

IDE Project Management
and Building Guide

for
RISC-V
UIDERISCV-11

2

COPYRIGHT NOTICE
© 2019–2023 IAR Systems AB.

No part of this document may be reproduced without the prior written consent of IAR
Systems AB. The software described in this document is furnished under a license and
may only be used or copied in accordance with the terms of such a license.

DISCLAIMER
The information in this document is subject to change without notice and does not
represent a commitment on any part of IAR Systems. While the information contained
herein is assumed to be accurate, IAR Systems assumes no responsibility for any errors
or omissions.

In no event shall IAR Systems, its employees, its contractors, or the authors of this
document be liable for special, direct, indirect, or consequential damage, losses, costs,
charges, claims, demands, claim for lost profits, fees, or expenses of any nature or kind.

TRADEMARKS
IAR Systems, IAR Embedded Workbench, Embedded Trust, C-Trust, IAR Connect,
C-SPY, C-RUN, C-STAT, IAR Visual State, IAR KickStart Kit, I-jet, I-jet Trace,
I-scope, IAR Academy, IAR, and the logotype of IAR Systems are trademarks or
registered trademarks owned by IAR Systems AB.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

RISC-V is a registered trademark of RISC-V International.

Adobe and Acrobat Reader are registered trademarks of Adobe Systems Incorporated.

All other product names are trademarks or registered trademarks of their respective
owners.

EDITION NOTICE
Eleventh edition: October 2023

Part number: UIDERISCV-11

This guide applies to version 3.30.x of IAR Embedded Workbench® for RISC-V.

Internal reference: BB15, FF9.2.5, tut2009.1, IJOA.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Brief contents
Tables ... 13

Preface .. 15

Part 1. Project management and building 21

The development environment .. 23

Project management ... 89

Building projects ... 109

Editing ... 129

Part 2. Reference information ... 173

Product files .. 175

Menu reference ... 183

General options .. 203

Compiler options ... 217

Assembler options ... 231

Output converter options ... 239

Custom build options ... 241

Build actions options .. 243

Linker options .. 247

Library builder options .. 263

Glossary ... 265

Index ... 281
AFE1_AFE2-1:1

3

4

AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Contents
Tables ... 13

Preface .. 15

Who should read this guide ... 15

Required knowledge .. 15

How to use this guide ... 15

What this guide contains ... 16

Part 1. Project management and building .. 16

Part 2. Reference information .. 16

Other documentation ... 17

User and reference guides .. 17

The online help system .. 18

Web sites .. 18

Document conventions .. 18

Typographic conventions ... 19

Naming conventions .. 20

Part 1. Project management and building 21

The development environment .. 23

Introduction to the IAR Embedded Workbench IDE 23

Briefly about the IDE and the build toolchain 23

Tools for analyzing and checking your application 24

An extensible and modular environment ... 24

The layout of the windows on the screen ... 25

Using and customizing the IDE .. 25

Running the IDE ... 26

Working with example projects ... 26

Organizing windows on the screen .. 28

Specifying tool options .. 28

Adding a button to a toolbar .. 29

Removing a button from a toolbar ... 30
AFE1_AFE2-1:1

5

6

Showing/hiding toolbar buttons ... 30

Recognizing filename extensions ... 31

Getting started using external analyzers .. 31

Invoking external tools from the Tools menu 33

Adding command line commands to the Tools menu 34

Using an external editor ... 34

Reference information on the IDE .. 35

IAR Embedded Workbench IDE window ... 37

Customize dialog box ... 42

Button Appearance dialog box ... 44

Tool Output window .. 45

Colors and Fonts options .. 46

Edit Colors dialog box ... 49

Edit Fonts dialog box ... 50

Key Bindings options ... 51

Language options ... 53

Editor options ... 54

Configure Auto Indent dialog box ... 58

External Editor options .. 59

Editor Setup Files options .. 60

Editor Syntax Feedback options .. 61

Messages options ... 62

Troubleshooting options .. 63

Project options .. 64

External Analyzers options .. 66

External Analyzer dialog box .. 68

Source Code Control options (deprecated) .. 70

Debugger options ... 71

Stack options .. 72

Terminal I/O options .. 74

Configure Tools dialog box ... 76

Configure Viewers dialog box .. 78

Edit Viewer Extensions dialog box ... 79

Filename Extensions dialog box .. 80
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Contents

Filename Extension Overrides dialog box ... 81

Edit Filename Extensions dialog box ... 82

Product Info dialog box .. 82

Argument variables ... 83

Configure Custom Argument Variables dialog box 85

Project management ... 89

Introduction to managing projects ... 89

Briefly about managing projects .. 89

How projects are organized .. 91

The IDE interacting with version control systems 94

Managing projects .. 94

Creating and managing a workspace and its projects 95

Viewing the workspace and its projects ... 96

Interacting with Subversion ... 97

Reference information on managing projects 98

Workspace window .. 99

Create New Project dialog box .. 103

Configurations for project dialog box .. 104

New Configuration dialog box ... 105

Add Project Connection dialog box ... 106

Version Control System menu for Subversion 106

Subversion states .. 108

Building projects ... 109

Introduction to building projects ... 109

Briefly about building a project ... 109

Extending the toolchain ... 109

Building a project .. 110

Setting project options using the Options dialog box 111

Building your project ... 114

Correcting errors found during build ... 115

Using pre- and post-build actions .. 115

Building multiple configurations in a batch 116

Building from the command line ... 117
AFE1_AFE2-1:1

7

8

Adding an external tool .. 117

Reference information on building ... 118

Options dialog box ... 119

Build window ... 120

Batch Build dialog box .. 122

Edit Batch Build dialog box ... 123

iarbuild.exe—the IAR Command Line Build Utility 124

Editing ... 129

Introduction to the IAR Embedded Workbench editor 129

Briefly about the editor .. 129

Briefly about source browse information ... 130

Customizing the editor environment .. 130

Editing a file ... 130

Indenting text automatically .. 131

Matching brackets and parentheses .. 131

Splitting the editor window into panes .. 132

Dragging text .. 132

Code folding ... 132

Word completion .. 132

Code completion .. 133

Parameter hint .. 134

Using and adding code templates ... 134

Syntax coloring .. 136

Adding bookmarks ... 136

Using and customizing editor commands and shortcut keys 136

Displaying status information .. 137

Programming assistance ... 137

Navigating in the insertion point history .. 137

Navigating to a function ... 138

Finding a definition or declaration of a symbol 138

Finding references to a symbol .. 138

Finding function calls for a selected function 138

Switching between source and header files 138
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Contents

Displaying source browse information .. 139

Text searching .. 139

Accessing online help for reference information 139

Reference information on the editor ... 140

Editor window .. 141

Find dialog box .. 150

Find in Files window .. 151

Replace dialog box ... 152

Find in Files dialog box ... 153

Replace in Files dialog box .. 155

Incremental Search dialog box ... 158

Declarations window .. 159

Ambiguous Definitions window .. 160

References window .. 161

Source Browser window .. 162

Source Browse Log window .. 165

Resolve File Ambiguity dialog box ... 167

Call Graph window .. 167

Template dialog box ... 168

Editor shortcut key summary ... 169

Part 2. Reference information ... 173

Product files .. 175

Installation directory structure ... 175

Root directory .. 175

The riscv directory ... 176

The common directory ... 177

The install-info directory ... 177

Project directory structure .. 177

Various settings files .. 178

Files for global settings .. 178

Files for local settings .. 179

File types ... 180
AFE1_AFE2-1:1

9

10

Menu reference ... 183

Menus ... 183

File menu .. 183

Edit menu ... 186

View menu ... 190

Project menu .. 193

Tools menu ... 198

Window menu .. 199

Help menu .. 201

General options .. 203

Description of general options .. 203

Target .. 204

ISA Extensions .. 206

Code Generation .. 208

Output ... 209

Library Configuration .. 211

Library Options 1 ... 212

Library Options 2 ... 214

Compiler options ... 217

Description of compiler options .. 217

Multi-file Compilation ... 217

Language 1 ... 218

Language 2 ... 220

Optimizations ... 221

Output ... 223

List ... 224

Preprocessor ... 225

Diagnostics ... 226

Encodings ... 228

Extra Options ... 229

Edit Include Directories dialog box ... 230
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Contents

Assembler options ... 231

Description of assembler options .. 231

Language .. 231

Output ... 233

List ... 233

Preprocessor ... 234

Diagnostics ... 236

Extra Options ... 237

Output converter options ... 239

Description of output converter options 239

Output ... 239

Custom build options ... 241

Description of custom build options .. 241

Custom Tool Configuration ... 241

Build actions options .. 243

Description of build actions options ... 243

Build Actions Configuration .. 243

New/Edit Build Action dialog box ... 244

Linker options .. 247

Description of linker options ... 247

Config ... 248

Library .. 249

Input ... 250

Optimizations ... 251

Advanced ... 252

Output ... 253

List ... 254

#define .. 255

Diagnostics ... 256

Checksum ... 257

Encodings ... 260
AFE1_AFE2-1:1

11

12

Extra Options ... 261

Edit Additional Libraries dialog box ... 261

Library builder options .. 263

Description of library builder options .. 263

Output ... 264

Glossary ... 265

Index ... 281
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Tables
1: Typographic conventions used in this guide ... 19

2: Naming conventions used in this guide .. 20

3: Argument variables ... 83

4: iarbuild.exe command line options ... 124

5: Editor shortcut keys for insertion point navigation ... 169

6: Editor shortcut keys for selecting text ... 170

7: Editor shortcut keys for scrolling .. 170

8: Miscellaneous editor shortcut keys ... 170

9: Additional Scintilla shortcut keys ... 171

10: The riscv directory ... 176

11: The common directory .. 177

12: File types ... 180
AFE1_AFE2-1:1

13

14

AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Preface
● Who should read this guide

● How to use this guide

● What this guide contains

● Other documentation

● Document conventions

Who should read this guide
Read this guide if you plan to develop an application using IAR Embedded Workbench
and want to get the most out of the features and tools available in the IDE.

REQUIRED KNOWLEDGE

To use the tools in IAR Embedded Workbench, you should have working knowledge of:

● The architecture and instruction set of the RISC-V core you are using (refer to the
chip manufacturer's documentation)

● The C or C++ programming language

● Application development for embedded systems

● The operating system of your host computer.

For more information about the other development tools incorporated in the IDE, refer
to their respective documentation, see Other documentation, page 17.

How to use this guide
Each chapter in this guide covers a specific topic area. In many chapters, information is
typically divided into different sections based on information types:

● Concepts, which describes the topic and gives overviews of features related to the
topic area. Any requirements or restrictions are also listed. Read this section to learn
about the topic area.

● Tasks, which lists useful tasks related to the topic area. For many of the tasks, you
can also find step-by-step descriptions. Read this section for information about
required tasks as well as for information about how to perform certain tasks.
AFE1_AFE2-1:1

15

16

What this guide contains

● Reference information, which gives reference information related to the topic area.
Read this section for information about certain features or GUI components. You
can easily access this type of information for a GUI component in the IDE by
pressing F1.

If you are new to using IAR Embedded Workbench, we suggest that you first go through
the tutorials, which you can find in IAR Information Center in the product, under
Product Explorer. They will help you get started.

Finally, we recommend the Glossary if you should encounter any unfamiliar terms in
the IAR user documentation.

What this guide contains
This is a brief outline and summary of the chapters in this guide.

PART 1. PROJECT MANAGEMENT AND BUILDING

This section describes the process of editing and building your application:

● The development environment introduces you to the IAR Embedded Workbench
development environment. The chapter also demonstrates the facilities available for
customizing the environment to meet your requirements.

● Project management describes how you can create workspaces with multiple
projects, build configurations, groups, source files, and options that help you handle
different versions of your applications.

● Building projects discusses the process of building your application.

● Editing contains detailed descriptions of the IAR Embedded Workbench editor, how
to use it, and the facilities related to its usage. The final section also contains
information about how to integrate an external editor of your choice.

PART 2. REFERENCE INFORMATION

● Product files describes the directory structure and the types of files it contains.

● Menu reference contains detailed reference information about menus and menu
commands.

● General options specifies the target, output, and library options.

● Compiler options specifies compiler options for language, optimizations, code,
output, list file, preprocessor, and diagnostics.

● Assembler options describes the assembler options for language, output, list,
preprocessor, and diagnostics.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Preface

● Output converter options describes the options available for converting linker
output files from the ELF format.

● Custom build options describes the options available for custom tool configuration.

● Build actions options describes the options available for pre-build and post-build
actions.

● Linker options describes the options for setting up for linking.

● Library builder options describes the options for building a library.

Other documentation
User documentation is available as hypertext PDFs and as a context-sensitive online
help system in HTML format. You can access the documentation from the IAR
Information Center or from the Help menu in the IAR Embedded Workbench IDE. The
online help system is also available via the F1 key.

USER AND REFERENCE GUIDES

The complete set of IAR development tools is described in a series of guides.
Information about:

● System requirements and information about how to install and register the IAR
products are available in the Installation and Licensing Quick Reference Guide and
the Licensing Guide.

● Using the IDE for project management and building, is available in the IDE Project
Management and Building Guide for RISC-V.

● Using the IAR C-SPY® Debugger, is available in the C-SPY® Debugging Guide
for RISC-V.

● Programming for the IAR C/C++ Compiler for RISC-V and linking, is available in
the IAR C/C++ Development Guide for RISC-V.

● Programming for the IAR Assembler for RISC-V, is available in the IAR Assembler
User Guide for RISC-V.

● Performing a static analysis using C-STAT and the required checks, is available in
the C-STAT® Static Analysis Guide.

● Using I-jet, refer to the IAR Debug probes User Guide for I-jet®.

Note: Additional documentation might be available depending on your product
installation.
AFE1_AFE2-1:1

17

18

Document conventions

THE ONLINE HELP SYSTEM

The context-sensitive online help contains information about:

● IDE project management and building

● Debugging using the IAR C-SPY® Debugger

● The IAR C/C++ Compiler and Linker

● The IAR Assembler

● C-STAT

WEB SITES

Recommended web sites:

● The chip manufacturer’s web site.

● The RISC-V International web site, www.riscv.org, that contains information and
news about the RISC-V ISA. This includes the most recent specifications.

● The IAR web site, www.iar.com, that holds application notes and other product
information.

● The web site of the C standardization working group,
www.open-std.org/jtc1/sc22/wg14.

● The web site of the C++ Standards Committee, www.open-std.org/jtc1/sc22/wg21.

● The C++ programming language web site, isocpp.org. This web site also has a list
of recommended books about C++ programming.

● The C and C++ reference web site, en.cppreference.com.

Document conventions
When, in the IAR documentation, we refer to the programming language C, the text also
applies to C++, unless otherwise stated.

When referring to a directory in your product installation, for example riscv\doc, the
full path to the location is assumed, for example c:\Program Files\IAR
Systems\Embedded Workbench N.n\riscv\doc, where the initial digit of the
version number reflects the initial digit of the version number of the IAR Embedded
Workbench shared components.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Preface

TYPOGRAPHIC CONVENTIONS

The IAR documentation set uses the following typographic conventions:

Style Used for

computer • Source code examples and file paths.
• Text on the command line.
• Binary, hexadecimal, and octal numbers.

parameter A placeholder for an actual value used as a parameter, for example
filename.h where filename represents the name of the file.

[option] An optional part of a linker or stack usage control directive, where [
and] are not part of the actual directive, but any [,], {, or } are part
of the directive syntax.

{option} A mandatory part of a linker or stack usage control directive, where {
and } are not part of the actual directive, but any [,], {, or } are part
of the directive syntax.

[option] An optional part of a command line option, pragma directive, or library
filename.

[a|b|c] An optional part of a command line option, pragma directive, or library
filename with alternatives.

{a|b|c} A mandatory part of a command line option, pragma directive, or
library filename with alternatives.

bold Names of menus, menu commands, buttons, and dialog boxes that
appear on the screen.

italic • A cross-reference within this guide or to another guide.
• Emphasis.

… An ellipsis indicates that the previous item can be repeated an arbitrary
number of times.

Identifies instructions specific to the IAR Embedded Workbench® IDE
interface.

Identifies instructions specific to the command line interface.

Identifies helpful tips and programming hints.

Identifies warnings.

Table 1: Typographic conventions used in this guide
AFE1_AFE2-1:1

19

20

Document conventions

NAMING CONVENTIONS

The following naming conventions are used for the products and tools from IAR, when
referred to in the documentation:

Brand name Generic term

IAR Embedded Workbench® for RISC-V IAR Embedded Workbench®

IAR Embedded Workbench® IDE for RISC-V the IDE

IAR C-SPY® Debugger for RISC-V C-SPY, the debugger

IAR C-SPY® Simulator the simulator

IAR C/C++ Compiler™ for RISC-V the compiler

IAR Assembler™ for RISC-V the assembler

IAR ILINK Linker™ ILINK, the linker

IAR DLIB Runtime Environment™ the DLIB runtime environment

Table 2: Naming conventions used in this guide
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Part 1. Project
management and building
This part contains these chapters:

● The development environment

● Project management

● Building projects

● Editing
21

22

The development
environment
● Introduction to the IAR Embedded Workbench IDE

● Using and customizing the IDE

● Reference information on the IDE

Introduction to the IAR Embedded Workbench IDE
These topics are covered:

● Briefly about the IDE and the build toolchain

● Tools for analyzing and checking your application

● An extensible and modular environment

● The layout of the windows on the screen

BRIEFLY ABOUT THE IDE AND THE BUILD TOOLCHAIN

The IDE is the environment where all tools needed to build your application—the build
toolchain—are integrated: a C/C++ compiler, C/C++ libraries, an assembler, a linker,
library tools, an editor, a project manager with Make utility, and the IAR C-SPY®
Debugger. The tools used specifically for building your source code are referred to as
the build tools.

The toolchain that comes with your product package supports a specific microcontroller.
However, the IDE can simultaneously contain multiple toolchains for various
microcontrollers. This means that if you have IAR Embedded Workbench installed for
several microcontrollers, you can choose which microcontroller to develop for.

Note: The compiler, assembler, and linker and library tools can also be run from a
command line environment, if you want to use them as external tools in an already
established project environment.
AFE1_AFE2-1:1

23

24

Introduction to the IAR Embedded Workbench IDE

TOOLS FOR ANALYZING AND CHECKING YOUR
APPLICATION

IAR Embedded Workbench comes with various types of support for analyzing and
finding errors in your application, such as:

● Compiler and linker errors, warnings, and remarks

All diagnostic messages are issued as complete, self-explanatory messages. Errors
reveal syntax or semantic errors, warnings indicate potential problems, and remarks
(default off) indicate deviations from the standard. Double-click a message and the
corresponding source code construction is highlighted in the editor window. For
more information, see the IAR C/C++ Development Guide for RISC-V.

● Stack usage analysis during linking

Under the right circumstances, the linker can accurately calculate the maximum
stack usage for each call tree, such as cstartup, interrupt functions, RTOS tasks,
etc. For more information, see the IAR C/C++ Development Guide for RISC-V.

● C-STAT for static analysis

C-STAT is a static analysis tool that tries to find deviations from specific sets of rules,
where each rule specifies an unsafe source construct. The rules come from various
institutes, like MISRA (MISRA C:2004, MISRA C++:2008, and MISRA C:2012),
CWE, and CERT. For information about how to use C-STAT and the rules, see the
C-STAT® Static Analysis Guide.

● C-SPY debugging features such as, Profiling, Code Coverage, Trace, and Power
debugging. For more information, see the C-SPY® Debugging Guide for RISC-V.

AN EXTENSIBLE AND MODULAR ENVIRONMENT

Although the IDE provides all the features required for your project, you can also
integrate other tools. For example, you can:

● Use the Custom Build mechanism to add other tools to the toolchain, see Extending
the toolchain, page 109.

● Add IAR Visual State to the toolchain, which means that you can add state machine
diagrams directly to your project in the IDE.

● Use the Subversion version control system to keep track of different versions of
your source code. The IDE can attach to files in a Subversion working copy.

● Add an external analyzer, for example a lint tool, of your choice to be used on whole
projects, groups of files, or an individual file of your project. Typically, you might
want to perform a static code analysis on your source code, using the same settings
and set of source code files as when you compile. See Getting started using external
analyzers, page 31.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

The development environment

● Add external tools to the Tools menu, for convenient access from within the IDE.
For this reason, the menu might look different depending on which tools you have
preconfigured to appear as menu commands.

● Configure custom argument variables, which typically can be useful if you install a
third-party product and want to specify its include directory. Custom argument
variables can also be used for simplifying references to files that you want to be part
of your project.

THE LAYOUT OF THE WINDOWS ON THE SCREEN

In the IDE, each window that you open has a default location, which depends on other
currently open windows. You can position the windows and arrange a layout according
to your preferences. Each window can be either docked or floating.

You can dock each window at specific places, and organize them in tab groups. If you
rearrange the size of one docked window, the sizes of any other docked windows are
adjusted accordingly. You can also make a window floating, which means it is always
on top of other windows. The location and size of a floating window does not affect
other currently open windows. You can move a floating window to any place on your
screen, including outside of the IAR Embedded Workbench IDE main window.

Each time you open a previously saved workspace, the same windows are open, and they
have the same sizes and positions.

For every project that is executed in the C-SPY environment, a separate layout is saved.
In addition to the information saved for the workspace, information about all open
debugger-specific windows is also saved.

Note: The editor window is always docked. When you open the editor window, its
placement is decided automatically depending on other currently open windows. For
more information about how to work with the editor window, see Introduction to the IAR
Embedded Workbench editor, page 129.

Using and customizing the IDE
These tasks are covered:

● Running the IDE

● Working with example projects

● Organizing windows on the screen

● Specifying tool options

● Adding a button to a toolbar

● Removing a button from a toolbar
AFE1_AFE2-1:1

25

26

Using and customizing the IDE

● Showing/hiding toolbar buttons

● Recognizing filename extensions

● Getting started using external analyzers

● Invoking external tools from the Tools menu

● Adding command line commands to the Tools menu

● Using an external editor

See also Extending the toolchain, page 109.

For more information about customizations related to C-SPY, see the C-SPY®
Debugging Guide for RISC-V.

RUNNING THE IDE

Click the Start button on the Windows taskbar and choose All Programs>IAR EW for
RISC-V>IAR EW for RISC-V.

The file IarIdePm.exe is located in the common\bin directory under your IAR
installation, in case you want to start the program from the command line or from within
Windows Explorer.

Double-clicking the workspace filename

The workspace file has the filename extension eww. If you double-click a workspace
filename, the IDE starts.

If you have several versions of IAR Embedded Workbench installed, the workspace file
is opened by the most recently used version of your IAR Embedded Workbench that
uses that file type, regardless of which version the project file was created in.

WORKING WITH EXAMPLE PROJECTS

Example applications are provided with IAR Embedded Workbench. You can use these
examples to get started using the development tools from IAR. You can also use the
examples as a starting point for your application project.

The examples are ready to be used as is. They are supplied with ready-made workspace
files, together with source code files and all other related files.

To run an example project:
1 Choose Help>Information Center and click Example projects.

2 Browse to the example that matches the specific evaluation board or starter kit you are
using.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

The development environment

Click the Open Project button.

3 In the dialog box that appears, choose a destination folder for your project.

4 The available example projects are displayed in the workspace window. Select one of
the projects, and if it is not the active project (highlighted in bold), right-click it and
choose Set as Active from the context menu.

5 To view the project settings, select the project and choose Project>Options. Verify the
settings for General Options>Target>Device and Debugger>Setup>Driver. As for
other settings, the project is set up to suit the target system you selected.

For more information about the C-SPY options and how to configure C-SPY to interact
with the target board, see the C-SPY® Debugging Guide for RISC-V.

Click OK to close the project Options dialog box.

6 To compile and link the application, choose Project>Make or click the Make button.

7 To start C-SPY, choose Project>Download and Debug or click the Download and
Debug button.

8 Choose Debug>Go or click the Go button to start the application.

Click the Stop button to stop execution.
AFE1_AFE2-1:1

27

28

Using and customizing the IDE

ORGANIZING WINDOWS ON THE SCREEN

Use these methods to organize the windows on your screen:

● To disconnect a tabbed window from a tab group and place it as a separate window,
drag the tab away from the tab group.

● To make a window or tab group floating, double-click on the window’s title bar.

● When dragging a window to move it, press Ctrl to prevent it from docking.

To place a window in the same tab group as another open window, drag the window you
want to relocate and drop it on the other window. Drop it on one of the arrow buttons of
the organizer control, to control how to dock it.

See also The layout of the windows on the screen, page 25.

SPECIFYING TOOL OPTIONS

You can find commands for customizing the IDE on the Tools menu.

1 To display the IDE Options dialog box, choose Tools>Options to get access to a wide
variety of options:

2 To access the options to the right in the dialog box, select a category to the left.

For more information about various options for customizing the IDE, see Tools menu,
page 198.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

The development environment

ADDING A BUTTON TO A TOOLBAR

The buttons on the IDE toolbars provide shortcuts for commands on the IDE menus.

1 To add a new button to a toolbar in the main IDE window, click the Toolbar Options
button and choose Add or Remove Buttons>Customize.

2 The Customize dialog box opens on the Commands page.

In the Categories list, select the menu on which the command you want to add to the
toolbar is located.

3 Drag a command from the Commands list to one of the toolbars where you want to
insert the command as a button.

You can rearrange the existing buttons by dragging them to new positions.

Note: If you instead of adding a button want to show a button that has been hidden
temporarily, see Showing/hiding toolbar buttons, page 30.
AFE1_AFE2-1:1

29

30

Using and customizing the IDE

REMOVING A BUTTON FROM A TOOLBAR

1 To remove a button from any of the toolbars in the main window of the IDE, click the
Toolbar Options button and choose Add or Remove Buttons>Customize. Ignore the
Customize dialog box that is opened.

2 Right-click on the toolbar button that you want to remove and choose Delete from the
context menu.

Note: If you instead of removing a button want to hide it temporarily, see
Showing/hiding toolbar buttons, page 30.

SHOWING/HIDING TOOLBAR BUTTONS

As an alternative to removing a button from an IDE toolbar, you can toggle its visibility
on/off.

1 To hide a button temporarily from any of the toolbars in the main window of the IDE,
click the Toolbar Options button and choose Add or Remove Buttons>toolbar.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

The development environment

2 Select or deselect the command button you want to show/hide.

Note: If you want to delete a button entirely from the toolbar, see Removing a button
from a toolbar, page 30.

RECOGNIZING FILENAME EXTENSIONS

In the IDE, you can increase the number of recognized filename extensions. By default,
each tool in the build toolchain accepts a set of standard filename extensions. Also, if
you have source files with a different filename extension, you can modify the set of
accepted filename extensions.

To get access to the necessary commands, choose Tools>Filename Extensions.

See Filename Extensions dialog box, page 80.

To override the default filename extension from the command line, include an explicit
extension when you specify a filename.

GETTING STARTED USING EXTERNAL ANALYZERS

1 To add an external analyzer to the Project menu, choose Tools>Options to open the
IDE Options dialog box and select the Project>External Analyzers page.

2 To configure the invocation, click Add to open the External Analyzer dialog box.

Specify the details required for the analyzer you want to be able to invoke.
AFE1_AFE2-1:1

31

32

Using and customizing the IDE

Use Output matching patterns to specify (or choose from a list) three regular
expressions for identifying warning and error messages and to find references to source
file locations.

Click OK when you have finished.

For more information about this dialog box, see External Analyzer dialog box, page 68.

3 In the IDE Options dialog box, click OK.

4 Choose Project>Analyze Project and select the analyzer that you want to run,
alternatively choose Analyze File(s) to run the analyzer on individual files.

Each of the regular expressions that you specified will be applied on each line of output
from the external analyzer. Output from the analyzer is listed in the Build Log window.
You can double-click any line that matches the Location regular expression you
specified in the External Analyzer dialog box to jump to the corresponding location in
the editor window.

Note: If you want to stop the analysis before it is finished, click the Stop Build button.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

The development environment

INVOKING EXTERNAL TOOLS FROM THE TOOLS MENU

1 To add an external tool to the menu, for example Notepad, choose Tools>Configure
Tools to open the Configure Tools dialog box.

2 Fill in the text fields according to the screenshot. For more information about this
dialog box, see Configure Tools dialog box, page 76.

3 After you have entered the appropriate information and clicked OK, the menu
command you have specified is displayed on the Tools menu.

Note: You cannot use the Configure Tools dialog box to extend the toolchain in the
IDE. If you intend to add an external tool to the standard build toolchain, see Extending
the toolchain, page 109.
AFE1_AFE2-1:1

33

34

Using and customizing the IDE

ADDING COMMAND LINE COMMANDS TO THE TOOLS MENU

Command line commands and calls to batch files must be run from a command shell.
You can add command line commands to the Tools menu and execute them from there.

To add a command, for example Backup, to the Tools menu to make a copy of the entire
project directory to a network drive:

1 Choose Tools>Configure Tools to open the Configure Tools dialog box.

2 Type or browse to the cmd.exe command shell in the Command text box.

3 Type the command line command or batch file name in the Argument text box, for
example:

/C copy c:\project*.* F:

Alternatively, use an argument variable to allow relocatable paths:

/C copy $PROJ_DIR$*.* F:

The argument text should be specified as:

/C name

where name is the name of the command or batch file you want to run.

The /C option terminates the shell after execution, to allow the IDE to detect when the
tool has finished.

USING AN EXTERNAL EDITOR

The External Editor options—available by choosing
Tools>Options>Editor>External Editor—let you specify an external editor of your
choice.

Note: While you are debugging using C-SPY, C-SPY will not use the external editor for
displaying the current debug state. Instead, the built-in editor will be used.

To specify an external editor of your choice:
1 Select the option Use External Editor.

2 On the command line, specify the command to pass to the editor, that is, the name of
the editor and its path, for instance:

C:\Windows\NOTEPAD.EXE
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

The development environment

To send an argument to the external editor, type the argument in the Arguments field.
For example, type $FILE_PATH$ to start the editor with the active file (in editor, project,
or messages windows).

3 Click OK.

When you double-click a filename in the Workspace window, the file is opened by the
external editor.

Variables can be used in the arguments. For more information about the argument
variables that are available, see Argument variables, page 83.

Reference information on the IDE
Reference information about:

● IAR Embedded Workbench IDE window, page 37

● Customize dialog box, page 42

● Button Appearance dialog box, page 44

● Tool Output window, page 45

● Colors and Fonts options, page 46

● Edit Colors dialog box, page 49

● Edit Fonts dialog box, page 50

● Key Bindings options, page 51

● Language options, page 53

● Editor options, page 54
AFE1_AFE2-1:1

35

36

Reference information on the IDE

● Configure Auto Indent dialog box, page 58

● External Editor options, page 59

● Editor Setup Files options, page 60

● Editor Syntax Feedback options, page 61

● Messages options, page 62

● Troubleshooting options, page 63

● Project options, page 64

● External Analyzers options, page 66

● External Analyzer dialog box, page 68

● Source Code Control options (deprecated), page 70

● Debugger options, page 71

● Stack options, page 72

● Terminal I/O options, page 74

● Configure Tools dialog box, page 76

● Configure Viewers dialog box, page 78

● Edit Viewer Extensions dialog box, page 79

● Filename Extensions dialog box, page 80

● Filename Extension Overrides dialog box, page 81

● Edit Filename Extensions dialog box, page 82

● Product Info dialog box, page 82

● Argument variables, page 83

● Configure Custom Argument Variables dialog box, page 85
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

The development environment

IAR Embedded Workbench IDE window
The main window of the IDE is displayed when you launch the IDE.

The figure shows the window and its default layout.

Menu bar

The menu bar contains:

File
Commands for opening source and project files, saving and printing, and exiting
from the IDE.

Edit
Commands for editing and searching in editor windows and for enabling and
disabling breakpoints in C-SPY.

View
Commands for opening windows and controlling which toolbars to display.
AFE1_AFE2-1:1

37

38

Reference information on the IDE

Project
Commands for adding files to a project, creating groups, and running the IAR
tools on the current project.

Simulator
Commands specific for the C-SPY simulator. This menu is only available when
you have selected the simulator driver in the Options dialog box.

C-SPY hardware driver
Commands specific for the C-SPY hardware debugger driver you are using, in
other words, the C-SPY driver that you have selected in the Options dialog box.
For some IAR Embedded Workbench products, the name of the menu reflects
the name of the C-SPY driver you are using and for others, the name of the menu
is Emulator.

Tools
User-configurable menu to which you can add tools for use with the IDE.

Window
Commands for manipulating the IDE windows and changing their arrangement
on the screen.

Help
Commands that provide help about the IDE.

For more information about each menu, see Menus, page 183.

Toolbar

The buttons on the IDE toolbar provide shortcuts for the most useful commands on the
IDE menus, and a text box for typing a string to do a quick search. For information about
how to add and remove buttons on the toolbars, see Using and customizing the IDE, page
25.

For a description of any button, point to it with the mouse pointer. When a command is
not available, the corresponding toolbar button is dimmed, and you will not be able to
click it.

The toolbars are dockable—drag and drop to rearrange them.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

The development environment

This figure shows the menu commands corresponding to each of the toolbar buttons:

Note: When you start C-SPY, the Download and Debug button will change to a Make
and Restart Debugger button , and the Debug without Downloading will change
to a Restart Debugger button .

Toolbar Options
Click the Toolbars Options button to open the Toolbars Options menu.

Context menu

This context menu is available by right-clicking a toolbar button when the Customize
dialog box is open. For information about how to open this dialog box, see Customize
dialog box, page 42.

These commands are available:

Reset to Default
Hides the button icon and displays the name of the button instead.

Copy Button Image
Copies the button icon and stores the image on the clipboard.

Delete
Removes the button from the toolbar.
AFE1_AFE2-1:1

39

40

Reference information on the IDE

Button Appearance
Displays the Button Appearance dialog box, see Button Appearance dialog
box, page 44.

Image
Displays the button only as an icon.

Text
Displays the button only as text.

Image and Text
Displays the button both as an icon and as text.

Start Group
Inserts a delimiter to the left of the button.

Toolbars Options menu

This menu and its submenus are available by clicking the Toolbars Options button on
the far right end of a toolbar:

These commands are available:

Add or Remove Buttons
Opens a submenu.

toolbar
Opens a submenu that lists all command buttons on the toolbar. Select or
deselect a checkbox to show/hide the button on the toolbar. Choose Reset
Toolbar to restore the toolbar to its default appearance.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

The development environment

Customize
Displays the Customize dialog box, see Customize dialog box, page 42.

Status bar

The status bar at the bottom of the window can be enabled from the View menu.

The status bar displays:

● Source browser progress information

● The number of errors and warnings generated during a build

● The position of the insertion point in the editor window. When you edit, the status
bar shows the current line and column number containing the insertion point.

● The character encoding

● The state of the modifier keys Caps Lock, Num Lock, and Overwrite.

● If your product package is available in more languages than English, a flag in the
corner shows the language version you are using. Click the flag to change the
language. The change will take force the next time you launch the IDE.
AFE1_AFE2-1:1

41

42

Reference information on the IDE

Customize dialog box
The Customize dialog box is available by clicking the Toolbars Options button on the
far right end of the a toolbar in the main IDE window and choosing Add or Remove
Buttons>Customize.

These are the options on the Commands page of the Customize dialog box:

Categories

Lists the menus in the IDE. Select a menu name to make the commands on that menu
available for adding as buttons to a toolbar. Select New Menu to add a custom
drop-down menu to a toolbar.

Commands

Lists menu commands that can be dragged to one of the toolbars and inserted as buttons.
If New Menu is the selected Category, the command New Menu can be dragged to a
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

The development environment

toolbar to add a custom drop-down menu to the toolbar. Commands from the
Commands list can then be dragged to populate the custom menu.

These are the options on the Options page of the Customize dialog box:

Show Screen Tips on toolbars

Enables tooltips for the buttons on the toolbars. The tooltips contain the display names
of the buttons.

Show shortcut keys in Screen Tips

Includes the keyboard shortcut in the tooltip text for the buttons on the toolbar.

Large Icons

Increases the size of the buttons on the toolbars.
AFE1_AFE2-1:1

43

44

Reference information on the IDE

These are the options on the Toolbars page of the Customize dialog box:

Toolbars

Select/deselect a toolbar to show/hide it in the main IDE window. The menu bar cannot
be hidden.

Reset

Restores the selected toolbar to its default appearance.

Reset All

This button is disabled.

Show text labels

Displays the names of the buttons on the selected toolbar.

Button Appearance dialog box
The Button Appearance dialog box is available by right-clicking a toolbar button when
the Customize dialog box is open and choosing Button Appearance from the context
menu.

Use this dialog box to change the display name of a toolbar button.

Image only

This option has no effect.

Text only

Enables the text box Button text.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

The development environment

Image and text

Enables the text box Button text.

Use Default Image

This option is disabled.

Select User-defined Image

This option is disabled.

New

This button is disabled.

Edit

This button is disabled.

Button text

The display name of the toolbar button. Edit the text to change the name.

Tool Output window
The Tool Output window is available by choosing View>Messages>Tool Output.

This window displays any messages output by user-defined tools in the Tools menu,
provided that you have selected the Redirect to Output Window option in the
Configure Tools dialog box, see Configure Tools dialog box, page 76. When opened,
this window is, by default, grouped together with the other message windows.

Context menu

This context menu is available:
AFE1_AFE2-1:1

45

46

Reference information on the IDE

These commands are available:

Copy
Copies the contents of the window.

Select All
Selects the contents of the window.

Clear All
Deletes the contents of the window.

Colors and Fonts options
The Colors and Fonts options are available by choosing Tools>Options.

Use this page to configure the colors and fonts used for the windows in the IDE.

Themes

A colors and fonts theme is a combination of font and color settings for the IDE
windows. Select the theme you want to use and either click OK to close the dialog box
and apply the theme, or use the buttons in the dialog box to modify the theme. On the
right-hand side of the dialog box is a preview of the settings you make. You can use one
of the predefined themes or create your own custom theme.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

The development environment

The predefined themes are:

Default
The theme used in the IDE unless you change it.

Classic
The colors and fonts match older versions of the IAR Embedded Workbench
IDE.

High contrast
A theme with a dark background, and very bright font colors.

Dark mode
A theme with a dark background and matching font colors.

Solarized
A theme with soft colors that many find comfortable to look at.

Dark Solarized
A darker version of the Solarized theme.

Color Accessibility
Color combinations intended to assist users with color vision deficiencies.

User settings theme
If you had defined custom color settings in a version of IAR Embedded
Workbench installed before the current version, it will appear here as a user
settings theme.

To create your own custom theme, select the predefined theme you like best and click
Duplicate, and modify the duplicated theme.

Colors

Opens the Edit Colors dialog box where you can change the colors used in the editor
window, see Edit Colors dialog box, page 49.

Fonts

Opens the Edit Fonts dialog box where you can change the fonts used in all IDE
windows, see Edit Fonts dialog box, page 50.

Reset

Restores the selected modified theme to its default setting.
AFE1_AFE2-1:1

47

48

Reference information on the IDE

Duplicate

Creates a copy of the selected theme.

Remove

Deletes the selected custom theme.

Rename

Makes the name of the selected custom theme editable.

Import

Opens a standard Windows Open dialog box to let you import an XML file with a saved
colors and fonts theme.

Export

Opens a standard Windows Save dialog box to let you save a colors and fonts theme as
an XML file. Save it as a back-up or share it with colleagues.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

The development environment

Edit Colors dialog box
The Edit Colors dialog box is available from the Colors and Fonts category in the IDE
Options dialog box.

Use this dialog box to customize the colors used by the selected theme in the editor
window. A preview is shown of all the changes you make.

Syntax Coloring

Select the syntactic source code element that you want to modify. The User keyword
element corresponds to the keywords that you have listed in the custom keyword file,
see Editor Setup Files options, page 60.

Color

Lists colors to choose from. Automatic matches the standard color set in the Windows
preferences. The current color has an asterisk (*) next to its name.

Type style

Select Normal, Bold, or Italic style for the selected element.
AFE1_AFE2-1:1

49

50

Reference information on the IDE

Background Color

Click to set the background color of the editor window. Automatic matches the standard
color set in the Windows preferences. The current color has an asterisk (*) next to its
name.

Edit Fonts dialog box
The Edit Fonts dialog box is available from the Colors and Fonts category in the IDE
Options dialog box.

Use this dialog box to customize the fonts used by the selected theme in the IDE
windows. Previews are shown of all the changes you make.

Proportional Font

Opens a font picker where you can select which proportional (variable-width) font and
size to use for plain text in all windows.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

The development environment

Fixed Font

Opens a font picker where you can select which fixed-width (monospace) font and size
to use for values and addresses in all windows except the editor window.

Editor Font

Opens a font picker where you can select which fixed-width (monospace) font and size
to use in the editor window.

Apply font changes to all themes

Select this option to apply the changes you have made to all themes, not just the one that
was selected when you opened the Edit Fonts dialog box.

Key Bindings options
The Key Bindings options are available by choosing Tools>Options.

Use this page to customize the shortcut keys used for the IDE menu commands.

Menu

Selects the menu to be edited. Any currently defined shortcut keys for the selected menu
are listed below the Menu drop-down list.

List of commands

Selects the menu command you want to configure your own shortcut keys for, from this
list of all commands available on the selected menu.
AFE1_AFE2-1:1

51

52

Reference information on the IDE

Press shortcut key

Type the key combination you want to use as shortcut key for the selected command.
You cannot set or add a shortcut if it is already used by another command.

Primary

Choose to:

Set
Saves the key combination in the Press shortcut key field as a shortcut for the
selected command in the list.

Clear
Removes the listed primary key combination as a shortcut for the selected
command in the list.

The new shortcut will be displayed next to the command on the menu.

Alias

Choose to:

Add
Saves the key combination in the Press shortcut key field as an alias—a hidden
shortcut—for the selected command in the list.

Clear
Removes the listed alias key combination as a shortcut for the selected
command in the list.

The new shortcut will be not displayed next to the command on the menu.

Reset All

Reverts the shortcuts for all commands to the factory settings.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

The development environment

Language options
The Language options are available by choosing Tools>Options.

Use this page to specify the language to be used in windows, menus, dialog boxes, etc.

Language

Selects the language to be used. The available languages depend on your product
package, English (United States) and Japanese (Japan).

Note: If you have installed IAR Embedded Workbench for several different toolchains
in the same directory, the IDE might be in mixed languages if the toolchains are
available in different languages.
AFE1_AFE2-1:1

53

54

Reference information on the IDE

Editor options
The Editor options are available by choosing Tools>Options.

Use this page to configure the editor. For more information about the editor, see Editing,
page 129.

Tab size

Specify the width of a tab character, in terms of character spaces.

Indent size

Specify the number of spaces to be used when tabulating with an indentation.

Tab Key Function

Controls what happens when you press the Tab key. Choose between:

Insert tab
Inserts a tab character when the Tab key is pressed.

Indent with spaces
Inserts an indentation (space characters) when the Tab key is pressed.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

The development environment

Show right margin

Displays the area of the editor window outside the right margin as a light gray field. If
this option is selected, you can set the width of the text area between the left margin and
the right margin. Choose to set the width based on:

Printing edge
Bases the width on the printable area, which is taken from the general printer
settings.

Columns
Bases the width on the number of columns.

File Encoding

Controls file encoding. Choose between:

Default character encoding
Selects the character encoding to be used by default for new files. Choose
between:

System (uses the Windows settings)
Western European
UTF-8
Japanese (Shift-JIS)
Chinese Simplified (GB2312)
Chinese Traditional (Big5)
Korean (Unified Hangul Code)
Arabic
Central European
Greek
Hebrew
Thai
Baltic
Russian
Vietnamese

Note that if you have specified a character encoding from the editor window
context menu, that encoding will override this setting for the specific document.

Auto-detect character encoding
Detects automatically which character encoding that should be used when you
open an existing document.
AFE1_AFE2-1:1

55

56

Reference information on the IDE

EOL characters
Selects which line break character to use when editor documents are saved.
Choose between:

PC (default), Windows and DOS end of line characters.

UNIX, UNIX end of line characters.

Preserve, the same end of line character as the file had when it was opened,
either PC or UNIX. If both types or neither type are present in the opened file,
PC end of line characters are used.

Syntax highlighting

Makes the editor display the syntax of C or C++ applications in different text styles.

For more information about syntax highlighting, see Edit Colors dialog box, page 49
and Syntax coloring, page 136.

Auto indent

Makes the editor indent the new line automatically when you press Return. For C/C++
source files, click the Configure button to configure the automatic indentation, see
Configure Auto Indent dialog box, page 58. For all other text files, the new line will have
the same indentation as the previous line.

Show line numbers

Makes the editor display line numbers in the editor window.

Scan for changed files

Makes the editor reload files that have been modified by another tool.

If a file is open in the IDE, and the same file has concurrently been modified by another
tool, the file will be automatically reloaded in the IDE. However, if you already started
to edit the file, you will be prompted before the file is reloaded.

Show bookmarks

Makes the editor display a column on the left side in the editor window, with icons for
compiler errors and warnings, Find in Files results, user bookmarks, and breakpoints.

Show fold margin

Makes the editor display the fold margin in the left side of the editor window. For more
information, see Code folding, page 132.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

The development environment

Enable virtual space

Allows the insertion point to move outside the text area.

Remove trailing blanks

Removes trailing blanks from files when they are saved to disk. Trailing blanks are blank
spaces between the last non-blank character and the end of line character.

Auto code completion and parameter hints

Enables code completion and parameter hints. For more information, see Editing a file,
page 130.

Show source browser tooltips

Toggles the display of detailed information about the identifier that the cursor currently
hovers over.

Show line break characters

Toggles the display of carriage return and line feed characters in the editor window.

Show whitespaces

Toggles the display of period (.) characters for single blank spaces and arrow (—>)
characters for tabs in the editor window.

Show inactive code

Using preprocessor symbols, you can define which code that should be compiled for
various build configurations. This option toggles the display of inactive code—code that
will not be compiled—in the editor window. The feature:

● requires that the option Generate browse information has been selected in the
Project category

● only works for files in the active project.
AFE1_AFE2-1:1

57

58

Reference information on the IDE

Configure Auto Indent dialog box
The Configure Auto Indent dialog box is available from the Editor category in the
IDE Options dialog box.

Use this dialog box to configure the editor’s automatic indentation of C/C++ source
code.

For more information about indentation, see Indenting text automatically, page 131.

Opening Brace (a)

Specify the number of spaces used for indenting an opening brace.

Body (b)

Specify the number of additional spaces used for indenting code after an opening brace,
or a statement that continues onto a second line.

Label (c)

Specify the number of additional spaces used for indenting a label, including case labels.

Sample code

This area reflects the settings made in the text boxes for indentation. All indentations are
relative to the preceding line, statement, or other syntactic structures.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

The development environment

External Editor options
The External Editor options are available by choosing Tools>Options.

Use this page to specify an external editor of your choice.

See also Using an external editor, page 34.

Use External Editor

Enables the use of an external editor.

Editor

Specify the filename and path of your external editor. A browse button is available.

Arguments

Specify any arguments to be passed to the editor.
AFE1_AFE2-1:1

59

60

Reference information on the IDE

Editor Setup Files options
The Editor Setup Files options are available by choosing Tools>Options.

Use this page to specify setup files for the editor.

Use Custom Keyword File

Specify a text file containing keywords that you want the editor to highlight. For
information about syntax coloring, see Syntax coloring, page 136.

Use Code Templates

Specify a text file with code templates that you can use for inserting frequently used
code in your source file. For information about using code templates, see Using and
adding code templates, page 134.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

The development environment

Editor Syntax Feedback options
The Editor Syntax Feedback options are available by choosing Tools>Options.

Use this page to specify how much syntax feedback you want in the editor, in the form
of squiggly lines and tooltips. Syntax feedback is only available if the option Generate
browse information has been selected in the Project category of the IDE Options
dialog box.

For more information, see under Editor window, page 141.

Syntax Feedback Level

Specify the desired feedback level. Choose between:

None
The editor gives no feedback on the code in the editor windows.

All
The editor gives all available feedback on the code in the editor windows,
including purely informational feedback.

Warnings
The editor warns about syntactic problems and indicates coding errors.

Errors
The editor indicates coding errors.
AFE1_AFE2-1:1

61

62

Reference information on the IDE

Messages options
The Messages options are available by choosing Tools>Options.

Use this page to re-enable suppressed dialog boxes.

Enable All Dialogs

Enables all dialog boxes you have suppressed by selecting a Don’t show again check
box, for example:
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

The development environment

Troubleshooting options
The Troubleshooting options are available by choosing Tools>Options.

Use this page to create and save logs of IDE operations.

Note: The IDE log files can become quite large, so you should only enable logging
when asked to do so by IAR Technical Support.

Enable IDE logging

Creates log files of IDE operations. If you contact IAR Technical Support over repeated
performance issues, you might be asked to generate and submit IDE logs to help the
support engineers analyze the problem. To interpret the logs, detailed knowledge of the
internal structure of the Embedded Workbench IDE is required.

Logging directory

Specify a location for the log files.
AFE1_AFE2-1:1

63

64

Reference information on the IDE

Project options
The Project options are available by choosing Tools>Options.

Use this page to set options for the Make and Build commands.

Stop build operation on

Selects when the build operation should stop. Choose between:

Never
Never stops.

Errors
Stops on errors.

Save editor windows before building

Selects when the editor windows should be saved before a build operation. Choose
between:

Never
Never saves.

Ask
Prompts before saving.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

The development environment

Always
Always saves before Make or Build.

Save workspace and projects before building

Selects when a workspace and included projects should be saved before a build
operation. Choose between:

Never
Never saves.

Ask
Prompts before saving.

Always
Always saves before Make or Build.

Make before debugging

Selects when a Make operation should be performed as you start a debug session.
Choose between:

Never
Never performs a Make operation before a debug session.

Ask
Prompts before performing a Make operation.

Always
Always performs a Make operation before a debug session.

Reload last workspace at startup

Loads the last active workspace automatically the next time you start the IAR Embedded
Workbench IDE.

Play a sound after build operations

Plays a sound when the build operations are finished.

Generate browse information

Enables the generation of source browse information to display in the Source Browser
window, see Source Browser window, page 162. In the Browse processes text box,
specify the number of processes you want to use. Using too many processes might result
in a less responsive IDE.
AFE1_AFE2-1:1

65

66

Reference information on the IDE

No source browser and build status updates when the IDE is not the foreground process

Halts the source browser when the IDE is not the foreground process. This also means
that the build status is no longer updated in the Workspace window. This option is
useful, for example, if you are using a laptop and want to reduce power consumption.

Enable project connections

Enables the support for setting up live project connections, see Add Project Connection
dialog box, page 106.

Enable parallel build

Enables the support for parallel build. The compiler runs in several parallel processes to
better use the available cores in the CPU. In the Processes text box, specify the number
of processes you want to use. Using all available cores might result in a less responsive
IDE.

External Analyzers options
The External Analyzers options are available by choosing Tools>Options.

Use this page to add an external analyzer to the standard build toolchain. External
analyzers operate on C/C++ source code in the user project. Header files or assembler
source code files are not analyzed.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

The development environment

For more information, see Getting started using external analyzers, page 31.

Analyzers

Lists the external analyzers that you have added to the standard build toolchain.

Move Up

Moves the analyzer you have selected in the list one step up. This order is reflected on
the Project menu.

Move Down

Moves the analyzer you have selected in the list one step down. This order is reflected
on the Project menu.

Add

Displays the External Analyzer dialog box where you can add a new analyzer to the
toolchain and configure the invocation of the analyzer.

Delete

Deletes the selected analyzer from the list of analyzers.

Edit

Displays the External Analyzer dialog box where you can edit the invocation details of
the selected analyzer.
AFE1_AFE2-1:1

67

68

Reference information on the IDE

External Analyzer dialog box
The External Analyzer dialog box is available by choosing
Tools>Options>Project>External Analyzers.

Use this dialog box to configure the invocation of the external analyzer that you want to
add to the standard build toolchain.

External analyzers operate on C/C++ source code in the user project. Header files or
assembler source code files are not analyzed.

For more information, see Getting started using external analyzers, page 31.

Name

Specify the name of the external analyzer. Note that the name must be unique.

Path

Specify the path to the analyzer’s executable file. A browse button is available.

Arguments

Specify the arguments that you want to pass to the analyzer.

Note that you can use argument variables for specifying the arguments, see Argument
variables, page 83.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

The development environment

Location

Specify a regular expression used for finding source file locations. The regular
expression is applied to each output line which will appear as text in the Build Log
window. You can double-click a line that matches the regular expression you specify.

You can use the argument variables $FILE_NAME$, $LINE_NUMBER$, and
$COLUMN_NUMBER$ to identify a filename, line number, and column number,
respectively. Choose one of the predefined expressions:

\"?$FILE_NAME$\"?:$LINE_NUMBER$
Will, for example, match a location of the form file.c:17.

\"?$FILE_NAME$\"? +$LINE_NUMBER$
Will, for example, match a location of the form file.c17.

\"?$FILE_NAME$\"?
Will, for example, match a location of the form file.c.

Alternatively, you can specify your own expression. For example, the regular expression
Msg: $FILE_NAME$ @ $LINE_NUMBER$, when applied to the output string
Msg:MySourceFile.c @ 32, will identify the file as MySourceFile.c, and the line
number as 32.

Warning

Any output line that matches this expression is tagged with the warning symbol.

For example, the expression (?i)warning(?-i): will identify any line that contains
the string warning: (regardless of case) as a warning.

Error

Any output line that matches this expression is tagged with the error symbol. Errors have
precedence over warnings.

For example, the expression (?i)error(?-i): will identify any line that contains the
string error: (regardless of case) as an error.
AFE1_AFE2-1:1

69

70

Reference information on the IDE

Source Code Control options (deprecated)
The Source Code Control options are available by choosing Tools>Options.

Note: This is a deprecated feature which is not supported for IAR Embedded
Workbench for RISC-V.

Keep items checked out when checking in

This option is not supported by IAR Embedded Workbench for RISC-V.

Save editor windows before performing source code control commands

This option is not supported by IAR Embedded Workbench for RISC-V.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

The development environment

Debugger options
The Debugger options are available by choosing Tools>Options.

Use this page to configure the debugger environment.

When source resolves to multiple function instances

Some source code corresponds to multiple code instances, for example template code.
When specifying a source location in such code, for example when setting a source
breakpoint, you can make C-SPY act on all instances or a subset of instances. Use the
Automatically choose all instances option to let C-SPY act on all instances without
asking first.

Step into functions

Controls the behavior of the Step Into command. Choose between:

All functions
Makes the debugger step into all functions.

Functions with source only
Makes the debugger step only into functions for which the source code is
known. This helps you avoid stepping into library functions or entering
disassembly mode debugging.
AFE1_AFE2-1:1

71

72

Reference information on the IDE

STL container expansion

Specify how many elements are shown initially when a container value is expanded in,
for example, the Watch window.

Update intervals

Specify how often the contents of the Live Watch window and the Memory window
are updated in milliseconds.

These text boxes are only available if the C-SPY driver you are using has access to the
target system memory while executing your application.

Default integer format

Selects the default integer format in the Watch, Locals, and related windows.

Stack options
The Stack options are available by choosing Tools>Options or from the context menu
in the Stack window.

Use this page to set options specific to the Stack window.

Enable graphical stack display and stack usage tracking

Enables the graphical stack bar available at the top of the Stack window. It also enables
detection of stack overflows. For more information about the stack bar and the
information it provides, see the C-SPY® Debugging Guide for RISC-V.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

The development environment

% stack usage threshold
Specify the percentage of stack usage above which C-SPY should issue a
warning for stack overflow.

Warn when exceeding stack threshold
Makes C-SPY issue a warning when the stack usage exceeds the threshold
specified in the % stack usage threshold option.

Warn when stack pointer is out of bounds

Makes C-SPY issue a warning when the stack pointer is outside the stack memory range.

Stack pointer(s) not valid until program reaches

Specify a location in your application code from where you want the stack display and
verification to occur. The Stack window will not display any information about stack
usage until execution has reached this location.

By default, C-SPY will not track the stack usage before the main function. If your
application does not have a main function, for example, if it is an assembler-only
project, you should specify your own start label. If this option is selected, after each reset
C-SPY keeps a breakpoint on the given location until it is reached.

Typically, the stack pointer is set up in the system initialization code cstartup, but not
necessarily from the first instruction. Select this option to avoid incorrect warnings or
misleading stack display for this part of the application.

Warnings

Selects where warnings should be issued. Choose between:

Log
Warnings are issued in the Debug Log window.

Log and alert
Warnings are issued in the Debug Log window and as alert dialog boxes.

Limit stack display to

Limits the amount of memory displayed in the Stack window by specifying a number
of bytes, counting from the stack pointer. This can be useful if you have a big stack or
if you are only interested in the topmost part of the stack. Using this option can improve
the Stack window performance, especially if reading memory from the target system is
slow. By default, the Stack window shows the whole stack, or in other words, from the
stack pointer to the bottom of the stack. If the debugger cannot determine the memory
range for the stack, the byte limit is used even if the option is not selected.
AFE1_AFE2-1:1

73

74

Reference information on the IDE

Note: The Stack window does not affect the execution performance of your application,
but it might read a large amount of data to update the displayed information when the
execution stops.

Terminal I/O options
The Terminal I/O options are available by choosing Tools>Options when C-SPY is
running.

Use this page to configure the C-SPY terminal I/O functionality.

Input mode

Controls how the terminal I/O input is read. Choose between:

Keyboard
Makes the input characters be read from the keyboard. Choose between:

● Buffered, Buffers input characters

● Direct, Does not buffer input characters

File
Makes the input characters be read from a file. Choose between:

● Text, Reads input characters from a text file
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

The development environment

● Binary, Reads input characters from a binary file

A browse button is available for locating the input file.

Input echoing

Determines whether to echo the input characters and where to echo them. Choose
between:

Log file
Echoes the input characters in the Terminal I/O log file. Requires that you have
enabled the option Debug>Logging>Set Terminal I/O Log File>Enable
Terminal I/O log file.

Terminal I/O window
Echoes the input characters in the Terminal I/O window.

Encoding

Determines the encoding used for terminal input and output. Choose between:

System
Uses the Windows settings.

UTF-8
Uses the UTF-8 encoding.

Show target reset in Terminal I/O window

Displays a message in the C-SPY Terminal I/O window when the target resets.
AFE1_AFE2-1:1

75

76

Reference information on the IDE

Configure Tools dialog box
The Configure Tools dialog box is available from the Tools menu.

Use this dialog box to specify a tool of your choice to add to the Tools menu, for
example Notepad:

Note: If you intend to add an external tool to the standard build toolchain, see Extending
the toolchain, page 109.

You can use variables in the arguments, which allows you to set up useful tools such as
interfacing to a command line revision control system, or running an external tool on the
selected file.

To add a command line command or batch file to the Tools menu:
1 Type or browse to the cmd.exe command shell in the Command text box.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

The development environment

2 Type the command line command or batch file name in the Argument text box as:

/C name

where name is the name of the command or batch file you want to run.

The /C option terminates the shell after execution, to allow the IDE to detect when the
tool has finished.

For an example, see Adding command line commands to the Tools menu, page 34.

New

Creates a stub for a new menu command for you to configure using this dialog box.

Delete

Removes the command selected in the Menu Content list.

Menu Content

Lists all menu commands that you have defined.

Menu Text

Specify the name of the menu command. If you add the & sign anywhere in the name,
the following letter, N in this example, will appear as the mnemonic key for this
command. The text you specify will be reflected in the Menu Content list.

Command

Specify the tool and its path, to be run when you choose the command from the menu.
A browse button is available.

Argument

Optional. Specify an argument for the command.

Initial Directory

Specify an initial working directory for the tool.

Redirect to Output window

Makes the IDE send any console output from the tool to the Tool Output page in the
message window. Tools that are launched with this option cannot receive any user input,
for instance input from the keyboard.

Tools that require user input or make special assumptions regarding the console that they
execute in, will not work at all if launched with this option.
AFE1_AFE2-1:1

77

78

Reference information on the IDE

Prompt for Command Line

Makes the IDE prompt for the command line argument when the command is chosen
from the Tools menu.

Tool Available

Specifies in which context the tool should be available. Choose between:

● Always
● When debugging
● When not debugging.

Configure Viewers dialog box
The Configure Viewers dialog box is available from the Tools menu.

This dialog box lists overrides to the default associations between the document formats
that IAR Embedded Workbench can handle and viewer applications.

Display area

This area contains these columns:

Extensions
Explicitly defined filename extensions of document formats that IAR
Embedded Workbench can handle.

Action
The viewer application that is used for opening the document type. Explorer
Default means that the default application associated with the specified type in
Windows Explorer is used.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

The development environment

New

Displays the Edit Viewer Extensions dialog box, see Edit Viewer Extensions dialog
box, page 79.

Edit

Displays the Edit Viewer Extensions dialog box, see Edit Viewer Extensions dialog
box, page 79.

Delete

Removes the association between the selected filename extensions and the viewer
application.

Import

Opens a file browser where you can locate and import a File Viewer Association file in
XML format. This file contains associations between document formats and viewer
applications.

Export

Displays a standard Save As dialog box to let you save the current associations between
document formats and viewer applications in the Configure Viewers dialog box to a file
in XML format.

Edit Viewer Extensions dialog box
The Edit Viewer Extensions dialog box is available from the Configure Viewers
dialog box.

Use this dialog box to specify how to open a new document type or edit the setting for
an existing document type.
AFE1_AFE2-1:1

79

80

Reference information on the IDE

File name extensions

Specify the filename extension for the document type—including the separating
period (.).

Action

Selects how to open documents with the filename extension specified in the Filename
extensions text box. Choose between:

Built-in text editor
Opens all documents of the specified type with the IAR Embedded Workbench
text editor.

Use file explorer associations
Opens all documents of the specified type with the default application
associated with the specified type in Windows Explorer.

Command line
Opens all documents of the specified type with the viewer application you type
or browse your way to. You can give any command line options you would like
to the tool, for instance, type $FILE_PATH$ after the path to the viewer
application to start the viewer with the active file (in editor, project, or messages
windows).

Filename Extensions dialog box
The Filename Extensions dialog box is available from the Tools menu.

Use this dialog box to customize the filename extensions recognized by the build tools.
This is useful if you have many source files with different filename extensions.

Toolchain

Lists the toolchains for which you have an IAR Embedded Workbench installed on your
host computer. Select the toolchain you want to customize filename extensions for.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

The development environment

Note the * character indicates user-defined overrides. If there is no * character, factory
settings are used.

Edit

Displays the Filename Extension Overrides dialog box, see Filename Extension
Overrides dialog box, page 81.

Filename Extension Overrides dialog box
The Filename Extension Overrides dialog box is available from the Filename
Extensions dialog box.

This dialog box lists filename extensions recognized by the build tools.

Display area

This area contains these columns:

Tool
The available tools in the build chain.

Factory Setting
The filename extensions recognized by default by the build tool.

Override
The filename extensions recognized by the build tool if there are overrides to the
default setting.

Edit

Displays the Edit Filename Extensions dialog box for the selected tool.
AFE1_AFE2-1:1

81

82

Reference information on the IDE

Edit Filename Extensions dialog box
The Edit File Extensions dialog box is available from the Filename Extension
Overrides dialog box.

This dialog box lists the filename extensions recognized by the IDE and lets you add
new filename extensions.

Factory setting

Lists the filename extensions recognized by default.

Override

Specify the filename extensions you want to be recognized. Extensions can be separated
by commas or semicolons, and should include the leading period.

Product Info dialog box
The Product Info dialog box is available from the Help menu.

This dialog box lists the version number of your IAR Embedded Workbench product
installation and the shared components.

Note: The initial digit of the version number of the shared components (8 in this figure)
is reflected by the default installation directory x:\Program Files\IAR
Systems\Embedded Workbench 8.n\.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

The development environment

Details

Opens a dialog box which lists the version numbers of the various components part of
your product installation.

Argument variables
You can use argument variables for paths and arguments, for example when you specify
include paths in the Options dialog box or whenever there is a need for a macro-like
expansion that depends on the current context, for example in arguments to tools. You
can use a wide range of predefined argument variables as well as create your own, see
Configure Custom Argument Variables dialog box, page 85. These are the predefined
argument variables:

Variable Description

$COMPILER_ARGS$ All compiler options except for the filename that is used when
compiling using the compiler. Note that this argument variable is
restricted to the Arguments text box in the External Analyzer
dialog box.

$CONFIG_NAME$ The name of the current build configuration, for example Debug or
Release.

CUR_DIR Current directory

CUR_LINE Current line

$DATE$ Today’s date, formatted according to the current locale. Note that
this might make the variable unsuited for use in file paths.

EW_DIR Top directory of IAR Embedded Workbench, for example
c:\Program Files\IAR Systems\Embedded Workbench
N.n

EXE_DIR Directory for executable output

$FILE_BNAME$ Filename without extension

$FILE_BPATH$ Full path without extension

$FILE_DIR$ Directory of active file, no filename

$FILE_FNAME$ Filename of active file without path

$FILE_PATH$ Full path of active file (in editor, project, or message window)

$LIST_DIR$ Directory for list output

OBJ_DIR Directory for object output

$PROJ_DIR$ Project directory

$PROJ_FNAME$ Project filename without path

Table 3: Argument variables
AFE1_AFE2-1:1

83

84

Reference information on the IDE

Argument variables can also be used on some pages in the IDE Options dialog box, see
Tools menu, page 198.

$PROJ_PATH$ Full path of project file

$TARGET_DIR$ Directory of primary output file

$TARGET_BNAME$ Filename without path of primary output file and without extension

$TARGET_BPATH$ Full path of primary output file without extension

$TARGET_FNAME$ Filename without path of primary output file

$TARGET_PATH$ Full path of primary output file

$TOOLKIT_DIR$ Directory of the active product, for example c:\Program
Files\IAR Systems\Embedded Workbench N.n\riscv

$USER_NAME$ Your host login name

WS_DIR The active workspace directory (only available in the IDE, not when
using iarbuild.exe or cspybat.exe)

$_ENVVAR_$ The Windows environment variable ENVVAR. Any name within $_
and _$ will be expanded to that system environment variable.

MY_CUSTOM_VAR Your own argument variable, see Configure Custom Argument Variables
dialog box, page 85. Any name within $ and $ will be expanded to the
value you have defined.

Variable Description

Table 3: Argument variables (Continued)
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

The development environment

Configure Custom Argument Variables dialog box
The Configure Custom Argument Variables dialog box is available from the Tools
menu.

Use this dialog box to define and edit your own custom argument variables. Typically,
this can be useful if you install a third-party product and want to specify its include
directory by using argument variables. Custom argument variables can also be used for
simplifying references to files that you want to be part of your project.

Custom argument variables have one of two different scopes:

● Workspace-local variables, which are associated with a specific workspace and can
only be seen by the workspace that was loaded when the variables were created.

● Global variables, which are available for use in all workspaces

You can organize your variables in named groups.

Workspace and Global tabs

Click the tab with the scope you want for your variable:

Workspace
● Both global and workspace-local variables are visible in the display area.

● Only workspace-local variables can be edited or removed.

● Groups of variables as well as individual variables can be added or imported
to the local level.

● Workspace-local variables are stored in the file
Workspace.custom_argvars in a specific directory, see Files for local
settings, page 179.
AFE1_AFE2-1:1

85

86

Reference information on the IDE

Global
● Only variables that are defined as global are visible in the display area—all

these variables can be edited or removed.

● Groups of variables as well as individual variables can be added or imported
to the global level.

● Global variables are stored in the file global.custom_argvars in a
specific directory, see Files for global settings, page 178.

Note that when you rely on custom argument variables in the build tool settings, some
of the information needed for a project to build properly might now be in a
.custom_argvars file. You should therefore consider version-controlling your custom
argument file (workspace-local and global), and whether to document the need for using
these variables.

Expand/Collapse All

Expands or collapses the view of the variables.

Hide disabled groups

Hides all groups of variables that you previously have disabled.

Enable Group / Disable Group

Enables or disables a group of variables that you have selected. The result differs
depending on which tab you have open:

● Workspace tab—Enabling or disabling groups will only affect the current
workspace.

● Global tab—Enabling will only affect newly created workspaces. These will inherit
the current global state as the default for the workspace.

Note: You cannot use a variable that is part of a disabled group.

New Group

Opens the New Group dialog box where you can specify a name for a new group. When
you click OK, the group is created and appears in the list of custom argument variables.

Add Variable

Opens the Add Variables dialog box where you can specify a name and value of a new
variable to the group you have selected. When you click OK, the variable is created and
appears in the list of custom argument variables.

Note that you can also add variables by importing previously defined variables. See
Import below.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

The development environment

Edit Variable

Opens the Edit Variables dialog box where you can edit the name and value of a
selected variable. When you click OK, the variable is created and appears in the list of
custom argument variables.

Delete

Deletes the selected group or variable.

Import

Opens a file browser where you can locate a Workspace.custom_argvars file. The
file can contain variables already defined and associated with another workspace or be
a file created when installing a third-party product.
AFE1_AFE2-1:1

87

88

Reference information on the IDE

AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Project management
● Introduction to managing projects

● Managing projects

● Reference information on managing projects

Introduction to managing projects
These topics are covered:

● Briefly about managing projects

● How projects are organized

● The IDE interacting with version control systems

BRIEFLY ABOUT MANAGING PROJECTS

In a large-scale development project, with hundreds of files, you must be able to
organize the files in a structure that is easily navigated and maintained by several
engineers.

The IDE comes with functions that will help you stay in control of all project modules,
for example, C or C++ source code files, assembler files, include files, and other related
AFE1_AFE2-1:1

89

90

Introduction to managing projects

modules. You create workspaces and let them contain one or several projects. Files can
be organized in file groups, and options can be set on all levels—project, group, or file.

Changes are tracked so that a request for rebuild will retranslate all required modules,
making sure that no executable files contain out-of-date modules.

These are some additional features of the IDE:

● Project templates to create a project that can be built and executed for a smooth
development startup

● Hierarchical project representation

● Source browser with an hierarchical symbol presentation

● Options can be set globally, on groups of source files, or on individual source files

● The Make command automatically detects changes and performs only the required
operations

● Project connection to set up a connection between IAR Embedded Workbench and
an external tool

● Text-based project files

● Custom Build utility to expand the standard toolchain in an easy way

● Command line build with the project file as input.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Project management

Navigating between project files

There are two main different ways to navigate your project files—using the Workspace
window or the Source Browser window. The Workspace window displays an
hierarchical view of the source files, dependency files, and output files and how they are
logically grouped. The Source Browser window, on the other hand, displays
information about the build configuration that is currently active in the Workspace
window. For that configuration, the Source Browser window displays a hierarchical
view of all globally defined symbols, such as variables, functions, and type definitions.
For classes, information about any base classes is also displayed.

For more information about source browsing, see Briefly about source browse
information, page 130.

HOW PROJECTS ARE ORGANIZED

The IDE allows you to organize projects in an hierarchical tree structure showing the
logical structure at a glance.

The IDE has been designed to suit the way that software development projects are
typically organized. For example, perhaps you need to develop related versions of an
application for different versions of the target hardware, and you might also want to
include debugging routines into the early versions, but not in the final application.

Versions of your applications for different target hardware will often have source files
in common, and you might want to be able to maintain only one unique copy of these
files, so that improvements are automatically carried through to each version of the
application. Perhaps you also have source files that differ between different versions of
the application, such as those dealing with hardware-dependent aspects of the
application.

In the following sections, the various levels of the hierarchy are described.

Projects and workspaces

Typically you create one or several projects, where each project can contain either:

● Source code files, which you can use for producing your embedded application or a
library. For an example where a library project has been combined with an
application project, see the example about creating and using libraries in the
tutorials.

● An externally built executable file that you want to load in C-SPY. For information
about how to load executable files built outside of the IDE, see the C-SPY®
Debugging Guide for RISC-V.

If you have several related projects, you can access and work with them simultaneously.
To achieve this, you can organize related projects in workspaces.
AFE1_AFE2-1:1

91

92

Introduction to managing projects

Each workspace you define can contain one or more projects, and each project must be
part of at least one workspace.

Consider this example: two related applications—for instance A and B—are developed,
requiring one development team each (team A and B). Because the two applications are
related, they can share parts of the source code between them. The following project
model can be applied:

● Three projects—one for each application, and one for the common source code

● Two workspaces—one for team A and one for team B.

Collecting the common sources in a library project (compiled but not linked object code)
is both convenient and efficient, to avoid having to compile it unnecessarily. This figure
illustrates this example:

Projects and build configurations

Often, you need to build several versions of your project, for example, for different
debug solutions that require different settings for the linker and debugger. Another
example is when you need a separately built executable file with special debug output
for execution trace, etc. IAR Embedded Workbench lets you define multiple build
configurations for each project. In a simple case, you might need just two, called Debug
and Release, where the only differences are the options used for optimization, debug
information, and output format. In the Release configuration, the preprocessor symbol
NDEBUG is defined, which means the application will not contain any asserts.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Project management

Additional build configurations might be useful, for instance, if you intend to use the
application on different target devices. The application is the same, but hardware-related
parts of the code differ. Thus, depending on which target device you intend to build for,
you can exclude some source files from the build configuration. These build
configurations might fulfill these requirements for Project A:

● Project A - Device 1:Release

● Project A - Device 1:Debug

● Project A - Device 2:Release

● Project A - Device 2:Debug

Groups

Normally, projects contain hundreds of files that are logically related. You can define
each project to contain one or more groups, in which you can collect related source files.
You can also define multiple levels of subgroups to achieve a logical hierarchy. By
default, each group is present in all build configurations of the project, but you can also
specify a group to be excluded from a particular build configuration.

Source files and their paths

Source files can be located directly under the project node or in a hierarchy of groups.
The latter is convenient if the amount of files makes the project difficult to survey. By
default, each file is present in all build configurations of the project, but you can also
specify a file to be excluded from a particular build configuration.

Only the files that are part of a build configuration will actually be built and linked into
the output code.

Once a project has been successfully built, all include files and output files are displayed
in the structure below the source file that included or generated them.

Note: The settings for a build configuration can affect which include files that are used
during the compilation of a source file. This means that the set of include files associated
with the source file after compilation can differ between the build configurations.

The IDE supports relative source file paths to a certain degree, for:

● Project files
Paths to files part of the project file are relative if they are located on the same drive.
The path is relative either to $PROJ_DIR$ or EW_DIR. The argument variable
EW_DIR is only used if the path refers to a file located in a subdirectory of
EW_DIR and the distance from EW_DIR is shorter than the distance from
$PROJ_DIR$.
AFE1_AFE2-1:1

93

94

Managing projects

Paths to files that are part of the project file are absolute if the files are located on
different drives.

● Workspace files
For files located on the same drive as the workspace file, the path is relative to
$PROJ_DIR$.

For files located on another drive than the workspace file, the path is absolute.

● Debug files
If your debug image file contains debug information, any paths in the file that refer
to source files are absolute.

Drag and drop

You can easily drag individual source files and project files from Windows Explorer to
the Workspace window. Source files dropped on a group are added to that group.
Source files dropped outside the project tree—on the Workspace window
background—are added to the active project.

THE IDE INTERACTING WITH VERSION CONTROL SYSTEMS

The IAR Embedded Workbench IDE can identify and access any files that are in a
Subversion (SVN) working copy, see Interacting with Subversion, page 97.

From within the IDE you can connect an IAR Embedded Workbench project to an
external SVN project, and perform some of the most commonly used operations.

To connect your IAR Embedded Workbench project to a version control system, you
should be familiar with the version control client application you are using.

Note: Some of the windows and dialog boxes that appear when you work with version
control in the IDE originate from the version control system and are not described in the
documentation from IAR. For information about details in the client application, refer
to the documentation supplied with that application.

Note: Different version control systems use different terminology even for some of the
most basic concepts involved. You must keep this in mind when you read the
descriptions of the interaction between the IDE and the version control system.

Managing projects
These tasks are covered:

● Creating and managing a workspace and its projects

● Viewing the workspace and its projects

● Interacting with Subversion
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Project management

CREATING AND MANAGING A WORKSPACE AND ITS
PROJECTS

This is a description of the overall procedure for creating the workspace, projects,
groups, files, and build configurations. For a detailed step-by-step example, see
Creating an application project in the tutorials.

The steps involved for creating and managing a workspace and its contents are:

Note: You do not have to use the same toolchain for the new build configuration as for
other build configurations in the same project, and it might not be necessary for you to
perform all of these steps and not in this order.

The File menu provides commands for creating workspaces. The Project menu
provides commands for creating projects, adding files to a project, creating groups,
AFE1_AFE2-1:1

95

96

Managing projects

specifying project options, and running the IAR development tools on the current
projects.

VIEWING THE WORKSPACE AND ITS PROJECTS

The Workspace window is where you access your projects and files during the
application development.

1 To choose which project you want to view, click its tab at the bottom of the Workspace
window.

For each file that has been built, an Output folder icon appears, containing generated
files, such as object files and list files. The latter is only generated if the list file option
is enabled. The Output folder related to the project node contains generated files related
to the whole project, such as the executable file and the linker map file (if the list file
option is enabled).

Also, any included header files will appear, showing dependencies at a glance.

2 To display the project with a different build configuration, choose that build
configuration from the drop-down list at the top of the Workspace window.

The project and build configuration you have selected are displayed highlighted in the
Workspace window. It is the project and build configuration that you select from the
drop-down list that are built when you build your application.

3 To display an overview of all projects in the workspace, click the Overview tab at the
bottom of the Workspace window.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Project management

An overview of all project members is displayed.

The current selection in the Build Configuration drop-down list is also highlighted
when an overview of the workspace is displayed.

INTERACTING WITH SUBVERSION

The version control integration in IAR Embedded Workbench allows you to
conveniently perform some of the most common Subversion operations directly from
within the IDE, using the client applications svn.exe and TortoiseProc.exe.

To connect an IAR Embedded Workbench project to a Subversion system:
1 In the Subversion client application, set up a Subversion working copy.

2 In the IDE, connect your application project to the Subversion working copy.

To set up a Subversion working copy:
1 To use the Subversion integration in the IDE, make sure that svn.exe and

TortoiseProc.exe are in your path.

2 Check out a working copy from a Subversion repository.

The files that constitute your project do not have to come from the same working copy—
all files in the project are treated individually. However, note that TortoiseProc.exe
does not allow you to simultaneously, for example, check in files coming from different
repositories.

To connect application projects to the Subversion working copy:
1 In the Workspace window, select the project for which you have created a Subversion

working copy.
AFE1_AFE2-1:1

97

98

Reference information on managing projects

2 From the Project menu, choose Version Control System>Connect Project to
Subversion. This command is also available from the context menu that appears when
you right-click in the Workspace window.

For more information about the commands available for accessing the Subversion
working copy, see Version Control System menu for Subversion, page 106.

Viewing the Subversion states

When your IAR Embedded Workbench project has been connected to the Subversion
working copy, a column that contains status information for version control will appear
in the Workspace window. Various icons are displayed, where each icon reflects the
Subversion state, see Subversion states, page 108.

Reference information on managing projects
Reference information about:

● Workspace window, page 99

● Create New Project dialog box, page 103

● Configurations for project dialog box, page 104

● New Configuration dialog box, page 105

● Add Project Connection dialog box, page 106

● Version Control System menu for Subversion, page 106

● Subversion states, page 108
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Project management

Workspace window
The Workspace window is available from the View menu.

Use this window to access your projects and files during the application development.

Drop-down list

At the top of the window there is a drop-down list where you can choose a build
configuration to display in the window for a specific project.

The display area

This area contains up to three columns.
AFE1_AFE2-1:1

99

100

Reference information on managing projects

The Files column displays the name of the current workspace and a tree representation
of the projects, groups and files included in the workspace. One or more of these icons
are displayed:

The column that contains status information about option overrides can have one of
three icons for each level in the project:

Workspace

Project

Project with multi-file compilation

Group of files

Group excluded from the build

Group of files, part of multi-file compilation

Group of files, part of multi-file compilation, but excluded from the build

Object file or library

Assembler source file

C source file

C++ source file

Source file excluded from the build

Header file

Text file

HTML text file

Control file, for example the linker configuration file

IDE internal file

Other file

Blank There are no settings/overrides for this file/group.

Black check mark There are local settings/overrides for this file/group.

Red check mark There are local settings/overrides for this file/group, but they are
either identical to the inherited settings or they are ignored
because you use multi-file compilation, which means that the
overrides are not needed.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Project management

The column contains status information about version control, if this is enabled. For
information about the various icons, see Subversion states, page 108.

Use the tabs at the bottom of the window to choose which project to display.
Alternatively, you can choose to display an overview of the entire workspace.

For more information about project management and using the Workspace window, see
the Introduction to managing projects, page 89.

Context menu

This context menu is available:

These commands are available:

Options
Displays a dialog box where you can set options for each build tool for the
selected item in the Workspace window, for example to exclude it from the
build. You can set options for the entire project, for a group of files, or for an
individual file. See Setting project options using the Options dialog box, page
111.

Make
Brings the current target up to date by compiling, assembling, and linking only
the files that have changed since the last build.
AFE1_AFE2-1:1

101

102

Reference information on managing projects

Compile
Compiles or assembles the currently active file as appropriate. You can choose
the file either by selecting it in the Workspace window, or by selecting the
editor window containing the file you want to compile.

Rebuild All
Recompiles and relinks all files in the selected build configuration.

Clean
Deletes intermediate files.

C-STAT Static Analysis>Analyze Project
Makes C-STAT analyze the selected project. For more information about
C-STAT, see the C-STAT® Static Analysis Guide.

C-STAT Static Analysis>Analyze File(s)
Makes C-STAT analyze the selected file(s). For more information about
C-STAT, see the C-STAT® Static Analysis Guide.

C-STAT Static Analysis>Clear Analysis Results
Makes C-STAT clear the analysis information for previously performed
analyses. For more information about C-STAT, see the C-STAT® Static Analysis
Guide.

C-STAT Static Analysis>Generate HTML Summary
Shows a standard Save As dialog box where you can select the destination for a
report summary in HTML and then create it. For more information about
C-STAT, see the C-STAT® Static Analysis Guide.

C-STAT Static Analysis>Generate Full HTML Report
Shows a standard Save As dialog box where you can select the destination for a
full report in HTML and create it. For more information about C-STAT, see the
C-STAT® Static Analysis Guide.

Stop Build
Stops the current build operation.

Add>Add Files
Displays a dialog box where you can add files to the project.

Add>Add filename
Adds the indicated file to the project. This command is only available if there is
an open file in the editor.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Project management

Add>Add Group
Displays the Add Group dialog box where you can add new groups to the
project. For more information about groups, see Groups, page 93.

Remove
Removes selected items from the Workspace window.

Rename
Displays the Rename Group dialog box where you can rename a group. For
more information about groups, see Groups, page 93.

Version Control System
Opens a submenu with commands for source code control, see Version Control
System menu for Subversion, page 106.

Open Containing Folder
Opens the File Explorer that displays the directory where the selected file
resides.

File Properties
Displays a standard File Properties dialog box for the selected file.

Set as Active
Sets the selected project in the overview display to be the active project. It is the
active project that will be built when the Make command is executed.

Create New Project dialog box
The Create New Project dialog box is available from the Project menu.
AFE1_AFE2-1:1

103

104

Reference information on managing projects

Use this dialog box to create a new project based on a template project. Template
projects are available for C/C++ applications, assembler applications, and library
projects. You can also create your own template projects.

Tool chain

Selects the target to build for. If you have several versions of IAR Embedded Workbench
for different targets installed on your host computer, the drop-down list might contain
some or all of these targets.

Project templates

Select a template to base the new project on, from this list of available template projects.

Description

A description of the currently selected template.

Configurations for project dialog box
The Configurations for project dialog box is available by choosing Project>Edit
Configurations.

Use this dialog box to define new build configurations for the selected project—either
entirely new, or based on a previous project.

Configurations

Lists existing configurations, which can be used as templates for new configurations.

New

Displays a dialog box where you can define new build configurations, see New
Configuration dialog box, page 105.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Project management

Remove

Removes the configuration that is selected in the Configurations list.

New Configuration dialog box
The New Configuration dialog box is available by clicking New in the Configurations
for project dialog box.

Use this dialog box to define new build configurations—either entirely new, or based on
any currently defined configuration.

Name

Type the name of the build configuration.

Tool chain

Specify the target to build for. If you have several versions of IAR Embedded
Workbench for different targets installed on your host computer, the drop-down list
might contain some or all of these targets.

Based on configuration

Selects a currently defined build configuration to base the new configuration on. The
new configuration will inherit the project settings and information about the factory
settings from the old configuration. If you select None, the new configuration will be
based strictly on the factory settings.

Factory settings

Select the default factory settings that you want to apply to your new build
configuration. These factory settings will be used by your project if you click the
Factory Settings button in the Options dialog box.
AFE1_AFE2-1:1

105

106

Reference information on managing projects

Choose between:

Debug, Factory settings suitable for a debug build configuration.

Release, Factory settings suitable for a release build configuration.

Add Project Connection dialog box
The Add Project Connection dialog box is available from the Project menu.

Use this dialog box to set up a project connection between IAR Embedded Workbench
and an external tool. This can, for example, be useful if you want IAR Embedded
Workbench to build source code files provided by the external tool. The source files will
automatically be added to your project. If the set of files changes, the new set of files
will automatically be used when the project is built in IAR Embedded Workbench.

To disable support for this, see Project options, page 64.

Connect using

Chooses the external tool that you want to set up a connection with.

OK

Displays a dialog box where you specify the connection.

Version Control System menu for Subversion
The Version Control System submenu is available from the Project menu and from the
context menu in the Workspace window.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Project management

For more information about interacting with an external version control system, see The
IDE interacting with version control systems, page 94.

Menu commands

These commands are available for Subversion:

Commit
Displays Tortoise’s Commit dialog box for the selected file(s).

Add
Displays Tortoise’s Add dialog box for the selected file(s).

Revert
Displays Tortoise’s Revert dialog box for the selected file(s).

Update
Opens Tortoise’s Update window for the selected file(s).

Diff
Opens Tortoise’s Diff window for the selected file(s).

Log
Opens Tortoise’s Log window for the selected file(s).

Properties
Displays information available in the version control system for the selected file.

Refresh
Updates the version control system display status for all files that are part of the
project. This command is always enabled for all projects under the version
control system.

Connect Project to Subversion
Checks whether svn.exe and TortoiseProc.exe are in the path and then
enables the connection between the IAR Embedded Workbench project and an
existing checked-out working copy. After this connection has been created, a
special column that contains status information appears in the Workspace
window. Note that you must check out the source files from outside the IDE.

Disconnect Project from Subversion
Removes the connection between the selected IAR Embedded Workbench
project and Subversion. The column in the Workspace window that contains
SVN status information will no longer be visible for that project.
AFE1_AFE2-1:1

107

108

Reference information on managing projects

Subversion states
Each Subversion-controlled file can be in one of several states.

Note: The version control system in the IAR Embedded Workbench IDE depends on the
information provided by Subversion. If Subversion provides incorrect or incomplete
information about the states, the IDE might display incorrect symbols.

(blue A) Added.

(red C) Conflicted.

(red D) Deleted.

 (red I) Ignored.

 (blank) Not modified.

 (red M) Modified.

(red R) Replaced.

 (gray X) An unversioned directory created by an external definition.

 (gray question
mark)

Item is not under version control.

(black exclamation
mark)

Item is missing—removed by a non-SVN command—or
incomplete.

(red tilde) Item obstructed by an item of a different type.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Building projects
● Introduction to building projects

● Building a project

● Reference information on building

Introduction to building projects
These topics are covered:

● Briefly about building a project

● Extending the toolchain

BRIEFLY ABOUT BUILDING A PROJECT

The build process consists of these steps:

● Setting project options using the Options dialog box

● Building the project, either an application project or a library project

● Correcting any errors detected during the build procedure.

To make the build process more efficient, you can use the Batch Build command. This
gives you the possibility to perform several builds in one operation. If necessary, you can
also specify pre-build and post-build actions.

In addition to using the IAR Embedded Workbench IDE to build projects, you can also
use the command line utility iarbuild.exe.

For examples of building application and library projects, see the tutorials in the
Information Center, under Project Explorer. For more information about building
library projects, see the IAR C/C++ Development Guide for RISC-V.

EXTENDING THE TOOLCHAIN

IAR Embedded Workbench provides a feature—Custom Build—which lets you extend
the standard toolchain. This feature is used for executing external tools (not provided by
IAR). You can make these tools execute each time specific files in your project have
changed.

If you specify custom build options on the Custom tool configuration page, the build
commands treat the external tool and its associated files in the same way as the standard
tools within the IAR Embedded Workbench IDE and their associated files. The relation
AFE1_AFE2-1:1

109

110

Building a project

between the external tool and its input files and generated output files is similar to the
relation between the C/C++ Compiler, c files, h files, and a files. For more information
about custom build options, see Custom build options, page 241.

You specify filename extensions of the files used as input to the external tool. If the input
file has changed since you last built your project, the external tool is executed—just as
the compiler executes if a c file has changed. In the same way, any changes in additional
input files (for instance, include files) are detected.

You must specify the name of the external tool. You can also specify any necessary
command line options needed by the external tool, and the name of the output files
generated by the external tool. Note that you can use argument variables for some of the
file information.

You can specify custom build options to any level in the project tree. The options you
specify are inherited by any sub-level in the project tree.

Tools that can be added to the toolchain

Some examples of external tools, or types of tools, that you can add to the IAR
Embedded Workbench toolchain are:

● Tools that generate files from a specification, such as Lex and YACC

● Tools that convert binary files—for example files that contain bitmap images or
audio data—to a table of data in an assembler or C source file. This data can then be
compiled and linked together with the rest of your application.

For more information, see Adding an external tool, page 117.

Building a project
These tasks are covered:

● Setting project options using the Options dialog box

● Building your project

● Correcting errors found during build

● Using pre- and post-build actions

● Building multiple configurations in a batch

● Building from the command line

● Adding an external tool
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Building projects

SETTING PROJECT OPTIONS USING THE OPTIONS DIALOG
BOX

1 Before you can set project options, choose a build configuration.

By default, the IDE creates two build configurations when a project is created—Debug
and Release. Every build configuration has its own project settings, which are
independent of the other configurations.

For example, a configuration that is used for debugging would not be highly optimized,
and would produce output that suits the debugging. Conversely, a configuration for
building the final application would be highly optimized, and produce output that suits
a flash or PROM programmer.
AFE1_AFE2-1:1

111

112

Building a project

2 Decide which level you want to set the options on—the entire project, groups of files,
or for an individual file. Select that level in the Workspace window (in this example,
the project level) and choose Options from the context menu to display the Options
dialog box.

Note: There is one important restriction on setting options. If you set an option on group
or file level (group or file level override), no options on higher levels that operate on files
will affect that group or file.

3 The Options dialog box provides options for the build tools—a category for each build
tool.

Options in the General Options, Linker, and Debugger categories can only be set on
project level because they affect the entire build configuration, and cannot be set for
individual groups and files. However, the options in the other categories can be set for
the project, a group of files, or an individual file.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Building projects

4 Select a category from the Category list to select which building tool to set options for.
Which tools that are available in the Category list depends on which tools are included
in your product. When you select a category, one or more pages containing options for
that component are displayed.

5 Click the tab that corresponds to the type of options you want to view or change. Make
the appropriate settings. Some hints:

● To override project level settings, select the required item—for instance a specific
group of files or an individual file—and select the option Override inherited
settings.

The new settings will affect all members of that group, that is, files and any groups
of files. Your local overrides are indicated with a checkmark in a separate column in
the Workspace window.
AFE1_AFE2-1:1

113

114

Building a project

● Use the Extra Options page to specify options that are only available as command
line options and are not in the IDE.

● To restore all settings to the default factory settings, click the Factory Settings
button, which is available for all categories except General Options and Custom
Build. Note that two sets of factory settings are available—Debug and Release.
Which one is used depends on your build configuration, see New Configuration
dialog box, page 105.

● If you add a source file with a non-recognized filename extension to your project,
you cannot set options on that source file. However, you can add support for
additional filename extensions. For more information, see Filename Extensions
dialog box, page 80.

BUILDING YOUR PROJECT

You can build your project either as an application project or a library project.

You have access to the build commands both from the Project menu and from the
context menu that appears if you right-click an item in the Workspace window.

To build your project as an application project, choose one of the three build commands
Make, Compile, and Rebuild All. They will run in the background, so you can continue
editing or working with the IDE while your project is being built.

To build your project as a library project, choose Project>Options>General
Options>Output>Output file>Library before you build your project. Then, Linker is
replaced by Library Builder in the Category list in the Options dialog box, and the
result of the build will be a library. For an example, see the tutorials.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Building projects

For more information, see Project menu, page 193.

CORRECTING ERRORS FOUND DURING BUILD

Error messages are displayed in the Build message window.

To specify the level of output to the Build message window:
1 Right-click in the Build message window to open the context menu.

2 From the context menu, select the level of output you want—From All, which shows
all messages, including compiler and linker information, to Errors, which only shows
errors, but not warnings or other messages.

If your source code contains errors, you can jump directly to the correct position in the
appropriate source file by double-clicking the error message in the error listing in the
Build window, or selecting the error and pressing Enter.

After you have resolved any problems reported during the build process and rebuilt the
project, you can directly start debugging the resulting code at the source level.

For more information about the Build message window, see Build window, page 120.

USING PRE- AND POST-BUILD ACTIONS

If you find it useful, you can specify build actions that you want to occur before, during,
or after the build. The Project>Options>Build Actions options let you specify the
required actions.

For more information about the build actions options, see Build actions options, page
243.

Using a build action for time stamping

You can use a pre-build action to embed a time stamp for the build in the resulting binary
file. Follow these steps:

1 Create a dedicated time stamp file, for example, timestamp.c, and add it to your
project.

2 In this source file, use the preprocessor macros _ _TIME_ _ and _ _DATE_ _ to initialize
a string variable.

3 Choose Project>Options>Build Actions to open the Build Actions Configuration
page.

4 Click New to display the New Build Action dialog box.

5 In the Command line text field, specify this command line:

del "OBJ_DIR\timestamp.a"
AFE1_AFE2-1:1

115

116

Building a project

This command removes the timestamp.a object file.

Alternatively, you can use the open source command line utility touch for this purpose
(or any other suitable utility that updates the modification time of the source file). For
example:

touch $PROJ_DIR$\timestamp.c

6 Set the Build order to Run after linking and click OK.

7 Every time you build the project, timestamp.c will be recompiled and the correct
timestamp will end up in the binary file.

Using a build action to copy files

You can use a build action to automatically copy files from a remote location, such as a
network drive. Follow these steps:

1 Choose Project>Options>Build Actions to open the Build Actions Configuration
page.

2 Click New to display the New Build Action dialog box.

3 In the Command line text field, specify, for example, this command line:

copy \\my-network-drive\remotefile.c localcopy.c

This command copies the file from the network drive to your project directory.

4 In the Output files box, specify localcopy.c.

5 In the Input files box, specify \\my-network-drive\remotefile.c.

6 Let the Build order setting remain Automatic (based on input and output), and click
OK.

7 Every time you use the Make command, and localcopy.c does not exist or is older
than remotefile.c, the build action will copy the file from the network drive to your
project directory.

BUILDING MULTIPLE CONFIGURATIONS IN A BATCH

Use the batch build feature when you want to build more than one configuration at once.
A batch is an ordered list of build configurations. The Batch Build dialog box—
available from the Project menu—lets you create, modify, and build batches of
configurations.

For workspaces that contain several configurations, it is convenient to define one or
more different batches. Instead of building the entire workspace, you can only build the
appropriate build configurations, for instance Release or Debug configurations.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Building projects

For more information about the Batch Build dialog box, see Batch Build dialog box,
page 122.

BUILDING FROM THE COMMAND LINE

To build the project from the command line, use the IAR Command Line Build Utility
(iarbuild.exe) located in the common\bin directory. Typically, this can be useful for
automating your testing for continuous integration.

As input you use the project file, and the invocation syntax is:

iarbuild project.ewp [opmode] config[,config2,,...]|"*" [options]

For reference information about the invocation syntax, see iarbuild.exe—the IAR
Command Line Build Utility, page 124.

ADDING AN EXTERNAL TOOL

The following example demonstrates how to add the tool Flex to the toolchain. The
same procedure can also be used for other tools.

In the example, Flex takes the file myFile.lex as input. The two files myFile.c and
myFile.h are generated as output.

1 Add the file you want to work with to your project, for example myFile.lex.

2 Select this file in the Workspace window and choose Project>Options. Select
Custom Build from the list of categories.

3 In the Filename extensions field, type the filename extension .lex. Remember to
specify the leading period (.).

4 In the Command line field, type the command line for executing the external tool, for
example:

flex $FILE_PATH$ -o$FILE_BNAME$.c

During the build process, this command line is expanded to:

flex myFile.lex -omyFile.c

Note the usage of argument variables and specifically the use of $FILE_BNAME$ which
gives the base name of the input file, in this example appended with the c extension to
provide a C source file in the same directory as the input file foo.lex. For more
information about these variables, see Argument variables, page 83.

5 In the Output files field, describe the output files that are relevant for the build. In this
example, the tool Flex would generate two files—one source file and one header file.
The text in the Output files text box for these two files would look like this:
AFE1_AFE2-1:1

117

118

Reference information on building

$FILE_BPATH$.c
$FILE_BPATH$.h

6 If the external tool uses any additional files during the build, these should be added in
the Additional input files field, for instance:

$TOOLKIT_DIR$\inc\stdio.h

This is important, because if the dependency files change, the conditions will no longer
be the same and the need for a rebuild is detected.

7 Click OK.

8 To build your application, choose Project>Make.

Reference information on building
Reference information about:

● Options dialog box, page 119

● Build window, page 120

● Batch Build dialog box, page 122

● Edit Batch Build dialog box, page 123

● iarbuild.exe—the IAR Command Line Build Utility, page 124
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Building projects

Options dialog box
The Options dialog box is available from the Project menu.

Use this dialog box to specify your project settings.

See also Setting project options using the Options dialog box, page 111.

Category

Selects the build tool you want to set options for. The available categories will depend
on the tools installed in your IAR Embedded Workbench IDE, and will typically
include:

● General options

● Static Analysis, see the C-STAT® Static Analysis Guide for more information about
these options

● C/C++ Compiler

● Assembler

● Output Converter, options for converting ELF output to Motorola, Intel-standard, or
other simple formats, see Output converter options, page 239.

● Custom build, options for extending the toolchain
AFE1_AFE2-1:1

119

120

Reference information on building

● Build Actions, options for pre-build and post-build actions

● Linker, available for application projects but not for library projects

● Library builder, available for library projects but not for application projects

● Debugger

● Simulator

● C-SPY hardware drivers, options specific to additional hardware debuggers.

Selecting a category displays one or more pages of options for that component of the
IDE.

Factory Settings

Restores all settings to the default factory settings. Note that this option is not available
for all categories.

Build window
The Build window is available by choosing View>Messages.

This window displays the messages generated when building a build configuration.
When opened, the window is, by default, grouped together with the other message
windows. Double-click a message in the Build window to open the appropriate file for
editing, with the insertion point at the correct position.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Building projects

Context menu

This context menu is available:

These commands are available:

All
Shows all messages, including compiler and linker information.

Messages
Shows all messages.

Warnings
Shows warnings and errors.

Errors
Shows errors only.

Copy
Copies the contents of the window.

Select All
Selects the contents of the window.

Clear All
Deletes the contents of the window.

Live Log to File
Displays a submenu with commands for writing the build messages to a log file
and setting filter levels for the log.
AFE1_AFE2-1:1

121

122

Reference information on building

Batch Build dialog box
The Batch Build dialog box is available by choosing Project>Batch build.

This dialog box lists all defined batches of build configurations. For more information,
see Building multiple configurations in a batch, page 116.

Batches

Select the batch you want to build from this list of currently defined batches of build
configurations.

Build

Give the build command you want to execute:

● Make
● Clean
● Rebuild All.

New

Displays the Edit Batch Build dialog box, where you can define new batches of build
configurations, see Edit Batch Build dialog box, page 123.

Edit

Displays the Edit Batch Build dialog box, where you can edit existing batches of build
configurations.

Delete

Removes the selected batch.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Building projects

Edit Batch Build dialog box
The Edit Batch Build dialog box is available from the Batch Build dialog box.

Use this dialog box to create new batches of build configurations, and edit already
existing batches.

Name

Type a name for a batch that you are creating, or change the existing name (if you wish)
for a batch that you are editing.

Available configurations

Select the configurations you want to move to be included in the batch you are creating
or editing, from this list of all build configurations that belong to the workspace.

To move a build configuration from the Available configurations list to the
Configurations to build list, use the arrow buttons.

Configurations to build

Lists the build configurations that will be included in the batch you are creating or
editing. Drag the build configurations up and down to set the order between the
configurations.
AFE1_AFE2-1:1

123

124

Reference information on building

iarbuild.exe—the IAR Command Line Build Utility
The IAR Command Line Build Utility (iarbuild.exe) is located in the common\bin
directory.

As input you use the project file, and the invocation syntax is:

iarbuild project.ewp [opmode] config[,config2,,...]|"*" [options]

These are the possible parameters:

If you run the application from a command shell without specifying a project file, you
will get a sign-on message describing available parameters and their syntax.

If the build process was successful, the IAR Command Line Build Utility returns 0.
Otherwise it returns a non-zero number and a diagnostic message.

-build

Rebuilds and relinks all files in the specified build configuration(s).

Parameter Description

project.ewp Your IAR Embedded Workbench project file.

opmode One of these operating modes (see descriptions below the table):
-build
-clean
-cstat_analyze
-cstat_clean
-cstat_cmds
-cstat_report
-jsondb
-make (default)
-ninja

config|"*" config, the name of a configuration you want to build, either one of the
predefined configurations Debug or Release or a name that you define
yourself. For more information, see Projects and build configurations, page 92.
* (wild card character), the operation mode commands will process all
configurations defined in the project. (The quote characters can be omitted
under Microsoft Windows.)

options One or more of these additional options (see descriptions below the table):
-log type
-output filename
-parallel number
-tool type
-varfile filename

Table 4: iarbuild.exe command line options
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Building projects

-clean

Removes any intermediate and output files.

-cstat_analyze

Analyzes the project using C-STAT and generates information about the number of
messages. For more information, see the C-STAT® Static Analysis Guide.

-cstat_clean

Deletes the C-STAT output directory for the project. For more information, see the
C-STAT® Static Analysis Guide.

-cstat_cmds

Generates the file cstatcommands.txt and check files with the selected checks for the
analysis based on the project, in the C-STAT output directory. cstatcommands.txt
contains links to the check files. For more information, see the C-STAT® Static Analysis
Guide.

-cstat_report

Generates a full report in HTML format in the C-STAT output directory, based on the
analysis. For more information, see the C-STAT® Static Analysis Guide.

-jsondb

Generates a JSON description of the project. The format is based on the compiler
database format but also contains the linking, custom, and conversion steps of the build.
Optionally, you can specify the -output option to name the output file, and the -tool
option to run a tool or set of tools. By default, the output is generated in the file
$PROJ_DIR$/config/project_jsondb.json.

The database contains entries on how to build the project on the format:

[
 {
 "arguments" : [Comma-separated list of arguments],
 "directory" : "The directory in which to perform the
 action",
 "file" : "The input file",
 "output" : "The output file",
 "type" : "Name of the tool"
 }
]

AFE1_AFE2-1:1

125

126

Reference information on building

In case of multiple inputs or multiple outputs, the "output" or "file" tag is replaced
by "outputs" or "files" followed by a comma-separated list of the files:

[
 {
 "arguments" : [Comma-separated list of arguments],
 "directory" : "The directory in which to perform the
 action",
 "files" : [Comma-separated list of files],
 "outputs" : [Comma-separated list of files],
 "type" : "Name of the tool"
 }
]

-make

Brings the specified build configuration(s) up to date by compiling, assembling, and
linking only the files that have changed since the last build. This is the default operating
mode.

-ninja

Generates a ninja build file based on the project structure. Optionally, you can specify
the -tool option to run a tool or set of tools.

-log

Specifies the level of build message logging. Choose between:

-output

-output filename

Use together with the -jsondb operating mode command to specify the name and the
location of the output file.

-log errors Logs build error messages.

-log warnings Logs build warning and error messages.

-log info Logs build warning and error messages, and messages issued
by the #pragma message preprocessor directive.

-log all Logs all messages generated from the build, for example
compiler sign-on information and the full command line.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Building projects

-parallel

-parallel number

Specifies the number of parallel processes to run the compiler in to make better use of
the cores in the CPU.

-tool

-tool type|list

Use together with either the -jsondb or the -ninja operating mode command to run
a specific set of tools. Running iarbuild -tool list lists the available tool options.

For example, iarbuild MyProject.ewp -ninja Debug -tool BuildTools will
generate a ninja file with all the build tools nodes in the project.

-varfile

-varfile filename

Makes custom-defined argument variables become defined in a workspace scope
available to the build engine by specifying the file to use. See Configure Custom
Argument Variables dialog box, page 85.
AFE1_AFE2-1:1

127

128

Reference information on building

AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Editing
● Introduction to the IAR Embedded Workbench editor

● Editing a file

● Programming assistance

● Reference information on the editor

Introduction to the IAR Embedded Workbench editor
These topics are covered:

● Briefly about the editor

● Briefly about source browse information

● Customizing the editor environment

For information about how to use an external editor in the IAR Embedded Workbench
IDE, see Using an external editor, page 34.

BRIEFLY ABOUT THE EDITOR

The integrated text editor allows you to edit multiple files in parallel, and provides both
basic editing features and functions specific to software development, like:

● Automatic word and code completion

● Automatic line indentation and block indentation

● Parenthesis and bracket matching

● Function navigation within source files

● Context-sensitive help system that can display reference information for keywords
and language extensions

● Text styles and color that identify the syntax of C or C++ programs and assembler
directives

● Powerful search and replace commands, including multi-file search

● Direct jump to context from error listing

● Multibyte character support

● Parameter hints

● Bookmarks
AFE1_AFE2-1:1

129

130

Editing a file

● Unlimited undo and redo for each window.

BRIEFLY ABOUT SOURCE BROWSE INFORMATION

Optionally, source browse information is continuously generated in the background.
This information is used by many different features useful as programming assistance,
for example:

● Source Browser window

● Go to definition or declaration

● Find all references

● Find all calls to or from a function, where the result is presented as a call graph.

The source browse information is updated when a file in the project is saved. When you
save an edited source file, or when you open a new project, there will be a short delay
before the information is up-to-date. During the update, progress information is
displayed in the status bar.

Note: If you want the generation of source browse information to halt when you change
focus from the IAR Embedded Workbench IDE to another program, make sure to enable
the No source browser and build status updates when the IDE is not the foreground
process option.

CUSTOMIZING THE EDITOR ENVIRONMENT

The IDE editor can be configured on the IDE Options pages Colors and Fonts and
Editor. Choose Tools>Options to access the pages.

For information about these pages, see Tools menu, page 198.

Editing a file
The editor window is where you write, view, and modify your source code.

These tasks are covered:

● Indenting text automatically

● Matching brackets and parentheses

● Splitting the editor window into panes

● Dragging text

● Code folding
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Editing

● Word completion

● Code completion

● Parameter hint

● Using and adding code templates

● Syntax coloring

● Adding bookmarks

● Using and customizing editor commands and shortcut keys

● Displaying status information

See also:

● Programming assistance, page 137

● Using an external editor, page 34

INDENTING TEXT AUTOMATICALLY

The text editor can perform various kinds of indentation. For assembler source files and
plain text files, the editor automatically indents a line to match the previous line.

To indent several lines, select the lines and press the Tab key.

To move a whole block of lines back to the left again, press Shift+Tab.

For C/C++ source files, the editor indents lines according to the syntax of the C/C++
source code. This is performed whenever you:

● Press the Return key

● Type any of the special characters {, }, :, and #

● Have selected one or several lines, and choose the Edit>Auto Indent command.

To enable or disable the indentation:
1 Choose Tools>Options and select Editor.

2 Select or deselect the Auto indent option.

To customize the C/C++ automatic indentation, click the Configure button.

For more information, see Configure Auto Indent dialog box, page 58.

MATCHING BRACKETS AND PARENTHESES

To highlight matching parentheses with a light gray color, place the insertion point next
to a parenthesis:
AFE1_AFE2-1:1

131

132

Editing a file

The highlight remains in place as long as the insertion point is located next to the
parenthesis.

To select all text between the brackets surrounding the insertion point, choose
Edit>Match Brackets. Every time you choose Match Brackets (grow) or Match
Brackets (shrink) after that, the selection will increase or shrink, respectively, to the
next hierarchic pair of brackets.

Note: Both of these functions—automatic matching of corresponding parentheses and
selection of text between brackets—apply to (), [], {}, and <> (requires Match All
Brackets).

SPLITTING THE EDITOR WINDOW INTO PANES

You can split the editor window horizontally into two panes, to look at different parts of
the same source file at once, or to move text between two different locations.

To split a window into panes, use the Window>Split command.

To revert to a single pane, double-click the splitter control or drag it to the edge of the
window.

DRAGGING TEXT

To move text within an editor window or to copy between editor windows, select the text
and drag it to the new location.

CODE FOLDING

Sections of code can be hidden and displayed using code folding.

To collapse or expand groups of lines, click on the fold points in the fold margin:

The fold point positions are based on the hierarchical structure of the document
contents, for example, brace characters in C/C++ or the element hierarchy of an XML
file. The Toggle All Folds command (Ctrl+Alt+F) can be used for expanding (or
collapsing) all folds in the current editor window. The command is available from the
Edit menu and from the context menu in the editor window. You can enable or disable
the fold margin from Tools>Options>Editor.

WORD COMPLETION

Word completion attempts to complete the word that you have started to type, basing the
assumption on the contents of the rest of your document.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Editing

To make the editor complete the word that you have started to type, press
Ctrl+Alt+Space or choose Complete Word from the context menu. If the suggestion is
incorrect, repeat the command to get new suggestions.

CODE COMPLETION

By default, the editor automatically suggests completions while you type in a C/C++
source file. You can also open the code completion pop-up window manually by
pressing Ctrl+Space.

To insert a suggestion, either click it or select it with the arrow keys, and press Enter. To
close the code completion pop-up window without inserting anything, press Esc.

The suggestions come from the source browse information, and require that source
browse information is enabled and that the source file is part of a project that has been
built at least once.

Many—but not all—of the suggested completions are identified by an icon:

To turn off automatic code completion, choose Tools>Options>Editor and deselect the
option.

Class

Enumeration

Enumeration constant

Function

Macro

Namespace

Type definition

Variable
AFE1_AFE2-1:1

133

134

Editing a file

Note: Only active code—code that will be compiled—is suggested.

PARAMETER HINT

To make the editor suggest function parameters as tooltip information, start typing the
first parenthesis after a function name. A tooltip is also shown when you type a comma
in a parameter list.

When there are several overloaded versions of a function, they are all displayed:

USING AND ADDING CODE TEMPLATES

Code templates are a method of conveniently inserting frequently used source code
sequences, for example for loops and if statements. The code templates are defined in
a plain text file. By default, a few example templates are provided. In addition, you can
easily add your own code templates.

To set up the use of code templates:
1 Choose Tools>Options>Editor>Setup Files.

2 Select or deselect the Use Code Templates option. By default, code templates are
enabled.

3 In the text field, specify which template file you want to use:

● The default template file
The original template file CodeTemplates.txt
(alternativelyCodeTemplates.ENU.txt or CodeTemplates.JPN.txt if you are
using an IAR Embedded Workbench that is available in both English and Japanese)
is located in a separate directory, see Files for global settings, page 178.

Note that this is a local copy of the file, which means it is safe to modify it if you
want.

● Your own template file
Note that before you can choose your own template file, you must first have created
one. To create your own template file, choose Edit>Code Templates>Edit
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Editing

Templates, add your code templates, and save the file with a new name. The syntax
for defining templates is described in the default template file.

A browse button is available for your convenience.

4 To use your new templates in your own template file, you must:

● Delete the filename in the Use Code Templates text box.

● Deselect the Use Code Templates option and click OK.

● Restart the IAR Embedded Workbench IDE.

● Choose Tools>Options>Editor>Setup Files again.

The default code template file for the selected language version of the IDE should
now be displayed in the Use Code Templates text box. Select the checkbox to enable
the template.

To insert a code template into your source code:
1 In the editor window, right-click where you want the template to be inserted and

choose Insert Template (Ctrl+Alt+V).

2 Choose a code template from the menu that appears.

If the code template requires any type of field input, as in the for loop example which
needs an end value and a count variable, an input dialog box appears.
AFE1_AFE2-1:1

135

136

Editing a file

SYNTAX COLORING

If the Tools>Options>Editor>Syntax highlighting option is enabled, the IAR
Embedded Workbench editor automatically recognizes the syntax of different parts of
source code, for example:

● C and C++ keywords

● C and C++ comments

● Assembler directives and comments

● Preprocessor directives

● Strings.

The different parts of source code are displayed in different text styles.

To change these styles, choose Tools>Options, and use the Colors and Fonts options.
For more information, see Colors and Fonts options, page 46.

To define your own set of keywords that should be syntax-colored
automatically:

1 In a text file, list all the keywords that you want to be automatically syntax-colored.
Separate each keyword with either a space or a new line.

2 Choose Tools>Options to open the IDE Options dialog box.

3 Open the Editor>Setup Files category.

4 Select the Use Custom Keyword File option and specify your newly created text file.
A browse button is available for your convenience.

5 Open the Colors and Fonts category and click the Colors button. Select User
Keyword in the Syntax Coloring list. Specify the color and type style of your choice.
For more information, see Colors and Fonts options, page 46.

In the editor window, type any of the keywords you listed in your keyword file—see how
the keyword is colored according to your specification.

ADDING BOOKMARKS

Use the Edit>Navigate>Toggle Bookmark command to add and remove bookmarks.
To switch between the marked locations, choose Edit>Navigate>Navigate Next
Bookmark or Navigate Previous Bookmark.

USING AND CUSTOMIZING EDITOR COMMANDS AND
SHORTCUT KEYS

The Edit menu provides commands for editing and searching in editor windows, for
instance, unlimited undo/redo. You can also find some of these commands on the
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Editing

context menu that appears when you right-click in the editor window. For more
information about each command, see Edit menu, page 186.

There are also editor shortcut keys for:

● moving the insertion point

● scrolling text

● selecting text.

For more information about these shortcut keys, see Editor shortcut key summary, page
169.

To change the default shortcut key bindings, choose Tools>Options, and click the Key
Bindings tab. For more information, see Key Bindings options, page 51.

DISPLAYING STATUS INFORMATION

The status bar is available by choosing View>Status Bar. For more information, see
IAR Embedded Workbench IDE window, page 37.

Programming assistance
There are several features in the editor that assist you during your software development.
This section describes various tasks related to using the editor.

These tasks are covered:

● Navigating in the insertion point history

● Navigating to a function

● Finding a definition or declaration of a symbol

● Finding references to a symbol

● Finding function calls for a selected function

● Switching between source and header files

● Displaying source browse information

● Text searching

● Accessing online help for reference information

NAVIGATING IN THE INSERTION POINT HISTORY

The current position of the insertion point is added to the insertion point history by
actions like Go to definition and clicking on the result for the Find in Files command.
You can jump in the history either forward or backward by using the Navigate Forward
AFE1_AFE2-1:1

137

138

Programming assistance

 and Navigate Backward buttons (or by pressing Alt + Right Arrow or Alt +
Left Arrow).

NAVIGATING TO A FUNCTION

Click the Go to function button in the top-right corner of the editor window to list all
functions defined in the source file displayed in the window. You can then choose to
navigate directly to one of the functions by clicking it in the list. Note that the list is
refreshed when you save the file.

FINDING A DEFINITION OR DECLARATION OF A SYMBOL

To see the definition or declaration of a global symbol or a function, you can use these
alternative methods:

● In the editor window, right-click on a symbol and choose the Go to definition or Go
to declaration command from the context menu that appears. If more than one
declaration is found, the declarations are listed in the Declarations window from
where you can navigate to a specific declaration.

● In the Source Browser window, double-click on a symbol to view the definition

● In the Source Browser window, right-click on a symbol, or function, and choose
the Go to definition command from the context menu that appears

The definition of the symbol or function is displayed in the editor window.

FINDING REFERENCES TO A SYMBOL

To find all references for a specific symbol, select the symbol in the editor window,
right-click and choose Find All References from the context menu. All found
references are displayed in the References window.

You can now navigate between the references.

FINDING FUNCTION CALLS FOR A SELECTED FUNCTION

To find all calls to or from a function, select the function in the editor window or in the
Source Browser window, right-click and choose either Find All Calls to or Find All
Calls from from the context menu. The result is displayed in the Call Graph window.

You can navigate between the function calls.

SWITCHING BETWEEN SOURCE AND HEADER FILES

If the insertion point is located on an #include line, you can choose the Open
"header.h" command from the context menu, which opens the header file in an editor
window. You can also choose the command Open Header/Source File, which opens
the header or source file with a corresponding filename to the current file, or activates it
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Editing

if it is already open. This command is available if the insertion point is located on any
line except an #include line.

DISPLAYING SOURCE BROWSE INFORMATION

1 To open the Source Browser window, choose View>Source Browser>Source
Browser. Source browse information is displayed for the active build configuration.

Note that you can choose a file filter and a type filter from the context menu that appears
when you right-click in the window.

2 To display browse information in the Source Browser window, choose
Tools>Options>Project and select the option Generate browse information.

TEXT SEARCHING

There are several standard search functions available in the editor:

● Quick search text box

● Find dialog box

● Replace dialog box

● Find in Files dialog box

● Replace in Files dialog box

● Incremental Search dialog box.

To use the Quick search text box on the toolbar:
1 Type the text you want to search for and press Enter.

2 Press Esc to stop the search. This is a quick method of searching for text in the active
editor window.

To use the Find, Replace, Find in Files, Replace in Files, and Incremental
Search functions:

1 Before you use the search commands, choose Tools>Options>Editor and make sure
the Show bookmarks option is selected.

2 Choose the appropriate search command from the Edit menu. For more information
about each search function, see Edit menu, page 186.

3 To remove the blue flag icons that have appeared in the left-hand margin, right-click in
the Find in Files window and choose Clear All from the context menu.

ACCESSING ONLINE HELP FOR REFERENCE INFORMATION

When you need to know the syntax of an extended keyword, intrinsic function, etc,
select it in the editor window and press F1.
AFE1_AFE2-1:1

139

140

Reference information on the editor

The documentation for the item appears in a help window.

Reference information on the editor
Reference information about:

● Editor window, page 141

● Find dialog box, page 150

● Find in Files window, page 151

● Replace dialog box, page 152

● Find in Files dialog box, page 153

● Replace in Files dialog box, page 155

● Incremental Search dialog box, page 158

● Declarations window, page 159

● Ambiguous Definitions window, page 160

● References window, page 161

● Source Browser window, page 162
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Editing

● Source Browse Log window, page 165

● Resolve File Ambiguity dialog box, page 167

● Call Graph window, page 167

● Template dialog box, page 168

● Editor shortcut key summary, page 169

Editor window
The editor window is opened when you open or create a text file in the IDE.

You can open one or several text files, either from the File menu, or by double-clicking
them in the Workspace window. All open files are available from the drop-down menu
at the upper right corner of the editor window. Several editor windows can be open at
the same time.
AFE1_AFE2-1:1

141

142

Reference information on the editor

Source code files and HTML files are displayed in editor windows. From an open
HTML document, hyperlinks to HTML files work like in an ordinary web browser. A
link to an eww workspace file opens the workspace in the IDE, and closes any currently
open workspace and the open HTML document.

When you want to print a source file, it can be useful to enable the option Show line
numbers—available by choosing Tools>Options>Editor.

The editor window is always docked, and its size and position depend on other currently
open windows.

For more information about using the editor, see Editing a file, page 130 and
Programming assistance, page 137.

Relative source file paths

The IDE has partial support for relative source file paths.

If a source file is located in the project file directory or in any subdirectory of the project
file directory, the IDE uses a path relative to the project file when accessing the source
file.

Documentation comments

In addition to regular comments that start with // (in C++) or /* (in C and C++), the
editor supports documentation comments, that start with /**, /*!, /// or //!. The
editor can distinguish these documentation comments from regular comments. By
default, the editor assigns the two types of comments different colors.

Inside a documentation comment, the editor highlights doxygen-style keywords
(keywords that begin with \ or @) and by default uses a different color for them than for
the rest of the comment. The color depends on whether the keyword is identified as an
existing doxygen keyword or not. You can customize the editor’s use of colors on the
Tools>Options>Colors and Fonts page, see Colors and Fonts options, page 46.

Lines inside documentation comment blocks can be shown in tooltips and parameter
hints for variables and functions. A comment block with no doxygen-style keywords
will be shown as a concatenated text string in tooltips and parameter hints. After the
occurrence of a doxygen-style keyword, only text written after a @brief keyword will
be shown in tooltips and parameter hints.

Syntax feedback

The editor is capable of giving feedback on the code in an editor window as you type.
Code that is identified as having suspected or verified syntactic issues will be indicated
by squiggly lines. The issue might or might not be a real compiler problem.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Editing

If you hover over a squiggly line, a tooltip will identify the nature of the issue:

If there is a potential simple fix for the identified issue, the tooltip will suggest it. To
apply the suggested fix, choose Apply Syntax Feedback Fix from the Edit menu or the
editor window context menu.

Syntax feedback is based on source browser information and requires that the option
Generate browse information has been selected in the Tools>Options>Project
category. Syntax feedback is not available during a debugging session.

To enable or disable syntax feedback, and to configure the level of feedback provided,
see Editor Syntax Feedback options, page 61.

Window tabs, tab groups, and tab context menu

The name of the open file is displayed on the tab. If you open several files, they are
organized in a tab group. Click the tab for the file that you want to display. If a file has
been modified after it was last saved, an asterisk appears on the tab after the filename,
for example Utilities.c *. If a file is read-only, a padlock icon is visible on the tab.

The tab’s tooltip shows the full path and a remark if the file is not a member of the active
project.

A context menu appears if you right-click on a tab in the editor window.
AFE1_AFE2-1:1

143

144

Reference information on the editor

These commands are available:

Save file
Saves the file.

Close
Closes the file.

Close All But This
Closes all tabs except the current tab.

Close All to the Right
Closes all tabs to the right of the current tab.

Open Containing Folder
Opens the File Explorer that displays the directory where the selected file
resides.

File Properties
Displays a standard File Properties dialog box.

Multiple editor windows and splitter controls

You can have one or several editor windows open at the same time. The commands on
the Window menu allow you to split the editor window into panes and to open multiple
editor windows. There are also commands for moving files between editor windows.

For more information about each command on the Window menu, see Window menu,
page 199.

Go to function

Click the Go to function button in the top right-hand corner of the editor window to list
all functions of the C or C++ editor window.

Filter the list by typing the name of the function you are looking for. Then click the name
of the function that you want to show in the editor window.

To close the list without moving the cursor from its original position in the editor
window, press Esc.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Editing

Context menu

This context menu is available:

The contents of this menu depend on whether the debugger is started or not, and on the
C-SPY driver you are using. Typically, additional breakpoint types might be available
on this menu. For information about available breakpoints, see the C-SPY® Debugging
Guide for RISC-V.
AFE1_AFE2-1:1

145

146

Reference information on the editor

These commands are available:

Cut, Copy, Paste
Standard window commands.

Complete Word
Attempts to complete the word you have begun to type, basing the guess on the
contents of the rest of the editor window.

Complete Code
Shows a list of classes, functions, variables, etc, that are available when you
type. For more information, see Code completion, page 133.

Apply Syntax Feedback Fix
Applies the suggested fix for the syntactic issue identified by the Syntax
feedback feature.

Parameter Hint
Suggests parameters as tooltip information for the function parameter list you
have begun to type. For more information, see Parameter hint, page 134.

Match Brackets
Selects all text between the brackets immediately surrounding the insertion
point, increases the selection to the next hierarchic pair of brackets, or beeps if
there is no higher bracket hierarchy.

Toggle All Folds
Expands/collapses all code folds in the current editor window.

Insert Template
Displays a list in the editor window from which you can choose a code template
to be inserted at the location of the insertion point. If the code template you
choose requires any field input, the Template dialog box appears. For more
information about this dialog box, see Template dialog box, page 168. For
information about using code templates, see Using and adding code templates,
page 134.

Open "header.h"
Opens the header file header.h in an editor window. If more than one header
file with the same name is found and the IDE does not have access to
dependency information, the Resolve File Ambiguity dialog box is displayed,
see Resolve File Ambiguity dialog box, page 167. This menu command is only
available if the insertion point is located on an #include line when you open
the context menu.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Editing

Open Header/Source File
Opens the header or source code file that has same base name as the current file.
If the destination file is not open when you choose the command, the file will
first be opened. This menu command is only available if the insertion point is
located on any line except an #include line when you open the context menu.
This command is also available from the File>Open menu.

Go to Definition of symbol
Places the insertion point at the definition of the symbol. If no definition is found
in the source code, the first declaration will be used instead. If more than one
possible definition is found, they are listed in the Ambiguous Definitions
window. See Ambiguous Definitions window, page 160.

Go to Declaration of symbol
If only one declaration is found, the command puts the insertion point at the
declaration of the symbol. If more than one declaration is found, these
declarations are listed in the Declarations window.

Find All References to symbol
The references are listed in the References window.

Find All Calls to symbol
Opens the Call Graph window which displays all functions in the project that
calls the selected function, see Call Graph window, page 167. If this command
is disabled, make sure to select a function in the editor window.

Find All Calls from symbol
Opens the Call Graph window which displays all functions in the project that
are called from the selected function, see Call Graph window, page 167. If this
command is disabled, make sure to select a function in the editor window.

Find in Trace
Searches the contents of the Trace window for occurrences of the given
location—the position of the insertion point in the source code—and reports the
result in the Find in Trace window. This menu command requires support for
Trace in the C-SPY driver you are using, see the C-SPY® Debugging Guide for
RISC-V.

Toggle Breakpoint (Code)
Toggles a code breakpoint at the statement or instruction containing or close to
the cursor in the source window. For information about code breakpoints, see the
C-SPY® Debugging Guide for RISC-V.
AFE1_AFE2-1:1

147

148

Reference information on the editor

Toggle Breakpoint (Log)
Toggles a log breakpoint at the statement or instruction containing or close to
the cursor in the source window. For information about log breakpoints, see the
C-SPY® Debugging Guide for RISC-V.

Toggle Breakpoint (Trace Start)
Toggles a Trace Start breakpoint. When the breakpoint is triggered, trace data
collection starts. For information about Trace Start breakpoints, see the C-SPY®
Debugging Guide for RISC-V. Note that this menu command is only available
if the C-SPY driver you are using supports trace.

Toggle Breakpoint (Trace Stop)
Toggles a Trace Stop breakpoint. When the breakpoint is triggered, trace data
collection stops. For information about Trace Stop breakpoints, see the C-SPY®
Debugging Guide for RISC-V. Note that this menu command is only available
if the C-SPY driver you are using supports trace.

Enable/disable Breakpoint
Toggles a breakpoint between being disabled, but not actually removed—
making it available for future use—and being enabled again.

Set Data Breakpoint for 'variable'
Toggles a data log breakpoint on variables with static storage duration. Requires
support in the C-SPY driver you are using. For more information about data
breakpoints, see the C-SPY® Debugging Guide for RISC-V.

Set Data Log Breakpoint for 'variable'
Toggles a data log breakpoint on variables with static storage duration. Requires
support in the C-SPY driver you are using. The breakpoints you set in this
window will be triggered by both read and write accesses—to change this, use
the Breakpoints window. For more information about data logging and data log
breakpoints, see the C-SPY® Debugging Guide for RISC-V.

Edit Breakpoint
Displays the Edit Breakpoint dialog box to let you edit the breakpoint available
on the source code line where the insertion point is located. If there is more than
one breakpoint on the line, a submenu is displayed that lists all available
breakpoints on that line.

Set Next Statement
Sets the Program Counter directly to the selected statement or instruction
without executing any code. This menu command is only available when you are
using the debugger. For more information, see the C-SPY® Debugging Guide
for RISC-V.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Editing

Add to Quick Watch: symbol
Opens the Quick Watch window and adds the symbol, see the C-SPY®
Debugging Guide for RISC-V. This menu command is only available when you
are using the debugger.

Add to Watch: symbol
Opens the symbol to the Watch window and adds the symbol. This menu
command is only available when you are using the debugger.

Add to Live Watch: symbol
Opens the Live Watch window and adds the symbol, see the C-SPY®
Debugging Guide for RISC-V. This menu command is only available when you
are using the debugger.

Move to PC
Moves the insertion point to the current PC position in the editor window. This
menu command is only available when you are using the debugger.

Run to Cursor
Executes from the current statement or instruction up to the statement or
instruction where the insertion point is located. This menu command is only
available when you are using the debugger.

Character Encoding
Interprets the source file according to the specified character encoding. Choose
between:

System (uses the Windows settings)
Western European
UTF-8
Japanese (Shift-JIS)
Chinese Simplified (GB2312)
Chinese Traditional (Big5)
Korean (Unified Hangul Code)
Arabic
Baltic
Central European
Greek
Hebrew
Russian
Thai
Vietnamese
Convert to UTF-8 (converts the document to UTF-8)
AFE1_AFE2-1:1

149

150

Reference information on the editor

Use one of these settings if the Auto-detect character encoding option could
not determine the correct encoding or if the option is deselected. For more
information about file encoding, see Editor options, page 54.

Options
Displays the IDE Options dialog box, see Tools menu, page 198.

Find dialog box
The Find dialog box is available from the Edit menu.

Note that the contents of the dialog box might be different if you search in an editor
window compared to if you search in the Memory window. This screen shot reflects the
dialog box when you search in an editor window.

Find what

Specify the text to search for. Use the drop-down list to use old search strings.

When you search in the Memory window, the value you search for must be a multiple
of the display unit size. For example, when using the 2 units size in the Memory
window, the search value must be a multiple of two bytes.

Match case

Searches only for occurrences that exactly match the case of the specified text.
Otherwise, specifying int will also find INT and Int. This option is only available
when you perform the search in an editor window.

Match whole word

Searches for the specified text only if it occurs as a separate word. Otherwise, specifying
int will also find print, sprintf etc. This option is only available when you perform
the search in an editor window.

Search as hex

Searches for the specified hexadecimal value. This option is only available when you
perform the search in the Memory window.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Editing

Only in selection

Limits the search operation to the selected lines (when searching in an editor window)
or to the selected memory area (when searching in the Memory window). The option is
only enabled when a selection has been made before you open the dialog box.

Find Next

Searches for the next occurrence of the specified text.

Find Previous

Searches for the previous occurrence of the specified text.

Stop

Stops an ongoing search. This button is only available during a search in the Memory
window.

Find in Files window
The Find in Files window is available by choosing View>Messages.

This window displays the output from the Edit>Find and Replace>Find in Files
command. When opened, this window is, by default, grouped together with the other
message windows.

Double-click an entry in the window to open the corresponding file with the insertion
point positioned at the correct location. That source location is highlighted with a blue
flag icon. Choose Edit>Next Error/Tag or press F4 to jump to the next in sequence.

Context menu

This context menu is available:
AFE1_AFE2-1:1

151

152

Reference information on the editor

These commands are available:

Copy
Copies the selected content of the window.

Select All
Selects the contents of the window.

Clear All
Deletes the contents of the window and any blue flag icons in the left-side
margin of the editor window.

Replace dialog box
The Replace dialog box is available from the Edit menu.

Note that the contents of the dialog box are different if you search in an editor window
compared to if you search in the Memory window.

Find what

Specify the text to search for. Use the drop-down list to use old search strings.

Replace with

Specify the text to replace each found occurrence with. Use the drop-down list to use old
search strings.

Match case

Searches only for occurrences that exactly match the case of the specified text.
Otherwise, specifying int will also find INT and Int. This option is only available
when you perform the search in an editor window.

Match whole word

Searches for the specified text only if it occurs as a separate word. Otherwise, int will
also find print, sprintf etc. This option is only available when you search in an editor
window.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Editing

Search as hex

Searches for the specified hexadecimal value. This option is only available when you
perform the search in the Memory window.

Only in selection

Limits the search operation to the selected lines (when searching in an editor window)
or to the selected memory area (when searching in the Memory window). The option is
only enabled when a selection has been made before you open the dialog box.

Find next

Searches for the next occurrence of the specified text.

Replace

Replaces the searched text with the specified text.

Replace all

Replaces all occurrences of the searched text in the current editor window.

Find in Files dialog box
The Find in Files dialog box is available from the Edit menu.

Use this dialog box to search for a string in files.
AFE1_AFE2-1:1

153

154

Reference information on the editor

The result of the search appears in the Find in Files message window—available from
the View menu. You can then go to each occurrence by choosing the Edit>Next
Error/Tag command, alternatively by double-clicking the messages in the Find in Files
message window. This opens the corresponding file in an editor window with the
insertion point positioned at the start of the specified text. A blue flag in the left-hand
margin indicates the line with the string you searched for.

Find what

Specify the string you want to search for, or a regular expression. Use the drop-down list
to use old search strings/expressions. You can narrow the search down with one or more
of these conditions:

Match case
Searches only for occurrences that exactly match the case of the specified text.
Otherwise, specifying int will also find INT and Int.

Match whole word
Searches only for the string when it occurs as a separate word (mnemonic &w).
Otherwise, int will also find print, sprintf and so on.

Match regular expression
Interprets the search string as a regular expression, which must follow the
regular expression syntax of the ECMAScript specification as defined by the
C++ standard for the std::regex library.

Look in

Specify which files you want to search in. Choose between:

For all projects in workspace
Searches all projects in the workspace, not just the active project.

Project files
Searches all files that you have explicitly added to your project.

Project files and user include files
Searches all files that you have explicitly added to your project and all files that
they include, except the include files in the IAR Embedded Workbench
installation directory.

Project files and all include files
Searches all project files that you have explicitly added to your project and all
files that they include.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Editing

Directory
Searches the directory that you specify. Recent search locations are saved in the
drop-down list. A browse button is available for your convenience.

Look in subdirectories
Searches the directory that you have specified and all its subdirectories.

File types

A filter for choosing which type of files to search—the filter applies to all Look in
settings. Choose the appropriate filter from the drop-down list. The text field is editable,
to let you add your own filters. Use the * character to indicate zero or more unknown
characters of the filters, and the ? character to indicate one unknown character.

Stop

Stops an ongoing search. This button is only available during an ongoing search.

Replace in Files dialog box
The Replace in Files dialog box is available from the Edit menu.

Use this dialog box to search for a specified string in multiple text files and replace it
with another string.
AFE1_AFE2-1:1

155

156

Reference information on the editor

The result of the replacement appears in the Find in Files message window—available
from the View menu. You can then go to each occurrence by choosing the Edit>Next
Error/Tag command, alternatively by double-clicking the messages in the Find in Files
message window. This opens the corresponding file in an editor window with the
insertion point positioned at the start of the specified text. A blue flag in the left-hand
margin indicates the line containing the string you searched for.

Find what

Specify the string you want to search for and replace, or a regular expression. Use the
drop-down list to use old search strings/expressions. You can narrow the search down
with one or more of these conditions:

Match case
Searches only for occurrences that exactly match the case of the specified text.
Otherwise, specifying int will also find INT and Int.

Match whole word
Searches only for the string when it occurs as a separate word (mnemonic &w).
Otherwise, int will also find print, sprintf, and so on.

Match regular expression
Interprets the search string as a regular expression, which must follow the
regular expression syntax of the ECMAScript specification as defined by the
C++ standard for the std::regex library.

Replace with

Specify the string you want to replace the original string with. Use the drop-down list to
use old replace strings.

Look in

Specify which files you want to search in. Choose between:

For all projects in workspace
Searches all projects in the workspace, not just the active project.

Project files
Searches all files that you have explicitly added to your project.

Project files and user include files
Searches all files that you have explicitly added to your project and all files that
they include, except the include files in the IAR Embedded Workbench
installation directory.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Editing

Project files and all include files
Searches all project files that you have explicitly added to your project and all
files that they include.

Directory
Searches the directory that you specify. Recent search locations are saved in the
drop-down list. A browse button is available for your convenience.

Look in subdirectories
Searches the directory that you have specified and all its subdirectories.

File types

A filter for choosing which type of files to search—the filter applies to all Look in
settings. Choose the appropriate filter from the drop-down list. The text field is editable,
to let you add your own filters. Use the * character to indicate zero or more unknown
characters of the filters, and the ? character to indicate one unknown character.

Stop

Stops an ongoing search. This button is only available during an ongoing search.

Close

Closes the dialog box. An ongoing search must be stopped first.

Find Next

Finds the next occurrence of the specified search string.

Replace

Replaces the found string and finds the next occurrence of the specified search string.

Replace All

Saves all files and replaces all found strings that match the search string.

Skip file

Skips the occurrences in the current file.
AFE1_AFE2-1:1

157

158

Reference information on the editor

Incremental Search dialog box
The Incremental Search dialog box is available from the Edit menu.

Use this dialog box to gradually fine-tune or expand the search string.

Find what

Type the string to search for. The search is performed from the location of the insertion
point—the start point. Every character you add to or remove from the search string
instantly changes the search accordingly. If you remove a character, the search starts
over again from the start point.

If a word in the editor window is selected when you open the Incremental Search
dialog box, this word will be displayed in the Find What text box.

Use the drop-down list to use old search strings.

Match case

Searches for occurrences that exactly match the case of the specified text. Otherwise,
searching for int will also find INT and Int.

Find Next

Searches for the next occurrence of the current search string. If the Find What text box
is empty when you click the Find Next button, a string to search for will automatically
be selected from the drop-down list. To search for this string, click Find Next.

Close

Closes the dialog box.

Only in selection

Limits the search operation to the selected lines. The option is only available when more
than one line has been selected before you open the dialog box.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Editing

Declarations window
The Declarations window is available by choosing View>Source Browser.

This window displays the result from the Go to Declaration command on the editor
window context menu.

When opened, this window is by default grouped together with the other message
windows.

To find and list declarations for a specific symbol, select a symbol in the editor window,
right-click and choose Go to Declaration from the context menu. All declarations are
listed in the Declarations window.

Double-click an entry in the window to open the corresponding file with the insertion
point positioned at the correct location. Choose Edit>Next Error/Tag or press F4 to
jump to the next in sequence.

Context menu

This context menu is available:

These commands are available:

Copy
Copies the contents of the window.

Select All
Selects the contents of the window.

Clear All
Deletes the contents of the window.
AFE1_AFE2-1:1

159

160

Reference information on the editor

Ambiguous Definitions window
The Ambiguous Definitions window is available by choosing View>Source Browser.

This window displays the result from the Go to Definition command on the editor
window context menu, if the source browser finds more than one possible definition.

When opened, this window is by default grouped together with the other message
windows.

Double-click an entry in the window to open the corresponding file with the insertion
point positioned at the correct location. Choose Edit>Next Error/Tag or press F4 to
jump to the next entry in sequence.

Context menu

This context menu is available:

These commands are available:

Copy
Copies the contents of the window.

Select All
Selects the contents of the window.

Clear All
Deletes the contents of the window.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Editing

References window
The References window is available by choosing View>Source Browser.

This window displays the result from the Find All References commands on the editor
window context menu.

When opened, this window is by default grouped together with the other message
windows.

To find and list references for a specific symbol, select a symbol in the editor window,
right-click and choose Find All References from the context menu. All references are
listed in the References window.

Double-click an entry in the window to open the corresponding file with the insertion
point positioned at the correct location. Choose Edit>Next Error/Tag or press F4 to
jump to the next in sequence.

Context menu

This context menu is available:

These commands are available:

Copy
Copies the contents of the window.

Select All
Selects the contents of the window.

Clear All
Deletes the contents of the window.
AFE1_AFE2-1:1

161

162

Reference information on the editor

Source Browser window
The Source Browser window is available from the View menu.

This window displays an hierarchical view in alphabetical order of all symbols defined
in the active build configuration. This means that source browse information is available
for symbols in source files and include files part of that configuration. Source browse
information is not available for symbols in linked libraries.

For more information about how to use this window, see Displaying source browse
information, page 139.

The display area

The display area contains four columns:

To sort each column, click its header.

Name The names of global symbols and functions defined in the
project. Note that an unnamed type, for example a struct
or a union without a name, will get a name based on the
filename and line number where it is defined. These
pseudonames are enclosed in angle brackets.

Scope The scope (namespaces and classes/structs) that the entry
belongs to.

Symbol type Displays the symbol type for each element.

File The file name (without path) that contains the definition of
the entry.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Editing

Icons used for the symbol types

These are the icons used:

Context menu

This context menu is available in the display area:

Base class

Class

Configuration

Enumeration

Enumeration constant

 (Yellow rhomb) Field of a struct

 (Purple rhomb) Function

Macro

Namespace

Template class

Template function

Type definition

Union

 (Yellow rhomb) Variable
AFE1_AFE2-1:1

163

164

Reference information on the editor

These commands are available:

Go to Definition
The editor window will display the definition of the selected item.

Find All Calls to
Opens the Call Graph window which displays all functions in the project that
calls the selected function, see Call Graph window, page 167. If this command
is disabled, make sure to select a function in the Source Browser window.

Find All Calls from
Opens the Call Graph window which displays all functions in the project that
are called from the selected function, see Call Graph window, page 167. If this
command is disabled, make sure to select a function in the Source Browser
window.

Move to Parent
If the selected element is a member of a class, struct, union, enumeration, or
namespace, this menu command can be used for moving the insertion point to
the enclosing element.

All Symbols
Type filter—displays all global symbols and functions defined in the project.

Functions and Variables
Type filter—displays all functions and variables defined in the project.

Non-Member Functions and Variables
Type filter—displays all functions and variables that are not members of a class.

Types
Type filter—displays all types such as structures and classes defined in the
project.

Constants and Macros
Type filter—displays all constants and macros defined in the project.

Project Files
File filter—displays symbols from all files that you have explicitly added to
your project, but no include files.

Project and User Include Files
File filter—displays symbols from all files that you have explicitly added to
your project and all files included by them, except the include files in the IAR
Embedded Workbench installation directory.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Editing

Project and All Include Files
File filter—displays symbols from all files that you have explicitly added to
your project and all files included by them.

Progress bar

While the source browse information is generated for a project, a green progress bar is
displayed in the status bar of the IDE window. Clicking on this progress bar opens a
context menu with a command to open the Source Browse Log window, see Source
Browse Log window, page 165.

If the source browser encounters a fatal error, the progress bar turns red.

Source Browse Log window
The Source Browse Log window is available by choosing View>Messages.

This window displays the output from the operation of the source browser.
AFE1_AFE2-1:1

165

166

Reference information on the editor

Context menu

This context menu is available:

These commands are available:

All
Shows all messages sent by the source browser. This is mainly useful as input to
IAR Technical Support.

Messages
Gives information about what the source browser is doing and any errors that
occur during parsing.

Errors
Shows only errors received during the source browsing.

Copy
Copies the contents of the window.

Select All
Selects the contents of the window.

Clear All
Clears the contents of the window.

Live Log to File
Displays a submenu with commands for writing the source browse messages to
a log file, and setting filter levels for the log.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Editing

Resolve File Ambiguity dialog box
The Resolve File Ambiguity dialog box is displayed when the editor finds more than
one header file with the same name.

This dialog box lists the header files if more than one header file is found when you
choose the Open "header.h" command on the editor window context menu and the IDE
does not have access to dependency information.

Call Graph window
The Call Graph window is available by choosing View>Source Browser>Call Graph.

This window displays calls to or calls from a function. The window is useful for
navigating between the function calls.

To display a call graph, select a function name in the editor window or in the Source
Browser window, right-click and select either Find All Calls to or Find All Calls from
from the context menu.

Double-click an entry in the window to place the insertion point at the location of the
function call (or definition, if a call is not applicable for the entry). The editor will open
the file that contains the call if necessary.
AFE1_AFE2-1:1

167

168

Reference information on the editor

Display area

The display area shows the call graph for the selected function, where each line lists a
function. These columns are available:

Context menu

This context menu is available:

These commands are available:

Go to Definition
Places the insertion point at the location of the function definition.

Go to Call
Places the insertion point at the location of the function call.

Template dialog box
The Template dialog box appears when you insert a code template that requires any
field input.

Use this dialog box to specify any field input that is required by the source code template
you insert.

Note: The figure reflects the default code template that can be used for automatically
inserting code for a for loop.

Function Displays the call graph for the selected function—first the
selected function, followed by a list of all called or calling
functions. The functions calling the selected function are
indicated with left arrow and the functions called by the
selected function are indicated with a right arrow.

File The name of the source file.

Line The line number for the call.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Editing

Text fields

Specify the required input in the text fields. Which fields that appear depends on how
the code template is defined.

Display area

The display area shows the code that would result from the code template, using the
values you submit. For more information about using code templates, see Using and
adding code templates, page 134.

Editor shortcut key summary
There are three types of shortcut keys that you can use in the editor:

● Predefined shortcut keys, which you can edit using the IDE Options dialog box

● Shortcut keys provided by the Scintilla editor

● Custom shortcut keys that you can add using the IDE Options dialog box.

The following tables summarize the editor’s predefined shortcut keys.

Moving the insertion point

To move the insertion point Press

One character to the left Left arrow

One character to the right Right arrow

One word to the left Ctrl + Left arrow

One word to the right Ctrl + Right arrow

One word part to the left—when using mixed
cases, for example mixedCaseName

Ctrl + Alt + Left arrow

One word part to the right—when using
mixed cases, for example mixedCaseName

Ctrl + Alt + Right arrow

One line up Up arrow

One line down Down arrow

To the previous paragraph Ctrl + Alt + Up arrow

To the next paragraph Ctrl + Alt + Down arrow

To the start of the line Home

To the end of the line End

To the beginning of the file Ctrl + Home

To the end of the file Ctrl + End

Table 5: Editor shortcut keys for insertion point navigation
AFE1_AFE2-1:1

169

170

Reference information on the editor

Selecting text

To select text, press Shift and the corresponding command for moving the insertion
point. In addition, this command is available:

Scrolling text

Miscellaneous shortcut keys

To select Press

A column-based block Shift + Alt + Arrow key

Table 6: Editor shortcut keys for selecting text

To scroll Press

Up one line.
When used in the parameter hints text box,
this shortcut steps up one line through the
alternatives.

Ctrl + Up arrow

Down one line,
When used in the parameter hints text box,
this shortcut steps down one line through the
alternatives.

Ctrl + Down arrow

Up one page Page Up

Down one page Page Down

Table 7: Editor shortcut keys for scrolling

Description Press

When used in the parameter hints text box,
this shortcut inserts parameters as text in the
source code.

Ctrl + Enter

Bracket matching—Expand selection to next
level of matching of {}, [], or ().

Ctrl + B

Bracket matching—Expand selection to next
level of matching of {}, [], (), or <>.

Ctrl + Alt + B

Bracket matching—Shrink selection to next
level of matching of {}, [], or ().

Ctrl + Shift + B

Bracket matching—Shrink selection to next
level of matching of {}, [], (), or <>.

Ctrl + Alt + Shift + B

Change case for selected text to lower Ctrl + u

Change case for selected text to upper Ctrl + U

Table 8: Miscellaneous editor shortcut keys
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Editing

Additional Scintilla shortcut keys

Complete code Ctrl + Space

Complete word Ctrl + Alt + Space

Insert template Ctrl + Alt + V

Parameter hint Ctrl + Shift + Space

Zooming Mouse wheel

Zoom in Ctrl + numeric keypad '+'

Zoom out Ctrl + numeric keypad '-'

Zoom normal Ctrl + numeric keypad '/'

Description Press

Table 8: Miscellaneous editor shortcut keys (Continued)

Description Press

Scroll window line up or down Ctrl + Up
Ctrl + Down

Select a rectangular block and change its size a
line up or down, or a column left or right

Shift + Alt + arrow key

Move insertion point one paragraph up or
down

Ctrl + Alt + Up
Ctrl + Alt + Down

Grow selection one paragraph up or down Ctrl + Shift + Alt + Up
Ctrl + Shift + Alt + Down

Move insertion point one word left or right Ctrl + Left
Ctrl + Right

Grow selection one word left or right Ctrl + Shift + Left
Ctrl + Shift + Right

Grow selection to next start or end of a word Ctrl + Shift + Alt + Left
Ctrl + Shift + Alt + Right

Move to first non-blank character of the line Home

Move to start of line Alt + Home

Select to start of the line Shift + Alt + Home

Select a rectangular block to the start or end
of page

Shift + Alt + Page Up
Shift + Alt + Page Down

Delete to start of next word Ctrl + Delete

Delete to start of previous word Ctrl + Backspace

Delete forward to end of line Ctrl + Shift + Delete

Table 9: Additional Scintilla shortcut keys
AFE1_AFE2-1:1

171

172

Reference information on the editor

Delete backward to start of line Ctrl + Shift + Backspace

Zoom in Ctrl + Add (numeric +)

Zoom out Ctrl + Subtract (numeric –)

Restore zoom to 100% Ctrl + Divide (numeric /)

Cut current line Ctrl + L

Copy current line Ctrl + Shift + T

Delete current line Ctrl + Shift + L

Change selection to lower case Ctrl + U

Change selection to upper case Ctrl + Shift + U

Description Press

Table 9: Additional Scintilla shortcut keys (Continued)
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Part 2. Reference
information
This part contains these chapters:

● Product files

● Menu reference

● General options

● Compiler options

● Assembler options

● Output converter options

● Custom build options

● Build actions options

● Linker options

● Library builder options
173

174

Product files
● Installation directory structure

● Project directory structure

● Various settings files

● File types

Installation directory structure
These topics are covered:

● Root directory

● The riscv directory

● The common directory

● The install-info directory

The installation procedure creates several directories to contain the various types of files
used with the IAR development tools. The following sections give a description of the
files contained by default in each directory.

ROOT DIRECTORY

The default installation root directory is typically x:\Program Files\IAR
Systems\Embedded Workbench N.n\, where x is the drive where Microsoft
Windows is installed, and the first digit in N.n reflects the first digit in the version
number of the IAR Embedded Workbench shared components.

Note that this version number is not the same as the version number of your IAR
Embedded Workbench product. To find the version number of the IDE and the product,
see Product Info dialog box, page 82.
AFE1_AFE2-1:1

175

176

Installation directory structure

THE RISCV DIRECTORY

The riscv directory contains all product-specific subdirectories.

Directory Description

riscv\bin Contains executable files for RISC-V-specific components, such as the
compiler, the assembler, the linker and the library tools, and the
C-SPY® drivers.

riscv\config Contains files used for configuring the development environment and
projects, for example:
• Linker configuration files (*.icf)
• C-SPY device description files (*.ddf)
• Device selection files (*.menu)
• Syntax coloring configuration files (*.cfg)
• Project templates for both application and library projects (*.ewp),
and for the library projects, the corresponding library configuration
files.

riscv\cstat Contains files related to C-STAT.

riscv\doc Contains online versions in hypertext PDF format of this user guide,
and of the RISC-V reference guides, as well as online help files (*.chm).
The directory also contains release notes with recent additional
information about the RISC-V tools.

riscv\drivers Contains low-level device drivers, typically USB drivers required by the
C-SPY drivers.

riscv\examples Contains files related to example projects, which can be opened from
the Information Center.

riscv\inc Contains include files, such as the header files for the standard C or
C++ library. There are also specific header files that define special
function registers (SFRs)—these files are used by both the compiler and
the assembler.

riscv\lib Contains prebuilt libraries and the corresponding library configuration
files, used by the compiler.

riscv\rtos Contains product information, evaluation versions, and example
projects for third-party RTOS and middleware solutions integrated into
IAR Embedded Workbench.

riscv\src Contains source files for some configurable library functions and the
library source code.
For the ILINK linker, the directory also contains the source code for
ELF utilities.

riscv\tutorials Contains the files used for the tutorials in the Information Center.

Table 10: The riscv directory
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Product files

THE COMMON DIRECTORY

The common directory contains subdirectories for components shared by all IAR
Embedded Workbench products.

THE INSTALL-INFO DIRECTORY

The install-info directory contains metadata (version number, name, etc.) about the
installed product components. Do not modify these files.

Project directory structure
When you build your project, the IDE creates new directories in your project directory.
A subdirectory is created—the name of this directory reflects the build configuration
you are using, typically Debug or Release. This directory in turn contains these
subdirectories:

Directory Description

common\bin Contains executable files for components common to all IAR
Embedded Workbench products, such as the editor and the graphical
user interface components. The executable file for the IDE is also
located here.

common\config Contains files used by the IDE for settings in the development
environment.

common\doc Contains release notes with recent additional information about the
components common to all IAR Embedded Workbench products. We
recommend that you read these files. The directory also contains
documentation related to installation and licensing.

common\plugins Contains executable files and description files for components that can
be loaded as plugin modules.

Table 11: The common directory

BrowseInfo The default destination directory for information generated by the
source browser.

Exe The default destination directory for:

● The executable file, which has the extension out and is used as
input to the IAR C-SPY® Debugger.

● Library object files, which have the extension a.
AFE1_AFE2-1:1

177

178

Various settings files

The names and locations of these directories can be changed on the page
Project>Options>General Options>Output.

Various settings files
When you work in the IDE, the IDE creates files for various types of settings. These files
are stored in different directories depending on whether the files contain global or local
settings.

FILES FOR GLOBAL SETTINGS

Files for global settings are stored in C:\Users\User\AppData\Local\IAR
Embedded Workbench. These are the global settings files:

C-STAT The default destination directory for information generated by the
C-STAT static analysis, created when you run an analysis. Note
that the name and location of this directory can be changed on the
page Project>Options>Static Analysis>C-STAT Static
Analysis.

List The default destination directory for various list files.

Obj The default destination directory for the object files from the
compiler and assembler. The object files have the extension o and
are used as input to the linker.

CodeTemplates.txt
CodeTemplates.ENU.txt
CodeTemplates.JPN.txt

A file that holds predefined code
templates.

Note that if you are using an IDE that is
available in languages other than English,
you are asked to select a language version
when you start the IAR Embedded
Workbench for the first time. In this case,
the filename is extended with ENU or JPN,
depending on your choice of language
(English or Japanese).

See also Using and adding code
templates, page 134.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Product files

FILES FOR LOCAL SETTINGS

Most files for local settings are stored in the directory settings, which is created in
your project directory. These are the local settings files:

global.custom_argvars A file that holds any custom argument
variables that are defined for a global
scope.

See also Configure Custom Argument
Variables dialog box, page 85.

IarIde.xml A file that holds IDE and project settings
global to your installed IAR Embedded
Workbench product(s).

Project.dbgdt A file for debugger desktop settings.

Project.Buildconfig.cspy.bat A batch file that C-SPY creates every time
it is invoked.

Project.Buildconfig.driver.xcl A file that C-SPY creates every time it is
invoked, and which contains the
command line options used that are
specific to the C-SPY driver you are
using.

Project.Buildconfig.general.xcl A file that C-SPY creates every time it is
invoked, and which contains the
command line options used that are
specific to cspybat.

Project.dnx A file for debugger initialization
information.

Workspace.wsdt A file for workspace desktop settings.

Workspace.wspos A file for placement information for the
main IDE window.

Workspace.custom_argvars A file for any custom argument variables
that are defined for a workspace-local
scope. See also Configure Custom
Argument Variables dialog box, page 85.

Note: This file is created in the
Workspace directory.
AFE1_AFE2-1:1

179

180

File types

File types
The IAR development tools use the following default filename extensions to identify the
produced files and other recognized file types:

Ext. Type of file Output from Input to

a Library iarchive ILINK

asm Assembler source code Text editor Assembler

bat Windows command batch file C-SPY Windows

c C source code Text editor Compiler

cc C++ source code Text editor Compiler

cfg Syntax coloring configuration Text editor IDE

cgx Call graph file ILINK –

chm Online help system file -- IDE

cp C++ source code Text editor Compiler

cpp C++ source code Text editor Compiler

cspy.bat Invocation file for cspybat C-SPY –

cxx C++ source code Text editor Compiler

c++ C++ source code Text editor Compiler

dat Macros for formatting of STL containers IDE IDE

dbgdt Debugger desktop settings C-SPY C-SPY

ddf Device description file Text editor C-SPY

dep Dependency information IDE IDE

dnx Debugger initialization file C-SPY C-SPY

ewd Project settings for C-SPY IDE IDE

ewp IAR Embedded Workbench project
(current version)

IDE IDE

ewplugin IDE description file for plugin modules -- IDE

ewt Project settings for C-STAT and C-RUN IDE IDE

eww Workspace file IDE IDE

fmt Formatting information for the Locals
and Watch windows

IDE IDE

h C/C++ or assembler header source Text editor Compiler or
assembler
#include

Table 12: File types
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Product files

helpfiles Help menu configuration file Text editor IDE

html, htm HTML document Text editor IDE

i Preprocessed source Compiler Compiler

icf Linker configuration file Text editor ILINK

inc Assembler header source Text editor Assembler
#include

ini Project configuration IDE –

log Log information IDE –

lst List output Compiler and
assembler

–

mac C-SPY macro definition Text editor C-SPY

menu Device selection file Text editor IDE

o Object module Compiler and
assembler

ILINK

out Target application ILINK EPROM, C-SPY,
etc.

out Target application with debug information ILINK C-SPY and other
symbolic
debuggers

pbd Source browse information IDE IDE

pbi Source browse information IDE IDE

pew IAR Embedded Workbench project (old
project format)

IDE IDE

prj IAR Embedded Workbench project (old
project format)

IDE IDE

reggroups User-defined register group configuration IDE IDE

s Assembler source code Text editor Assembler

sim Simple code formatted input for the flash
loader

C-SPY C-SPY

suc Stack usage control file Text editor ILINK

vsp Visual State project files IAR Visual State
Editor

IAR Visual State
Editor and IAR
Embedded
Workbench IDE

Ext. Type of file Output from Input to

Table 12: File types (Continued)
AFE1_AFE2-1:1

181

182

File types

When you run the IDE, some files are created and located in dedicated directories under
your project directory, by default $PROJ_DIR$\Debug, $PROJ_DIR$\Release,
$PROJ_DIR$\settings. None of these directories or files affect the execution of the
IDE, which means you can safely remove them if required.

wsdt Workspace desktop settings IDE IDE

wspos Main IDE window placement information IDE IDE

xcl Extended command line Text editor Assembler,
compiler, linker,
cspybat, source
browser

Ext. Type of file Output from Input to

Table 12: File types (Continued)
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Menu reference
● Menus

Menus
Reference information about:

● File menu

● Edit menu

● View menu

● Project menu

● Tools menu

● Window menu

● Help menu

In addition, a set of C-SPY-specific menus become available when you start the
debugger. For more information about these menus, see the C-SPY® Debugging Guide
for RISC-V.

File menu
The File menu provides commands for opening workspaces and source files, saving and
printing, and exiting from the IDE.
AFE1_AFE2-1:1

183

184

Menus

The menu also includes a numbered list of the most recently opened files and
workspaces. To open one of them, choose it from the menu.

Menu commands

These commands are available:

New File (Ctrl+N)
Creates a new text file.

New Workspace
Creates a new workspace.

Open File (Ctrl+O)
Displays an Open dialog box for selecting a text file or an HTML document to
open. See Editor window, page 141.

Open Workspace
Displays an Open Workspace dialog box for selecting a workspace file to open.
Before a new workspace is opened you will be prompted to save and close any
currently open workspaces.

Open Header/Source File (Ctrl+Shift+H)
Opens the header file or source file that corresponds to the current file, and shifts
focus from the current file to the newly opened file. This command is also
available on the context menu in the editor window.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Menu reference

Close
Closes the active window. You will be given the opportunity to save any files that
have been modified before closing.

Save Workspace
Saves the current workspace file.

Save Workspace As
Displays a Save Workspace As dialog box for saving the workspace with a new
name.

Close Workspace
Closes the current workspace file.

Save (Ctrl+S)
Saves the current text file or workspace file.

Save As
Displays a Save As dialog box where you can save the current file with a new
name.

Save All
Saves all open text documents and workspace files.

Page Setup
Displays a Page Setup dialog box where you can set printer options.

Print (Ctrl+P)
Displays a Print dialog box where you can print a text document.

Recent Files
Displays a submenu from where you can quickly open the most recently opened
text documents.

Recent Workspaces
Displays a submenu from where you can quickly open the most recently opened
workspace files.

Exit
Exits from the IDE. You will be asked whether to save any changes to text files
before closing them. Changes to the project are saved automatically.
AFE1_AFE2-1:1

185

186

Menus

Edit menu
The Edit menu provides commands for editing and searching.

Menu commands

These commands are available:

Undo (Ctrl+Z)
Undoes the last edit made to the current editor window.

Redo (Ctrl+Y)
Redoes the last Undo in the current editor window. You can undo and redo an
unlimited number of edits independently in each editor window.

Cut (Ctrl+X)
The standard Windows command for cutting text in editor windows and text
boxes.

Copy (Ctrl+C)
The standard Windows command for copying text in editor windows and text
boxes.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Menu reference

Paste (Ctrl+V)
The standard Windows command for pasting text in editor windows and text
boxes.

Select All (Ctrl+A)
Selects all text in the active editor window.

Find and Replace>Find (Ctrl+F)
Displays the Find dialog box where you can search for text within the current
editor window, see Find dialog box, page 150. Note that if the insertion point is
located in the Memory window when you choose the Find command, the dialog
box will contain a different set of options than otherwise. If the insertion point
is located in the Trace window when you choose the Find command, the Find
in Trace dialog box is opened—the contents of this dialog box depend on the
C-SPY driver you are using, see the C-SPY® Debugging Guide for RISC-V for
more information.

Find and Replace>Find Next (F3)
Finds the next occurrence of the specified string.

Find and Replace>Find Previous (Shift+F3)
Finds the previous occurrence of the specified string.

Find and Replace>Find Next (Selected) (Ctrl+F3)
Searches for the next occurrence of the currently selected text or the word
currently surrounding the insertion point.

Find and Replace>Find Previous (Selected) (Ctrl+Shift+F3)
Searches for the previous occurrence of the currently selected text or the word
currently surrounding the insertion point.

Find and Replace>Replace (Ctrl+H)
Displays a dialog box where you can search for a specified string and replace
each occurrence with another string, see Replace dialog box, page 152.

Note that if the insertion point is located in the Memory window when you
choose the Replace command, the dialog box will contain a different set of
options than otherwise.

Find and Replace>Find in Files
Displays a dialog box where you can search for a specified string in multiple text
files, see Find in Files window, page 151.
AFE1_AFE2-1:1

187

188

Menus

Find and Replace>Replace in Files
Displays a dialog box where you can search for a specified string in multiple text
files and replace it with another string, see Replace in Files dialog box, page
155.

Find and Replace>Incremental Search (Ctrl+I)
Displays a dialog box where you can gradually fine-tune or expand the search
by continuously changing the search string, see Incremental Search dialog box,
page 158.

Navigate>Go To (Ctrl+G)
Displays the Go to Line dialog box where you can move the insertion point to
a specified line and column in the current editor window.

Navigate>Toggle Bookmark (Ctrl+F2)
Toggles a bookmark at the line where the insertion point is located in the active
editor window.

Navigate>Previous Bookmark (Shift+F2)
Moves the insertion point to the previous bookmark that has been defined with
the Toggle Bookmark command.

Navigate>Next Bookmark (F2)
Moves the insertion point to the next bookmark that has been defined with the
Toggle Bookmark command.

Navigate>Navigate Backward (Alt+Left Arrow)
Navigates backward in the insertion point history. The current position of the
insertion point is added to the history by actions like Go to definition and
clicking on a result from the Find in Files command.

Navigate>Navigate Forward (Alt+Right Arrow)
Navigates forward in the insertion point history. The current position of the
insertion point is added to the history by actions like Go to definition and
clicking on a result from the Find in Files command.

Navigate>Go to Definition (F12)
Shows the declaration of the selected symbol or the symbol where the insertion
point is placed. This menu command is available when browse information has
been enabled, see Project options, page 64.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Menu reference

Code Templates>Insert Template (Ctrl+Alt+V)
Displays a list in the editor window from which you can choose a code template
to be inserted at the location of the insertion point. If the code template you
choose requires any field input, the Template dialog box appears, see Template
dialog box, page 168. For information about using code templates, see Using
and adding code templates, page 134.

Code Templates>Edit Templates
Opens the current code template file, where you can modify existing code
templates and add your own code templates. For information about using code
templates, see Using and adding code templates, page 134.

Complete Word (Ctrl+Alt+Space)
Attempts to complete the word you have begun to type, basing the guess on the
contents of the rest of the editor window.

Complete Code (Ctrl+Space)
Shows a list of classes, functions, variables, etc, that are available when you
type. For more information, see Code completion, page 133.

Apply Syntax Feedback Fix (Ctrl+M)
Applies the suggested fix for the syntactic issue identified by the Syntax
feedback feature in the editor. For more information, see the description under
Editor window, page 141.

Parameter Hint (Ctrl+Shift+Space)
Suggests parameters as tooltip information for the function parameter list you
have begun to type. For more information, see Parameter hint, page 134.

Match Brackets
Selects all text between the brackets immediately surrounding the insertion
point, increases the selection to the next hierarchic pair of brackets, or beeps if
there is no higher bracket hierarchy.

Toggle All Folds (Ctrl+Alt+F)
Expands/collapses all code folds in the current editor window.

Auto Indent (Ctrl+T)
Indents one or several lines you have selected in a C/C++ source file. To
configure the indentation, see Configure Auto Indent dialog box, page 58.

Block Comment (Ctrl+K)
Places the C++ comment character sequence // at the beginning of the selected
lines.
AFE1_AFE2-1:1

189

190

Menus

Block Uncomment (Ctrl+Shift+K)
Removes the C++ comment character sequence // from the beginning of the
selected lines.

Toggle Breakpoint (F9)
Toggles a breakpoint at the statement or instruction that contains or is located
near the cursor in the source window. This command is also available as an icon
button on the debug toolbar.

Enable/Disable Breakpoint (Ctrl+F9)
Toggles a breakpoint between being disabled, but not actually removed—
making it available for future use—and being enabled again.

Next Error/Tag (F4)
If the message window contains a list of error messages or the results from a
Find in Files search, this command displays the next item from that list in the
editor window.

Previous Error/Tag (Shift+F4)
If the message window contains a list of error messages or the results from a
Find in Files search, this command displays the previous item from that list in
the editor window.

View menu
The View menu provides several commands for opening windows in the IDE. When
C-SPY is running you can also open debugger-specific windows from this menu. See
the C-SPY® Debugging Guide for RISC-V for information about these.

Menu commands

These commands are available:

Messages
Displays a submenu which gives access to the message windows—Build, Find
in Files, Source Browse Log, Tool Output, Debug Log—that display
messages and text output from the IAR Embedded Workbench commands. If the
window you choose from the menu is already open, it becomes the active
window.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Menu reference

Workspace
Opens the current Workspace window, see Workspace window, page 99.

Source Browser>Source Browser
Opens the Source Browser window, see Source Browser window, page 162.

Source Browser>References
Opens the References window, see References window, page 161.

Source Browser>Declarations
Opens the Declarations window, see Declarations window, page 159.

Source Browser>Ambiguous Definitions
Opens the Ambiguous Definitions window, see Ambiguous Definitions
window, page 160.

Source Browser>Call Graph
Opens the Call Graph window, see Call Graph window, page 167.

C-STAT>C-STAT Messages
Opens the C-STAT Messages window, see the C-STAT® Static Analysis Guide.

Breakpoints
Opens the Breakpoints window, see the C-SPY® Debugging Guide for RISC-V.

Call Stack
Opens the Call Stack window. Only available when C-SPY is running.

Watch
Opens an instance of the Watch window from a submenu. Only available when
C-SPY is running.

Live Watch
Opens the Live Watch window. Only available when C-SPY is running.

Quick Watch
Opens the Quick Watch window. Only available when C-SPY is running.

Auto
Opens the Auto window. Only available when C-SPY is running.

Locals
Opens the Locals window. Only available when C-SPY is running.

Statics
Opens the Statics window. Only available when C-SPY is running.
AFE1_AFE2-1:1

191

192

Menus

Memory
Opens an instance of the Memory window from a submenu. Only available
when C-SPY is running.

Registers
Displays a submenu which gives access to the Registers windows—Registers
and Register User Groups Setup. Only available when C-SPY is running.

Disassembly
Opens the Disassembly window. Only available when C-SPY is running.

Stack
Opens an instance of the Stack window from a submenu. Only available when
C-SPY is running.

Symbolic Memory
Opens the Symbolic Memory window. Only available when C-SPY is running.

Terminal I/O
Opens the Terminal I/O window. Only available when C-SPY is running.

Macros>Macro Quicklaunch
Opens the Macro Quicklaunch window. Only available when C-SPY is
running.

Macros>Macro Registration
Opens the Macro Registration window. Only available when C-SPY is
running.

Macros>Debugger Macros
Opens the Debugger Macros window. Only available when C-SPY is running.

Symbols
Opens the Symbols window. Only available when C-SPY is running.

Code Coverage
Opens the Code Coverage window. Only available when C-SPY is running.

Images
Opens the Images window. Only available when C-SPY is running.

Cores
Opens the Cores window. Only available when C-SPY is running.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Menu reference

Project menu
The Project menu provides commands for working with workspaces, projects, groups,
and files, and for specifying options for the build tools, and running the tools on the
current project.
AFE1_AFE2-1:1

193

194

Menus

Menu commands

These commands are available:

Add Files
Displays a dialog box where you can select which files to include in the current
project.

Add Group
Displays a dialog box where you can create a new group. In the Group Name
text box, specify the name of the new group. For more information about groups,
see Groups, page 93.

Import File List
Displays a standard Open dialog box where you can import information about
files and groups from projects created using another IAR toolchain.

To import information from project files which have one of the older filename
extensions pew or prj you must first have exported the information using the
context menu command Export File List available in your current IAR
Embedded Workbench.

Add Project Connection
Displays the Add Project Connection dialog box, see Add Project Connection
dialog box, page 106.

Edit Configurations
Displays the Configurations for project dialog box, where you can define new
or remove existing build configurations. See Configurations for project dialog
box, page 104.

Remove
In the Workspace window, removes the selected item from the workspace.

Create New Project
Displays the Create New Project dialog box where you can create a new project
and add it to the workspace, see Create New Project dialog box, page 103.

Add Existing Project
Displays a standard Open dialog box where you can add an existing project to
the workspace.

Options (Alt+F7)
Displays the Options dialog box, where you can set options for the build tools,
for the selected item in the Workspace window, see Options dialog box, page
119. You can set options for the entire project, for a group of files, or for an
individual file.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Menu reference

Version Control System
Displays a submenu with commands for version control, see Version Control
System menu for Subversion, page 106.

Make (F7)
Brings the current build configuration up to date by compiling, assembling, and
linking only the files that have changed since the last build.

Compile (Ctrl+F7)
Compiles or assembles the currently selected file, files, or group.

One or more files can be selected in the Workspace window—all files in the
same project, but not necessarily in the same group. You can also select the
editor window containing the file you want to compile. The Compile command
is only enabled if all files in the selection can be compiled or assembled.

You can also select a group, in which case the command is applied to each file
in the group (also inside nested groups) that can be compiled, even if the group
contains files that cannot be compiled, such as header files.

If the selected file is part of a multi-file compilation group, the command will
still only affect the selected file.

Rebuild All
Rebuilds and relinks all files in the current target.

Clean
Removes any intermediate files.

Batch Build (F8)
Displays the Batch Build dialog box where you can configure named batch
build configurations, and build a named batch. See Batch Build dialog box, page
122.

Clean Browse Information
Deletes the browse information directory along with the information stored in
it. For information about specifying the location of this directory, see Output,
page 209.

C-STAT Static Analysis>Analyze Project
Makes C-STAT analyze the selected project. For more information about
C-STAT, see the C-STAT® Static Analysis Guide.

C-STAT Static Analysis>Analyze File(s)
Makes C-STAT analyze the selected file(s). For more information about
C-STAT, see the C-STAT® Static Analysis Guide.
AFE1_AFE2-1:1

195

196

Menus

C-STAT Static Analysis>Clear Analysis Results
Makes C-STAT clear the analysis information for previously performed
analyses. For more information about C-STAT, see the C-STAT® Static Analysis
Guide.

C-STAT Static Analysis>Generate HTML Summary
Shows a standard save dialog box where you can select the destination for a
report summary in HTML and create it. For more information about C-STAT,
see the C-STAT® Static Analysis Guide.

C-STAT Static Analysis>Generate Full HTML Report
Shows a standard save dialog box where you can select the destination for a full
report in HTML and create it. For more information about C-STAT, see the
C-STAT® Static Analysis Guide.

Analyze Project
Runs the external analyzer that you select and performs an analysis on all source
files of your project. The list of analyzers is populated with analyzers you
specify on the External Analyzers page in the IDE Options dialog box.

Note that this menu command is only available if you have added an external
analyzer. For more information, see Getting started using external analyzers,
page 31.

Analyze File(s)
Runs the external analyzer that you select and performs an analysis on a group
of files or on an individual file. The list of analyzers is populated with analyzers
you specify on the External Analyzers page in the IDE Options dialog box.

Note that this menu command is only available if you have added an external
analyzer. For more information, see Getting started using external analyzers,
page 31.

Stop Build (Ctrl+Break)
Stops the current build operation.

Download and Debug (Ctrl+D)
Downloads the application and starts C-SPY so that you can debug the project
object file. If necessary, a make will be performed before running C-SPY to
ensure the project is up to date. This command is not available during a debug
session.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Menu reference

Debug without Downloading
Starts C-SPY so that you can debug the project object file. This menu command
is a shortcut for the Suppress Download option available on the Download
page. The Debug without Downloading command is not available during a
debug session.

Attach to Running Target
Makes the debugger attach to a running application at its current location,
without resetting the target system. If you have defined any breakpoints in your
project, the C-SPY driver will set them during attachment. If the C-SPY driver
cannot set them without stopping the target system, the breakpoints will be
disabled. The option also suppresses download and the Run to option.

If the option is not available, it is not supported by the combination of C-SPY
driver and device you are using.

Make & Restart Debugger
Stops C-SPY, makes the active build configuration, and starts the debugger
again—all in a single command. This command is only available during a debug
session.

Restart Debugger
Stops C-SPY and starts the debugger again—all in a single command. This
command is only available during a debug session.

Download
Commands for flash download and erase.

SFR Setup
Opens the SFR Setup window which displays the currently defined SFRs that
C-SPY has information about. For more information about this window, see the
C-SPY® Debugging Guide for RISC-V.

Open Device Description File
Opens a submenu where you can choose to open a file from a list of all device
files and SFR definitions files that are in use.

Save List of Registers
Generates a list of all defined registers, including SFRs, with information about
the size, location, and access type of each register. If you are in a debug session,
the list also includes the current value of the register. This menu command is
only available when a project is loaded in the IDE.
AFE1_AFE2-1:1

197

198

Menus

Tools menu
The Tools menu provides commands for customizing the environment, such as changing
common fonts and shortcut keys.

It is a user-configurable menu to which you can add tools for use with IAR Embedded
Workbench. Therefore, it might look different depending on which tools you have
preconfigured to appear as menu items.

Menu Commands

These commands are available:

Options
Displays the IDE Options dialog box where you can customize the IDE. See:

● Colors and Fonts options, page 46

● Debugger options, page 71

● Editor options, page 54

● Editor Setup Files options, page 60

● External Analyzers options, page 66

● External Editor options, page 59

● Key Bindings options, page 51

● Language options, page 53

● Messages options, page 62

● Project options, page 64

● Stack options, page 72

● Terminal I/O options, page 74

● Troubleshooting options, page 63

Filename Extensions
Displays the Filename Extensions dialog box where you can define the
filename extensions to be accepted by the build tools, see Filename Extensions
dialog box, page 80.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Menu reference

Configure Viewers
Displays the Configure Viewers dialog box where you can configure viewer
applications to open documents with, see Configure Viewers dialog box, page
78.

Configure Custom Argument Variables
Displays the Configure Custom Argument Variables dialog box where you
can define and edit your own custom argument variables, see Configure Custom
Argument Variables dialog box, page 85.

Configure Tools
Displays the Configure Tools dialog box where you can set up the interface to
use external tools, see Configure Tools dialog box, page 76.

Notepad
User-configured. This is an example of a user-configured addition to the Tools
menu.

Window menu
The Window menu provides commands for manipulating the IDE windows and
changing their arrangement on the screen.

The last section of the Window menu lists the currently open windows. Choose the
window you want to switch to.
AFE1_AFE2-1:1

199

200

Menus

Menu commands

These commands are available:

Close Document (Ctrl+W)
Closes the active editor document.

Close Window
Closes the active IDE window.

Split
Splits an editor window horizontally into two panes, which means that you can
see two parts of a file simultaneously.

Move Tab to New Vertical Editor Window
Opens a new empty window next to the current editor window and moves the
active document to the new window.

Move Tab to New Horizontal Editor Window
Opens a new empty window under the current editor window and moves the
active document to the new window.

Move Tab to the Next Window
Moves the active document in the current window to the next window.

Move Tab to the Previous Window
Moves the active document in the current window to the previous window.

Close All Tabs Except Active
Closes all the tabs except the current tab.

Close All Tabs to the Right of Active
Closes all tabs to the right of the current tab.

Close All Editor Tabs
Closes all tabs currently available in editor windows.

Toolbars
The options on this submenu toggle the toolbars on or off. There might be
toolbars that are only available for certain C-SPY debug drivers, and only during
a debug session.

Status bar
Toggles the status bar on or off.

AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Menu reference

Help menu
The Help menu provides help about IAR Embedded Workbench. From this menu you
can also find the version numbers of the user interface and of the IDE, see Product Info
dialog box, page 82.

You can also access the Information Center from the Help menu. The Information
Center is an integrated navigation system that gives easy access to the information
resources you need to get started and during your project development—tutorials,
example projects, user guides, support information, and release notes. It also provides
shortcuts to useful sections on the IAR web site.
AFE1_AFE2-1:1

201

202

Menus

AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

General options
● Description of general options

Description of general options
Reference information about:

● Target

● ISA Extensions

● Code Generation

● Output

● Library Configuration

● Library Options 1

● Library Options 2

To set general options in the IDE:
1 Choose Project>Options to display the Options dialog box.

2 Select General Options in the Category list.

3 To restore all settings to the default factory settings, click the Factory Settings button.
AFE1_AFE2-1:1

203

204

Description of general options

Target
The Target page contains options for the base Instruction Set Architecture (ISA) and
extensions for IAR Embedded Workbench for RISC-V.

Device

The device your are using. The choice of device will automatically determine the default
linker configuration file and C-SPY® device description file. For information about how
to override the default files, see Config, page 248 and the C-SPY® Debugging Guide for
RISC-V.

Base ISA

Selects which base ISA to generate code for. Choose between:

RV32E
Generates code for RV32E.

RV32I
Generates code for RV32I.

RV64I
Generates code for RV64I.

Standard extensions

Selects which standard RISC-V extensions to generate code for. For information about
the available standard extensions, see the IAR C/C++ Development Guide for RISC-V.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

General options

Floating-point settings

Selects which standard RISC-V floating-point extension to generate code for. Choose
between:

FPU None
Generates code without support for any of the standard extensions for FPU.

FPU F
Generates code with support for the Single-Precision Floating-Point extension
(F).

FPU D
Generates code with support for the Double-Precision Floating-Point extension
(D).

FPU Zfinx
Generates code with support for the single-precision floating-point instructions
that operate on the integer (x) registers (Zfinx).

FPU Zdinx
Generates code with support for the double-precision floating-point instructions
that operate on the integer (x) registers (Zdinx).

Bit manipulation

Selects which standard RISC-V bit manipulation extensions to generate code for. For
information about the available standard extensions for bit manipulation, see the IAR
C/C++ Development Guide for RISC-V.

Code size reduction

Selects which standard RISC-V code size reduction extension to generate code for.

Zcb
Generates code to add the basic code size assembler instructions.

Zcmp
Generates code to add instructions to push and pop multiple registers.

For information about the available code size reduction extensions, see the IAR C/C++
Development Guide for RISC-V.

Scalar cryptography

Selects which standard RISC-V scalar cryptography extension to generate code for.
AFE1_AFE2-1:1

205

206

Description of general options

Zkn
Generates code with support for the scalar cryptography NIST Algorithms
(Zkn).

For information about the available scalar cryptography NIST Algorithms, see
the IAR C/C++ Development Guide for RISC-V.

Zks
Generates code with support for the scalar cryptography ShangMi Algorithms
(Zks).

For information about the available scalar cryptography ShangMi Algorithms,
see the IAR C/C++ Development Guide for RISC-V.

ISA Extensions
The ISA Extensions options specify support for some of the extensions to the RISC-V
ISA.

Cache management

Enables code generation with support for one or more of the CMO extensions. Choose
from:

Zicbom
Generates code for the standard extension Zicbom (cache block management
operations).

Zicbop
Generates code for the standard extension Zicbop (cache block prefetch
operations).
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

General options

Zicboz
Generates code for the standard extension Zicboz (cache block zero operations).

Xeswincache
Generates code for the non-standard extension Xeswincache (cache
management to the RISC-V ISA).

Andes extensions

Select the Xandesperf option to generate code with support for the AndeStar™ V5
Performance instruction set extension.

Select the Xcodense option to generate code with support for the AndeStar™ V5
CoDense instruction set extension for code size compaction.

Select the Exclude JAL instruction option to exclude all call instructions from being
candidates for replacement with exec.it instructions. (When CoDense code size
compaction is used, call instruction pairs are normally used as candidates for being
replaced with exec.it instructions during optimization in the linker. In some
applications this can result in bad use of the CoDense table.)

DSP

Selects which DSP extension or extension subsets to generate code for. Choose between:

None
Generates code without support for any of the extensions for digital signal
processing.

Xandesdsp
Generates code with support for the AndeStar™ DSP instruction set extension.

P
Generates code with support for the Zpn and Zbpbo subsets of the P instruction
set extension. Select the Zpsfoperand option to generate code with support for
all P extension subsets (that is, also for the Zpsfoperand subset).
AFE1_AFE2-1:1

207

208

Description of general options

Code Generation
The Code Generation options determine the code model, the heap and stack sizes,
misaligned data access, and the initialization of the interrupt vector table.

For more information about code models and using the stacks and heaps, see the IAR
C/C++ Development Guide for RISC-V.

Code model

The code model controls how generated code and data is addressed and linked. For
RV32 devices, Medlow is the only available code model. For RV64 devices, choose
between:

Medlow
The generated code can be up to 2 Gbytes and must lie between absolute
addresses –8000'0000 and +8000'0000.

Medany
The generated code can be up to 2 Gbytes, placed within any single 2 Gbytes
address range anywhere in memory.

Stack size

Specify the stack size.

Heap size

Specify the heap size.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

General options

Allow misaligned data accesses

Makes it possible for the compiler and the linker to access misaligned data objects. For
information about misaligned data accesses, see the IAR C/C++ Development Guide for
RISC-V.

Automatic setup of interrupt vector table

Makes the linker add startup code that initializes the interrupt vector table before the
execution reaches the main function. For information about the interrupt vector table,
see the IAR C/C++ Development Guide for RISC-V.

Note: This option is not available for all devices.

Output
The Output options determine the type of output file. You can also specify the
destination directories for executable files, object files, list files, and build files.

Output file

Selects the type of the output file. Choose between:

Executable (default)
As a result of the build process, the linker will create an application (an
executable output file). When this setting is used, linker options will be available
in the Options dialog box. Before you create the output you should set the
appropriate linker options.
AFE1_AFE2-1:1

209

210

Description of general options

Library
As a result of the build process, the library builder will create a library file.
When this setting is used, library builder options will be available in the Options
dialog box, and Linker will disappear from the list of categories. Before you
create the library you can set the options.

Output directories

Specify the paths to the destination directories. Note that incomplete paths are relative
to your project directory. You can specify:

Executables/libraries
Overrides the default directory for executable or library files. Type the name of
the directory where you want to save executable files for the project.

Object files
Overrides the default directory for object files. Type the name of the directory
where you want to save object files for the project.

List files
Overrides the default directory for list files. Type the name of the directory
where you want to save list files for the project.

Browse files
Overrides the default directory for storing source browser information. Type the
name of the directory where you want to store source browser information for
the project. To delete the contents of this directory, choose
Project>Clean Browse Information.

Build files
Overrides the default directory for build files, that is, logs, dependency files, and
other files generated by the build engine. Type the name of the directory where
you want to save build files for the project.

Note that sharing a build file directory between multiple build configurations
can increase the number of rebuilds (as the configurations might use different
command lines).
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

General options

Library Configuration
The Library Configuration options determine which library to use.

For information about the runtime library, library configurations, the runtime
environment they provide, and the possible customizations, see IAR C/C++
Development Guide for RISC-V.

Library

Selects which runtime library to use. For information about available libraries, see the
IAR C/C++ Development Guide for RISC-V.

The names of the library object file and library configuration file that actually will be
used are displayed in the Library file and Configuration file text boxes, respectively.

Configuration file

Displays the library configuration file that will be used. A library configuration file is
chosen automatically depending on the project settings. If you have chosen Custom in
the Library drop-down list, you must specify your own library configuration file.

Enable thread support in library

Select this option to automatically configure the runtime library for use with threads.

Library low-level interface implementation

Controls the type of low-level interface for I/O to be included in the library. Choose
between:

None
No low-level support for I/O available in the libraries. You must provide your
own _ _write function to use the I/O functions part of the library.
AFE1_AFE2-1:1

211

212

Description of general options

IAR Breakpoint
A proprietary mechanism that enables code running on the target to
communicate by halting the application using a breakpoint. This can lead to
performance improvements, but it does not work with applications, libraries,
and object files that are built using tools from other vendors.

Stdout/Stderr

Determines which method the executing application uses to send text to the stdout and
stderr streams. Choose between:

Via IAR Breakpoint
Text is sent to the stdout and stderr streams by temporarily stopping the core
at a breakpoint.

Via Trace ITC
Text is sent to the stdout and stderr streams by way of trace output, using the
Instrumentation Trace Component present on some SiFive devices.

Library Options 1
The options on the Library Options 1 page select the printf and scanf formatters.

For information about the capabilities of the formatters, see the IAR C/C++
Development Guide for RISC-V.

Printf formatter

If you select Auto, the linker automatically chooses the appropriate formatter for
printf-related functions based on information from the compiler.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

General options

To override the default formatter for all printf-related functions, except for wprintf
variants, choose between:

● Printf formatters in the IAR DLIB Library—Full, Large, Small, and Tiny

Choose a formatter that suits the requirements of your application.

Select Enable multibyte support to make the printf formatter support multibytes.

Scanf formatter

If you select Auto, the linker automatically chooses the appropriate formatter for
scanf-related functions based on information from the compiler.

To override the default formatter for all scanf-related functions, except for wscanf
variants, choose between:

● Scanf formatters in the IAR DLIB Library—Full, Large, and Small

Choose a formatter that suits the requirements of your application.

Select Enable multibyte support to make the scanf formatter support multibytes.

Math functions

Some library math functions are also available in size-optimized versions, and in more
accurate versions. Choose between:

Default
The default versions of the functions cos, exp, log, log10, pow, sin, tan, and
_ _iar_Sin.

Smaller
Versions of the functions cos, exp, log, log10, pow, sin, tan, and
_ _iar_Sin that are about 20% smaller and about 20% faster than the default
versions.

More accurate
Versions of the functions cos, exp, log, log10, pow, sin, tan, and
_ _iar_Sin that are more exact and can handle larger argument ranges than the
default versions. The drawback is that they are larger and slower than the default
versions.
AFE1_AFE2-1:1

213

214

Description of general options

Library Options 2
The options on the Library Options 2 page select the heap and locale support.

Heap selection

Select the heap to use. For more information about heaps, see the IAR C/C++
Development Guide for RISC-V. Choose between:

Automatic
Automatically selects the heap to use for your application.

The selection is based on the existence of calls to heap memory allocation
routines in your application and on the optimization settings for the application
modules. See the IAR C/C++ Development Guide for RISC-V for a detailed
description.

Advanced heap
Selects the advanced heap.

Basic heap
Selects the basic heap.

No-free heap
Uses the smallest possible heap implementation. Because this heap does not
support free or realloc, it is only suitable for applications that in the startup
phase allocate heap memory for various buffers etc. This heap memory is never
deallocated.

Locale support

Select the locales that the linker will use in addition to the C locale. (Requires that you
have selected a library configuration that includes the C locale.)
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

General options

Buffered terminal output

Buffers terminal output during program execution, instead of instantly printing each
new character to the C-SPY Terminal I/O window. This option is useful when you use
debugger systems that have slow communication.
AFE1_AFE2-1:1

215

216

Description of general options

AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Compiler options
● Description of compiler options

Description of compiler options
Reference information about:

● Multi-file Compilation

● Language 1

● Language 2

● Optimizations

● Output

● List

● Preprocessor

● Diagnostics

● Encodings

● Extra Options

● Edit Include Directories dialog box

To set compiler options in the IDE:
1 Choose Project>Options to display the Options dialog box.

2 Select C/C++ Compiler in the Category list.

3 To restore all settings to the default factory settings, click the Factory Settings button.

Multi-file Compilation
Before you set specific compiler options, you can decide whether you want to use
multi-file compilation, which is an optimization technique.

Multi-file Compilation

Enables multi-file compilation from the group of project files that you have selected in
the Workspace window.
AFE1_AFE2-1:1

217

218

Description of compiler options

You can use this option for the entire project or for individual groups of files. All C/C++
source files in such a group are compiled together using one invocation of the compiler.

This means that all files included in the selected group are compiled using the compiler
options which have been set on the group or nearest higher enclosing node which has
any options set. Any overriding compiler options on one or more files are ignored when
building, because a group compilation must use exactly one set of options.

For information about how multi-file compilation is displayed in the Workspace
window, see Workspace window, page 99.

Discard Unused Publics

Discards any unused public functions and variables from the compilation unit.

For more information about multi-file compilation and discarding unused public
functions, see the IAR C/C++ Development Guide for RISC-V.

Language 1
The Language 1 options determine which programming language to use and which
extensions to enable.

For more information about the supported languages, their dialects, and their extensions,
see the IAR C/C++ Development Guide for RISC-V.

Language

Determines the compiler support for either C or C++. Choose between:

C (default)
Makes the compiler treat the source code as C, which means that features
specific to C++ cannot be used.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Compiler options

C++
Makes the compiler treat the source code as C++.

Auto
Language support is decided automatically depending on the filename extension
of the file being compiled:

c: files with this filename extension are treated as C source files.

cpp, .cc, .cp, .cxx, and .c++: files with these filename extensions will be
treated as C++ source files.

Language conformance

Controls how strictly the compiler adheres to the standard C or C++ language. Choose
between:

Standard with IAR extensions
Accepts RISC-V-specific keywords as extensions to the standard C or C++
language. In the IDE, this setting is enabled by default.

Standard
Disables IAR extensions, but does not adhere strictly to the C or C++ dialect you
have selected. Some very useful relaxations to C or C++ are still available.

Strict
Adheres strictly to the C or C++ dialect you have selected. This setting disables
a great number of useful extensions and relaxations to C or C++.

C dialect

Selects the dialect if C is the supported language. Choose between:

C89
Enables the C89 standard instead of Standard C.

Standard C
Enables the C18 standard, also known as Standard C. This is the default standard
used in the compiler, and it is stricter than C89. Features specific to C89 cannot
be used. In addition, choose between:

Allow VLA, allows the use of C11 variable length arrays.

C++ inline semantics, enables C++ inline semantics when compiling a
Standard C source code file.
AFE1_AFE2-1:1

219

220

Description of compiler options

Require prototypes
Forces the compiler to verify that all functions have proper prototypes, which
means that source code containing any of the following will generate an error:

● A function call of a function with no declaration, or with a Kernighan &
Ritchie C declaration.

● A function definition of a public function with no previous prototype
declaration.

● An indirect function call through a function pointer with a type that does not
include a prototype.

C++ options

Selects C++ language options. Choose between:

Destroy static objects
Makes the compiler generate code to destroy C++ static variables that require
destruction at program exit.

Language 2
The Language 2 options control the use of some language extensions.

Plain 'char' is

Normally, the compiler interprets the plain char type as unsigned char. Plain 'char'
is Signed makes the compiler interpret the char type as signed char instead, for
example for compatibility with another compiler.

Note: The runtime library is compiled with unsigned plain characters. If you select the
Signed option, references to library functionality that uses unsigned plain characters
will not work.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Compiler options

Floating-point semantics

Controls floating-point semantics. Choose between:

Strict conformance
Makes the compiler conform strictly to the C and floating-point standards for
floating-point expressions.

Relaxed
Makes the compiler relax the language rules and perform more aggressive
optimization of floating-point expressions. This option improves performance
for floating-point expressions that fulfill these conditions:

● The expression consists of both single- and double-precision values

● The double-precision values can be converted to single precision without
loss of accuracy

● The result of the expression is converted to single precision.

Note that performing the calculation in single precision instead of double
precision might cause a loss of accuracy.

Optimizations
The Optimizations options determine the type and level of optimization for the
generation of object code.

Level

Selects the optimization level. Choose between:

None
No optimization—provides best debug support.
AFE1_AFE2-1:1

221

222

Description of compiler options

Low
The lowest level of optimization.

Medium
The medium level of optimization.

High
The highest level of optimization. Choose from:

Balanced, the highest level of optimization, balancing between speed and size.

Size, the highest level of optimization, favoring size.

Speed, the highest level of optimization, favoring speed.

No size constraints
Optimizes for speed, but relaxes the normal restrictions for code size expansion.
This option is only available at the level High, Speed.

By default, a debug project will have a size optimization that is fully debuggable, while
a release project will have a high balanced optimization that generates small code
without sacrificing speed.

For a list of optimizations performed at each optimization level, see the IAR C/C++
Development Guide for RISC-V.

Enabled transformations

Selects which transformations that are available at different optimization levels. When
a transformation is available, you can enable or disable it by selecting its check box.
Choose between:

● Common subexpression elimination

● Loop unrolling

● Function inlining

● Code motion

● Type-based alias analysis

● Cross call (subroutine abstraction)

● Cross jump (tail merging).

Note: In a debug project the transformations are, by default, disabled. In a release
project the transformations are, by default, enabled.

For a brief description of the transformations that can be individually disabled, see the
IAR C/C++ Development Guide for RISC-V.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Compiler options

Output
The Output options determine the generated compiler output.

Generate debug information

Makes the compiler include additional information in the object modules that is required
by C-SPY and other symbolic debuggers.

Generate debug information is selected by default. Deselect it if you do not want the
compiler to generate debug information.

Note: The included debug information increases the size of the object files.

Code section name

The compiler places functions into named sections which are referred to by the IAR
ILINK Linker. Code section name specifies a different name than the default name to
place any part of your application source code into separate non-default sections. This
is useful if you want to control placement of your code to different address ranges and
you find the @ notation, alternatively the #pragma location directive, insufficient.

Note: Take care when you explicitly place a function in a predefined section other than
the one used by default. This is useful in some situations, but incorrect placement can
result in anything from error messages during compilation and linking to a
malfunctioning application. Carefully consider the circumstances—there might be strict
requirements on the declaration and use of the function or variable.

Note that any changes to the section names require a corresponding modification in the
linker configuration file.

For detailed information about sections and the various methods for controlling the
placement of code, see the IAR C/C++ Development Guide for RISC-V.
AFE1_AFE2-1:1

223

224

Description of compiler options

List
The List options make the compiler generate a list file and determine its contents.

By default, the compiler does not generate a list file. Select any of the following options
to generate a list file or an assembler file. The list file will be saved in the List directory,
and its filename will consist of the source filename, plus the filename extension lst.

If you want to save the list file in another directory than the default directory for list files,
use the Output Directories option in the General Options category, see Output, page
209.

You can open the output files directly from the Output folder which is available in the
Workspace window.

Output list file

Makes the compiler generate a list file. You can open the output files directly from the
Output folder which is available in the Workspace window. By default, the compiler
does not generate a list file. For the list file content, choose between:

Assembler mnemonics
Includes assembler mnemonics in the list file.

Diagnostics
Includes diagnostic information in the list file.

Output assembler file

Makes the compiler generate an assembler list file. For the list file content, choose
between:

Include source
Includes source code in the assembler file.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Compiler options

Include call frame information
Includes compiler-generated information for runtime model attributes, call
frame information, and frame size information.

Preprocessor
The Preprocessor options allow you to define symbols and include paths for use by the
compiler and assembler.

Ignore standard include directories

Normally, the compiler and assembler automatically look for include files in the
standard include directories. Use this option to turn off this behavior.

Additional include directories

Specify the full paths of directories to search for include files, one per line. Any
directories specified here are searched before the standard include directories, in the
order specified.

Use the browse button to display the Edit Include Directories dialog box, where you
can specify directories using a file browser. For more information, see Edit Include
Directories dialog box, page 230.

To avoid being dependent on absolute paths, and to make the project more easily
portable between different machines and file system locations, you can use argument
variables like $TOOLKIT_DIR$ and $PROJ_DIR$, see Argument variables, page 83.

Preinclude file

Specify a file to include before the first line of the source file.
AFE1_AFE2-1:1

225

226

Description of compiler options

Defined symbols

Define a macro symbol (one per line), including its value, for example like this:

TESTVER=1

This has the same effect as if a line like this appeared before the start of the source file:

#define TESTVER 1

A line with no value has the same effect as if =1 was specified.

Preprocessor output to file

Makes the compiler and assembler output the result of the preprocessing to a file with
the filename extension i, located in the lst directory. Choose between:

Preserve comments
Includes comments in the output. Normally, comments are treated as
whitespace, and their contents are not included in the preprocessor output.

Generate #line directives
Generates #line directives in the output to indicate where each line originated
from.

Diagnostics
The Diagnostics options determine how diagnostic messages are classified and
displayed. Use the diagnostics options to override the default classification of the
specified diagnostics.

Note: The diagnostic messages cannot be suppressed for fatal errors, and fatal errors
cannot be reclassified.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Compiler options

Enable remarks

Enables the generation of remarks. By default, remarks are not issued.

The least severe diagnostic messages are called remarks. A remark indicates a source
code construct that might cause strange behavior in the generated code.

Suppress these diagnostics

Suppresses the output of diagnostic messages for the tags that you specify.

For example, to suppress the warnings Xx117 and Xx177, type:

Xx117,Xx177

Treat these as remarks

Classifies diagnostic messages as remarks. A remark is the least severe type of
diagnostic message. It indicates a source code construct that might cause strange
behavior in the generated code.

For example, to classify the warning Xx177 as a remark, type:

Xx177

Treat these as warnings

Classifies diagnostic messages as warnings. A warning indicates an error or omission
that is of concern, but which will not cause the compiler to stop before compilation is
completed.

For example, to classify the remark Xx826 as a warning, type:

Xx826

Treat these as errors

Classifies diagnostic messages as errors. An error indicates a violation of the language
rules, of such severity that object code will not be generated, and the exit code will be
non-zero.

For example, to classify the warning Xx117 as an error, type:

Xx117

Treat all warnings as errors

Classifies all warnings as errors. If the compiler encounters an error, object code is not
generated.
AFE1_AFE2-1:1

227

228

Description of compiler options

Encodings
The Encodings options determine the encodings for source files, output files, and input
files.

Default source file encoding

Specifies the encoding that the compiler shall use when reading a source file with no
Byte Order Mark (BOM).

Raw (C locale)
Sets the Raw encoding (C locale) as the default source file encoding.

System locale
Sets the system locale encoding as the default source file encoding.

UTF-8
Sets the UTF-8 encoding as the default source file encoding

Default input file encoding

Specifies the encoding that the compiler shall use when reading a text input file with no
Byte Order Mark (BOM).

System locale
Sets the system locale encoding as the default encoding.

UTF-8
Sets the UTF-8 encoding as the default encoding.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Compiler options

Text output file encoding

Specifies the encoding to be used when generating a text output file.

As source encoding
Uses the same encoding as in the source file.

System locale
Uses the system locale encoding.

UTF-8
Uses the UTF-8 encoding.

With BOM
Adds a Byte Order Mark (BOM) to the output file.

This option is only available when you have selected the UTF-8 encoding.

Extra Options
The Extra Options page provides you with a command line interface to the tool.

Use command line options

Specify additional command line arguments to be passed to the tool (not supported by
the GUI).
AFE1_AFE2-1:1

229

230

Description of compiler options

Edit Include Directories dialog box
The Edit Include Directories dialog box is available from the Preprocessor page in the
Options dialog box for the compiler and assembler categories.

Use this dialog box to specify or delete include paths, or to make a path relative or
absolute.

To add a path to an include directory:
1 Click the text <Click to add>. A browse dialog box is displayed.

2 Browse to the appropriate include directory and click Select. The include path appears.
To add yet another one, click <Click to add>.

To make the path relative or absolute:
1 Click the drop-down arrow. A context menu is displayed. which shows the absolute

path and paths relative to the argument variables $PROJ_DIR$ and $TOOLKIT_DIR$,
when possible.

2 Choose one of the alternatives.

To change the order of the paths:
1 Use the shortcut key combinations Ctrl+Up/Down.

2 The list will be sorted accordingly.

To delete an include path:
1 Select the include path and click the red cross at the beginning of the line, alternatively

press the Delete key.

2 The selected path will disappear.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Assembler options
● Description of assembler options

Description of assembler options
Reference information about:

● Language

● Output

● List

● Preprocessor

● Diagnostics

● Extra Options

To set assembler options in the IDE:
1 Choose Project>Options to display the Options dialog box.

2 Select Assembler in the Category list.

3 To restore all settings to the default factory settings, click the Factory Settings button.

Language
The Language options control certain behavior of the assembler language.
AFE1_AFE2-1:1

231

232

Description of assembler options

User symbols are case sensitive

Toggles case sensitivity on and off. By default, case sensitivity is on. This means that,
for example, LABEL and label refer to different symbols. When case sensitivity is off,
LABEL and label will refer to the same symbol.

Allow mnemonics in first column

Makes mnemonics names (without a trailing colon) that start in the first column to be
recognized as mnemonics. By default, the assembler treats all identifiers starting in the
first column as labels.

Allow directives in first column

Makes directive names (without a trailing colon) that start in the first column to be
recognized as directives. By default, the assembler treats all identifiers starting in the
first column as labels.

Macro quote characters

Selects the characters used for the left and right quotes of each macro argument. By
default, the characters are < and >.

Macro quote characters changes the quote characters to suit an alternative convention
or simply to allow a macro argument to contain < or >.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Assembler options

Output
The Output options determine the generated assembler output.

Generate debug information

Makes the assembler generate debug information. Use this option if you want to use a
debugger with your application. By default, this option is selected in a Debug project,
but not in a Release project.

List
The List options make the assembler generate a list file and determine its contents.

Output list file

Makes the assembler generate a list file and send it to the file sourcename.lst. By
default, the assembler does not generate a list file.

If you want to save the list file in another directory than the default directory for list files,
use the Output Directories option in the General Options category. For more
AFE1_AFE2-1:1

233

234

Description of assembler options

information, see Output, page 209. You can open the output files directly from the
Output folder which is available in the Workspace window.

For the list file content, choose between:

Do not include diagnostics
Excludes diagnostic information from the list file.

Include cross-reference
Generates a cross-reference table at the end of the list file.

List macro definitions
Includes macro definitions in the list file.

Disable macro expansion
Excludes macro expansions from the list file.

List only assembled parts
Excludes lines in false conditional assembly sections from the list file.

Truncate multiline data field
Lists only the first line of a generated multiline construction. If the option is
deselected, all lines are listed.

Preprocessor
The Preprocessor options allow you to define symbols and include paths for use by the
compiler and assembler.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Assembler options

Ignore standard include directories

Normally, the compiler and assembler automatically look for include files in the
standard include directories. Use this option to turn off this behavior.

Additional include directories

Specify the full paths of directories to search for include files, one per line. Any
directories specified here are searched before the standard include directories, in the
order specified.

Use the browse button to display the Edit Include Directories dialog box, where you
can specify directories using a file browser. For more information, see Edit Include
Directories dialog box, page 230.

To avoid being dependent on absolute paths, and to make the project more easily
portable between different machines and file system locations, you can use argument
variables like $TOOLKIT_DIR$ and $PROJ_DIR$, see Argument variables, page 83.

Preinclude file

Specify a file to include before the first line of the source file.

Defined symbols

Define a macro symbol (one per line), including its value, for example like this:

TESTVER=1

This has the same effect as if a line like this appeared before the start of the source file:

#define TESTVER 1

A line with no value has the same effect as if =1 was specified.

Preprocessor output to file

Makes the compiler and assembler output the result of the preprocessing to a file with
the filename extension i, located in the lst directory. Choose between:

Preserve comments
Includes comments in the output. Normally, comments are treated as
whitespace, and their contents are not included in the preprocessor output.

Generate #line directives
Generates #line directives in the output to indicate where each line originated
from.
AFE1_AFE2-1:1

235

236

Description of assembler options

Diagnostics
The Diagnostics options determine how diagnostic messages are classified and
displayed. Use the diagnostics options to override the default classification of the
specified diagnostic messages.

Note: The diagnostic messages cannot be suppressed for fatal errors, and fatal errors
cannot be reclassified.

Enable remarks

Enables the generation of remarks. By default, remarks are not issued.

The least severe diagnostic messages are called remarks. A remark indicates a source
code construct that might cause strange behavior in the generated code.

Suppress these diagnostics

Suppresses the output of diagnostic messages for the tags that you specify.

For example, to suppress the warnings Xx117 and Xx177, type:

Xx117,Xx177

Treat these as remarks

Classifies diagnostic messages as remarks. A remark is the least severe type of
diagnostic message. It indicates a source code construct that might cause strange
behavior in the generated code.

For example, to classify the warning Xx177 as a remark, type:

Xx177
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Assembler options

Treat these as warnings

Classifies diagnostic messages as warnings. A warning indicates an error or omission
that is of concern, but which will not cause the assembler to stop before assembly is
completed.

For example, to classify the remark As098 as a warning, type:

As098

Treat these as errors

Classifies diagnostic messages as errors. An error indicates a violation of the language
rules, of such severity that object code will not be generated, and the exit code will be
non-zero.

For example, to classify the warning Xx117 as an error, type:

Xx117

Treat all warnings as errors

Classifies all warnings as errors. If the assembler encounters an error, object code is not
generated.

Max number of errors

Specify the maximum number of errors. This means that you can increase or decrease
the number of reported errors, for example, to see more errors in a single assembly. By
default, the maximum number of errors reported by the assembler is 100.

Extra Options
The Extra Options page provides you with a command line interface to the tool.
AFE1_AFE2-1:1

237

238

Description of assembler options

Use command line options

Specify additional command line arguments to be passed to the tool (not supported by
the GUI).
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Output converter options
● Description of output converter options

Description of output converter options
Reference information about:

● Output

To set output converter options in the IDE:
1 Choose Project>Options to display the Options dialog box.

2 Select Output Converter in the Category list.

Output
The Output options determine details about the promable output format.

Generate additional output

The ILINK linker generates ELF as output, optionally including DWARF for debug
information. Generate additional output makes the converter ielftool convert the
ELF output to the format you specify, for example Motorola or Intel-extended. For more
information about the converter, see the IAR C/C++ Development Guide for RISC-V.

Note: If you change the filename extension for linker output and want to use the output
converter ielftool to convert the output, make sure ielftool will recognize the new
filename extension. To achieve this, choose Tools>Filename Extension, select your
toolchain, and click Edit. In the Filename Extension Overrides dialog box, select
AFE1_AFE2-1:1

239

240

Description of output converter options

Output Converter and click Edit. In the Edit Filename Extensions dialog box, select
Override and type the new filename extension and click OK. ielftool will now
recognize the new filename extension.

Output format

Selects the format for the output from ielftool. Choose between:

● Motorola S-records
● Intel Extended hex
● Raw binary
● Simple-code

For more information about the converter, see the IAR C/C++ Development Guide for
RISC-V.

Output file

Specifies the name of the ielftool converted output file. By default, the linker will use
the project name with a filename extension. The filename extension depends on which
output format you choose. To override the default name, select the Override default
option and specify the alternative filename or filename extension.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Custom build options
● Description of custom build options

Description of custom build options
Reference information about:

● Custom Tool Configuration

To set custom build options in the IDE:
1 Choose Project>Options to display the Options dialog box.

2 Select Custom Build in the Category list.

Custom Tool Configuration
The Custom Tool Configuration options control the invocation of the tools you want
to add to the tool chain.

For an example, see Extending the toolchain, page 109.

Filename extensions

Specify the filename extensions for the types of files that are to be processed by the
custom tool. You can type several filename extensions. Use commas, semicolons, or
blank spaces as separators. For example:

.htm; .html
AFE1_AFE2-1:1

241

242

Description of custom build options

Command line

Specify the command line for executing the external tool.

Output files

Specify the name for the output files from the external tool.

Additional input files

Specify any additional files to be used by the external tool during the build process. If
these additional input files, dependency files, are modified, the need for a rebuild is
detected.

Build order

Specify where in the build process to execute the external tool. Choose between:

Automatic (based on input and output)
The time of execution will be calculated automatically by the build engine.

Run before compiling/assembling
The tool will be executed before the compiler or assembler.

Run before linking
The tool will be executed after the compiler or assembler, but before the linker.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Build actions options
● Description of build actions options

Description of build actions options
Reference information about:

● Build Actions Configuration

To set build action options in the IDE:
1 Choose Project>Options to display the Options dialog box.

2 Select Build Actions in the Category list.

Build Actions Configuration
The Build Actions Configuration options specify build actions in the IDE, to be
performed before, during, or after the build. These options apply to the whole build
configuration, and cannot be set on groups or files.

If a build action returns a non-zero error code, the entire Build or Make command is
aborted.

Build actions

The display area shows all command lines to be executed at various stages of the build,
when in the build order they will be executed, and which output they produce. Use the
buttons under the display area to create, edit, or remove build actions.
AFE1_AFE2-1:1

243

244

Description of build actions options

New

Opens a dialog box where you can create a new build action, see New/Edit Build Action
dialog box, page 244.

Edit

Opens a dialog box where you can edit the selected build action, see New/Edit Build
Action dialog box, page 244.

Remove

Deletes the selected build action.

New/Edit Build Action dialog box
The New/Edit Build Action dialog box is available from the Build Actions
Configuration page in the Options dialog box.

Use this dialog box to create or edit build actions.

Command line

Specify the command line to be executed, with all options and arguments.

Output files

Specify any files that are created by the command line. Note that output from build
actions should not also be added to the project.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Build actions options

Input files

Specify any files that the build action depends on.

Working directory

Specify the directory where the build action is executed. A browse button is available
for your convenience.

Build order

Specify where in the build process to execute the build action. Choose between:

Automatic (based on input and output)
The time of execution will be calculated automatically by the build engine.

Run before compiling/assembling
The build action will be executed before the compiler or assembler.

Run before linking
The build action will be executed after the compiler or assembler, but before the
linker.

Run after linking
The build action will be executed after compiling/assembly, and after the linker.
AFE1_AFE2-1:1

245

246

Description of build actions options

AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Linker options
● Description of linker options

Description of linker options
Reference information about:

● Config

● Library

● Input

● Optimizations

● Advanced

● Output

● List

● #define

● Diagnostics

● Checksum

● Encodings

● Extra Options

● Edit Additional Libraries dialog box

To set linker options in the IDE:
1 Choose Project>Options to display the Options dialog box.

2 Select Linker in the Category list.

3 To restore all settings to the default factory settings, click the Factory Settings button.
AFE1_AFE2-1:1

247

248

Description of linker options

Config
The Config options specify the path and name of the linker configuration file and define
symbols for the configuration file.

Linker configuration file

A default linker configuration file is selected automatically based on your project
settings. To override the default file, select Override default and specify an alternative
file.

The argument variables $TOOLKIT_DIR$ or $PROJ_DIR$ can be used for specifying a
project-specific or predefined configuration file.

Configuration file symbol definitions

Define constant configuration symbols to be used in the configuration file. Such a
symbol has the same effect as a symbol defined using the define symbol directive in
the linker configuration file.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Linker options

Library
The Library options select the set of used libraries.

For more information about available libraries, see the IAR C/C++ Development Guide
for RISC-V.

Automatic runtime library selection

Makes the linker automatically choose the appropriate library based on your project
settings.

Additional libraries

Specify additional libraries that you want the linker to include during the link process.
You can only specify one library per line and you must specify the full path to the library.

Use the browse button to display the Edit Additional Libraries dialog box, where you
can specify libraries using a file browser. For more information, see Edit Additional
Libraries dialog box, page 261.

The argument variables $PROJ_DIR$ and $TOOLKIT_DIR$ can be used, see Argument
variables, page 83.

Alternatively, you can add an additional library directly to your project in the
Workspace window. You can find an example of this in the tutorial for creating and
using libraries.

Override default program entry

By default, the program entry is the label _ _iar_program_start. The linker makes
sure that a module containing the program entry label is included, and that the section
containing that label is not discarded.
AFE1_AFE2-1:1

249

250

Description of linker options

Override default program entry overrides the default entry label. Choose between:

Entry symbol
Specify an entry symbol other than default.

No entry symbol
No entry symbol will be defined and the entry point of the application image
will be 0. For this reason, the application must contain a symbol or section that
has the root attribute and that refers, directly or indirectly, to the rest of the
application, otherwise the image will be empty.

Input
The Input options specify how to handle input to the linker.

Keep symbols

Define the symbol, or several symbols one per line, that shall always be included in the
final application.

By default, the linker keeps a symbol only if your application needs it.

Raw binary image

Links pure binary files in addition to the ordinary input files. Specify these parameters:

File
The pure binary file you want to link.

Symbol
The symbol defined by the section where the binary data is placed.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Linker options

Section
The section where the binary data is placed.

Align
The alignment of the section where the binary data is placed.

The entire contents of the files are placed in the section you specify, which means they
can only contain pure binary data, for example, the raw binary output format. The
section where the contents of a specified file are placed, is only included if the specified
symbol is required by your application. Use Keep symbols if you want to force a
reference to the symbol. Read more about single output files and the --keep option in
the IAR C/C++ Development Guide for RISC-V.

Optimizations
The Optimizations options control linker optimizations.

For more information about these options, see the IAR C/C++ Development Guide for
RISC-V.

Merge duplicate sections

Makes the linker keep only one copy of equivalent read-only sections.

Note that this can cause different functions or constants to have the same address, so an
application that depends on the addresses being different will not work correctly with
this option selected.

Perform C++ Virtual Function Elimination

Enables the Virtual Function Elimination optimization.
AFE1_AFE2-1:1

251

252

Description of linker options

To force the use of Virtual Function Elimination, enable the Even if some modules are
missing VFE information option. This might be unsafe if some of the modules that
lack the needed information perform virtual function calls or use dynamic Runtime Type
Information.

Advanced
The Advanced options control some miscellaneous linker features.

For more information about these options, see the IAR C/C++ Development Guide for
RISC-V.

Enable stack usage analysis

Enables stack usage analysis. If you choose to produce a linker map file, a stack usage
chapter is included in the map file. Additionally, you specify one or more of these files:

Control file
Specify a stack usage control file to use to control stack usage analysis or
provide more stack usage information for modules or functions. If no filename
extension is specified, the extension suc is used.

Call graph output (XML)
Specify the name of a call graph file to be generated by the linker. If no filename
extension is specified, the extension cgx is used.

Replace linker executable with wrapper

This option allows you to specify an executable file or script to replace the build engine’s
call to the linker.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Linker options

This makes it possible to execute commands just before or after calling the linker. The
option requires that the wrapper calls the linker properly (in place of the replaced call).

This is a very powerful option that lets you make radical changes to the linking process.
Use it with care.

Output
The Output options determine the generated linker output.

Output filename

Sets the name of the ILINK output file. By default, the linker will use the project name
with the filename extension out. To override the default name, specify an alternative
name of the output file.

Note: If you change the filename extension for linker output and want to use the output
converter ielftool to convert the output, make sure ielftool will recognize the new
filename extension. To achieve this, choose Tools>Filename Extension, select your
toolchain, and click Edit. In the Filename Extension Overrides dialog box, select
Output Converter and click Edit. In the Edit Filename Extensions dialog box, select
Override and type the new filename extension and click OK. ielftool will now
recognize the new filename extension.

Include debug information in output

Makes the linker generate an ELF output file including DWARF for debug information.
AFE1_AFE2-1:1

253

254

Description of linker options

List
The List options control the generation of linker listings.

Generate linker map file

Makes the linker generate a linker memory map file and send it to the
projectname.map file located in the list directory. For detailed information about
the map file and its contents, see the IAR C/C++ Development Guide for RISC-V.

Generate log file

Makes the linker save log information to the projectname.log file located in the list
directory. The log information can be useful for understanding why an executable image
became the way it is. You can log:

● Automatic library selection

● Initialization decisions

● Module selections

● Redirected symbols

● Section selections

● Stack usage call graph

● Unused section fragments

● CRT routine selection

● Extra info for sections

● Small function inlining

● Results of merging sections

● C/C++ symbols with demangled names instead of mangled names
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Linker options

#define
The #define options define absolute symbols at link time.

Defined symbols

Define absolute symbols to be used at link time. This is especially useful for
configuration purposes. Type the symbols that you want to define for the project, one
per line, and specify their value. For example:

TESTVER=1

Note that there should be no space around the equals (=) sign.

Any number of symbols can be defined in a linker configuration file. The symbol(s)
defined in this manner will be located in a special module called ?ABS_ENTRY_MOD,
which is generated by the linker.

The linker will display an error message if you attempt to redefine an existing symbol.
AFE1_AFE2-1:1

255

256

Description of linker options

Diagnostics
The Diagnostics options determine how diagnostic messages are classified and
displayed. Use the diagnostics options to override the default classification of the
specified diagnostics.

Note: The diagnostic messages cannot be suppressed for fatal errors, and fatal errors
cannot be reclassified.

Enable remarks

Enables the generation of remarks. By default, remarks are not issued.

The least severe diagnostic messages are called remarks. A remark indicates a source
code construct that might cause strange behavior in the generated code.

Suppress these diagnostics

Suppresses the output of diagnostic messages for the tags that you specify.

For example, to suppress the warnings Xx117 and Xx177, type:

Xx117,Xx177

Treat these as remarks

Classifies diagnostic messages as remarks. A remark is the least severe type of
diagnostic message. It indicates a source code construct that might cause strange
behavior in the generated code.

For example, to classify the warning Xx177 as a remark, type:

Xx177
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Linker options

Treat these as warnings

Classifies diagnostic messages as warnings. A warning indicates an error or omission
that is of concern, but which will not cause the linker to stop before linking is completed.

For example, to classify the remark Xx826 as a warning, type:

Xx826

Treat these as errors

Classifies diagnostic messages as errors. An error indicates a violation of the linking
rules, of such severity that an executable image will not be generated, and the exit code
will be non-zero.

For example, to classify the warning Xx117 as an error, type:

Xx117

Treat all warnings as errors

Classifies all warnings as errors. If the linker encounters an error, an executable image
is not generated.

Checksum
The Checksum options control filling and checksumming.

For more information about checksum calculation, see the IAR C/C++ Development
Guide for RISC-V.
AFE1_AFE2-1:1

257

258

Description of linker options

Fill unused code memory

Fills unused memory in the range you specify. Choose between:

Fill pattern
Specifies a size, in hexadecimal notation, of the filler to be used in gaps between
segment parts.

Start address
Specifies the start address for the range to be filled.

End address
Specifies the end address for the range to be filled.

Generate checksum

Generates a checksum for the specified range. Choose between:

Checksum size
Selects the size of the checksum, which can be 1, 2, 4, or 8 bytes.

Alignment
Specifies an optional alignment for the checksum. Typically, this is useful when
the processor cannot access unaligned data. If you do not specify an alignment
explicitly, an alignment of 1 is used.

Algorithm
Selects the algorithm to be used when calculating the checksum. Choose
between:

Arithmetic sum, the simple arithmetic sum algorithm. The result is truncated
to one byte.

CRC16 (default), the CRC16 algorithm (generating polynomial 0x1021).

CRC32, the CRC32 algorithm (generating polynomial 0x4C11DB7).

CRC polynomial, the CRC polynomial algorithm, a generating polynomial of
the value you specify.

CRC64ISO, the CRC64ISO algorithm (generating polynomial 0x1B).

CRC64ECMA, the CRC64ECMA algorithm (generating polynomial
0x42F0E1EBA9EA3693).

Sum32, a word-wise (32 bits) calculated arithmetic sum.

Result in full size
Generates the result of the arithmetic sum algorithm in the size you specify
instead of truncating it to one byte.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Linker options

Complement
Selects the complement variant. Leave either as is, or select the one’s
complement or two’s complement.

Bit order
Selects the order in which the bits in each byte will be processed. Choose
between:

MSB first, outputs the most significant bit first for each byte.

LSB first, reverses the bit order for each byte and outputs the least significant
bit first.

Reverse byte order within word
Reverses the byte order of the input data within each word of the size specified
in Checksum unit size.

Initial value
Specifies an initial value for the checksum. This is useful if the core you are
using has its own checksum calculation and you want that calculation to
correspond to the calculation performed by the linker.

Use as input
Prefixes the input data with a word of size Checksum unit size that contains the
value specified in Initial value.

Checksum unit size
Selects the size of the unit for which a checksum should be calculated. Typically,
this is useful to make the linker produce the same checksum as some hardware
CRC implementations that calculate a checksum for more than 8 bits per
iteration. Choose between:

8-bit, calculates a checksum for 8 bits in every iteration.

16-bit, calculates a checksum for 16 bits in every iteration.

32-bit, calculates a checksum for 32 bits in every iteration.

64-bit, calculates a checksum for 64 bits in every iteration.
AFE1_AFE2-1:1

259

260

Description of linker options

Encodings
The Encodings options control the character encodings of the input files to and the
output files from the linker.

Default input file encoding

Specifies the default encoding that the linker shall use when reading a text input file with
no Byte Order Mark (BOM). Choose between:

System locale
Sets the system locale as the default encoding.

UTF-8
Sets the UTF-8 encoding as the default.

Text output file encoding

Specifies the encoding that the linker shall use when generating a text output file.
Choose between:

System locale
Uses the system locale encoding.

UTF-8
Uses the UTF-8 encoding.

With BOM
Adds a Byte Order Mark to the output file.

This option is only available when you have selected one of the UTF encodings
for your output file.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Linker options

Extra Options
The Extra Options page provides you with a command line interface to the tool.

Use command line options

Specify additional command line arguments to be passed to the tool (not supported by
the GUI).

Edit Additional Libraries dialog box
The Edit Additional Libraries dialog box is available from the Library page in the
Options dialog box.

Use this dialog box to specify additional libraries, or to make a path to a library relative
or absolute.

To specify an additional library:
1 Click the text <Click to add>. A browse dialog box is displayed.

2 Browse to the appropriate include directory and click Open. The library is listed.

To add yet another one, click <Click to add>.
AFE1_AFE2-1:1

261

262

Description of linker options

To make the path relative or absolute:
1 Click the drop-down arrow. A context menu is displayed, which shows the absolute

path and paths relative to the argument variables $PROJ_DIR$ and $TOOLKIT_DIR$,
when possible.

2 Choose one of the alternatives.

To change the order of the libraries:
1 Use the shortcut key combinations Ctrl+Up/Down.

2 Notice that the list will be sorted accordingly.

To delete a library from the list:
1 Select the library and click the red cross at the beginning of the line, alternatively press

the Delete key.

2 Notice that the selected library will disappear.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Library builder options
● Description of library builder options

Description of library builder options
Reference information about:

● Output

Options for the library builder are not available by default. Before you can set these
options in the IDE, you must add the library builder tool to the list of categories.

To set Library Builder options in the IDE:
1 Choose Project>Options>General Options>Output.

2 Select the Library option, which means that Library Builder appears as a category in
the Options dialog box.

3 Select Library Builder in the Category list.
AFE1_AFE2-1:1

263

264

Description of library builder options

Output
The Output options control the library builder and as a result of the build process, the
library builder will create a library output file.

Output file

Specifies the name of the output file from the library builder. By default, the linker will
use the project name with a filename extension. To override the default name, select
Override default and specify an alternative name of the output file.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Glossary

Glossary
This is a general glossary for terms relevant to
embedded systems programming. Some of the terms do
not apply to the IAR Embedded Workbench® version
that you are using.

A
Absolute location.
A specific memory address for an object specified in the
source code, as opposed to the object being assigned a location
by the linker

Address expression
An expression which has an address as its value.

Application
The program developed by the user of the IAR toolkit and
which will be run as an embedded application on a target
processor.

Ar
The GNU binary utility for creating, modifying, and extracting
from archives, that is, libraries. See also Iarchive.

Architecture
A term used by computer designers to designate the structure
of complex information-processing systems. It includes the
kinds of instructions and data used, the memory organization
and addressing, and the methods by which the system is
implemented. The two main architecture types used in
processor design are Harvard architecture and von Neumann
architecture.

Archive
See Library.

Assembler directives
The set of commands that control how the assembler operates.

Assembler language
A machine-specific set of mnemonics used to specify
operations to the target processor and input or output registers
or data areas. Assembler language might sometimes be
preferred over C/C++ to save memory or to enhance the
execution speed of the application.

Assembler options
Parameters you can specify to change the default behavior of
the assembler.

Attributes
See Section attributes.

Auto variables
The term refers to the fact that each time the function in which
the variable is declared is called, a new instance of the variable
is created automatically. This can be compared with the
behavior of local variables in systems using static overlay,
where a local variable only exists in one instance, even if the
function is called recursively. Also called local variables.
Compare Register variables.

B
Backtrace
Information for keeping call frame information up to date so
that the IAR C-SPY® Debugger can return from a function
correctly. See also Call frame information.

Bank
See Memory bank.

Bank switching
Switching between different sets of memory banks. This
software technique increases a computer's usable memory by
allowing different pieces of memory to occupy the same
address space.

Banked code
Code that is distributed over several banks of memory. Each
function must reside in only one bank.
AFE1_AFE2-1:1

 265

266

Banked data
Data that is distributed over several banks of memory. Each
data object must fit inside one memory bank.

Banked memory
Has multiple storage locations for the same address. See also
Memory bank.

Bank-switching routines
Code that selects a memory bank.

Batch files
A text file containing operating system commands which are
executed by the command line interpreter. In Unix, this is
called a “shell script” because it is the Unix shell which
includes the command line interpreter. Batch files can be used
as a simple way to combine existing commands into new
commands.

Bitfield
A group of bits considered as a unit.

Block, in linker configuration file
A continuous piece of code or data. It is either built up of
blocks, overlays, and sections or it is empty. A block has a
name, and the start and end address of the block can be referred
to from the application. It can have attributes such as a
maximum size, a specific size, or a minimum alignment. The
contents can have a specific order or not.

Breakpoint

1 Code breakpoint. A point in a program that, when reached,
triggers some special behavior useful to the process of
debugging. Generally, breakpoints are used for stopping
program execution or dumping the values of some or all of
the program variables. Breakpoints can be part of the
program itself, or they can be set by the programmer as
part of an interactive session with a debugging tool for
scrutinizing the program's execution.

2 Data breakpoint. A point in memory that, when accessed,
triggers some special behavior useful to the process of
debugging. Generally, data breakpoints are used to stop
program execution when an address location is accessed
either by a read operation or a write operation.

3 Immediate breakpoint. A point in memory that, when
accessed, trigger some special behavior useful in the
process of debugging. Immediate breakpoints are
generally used for halting the program execution in the
middle of a memory access instruction (before or after the
actual memory access depending on the access type) while
performing some user-specified action. The execution is
then resumed. This feature is only available in the
simulator version of C-SPY.

C
Call frame information
Information that allows the IAR C-SPY® Debugger to show,
without any runtime penalty, the complete stack of function
calls—call stack—wherever the program counter is, provided
that the code comes from compiled C functions. See also
Backtrace.

Calling convention
A calling convention describes the way one function in a
program calls another function. This includes how register
parameters are handled, how the return value is returned, and
which registers that will be preserved by the called function.
The compiler handles this automatically for all C and C++
functions. All code written in assembler language must
conform to the rules in the calling convention to be callable
from C or C++, or to be able to call C and C++ functions. The
C calling convention and the C++ calling conventions are not
necessarily the same.

Cheap
As in cheap memory access. A cheap memory access either
requires few cycles to perform, or few bytes of code to
implement. A cheap memory access is said to have a low cost.
See Memory access cost.

Checksum
A small piece of data calculated from a larger block of data for
the purpose of detecting errors that might have been introduced
during its transmission or storage. Compare CRC (cyclic
redundancy check).
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Glossary

Code banking
See Banked code.

Code model
The code model controls how code is generated for an
application. Typically, the code model controls behavior such
as how functions are called and in which code segment
functions will be located. All object files of an application
must be compiled using the same code model.

Code pointers
A code pointer is a function pointer. As many microcontrollers
allow several different methods of calling a function,
compilers for embedded systems usually provide the users
with the ability to use all these methods.

Do not confuse code pointers with data pointers.

Code segments
Read-only segments that contain code. See also Section.

Compilation unit
See Translation unit.

Compiler options
Parameters you can specify to change the default behavior of
the compiler.

Context menu
A context menu appears when you right-click in the user
interface, and provides context-specific menu commands.

Cost
See Memory access cost.

CRC (cyclic redundancy check)
A checksum algorithm based on binary polynomials and an
initial value. A CRC algorithm is more complex than a simple
arithmetic checksum algorithm and has a greater error
detecting capability. Most checksum calculation algorithms
currently in wide used are based on CRC. Compare Checksum.

C-SPY options
Parameters you can specify to change the default behavior of
the IAR C-SPY Debugger.

Cstartup
Code that sets up the system before the application starts
executing.

C-style preprocessor
A preprocessor is either a stand-alone application or an
integrated part of a compiler, that performs preprocessing of
the input stream before the actual compilation occurs. A
C-style preprocessor follows the rules set up in Standard C and
implements commands like #define, #if, and #include,
which are used to handle textual macro substitution,
conditional compilation, and inclusion of other files.

D
Data banking
See Banked data.

Data model
The data model specifies the default memory type. This means
that the data model typically controls one or more of the
following: The method used and the code generated to access
static and global variables, dynamically allocated data, and the
runtime stack. It also controls the default pointer type and in
which data sections static and global variables will be located.
A project can only use one data model at a time, and the same
model must be used by all user modules and all library
modules in the project.

Data pointers
Many cores have different addressing modes to access
different memory types or address spaces. Compilers for
embedded systems usually have a set of different data pointer
types so they can access the available memory efficiently.

Data representation
How different data types are laid out in memory and what
value ranges they represent.

Declaration
A specification to the compiler that an object, a variable or
function, exists. The object itself must be defined in exactly
one translation unit (source file). An object must either be
declared or defined before it is used. Normally an object that is
AFE1_AFE2-1:1

 267

268

used in many files is defined in one source file. A declaration
is normally placed in a header file that is included by the files
that use the object.

For example:

/* Variable "a" exists somewhere. Function
 "b" takes two int parameters and returns an
 int. */

extern int a;
int b(int, int);

Definition
The variable or function itself. Only one definition can exist
for each variable or function in an application. See also
Tentative definition.

For example:

int a;
int b(int x, int y)
{
 return x + y;
}

Demangling
To restore a mangled name to the more common C/C++ name.
See also Mangling.

Device description file
A file used by C-SPY that contains various device-specific
information such as I/O register (SFR) definitions, interrupt
vectors, and control register definitions.

Device driver
Software that provides a high-level programming interface to
a particular peripheral device.

Digital signal processor (DSP)
A device that is similar to a microprocessor, except that the
internal CPU is optimized for use in applications involving
discrete-time signal processing. In addition to standard
microprocessor instructions, digital signal processors usually
support a set of complex instructions to perform common
signal-processing computations quickly.

Disassembly window
A C-SPY window that shows the memory contents
disassembled as machine instructions, interspersed with the
corresponding C source code (if available).

DWARF
An industry-standard debugging format which supports source
level debugging. This is the format used by the IAR ILINK
Linker for representing debug information in an object.

Dynamic initialization
Variables in a program written in C are initialized during the
initial phase of execution, before the main function is called.
These variables are always initialized with a static value,
which is determined either at compile time or at link time. This
is called static initialization. In C++, variables might require
initialization to be performed by executing code, for example,
running the constructor of global objects, or performing
dynamic memory allocation.

Dynamic memory allocation
There are two main strategies for storing variables: statically at
link time, or dynamically at runtime. Dynamic memory
allocation is often performed from the heap and it is the size of
the heap that determines how much memory that can be used
for dynamic objects and variables. The advantage of dynamic
memory allocation is that several variables or objects that are
not active at the same time can be stored in the same memory,
thus reducing the memory requirements of an application. See
also Heap memory.

Dynamic object
An object that is allocated, created, destroyed, and released at
runtime. Dynamic objects are almost always stored in memory
that is dynamically allocated. Compare Static object.

E
EEPROM
Electrically Erasable, Programmable Read-Only Memory. A
type of ROM that can be erased electronically, and then be
re-programmed.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Glossary

ELF
Executable and Linking Format, an industry-standard object
file format. This is the format used by the IAR ILINK Linker.
The debug information is formatted using DWARF.

Embedded C++
A subset of the C++ programming language, which is intended
for embedded systems programming. The fact that
performance and portability are particularly important in
embedded systems development was considered when
defining the language.

Embedded system
A combination of hardware and software, designed for a
specific purpose. Embedded systems are often part of a larger
system or product.

Emulator
An emulator is a hardware device that performs emulation of
one or more derivatives of a processor family. An emulator can
often be used instead of the actual core and connects directly
to the printed circuit board—where the core would have been
connected—via a connecting device. An emulator always
behaves exactly as the processor it emulates, and is used when
debugging requires all systems actuators, or when debugging
device drivers.

Enea OSE Load module format
A specific ELF format that is loadable by the OSE operating
system. See also ELF.

Enumeration
A type which includes in its definition an exhaustive list of
possible values for variables of that type. Common examples
include Boolean, which takes values from the list [true, false],
and day-of-week which takes values [Sunday, Monday,
Tuesday, Wednesday, Thursday, Friday, Saturday].
Enumerated types are a feature of typed languages, including
C and Ada.

Characters, (fixed-size) integers, and even floating-point types
might be (but are not usually) considered to be (large)
enumerated types.

EPROM
Erasable, Programmable Read-Only Memory. A type of ROM
that can be erased by exposing it to ultraviolet light, and then
be re-programmed.

Executable image
Contains the executable image; the result of linking several
relocatable object files and libraries. The file format used for
an object file is ELF with embedded DWARF for debug
information.

Exceptions
An exception is an interrupt initiated by the processor
hardware, or hardware that is tightly coupled with the
processor, for instance, a memory management unit (MMU).
The exception signals a violation of the rules of the
architecture (access to protected memory), or an extreme error
condition (division by zero).

Do not confuse this use of the word exception with the term
exception used in the C++ language (but not in Embedded
C++).

Expensive
As in expensive memory access. An expensive memory access
either requires many cycles to perform, or many bytes of code
to implement. An expensive memory access is said to have a
high cost. See Memory access cost.

Extended keywords
Non-standard keywords in C and C++. These usually control
the definition and declaration of objects (that is, data and
functions). See also Keywords.

F
Filling
How to fill up bytes—with a specific fill pattern—that exists
between the sections in an executable image. These bytes exist
because of the alignment demands on the sections.

Format specifiers
Used to specify the format of strings sent by library functions
such as printf. In the following example, the function call
AFE1_AFE2-1:1

 269

270

contains one format string with one format specifier, %c, that
prints the value of a as a single ASCII character:

printf("a = %c", a);

G
General options
Parameters you can specify to change the default behavior of
all tools that are included in the IDE.

Generic pointers
Pointers that have the ability to point to all different memory
types in, for example, a core based on the Harvard architecture.

H
Hardware thread (hart)
A processing engine with its own user register state and
program counter, executing within a common user address
space. Usually, when one thread is waiting for memory, other
threads can continue. Hardware threads (harts) can make
efficient use of the large register sets and can be a way to
handle interrupts—no registers have to be saved or restored,
instead another hardware thread can be executed. The only
required hardware thread is thread zero.

Harvard architecture
A core based on the Harvard architecture has separate data and
instruction buses. This allows execution to occur in parallel.
As an instruction is being fetched, the current instruction is
executing on the data bus. Once the current instruction is
complete, the next instruction is ready to go. This theoretically
allows for much faster execution than a von Neumann
architecture, but adds some silicon complexity. Compare von
Neumann architecture.

Heap memory
The heap is a pool of memory in a system that is reserved for
dynamic memory allocation. An application can request parts
of the heap for its own use; once memory is allocated from the
heap it remains valid until it is explicitly released back to the
heap by the application. This type of memory is useful when

the number of objects is not known until the application
executes.

Note that this type of memory is risky to use in systems with a
limited amount of memory or systems that are expected to run
for a very long time.

Heap size
Total size of memory that can be dynamically allocated.

Host
The computer that communicates with the target processor.
The term is used to distinguish the computer on which the
debugger is running from the core the embedded application
you develop runs on.

I
Iarchive
The IAR utility for creating archives, that is, libraries. Iarchive
is delivered with IAR Embedded Workbench.

IDE (integrated development environment)
A programming environment with all necessary tools
integrated into one single application.

Ielfdumpriscv
The IAR utility for creating a text representation of the
contents of ELF relocatable or executable image.

Ielftool
The IAR utility for performing various transformations on an
ELF executable image, such as fill, checksum, and format
conversion.

ILINK
The IAR ILINK Linker which produces absolute output in the
ELF/DWARF format.

ILINK configuration
The definition of available physical memories and the
placement of sections—pieces of code and data—into those
memories. ILINK requires a configuration to build an
executable image.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Glossary

Image
See Executable image.

Include file
A text file which is included into a source file. This is often
done by the preprocessor.

Initialization setup in linker configuration file
Defines how to initialize RAM sections with their initializers.
Normally, only non-constant non-noinit variables are
initialized but, for example, pieces of code can be initialized as
well.

Initialized sections
Read-write sections that should be initialized with specific
values at startup. See also Section.

Inline assembler
Assembler language code that is inserted directly between C
statements.

Inlining
An optimization that replaces function calls with the body of
the called function. This optimization increases the execution
speed and can even reduce the size of the generated code.

Instruction mnemonics
A word or acronym used in assembler language to represent a
machine instruction. Different processors have different
instruction sets and therefore use a different set of mnemonics
to represent them, such as, ADD, BR (branch), BLT (branch if
less than), MOVE, LDR (load register).

Instrumentation Trace Component (ITC)
On-chip circuitry which C-SPY uses to make it possible for the
application running on the target system to send text to the
stdout and stderr streams by way of trace output, rather
than by temporarily stopping at a breakpoint.

Interrupt vector
A small piece of code that will be executed, or a pointer that
points to code that will be executed when an interrupt occurs.

Interrupt vector table
A table containing interrupt vectors, indexed by interrupt type.
This table contains the processor's mapping between interrupts
and interrupt service routines and must be initialized by the
programmer.

Interrupts
In embedded systems, the use of interrupts is a method of
detecting external events immediately, for example a timer
overflow or the pressing of a button.

Interrupts are asynchronous events that suspend normal
processing and temporarily divert the flow of control through
an “interrupt handler” routine. Interrupts can be caused by
both hardware (I/O, timer, machine check) and software
(supervisor, system call or trap instruction). Compare Trap.

Intrinsic
An adjective describing native compiler objects, properties,
events, and methods.

Intrinsic functions
1. Function calls that are directly expanded into specific
sequences of machine code. 2. Functions called by the
compiler for internal purposes (that is, floating-point
arithmetic etc.).

Iobjmanip
The IAR utility for performing low-level manipulation of ELF
object files.

K
Key bindings
Key shortcuts for menu commands used in the IDE.

Keywords
A fixed set of symbols built into the syntax of a programming
language. All keywords used in a language are reserved—they
cannot be used as identifiers (in other words, user-defined
objects such as variables or procedures). See also Extended
keywords.
AFE1_AFE2-1:1

 271

272

L
L-value
A value that can be found on the left side of an assignment and
that can, therefore, be changed. This includes plain variables
and dereferenced pointers. Expressions like (x + 10) cannot
be assigned a new value and are therefore not L-values.

Language extensions
Target-specific extensions to the C language.

Library
See Runtime library.

Library configuration file
A file that contains a configuration of the runtime library. The
file contains information about what functionality is part of the
runtime environment. The file is used for tailoring a build of a
runtime library. See also Runtime library.

Linker configuration file
A file that contains a configuration used by the IAR ILINK
Linker when building an executable image. See also ILINK
configuration.

Local variable
See Auto variables.

Location counter
See Program location counter (PLC).

Logical address
See Virtual address (logical address).

M
MAC (Multiply and accumulate)
A special instruction, or on-chip device, that performs a
multiplication together with an addition. This is very useful
when performing signal processing where many filters and
transforms have the form:

The accumulator of the MAC usually has a higher precision
(more bits) than normal registers. See also Digital signal
processor (DSP).

Macro

1 Assembler macros are user-defined sets of assembler lines
that can be expanded later in the source file by referring to
the given macro name. Parameters will be substituted if
referred to.

2 C macro. A text substitution mechanism used during
preprocessing of source files. Macros are defined using the
#define preprocessing directive. The replacement text of
each macro is then substituted for any occurrences of the
macro name in the rest of the translation unit.

3 C-SPY macros are programs that you can write to enhance
the functionality of C-SPY. A typical application of C-SPY
macros is to associate them with breakpoints; when such a
breakpoint is hit, the macro is run and can, for example, be
used to simulate peripheral devices, to evaluate complex
conditions, or to output a trace.

The C-SPY macro language is like a simple dialect of C, but is
less strict with types.

Mailbox
A mailbox in an RTOS is a point of communication between
two or more tasks. One task can send messages to another task
by placing the message in the mailbox of the other task.
Mailboxes are also known as message queues or message
ports.

Mangling
Mangling is a technique used for mapping a complex C/C++
name into a simple name. Both mangled and demangled names
can be produced for C/C++ symbols in ILINK messages.

Memory, in linker configuration file
A physical memory. The number of units it contains and how
many bits a unit consists of, are defined in the linker
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Glossary

configuration file. The memory is always addressable from
0x0 to size -1.

Memory access cost
The cost of a memory access can be in clock cycles, or in the
number of bytes of code needed to perform the access. A
memory which requires large instructions or many instructions
is said to have a higher access cost than a memory which can
be accessed with few, or small instructions.

Memory area
A region of the memory.

Memory bank
The smallest unit of continuous memory in banked memory.
One memory bank at a time is visible in a core’s physical
address space.

Memory map
A map of the different memory areas available to the core.

Memory model
Specifies the memory hierarchy and how much memory the
system can handle. Your application must use only one
memory model at a time, and the same model must be used by
all user modules and all library modules.

Microcontroller
A microprocessor on a single integrated circuit intended to
operate as an embedded system. In addition to a CPU, a
microcontroller typically includes small amounts of RAM,
PROM, timers, and I/O ports.

Microprocessor
A CPU contained on one (or a few) integrated circuits. A
single-chip microprocessor can include other components
such as memory, memory management, caches, floating-point
unit, I/O ports and timers. Such devices are also known as
microcontrollers.

Module
An object. An object file contains a module and library
contains one or more objects. The basic unit of linking. A
module contains definitions for symbols (exports) and

references to external symbols (imports). When you compile
C/C++, each translation unit produces one module.

Multi-file compilation
A technique which means that the compiler compiles several
source files as one compilation unit, which enables for
interprocedural optimizations such as inlining, cross call, and
cross jump on multiple source files in a compilation unit.

N
Nested interrupts
A system where an interrupt can be interrupted by another
interrupt is said to have nested interrupts.

Non-banked memory
Has a single storage location for each memory address in a
core’s physical address space.

Non-initialized memory
Memory that can contain any value at reset, or in the case of a
soft reset, can remember the value it had before the reset.

No-init sections
Read-write sections that should not be initialized at startup.
See also Section.

Non-volatile storage
Memory devices such as battery-backed RAM, ROM,
magnetic tape and magnetic disks that can retain data when
electric power is shut off. Compare Volatile storage.

NOP
No operation. This is an instruction that does not do anything,
but is used to create a delay. In pipelined architectures, the NOP
instruction can be used for synchronizing the pipeline. See also
Pipeline.

O
Objcopy
A GNU binary utility for converting an absolute object file in
ELF format into an absolute object file, for example the format
Motorola-std or Intel-std. See also Ielftool.
AFE1_AFE2-1:1

 273

274

Object
An object file or a library member.

Object file, absolute
See Executable image.

Object file, relocatable
The result of compiling or assembling a source file. The file
format used for an object file is ELF with embedded DWARF
for debug information.

Operator
A symbol used as a function, with infix syntax if it has two
arguments (+, for example) or prefix syntax if it has only one
(for instance, bitwise negation, ~). Many languages use
operators for built-in functions such as arithmetic and logic.

Operator precedence
Each operator has a precedence number assigned to it that
determines the order in which the operator and its operands are
evaluated. The highest precedence operators are evaluated
first. Use parentheses to group operators and operands to
control the order in which the expressions are evaluated.

Options
A set of commands that control the behavior of a tool, for
example the compiler or linker. The options can be specified
on the command line or via the IDE.

Output image
See Executable image.

Overlay, in linker configuration file
Like a block, but it contains several overlaid entities, each built
up of blocks, overlays, and sections. The size of an overlay is
determined by its largest constituent. Code in overlaid memory
areas cannot be debugged in the C-SPY Debugger.

P
Parameter passing
See Calling convention.

Peripheral unit
A hardware component other than the processor, for example
memory or an I/O device.

Pipeline
A structure that consists of a sequence of stages through which
a computation flows. New operations can be initiated at the
start of the pipeline even though other operations are already
in progress through the pipeline.

Placement, in linker configuration file
How to place blocks, overlays, and sections into a region. It
determines how pieces of code and data are actually placed in
the available physical memory.

Pointer
An object that contains an address to another object of a
specified type.

#pragma
During compilation of a C/C++ program, the #pragma
preprocessing directive causes the compiler to behave in an
implementation-defined manner. This can include, for
example, producing output on the console, changing the
declaration of a subsequent object, changing the optimization
level, or enabling/disabling language extensions.

Pre-emptive multitasking
An RTOS task is allowed to run until a higher priority process
is activated. The higher priority task might become active as
the result of an interrupt. The term preemptive indicates that
although a task is allotted to run a given length of time (a
timeslice), it might lose the processor at any time. Each time
an interrupt occurs, the task scheduler looks for the highest
priority task that is active and switches to that task. If the
located task is different from the task that was executing before
the interrupt, the previous task is suspended at the point of
interruption.

Compare Round Robin.

Preprocessing directives
A set of directives that are executed before the parsing of the
actual code is started.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Glossary

Preprocessor
See C-style preprocessor.

Processor variant
The different chip setups that the compiler supports.

Program counter (PC)
A special processor register that is used to address instructions.
Compare Program location counter (PLC).

Program location counter (PLC)
Used in the IAR Assembler to denote the code address of the
current instruction. The PLC is represented by a special symbol
(typically $) that can be used in arithmetic expressions. Also
known as a location counter (LC).

Project
The user application development project.

Project options
General options that apply to an entire project, for example the
target processor that the application will run on.

PROM
Programmable Read-Only Memory. A type of ROM that can
only be programmed once.

Q
Qualifiers
See Type qualifiers.

R
Range, in linker configuration file
A range of consecutive addresses in a memory. A region is
built up of ranges.

Read-only sections
Sections that contain code or constants. See also Section.

Real-time operating system (RTOS)
An operating system which guarantees the latency between an
interrupt being triggered and the interrupt handler starting, and

how tasks are scheduled. An RTOS is typically much smaller
than a normal desktop operating system. Compare Real-time
system.

Real-time system
A computer system whose processes are time-sensitive.
Compare Real-time operating system (RTOS).

Region, in linker configuration file
A set of non-overlapping ranges. The ranges can lie in one or
more memories. For ILINK, blocks, overlays, and sections are
placed into regions in the linker configuration file.

Region expression, in linker configuration file
A region built up from region literals, regions, and the common
set operations possible in the linker configuration file.

Region literal, in linker configuration file
A literal that defines a set of one or more non-overlapping
ranges in a memory.

Register
A small on-chip memory unit, usually just one or a few bytes
in size, which is particularly efficient to access and therefore
often reserved as a temporary storage area during program
execution.

Register constant
A register constant is a value that is loaded into a dedicated
processor register when the system is initialized. The compiler
can then generate code that assumes that the constants are
present in the dedicated registers.

Register locking
Register locking means that the compiler can be instructed that
some processor registers shall not be used during normal code
generation. This is useful in many situations. For example,
some parts of a system might be written in assembler language
to gain speed. These parts might be given dedicated processor
registers. Or the register might be used by an operating system,
or by other third-party software.

Register variables
Typically, register variables are local variables that are placed
in registers instead of on the (stack) frame of the function.
AFE1_AFE2-1:1

 275

276

Register variables are much more efficient than other variables
because they do not require memory accesses, so the compiler
can use shorter/faster instructions when working with them.
See also Auto variables.

Relay
A synonym to veneer, see Veneer.

Relocatable sections
Sections that have no fixed location in memory before linking.

Reset
A reset is a restart from the initial state of a system. A reset can
originate from hardware (hard reset), or from software (soft
reset). A hard reset can usually not be distinguished from the
power-on condition, which a soft reset can be.

ROM-monitor
A piece of embedded software designed specifically for use as
a debugging tool. It resides in the ROM of the evaluation board
chip and communicates with a debugger via a serial port or
network connection. The ROM-monitor provides a set of
primitive commands to view and modify memory locations
and registers, create and remove breakpoints, and execute your
application. The debugger combines these primitives to fulfill
higher-level requests like program download and single-step.

Round Robin
Task scheduling in an operating system, where all tasks have
the same priority level and are executed in turn, one after the
other. Compare Pre-emptive multitasking.

RTOS
See Real-time operating system (RTOS).

Runtime library
A collection of relocatable object files that will be included in
the executable image only if referred to from an object file, in
other words conditionally linked.

Runtime model attributes
A mechanism that is designed to prevent modules that are not
compatible to be linked into an application. A runtime attribute
is a pair constituted of a named key and its corresponding
value.

ILINK uses the runtime model attributes when automatically
choosing a library, to verify that the correct one is used.

R-value
A value that can be found on the right side of an assignment.
This is just a plain value. See also L-value.

S
Saturation arithmetics
Most, if not all, C and C++ implementations use mod–2N
2-complement-based arithmetics where an overflow wraps the
value in the value domain, that is, (127 + 1) = -128. Saturation
arithmetics, on the other hand, does not allow wrapping in the
value domain, for instance, (127 + 1) = 127, if 127 is the upper
limit. Saturation arithmetics is often used in signal processing,
where an overflow condition would have been fatal if value
wrapping had been allowed.

Scheduler
The part of an RTOS that performs task-switching. It is also
responsible for selecting which task that should be allowed to
run. Many scheduling algorithms exist, but most of them are
either based on static scheduling (performed at compile-time),
or on dynamic scheduling (where the actual choice of which
task to run next is taken at runtime, depending on the state of
the system at the time of the task-switch). Most real-time
systems use static scheduling, because it makes it possible to
prove that the system will not violate the real-time
requirements.

Scope
The section of an application where a function or a variable can
be referenced by name. The scope of an item can be limited to
file, function, or block.

Section
An entity that either contains data or text. Typically, one or
more variables, or functions. A section is the smallest linkable
unit.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Glossary

Section attributes
Each section has a name and an attribute. The attribute defines
what a section contains, that is, if the section content is
read-only, read/write, code, data, etc.

Section fragment
A part of a section, typically a variable or a function.

Section selection
In the linker configuration file, defining a set of sections by
using section selectors. A section belongs to the most
restrictive section selector if it can be part of more than one
selection. Three different selectors can be used individually or
in conjunction to select the set of sections: section attribute
(selecting by the section content), section name (selecting by
the section name), and object name (selecting from a specific
object).

Semaphore
A semaphore is a type of flag that is used for guaranteeing
exclusive access to resources. The resource can be a hardware
port, a configuration memory, or a set of variables. If several
tasks must access the same resource, the parts of the code (the
critical sections) that access the resource must be made
exclusive for every task. This is done by obtaining the
semaphore that protects that resource, thus blocking all other
tasks from it. If another task wishes to use the resource, it also
must obtain the semaphore. If the semaphore is already in use,
the second task must wait until the semaphore is released.
After the semaphore is released, the second task is allowed to
execute and can obtain the semaphore for its own exclusive
access.

Severity level
The level of seriousness of the diagnostic response from the
assembler, compiler, or debugger, when it notices that
something is wrong. Typical severity levels are remarks,
warnings, errors, and fatal errors. A remark just points to a
possible problem, while a fatal error means that the
programming tool exits without finishing.

Sharing
A physical memory that can be addressed in several ways. For
ILINK, defined in the linker configuration file.

Short addressing
Many cores have special addressing modes for efficient access
to internal RAM and memory mapped I/O. Short addressing is
therefore provided as an extended feature by many compilers
for embedded systems. See also Data pointers.

Side effect
An expression in C or C++ is said to have a side-effect if it
changes the state of the system. Examples are assignments to
a variable, or using a variable with the post-increment operator.
The C and C++ standards state that a variable that is subject to
a side-effect should not be used more that once in an
expression. As an example, this statement violates that rule:

*d++ = *d;

Signal
Signals provide event-based communication between tasks. A
task can wait for one or more signals from other tasks. Once a
task receives a signal it waits for, execution continues. A task
in an RTOS that waits for a signal does not use any processing
time, which allows other tasks to execute.

Simulator
A debugging tool that runs on the host and behaves as similar
to the target processor as possible. A simulator is used for
debugging the application when the hardware is unavailable,
or not needed for proper debugging. A simulator is usually not
connected to any physical peripheral devices. A simulated
processor is often slower, or even much slower, than the real
hardware.

Single stepping
Executing one instruction or one C statement at a time in the
debugger.

Skeleton code
An incomplete code framework that allows the user to
specialize the code.

Special function register (SFR)
A register that is used to read and write to the hardware
components of the core.
AFE1_AFE2-1:1

 277

278

Stack frames
Data structures containing data objects like preserved
registers, local variables, and other data objects that must be
stored temporary for a particular scope (usually a function).

Earlier compilers usually had a fixed size and layout on a stack
frame throughout a complete function, while modern
compilers might have a dynamic layout and size that can
change anywhere and anytime in a function.

Stack sections
The section or sections that reserve space for the stack(s). Most
processors use the same stack for calls and parameters, but
some have separate stacks.

Standard libraries
The C and C++ library functions as specified by the C and C++
standard, and support routines for the compiler, like
floating-point routines.

Static object
An object whose memory is allocated at link-time and is
created during system startup (or at first use). Compare
Dynamic object.

Static overlay
Instead of using a dynamic allocation scheme for parameters
and auto variables, the linker allocates space for parameters
and auto variables at link time. This generates a worst-case
scenario of stack usage, but might be preferable for small chips
with expensive stack access or no stack access at all.

Statically allocated memory
This kind of memory is allocated once and for all at link-time,
and remains valid all through the execution of the application.
Variables that are either global or declared static are
allocated this way.

Structure value
A collecting names for structs and unions. A struct is a
collection of data object placed sequentially in memory
(possibly with pad bytes between them). A union is a
collection of data sharing the same memory location.

Symbolic location
A location that uses a symbolic name because the exact
address is unknown.

T
Target

1 An architecture.

2 A piece of hardware. The particular embedded system you
are developing the application for. The term is usually used
to distinguish the system from the host system.

Task (thread)
A task is an execution thread in a system. Systems that contain
many tasks that execute in parallel are called multitasking
systems. Because a processor only executes one instruction
stream at the time, most systems implement some sort of
task-switch mechanism (often called context switch) so that all
tasks get their share of processing time. The process of
determining which task that should be allowed to run next is
called scheduling. Two common scheduling methods are
Pre-emptive multitasking and Round Robin.

Tentative definition
A variable that can be defined in multiple files, provided that
the definition is identical and that it is an absolute variable.

Terminal I/O
A simulated terminal window in C-SPY.

Timer
A peripheral that counts independent of the program
execution.

Timeslice
The (longest) time an RTOS allows a task to run without
running the task-scheduling algorithm. A task might be
allowed to execute during several consecutive timeslices
before being switched out. A task might also not be allowed to
use its entire time slice, for example if, in a preemptive system,
a higher priority task is activated by an interrupt.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Glossary

Translation unit
A source file together with all the header files and source files
included via the preprocessor directive #include, except for
the lines skipped by conditional preprocessor directives such
as #if and #ifdef.

Trap
A trap is an interrupt initiated by inserting a special instruction
into the instruction stream. Many systems use traps to call
operating system functions. Another name for trap is software
interrupt.

Type qualifiers
In Standard C/C++, const or volatile. IAR compilers
usually add target-specific type qualifiers for memory and
other type attributes.

U
UBROF (Universal Binary Relocatable Object
Format)
File format produced by some of the IAR programming tools,
if your product package includes the XLINK linker.

V
Value expressions, in linker configuration file
A constant number that can be built up out of expressions that
has a syntax similar to C expressions.

Veneer
A small piece of code that is inserted as a springboard between
caller and callee when the call instruction does not reach its
destination.

Virtual address (logical address)
An address that must be translated by the compiler, linker or
the runtime system into a physical memory address before it is
used. The virtual address is the address seen by the application,
which can be different from the address seen by other parts of
the system.

Virtual space
An IAR Embedded Workbench Editor feature which allows
you to place the insertion point outside of the area where there
are actual characters.

Volatile storage
Data stored in a volatile storage device is not retained when the
power to the device is turned off. To preserve data during a
power-down cycle, you should store it in non-volatile storage.
This should not be confused with the C keyword volatile.
Compare Non-volatile storage.

von Neumann architecture
A computer architecture where both instructions and data are
transferred over a common data channel. Compare Harvard
architecture.

W
Watchpoints
Watchpoints keep track of the values of C variables or
expressions in the C-SPY Watch window as the application is
being executed.

X
XAR
An IAR tool that creates archives (libraries) in the UBROF
format.

XLIB
An IAR tool that creates archives (libraries) in the UBROF
format, listing object code, converting and absolute object file
into an absolute object file in another format.

XLINK
The IAR XLINK Linker which uses the UBROF output
format.
AFE1_AFE2-1:1

 279

280

Z
Zero-initialized sections
Sections that should be initialized to zero at startup. See also
Section.

Zero-overhead loop
A loop in which the loop condition, including branching back
to the beginning of the loop, does not take any time at all. This
is usually implemented as a special hardware feature of the
processor and is not available in all architectures.

Zone
Different processors have widely differing memory
architectures. Zone is the term C-SPY uses for a named
memory area. For example, on processors with separately
addressable code and data memory there would be at least two
zones. A processor with an intricate banked memory scheme
might have several zones.
AFE1_AFE2-1:1

IDE Project Management and Building Guide
for RISC-V

Index

Index

A
A extension, enabling support for 204
a (filename extension). 180
absolute location, definition of . 265
accelerator keys. See shortcut keys
Add Project Connection dialog box (Project menu) 106
Additional include directories (preprocessor option) 225, 235
Additional input files (custom build option) 242
Additional libraries (linker option) 249
address expression, definition of. 265
Advanced (linker option) . 252
Algorithm (Generate checksum setting) 258
Alias (Key bindings option) . 52
Align (Raw binary image setting) 251
Alignment (Generate checksum setting) 258
Allow directives in first column (assembler option) 232
Allow misaligned data accesses (general option) 209
Allow mnemonics in first column (assembler option). . . . 232
Allow VLA (C dialect setting) . 219
Ambiguous Definitions (View menu) 160
AndeStar™ CoDense extension, enabling support for . . . 207
AndeStar™ DSP extension, enabling support for 207
AndeStar™ Performance extension,
enabling support for . 207
ANSI C. See C89
application, definition of . 265
architecture, definition of . 265
archive, definition of. 265
argument variables . 77

custom . 84–85
environment variables . 84
in #include file paths . 225, 235
summary of predefined . 83

Arguments (External editor option) 59
Arithmetic sum (checksum algorithm) 258
arranging windows. See windows
ar, definition of . 265
asm (filename extension) . 180

assembler comments, text style in editor. 136
assembler directives

definition of . 265
text style in editor . 136

assembler language, definition of 265
assembler list files

compiler call frame information. 225
conditional information, specifying 233
generating . 233

Assembler mnemonics (Output list file setting) 224
assembler options . 231

definition of . 265
Diagnostics . 236
Language . 231
List. 233
Output . 233

assembler output, including debug information 233
Assembler source file (Workspace window icon) 100
assembler, command line version . 23
assert, in built applications . 92
assumptions, programming experience 15
attributes on sections, definition of 277
Auto code completion and parameter hints (editor option) . 57
Auto indent (editor option) . 56
Auto (Language setting) . 219
Automatic runtime library selection (linker option) 249
Automatic setup of interrupt vector table (general option) 209

B
B extension, enabling support for 204
B extension, enabling support for bit manipulation. 205
backtrace information, definition of 265
bank switching, definition of . 265
banked code, definition of. 265
banked data, definition of . 266
banked memory, definition of . 266
bank-switching routines, definition of. 266
base ISA, selecting . 204
UIDETooticki6.4.0-1:1

 281

282

bat (filename extension) . 180
Batch Build dialog box (Project menu) 122
batch files

definition of . 266
specifying from the Tools menu. 34

bin, common (subdirectory) . 177
bin, riscv (subdirectory) . 176
Bit order (Generate checksum setting) 259
bitfield, definition of . 266
Block, definition of . 266
Body (b) (Configure auto indent option). 58
bold style, in this guide . 19
bookmarks

adding . 136
showing in editor . 56

breakpoints, definition of . 266
@brief (doxygen keyword) . 142
Browse files (Output directories setting). 210
Browse processes (IDE Project option). 65
BrowseInfo (output directory). 177
Buffered write (linker option) . 215
-build (iarbuild command line option) 124
Build Actions Configuration (Build Actions options) 243
build configuration

creating . 95
definition of . 92

Build files (Output directories setting) 210
Build window (View menu) . 120
building

batches . 116
commands for . 114
excluding files . 101
from the command line . 117, 124
options . 64
pre- and post-actions . 115
the process . 109

Button Appearance dialog box . 44

C
C comments, text style in editor . 136
C dialect (compiler option) . 219
C extension, enabling support for 204
C keywords, text style in editor. 136
C source file (Workspace window icon) 100
c (filename extension). 180
C (Language setting). 218
cache management, enabling support for 206
call frame information

definition of . 266
including in assembler list file 225
See also backtrace information

Call graph output (linker option). 252
calling convention, definition of . 266
category, in Options dialog box 113, 119
cc (filename extension) . 180
cfg (filename extension) . 180
cgx (filename extension). 180
characters, in assembler macro quotes 232
cheap memory access, definition of 266
checksum

CRC. 267
definition of . 266
generating . 258
tool for generating . 270

Checksum size (Generate checksum setting) 258
Checksum unit size (Generate checksum setting) 259
Checksum (linker options) . 257
chm (filename extension) . 180
-clean (iarbuild command line option) 125
Clean (Workspace window context menu) 102
Close Workspace (File menu). 185
CMO extensions, enabling support for 206
code

banked, definition of . 265
showing inactive (in editor) . 57
skeleton, definition of . 277
UIDETooticki6.4.0-1:1

IDE Project Management and Building Guide
for RISC-V

Index

testing . 115
code completion, in editor. 133
code folding, in editor . 132
Code Generation (general options) 208
code memory, filling unused. 258
Code model (general option). 208
code model, definition of . 267
code pointers, definition of . 267
Code section name (compiler option) 223
code sections, definition of . 267
code templates, using in editor . 134
CoDense, enabling support for . 207
color accessibility . 47
color vision deficiencies . 47
Colors and Fonts (IDE Options dialog box) 46
command line options

specifying from the Tools menu. 34
typographic convention . 19

Command line (custom build option) 242
command prompt icon, in this guide 19
comments

documentation comment type 142
shown in tooltips and parameter hints 142

common (directory) . 177
Compile (Workspace window context menu) 102
compiler diagnostics . 224
compiler list files

assembler mnemonics, including 224
generating . 224
source code, including . 224

compiler options . 217
definition of . 267
Diagnostics . 226, 256
Encodings . 228
Language 1 . 218
Language 2 . 220
List. 224
Optimizations. 221
Output . 223

compiler output
including debug information . 223
overriding default directory for 210

compiler, command line version . 23
Complement (Generate checksum setting) 259
computer style (monospace font), typographic convention . 19
Config (linker options) . 248
configuration file for linker, definition of 270
Configuration file symbol definitions (linker option) 248
Configuration file (general option) 211
Configurations for project dialog box (Project menu). . . . 104
Configure Auto Indent (IDE Options dialog box) 58
Configure Custom Argument Variables dialog box 85
Configure Tools (Tools menu) . 76
Configure Viewers dialog box (Tools menu) 78
$CONFIG_NAME$ (argument variable) 83
config, common (subdirectory). 177
config, riscv (subdirectory) . 176
Connect Project to Subversion
(Subversion control menu) . 107
context menu, definition of . 267
Control file (linker option) . 252
Control file (Workspace window icon) 100
conventions, used in this guide . 18
converter options . 239
copyright notice . 2
correcting errors found during build 115
cost. See memory access cost
cp (filename extension). 180
cpp (filename extension). 180
CRC polynomial (checksum algorithm) 258
CRC, definition of . 267
CRC16 (checksum algorithm). 258
CRC32 (checksum algorithm). 258
CRC64ECMA (checksum algorithm) 258
CRC64ISO (checksum algorithm) 258
Create New Project dialog box (Project menu) 103
cstartup (system startup code)

definition of . 267
stack pointers not valid until reaching 73
UIDETooticki6.4.0-1:1

 283

284

cstatcommands.txt (command line commands). 125
-cstat_analyze (iarbuild command line option) 125
-cstat_clean (iarbuild command line option) 125
-cstat_cmds (iarbuild command line option) 125
-cstat_report (iarbuild command line option) 125
cstat, riscv (subdirectory) . 176
CUR_DIR (argument variable) . 83
CUR_LINE (argument variable) 83
custom build . 109

using . 117
custom tool configuration . 109
Custom Tool Configuration (custom build options) 241
custom variables, as argument variables 84
Customize dialog box . 42
cxx (filename extension). 180
C-SPY options

definition of . 267
C-STAT for static analysis, documentation for 17
C-STAT (output directory) . 178
C-style preprocessor, definition of 267
C/C++ syntax

enabling in compiler . 219
C++ comments, text style in editor 136
C++ inline semantics (C dialect setting) 219
C++ keywords, text style in editor 136
C++ options (compiler option) . 220
C++ source file (Workspace window icon). 100
c++ (filename extension) . 180
C++ (Language setting) . 219
C89 (C dialect setting) . 219

D
D extension, enabling support for 205
dark mode in IDE windows . 47
dark solarized colors in IDE windows 47
dat (filename extension) . 180, 182
data model, definition of . 267
data pointers, definition of . 267

data representation, definition of. 267
$DATE$ (argument variable) . 83
dbgdt (filename extension) . 180
ddf (filename extension) . 180
debug information

generating in assembler . 233
in compiler, generating . 223

Debugger (IDE Options dialog box) 71
Declarations window (View menu). 159
declaration, definition of . 267
Default input file encoding (compiler option) 228
Default input file encoding (linker option) 260
default installation path. 175
Default integer format (IDE option) 72
Default source file encoding (compiler option). 228
#define options (linker options) . 255
define (linker options). 255
Defined symbols option . 226, 235
Defined symbols (linker option) . 255
definition, definition of . 268
demangling, definition of . 268
dep (filename extension). 180
Destroy static objects (C++ options setting) 220
development environment, introduction 23
device description files . 176

definition of . 268
device driver, definition of . 268
device selection files. 176
diagnostics

compiler
including in list file . 224

suppressing . 227, 236, 256
Diagnostics (assembler options) . 236
Diagnostics (compiler options) 226, 256
digital signal processor, definition of 268
directories

common . 177
compiler, ignore standard include 225, 235
riscv . 176
UIDETooticki6.4.0-1:1

IDE Project Management and Building Guide
for RISC-V

Index

root . 175
directory structure. 175
Disable language extensions
(Language conformance setting). 219
Disable macro expansions (Output list file setting). 234
Disassembly window, definition of. 268
Discard Unused Publics
(multi-file compilation setting) . 218
disclaimer . 2
Disconnect Project from Subversion
(Subversion control menu) . 107
DLIB

naming convention. 20
dnx (filename extension). 180
Do not include diagnostics (Output list file setting) 234
dockable windows . 25
document conventions . 18
documentation . 175

online . 176
overview of guides. 17
overview of this guide . 16
this guide . 15

documentation comment type . 142
doc, common (subdirectory) . 177
doc, riscv (subdirectory) . 176
doxygen keywords in comments . 142
drag-and-drop

of files in workspace window . 94
text in editor window . 132

drivers, riscv (subdirectory) . 176
DSP, enabling support for. 207
DSP. See digital signal processor
Duplicate (IDE colors and fonts option) 48
DWARF, definition of . 268
dynamic initialization, definition of 268
dynamic memory allocation, definition of 268
dynamic object, definition of . 268

E
Edit Additional Libraries dialog box (linker options) 261
Edit Batch Build dialog box (Project menu) 123
Edit Build Action (Build Actions dialog box). 244
Edit Colors dialog box . 49
Edit Filename Extensions dialog box (Tools menu) 82
Edit Fonts dialog box . 50
Edit Include Directories dialog box
(preprocessor options). 230
Edit menu . 186
Edit Viewer Extensions (Tools menu) 79
editing source files . 130
edition, of this guide . 2
editor

background color . 50
code completion. 133
code folding . 132
code templates . 134
commands . 136
customizing the environment . 130
external . 34
indentation . 131
matching parentheses and brackets 131
options . 54
parameter hint . 134
shortcut keys . 169
shortcut to functions. 138, 144
splitter controls . 144
status bar, using in . 137
syntax colors . 49
syntax feedback . 142
using . 129
word completion . 132

Editor Setup Files (IDE Options dialog box) 60
editor setup files, options . 60
Editor Syntax Feedback (IDE Options dialog box) 61
Editor window . 141

See also editor
UIDETooticki6.4.0-1:1

 285

286

Editor (External editor option) . 59
Editor (IDE Options dialog box). 54
EEPROM, definition of . 268
ELF, converting from . 240
Embedded C++

definition of . 269
embedded system, definition of . 269
Embedded Workbench

editor . 129
layout . 25
main window . 37
reference information. 183
running. 26
version number, displaying . 201

emulator (C-SPY driver), definition of 269
Enable graphical stack display and stack usage tracking
(Stack option) . 72
Enable multibyte support (general option) 213
Enable parallel build (IDE Project options) 66
Enable project connections (IDE Project options). 66
Enable remarks (compiler option). 227, 236, 256
Enable stack usage analysis (linker option). 252
Enable thread support in library (general option) 211
Enable virtual space (editor option) 57
Enabled transformations (compiler option). 222
Encodings (compiler options) . 228
encoding, editor options . 55
End address (Fill setting) . 258
Enea OSE load module format, definition of 269
enumeration, definition of. 269
environment variables, as argument variables. 84
EOL character (editor option) . 56
EPROM, definition of. 269
error messages

compiler. 227, 237
linker . 257

errors, correcting. 115
ewd (filename extension) . 180
ewp (filename extension) . 180
ewplugin (filename extension) . 180

eww (filename extension) . 180
the workspace file . 26

EW_DIR (argument variable) . 83
example projects . 26

running. 26
examples, riscv (subdirectory) . 176
exceptions, definition of . 269
excluding files from build . 101
Exe (output directory) . 177
executable image

analyzing using log file . 254
definition of . 269

Executable (Output file setting) . 209
Executables/libraries (output directory setting). 210
EXE_DIR (argument variable) . 83
expensive memory access, definition of 269
Export (IDE colors and fonts option) 48
extended command line file . 182
extended keywords, definition of 269
extensions. See filename extensions,
RISC-V standard extensions, or language extensions
External Analyzer (IDE Options dialog box) 66, 68
External Editor (IDE Options dialog box). 59
external editor, using. 34
Extra Options

specifying command line options. 229, 237, 261

F
F extension, enabling support for 205
Factory settings (build configuration option) 105
factory settings, restoring default settings 114
File Encoding (editor option) . 55
file extensions. See filename extensions
File menu . 183
file types

C-STAT . 176
device description . 176
device selection . 176
UIDETooticki6.4.0-1:1

IDE Project Management and Building Guide
for RISC-V

Index

documentation . 176
drivers . 176
extended command line . 182
header . 176
include . 176
library . 176
linker configuration files . 176
project templates . 176
readme . 176
syntax coloring configuration 176

File (Raw binary image setting) . 250
filename extensions . 180

eww, the workspace file. 26
other than default . 31

Filename Extensions dialog box (Tools menu) 80
Filename Extensions Overrides dialog box (Tools menu). . 81
Filename extensions (custom build option). 241
files

editing . 130
navigating among. 91

$FILE_DIR$ (argument variable). 83
$FILE_FNAME$ (argument variable) 83
$FILE_PATH$ (argument variable) 83
Fill pattern (Fill setting) . 258
Fill unused code memory (linker option) 258
filling, definition of. 269
Find All References window (View menu). 167
Find dialog box (Edit menu) . 150
Find in Files dialog box (Edit menu). 153
Find in Files window (View menu). 151
floating windows . 25
floating-point expressions, improving performance 221
Floating-point semantics (compiler option) 221
fmt (filename extension) . 180
fonts

customizing . 50
monospace (fixed-width) . 51
proportional (variable-width) . 50

format specifiers, definition of . 269

FPU, enabling support for. 205
functions

intrinsic, definition of . 271
shortcut to in editor windows. 138, 144

G
general options

Code Generation options . 208
definition of . 270
ISA Extensions . 206
Library Configuration . 211
Library Options 1. 212
Library Options 2. 214
Output . 209
Target. 204

Generate additional output (converter option). 239
Generate browse information (IDE Project options) 65
Generate checksum (linker option) 258
Generate debug information (assembler option) 233
Generate debug information (compiler option) 223
Generate linker map file (linker option) 254
Generate log file (linker option) . 254
Generate #line directives
(Preprocessor output to file setting) 226, 235
generic pointers, definition of . 270
glossary. 265
Go to function (editor button) 138, 144
Go to Line dialog box . 188
Group excluded from the build
(Workspace window icon) . 100
Group of files (Workspace window icon) 100
groups, definition of . 93

H
h (filename extension) . 180
hardware thread, definition of . 270
hart. See hardware thread
UIDETooticki6.4.0-1:1

 287

288

Harvard architecture, definition of 270
Header file (Workspace window icon) 100
header files . 176

quick access to . 138
heap memory, definition of. 270
Heap size (general option) . 208
heap size, definition of . 270
Help menu . 201
helpfiles (filename extension) . 181
High (Level setting) . 222
highly contrasting window colors . 47
host, definition of . 270
htm (filename extension) . 181
HTML text file (Workspace window icon) 100
html (filename extension) . 181

I
i (filename extension) . 181
IAR Breakpoint (general option for I/O). 212
iarbuild, building from the command line 117, 124
iarbuild.exe

reference information. 124
IarIdePm.exe. 26
icf (filename extension) . 181
icons

in Workspace window . 100
SVN states . 108

icons, in this guide . 19
IDE

definition of . 270
logging performance . 63
overview . 23

IDE internal file (Workspace window icon) 100
ielfdump, definition of . 270
ielftool, definition of . 270
Ignore standard include directories
(compiler option) . 225, 235

ILINK
definition of . 270
options . 247

inc (filename extension) . 181
Include compiler call frame information
(Output assembler file setting) . 225
Include cross-reference (Output list file setting) 234
Include debug information in output (linker option) 253
include files . 176

compiler, specifying path. 225, 235
definition of . 271
specifying path. 225, 235

Include source (Output assembler file setting) 224
Incremental Search dialog box (Edit menu) 158
inc, riscv (subdirectory) . 176
Indent size (editor option) . 54
Indent with spaces (Tab Key Function setting) 54
indentation, in editor . 131
inherited settings, overriding. 113
ini (filename extension) . 181
Initial value (Generate checksum setting) 259
initialization in ILINK config file, definition of 271
initialized sections, definition of . 271
inline assembler, definition of. 271
inlining, definition of . 271
input file encoding

specifying in linker . 260
Input (linker option) . 250
Insert tab (Tab Key Function setting) 54–55
insertion point

navigating in its history . 137
shortcut key for moving . 137

installation directory . 18
installation path, default . 175
installed files. 175

documentation . 176
executable . 177
include . 176
library . 176

instruction mnemonics, definition of 271
UIDETooticki6.4.0-1:1

IDE Project Management and Building Guide
for RISC-V

Index

Instrumentation Trace Component, definition of 271
Integrated Development Environment (IDE)

definition of . 270
interrupt vector table, definition of 271
interrupt vector table, initializing automatically 209
interrupt vector, definition of . 271
interrupts

definition of . 271
nested, definition of . 273

intrinsic functions, definition of . 271
intrinsic, definition of . 271
iobjmanip, definition of . 271
ISA Extensions (general options) 206
italic style, in this guide . 19
ITC, definition of . 271
I/O register. See SFR

J
-jsondb (iarbuild command line option) 125

K
Keep symbol (linker option) . 250
Key bindings (IDE Options dialog box) 51
key bindings, definition of . 271
key summary, editor . 169
keyboard shortcuts. See shortcut keys
keywords

definition of . 271
enable language extensions for 219
in comments. 142
specify syntax color for in editor 136

L
Label (c) (Configure auto indent option). 58
Language conformance (compiler option) 219

language extensions
definition of . 272
disabling in compiler . 219

Language (assembler options). 231
Language (compiler option) . 218
Language (IDE Options dialog box) 53
Language (Language option) . 53
Language 1 (compiler options) . 218
Language 2 (compiler options) . 220
layout, of Embedded Workbench . 25
Level (compiler option) . 221
library builder, output options. 264
library configuration file

definition of . 272
specifying from IDE . 211

Library Configuration (general options) 211
library files . 176
library functions

avoid stepping into (Functions with source only). 71
configurable . 176

Library low-level interface
implementation (general option) . 211
Library Options 1 (general options) 212
Library Options 2 (general options) 214
Library (general option) . 211
Library (linker options). 249
Library (Output file setting) . 210
library, definition of . 276
lib, riscv (subdirectory). 176
lightbulb icon, in this guide. 19
#line directives, generating in compiler 226, 235
linker

command line version . 23
setting options for . 247

linker command file. See linker configuration file
linker configuration file

definition of . 272
in directory. 176
specifying in linker . 248

Linker configuration file (linker option) 248
UIDETooticki6.4.0-1:1

 289

290

linker options . 247
typographic convention . 19
Advanced. 252
Checksum . 257
Config . 248
define . 255
Input . 250
Library . 249
List. 254
Optimizations. 251
Output . 253
#define . 255

linker symbols, defining . 255
list files

assembler
compiler runtime information 225
conditional information, specifying 233

compiler
assembler mnemonics, including 224
generating . 224
source code, including . 224

List files (Output directories setting). 210
List macro definitions (Output list file setting) 234
List only assembled parts (Output list file setting) 234
List (assembler options) . 233
List (compiler options) . 224
List (linker option) . 254
List (output directory) . 178
$LIST_DIR$ (argument variable). 83
location counter, definition of . 275
-log (iarbuild command line option) 126
log file, generate from linker. 254
log (filename extension) . 181
logical address, definition of . 279
Low (Level setting). 222
lst (filename extension). 181
L-value, definition of . 272

M
M extension, enabling support for. 204
mac (filename extension) . 181
Macro quote characters (assembler option). 232
macros, definition of . 272
MAC, definition of . 272
mailbox (RTOS), definition of . 272
-make (iarbuild command line option) 124, 126
Make before debugging (IDE Project options) 65
Make (Workspace window context menu) 101
mangling, definition of . 272
map file, generate from linker. 254
Math functions (general option) . 213
Max number of errors (assembler option) 237
Medium (Level setting). 222
memory

definition of . 272
memory access cost, definition of 273
memory area, definition of . 273
memory bank, definition of. 273
memory map, definition of . 273
memory model, definition of . 273
memory, filling unused . 258
menu bar . 37
menu (filename extension) . 181
Menu (Key bindings option) . 51
menus . 183
Merge duplicate sections (linker option). 251
Messages window, amount of output 121, 166
Messages (IDE Options dialog box) 62
metadata (subdirectory) . 177
microcontroller, definition of . 273
microprocessor, definition of . 273
misaligned data accesses, data accesses 209
modules, definition of . 273
monospace font, meaning of in guide. See computer style
Multiply and accumulate, definition of 272
multitasking, definition of. 274
UIDETooticki6.4.0-1:1

IDE Project Management and Building Guide
for RISC-V

Index

multi-file compilation
definition of . 273
specifying options for . 217

N
N extension, enabling support for 204
naming conventions . 20
navigating

in insertion point history . 137
to a function . 138

NDEBUG, preprocessor symbol . 92
nested interrupts, definition of . 273
New Build Action (Build Actions dialog box) 244
New Configuration dialog box (Project menu) 105
-ninja (iarbuild command line option). 126
No size constraints (Level setting) 222
No source browser and build status updates when the IDE
is not the foreground process (IDE Project options) 66
None (Level setting) . 221
non-banked memory, definition of 273
non-initialized memory, definition of 273
non-volatile storage, definition of 273
NOP (assembler instruction), definition of 273
no-init sections, definition of . 273

O
o (filename extension) . 181
Obj (output directory) . 178
objcopy, definition of . 273
Object file or library (Workspace window icon). 100
object file (absolute), definition of 274
object file (relocatable), definition of 274
Object files (Output directories setting) 210
object, definition of. 274
OBJ_DIR (argument variable) . 83
online documentation

available from Help menu . 201

target-specific, in directory . 176
Open Containing Folder (editor window context menu) . . 144
Open Containing Folder
(Workspace window context menu) 103
Open Workspace (File menu) . 184
Opening Brace (a) (Configure auto indent option) 58
operator precedence, definition of. 274
operators, definition of . 274
optimization levels, setting . 221
Optimizations (compiler options) 221
Optimizations (linker option) . 251
options

assembler . 231
build actions. 243
compiler. 217
converter . 239
custom build . 241
editor . 54
library builder . 263
linker . 247
setup files for editor . 60

Options dialog box (Project menu) 119
using . 111

Options (Workspace window context menu) 101
options, definition of. 274
Other file (Workspace window icon) 100
out (filename extension) . 181
output

assembler . 233
including debug information 233

compiler. 223
including debug information 223

converting from ELF . 239–240
including debug information . 253
linker, specifying filename. 253
preprocessor. 226, 235

Output assembler file (compiler option) 224
Output directories (general option) 210
output file encoding

specifying in linker . 260
UIDETooticki6.4.0-1:1

 291

292

Output file (converter option) . 240
Output file (custom build option) 242, 245
Output file (general option). 209
Output file (library builder options) 264
Output filename (linker option) . 253
Output files (custom build option) 242
output image. See executable image
Output list file (assembler option). 233
Output list file (compiler option) 224
Output (assembler option). 233
Output (compiler options). 223
Output (converter options) . 239
Output (general options) . 209
-output (iarbuild command line option) 126
Output (library builder options) . 264
Output (linker options) . 253
overlay, definition of. 274
Override default program entry (linker option) 249

P
P extension, enabling support for 207
-parallel (iarbuild command line option). 127
parameter hint, in editor . 134
parameters

typographic convention . 19
when building from command line 117, 124

parentheses and brackets, matching (in editor) 131
part number, of this guide . 2
paths

compiler include files. 225, 235
include files . 225, 235
relative, in Embedded Workbench 93, 142
source files. 142

pbd (filename extension). 181
pbi (filename extension) . 181
Perform C++ Virtual Function Elimination
(linker option) . 251
Performance extension, enabling support for 207

performance issues, troubleshooting 63
peripheral units, definition of . 274
peripherals register. See SFR
pew (filename extension) . 181
pipeline, definition of . 274
placement, definition of . 274
Plain ‘char’ is (compiler option) . 220
Play a sound after build operations (IDE Project options). . 65
plugins

common (subdirectory) . 177
pointers

definition of . 274
warn when stack pointer is out of range. 73

pop-up menu. See context menu
#pragma directive, definition of . 274
precedence, definition of. 274
preemptive multitasking, definition of 274
Preinclude file (compiler option) 225, 235
preprocessor

definition of. See C-style preprocessor
NDEBUG symbol . 92

preprocessor directives
definition of . 274
text style in editor . 136

Preprocessor options . 225, 234
Preprocessor output to file (compiler option) 226, 235
prerequisites, programming experience 15
Preserve comments (preprocessor output setting) . . . 226, 235
Press shortcut key (Key bindings option) 52
Pre-build command line (build actions option) 244–245
Primary (Key bindings option) . 52
Printf formatter (general option) . 212
prj (filename extension) . 181
problems, troubleshooting. 63
Processor variant (general option). 204
processor variant, definition of . 275
Product Info dialog box (Help menu) 82
product overview

directory structure . 175
UIDETooticki6.4.0-1:1

IDE Project Management and Building Guide
for RISC-V

Index

file types . 180
program counter, definition of . 275
program location counter, definition of. 275
programming experience . 15
program, see also application
Project Make, options . 64
Project menu . 193
project model . 89
project options, definition of . 275
Project page (IDE Options dialog box) 64
Project with multi-file compilation
(Workspace window icon) . 100
Project (Workspace window icon) 100
projects

adding files to . 95
build configuration, creating . 95
building . 114

in batches . 116
creating . 95
definition of . 91, 275
examples . 26

running . 26
excluding groups and files . 95
groups, creating . 95
managing . 89
organization . 91
workspace, creating . 95

$PROJ_DIR$ (argument variable) 83
$PROJ_FNAME$ (argument variable) 83
$PROJ_PATH$ (argument variable). 84
Promable output format (converter option) 240
PROM, definition of . 275
prototypes, verifying the existence of 220
publication date, of this guide . 2

Q
qualifiers, definition of. See type qualifiers

R
range, definition of . 275
Raw binary image (linker option) 250
reading guidelines. 15
readme files, See release notes
read-only sections, definition of . 275
real-time operating system, definition of. 275
real-time system, definition of . 275
Rebuild All (Workspace window context menu) 102
reference information, typographic convention. 19
References window (View menu) 161
region expression, definition of. 275
region literal, definition of . 275
register constant, definition of. 275
register locking, definition of . 275
register variables, definition of . 275
registered trademarks . 2
registers

definition of . 275
header files for in inc directory 176

relative paths. 93, 142
relay, definition of . 276
release notes . 176
Reload last workspace at startup (IDE Project options) . . . 65
relocatable segments, definition of 276
remarks, classifying diagnostics as 227, 236, 256
Remove trailing blanks (editor option) 57
Remove (IDE colors and fonts option) 48
Rename Group dialog box . 103
Rename (IDE colors and fonts option) 48
Replace dialog box (Edit menu) . 152
Replace in Files dialog box (Edit menu) 155
Require prototypes (C dialect setting). 220
Reset All (Key bindings option) . 52
Reset (IDE colors and fonts option) 47–48
reset, definition of . 276
restoring default factory settings . 114
Result in full size (Generate checksum setting) 258
UIDETooticki6.4.0-1:1

 293

294

Reverse byte order within word
(Generate checksum setting) . 259
riscv (directory) . 176
RISC-V base ISA, selecting . 204
RISC-V standard extensions, enabling support for 204
ROM-monitor, definition of . 276
root directory . 175
Round Robin, definition of . 276
RTOS, definition of . 275
rtos, riscv (subdirectory) . 176
runtime libraries

definition of . 276
specifying . 211

runtime model attributes, definition of 276
RV32E, generating code for . 204
RV32I, generating code for. 204
R-value, definition of . 276

S
s (filename extension). 181
saturation arithmetics, definition of 276
Save All (File menu). 185
Save As (File menu) . 185
Save editor windows before building
(IDE Project options) . 64
Save workspace and projects before building
(IDE Project options) . 65
Save Workspace (File menu) . 185
Save (File menu). 185
Scan for changed files (editor option) 56
Scanf formatter (general option) . 213
scheduler (RTOS), definition of . 276
scope, definition of . 276
scrolling, shortcut key for . 137
searching in editor windows . 139
section

definition of . 276
for binary data . 251

section fragment, definition of . 277

section selection, definition of . 277
Section (Raw binary image setting) 251
selecting text, shortcut key for . 137
semaphores, definition of . 277
Set as Active (Workspace window context menu) 103
settings (directory) . 182
severity level

changing default for assembler diagnostics 236
changing default for compiler diagnostics 226, 256
definition of . 277

SFR
definition of . 277
in header files. 176

sharing, definition of. 277
short addressing, definition of. 277
shortcut keys. 136

customizing . 51
Show bookmarks (editor option). 56
Show fold margin (editor option) . 56
Show inactive code (editor option) 57
Show line break characters (editor option) 57
Show line numbers (editor option) 56
Show right margin (editor option). 55
Show whitespaces (editor option) . 57
side-effect, definition of . 277
signals, definition of . 277
sim (filename extension). 181
simulator, definition of . 277
skeleton code, definition of. 277
solarized colors in IDE windows . 47
Source Browse Log (View menu). 165
source browser output

overriding default directory for 210
Source Browser window. 162

using . 139
source code

including in compiler list file . 224
templates . 134

Source Code Control (IDE Options dialog box) 70
UIDETooticki6.4.0-1:1

IDE Project Management and Building Guide
for RISC-V

Index

Source file excluded from the build
(Workspace window icon) . 100
source files

editing . 130
managing in projects . 93
paths to . 93, 142

special function registers (SFR)
definition of . 277
in header files. 176

src, riscv (subdirectory) . 176
stack frames, definition of. 278
stack segment, definition of . 278
Stack size (general option) . 208
Stack (IDE Options dialog box) . 72
Standard C

making compiler adhere to. 219
syntax, enabling in compiler . 219

standard extensions, enabling support for 204
standard libraries, definition of . 278
Standard (Language conformance setting) 219
Start address (Fill setting) . 258
static analysis tool, documentation for 17
static objects, definition of . 278
static overlay, definition of . 278
statically allocated memory, definition of 278
status bar. 41
Stdout/Stderr (general option). 212
Step into functions (IDE option) . 71
stepping, definition of . 277
STL container expansion (IDE option) 72
Stop build operation on (IDE Project options) 64
Stop Build (Workspace window context menu) 102
Strict (Language conformance setting) 219
strings, text style in editor . 136
structure value, definition of . 278
Subversion states and corresponding icons 108
suc (filename extension) . 181
Sum32 (checksum algorithm) . 258
Suppress these diagnostics (compiler option) . . 227, 236, 256
Symbol (Raw binary image setting) 250

symbolic location, definition of . 278
symbols

See also user symbols
defining in linker . 255
definition of . 278

symbols, defining . 226, 235
syntax coloring . 49

configuration files . 176
in editor . 136

syntax feedback in editor . 142
setting up . 61

Syntax Feedback Level (editor option) 61
Syntax highlighting (editor option) 56
syntax highlighting, in editor window. 136

T
Tab Key Function (editor option) . 54
Tab size (editor option). 54
Target (general options) . 204
$TARGET_BNAME$ (argument variable) 84
$TARGET_BPATH$ (argument variable) 84
$TARGET_DIR$ (argument variable) 84
$TARGET_FNAME$ (argument variable). 84
$TARGET_PATH$ (argument variable) 84
target, definition of . 278
task, definition of . 278
Template dialog box (Edit menu) 168
templates for code, using . 134
tentative definition, definition of. 278
Terminal I/O window, definition of 278
Terminal I/O (IDE Options dialog box) 74
terminology. 265
testing, of code . 115
Text file (Workspace window icon) 100
Text output file encoding (compiler option) 229
Text output file encoding (linker option) 260
Themes (IDE colors and fonts option) 46
thread, definition of . 278
UIDETooticki6.4.0-1:1

 295

296

timer, definition of . 278
timeslice, definition of . 278
Tool Output window. 45
-tool (iarbuild command line option) 127
toolbar, IDE . 38

customizing . 29
toolchain

extending . 109
overview . 23

$TOOLKIT_DIR$ (argument variable) 84
tools icon, in this guide . 19
Tools menu . 198
tools, user-configured . 76
trademarks . 2
transformations, enabled in compiler 222
translation unit, definition of. 279
trap, definition of . 279
Treat all warnings as errors (compiler option) 227
Treat all warnings as errors (linker option) 257
Treat these as errors (compiler option) 227, 237
Treat these as errors (linker option) 257
Treat these as remarks (compiler option) 227, 236, 256
Treat these as warnings (assembler option). 237
Treat these as warnings (compiler option) 227
Treat these as warnings (linker option) 257
Treat warnings as errors (assembler option) 237
Troubleshooting (IDE Options dialog box). 63
Truncate multiline data field (Output list file). 234
tutorials, riscv (subdirectory) . 176
type qualifiers, definition of . 279
typographic conventions . 19

U
UBROF

definition of . 279
tool for generating . 279

Update intervals (IDE option). 72
Use as input (Generate checksum setting). 259

Use Code Templates (editor option) 60
Use command line options (compiler option) . . 229, 238, 261
Use Custom Keyword File (editor option) 60
Use External Editor (External editor option). 59
User symbols are case sensitive (assembler option) 232
$USER_NAME$ (argument variable) 84

V
value expressions, definition of. 279
-varfile (iarbuild command line option) 127
variable length arrays . 219
variables, using in arguments . 77
veneer, definition of . 279
version

of this guide . 2
Version Control System menu . 106
Version Control System
(Workspace window context menu) 103
version number

of Embedded Workbench. 201
View menu . 190
virtual address, definition of . 279
virtual space

definition of . 279
enabling in the editor . 57

Visual State
part of the tool chain . 24
project file . 181

volatile storage, definition of . 279
von Neumann architecture, definition of. 279
vsp (filename extension) . 181

W
Warn when exceeding stack threshold (Stack option). 73
Warn when stack pointer is out of bounds (Stack option) . . 73
warnings

assembler . 237
UIDETooticki6.4.0-1:1

IDE Project Management and Building Guide
for RISC-V

Index

compiler. 227
linker . 257

warnings icon, in this guide . 19
watchpoints, definition of . 279
web sites, recommended . 18
When source resolves to multiple function instances 71
whitespace, showing in editor . 57
Window menu. 199
windows

about organizing on the screen. 25
bright colors. 47
dark mode . 47
default colors and fonts . 46
high contrast colors . 47
how to organize on the screen . 28

word completion, in editor . 132
Workspace window . 99

drag-and-drop of files . 94
Workspace window icons . 100
Workspace (Workspace window icon) 100
workspaces

creating . 95
using . 95

wsdt (filename extension) . 182

X
Xandesdsp extension, enabling support for. 207
Xandesperf extension, enabling support for 207
XAR, definition of . 279
xcl (filename extension) . 182
Xcodense extension, enabling support for. 207
XLIB, definition of . 279
XLINK, definition of . 279

Z
Zdinx extension, enabling support for. 205
zero-initialized sections, definition of 280

zero-overhead loop, definition of 280
Zfinx extension, enabling support for 205
Zicbom extension, enabling support for 206
Zicbop extension, enabling support for 206
Zicboz extension, enabling support for 206
zone, definition of . 280

Symbols
-build (iarbuild command line option) 124
-cstat_analyze (iarbuild command line option) 125
-cstat_clean (iarbuild command line option) 125
-cstat_cmds (iarbuild command line option) 125
-cstat_report (iarbuild command line option) 125
-jsondb (iarbuild command line option) 125
-log (iarbuild command line option) 126
-ninja (iarbuild command line option). 126
-output (iarbuild command line option) 126
-parallel (iarbuild command line option). 127
-tool (iarbuild command line option) 127
-varfile (iarbuild command line option) 127
@brief (doxygen keyword) . 142
#define options (linker options) . 255
#pragma directive, definition of . 274
% stack usage threshold (Stack option). 73
$CONFIG_NAME$ (argument variable) 83
CUR_DIR (argument variable) . 83
CUR_LINE (argument variable) 83
$DATE$ (argument variable) . 83
EW_DIR (argument variable) . 83
EXE_DIR (argument variable) . 83
$FILE_DIR$ (argument variable). 83
$FILE_FNAME$ (argument variable) 83
$FILE_PATH$ (argument variable) 83
$LIST_DIR$ (argument variable). 83
OBJ_DIR (argument variable) . 83
$PROJ_DIR$ (argument variable) 83
$PROJ_FNAME$ (argument variable) 83
UIDETooticki6.4.0-1:1

 297

298

$PROJ_PATH$ (argument variable). 84
$TARGET_BNAME$ (argument variable) 84
$TARGET_BPATH$ (argument variable) 84
$TARGET_DIR$ (argument variable) 84
$TARGET_FNAME$ (argument variable). 84
$TARGET_PATH$ (argument variable) 84
$TOOLKIT_DIR$ (argument variable) 84
$USER_NAME$ (argument variable) 84
UIDETooticki6.4.0-1:1

IDE Project Management and Building Guide
for RISC-V

	Brief contents
	Contents
	Tables
	Preface
	Who should read this guide
	Required knowledge

	How to use this guide
	What this guide contains
	Part 1. Project management and building
	Part 2. Reference information

	Other documentation
	User and reference guides
	The online help system
	Web sites

	Document conventions
	Typographic conventions
	Naming conventions

	Part 1. Project management and building
	The development environment
	Introduction to the IAR Embedded Workbench IDE
	Briefly about the IDE and the build toolchain
	Tools for analyzing and checking your application
	An extensible and modular environment
	The layout of the windows on the screen

	Using and customizing the IDE
	Running the IDE
	Double-clicking the workspace filename

	Working with example projects
	Organizing windows on the screen
	Specifying tool options
	Adding a button to a toolbar
	Removing a button from a toolbar
	Showing/hiding toolbar buttons
	Recognizing filename extensions
	Getting started using external analyzers
	Invoking external tools from the Tools menu
	Adding command line commands to the Tools menu
	Using an external editor

	Reference information on the IDE
	IAR Embedded Workbench IDE window
	Menu bar
	Toolbar
	Context menu
	Toolbars Options menu
	Status bar

	Customize dialog box
	Categories
	Commands
	Show Screen Tips on toolbars
	Show shortcut keys in Screen Tips
	Large Icons
	Toolbars
	Reset
	Reset All
	Show text labels

	Button Appearance dialog box
	Image only
	Text only
	Image and text
	Use Default Image
	Select User-defined Image
	New
	Edit
	Button text

	Tool Output window
	Context menu

	Colors and Fonts options
	Themes
	Colors
	Fonts
	Reset
	Duplicate
	Remove
	Rename
	Import
	Export

	Edit Colors dialog box
	Syntax Coloring
	Color
	Type style
	Background Color

	Edit Fonts dialog box
	Proportional Font
	Fixed Font
	Editor Font
	Apply font changes to all themes

	Key Bindings options
	Menu
	List of commands
	Press shortcut key
	Primary
	Alias
	Reset All

	Language options
	Language

	Editor options
	Tab size
	Indent size
	Tab Key Function
	Show right margin
	File Encoding
	Syntax highlighting
	Auto indent
	Show line numbers
	Scan for changed files
	Show bookmarks
	Show fold margin
	Enable virtual space
	Remove trailing blanks
	Auto code completion and parameter hints
	Show source browser tooltips
	Show line break characters
	Show whitespaces
	Show inactive code

	Configure Auto Indent dialog box
	Opening Brace (a)
	Body (b)
	Label (c)
	Sample code

	External Editor options
	Use External Editor
	Editor
	Arguments

	Editor Setup Files options
	Use Custom Keyword File
	Use Code Templates

	Editor Syntax Feedback options
	Syntax Feedback Level

	Messages options
	Enable All Dialogs

	Troubleshooting options
	Enable IDE logging
	Logging directory

	Project options
	Stop build operation on
	Save editor windows before building
	Save workspace and projects before building
	Make before debugging
	Reload last workspace at startup
	Play a sound after build operations
	Generate browse information
	No source browser and build status updates when the IDE is not the foreground process
	Enable project connections
	Enable parallel build

	External Analyzers options
	Analyzers
	Move Up
	Move Down
	Add
	Delete
	Edit

	External Analyzer dialog box
	Name
	Path
	Arguments
	Location
	Warning
	Error

	Source Code Control options (deprecated)
	Keep items checked out when checking in
	Save editor windows before performing source code control commands

	Debugger options
	When source resolves to multiple function instances
	Step into functions
	STL container expansion
	Update intervals
	Default integer format

	Stack options
	Enable graphical stack display and stack usage tracking
	Warn when stack pointer is out of bounds
	Stack pointer(s) not valid until program reaches
	Warnings
	Limit stack display to

	Terminal I/O options
	Input mode
	Input echoing
	Encoding
	Show target reset in Terminal I/O window

	Configure Tools dialog box
	New
	Delete
	Menu Content
	Menu Text
	Command
	Argument
	Initial Directory
	Redirect to Output window
	Prompt for Command Line
	Tool Available

	Configure Viewers dialog box
	Display area
	New
	Edit
	Delete
	Import
	Export

	Edit Viewer Extensions dialog box
	File name extensions
	Action

	Filename Extensions dialog box
	Toolchain
	Edit

	Filename Extension Overrides dialog box
	Display area
	Edit

	Edit Filename Extensions dialog box
	Factory setting
	Override

	Product Info dialog box
	Details

	Argument variables
	Configure Custom Argument Variables dialog box
	Workspace and Global tabs
	Expand/Collapse All
	Hide disabled groups
	Enable Group / Disable Group
	New Group
	Add Variable
	Edit Variable
	Delete
	Import

	Project management
	Introduction to managing projects
	Briefly about managing projects
	Navigating between project files

	How projects are organized
	Projects and workspaces
	Projects and build configurations
	Groups
	Source files and their paths
	Drag and drop

	The IDE interacting with version control systems

	Managing projects
	Creating and managing a workspace and its projects
	Viewing the workspace and its projects
	Interacting with Subversion
	Viewing the Subversion states

	Reference information on managing projects
	Workspace window
	Drop-down list
	The display area
	Context menu

	Create New Project dialog box
	Tool chain
	Project templates
	Description

	Configurations for project dialog box
	Configurations
	New
	Remove

	New Configuration dialog box
	Name
	Tool chain
	Based on configuration
	Factory settings

	Add Project Connection dialog box
	Connect using
	OK

	Version Control System menu for Subversion
	Menu commands

	Subversion states

	Building projects
	Introduction to building projects
	Briefly about building a project
	Extending the toolchain
	Tools that can be added to the toolchain

	Building a project
	Setting project options using the Options dialog box
	Building your project
	Correcting errors found during build
	Using pre- and post-build actions
	Using a build action for time stamping
	Using a build action to copy files

	Building multiple configurations in a batch
	Building from the command line
	Adding an external tool

	Reference information on building
	Options dialog box
	Category
	Factory Settings

	Build window
	Context menu

	Batch Build dialog box
	Batches
	Build
	New
	Edit
	Delete

	Edit Batch Build dialog box
	Name
	Available configurations
	Configurations to build

	iarbuild.exe—the IAR Command Line Build Utility
	-build
	-clean
	-cstat_analyze
	-cstat_clean
	-cstat_cmds
	-cstat_report
	-jsondb
	-make
	-ninja
	-log
	-output
	-parallel
	-tool
	-varfile

	Editing
	Introduction to the IAR Embedded Workbench editor
	Briefly about the editor
	Briefly about source browse information
	Customizing the editor environment

	Editing a file
	Indenting text automatically
	Matching brackets and parentheses
	Splitting the editor window into panes
	Dragging text
	Code folding
	Word completion
	Code completion
	Parameter hint
	Using and adding code templates
	Syntax coloring
	Adding bookmarks
	Using and customizing editor commands and shortcut keys
	Displaying status information

	Programming assistance
	Navigating in the insertion point history
	Navigating to a function
	Finding a definition or declaration of a symbol
	Finding references to a symbol
	Finding function calls for a selected function
	Switching between source and header files
	Displaying source browse information
	Text searching
	Accessing online help for reference information

	Reference information on the editor
	Editor window
	Relative source file paths
	Documentation comments
	Syntax feedback
	Window tabs, tab groups, and tab context menu
	Multiple editor windows and splitter controls
	Go to function
	Context menu

	Find dialog box
	Find what
	Match case
	Match whole word
	Search as hex
	Only in selection
	Find Next
	Find Previous
	Stop

	Find in Files window
	Context menu

	Replace dialog box
	Find what
	Replace with
	Match case
	Match whole word
	Search as hex
	Only in selection
	Find next
	Replace
	Replace all

	Find in Files dialog box
	Find what
	Look in
	File types
	Stop

	Replace in Files dialog box
	Find what
	Replace with
	Look in
	File types
	Stop
	Close
	Find Next
	Replace
	Replace All
	Skip file

	Incremental Search dialog box
	Find what
	Match case
	Find Next
	Close
	Only in selection

	Declarations window
	Context menu

	Ambiguous Definitions window
	Context menu

	References window
	Context menu

	Source Browser window
	The display area
	Icons used for the symbol types
	Context menu
	Progress bar

	Source Browse Log window
	Context menu

	Resolve File Ambiguity dialog box
	Call Graph window
	Display area
	Context menu

	Template dialog box
	Text fields
	Display area

	Editor shortcut key summary
	Moving the insertion point
	Selecting text
	Scrolling text
	Miscellaneous shortcut keys
	Additional Scintilla shortcut keys

	Part 2. Reference information
	Product files
	Installation directory structure
	Root directory
	The riscv directory
	The common directory
	The install-info directory

	Project directory structure
	Various settings files
	Files for global settings
	Files for local settings

	File types

	Menu reference
	Menus
	File menu
	Menu commands

	Edit menu
	Menu commands

	View menu
	Menu commands

	Project menu
	Menu commands

	Tools menu
	Menu Commands

	Window menu
	Menu commands

	Help menu

	General options
	Description of general options
	Target
	Device
	Base ISA
	Standard extensions
	Floating-point settings
	Bit manipulation
	Code size reduction
	Scalar cryptography

	ISA Extensions
	Cache management
	Andes extensions
	DSP

	Code Generation
	Code model
	Stack size
	Heap size
	Allow misaligned data accesses
	Automatic setup of interrupt vector table

	Output
	Output file
	Output directories

	Library Configuration
	Library
	Configuration file
	Enable thread support in library
	Library low-level interface implementation
	Stdout/Stderr

	Library Options 1
	Printf formatter
	Scanf formatter
	Math functions

	Library Options 2
	Heap selection
	Locale support
	Buffered terminal output

	Compiler options
	Description of compiler options
	Multi-file Compilation
	Multi-file Compilation
	Discard Unused Publics

	Language 1
	Language
	Language conformance
	C dialect
	C++ options

	Language 2
	Plain 'char' is
	Floating-point semantics

	Optimizations
	Level
	Enabled transformations

	Output
	Generate debug information
	Code section name

	List
	Output list file
	Output assembler file

	Preprocessor
	Ignore standard include directories
	Additional include directories
	Preinclude file
	Defined symbols
	Preprocessor output to file

	Diagnostics
	Enable remarks
	Suppress these diagnostics
	Treat these as remarks
	Treat these as warnings
	Treat these as errors
	Treat all warnings as errors

	Encodings
	Default source file encoding
	Default input file encoding
	Text output file encoding

	Extra Options
	Use command line options

	Edit Include Directories dialog box

	Assembler options
	Description of assembler options
	Language
	User symbols are case sensitive
	Allow mnemonics in first column
	Allow directives in first column
	Macro quote characters

	Output
	Generate debug information

	List
	Output list file

	Preprocessor
	Ignore standard include directories
	Additional include directories
	Preinclude file
	Defined symbols
	Preprocessor output to file

	Diagnostics
	Enable remarks
	Suppress these diagnostics
	Treat these as remarks
	Treat these as warnings
	Treat these as errors
	Treat all warnings as errors
	Max number of errors

	Extra Options
	Use command line options

	Output converter options
	Description of output converter options
	Output
	Generate additional output
	Output format
	Output file

	Custom build options
	Description of custom build options
	Custom Tool Configuration
	Filename extensions
	Command line
	Output files
	Additional input files
	Build order

	Build actions options
	Description of build actions options
	Build Actions Configuration
	Build actions
	New
	Edit
	Remove

	New/Edit Build Action dialog box
	Command line
	Output files
	Input files
	Working directory
	Build order

	Linker options
	Description of linker options
	Config
	Linker configuration file
	Configuration file symbol definitions

	Library
	Automatic runtime library selection
	Additional libraries
	Override default program entry

	Input
	Keep symbols
	Raw binary image

	Optimizations
	Merge duplicate sections
	Perform C++ Virtual Function Elimination

	Advanced
	Enable stack usage analysis
	Replace linker executable with wrapper

	Output
	Output filename
	Include debug information in output

	List
	Generate linker map file
	Generate log file

	#define
	Defined symbols

	Diagnostics
	Enable remarks
	Suppress these diagnostics
	Treat these as remarks
	Treat these as warnings
	Treat these as errors
	Treat all warnings as errors

	Checksum
	Fill unused code memory
	Generate checksum

	Encodings
	Default input file encoding
	Text output file encoding

	Extra Options
	Use command line options

	Edit Additional Libraries dialog box

	Library builder options
	Description of library builder options
	Output
	Output file

	Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z
	Symbols

