.4.2)

The round-to-nearest rounding mode is used (FLT_ROUNDS is defined to 1).

Contraction of floating-point values (6.5)

Floating-point values are contracted. However, there is no loss in precision and because
signaling is not supported, this does not matter.

Default state of FENV_ACCESS (7.6.1)

The default state of the pragma directive FENV_ACCESS is OFF.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Implementation-defined behavior for Standard C

Additional floating-point mechanisms (7.6, 7.12)

There are no additional floating-point exceptions, rounding-modes, environments, and
classifications.

Default state of FP_CONTRACT (7.12.2)

The default state of the pragma directive FP_CONTRACT is ON unless the compiler option
--no_default_fp_contract is used.

J.3.7 ARRAYS AND POINTERS

Conversion from/to pointers (6.3.2.3)

For information about casting of data pointers and function pointers, see Casting, page
323.

ptrdiff_t (6.5.6)

For information about ptrdiff_t, see ptrdiff_t, page 323.

J.3.8 HINTS

Honoring the register keyword (6.7.1)

User requests for register variables are not honored.

Inlining functions (6.7.4)

User requests for inlining functions increases the chance, but does not make it certain,
that the function will actually be inlined into another function. See Inlining functions,
page 75.

J.3.9 STRUCTURES, UNIONS, ENUMERATIONS, AND
BITFIELDS

Sign of 'plain' bitfields (6.7.2, 6.7.2.1)

For information about how a 'plain' int bitfield is treated, see Bitfields, page 318.

Possible types for bitfields (6.7.2.1)

All integer types can be used as bitfields in the compiler’s extended mode, see -e, page
254.
AFE1_AFE2-1:1

557

558

Descriptions of implementation-defined behavior

Atomic types for bitfields (6.7.2.1)

Atomic types cannot be used as bitfields.

Bitfields straddling a storage-unit boundary (6.7.2.1)

Unless __attribute__((packed)) (a GNU language extension) is used, a bitfield is
always placed in one—and one only—storage unit, and thus does not straddle a
storage-unit boundary.

Allocation order of bitfields within a unit (6.7.2.1)

For information about how bitfields are allocated within a storage unit, see Bitfields,
page 318.

Alignment of non-bitfield structure members (6.7.2.1)

The alignment of non-bitfield members of structures is the same as for the member
types, see Alignment, page 315.

Integer type used for representing enumeration types (6.7.2.2)

The chosen integer type for a specific enumeration type depends on the enumeration
constants defined for the enumeration type. The chosen integer type is the smallest
possible.

J.3.10 QUALIFIERS

Access to volatile objects (6.7.3)

Any reference to an object with volatile qualified type is an access, see Declaring
objects volatile, page 326.

J.3.11 PREPROCESSING DIRECTIVES

Locations in #pragma for header names (6.4, 6.4.7)

These pragma directives take header names as parameters at the specified positions:

#pragma include_alias ("header", "header")
#pragma include_alias (<header>, <header>)

Mapping of header names (6.4.7)

Sequences in header names are mapped to source file names verbatim. A backslash '\'
is not treated as an escape sequence. See Overview of the preprocessor, page 381.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Implementation-defined behavior for Standard C

Character constants in constant expressions (6.10.1)

A character constant in a constant expression that controls conditional inclusion
matches the value of the same character constant in the execution character set.

The value of a single-character constant (6.10.1)

A single-character constant may only have a negative value if a plain character (char)
is treated as a signed character, see --char_is_signed, page 244.

Including bracketed filenames (6.10.2)

For information about the search algorithm used for file specifications in angle brackets
<>, see Include file search procedure, page 229.

Including quoted filenames (6.10.2)

For information about the search algorithm used for file specifications enclosed in
quotes, see Include file search procedure, page 229.

Preprocessing tokens in #include directives (6.10.2)

Preprocessing tokens in an #include directive are combined in the same way as outside
an #include directive.

Nesting limits for #include directives (6.10.2)

There is no explicit nesting limit for #include processing.

inserts \ in front of \u (6.10.3.2)

(stringify argument) inserts a \ character in front of a Universal Character Name
(UCN) in character constants and string literals.

Recognized pragma directives (6.10.6)

In addition to the pragma directives described in the chapter Pragma directives, the
following directives are recognized and will have an indeterminate effect. If a pragma
directive is listed both in the chapter Pragma directives and here, the information
provided in the chapter Pragma directives overrides the information here.

● alias_def

● alignment

● alternate_target_def

● baseaddr

● basic_template_matching
AFE1_AFE2-1:1

559

560

Descriptions of implementation-defined behavior

● building_runtime

● can_instantiate

● codeseg

● constseg

● cplusplus_neutral

● cspy_support

● cstat_dump

● dataseg

● define_type_info

● do_not_instantiate

● early_dynamic_initialization

● exception_neutral

● function

● function_category

● function_effects

● hdrstop

● important_typedef

● ident

● implements_aspect

● init_routines_only_for_needed_variables

● initialization_routine

● inline_template

● instantiate

● keep_definition

● library_default_requirements

● library_provides

● library_requirement_override

● memory

● module_name

● no_pch

● no_vtable_use

● once

● pop_macro

● preferred_typedef
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Implementation-defined behavior for Standard C

● push_macro

● separate_init_routine

● set_generate_entries_without_bounds

● system_include

● uses_aspect

● vector

● warnings

Default __DATE__ and __TIME__ (6.10.8)

The definitions for __TIME__ and __DATE__ are always available.

J.3.12 LIBRARY FUNCTIONS

Additional library facilities (5.1.2.1)

Most of the standard library facilities are supported. Some of them—the ones that need
an operating system—require a low-level implementation in the application. For more
information, see The DLIB runtime environment, page 113.

Diagnostic printed by the assert function (7.2.1.1)

The assert() function prints:

filename:linenr expression -- assertion failed

when the parameter evaluates to zero.

Representation of the floating-point status flags (7.6.2.2)

For information about the floating-point status flags, see fenv.h, page 405.

Feraiseexcept raising floating-point exception (7.6.2.3)

For information about the feraiseexcept function raising floating-point exceptions,
see Floating-point environment, page 321.

Strings passed to the setlocale function (7.11.1.1)

For information about strings passed to the setlocale function, see Locale, page 146.

Types defined for float_t and double_t (7.12)

The FLT_EVAL_METHOD macro can only have the value 0.
AFE1_AFE2-1:1

561

562

Descriptions of implementation-defined behavior

Domain errors (7.12.1)

No function generates other domain errors than what the standard requires.

Return values on domain errors (7.12.1)

Mathematic functions return a floating-point NaN (not a number) for domain errors.

Underflow errors (7.12.1)

Mathematic functions set errno to the macro ERANGE (a macro in errno.h) and return
zero for underflow errors.

fmod return value (7.12.10.1)

The fmod function sets errno to a domain error and returns a floating-point NaN when
the second argument is zero.

remainder return value (7.12.10.2)

The remainder function sets errno to a domain error and returns a floating-point NaN
when the second argument is zero.

The magnitude of remquo (7.12.10.3)

The magnitude is congruent modulo INT_MAX.

remquo return value (7.12.10.3)

The remquo function sets errno to a domain error and returns a floating-point NaN
when the second argument is zero.

signal() (7.14.1.1)

The signal part of the library is not supported.

Note: The default implementation of signal does not perform anything. Use the
template source code to implement application-specific signal handling. See signal,
page 143 and raise, page 141, respectively.

NULL macro (7.19)

The NULL macro is defined to 0.

Terminating newline character (7.21.2)

Stream functions recognize either newline or end of file (EOF) as the terminating
character for a line.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Implementation-defined behavior for Standard C

Space characters before a newline character (7.21.2)

Space characters written to a stream immediately before a newline character are
preserved.

Null characters appended to data written to binary streams (7.21.2)

No null characters are appended to data written to binary streams.

File position in append mode (7.21.3)

The file position is initially placed at the beginning of the file when it is opened in
append-mode.

Truncation of files (7.21.3)

Whether a write operation on a text stream causes the associated file to be truncated
beyond that point, depends on the application-specific implementation of the low-level
file routines. See Briefly about input and output (I/O), page 114.

File buffering (7.21.3)

An open file can be either block-buffered, line-buffered, or unbuffered.

A zero-length file (7.21.3)

Whether a zero-length file exists depends on the application-specific implementation of
the low-level file routines.

Legal file names (7.21.3)

The legality of a filename depends on the application-specific implementation of the
low-level file routines.

Number of times a file can be opened (7.21.3)

Whether a file can be opened more than once depends on the application-specific
implementation of the low-level file routines.

Multibyte characters in a file (7.21.3)

The encoding of multibyte characters in a file depends on the application-specific
implementation of the low-level file routines.
AFE1_AFE2-1:1

563

564

Descriptions of implementation-defined behavior

remove() (7.21.4.1)

The effect of a remove operation on an open file depends on the application-specific
implementation of the low-level file routines. See Briefly about input and output (I/O),
page 114.

rename() (7.21.4.2)

The effect of renaming a file to an already existing filename depends on the
application-specific implementation of the low-level file routines. See Briefly about
input and output (I/O), page 114.

Removal of open temporary files (7.21.4.3)

Whether an open temporary file is removed depends on the application-specific
implementation of the low-level file routines.

Mode changing (7.21.5.4)

freopen closes the named stream, then reopens it in the new mode. The streams stdin,
stdout, and stderr can be reopened in any new mode.

Style for printing infinity or NaN (7.21.6.1, 7.29.2.1)

The style used for printing infinity or NaN for a floating-point constant is inf and nan
(INF and NAN for the F conversion specifier), respectively. The n-char-sequence is not
used for nan.

%p in printf() (7.21.6.1, 7.29.2.1)

The argument to a %p conversion specifier, print pointer, to printf() is treated as
having the type void *. The value will be printed as a hexadecimal number, similar to
using the %x conversion specifier.

Reading ranges in scanf (7.21.6.2, 7.29.2.1)

A - (dash) character is always treated as a range symbol.

%p in scanf (7.21.6.2, 7.29.2.2)

The %p conversion specifier, scan pointer, to scanf() reads a hexadecimal number and
converts it into a value with the type void *.

File position errors (7.21.9.1, 7.21.9.3, 7.21.9.4)

On file position errors, the functions fgetpos, ftell, and fsetpos store EFPOS in
errno.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Implementation-defined behavior for Standard C

An n-char-sequence after nan (7.22.1.3, 7.29.4.1.1)

An n-char-sequence after a NaN is read and ignored.

errno value at underflow (7.22.1.3, 7.29.4.1.1)

errno is set to ERANGE if an underflow is encountered.

Zero-sized heap objects (7.22.3)

A request for a zero-sized heap object will return a valid pointer and not a null pointer.

Behavior of abort and exit (7.22.4.1, 7.22.4.5)

A call to abort() or _Exit() will not flush stream buffers, not close open streams, and
not remove temporary files.

Termination status (7.22.4.1, 7.22.4.4, 7.22.4.5, 7.22.4.7)

The termination status will be propagated to __exit() as a parameter. exit(),
_Exit(), and quick_exit use the input parameter, whereas abort uses
EXIT_FAILURE.

The system function return value (7.22.4.8)

The system function returns -1 when its argument is not a null pointer.

Range and precision of clock_t and time_t (7.27)

The range and precision of clock_t is up to your implementation. The range and
precision of time_t is 19000101 up to 20351231 in tics of a second if the 32-bit
time_t is used. It is -9999 up to 9999 years in tics of a second if the 64-bit time_t is
used. See time.h, page 406

The time zone (7.27.1)

The local time zone and daylight savings time must be defined by the application. For
more information, see time.h, page 406.

The era for clock() (7.27.2.1)

The era for the clock function is up to your implementation.

TIME_UTC epoch (7.27.2.5)

The epoch for TIME_UTC is up to your implementation.
AFE1_AFE2-1:1

565

566

Descriptions of implementation-defined behavior

%Z replacement string (7.27.3.5, 7.29.5.1)

By default, ":" or "" (an empty string) is used as a replacement for %Z. Your application
should implement the time zone handling. See __time32, __time64, page 144.

Math functions rounding mode (F.10)

The functions in math.h honor the rounding direction mode in FLT-ROUNDS.

J.3.13 ARCHITECTURE

Values and expressions assigned to some macros (5.2.4.2, 7.20.2,
7.20.3)

There are always 8 bits in a byte.

MB_LEN_MAX is at the most 6 bytes depending on the library configuration that is used.

For information about sizes, ranges, etc for all basic types, see Data representation, page
315.

The limit macros for the exact-width, minimum-width, and fastest minimum-width
integer types defined in stdint.h have the same ranges as char, short, int, long,
and long long.

The floating-point constant FLT_ROUNDS has the value 1 (to nearest) and the
floating-point constant FLT_EVAL_METHOD has the value 0 (treat as is).

Accessing another thread's autos or thread locals (6.2.4)

The IAR runtime environment does not allow multiple threads. With a third-party
RTOS, the access will take place and work as intended as long as the accessed item has
not gone out of its scope.

The number, order, and encoding of bytes (6.2.6.1)

See Data representation, page 315.

Extended alignments (6.2.8)

For information about extended alignments, see data_alignment, page 347.

Valid alignments (6.2.8)

For information about valid alignments on fundamental types, see the chapter Data
representation.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Implementation-defined behavior for Standard C

The value of the result of the sizeof operator (6.5.3.4)

See Data representation, page 315.

J.4 LOCALE

Members of the source and execution character set (5.2.1)

By default, the compiler accepts all one-byte characters in the host’s default character
set. The chapter Encodings describes how to change the default encoding for the source
character set, and by that the encoding for plain character constants and plain string
literals in the execution character set.

The meaning of the additional characters (5.2.1.2)

Any multibyte characters in the extended source character set is translated into the
following encoding for the execution character set:

It is up to your application with the support of the library configuration to handle the
characters correctly.

Shift states for encoding multibyte characters (5.2.1.2)

No shift states are supported.

Direction of successive printing characters (5.2.2)

The application defines the characteristics of a display device.

The decimal point character (7.1.1)

For a library with the configuration Normal or Tiny, the default decimal-point character
is a '.'. For a library with the configuration Full, the chosen locale defines what character
is used for the decimal point.

Printing characters (7.4, 7.30.2)

The set of printing characters is determined by the chosen locale.

Execution character set Encoding

L typed UTF-32

u typed UTF-16

U typed UTF-32

u8 typed UTF-8

none typed The same as the source character set

Table 51: Translation of multibyte characters in the extended source character set
AFE1_AFE2-1:1

567

568

Descriptions of implementation-defined behavior

Control characters (7.4, 7.30.2)

The set of control characters is determined by the chosen locale.

Characters tested for (7.4.1.2, 7.4.1.3, 7.4.1.7, 7.4.1.9, 7.4.1.10,
7.4.1.11, 7.30.2.1.2, 7.30.5.1.3, 7.30.2.1.7, 7.30.2.1.9, 7.30.2.1.10,
7.30.2.1.11)

The set of characters tested for the character-based functions are determined by the
chosen locale. The set of characters tested for the wchar_t-based functions are the
UTF-32 code points 0x0 to 0x7F.

The native environment (7.11.1.1)

The native environment is the same as the "C" locale.

Subject sequences for numeric conversion functions (7.22.1,
7.29.4.1)

There are no additional subject sequences that can be accepted by the numeric
conversion functions.

The collation of the execution character set (7.24.4.3, 7.29.4.4.2)

Collation is not supported.

Message returned by strerror (7.24.6.2)

The messages returned by the strerror function depending on the argument is:

Formats for time and date (7.27.3.5, 7.29.5.1)

Time zone information is as you have implemented it in the low-level function
__getzone.

Argument Message

EZERO no error

EDOM domain error

ERANGE range error

EFPOS file positioning error

EILSEQ multi-byte encoding error

<0 || >99 unknown error

all others error nnn

Table 52: Message returned by strerror()—DLIB runtime environment
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Implementation-defined behavior for Standard C

Character mappings (7.30.1)

The character mappings supported are tolower and toupper.

Character classifications (7.30.1)

The character classifications that are supported are alnum, cntrl, digit, graph,
lower, print, punct, space, upper, and xdigit.
AFE1_AFE2-1:1

569

570

Descriptions of implementation-defined behavior

AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Implementation-defined
behavior for C89
● Descriptions of implementation-defined behavior

If you are using Standard C instead of C89, see Implementation-defined behavior
for Standard C, page 551.

Descriptions of implementation-defined behavior
The descriptions follow the same order as the ISO appendix. Each item covered includes
references to the ISO chapter and section (in parenthesis) that explains the
implementation-defined behavior.

TRANSLATION

Diagnostics (5.1.1.3)

Diagnostics are produced in the form:

filename,linenumber level[tag]: message

where filename is the name of the source file in which the error was encountered,
linenumber is the line number at which the compiler detected the error, level is the
level of seriousness of the message (remark, warning, error, or fatal error), tag is a
unique tag that identifies the message, and message is an explanatory message, possibly
several lines.

ENVIRONMENT

Arguments to main (5.1.2.2.2.1)

The function called at program startup is called main. No prototype was declared for
main, and the only definition supported for main is:

int main(void)

To change this behavior for the DLIB runtime environment, see System initialization,
page 135.
AFE1_AFE2-1:1

571

572

Descriptions of implementation-defined behavior

Interactive devices (5.1.2.3)

The streams stdin and stdout are treated as interactive devices.

IDENTIFIERS

Significant characters without external linkage (6.1.2)

The number of significant initial characters in an identifier without external linkage is
200.

Significant characters with external linkage (6.1.2)

The number of significant initial characters in an identifier with external linkage is 200.

Case distinctions are significant (6.1.2)

Identifiers with external linkage are treated as case-sensitive.

CHARACTERS

Source and execution character sets (5.2.1)

The source character set is the set of legal characters that can appear in source files. It is
dependent on the chosen encoding for the source file. See Text encodings, page 232. By
default, the source character set is Raw.

The execution character set is the set of legal characters that can appear in the execution
environment. These are the execution character set for character constants and string
literals and their encoding types:

The DLIB runtime environment needs a multibyte character scanner to support a
multibyte execution character set. See Locale, page 146.

Bits per character in execution character set (5.2.4.2.1)

The number of bits in a character is represented by the manifest constant CHAR_BIT.
The standard include file limits.h defines CHAR_BIT as 8.

Execution character set Encoding type

L UTF-32

u UTF-16

U UTF-32

u8 UTF-8

none The source character set

Table 53: Execution character sets and their encodings
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Implementation-defined behavior for C89

Mapping of characters (6.1.3.4)

The mapping of members of the source character set (in character and string literals) to
members of the execution character set is made in a one-to-one way. In other words, the
same representation value is used for each member in the character sets except for the
escape sequences listed in the ISO standard.

Unrepresented character constants (6.1.3.4)

The value of an integer character constant that contains a character or escape sequence
not represented in the basic execution character set or in the extended character set for
a wide character constant generates a diagnostic message, and will be truncated to fit the
execution character set.

Character constant with more than one character (6.1.3.4)

An integer character constant that contains more than one character will be treated as an
integer constant. The value will be calculated by treating the leftmost character as the
most significant character, and the rightmost character as the least significant character,
in an integer constant. A diagnostic message will be issued if the value cannot be
represented in an integer constant.

A wide character constant that contains more than one multibyte character generates a
diagnostic message.

Converting multibyte characters (6.1.3.4)

See Locale, page 146.

Range of 'plain' char (6.2.1.1)

A ‘plain’ char has the same range as an unsigned char.

INTEGERS

Range of integer values (6.1.2.5)

The representation of integer values are in the two's complement form. The most
significant bit holds the sign—1 for negative, 0 for positive and zero.

See Basic data types—integer types, page 316, for information about the ranges for the
different integer types.

Demotion of integers (6.2.1.2)

Converting an integer to a shorter signed integer is made by truncation. If the value
cannot be represented when converting an unsigned integer to a signed integer of equal
AFE1_AFE2-1:1

573

574

Descriptions of implementation-defined behavior

length, the bit-pattern remains the same. In other words, a large enough value will be
converted into a negative value.

Signed bitwise operations (6.3)

Bitwise operations on signed integers work the same way as bitwise operations on
unsigned integers—in other words, the sign-bit will be treated as any other bit, except
for the operator >> which will behave as an arithmetic right shift.

Sign of the remainder on integer division (6.3.5)

The sign of the remainder on integer division is the same as the sign of the dividend.

Negative valued signed right shifts (6.3.7)

The result of a right-shift of a negative-valued signed integral type preserves the sign-bit.
For example, shifting 0xFF00 down one step yields 0xFF80.

FLOATING POINT

Representation of floating-point values (6.1.2.5)

The representation and sets of the various floating-point numbers adheres to IEC 60559.
A typical floating-point number is built up of a sign-bit (s), a biased exponent (e), and
a mantissa (m).

See Basic data types—floating-point types, page 321, for information about the ranges
and sizes for the different floating-point types: float and double.

Converting integer values to floating-point values (6.2.1.3)

When an integral number is cast to a floating-point value that cannot exactly represent
the value, the value is rounded (up or down) to the nearest suitable value.

Demoting floating-point values (6.2.1.4)

When a floating-point value is converted to a floating-point value of narrower type that
cannot exactly represent the value, the value is rounded (up or down) to the nearest
suitable value.

ARRAYS AND POINTERS

size_t (6.3.3.4, 7.1.1)

See size_t, page 323, for information about size_t.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Implementation-defined behavior for C89

Conversion from/to pointers (6.3.4)

See Casting, page 323, for information about casting of data pointers and function
pointers.

ptrdiff_t (6.3.6, 7.1.1)

See ptrdiff_t, page 323, for information about the ptrdiff_t.

REGISTERS

Honoring the register keyword (6.5.1)

User requests for register variables are not honored.

STRUCTURES, UNIONS, ENUMERATIONS, AND BITFIELDS

Improper access to a union (6.3.2.3)

If a union gets its value stored through a member and is then accessed using a member
of a different type, the result is solely dependent on the internal storage of the first
member.

Padding and alignment of structure members (6.5.2.1)

See the section Basic data types—integer types, page 316, for information about the
alignment requirement for data objects.

Sign of 'plain' bitfields (6.5.2.1)

A 'plain' int bitfield is treated as a signed int bitfield. All integer types are allowed
as bitfields.

Allocation order of bitfields within a unit (6.5.2.1)

Bitfields are allocated within an integer from least-significant to most-significant bit.

Can bitfields straddle a storage-unit boundary (6.5.2.1)

Bitfields cannot straddle a storage-unit boundary for the chosen bitfield integer type.

Integer type chosen to represent enumeration types (6.5.2.2)

The chosen integer type for a specific enumeration type depends on the enumeration
constants defined for the enumeration type. The chosen integer type is the smallest
possible.
AFE1_AFE2-1:1

575

576

Descriptions of implementation-defined behavior

QUALIFIERS

Access to volatile objects (6.5.3)

Any reference to an object with volatile qualified type is an access.

DECLARATORS

Maximum numbers of declarators (6.5.4)

The number of declarators is not limited. The number is limited only by the available
memory.

STATEMENTS

Maximum number of case statements (6.6.4.2)

The number of case statements (case values) in a switch statement is not limited. The
number is limited only by the available memory.

PREPROCESSING DIRECTIVES

Character constants and conditional inclusion (6.8.1)

The character set used in the preprocessor directives is the same as the execution
character set. The preprocessor recognizes negative character values if a 'plain' character
is treated as a signed character.

Including bracketed filenames (6.8.2)

For file specifications enclosed in angle brackets, the preprocessor does not search
directories of the parent files. A parent file is the file that contains the #include
directive. Instead, it begins by searching for the file in the directories specified on the
compiler command line.

Including quoted filenames (6.8.2)

For file specifications enclosed in quotes, the preprocessor directory search begins with
the directories of the parent file, then proceeds through the directories of any
grandparent files. Thus, searching begins relative to the directory containing the source
file currently being processed. If there is no grandparent file and the file is not found,
the search continues as if the filename was enclosed in angle brackets.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Implementation-defined behavior for C89

Character sequences (6.8.2)

Preprocessor directives use the source character set, except for escape sequences. Thus,
to specify a path for an include file, use only one backslash:

#include "mydirectory\myfile"

Within source code, two backslashes are necessary:

file = fopen("mydirectory\\myfile","rt");

Recognized pragma directives (6.8.6)

In addition to the pragma directives described in the chapter Pragma directives, the
following directives are recognized and will have an indeterminate effect. If a pragma
directive is listed both in the chapter Pragma directives and here, the information
provided in the chapter Pragma directives overrides the information here.

● alignment

● baseaddr

● basic_template_matching

● building_runtime

● can_instantiate

● codeseg

● constseg

● cspy_support

● dataseg

● define_type_info

● do_not_instantiate

● early_dynamic_initialization

● function

● function_effects

● hdrstop

● important_typedef

● instantiate

● keep_definition

● library_default_requirements

● library_provides

● library_requirement_override

● memory
AFE1_AFE2-1:1

577

578

Descriptions of implementation-defined behavior

● module_name

● no_pch

● once

● system_include

● vector

● warnings

Default __DATE__ and __TIME__ (6.8.8)

The definitions for __TIME__ and __DATE__ are always available.

LIBRARY FUNCTIONS FOR THE IAR DLIB RUNTIME
ENVIRONMENT

Note: Some items in this list only apply when file descriptors are supported by the
library configuration. For more information about runtime library configurations, see
the chapter The DLIB runtime environment.

NULL macro (7.1.6)

The NULL macro is defined to 0.

Diagnostic printed by the assert function (7.2)

The assert() function prints:

filename:linenr expression -- assertion failed

when the parameter evaluates to zero.

Domain errors (7.5.1)

NaN (Not a Number) will be returned by the mathematic functions on domain errors.

Underflow of floating-point values sets errno to ERANGE (7.5.1)

The mathematics functions set the integer expression errno to ERANGE (a macro in
errno.h) on underflow range errors.

fmod() functionality (7.5.6.4)

If the second argument to fmod() is zero, the function returns NaN—errno is set to
EDOM.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Implementation-defined behavior for C89

signal() (7.7.1.1)

The signal part of the library is not supported.

Note: The default implementation of signal does not perform anything. Use the
template source code to implement application-specific signal handling. See signal,
page 143 and raise, page 141, respectively.

Terminating newline character (7.9.2)

stdout stream functions recognize either newline or end of file (EOF) as the
terminating character for a line.

Blank lines (7.9.2)

Space characters written to the stdout stream immediately before a newline character
are preserved. There is no way to read the line through the stdin stream that was
written through the stdout stream.

Null characters appended to data written to binary streams (7.9.2)

No null characters are appended to data written to binary streams.

Files (7.9.3)

Whether the file position indicator of an append-mode stream is initially positioned at
the beginning or the end of the file, depends on the application-specific implementation
of the low-level file routines.

Whether a write operation on a text stream causes the associated file to be truncated
beyond that point, depends on the application-specific implementation of the low-level
file routines. See Briefly about input and output (I/O), page 114.

The characteristics of the file buffering is that the implementation supports files that are
unbuffered, line buffered, or fully buffered.

Whether a zero-length file actually exists depends on the application-specific
implementation of the low-level file routines.

Rules for composing valid file names depends on the application-specific
implementation of the low-level file routines.

Whether the same file can be simultaneously open multiple times depends on the
application-specific implementation of the low-level file routines.
AFE1_AFE2-1:1

579

580

Descriptions of implementation-defined behavior

remove() (7.9.4.1)

The effect of a remove operation on an open file depends on the application-specific
implementation of the low-level file routines. See Briefly about input and output (I/O),
page 114.

rename() (7.9.4.2)

The effect of renaming a file to an already existing filename depends on the
application-specific implementation of the low-level file routines. See Briefly about
input and output (I/O), page 114.

%p in printf() (7.9.6.1)

The argument to a %p conversion specifier, print pointer, to printf() is treated as
having the type void *. The value will be printed as a hexadecimal number, similar to
using the %x conversion specifier.

%p in scanf() (7.9.6.2)

The %p conversion specifier, scan pointer, to scanf() reads a hexadecimal number and
converts it into a value with the type void *.

Reading ranges in scanf() (7.9.6.2)

A - (dash) character is always treated as a range symbol.

File position errors (7.9.9.1, 7.9.9.4)

On file position errors, the functions fgetpos and ftell store EFPOS in errno.

Message generated by perror() (7.9.10.4)

The generated message is:

usersuppliedprefix:errormessage

Allocating zero bytes of memory (7.10.3)

The calloc(), malloc(), and realloc() functions accept zero as an argument.
Memory will be allocated, a valid pointer to that memory is returned, and the memory
block can be modified later by realloc.

Behavior of abort() (7.10.4.1)

The abort() function does not flush stream buffers, and it does not handle files,
because this is an unsupported feature.
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Implementation-defined behavior for C89

Behavior of exit() (7.10.4.3)

The argument passed to the exit function will be the return value returned by the main
function to cstartup.

Environment (7.10.4.4)

The set of available environment names and the method for altering the environment list
is described in getenv, page 138.

system() (7.10.4.5)

How the command processor works depends on how you have implemented the system
function. See system, page 144.

Message returned by strerror() (7.11.6.2)

The messages returned by strerror() depending on the argument is:

The time zone (7.12.1)

The local time zone and daylight savings time implementation is described in __time32,
__time64, page 144.

clock() (7.12.2.1)

From where the system clock starts counting depends on how you have implemented the
clock function. See clock, page 137.

Argument Message

EZERO no error

EDOM domain error

ERANGE range error

EFPOS file positioning error

EILSEQ multi-byte encoding error

<0 || >99 unknown error

all others error nnn

Table 54: Message returned by strerror()—DLIB runtime environment
AFE1_AFE2-1:1

581

582

Descriptions of implementation-defined behavior

AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Index

Index

A
-a (ielfdump option) . 480
abort

implementation-defined behavior in C. 565
implementation-defined behavior in C89 (DLIB) 580
system termination (DLIB) . 134

absolute location
data, placing at (@) . 211
language support for . 177
#pragma location . 356

--accurate_math (linker option). 284
activation record. See stack frame
advanced heap. 195
--advanced_heap (linker option) . 284
algorithm (library header file). 399
algorithms, parallel (C++17). 404
alias_def (pragma directive) . 559
alignment . 315

extended, implementation-defined behavior for C++. . 531
forcing stricter (#pragma data_alignment) 347
implementation-defined behavior for C++. 520
in structures (#pragma pack) . 360
in structures, causing problems 208
of an object (__ALIGNOF__) 178
of data types. 316
restrictions for inline assembler 154

alignment (pragma directive) 559, 577
__ALIGNOF__ (operator) . 178
alignof expression, implementation-defined behavior
for C++ . 520
--all (ielfdump option) . 481
--allow_misaligned_data_access (compiler option) . 244, 285
alternate_target_def (pragma directive) 559
anonymous structures . 209
ANSI C. See C89
any (library header file) . 399
application

building, overview of . 61

execution, overview of. 56
startup and termination (DLIB) 132
startup, specifying to linker . 101

architecture extension test macros. 385
argv (argument), implementation-defined behavior in C. . 552
array (library header file) . 399
arrays

flexible members of structures 180
implementation-defined behavior 557
implementation-defined behavior in C89 574
non-lvalue . 181
of incomplete types . 179, 190
single-value initialization. 181
zero length . 180

array::const_iterator,
implementation-defined behavior for C++ 535
array::iterator, implementation-defined behavior for C++ 535
asm, __asm (language extension) 156

implementation-defined behavior for C++. 523
assembler code

calling from C . 161
calling from C++ . 163
inserting inline . 154

assembler directives
for call frame information . 171
using in inline assembler code 154

assembler instructions, inserting inline 154
assembler labels

default for application startup 61, 101
making public (--public_equ). 272

assembler language interface . 153
calling convention. See assembler code

assembler list file, generating . 258
assembler output file. 162
assembler statements. 182
assembly language. See assembler language
asserts

implementation-defined behavior of in C. 561
implementation-defined behavior of in C89, (DLIB) . . 578
including in application . 393
AFE1_AFE2-1:1

 583

584

assert.h (DLIB header file) . 398
assignment of pointer types. 182
assoc_laguerre,
implementation-defined behavior for C++ 543
assoc_legendre,
implementation-defined behavior for C++ 543
@ (operator)

placing at absolute address. 211
placing in sections . 212

atexit limit, setting up . 102
atexit, reserving space for calls . 102
atomic accesses. 404
atomic operations . 72, 185, 404

__monitor . 334
atomic types for bitfields,
implementation-defined behavior in C 558
atomic types, lock free operation,
implementation-defined behavior for C++ 548
atomic (library header file) . 399
ATOMIC_..._LOCK_FREE macros,
implementation-defined behavior for C++ 548
attribute declaration,
implementation-defined behavior for C++ 523
attributes

non-standard, implementation-defined behavior
for C++ . 523
object . 331
type . 329

auto variables . 66
at function entrance . 166
programming hints for efficient code 220
using in inline assembler statements 154

automatic variables. See auto variables
auto_ptr (deprecated function), enabling. 404
auto_ptr_ref (deprecated function), enabling 404
__auto_type (GNU C keyword) . 183
--auto_vector_setup (linker option). 285
auto, packing algorithm for initializers 426

B
backtrace information See call frame information
bad_alloc::what,
implementation-defined behavior for C++ 528
bad_any_access::what,
implementation-defined behavior for C++ 529
bad_array_new_length::what,
implementation-defined behavior for C++ 528
bad_cast::what,
implementation-defined behavior for C++ 528
bad_exception::what,
implementation-defined behavior for C++ 529
bad_function_call::what,
implementation-defined behavior for C++ 531
bad_optional_access::what,
implementation-defined behavior for C++ 529
bad_typeid::what,
implementation-defined behavior for C++ 528
bad_variant_access::what,
implementation-defined behavior for C++ 529
bad_weak_ptr::what,
implementation-defined behavior for C++ 530
Barr, Michael . 38
baseaddr (pragma directive) 559, 577
__BASE_FILE__ (predefined symbol). 382
basic heap . 194
basic_filebuf move constructor,
implementation-defined behavior for C++ 545
basic_filebuf::setbuf,
implementation-defined behavior for C++ 546
basic_filebuf::sync,
implementation-defined behavior for C++ 546
--basic_heap (linker option) . 285
basic_ios::failure,
implementation-defined behavior for C++ 545
basic_streambuf::setbuf,
implementation-defined behavior for C++ 545
basic_stringbuf move constructor,
implementation-defined behavior for C++ 545
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Index

basic_string_view::const_iterator,
implementation-defined behavior for C++ 533
basic_string::const_iterator,
implementation-defined behavior for C++ 533
basic_string::iterator,
implementation-defined behavior for C++ 533
basic_template_matching (pragma directive) 559, 577
batch files

error return codes . 236
none for building library from command line 123

Bessel functions,
implementation-defined behavior for C++ 543
Bessel polynomials,
implementation-defined behavior for C++ 544
--bin (ielftool option) . 481
binary files, linker forcing inclusion of 296
binary integer literals, support for 180
binary streams. 563
binary streams in C89 (DLIB). 579
binary_function (deprecated function), enabling. 404
bind expressions, placeholders,
implementation-defined behavior for C++ 531
--bin-multi (ielftool option). 481
bit negation . 221
bitfields

data representation of. 318
hints . 207
implementation-defined behavior for C++. 524
implementation-defined behavior in C. 557
implementation-defined behavior in C89 575
non-standard types in . 178

bitfields (pragma directive). 345
bitfield, value of,
implementation-defined behavior for C++ 521–522, 524
bitmanip intrinsic functions . 370
bits in a byte, implementation-defined behavior in C 553
bitset (library header file) . 400
bits, number of in one byte,
implementation-defined behavior for C++ 514
bold style, in this guide . 40

bool (data type) . 316–317
adding support for in DLIB 399, 403

branches, eliminating redundant (optimization) 215
.bss (ELF section) . 448
buffer overflow, protection against 77
build for directive (in linker configuration file) 411
building_runtime (pragma directive). 560, 577
__BUILD_NUMBER__ (predefined symbol) 382
Byte Order Mark, suppressing . 301
bytes, number of bits in,
implementation-defined behavior for C++ 514

C
C and C++ linkage . 165
C/C++ calling convention. See calling convention
C header files . 398
C language, overview . 175
call frame information . 171

disabling (--no_call_frame_info) 261
in assembler list file . 162
in assembler list file (-lA) . 258

call graph root (stack usage control directive). 456
call stack . 171
callee-save registers, stored on stack. 66
calling convention

C++, requiring C linkage . 163
in compiler. 164

calloc (library function) . 67
See also heap
implementation-defined behavior in C89 (DLIB) 580

calls (pragma directive). 346
--call_graph (linker option). 286
call_graph_root (pragma directive) 347
call-info (in stack usage control file). 460
canaries. See stack canary
can_instantiate (pragma directive) 560, 577
case ranges, GNU style . 183
cassert (library header file) . 402
AFE1_AFE2-1:1

 585

586

casting
implementation-defined behavior for C++. 520–522
of pointers and integers . 323
pointers to integers, language extension. 180

category (in stack usage control file) 459
cbo.clean instructions, inserting . 375
cbo.flush instructions, inserting . 376
cbo.inval instructions, inserting . 376
cbo.zero instructions, inserting . 376
ccomplex (library header file). 402
cctype (DLIB header file) . 402
cerrno (DLIB header file) . 402
cexit (system termination code)

customizing system termination. 135
<cfenv> functions and floating-point,
implementation-defined behavior for C++ 541
cfenv (library header file) . 402
CFI (assembler directive) . 171
cfloat (DLIB header file) . 402
char (data type) . 316

changing default representation (--char_is_signed) . . . 244
changing representation (--char_is_unsigned) 245
implementation-defined behavior for C++. 519
implementation-defined behavior in C. 554
signed and unsigned. 317

character literals,
implementation-defined behavior for C++ 517, 525
character set

implementation-defined behavior for C++. 514–515
implementation-defined behavior in C. 552

characters
implementation-defined behavior in C. 553
implementation-defined behavior in C89 572

charconv (library header file) . 400
--char_is_signed (compiler option) 244
--char_is_unsigned (compiler option) 245
char_traits<char16_t>::eof,
implementation-defined behavior for C++ 532
char_traits<char32_t>::eof,
implementation-defined behavior for C++ 532

char_traits<wchar_t>::eof,
implementation-defined behavior for C++ 533
char16_t (data type) . 318

implementation-defined behavior in C. 555
char32_t (data type) . 318

implementation-defined behavior in C. 555
check that (linker directive) . 440
checksum

calculation of . 197
display format in C-SPY for symbol 205

--checksum (ielftool option) . 482
chrono (library header file) . 400, 407

steady_clock, not available in Libc++ 400
cinttypes (DLIB header file) . 402
ciso646 (library header file) . 402
class type, passing argument of,
implementation-defined behavior for C++ 521
__clear_bits_csr (intrinsic function) 372
climits (DLIB header file). 402
clobber . 155
clocale (DLIB header file) . 402
clock (DLIB library function),
implementation-defined behavior in C89 581
CLOCKS_PER_SEC (time.h macro) 407

and clock() . 137
clustering (compiler transformation). 218

disabling (--no_clustering) . 261
CMake, using with ielftool . 467
cmath (DLIB header file) . 402
code

dead, eliminating (optimization) 215
execution of . 62
facilitating for good generation of 219
hoisting (optimization). 215
interruption of execution . 71

--code (ielfdump option) . 486
code models . 69

configuration . 62
selecting (--code_model) . 245

code motion (compiler transformation). 217
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Index

disabling (--no_code_motion) 262
codecvt (library header file) . 400
CoDense optimization

disabling for call instructions . 292
CoDense, enabling . 246
codeseg (pragma directive) . 560, 577
--code_model (compiler option) . 245
coercion. See casting
command line flags. See command line options
command line options

See also compiler options
See also linker options
IAR utilities . 480
part of compiler invocation syntax. 227
part of linker invocation syntax 228
passing . 228
typographic convention . 40

command line switches. See command line options
command prompt icon, in this guide 40
.comment (ELF section) . 448
comments

after preprocessor directives . 181
common block (call frame information) 171
common subexpr elimination (compiler transformation) . 217

disabling (--no_cse) . 263
compilation date

exact time of (__TIME__) . 392
identifying (__DATE__) . 383

compiler
environment variables . 229
invocation syntax . 227
output from . 230
version number, testing . 392

compiler listing, generating (-l). 258
compiler object file . 54

including debug information in (--debug, -r) 248
output from compiler . 230

compiler optimization levels . 215
compiler options . 237

passing to compiler . 228
reading from file (-f) . 255
reading from file (--f). 256
specifying parameters . 239
summary . 239
syntax. 237
for creating skeleton code . 162
instruction scheduling . 219

compiler platform, identifying . 384
compiler subversion number. 392
compiler transformations . 213
compiling

from the command line . 61
syntax. 227

complex (library header file). 400
complex.h (library header file) . 398
computer style (monospace font), typographic convention . 40
concatenating strings. 183, 190
concatenating wide string literals with different encoding
types, implementation-defined behavior in C 555
condition_variable (library header file). 400
--config (linker option) . 286
configuration

basic project settings . 61
__low_level_init . 135

configuration files
for library project. See library configuration files
for linker. See linker configuration file

configuration symbols
for file input and output . 146
for strtod . 147
in library configuration files. 122
in linker configuration files . 440
specifying for linker. 286

--config_def (linker option) . 286
--config_search (linker option) . 287
consistency, module . 108
constseg (pragma directive) 560, 577
const_mem_fun (deprecated function), enabling 404
const_mem_fun_ref_t (deprecated function), enabling . . . 404
AFE1_AFE2-1:1

 587

588

const, declaring objects. 327
contents, of this guide . 36
control characters, implementation-defined behavior in C 568
conventions, used in this guide . 39
conversion (type). See casting
copyright notice . 2
--core (compiler option) . 245
--core (ielfdumpriscv option) . 487
--core (linker option). 287
core, configuring project for . 62
cos (library function) . 396
__COUNTER__ (predefined symbol). 382
__cplusplus (predefined symbol) 382
cplusplus_neutral (pragma directive) 560
--cpp_init_routine (linker option) 287
--create (iarchive option). 487
cross call (compiler transformation) 219
csetjmp (DLIB header file) . 402
csignal (DLIB header file) . 402
cspy_support (pragma directive). 560, 577
csrc (assembler instruction) . 372
csrrc (assembler instruction) . 372
csrs (assembler instruction). 372
CSTACK (ELF block) . 449

See also stack
setting up size for. 101

.cstartup (ELF section) . 449
cstartup (system startup code). 132

customizing system initialization 135
source files for (DLIB). 132

cstat_disable (pragma directive) . 343
cstat_dump (pragma directive) . 560
cstat_enable (pragma directive) . 343
cstat_restore (pragma directive) . 343
cstat_suppress (pragma directive) 343
cstdalign (DLIB header file) . 403
cstdarg (DLIB header file) . 403
cstdbool (DLIB header file) . 403
cstddef (DLIB header file) . 403

cstdio (DLIB header file) . 403
cstdlib (DLIB header file) . 403
cstdnoreturn (DLIB header file) . 403
cstring (DLIB header file). 403
ctgmath (library header file) . 403
cthreads (DLIB header file) . 403
ctime (DLIB header file). 403
ctype::table_size,
implementation-defined behavior for C++ 534
ctype.h (library header file). 398
cuchar (DLIB header file) . 403
cwctype.h (library header file) . 403
cyl_bessel_i functions,
implementation-defined behavior for C++ 543
cyl_bessel_j functions,
implementation-defined behavior for C++ 543
cyl_bessel_k functions,
implementation-defined behavior for C++ 543
cyl_neumann functions,
implementation-defined behavior for C++ 543
C_INCLUDE (environment variable) 229
C-SPY

debug support for C++. 188
interface to system termination 135

C-SPY emulated I/O, enabling . 288
C-STAT for static analysis, documentation for. 38
C++

absolute location . 212
calling convention . 163
header files. 399
implementation-defined behavior 513
language extensions . 188
manual dynamic initialization 287, 299
static member variables . 212
support for . 47

--c++ (compiler option) . 248
C++ header files . 399
C++17. See Standard C++
C18. See Standard C
C89
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Index

implementation-defined behavior 571
support for . 175

--c89 (compiler option) . 244
C90 and C94. See C89

D
-D (compiler option) . 248
-d (iarchive option) . 487
data

alignment of. 315
different ways of storing . 65
located, declaring extern . 212
placing . 210, 447

at absolute location . 211
representation of . 315
storage . 65

data block (call frame information). 172
data pointers . 323
data types . 316

avoiding signed . 207
floating point . 321
in C++ . 327
integer types. 316

.data (ELF section) . 449
dataseg (pragma directive) . 560, 577
data_alignment (pragma directive) 347
.data_init (ELF section) . 449
__DATE__ (predefined symbol). 383

implementation-defined behavior for C++. 526
date (library function), configuring support for. 120
daylight savings time (DLIB), enabling 310
DC32 (assembler directive) . 154
dead code elimination (optimization) 215
--debug (compiler option) . 248
debug information

excluding from executable image 309
including in object file . 248

debug write mechanism, replacing 131

.debug (ELF section). 448
--debug_lib (linker option) . 288
decimal point, implementation-defined behavior in C . . . 567
declarations

empty . 181
Kernighan & Ritchie . 221
of functions . 165

declarators, implementation-defined behavior in C89. . . . 576
--default_to_complex_ranges (linker option) 288
define block (linker directive). 419
define memory (linker directive) 412
define overlay (linker directive) . 424
define region (linker directive) . 412
define section (linker directive) . 421
define symbol (linker directive) . 440
--define_symbol (linker option) . 289
define_type_info (pragma directive) 560, 577
--delete (iarchive option). 487
delete (keyword) . 67
denormalized numbers. See subnormal numbers
--dependencies (compiler option) 249
--dependencies (linker option) . 289
deprecated (pragma directive). 350
--deprecated_feature_warnings (compiler option). 250
deque (library header file). 400
designated initializer ranges, GNU style 183
destructors and interrupts, using . 187
device description files, preconfigured for C-SPY 49
devices, interactive,
implementation-defined behavior for C++ 514
diagnostic messages . 234

classifying as compilation errors 251
classifying as compilation remarks 251
classifying as compiler warnings 252
classifying as errors . 263
classifying as linker warnings 291
classifying as linking errors . 290
classifying as linking remarks 290
disabling compiler warnings . 268
disabling linker warnings . 304
AFE1_AFE2-1:1

 589

590

disabling wrapping of in compiler 268
disabling wrapping of in linker 305
enabling compiler remarks. 273
enabling linker remarks . 307
listing all used by compiler . 252
listing all used by linker . 292
suppressing in compiler . 251
suppressing in linker . 291

diagnostics
iarchive . 465
implementation-defined behavior for C++. 513
implementation-defined behavior in C. 551
iobjmanip. 472
isymexport . 478

--diagnostics_tables (compiler option) 252
--diagnostics_tables (linker option). 292
diag_default (pragma directive) . 351
--diag_error (compiler option) . 251
--no_fragments (compiler option) 263
--diag_error (linker option) . 290
diag_error (pragma directive) . 351
--diag_remark (compiler option). 251
--diag_remark (linker option) . 290
diag_remark (pragma directive) . 352
--diag_suppress (compiler option) 251
--diag_suppress (linker option) . 291
diag_suppress (pragma directive) 352
--diag_warning (compiler option) 252
--diag_warning (linker option) . 291
diag_warning (pragma directive) 352
directives

pragma . 49, 343
stack usage control. 455
to the linker . 409

directory, specifying as parameter 238
--disable_codense_jal (linker option) 292
__disable_interrupt (intrinsic function). 372
--disable_relaxation (linker option). 292
--disasm_data (ielfdump option) . 488

--discard_unused_publics (compiler option) 253
disclaimer . 2
DLIB. 397

configurations . 124
configuring . 122, 253
C++ support . 47
naming convention. 41
reference information. 395
runtime environment . 113

--dlib_config (compiler option). 253
DLib_Defaults.h (library configuration file) 122
__DLIB_FILE_DESCRIPTOR (configuration symbol) . . 146
do not initialize (linker directive) 428
document conventions . 39
documentation

contents of this. 36
how to use this . 35
overview of guides. 37
who should read this . 35

$$ (in reserved identifiers) . 233
domain errors, implementation-defined behavior in C . . . 562
domain errors, implementation-defined behavior in C89
(DLIB) . 578
double underscore (in reserved identifiers) 233
double (data type) . 321
--do_explicit_zero_opt_in_named_sections
(compiler option) . 254
do_not_instantiate (pragma directive). 560, 577
duplicate section merging (linker optimization) 111
__dwrite (debug write routine) . 131
dynamic initialization . 132

and C++ . 88
dynamic memory . 67

E
-e (compiler option) . 254
early_initialization (pragma directive) 560, 577
--edit (isymexport option) . 488
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Index

edition, of this guide . 2
ELF utilities . 463
embedded systems, IAR special support for 49
empty region (in linker configuration file) 417
empty translation unit . 182
__enable_interrupt (intrinsic function) 372
--enable_restrict (compiler option) 255
--enable_stack_usage (linker option) 293
enabling restrict keyword . 255
encoding in text output file . 309
encodings . 232

Raw . 232
system default locale . 232
Unicode . 232
UTF-16 . 232
UTF-8 . 232

enter_leave (pragma directive) . 353
--entry (linker option) . 293
entry label, program . 133
entry point, setting to zero . 302
--entry_list_in_address_order (linker option) 294
entry, implementation-defined behavior for C++ 518
enum (data type) . 317
enumerations

data representation . 317
forward declarations of . 180
implementation-defined behavior for C++. 523
implementation-defined behavior in C. 557
implementation-defined behavior in C89 575

environment
implementation-defined behavior in C. 552
implementation-defined behavior in C89 571
native, implementation-defined behavior in C 568
runtime (DLIB) . 113

environment names,
implementation-defined behavior in C 553
environment variables

C_INCLUDE . 229
QCCRISCV . 229

EQU (assembler directive) . 272

ERANGE . 562
ERANGE (C89) . 578
errno value at underflow,
implementation-defined behavior in C 565
errno.h (library header file). 398
error messages . 235

classifying . 263
classifying for compiler . 251
classifying for linker . 290
range . 107

error return codes . 236
error (linker directive). 444
error (pragma directive) . 353
errors and warnings, listing all used by the compiler
(--diagnostics_tables) . 252
errors, causing linking to stop . 294
error_category,
implementation-defined behavior for C++ 527
--error_limit (compiler option) . 255
--error_limit (linker option) . 294
escape sequences

implementation-defined behavior for C++. 517
implementation-defined behavior in C. 554

exception flags, for floating-point values 321
exception (library header file). 400
__EXCEPTIONS (predefined symbol) 383
exception_neutral (pragma directive) 560
exception::what,
implementation-defined behavior for C++ 529
exclude (stack usage control directive) 456
execution character set

implementation-defined behavior for C++. 515
implementation-defined behavior in C. 553

execution wide-character set,
implementation-defined behavior for C++ 515
_Exit (library function) . 134
exit (library function) . 134

implementation-defined behavior for C++. 528
implementation-defined behavior in C. 565
implementation-defined behavior in C89 581
AFE1_AFE2-1:1

 591

592

_exit (library function) . 134
__exit (library function) . 134
export (linker directive) . 441
--export_builtin_config (linker option) 294
--export_locals (isymexport option) 489
expressions (in linker configuration file) 442
extended alignment,
implementation-defined behavior for C++ 531
extended command line file

for compiler . 255–256
for linker . 294–295
passing options. 228

extended keywords . 329
enabling (-e). 254
overview . 49
summary . 332
syntax

object attributes. 332
type attributes on data objects 330
type attributes on functions 331

extended-selectors (in linker configuration file) 438
extensions to RISC-V. See RISC-V extensions
extern "C" linkage. 187
--extract (iarchive option) . 489

F
-f (compiler option). 255
-f (IAR utility option) . 490
-f (linker option) . 294
--f (compiler option) . 256
--f (linker option) . 295
--f (IAR utility option) . 490
fabs.d (assembler instruction) . 372
fabs.s (assembler instruction) . 372
--fake_time (IAR utility option) . 491
fatal error messages . 235
fclass.d (assembler instruction). 373
fclass.s (assembler instruction) . 373

fdopen, in stdio.h . 406
fegettrapdisable. 405
fegettrapenable . 405
FENV_ACCESS

implementation-defined behavior for C++. 541
implementation-defined behavior in C. 556

fenv.h (library header file) . 398, 402
additional C functionality. 405

ffb (instruction), intrinsic function to insert 378
ffmism (instruction), intrinsic function to insert 378
ffzmism (instruction), intrinsic function to insert 378
fgetpos (library function)

implementation-defined behavior in C. 564
implementation-defined behavior in C89 580

__FILE__ (predefined symbol). 383
file buffering, implementation-defined behavior in C 563
file dependencies, tracking . 249, 289
file input and output, configuration symbols for 146
file paths, specifying for #include files 257
file position, implementation-defined behavior in C 563
file (zero-length), implementation-defined behavior in C . 563
filename

extension for device description files 49
extension for header files . 48
of object executable image. 305
of object file. 270, 305
search procedure for. 229
specifying as parameter . 238

filenames (legal), implementation-defined behavior in C . 563
fileno, in stdio.h . 406
filesystem::file_size,
implementation-defined behavior for C++ 547
filesystem::status,
implementation-defined behavior for C++ 547
files, implementation-defined behavior in C

handling of temporary . 564
multibyte characters in. 563
opening . 563

--fill (ielftool option). 491
flmism (instruction), intrinsic function to insert 378
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Index

float (data type). 321
floating-point constants

hints . 208
floating-point conversions

implementation-defined behavior for C++. 520
implementation-defined behavior in C. 556

floating-point environment, accessing or not 365
floating-point expressions, contracting or not 366
floating-point format. 321

hints . 207
implementation-defined behavior in C. 556
implementation-defined behavior in C89 574
special cases. 322
32-bits . 321
64-bits . 322

floating-point literals,
implementation-defined behavior for C++ 517
floating-point status flags . 405
floating-point types,
implementation-defined behavior for C++ 519
float.h (library header file) . 398
FLT_EVAL_METHOD,
implementation-defined behavior in C 556, 561, 566
FLT_ROUNDS,
implementation-defined behavior in C 556, 566
fmax.d (assembler instruction) . 374
fmax.s (assembler instruction) . 374
fmin.d (assembler instruction) . 374
fmin.s (assembler instruction). 374
fmod (library function),
implementation-defined behavior in C89 578
--force_output (linker option) . 296
formats

floating-point values . 321
standard IEC (floating point) . 321

forward_list (library header file) . 400
__fp_abs32 (intrinsic function) . 372
__fp_abs64 (intrinsic function) . 372
__fp_class32 (intrinsic function). 373
__fp_class64 (intrinsic function). 373

FP_CONTRACT
changing default behavior of . 263
implementation-defined behavior in C. 557
pragma directive for. 365

__fp_copy_sign32 (intrinsic function) 373
__fp_copy_sign64 (intrinsic function) 373
__fp_max32 (intrinsic function) . 374
__fp_max64 (intrinsic function) . 374
__fp_min32 (intrinsic function) . 374
__fp_min64 (intrinsic function) . 374
__fp_negate_sign32 (intrinsic function) 374
__fp_negate_sign64 (intrinsic function) 374
__fp_sqrt32 (intrinsic function) . 374
__fp_sqrt64 (intrinsic function) . 374
__fp_xor_sign32 (intrinsic function). 375
__fp_xor_sign64 (intrinsic function). 375
fragmentation, of heap memory . 67
free (library function). See also heap 67
freopen (function) . 407
--front_headers (ielftool option) . 492
fsetpos (library function),
implementation-defined behavior in C 564
fsqrt.d (assembler instruction). 374
fsqrt.s (assembler instruction) . 374
fstream (library header file) . 400
ftell (library function)

implementation-defined behavior in C. 564
implementation-defined behavior in C89 580

Full DLIB (library configuration) 124
__func__ (predefined symbol) . 383

implementation-defined behavior for C++. 523
__FUNCTION__ (predefined symbol) 383
function calls

calling convention . 164
eliminating overhead of by inlining 76
preserved registers across. 166

function declarations, Kernighan & Ritchie 221
function inlining (compiler transformation) 217

disabling (--no_inline) . 264
AFE1_AFE2-1:1

 593

594

function pointer to object pointer conversion,
implementation-defined behavior for C++ 522
function pointers . 323
function prototypes . 220

enforcing . 273
function return addresses . 169
function (pragma directive). 560, 577
function (stack usage control directive) 456
functional (library header file) . 400
functions . 69

declaring . 165, 220
inlining. 217, 220, 355
interrupt . 71–72
intrinsic . 153, 220
monitor . 72
parameters . 166
placing in memory . 210, 212
recursive

avoiding . 220
storing data on stack . 66

reentrancy (DLIB) . 396
related extensions. 69
return values from . 168
special function types. 70

functions from Annex K of the C standard,
implementation-defined behavior for C++ 526
function_category (pragma directive) 354, 560
function_effects (pragma directive) 560, 577
function-spec (in stack usage control file). 459
future (library header file). 400

G
-g (ielfdump option) . 502
GCC attributes . 341
--generate_vfe_header (isymexport option) 492
getw, in stdio.h . 406
getzone (library function), configuring support for 120
__get_interrupt_state (intrinsic function) 375

get_pointer_safety,
implementation-defined behavior for C++ 530
get_unexpected (deprecated function), enabling 404
GigaDevice, automatic interrupt vector setup 334
global pointer register, considerations. 166
global variables

affected by static clustering . 218
handled during system termination 134
hints for not using . 220
initialized during system startup 133

GNU style
case ranges. 183
designated initializer ranges. 183
statement expressions. 183

GRP_COMDAT, group type . 473
--guard_calls (compiler option). 257
guidelines for reading this guide . 35

H
Harbison, Samuel P. 38
hardware support in compiler . 113
hash_map (library header file) . 400
hash_set (library header file). 400
hdrstop (pragma directive) . 560, 577
header files

C . 398
C++ . 399
library . 396
special function registers . 222
DLib_Defaults.h . 122
implementation-defined behavior for C++. 526
including stdbool.h for bool . 317

header names
implementation-defined behavior for C++. 516
implementation-defined behavior in C. 558

--header_context (compiler option). 257
heap

advanced . 195
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Index

basic. 194
dynamic memory . 67
no-free . 195
storing data . 65
VLA allocated on. 278

heap sections
DLIB . 195
placing . 101

heap size
and standard I/O. 195
changing default. 101

HEAP (ELF section). 195, 449
heap (zero-sized), implementation-defined behavior in C. 565
hermite functions,
implementation-defined behavior for C++ 544
Hermite polynomials,
implementation-defined behavior for C++ 544
hide (isymexport directive) . 476
hints

for good code generation . 219
implementation-defined behavior 557
using efficient data types . 207

hoisting (optimization) . 215

I
-I (compiler option). 257
IAR Command Line Build Utility. 123
IAR Technical Support . 236
iarbuild.exe (utility) . 123
iarchive . 463

commands summary . 464
options summary . 465

iar_andesperf_intrinsics.h (header file) 371
iar_bitmanip_intrinsics.h (header file) 370
__iar_cos_accuratef (library function) 396
__iar_cos_accuratel (library function) 396
iar_dlmalloc.h (library header file)

additional C functionality. 405

__iar_maximum_atexit_calls . 102
__iar_pow_accuratef (library function). 396
__iar_pow_accuratel (library function). 396
__iar_program_start (label). 133
__iar_riscv_cbo_clean (intrinsic function) 375
__iar_riscv_cbo_flush (intrinsic function) 376
__iar_riscv_cbo_inval (intrinsic function) 376
__iar_riscv_cbo_zero (intrinsic function) 376
__iar_riscv_prefetch_i (intrinsic function) 376
__iar_riscv_prefetch_r (intrinsic function) 376
__iar_riscv_prefetch_w (intrinsic function) 377
__iar_sin_accuratef (library function). 396
__iar_sin_accuratel (library function) 396
__IAR_SYSTEMS_ICC__ (predefined symbol) 384
__iar_tan_accuratef (library function). 396
__iar_tan_accuratel (library function). 396
__iar_tls$$DATA (ELF section). 450
__iar_tls$$INITDATA (ELF section). 450
.iar.debug (ELF section) . 448
.iar.dynexit (ELF section) . 450
.iar.locale_table (ELF section) . 450
__ICCRISCV__ (predefined symbol) 384
icons, in this guide . 40
IDE

building a library from. 122
overview of build tools . 45

ident (pragma directive) . 560
identifiers

implementation-defined behavior in C. 553
implementation-defined behavior in C89 572
reserved . 233

IEC format, floating-point values 321
IEC 60559 floating-point standard 175
ielfdump . 469

options summary . 470
ielftool . 467

options summary . 468
address ranges, specifying . 468

if (linker directive) . 445
AFE1_AFE2-1:1

 595

596

--ihex (ielftool option) . 493
--ihex-len (ielftool option) . 493
ILINK. See linker
--image_input (linker option) . 296
image, forcing generation of . 296
implements_aspect (pragma directive) 560
important_typedef (pragma directive). 560, 577
#include directive,
implementation-defined behavior for C++ 526
include files

including before source files . 271
search procedure implementation for C++ 525
specifying . 229

include (linker directive). 445
include_alias (pragma directive) . 354
#include_next (preprocessor extension) 393
infinity . 322
infinity (style for printing),
implementation-defined behavior in C 564
_init (suffix for initializer sections). 103
initialization

changing default. 102
C++ dynamic . 88
dynamic . 132
interrupt vector table . 285
manual . 103
packing algorithm for. 102
single-value . 181
suppressing . 102

initialization_routine (pragma directive). 560
initialize (linker directive). 425
initializers, static . 180
initializer_list (library header file) 400
.init_array (section). 451
init_routines_only_for_needed_variables
(pragma directive). 560
inline assembler . 154

for passing values between C and assembler 224
risks . 220
See also assembler language interface

inline (pragma directive). 355
inline_template (pragma directive) 560
inlining functions . 76

compiler transformation. 217
implementation-defined behavior 557

installation directory . 39
instantiate (pragma directive) 560, 577
instruction relaxation (linker optimization). 111
instruction scheduling (compiler option). 219
instruction set extensions. See RISC-V extensions
Instrumentation Trace Component (ITC) 131
int (data type) signed and unsigned. 316
integer to floating- point conversion,
implementation-defined behavior for C++ 521
integer to pointer conversion,
implementation-defined behavior for C++ 522
integer types . 316

casting . 323
implementation-defined behavior 555
implementation-defined behavior for C++. 519, 521
implementation-defined behavior in C89 573
intptr_t . 324
ptrdiff_t . 323
size_t . 323
uintptr_t . 324

integral promotion . 221
Intel hex . 193
interactive devices,
implementation-defined behavior for C++ 514
internal error . 235
__interrupt (extended keyword) 72, 333

using in pragma directives . 367
interrupt alignment

specifying in compiler . 273
interrupt functions. 71

placing in memory . 451–453
interrupt handler. See interrupt service routine
interrupt service routine . 71
interrupt state, restoring . 379
interrupt vector
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Index

specifying with pragma directive 367
interrupt vector table

initializing automatically . 285
GigaDevice . 334

interrupts
disabling . 334

during function execution . 72
initialization . 60
placing in memory . 333, 339–340
processor state . 66
specifying return instruction for. 333, 339–340
using with C++ destructors . 187

intptr_t (integer type) . 324
__intrinsic (extended keyword). 333
intrinsic functions . 220

overview . 153
summary . 369

intrinsics.h (header file) . 369
inttypes.h (library header file). 398
invocation syntax . 227
iobjmanip . 471

options summary . 472
iomanip (library header file) . 400
ios (library header file) . 400
iosfwd (library header file) . 400
iostream classes,
implementation-defined behavior for C++ 544
iostream (library header file). 400
iostreams templates, instantiation,
implementation-defined behavior for C++ 533
ios_base::sync_with_stdio,
implementation-defined behavior for C++ 545
iso646.h (library header file). 398
istream (library header file). 400
iswalnum (function) . 407
iswxdigit (function) . 407
isymexport . 474

options summary . 475
italic style, in this guide . 40
iterator (library header file). 400

.itim (section) . 451
I/O

emulating in C-SPY . 288
I/O register. See SFR

J
.jumptable (section) . 451

K
--keep (linker option) . 297
keep symbol (linker directive) . 443
keep (linker directive) . 429
keeping modules during linking . 100
keep_definition (pragma directive) 560, 577
Kernighan & Ritchie function declarations 221

disallowing . 273
keywords . 329

extended, overview of . 49

L
-l (compiler option). 258

for creating skeleton code . 162
-L (linker option) . 308
labels. 181

assembler, making public. 272
redundant, eliminating (optimization) 215
__iar_program_start. 133
__program_start . 133

Labrosse, Jean J. 38
laguerre functions,
implementation-defined behavior for C++ 544
Laguerre polynomials,
implementation-defined behavior for C++ 543–544
language extensions

enabling using pragma . 355
enabling (-e). 254
AFE1_AFE2-1:1

 597

598

language overview . 46
language (pragma directive) . 355
Legendre functions,
implementation-defined behavior for C++ 544
Legendre polynomials,
implementation-defined behavior for C++ 543–544
__LIBCPP (predefined symbol) . 384
_LIBCPP_ENABLE_CXX17_REMOVED_FEATURES
(predefined symbol) . 191, 384
Libc++

C++ support . 47
migrating from DLIB. 191
removed features . 191

--libc++ (compiler option) . 259
libraries

reason for using . 54
required, implementation-defined behavior for C++ . . 514
using a prebuilt . 125

library configuration files
DLIB . 124
DLib_Defaults.h . 122
modifying . 122
specifying . 253

library documentation . 395
library files, linker search path to (--search) 308
library functions

summary, DLIB . 398
optimized (--use_optimized_variants) 311

library header files . 396
library modules . 80

overriding . 121
library object files . 396
library project, building using a template 122
library_default_requirements (pragma directive) . . . 560, 577
library_provides (pragma directive) 560, 577
library_requirement_override (pragma directive) . . . 560, 577
lifetime of variables (optimization). 215
lightbulb icon, in this guide. 40
limits (library header file) . 400
limits.h (library header file) . 398

__LINE__ (predefined symbol) . 384
link editor. See linker
linkage to other languages,
implementation-defined behavior for C++ 523
linkage, C and C++. 165

implementation-defined behavior for C++. . 523–524, 527
linker. 79

checking section types when linking 411
getting version information . 312
output from . 231

linker command line . 61
linker configuration file

for placing code and data . 83
in depth . 409
overview of . 409
selecting. 97
specifying on the command line. 286

linker configuration, exporting to file 294
linker messages, disabling . 308
linker object executable image,
specifying filename of (-o) . 305
linker optimizations . 110

duplicate section merging . 111
instruction relaxation . 111
virtual function elimination . 110

linker options . 281
typographic convention . 40
reading from file (-f) . 294
reading from file (--f). 295
summary . 281

linker relaxation. See instruction relaxation
linking

from the command line . 61
in the build process . 55
introduction . 79
keeping modules . 100
process for . 81

list (library header file) . 400
listing, generating in compiler (-l). 258
literature, recommended . 38
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Index

live-dead analysis (optimization) 215
local symbols, removing from linked image 303
local variables. See auto variables
locale . 146

changing at runtime . 147
implementation-defined behavior for C++. 534
implementation-defined behavior in C. 555, 567
library header file. 400
linker section . 450

locale object, implementation-defined behavior for C++ . 533
locale.h (library header file) . 398
located data, declaring extern . 212
location (pragma directive) . 211, 356
--log (linker option) . 298
logging, enabling in linker (--log) 298
logical (linker directive) . 413
--log_file (linker option) . 299
long double (data type) . 321
long float (data type), synonym for double 180
long long (data type)

signed and unsigned. 317
long (data type), signed and unsigned 317
longjmp, restrictions for using . 397
loop unrolling (compiler transformation) 217

disabling . 267, 359
preventing . 366
#pragma unroll. 366

loop-invariant expressions . 217
__low_level_init . 133

customizing . 135
initialization phase . 57

low_level_init.c . 132
low-level processor operations 176, 369

accessing . 153
lvalue-to-rvalue conversion,
implementation-defined behavior for C++ 520
lz77, packing algorithm for initializers 426

M
__machine (extended keyword) . 333
macros

embedded in #pragma optimize 359
ERANGE (in errno.h) . 562, 578
inclusion of assert . 393
NULL

implementation-defined behavior in C 562
implementation-defined behavior in C89 for DLIB 578

substituted in #pragma directives. 176
--macro_positions_in_diagnostics (compiler option) 259
main (function)

definition (C89) . 571
implementation-defined behavior for C++. 517–519
implementation-defined behavior in C. 552

malloc (library function)
 See also heap . 67
implementation-defined behavior in C89 580

--mangled_names_in_messages (linker option) 299
Mann, Bernhard . 39
--manual_dynamic_initialization (linker option). 299
--map (linker option). 300
map file (linker)

producing. 300
map (library header file) . 400
math functions rounding mode,
implementation-defined behavior in C 566
math functions (library functions). 131

more accurate versions. 132
smaller versions . 131
--accurate_math . 284
--small_math . 308

math.h (library header file) . 398
max recursion depth (stack usage control directive) 457
--max_cost_constexpr_call (compiler option). 259
--max_depth_constexpr_call (compiler option) 260
MB_LEN_MAX, implementation-defined behavior in C . 566
medany (medium-any) code model. 62, 70
AFE1_AFE2-1:1

 599

600

medlow (medium-low) code model 62, 70
memory

allocating in C++ . 67
dynamic . 67
heap . 67
non-initialized . 224
RAM, saving . 220
releasing in C++. 67
stack. 66

saving . 220
used by global or static variables 65

memory clobber . 155
memory map

initializing SFRs . 135
linker configuration for . 97
output from linker . 232
producing (--map) . 300

memory (library header file) . 401
memory (pragma directive). 560, 577
merge duplicate sections . 111
-merge_duplicate_sections (linker option) 301
message catalog,
implementation-defined behavior for C++ 535
message (pragma directive) . 357
messages

disabling in compiler . 274
disabling in linker . 308
forcing in compiler. 357

messages::do_close,
implementation-defined behavior for C++ 535
messages::do_get,
implementation-defined behavior for C++ 535
messages::do_open,
implementation-defined behavior for C++ 534
Meyers, Scott . 39
--mfc (compiler option). 260
migration

from DLIB to Libc++ . 191
mode changing, implementation-defined behavior in C . . 564
module consistency. 108

rtmodel. 363
modules

introduction . 80
modules, keeping during linking. 100
module_name (pragma directive) 560, 578
module-spec (in stack usage control file) 459
__monitor (extended keyword) . 334
monitor functions . 72, 334
monospace font, meaning of in guide. See computer style
monotonic_buffer_resource,
implementation-defined behavior for C++ 530–531
Motorola S-records . 193
.mtext (ELF section) . 451
multibyte characters

implementation-defined behavior for C++. 532
implementation-defined behavior in C. 553, 567
support in printf . 306
support in scanf . 307

multithreaded environment . 148
implementation-defined behavior in C. 552

multi-character literals, value of,
implementation-defined behavior for C++ 516
multi-file compilation . 214
mutex (library header file) . 401

N
name (in stack usage control file) 460
names block (call frame information) 171
naming conventions . 41
NaN

implementation of . 322
implementation-defined behavior in C. 564

native environment,
implementation-defined behavior in C 568
native_handle_type,
implementation-defined behavior for C++ 548
native_handle,
implementation-defined behavior for C++ 548
NDEBUG (preprocessor symbol) 393
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Index

nds_intrinsics.h (header file). 371
__nds__clrov (intrinsic function) 377
__nds__rdov (intrinsic function). 377
negative values, right shifting,
implementation-defined behavior for C++ 522
Neumann functions,
implementation-defined behavior for C++ 543–544
new (keyword) . 67
new (library header file) . 401
__nmi (extended keyword) . 334
no calls from (stack usage control directive). 458
.noinit (ELF section) . 451
--nonportable_path_warnings (compiler option) 268
non-initialized variables, hints for. 224
Non-Plain Old Functions (POF),
implementation-defined behavior for C++ 529
non-scalar parameters, avoiding . 220
nop (assembler instruction). 377
__noreturn (extended keyword) . 336
Normal DLIB (library configuration) 124
Not a number. See NaN
now (function) . 407
__no_alloc (extended keyword) . 334
__no_alloc_str (operator) . 335
__no_alloc_str16 (operator) . 335
__no_alloc16 (extended keyword) 334
--no_alt_link_reg_opt (compiler option). 260
--no_bom (ielfdump option) . 493
--no_bom (iobjmanip option) . 493
--no_bom (isymexport option) . 493
--no_bom (compiler option) . 261
--no_bom (iarchive option) . 493
--no_bom (linker option). 301
--no_call_frame_info (compiler option) 261
--no_clustering (compiler option) 261
--no_code_motion (compiler option) 262
--no_cross_call (compiler option) 262
--no_cross_jump (compiler option). 262
--no_cse (compiler option) . 263
--no_default_fp_contract (compiler option) 263

--no_entry (linker option) . 302
no_epilogue (pragma directive) . 344
--no_exceptions (compiler option) 263
--no_fragments (linker option) . 302
--no_free_heap (linker option) . 302
--no_header (ielfdump option) . 494
__no_init (extended keyword) 224, 336
--no_inline (compiler option) . 264
--no_label_padding (compiler option). 264
--no_library_search (linker option) 303
--no_locals (linker option) . 303
--no_normalize_file_macros (compiler option). 264
__no_operation (intrinsic function). 377
--no_path_in_file_macros (compiler option). 265
no_pch (pragma directive) . 560, 578
--no_range_reservations (linker option) 303
--no_rel_section (ielfdump option) 494
--no_remove (linker option) . 304
--no_rtti (compiler option) . 265
--no_scheduling (compiler option) 265
--no_size_constraints (compiler option) 265
no_stack_protect (pragma directive) 357
--no_static_destruction (compiler option) 266
--no_strtab (ielfdump option) . 494
--no_system_include (compiler option) 266
--no_tbaa (compiler option) . 266
--no_typedefs_in_diagnostics (compiler option). 267
--no_uniform_attribute_syntax (compiler option) 267
--no_unroll (compiler option) . 267
--no_utf8_in (ielfdump option) . 495
--no_vfe (linker option). 304
no_vtable_use (pragma directive) 560
--no_warnings (compiler option) 268
--no_warnings (linker option) . 304
--no_wrap_diagnostics (compiler option) 268
--no_wrap_diagnostics (linker option) 305
no-free heap . 195
NTCTS in basic_ostream& operator,
implementation-defined behavior for C++ 545
NULL
AFE1_AFE2-1:1

 601

602

implementation-defined behavior for C++. 527
implementation-defined behavior in C. 562
implementation-defined behavior in C89 (DLIB) 578
pointer constant, relaxation to Standard C 180

numbers (in linker configuration file) 443
numeric conversion functions,
implementation-defined behavior in C 568
numeric (library header file) . 401

O
-O (compiler option) . 269
-o (compiler option) . 270
-o (iarchive option) . 496
-o (ielfdump option) . 496
-o (linker option). 305
object attributes. 331
object filename, specifying (-o) 270, 305
object files

linker search path to (--search). 308
treating as specified on command line 314

object pointer to function pointer conversion,
implementation-defined behavior for C++ 522
object_attribute (pragma directive) 224, 358
--offset (ielftool option) . 495
once (pragma directive) 358, 560, 578
--only_stdout (compiler option) . 269
--only_stdout (linker option) . 305
open_s (function) . 407
operators

 See also @ (operator)
for region expressions . 417
for section control . 178
precision for 32-bit float . 321
precision for 64-bit float . 322
sizeof, implementation-defined behavior in C 567
__ALIGNOF__, for alignment control. 178
?, language extensions for . 189

optimization

clustering, disabling . 261
code motion, disabling . 262
common sub-expression elimination, disabling 263
configuration . 62
disabling . 216
function inlining, disabling (--no_inline) 264
hints . 219
linker . 110
loop unrolling, disabling . 267
scheduling, disabling . 265
specifying (-O). 269
techniques . 216
type-based alias analysis, disabling (--tbaa) 266
using pragma directive. 358

optimization levels . 215
optimize (pragma directive) . 358
option parameters . 237
optional (library header file) . 401
options, compiler. See compiler options
options, iarchive. See iarchive options
options, ielfdump. See ielfdump options
options, ielftool. See ielftool options
options, iobjmanip. See iobjmanip options
options, isymexport. See isymexport options
options, linker. See linker options
Oram, Andy . 38
ostream (library header file) . 401
output

from preprocessor . 271
specifying for linker. 61

--output (compiler option). 270
--output (iarchive option) . 496
--output (ielfdump option) . 496
--output (linker option) . 305
overhead, reducing . 217
over-aligned types,
implementation-defined behavior for C++ 548
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Index

P
P extension, intrinsic functions for 371
pack (pragma directive) . 324, 360
packbits, packing algorithm for initializers 426
__packed (extended keyword) . 337
packed structure types. 324
packing, algorithms for initializers 426
parallel algorithms (C++17) . 404
parallel algorithms,
implementation-defined behavior for C++ 532, 541
parameters

ending the lifetime of,
implementation-defined behavior for C++. 521
function . 166
hidden . 166
non-scalar, avoiding. 220
register . 166–167
rules for specifying a file or directory 238
specifying . 239
stack. 166–167
typographic convention . 40

--parity (ielftool option) . 496
part number, of this guide . 2
partial evaluation. See optimization
peephole optimization. 215
--pending_instantiations (compiler option) 270
permanent registers . 166
perror (library function),
implementation-defined behavior in C89 580
pext_intrinsic.h (header file) . 371
place at (linker directive) . 429
place in (linker directive) . 431
placeholder objects,
implementation-defined behavior for C++ 531
placement

code and data . 447
in named sections. 212
of code and data, introduction to 83

--place_holder (linker option) . 305

plain char
implementation-defined behavior for C++. 519
implementation-defined behavior in C. 554

pointer safety,
implementation-defined behavior for C++ 519, 530
pointer to integer conversion,
implementation-defined behavior for C++ 521
pointer types . 323

assigning . 182
implementation-defined behavior for C++. 520
mixing . 180

pointers
casting . 323
data . 323
function . 323
implementation-defined behavior 557
implementation-defined behavior for C++. 519
implementation-defined behavior in C89 574
to different function types . 182

pointer_safety::preferred,
implementation-defined behavior for C++ 530
pointer_safety::relaxed,
implementation-defined behavior for C++ 530
pool resource objects,
implementation-defined behavior for C++ 530
pop_macro (pragma directive) . 560
porting, code containing pragma directives. 345
possible calls (stack usage control directive) 458
pow (library routine),
alternative implementation of . 396
pow(0,0), implementation-defined behavior for C++ 542
pragma directives . 49

summary . 343
for absolute located data . 211
implementation-defined behavior for C++. 526
list of all recognized. 559
list of all recognized (C89). 577
pack . 324, 360

#pragma FENV_ACCESS,
implementation-defined behavior for C++ 541
AFE1_AFE2-1:1

 603

604

--preconfig (linker option) . 306
predefined symbols

overview . 50
summary . 382

--predef_macro (compiler option). 270
__preemptive (extended keyword) 338
preemptive (pragma directive) . 361
preferred_typedef (pragma directive) 560
prefetch.i instructions, inserting . 376
prefetch.r instructions, inserting . 376
prefetch.w instructions, inserting 377
--preinclude (compiler option) . 271
.preinit_array (section) . 452
--preprocess (compiler option) . 271
preprocessor directives

comments at the end of . 181
implementation-defined behavior for C++. 525
implementation-defined behavior in C. 558
implementation-defined behavior in C89 576
#pragma . 343

implementation-defined behavior for C++ 526
preprocessor extensions

NDEBUG . 393
__STDC_WANT_LIB_EXT1__ 393
#include_next. 393
#warning . 394

preprocessor output. 271
preprocessor symbols . 382

defining . 248, 289
preserved registers . 166
__PRETTY_FUNCTION__ (predefined symbol). 384
primitives, for special functions . 70
print formatter, selecting. 129
printf (library function) . 128

choosing formatter . 128
implementation-defined behavior in C. 564
implementation-defined behavior in C89 580

__printf_args (pragma directive). 361
--printf_multibytes (linker option) 306

printing characters,
implementation-defined behavior in C 567
processor operations

accessing . 153
low-level . 176, 369

program entry label. 133
program termination,
implementation-defined behavior in C 552
programming hints . 219
__program_start (label). 133
projects

basic settings for . 61
setting up for a library . 122

prototypes, enforcing . 273
ptrdiff_t (integer type) . 323

implementation-defined behavior for C++. 522, 527
PUBLIC (assembler directive) . 272
publication date, of this guide . 2
--public_equ (compiler option) . 272
public_equ (pragma directive) . 362
push_macro (pragma directive). 561
putenv (library function), absent from DLIB 139
putw, in stdio.h . 406

Q
QCCRISCV (environment variable) 229
qualifiers

const and volatile . 326
implementation-defined behavior 558
implementation-defined behavior in C89 576

? (in reserved identifiers) . 233
queue (library header file). 401
quick_exit (library function) . 135

R
-r (compiler option). 248
-r (iarchive option) . 500
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Index

RAM
example of declaring region. 84
initializers copied from ROM . 59
reserving space. 100
running code from . 105
saving memory. 220

--ram_reserve_ranges (isymexport option) 497
random number distributions,
implementation-defined behavior for C++ 542
random (library header file) . 401
random_device constructor,
implementation-defined behavior for C++ 542
random_device::operator,
implementation-defined behavior for C++ 542
random_shuffle (deprecated feature), enabling 404
random_shuffle,
implementation-defined behavior for C++ 541
rand(), implementation-defined behavior for C++ 543
--range (ielfdump option) . 498
range errors, in linker . 107
ratio (library header file) . 401
--raw (ielfdump option). 498
read formatter, selecting . 130
reading guidelines. 35
reading, recommended . 38
__read_csr (intrinsic function) . 377
realloc (library function) . 67

implementation-defined behavior in C89 580
See also heap

recursive functions
avoiding . 220
implementation-defined behavior for C++. 527
storing data on stack . 66

recursive template instantiations, maximum depth of,
 implementation-defined behavior for C++. 524
--redirect (linker option) . 307
reentrancy (DLIB) . 396
reference information, typographic convention. 40
regex_constants::error_type,
implementation-defined behavior for C++ 547

regex_constants::match_flag_type,
implementation-defined behavior for C++ 547
region expression (in linker configuration file) 416
region literal (in linker configuration file). 415
register keyword, implementation-defined behavior 557
register parameters . 166–167
registered trademarks . 2
registers

assigning to parameters . 167
callee-save, stored on stack . 66
for function returns . 168
implementation-defined behavior in C89 575
in assembler-level routines. 164
preserved . 166
scratch . 165

.rel (ELF section) . 448

.rela (ELF section) . 448
--relaxed_fp (compiler option) . 272
relocation errors, resolving . 107
remark (diagnostic message). 235

classifying for compiler . 251
classifying for linker . 290
enabling in compiler . 273
enabling in linker . 307

--remarks (compiler option) . 273
--remarks (linker option). 307
remove (library function)

implementation-defined behavior in C. 564
implementation-defined behavior in C89 (DLIB) 580

--remove_file_path (iobjmanip option) 499
--remove_section (iobjmanip option) 499
remquo, magnitude of . 562
rename (isymexport directive) . 477
rename (library function)

implementation-defined behavior in C. 564
implementation-defined behavior in C89 (DLIB) 580

--rename_section (iobjmanip option) 500
--rename_symbol (iobjmanip option) 500
--replace (iarchive option). 500
__iar_ReportAssert (library function) 140
AFE1_AFE2-1:1

 605

606

required (pragma directive). 362
--require_prototypes (compiler option) 273
reserve region (linker directive) . 432
reserved identifiers . 233
--reserve_ranges (isymexport option) 501
reserving space in RAM . 100
restrict keyword, enabling. 255
return address register, considerations 166
return addresses . 169
return values, from functions . 168
__return_address (intrinsic function) 378
__riscv (predefined symbol) . 385
__riscv_a (predefined symbol) . 385
__riscv_arch_test (predefined symbol) 385
__riscv_atomic (predefined symbol). 385
__riscv_b (predefined symbol) . 385
__riscv_bitmanip (predefined symbol) 386
__riscv_c (predefined symbol) . 386
__riscv_cmodel_medany (predefined symbol) 386
__riscv_cmodel_medlow (predefined symbol) 386
__riscv_compressed (predefined symbol) 386
__riscv_d (predefined symbol) . 386
__riscv_div (predefined symbol) 386
__riscv_dsp (predefined symbol) 387
__riscv_e (predefined symbol) . 387
__riscv_f (predefined symbol) . 387
__riscv_fdiv (predefined symbol) 387
__riscv_ffb (intrinsic function) . 378
__riscv_ffmism (intrinsic function) 378
__riscv_ffzmism (intrinsic function). 378
__riscv_flen (predefined symbol) 387
__riscv_flmism (intrinsic function). 378
__riscv_fsqrt (predefined symbol) 387
__riscv_i (predefined symbol) . 388
__riscv_m (predefined symbol) . 388
__riscv_mul (predefined symbol) 388
__riscv_muldiv (predefined symbol) 388
__riscv_p (predefined symbol) . 388
__riscv_xbcountzeroes (predefined symbol). 388

__riscv_xlen (predefined symbol). 389
__riscv_zba (predefined symbol) 389
__riscv_zbb (predefined symbol) 389
__riscv_zbc (predefined symbol) 389
__riscv_zbpbo (predefined symbol) 389
__riscv_zbs (predefined symbol) 389
__riscv_zdinx (predefined symbol). 390
__riscv_zfinx (predefined symbol) 390
__riscv_zicbom (predefined symbol) 390
__riscv_zicbop (predefined symbol) 390
__riscv_zicboz (predefined symbol) 390
__riscv_zpn (predefined symbol) 391
__riscv_zpsfoperand (predefined symbol) 390
__riscv_32e (predefined symbol) 385
RISC-V

supported devices. 48
supported extensions . 48

RISC-V extensions
A extension and atomic operations 404
supported . 48
identifying code compiled for 385, 387
specifying support for to compiler 48, 62, 245
specifying support for to ielfdumpriscv 487
specifying support for to linker 287
support in prebuilt libraries . 125

.rodata (ELF section) . 452
ROM to RAM, copying . 105
ROM, reserving space in. 305
root

make symbol treated as . 293
__root (extended keyword) . 338
routines, time-critical . 153, 176, 369
__ro_placement (extended keyword) 339
rtmodel (assembler directive) . 110
rtmodel (pragma directive) . 363
__RTTI__ (predefined symbol) . 391
run time. See runtime
runtime environment

DLIB . 113
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Index

setting up (DLIB). 119
runtime libraries

configuring for threads. 310
disabling automatic inclusion of 303

runtime libraries (DLIB)
introduction . 395
customizing system startup code 135
filename syntax . 126
overriding modules in . 121
using prebuilt . 125

runtime libraries (Libc++)
introduction . 395

runtime model attributes . 108
runtime model definitions . 363
rvintrin.h (header file). 370

S
-s (ielfdump option) . 502
scalar type representation,
implementation-defined behavior for C++ 531
scanf (library function)

choosing formatter (DLIB) . 129
implementation-defined behavior in C. 564
implementation-defined behavior in C89 (DLIB) 580

__scanf_args (pragma directive) . 363
--scanf_multibytes (linker option). 307
scheduling (compiler transformation) 219

disabling . 265
scoped_allocator (library header file) 401
scratch registers . 165
search directory, for linker configuration files
(--config_search). 287
search path to library files (--search). 308
search path to object files (--search) 308
--search (linker option) . 308
--section (ielfdump option) . 502
section fragment handling, disabling. 302
sections . 80, 447

summary . 447
allocation of . 83
checking type at link-time . 411
declaring (#pragma section). 364
forcing inclusion of . 304
linker merging duplicate . 301

__section_begin (extended operator) 178
__section_end (extended operator) 178
__section_size (extended operator) 178
section-selectors (in linker configuration file). 435
--segment (ielfdump option) . 502
segment (pragma directive). 364
--self_reloc (ielftool option) . 503
semaphores

C example . 72
C++ example . 74
operations on . 334

separate_init_routine (pragma directive). 561
set (library header file) . 401
setjmp.h (library header file). 398
setlocale (library function) . 147
settings, basic for project configuration 61
__set_bits_csr (intrinsic function). 379
--set_default_interrupt_alignment (compiler option) 273
set_generate_entries_without_bounds (pragma directive). 561
__set_interrupt_state (intrinsic function) 379
set_unexpected (deprecated function), enabling 404
severity level, of diagnostic messages. 235

specifying . 235
SFR

accessing special function registers 222
declaring extern special function registers 212

sgnjn.d (assembler instruction) . 374
sgnjn.s (assembler instruction) . 374
sgnjx.d (assembler instruction) . 375
sgnjx.s (assembler instruction) . 375
sgnj.d (assembler instruction) . 373
sgnj.s (assembler instruction) . 373
shared objects . 231
AFE1_AFE2-1:1

 607

608

in linker map file . 300
shared_mutex (library header file) 401
shared_ptr constructor,
implementation-defined behavior for C++ 530
short (data type) . 316
--short_enums (compiler option). 274
show (isymexport directive) . 477
--show_entry_as (isymexport option) 503
show-root (isymexport directive) 478
show-weak (isymexport directive) 478
.shstrtab (ELF section) . 448
signal (library function)

implementation-defined behavior in C. 562
implementation-defined behavior in C89 579

signals, implementation-defined behavior in C 552
at system startup . 553

signal.h (library header file) . 398
signed char (data type) . 316–317

specifying . 244
signed int (data type). 316
signed long long (data type) . 317
signed long (data type) . 317
signed short (data type). 316
signed values, avoiding. 207
--silent (compiler option) . 274
--silent (iarchive option) . 503
silent operation

specifying in compiler . 274
specifying in linker . 308

--silent (ielftool option). 503
--silent (linker option) . 308
--simple (ielftool option). 504
--simple-ne (ielftool option) . 504
sin (library function) . 396
64-bits (floating-point format) . 322
size (in stack usage control file) . 461
sizeof and fundamental types,
implementation-defined behavior for C++ 522
sizeof, implementation-defined behavior for C++. 522
size_t (integer type) . 323

implementation-defined behavior for C++. 527
skeleton code, creating for assembler language interface . 161
slist (library header file) . 401
smallest, packing algorithm for initializers 426
--small_math (linker option) . 308
--source (ielfdump option) . 504
source files, list all referred. 257
--source_encoding (compiler option) 274
space characters, implementation-defined behavior in C . 563
special function registers (SFR) . 222
special function types . 70
sph_bessel functions,
implementation-defined behavior for C++ 544
sph_legendre functions,
implementation-defined behavior for C++ 544
sph_neumann functions,
implementation-defined behavior for C++ 544
sprintf (library function) . 128

choosing formatter . 128
--srec (ielftool option) . 505
--srec-len (ielftool option). 505
--srec-s3only (ielftool option) . 505
sscanf (library function)

choosing formatter (DLIB) . 129
sstream (library header file) . 401
stack . 66

advantages and problems using 66
block for holding . 449
cleaning after function return . 169
contents of . 66
frame, specifying size of . 460
layout . 167
saving space. 220
setting up size for. 101
size. 194

stack buffer overflow . 77
stack canary . 77
stack cookie. See stack canary
stack parameters . 166–167
stack pointer . 66
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Index

stack pointer register, considerations 166
stack protection. 77
stack smashing . 77
stack usage analysis

enabling on the command line 286, 293
stack usage control file

in depth . 455
overview of . 455
specifying . 309

stack (library header file) . 401
stack_protect (pragma directive). 364
--sack_protection (compiler option) 275
--stack_usage_control (linker option) 309
stack-size (in stack usage control file) 460
Standard C . 175, 255

specifying strict usage . 275
Standard C++

enabling deprecated features 384, 404
implementation quantities . 548
implementation-defined behavior 513

standard error
redirecting in compiler. 269
redirecting in linker . 305
See also diagnostic messages . 231

standard library functions,
implementation-defined behavior for C++ 527
standard output

specifying in compiler . 269
specifying in linker . 305

start up system. See system startup
startup code

cstartup . 135
statement expressions, GNU style. 183
statements, implementation-defined behavior in C89 576
static analysis tool, documentation for 38
static clustering (compiler transformation) 218
static variables . 65

taking the address of . 220
status flags for floating-point . 405
stdalign.h (library header file). 398

stdarg.h (library header file) . 399
stdatomic.h (library header file) . 399
stdbool.h (library header file) 317, 399
__STDC__ (predefined symbol) . 391

implementation-defined behavior for C++. 526
STDC CX_LIMITED_RANGE (pragma directive) 365
STDC FENV_ACCESS (pragma directive) 365
STDC FP_CONTRACT (pragma directive) 365
__STDC_LIB_EXT1__ (predefined symbol) 391
__STDC_NO_ATOMICS__ (preprocessor symbol). 391
__STDC_NO_THREADS__ (preprocessor symbol) 391
__STDC_NO_VLA__ (preprocessor symbol) 391
__STDC_UTF16__ (preprocessor symbol). 392
__STDC_UTF32__ (preprocessor symbol). 392
__STDC_VERSION__ (predefined symbol) 392

implementation-defined behavior for C++. 526
__STDC_WANT_LIB_EXT1__ (preprocessor symbol) . 393
stddef.h (library header file) . 399
stderr. 120, 269
stdexcept (library header file) . 401
stdin . 120

implementation-defined behavior in C89 (DLIB) 579
stdint.h (library header file) 399, 403
stdio.h (library header file) . 399
stdio.h, additional C functionality 406
stdlib.h (library header file) . 399
stdnoreturn.h (library header file) 399
stdout . 120, 269

implementation-defined behavior in C. 562
implementation-defined behavior in C89 (DLIB) 579

std::auto_ptr, removed in Libc++ 191
std::mem_fun, removed in Libc++ 191
std::random_shuffle, removed in Libc++ 191
std::terminate,
implementation-defined behavior for C++ 524
Steele, Guy L. 38
steering file, input to isymexport 476
.stext (ELF section). 452
storage

data . 65
AFE1_AFE2-1:1

 609

610

See also memory
strcasecmp, in string.h . 406
strcoll (function) . 407
strdup, in string.h . 406
streambuf (library header file) . 401
streamoff, implementation-defined behavior for C++. . . . 532
streampos, implementation-defined behavior for C++ . . . 532
streams, implementation-defined behavior in C 552
strerror (library function)

implementation-defined behavior in C. 568
implementation-defined behavior in C89 (DLIB) 581

--strict (compiler option). 275
string literals, implementation-defined behavior for C++ . 517
string (library header file) . 401
string_view (library header file) . 401
string.h (library header file) . 399
string.h, additional C functionality 406
--strip (ielftool option) . 506
--strip (iobjmanip option) . 506
--strip (linker option) . 309
strncasecmp, in string.h. 406
strnlen, in string.h . 406
strstream (library header file) . 401
.strtab (ELF section) . 448
strtod (library function), configuring support for 147
structure types

alignment . 324
layout of. 324
packed . 324

structures
aligning . 360
anonymous. 209
flexible array members . 180
implementation-defined behavior in C. 557
implementation-defined behavior in C89 575
packing and unpacking . 209

strxfrm (function) . 407
subnormal numbers. 322
$Sub$$ pattern . 206

__supervisor (extended keyword) 339
$Super$$ pattern. 206
support, technical . 236
Sutter, Herb. 39
symbols

directing from one to another . 307
including in output . 362
linker always including . 297
local, removing from linked image 303
overview of predefined . 50
patching using $Super$$ and $Sub$$ 206
preprocessor, defining . 248, 289
treated as root. 293

--symbols (iarchive option). 506
.symtab (ELF section). 448
syntax

command line options . 237
extended keywords . 330–332
invoking compiler and linker . 227

syntax_option_type,
implementation-defined behavior for C++ 547
system function,
implementation-defined behavior in C 553, 565
system startup

customizing . 135
DLIB . 132
implementation-defined behavior for C++. 518
initialization phase . 57

system termination
C-SPY interface to . 135
DLIB . 134
implementation-defined behavior for C++. 518

system (library function)
implementation-defined behavior in C89 (DLIB) 581

system_error (library header file) 401
system_include (pragma directive) 561, 578
--system_include_dir (compiler option) 275
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Index

T
-t (iarchive option) . 508
tan (library function). 396
__task (extended keyword) . 340
technical support, IAR . 236
template support

in C++ . 186
Terminal I/O window

not supported when . 121
termination of system. See system termination
termination status, implementation-defined behavior in C 565
.text (ELF section) . 453
text encodings . 232
text input file, specifying UTF-8. 312
text output file, specifying encoding 309
--text_out (iarchive option) . 507–508
--text_out (ielfdump option) 507–508
--text_out (iobjmanip option) 507–508
--text_out (isymexport option) . 507
--text_out (linker option). 309
--text_out (compiler option) . 276
tgmath.h (library header file) . 399
32-bits (floating-point format) . 321
this (pointer) . 163
thread pointer register, considerations. 166
thread (library header file) . 401
threaded environment . 148
--threaded_lib (linker option) . 310
threads

configuring runtime library for 310
forward progress, implementation-defined behavior for
C++ . 514
number of, implementation-defined behavior for C++. 514

threads.h (library header file) . 399
__TIME__ (predefined symbol) . 392

implementation-defined behavior for C++. 526
time zone (library function)

enabling . 310

implementation-defined behavior in C. 565
implementation-defined behavior in C89 581

__TIMESTAMP__ (predefined symbol) 392
--timezone_lib (linker option) . 310
time_get::do_get_date,
implementation-defined behavior for C++ 534
time_get::do_get_year,
implementation-defined behavior for C++ 534
time_put::do_put,
implementation-defined behavior for C++ 534
time_t value to time_point object conversion,
implementation-defined behavior for C++ 531
time-critical routines . 153, 176, 369
time.h (library header file) . 399

additional C functionality. 406
time32 (library function), configuring support for 120
time64 (library function), configuring support for 120
tips, programming. 219
--titxt (ielftool option) . 507
--toc (iarchive option) . 508
tools icon, in this guide . 40
towlower (function) . 407
towupper (function) . 407
trace output stream, sending text to. 131
trademarks . 2
trailing comma . 190
transformations, compiler . 213

See also optimization
translation

implementation-defined behavior 551
implementation-defined behavior for C++. 515
implementation-defined behavior in C89 571

translation process . 54
trap vectors, specifying with pragma directive 367
tuple (library header file) . 401
type attributes . 329

specifying . 366
type conversion. See casting
type qualifiers

const and volatile . 326
AFE1_AFE2-1:1

 611

612

implementation-defined behavior 558
implementation-defined behavior in C89 576

typedefs
excluding from diagnostics . 267
repeated . 180

typeid, derived type for,
implementation-defined behavior for C++ 521
typeindex (library header file). 402
typeinfo (library header file) . 402
typeof operator (GNU extension) 183
types, trivially copyable,
implementation-defined behavior for C++ 519
typetraits (library header file) . 402
type_attribute (pragma directive) 366
type_info::name,
implementation-defined behavior for C++ 528
type-based alias analysis (compiler transformation) 218

disabling . 266
typographic conventions . 40

U
uchar.h (library header file) . 399
uintptr_t (integer type) . 324
unary_function (deprecated function), enabling 404
underflow errors,
implementation-defined behavior in C 562
underflow range errors,
implementation-defined behavior in C89 578
underscore

double in reserved identifiers . 233
followed by uppercase letter (reserved identifier) 233

__ungetchar, in stdio.h . 406
Unicode . 232
uniform attribute syntax . 330
--uniform_attribute_syntax (compiler option). 276
unions

anonymous. 209
implementation-defined behavior in C. 557
implementation-defined behavior in C89 575

universal character names
implementation-defined behavior for C++. 517
implementation-defined behavior in C. 559

unordered_map (library header file) 402
implementation-defined behavior for C++. 538

unordered_multimap,
implementation-defined behavior for C++ 538
unordered_multiset,
implementation-defined behavior for C++ 540
unordered_set (library header file) 402

implementation-defined behavior for C++. 539
unreachable code. See dead code
unroll (pragma directive) . 366
unsigned char (data type) . 316–317

changing to signed char . 244
unsigned int (data type). 317
unsigned long long (data type) . 317
unsigned long (data type) . 317
unsigned short (data type) . 316
unsigned to signed conversion,
implementation-defined behavior for C++ 520
--update_symbol (ielftool option) 508
--update_typeless_globals (iobjmanip option) 509
use init table (linker directive) . 432
__user (extended keyword). 340
uses_aspect (pragma directive) . 561
--use_c++_inline (compiler option) 277
--use_full_std_template_names (ielfdump option) 509
--use_full_std_template_names (linker option). 311
--use_optimized_variants (linker option) 311
--use_paths_as_written (compiler option). 277
--use_unix_directory_separators (compiler option). 277
.utext (ELF section) . 453
UTF-16 . 232
UTF-8 . 232

in text input file . 312
--utf8_text_in (compiler option) . 278
--utf8_text_in (iarchive option). 510
--utf8_text_in (ielfdump option) . 510
--utf8_text_in (iobjmanip option) 510
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Index

--utf8_text_in (isymexport option) 510
--utf8_text_in (linker option) . 312
utilities (ELF) . 463
utility (library header file). 402
u16streampos, implementation-defined behavior for C++ 532
u32streampos, implementation-defined behavior for C++ 532

V
-V (iarchive option) . 510
valarray (library header file) . 402
variables

auto . 66
defined inside a function . 66
global

placement in memory . 65
hints for choosing . 220
life of (optimization) . 215
life of. See optimization levels
local. See auto variables
non-initialized . 224
placing at absolute addresses . 212
placing in named sections . 212
static

placement in memory . 65
taking the address of . 220

variant support of over-aligned types,
implementation-defined behavior for C++ 529
variant (library header file) . 402
vector (library header file) . 402
vector (pragma directive) 72, 367, 561, 578
--verbose (iarchive option) . 510
--verbose (ielftool option) . 510
version

compiler subversion number . 392
identifying C standard in use (__STDC_VERSION__)392
of compiler (__VER__) . 392
of linker (--version) . 312
of this guide . 2

--version (IAR utilities option) . 510
--version (linker option) . 312
--version (compiler option) . 278
--vfe (linker option) . 313
virtual function elimination (linker optimization) 110

disabling (--no_vfe) . 304
enabling (--vfe) . 313
forcing . 313

--vla (compiler option) . 278
void, pointers to . 180
volatile

and const, declaring objects . 327
declaring objects . 326
protecting simultaneously accesses variables. 222
rules for access. 327

volatile-qualified type,
implementation-defined behavior for C++ 523
--vtoc (iarchive option) . 511

W
__wait_for_interrupt (intrinsic function). 379
#warning (preprocessor extension) 394
warnings . 235

classifying in compiler. 252
classifying in linker . 291
constructors with incomplete initialization. 279
disabling in compiler . 268
disabling in linker . 304
exit code in compiler . 280
exit code in linker . 313
structure without explicit initializers 279

warnings icon, in this guide . 40
warnings (pragma directive) 561, 578
--warnings_affect_exit_code (compiler option) 236, 280
--warnings_affect_exit_code (linker option) 236, 313
--warnings_are_errors (compiler option) 280
--warnings_are_errors (linker option) 313
--warn_about_c_style_casts (compiler option) 279
AFE1_AFE2-1:1

 613

614

--warn_about_incomplete_constructors
(compiler option) . 279
--warn_about_missing_field_initializers
(compiler option) . 279
wchar_t (data type) . 318

implementation-defined behavior in C. 555
wchar.h (library header file) 399, 403
wctype.h (library header file) . 399
__weak (extended keyword) . 340
weak (pragma directive) . 367
web sites, recommended . 39
wfi (assembler instruction) . 379
white-space characters, implementation-defined behavior 551
--whole_archive (linker option) . 314
wide-character literals,
implementation-defined behavior for C++ 516
__write_array, in stdio.h . 406
__write_buffered (DLIB library function) 119
__write_csr (intrinsic function). 379
wstreampos, implementation-defined behavior for C++ . . 533

X
-x (iarchive option) . 489
Xandesdsp extension overflow bit

clearing . 377
reading . 377

Xandesdsp (AndeStar™ DSP extension) 246
Xandesperf (AndeStar™ V5 Performance extension). . . . 246
Xbcountzeroes (subset of B extension) 246
Xcodense (AndeStar™ CoDense extension). 246
_Xtime_get_ticks (C++ function) 407
_XTIME_NSECS_PER_TICK (macro) 407

Z
Zba (bitmanip extension) . 246
Zbb (bitmanip extension) . 246
Zbc (bitmanip extension) . 246

Zbpbo (P extension subset) . 246
Zbs (bitmanip extension) . 246
Zdinx (floating-point extension) . 247
zeros, packing algorithm for initializers 426
Zfinx (floating-point extension) . 247
Zicbom (cache block management extension) 247

intrinsic functions . 375–376
Zicbop (cache block prefetch extension). 247

intrinsic functions . 376–377
Zicboz (cache block zero extension) 247

intrinsic functions . 376
Zpn (P extension subset) . 246
Zpsfoperand (P extension subset) 246

Symbols
_Exit (library function) . 134
_exit (library function) . 134
_init (suffix for initializer sections). 103
_LIBCPP_ENABLE_CXX17_REMOVED_FEATURES
(predefined symbol) . 191, 384, 404
_Xtime_get_ticks (C++ function) 407
_XTIME_NSECS_PER_TICK (macro) 407
__ALIGNOF__ (operator) . 178
__asm (language extension) . 156
__auto_type (GNU C keyword) . 183
__BASE_FILE__ (predefined symbol). 382
__BUILD_NUMBER__ (predefined symbol) 382
__clear_bits_csr (intrinsic function) 372
__COUNTER__ (predefined symbol). 382
__cplusplus (predefined symbol) 382
__DATE__ (predefined symbol). 383

implementation-defined behavior for C++. 526
__disable_interrupt (intrinsic function). 372
__DLIB_FILE_DESCRIPTOR (configuration symbol) . . 146
__dwrite (debug write routine) . 131
__enable_interrupt (intrinsic function) 372
__EXCEPTIONS (predefined symbol) 383
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Index

__exit (library function) . 134
__FILE__ (predefined symbol). 383
__fp_abs32 (intrinsic function) . 372
__fp_abs64 (intrinsic function) . 372
__fp_class32 (intrinsic function). 373
__fp_class64 (intrinsic function). 373
__fp_copy_sign32 (intrinsic function) 373
__fp_copy_sign64 (intrinsic function) 373
__fp_max32 (intrinsic function) . 374
__fp_max64 (intrinsic function) . 374
__fp_min32 (intrinsic function) . 374
__fp_min64 (intrinsic function) . 374
__fp_negate_sign32 (intrinsic function) 374
__fp_negate_sign64 (intrinsic function) 374
__fp_sqrt32 (intrinsic function) . 374
__fp_sqrt64 (intrinsic function) . 374
__fp_xor_sign32 (intrinsic function). 375
__fp_xor_sign64 (intrinsic function). 375
__FUNCTION__ (predefined symbol) 383
__func__ (predefined symbol) . 383

implementation-defined behavior for C++. 523
__gets, in stdio.h . 406
__get_interrupt_state (intrinsic function) 375
__iar_maximum_atexit_calls . 102
__iar_program_start (label). 133
__iar_ReportAssert (library function) 140
__iar_riscv_cbo_clean (intrinsic function) 375
__iar_riscv_cbo_flush (intrinsic function) 376
__iar_riscv_cbo_inval (intrinsic function) 376
__iar_riscv_cbo_zero (intrinsic function) 376
__iar_riscv_prefetch_i (intrinsic function) 376
__iar_riscv_prefetch_r (intrinsic function) 376
__iar_riscv_prefetch_w (intrinsic function) 377
__IAR_SYSTEMS_ICC__ (predefined symbol) 384
__iar_tls$$DATA (ELF section). 450
__iar_tls$$INITDATA (ELF section). 450
__ICCRISCV__ (predefined symbol) 384
__interrupt (extended keyword) 72, 333

using in pragma directives . 367

__intrinsic (extended keyword). 333
__LIBCPP (predefined symbol) . 384
__LINE__ (predefined symbol) . 384
__low_level_init . 133

initialization phase . 57
__low_level_init, customizing . 135
__machine (extended keyword) . 333
__monitor (extended keyword) . 334
__nds__clrov (intrinsic function) 377
__nds__rdov (intrinsic function). 377
__nmi (extended keyword) . 334
__noreturn (extended keyword) . 336
__no_alloc (extended keyword) . 334
__no_alloc_str (operator) . 335
__no_alloc_str16 (operator) . 335
__no_alloc16 (extended keyword) 334
__no_init (extended keyword) 224, 336
__no_operation (intrinsic function). 377
__packed (extended keyword) . 337
__preemptive (extended keyword) 338
__PRETTY_FUNCTION__ (predefined symbol). 384
__printf_args (pragma directive). 361
__program_start (label). 133
__read_csr (intrinsic function) . 377
__return_address (intrinsic function) 378
__riscv (predefined symbol) . 385
__riscv_a (predefined symbol) . 385
__riscv_arch_test (predefined symbol) 385
__riscv_atomic (predefined symbol). 385
__riscv_b (predefined symbol) . 385
__riscv_bitmanip (predefined symbol) 386
__riscv_c (predefined symbol) . 386
__riscv_cmodel_medany (predefined symbol) 386
__riscv_cmodel_medlow (predefined symbol) 386
__riscv_compressed (predefined symbol) 386
__riscv_d (predefined symbol) . 386
__riscv_div (predefined symbol) 386
__riscv_dsp (predefined symbol) 387
__riscv_e (predefined symbol) . 387
AFE1_AFE2-1:1

 615

616

__riscv_f (predefined symbol) . 387
__riscv_fdiv (predefined symbol) 387
__riscv_ffb (intrinsic function) . 378
__riscv_ffmism (intrinsic function) 378
__riscv_ffzmism (intrinsic function). 378
__riscv_flen (predefined symbol) 387
__riscv_flmism (intrinsic function). 378
__riscv_fsqrt (predefined symbol) 387
__riscv_i (predefined symbol) . 388
__riscv_m (predefined symbol) . 388
__riscv_mul (predefined symbol) 388
__riscv_muldiv (predefined symbol) 388
__riscv_p (predefined symbol) . 388
__riscv_xbcountzeroes (predefined symbol). 388
__riscv_xlen (predefined symbol). 389
__riscv_zba (predefined symbol) 389
__riscv_zbb (predefined symbol) 389
__riscv_zbc (predefined symbol) 389
__riscv_zbpbo (predefined symbol) 389
__riscv_zbs (predefined symbol) 389
__riscv_zdinx (predefined symbol). 390
__riscv_zfinx (predefined symbol) 390
__riscv_zicbom (predefined symbol) 390
__riscv_zicbop (predefined symbol) 390
__riscv_zicboz (predefined symbol) 390
__riscv_zpn (predefined symbol) 391
__riscv_zpsfoperand (predefined symbol) 390
__riscv_32e (predefined symbol) 385
__root (extended keyword) . 338
__ro_placement (extended keyword) 339
__RTTI__ (predefined symbol) . 391
__scanf_args (pragma directive) . 363
__section_begin (extended operator) 178
__section_end (extended operator) 178
__section_size (extended operator) 178
__set_bits_csr (intrinsic function). 379
__set_interrupt_state (intrinsic function) 379
__STDC_LIB_EXT1__ (predefined symbol) 391
__STDC_NO_ATOMICS__ (preprocessor symbol). 391

__STDC_NO_THREADS__ (preprocessor symbol) 391
__STDC_NO_VLA__ (preprocessor symbol) 391
__STDC_UTF16__ (preprocessor symbol). 392
__STDC_UTF32__ (preprocessor symbol). 392
__STDC_VERSION__ (predefined symbol) 392

implementation-defined behavior for C++. 526
__STDC_WANT_LIB_EXT1__ (preprocessor symbol) . 393
__STDC__ (predefined symbol) . 391

implementation-defined behavior for C++. 526
__supervisor (extended keyword) 339
__task (extended keyword) . 340
__TIMESTAMP__ (predefined symbol) 392
__TIME__ (predefined symbol) . 392

implementation-defined behavior for C++. 526
__ungetchar, in stdio.h . 406
__user (extended keyword). 340
__wait_for_interrupt (intrinsic function). 379
__weak (extended keyword) . 340
__write_array, in stdio.h . 406
__write_buffered (DLIB library function) 119
__write_csr (intrinsic function). 379
-a (ielfdump option) . 480
-D (compiler option) . 248
-d (iarchive option) . 487
-e (compiler option) . 254
-f (compiler option). 255
-f (IAR utility option) . 490
-f (linker option) . 294
-g (ielfdump option) . 502
-I (compiler option). 257
-l (compiler option). 258

for creating skeleton code . 162
-L (linker option) . 308
-O (compiler option) . 269
-o (compiler option) . 270
-o (iarchive option) . 496
-o (ielfdump option) . 496
-o (linker option). 305
-r (compiler option). 248
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Index

-r (iarchive option) . 500
-s (ielfdump option) . 502
-t (iarchive option) . 508
-V (iarchive option) . 510
-x (iarchive option) . 489
--accurate_math (linker option). 284
--advanced_heap (linker option) . 284
--all (ielfdump option) . 481
--allow_misaligned_data_access (compiler option) . 244, 285
--auto_vector_setup (linker option). 285
--basic_heap (linker option) . 285
--bin (ielftool option) . 481
--bin-multi (ielftool option). 481
--call_graph (linker option). 286
--char_is_signed (compiler option) 244
--char_is_unsigned (compiler option) 245
--checksum (ielftool option) . 482
--code (ielfdump option) . 486
--code_model (compiler option) . 245
--config (linker option) . 286
--config_def (linker option) . 286
--config_search (linker option) . 287
--core (compiler option) . 245
--core (ielfdumpriscv option) . 487
--core (linker option). 287
--cpp_init_routine (linker option) 287
--create (iarchive option). 487
--c++ (compiler option) . 248
--c89 (compiler option) . 244
--debug (compiler option) . 248
--debug_lib (linker option) . 288
--default_to_complex_ranges (linker option) 288
--define_symbol (linker option) . 289
--delete (iarchive option). 487
--dependencies (compiler option) 249
--dependencies (linker option) . 289
--deprecated_feature_warnings (compiler option). 250
--diagnostics_tables (compiler option) 252
--diagnostics_tables (linker option). 292

--diag_error (compiler option) . 251
--diag_error (linker option) . 290
--diag_remark (compiler option). 251
--diag_remark (linker option) . 290
--diag_suppress (compiler option) 251
--diag_suppress (linker option) . 291
--diag_warning (compiler option) 252
--diag_warning (linker option) . 291
--disable_codense_jal (linker option) 292
--disable_relaxation (linker option). 292
--disasm_data (ielfdump option) . 488
--discard_unused_publics (compiler option) 253
--dlib_config (compiler option). 253
--do_explicit_zero_opt_in_named_sections
(compiler option) . 254
--edit (isymexport option) . 488
--enable_restrict (compiler option) 255
--enable_stack_usage (linker option) 293
--entry (linker option) . 293
--entry_list_in_address_order (linker option) 294
--error_limit (compiler option) . 255
--error_limit (linker option) . 294
--export_builtin_config (linker option) 294
--export_locals (isymexport option) 489
--extract (iarchive option) . 489
--f (compiler option) . 256
--f (IAR utility option) . 490
--f (linker option) . 295
--fake_time (IAR utility option) . 491
--fill (ielftool option). 491
--force_output (linker option) . 296
--front_headers (ielftool option) . 492
--generate_vfe_header (isymexport option) 492
--guard_calls (compiler option). 257
--header_context (compiler option). 257
--ihex (ielftool option) . 493
--ihex-len (ielftool option) . 493
--image_input (linker option) . 296
--keep (linker option) . 297
--libc++ (compiler option) . 259
AFE1_AFE2-1:1

 617

618

--log (linker option) . 298
--log_file (linker option) . 299
--macro_positions_in_diagnostics (compiler option) 259
--mangled_names_in_messages (linker option) 299
--manual_dynamic_initialization (linker option). 299
--map (linker option). 300
--merge_duplicate_sections (linker option). 301
--mfc (compiler option). 260
--nonportable_path_warnings (compiler option) 268
--no_alt_link_reg_opt (compiler option). 260
--no_bom (compiler option) . 261
--no_bom (ielfdump option) . 493
--no_bom (iobjmanip option) . 493
--no_bom (isymexport option) . 493
--no_bom (linker option). 301
--no_call_frame_info (compiler option) 261
--no_clustering (compiler option) 261
--no_code_motion (compiler option) 262
--no_cross_call (compiler option) 262
--no_cross_jump (compiler option). 262
--no_cse (compiler option) . 263
--no_default_fp_contract (compiler option) 263
--no_entry (linker option) . 302
--no_exceptions (compiler option) 263
--no_fragments (compiler option) 263
--no_fragments (linker option) . 302
--no_free_heap (linker option) . 302
--no_header (ielfdump option) . 494
--no_inline (compiler option) . 264
--no_label_padding (compiler option). 264
--no_library_search (linker option) 303
--no_locals (linker option) . 303
--no_normalize_file_macros (compiler option). 264
--no_path_in_file_macros (compiler option). 265
--no_range_reservations (linker option) 303
--no_rel_section (ielfdump option) 494
--no_remove (linker option) . 304
--no_rtti (compiler option) . 265
--no_scheduling (compiler option) 265

--no_size_constraints (compiler option) 265
--no_static_destruction (compiler option) 266
--no_strtab (ielfdump option) . 494
--no_system_include (compiler option) 266
--no_typedefs_in_diagnostics (compiler option). 267
--no_unroll (compiler option) . 267
--no_utf8_in (ielfdump option) . 495
--no_vfe (linker option). 304
--no_warnings (compiler option) 268
--no_warnings (linker option) . 304
--no_wrap_diagnostics (compiler option) 268
--no_wrap_diagnostics (linker option) 305
--offset (ielftool option) . 495
--only_stdout (compiler option) . 269
--only_stdout (linker option) . 305
--output (compiler option). 270
--output (iarchive option) . 496
--output (ielfdump option) . 496
--output (linker option) . 305
--parity (ielftool option) . 496
--pending_instantiations (compiler option) 270
--place_holder (linker option) . 305
--preconfig (linker option) . 306
--predef_macro (compiler option). 270
--preinclude (compiler option) . 271
--preprocess (compiler option) . 271
--printf_multibytes (linker option) 306
--ram_reserve_ranges (isymexport option) 497
--range (ielfdump option) . 498
--raw (ielfdump] option) . 498
--redirect (linker option) . 307
--relaxed_fp (compiler option) . 272
--remarks (compiler option) . 273
--remarks (linker option). 307
--remove_file_path (iobjmanip option) 499
--remove_section (iobjmanip option) 499
--rename_section (iobjmanip option) 500
--rename_symbol (iobjmanip option) 500
--replace (iarchive option). 500
AFE1_AFE2-1:1

IAR C/C++ Development Guide
Compiling and linking for RISC-V

Index

--require_prototypes (compiler option) 273
--reserve_ranges (isymexport option) 501
--scanf_multibytes (linker option). 307
--search (linker option) . 308
--section (ielfdump option) . 502
--segment (ielfdump option) . 502
--self_reloc (ielftool option) . 503
--set_default_interrupt_alignment (compiler option) 273
--short_enums (compiler option). 274
--show_entry_as (isymexport option) 503
--silent (compiler option) . 274
--silent (iarchive option) . 503
--silent (ielftool option). 503
--silent (linker option) . 308
--simple (ielftool option). 504
--simple-ne (ielftool option) . 504
--small_math (linker option) . 308
--source (ielfdump option) . 504
--srec (ielftool option) . 505
--srec-len (ielftool option). 505
--srec-s3only (ielftool option) . 505
--stack_protection (compiler option). 275
--stack_usage_control (linker option) 309
--strict (compiler option). 275
--strip (ielftool option) . 506
--strip (iobjmanip option) . 506
--strip (linker option) . 309
--symbols (iarchive option). 506
--system_include_dir (compiler option) 275
--text_out (iarchive option) . 507–508
--text_out (ielfdump option) 507–508
--text_out (iobjmanip option) 507–508
--text_out (isymexport option) . 507
--text_out (linker option). 309
--threaded_lib (linker option) . 310
--timezone_lib (linker option) . 310
--titxt (ielftool option) . 507
--toc (iarchive option) . 508
--update_symbol (ielftool option) 508

--update_typeless_globals (iobjmanip option) 509
--use_c++_inline (compiler option) 277
--use_full_std_template_names (ielfdump option) 509
--use_full_std_template_names (linker option). 311
--use_optimized_variants (linker option) 311
--use_paths_as_written (compiler option). 277
--use_unix_directory_separators (compiler option). 277
--utf8_text_in (linker option) . 312
--verbose (iarchive option) . 510
--verbose (ielftool option) . 510
--version (compiler option) . 278
--version (IAR utilities option) . 510
--version (linker option) . 312
--vfe (linker option) . 313
--vla (compiler option) . 278
--vtoc (iarchive option) . 511
--warnings_affect_exit_code (compiler option) 236, 280
--warnings_affect_exit_code (linker option) 236, 313
--warnings_are_errors (compiler option) 280
--warnings_are_errors (linker option) 313
--warn_about_c_style_casts (compiler option) 279
--warn_about_incomplete_constructors
(compiler option) . 279
--warn_about_missing_field_initializers
(compiler option) . 279
--whole_archive (linker option) . 314
’, \, /*, or // in q-char- or h-char-sequence,
implementation-defined behavior for C++ 516
? (in reserved identifiers) . 233
.bss (ELF section) . 448
.comment (ELF section) . 448
.cstartup (ELF section) . 449
.data (ELF section) . 449
.data_init (ELF section) . 449
.debug (ELF section). 448
.iar.debug (ELF section) . 448
.iar.dynexit (ELF section) . 450
.iar.locale_table (ELF section) . 450
.init_array (section). 451
.itim (section) . 451
AFE1_AFE2-1:1

 619

620

.jumptable (section) . 451

.mtext (ELF section) . 451

.noinit (ELF section) . 451

.preinit_array (section) . 452

.rel (ELF section) . 448

.rela (ELF section) . 448

.rodata (ELF section) . 452

.shstrtab (ELF section) . 448

.stext (ELF section). 452

.strtab (ELF section) . 448

.symtab (ELF section). 448

.text (ELF section) . 453

.utext (ELF section) . 453
@ (operator)

placing at absolute address. 211
placing in sections . 212

#include directive,
implementation-defined behavior for C++ 526
#include files, specifying . 229, 257
#include_next . 182
#include_next (preprocessor extension) 393
#pragma directive . 343

implementation-defined behavior for C++. 526
#pragma FENV_ACCESS,
implementation-defined behavior for C++ 541
#warning. 183
#warning (preprocessor extension) 394
%Z replacement string,
implementation-defined behavior in C 566
<cfenv> functions and floating-point,
implementation-defined behavior for C++ 541
$Sub$$ pattern . 206
$Super$$ pattern. 206
$$ (in reserved identifiers) . 233

Numerics
32-bits (floating-point format) . 321
64-bits (floating-point format) . 322
AFE1_AFE2-1:1

	Brief contents
	Contents
	Tables
	Preface
	Who should read this guide
	Required knowledge

	How to use this guide
	What this guide contains
	Part 1. Using the build tools
	Part 2. Reference information

	Other documentation
	User and reference guides
	The online help system
	Further reading
	Web sites

	Document conventions
	Typographic conventions
	Naming conventions

	Part 1. Using the build tools
	Introduction to the IAR build tools
	The IAR build tools—an overview
	The IAR C/C++ Compiler
	The IAR Assembler
	The IAR ILINK Linker
	Specific ELF tools
	External tools

	IAR language overview
	Device support
	Supported RISC-V devices
	Preconfigured support files
	Header files for I/O
	Linker configuration files
	Device description files

	Examples for getting started

	Special support for embedded systems
	Extended keywords
	Pragma directives
	Predefined symbols
	Accessing low-level features

	Developing embedded applications
	Developing embedded software using IAR build tools
	CPU features and constraints
	Mapping of memory
	Communication with peripheral units
	Event handling
	System startup
	Real-time operating systems
	Interoperability with other build tools

	The build process—an overview
	The translation process
	The linking process
	After linking

	Application execution—an overview
	The initialization phase
	The execution phase
	The termination phase

	Building applications—an overview
	Basic project configuration
	Core
	Code model (RV64 only)
	Optimization for speed and size

	Data storage
	Introduction
	Different ways to store data

	Storage of auto variables and parameters
	The stack
	Advantages
	Potential problems

	Dynamic memory on the heap
	Potential problems

	Functions
	Function-related extensions
	Code models (RV64 only)
	The Medlow (medium-low) code model
	The Medany (medium-any) code model

	Primitives for interrupts, concurrency, and OS-related programming
	Interrupt functions
	Interrupt service routines
	Interrupt vectors and the interrupt vector table
	Defining an interrupt function—an example
	Interrupt and C++ member functions

	Monitor functions
	Example of implementing a semaphore in C
	Example of implementing a semaphore in C++

	Inlining functions
	C versus C++ semantics
	Features controlling function inlining

	Stack protection
	Stack protection in the IAR C/C++ Compiler
	Using stack protection in your application

	Linking using ILINK
	Linker overview
	Modules and sections
	The linking process in detail
	Placing code and data—the linker configuration file
	A simple example of a configuration file

	Initialization at system startup
	The initialization process
	C++ dynamic initialization

	Stack usage analysis
	Introduction to stack usage analysis
	Performing a stack usage analysis
	Result of an analysis—the map file contents
	Specifying additional stack usage information
	Limitations
	Situations where warnings are issued
	Call graph log
	Call graph XML output

	Linking your application
	Linking considerations
	Choosing a linker configuration file
	Defining your own memory areas
	Adding an additional region
	Merging different areas into one region

	Placing sections
	Placing a section at a specific address in memory
	Placing a section first or last in a region
	Declare and place your own sections

	Reserving space in RAM
	Keeping modules
	Keeping symbols and sections
	Application startup
	Setting up stack memory
	Setting up heap memory
	Setting up the atexit limit
	Changing the default initialization
	Suppressing initialization
	Choosing a packing algorithm
	Manual initialization
	Initializing code—copying ROM to RAM
	Running all code from RAM

	Interaction between ILINK and the application
	Standard library handling
	Producing output formats other than ELF/DWARF

	Hints for troubleshooting
	Relocation errors
	Possible solutions

	Checking module consistency
	Runtime model attributes
	Example

	Using runtime model attributes

	Linker optimizations
	Virtual function elimination
	Duplicate section merging
	Instruction relaxation

	The DLIB runtime environment
	Introduction to the runtime environment
	Runtime environment functionality
	Briefly about input and output (I/O)
	Briefly about C-SPY emulated I/O
	Briefly about retargeting

	Setting up the runtime environment
	Setting up your runtime environment
	Retargeting—Adapting for your target system
	Overriding library modules
	Customizing and building your own runtime library

	Additional information on the runtime environment
	Bounds checking functionality
	Runtime library configurations
	Prebuilt runtime libraries
	Library filename syntax

	Formatters for printf
	Formatters for scanf
	The C-SPY emulated I/O mechanism
	Replacing the debug write mechanism
	Math functions
	Smaller versions
	More accurate versions

	System startup and termination
	System startup
	System termination
	C-SPY debugging support for system termination

	System initialization
	Customizing _ _low_level_init
	Modifying the cstartup file

	The DLIB low-level I/O interface
	abort
	Source file
	Declared in
	Description
	C-SPY debug action
	Default implementation
	See also

	clock
	Source file
	Declared in
	Description
	C-SPY debug action
	Default implementation
	See also

	_ _close
	Source file
	Declared in
	Description
	C-SPY debug action
	Default implementation
	See also

	_ _exit
	Source file
	Declared in
	Description
	C-SPY debug action
	Default implementation
	See also

	getenv
	Source file
	Declared in
	C-SPY debug action
	Default implementation
	See also

	_ _getzone
	Source file
	Declared in
	Description
	C-SPY debug action
	Default implementation
	See also

	_ _iar_ReportAssert
	Source file
	Declared in
	Description
	C-SPY debug action
	Default implementation
	See also

	_ _lseek
	Source file
	Declared in
	Description
	C-SPY debug action
	Default implementation
	See also

	_ _open
	Source file
	Declared in
	Description
	C-SPY debug action
	Default implementation
	See also

	raise
	Source file
	Declared in
	Description
	C-SPY debug action
	Default implementation
	See also

	_ _read
	Source file
	Declared in
	Description
	C-SPY debug action
	Default implementation
	Example
	See also

	remove
	Source file
	Declared in
	Description
	C-SPY debug action
	Default implementation
	See also

	rename
	Source file
	Declared in
	Description
	C-SPY debug action
	Default implementation
	See also

	signal
	Source file
	Declared in
	Description
	C-SPY debug action
	Default implementation
	See also

	system
	Source file
	Declared in
	Description
	C-SPY debug action
	Default implementation
	See also

	_ _time32, _ _time64
	Source file
	Declared in
	Description
	C-SPY debug action
	Default implementation
	See also

	_ _write
	Source file
	Declared in
	Description
	C-SPY debug action
	Default implementation
	Example
	See also

	Configuration symbols for file input and output
	Locale
	Specifying which locales that should be available in your application
	Changing locales at runtime

	Strtod

	Managing a multithreaded environment
	Multithread support in the DLIB runtime environment
	Enabling multithread support
	Setting up thread-local storage (TLS)
	The main thread
	Acquiring memory for TLS
	Initializing TLS memory
	Deallocating TLS memory

	Assembler language interface
	Mixing C and assembler
	Intrinsic functions
	Inline assembler
	Limitations
	Risks with inline assembler

	Mixing C and assembler modules
	Reference information for inline assembler
	Syntax
	Operands
	Syntax of operands
	Operand constraints
	Constraint modifiers
	Referring to operands
	Input operands
	Output operands
	Input/output operands
	Clobbered resources
	Operand modifiers

	An example of how to use clobbered memory

	Calling assembler routines from C
	Creating skeleton code
	Compiling the skeleton code
	The output file

	Calling assembler routines from C++
	Calling convention
	Function declarations
	Using C linkage in C++ source code
	Preserved versus scratch registers
	Scratch registers
	Preserved registers
	Special registers

	Function entrance
	Hidden parameters
	Register parameters
	Stack parameters and layout

	Function exit
	Registers used for returning values
	Stack layout at function exit
	Return address handling

	Examples
	Example 1
	Example 2
	Example 3

	Assembler instructions used for calling functions
	Call frame information
	CFI directives
	Creating assembler source with CFI support

	Using C
	C language overview
	Extensions overview
	Enabling language extensions

	IAR C language extensions
	Extensions for embedded systems programming
	Dedicated section operators

	Relaxations to Standard C

	Using C++
	Overview—Standard C++
	Exceptions and RTTI

	Enabling support for C++
	C++ feature descriptions
	Using IAR attributes with classes
	Templates
	Function types
	Example

	Using static class objects in interrupts
	Using New handlers
	Debug support in C-SPY

	C++ language extensions
	Migrating from the DLIB C++ library to the Libc++ C++ library

	Application-related considerations
	Output format considerations
	Stack considerations
	Stack size considerations

	Heap considerations
	Heap memory handlers
	Heap sections in DLIB
	Heap size and standard I/O

	Interaction between the tools and your application
	Checksum calculation for verifying image integrity
	Briefly about checksum calculation
	Calculating and verifying a checksum
	Troubleshooting checksum calculation

	Patching symbol definitions using $Super$$ and $Sub$$
	An example using the $Super$$ and $Sub$$ patterns

	Efficient coding for embedded applications
	Selecting data types
	Using efficient data types
	Floating-point types
	Alignment of elements in a structure
	Anonymous structs and unions
	Example

	Controlling data and function placement in memory
	Data placement at an absolute location
	Examples
	C++ considerations

	Data and function placement in sections
	Examples of placing variables in named sections
	Examples of placing functions in named sections

	Controlling compiler optimizations
	Scope for performed optimizations
	Multi-file compilation units
	Optimization levels
	Speed versus size
	Fine-tuning enabled transformations
	Common subexpression elimination
	Loop unrolling
	Function inlining
	Code motion
	Type-based alias analysis
	Static clustering
	Cross call
	Instruction scheduling

	Facilitating good code generation
	Writing optimization-friendly source code
	Saving stack space and RAM memory
	Function prototypes
	Prototyped style
	Kernighan & Ritchie style

	Integer types and bit negation
	Protecting simultaneously accessed variables
	Accessing special function registers
	Passing values between C and assembler objects
	Non-initialized variables

	Part 2. Reference information
	External interface details
	Invocation syntax
	Compiler invocation syntax
	Linker invocation syntax
	Passing options
	Environment variables

	Include file search procedure
	Compiler output
	Linker output
	Text encodings
	Characters and string literals

	Reserved identifiers
	Diagnostics
	Message format for the compiler
	Message format for the linker
	Severity levels
	Remark
	Warning
	Error
	Fatal error

	Setting the severity level
	Internal error
	Error return codes

	Compiler options
	Options syntax
	Types of options
	Rules for specifying parameters
	Rules for optional parameters
	Rules for mandatory parameters
	Rules for options with both optional and mandatory parameters
	Rules for specifying a filename or directory as parameters
	Additional rules

	Summary of compiler options
	Descriptions of compiler options
	--allow_misaligned_data_access
	Syntax
	Description
	See also

	--c89
	Syntax
	Description
	See also

	--char_is_signed
	Syntax
	Description

	--char_is_unsigned
	Syntax
	Description

	--code_model
	Syntax
	Parameters
	Description
	See also

	--core
	Syntax
	Parameters
	Description
	See also

	--c++
	Syntax
	Description
	See also

	-D
	Syntax
	Parameters
	Description

	--debug, -r
	Syntax
	Description

	--dependencies
	Syntax
	Parameters
	Description
	Example

	--deprecated_feature_warnings
	Syntax
	Parameters
	Description

	--diag_error
	Syntax
	Parameters
	Description

	--diag_remark
	Syntax
	Parameters
	Description

	--diag_suppress
	Syntax
	Parameters
	Description

	--diag_warning
	Syntax
	Parameters
	Description

	--diagnostics_tables
	Syntax
	Parameters
	Description

	--discard_unused_publics
	Syntax
	Description
	See also

	--dlib_config
	Syntax
	Parameters
	Description

	--do_explicit_zero_opt_in_named_sections
	Syntax
	Description
	Example

	-e
	Syntax
	Description
	See also

	--enable_restrict
	Syntax
	Description

	--error_limit
	Syntax
	Parameters
	Description

	-f
	Syntax
	Parameters
	Description
	See also

	--f
	Syntax
	Parameters
	Description
	See also

	--guard_calls
	Syntax
	Description
	See also

	--header_context
	Syntax
	Description

	-I
	Syntax
	Parameters
	Description
	See also

	-l
	Syntax
	Parameters
	Description

	--libc++
	Syntax
	Description
	See also

	--macro_positions_in_diagnostics
	Syntax
	Description

	--max_cost_constexpr_call
	Syntax
	Parameters
	Description

	--max_depth_constexpr_call
	Syntax
	Parameters
	Description

	--mfc
	Syntax
	Description
	Example
	See also

	--no_alt_link_reg_opt
	Syntax
	Description

	--no_bom
	Syntax
	Description
	See also

	--no_call_frame_info
	Syntax
	Description
	See also

	--no_clustering
	Syntax
	Description
	See also

	--no_code_motion
	Syntax
	Description
	See also

	--no_cross_call
	Syntax
	Description
	See also

	--no_cross_jump
	Syntax
	Description
	See also

	--no_cse
	Syntax
	Description
	See also

	--no_default_fp_contract
	Syntax
	Description
	See also

	--no_exceptions
	Syntax
	Description

	--no_fragments
	Syntax
	Description
	See also

	--no_inline
	Syntax
	Description
	See also

	--no_label_padding
	Syntax
	Description

	--no_normalize_file_macros
	Syntax
	Description
	Example
	See also

	--no_path_in_file_macros
	Syntax
	Description
	See also

	--no_rtti
	Syntax
	Description

	--no_scheduling
	Syntax
	Description
	See also

	--no_size_constraints
	Syntax
	Description
	See also

	--no_static_destruction
	Syntax
	Description
	See also

	--no_system_include
	Syntax
	Description
	See also

	--no_tbaa
	Syntax
	Description
	See also

	--no_typedefs_in_diagnostics
	Syntax
	Description
	Example

	--no_uniform_attribute_syntax
	Syntax
	Description
	See also

	--no_unroll
	Syntax
	Description
	See also

	--no_warnings
	Syntax
	Description

	--no_wrap_diagnostics
	Syntax
	Description

	--nonportable_path_warnings
	Syntax
	Description

	-O
	Syntax
	Parameters
	Description
	See also

	--only_stdout
	Syntax
	Description

	--output, -o
	Syntax
	Parameters
	Description

	--pending_instantiations
	Syntax
	Parameters
	Description

	--predef_macros
	Syntax
	Parameters
	Description

	--preinclude
	Syntax
	Parameters
	Description

	--preprocess
	Syntax
	Parameters
	Description

	--public_equ
	Syntax
	Parameters
	Description

	--relaxed_fp
	Syntax
	Description
	Example

	--remarks
	Syntax
	Description
	See also

	--require_prototypes
	Syntax
	Description

	--set_default_interrupt_alignment
	Syntax
	Parameters
	Description

	--short_enums
	Syntax
	Description

	--silent
	Syntax
	Description

	--source_encoding
	Syntax
	Parameters
	Description
	See also

	--stack_protection
	Syntax
	Description
	See also

	--strict
	Syntax
	Description
	See also

	--system_include_dir
	Syntax
	Parameters
	Description
	See also

	--text_out
	Syntax
	Parameters
	Description
	See also

	--uniform_attribute_syntax
	Syntax
	Description
	See also

	--use_c++_inline
	Syntax
	Description
	See also

	--use_paths_as_written
	Syntax
	Description

	--use_unix_directory_separators
	Syntax
	Description

	--utf8_text_in
	Syntax
	Description
	See also

	--version
	Syntax
	Description

	--vla
	Syntax
	Description
	See also

	--warn_about_c_style_casts
	Syntax
	Description

	--warn_about_incomplete_constructors
	Syntax
	Description

	--warn_about_missing_field_initializers
	Syntax
	Description

	--warnings_affect_exit_code
	Syntax
	Description

	--warnings_are_errors
	Syntax
	Description
	See also

	Linker options
	Summary of linker options
	Descriptions of linker options
	--accurate_math
	Syntax
	Description
	See also

	--advanced_heap
	Syntax
	Description
	See also

	--allow_misaligned_data_access
	Syntax
	Description

	--auto_vector_setup
	Syntax
	Description
	See also

	--basic_heap
	Syntax
	Description
	See also

	--call_graph
	Syntax
	Parameters
	Description
	See also

	--config
	Syntax
	Parameters
	Description
	See also

	--config_def
	Syntax
	Parameters
	Description
	See also

	--config_search
	Syntax
	Parameters
	Description
	See also

	--core
	Description

	--cpp_init_routine
	Syntax
	Parameters
	Description

	--debug_lib
	Syntax
	Description
	See also

	--default_to_complex_ranges
	Syntax
	Description
	See also

	--define_symbol
	Syntax
	Parameters
	Description
	See also

	--dependencies
	Syntax
	Parameters
	Description
	Example

	--diag_error
	Syntax
	Parameters
	Description

	--diag_remark
	Syntax
	Parameters
	Description

	--diag_suppress
	Syntax
	Parameters
	Description

	--diag_warning
	Syntax
	Parameters
	Description

	--diagnostics_tables
	Syntax
	Parameters
	Description

	--disable_codense_jal
	Syntax
	Description

	--disable_relaxation
	Syntax
	Description
	See also

	--enable_stack_usage
	Syntax
	Description
	See also

	--entry
	Syntax
	Parameters
	Description
	See also

	--entry_list_in_address_order
	Syntax
	Description

	--error_limit
	Syntax
	Parameters
	Description

	--export_builtin_config
	Syntax
	Parameters
	Description

	-f
	Syntax
	Parameters
	Description
	See also

	--f
	Syntax
	Parameters
	Description
	See also

	--force_output
	Syntax
	Description

	--image_input
	Syntax
	Parameters
	Description
	Example
	See also

	--keep
	Syntax
	Parameters
	Description

	--log
	Syntax
	Parameters
	Description
	See also

	--log_file
	Syntax
	Parameters
	Description
	See also

	--mangled_names_in_messages
	Syntax
	Description

	--manual_dynamic_initialization
	Syntax
	Description

	--map
	Syntax
	Parameters
	Description

	--merge_duplicate_sections
	Syntax
	Description
	See also

	--no_bom
	Syntax
	Description
	See also

	--no_entry
	Syntax
	Description
	See also

	--no_fragments
	Syntax
	Description
	See also

	--no_free_heap
	Syntax
	Description
	See also

	--no_library_search
	Syntax
	Description

	--no_locals
	Syntax
	Description

	--no_range_reservations
	Syntax
	Description

	--no_remove
	Syntax
	Description
	See also

	--no_vfe
	Syntax
	Description
	See also

	--no_warnings
	Syntax
	Description

	--no_wrap_diagnostics
	Syntax
	Description

	--only_stdout
	Syntax
	Description

	--output, -o
	Syntax
	Parameters
	Description

	--place_holder
	Syntax
	Parameters
	Description
	See also

	--preconfig
	Syntax
	Parameters
	Description

	--printf_multibytes
	Syntax
	Description

	--redirect
	Syntax
	Parameters
	Description

	--remarks
	Syntax
	Description
	See also

	--scanf_multibytes
	Syntax
	Description

	--search, -L
	Syntax
	Parameters
	Description
	See also

	--silent
	Syntax
	Description

	--small_math
	Syntax
	Description
	See also

	--stack_usage_control
	Syntax
	Parameters
	Description
	See also

	--strip
	Syntax
	Description

	--text_out
	Syntax
	Parameters
	Description
	See also

	--threaded_lib
	Syntax
	Description

	--timezone_lib
	Syntax
	Description
	See also

	--use_full_std_template_names
	Syntax
	Description

	--use_optimized_variants
	Syntax
	Parameters
	Description

	--utf8_text_in
	Syntax
	Description
	See also

	--version
	Syntax
	Description

	--vfe
	Syntax
	Parameters
	Description
	See also

	--warnings_affect_exit_code
	Syntax
	Description

	--warnings_are_errors
	Syntax
	Description
	See also

	--whole_archive
	Syntax
	Parameters
	Description
	Example
	See also

	Data representation
	Alignment
	Alignment on RISC-V

	Basic data types—integer types
	Integer types—an overview
	Bool
	The enum type
	The char type
	The wchar_t type
	The char16_t type
	The char32_t type
	Bitfields
	The example in the joined types bitfield allocation strategy
	The example in the disjoint types bitfield allocation strategy
	Padding

	Basic data types—floating-point types
	Floating-point environment
	32-bit floating-point format
	64-bit floating-point format
	Representation of special floating-point numbers

	Pointer types
	Function pointers
	Data pointers
	Casting
	size_t
	ptrdiff_t
	intptr_t
	uintptr_t

	Structure types
	Alignment of structure types
	General layout
	Packed structure types

	Type qualifiers
	Declaring objects volatile
	Definition of access to volatile objects
	Rules for accesses

	Declaring objects volatile and const
	Declaring objects const

	Data types in C++

	Extended keywords
	General syntax rules for extended keywords
	Type attributes
	General type attributes
	Syntax for type attributes used on data objects
	Syntax for type attributes used on functions

	Object attributes
	Syntax for object attributes

	Summary of extended keywords
	Descriptions of extended keywords
	_ _interrupt
	Syntax
	Description
	Example
	See also

	_ _intrinsic
	Description

	_ _machine
	Syntax
	Description
	Example
	See also

	_ _monitor
	Syntax
	Description
	Example
	See also

	_ _nmi
	Syntax
	Description
	Example
	See also

	_ _no_alloc, _ _no_alloc16
	Syntax
	Description
	Example
	See also

	_ _no_alloc_str, _ _no_alloc_str16
	Syntax
	Description
	Example
	See also

	_ _no_init
	Syntax
	Description
	Example
	See also

	_ _noreturn
	Syntax
	Description
	Example

	_ _packed
	Syntax
	Description
	Example
	See also

	_ _preemptive
	Syntax
	Description
	Example
	See also

	_ _root
	Syntax
	Description
	Example
	See also

	_ _ro_placement
	Syntax
	Description
	Example

	_ _supervisor
	Syntax
	Description
	Example
	See also

	_ _task
	Syntax
	Description
	Example

	_ _user
	Syntax
	Description
	Example
	See also

	_ _weak
	Syntax
	Description
	Example

	Supported GCC attributes

	Pragma directives
	Summary of pragma directives
	Descriptions of pragma directives
	bitfields
	Syntax
	Parameters
	Description
	Example
	See also

	calls
	Syntax
	Parameters
	Description
	Example
	See also

	call_graph_root
	Syntax
	Parameters
	Description
	Example
	See also

	data_alignment
	Syntax
	Parameters
	Description

	default_function_attributes
	Syntax
	Parameters
	Description
	Example
	See also

	default_variable_attributes
	Syntax
	Parameters
	Description
	Example
	See also

	deprecated
	Syntax
	Description
	Example
	See also

	diag_default
	Syntax
	Parameters
	Description
	See also

	diag_error
	Syntax
	Parameters
	Description
	See also

	diag_remark
	Syntax
	Parameters
	Description
	See also

	diag_suppress
	Syntax
	Parameters
	Description
	See also

	diag_warning
	Syntax
	Parameters
	Description
	See also

	enter_leave
	Syntax
	Parameters
	Description
	Example

	error
	Syntax
	Parameters
	Description
	Example

	function_category
	Syntax
	Parameters
	Description
	Example
	See also

	include_alias
	Syntax
	Parameters
	Description
	Example
	See also

	inline
	Syntax
	Parameters
	Description
	See also

	language
	Syntax
	Parameters
	Description
	Example
	See also

	location
	Syntax
	Parameters
	Description
	Example
	See also

	message
	Syntax
	Parameters
	Description
	Example

	no_stack_protect
	Syntax
	Description
	See also

	object_attribute
	Syntax
	Parameters
	Description
	Example
	See also

	once
	Syntax
	Description

	optimize
	Syntax
	Parameters
	Description
	Example
	See also

	pack
	Syntax
	Parameters
	Description
	See also

	preemptive
	Syntax
	Parameters
	Description
	Example
	See also

	_ _printf_args
	Syntax
	Description
	Example

	public_equ
	Syntax
	Parameters
	Description
	Example
	See also

	required
	Syntax
	Parameters
	Description
	Example

	rtmodel
	Syntax
	Parameters
	Description
	Example

	_ _scanf_args
	Syntax
	Description
	Example

	section
	Syntax
	Parameters
	Description
	Example
	See also

	stack_protect
	Syntax
	Description
	See also

	STDC CX_LIMITED_RANGE
	Syntax
	Parameters
	Description

	STDC FENV_ACCESS
	Syntax
	Parameters
	Description

	STDC FP_CONTRACT
	Syntax
	Parameters
	Description
	Example
	See also

	type_attribute
	Syntax
	Parameters
	Description
	Example
	See also

	unroll
	Syntax
	Parameters
	Description
	Example
	See also

	vector
	Syntax
	Parameters
	Description
	Example

	weak
	Syntax
	Parameters
	Description
	Example
	See also

	Intrinsic functions
	Summary of intrinsic functions
	Intrinsic functions for bit manipulation
	Intrinsic functions for the P extension
	Intrinsic functions for the Cache Management extensions
	Intrinsic functions for Scalar cryptography
	Intrinsic functions for AndeStar™ extensions

	Descriptions of the intrinsic functions
	_ _clear_bits_csr
	Syntax
	Description

	_ _disable_interrupt
	Syntax
	Description

	_ _enable_interrupt
	Syntax
	Description

	_ _fp_absNN
	Syntax
	Description

	_ _fp_classNN
	Syntax
	Description
	Example

	_ _fp_copy_signNN
	Syntax
	Description

	_ _fp_maxNN
	Syntax
	Description

	_ _fp_minNN
	Syntax
	Description

	_ _fp_negate_signNN
	Syntax
	Description

	_ _fp_sqrtNN
	Syntax
	Description

	_ _fp_xor_signNN
	Syntax
	Description
	Example

	_ _get_interrupt_state
	Syntax
	Description
	Example

	_ _iar_riscv_cbo_clean
	Syntax
	Description

	_ _iar_riscv_cbo_flush
	Syntax
	Description

	_ _iar_riscv_cbo_inval
	Syntax
	Description

	_ _iar_riscv_cbo_zero
	Syntax
	Description

	_ _iar_riscv_prefetch_i
	Syntax
	Description

	_ _iar_riscv_prefetch_r
	Syntax
	Description

	_ _iar_riscv_prefetch_w
	Syntax
	Description

	_ _nds__clrov
	Syntax
	Description

	_ _nds__rdov
	Syntax
	Description

	_ _no_operation
	Syntax
	Description

	_ _read_csr
	Syntax
	Description

	_ _return_address
	Syntax
	Description

	_ _riscv_ffb
	Syntax
	Description

	_ _riscv_ffmism
	Syntax
	Description

	_ _riscv_ffzmism
	Syntax
	Description

	_ _riscv_flmism
	Syntax
	Description

	_ _set_bits_csr
	Syntax
	Description

	_ _set_interrupt_state
	Syntax
	Description

	_ _wait_for_interrupt
	Syntax
	Description

	_ _write_csr
	Syntax
	Description

	The preprocessor
	Overview of the preprocessor
	Description of predefined preprocessor symbols
	_ _BASE_FILE_ _
	Description
	See also

	_ _BUILD_NUMBER_ _
	Description

	_ _COUNTER_ _
	Description

	_ _cplusplus
	Description

	_ _DATE_ _
	Description

	_ _EXCEPTIONS
	Description

	_ _FILE_ _
	Description
	See also

	_ _func_ _
	Description
	See also

	_ _FUNCTION_ _
	Description
	See also

	_ _IAR_SYSTEMS_ICC_ _
	Description

	_ _ICCRISCV_ _
	Description

	_ _LIBCPP
	Description

	_LIBCPP_ENABLE_CXX17_REMOVED_FEATURES
	Description

	_ _LINE_ _
	Description

	_ _PRETTY_FUNCTION_ _
	Description
	See also

	_ _riscv
	Description

	_ _riscv_32e
	Description

	_ _riscv_a
	Description
	See also

	_ _riscv_arch_test
	Description
	Example

	_ _riscv_atomic
	Description

	_ _riscv_b
	Description
	See also

	_ _riscv_bitmanip
	Description

	_ _riscv_c
	Description
	See also

	_ _riscv_cmodel_medany
	Description

	_ _riscv_cmodel_medlow
	Description

	_ _riscv_compressed
	Description

	_ _riscv_d
	Description
	See also

	_ _riscv_div
	Description

	_ _riscv_dsp
	Description

	_ _riscv_e
	Description
	See also

	_ _riscv_f
	Description
	See also

	_ _riscv_fdiv
	Description

	_ _riscv_flen
	Description

	_ _riscv_fsqrt
	Description

	_ _riscv_i
	Description
	See also

	_ _riscv_m
	Description
	See also

	_ _riscv_mul
	Description

	_ _riscv_muldiv
	Description

	_ _riscv_p
	Description
	See also

	_ _riscv_xbcountzeroes
	Description

	_ _riscv_xlen
	Description

	_ _riscv_zba
	Description

	_ _riscv_zbb
	Description

	_ _riscv_zbc
	Description

	_ _riscv_zbpbo
	Description

	_ _riscv_zbs
	Description

	_ _riscv_zdinx
	Description

	_ _riscv_zfinx
	Description

	_ _riscv_zicbom
	Description

	_ _riscv_zicbop
	Description

	_ _riscv_zicboz
	Description

	_ _riscv_zpsfoperand
	Description

	_ _riscv_zpn
	Description

	_ _RTTI_ _
	Description

	_ _STDC_ _
	Description

	_ _STDC_LIB_EXT1_ _
	Description
	See also

	_ _STDC_NO_ATOMICS_ _
	Description
	See also

	_ _STDC_NO_THREADS_ _
	Description

	_ _STDC_NO_VLA_ _
	Description
	See also

	_ _STDC_UTF16_ _
	Description

	_ _STDC_UTF32_ _
	Description

	_ _STDC_VERSION_ _
	Description

	_ _SUBVERSION_ _
	Description

	_ _TIME_ _
	Description

	_ _TIMESTAMP_ _
	Description

	_ _VER_ _
	Description

	Descriptions of miscellaneous preprocessor extensions
	#include_next
	Description

	NDEBUG
	Description
	See also

	_ _STDC_WANT_LIB_EXT1_ _
	Description
	See also

	#warning
	Syntax
	Description

	C/C++ standard library functions
	C/C++ standard library overview
	Header files
	Library object files
	Alternative more accurate library functions
	Reentrancy
	The longjmp function

	DLIB runtime environment—implementation details
	Briefly about the DLIB runtime environment
	C header files
	C++ header files
	The C++ library header files
	Using Standard C libraries in C++

	Library functions as intrinsic functions
	Not supported C/C++ functionality
	Atomic operations
	Added C functionality
	C bounds-checking interface
	DLib_Threads.h
	fenv.h
	iar_dlmalloc.h
	LowLevelIOInterface.h
	stdio.h
	string.h
	time.h

	Non-standard implementations
	Symbols used internally by the library

	The linker configuration file
	Overview
	Declaring the build type
	build for directive
	Syntax
	Parameters
	Description
	See also

	Defining memories and regions
	define memory directive
	Syntax
	Parameters
	Description
	Example

	define region directive
	Syntax
	Parameters
	Description
	Example

	logical directive
	Syntax
	Parameters
	Description
	Example

	Regions
	Region literal
	Syntax
	Parameters
	Description
	Example
	See also

	Region expression
	Syntax
	Description
	Example

	Empty region
	Syntax
	Description
	Example
	See also

	Section handling
	define block directive
	Syntax
	Parameters
	Description
	Example
	See also

	define section directive
	Syntax
	Parameters
	Description
	Example

	define overlay directive
	Syntax
	Parameters
	Description
	See also

	initialize directive
	Syntax
	Parameters
	Description
	Example
	See also

	do not initialize directive
	Syntax
	Description
	Example
	See also

	keep directive
	Syntax
	Description
	Example

	place at directive
	Syntax
	Parameters
	Description
	Example
	See also

	place in directive
	Syntax
	Parameters
	Description
	Example
	See also

	reserve region
	Syntax
	Parameters
	Description
	Example
	See also

	use init table directive
	Syntax
	Parameters
	Description
	Example

	Section selection
	section-selectors
	Syntax
	Parameters
	Description
	Example
	See also

	extended-selectors
	Syntax
	Parameters
	Description
	Example
	See also

	Using symbols, expressions, and numbers
	check that directive
	Syntax
	Parameters
	Description
	Example
	See also

	define symbol directive
	Syntax
	Parameters
	Description
	Example
	See also

	export directive
	Syntax
	Parameters
	Description
	Example

	expressions
	Syntax
	Description

	keep symbol directive
	Syntax
	Parameters
	Description
	See also

	numbers
	Syntax
	Description
	Example

	Structural configuration
	error directive
	Syntax
	Parameters
	Description
	Example

	if directive
	Syntax
	Parameters
	Description
	Example

	include directive
	Syntax
	Parameters
	Description
	See also

	Section reference
	Summary of sections
	Descriptions of sections and blocks
	.bss
	Description
	Memory placement

	CSTACK
	Description
	Memory placement
	See also

	.cstartup
	Description
	Memory placement

	.data
	Description
	Memory placement

	.data_init
	Description
	Memory placement

	HEAP
	Description
	Memory placement
	See also

	.iar.dynexit
	Description
	Memory placement
	See also

	.iar.locale_table
	Description
	Memory placement
	See also

	_ _iar_tls$$DATA
	Description
	See also

	_ _iar_tls$$INITDATA
	Description
	See also

	.init_array
	Description
	Memory placement

	.itim
	Description
	Memory placement
	See also

	.jumptable
	Description
	Memory placement

	.mtext
	Description
	Memory placement
	See also

	.noinit
	Description
	Memory placement

	.preinit_array
	Description
	Memory placement
	See also

	.rodata
	Description
	Memory placement

	.stext
	Description
	Memory placement
	See also

	.tbss
	Description

	.tdata
	Description

	.text
	Description
	Memory placement

	.utext
	Description
	Memory placement
	See also

	The stack usage control file
	Overview
	C++ names

	Stack usage control directives
	call graph root directive
	Syntax
	Parameters
	Description
	Example
	See also

	exclude directive
	Syntax
	Parameters
	Description
	Example

	function directive
	Syntax
	Parameters
	Description
	Example

	max recursion depth directive
	Syntax
	Parameters
	Description
	Example

	no calls from directive
	Syntax
	Parameters
	Description
	Example

	possible calls directive
	Syntax
	Parameters
	Description
	Example
	See also

	Syntactic components
	category
	Syntax
	Description
	Example

	func-spec
	Syntax
	Description
	Example

	module-spec
	Syntax
	Description
	Note:

	Example

	name
	Description
	Example

	call-info
	Syntax
	Description
	Example

	stack-size
	Syntax
	Description
	Example

	size
	Description
	Example

	IAR utilities
	The IAR Archive Tool—iarchive
	Invocation syntax
	Parameters
	Examples

	Summary of iarchive commands
	Summary of iarchive options
	Diagnostic messages
	La001: could not open file filename
	La002: illegal path pathname
	La006: too many parameters to cmd command
	La007: too few parameters to cmd command
	La008: lib is not a library file
	La009: lib has no symbol table
	La010: no library parameter given
	La011: file file already exists
	La013: file confusions, lib given as both library and object
	La014: module module not present in archive lib
	La015: internal error
	Ms003: could not open file filename for writing
	Ms004: problem writing to file filename
	Ms005: problem closing file filename

	The IAR ELF Tool—ielftool
	Invocation syntax
	Parameters
	Example

	Summary of ielftool options
	Specifying ielftool address ranges

	The IAR ELF Dumper—ielfdump
	Invocation syntax
	Parameters

	Summary of ielfdump options

	The IAR ELF Object Tool—iobjmanip
	Invocation syntax
	Parameters
	Examples

	Summary of iobjmanip options
	Diagnostic messages
	Lm001: No operation given
	Lm002: Expected nr parameters but got nr
	Lm003: Invalid section/symbol renaming pattern pattern
	Lm004: Could not open file filename
	Lm005: ELF format error msg
	Lm006: Unsupported section type nr
	Lm007: Unknown section type nr
	Lm008: Symbol symbol has unsupported format
	Lm009: Group type nr not supported
	Lm010: Unsupported ELF feature in file: msg
	Lm011: Unsupported ELF file type
	Lm012: Ambiguous rename for section/symbol name (alt1 and alt2)
	Lm013: Section name removed due to transitive dependency on name
	Lm014: File has no section with index nr
	Ms003: could not open file filename for writing
	Ms004: problem writing to file filename
	Ms005: problem closing file filename

	The IAR Absolute Symbol Exporter—isymexport
	Invocation syntax
	Parameters

	Summary of isymexport options
	Steering files
	Syntax
	Example

	Hide directive
	Syntax
	Parameters
	Description
	Example

	Rename directive
	Syntax
	Parameters
	Description
	Example

	Show directive
	Syntax
	Parameters
	Description
	Example

	Show-root directive
	Syntax
	Parameters
	Description
	Example

	Show-weak directive
	Syntax
	Parameters
	Description
	Example

	Diagnostic messages
	Es001: could not open file filename
	Es002: illegal path pathname
	Es003: format error: message
	Es004: no input file
	Es005: no output file
	Es006: too many input files
	Es007: input file is not an ELF executable
	Es008: unknown directive: directive
	Es009: unexpected end of file
	Es010: unexpected end of line
	Es011: unexpected text after end of directive
	Es012: expected text
	Es013: pattern can contain at most one * or ?
	Es014: rename patterns have different wildcards
	Es015: ambiguous pattern match: symbol matches more than one rename pattern
	Es016: the entry point symbol is already exported

	Descriptions of options
	-a
	Syntax
	For use with
	Description

	--all
	Syntax
	For use with
	Description

	--bin
	Syntax
	Parameters
	For use with
	Description

	--bin-multi
	Syntax
	Parameters
	For use with
	Description

	--checksum
	Syntax
	Parameters
	For use with
	Description
	Example
	See also

	--code
	Syntax
	For use with
	Description

	--core
	For use with
	Description

	--create
	Syntax
	Parameters
	For use with
	Description

	--delete, -d
	Syntax
	Parameters
	For use with
	Description

	--disasm_data
	Syntax
	For use with
	Description

	--edit
	Syntax
	Parameters
	For use with
	Description
	See also

	--export_locals
	Syntax
	Parameters
	For use with
	Description
	Example

	--extract, -x
	Syntax
	Parameters
	For use with
	Description

	-f
	Syntax
	Parameters
	For use with
	Description

	--f
	Syntax
	Parameters
	For use with
	Description
	See also

	--fake_time
	Syntax
	For use with
	Description

	--fill
	Syntax
	Parameters
	For use with
	Description

	--front_headers
	Syntax
	For use with
	Description

	--generate_vfe_header
	Syntax
	For use with
	Description
	See also

	--ihex
	Syntax
	For use with
	Description

	--ihex-len
	Syntax
	Parameters
	For use with
	Description

	--no_bom
	Syntax
	For use with
	Description
	See also

	--no_header
	Syntax
	For use with
	Description

	--no_rel_section
	Syntax
	For use with
	Description

	--no_strtab
	Syntax
	For use with
	Description

	--no_utf8_in
	Syntax
	For use with
	Description
	See also

	--offset
	Syntax
	Parameters
	For use with
	Description
	Example

	--output, -o
	Syntax
	Parameters
	For use with
	Description

	--parity
	Syntax
	Parameters
	For use with
	Description

	--ram_reserve_ranges
	Syntax
	Parameters
	For use with
	Description
	See also

	--range
	Syntax
	Parameters
	For use with
	Description

	--raw
	Syntax
	For use with
	Description

	--remove_file_path
	Syntax
	For use with
	Description

	--remove_section
	Syntax
	Parameters
	For use with
	Description

	--rename_section
	Syntax
	Parameters
	For use with
	Description

	--rename_symbol
	Syntax
	Parameters
	For use with
	Description

	--replace, -r
	Syntax
	Parameters
	For use with
	Description

	--reserve_ranges
	Syntax
	Parameters
	For use with
	Description
	See also

	--section, -s
	Syntax
	Parameters
	For use with
	Description
	Example

	--segment, -g
	Syntax
	Parameters
	For use with
	Description

	--self_reloc
	Syntax
	For use with
	Description

	--show_entry_as
	Syntax
	Parameters
	For use with
	Description

	--silent
	Syntax
	For use with
	Description

	--simple
	Syntax
	For use with
	Description

	--simple-ne
	Syntax
	For use with
	Description

	--source
	Syntax
	For use with
	Description

	--srec
	Syntax
	For use with
	Description

	--srec-len
	Syntax
	Parameters
	For use with
	Description

	--srec-s3only
	Syntax
	For use with
	Description

	--strip
	Syntax
	For use with
	Description

	--symbols
	Syntax
	Parameters
	For use with
	Description

	--text_out
	Syntax
	Parameters
	For use with
	Description
	See also

	--titxt
	Syntax
	For use with
	Description

	--toc, -t
	Syntax
	Parameters
	For use with
	Description

	--update_symbol
	Syntax
	Parameters
	For use with
	Description

	--update_typeless_globals
	Syntax
	Parameters
	For use with
	Description

	--use_full_std_template_names
	Syntax
	For use with
	Description

	--utf8_text_in
	Syntax
	For use with
	Description
	See also

	--verbose, -V
	Syntax
	For use with
	Description

	--version
	Syntax
	For use with
	Description

	--vtoc
	Syntax
	Parameters
	For use with
	Description

	Implementation-defined behavior for Standard C++
	Descriptions of implementation-defined behavior for C++
	Note:
	List of topics
	3.8 Diagnostics (Compiler)
	4.1 Required libraries for freestanding implementation (C++14/C++17 libraries)
	4.4 Bits in a byte (Compiler)
	4.6 Interactive devices (C++14/C++17 libraries)
	4.7 Number of threads in a program under a freestanding implementation (Compiler)
	4.7.2 Requirement that the thread that executes main and the threads created by std::thread provide concurrent forward progress guarantees (Compiler)
	5.2, C.4.1 Mapping physical source file characters to the basic source character set (Compiler)
	5.2 Physical source file characters (Compiler)
	5.2 Converting characters from a source character set to the execution character set (Compiler)
	Table 48: Execution character sets and their encodings

	5.2 Required availability of the source of translation units to locate template definitions (Compiler)
	5.3 The execution character set and execution wide-character set (Compiler)
	5.8 Mapping header names to headers or external source files (Compiler)
	5.8 The meaning of ’, \, /*, or // in a q-char-sequence or an h-char-sequence (Compiler)
	5.13.3 The value of multi-character literals (Compiler)
	5.13.3 The value of wide-character literals with single c-char that are not in the execution wide-character set (Compiler)
	5.13.3 The value of wide-character literal containing multiple characters (Compiler)
	5.13.3 The semantics of non-standard escape sequences (Compiler)
	5.13.3 The value of character literal outside range of corresponding type (Compiler)
	5.13.3 The encoding of universal character name not in execution character set (Compiler)
	5.13.3 The range defined for character literals (Compiler)
	5.13.4 The choice of larger or smaller value of floating-point literal (Compiler)
	5.13.5 Concatenation of various types of string literals (Compiler)
	6.6.1 Defining main in a freestanding environment (Compiler)
	6.6.1 Startup and termination in a freestanding environment (C++14/C++17 libraries)
	6.6.1 Parameters to main (C++14/C++17 libraries)
	6.6.1 Linkage of main (C++14/C++17 libraries)
	6.6.3 Dynamic initialization of static variables before main (C++14/C++17 libraries)
	6.6.3 Dynamic initialization of threaded local variables before entry (C++14/C++17 libraries)
	6.6.3 Dynamic initialization of static inline variables before main (C++14/C++17 libraries)
	6.6.3 Threads and program points at which deferred dynamic initialization is performed (C++14/C++17 libraries)
	6.7 Use of an invalid pointer (Compiler)
	6.7.4.3 Relaxed or strict pointer safety for the implementation (Compiler)
	6.9 The value of trivially copyable types (Compiler)
	6.9.1 Representation and signage of char (Compiler)
	6.9.1 Extended signed integer types (Compiler)
	6.9.1 Value representation of floating-point types (Compiler)
	6.9.2 Value representation of pointer types (Compiler)
	6.11 Alignment (Compiler)
	6.11 Alignment additional values (Compiler)
	6.11 alignof expression additional values (Compiler)
	7.1 lvalue-to-rvalue conversion for objects that contain an invalid pointer (Compiler)
	7.8 The value of the result of unsigned to signed conversion (Compiler)
	7.9 The result of inexact floating-point conversion (Compiler)
	7.10 The value of the result of an inexact integer to floating-point conversion (Compiler)
	7.15 The rank of extended signed integer types (Compiler)
	8.2.2 Passing argument of class type through ellipsis (Compiler)
	8.2.2 Ending the lifetime of a parameter when the callee returns or at the end of the enclosing full-expression (Compiler)
	8.2.6 The value of a bitfield that cannot represent its incremented value (Compiler)
	8.2.8 The derived type for typeid (C++14/C++17 libraries)
	8.2.10 Conversion from a pointer to an integer (Compiler)
	8.2.10 Conversion from an integer to a pointer (Compiler)
	8.2.10 Converting a function pointer to an object pointer and vice versa (Compiler)
	8.3.3 sizeof applied to fundamental types other than char, signed char, and unsigned char (Compiler)
	8.3.4, 21.6.3.2 The maximum size of an allocated object (C++14/C++17 library)
	8.7, 21.2.4 The type of ptrdiff_t (Compiler)
	8.8 The result of right shift of negative value (Compiler)
	8.18 The value of a bitfield that cannot represent its assigned value (Compiler)
	10 The meaning of the attribute declaration (Compiler)
	10.1.7.1 Access to an object that has volatile-qualified type (Compiler)
	10.2 The underlying type for enumeration (Compiler)
	10.4 The meaning of the asm declaration (Compiler)
	10.5 The semantics of linkage specifiers (Compiler)
	10.5 Linkage of objects to other languages (Compiler)
	10.6.1 The behavior of non-standard attributes (Compiler)
	11.4.1 The string resulting from __func__ (Compiler)
	11.6 The value of a bitfield that cannot represent its initializer (Compiler)
	12.2.4 Allocation of bitfields within a class object (Compiler)
	17 The semantics of linkage specification on templates (Compiler)
	17.7.1 The maximum depth of recursive template instantiations (Compiler)
	18.3, 18.5.1 Stack unwinding before calling std::terminate() (C++14/C++17 libraries)
	18.5.1 Stack unwinding before calling std::terminate() when a noexcept specification is violated (C++14/C++17 libraries)
	19 Additional supported forms of preprocessing directives (Compiler)
	19.1 The numeric values of character literals in #if directives (Compiler)
	19.1 Negative value of character literal in preprocessor (Compiler)
	19.2 Search locations for < > header (Compiler)
	19.2 The search procedure for included source file (Compiler)
	19.2 Search locations for "" header (Compiler)
	19.2 The sequence of places searched for a header (Compiler)
	19.2 Nesting limit for #include directives (Compiler)
	19.6 #pragma (Compiler)
	19.8, C.1.10 The definition and meaning of __STDC__ (Compiler)
	19.8 The text of __DATE__ when the date of translation is not available (Compiler)
	19.8 The text of __TIME__ when the time of translation is not available (Compiler)
	19.8 The definition and meaning of __STDC_VERSION__ (Compiler)
	20.5.1.2 Declaration of functions from Annex K of the C standard library when C++ headers are included (C++17 library)
	20.5.1.3 Headers for a freestanding implementation (C++14/C++17 libraries)
	20.5.2.3 Linkage of names from Standard C library (C++14/C++17 libraries)
	20.5.5.8 Functions in Standard C++ library that can be recursively reentered (C++14/C++17 libraries)
	20.5.5.12 Exceptions thrown by standard library functions that do not have an exception specification (C++14/C++17 libraries)
	20.5.5.14 error_category for errors originating outside of the operating system (C++14/C++17 libraries)
	21.2.3, C.5.2.7 Definition of NULL (C++14/C++17 libraries)
	21.2.4 The type of ptrdiff_t (Compiler)
	21.2.4 The type of size_t (Compiler)
	21.2.4 The type of ptrdiff_t (Compiler)
	21.5 Exit status (C++14/C++17 libraries)
	21.6.3.1 The return value of bad_alloc::what (C++14/C++17 libraries)
	21.6.3.2 The return value of bad_array_new_length::what (C++14/C++17 libraries)
	21.6.3.2 The maximum size of an allocated object (C++14/C++17 library)
	21.7.2 The return value of type_info::name() (C++14/C++17 libraries)
	21.7.3 The return value of bad_cast::what (C++14/C++17 libraries)
	21.7.4 The return value of bad_typeid::what (C++14/C++17 libraries)
	21.8.2 The return value of exception::what (C++14/C++17 libraries)
	21.8.3 The return value of bad_exception::what (C++14/C++17 libraries)
	21.10 The use of non-POF functions as signal handlers (C++14/C++17 libraries)
	23.6.5 The return value of bad_optional_access::what (C++17 library)
	23.7.3 variant support of over-aligned types (C++17 library)
	23.7.11 The return value of bad_variant_access::what (C++17 library)
	23.8.2 The return value of bad_any_access::what (C++17 library)
	23.10.4 get_pointer_safety returning pointer_safety::relaxed or pointer_safety::preferred when the implementation has relaxed pointer safety (C++14/C++17 libraries)
	23.11.2.1 The return value of bad_weak_ptr::what (C++17 library)
	23.11.2.2.1 The exception type when a shared_ptr constructor fails (C++14/C++17 libraries)
	23.12.5.2 The largest supported value to configure the largest allocation satisfied directly by a pool (C++17 library)
	23.12.5.2 The largest supported value to configure the maximum number of blocks to replenish a pool (C++17 library)
	23.12.5.4 The default configuration of a pool (C++17 library)
	23.12.6.1 The default next_buffer_size for a monotonic_buffer_resource (C++17 library)
	23.12.6.2 The growth factor for monotonic_buffer_resource (C++17 library)
	23.14.11, 23.14.11.4 The number of placeholders for bind expressions (C++17 library)
	23.14.11.4 The assignability of placeholder objects (C++14/C++17 libraries)
	23.14.13.1.1 The return value of bad_function_call::what (C++17 library)
	23.15.4.3 Scalar types that have unique object representations (C++17 library)
	23.15.7.6 Support for extended alignment (C++14/C++17 libraries)
	23.17.7.1 Rounding or truncating values to the required precision when converting between time_t values and time_point objects (C++14/C++17 libraries)
	23.19.3, 28.4.3 Additional execution policies supported by parallel algorithms (C++17 library)
	24.2.3.1 The type of streampos (C++14/C++17 libraries)
	24.2.3.1 The type of streamoff (C++14/C++17 libraries)
	24.2.3.1, 24.2.3.4 Supported multibyte character encoding rules (C++14/C++17 libraries)
	24.2.3.2 The type of u16streampos (C++14/C++17 libraries)
	24.2.3.2 The return value of char_traits<char16_t>::eof (C++14/C++17 libraries)
	24.2.3.3 The type of u32streampos (C++14/C++17 libraries)
	24.2.3.3 The return value of char_traits<char32_t>::eof (C++14/C++17 libraries)
	24.2.3.4 The type of wstreampos (C++14/C++17 libraries)
	24.2.3.4 The return value of char_traits<wchar_t>::eof (C++14/C++17 libraries)
	24.2.3.4 Supported multibyte character encoding rules (C++14/C++17 libraries)
	24.3.2 The type of basic_string::const_iterator (C++17 library)
	24.3.2 The type of basic_string::iterator (C++17 library)
	24.4.2 The type of basic_string_view::const_iterator (C++17 library)
	25.3.1 Locale object being global or per-thread (C++14/C++17 libraries)
	25.3.1.1.1, 30.2.2 The set of character types that iostreams templates can be instantiated for (C++17 library)
	25.3.1.2 Locale names (C++14/C++17 libraries)
	25.3.1.5 The effects on the C locale of calling locale::global (C++14/C++17 libraries)
	25.3.1.5 The value of ctype<char>::table_size (C++14/C++17 libraries)
	25.4.5.1.2 Additional formats for time_get::do_get_date (C++14/C++17 libraries)
	25.4.5.1.2 time_get::do_get_year and two-digit year numbers (C++14/C++17 libraries)
	25.4.5.3.2 Formatted character sequences generated by time_put::do_put in the C locale (C++14/C++17 libraries)
	25.4.7.1.2 Mapping from name to catalog when calling messages::do_open (C++14/C++17 libraries)
	25.4.7.1.2 Mapping to message when calling messages::do_get (C++14/C++17 libraries)
	25.4.7.1.2 Mapping to message when calling messages::do_close (C++14/C++17 libraries)
	25.4.7.1.2 Resource limits on a message catalog (C++17 library)
	26.3.7.1 The type of array::const_iterator (C++14/C++17 libraries)
	26.3.7.1 The type of array::iterator (C++14/C++17 libraries)
	26.3.8.1 The type of deque::const_iterator (C++17 library)
	26.3.8.1 The type of deque::iterator (C++17 library)
	26.3.9.1 The type of forward_list::const_iterator (C++17 library)
	26.3.9.1 The type of forward_list::iterator (C++17 library)
	26.3.10.1 The type of list::const_iterator (C++17 library)
	26.3.10.1 The type of list::iterator (C++17 library)
	26.3.11.1 The type of vector::const_iterator (C++17 library)
	26.3.11.1 The type of vector::iterator (C++17 library)
	26.3.12 The type of vector<bool>::const_iterator (C++17 library)
	26.3.12 The type of vector<bool>::iterator (C++17 library)
	26.4.4.1 The type of map::const_iterator (C++17 library)
	26.4.4.1 The type of map::iterator (C++17 library)
	26.4.5.1 The type of multimap::const_iterator (C++17 library)
	26.4.5.1 The type of multimap::iterator (C++17 library)
	26.4.6.1 The type of set::const_iterator (C++17 library)
	26.4.6.1 The type of set::iterator (C++17 library)
	26.4.7.1 The type of multiset::const_iterator (C++17 library)
	26.4.7.1 The type of multiset::iterator (C++17 library)
	26.5.4.1 The type of unordered_map::const_iterator (C++17 library)
	26.5.4.1 The type of unordered_map::const_local_iterator (C++17 library)
	26.5.4.1 The type of unordered_map::iterator (C++17 library)
	26.5.4.1 The type of unordered_map::local_iterator (C++17 library)
	26.5.4.2 The default number of buckets in unordered_map (C++14/C++17 libraries)
	26.5.5.2 The default number of buckets in unordered_multimap (C++14/C++17 libraries)
	26.5.6.1 The type of unordered_set::const_iterator (C++17 library)
	26.5.6.1 The type of unordered_set::const_local_iterator (C++17 library)
	26.5.6.1 The type of unordered_set::iterator (C++17 library)
	26.5.6.1 The type of unordered_set::local_iterator (C++17 library)
	26.5.6.2 The default number of buckets in unordered_set (C++14/C++17 libraries)
	26.5.7.1 The type of unordered_multiset::const_iterator (C++17 library)
	26.5.7.1 The type of unordered_multiset::const_local_iterator (C++17 library)
	26.5.7.1 The type of unordered_multiset::iterator (C++17 library)
	26.5.7.1 The type of unordered_multiset::local_iterator (C++17 library)
	26.5.7.2 The default number of buckets in unordered_multiset (C++14/C++17 libraries)
	26.6.5.1 The type of unordered_multimap::const_iterator (C++17 library)
	26.6.5.1 The type of unordered_multimap::const_local_iterator (C++17 library)
	26.6.5.1 The type of unordered_multimap::iterator (C++17 library)
	26.6.5.1 The type of unordered_multimap::local_iterator (C++17 library)
	28.4.3 Forward progress guarantees for implicit threads of parallel algorithms (if not defined for thread) (C++17 library)
	28.4.3 The semantics of parallel algorithms invoked with implementation-defined execution policies (C++17 library)
	28.4.3 Additional execution policies supported by parallel algorithms (C++17 library)
	28.6.13 The underlying source of random numbers for random_shuffle (C++14/C++17 libraries)
	29.4.1 The use of <cfenv> functions for managing floating-point status (C++17 library)
	29.4.1 Support for #pragma FENV_ACCESS (C++17 library)
	29.5.8 The value of pow(0,0) (C++17 library)
	29.6.5 The type of default_random_engine (C++17 library)
	29.6.6 The semantics and default value of a token parameter to random_device constructor (C++17 library)
	29.6.6 The exception type when random_device constructor fails (C++17 library)
	29.6.6 The exception type when random_device::operator() fails (C++17 library)
	29.6.6 The way that random_device::operator() generates values (C++17 library)
	29.6.8.1 The algorithm used for producing the standard random number distributions (C++17 library)
	29.6.9 rand() and the introduction of data races (C++17 library)
	29.9.5.1 The effects of calling associated Laguerre polynomials with n>=128 or m>=128 (C++17 library)
	29.9.5.2 The effects of calling associated Legendre polynomials with l>=128 (C++17 library)
	29.9.5.7 The effects of calling regular modified cylindrical Bessel functions with nu>=128 (C++17 library)
	29.9.5.8 The effects of calling cylindrical Bessel functions of the first kind with nu>=128 (C++17 library)
	29.9.5.9 The effects of calling irregular modified cylindrical Bessel functions with nu>=128 (C++17 library)
	29.9.5.10 The effects of calling cylindrical Neumann functions with nu>=128 (C++17 library)
	29.9.5.15 The effects of calling Hermite polynomials with n>=128 (C++17 library)
	29.9.5.16 The effects of calling Laguerre polynomials with n>=128 (C++17 library)
	29.9.5.17 The effects of calling Legendre polynomials with l>=128 (C++17 library)
	29.9.5.19 The effects of calling spherical Bessel functions with n>=128 (C++17 library)
	29.9.5.20 The effects of calling spherical associated Legendre functions with l>=128 (C++17 library)
	29.9.5.21 The effects of calling spherical Neumann functions with n>=128 (C++17 library)
	30.2.2 The behavior of iostream classes when traits::pos_type is not streampos or when traits::off_type is not streamoff (C++14/C++17 libraries)
	30.2.2 The set of character types that iostreams templates can be instantiated for (C++17 library)
	30.5.3.4 The effects of calling ios_base::sync_with_stdio after any input or output operation on standard streams (C++14/C++17 libraries)
	30.5.5.4 Argument values to construct basic_ios::failure (C++14/C++17 libraries)
	30.7.5.2.3 NTCTS in basic_ostream<charT, traits>& operator<<(nullptr_t) (C++17 library)
	30.8.2.1 The basic_stringbuf move constructor and the copying of sequence pointers (C++14/C++17 libraries)
	30.8.2.4 The effects of calling basic_streambuf::setbuf with non-zero arguments (C++14/C++17 libraries)
	30.9.2.1 The basic_filebuf move constructor and the copying of sequence pointers (C++14/C++17 libraries)
	30.9.2.4 The effects of calling basic_filebuf::setbuf with non-zero arguments (C++14/C++17 libraries)
	30.9.2.4 The effects of calling basic_filebuf::sync when a get area exists (C++14/C++17 libraries)
	30.10.2.2 The operating system on which the implementation depends (C++17 library)
	30.10.6 The type of the filesystem trivial clock (C++17 library)
	30.10.8.1 Supported root names in addition to any operating system dependent root names (C++17 library)
	30.10.8.2.1 The meaning of dot-dot in the root directory (C++17 library)
	30.10.10.1 The interpretation of the path character sequence with format path::auto_format (C++17 library)
	30.10.10.4 Additional file_type enumerators for file systems supporting additional types of file (C++17 library)
	30.10.13 The type of a directory-like file (C++17 library)
	30.10.15.3 The effect of filesystem::copy (C++17 library)
	30.10.15.14 The result of filesystem::file_size (C++17 library)
	30.10.15.35 The file type of the file argument of filesystem::status (C++17 library)
	31.5.1 The type of syntax_option_type (C++17 library)
	31.5.2 The type of regex_constants::match_flag_type (C++17 library)
	31.5.3 The type of regex_constants::error_type (C++14/C++17 libraries)
	32.5 The values of various ATOMIC_..._LOCK_FREE macros (C++14/C++17 libraries)
	32.6, 32.6.1, 32.6.2, 32.6.3 Lock free operation of atomic types (C++17 library)
	33.2.3 The presence and meaning of native_handle_type and native_handle (C++14/C++17 libraries)
	C.1.10 The definition and meaning of __STDC__ (Compiler)
	C.4.1 Mapping physical source file characters to the basic source character set (Compiler)
	C.5.2.7 Definition of NULL (C++14/C++17 libraries)
	D.9 Support for over-aligned types (Compiler, C++17/C++14 libraries)

	Implementation quantities
	Table 49: C++ implementation quantities

	Implementation-defined behavior for Standard C
	Descriptions of implementation-defined behavior
	J.3.1 Translation
	Diagnostics (3.10, 5.1.1.3)
	White-space characters (5.1.1.2)

	J.3.2 Environment
	The character set (5.1.1.2)
	Main (5.1.2.1)
	The effect of program termination (5.1.2.1)
	Alternative ways to define main (5.1.2.2.1)
	The argv argument to main (5.1.2.2.1)
	Streams as interactive devices (5.1.2.3)
	Multithreaded environment (5.1.2.4)
	Signals, their semantics, and the default handling (7.14)
	Signal values for computational exceptions (7.14.1.1)
	Signals at system startup (7.14.1.1)
	Environment names (7.22.4.6)
	The system function (7.22.4.8)

	J.3.3 Identifiers
	Multibyte characters in identifiers (6.4.2)
	Significant characters in identifiers (5.2.4.1, 6.4.2)

	J.3.4 Characters
	Number of bits in a byte (3.6)
	Execution character set member values (5.2.1)
	Alphabetic escape sequences (5.2.2)
	Characters outside of the basic executive character set (6.2.5)
	Plain char (6.2.5, 6.3.1.1)
	Source and execution character sets (6.4.4.4, 5.1.1.2)
	Integer character constants with more than one character (6.4.4.4)
	Wide character constants with more than one character (6.4.4.4)
	Locale used for wide character constants (6.4.4.4)
	Concatenating wide string literals with different encoding types (6.4.5)
	Locale used for wide string literals (6.4.5)
	Source characters as executive characters (6.4.5)
	Encoding of wchar_t, char16_t, and char32_t (6.10.8.2)

	J.3.5 Integers
	Extended integer types (6.2.5)
	Range of integer values (6.2.6.2)
	The rank of extended integer types (6.3.1.1)
	Signals when converting to a signed integer type (6.3.1.3)
	Signed bitwise operations (6.5)

	J.3.6 Floating point
	Accuracy of floating-point operations (5.2.4.2.2)
	Accuracy of floating-point conversions (5.2.4.2.2)
	Rounding behaviors (5.2.4.2.2)
	Evaluation methods (5.2.4.2.2)
	Converting integer values to floating-point values (6.3.1.4)
	Converting floating-point values to floating-point values (6.3.1.5)
	Denoting the value of floating-point constants (6.4.4.2)
	Contraction of floating-point values (6.5)
	Default state of FENV_ACCESS (7.6.1)
	Additional floating-point mechanisms (7.6, 7.12)
	Default state of FP_CONTRACT (7.12.2)

	J.3.7 Arrays and pointers
	Conversion from/to pointers (6.3.2.3)
	ptrdiff_t (6.5.6)

	J.3.8 Hints
	Honoring the register keyword (6.7.1)
	Inlining functions (6.7.4)

	J.3.9 Structures, unions, enumerations, and bitfields
	Sign of 'plain' bitfields (6.7.2, 6.7.2.1)
	Possible types for bitfields (6.7.2.1)
	Atomic types for bitfields (6.7.2.1)
	Bitfields straddling a storage-unit boundary (6.7.2.1)
	Allocation order of bitfields within a unit (6.7.2.1)
	Alignment of non-bitfield structure members (6.7.2.1)
	Integer type used for representing enumeration types (6.7.2.2)

	J.3.10 Qualifiers
	Access to volatile objects (6.7.3)

	J.3.11 Preprocessing directives
	Locations in #pragma for header names (6.4, 6.4.7)
	Mapping of header names (6.4.7)
	Character constants in constant expressions (6.10.1)
	The value of a single-character constant (6.10.1)
	Including bracketed filenames (6.10.2)
	Including quoted filenames (6.10.2)
	Preprocessing tokens in #include directives (6.10.2)
	Nesting limits for #include directives (6.10.2)
	# inserts \ in front of \u (6.10.3.2)
	Recognized pragma directives (6.10.6)
	Default _ _DATE_ _ and _ _TIME_ _ (6.10.8)

	J.3.12 Library functions
	Additional library facilities (5.1.2.1)
	Diagnostic printed by the assert function (7.2.1.1)
	Representation of the floating-point status flags (7.6.2.2)
	Feraiseexcept raising floating-point exception (7.6.2.3)
	Strings passed to the setlocale function (7.11.1.1)
	Types defined for float_t and double_t (7.12)
	Domain errors (7.12.1)
	Return values on domain errors (7.12.1)
	Underflow errors (7.12.1)
	fmod return value (7.12.10.1)
	remainder return value (7.12.10.2)
	The magnitude of remquo (7.12.10.3)
	remquo return value (7.12.10.3)
	signal() (7.14.1.1)
	NULL macro (7.19)
	Terminating newline character (7.21.2)
	Space characters before a newline character (7.21.2)
	Null characters appended to data written to binary streams (7.21.2)
	File position in append mode (7.21.3)
	Truncation of files (7.21.3)
	File buffering (7.21.3)
	A zero-length file (7.21.3)
	Legal file names (7.21.3)
	Number of times a file can be opened (7.21.3)
	Multibyte characters in a file (7.21.3)
	remove() (7.21.4.1)
	rename() (7.21.4.2)
	Removal of open temporary files (7.21.4.3)
	Mode changing (7.21.5.4)
	Style for printing infinity or NaN (7.21.6.1, 7.29.2.1)
	%p in printf() (7.21.6.1, 7.29.2.1)
	Reading ranges in scanf (7.21.6.2, 7.29.2.1)
	%p in scanf (7.21.6.2, 7.29.2.2)
	File position errors (7.21.9.1, 7.21.9.3, 7.21.9.4)
	An n-char-sequence after nan (7.22.1.3, 7.29.4.1.1)
	errno value at underflow (7.22.1.3, 7.29.4.1.1)
	Zero-sized heap objects (7.22.3)
	Behavior of abort and exit (7.22.4.1, 7.22.4.5)
	Termination status (7.22.4.1, 7.22.4.4, 7.22.4.5, 7.22.4.7)
	The system function return value (7.22.4.8)
	Range and precision of clock_t and time_t (7.27)
	The time zone (7.27.1)
	The era for clock() (7.27.2.1)
	TIME_UTC epoch (7.27.2.5)
	%Z replacement string (7.27.3.5, 7.29.5.1)
	Math functions rounding mode (F.10)

	J.3.13 Architecture
	Values and expressions assigned to some macros (5.2.4.2, 7.20.2, 7.20.3)
	Accessing another thread's autos or thread locals (6.2.4)
	The number, order, and encoding of bytes (6.2.6.1)
	Extended alignments (6.2.8)
	Valid alignments (6.2.8)
	The value of the result of the sizeof operator (6.5.3.4)

	J.4 Locale
	Members of the source and execution character set (5.2.1)
	The meaning of the additional characters (5.2.1.2)
	Shift states for encoding multibyte characters (5.2.1.2)
	Direction of successive printing characters (5.2.2)
	The decimal point character (7.1.1)
	Printing characters (7.4, 7.30.2)
	Control characters (7.4, 7.30.2)
	Characters tested for (7.4.1.2, 7.4.1.3, 7.4.1.7, 7.4.1.9, 7.4.1.10, 7.4.1.11, 7.30.2.1.2, 7.30.5.1.3, 7.30.2.1.7, 7.30.2.1.9, 7.30.2.1.10, 7.30.2.1.11)
	The native environment (7.11.1.1)
	Subject sequences for numeric conversion functions (7.22.1, 7.29.4.1)
	The collation of the execution character set (7.24.4.3, 7.29.4.4.2)
	Message returned by strerror (7.24.6.2)
	Formats for time and date (7.27.3.5, 7.29.5.1)
	Character mappings (7.30.1)
	Character classifications (7.30.1)

	Implementation-defined behavior for C89
	Descriptions of implementation-defined behavior
	Translation
	Diagnostics (5.1.1.3)

	Environment
	Arguments to main (5.1.2.2.2.1)
	Interactive devices (5.1.2.3)

	Identifiers
	Significant characters without external linkage (6.1.2)
	Significant characters with external linkage (6.1.2)
	Case distinctions are significant (6.1.2)

	Characters
	Source and execution character sets (5.2.1)
	Bits per character in execution character set (5.2.4.2.1)
	Mapping of characters (6.1.3.4)
	Unrepresented character constants (6.1.3.4)
	Character constant with more than one character (6.1.3.4)
	Converting multibyte characters (6.1.3.4)
	Range of 'plain' char (6.2.1.1)

	Integers
	Range of integer values (6.1.2.5)
	Demotion of integers (6.2.1.2)
	Signed bitwise operations (6.3)
	Sign of the remainder on integer division (6.3.5)
	Negative valued signed right shifts (6.3.7)

	Floating point
	Representation of floating-point values (6.1.2.5)
	Converting integer values to floating-point values (6.2.1.3)
	Demoting floating-point values (6.2.1.4)

	Arrays and pointers
	size_t (6.3.3.4, 7.1.1)
	Conversion from/to pointers (6.3.4)
	ptrdiff_t (6.3.6, 7.1.1)

	Registers
	Honoring the register keyword (6.5.1)

	Structures, unions, enumerations, and bitfields
	Improper access to a union (6.3.2.3)
	Padding and alignment of structure members (6.5.2.1)
	Sign of 'plain' bitfields (6.5.2.1)
	Allocation order of bitfields within a unit (6.5.2.1)
	Can bitfields straddle a storage-unit boundary (6.5.2.1)
	Integer type chosen to represent enumeration types (6.5.2.2)

	Qualifiers
	Access to volatile objects (6.5.3)

	Declarators
	Maximum numbers of declarators (6.5.4)

	Statements
	Maximum number of case statements (6.6.4.2)

	Preprocessing directives
	Character constants and conditional inclusion (6.8.1)
	Including bracketed filenames (6.8.2)
	Including quoted filenames (6.8.2)
	Character sequences (6.8.2)
	Recognized pragma directives (6.8.6)
	Default _ _DATE_ _ and _ _TIME_ _ (6.8.8)

	Library functions for the IAR DLIB runtime environment
	NULL macro (7.1.6)
	Diagnostic printed by the assert function (7.2)
	Domain errors (7.5.1)
	Underflow of floating-point values sets errno to ERANGE (7.5.1)
	fmod() functionality (7.5.6.4)
	signal() (7.7.1.1)
	Terminating newline character (7.9.2)
	Blank lines (7.9.2)
	Null characters appended to data written to binary streams (7.9.2)
	Files (7.9.3)
	remove() (7.9.4.1)
	rename() (7.9.4.2)
	%p in printf() (7.9.6.1)
	%p in scanf() (7.9.6.2)
	Reading ranges in scanf() (7.9.6.2)
	File position errors (7.9.9.1, 7.9.9.4)
	Message generated by perror() (7.9.10.4)
	Allocating zero bytes of memory (7.10.3)
	Behavior of abort() (7.10.4.1)
	Behavior of exit() (7.10.4.3)
	Environment (7.10.4.4)
	system() (7.10.4.5)
	Message returned by strerror() (7.11.6.2)
	The time zone (7.12.1)
	clock() (7.12.2.1)

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z
	Symbols
	Numerics

