IAR Embedded
Workbench

IDE Project Management
and Building Guide

for
RISC-V

UIDERISCV- | m

2

COPYRIGHT NOTICE
© 2019-2023 IAR Systems AB.

No part of this document may be reproduced without the prior written consent of IAR
Systems AB. The software described in this document is furnished under a license and
may only be used or copied in accordance with the terms of such a license.

DISCLAIMER

The information in this document is subject to change without notice and does not
represent a commitment on any part of [AR Systems. While the information contained
herein is assumed to be accurate, IAR Systems assumes no responsibility for any errors
or omissions.

In no event shall IAR Systems, its employees, its contractors, or the authors of this
document be liable for special, direct, indirect, or consequential damage, losses, costs,
charges, claims, demands, claim for lost profits, fees, or expenses of any nature or kind.

TRADEMARKS

IAR Systems, IAR Embedded Workbench, Embedded Trust, C-Trust, IAR Connect,
C-SPY, C-RUN, C-STAT, IAR Visual State, IAR KickStart Kit, I-jet, I-jet Trace,
I-scope, IAR Academy, IAR, and the logotype of IAR Systems are trademarks or
registered trademarks owned by IAR Systems AB.

Microsoft and Windows are registered trademarks of Microsoft Corporation.
RISC-V is a registered trademark of RISC-V International.
Adobe and Acrobat Reader are registered trademarks of Adobe Systems Incorporated.

All other product names are trademarks or registered trademarks of their respective
owners.

EDITION NOTICE
Eleventh edition: October 2023

Part number: UIDERISCV-11
This guide applies to version 3.30.x of AR Embedded Workbench® for RISC-V.
Internal reference: BB15, FF9.2.5, tut2009.1, IJOA.

IDE Project Management and Building Guide

for RISC-V

Brief contents

TADIES ... 13
Preface ... 15
Part |. Project management and building ... 21
The development enviroNmMEeNt ... 23
Project management ... 89
Building Projects ... 109
EItiNg ..o 129
Part 2. Reference information ... 173
Product files ... esecesesssssesss e 175
Menu reference ... 183
GENEral OPLIONS ... 203
COoMPIlEr OPLIONS ... 217
Assembler OPLioNS ... 231
OULPUL CONVEILEr OPLIONScoovvvvvveeeeerrrsssrrereeeeseeesssssssseesessssssssnnenns 239
Custom build OPLIONS ..o 241
Build actions OPLioNS ... 243
LINKEI OPLIONSoocoiioi s 247
Library builder options ... 263
GIOSSANY ... 265

IDE Project Management and Building Guide
4 for RISC-V

Contents

TADIES ... 13
Preface ... 15
Who should read this guide ... 15
Required KNOWIEAZEcceeieiiiiieieienieieieseeeeee s 15
How to use this guide ..., 15
What this guide contains ...
Part 1. Project management and building ...
Part 2. Reference informationccceceeevevienineninincnincnieieiene
Other documentation ... 17
User and reference gUidescooevevierenenienieneneseececeieeeeieeas 17
The online help SYStemcccccveveriirieriinininenireeeceeeeceeeeerees 18
WED SIEES .ttt ettt 18
Document cONVENLIONSc.ooooiiiiiiiireeee e 18
Typographic CONVENTIONScceeuvererieienierienieniineeeeieeeeneeneeeenenennes 19
Naming CONVENTIONScoeeueruieuieuieieieienienienieneeneeeseeteeeeseenteeesensenees 20
Part |. Project management and building ... 21
The development enviroNmMEeNt ... 23
Introduction to the IAR Embedded Workbench IDE 23
Briefly about the IDE and the build toolchainccccovevneenennnnns 23
Tools for analyzing and checking your applicationc.ccccecueueeeeee 24
An extensible and modular environmentc..ceceeceeveeeeienienieienne. 24
The layout of the windows on the SCIeencoceveeveeneenieenienniennns 25
Using and customizing the IDE ..., 25
Running the IDE ..c..ooiiiiiiieeeee e 26
Working with example Projectsc...coocevveevierienieneeneenienieseeneeaes 26
Organizing windows on the SCreenc.coceevevervenereeereeienicnecnnens 28
Specifying tool OPtIONSc.ccceeveeierierienieniinenenerereee ettt

Adding a button to a toolbar

Removing a button from a toolbarcc.ceceeveverinicnininicienicncnne 30

6

IDE Project Management and Building Guide
for RISC-V

Reference information on the IDE

Showing/hiding toolbar buttons

Recognizing filename eXtenSionscoceeveerierienieenieeniensienseennenes 31
Getting started using external analyZersc..c.cocceveeveecerecveneenncnnene 31
Invoking external tools from the Tools menucc.cocceceevevieuennnne. 33
Adding command line commands to the Tools menu 34
Using an external @ditorc..cccceoveveevierienienenenenienieneneneeeeeeeeeene

IAR Embedded Workbench IDE windowcccccevvenieninininnenene 37
Customize dialog DOXcceceeeeviiiiriiniiniiniineneneneneeeeeee et 42
Button Appearance dialog DOXccevveverererenenienenenenieeeeeeenes 44
Tool OUtPUt WINAOW ...oveiiiiiiiiiieiiiicetecteete et 45
Colors and Fonts Optionsc..cccceeeeeieieieienienienenenenene e 46
Edit Colors dialog DOXcceeeeuieieieienieienienienenesee e 49
Edit Fonts dialog DOXcocveviiniiiiiiieiiiieeiestestee e 50
Key Bindings OPtionscececeeveevienieninieninineeierenenenesiesieeveeneene 51
Language OPLioNScceeeeeeuieieieieienientenienese et

EdItOr OPLONS ..ocveeiiiiieiieiieieeie ettt st

Configure Auto Indent dialog box ...

External EditOr OPtiONScoceveeuiriniirieieieieiesie e
Editor Setup Files OPtioNScccceecueriirienieneeniienieeie et
Editor Syntax Feedback optionscccceceveevieviivievinencnicncncnccene 61
MESSAZES OPLIOMS ..uenvineenritenteetieieeiteit et este e seeseeseesbe e besbee et seenean 62
Troubleshooting OPHONScc.eeverierieriieiieiieieeteee et 63
Project options

External AnalyZers OPLionscccceeeeereerieirieienienienieseseseeeeeveenean 66
External Analyzer dialog bOXcocceeveriiiiiiniiiniienieiececeeeeen 68
Source Code Control options (deprecated)ccceeeveeeveuenveruenenenne 70
DebUZZEr OPLIONS ...ouvineiiieiieiieieiteteteeeee ettt 71
Stack options

Terminal I/O OPtioNSc..coeeirerereririiicicieceseseee e 74
Configure Tools dialog BOXcccceveririirieieieieieeresese e 76
Configure Viewers dialog DOXccccoevievierereninieieieieierieie e siene 78
Edit Viewer Extensions dialog boXccccccceevevevenicninninineceenene 79
Filename Extensions dialog boXc.cccceverenenenenienencnieieeeienen 80

Contents °

Filename Extension Overrides dialog box

Edit Filename Extensions dialog boXccccceveeveenieniienieniieneeneenne.
Product Info dialog boXccevveviiniinienininininnnenerceceeecne
Argument Variablesccoveeeririiieieeee s 83
Configure Custom Argument Variables dialog boxccccceceeveennen. 85
Project management ... 89
Introduction to managing projects ..., 89
Briefly about managing projectscc.ccccceevenerenieneneneeeeneeneennens 89
How projects are organizedoccoeereeuerieenenieinreinieneeseeneeneene 91
The IDE interacting with version control systemsc..ceccecveueenee. 94
Managing Projects ... 94
Creating and managing a workspace and its projectsc.cccc...... 95
Viewing the workspace and its Projectscecceeveereeneerernueenieniuennns 96
Interacting with SUDVEISIONc.ccevieviinenenenineneneececeeeeeees 97
Reference information on managing projects 98
WoOrkspace WINAOWcceerierierieiniienienienieneenieeieeie e 99
Create New Project dialog boXceceveeveeienieniininenincncnceeee 103
Configurations for project dialog boXcceveeveevieciriienienienenenene 104
New Configuration dialog box
Add Project Connection dialog boXceceeverereeienieneenenenenennene 106
Version Control System menu for Subversionccccecceveveneennene 106
SUDVETSION STAES ...ovviiviiiiiiiiiiiicicc e 108
BUilding Projects ... 109
Introduction to building projects ..o 109
Briefly about building a project
Extending the toolchainccoceiieieninieneneneceeteeeeeieene
Building @ Project ...
Setting project options using the Options dialog boxccccecevuenee 111
Building yOUr ProjeCtcccevvevieriererienienieneneetetee ettt 114
Correcting errors found during buildc.ceceeveeveeiiiinnincnininene 115
Using pre- and post-build actionsc..ceceeveeeeeereenenenenenenennens 115
Building multiple configurations in a batchcc.cccevenineninennen. 116
Building from the command linec..coccecevieniiniiniinininencncncne. 117

8

Adding an external tool

Reference information on building ...

Options dialog DOX ...c..cooveieiiniiniiniiniintieieteeee e
Build Windowc.ccooiiiiiiiiii s
Batch Build dialog bOXcocervieriirieniiiieeeceece et
Edit Batch Build dialog boXc.ccoceevieiiniiniinininininincnecreecee
iarbuild.exe—the IAR Command Line Build Utility ...

EAIting ..o 129
Introduction to the IAR Embedded Workbench editor 129
Briefly about the editorcoccoviiiiriiniienieieeeeeeeeene 129
Briefly about source browse informationcc.cccceeevenenenenennn. 130
Customizing the editor enVironmMentecceceeveeriereerererenenenne 130
Editing @ file ... 130
Indenting text automaticallyccccocevveremieniniinniinierieneneenesces 131
Matching brackets and parenthesescocceceeveeeerienienenenenenennens 131
Splitting the editor window Into PANEscc.ccevveevverveerieeneeneeneenne 132
Drag@ing teXL .e.eeueeueeieieieieieieientenesie sttt ettt s
Code FOLAING ...ververeirieeiiiietete ettt
Word completion ...
Code COMPIELION ...cveveimiiiiiiiiiieieeteeteeieettet ettt e
Parameter hintc.ocoevieiiiiiiiiiieteee e
Using and adding code templatesccoceveevieneeneenieenienieeneennens 134
SYNLaX COLOTING ..eoververiiiriiieieiiteieeteeteet ettt
Adding bookmarks
Using and customizing editor commands and shortcut keys 136
Displaying status informationcccceceeveeeneneeieerienenenenenennens
Programming assistance ...
Navigating in the insertion point hiStorycc.ccceceevveneneneninennene
Navigating to & fUNCONccceeeeuieieiiienierenereneneeeee e

IDE Project Management and Building Guide
for RISC-V

Finding a definition or declaration of a symbol
Finding references to a Symbolcoccovievienirninieniienieneeneenene

Finding function calls for a selected functioncc.ccoceveverenenene

Switching between source and header filesccccoeeverenencnene

Contents °

Displaying source browse information ...

TexXt SEATCRINGeeviriiiieiiertee et
Accessing online help for reference informationcc.c.c.... 139
Reference information on the editor ... 140
Editor WINAOWccoccieuiiiiiiiiiiiiicicieneeecececcee e
Find dialog DOX ..c..coeviiiiiiiiiiiiiiiieeereeeeeee e
Find in Files window
Replace dialog DOXoocueriiriinieiiiieiieeeceeeeeese e
Find in Files dialog box
Replace in Files dialog BOXccevevievenenienenineeeeieneeneneeneneeeene 155
Incremental Search dialog bOXcoceeviirieniiniiniiiireieeeee 158
Declarations WINAOWcccccueeverierenenenenenenteeeteneeneereseesresnennes 159
Ambiguous Definitions Windowcccceceverereneenienienenenenennens 160
References Windowccecveiiriiniiniinieniinineninececicieecsieseseen 161
Source Browser WindoWc..cocceueririninininieieiereienenenenienienee 162
Source Browse Log WindOWc.ccceeirinininininieieieienenenenee 165
Resolve File Ambiguity dialog boXcccceeveevieneeneniieenienieneenene 167
Call Graph window
Template dialog box
Editor shortcut key SUMMArycccccecevvieriienieniieneenieneeieeeeeiene 169
Part 2. Reference information ... 173
Product fil@S ... 175
Installation directory structure ... 175
ROOt ITECLOTY ..ttt
The 1iSCV QITECTOTY ..eveuieuieiieieieiesieniesie sttt ettt ettt
The commON dir€CtOIYoveeviieriiiiiriiiieriente sttt
The install-info dir€CtOryccecerererenenieninieecteereee e

Project directory structure
Various settings files ...
Files for global SEttingsccceverererenenienenineeeeteneeneesee e

Files for 10cal SEttingscecvevueriereriereneneneetet ettt

File CYPES ..ot

10

Project MenUccccoocieviiniiniiinieiieeieeteteeteeee et 193

TOOIS MENU ..o 198

WiIndOW MENUcocuiviiiiiiiiiiicic s 199

HEIp MENU ..ceeiiiiiiiiiiic et 201

GENEIal OPLIONSoooiieieeiiie e 203
Description of general optionsc..ccccovineniennncncnes 203

TATZEL ettt 204

IDE Project Management and Building Guide
for RISC-V

Description of compiler options ... 217
Multi-file COmMPIlationcccceeeevieieiienienieneneneeeetee et 217
Language 1 ...cccoevireniniiiiictceeetctcetcee e 218
Language 2cccooviviriiieieieeeeeeeee et 220
OPLMIZALIONS ..evverveierieriirieeiieteteie ettt et ebe et et e saestesteseeseeee 221
OULPUL ettt ettt bbbttt et snesae e e et 223
LESE ettt ettt sen 224
PrEPIOCESSOT ...ueiuiiiiiiiiciietieit ettt et 225
DIAZNOSHICS ..vvenrenveieriirieniertrteiteiteectete et e 226
Encodings
EXtra OPONS ...ooveoieiirieiieieieiiniceeietete ettt saes 229

Edit Include Directories dialog boXccceveeeriecieciiciencnenencnenne 230

Contents °

AsSeMbIer OPLIONS ... 231
Description of assembler options ... 231
LangUAaZEoovveeiiiieiieieeeee ettt 231

PIrePrOCESSOLoviiiiiiieiieieeteee ettt sttt 234
DIAZNOSHICS ...eveuvinriiiriniieteeiieieetet ettt sttt sttt 236
EXIra OPIONS ...cvevviriiriiniiniieeeiieiiet ettt ettt 237
OULPUL CONVEIrter OPLIONScooooiiirivierierrreeesiseeereeesseeesssees s 239
Description of output converter optionsc.ccccccoeeene 239
OULPUL ettt ettt ettt et et e st e st e b e nbeeaeenne 239
Custom build OPLiIONS ..o 241
Description of custom build options
Custom Tool Configurationc.cceceeereereerienieneneneneneneeeeeenne
Build actions OPLioNS ... 243
Description of build actions options ... 243
Build Actions Configurationc..cceceeeverveerieneeneeneeneeieeseesnene 243
New/Edit Build Action dialog DOXcccceveeireriereieienicnenenenenne 244
LINKEIr OPLIONSo.coiioii s 247

HACTINE ..ottt
DIAZNOSHICS ...eveuvenriririerintieiteieetet ettt sttt er ettt
Checksum
ENCOINGS ..ottt 260

12

Extra Options

Edit Additional Libraries dialog boXccccocieviiinirneineniienieniene 261

Library builder options ..., 263
Description of library builder optionsccccooeniininnes 263

OULPUL ettt ettt r bttt et sa et e sae et 264

GIOSSANY ... 265
INAEX oo 281

IDE Project Management and Building Guide

for RISC-V

Tables

1: Typographic conventions used in this UIAEcc.cccevervieieiieiienieneiinercneenee 19
2: Naming conventions used in this gUIAEcccceeviririiriieiienieriereereserene e 20
3: Argument Variablesc.cocviiiriiiiiiiiee et 83
4: iarbuild.exe command lin€ OPLONSeeueeueeierierieniininiinieeiieeetee e 124
5: Editor shortcut keys for insertion point Navigationc..ceeceveevevereerrenneuennes 169
6: Editor shortcut keys for selecting teXtcecvevuevveriereninenenireeeeieecreseeenes 170
7: Editor shortcut keys for SCrollingcoceeereeceieniininininieeeieeceesesesee 170
8: Miscellaneous editor ShOTtCUt KEYScccevievierierienerieninireeeeeeece e 170
9: Additional Scintilla ShOTtCUL KEYScovereeiiniiniiniiniiniinicecieeccenenene e 171
10: The riscv directory

11: The coOmMMmMON AITECLOTYevvirieriieriieiierieeieet ettt ettt e eane s 177
12 FALE LYPES ittt ettt s st 180

IDE Project Management and Building Guide
14 for RISC-V

Preface

e Who should read this guide

e How to use this guide

What this guide contains
e Other documentation

e Document conventions

Who should read this guide

Read this guide if you plan to develop an application using IAR Embedded Workbench
and want to get the most out of the features and tools available in the IDE.

REQUIRED KNOWLEDGE

To use the tools in IAR Embedded Workbench, you should have working knowledge of:

o The architecture and instruction set of the RISC-V core you are using (refer to the
chip manufacturer's documentation)

o The C or C++ programming language
o Application development for embedded systems
o The operating system of your host computer.

For more information about the other development tools incorporated in the IDE, refer
to their respective documentation, see Other documentation, page 17.

How to use this guide

Each chapter in this guide covers a specific fopic area. In many chapters, information is
typically divided into different sections based on information types:

o Concepts, which describes the topic and gives overviews of features related to the
topic area. Any requirements or restrictions are also listed. Read this section to learn
about the topic area.

o Tasks, which lists useful tasks related to the topic area. For many of the tasks, you

can also find step-by-step descriptions. Read this section for information about
required tasks as well as for information about how to perform certain tasks.

What this guide contains

® Reference information, which gives reference information related to the topic area.
Read this section for information about certain features or GUI components. You
can easily access this type of information for a GUI component in the IDE by
pressing F1.

If you are new to using IAR Embedded Workbench, we suggest that you first go through
the tutorials, which you can find in IAR Information Center in the product, under
Product Explorer. They will help you get started.

Finally, we recommend the Glossary if you should encounter any unfamiliar terms in
the IAR user documentation.

What this guide contains

This is a brief outline and summary of the chapters in this guide.

PART |. PROJECT MANAGEMENT AND BUILDING
This section describes the process of editing and building your application:

o The development environment introduces you to the IAR Embedded Workbench
development environment. The chapter also demonstrates the facilities available for
customizing the environment to meet your requirements.

® Project management describes how you can create workspaces with multiple
projects, build configurations, groups, source files, and options that help you handle
different versions of your applications.

® Building projects discusses the process of building your application.

e [Editing contains detailed descriptions of the IAR Embedded Workbench editor, how
to use it, and the facilities related to its usage. The final section also contains
information about how to integrate an external editor of your choice.

PART 2. REFERENCE INFORMATION

® Product files describes the directory structure and the types of files it contains.

® Menu reference contains detailed reference information about menus and menu
commands.

o General options specifies the target, output, and library options.

o Compiler options specifies compiler options for language, optimizations, code,
output, list file, preprocessor, and diagnostics.

o Assembler options describes the assembler options for language, output, list,
preprocessor, and diagnostics.

IDE Project Management and Building Guide
16 for RISC-V

Preface __4

o Output converter options describes the options available for converting linker
output files from the ELF format.

o Custom build options describes the options available for custom tool configuration.

® Build actions options describes the options available for pre-build and post-build
actions.

e Linker options describes the options for setting up for linking.

e Library builder options describes the options for building a library.

Other documentation

User documentation is available as hypertext PDFs and as a context-sensitive online
help system in HTML format. You can access the documentation from the IAR
Information Center or from the Help menu in the AR Embedded Workbench IDE. The
online help system is also available via the F1 key.

USER AND REFERENCE GUIDES

The complete set of IAR development tools is described in a series of guides.
Information about:

o System requirements and information about how to install and register the IAR
products are available in the Installation and Licensing Quick Reference Guide and
the Licensing Guide.

o Using the IDE for project management and building, is available in the IDE Project
Management and Building Guide for RISC-V.

o Using the IAR C-SPY® Debugger, is available in the C-SPY® Debugging Guide
for RISC-V.

o Programming for the IAR C/C++ Compiler for RISC-V and linking, is available in
the IAR C/C++ Development Guide for RISC-V.

® Programming for the IAR Assembler for RISC-V, is available in the AR Assembler
User Guide for RISC-V.

o Performing a static analysis using C-STAT and the required checks, is available in
the C-STAT® Static Analysis Guide.

o Using I-jet, refer to the /AR Debug probes User Guide for I-jet®.

Note: Additional documentation might be available depending on your product
installation.

Document conventions

18

THE ONLINE HELP SYSTEM

The context-sensitive online help contains information about:

IDE project management and building
Debugging using the IAR C-SPY® Debugger
The IAR C/C++ Compiler and Linker

The IAR Assembler

C-STAT

WEB SITES

Recommended web sites:

The chip manufacturer’s web site.

The RISC-V International web site, www.riscv.org, that contains information and
news about the RISC-V ISA. This includes the most recent specifications.

The IAR web site, www.iar.com, that holds application notes and other product
information.

The web site of the C standardization working group,
www.open-std.org/jtcl/sc22/wgl4.

The web site of the C++ Standards Committee, www.open-std.org/jtcl/sc22/wg21.

The C++ programming language web site, isocpp.org. This web site also has a list
of recommended books about C++ programming.

The C and C++ reference web site, en.cppreference.com.

Document conventions

When, in the IAR documentation, we refer to the programming language C, the text also
applies to C++, unless otherwise stated.

When referring to a directory in your product installation, for example riscv\doc, the
full path to the location is assumed, for example c: \Program Files\IAR
Systems\Embedded Workbench N.n\riscv\doc, where the initial digit of the
version number reflects the initial digit of the version number of the IAR Embedded
Workbench shared components.

IDE Project Management and Building Guide

for RISC-V

Preface __4

TYPOGRAPHIC CONVENTIONS
The IAR documentation set uses the following typographic conventions:

Style Used for

computer * Source code examples and file paths.
* Text on the command line.
* Binary, hexadecimal, and octal numbers.

parameter A placeholder for an actual value used as a parameter, for example
filename.h where filename represents the name of the file.

[option] An optional part of a linker or stack usage control directive, where [
and] are not part of the actual directive, butany [, 1, {, or } are part
of the directive syntax.

{option} A mandatory part of a linker or stack usage control directive, where {
and } are not part of the actual directive, but any [,], {, or } are part
of the directive syntax.

[option] An optional part of a command line option, pragma directive, or library
filename.
[a|b]|c] An optional part of a command line option, pragma directive, or library

filename with alternatives.

{a|b]|c} A mandatory part of a command line option, pragma directive, or
library filename with alternatives.

bold Names of menus, menu commands, buttons, and dialog boxes that
appear on the screen.

italic * A cross-reference within this guide or to another guide.
* Emphasis.
An ellipsis indicates that the previous item can be repeated an arbitrary

number of times.

Identifies instructions specific to the IAR Embedded Workbench® IDE
interface.

Identifies instructions specific to the command line interface.

Identifies helpful tips and programming hints.

Identifies warnings.

Table 1: Typographic conventions used in this guide

Document conventions

NAMING CONVENTIONS

The following naming conventions are used for the products and tools from IAR, when
referred to in the documentation:

Brand name Generic term

IAR Embedded Workbench® for RISC-V IAR Embedded Workbench®
IAR Embedded Workbench® IDE for RISC-V the IDE

IAR C-SPY® Debugger for RISC-V C-SPY, the debugger

IAR C-SPY® Simulator the simulator

IAR C/C++ Compiler™ for RISC-V the compiler

IAR Assembler™ for RISC-V the assembler

IAR ILINK Linker™ ILINK, the linker

IAR DLIB Runtime Environment™ the DLIB runtime environment

Table 2: Naming conventions used in this guide

IDE Project Management and Building Guide
20 for RISC-V

Part |. Project
management and building

This part contains these chapters:
e The development environment
e Project management

o Building projects

o Editing

.hmuhhhhi

N

AAARRIE

2

o~

The development
environment

e Introduction to the IAR Embedded Workbench IDE
e Using and customizing the IDE

e Reference information on the IDE

Introduction to the IAR Embedded Workbench IDE

These topics are covered:

e Briefly about the IDE and the build toolchain
e Tools for analyzing and checking your application
® An extensible and modular environment

o The layout of the windows on the screen

BRIEFLY ABOUT THE IDE AND THE BUILD TOOLCHAIN

The IDE is the environment where all tools needed to build your application—the build
toolchain—are integrated: a C/C++ compiler, C/C++ libraries, an assembler, a linker,
library tools, an editor, a project manager with Make utility, and the IAR C-SPY®
Debugger. The tools used specifically for building your source code are referred to as
the build tools.

The toolchain that comes with your product package supports a specific microcontroller.
However, the IDE can simultaneously contain multiple toolchains for various
microcontrollers. This means that if you have IAR Embedded Workbench installed for
several microcontrollers, you can choose which microcontroller to develop for.

Note: The compiler, assembler, and linker and library tools can also be run from a
command line environment, if you want to use them as external tools in an already
established project environment.

23

Introduction to the IAR Embedded Workbench IDE

TOOLS FOR ANALYZING AND CHECKING YOUR
APPLICATION

IAR Embedded Workbench comes with various types of support for analyzing and
finding errors in your application, such as:

e Compiler and linker errors, warnings, and remarks

All diagnostic messages are issued as complete, self-explanatory messages. Errors
reveal syntax or semantic errors, warnings indicate potential problems, and remarks
(default off) indicate deviations from the standard. Double-click a message and the
corresponding source code construction is highlighted in the editor window. For
more information, see the JAR C/C++ Development Guide for RISC-V'.

e Stack usage analysis during linking

Under the right circumstances, the linker can accurately calculate the maximum
stack usage for each call tree, such as cstartup, interrupt functions, RTOS tasks,
etc. For more information, see the /AR C/C++ Development Guide for RISC-V.

o C-STAT for static analysis

C-STAT is a static analysis tool that tries to find deviations from specific sets of rules,
where each rule specifies an unsafe source construct. The rules come from various

institutes, like MISRA (MISRA C:2004, MISRA C++:2008, and MISRA C:2012),
CWE, and CERT. For information about how to use C-STAT and the rules, see the
C-STAT® Static Analysis Guide.

o C-SPY debugging features such as, Profiling, Code Coverage, Trace, and Power
debugging. For more information, see the C-SPY® Debugging Guide for RISC-V.

AN EXTENSIBLE AND MODULAR ENVIRONMENT

Although the IDE provides all the features required for your project, you can also
integrate other tools. For example, you can:

o Use the Custom Build mechanism to add other tools to the toolchain, see Extending
the toolchain, page 109.

o AddIAR Visual State to the toolchain, which means that you can add state machine
diagrams directly to your project in the IDE.

o Use the Subversion version control system to keep track of different versions of
your source code. The IDE can attach to files in a Subversion working copy.

o Add an external analyzer, for example a lint tool, of your choice to be used on whole
projects, groups of files, or an individual file of your project. Typically, you might
want to perform a static code analysis on your source code, using the same settings
and set of source code files as when you compile. See Getting started using external
analyzers, page 31.

IDE Project Management and Building Guide
24 for RISC-V

The development environment ___4

o Add external tools to the Tools menu, for convenient access from within the IDE.
For this reason, the menu might look different depending on which tools you have
preconfigured to appear as menu commands.

o Configure custom argument variables, which typically can be useful if you install a
third-party product and want to specify its include directory. Custom argument
variables can also be used for simplifying references to files that you want to be part
of your project.

THE LAYOUT OF THE WINDOWS ON THE SCREEN

In the IDE, each window that you open has a default location, which depends on other
currently open windows. You can position the windows and arrange a layout according
to your preferences. Each window can be either docked or floating.

You can dock each window at specific places, and organize them in tab groups. If you
rearrange the size of one docked window, the sizes of any other docked windows are
adjusted accordingly. You can also make a window floating, which means it is always
on top of other windows. The location and size of a floating window does not affect
other currently open windows. You can move a floating window to any place on your
screen, including outside of the AR Embedded Workbench IDE main window.

Each time you open a previously saved workspace, the same windows are open, and they
have the same sizes and positions.

For every project that is executed in the C-SPY environment, a separate layout is saved.
In addition to the information saved for the workspace, information about all open
debugger-specific windows is also saved.

Note: The editor window is always docked. When you open the editor window, its
placement is decided automatically depending on other currently open windows. For
more information about how to work with the editor window, see Introduction to the IAR
Embedded Workbench editor, page 129.

Using and customizing the IDE

These tasks are covered:
Running the IDE
Working with example projects
Organizing windows on the screen
Specifying tool options
Adding a button to a toolbar

Removing a button from a toolbar

25

Using and customizing the IDE

26

Showing/hiding toolbar buttons
Recognizing filename extensions

Getting started using external analyzers
Invoking external tools from the Tools menu

Adding command line commands to the Tools menu

Using an external editor

See also Extending the toolchain, page 109.

For more information about customizations related to C-SPY, see the C-SPY®
Debugging Guide for RISC-V.

RUNNING THE IDE

Click the Start button on the Windows taskbar and choose All Programs>IAR EW for
RISC-V>IAR EW for RISC-V.

The file TarIdePm. exe is located in the common\bin directory under your IAR
installation, in case you want to start the program from the command line or from within
Windows Explorer.

Double-clicking the workspace filename

The workspace file has the filename extension eww. If you double-click a workspace
filename, the IDE starts.

If you have several versions of AR Embedded Workbench installed, the workspace file
is opened by the most recently used version of your IAR Embedded Workbench that
uses that file type, regardless of which version the project file was created in.

WORKING WITH EXAMPLE PROJECTS

Example applications are provided with IAR Embedded Workbench. You can use these
examples to get started using the development tools from IAR. You can also use the
examples as a starting point for your application project.

The examples are ready to be used as is. They are supplied with ready-made workspace
files, together with source code files and all other related files.

To run an example project:
Choose Help>Information Center and click Example projects.

Browse to the example that matches the specific evaluation board or starter kit you are
using.

IDE Project Management and Building Guide

for RISC-V

The development environment ___4

IAR Information Center

Examples for your processor

IAR Information Center | Example projects | ... | Examples

-
“W- Product explorer
for your pr
Device-specific examples B
User guides

Info Open Name Description
project

This example shows how to E I z

Basic LCD use the LCD and the touch xample projects
screen controlier
This example shows basic use ¥'a

LED Blink of the parallel I/Q, timer, and p | ted luti
the interrupt controller 3 nteQra ed solutions

Click the Open Project button.
In the dialog box that appears, choose a destination folder for your project.

The available example projects are displayed in the workspace window. Select one of
the projects, and if it is not the active project (highlighted in bold), right-click it and
choose Set as Active from the context menu.

To view the project settings, select the project and choose Project>Options. Verify the
settings for General Options>Target>Device and Debugger>Setup>Driver. As for
other settings, the project is set up to suit the target system you selected.

For more information about the C-SPY options and how to configure C-SPY to interact
with the target board, see the C-SPY® Debugging Guide for RISC-V.

Click OK to close the project Options dialog box.
To compile and link the application, choose Project>Make or click the Make button.

To start C-SPY, choose Project>Download and Debug or click the Download and
Debug button.

Choose Debug>Go or click the Go button to start the application.

Click the Stop button to stop execution.

27

Using and customizing the IDE

ORGANIZING WINDOWS ON THE SCREEN
Use these methods to organize the windows on your screen:

o To disconnect a tabbed window from a tab group and place it as a separate window,
drag the tab away from the tab group.

o To make a window or tab group floating, double-click on the window’s title bar.

o When dragging a window to move it, press Ctrl to prevent it from docking.

To place a window in the same tab group as another open window, drag the window you
want to relocate and drop it on the other window. Drop it on one of the arrow buttons of
the organizer control, to control how to dock it.

See also The layout of the windows on the screen, page 25.

SPECIFYING TOOL OPTIONS
You can find commands for customizing the IDE on the Tools menu.

I To display the IDE Options dialog box, choose Tools>Options to get access to a wide
variety of options:

- Common Fonts
- Key Bindings Tab size:
- Language
- Editor Indert size
; Extemal. Editor Tab Key
Setup Files) Inse
Colors and Fonts - .
- Messages @ inde
[=I- Project
; Show 1
i External Analyzers = .
- Source Code Control - R
- Debugger ® Col.
- Stack File Enc
Defa

2 To access the options to the right in the dialog box, select a category to the left.

For more information about various options for customizing the IDE, see Tools menu,
page 198.

IDE Project Management and Building Guide
28 for RISC-V

The development environment ___4

ADDING ABUTTON TO A TOOLBAR
The buttons on the IDE toolbars provide shortcuts for commands on the IDE menus.

I To add a new button to a toolbar in the main IDE window, click the Toolbar Options
button and choose Add or Remove Buttons>Customize.

ce.

2 The Customize dialog box opens on the Commands page.

In the Categories list, select the menu on which the command you want to add to the
toolbar is located.

Customize @
Commands | Options | Toolbars
Categories: Commands:
| New File -
View Tj Mew Workspace
Project ¥ =
Simulator [Open File...
Tocls] Open Workspace... m
Window
Help [Open Header/Source File
New Menu
All Commands a s
BN Save Workspace
G Save Workspace fs. .. 2
Description:

3 Drag a command from the Commands list to one of the toolbars where you want to
insert the command as a button.

You can rearrange the existing buttons by dragging them to new positions.

Note: If you instead of adding a button want to show a button that has been hidden
temporarily, see Showing/hiding toolbar buttons, page 30.

29

Using and customizing the IDE

REMOVING A BUTTON FROM A TOOLBAR

I To remove a button from any of the toolbars in the main window of the IDE, click the
Toolbar Options button and choose Add or Remove Buttons>Customize. Ignore the
Customize dialog box that is opened.

[E=N ECH =

2
[+
e
I}
(v

-
]
|

ce.

2 Right-click on the toolbar button that you want to remove and choose Delete from the
context menu.

Note: If you instead of removing a button want to hide it temporarily, see
Showing/hiding toolbar buttons, page 30.

SHOWING/HIDING TOOLBAR BUTTONS

As an alternative to removing a button from an IDE toolbar, you can toggle its visibility
on/off.

I To hide a button temporarily from any of the toolbars in the main window of the IDE,
click the Toolbar Options button and choose Add or Remove Buttons>foolbar.

A0 Re =0 "+ .
Add or Remove Buttons » Main » ‘D Mew File

Customize... [openFile...
B save
B save Al
= Frint...

Cut

[v] %
F oV SV S S S &
ThBrekﬂt \ \'

° Download and Debug

¥ Debug without Downloading

Reset Toolbar

IDE Project Management and Building Guide
30 for RISC-V

The development environment ___4

2 Select or deselect the command button you want to show/hide.
Note: If you want to delete a button entirely from the toolbar, see Removing a button
from a toolbar, page 30.
RECOGNIZING FILENAME EXTENSIONS

In the IDE, you can increase the number of recognized filename extensions. By default,
each tool in the build toolchain accepts a set of standard filename extensions. Also, if
you have source files with a different filename extension, you can modify the set of
accepted filename extensions.

To get access to the necessary commands, choose Tools>Filename Extensions.

See Filename Extensions dialog box, page 80.

To override the default filename extension from the command line, include an explicit
extension when you specify a filename.

GETTING STARTED USING EXTERNAL ANALYZERS

I To add an external analyzer to the Project menu, choose Tools>Options to open the
IDE Options dialog box and select the Project>External Analyzers page.

2 To configure the invocation, click Add to open the External Analyzer dialog box.

Marme: Analyzer 1

Fath: C>Program Files [x86]\MypdnalyzerT oolhbnalyzer C]

Arguments: -nc $FILE_PATH$ $COMPILER_ARGS$

Output matching patterns

Location: $FILE_NAME$:$LINE_MUMBER$ -
‘Warning: [¥ijwarningl?-i): -
Emar: [Fi)error?-i): -

[(] 3] [Cancel]

Specify the details required for the analyzer you want to be able to invoke.

31

Using and customizing the IDE

Use Output matching patterns to specify (or choose from a list) three regular
expressions for identifying warning and error messages and to find references to source
file locations.

Click OK when you have finished.
For more information about this dialog box, see External Analyzer dialog box, page 68.
In the IDE Options dialog box, click OK.

Choose Project>Analyze Project and select the analyzer that you want to run,
alternatively choose Analyze File(s) to run the analyzer on individual files.

1 Workbench IDE

wor | Project | Tools Window Help

Add Files... E 1 B &P €
Add Group... Tutor.c | Utilities.c | Utilities.h
Import File List...
Add Project Connection... A y,

3 Edit Configurations... [

bBatch build... F&

ives you all the

Analyze Project 3 Analyzer1

Analyze File(s) 3 Analyzer 2

Analyzer 3

Q.
]

Stop Build CTRL+BREAK

Download and Debug CTRL+D
Debug without Downloading

Make & Restart Debugger CTRL+R
Restart Debugger CTRL+SKIFT+R

Download 3

SFR Setup
Open Device File 3

Each of the regular expressions that you specified will be applied on each line of output
from the external analyzer. Output from the analyzer is listed in the Build Log window.
You can double-click any line that matches the Location regular expression you
specified in the External Analyzer dialog box to jump to the corresponding location in
the editor window.

Note: If you want to stop the analysis before it is finished, click the Stop Build button.

IDE Project Management and Building Guide

32 for RISC-V

The development environment ___4

INVOKING EXTERNAL TOOLS FROM THE TOOLS MENU

I To add an external tool to the menu, for example Notepad, choose Tools>Configure
Tools to open the Configure Tools dialog box.

Configure Tools

Menu Content:

Menu Text:

EMotepad

Command:

C:vwindows'notepad. exe
Argument:

Initial Directary:

[Redirect to Dutput ‘Window
[Prompt for Command Line

Tool Available:

[Always -]

2 Fill in the text fields according to the screenshot. For more information about this
dialog box, see Configure Tools dialog box, page 76.

3 After you have entered the appropriate information and clicked OK, the menu
command you have specified is displayed on the Tools menu.

!E! Options...

Filename Extensions...
Configure Viewers..,

Configure Custom Argument Variables..,

ar

Configure Toaols...

Motepad

Note: You cannot use the Configure Tools dialog box to extend the toolchain in the
IDE. If you intend to add an external tool to the standard build toolchain, see Extending
the toolchain, page 109.

33

Using and customizing the IDE

ADDING COMMAND LINE COMMANDS TO THE TOOLS MENU

Command line commands and calls to batch files must be run from a command shell.
You can add command line commands to the Tools menu and execute them from there.

To add a command, for example Backup, to the Tools menu to make a copy of the entire
project directory to a network drive:

I Choose Tools>Configure Tools to open the Configure Tools dialog box.
2 Type or browse to the emd.exe command shell in the Command text box.

3 Type the command line command or batch file name in the Argument text box, for
example:

/C copy c:\project*.* F:

Alternatively, use an argument variable to allow relocatable paths:

/C copy $PROJ_DIRS*.* F:

The argument text should be specified as:

/C name

where name is the name of the command or batch file you want to run.

The /c option terminates the shell after execution, to allow the IDE to detect when the
tool has finished.

USING AN EXTERNAL EDITOR

The External Editor options—available by choosing
Tools>Options>Editor>External Editor—let you specify an external editor of your
choice.

Note: While you are debugging using C-SPY, C-SPY will not use the external editor for
displaying the current debug state. Instead, the built-in editor will be used.

To specify an external editor of your choice:
I Select the option Use External Editor.

2 On the command line, specify the command to pass to the editor, that is, the name of
the editor and its path, for instance:

C:\Windows\NOTEPAD.EXE

IDE Project Management and Building Guide
34 for RISC-V

The development environment ___4

To send an argument to the external editor, type the argument in the Arguments field.
For example, type SFILE_PATHS to start the editor with the active file (in editor, project,
or messages windows).

Crcel

IDE Options
-~ Colors and Fonts
- Key Bindings Use Extemal Editor
-~ Language Editor: |
- Editor
Arguments |
- Setup Files
- Syntax Feedback
-~ Messages
- Troubleshooting
- Project
-~ Source Code Control
-~ Debugger
- Stack
3 Click OK.

When you double-click a filename in the Workspace window, the file is opened by the
external editor.

Variables can be used in the arguments. For more information about the argument
variables that are available, see Argument variables, page 83.

Reference information on the IDE

Reference information about:

1AR Embedded Workbench IDE window, page 37
Customize dialog box, page 42
Button Appearance dialog box, page 44

Tool Output window, page 45

Colors and Fonts options, page 46
Edit Colors dialog box, page 49
Edit Fonts dialog box, page 50
Key Bindings options, page 51

Language options, page 53
Editor options, page 54

35

Reference information on the IDE

Configure Auto Indent dialog box, page 58
External Editor options, page 59

Editor Setup Files options, page 60

Editor Syntax Feedback options, page 61
Messages options, page 62

Troubleshooting options, page 63

Project options, page 64

External Analyzers options, page 66

External Analyzer dialog box, page 68

Source Code Control options (deprecated), page 70
Debugger options, page 71

Stack options, page 72

Terminal 1/0 options, page 74

Configure Tools dialog box, page 76

Configure Viewers dialog box, page 78

Edit Viewer Extensions dialog box, page 79
Filename Extensions dialog box, page 80
Filename Extension Overrides dialog box, page 81
Edit Filename Extensions dialog box, page 82
Product Info dialog box, page 82

Argument variables, page 83

Configure Custom Argument Variables dialog box, page 85

IDE Project Management and Building Guide
36 for RISC-V

IAR Embedded Workbench IDE window

The development environment ___4

The main window of the IDE is displayed when you launch the IDE.

— & tutorials - 1AR Embedded Workbench IDE ===
I Menu bar | —~ File Edit View Project Simulator Tools Window Help
‘ToolbarI— LR e = KBS C < Q> KECP AN BRB= O
_ Warkspace * & X | Tutorc x -
project2 - Debug ~| | main fo
Rl © * Tutor.c
8 Ctutarials .
@ project - Debug v # C tutorial. Prints the Fibonacci sequence.
-2 @ project? - Debug v -
| * $Revision: 8310 §
Workspace | [Utilities.c *
window | L@ o Qutput
@ project3 - Debug v #include "Tutor.h”
projectd - Debug v +
projects - Debug v int callCount: L
.Iulnrﬁl\hravnyebug v R B
/% Increase the 'callCount' variable by ons. */
void NextCounter {void)
T {
. callCount += 1:
E(Ellt()r I — — - — e - o
window
s* Increase the 'callCount' variable.
* Get and pr he associated Fibonacci number.
=
void DoForegroundProcess (void)
Overien project! | praiect2| pre[o [0 | <[i ol o
Build v ax
Messages
I I8 Building configuration: projectz - Debug
Message Updating build tree
windows
I Caonfiguration is up-to-date
« i v
— Build | Debug Log
Status bar 1 | Ready Errors 0, Warnings 0 Ln's3, Col 3 Sy
The figure shows the window and its default layout.
Menu bar

The menu bar contains:

File

Edit

View

Commands for opening source and project files, saving and printing, and exiting
from the IDE.

Commands for editing and searching in editor windows and for enabling and
disabling breakpoints in C-SPY.

Commands for opening windows and controlling which toolbars to display.

37

Reference information on the IDE

38

Toolbar

Project
Commands for adding files to a project, creating groups, and running the IAR
tools on the current project.

Simulator
Commands specific for the C-SPY simulator. This menu is only available when
you have selected the simulator driver in the Options dialog box.

C-SPY hardware driver
Commands specific for the C-SPY hardware debugger driver you are using, in
other words, the C-SPY driver that you have selected in the Options dialog box.
For some IAR Embedded Workbench products, the name of the menu reflects
the name of the C-SPY driver you are using and for others, the name of the menu
is Emulator.

Tools
User-configurable menu to which you can add tools for use with the IDE.

Window
Commands for manipulating the IDE windows and changing their arrangement

on the screen.

Help
Commands that provide help about the IDE.

For more information about each menu, see Menus, page 183.

The buttons on the IDE toolbar provide shortcuts for the most useful commands on the
IDE menus, and a text box for typing a string to do a quick search. For information about
how to add and remove buttons on the toolbars, see Using and customizing the IDE, page
25.

For a description of any button, point to it with the mouse pointer. When a command is
not available, the corresponding toolbar button is dimmed, and you will not be able to
click it.

The toolbars are dockable—drag and drop to rearrange them.

IDE Project Management and Building Guide

for RISC-V

The development environment ___4

This figure shows the menu commands corresponding to each of the toolbar buttons:

Toggle

I T I |F’rint ||CODY | [Ouick Search text box] I Navigate Forwarld_.rBackward ‘ Toedle —Toolbar
) ; : reakpaint
|Save | |Undo | [Find Next | lTogg1e Bookmark \ |Mak | et _ Options ‘
D@ = x®8p OC Q25200 RO= 0 o
|5av;A|| | |ch | |R;jo | |Fm:1 | |ﬁ| .‘ [m| 'D.e.b“g
W L——1 |Find —/ Previous/Next Download without
‘OPE‘“ ‘ |Paste | | Previous [Replace ‘ ‘ Bookmark and Debug .Downloading |

Note: When you start C-SPY, the Download and Debug button will change to a Make

and Restart Debugger button @ , and the Debug without Downloading will change
o

to a Restart Debugger button (C).

Toolbar Options
Click the Toolbars Options button to open the Toolbars Options menu.

-

Context menu
This context menu is available by right-clicking a toolbar button when the Customize
dialog box is open. For information about how to open this dialog box, see Customize
dialog box, page 42.

Reset to Default

Copy Button Image
Delete

Button Appearance...
v | Image

Text

Image and Text

Start Group

These commands are available:

Reset to Default
Hides the button icon and displays the name of the button instead.

Copy Button Image
Copies the button icon and stores the image on the clipboard.

Delete
Removes the button from the toolbar.

39

Reference information on the IDE

Button Appearance
Displays the Button Appearance dialog box, see Button Appearance dialog
box, page 44.

Image
Displays the button only as an icon.

Text
Displays the button only as text.

Image and Text
Displays the button both as an icon and as text.

Start Group
Inserts a delimiter to the left of the button.

Toolbars Options menu

This menu and its submenus are available by clicking the Toolbars Options button on
the far right end of a toolbar:

A0 R®-=0 .
Add or Remove Buttons » Main » ‘D Mew File
Customize... ﬂ Open File...
n Save
ﬂ Save All
E Print...

Cut

[v] %
F oV SV S S S &
ThBrekﬁt \' \

° Download and Debug

¥ Debug without Downloading

Reset Toolbar

These commands are available:

Add or Remove Buttons
Opens a submenu.

toolbar
Opens a submenu that lists all command buttons on the toolbar. Select or
deselect a checkbox to show/hide the button on the toolbar. Choose Reset
Toolbar to restore the toolbar to its default appearance.

IDE Project Management and Building Guide
40 for RISC-V

The development environment ___4

Customize
Displays the Customize dialog box, see Customize dialog box, page 42.

Status bar

The status bar at the bottom of the window can be enabled from the View menu.

[=! Errors 0, Warnings 0 Ln9, Col 42 system CAP NUM OvR BEE=

The status bar displays:

Source browser progress information
The number of errors and warnings generated during a build

e The position of the insertion point in the editor window. When you edit, the status
bar shows the current line and column number containing the insertion point.

o The character encoding
The state of the modifier keys Caps Lock, Num Lock, and Overwrite.

If your product package is available in more languages than English, a flag in the
corner shows the language version you are using. Click the flag to change the
language. The change will take force the next time you launch the IDE.

41

Reference information on the IDE

Customize dialog box

The Customize dialog box is available by clicking the Toolbars Options button on the
far right end of the a toolbar in the main IDE window and choosing Add or Remove

Buttons>Customize.
Customize @
Commands | Options | Toolbars
Categories: Commands:
R (13 New e ,
View Tj Mew Workspace
Project =
Simulator [Open File...
Tocls] Open Workspace... m
Window
Help [Open Header/Source File
New Menu
All Commands a s
BN Save Workspace
G Save Workspace fs. .. 2
Description:

These are the options on the Commands page of the Customize dialog box:

Categories
Lists the menus in the IDE. Select a menu name to make the commands on that menu
available for adding as buttons to a toolbar. Select New Menu to add a custom
drop-down menu to a toolbar.

Commands

Lists menu commands that can be dragged to one of the toolbars and inserted as buttons.
If New Menu is the selected Category, the command New Menu can be dragged to a

IDE Project Management and Building Guide
42 for RISC-V

The development environment ___4

toolbar to add a custom drop-down menu to the toolbar. Commands from the
Commands list can then be dragged to populate the custom menu.

Options

Toolbar
Show ScreenTips on toolbars
Show shortcut keys in ScreenTips
[Large lcons

These are the options on the Options page of the Customize dialog box:

Show Screen Tips on toolbars

Enables tooltips for the buttons on the toolbars. The tooltips contain the display names
of the buttons.

Show shortcut keys in Screen Tips
Includes the keyboard shortcut in the tooltip text for the buttons on the toolbar.

Large Icons

Increases the size of the buttons on the toolbars.

Toolbars
Toolbars:

Eain] Reset
Menu Bar

Reset All

[Show text labels

43

Reference information on the IDE

These are the options on the Toolbars page of the Customize dialog box:

Toolbars
Select/deselect a toolbar to show/hide it in the main IDE window. The menu bar cannot
be hidden.

Reset
Restores the selected toolbar to its default appearance.

Reset All

This button is disabled.

Show text labels

Displays the names of the buttons on the selected toolbar.

Button Appearance dialog box

The Button Appearance dialog box is available by right-clicking a toolbar button when
the Customize dialog box is open and choosing Button Appearance from the context
menu.

Button Appearance

Image onty

@ Text only

Use Default Image:

Select User-defined Image:

==l

Image and text

Description:

Button text: Stop Debugaing [oK]| Cancel |

Use this dialog box to change the display name of a toolbar button.

Image only

This option has no effect.

Text only
Enables the text box Button text.

IDE Project Management and Building Guide

44 for RISC-V

The development environment ___4

Image and text

Enables the text box Button text.

Use Default Image
This option is disabled.

Select User-defined Image

This option is disabled.

New
This button is disabled.

Edit
This button is disabled.

Button text
The display name of the toolbar button. Edit the text to change the name.

Tool Output window

The Tool Output window is available by choosing View>Messages>Tool Output.
Tool Output *

Output

[Debug Log | Tool Output | Build | Find in Files |

This window displays any messages output by user-defined tools in the Tools menu,
provided that you have selected the Redirect to Output Window option in the
Configure Tools dialog box, see Configure Tools dialog box, page 76. When opened,
this window is, by default, grouped together with the other message windows.

Context menu

This context menu is available:

Copy
Select Al

Clear Al

45

Reference information on the IDE

These commands are available:

Copy

Copies the contents of the window.

Select All

Selects the contents of the window.

Clear All

Deletes the contents of the window.

Colors and Fonts options

Themes

The Colors and Fonts options are available by choosing Tools>Options.

IDE Options *
- Colors and Fonts
- Key Bindings Themes:
- Language Colors... #pragma diag_suppress = Ped48 ~
- Editor (Classic #include <stdio.h> // Sample C++ i
. Messages High contrast Forts... #define TEST @
.. Troubleshooting Dark mode S inline char * get_SP(void)
. eset.. {
[Project Solarized - .
- Source Code Control Dark Solarized } asm(MOV Ra, P);
. Debugger Color Accessibility
i Duplicate...
- Stack User seftings theme e #pragma swi_number = @x@7
Hone _ swi void swi_watchdog (void);
Rename SEE
* Sample Doxygen comment.
Impaort.... * [@param sel Sample doc argument
* ([para non-existing-keyword Comm
Export... const char* GetString(char sel)
/* Sample C comment */
char arg = sel; v
Cancel

Use this page to configure the colors and fonts used for the windows in the IDE.

A colors and fonts theme is a combination of font and color settings for the IDE

windows. Select the theme you want to use and either click OK to close the dialog box
and apply the theme, or use the buttons in the dialog box to modify the theme. On the
right-hand side of the dialog box is a preview of the settings you make. You can use one
of the predefined themes or create your own custom theme.

IDE Project Management and Building Guide

46 for RISC-V

The development environment ___4

The predefined themes are:

Default
The theme used in the IDE unless you change it.

Classic
The colors and fonts match older versions of the IAR Embedded Workbench
IDE.

High contrast
A theme with a dark background, and very bright font colors.

Dark mode
A theme with a dark background and matching font colors.

Solarized
A theme with soft colors that many find comfortable to look at.

Dark Solarized
A darker version of the Solarized theme.

Color Accessibility

Color combinations intended to assist users with color vision deficiencies.

User settings theme
If you had defined custom color settings in a version of IAR Embedded

Workbench installed before the current version, it will appear here as a user
settings theme.

To create your own custom theme, select the predefined theme you like best and click
5 Duplicate, and modify the duplicated theme.

Colors
Opens the Edit Colors dialog box where you can change the colors used in the editor
window, see Edit Colors dialog box, page 49.

Fonts
Opens the Edit Fonts dialog box where you can change the fonts used in all IDE
windows, see Edit Fonts dialog box, page 50.

Reset

Restores the selected modified theme to its default setting.

47

Reference information on the IDE

48

Duplicate

Remove

Rename

Import

Export

Creates a copy of the selected theme.

Deletes the selected custom theme.

Makes the name of the selected custom theme editable.

Opens a standard Windows Open dialog box to let you import an XML file with a saved
colors and fonts theme.

Opens a standard Windows Save dialog box to let you save a colors and fonts theme as
an XML file. Save it as a back-up or share it with colleagues.

IDE Project Management and Building Guide

for RISC-V

Edit Colors dialog box

The development environment ___4

The Edit Colors dialog box is available from the Colors and Fonts category in the IDE

Options dialog box.

B Edit Colors X
Syntax Coloring:

Strings #pragma diag_suppress = Ped48 ~
Char #include <stdio.h> // Sample C++ comment

Preprocessor #define TEST @

MHumber inline char * get_SP(void)

Keywaords i

- C Kepword asm{ "MOV R@, SP");

- User keyword ¥

- Compiler keyword

- s kepword #pragma swi_number = @x@7

- Doc kepword _ swi void swi_watchdog (void);

Calar...

- Doc keyword eror

Comments Type Style: SEE

- C++ comment * Sample Doxygen comment.

Marmal

- Comment * @param sel Sample doc argument

- &8 comment * (para non-existing-keyword Comment

- Do comment const char* GetString(char sel)

Operator i

Identifier /* Sample C comment */

Syntax feedback char arg = sel;

Inactive code if (arg == 'c')

Other #if TEST

return "Some string - TEST";
#else
return "Some string”; A
Background Calor... “Y'ou can click test in the preview ta select itz category. Camcel

Use this dialog box to customize the colors used by the selected theme in the editor
window. A preview is shown of all the changes you make.

Syntax Coloring

Select the syntactic source code element that you want to modify. The User keyword
element corresponds to the keywords that you have listed in the custom keyword file,
see Editor Setup Files options, page 60.

Color

Lists colors to choose from. Automatic matches the standard color set in the Windows
preferences. The current color has an asterisk (*) next to its name.

Type style

Select Normal, Bold, or Italic style for the selected element.

49

Reference information on the IDE

Background Color

Click to set the background color of the editor window. Automatic matches the standard
color set in the Windows preferences. The current color has an asterisk (*) next to its
name.

Edit Fonts dialog box
The Edit Fonts dialog box is available from the Colors and Fonts category in the IDE

Options dialog box.
B Edit Fonts X
Proportional Font... | M5 Sans Serf, size =10 Fixed Font... Courier, size = 10

This font is used for plain text in the IDE windows, e.g. This font is used for values and addresses in the IDE
the: test in the *Workspace window. windows, £.9. in the Memory windows.

..... Froject- Debug 0:0000'0000 68 £0 63 e5 h.n. a
: 0:0000'0004 18 £0 9F e5

Source files 0x0000' 0008 58 £l 9e o5 X...
~Main.cpp 0x0000'0012 19 fl 9e e6
~rnain.h 0x0000'0010 18 8b 9f e5 k..
- Qutput 0x0000'0014 00 OO0 00 00 ...
. 0x0000'0018 681 f0 9f e5 a...
""" main.o 0x0000'0022 14 £0 9f &5
0x0000'0020 ac 04 00 0O w
AcnnANIARAA m4 ne AR An s
Editor Fort... Conzolas, size =10
This fant is uzed in the text editor.
#pragma diag suppress = Ped48 ~
#include <stdio.h> // Sample C++ comment
inline char * get SP(void)
{
asm{ "MOV R@, SP");
}
v
Apply font changes to all themes
Cancel

Use this dialog box to customize the fonts used by the selected theme in the IDE
windows. Previews are shown of all the changes you make.

Proportional Font

Opens a font picker where you can select which proportional (variable-width) font and
size to use for plain text in all windows.

IDE Project Management and Building Guide
50 for RISC-V

The development environment ___4

Fixed Font

Opens a font picker where you can select which fixed-width (monospace) font and size
to use for values and addresses in all windows except the editor window.

Editor Font
Opens a font picker where you can select which fixed-width (monospace) font and size
to use in the editor window.

Apply font changes to all themes

Select this option to apply the changes you have made to all themes, not just the one that
was selected when you opened the Edit Fonts dialog box.

Key Bindings options

The Key Bindings options are available by choosing Tools>Options.

IDE Options
- Colors and Fonts
M ey Bindings Meru: fe =
- Language Command Primary Alias =
[#- Editor
New Document Cirt+N i
- Messages
Troubleshooti Mew workspace
....pm.u eshooting Open Ctri=0
(- Project Open Workspace
- Source Code Control Open file Cirl+Shift+H
- Debugger Close -
- Stack Press shortcut key: Primary Alizs

Use this page to customize the shortcut keys used for the IDE menu commands.

Menu
Selects the menu to be edited. Any currently defined shortcut keys for the selected menu
are listed below the Menu drop-down list.

List of commands

Selects the menu command you want to configure your own shortcut keys for, from this
list of all commands available on the selected menu.

51

Reference information on the IDE

52

Press shortcut key

Primary

Alias

Reset All

Type the key combination you want to use as shortcut key for the selected command.
You cannot set or add a shortcut if it is already used by another command.

Choose to:

Set

Saves the key combination in the Press shortcut key field as a shortcut for the
selected command in the list.

Clear

Removes the listed primary key combination as a shortcut for the selected
command in the list.

The new shortcut will be displayed next to the command on the menu.

Choose to:

Add

Saves the key combination in the Press shortcut key field as an alias—a hidden
shortcut—for the selected command in the list.

Clear

Removes the listed alias key combination as a shortcut for the selected
command in the list.

The new shortcut will be not displayed next to the command on the menu.

Reverts the shortcuts for all commands to the factory settings.

IDE Project Management and Building Guide

for RISC-V

The development environment ___4

Language options
The Language options are available by choosing Tools>Options.

IDE Options =

- Colors and Fonts

- Key Bindings Language

- Language [English (United States) -
- Editor After changing to a different language.
- Messages you must restart the application.

- Troubleshooting

[#- Project

- Source Code Control

- Debugger
- Stack

[ok][canca |

Use this page to specify the language to be used in windows, menus, dialog boxes, etc.

Language

Selects the language to be used. The available languages depend on your product
package, English (United States) and Japanese (Japan).

Note: If you have installed IAR Embedded Workbench for several different toolchains
in the same directory, the IDE might be in mixed languages if the toolchains are
available in different languages.

53

Reference information on the IDE

Editor options

The Editor options are available by choosing Tools>Options.

IDE Options =
- Colors and Fonts
- Key Bindings Tab size: 8 Syntax highlighting
- Language Auto indent
- Editor Indert size: 2
- Messages Tab Key Function: Show line numbers
- Troubleshooti -
o Pro.u :5 ootng () Insert tab Scan for changed files
- Projec -
. Source Code Control @) Indent with spaces Show bookmarks
Show fold margin
Debugger Show right margin @ b
.. Stack) [Enable virtual space
() Printing edge EIR trailing blank
© Columns: 20 emove trailing blanks
Auto code completion and parameter hints
File Encoding Show source browser tooltips
Default character encoding: [Show line break characters
[System v] [Show whitespaces
Auto-detect character encoding [7] Show inactive code
EOL characters: | PC hd
[ok][canca |

Use this page to configure the editor. For more information about the editor, see Editing,
page 129.

Tab size

Specify the width of a tab character, in terms of character spaces.

Indent size

Specify the number of spaces to be used when tabulating with an indentation.

Tab Key Function

Controls what happens when you press the Tab key. Choose between:

Insert tab

Inserts a tab character when the Tab key is pressed.

Indent with spaces

Inserts an indentation (space characters) when the Tab key is pressed.

IDE Project Management and Building Guide

54 for RISC-V

Show right margin

The development environment ___4

Displays the area of the editor window outside the right margin as a light gray field. If
this option is selected, you can set the width of the text area between the left margin and
the right margin. Choose to set the width based on:

Printing edge

Bases the width on the printable area, which is taken from the general printer
settings.

Columns

File Encoding

Bases the width on the number of columns.

Controls file encoding. Choose between:

Default character encoding

Selects the character encoding to be used by default for new files. Choose
between:

System (uses the Windows settings)
Western European

UTF-8

Japanese (Shift-JIS)

Chinese Simplified (GB2312)
Chinese Traditional (Big5)
Korean (Unified Hangul Code)
Arabic

Central European

Greek

Hebrew

Thai

Baltic

Russian

Vietnamese

Note that if you have specified a character encoding from the editor window
context menu, that encoding will override this setting for the specific document.

Auto-detect character encoding

Detects automatically which character encoding that should be used when you
open an existing document.

55

Reference information on the IDE

56

EOL characters

Selects which line break character to use when editor documents are saved.
Choose between:

PC (default), Windows and DOS end of line characters.
UNIX, UNIX end of line characters.

Preserve, the same end of line character as the file had when it was opened,
either PC or UNIX. If both types or neither type are present in the opened file,
PC end of line characters are used.

Syntax highlighting
Makes the editor display the syntax of C or C++ applications in different text styles.

For more information about syntax highlighting, see Edit Colors dialog box, page 49
and Syntax coloring, page 136.

Auto indent

Makes the editor indent the new line automatically when you press Return. For C/C++
source files, click the Configure button to configure the automatic indentation, see
Configure Auto Indent dialog box, page 58. For all other text files, the new line will have
the same indentation as the previous line.

Show line numbers

Makes the editor display line numbers in the editor window.

Scan for changed files
Makes the editor reload files that have been modified by another tool.
If a file is open in the IDE, and the same file has concurrently been modified by another

tool, the file will be automatically reloaded in the IDE. However, if you already started
to edit the file, you will be prompted before the file is reloaded.

Show bookmarks

Makes the editor display a column on the left side in the editor window, with icons for
compiler errors and warnings, Find in Files results, user bookmarks, and breakpoints.

Show fold margin

Makes the editor display the fold margin in the left side of the editor window. For more
information, see Code folding, page 132.

IDE Project Management and Building Guide

for RISC-V

The development environment ___4

Enable virtual space

Allows the insertion point to move outside the text area.

Remove trailing blanks

Removes trailing blanks from files when they are saved to disk. Trailing blanks are blank
spaces between the last non-blank character and the end of line character.

Auto code completion and parameter hints

Enables code completion and parameter hints. For more information, see Editing a file,
page 130.

Show source browser tooltips

Toggles the display of detailed information about the identifier that the cursor currently
hovers over.

Show line break characters

Toggles the display of carriage return and line feed characters in the editor window.

Show whitespaces

Toggles the display of period (.) characters for single blank spaces and arrow (—>)
characters for tabs in the editor window.

Show inactive code

Using preprocessor symbols, you can define which code that should be compiled for
various build configurations. This option toggles the display of inactive code—code that
will not be compiled—in the editor window. The feature:

e requires that the option Generate browse information has been selected in the
Project category

e only works for files in the active project.

57

Reference information on the IDE

Configure Auto Indent dialog box

The Configure Auto Indent dialog box is available from the Editor category in the
IDE Options dialog box.

Configure Auto Indent @
Sample code
Opening Brace (&) int f£({int x)
0 ¢
b awitch (x)
Body (b) a | |
2 c case 0:
b return 1;
Label {c) c default:
0 b return x;
}
}
[oK] | Cancel |

Use this dialog box to configure the editor’s automatic indentation of C/C++ source
code.

For more information about indentation, see Indenting text automatically, page 131.
Opening Brace (a)
Specify the number of spaces used for indenting an opening brace.

Body (b)

Specify the number of additional spaces used for indenting code after an opening brace,
or a statement that continues onto a second line.

Label (c)

Specify the number of additional spaces used for indenting a label, including case labels.

Sample code

This area reflects the settings made in the text boxes for indentation. All indentations are
relative to the preceding line, statement, or other syntactic structures.

IDE Project Management and Building Guide
58 for RISC-V

The development environment ___4

External Editor options
The External Editor options are available by choosing Tools>Options.

IDE Options X

Colors and Fonts
Key Bindings Use Extemal Editor
Language Editor: | |
- Editor
Arguments | ‘
Setup Files
Syntax Feedback
Messages
Troubleshooting
Project
Source Code Control

Debugger
Stack

Cancel

Use this page to specify an external editor of your choice.

See also Using an external editor, page 34.

Use External Editor

Enables the use of an external editor.

Editor

Specify the filename and path of your external editor. A browse button is available.

Arguments

Specify any arguments to be passed to the editor.

59

Reference information on the IDE

60

Editor Setup Files options
The Editor Setup Files options are available by choosing Tools>Options.

IDE Options =

- Colors and Fonts

.. Key Bindings [Use Custom Keyword File:

- Language

= Editor

. External Editor

- Setup Files
Syntax Feedback

- Messages

Use Code Templates:
C:\Users'johana"App Data' Roaming AR Embedded Workbench'Code Templates ENU bd C]

- Troubleshooting

[#- Project

- Source Code Control
- Debugger

- Stack

oK | [Cancel

Use this page to specify setup files for the editor.

Use Custom Keyword File

Specify a text file containing keywords that you want the editor to highlight. For
information about syntax coloring, see Syntax coloring, page 136.

Use Code Templates

Specify a text file with code templates that you can use for inserting frequently used
code in your source file. For information about using code templates, see Using and
adding code templates, page 134.

IDE Project Management and Building Guide
for RISC-V

The development environment ___4

Editor Syntax Feedback options
The Editor Syntax Feedback options are available by choosing Tools>Options.

IDE Options *

- Colors and Fonts

- Key Bindings
Syrtax Feedback Level:
- Language
= Editor
‘... External Editor
Setup Files

Syntax Feedback

- Messages

- Troubleshooting

[#- Project

- Source Code Control
- Debugger

- Stack

Avbrt

Use this page to specify how much syntax feedback you want in the editor, in the form
of squiggly lines and tooltips. Syntax feedback is only available if the option Generate
browse information has been selected in the Project category of the IDE Options
dialog box.

For more information, see under Editor window, page 141.

Syntax Feedback Level
Specify the desired feedback level. Choose between:

None
The editor gives no feedback on the code in the editor windows.

All

The editor gives all available feedback on the code in the editor windows,
including purely informational feedback.

Warnings
The editor warns about syntactic problems and indicates coding errors.

Errors
The editor indicates coding errors.

61

Reference information on the IDE

Messages options
The Messages options are available by choosing Tools>Options.

IDE Options =

- Colors and Fonts

- Key Bindings
-- Language = Some dialog boxes can be suppressed
- Editar Enable Al Dialogs] by selecting a "Dont show again”

. Messages check box. Click "Enable All Dialogs”

. Troubleshooting to enable all suppressed dialog boxes again.

[#- Project

- Source Code Control
- Debugger

- Stack

oK | [Cancel

Use this page to re-enable suppressed dialog boxes.

Enable All Dialogs

Enables all dialog boxes you have suppressed by selecting a Don’t show again check
box, for example:

TarldePm =

l._\ This will terminate the debug session.

[OK] [Cancel

[7] Don't show again

IDE Project Management and Building Guide
62 for RISC-V

The development environment ___4

Troubleshooting options
The Troubleshooting options are available by choosing Tools>Options.

IDE Options =
- Colors and Fonts
.. Key Bindings Enable IDE logging (change effective after restart)
- Language Logging directory (change effective after restart):
- Editor C:\Users\johana“Documents' AR Embedded Workbench'MyLogs D
- Messages

- Troubleshooting
[#- Project
- Source Code Control

- Debugger
- Stack

oK | [Cancel

Use this page to create and save logs of IDE operations.

Note: The IDE log files can become quite large, so you should only enable logging
when asked to do so by IAR Technical Support.

Enable IDE logging

Creates log files of IDE operations. If you contact IAR Technical Support over repeated
performance issues, you might be asked to generate and submit IDE logs to help the
support engineers analyze the problem. To interpret the logs, detailed knowledge of the
internal structure of the Embedded Workbench IDE is required.

Logging directory
Specify a location for the log files.

63

Reference information on the IDE

Project options
The Project options are available by choosing Tools>Options.

IDE Options =

- Colors and Fonts

... Key Bindi
€y Bincings Stop build operation on:
- Language
- Editor Save editor windows before building:
- Messages

. Troubleshooting Save workspace and projects before

b building:
- Erieck Make before debugging:
- Source Code Control
- Debugger Reload last workspace at startup
- Stack

Play a sound after build operations

Generate browse information Browse processes: 4

[No source browser and build status updates when the IDE is not the foreground process
Enable project connections

Enable parallel build Processes: 4 { 8 cores reported by 05)

[ok][Ccancel

Use this page to set options for the Make and Build commands.

Stop build operation on
Selects when the build operation should stop. Choose between:

Never
Never stops.

Errors
Stops on errors.

Save editor windows before building

Selects when the editor windows should be saved before a build operation. Choose
between:

Never
Never saves.

Ask
Prompts before saving.

IDE Project Management and Building Guide
64 for RISC-V

The development environment ___4

Always
Always saves before Make or Build.

Save workspace and projects before building

Selects when a workspace and included projects should be saved before a build
operation. Choose between:

Never

Never saves.

Ask

Prompts before saving.

Always
Always saves before Make or Build.

Make before debugging

Selects when a Make operation should be performed as you start a debug session.
Choose between:

Never
Never performs a Make operation before a debug session.

Ask
Prompts before performing a Make operation.

Always
Always performs a Make operation before a debug session.

Reload last workspace at startup

Loads the last active workspace automatically the next time you start the [AR Embedded
Workbench IDE.

Play a sound after build operations

Plays a sound when the build operations are finished.

Generate browse information

Enables the generation of source browse information to display in the Source Browser
window, see Source Browser window, page 162. In the Browse processes text box,
specify the number of processes you want to use. Using too many processes might result
in a less responsive IDE.

65

Reference information on the IDE

No source browser and build status updates when the IDE is not the foreground process

Halts the source browser when the IDE is not the foreground process. This also means
that the build status is no longer updated in the Workspace window. This option is
useful, for example, if you are using a laptop and want to reduce power consumption.

Enable project connections

Enables the support for setting up live project connections, see Add Project Connection
dialog box, page 106.

Enable parallel build

Enables the support for parallel build. The compiler runs in several parallel processes to
better use the available cores in the CPU. In the Processes text box, specify the number

of processes you want to use. Using all available cores might result in a less responsive
IDE.

External Analyzers options

The External Analyzers options are available by choosing Tools>Options.

IDE Options (23]
- Colors and Fonts
- Key Bindings Analyzers:
- Language mahh;er; Maove Up
. alyzer
- Editor Analyzer 3 -
- Messages SE 2
- Troubleshooting
[=I- Project
¥ External Analyzers

- Source Code Control
- Debugger
- Stack

(=]
Jii
i
I
m

[ok][canca |

Use this page to add an external analyzer to the standard build toolchain. External

analyzers operate on C/C++ source code in the user project. Header files or assembler
source code files are not analyzed.

IDE Project Management and Building Guide
for RISC-V

The development environment ___4

For more information, see Getting started using external analyzers, page 31.

Analyzers

Lists the external analyzers that you have added to the standard build toolchain.

Move Up

Moves the analyzer you have selected in the list one step up. This order is reflected on
the Project menu.

Move Down

Moves the analyzer you have selected in the list one step down. This order is reflected
on the Project menu.

Add
Displays the External Analyzer dialog box where you can add a new analyzer to the
toolchain and configure the invocation of the analyzer.

Delete
Deletes the selected analyzer from the list of analyzers.

Edit

Displays the External Analyzer dialog box where you can edit the invocation details of
the selected analyzer.

67

Reference information on the IDE

68

External Analyzer dialog box

The External Analyzer dialog box is available by choosing
Tools>Options>Project>External Analyzers.

Marme: Analyzer 1

Fath: C>Program Files [x86]\MypdnalyzerT oolhbnalyzer C]

Arguments: -nc $FILE_PATH$ $COMPILER_ARGS$

Output matching patterns
Location: $FILE_NAME$:$LINE_MUMBER$
‘Warning: [¥ijwarningl?-i):

Errar: [Fi)erran] -]:

[(] 3][Cancel]

Use this dialog box to configure the invocation of the external analyzer that you want to
add to the standard build toolchain.

External analyzers operate on C/C++ source code in the user project. Header files or
assembler source code files are not analyzed.

For more information, see Getting started using external analyzers, page 31.

Name

Specify the name of the external analyzer. Note that the name must be unique.
Path

Specify the path to the analyzer’s executable file. A browse button is available.
Arguments

Specify the arguments that you want to pass to the analyzer.

Note that you can use argument variables for specifying the arguments, see Argument
variables, page 83.

IDE Project Management and Building Guide

for RISC-V

The development environment ___4

Location

Specify a regular expression used for finding source file locations. The regular
expression is applied to each output line which will appear as text in the Build Log
window. You can double-click a line that matches the regular expression you specify.

You can use the argument variables SFILE_NAMES$, $LINE_NUMBERS, and
$COLUMN_NUMBERS to identify a filename, line number, and column number,
respectively. Choose one of the predefined expressions:

\"?$FILE_NAMES$\"?:SLINE_NUMBERS$
Will, for example, match a location of the form file.c:17.

\"?$FILE_NAMES$\"? +SLINE_NUMBERS$
Will, for example, match a location of the form file.c17.

\"?$FILE_NAMES$\"?
Will, for example, match a location of the form file.c.

Alternatively, you can specify your own expression. For example, the regular expression
Msg: $FILE_NAME$ @ $LINE_NUMBERS, when applied to the output string
Msg:MySourceFile.c @ 32, will identify the file as MySourceFile.c, and the line
number as 32.

Warning
Any output line that matches this expression is tagged with the warning symbol.
For example, the expression (?i)warning (?-i) : will identify any line that contains

the string warning: (regardless of case) as a warning.

Error

Any output line that matches this expression is tagged with the error symbol. Errors have
precedence over warnings.

For example, the expression (?i)error (?-i) : will identify any line that contains the
string error: (regardless of case) as an error.

69

Reference information on the IDE

70

Source Code Control options (deprecated)
The Source Code Control options are available by choosing Tools>Options.

IDE Options

==l

- Colors and Fonts
- Key Bindings

- Language

- Editor

- Messages

£

- Troubleshooting

£

- Project
- Source Code Control

- Debugger
- Stack

SCC Options
[Keep items checked out when checking in

Save editor windows before performing
source code control commands:

[

OK

H Cancel I

Note: This is a deprecated feature which is not supported for IAR Embedded

Workbench for RISC-V.

Keep items checked out when checking in
This option is not supported by IAR Embedded Workbench for RISC-V.

Save editor windows before performing source code control commands
This option is not supported by IAR Embedded Workbench for RISC-V.

IDE Project Management and Building Guide

for RISC-V

The development environment ___4

Debugger options

The Debugger options are available by choosing Tools>Options.

IDE Options (=23

- Colors and Fonts

- When source resolves to multiple function instances

- Key Bindings

.. Language [T Automatically choose all instances
[+ Editor Step into functions STL container expansion

- Messages @ Al functi

) All functions

- Troubleshooting) Depth: 10
G- Project ~) Functions with source only

- Source Code Control Update intervals {miliseconds) Default integer format

- Stack

Memory window: 1000
[ok][Ccancel Apply Help

Use this page to configure the debugger environment.

When source resolves to multiple function instances

Some source code corresponds to multiple code instances, for example template code.
When specifying a source location in such code, for example when setting a source
breakpoint, you can make C-SPY act on all instances or a subset of instances. Use the
Automatically choose all instances option to let C-SPY act on all instances without
asking first.

Step into functions

Controls the behavior of the Step Into command. Choose between:

All functions
Makes the debugger step into all functions.

Functions with source only

Makes the debugger step only into functions for which the source code is
known. This helps you avoid stepping into library functions or entering
disassembly mode debugging.

71

Reference information on the IDE

STL container expansion

Specify how many elements are shown initially when a container value is expanded in,
for example, the Watch window.

Update intervals

Specify how often the contents of the Live Watch window and the Memory window
are updated in milliseconds.

These text boxes are only available if the C-SPY driver you are using has access to the
target system memory while executing your application.

Default integer format

Selects the default integer format in the Watch, Locals, and related windows.

Stack options

The Stack options are available by choosing Tools>Options or from the context menu
in the Stack window.

IDE Options =

- Colors and Fonts

. Key Bindings Enable graphical stack display and stack usage tracking

- Language 50 % stack usage threshold
+- Editor Wam when exceeding stack threshold

- Messages

. Troubleshaoting Wam when stack pointer is out of bounds

T PErDJECt Stack poirter(s) nat valid until program reaches:

i External Analyzers -

- Source Code Control main

- Debugger Wamings

.. Stack @ Log

) Log and alert
[Limit stack display to 50 bytes

[ok][cance |

Use this page to set options specific to the Stack window.

Enable graphical stack display and stack usage tracking

Enables the graphical stack bar available at the top of the Stack window. It also enables
detection of stack overflows. For more information about the stack bar and the
information it provides, see the C-SPY® Debugging Guide for RISC-V.

IDE Project Management and Building Guide
72 for RISC-V

The development environment ___4

% stack usage threshold
Specity the percentage of stack usage above which C-SPY should issue a
warning for stack overflow.

Warn when exceeding stack threshold

Makes C-SPY issue a warning when the stack usage exceeds the threshold
specified in the % stack usage threshold option.

Warn when stack pointer is out of bounds

Makes C-SPY issue a warning when the stack pointer is outside the stack memory range.

Stack pointer(s) not valid until program reaches

Specity a location in your application code from where you want the stack display and
verification to occur. The Stack window will not display any information about stack
usage until execution has reached this location.

By default, C-SPY will not track the stack usage before the main function. If your
application does not have a main function, for example, if it is an assembler-only
project, you should specify your own start label. If this option is selected, after each reset
C-SPY keeps a breakpoint on the given location until it is reached.

Typically, the stack pointer is set up in the system initialization code cstartup, but not
necessarily from the first instruction. Select this option to avoid incorrect warnings or
misleading stack display for this part of the application.

Warnings
Selects where warnings should be issued. Choose between:
Log
Warnings are issued in the Debug Log window.

Log and alert

Warnings are issued in the Debug Log window and as alert dialog boxes.

Limit stack display to

Limits the amount of memory displayed in the Stack window by specifying a number
of bytes, counting from the stack pointer. This can be useful if you have a big stack or
if you are only interested in the topmost part of the stack. Using this option can improve
the Stack window performance, especially if reading memory from the target system is
slow. By default, the Stack window shows the whole stack, or in other words, from the
stack pointer to the bottom of the stack. If the debugger cannot determine the memory
range for the stack, the byte limit is used even if the option is not selected.

73

Reference information on the IDE

Note: The Stack window does not affect the execution performance of your application,
but it might read a large amount of data to update the displayed information when the
execution stops.

Terminal I/O options
The Terminal 1/O options are available by choosing Tools>Options when C-SPY is

running.
IDE Options @
Eolol;s ?d Fonts Input mode
- Key Bindings @ Keyboard
- Language _
. @ Buffered
[#- Editer o
- Messages © Direct
- Troubleshooting © File
- Project @ Text
- Source Code Control Binary
- Debugger SPROJ_DIRS\TemIOInput bt
- Stack
. Terminal /O Input echoing
Log file
[Teminal 1/0 window
Encoding
(@ System
O UTF-8

[Show target reset in Terminal /0 window

[ok][canca |

Use this page to configure the C-SPY terminal I/O functionality.

Input mode

Controls how the terminal I/O input is read. Choose between:

Keyboard
Makes the input characters be read from the keyboard. Choose between:

o Buffered, Buffers input characters

o Direct, Does not buffer input characters

File
Makes the input characters be read from a file. Choose between:

o Text, Reads input characters from a text file

IDE Project Management and Building Guide
74 for RISC-V

The development environment ___4

e Binary, Reads input characters from a binary file

A browse button is available for locating the input file.

Input echoing

Determines whether to echo the input characters and where to echo them. Choose
between:

Log file

Echoes the input characters in the Terminal I/O log file. Requires that you have
enabled the option Debug>Logging>Set Terminal 1/O Log File>Enable
Terminal 1/0 log file.

Terminal I/O window
Echoes the input characters in the Terminal I/O window.

Encoding
Determines the encoding used for terminal input and output. Choose between:

System
Uses the Windows settings.

UTF-8
Uses the UTF-8 encoding.

Show target reset in Terminal /O window

Displays a message in the C-SPY Terminal I/O window when the target resets.

75

Reference information on the IDE

Configure Tools dialog box
The Configure Tools dialog box is available from the Tools menu.

Configure Tools

Menu Content:

Menu Text:

EMotepad

Command:

C:vwindows'notepad. exe
Argument:

Initial Directary:

[Redirect to Dutput ‘Window
[Prompt for Command Line

Tool Available:

[Always -]

Use this dialog box to specity a tool of your choice to add to the Tools menu, for
example Notepad:

Options...

Filename Extensions...
Configure Viewers...
Configure Custom Argument Variables...

Configure Tools...

Note: If you intend to add an external tool to the standard build toolchain, see Extending
the toolchain, page 109.

You can use variables in the arguments, which allows you to set up useful tools such as
interfacing to a command line revision control system, or running an external tool on the
selected file.

To add a command line command or batch file to the Tools menu:

I Type or browse to the cmd . exe command shell in the Command text box.

IDE Project Management and Building Guide
76 for RISC-V

The development environment ___4

2 Type the command line command or batch file name in the Argument text box as:
/C name
where name is the name of the command or batch file you want to run.

The /c option terminates the shell after execution, to allow the IDE to detect when the
tool has finished.

For an example, see Adding command line commands to the Tools menu, page 34.

New

Creates a stub for a new menu command for you to configure using this dialog box.

Delete

Removes the command selected in the Menu Content list.

Menu Content

Lists all menu commands that you have defined.

Menu Text
Specify the name of the menu command. If you add the & sign anywhere in the name,
the following letter, N in this example, will appear as the mnemonic key for this
command. The text you specify will be reflected in the Menu Content list.
Command
Specify the tool and its path, to be run when you choose the command from the menu.
A browse button is available.
Argument

Optional. Specify an argument for the command.

Initial Directory

Specify an initial working directory for the tool.

Redirect to Output window

Makes the IDE send any console output from the tool to the Tool Output page in the
message window. Tools that are launched with this option cannot receive any user input,
for instance input from the keyboard.

Tools that require user input or make special assumptions regarding the console that they
execute in, will not work at all if launched with this option.

77

Reference information on the IDE

78

Prompt for Command Line
Makes the IDE prompt for the command line argument when the command is chosen
from the Tools menu.
Tool Available
Specifies in which context the tool should be available. Choose between:
o Always

o When debugging
o When not debugging.

Configure Viewers dialog box

The Configure Viewers dialog box is available from the Tools menu.

7| Configure Viewers

Extensions Action a
txt SFILE_PATHS Cancel
html Explorer Default

Edit...
Delete
Import...

Export...

1L

This dialog box lists overrides to the default associations between the document formats
that JAR Embedded Workbench can handle and viewer applications.

Display area
This area contains these columns:

Extensions
Explicitly defined filename extensions of document formats that IAR
Embedded Workbench can handle.

Action

The viewer application that is used for opening the document type. Explorer
Default means that the default application associated with the specified type in
Windows Explorer is used.

IDE Project Management and Building Guide
for RISC-V

New

Edit

Delete

Import

Export

The development environment ___4

Displays the Edit Viewer Extensions dialog box, see Edit Viewer Extensions dialog
box, page 79.

Displays the Edit Viewer Extensions dialog box, see Edit Viewer Extensions dialog
box, page 79.

Removes the association between the selected filename extensions and the viewer
application.

Opens a file browser where you can locate and import a File Viewer Association file in
XML format. This file contains associations between document formats and viewer
applications.

Displays a standard Save As dialog box to let you save the current associations between
document formats and viewer applications in the Configure Viewers dialog box to afile
in XML format.

Edit Viewer Extensions dialog box

The Edit Viewer Extensions dialog box is available from the Configure Viewers
dialog box.

Edit Viewer Extensions

File name extensions:

.html
Cancel
Action
Built-n text editor
@) Use file explorer associations

Command line

=

Use this dialog box to specify how to open a new document type or edit the setting for
an existing document type.

79

Reference information on the IDE

File name extensions

Action

Specify the filename extension for the document type—including the separating
period (.).

Selects how to open documents with the filename extension specified in the Filename
extensions text box. Choose between:

Built-in text editor

Opens all documents of the specified type with the IAR Embedded Workbench
text editor.

Use file explorer associations

Opens all documents of the specified type with the default application
associated with the specified type in Windows Explorer.

Command line

Opens all documents of the specified type with the viewer application you type
or browse your way to. You can give any command line options you would like
to the tool, for instance, type $FILE_PATHS after the path to the viewer
application to start the viewer with the active file (in editor, project, or messages
windows).

Filename Extensions dialog box

Toolchain

The Filename Extensions dialog box is available from the Tools menu.

Filename Extensions

Taol chain
CPLINAME

Use this dialog box to customize the filename extensions recognized by the build tools.
This is useful if you have many source files with different filename extensions.

Lists the toolchains for which you have an IAR Embedded Workbench installed on your
host computer. Select the toolchain you want to customize filename extensions for.

IDE Project Management and Building Guide

80 for RISC-V

The development environment ___4

Note the * character indicates user-defined overrides. If there is no * character, factory
settings are used.

Edit

Displays the Filename Extension Overrides dialog box, see Filename Extension
Overrides dialog box, page 81.

Filename Extension Overrides dialog box

The Filename Extension Overrides dialog box is available from the Filename
Extensions dialog box.

Filename Extension Overrides

Tool Factory Setting Override 0K
Static Analyzis .CLEC.LCPpP <Mone> [Cancel |
C/C++ Compiler .CLCPP.LCC <Monex

Azzembler 579 asmmsas s <Maone

Output Converter Lout;.elf;. pre;. puff;. o <Monex Edit...
Browse Info Compiler .c.co.ocpp <Monex

Linker .0.a <Maone

Library Builder .0La <Monex

Browse Info Builder .pbi <Mones

This dialog box lists filename extensions recognized by the build tools.

Display area
This area contains these columns:

Tool
The available tools in the build chain.

Factory Setting

The filename extensions recognized by default by the build tool.

Override

The filename extensions recognized by the build tool if there are overrides to the
default setting.

Edit

Displays the Edit Filename Extensions dialog box for the selected tool.

81

Reference information on the IDE

82

Edit Filename Extensions dialog box

The Edit File Extensions dialog box is available from the Filename Extension

Overrides dialog box.

Edit Filename Extensions

Factaory setting

.CLCCLCPP
[Owveride

.CLCCLCPP

This dialog box lists the filename extensions recognized by the IDE and lets you add

new filename extensions.

Factory setting

Lists the filename extensions recognized by default.

Override

Specify the filename extensions you want to be recognized. Extensions can be separated

by commas or semicolons, and should include the leading period.

Product Info dialog box

The Product Info dialog box is available from the Help menu.

L5

Product Info (overview)

Product Version
IAR Embedded Workbench for CPUNAME 7.60.1.11216
IAR. Embedded Workbench shared components 8.0.8.4892

Copyright 2002-2017 IAR Systems AB.

S
Close

S

This dialog box lists the version number of your IAR Embedded Workbench product

installation and the shared components.

Note: The initial digit of the version number of the shared components (8 in this figure)
is reflected by the default installation directory x: \Program Files\IAR

Systems\Embedded Workbench 8.n\.

IDE Project Management and Building Guide

for RISC-V

Details

Argument variables

The development environment ___4

Opens a dialog box which lists the version numbers of the various components part of
your product installation.

You can use argument variables for paths and arguments, for example when you specify
include paths in the Options dialog box or whenever there is a need for a macro-like
expansion that depends on the current context, for example in arguments to tools. You
can use a wide range of predefined argument variables as well as create your own, see
Configure Custom Argument Variables dialog box, page 85. These are the predefined

argument variables:

Variable

Description

$COMPILER_ARGSS

$CONFIG_NAMES

$SCUR_DIRS
$CUR_LINES
$DATES

SEW_DIRS

SEXE_DIRS
SFILE_BNAMES
SFILE_BPATHS
SFILE_DIRS
SFILE_FNAMES
SFILE_PATHS
SLIST_DIRS
SOBJ_DIRS
SPROJ_DIRS
$PROJ_FNAMES

All compiler options except for the filename that is used when
compiling using the compiler. Note that this argument variable is
restricted to the Arguments text box in the External Analyzer
dialog box.

The name of the current build configuration, for example Debug or
Release.

Current directory
Current line

Today’s date, formatted according to the current locale. Note that
this might make the variable unsuited for use in file paths.

Top directory of IAR Embedded Workbench, for example
c:\Program Files\IAR Systems\Embedded Workbench
N.n

Directory for executable output

Filename without extension

Full path without extension

Directory of active file, no filename

Filename of active file without path

Full path of active file (in editor, project, or message window)
Directory for list output

Directory for object output

Project directory

Project filename without path

Table 3: Argument variables

83

Reference information on the IDE

84

Variable

Description

$PROJ_PATHS
$TARGET_DIRS
$TARGET_BNAMES
$TARGET_BPATH$S
$TARGET_FNAMES
$TARGET_PATHS

S$TOOLKIT_DIRS

SUSER_NAMES
SWS_DIRS

$_ENVVAR_S

SMY_CUSTOM_VARS

Full path of project file

Directory of primary output file

Filename without path of primary output file and without extension
Full path of primary output file without extension

Filename without path of primary output file

Full path of primary output file

Directory of the active product, for example c: \Program
Files\IAR Systems\Embedded Workbench N.n\riscwv
Your host login name

The active workspace directory (only available in the IDE, not when
using iarbuild. exe or cspybat.exe)

The Windows environment variable ENVVAR. Any name within $_
and _$ will be expanded to that system environment variable.

Your own argument variable, see Configure Custom Argument Variables
dialog box, page 85. Any name within $ and $ will be expanded to the
value you have defined.

Table 3: Argument variables (Continued)

Argument variables can also be used on some pages in the IDE Options dialog box, see

Tools menu, page 198.

IDE Project Management and Building Guide

for RISC-V

The development environment ___4

Configure Custom Argument Variables dialog box

The Configure Custom Argument Variables dialog box is available from the Tools
menu.

7| Configure Custom Argument Variables @

Workspace | Global

(=l (55 Prod A v1.6 {global) Enable Group
A_ROOT DIR = di'prod_A_L.6
A_INCLUDE_DIR = d:\prod_A_1.6%nc

=57 Prod A v2.0 (global)
A_ROOT_DIR = d:\prod_A_2.0 Add Variable...
A_INCLUDE_DIR = d:\prod_A_2.0\inc

=[] Prod B Evaluation
B_ROOT_DIR = d:\prod_B Delete
B_LIB_DIR = d:\prod_B\libs

Expand,/Collapse Al

[Hide disabled groups

[OK][Cancel]

Use this dialog box to define and edit your own custom argument variables. Typically,
this can be useful if you install a third-party product and want to specify its include
directory by using argument variables. Custom argument variables can also be used for
simplifying references to files that you want to be part of your project.

Custom argument variables have one of two different scopes:

® Workspace-local variables, which are associated with a specific workspace and can
only be seen by the workspace that was loaded when the variables were created.

® Global variables, which are available for use in all workspaces

You can organize your variables in named groups.

Workspace and Global tabs

Click the tab with the scope you want for your variable:

Workspace
o Both global and workspace-local variables are visible in the display area.
o Only workspace-local variables can be edited or removed.

o Groups of variables as well as individual variables can be added or imported
to the local level.

o Workspace-local variables are stored in the file
Workspace.custom_argvars in a specific directory, see Files for local
settings, page 179.

85

Reference information on the IDE

86

Global

o Only variables that are defined as global are visible in the display area—all
these variables can be edited or removed.

o Groups of variables as well as individual variables can be added or imported
to the global level.

o Global variables are stored in the file global.custom_argvars ina
specific directory, see Files for global settings, page 178.

Note that when you rely on custom argument variables in the build tool settings, some
of the information needed for a project to build properly might now be in a
.custom_argvars file. You should therefore consider version-controlling your custom
argument file (workspace-local and global), and whether to document the need for using
these variables.

Expand/Collapse All

Expands or collapses the view of the variables.

Hide disabled groups

Hides all groups of variables that you previously have disabled.

Enable Group / Disable Group

New Group

Add Variable

Enables or disables a group of variables that you have selected. The result differs
depending on which tab you have open:

o Workspace tab—Enabling or disabling groups will only affect the current
workspace.

e Global tab—Enabling will only affect newly created workspaces. These will inherit
the current global state as the default for the workspace.

Note: You cannot use a variable that is part of a disabled group.

Opens the New Group dialog box where you can specify a name for a new group. When
you click OK, the group is created and appears in the list of custom argument variables.

Opens the Add Variables dialog box where you can specify a name and value of a new
variable to the group you have selected. When you click OK, the variable is created and
appears in the list of custom argument variables.

Note that you can also add variables by importing previously defined variables. See
Import below.

IDE Project Management and Building Guide

for RISC-V

Edit Variable

Delete

Import

The development environment ___4

Opens the Edit Variables dialog box where you can edit the name and value of a
selected variable. When you click OK, the variable is created and appears in the list of
custom argument variables.

Deletes the selected group or variable.

Opens a file browser where you can locate a Wworkspace.custom_argvars file. The
file can contain variables already defined and associated with another workspace or be
a file created when installing a third-party product.

87

Reference information on the IDE

IDE Project Management and Building Guide
88 for RISC-V

Project management

e Introduction to managing projects
e Managing projects

e Reference information on managing projects

Introduction to managing projects
These topics are covered:
e Briefly about managing projects
e How projects are organized

o The IDE interacting with version control systems

BRIEFLY ABOUT MANAGING PROJECTS

In a large-scale development project, with hundreds of files, you must be able to
organize the files in a structure that is easily navigated and maintained by several
engineers.

The IDE comes with functions that will help you stay in control of all project modules,
for example, C or C++ source code files, assembler files, include files, and other related

89

Introduction to managing projects

modules. You create workspaces and let them contain one or several projects. Files can
be organized in file groups, and options can be set on all levels—project, group, or file.

Frolec

Files

Files

Tk

Files

.

Changes are tracked so that a request for rebuild will retranslate all required modules,
making sure that no executable files contain out-of-date modules.

These are some additional features of the IDE:

e Project templates to create a project that can be built and executed for a smooth
development startup

Hierarchical project representation

Source browser with an hierarchical symbol presentation

Options can be set globally, on groups of source files, or on individual source files

The Make command automatically detects changes and performs only the required
operations

e Project connection to set up a connection between IAR Embedded Workbench and
an external tool

o Text-based project files
Custom Build utility to expand the standard toolchain in an easy way

Command line build with the project file as input.

IDE Project Management and Building Guide
90 for RISC-V

Project management °

Navigating between project files

There are two main different ways to navigate your project files—using the Workspace
window or the Source Browser window. The Workspace window displays an
hierarchical view of the source files, dependency files, and output files and how they are
logically grouped. The Source Browser window, on the other hand, displays
information about the build configuration that is currently active in the Workspace
window. For that configuration, the Source Browser window displays a hierarchical
view of all globally defined symbols, such as variables, functions, and type definitions.
For classes, information about any base classes is also displayed.

For more information about source browsing, see Briefly about source browse
information, page 130.

HOW PROJECTS ARE ORGANIZED

The IDE allows you to organize projects in an hierarchical tree structure showing the
logical structure at a glance.

The IDE has been designed to suit the way that software development projects are
typically organized. For example, perhaps you need to develop related versions of an
application for different versions of the target hardware, and you might also want to
include debugging routines into the early versions, but not in the final application.

Versions of your applications for different target hardware will often have source files
in common, and you might want to be able to maintain only one unique copy of these
files, so that improvements are automatically carried through to each version of the
application. Perhaps you also have source files that differ between different versions of
the application, such as those dealing with hardware-dependent aspects of the
application.

In the following sections, the various levels of the hierarchy are described.

Projects and workspaces
Typically you create one or several projects, where each project can contain either:

e Source code files, which you can use for producing your embedded application or a
library. For an example where a library project has been combined with an
application project, see the example about creating and using libraries in the
tutorials.

o An externally built executable file that you want to load in C-SPY. For information
about how to load executable files built outside of the IDE, see the C-SPY®
Debugging Guide for RISC-V.

If you have several related projects, you can access and work with them simultaneously.
To achieve this, you can organize related projects in workspaces.

91

Introduction to managing projects

Each workspace you define can contain one or more projects, and each project must be
part of at least one workspace.

Consider this example: two related applications—for instance A and B—are developed,
requiring one development team each (team A and B). Because the two applications are
related, they can share parts of the source code between them. The following project
model can be applied:

o Three projects—one for each application, and one for the common source code

o Two workspaces—one for team A and one for team B.

Collecting the common sources in a library project (compiled but not linked object code)

is both convenient and efficient, to avoid having to compile it unnecessarily. This figure
illustrates this example:

=

Project for application A Project for application B

Utility
library

Library project for
common sources

Workspace for team A Om Workspace for team B Om
Project for application A Project for application B
Project for utility library Project for utility library

Projects and build configurations

Often, you need to build several versions of your project, for example, for different
debug solutions that require different settings for the linker and debugger. Another
example is when you need a separately built executable file with special debug output
for execution trace, etc. IAR Embedded Workbench lets you define multiple build
configurations for each project. In a simple case, you might need just two, called Debug
and Release, where the only differences are the options used for optimization, debug
information, and output format. In the Release configuration, the preprocessor symbol
NDEBUG is defined, which means the application will not contain any asserts.

IDE Project Management and Building Guide
92 for RISC-V

Project management °

Additional build configurations might be useful, for instance, if you intend to use the
application on different target devices. The application is the same, but hardware-related
parts of the code differ. Thus, depending on which target device you intend to build for,
you can exclude some source files from the build configuration. These build
configurations might fulfill these requirements for Project A:

Project A - Device 1:Release
Project A - Device 1:Debug

°
°
e Project A - Device 2:Release
°

Project A - Device 2:Debug

Groups

Normally, projects contain hundreds of files that are logically related. You can define
each project to contain one or more groups, in which you can collect related source files.
You can also define multiple levels of subgroups to achieve a logical hierarchy. By
default, each group is present in all build configurations of the project, but you can also
specify a group to be excluded from a particular build configuration.

Source files and their paths

Source files can be located directly under the project node or in a hierarchy of groups.
The latter is convenient if the amount of files makes the project difficult to survey. By
default, each file is present in all build configurations of the project, but you can also
specify a file to be excluded from a particular build configuration.

Only the files that are part of a build configuration will actually be built and linked into
the output code.

Once a project has been successfully built, all include files and output files are displayed
in the structure below the source file that included or generated them.

Note: The settings for a build configuration can affect which include files that are used
during the compilation of a source file. This means that the set of include files associated
with the source file after compilation can differ between the build configurations.

The IDE supports relative source file paths to a certain degree, for:

® Project files

Paths to files part of the project file are relative if they are located on the same drive.
The path is relative either to $PROJ_DIRS or $EW_DIRS. The argument variable
$EW_DIRS is only used if the path refers to a file located in a subdirectory of
$EW_DIRS and the distance from $EW_DIRS is shorter than the distance from
$PROJ_DIRS.

93

Managing projects

94

Paths to files that are part of the project file are absolute if the files are located on
different drives.

o Workspace files
For files located on the same drive as the workspace file, the path is relative to
$PROJ_DIRS.
For files located on another drive than the workspace file, the path is absolute.

® Debug files

If your debug image file contains debug information, any paths in the file that refer
to source files are absolute.

Drag and drop

You can easily drag individual source files and project files from Windows Explorer to
the Workspace window. Source files dropped on a group are added to that group.
Source files dropped outside the project tree—on the Workspace window
background—are added to the active project.

THE IDE INTERACTING WITH VERSION CONTROL SYSTEMS

The IAR Embedded Workbench IDE can identify and access any files that are in a
Subversion (SVN) working copy, see Interacting with Subversion, page 97.

From within the IDE you can connect an IAR Embedded Workbench project to an
external SVN project, and perform some of the most commonly used operations.

To connect your IAR Embedded Workbench project to a version control system, you
should be familiar with the version control client application you are using.

Note: Some of the windows and dialog boxes that appear when you work with version
control in the IDE originate from the version control system and are not described in the
documentation from IAR. For information about details in the client application, refer
to the documentation supplied with that application.

Note: Different version control systems use different terminology even for some of the
most basic concepts involved. You must keep this in mind when you read the
descriptions of the interaction between the IDE and the version control system.

Managing projects

These tasks are covered:
o Creating and managing a workspace and its projects
o Viewing the workspace and its projects

e Interacting with Subversion

IDE Project Management and Building Guide

for RISC-V

Project management °

CREATING AND MANAGING A WORKSPACE AND ITS
PROJECTS

This is a description of the overall procedure for creating the workspace, projects,
groups, files, and build configurations. For a detailed step-by-step example, see
Creating an application project in the tutorials.

The steps involved for creating and managing a workspace and its contents are:

An empty Workspace window appears,
where you collect your projects, groups,
and files.

Create a
workspace

Add projects to the
workspace

Create
groups

You can base a new project on a
template project with preconfigured
settings. Template projects are available
for C/C++ applications, assembler
applications, and library projects.

A group of files can be added either to
the project’s top node or to another
group within the project.

Add files
to the
project

Create new build
configurations
Exlude groups and files
from a build configuration
Remove items from
a project

Note: You do not have to use the same toolchain for the new build configuration as for
other build configurations in the same project, and it might not be necessary for you to
perform all of these steps and not in this order.

A file can be added either to the
project’s top node or to a group within
the project.

By default, each project you add has two
build configurations called Debug and
Release. You can base a new configuration
on one of these.

The icon that indicates the excluded
group or file will change to white in the
Workspace window.

The File menu provides commands for creating workspaces. The Project menu
provides commands for creating projects, adding files to a project, creating groups,

95

Managing projects

96

specifying project options, and running the IAR development tools on the current
projects.
VIEWING THE WORKSPACE AND ITS PROJECTS

The Workspace window is where you access your projects and files during the
application development.

To choose which project you want to view, click its tab at the bottom of the Workspace
window.

Waorkspace * O X
Debug -
Files

= @ pre Choosea build ! .
el cenfiguration

| = ot

| — B Tutarh

| L— [Utiite Choosethe |
Utilities.c projectto |
B Output be displayed |

Overview ”Ei;-ct‘l_ project2 |_ R

For each file that has been built, an output folder icon appears, containing generated
files, such as object files and list files. The latter is only generated if the list file option
is enabled. The output folder related to the project node contains generated files related
to the whole project, such as the executable file and the linker map file (if the list file
option is enabled).

Also, any included header files will appear, showing dependencies at a glance.

To display the project with a different build configuration, choose that build
configuration from the drop-down list at the top of the Workspace window.

The project and build configuration you have selected are displayed highlighted in the
Workspace window. It is the project and build configuration that you select from the
drop-down list that are built when you build your application.

To display an overview of all projects in the workspace, click the Overview tab at the
bottom of the Workspace window.

IDE Project Management and Building Guide

for RISC-V

Project management °

An overview of all project members is displayed.

Waorkspace * O X
project] - Debug -
Files i+
B Cltutarials
-2 @ project! - Debug v

| A Tuierc

| [utilities

| -Qutput Current

@ project? - e F

L@ @ project? selection in the
.p:2!2§4: configuration
.Ero}edE— drop-down list
@ tutor_library - Debug

| S—
LU S S RS

| Overview project] | proiect2| project3[4 [+

The current selection in the Build Configuration drop-down list is also highlighted
when an overview of the workspace is displayed.

INTERACTING WITH SUBVERSION

The version control integration in [AR Embedded Workbench allows you to
conveniently perform some of the most common Subversion operations directly from
within the IDE, using the client applications svn. exe and TortoiseProc.exe.

To connect an IAR Embedded Workbench project to a Subversion system:
In the Subversion client application, set up a Subversion working copy.
In the IDE, connect your application project to the Subversion working copy.

To set up a Subversion working copy:

To use the Subversion integration in the IDE, make sure that svn. exe and
TortoiseProc.exe are in your path.

Check out a working copy from a Subversion repository.

The files that constitute your project do not have to come from the same working copy—
all files in the project are treated individually. However, note that TortoiseProc.exe
does not allow you to simultaneously, for example, check in files coming from different
repositories.

To connect application projects to the Subversion working copy:

In the Workspace window, select the project for which you have created a Subversion
working copy.

97

Reference information on managing projects

2 From the Project menu, choose Version Control System>Connect Project to
Subversion. This command is also available from the context menu that appears when
you right-click in the Workspace window.

For more information about the commands available for accessing the Subversion
working copy, see Version Control System menu for Subversion, page 106.

Viewing the Subversion states

When your IAR Embedded Workbench project has been connected to the Subversion
working copy, a column that contains status information for version control will appear
in the Workspace window. Various icons are displayed, where each icon reflects the
Subversion state, see Subversion states, page 108.

Reference information on managing projects
Reference information about:
Workspace window, page 99
Create New Project dialog box, page 103
Configurations for project dialog box, page 104

Add Project Connection dialog box, page 106

°

°

°

o New Configuration dialog box, page 105

°

e Version Control System menu for Subversion, page 106
°

Subversion states, page 108

IDE Project Management and Building Guide
98 for RISC-V

Project management °

Workspace window
The Workspace window is available from the View menu.
[Column that contains -

informatien abeout
option overrides

Workspace \ v 0 X

T [proiect‘l - Debug . -

Configuration
drop-down menu

Column that contains
source code control
status infermation

lWorkspace }

V

A Utilities.c
e | B Cutput

Current @ project? - Debug
project @ project3- Debug
- @ projectd - Debug
@ projects - Debug
@ tutor_library - Debug

LR SR S S

Tabs for choosing
workspace display |

T i Overview project] | proiect2| project3 |_ o

Use this window to access your projects and files during the application development.

Drop-down list

At the top of the window there is a drop-down list where you can choose a build
configuration to display in the window for a specific project.

The display area

This area contains up to three columns.

929

Reference information on managing projects

The Files column displays the name of the current workspace and a tree representation

of the projects, groups and files included in the workspace. One or more of these icons
are displayed:

m Workspace
Project
Project with multi-file compilation

Group of files

Group excluded from the build

Group of files, part of multi-file compilation

Group of files, part of multi-file compilation, but excluded from the build
Object file or library

Assembler source file

C source file

C++ source file

FEE D B

Source file excluded from the build

Header file

Text file

=1 HTML text file

Control file, for example the linker configuration file

IDE internal file
[) Otherfile
ﬁ The column that contains status information about option overrides can have one of

three icons for each level in the project:

Blank There are no settings/overrides for this file/group.
Black check mark There are local settings/overrides for this file/group.

Red check mark There are local settings/overrides for this file/group, but they are
either identical to the inherited settings or they are ignored
because you use multi-file compilation, which means that the
overrides are not needed.

IDE Project Management and Building Guide
100 for RISC-V

N

Context menu

Project management °

The column contains status information about version control, if this is enabled. For
information about the various icons, see Subversion states, page 108.

Use the tabs at the bottom of the window to choose which project to display.
Alternatively, you can choose to display an overview of the entire workspace.

For more information about project management and using the Workspace window, see
the Introduction to managing projects, page 89.

This context menu is available:
Options...

Make
Compile
Rebuild All

Clean

C-STAT Static Analysis 3
Stop Build

Add 2

Remove

Rename...
Version Control System 3

Open Containing Folder...

File Properties...

Set as Active

These commands are available:

Options
Displays a dialog box where you can set options for each build tool for the
selected item in the Workspace window, for example to exclude it from the
build. You can set options for the entire project, for a group of files, or for an
individual file. See Setting project options using the Options dialog box, page
111.

Make

Brings the current target up to date by compiling, assembling, and linking only
the files that have changed since the last build.

101

Reference information on managing projects

Compile
Compiles or assembles the currently active file as appropriate. You can choose
the file either by selecting it in the Workspace window, or by selecting the
editor window containing the file you want to compile.

Rebuild All
Recompiles and relinks all files in the selected build configuration.

Clean

Deletes intermediate files.

C-STAT Static Analysis>Analyze Project
Makes C-STAT analyze the selected project. For more information about
C-STAT, see the C-STAT® Static Analysis Guide.

C-STAT Static Analysis>Analyze File(s)

Makes C-STAT analyze the selected file(s). For more information about
C-STAT, see the C-STAT® Static Analysis Guide.

C-STAT Static Analysis>Clear Analysis Results

Makes C-STAT clear the analysis information for previously performed
analyses. For more information about C-STAT, see the C-STAT® Static Analysis
Guide.

C-STAT Static Analysis>Generate HTML Summary
Shows a standard Save As dialog box where you can select the destination for a
report summary in HTML and then create it. For more information about
C-STAT, see the C-STAT® Static Analysis Guide.

C-STAT Static Analysis>Generate Full HTML Report
Shows a standard Save As dialog box where you can select the destination for a
full report in HTML and create it. For more information about C-STAT, see the
C-STAT® Static Analysis Guide.

Stop Build
Stops the current build operation.

Add>Add Files
Displays a dialog box where you can add files to the project.

Add>Add filename

Adds the indicated file to the project. This command is only available if there is
an open file in the editor.

IDE Project Management and Building Guide

102 for RISC-V

Project management °

Add>Add Group
Displays the Add Group dialog box where you can add new groups to the
project. For more information about groups, see Groups, page 93.
Remove
Removes selected items from the Workspace window.

Rename
Displays the Rename Group dialog box where you can rename a group. For
more information about groups, see Groups, page 93.

Version Control System
Opens a submenu with commands for source code control, see Version Control
System menu for Subversion, page 106.

Open Containing Folder
Opens the File Explorer that displays the directory where the selected file
resides.

File Properties
Displays a standard File Properties dialog box for the selected file.

Set as Active

Sets the selected project in the overview display to be the active project. It is the
active project that will be built when the Make command is executed.

Create New Project dialog box
The Create New Project dialog box is available from the Project menu.
Create Mew Project @

Tool chain: [CPUNAME -

Project templates:

- 21 Emply project
By Asm

Drescription:
Creates an empty project.

(0]3] | Cancel

103

Reference information on managing projects

Tool chain

Use this dialog box to create a new project based on a template project. Template
projects are available for C/C++ applications, assembler applications, and library
projects. You can also create your own template projects.

Selects the target to build for. If you have several versions of AR Embedded Workbench
for different targets installed on your host computer, the drop-down list might contain

some or all of these targets.

Project templates

Description

Select a template to base the new project on, from this list of available template projects.

A description of the currently selected template.

Configurations for project dialog box

Configurations

New

The Configurations for project dialog box is available by choosing Project>Edit

Configurations.
Configurations for "projectl” @
Configurations:
Release Mew..

Remove

[Drag to order)

Use this dialog box to define new build configurations for the selected project—either
entirely new, or based on a previous project.

Lists existing configurations, which can be used as templates for new configurations.

Displays a dialog box where you can define new build configurations, see New

Configuration dialog box, page 105.

IDE Project Management and Building Guide

104 for RISC-V

Remove

Project management °

Removes the configuration that is selected in the Configurations list.

New Configuration dialog box

Name

Tool chain

The New Configuration dialog box is available by clicking New in the Configurations
for project dialog box.

==l

MNew Configuration

MewConfig PR —
Cancel

Tool chain:

[CPUNAME -

Based on configuration:
| Debug

Factory settings
@ Debug

Release

Use this dialog box to define new build configurations—either entirely new, or based on
any currently defined configuration.

Type the name of the build configuration.

Specify the target to build for. If you have several versions of IAR Embedded
Workbench for different targets installed on your host computer, the drop-down list
might contain some or all of these targets.

Based on configuration

Factory settings

Selects a currently defined build configuration to base the new configuration on. The
new configuration will inherit the project settings and information about the factory
settings from the old configuration. If you select None, the new configuration will be
based strictly on the factory settings.

Select the default factory settings that you want to apply to your new build
configuration. These factory settings will be used by your project if you click the
Factory Settings button in the Options dialog box.

105

Reference information on managing projects

Choose between:
Debug, Factory settings suitable for a debug build configuration.

Release, Factory settings suitable for a release build configuration.

Add Project Connection dialog box

The Add Project Connection dialog box is available from the Project menu.

Add Project Connection &J

Cannect using: | Processor Expert ~ |

Use this dialog box to set up a project connection between IAR Embedded Workbench
and an external tool. This can, for example, be useful if you want IAR Embedded
Workbench to build source code files provided by the external tool. The source files will
automatically be added to your project. If the set of files changes, the new set of files
will automatically be used when the project is built in IAR Embedded Workbench.

To disable support for this, see Project options, page 64.

Connect using

Chooses the external tool that you want to set up a connection with.

OK

Displays a dialog box where you specify the connection.

Version Control System menu for Subversion

The Version Control System submenu is available from the Project menu and from the
context menu in the Workspace window.

Comrait...

Revert...
Update. ..
Diff...

Log...
Properties...

Refresh

IDE Project Management and Building Guide
106 for RISC-V

Project management °

For more information about interacting with an external version control system, see The
IDE interacting with version control systems, page 94.

Menu commands

These commands are available for Subversion:

Commit
Displays Tortoise’s Commit dialog box for the selected file(s).

Add
Displays Tortoise’s Add dialog box for the selected file(s).

Revert
Displays Tortoise’s Revert dialog box for the selected file(s).

Update

Opens Tortoise’s Update window for the selected file(s).
Diff

Opens Tortoise’s Diff window for the selected file(s).

Log
Opens Tortoise’s Log window for the selected file(s).

Properties
Displays information available in the version control system for the selected file.

Refresh

Updates the version control system display status for all files that are part of the
project. This command is always enabled for all projects under the version
control system.

Connect Project to Subversion

Checks whether svn.exe and TortoiseProc.exe are in the path and then
enables the connection between the IAR Embedded Workbench project and an
existing checked-out working copy. After this connection has been created, a
special column that contains status information appears in the Workspace
window. Note that you must check out the source files from outside the IDE.

Disconnect Project from Subversion

Removes the connection between the selected IAR Embedded Workbench
project and Subversion. The column in the Workspace window that contains
SVN status information will no longer be visible for that project.

107

Reference information on managing projects

108

Subversion states

Each Subversion-controlled file can be in one of several states.

A (blue A) Added.

(red C) Conflicted.

D (red D) Deleted.

1 (red I) Ignored.

D (blank) Not modified.

] @edM) Modified.

@ (redR) Replaced.

Y (gray X) An unversioned directory created by an external definition.

<1 (gray question Item is not under version control.

- mark)

! (black exclamation Item is missing—removed by a non-SVN command—or
mark) incomplete.

g (redtilde) Item obstructed by an item of a different type.

Note: The version control system in the JAR Embedded Workbench IDE depends on the
information provided by Subversion. If Subversion provides incorrect or incomplete
information about the states, the IDE might display incorrect symbols.

IDE Project Management and Building Guide

for RISC-V

Building projects
e Introduction to building projects
e Building a project

e Reference information on building

Introduction to building projects

These topics are covered:

e Briefly about building a project

e Extending the toolchain

BRIEFLY ABOUT BUILDING A PROJECT
The build process consists of these steps:

e Setting project options using the Options dialog box
e Building the project, either an application project or a library project

o Correcting any errors detected during the build procedure.

To make the build process more efficient, you can use the Batch Build command. This
gives you the possibility to perform several builds in one operation. If necessary, you can
also specity pre-build and post-build actions.

In addition to using the IAR Embedded Workbench IDE to build projects, you can also
use the command line utility iarbuild.exe.

For examples of building application and library projects, see the tutorials in the
Information Center, under Project Explorer. For more information about building
library projects, see the JAR C/C++ Development Guide for RISC-V'.

EXTENDING THE TOOLCHAIN

IAR Embedded Workbench provides a feature—Custom Build—which lets you extend
the standard toolchain. This feature is used for executing external tools (not provided by
IAR). You can make these tools execute each time specific files in your project have
changed.

If you specify custom build options on the Custom tool configuration page, the build
commands treat the external tool and its associated files in the same way as the standard
tools within the JAR Embedded Workbench IDE and their associated files. The relation

109

Building a project

110

between the external tool and its input files and generated output files is similar to the
relation between the C/C++ Compiler, c files, h files, and a files. For more information
about custom build options, see Custom build options, page 241.

You specify filename extensions of the files used as input to the external tool. If the input
file has changed since you last built your project, the external tool is executed—just as
the compiler executes if a c file has changed. In the same way, any changes in additional
input files (for instance, include files) are detected.

You must specify the name of the external tool. You can also specify any necessary
command line options needed by the external tool, and the name of the output files
generated by the external tool. Note that you can use argument variables for some of the
file information.

You can specity custom build options to any level in the project tree. The options you
specify are inherited by any sub-level in the project tree.

Tools that can be added to the toolchain

Some examples of external tools, or types of tools, that you can add to the IAR
Embedded Workbench toolchain are:
o Tools that generate files from a specification, such as Lex and YACC

o Tools that convert binary files—for example files that contain bitmap images or
audio data—to a table of data in an assembler or C source file. This data can then be
compiled and linked together with the rest of your application.

For more information, see Adding an external tool, page 117.

Building a project

These tasks are covered:

Setting project options using the Options dialog box
Building your project

Correcting errors found during build

Using pre- and post-build actions

Building multiple configurations in a batch

Building from the command line

Adding an external tool

IDE Project Management and Building Guide

for RISC-V

Building projects °

SETTING PROJECT OPTIONS USING THE OPTIONS DIALOG
BOX

Before you can set project options, choose a build configuration.

@ IAR Embedded Workbench IDE
File Edit View Project _Simulatar Tanle Windowe Healn
MR =X Choose a build configuration _J:

‘Waorkspace v X |Tutor.c |Ut|'||'t|'es.c x

‘Debug E v'
/k

2 @ project! - Debug * v 5
e BTutore *
B Output *

Capyrigh

|

| F— BTutarh
| L— Mutilities.h
[Utilities o

3 Output

By default, the IDE creates two build configurations when a project is created—Debug
and Release. Every build configuration has its own project settings, which are
independent of the other configurations.

For example, a configuration that is used for debugging would not be highly optimized,
and would produce output that suits the debugging. Conversely, a configuration for

building the final application would be highly optimized, and produce output that suits
a flash or PROM programmer.

Building a project

2 Decide which level you want to set the options on—the entire project, groups of files,

or for an individual file. Select that level in the Workspace window (in this example,

the project level) and choose Options from the context menu to display the Options
dialog box.

@]AR Embedded Workbench IDE = |
File Edit WView Project Simulator Tools Window Help

DR = LE0 OC sl C
Workspace v 31X |Tutor.c |Ut|'||'t|'es.c x|
Debug -

) =l /*

Files fd * Copyright (c) 2
=] Jproject! -

I—EJ [Tutor.c Options... %
| B Output Mok

| — B Tutarh ake

| L— R utilities h Compile

[Utilities.c Rebuild Al

Note: There is one important restriction on setting options. If you set an option on group

or file level (group or file level override), no options on higher levels that operate on files
will affect that group or file.

The Options dialog box provides options for the build tools—a category for each build
tool.

Options for node "projectl” @

Build tool categories

Category:

Factory Settings
[Muti-ile ©

Pages with options for each category J

General Options
Static Analysis

Assembler

Disce

Preprocessor | Diagnostics I Encodings I Extra Options |

Output Converter Language 1 | Language 2 I Code I — I Output |
Custom Build

Build Actions Language Lanm=n -

Linker @

Debugger .

Options in the General Options, Linker, and Debugger categories can only be set on
project level because they affect the entire build configuration, and cannot be set for
individual groups and files. However, the options in the other categories can be set for
the project, a group of files, or an individual file.

IDE Project Management and Building Guide

112 for RISC-V

Building projects

4 Select a category from the Category list to select which building tool to set options for.
Which tools that are available in the Category list depends on which tools are included

in your product. When you select a category, one or more pages containing options for
that component are displayed.

5 Click the tab that corresponds to the type of options you want to view or change. Make
the appropriate settings. Some hints:

o To override project level settings, select the required item—for instance a specific
group of files or an individual file—and select the option Override inherited
settings.

© 14R Embedded Workbench =
File Edit Wiew _ dow Help
= I. Select the item that you ~
‘0O BB want to override settings L Qo 5 = L >0 Re
Waorkspace for, right-click, and choose Fytilities.c x |
Diebug Optionsizomtielcan text 2, Select Override inherited
— it 1 ~ settings and then make your
Files

- " Copvright (z) 2 special settings, for example
= @ project! - Debug * * choosing a higher optimization
H O

level
B Output Options for node "Tutor.c’

| F— BTutarh .
| L [Rutilities.h [] Exclude fram build
gtlltmets.c Eatenor) [V| Owerride inherited settings
utpu
i Static Analysis
Runtime Checking
C,C++ Compiler
Custom Build

Diagnostics
Language 2

Language 1

[Optimiza

Language Language confom

The new settings will affect all members of that group, that is, files and any groups

of files. Your local overrides are indicated with a checkmark in a separate column in
the Workspace window.

113

Building a project

114

o Use the Extra Options page to specify options that are only available as command
line options and are not in the IDE.

Options for node "projectl” @

Category: Factary Settings

General Options [T Multifile: Compilation
Static Analysis Discard Unused Publics
Runtime Checking
[Langunge 1 | Langusge2 | Code | Optmsons Lo |
Assembler | List I Preprocessor I Diagnostics I Encodings | Extra Options |
Qutput Converter
Custom Build Use command line options
Build Actions % 1 Opti .
Linker Command line options: (one per line)
Debugger —do_explicit_zero_opt_in_named_sections -
Tet/TTAGjet SRR
b —macro_positions_in_diagnostics
Simulator
Third-Party Driver

o To restore all settings to the default factory settings, click the Factory Settings
button, which is available for all categories except General Options and Custom
Build. Note that two sets of factory settings are available—Debug and Release.
Which one is used depends on your build configuration, see New Configuration
dialog box, page 105.

e If you add a source file with a non-recognized filename extension to your project,
you cannot set options on that source file. However, you can add support for
additional filename extensions. For more information, see Filename Extensions
dialog box, page 80.

BUILDING YOUR PROJECT
You can build your project either as an application project or a library project.

You have access to the build commands both from the Project menu and from the
context menu that appears if you right-click an item in the Workspace window.

To build your project as an application project, choose one of the three build commands
Make, Compile, and Rebuild All. They will run in the background, so you can continue
editing or working with the IDE while your project is being built.

To build your project as a library project, choose Project>Options>General
Options>Output>Output file>Library before you build your project. Then, Linker is
replaced by Library Builder in the Category list in the Options dialog box, and the
result of the build will be a library. For an example, see the tutorials.

IDE Project Management and Building Guide

for RISC-V

Building projects °

For more information, see Project menu, page 193.

CORRECTING ERRORS FOUND DURING BUILD
Error messages are displayed in the Build message window.

To specify the level of output to the Build message window:
Right-click in the Build message window to open the context menu.

From the context menu, select the level of output you want—From All, which shows
all messages, including compiler and linker information, to Errors, which only shows
errors, but not warnings or other messages.

If your source code contains errors, you can jump directly to the correct position in the
appropriate source file by double-clicking the error message in the error listing in the
Build window, or selecting the error and pressing Enter.

After you have resolved any problems reported during the build process and rebuilt the
project, you can directly start debugging the resulting code at the source level.

For more information about the Build message window, see Build window, page 120.

USING PRE- AND POST-BUILD ACTIONS

If you find it useful, you can specify build actions that you want to occur before, during,
or after the build. The Project>Options>Build Actions options let you specify the
required actions.

For more information about the build actions options, see Build actions options, page
243.
Using a build action for time stamping

You can use a pre-build action to embed a time stamp for the build in the resulting binary
file. Follow these steps:

Create a dedicated time stamp file, for example, timestamp . c, and add it to your
project.

In this source file, use the preprocessor macros __TIME__ and __DATE__ to initialize
a string variable.

Choose Project>Options>Build Actions to open the Build Actions Configuration
page.
Click New to display the New Build Action dialog box.

In the Command line text field, specify this command line:

del "SOBJ_DIRS\timestamp.a"

115

Building a project

116

This command removes the timestamp. a object file.

Alternatively, you can use the open source command line utility touch for this purpose
(or any other suitable utility that updates the modification time of the source file). For
example:

touch $PROJ_DIRS\timestamp.c

Set the Build order to Run after linking and click OK.

Every time you build the project, timestamp . c will be recompiled and the correct
timestamp will end up in the binary file.

Using a build action to copy files

You can use a build action to automatically copy files from a remote location, such as a
network drive. Follow these steps:

Choose Project>Options>Build Actions to open the Build Actions Configuration
page.

Click New to display the New Build Action dialog box.

In the Command line text field, specify, for example, this command line:

copy \\my-network-drive\remotefile.c localcopy.c

This command copies the file from the network drive to your project directory.

In the Output files box, specify localcopy.c.

In the Input files box, specify \\my-network-drive\remotefile.c.

Let the Build order setting remain Automatic (based on input and output), and click
OK.

Every time you use the Make command, and 1ocalcopy.c does not exist or is older
than remotefile. c, the build action will copy the file from the network drive to your
project directory.

BUILDING MULTIPLE CONFIGURATIONS IN A BATCH

Use the batch build feature when you want to build more than one configuration at once.
A batch is an ordered list of build configurations. The Batch Build dialog box—
available from the Project menu—Ilets you create, modify, and build batches of
configurations.

For workspaces that contain several configurations, it is convenient to define one or
more different batches. Instead of building the entire workspace, you can only build the
appropriate build configurations, for instance Release or Debug configurations.

IDE Project Management and Building Guide

for RISC-V

Building projects °

For more information about the Batch Build dialog box, see Batch Build dialog box,
page 122.

BUILDING FROM THE COMMAND LINE

To build the project from the command line, use the JAR Command Line Build Utility
(iarbuild.exe)located in the common\bin directory. Typically, this can be useful for
automating your testing for continuous integration.

As input you use the project file, and the invocation syntax is:
iarbuild project.ewp [opmode] configl,config2,,...] | "k [options]

For reference information about the invocation syntax, see iarbuild.exe—the IAR
Command Line Build Utility, page 124.

ADDING AN EXTERNAL TOOL

The following example demonstrates how to add the tool Flex to the toolchain. The
same procedure can also be used for other tools.

In the example, Flex takes the file myFile. lex as input. The two files myFile.c and
myFile.h are generated as output.

Add the file you want to work with to your project, for example myFile.lex.

Select this file in the Workspace window and choose Project>Options. Select
Custom Build from the list of categories.

In the Filename extensions field, type the filename extension . lex. Remember to
specify the leading period (.).

In the Command line field, type the command line for executing the external tool, for
example:

flex S$FILE_PATHS -o$FILE_BNAMES.c
During the build process, this command line is expanded to:
flex myFile.lex -omyFile.c

Note the usage of argument variables and specifically the use of $FILE_BNAME$ which
gives the base name of the input file, in this example appended with the ¢ extension to
provide a C source file in the same directory as the input file foo. lex. For more
information about these variables, see Argument variables, page 83.

In the Output files field, describe the output files that are relevant for the build. In this
example, the tool Flex would generate two files—one source file and one header file.
The text in the Output files text box for these two files would look like this:

17

Reference information on building

SFILE_BPATHS.C
SFILE_BPATHS.h

6 If the external tool uses any additional files during the build, these should be added in
the Additional input files field, for instance:

$TOOLKIT_DIR$\inc\stdio.h

This is important, because if the dependency files change, the conditions will no longer
be the same and the need for a rebuild is detected.

7 Click OK.

8 To build your application, choose Project>Make.

Reference information on building
Reference information about:

Options dialog box, page 119

Build window, page 120

Batch Build dialog box, page 122

Edit Batch Build dialog box, page 123

iarbuild.exe—the IAR Command Line Build Utility, page 124

IDE Project Management and Building Guide
118 for RISC-V

Building projects °

Options dialog box

The Options dialog box is available from the Project menu.

Options for node "projectl” @

Category:

(Genersl optons |

Static Analysis
C/C++ Compiler

Jink/1-Trace

Executables/libraries:

Assembler Library Options 1 Library Options 2 Stack/Heap |
Output Converter Output | Library Configuration |
Custom Build)
Build Actions O%rtput file
Linker @ Executable
Debugger () Library

Simulator

I4et Qutput directories

project 1" DebugExe
Object files:
project 1%DebughObj

List files:
project 1%Debug’List

[ok] [Cancel

Use this dialog box to specify your project settings.

See also Setting project options using the Options dialog box, page 111.

Category
Selects the build tool you want to set options for. The available categories will depend
on the tools installed in your IAR Embedded Workbench IDE, and will typically
include:
o General options

e Static Analysis, see the C-STAT® Static Analysis Guide for more information about
these options

C/C++ Compiler
Assembler

Output Converter, options for converting ELF output to Motorola, Intel-standard, or
other simple formats, see Qutput converter options, page 239.

o Custom build, options for extending the toolchain

19

Reference information on building

120

Factory Settings

Build window

Build Actions, options for pre-build and post-build actions

Linker, available for application projects but not for library projects

Library builder, available for library projects but not for application projects
Debugger

Simulator

C-SPY hardware drivers, options specific to additional hardware debuggers.

Selecting a category displays one or more pages of options for that component of the
IDE.

Restores all settings to the default factory settings. Note that this option is not available
for all categories.

The Build window is available by choosing View>Messages.

Build * O X
Messages File Line =
Tutar.c

A\ Warning[Pe0b4]: declaration does not declare amthing CAProgram File. A\Tutarc 17

Q Errar[Pe0z0]: identifier "call_count" is undefined CAProgram File. \Tutorc 24

Q Error[Pe0z0]: identifier "call_count" is undefined CAProgram File. \Tutorc 35

Q Error[Pe0z0]: identifier "call_count" is undefined CAProgram File. 4\ Tutorc 45
Dane. 3 error(s). 1 warning(s)

| Buitd | Debug Log |

This window displays the messages generated when building a build configuration.
When opened, the window is, by default, grouped together with the other message
windows. Double-click a message in the Build window to open the appropriate file for
editing, with the insertion point at the correct position.

IDE Project Management and Building Guide

for RISC-V

Building projects °

Context menu

This context menu is available:
Filter Level:
All
Messages
Warnings

Errors

Copy
Select All

Clear All

Live Log to File 3

These commands are available:
All

Shows all messages, including compiler and linker information.

Messages

Shows all messages.
Warnings

Shows warnings and errors.

Errors

Shows errors only.

Copy
Copies the contents of the window.

Select All

Selects the contents of the window.
Clear All

Deletes the contents of the window.

Live Log to File

Displays a submenu with commands for writing the build messages to a log file
and setting filter levels for the log.

121

Reference information on building

Batch Build dialog box
The Batch Build dialog box is available by choosing Project>Batch build.

Batch Build

Batches:

[MBatch] e
Edit...

Delete

Cloze

b Fed |

Cancel

Build

[Make | [Cean | [Febuidan |

This dialog box lists all defined batches of build configurations. For more information,
see Building multiple configurations in a batch, page 116.

Batches
Select the batch you want to build from this list of currently defined batches of build
configurations.
Build
Give the build command you want to execute:
o Make
o Clean
o Rebuild All
New
Displays the Edit Batch Build dialog box, where you can define new batches of build
configurations, see Edit Batch Build dialog box, page 123.
Edit
Displays the Edit Batch Build dialog box, where you can edit existing batches of build
configurations.
Delete

Removes the selected batch.

IDE Project Management and Building Guide
122 for RISC-V

Building projects °

Edit Batch Build dialog box
The Edit Batch Build dialog box is available from the Batch Build dialog box.

Edit Batch Build =

Mame

Available configurations Configurations to build
project] - Debug
project] - Release
project? - Debug
project? - Release

e
v
v

jaia

[Drag to order)

[(] 3]l Cancel I

Use this dialog box to create new batches of build configurations, and edit already
existing batches.

Name

Type a name for a batch that you are creating, or change the existing name (if you wish)
for a batch that you are editing.

Available configurations

Select the configurations you want to move to be included in the batch you are creating
or editing, from this list of all build configurations that belong to the workspace.

To move a build configuration from the Available configurations list to the
Configurations to build list, use the arrow buttons.

Configurations to build

Lists the build configurations that will be included in the batch you are creating or

editing. Drag the build configurations up and down to set the order between the
configurations.

123

Reference information on building

124

iarbuild.exe—the IAR Command Line Build Utility

-build

The IAR Command Line Build Utility (iarbuild.exe) is located in the common\bin
directory.

As input you use the project file, and the invocation syntax is:
iarbuild project.ewp [opmode] configl,config2,,...]1|"*" [options]
These are the possible parameters:

Parameter Description

project.ewp Your IAR Embedded Workbench project file.

opmode One of these operating modes (see descriptions below the table):
-build
-clean
-cstat_analyze
-cstat_clean
-cstat_cmds
-cstat_report
-jsondb
-make (default)
-ninja

config|"*" config, the name of a configuration you want to build, either one of the
predefined configurations Debug or Release or a name that you define
yourself. For more information, see Projects and build configurations, page 92.
* (wild card character), the operation mode commands will process all
configurations defined in the project. (The quote characters can be omitted
under Microsoft Windows.)

options One or more of these additional options (see descriptions below the table):
-log type
-output filename
-parallel number
-tool type
-varfile filename

Table 4: iarbuild.exe command line options

If you run the application from a command shell without specifying a project file, you
will get a sign-on message describing available parameters and their syntax.

If the build process was successful, the IAR Command Line Build Utility returns 0.
Otherwise it returns a non-zero number and a diagnostic message.

Rebuilds and relinks all files in the specified build configuration(s).

IDE Project Management and Building Guide

for RISC-V

-clean

-cstat_analyze

-cstat_clean

-cstat_cmds

-cstat_report

-jsondb

Building projects °

Removes any intermediate and output files.

Analyzes the project using C-STAT and generates information about the number of
messages. For more information, see the C-STAT® Static Analysis Guide.

Deletes the C-STAT output directory for the project. For more information, see the
C-STAT® Static Analysis Guide.

Generates the file cstatcommands . txt and check files with the selected checks for the
analysis based on the project, in the C-STAT output directory. cstatcommands . txt
contains links to the check files. For more information, see the C-STAT® Static Analysis

Guide.

Generates a full report in HTML format in the C-STAT output directory, based on the
analysis. For more information, see the C-STAT® Static Analysis Guide.

Generates a JSON description of the project. The format is based on the compiler
database format but also contains the linking, custom, and conversion steps of the build.
Optionally, you can specify the -output option to name the output file, and the -tool
option to run a tool or set of tools. By default, the output is generated in the file
SPROJ_DIRS/config/project_jsondb. json

The database contains entries on how to build the project on the format:

[

"arguments" : [Comma-separated list of arguments],

"directory" : "The directory in which to perform the
action",

"file" : "The input file",

"output" : "The output file",

"type" : "Name of the tool"

125

Reference information on building

126

In case of multiple inputs or multiple outputs, the "output" or "file" tag is replaced
by "outputs" or "files" followed by a comma-separated list of the files:

[

-make

"arguments" : [Comma-separated list of arguments],

"directory" : "The directory in which to perform the
action",

"files" : [Comma-separated list of files],

"outputs" : [Comma-separated list of files],

"type" : "Name of the tool"

Brings the specified build configuration(s) up to date by compiling, assembling, and
linking only the files that have changed since the last build. This is the default operating

mode.

-ninja

Generates a ninja build file based on the project structure. Optionally, you can specify
the -tool option to run a tool or set of tools.

-log

Specifies the level of build message logging. Choose between:

-log errors Logs build error messages.

-log warnings Logs build warning and error messages.

-log info Logs build warning and error messages, and messages issued

by the #pragma message preprocessor directive.

-log all Logs all messages generated from the build, for example

-output

compiler sign-on information and the full command line.

-output filename

Use together with the -jsondb operating mode command to specify the name and the
location of the output file.

IDE Project Management and Building Guide
for RISC-V

-parallel

-tool

-varfile

Building projects °

-parallel number

Specifies the number of parallel processes to run the compiler in to make better use of
the cores in the CPU.

-tool type|list

Use together with either the -jsondb or the -ninja operating mode command to run

a specific set of tools. Running iarbuild -tool list lists the available tool options.

For example, iarbuild MyProject.ewp -ninja Debug -tool BuildTools will
generate a ninja file with all the build tools nodes in the project.

-varfile filename

Makes custom-defined argument variables become defined in a workspace scope
available to the build engine by specifying the file to use. See Configure Custom
Argument Variables dialog box, page 85.

127

Reference information on building

IDE Project Management and Building Guide
128 for RISC-V

[] [)
Editing
e Introduction to the IAR Embedded Workbench editor
o Editing a file

e Programming assistance

o Reference information on the editor

Introduction to the IAR Embedded Workbench editor

These topics are covered:

e Briefly about the editor
e Briefly about source browse information
o Customizing the editor environment

For information about how to use an external editor in the IAR Embedded Workbench
IDE, see Using an external editor, page 34.

BRIEFLY ABOUT THE EDITOR

The integrated text editor allows you to edit multiple files in parallel, and provides both
basic editing features and functions specific to software development, like:

Automatic word and code completion

Automatic line indentation and block indentation

Parenthesis and bracket matching

Function navigation within source files

Context-sensitive help system that can display reference information for keywords
and language extensions

Text styles and color that identify the syntax of C or C++ programs and assembler
directives

Powerful search and replace commands, including multi-file search
Direct jump to context from error listing
Multibyte character support

Parameter hints

Bookmarks

129

Editing a file

130

o Unlimited undo and redo for each window.

BRIEFLY ABOUT SOURCE BROWSE INFORMATION

Optionally, source browse information is continuously generated in the background.
This information is used by many different features useful as programming assistance,
for example:

o Source Browser window

e Go to definition or declaration

e Find all references

e Find all calls to or from a function, where the result is presented as a call graph.
The source browse information is updated when a file in the project is saved. When you
save an edited source file, or when you open a new project, there will be a short delay

before the information is up-to-date. During the update, progress information is
displayed in the status bar.

I CAP NUM OvR BEE

Note: If you want the generation of source browse information to halt when you change
focus from the IAR Embedded Workbench IDE to another program, make sure to enable
the No source browser and build status updates when the IDE is not the foreground
process option.

CUSTOMIZING THE EDITOR ENVIRONMENT

The IDE editor can be configured on the IDE Options pages Colors and Fonts and
Editor. Choose Tools>Options to access the pages.

For information about these pages, see Tools menu, page 198.

Editing a file

The editor window is where you write, view, and modify your source code.
These tasks are covered:

Indenting text automatically
Matching brackets and parentheses
Splitting the editor window into panes
Dragging text

Code folding

IDE Project Management and Building Guide

for RISC-V

Editing °

Word completion

Code completion

Parameter hint

Using and adding code templates
Syntax coloring

Adding bookmarks

Using and customizing editor commands and shortcut keys

Displaying status information
See also:

® Programming assistance, page 137

o Using an external editor, page 34

INDENTING TEXT AUTOMATICALLY

The text editor can perform various kinds of indentation. For assembler source files and
plain text files, the editor automatically indents a line to match the previous line.

To indent several lines, select the lines and press the Tab key.
To move a whole block of lines back to the left again, press Shift+Tab.

For C/C++ source files, the editor indents lines according to the syntax of the C/C++
source code. This is performed whenever you:

e Press the Return key
e Type any of the special characters {, }, :, and #

o Have selected one or several lines, and choose the Edit>Auto Indent command.
To enable or disable the indentation:

Choose Tools>Options and select Editor.

Select or deselect the Auto indent option.

To customize the C/C++ automatic indentation, click the Configure button.

For more information, see Configure Auto Indent dialog box, page 58.

MATCHING BRACKETS AND PARENTHESES

To highlight matching parentheses with a light gray color, place the insertion point next

to a parenthesis:
void NextCounter (void)

{
callCount += 1;
i

131

Editing a file

132

The highlight remains in place as long as the insertion point is located next to the
parenthesis.

To select all text between the brackets surrounding the insertion point, choose
Edit>Match Brackets. Every time you choose Match Brackets (grow) or Match
Brackets (shrink) after that, the selection will increase or shrink, respectively, to the
next hierarchic pair of brackets.

Note: Both of these functions—automatic matching of corresponding parentheses and
selection of text between brackets—apply to (), [1, {}, and <> (requires Match All
Brackets).

SPLITTING THE EDITOR WINDOW INTO PANES

You can split the editor window horizontally into two panes, to look at different parts of
the same source file at once, or to move text between two different locations.

To split a window into panes, use the Window>Split command.

To revert to a single pane, double-click the splitter control or drag it to the edge of the
window.

DRAGGING TEXT

To move text within an editor window or to copy between editor windows, select the text
and drag it to the new location.

CODE FOLDING

Sections of code can be hidden and displayed using code folding.

To collapse or expand groups of lines, click on the fold points in the fold margin:

struct MyStruct

{
int a;
int by
bi

The fold point positions are based on the hierarchical structure of the document
contents, for example, brace characters in C/C++ or the element hierarchy of an XML
file. The Toggle All Folds command (Ctrl+Alt+F) can be used for expanding (or
collapsing) all folds in the current editor window. The command is available from the
Edit menu and from the context menu in the editor window. You can enable or disable
the fold margin from Tools>Options>Editor.

WORD COMPLETION

Word completion attempts to complete the word that you have started to type, basing the
assumption on the contents of the rest of your document.

IDE Project Management and Building Guide

for RISC-V

Editing °

To make the editor complete the word that you have started to type, press
Ctrl+Alt+Space or choose Complete Word from the context menu. If the suggestion is
incorrect, repeat the command to get new suggestions.

CODE COMPLETION

By default, the editor automatically suggests completions while you type in a C/C++
source file. You can also open the code completion pop-up window manually by
pressing Ctrl+Space.

int main()
a1
Rectangle myRect;
for{int side = 0; side < 10; ++side)
J 1
myRect.
sca: o] - G< e 91 ()
std::colfyy GetHeight() int 1
std::colfyy GetWidth() int << "." << std::endl;
Fol < mHeight int
return 07| mWidth int
1 fiy operator=(const Rectangle) Rectangle
= ‘F(J operator=(Rectangle &) Rectangle
fiy SetSize(int side) void
‘F(J SetSize(int height, int width) void w

To insert a suggestion, either click it or select it with the arrow keys, and press Enter. To
close the code completion pop-up window without inserting anything, press Esc.

The suggestions come from the source browse information, and require that source
browse information is enabled and that the source file is part of a project that has been
built at least once.

Many—but not all—of the suggested completions are identified by an icon:
g Class

@ Enumeration

= Enumeration constant

«F i) Function

3 Macro

{7 Namespace
L& Type definition

./ Variable

To turn off automatic code completion, choose Tools>Options>Editor and deselect the
option.

133

Editing a file

134

Note: Only active code—code that will be compiled—is suggested.

PARAMETER HINT

To make the editor suggest function parameters as tooltip information, start typing the
first parenthesis after a function name. A tooltip is also shown when you type a comma
in a parameter list.

When there are several overloaded versions of a function, they are all displayed:

int overload(char c);
int overload(short s);
int overload(int i);

int function (void)
{
overload (

fiy overload(char) int
iy overload(short s) int
fiy overload(int i) int

USING AND ADDING CODE TEMPLATES

Code templates are a method of conveniently inserting frequently used source code
sequences, for example for loops and i f statements. The code templates are defined in
a plain text file. By default, a few example templates are provided. In addition, you can
easily add your own code templates.

To set up the use of code templates:
Choose Tools>Options>Editor>Setup Files.

Select or deselect the Use Code Templates option. By default, code templates are
enabled.

3 In the text field, specify which template file you want to use:

o The default template file

The original template file CodeTemplates. txt
(alternativelyCodeTemplates.ENU. txt or CodeTemplates.JPN. txt if you are
using an AR Embedded Workbench that is available in both English and Japanese)
is located in a separate directory, see Files for global settings, page 178.

Note that this is a local copy of the file, which means it is safe to modify it if you
want.

® Your own template file

Note that before you can choose your own template file, you must first have created
one. To create your own template file, choose Edit>Code Templates>Edit

IDE Project Management and Building Guide

for RISC-V

Editing °

Templates, add your code templates, and save the file with a new name. The syntax
for defining templates is described in the default template file.

A browse button is available for your convenience.
4 To use your new templates in your own template file, you must:

Delete the filename in the Use Code Templates text box.
Deselect the Use Code Templates option and click OK.
Restart the IAR Embedded Workbench IDE.

Choose Tools>Options>Editor>Setup Files again.

The default code template file for the selected language version of the IDE should
now be displayed in the Use Code Templates text box. Select the checkbox to enable
the template.

To insert a code template into your source code:

I In the editor window, right-click where you want the template to be inserted and
choose Insert Template (Ctrl+Alt+V).

2 Choose a code template from the menu that appears.

Untitledl * x

vold main (woid)
{

} Cut

Copy
Paste

Complete Word
Complete Code
Parameter Hint
Match Brackets
Toggle All Folds
Insert Template 3 Statement 3 if

Corporate 3 for

Edit Templates

Open Header/Source File

Toggle Breakpoint (Code)

Toggle Breakpoint (Log)

If the code template requires any type of field input, as in the for loop example which
needs an end value and a count variable, an input dialog box appears.

135

Editing a file

136

SYNTAX COLORING

If the Tools>Options>Editor>Syntax highlighting option is enabled, the IAR
Embedded Workbench editor automatically recognizes the syntax of different parts of
source code, for example:

o C and C++ keywords

e C and C++ comments

o Assembler directives and comments

e Preprocessor directives

e Strings.
The different parts of source code are displayed in different text styles.

To change these styles, choose Tools>Options, and use the Colors and Fonts options.
For more information, see Colors and Fonts options, page 46.

To define your own set of keywords that should be syntax-colored
automatically:

In a text file, list all the keywords that you want to be automatically syntax-colored.
Separate each keyword with either a space or a new line.

Choose Tools>Options to open the IDE Options dialog box.
Open the Editor>Setup Files category.

Select the Use Custom Keyword File option and specify your newly created text file.
A browse button is available for your convenience.

Open the Colors and Fonts category and click the Colors button. Select User
Keyword in the Syntax Coloring list. Specify the color and type style of your choice.
For more information, see Colors and Fonts options, page 46.

In the editor window, type any of the keywords you listed in your keyword file—see how
the keyword is colored according to your specification.
ADDING BOOKMARKS

Use the Edit>Navigate>Toggle Bookmark command to add and remove bookmarks.
To switch between the marked locations, choose Edit>Navigate>Navigate Next
Bookmark or Navigate Previous Bookmark.

USING AND CUSTOMIZING EDITOR COMMANDS AND
SHORTCUT KEYS

The Edit menu provides commands for editing and searching in editor windows, for
instance, unlimited undo/redo. You can also find some of these commands on the

IDE Project Management and Building Guide

for RISC-V

Editing °

context menu that appears when you right-click in the editor window. For more
information about each command, see Edit menu, page 186.

There are also editor shortcut keys for:

e moving the insertion point
e scrolling text

e selecting text.

For more information about these shortcut keys, see Editor shortcut key summary, page
169.

To change the default shortcut key bindings, choose Tools>Options, and click the Key
Bindings tab. For more information, see Key Bindings options, page 51.

DISPLAYING STATUS INFORMATION

The status bar is available by choosing View>Status Bar. For more information, see
1IAR Embedded Workbench IDE window, page 37.

Programming assistance
There are several features in the editor that assist you during your software development.
This section describes various tasks related to using the editor.

These tasks are covered:

Navigating in the insertion point history
Navigating to a function

Finding a definition or declaration of a symbol
Finding references to a symbol

Finding function calls for a selected function
Switching between source and header files
Displaying source browse information

Text searching

Accessing online help for reference information

NAVIGATING IN THE INSERTION POINT HISTORY

The current position of the insertion point is added to the insertion point history by
actions like Go to definition and clicking on the result for the Find in Files command.
You can jump in the history either forward or backward by using the Navigate Forward

137

Programming assistance

a and Navigate Backward E buttons (or by pressing Alt + Right Arrow or Alt +
Left Arrow).

NAVIGATING TO A FUNCTION

F[] Click the Go to function button in the top-right corner of the editor window to list all
functions defined in the source file displayed in the window. You can then choose to
navigate directly to one of the functions by clicking it in the list. Note that the list is
refreshed when you save the file.

FINDING A DEFINITION OR DECLARATION OF A SYMBOL

To see the definition or declaration of a global symbol or a function, you can use these
alternative methods:

e In the editor window, right-click on a symbol and choose the Go to definition or Go
to declaration command from the context menu that appears. If more than one
declaration is found, the declarations are listed in the Declarations window from
where you can navigate to a specific declaration.

o In the Source Browser window, double-click on a symbol to view the definition

o In the Source Browser window, right-click on a symbol, or function, and choose
the Go to definition command from the context menu that appears

The definition of the symbol or function is displayed in the editor window.

FINDING REFERENCES TO A SYMBOL

To find all references for a specific symbol, select the symbol in the editor window,
right-click and choose Find All References from the context menu. All found
references are displayed in the References window.

You can now navigate between the references.

FINDING FUNCTION CALLS FOR A SELECTED FUNCTION

To find all calls to or from a function, select the function in the editor window or in the
Source Browser window, right-click and choose either Find All Calls to or Find All
Calls from from the context menu. The result is displayed in the Call Graph window.

You can navigate between the function calls.

SWITCHING BETWEEN SOURCE AND HEADER FILES

If the insertion point is located on an #include line, you can choose the Open
"header.h" command from the context menu, which opens the header file in an editor
window. You can also choose the command Open Header/Source File, which opens
the header or source file with a corresponding filename to the current file, or activates it

IDE Project Management and Building Guide
138 for RISC-V

Editing °

if it is already open. This command is available if the insertion point is located on any
line except an #include line.

DISPLAYING SOURCE BROWSE INFORMATION

To open the Source Browser window, choose View>Source Browser>Source
Browser. Source browse information is displayed for the active build configuration.

Note that you can choose a file filter and a type filter from the context menu that appears
when you right-click in the window.

To display browse information in the Source Browser window, choose
Tools>Options>Project and select the option Generate browse information.

TEXT SEARCHING
There are several standard search functions available in the editor:

Quick search text box
Find dialog box

Replace dialog box

Find in Files dialog box
Replace in Files dialog box

Incremental Search dialog box.
To use the Quick search text box on the toolbar:
Type the text you want to search for and press Enter.

Press Esc to stop the search. This is a quick method of searching for text in the active
editor window.

To use the Find, Replace, Find in Files, Replace in Files, and Incremental
Search functions:

Before you use the search commands, choose Tools>Options>Editor and make sure
the Show bookmarks option is selected.

Choose the appropriate search command from the Edit menu. For more information
about each search function, see Edit menu, page 186.

To remove the blue flag icons that have appeared in the left-hand margin, right-click in
the Find in Files window and choose Clear All from the context menu.

ACCESSING ONLINE HELP FOR REFERENCE INFORMATION

When you need to know the syntax of an extended keyword, intrinsic function, etc,
select it in the editor window and press F1.

139

Reference information on the editor

The documentation for the item appears in a help window.

|E§5) IAR Embedded Workbench Help — O

= B e =2 o &

Hide Locate Back Forward Home Print

Conterts] Index | 5eren] ERIIE _ _orderlInterrupt

Type in the keyword to find:
Syntax

__orderInterrupt (specification, first activation,

repeat interval, variance, infinite hold time,

hold time, probability)

||_0n:|er|nterrupt [C-5PY system mac|

options, iarchive. See iarchive o &
options, ichecks. See ichecks o
options, icstat. See icstat option:

options, iefdump. See iefdump ¢ Parameters
options, iefftool. See iefftool optic
options, iobjmanip. See iobjmaniy specification

options, ireport. See ireport optio
options, isymexport. See isymexp
options, linker. See linker option:
OR (CFl operator)

The interrupt (string). The specification can either be
the full specification used in the device description
file (dd<) or only the name. In the latter case the
interrupt system will automatically get the description
from the device description file.

Originator {debugger option)
ostream (ibrary header file)

Cther file (Workspace window ic first activation
out filename extension _ L)
outert) The first activation time in cycles (integer)
assembler e i mid
including debug information repsat_incsrval
compiler The periodicity in cycles (integer)
including debug information
converting from ELF variance

f - -))
i;‘i‘?&;ﬁ;ﬁ:ﬁ;ﬁ;ﬂomaﬁm The timing variation range in percent {integer

linker, specifying filename W between 0 and 100)

. infinite hold time
Display — =

Reference information on the editor

Reference information about:

Editor window, page 141

Find dialog box, page 150

Find in Files window, page 151

Replace dialog box, page 152

Find in Files dialog box, page 153
Replace in Files dialog box, page 155
Incremental Search dialog box, page 158
Declarations window, page 159
Ambiguous Definitions window, page 160

References window, page 161

Source Browser window, page 162

IDE Project Management and Building Guide

140 for RISC-V

Editing °

Source Browse Log window, page 165
Resolve File Ambiguity dialog box, page 167
Call Graph window, page 167

Template dialog box, page 168

Editor shortcut key summary, page 169

Editor window

The editor window is opened when you open or create a text file in the IDE.

Drop-down menu

Goto that lists all open files |
function .
‘ Window tabs }~ Tutor.c_|Utilities.c | A vE
33 /* Initislizes MAX FIB Fibonacci numbers. */ -
34 void InitFib(void)
35[0 {
[B .] 36 short i = 45;
‘ re.akpo'nt }—. 37 Fib[0] = Fib[1] = 1:
icon ag
39 for {i = 2; i < MAX FIB; i++)
40 i
41 |~ Fib[i] = GetFib(i) + GetFib(i-1);
R P 3
Bracket B i Y
matching P 14
E— 45 /* Returns the Fibonacci number 'n'. */
48 unsigned int GetFik({int n) £
. 47 {
F'”‘_j in files 18 if {(n > 0) =& (n <= MAX FIE})
icon 19 [
50 return (Fik[n-1]):
51 1
52 else
- 53 i
Bookmark lﬁD 54 return 0;
- 55 1
56 -}
4 | III 1 . [
1
|]]
Four columns for icons, line numbers, l ‘ Right margin that indicates limit of printing area
code folding, and for selecting entire lines . |

You can open one or several text files, either from the File menu, or by double-clicking
them in the Workspace window. All open files are available from the drop-down menu

at the upper right corner of the editor window. Several editor windows can be open at
the same time.

141

Reference information on the editor

142

Source code files and HTML files are displayed in editor windows. From an open
HTML document, hyperlinks to HTML files work like in an ordinary web browser. A
link to an eww workspace file opens the workspace in the IDE, and closes any currently
open workspace and the open HTML document.

When you want to print a source file, it can be useful to enable the option Show line
numbers—available by choosing Tools>Options>Editor.

The editor window is always docked, and its size and position depend on other currently
open windows.

For more information about using the editor, see Editing a file, page 130 and
Programming assistance, page 137.

Relative source file paths

The IDE has partial support for relative source file paths.

If a source file is located in the project file directory or in any subdirectory of the project
file directory, the IDE uses a path relative to the project file when accessing the source
file.

Documentation comments

Syntax feedback

In addition to regular comments that start with // (in C++) or /* (in C and C++), the
editor supports documentation comments, that start with /**, /*1,///or //!. The
editor can distinguish these documentation comments from regular comments. By
default, the editor assigns the two types of comments different colors.

Inside a documentation comment, the editor highlights doxygen-style keywords
(keywords that begin with \ or @) and by default uses a different color for them than for
the rest of the comment. The color depends on whether the keyword is identified as an
existing doxygen keyword or not. You can customize the editor’s use of colors on the
Tools>Options>Colors and Fonts page, see Colors and Fonts options, page 46.

Lines inside documentation comment blocks can be shown in tooltips and parameter
hints for variables and functions. A comment block with no doxygen-style keywords
will be shown as a concatenated text string in tooltips and parameter hints. After the
occurrence of a doxygen-style keyword, only text written after a @brief keyword will
be shown in tooltips and parameter hints.

The editor is capable of giving feedback on the code in an editor window as you type.
Code that is identified as having suspected or verified syntactic issues will be indicated
by squiggly lines. The issue might or might not be a real compiler problem.

IDE Project Management and Building Guide

for RISC-V

Editing °

If you hover over a squiggly line, a tooltip will identify the nature of the issue:

#include "stdint.h>
#include "Fibonacci.h"

static void NextCounter (void);
static void DoForegroundProcess (void) !

static int_ fasti t callCountg

Error expected ;' after top level declarator

/+ In the 'callCount' v Insert;

5= £
statiec wvoid NextCounter (void)

{
T callCount += 1;

Bt

If there is a potential simple fix for the identified issue, the tooltip will suggest it. To
apply the suggested fix, choose Apply Syntax Feedback Fix from the Edit menu or the
editor window context menu.

Syntax feedback is based on source browser information and requires that the option
Generate browse information has been selected in the Tools>Options>Project
category. Syntax feedback is not available during a debugging session.

To enable or disable syntax feedback, and to configure the level of feedback provided,
see Editor Syntax Feedback options, page 61.

Window tabs, tab groups, and tab context menu

The name of the open file is displayed on the tab. If you open several files, they are
organized in a tab group. Click the tab for the file that you want to display. If a file has
been modified after it was last saved, an asterisk appears on the tab after the filename,
for example Utilities.c *.If afile is read-only, a padlock icon is visible on the tab.

The tab’s tooltip shows the full path and a remark if the file is not a member of the active
project.

A context menu appears if you right-click on a tab in the editor window.

Save CppTutor.cpp
Close

Close All But This

Close All to the Right
Open Containing Folder...
File Properties...

143

Reference information on the editor

144

These commands are available:

Save file
Saves the file.

Close
Closes the file.

Close All But This
Closes all tabs except the current tab.

Close All to the Right
Closes all tabs to the right of the current tab.

Open Containing Folder

Opens the File Explorer that displays the directory where the selected file
resides.

File Properties
Displays a standard File Properties dialog box.

Multiple editor windows and splitter controls

Go to function

fiy

You can have one or several editor windows open at the same time. The commands on
the Window menu allow you to split the editor window into panes and to open multiple
editor windows. There are also commands for moving files between editor windows.

For more information about each command on the Window menu, see Window menu,
page 199.

Click the Go to function button in the top right-hand corner of the editor window to list
all functions of the C or C++ editor window.

utor.h
Findude “Tutor.h™

ounter
oid NextCounter()

Filter the list by typing the name of the function you are looking for. Then click the name
of the function that you want to show in the editor window.

To close the list without moving the cursor from its original position in the editor
window, press Esc.

IDE Project Management and Building Guide

for RISC-V

Editing °

Context menu

This context menu is available:
Cut

Copy
Paste

Complete Word

Complete Code

Apply Syntax Feedback Fix

Parameter Hint

Match Brackets

Toggle All Folds

Insert Template 3

Open Header/Source File

Go to Definition of 'main’

Go to Declaration of 'main’

Find All References to 'main’ i
Find All Calls to 'main’

Find All Calls from 'main’
Find in Trace

Toggle Breakpoint (Code)

Toggle Breakpoint (Log)

Toggle Breakpoint (Trace Start)

Toggle Breakpoint (Trace Stop)

Enable/disable Breakpoint

Set Data Breakpoint for 'main’

Set Data Log Breakpoint for 'main’

Edit Breakpoint 3

Set Mext Statement

Add to Quick Watch: 'main’
Add to Watch: 'main’
Add to Live Watch: 'main’

Move to PC

Run to Cursor

Character Encoding 3

Options...
The contents of this menu depend on whether the debugger is started or not, and on the
C-SPY driver you are using. Typically, additional breakpoint types might be available

on this menu. For information about available breakpoints, see the C-SPY® Debugging
Guide for RISC-V.

145

Reference information on the editor

These commands are available:

Cut, Copy, Paste
Standard window commands.

Complete Word

Attempts to complete the word you have begun to type, basing the guess on the
contents of the rest of the editor window.

Complete Code

Shows a list of classes, functions, variables, etc, that are available when you
type. For more information, see Code completion, page 133.

Apply Syntax Feedback Fix

Applies the suggested fix for the syntactic issue identified by the Syntax
feedback feature.

Parameter Hint

Suggests parameters as tooltip information for the function parameter list you
have begun to type. For more information, see Parameter hint, page 134.

Match Brackets

Selects all text between the brackets immediately surrounding the insertion
point, increases the selection to the next hierarchic pair of brackets, or beeps if
there is no higher bracket hierarchy.

Toggle All Folds
Expands/collapses all code folds in the current editor window.

Insert Template
Displays a list in the editor window from which you can choose a code template
to be inserted at the location of the insertion point. If the code template you
choose requires any field input, the Template dialog box appears. For more
information about this dialog box, see Template dialog box, page 168. For
information about using code templates, see Using and adding code templates,
page 134.

Open "header.h"
Opens the header file header.h in an editor window. If more than one header
file with the same name is found and the IDE does not have access to
dependency information, the Resolve File Ambiguity dialog box is displayed,
see Resolve File Ambiguity dialog box, page 167. This menu command is only
available if the insertion point is located on an #include line when you open
the context menu.

IDE Project Management and Building Guide
146 for RISC-V

Editing °

Open Header/Source File
Opens the header or source code file that has same base name as the current file.
If the destination file is not open when you choose the command, the file will
first be opened. This menu command is only available if the insertion point is
located on any line except an #include line when you open the context menu.
This command is also available from the File>Open menu.

Go to Definition of symbol
Places the insertion point at the definition of the symbol. If no definition is found
in the source code, the first declaration will be used instead. If more than one
possible definition is found, they are listed in the Ambiguous Definitions
window. See Ambiguous Definitions window, page 160.

Go to Declaration of symbol

If only one declaration is found, the command puts the insertion point at the
declaration of the symbol. If more than one declaration is found, these
declarations are listed in the Declarations window.

Find All References to symbol
The references are listed in the References window.

Find All Calls to symbol
Opens the Call Graph window which displays all functions in the project that
calls the selected function, see Call Graph window, page 167. If this command
is disabled, make sure to select a function in the editor window.

Find All Calls from symbol
Opens the Call Graph window which displays all functions in the project that
are called from the selected function, see Call Graph window, page 167. If this
command is disabled, make sure to select a function in the editor window.

Find in Trace
Searches the contents of the Trace window for occurrences of the given
location—the position of the insertion point in the source code—and reports the
result in the Find in Trace window. This menu command requires support for
Trace in the C-SPY driver you are using, see the C-SPY® Debugging Guide for
RISC-V.

Toggle Breakpoint (Code)

Toggles a code breakpoint at the statement or instruction containing or close to
the cursor in the source window. For information about code breakpoints, see the
C-SPY® Debugging Guide for RISC-V.

147

Reference information on the editor

Toggle Breakpoint (Log)

Toggles a log breakpoint at the statement or instruction containing or close to
the cursor in the source window. For information about log breakpoints, see the
C-SPY® Debugging Guide for RISC-V.

Toggle Breakpoint (Trace Start)

Toggles a Trace Start breakpoint. When the breakpoint is triggered, trace data
collection starts. For information about Trace Start breakpoints, see the C-SPY®
Debugging Guide for RISC-V. Note that this menu command is only available
if the C-SPY driver you are using supports trace.

Toggle Breakpoint (Trace Stop)
Toggles a Trace Stop breakpoint. When the breakpoint is triggered, trace data
collection stops. For information about Trace Stop breakpoints, see the C-SPY®
Debugging Guide for RISC-V. Note that this menu command is only available
if the C-SPY driver you are using supports trace.

Enable/disable Breakpoint

Toggles a breakpoint between being disabled, but not actually removed—
making it available for future use—and being enabled again.

Set Data Breakpoint for 'variable'

Toggles a data log breakpoint on variables with static storage duration. Requires
support in the C-SPY driver you are using. For more information about data
breakpoints, see the C-SPY® Debugging Guide for RISC-V.

Set Data Log Breakpoint for 'variable'

Toggles a data log breakpoint on variables with static storage duration. Requires
support in the C-SPY driver you are using. The breakpoints you set in this
window will be triggered by both read and write accesses—to change this, use
the Breakpoints window. For more information about data logging and data log
breakpoints, see the C-SPY® Debugging Guide for RISC-V.

Edit Breakpoint
Displays the Edit Breakpoint dialog box to let you edit the breakpoint available
on the source code line where the insertion point is located. If there is more than
one breakpoint on the line, a submenu is displayed that lists all available
breakpoints on that line.

Set Next Statement

Sets the Program Counter directly to the selected statement or instruction
without executing any code. This menu command is only available when you are
using the debugger. For more information, see the C-SPY® Debugging Guide
for RISC-V.

IDE Project Management and Building Guide
148 for RISC-V

Editing °

Add to Quick Watch: symbol

Opens the Quick Watch window and adds the symbol, see the C-SPY®
Debugging Guide for RISC-V. This menu command is only available when you
are using the debugger.

Add to Watch: symbol

Opens the symbol to the Watch window and adds the symbol. This menu
command is only available when you are using the debugger.

Add to Live Watch: symbol

Opens the Live Watch window and adds the symbol, see the C-SPY®
Debugging Guide for RISC-V. This menu command is only available when you
are using the debugger.

Move to PC

Moves the insertion point to the current PC position in the editor window. This
menu command is only available when you are using the debugger.

Run to Cursor

Executes from the current statement or instruction up to the statement or
instruction where the insertion point is located. This menu command is only
available when you are using the debugger.

Character Encoding

Interprets the source file according to the specified character encoding. Choose
between:

System (uses the Windows settings)
Western European

UTF-8

Japanese (Shift-JIS)

Chinese Simplified (GB2312)
Chinese Traditional (Big5)
Korean (Unified Hangul Code)
Arabic

Baltic

Central European

Greek

Hebrew

Russian

Thai

Vietnamese

Convert to UTF-8 (converts the document to UTF-8)

149

Reference information on the editor

150

Find dialog box

Find what

Match case

Use one of these settings if the Auto-detect character encoding option could
not determine the correct encoding or if the option is deselected. For more
information about file encoding, see Editor options, page 54.

Options
Displays the IDE Options dialog box, see Tools menu, page 198.

The Find dialog box is available from the Edit menu.

Find | = |
Frd et v
Macheace
[Match whole word

Only in zelection

Note that the contents of the dialog box might be different if you search in an editor
window compared to if you search in the Memory window. This screen shot reflects the
dialog box when you search in an editor window.

Specify the text to search for. Use the drop-down list to use old search strings.

When you search in the Memory window, the value you search for must be a multiple
of the display unit size. For example, when using the 2 units size in the Memory
window, the search value must be a multiple of two bytes.

Searches only for occurrences that exactly match the case of the specified text.
Otherwise, specifying int will also find INT and Int. This option is only available
when you perform the search in an editor window.

Match whole word

Search as hex

Searches for the specified text only if it occurs as a separate word. Otherwise, specifying
int will also find print, sprint £ etc. This option is only available when you perform
the search in an editor window.

Searches for the specified hexadecimal value. This option is only available when you
perform the search in the Memory window.

IDE Project Management and Building Guide

for RISC-V

Editing °

Only in selection

Limits the search operation to the selected lines (when searching in an editor window)
or to the selected memory area (when searching in the Memory window). The option is
only enabled when a selection has been made before you open the dialog box.

Find Next

Searches for the next occurrence of the specified text.

Find Previous

Searches for the previous occurrence of the specified text.

Stop

Stops an ongoing search. This button is only available during a search in the Memory
window.

Find in Files window

The Find in Files window is available by choosing View>Messages.

Find in Files *
Fath Line String i
Chillse A\Fibonaccic 16 #include <stdinth>
Chillse A\Fibonaccic 22 static uint_fast8_t callCount;

Chillse A\Fibonaccic 32 M Getand printthe associated Fibonacci numb
Chillse A\Fibonaccic 35 uint32_tfikb;

Chillse A\Fibonaccic 43 M Prints the Fibonacci sequence.

Chillse A\Fibonaccic 44 int mainfvoid)

Chllsersyj. U tilities.c 16 #include <stdinth> 1
Fl 10 2

| Buitd | Debug Log | Find in Files |

This window displays the output from the Edit>Find and Replace>Find in Files
command. When opened, this window is, by default, grouped together with the other
message windows.

Double-click an entry in the window to open the corresponding file with the insertion
point positioned at the correct location. That source location is highlighted with a blue
flag icon. Choose Edit>Next Error/Tag or press F4 to jump to the next in sequence.

Context menu

This context menu is available:

Copy
Select Al

Clear Al

151

Reference information on the editor

152

Replace dialog box

Find what

Replace with

Match case

These commands are available:

Copy
Copies the selected content of the window.

Select All
Selects the contents of the window.

Clear All

Deletes the contents of the window and any blue flag icons in the left-side
margin of the editor window.

The Replace dialog box is available from the Edit menu.

Replace [= |

Feplace with: -
Match case Replace &l
[Match whole word

Only in zelection

Note that the contents of the dialog box are different if you search in an editor window
compared to if you search in the Memory window.

Specify the text to search for. Use the drop-down list to use old search strings.

Specify the text to replace each found occurrence with. Use the drop-down list to use old
search strings.

Searches only for occurrences that exactly match the case of the specified text.
Otherwise, specifying int will also find INT and Int. This option is only available
when you perform the search in an editor window.

Match whole word

Searches for the specified text only if it occurs as a separate word. Otherwise, int will
also find print, sprint £ etc. This option is only available when you search in an editor
window.

IDE Project Management and Building Guide

for RISC-V

Editing °

Search as hex

Searches for the specified hexadecimal value. This option is only available when you
perform the search in the Memory window.

Only in selection

Limits the search operation to the selected lines (when searching in an editor window)
or to the selected memory area (when searching in the Memory window). The option is
only enabled when a selection has been made before you open the dialog box.

Find next

Searches for the next occurrence of the specified text.

Replace

Replaces the searched text with the specified text.

Replace all

Replaces all occurrences of the searched text in the current editor window.

Find in Files dialog box

The Find in Files dialog box is available from the Edit menu.
Find in Files =

- —
Close

Match case
Match whole word
Match regular expression
Look in
| For all projects in workspace
Project files

Project files and user indude files
@ Project files and all indude files

Directory:
C:\Program Files (x86)\[AR Systems _—
Look in subdirectories

File types
.;.cpp; *.cc; *.h; . hpp; *.5% . msa; *.asm -

Use this dialog box to search for a string in files.

153

Reference information on the editor

154

Find what

Look in

The result of the search appears in the Find in Files message window—available from
the View menu. You can then go to each occurrence by choosing the Edit>Next
Error/Tag command, alternatively by double-clicking the messages in the Find in Files
message window. This opens the corresponding file in an editor window with the
insertion point positioned at the start of the specified text. A blue flag in the left-hand
margin indicates the line with the string you searched for.

Specify the string you want to search for, or a regular expression. Use the drop-down list
to use old search strings/expressions. You can narrow the search down with one or more
of these conditions:
Match case
Searches only for occurrences that exactly match the case of the specified text.
Otherwise, specifying int will also find INT and Int.
Match whole word
Searches only for the string when it occurs as a separate word (mnemonic &w).
Otherwise, int will also find print, sprintf and so on.
Match regular expression

Interprets the search string as a regular expression, which must follow the
regular expression syntax of the ECMAScript specification as defined by the
C++ standard for the std: : regex library.

Specify which files you want to search in. Choose between:

For all projects in workspace
Searches all projects in the workspace, not just the active project.

Project files
Searches all files that you have explicitly added to your project.

Project files and user include files

Searches all files that you have explicitly added to your project and all files that
they include, except the include files in the IAR Embedded Workbench
installation directory.

Project files and all include files

Searches all project files that you have explicitly added to your project and all
files that they include.

IDE Project Management and Building Guide

for RISC-V

Editing °

Directory
Searches the directory that you specify. Recent search locations are saved in the
drop-down list. A browse button is available for your convenience.

Look in subdirectories
Searches the directory that you have specified and all its subdirectories.

File types
A filter for choosing which type of files to search—the filter applies to all Look in
settings. Choose the appropriate filter from the drop-down list. The text field is editable,
to let you add your own filters. Use the * character to indicate zero or more unknown
characters of the filters, and the » character to indicate one unknown character.

Stop

Stops an ongoing search. This button is only available during an ongoing search.

Replace in Files dialog box
The Replace in Files dialog box is available from the Edit menu.

Replace in Files ﬁ
Find what: Stop

Close

Replace with:

Match case

Match whole word
[~ Match regular expression Skip File
Look in

[For all projects in workspace

() Project files

(@) Project files and user indude files

() Project files and all indude files

() Directory:
D:\Too-ticki\test\ARM\FlySim E]

Look in subdirectories

File types
.;.cpp; *.cc; *.h; . hpp; *.5% . msa; *.asm -

Use this dialog box to search for a specified string in multiple text files and replace it
with another string.

155

Reference information on the editor

156

Find what

Replace with

Look in

The result of the replacement appears in the Find in Files message window—available
from the View menu. You can then go to each occurrence by choosing the Edit>Next
Error/Tag command, alternatively by double-clicking the messages in the Find in Files
message window. This opens the corresponding file in an editor window with the
insertion point positioned at the start of the specified text. A blue flag in the left-hand
margin indicates the line containing the string you searched for.

Specify the string you want to search for and replace, or a regular expression. Use the
drop-down list to use old search strings/expressions. You can narrow the search down
with one or more of these conditions:

Match case

Searches only for occurrences that exactly match the case of the specified text.
Otherwise, specifying int will also find INT and Int.

Match whole word

Searches only for the string when it occurs as a separate word (mnemonic &w).
Otherwise, int will also find print, sprintf, and so on.

Match regular expression

Interprets the search string as a regular expression, which must follow the
regular expression syntax of the ECMAScript specification as defined by the
C++ standard for the std: : regex library.

Specify the string you want to replace the original string with. Use the drop-down list to
use old replace strings.

Specify which files you want to search in. Choose between:

For all projects in workspace
Searches all projects in the workspace, not just the active project.

Project files
Searches all files that you have explicitly added to your project.

Project files and user include files
Searches all files that you have explicitly added to your project and all files that
they include, except the include files in the IAR Embedded Workbench
installation directory.

IDE Project Management and Building Guide

for RISC-V

Editing °

Project files and all include files
Searches all project files that you have explicitly added to your project and all
files that they include.

Directory
Searches the directory that you specify. Recent search locations are saved in the
drop-down list. A browse button is available for your convenience.

Look in subdirectories

Searches the directory that you have specified and all its subdirectories.

File types
A filter for choosing which type of files to search—the filter applies to all Look in
settings. Choose the appropriate filter from the drop-down list. The text field is editable,
to let you add your own filters. Use the * character to indicate zero or more unknown
characters of the filters, and the ? character to indicate one unknown character.
Stop
Stops an ongoing search. This button is only available during an ongoing search.
Close
Closes the dialog box. An ongoing search must be stopped first.
Find Next
Finds the next occurrence of the specified search string.
Replace
Replaces the found string and finds the next occurrence of the specified search string.
Replace All
Saves all files and replaces all found strings that match the search string.
Skip file

Skips the occurrences in the current file.

157

Reference information on the editor

158

Incremental Search dialog box

Find what

Match case

Find Next

Close

Only in selection

The Incremental Search dialog box is available from the Edit menu.

Incremental Search

Firnd what: | FindMest |

[Match case Elose
Only in zelection

Use this dialog box to gradually fine-tune or expand the search string.

Type the string to search for. The search is performed from the location of the insertion
point—the start point. Every character you add to or remove from the search string
instantly changes the search accordingly. If you remove a character, the search starts
over again from the start point.

If a word in the editor window is selected when you open the Incremental Search
dialog box, this word will be displayed in the Find What text box.

Use the drop-down list to use old search strings.

Searches for occurrences that exactly match the case of the specified text. Otherwise,
searching for int will also find INT and Int.

Searches for the next occurrence of the current search string. If the Find What text box
is empty when you click the Find Next button, a string to search for will automatically
be selected from the drop-down list. To search for this string, click Find Next.

Closes the dialog box.

Limits the search operation to the selected lines. The option is only available when more
than one line has been selected before you open the dialog box.

IDE Project Management and Building Guide

for RISC-V

Editing °

Declarations window

The Declarations window is available by choosing View>Source Browser.

Declarations *
Fath Line Sting
CADocumentsilAR Embedded Workbenchy, \CppTutor.cpp 36 int callCount;
CADocumentsilAR Embedded Workbenchy, \CppTutor.cpp a7 extern int callCount;
CADocumentsilAR Embedded Workbenchy, \CppTutor.cpp 3 extern int callCount;

4 T b

| Build | Debug Log | Dedarations | Find in Files

This window displays the result from the Go to Declaration command on the editor
window context menu.

When opened, this window is by default grouped together with the other message
windows.

To find and list declarations for a specific symbol, select a symbol in the editor window,
right-click and choose Go to Declaration from the context menu. All declarations are
listed in the Declarations window.

Double-click an entry in the window to open the corresponding file with the insertion
point positioned at the correct location. Choose Edit>Next Error/Tag or press F4 to
jump to the next in sequence.

Context menu

This context menu is available:

Copy
Select Al

Clear Al

These commands are available:

Copy
Copies the contents of the window.
Select All

Selects the contents of the window.

Clear All
Deletes the contents of the window.

159

Reference information on the editor

160

Ambiguous Definitions window

Context menu

The Ambiguous Definitions window is available by choosing View>Source Browser.

Fath Line String

Diprojsitutoninterrupt.c 31 woid InitUartivoid);

Diprojsitutoninterrupt.c 41 woid InitUlartvoid)

Fl 1] 3
Build Ambiguous Definitions x

This window displays the result from the Go to Definition command on the editor
window context menu, if the source browser finds more than one possible definition.

When opened, this window is by default grouped together with the other message
windows.

Double-click an entry in the window to open the corresponding file with the insertion
point positioned at the correct location. Choose Edit>Next Error/Tag or press F4 to
jump to the next entry in sequence.

This context menu is available:

Copy
Select Al

Clear Al

These commands are available:

Copy
Copies the contents of the window.

Select All

Selects the contents of the window.

Clear All
Deletes the contents of the window.

IDE Project Management and Building Guide

for RISC-V

Editing °

References window

The References window is available by choosing View>Source Browser.

References *
Fath Line String
CADocumentsilAR Embedded Woarkbenchy, \Fibonacci.cpp 42 return (msFib[n- 1]
CADocumentsilAR Embedded Woarkbenchy, \Fibonacci.cpp B4 msFib[n-1] =value;

4 T b

| Build | Debug Log | Declarations | References | Find in Files |

This window displays the result from the Find All References commands on the editor
window context menu.

When opened, this window is by default grouped together with the other message
windows.

To find and list references for a specific symbol, select a symbol in the editor window,
right-click and choose Find All References from the context menu. All references are
listed in the References window.

Double-click an entry in the window to open the corresponding file with the insertion
point positioned at the correct location. Choose Edit>Next Error/Tag or press F4 to
jump to the next in sequence.

Context menu

This context menu is available:

Copy
Select Al

Clear Al
These commands are available:

Copy
Copies the contents of the window.
Select All

Selects the contents of the window.

Clear All
Deletes the contents of the window.

161

Reference information on the editor

Source Browser window
The Source Browser window is available from the View menu.

Source Browser x
MName Scope Symbol type File &
e @ memset Function string.h

> on Yariahle secure_hello.c
4 MON_SECURE_EMNTRY_TABLE MacroDet secure_helloh
non_secure_init_t Struct secure_helloh
< init non_secure_init_t FieldDecl secure_helloh
< stack non_secure_init_t FieldDecl secure_helloh
<+ main non_secure_init_t FieldDecl secure_helloh
T non_secure_init_t non_secure_init_t TypedefDecl secure_helloh
4 NULL MacroDef stddefh
offsetof MacroDef stddefh
< perme Warighle cmse.h 3
+ perrar Function stdio.h
* printf Function stdio.h
= FTRDIFF_hda MacroDet stodint.h
FTRENDIFE kM karrnfaf stddint b T
b

This window displays an hierarchical view in alphabetical order of all symbols defined
in the active build configuration. This means that source browse information is available
for symbols in source files and include files part of that configuration. Source browse
information is not available for symbols in linked libraries.

For more information about how to use this window, see Displaying source browse
information, page 139.

The display area

The display area contains four columns:

Name The names of global symbols and functions defined in the
project. Note that an unnamed type, for example a struct
or a union without a name, will get a name based on the
filename and line number where it is defined. These
pseudonames are enclosed in angle brackets.

Scope The scope (namespaces and classes/structs) that the entry
belongs to.

Symbol type Displays the symbol type for each element.

File The file name (without path) that contains the definition of
the entry.

To sort each column, click its header.

IDE Project Management and Building Guide
162 for RISC-V

Context menu

Icons used for the symbol types

These are the icons used:

=]
i

Lo

=

I (Yellow rhomb)
& (Purple rhomb)
H

i

P

Lo il

a

L

L E

e (Yellow rhomb)

This context menu is available in the display area:

Go to Definition
Find All Calls Te Function
Find All Calls From Function

Move To Parent

v | All Symbols
Functions And Variables

Base class

Class
Configuration
Enumeration
Enumeration constant
Field of a struct
Function

Macro
Namespace
Template class
Template function
Type definition
Union

Variable

MNeon Member Functions And Variables

Types
Constants And Macros

Project Files

v | Project And User Include Files

Project And All Include Files

Editing °

163

Reference information on the editor

These commands are available:

Go to Definition
The editor window will display the definition of the selected item.

Find All Calls to
Opens the Call Graph window which displays all functions in the project that
calls the selected function, see Call Graph window, page 167. If this command
is disabled, make sure to select a function in the Source Browser window.

Find All Calls from
Opens the Call Graph window which displays all functions in the project that
are called from the selected function, see Call Graph window, page 167. If this
command is disabled, make sure to select a function in the Source Browser
window.

Move to Parent
If the selected element is a member of a class, struct, union, enumeration, or
namespace, this menu command can be used for moving the insertion point to
the enclosing element.

All Symbols
Type filter—displays all global symbols and functions defined in the project.

Functions and Variables
Type filter—displays all functions and variables defined in the project.

Non-Member Functions and Variables

Type filter—displays all functions and variables that are not members of a class.

Types
Type filter—displays all types such as structures and classes defined in the
project.

Constants and Macros
Type filter—displays all constants and macros defined in the project.

Project Files

File filter—displays symbols from all files that you have explicitly added to
your project, but no include files.

Project and User Include Files

File filter—displays symbols from all files that you have explicitly added to
your project and all files included by them, except the include files in the AR
Embedded Workbench installation directory.

IDE Project Management and Building Guide
164 for RISC-V

Editing °

Project and All Include Files
File filter—displays symbols from all files that you have explicitly added to
your project and all files included by them.

Progress bar

While the source browse information is generated for a project, a green progress bar is
displayed in the status bar of the IDE window. Clicking on this progress bar opens a
context menu with a command to open the Source Browse Log window, see Source

Browse Log window, page 165.

If the source browser encounters a fatal error, the progress bar turns red.

Source Browse Log window
The Source Browse Log window is available by choosing View>Messages.

Source Browse Log

Output

Generating browse informations

Current phbw file: C:%IAR‘tutorials\GetStarted)Debug'Obj'BasicDebugging.plw
Updating the Source Browser

Reading project configurations
Generating C:%IAR‘tutorials'AdvancedDebugging' DebugObj' TimerInterrupt .xcl

Parsing C:%IAR‘tutorials:AdvancedDebugging' TimerInterrupt.cs
Generating browse informations
Updating the Source Browser =

m

This window displays the output from the operation of the source browser.

165

Reference information on the editor

166

Context menu

This context menu is available:
Filter Level:
Al
v | Messages

Errors

Copy
Select All

Clear All

Live Log to File 3

These commands are available:

All

Shows all messages sent by the source browser. This is mainly useful as input to
IAR Technical Support.

Messages

Gives information about what the source browser is doing and any errors that
occur during parsing.

Errors

Shows only errors received during the source browsing.

Copy
Copies the contents of the window.

Select All

Selects the contents of the window.

Clear All
Clears the contents of the window.

Live Log to File

Displays a submenu with commands for writing the source browse messages to
a log file, and setting filter levels for the log.

IDE Project Management and Building Guide

for RISC-V

Editing °

Resolve File Ambiguity dialog box

The Resolve File Ambiguity dialog box is displayed when the editor finds more than
one header file with the same name.

Resolve File Ambiguity

Ambiguous file name: mizc.h

Select one file:

[(0] 3][Cancel]

This dialog box lists the header files if more than one header file is found when you
choose the Open "header.h" command on the editor window context menu and the IDE
does not have access to dependency information.

Call Graph window

The Call Graph window is available by choosing View>Source Browser>Call Graph.

Call Graph x
Function File Line
= # Calls to getFib(int) |tilities.c 44
t doForegroundProcessivaid) Tutar.c 43
t mainfvoid) Tutar.c 57
=t initFibfeoid) tilities.c 40

This window displays calls to or calls from a function. The window is useful for
navigating between the function calls.

To display a call graph, select a function name in the editor window or in the Source
Browser window, right-click and select either Find All Calls to or Find All Calls from
from the context menu.

Double-click an entry in the window to place the insertion point at the location of the
function call (or definition, if a call is not applicable for the entry). The editor will open
the file that contains the call if necessary.

167

Reference information on the editor

Display area
The display area shows the call graph for the selected function, where each line lists a
function. These columns are available:

Function Displays the call graph for the selected function—first the
selected function, followed by a list of all called or calling
functions. The functions calling the selected function are
indicated with left arrow and the functions called by the
selected function are indicated with a right arrow.

File The name of the source file.

Line The line number for the call.

Context menu
This context menu is available:
G0 ko Definition
Go ko Call
These commands are available:

Go to Definition
Places the insertion point at the location of the function definition.

Go to Call
Places the insertion point at the location of the function call.

Template dialog box

The Template dialog box appears when you insert a code template that requires any

field input.
Template "for" @
End Value 10
Variable i m

for{inti =0;i < 10; ++)

}

Use this dialog box to specify any field input that is required by the source code template
you insert.

Note: The figure reflects the default code template that can be used for automatically
inserting code for a for loop.

IDE Project Management and Building Guide
168 for RISC-V

Text fields

Display area

Editing °

Specify the required input in the text fields. Which fields that appear depends on how

the code template is defined.

The display area shows the code that would result from the code template, using the
values you submit. For more information about using code templates, see Using and

adding code templates, page 134.

Editor shortcut key summary

There are three types of shortcut keys that you can use in the editor:

o Predefined shortcut keys, which you can edit using the IDE Options dialog box

e Shortcut keys provided by the Scintilla editor

o Custom shortcut keys that you can add using the IDE Options dialog box.

The following tables summarize the editor’s predefined shortcut keys.

Moving the insertion point

To move the insertion point Press
One character to the left Left arrow
One character to the right Right arrow

One word to the left
One word to the right

One word part to the left—when using mixed
cases, for example mixedCaseName

One word part to the right—when using
mixed cases, for example mixedCaseName

One line up

One line down

To the previous paragraph
To the next paragraph

To the start of the line

To the end of the line

To the beginning of the file

To the end of the file

Ctrl + Left arrow
Ctrl + Right arrow

Ctrl + Alt + Left arrow

Ctrl + Alt + Right arrow

Up arrow

Down arrow

Ctrl + Alt + Up arrow
Ctrl + Alt + Down arrow
Home

End

Ctrl + Home

Ctrl + End

Table 5: Editor shortcut keys for insertion point navigation

169

Reference information on the editor

Selecting text

To select text, press Shift and the corresponding command for moving the insertion
point. In addition, this command is available:

To select Press

A column-based block Shift + Alt + Arrow key

Table 6: Editor shortcut keys for selecting text

Scrolling text

To scroll Press

Up one line. Ctrl + Up arrow
When used in the parameter hints text box,

this shortcut steps up one line through the

alternatives.

Down one line, Ctrl + Down arrow
When used in the parameter hints text box,
this shortcut steps down one line through the

alternatives.
Up one page Page Up
Down one page Page Down

Table 7: Editor shortcut keys for scrolling

Miscellaneous shortcut keys

Description Press

When used in the parameter hints text box, Ctrl + Enter
this shortcut inserts parameters as text in the
source code.

Bracket matching—Expand selection to next ~ Ctrl + B
level of matching of {}, [], or ().

Bracket matching—Expand selection to next ~ Ctrl + Alt + B
level of matching of {}, [], (), or <>.

Bracket matching—Shrink selection to next Ctrl + Shift + B
level of matching of {}, [], or ().

Bracket matching—Shrink selection to next ~ Ctrl + Alt + Shift + B
level of matching of {}, [], (), or <>.

Change case for selected text to lower Ctrl +u

Change case for selected text to upper Ctrl +U

Table 8: Miscellaneous editor shortcut keys

IDE Project Management and Building Guide
170 for RISC-V

Editing °

Description Press

Complete code Ctrl + Space

Complete word Ctrl + Alt + Space

Insert template Ctrl + Alt +V

Parameter hint Ctrl + Shift + Space
Zooming Mouse wheel

Zoom in Ctrl + numeric keypad '+'
Zoom out Ctrl + numeric keypad "-'
Zoom normal Ctrl + numeric keypad '/'

Table 8: Miscellaneous editor shortcut keys (Continued)

Additional Scintilla shortcut keys

Description Press

Scroll window line up or down Ctrl + Up
Ctrl + Down

Select a rectangular block and change its size a Shift + Alt + arrow key
line up or down, or a column left or right

Move insertion point one paragraph up or Ctrl + Alt + Up
down Ctrl + Alt + Down
Grow selection one paragraph up or down Ctrl + Shift + Alt + Up

Ctrl + Shift + Alt + Down

Move insertion point one word left or right ~ Ctrl + Left
Ctrl + Right

Grow selection one word left or right Ctrl + Shift + Left
Ctrl + Shift + Right

Grow selection to next start or end of a word Ctrl + Shift + Alt + Left
Ctrl + Shift + Alt + Right

Move to first non-blank character of the line Home
Move to start of line Alt + Home
Select to start of the line Shift + Alt + Home

Select a rectangular block to the start or end Shift + Alt + Page Up

of page Shift + Alt + Page Down
Delete to start of next word Ctrl + Delete

Delete to start of previous word Ctrl + Backspace
Delete forward to end of line Ctrl + Shift + Delete

Table 9: Additional Scintilla shortcut keys

171

Reference information on the editor

Description Press

Delete backward to start of line Ctrl + Shift + Backspace
Zoom in Ctrl + Add (numeric +)
Zoom out Ctrl + Subtract (numeric -)
Restore zoom to 100% Ctrl + Divide (numeric /)
Cut current line Ctrl + L

Copy current line Ctrl + Shifte + T

Delete current line Ctrl + Shift + L

Change selection to lower case Ctrl +U

Change selection to upper case Ctrl + Shift + U

Table 9: Additional Scintilla shortcut keys (Continued)

IDE Project Management and Building Guide
172 for RISC-V

Part 2. Reference
information

This part contains these chapters:
o Product files

e Menu reference

o General options

e Compiler options

e Assembler options

o Output converter options

o Custom build options

o Build actions options

e Linker options

e Library builder options

.hmuhhhhi

173

AAARRIE

174

Product files

e Installation directory structure
e Project directory structure
e Various settings files

e File types

Installation directory structure

These topics are covered:

e Root directory

o The riscv directory

o The common directory

o The install-info directory

The installation procedure creates several directories to contain the various types of files

used with the IAR development tools. The following sections give a description of the
files contained by default in each directory.

ROOT DIRECTORY

The default installation root directory is typically x: \Program Files\IAR
Systems\Embedded Workbench N.n\, where x is the drive where Microsoft
Windows is installed, and the first digit in . n reflects the first digit in the version
number of the IAR Embedded Workbench shared components.

Note that this version number is not the same as the version number of your IAR
Embedded Workbench product. To find the version number of the IDE and the product,
see Product Info dialog box, page 82.

175

Installation directory structure

176

THE RISCV DIRECTORY

The riscv directory contains all product-specific subdirectories.

Directory

Description

riscv\bin

riscv\config

riscv\cstat

riscv\doc

riscv\drivers

riscv\examples

riscv\inc

riscv\lib

riscv\rtos

riscv\src

riscv\tutorials

Contains executable files for RISC-V-specific components, such as the
compiler, the assembler, the linker and the library tools, and the
C-SPY® drivers.

Contains files used for configuring the development environment and
projects, for example:

* Linker configuration files (* . icf)

* C-SPY device description files (* . ddf)

* Device selection files (* . menu)

« Syntax coloring configuration files (* . c£g)

* Project templates for both application and library projects (* . ewp),
and for the library projects, the corresponding library configuration
files.

Contains files related to C-STAT.

Contains online versions in hypertext PDF format of this user guide,
and of the RISC-V reference guides, as well as online help files (* . chm).
The directory also contains release notes with recent additional
information about the RISC-V tools.

Contains low-level device drivers, typically USB drivers required by the
C-SPY drivers.

Contains files related to example projects, which can be opened from
the Information Center.

Contains include files, such as the header files for the standard C or
C++ library. There are also specific header files that define special
function registers (SFRs)—these files are used by both the compiler and
the assembler.

Contains prebuilt libraries and the corresponding library configuration
files, used by the compiler.

Contains product information, evaluation versions, and example
projects for third-party RTOS and middleware solutions integrated into
IAR Embedded Workbench.

Contains source files for some configurable library functions and the
library source code.

For the ILINK linker, the directory also contains the source code for
ELF utilities.

Contains the files used for the tutorials in the Information Center.

Table 10: The riscv directory

IDE Project Management and Building Guide

for RISC-V

Product files °

THE COMMON DIRECTORY

The common directory contains subdirectories for components shared by all AR
Embedded Workbench products.

Directory

Description

common\bin

common\config

common\doc

common\plugins

Contains executable files for components common to all IAR
Embedded Workbench products, such as the editor and the graphical
user interface components. The executable file for the IDE is also
located here.

Contains files used by the IDE for settings in the development
environment.

Contains release notes with recent additional information about the
components common to all IAR Embedded Workbench products. We
recommend that you read these files. The directory also contains
documentation related to installation and licensing.

Contains executable files and description files for components that can
be loaded as plugin modules.

Table 11: The common directory

THE INSTALL-INFO DIRECTORY

The install-info directory contains metadata (version number, name, etc.) about the
installed product components. Do not modity these files.

Project directory structure

When you build your project, the IDE creates new directories in your project directory.
A subdirectory is created—the name of this directory reflects the build configuration
you are using, typically Debug or Release. This directory in turn contains these

subdirectories:

BrowseInfo

Exe

The default destination directory for information generated by the
source browser.

The default destination directory for:

o The executable file, which has the extension out and is used as
input to the IAR C-SPY® Debugger.

e Library object files, which have the extension a.

177

Various settings files

178

C-STAT The default destination directory for information generated by the
C-STAT static analysis, created when you run an analysis. Note
that the name and location of this directory can be changed on the
page Project>Options>Static Analysis>C-STAT Static

Analysis.
List The default destination directory for various list files.
Obj The default destination directory for the object files from the

compiler and assembler. The object files have the extension o and
are used as input to the linker.

The names and locations of these directories can be changed on the page
Project>Options>General Options>Output.

Various settings files

When you work in the IDE, the IDE creates files for various types of settings. These files
are stored in different directories depending on whether the files contain global or local
settings.

FILES FOR GLOBAL SETTINGS

Files for global settings are stored in C: \Users\User\AppData\Local\IAR
Embedded Workbench. These are the global settings files:

CodeTemplates. txt A file that holds predefined code
CodeTemplates.ENU. txt templates.
CodeTemplates.JPN. txt

Note that if you are using an IDE that is

available in languages other than English,
you are asked to select a language version
when you start the JAR Embedded
Workbench for the first time. In this case,
the filename is extended with ENU or JPN,
depending on your choice of language
(English or Japanese).

See also Using and adding code
templates, page 134.

IDE Project Management and Building Guide

for RISC-V

global.custom_argvars

TarIde.xml

FILES FOR LOCAL SETTINGS

Product files °

A file that holds any custom argument
variables that are defined for a global
scope.

See also Configure Custom Argument
Variables dialog box, page 85.

A file that holds IDE and project settings
global to your installed IAR Embedded
Workbench product(s).

Most files for local settings are stored in the directory settings, which is created in
your project directory. These are the local settings files:

Project.dbgdt

Project.Buildconfig.cspy.bat

Project.Buildconfig.driver.xcl

Project.Buildconfig.general.xcl

Project.dnx

Workspace.wsdt

Workspace.wspos

Workspace.custom_argvars

A file for debugger desktop settings.

A batch file that C-SPY creates every time
it is invoked.

A file that C-SPY creates every time it is
invoked, and which contains the
command line options used that are
specific to the C-SPY driver you are
using.

A file that C-SPY creates every time it is
invoked, and which contains the
command line options used that are
specific to cspybat.

A file for debugger initialization
information.

A file for workspace desktop settings.

A file for placement information for the
main IDE window.

A file for any custom argument variables
that are defined for a workspace-local
scope. See also Configure Custom
Argument Variables dialog box, page 85.

Note: This file is created in the
Workspace directory.

179

File types

File types

The IAR development tools use the following default filename extensions to identify the
produced files and other recognized file types:

Ext. Type of file Output from Input to

a Library iarchive ILINK

asm Assembler source code Text editor Assembler

bat Windows command batch file C-SPY Windows

c C source code Text editor Comepiler

cc C++ source code Text editor Compiler

cfg Syntax coloring configuration Text editor IDE

cgx Call graph file ILINK -

chm Online help system file - IDE

cp C++ source code Text editor Compiler

cpp C++ source code Text editor Comepiler

cspy.bat Invocation file for cspybat C-SPY -

cxx C++ source code Text editor Compiler

c++ C++ source code Text editor Compiler

dat Macros for formatting of STL containers IDE IDE

dbgdt Debugger desktop settings C-SPY C-SPY

ddf Device description file Text editor C-SPY

dep Dependency information IDE IDE

dnx Debugger initialization file C-SPY C-SPY

ewd Project settings for C-SPY IDE IDE

ewp IAR Embedded Workbench project IDE IDE
(current version)

ewplugin IDE description file for plugin modules - IDE

ewt Project settings for C-STAT and C-RUN IDE IDE

eww Workspace file IDE IDE

fmt Formatting information for the Locals IDE IDE

and Watch windows

h C/C++ or assembler header source Text editor Compiler or
assembler
#include

Table 12: File types

IDE Project Management and Building Guide
180 for RISC-V

Product files °

Ext. Type of file Output from Input to
helpfiles Help menu configuration file Text editor IDE
html, htm HTML document Text editor IDE
i Preprocessed source Comepiler Comepiler
icf Linker configuration file Text editor ILINK
inc Assembler header source Text editor Assembler
#include
ini Project configuration IDE -
log Log information IDE -
1st List output Compiler and -
assembler
mac C-SPY macro definition Text editor C-SPY
menu Device selection file Text editor IDE
o Object module Compiler and ILINK
assembler
out Target application ILINK EPROM, C-SPY,
etc.
out Target application with debug information ILINK C-SPY and other
symbolic
debuggers
pbd Source browse information IDE IDE
pbi Source browse information IDE IDE
pew IAR Embedded Workbench project (old IDE IDE
project format)
prj IAR Embedded Workbench project (old IDE IDE
project format)
reggroups User-defined register group configuration IDE IDE
s Assembler source code Text editor Assembler
sim Simple code formatted input for the flash C-SPY C-SPY
loader
suc Stack usage control file Text editor ILINK
vsp Visual State project files IAR Visual State IAR Visual State

Editor

Editor and IAR
Embedded
Workbench IDE

Table 12: File types (Continued)

181

File types

Ext. Type of file Output from Input to
wsdt Workspace desktop settings IDE IDE
WSpos Main IDE window placement information IDE IDE

xcl Extended command line Text editor Assembler,

compiler, linker,
cspybat, source
browser

Table 12: File types (Continued)

When you run the IDE, some files are created and located in dedicated directories under
your project directory, by default $PROJ_DIRS\Debug, $PROJ_DIRS\Release,
$PROJ_DIRS\settings. None of these directories or files affect the execution of the
IDE, which means you can safely remove them if required.

IDE Project Management and Building Guide
182 for RISC-V

Menu reference

e Menus

Menus

Reference information about:

File menu
Edit menu
View menu
Project menu
Tools menu

Window menu

Help menu

In addition, a set of C-SPY-specific menus become available when you start the
debugger. For more information about these menus, see the C-SPY® Debugging Guide
for RISC-V.

File menu

The File menu provides commands for opening workspaces and source files, saving and
printing, and exiting from the IDE.

183

Menus

The menu also includes a numbered list of the most recently opened files and
workspaces. To open one of them, choose it from the menu.

T Mew File Ctrl=N

Tj Mew Waorkspace

[openFile... Ctrl=0
™ OpenWaorkspace...

|:2| Open Header/5ource File Ctrl+5hift=H

a Close

ﬁj Save Workspace

@ Save Workspace As...

m Close Workspace

BE save Ctrl+5

ﬁ Save As..,

A save Al

ﬂ; Page Setup...

= Frint... Ctrl=P
Recent Files 3
Recent Workspaces 3

O it

Menu commands

These commands are available:

+ New File (Ctrl+N)
D Creates a new text file.

‘[j New Workspace
Creates a new workspace.

ﬂ Open File (Ctrl+0)
Displays an Open dialog box for selecting a text file or an HTML document to
open. See Editor window, page 141.

E Open Workspace
Displays an Open Workspace dialog box for selecting a workspace file to open.
Before a new workspace is opened you will be prompted to save and close any
currently open workspaces.

D:j Open Header/Source File (Ctrl+Shift+H)

Opens the header file or source file that corresponds to the current file, and shifts
focus from the current file to the newly opened file. This command is also
available on the context menu in the editor window.

IDE Project Management and Building Guide
184 for RISC-V

Menu reference °

Close

Closes the active window. You will be given the opportunity to save any files that
have been modified before closing.

Save Workspace
Saves the current workspace file.

Save Workspace As

Displays a Save Workspace As dialog box for saving the workspace with a new
name.

Close Workspace
Closes the current workspace file.

Save (Ctrl+S)
Saves the current text file or workspace file.

Save As

Displays a Save As dialog box where you can save the current file with a new
name.

Save All
Saves all open text documents and workspace files.

Page Setup

Displays a Page Setup dialog box where you can set printer options.

Print (Ctrl+P)
Displays a Print dialog box where you can print a text document.

& BE® BB &

Recent Files
Displays a submenu from where you can quickly open the most recently opened
text documents.

Recent Workspaces

Displays a submenu from where you can quickly open the most recently opened
workspace files.

e Exit

Exits from the IDE. You will be asked whether to save any changes to text files
before closing them. Changes to the project are saved automatically.

185

Menus

.
Edit menu
The Edit menu provides commands for editing and searching.
O Undo Ctrl+Z
Redo Ctrl=¥
o ocut Ctrl=X
B copy Ctrl=C
0§ Paste Ctrl=V
Select All Cri+A
Find and Replace 3
Mavigate 3
Code Templates 3
Complete Word Ctrl=Alt=Space
Complete Code Ctrl=Space
Apply Syntax Feedback Fix Ctrl=M
Parameter Hint Ctrl=Shift+Space
Match Brackets 3
Bl | Toggle All Folds Ctrl=Alt=F
= Auto Indent Ctrl=T
*}f Block Comment Ctrl=K
/' Block Uncomment Ctrl=Shift=K
Toggle Breakpoint Fa

Enable/Disable Breakpoint Ctrl+F2

Mext Error/Tag F4

Previous Error/Tag Shift+F4

Menu commands
These commands are available:

D Undo (Ctrl+Z)
Undoes the last edit made to the current editor window.

c Redo (Ctrl+Y)

Redoes the last Undo in the current editor window. You can undo and redo an
unlimited number of edits independently in each editor window.

y Cut (Ctrl+X)
b The standard Windows command for cutting text in editor windows and text
boxes.

m Copy (Ctrl+C)
The standard Windows command for copying text in editor windows and text
boxes.

IDE Project Management and Building Guide
186 for RISC-V

[

[
Q

it

Menu reference °

Paste (Ctrl+V)

The standard Windows command for pasting text in editor windows and text
boxes.

Select All (Ctrl+A)
Selects all text in the active editor window.

Find and Replace>Find (Ctrl+F)

Displays the Find dialog box where you can search for text within the current
editor window, see Find dialog box, page 150. Note that if the insertion point is
located in the Memory window when you choose the Find command, the dialog
box will contain a different set of options than otherwise. If the insertion point
is located in the Trace window when you choose the Find command, the Find
in Trace dialog box is opened—the contents of this dialog box depend on the

C-SPY driver you are using, see the C-SPY® Debugging Guide for RISC-V for
more information.

Find and Replace>Find Next (F3)

Finds the next occurrence of the specified string.
Find and Replace>Find Previous (Shift+F3)

Finds the previous occurrence of the specified string.

Find and Replace>Find Next (Selected) (Ctrl+F3)
Searches for the next occurrence of the currently selected text or the word
currently surrounding the insertion point.

Find and Replace>Find Previous (Selected) (Ctrl+Shift+F3)
Searches for the previous occurrence of the currently selected text or the word
currently surrounding the insertion point.

Find and Replace>Replace (Ctrl+H)
Displays a dialog box where you can search for a specified string and replace
each occurrence with another string, see Replace dialog box, page 152.

Note that if the insertion point is located in the Memory window when you
choose the Replace command, the dialog box will contain a different set of
options than otherwise.

Find and Replace>Find in Files
Displays a dialog box where you can search for a specified string in multiple text
files, see Find in Files window, page 151.

187

Menus

188

Find and Replace>Replace in Files

Displays a dialog box where you can search for a specified string in multiple text
files and replace it with another string, see Replace in Files dialog box, page
155.

@ Find and Replace>Incremental Search (Ctrl+I)

Displays a dialog box where you can gradually fine-tune or expand the search
by continuously changing the search string, see Incremental Search dialog box,

page 158.
L Navigate>Go To (Ctrl+G)

Displays the Go to Line dialog box where you can move the insertion point to
a specified line and column in the current editor window.

U Navigate>Toggle Bookmark (Ctrl+F2)
Toggles a bookmark at the line where the insertion point is located in the active
editor window.

< Navigate>Previous Bookmark (Shift+F2)

Moves the insertion point to the previous bookmark that has been defined with
the Toggle Bookmark command.

> Navigate>Next Bookmark (F2)

Moves the insertion point to the next bookmark that has been defined with the
Toggle Bookmark command.

@ Navigate>Navigate Backward (Alt+Left Arrow)
Navigates backward in the insertion point history. The current position of the
insertion point is added to the history by actions like Go to definition and
clicking on a result from the Find in Files command.

@ Navigate>Navigate Forward (Alt+Right Arrow)

Navigates forward in the insertion point history. The current position of the
insertion point is added to the history by actions like Go to definition and
clicking on a result from the Find in Files command.

Navigate>Go to Definition (F12)

Shows the declaration of the selected symbol or the symbol where the insertion
point is placed. This menu command is available when browse information has
been enabled, see Project options, page 64.

IDE Project Management and Building Guide
for RISC-V

2]
o

'l

¥/

Menu reference °

Code Templates>Insert Template (Ctrl+Alt+V)
Displays a list in the editor window from which you can choose a code template
to be inserted at the location of the insertion point. If the code template you
choose requires any field input, the Template dialog box appears, see Template
dialog box, page 168. For information about using code templates, see Using
and adding code templates, page 134.

Code Templates>Edit Templates
Opens the current code template file, where you can modify existing code
templates and add your own code templates. For information about using code
templates, see Using and adding code templates, page 134.

Complete Word (Ctrl+Alt+Space)
Attempts to complete the word you have begun to type, basing the guess on the
contents of the rest of the editor window.

Complete Code (Ctrl+Space)
Shows a list of classes, functions, variables, etc, that are available when you
type. For more information, see Code completion, page 133.

Apply Syntax Feedback Fix (Ctrl+M)
Applies the suggested fix for the syntactic issue identified by the Syntax
feedback feature in the editor. For more information, see the description under
Editor window, page 141.

Parameter Hint (Ctrl+Shift+Space)
Suggests parameters as tooltip information for the function parameter list you
have begun to type. For more information, see Parameter hint, page 134.

Match Brackets

Selects all text between the brackets immediately surrounding the insertion
point, increases the selection to the next hierarchic pair of brackets, or beeps if
there is no higher bracket hierarchy.

Toggle All Folds (Ctrl+Alt+F)
Expands/collapses all code folds in the current editor window.

Auto Indent (Ctrl+T)

Indents one or several lines you have selected in a C/C++ source file. To
configure the indentation, see Configure Auto Indent dialog box, page 58.

Block Comment (Ctrl+K)

Places the C++ comment character sequence // at the beginning of the selected
lines.

189

Menus

190

- ff Block Uncomment (Ctrl+Shift+K)

Removes the C++ comment character sequence // from the beginning of the
selected lines.
. Toggle Breakpoint (F9)
= Toggles a breakpoint at the statement or instruction that contains or is located
near the cursor in the source window. This command is also available as an icon
button on the debug toolbar.

Enable/Disable Breakpoint (Ctrl1+F9)
Toggles a breakpoint between being disabled, but not actually removed—
making it available for future use—and being enabled again.
o Next Error/Tag (F4)

If the message window contains a list of error messages or the results from a
Find in Files search, this command displays the next item from that list in the
editor window.

o Previous Error/Tag (Shift+F4)

If the message window contains a list of error messages or the results from a
Find in Files search, this command displays the previous item from that list in
the editor window.

View menu

The View menu provides several commands for opening windows in the IDE. When
C-SPY is running you can also open debugger-specific windows from this menu. See
the C-SPY® Debugging Guide for RISC-V for information about these.

Messages 3
‘) Waorkspace

Source Browser »

C-5TAT 3

Breakpoints

Menu commands

These commands are available:

Messages

Displays a submenu which gives access to the message windows—Build, Find
in Files, Source Browse Log, Tool Output, Debug Log—that display
messages and text output from the IAR Embedded Workbench commands. If the
window you choose from the menu is already open, it becomes the active
window.

IDE Project Management and Building Guide
for RISC-V

¥ 4%

\
ho)

[

5

Lo

i

8

Menu reference °

Workspace
Opens the current Workspace window, see Workspace window, page 99.

Source Browser>Source Browser

Opens the Source Browser window, see Source Browser window, page 162.
Source Browser>References

Opens the References window, see References window, page 161.

Source Browser>Declarations

Opens the Declarations window, see Declarations window, page 159.

Source Browser>Ambiguous Definitions
Opens the Ambiguous Definitions window, see Ambiguous Definitions
window, page 160.

Source Browser>Call Graph

Opens the Call Graph window, see Call Graph window, page 167.

C-STAT>C-STAT Messages
Opens the C-STAT Messages window, see the C-STAT® Static Analysis Guide.

Breakpoints
Opens the Breakpoints window, see the C-SPY® Debugging Guide for RISC-V'.

Call Stack
Opens the Call Stack window. Only available when C-SPY is running.

Watch

Opens an instance of the Watch window from a submenu. Only available when
C-SPY is running.

Live Watch

Opens the Live Watch window. Only available when C-SPY is running.
Quick Watch

Opens the Quick Watch window. Only available when C-SPY is running.
Auto

Opens the Auto window. Only available when C-SPY is running.
Locals

Opens the Locals window. Only available when C-SPY is running.

Statics
Opens the Statics window. Only available when C-SPY is running.

191

Menus

192

b

(]

gl

=

Bl @ [&

el [

Memory
Opens an instance of the Memory window from a submenu. Only available
when C-SPY is running.
Registers
Displays a submenu which gives access to the Registers windows—Registers
and Register User Groups Setup. Only available when C-SPY is running.
Disassembly
Opens the Disassembly window. Only available when C-SPY is running.

Stack
Opens an instance of the Stack window from a submenu. Only available when
C-SPY is running.

Symbolic Memory
Opens the Symbolic Memory window. Only available when C-SPY is running.

Terminal I/O
Opens the Terminal I/O window. Only available when C-SPY is running.

Macros>Macro Quicklaunch
Opens the Macro Quicklaunch window. Only available when C-SPY is
running.

Macros>Macro Registration
Opens the Macro Registration window. Only available when C-SPY is
running.

Macros>Debugger Macros
Opens the Debugger Macros window. Only available when C-SPY is running.

Symbols
Opens the Symbols window. Only available when C-SPY is running.

Code Coverage
Opens the Code Coverage window. Only available when C-SPY is running.

Images
Opens the Images window. Only available when C-SPY is running.

Cores
Opens the Cores window. Only available when C-SPY is running.

IDE Project Management and Building Guide

for RISC-V

Project menu

Menu reference °

The Project menu provides commands for working with workspaces, projects, groups,
and files, and for specifying options for the build tools, and running the tools on the

current project.

[& Add Files...

[Ce Add Group..

L*1 | Import File List...
Add Project Connection..,
Edit Configurations...

Remove

D Create New Project...
™ Add Existing Project...

o

Options...

Version Control System
Make

Compile

Rebuild All

Clean

SHO0DG

Batch build...
Clean Browse Information
(C-STAT Static Analysis

Analyze Project
Analyze File(s)

Stop Build

° Download and Debug
¥ Debug without Downloading
Attach to Running Target
Make & Restart Debugger

Download
SFR Setup

Open Device Description File

Save List of Registers...

Alt+F7

Ctrl=F7

Ctrl+Break

Ctrl+D

Ctrl+R

Restart Debugger Ctrl=Shift+R

193

Menus

194

Menu commands

(e

O
(e,

These commands are available:

Add Files
Displays a dialog box where you can select which files to include in the current
project.

Add Group

Displays a dialog box where you can create a new group. In the Group Name
text box, specity the name of the new group. For more information about groups,
see Groups, page 93.

Import File List

Displays a standard Open dialog box where you can import information about
files and groups from projects created using another IAR toolchain.

To import information from project files which have one of the older filename
extensions pew or prj you must first have exported the information using the
context menu command Export File List available in your current AR
Embedded Workbench.

Add Project Connection

Displays the Add Project Connection dialog box, see Add Project Connection
dialog box, page 106.

Edit Configurations

Displays the Configurations for project dialog box, where you can define new
or remove existing build configurations. See Configurations for project dialog
box, page 104.

Remove
In the Workspace window, removes the selected item from the workspace.

Create New Project

Displays the Create New Project dialog box where you can create a new project
and add it to the workspace, see Create New Project dialog box, page 103.

Add Existing Project

Displays a standard Open dialog box where you can add an existing project to
the workspace.

Options (Alt+F7)
Displays the Options dialog box, where you can set options for the build tools,
for the selected item in the Workspace window, see Options dialog box, page
119. You can set options for the entire project, for a group of files, or for an
individual file.

IDE Project Management and Building Guide

for RISC-V

Menu reference °

Version Control System

Displays a submenu with commands for version control, see Version Control
System menu for Subversion, page 106.

Make (F7)

Brings the current build configuration up to date by compiling, assembling, and
linking only the files that have changed since the last build.

Compile (Ctrl1+F7)
Compiles or assembles the currently selected file, files, or group.
One or more files can be selected in the Workspace window—all files in the
same project, but not necessarily in the same group. You can also select the

editor window containing the file you want to compile. The Compile command
is only enabled if @/l files in the selection can be compiled or assembled.

You can also select a group, in which case the command is applied to each file
in the group (also inside nested groups) that can be compiled, even if the group
contains files that cannot be compiled, such as header files.

If the selected file is part of a multi-file compilation group, the command will
still only affect the selected file.
Rebuild All

Rebuilds and relinks all files in the current target.

Clean
Removes any intermediate files.

Batch Build (F8)

Displays the Batch Build dialog box where you can configure named batch
build configurations, and build a named batch. See Batch Build dialog box, page
122.

Clean Browse Information
Deletes the browse information directory along with the information stored in
it. For information about specifying the location of this directory, see Output,
page 209.

C-STAT Static Analysis>Analyze Project
Makes C-STAT analyze the selected project. For more information about
C-STAT, see the C-STAT® Static Analysis Guide.

C-STAT Static Analysis>Analyze File(s)

Makes C-STAT analyze the selected file(s). For more information about
C-STAT, see the C-STAT® Static Analysis Guide.

195

Menus

196

C-STAT Static Analysis>Clear Analysis Results

Makes C-STAT clear the analysis information for previously performed
analyses. For more information about C-STAT, see the C-STAT® Static Analysis
Guide.

C-STAT Static Analysis>Generate HTML Summary

Shows a standard save dialog box where you can select the destination for a
report summary in HTML and create it. For more information about C-STAT,
see the C-STAT® Static Analysis Guide.

C-STAT Static Analysis>Generate Full HTML Report

Shows a standard save dialog box where you can select the destination for a full
report in HTML and create it. For more information about C-STAT, see the
C-STAT® Static Analysis Guide.

Analyze Project

Runs the external analyzer that you select and performs an analysis on all source
files of your project. The list of analyzers is populated with analyzers you
specify on the External Analyzers page in the IDE Options dialog box.

Note that this menu command is only available if you have added an external
analyzer. For more information, see Getting started using external analyzers,
page 31.

Analyze File(s)

Runs the external analyzer that you select and performs an analysis on a group
of files or on an individual file. The list of analyzers is populated with analyzers
you specify on the External Analyzers page in the IDE Options dialog box.

Note that this menu command is only available if you have added an external
analyzer. For more information, see Getting started using external analyzers,
page 31.

Stop Build (Ctrl+Break)
Stops the current build operation.

Download and Debug (Ctrl+D)

Downloads the application and starts C-SPY so that you can debug the project
object file. If necessary, a make will be performed before running C-SPY to
ensure the project is up to date. This command is not available during a debug
session.

IDE Project Management and Building Guide

for RISC-V

Menu reference °

:.z';_'\.. Debug without Downloading

g Starts C-SPY so that you can debug the project object file. This menu command
is a shortcut for the Suppress Download option available on the Download
page. The Debug without Downloading command is not available during a

debug session.

o) Attach to Running Target

"J Makes the debugger attach to a running application at its current location,
without resetting the target system. If you have defined any breakpoints in your
project, the C-SPY driver will set them during attachment. If the C-SPY driver
cannot set them without stopping the target system, the breakpoints will be

disabled. The option also suppresses download and the Run to option.

If the option is not available, it is not supported by the combination of C-SPY
driver and device you are using.
@ Make & Restart Debugger

Stops C-SPY, makes the active build configuration, and starts the debugger
again—all in a single command. This command is only available during a debug
session.

Restart Debugger

Stops C-SPY and starts the debugger again—all in a single command. This
command is only available during a debug session.

Download
Commands for flash download and erase.

SFR Setup

Opens the SFR Setup window which displays the currently defined SFRs that
C-SPY has information about. For more information about this window, see the
C-SPY® Debugging Guide for RISC-V.

Open Device Description File
Opens a submenu where you can choose to open a file from a list of all device
files and SFR definitions files that are in use.

Save List of Registers

Generates a list of all defined registers, including SFRs, with information about
the size, location, and access type of each register. If you are in a debug session,
the list also includes the current value of the register. This menu command is
only available when a project is loaded in the IDE.

197

Menus

Tools menu

The Tools menu provides commands for customizing the environment, such as changing
common fonts and shortcut keys.

It is a user-configurable menu to which you can add tools for use with IAR Embedded
Workbench. Therefore, it might look different depending on which tools you have
preconfigured to appear as menu items.
!33 Options...
Filename Extensions...

Configure Viewers..,

Configure Custom Argument Variables..,

ar

Configure Toaols...

Motepad

Menu Commands
These commands are available:
a Options
Displays the IDE Options dialog box where you can customize the IDE. See:
Colors and Fonts options, page 46
Debugger options, page 71
Editor options, page 54
Editor Setup Files options, page 60
External Analyzers options, page 66
External Editor options, page 59
Key Bindings options, page 51
Language options, page 53
Messages options, page 62
Project options, page 64
Stack options, page 72
Terminal 1/0 options, page 74

Troubleshooting options, page 63

Filename Extensions
Displays the Filename Extensions dialog box where you can define the
filename extensions to be accepted by the build tools, see Filename Extensions
dialog box, page 80.

IDE Project Management and Building Guide
198 for RISC-V

Menu reference °

Configure Viewers

Displays the Configure Viewers dialog box where you can configure viewer
applications to open documents with, see Configure Viewers dialog box, page
78.

Configure Custom Argument Variables

Displays the Configure Custom Argument Variables dialog box where you
can define and edit your own custom argument variables, see Configure Custom
Argument Variables dialog box, page 85.

y o Configure Tools
Displays the Configure Tools dialog box where you can set up the interface to
use external tools, see Configure Tools dialog box, page 76.

Notepad

User-configured. This is an example of a user-configured addition to the Tools
menu.

Window menu
The Window menu provides commands for manipulating the IDE windows and
changing their arrangement on the screen.

a Close Document Ctrl=wW

[11 split
Move Tab to New Vertical Editor Window
Move Tab to New Horizontal Editor Window
Move Tab to the Next Window
Move Tab to the Previous Window
Close All Tabs Except Active
Close All Tabs to the Right of Active
Close All Editor Tabs

Toolbars 3

Status Bar

Windows...

The last section of the Window menu lists the currently open windows. Choose the
window you want to switch to.

199

Menus

200

Menu commands
These commands are available:

a Close Document (Ctrl+W)
Closes the active editor document.

@ Close Window
Closes the active IDE window.

[: :l Split
Splits an editor window horizontally into two panes, which means that you can
see two parts of a file simultaneously.

Move Tab to New Vertical Editor Window

Opens a new empty window next to the current editor window and moves the
active document to the new window.

Move Tab to New Horizontal Editor Window

Opens a new empty window under the current editor window and moves the
active document to the new window.

Move Tab to the Next Window
Moves the active document in the current window to the next window.

Move Tab to the Previous Window
Moves the active document in the current window to the previous window.

Close All Tabs Except Active
Closes all the tabs except the current tab.

Close All Tabs to the Right of Active
Closes all tabs to the right of the current tab.
Close All Editor Tabs
Closes all tabs currently available in editor windows.

Toolbars
The options on this submenu toggle the toolbars on or off. There might be
toolbars that are only available for certain C-SPY debug drivers, and only during
a debug session.

Status bar
Toggles the status bar on or off.

IDE Project Management and Building Guide
for RISC-V

Menu reference °

Help menu

The Help menu provides help about IAR Embedded Workbench. From this menu you
can also find the version numbers of the user interface and of the IDE, see Product Info
dialog box, page 82.

You can also access the Information Center from the Help menu. The Information
Center is an integrated navigation system that gives easy access to the information
resources you need to get started and during your project development—tutorials,
example projects, user guides, support information, and release notes. It also provides
shortcuts to useful sections on the IAR web site.

201

Menus

IDE Project Management and Building Guide
202 for RISC-V

General options

e Description of general options

Description of general options

Reference information about:

Target

ISA Extensions

Code Generation
Output

Library Configuration

Library Options 1

Library Options 2

To set general options in the IDE:
I Choose Project>Options to display the Options dialog box.
2 Select General Options in the Category list.

3 To restore all settings to the default factory settings, click the Factory Settings button.

203

Description of general options

Target

The Target page contains options for the base Instruction Set Architecture (ISA) and
extensions for [AR Embedded Workbench for RISC-V.

Target
Device Base ISA
RV32 Bl (O RV32E
® Rv32i
RVE4l
Standard extensions
M A Floating-point settings:
ON Pc FPU D v
Bit manipulation
[Jzba []Zbb []Zbec []Zbs Xbeountzeroes
Code size reduction Scalar cryptography
[zcb [1Zkn
Zemp [Zks

Device
The device your are using. The choice of device will automatically determine the default
linker configuration file and C-SPY® device description file. For information about how
to override the default files, see Config, page 248 and the C-SPY® Debugging Guide for
RISC-V.

Base ISA

Selects which base ISA to generate code for. Choose between:
RV32E

Generates code for RV32E.
RV321

Generates code for RV32L.

RVo64l
Generates code for RV641.

Standard extensions

Selects which standard RISC-V extensions to generate code for. For information about
the available standard extensions, see the /AR C/C++ Development Guide for RISC-V.

IDE Project Management and Building Guide
204 for RISC-V

General options __¢

Floating-point settings

Selects which standard RISC-V floating-point extension to generate code for. Choose
between:

FPU None
Generates code without support for any of the standard extensions for FPU.

FPUF

Generates code with support for the Single-Precision Floating-Point extension

(F).
FPUD
Generates code with support for the Double-Precision Floating-Point extension

(D).
FPU Zfinx

Generates code with support for the single-precision floating-point instructions
that operate on the integer (x) registers (Zfinx).

FPU Zdinx

Generates code with support for the double-precision floating-point instructions
that operate on the integer (x) registers (Zdinx).

Bit manipulation

Selects which standard RISC-V bit manipulation extensions to generate code for. For
information about the available standard extensions for bit manipulation, see the /AR
C/C++ Development Guide for RISC-V.

Code size reduction

Selects which standard RISC-V code size reduction extension to generate code for.

Zcb
Generates code to add the basic code size assembler instructions.

Zcmp
Generates code to add instructions to push and pop multiple registers.

For information about the available code size reduction extensions, see the /AR C/C++
Development Guide for RISC-V.

Scalar cryptography

Selects which standard RISC-V scalar cryptography extension to generate code for.

205

Description of general options

Zkn
Generates code with support for the scalar cryptography NIST Algorithms
(Zkn).

For information about the available scalar cryptography NIST Algorithms, see
the IAR C/C++ Development Guide for RISC-V.

Zks
Generates code with support for the scalar cryptography ShangMi Algorithms
(Zks).

For information about the available scalar cryptography ShangMi Algorithms,
see the JAR C/C++ Development Guide for RISC-V.

ISA Extensions

The ISA Extensions options specify support for some of the extensions to the RISC-V
ISA.

ISA Extensions

Cache management

[JZicbom [Zicbop [] Zichoz [[] Xeswincache

Andes extensions DSP

[] Xandesperf (None
CoDense (® Xandesdsp
[[] Xcodense oP

Zpsfoperand
Exclude JAL instruction

Cache management
Enables code generation with support for one or more of the CMO extensions. Choose
from:
Zicbom
Generates code for the standard extension Zicbom (cache block management
operations).
Zicbop

Generates code for the standard extension Zicbop (cache block prefetch
operations).

IDE Project Management and Building Guide
206 for RISC-V

General options __¢

Zicboz
Generates code for the standard extension Zicboz (cache block zero operations).

Xeswincache

Generates code for the non-standard extension Xeswincache (cache
management to the RISC-V ISA).

Andes extensions

Select the Xandesperf option to generate code with support for the AndeStar™ V5
Performance instruction set extension.

Select the Xcodense option to generate code with support for the AndeStar™ V5
CoDense instruction set extension for code size compaction.

Select the Exclude JAL instruction option to exclude all call instructions from being
candidates for replacement with exec . it instructions. (When CoDense code size
compaction is used, call instruction pairs are normally used as candidates for being
replaced with exec . it instructions during optimization in the linker. In some
applications this can result in bad use of the CoDense table.)

DSP
Selects which DSP extension or extension subsets to generate code for. Choose between:
None

Generates code without support for any of the extensions for digital signal
processing.

Xandesdsp
Generates code with support for the AndeStar™ DSP instruction set extension.

Generates code with support for the Zpn and Zbpbo subsets of the P instruction
set extension. Select the Zpsfoperand option to generate code with support for
all P extension subsets (that is, also for the Zpsfoperand subset).

207

Description of general options

208

Code Generation

Code model

Stack size

Heap size

The Code Generation options determine the code model, the heap and stack sizes,
misaligned data access, and the initialization of the interrupt vector table.

Code Generation

Code model Stack/Heap
® Medlow Stack size: |0x1000

Medany Heap size: | 0x1000

[] Allow misaligned data accesses

[_] Automatic setup of interrupt vector table

For more information about code models and using the stacks and heaps, see the /4R
C/C++ Development Guide for RISC-V.

The code model controls how generated code and data is addressed and linked. For
RV32 devices, Medlow is the only available code model. For RV64 devices, choose
between:
Medlow
The generated code can be up to 2 Gbytes and must lie between absolute
addresses -8000' 0000 and +8000'0000.
Medany

The generated code can be up to 2 Gbytes, placed within any single 2 Gbytes
address range anywhere in memory.

Specify the stack size.

Specify the heap size.

IDE Project Management and Building Guide

for RISC-V

General options __¢

Allow misaligned data accesses

Makes it possible for the compiler and the linker to access misaligned data objects. For
information about misaligned data accesses, see the AR C/C++ Development Guide for
RISC-V.

Automatic setup of interrupt vector table

Makes the linker add startup code that initializes the interrupt vector table before the
execution reaches the main function. For information about the interrupt vector table,
see the JAR C/C++ Development Guide for RISC-V.

Note: This option is not available for all devices.

Output

The Output options determine the type of output file. You can also specify the
destination directories for executable files, object files, list files, and build files.
Qutput

Qutput file
(® Executable (O Library

Qutput directories
Executables/libraries:

| Debug'Exe |

Object files:
[Debug\Obj |

List files:
| DebugList |

Browse files:

| Debug*Browselnfo |

Build files:
| Debug |

Output file
Selects the type of the output file. Choose between:

Executable (default)

As aresult of the build process, the linker will create an application (an
executable output file). When this setting is used, linker options will be available
in the Options dialog box. Before you create the output you should set the
appropriate linker options.

209

Description of general options

210

Library
As a result of the build process, the library builder will create a library file.
When this setting is used, library builder options will be available in the Options
dialog box, and Linker will disappear from the list of categories. Before you
create the library you can set the options.

Output directories

Specify the paths to the destination directories. Note that incomplete paths are relative
to your project directory. You can specify:

Executables/libraries

Overrides the default directory for executable or library files. Type the name of
the directory where you want to save executable files for the project.

Object files

Overrides the default directory for object files. Type the name of the directory
where you want to save object files for the project.

List files

Overrides the default directory for list files. Type the name of the directory
where you want to save list files for the project.

Browse files
Overrides the default directory for storing source browser information. Type the
name of the directory where you want to store source browser information for
the project. To delete the contents of this directory, choose
Project>Clean Browse Information.

Build files
Overrides the default directory for build files, that is, logs, dependency files, and
other files generated by the build engine. Type the name of the directory where
you want to save build files for the project.

Note that sharing a build file directory between multiple build configurations
can increase the number of rebuilds (as the configurations might use different
command lines).

IDE Project Management and Building Guide

for RISC-V

General options __¢

Library Configuration

The Library Configuration options determine which library to use.

Library Configuration
Library: Description:
Libc++ ~ A complete C/C++17 rurtime library. Full locale

interface, C locale, file descriptor support,
multibytes in printf and scanf, and hex floats in
strtod.

[] Enable thread support in library

Library low4evel interface implementation
(O None Stdout/Stdem

@ AR Breakpoirt (@) Via IAR Breakpoint
(O Via Trace ITC

For information about the runtime library, library configurations, the runtime
environment they provide, and the possible customizations, see JAR C/C++
Development Guide for RISC-V.

Library

Selects which runtime library to use. For information about available libraries, see the
IAR C/C++ Development Guide for RISC-V.

The names of the library object file and library configuration file that actually will be

used are displayed in the Library file and Configuration file text boxes, respectively.
Configuration file

Displays the library configuration file that will be used. A library configuration file is

chosen automatically depending on the project settings. If you have chosen Custom in

the Library drop-down list, you must specify your own library configuration file.
Enable thread support in library

Select this option to automatically configure the runtime library for use with threads.

Library low-level interface implementation

Controls the type of low-level interface for I/O to be included in the library. Choose
between:

None

No low-level support for I/O available in the libraries. You must provide your
own __write function to use the I/O functions part of the library.

211

Description of general options

IAR Breakpoint

A proprietary mechanism that enables code running on the target to
communicate by halting the application using a breakpoint. This can lead to
performance improvements, but it does not work with applications, libraries,
and object files that are built using tools from other vendors.

Stdout/Stderr

Determines which method the executing application uses to send text to the stdout and
stderr streams. Choose between:

Via IAR Breakpoint

Textis sent to the stdout and stderr streams by temporarily stopping the core
at a breakpoint.

Via Trace ITC

Textis sent to the stdout and stderr streams by way of trace output, using the
Instrumentation Trace Component present on some SiFive devices.

Library Options |

The options on the Library Options 1 page select the printf and scanf formatters.

Library Options 1

Printf formatter

_ Automatic choice of formatter, without
multibyte support.
Enable multibyte support

Scanf formatter

_ Automatic choice of formatter, without
multibyte support.
Enable multibyte support

Math functions

Default varants of cos, sin, tan, log,

log10, pow, and exp.

For information about the capabilities of the formatters, see the JAR C/C++
Development Guide for RISC-V.
Printf formatter

If you select Auto, the linker automatically chooses the appropriate formatter for
printf-related functions based on information from the compiler.

IDE Project Management and Building Guide
212 for RISC-V

Scanf formatter

Math functions

General options __¢

To override the default formatter for all print £-related functions, except for wprint £
variants, choose between:

o Printf formatters in the IAR DLIB Library—Full, Large, Small, and Tiny
Choose a formatter that suits the requirements of your application.

Select Enable multibyte support to make the printf formatter support multibytes.

If you select Auto, the linker automatically chooses the appropriate formatter for
scanf-related functions based on information from the compiler.

To override the default formatter for all scanf-related functions, except for wscanf
variants, choose between:

e Scanf formatters in the IAR DLIB Library—Full, Large, and Small
Choose a formatter that suits the requirements of your application.

Select Enable multibyte support to make the scanf formatter support multibytes.

Some library math functions are also available in size-optimized versions, and in more
accurate versions. Choose between:

Default
The default versions of the functions cos, exp, 1log, 1ogl0, pow, sin, tan, and

_lar_Sin.

Smaller

Versions of the functions cos, exp, 1og, 1ogl0, pow, sin, tan, and
__iar_sin that are about 20% smaller and about 20% faster than the default
versions.

More accurate

Versions of the functions cos, exp, 1og, 1ogl0, pow, sin, tan, and
__iar_sin that are more exact and can handle larger argument ranges than the
default versions. The drawback is that they are larger and slower than the default
versions.

213

Description of general options

Library Options 2

Heap selection

Locale support

The options on the Library Options 2 page select the heap and locale support.
Library Options 2
Heap selection
@ Automatic

) Advanced heap

_ Basic heap

_) Nodree heap

Locale support
[Use in addition to the C locale:

[Buffered terminal output

Select the heap to use. For more information about heaps, see the /AR C/C++
Development Guide for RISC-V. Choose between:

Automatic
Automatically selects the heap to use for your application.
The selection is based on the existence of calls to heap memory allocation
routines in your application and on the optimization settings for the application

modules. See the /AR C/C++ Development Guide for RISC-V for a detailed
description.

Advanced heap
Selects the advanced heap.

Basic heap
Selects the basic heap.

No-free heap

Uses the smallest possible heap implementation. Because this heap does not
support free or realloc, it is only suitable for applications that in the startup
phase allocate heap memory for various buffers etc. This heap memory is never
deallocated.

Select the locales that the linker will use in addition to the C locale. (Requires that you
have selected a library configuration that includes the C locale.)

IDE Project Management and Building Guide

214 for RISC-V

General options __¢

Buffered terminal output

Buffers terminal output during program execution, instead of instantly printing each
new character to the C-SPY Terminal I/0O window. This option is useful when you use
debugger systems that have slow communication.

215

Description of general options

IDE Project Management and Building Guide
216 for RISC-V

Compiler options

Description of compiler options

Description of compiler options

Reference information about:

Multi-file Compilation

Multi-file Compilation
Language 1

Language 2
Optimizations

Output

List

Preprocessor
Diagnostics
Encodings

Extra Options

Edit Include Directories dialog box

To set compiler options in the IDE:

Choose Project>Options to display the Options dialog box.

Select C/C++ Compiler in the Category list.

To restore all settings to the default factory settings, click the Factory Settings button.

Before you set specific compiler options, you can decide whether you want to use
multi-file compilation, which is an optimization technique.

Factory Settings

| bulti-file: Compilation

Discard Unused Publics

Multi-file Compilation

Enables multi-file compilation from the group of project files that you have selected in

the Workspace window.

217

Description of compiler options

You can use this option for the entire project or for individual groups of files. All C/C++
source files in such a group are compiled together using one invocation of the compiler.

This means that all files included in the selected group are compiled using the compiler
options which have been set on the group or nearest higher enclosing node which has
any options set. Any overriding compiler options on one or more files are ignored when
building, because a group compilation must use exactly one set of options.

For information about how multi-file compilation is displayed in the Workspace

window, see Workspace window, page 99.

Discard Unused Publics

Discards any unused public functions and variables from the compilation unit.

For more information about multi-file compilation and discarding unused public
functions, see the /AR C/C++ Development Guide for RISC-V.

Language |
The Language 1 options determine which programming language to use and which
extensions to enable.
Language 1
Language Language conformance
@cC @ Standard with |AR extensions
Bjecey ~) Standard
) Auto (extension based) ~ Strict
C dialect C++ options
- C89 Destroy static objects
@ Standard C
[Allow VLA
[T C++inline semantics
[Require prototypes
For more information about the supported languages, their dialects, and their extensions,
see the JAR C/C++ Development Guide for RISC-V.
Language

Determines the compiler support for either C or C++. Choose between:

C (default)

Makes the compiler treat the source code as C, which means that features
specific to C++ cannot be used.

IDE Project Management and Building Guide
218 for RISC-V

Compiler options _o

C++
Makes the compiler treat the source code as C++.
Auto

Language support is decided automatically depending on the filename extension
of the file being compiled:

c: files with this filename extension are treated as C source files.

cpp, .cc, .cp, .cxx, and . c++: files with these filename extensions will be
treated as C++ source files.

Language conformance

Controls how strictly the compiler adheres to the standard C or C++ language. Choose
between:

Standard with IAR extensions

Accepts RISC-V-specific keywords as extensions to the standard C or C++
language. In the IDE, this setting is enabled by default.

Standard

Disables IAR extensions, but does not adhere strictly to the C or C++ dialect you
have selected. Some very useful relaxations to C or C++ are still available.

Strict
Adheres strictly to the C or C++ dialect you have selected. This setting disables

a great number of useful extensions and relaxations to C or C++.
C dialect
Selects the dialect if C is the supported language. Choose between:

C89
Enables the C89 standard instead of Standard C.

Standard C

Enables the C18 standard, also known as Standard C. This is the default standard
used in the compiler, and it is stricter than C89. Features specific to C89 cannot
be used. In addition, choose between:

Allow VLA, allows the use of C11 variable length arrays.

C++ inline semantics, enables C++ inline semantics when compiling a
Standard C source code file.

219

Description of compiler options

C++ options

Language 2

Plain 'char' is

Require prototypes
Forces the compiler to verify that all functions have proper prototypes, which
means that source code containing any of the following will generate an error:
o A function call of a function with no declaration, or with a Kernighan &
Ritchie C declaration.
e A function definition of a public function with no previous prototype
declaration.

o An indirect function call through a function pointer with a type that does not
include a prototype.

Selects C++ language options. Choose between:

Destroy static objects

Makes the compiler generate code to destroy C++ static variables that require
destruction at program exit.

The Language 2 options control the use of some language extensions.
Language 2

Plain ‘char’is

~ Signed
@ Unsigned

Floating-point semartics
@ Strict conformance

_ Relaxed (smaller and//or faster)

Normally, the compiler interprets the plain char type as unsigned char. Plain 'char'
is Signed makes the compiler interpret the char type as signed char instead, for
example for compatibility with another compiler.

Note: The runtime library is compiled with unsigned plain characters. If you select the
Signed option, references to library functionality that uses unsigned plain characters
will not work.

IDE Project Management and Building Guide

220 for RISC-V

Compiler options °

Floating-point semantics

Controls floating-point semantics. Choose between:

Strict conformance
Makes the compiler conform strictly to the C and floating-point standards for
floating-point expressions.

Relaxed
Makes the compiler relax the language rules and perform more aggressive
optimization of floating-point expressions. This option improves performance
for floating-point expressions that fulfill these conditions:
o The expression consists of both single- and double-precision values

o The double-precision values can be converted to single precision without
loss of accuracy

o The result of the expression is converted to single precision.

Note that performing the calculation in single precision instead of double
precision might cause a loss of accuracy.

Optimizations
The Optimizations options determine the type and level of optimization for the
generation of object code.
Optimizations
Level Enabled transformations:
() None []Common subexpression elimination
) Low [|Loop unroling
) Medi ["| Function inlining
— Medium [|Code motion
@ High [| Type-based alias analysis
- [|Cross call
[Gross amp
No size constraints
Level

Selects the optimization level. Choose between:

None

No optimization—provides best debug support.

221

Description of compiler options

Low

The lowest level of optimization.
Medium

The medium level of optimization.
High

The highest level of optimization. Choose from:

Balanced, the highest level of optimization, balancing between speed and size.
Size, the highest level of optimization, favoring size.

Speed, the highest level of optimization, favoring speed.

No size constraints
Optimizes for speed, but relaxes the normal restrictions for code size expansion.
This option is only available at the level High, Speed.

By default, a debug project will have a size optimization that is fully debuggable, while
a release project will have a high balanced optimization that generates small code
without sacrificing speed.

For a list of optimizations performed at each optimization level, see the /[4AR C/C++
Development Guide for RISC-V.

Enabled transformations
Selects which transformations that are available at different optimization levels. When
a transformation is available, you can enable or disable it by selecting its check box.
Choose between:

Common subexpression elimination

Loop unrolling

Function inlining

Code motion

Type-based alias analysis

Cross call (subroutine abstraction)

Cross jump (tail merging).

Note: In a debug project the transformations are, by default, disabled. In a release
project the transformations are, by default, enabled.

For a brief description of the transformations that can be individually disabled, see the
IAR C/C++ Development Guide for RISC-V.

IDE Project Management and Building Guide
222 for RISC-V

Compiler options °

Output

The Output options determine the generated compiler output.

Qutput

Generate debug information

Code section name:
Yot

Generate debug information

Makes the compiler include additional information in the object modules that is required
by C-SPY and other symbolic debuggers.

Generate debug information is selected by default. Deselect it if you do not want the
compiler to generate debug information.

Note: The included debug information increases the size of the object files.

Code section name

The compiler places functions into named sections which are referred to by the IAR
ILINK Linker. Code section name specifies a different name than the default name to
place any part of your application source code into separate non-default sections. This
is useful if you want to control placement of your code to different address ranges and
you find the @ notation, alternatively the #pragma location directive, insufficient.

Note: Take care when you explicitly place a function in a predefined section other than
the one used by default. This is useful in some situations, but incorrect placement can
result in anything from error messages during compilation and linking to a
malfunctioning application. Carefully consider the circumstances—there might be strict
requirements on the declaration and use of the function or variable.

Note that any changes to the section names require a corresponding modification in the
linker configuration file.

For detailed information about sections and the various methods for controlling the
placement of code, see the /AR C/C++ Development Guide for RISC-V.

223

Description of compiler options

List
The List options make the compiler generate a list file and determine its contents.

N

[T Qutput list file
[Assembler mnemonics
[Diagnostics

[Qutput assembler fils
[Include source
[T Include call frame information

By default, the compiler does not generate a list file. Select any of the following options
to generate a list file or an assembler file. The list file will be saved in the List directory,
and its filename will consist of the source filename, plus the filename extension 1st.

If you want to save the list file in another directory than the default directory for list files,
use the Output Directories option in the General Options category, see Output, page
209.

You can open the output files directly from the Output folder which is available in the
Workspace window.

Output list file
Makes the compiler generate a list file. You can open the output files directly from the
Output folder which is available in the Workspace window. By default, the compiler
does not generate a list file. For the list file content, choose between:
Assembler mnemonics
Includes assembler mnemonics in the list file.
Diagnostics
Includes diagnostic information in the list file.

Output assembler file

Makes the compiler generate an assembler list file. For the list file content, choose
between:

Include source

Includes source code in the assembler file.

IDE Project Management and Building Guide
224 for RISC-V

Compiler options °

Include call frame information

Includes compiler-generated information for runtime model attributes, call
frame information, and frame size information.

Preprocessor

The Preprocessor options allow you to define symbols and include paths for use by the

compiler and assembler.
Preprocessor

[Ignore standard include directories

Additional include directories: {one per ling)

Preinclude file:

Defined symbols: {one per line)
P [Preprocessar output to file

Preserve comments

Generate Hine direc

Ignore standard include directories

Normally, the compiler and assembler automatically look for include files in the
standard include directories. Use this option to turn off this behavior.

Additional include directories

Specify the full paths of directories to search for include files, one per line. Any
directories specified here are searched before the standard include directories, in the
order specified.

Use the browse button to display the Edit Include Directories dialog box, where you
can specify directories using a file browser. For more information, see Edit Include
Directories dialog box, page 230.

To avoid being dependent on absolute paths, and to make the project more easily
portable between different machines and file system locations, you can use argument
variables like $TOOLKIT_DIR$ and $PROJ_DIRS, see Argument variables, page 83.

Preinclude file

Specify a file to include before the first line of the source file.

225

Description of compiler options

226

Defined symbols

Define a macro symbol (one per line), including its value, for example like this:
TESTVER=1

This has the same effect as if a line like this appeared before the start of the source file:
#define TESTVER 1

A line with no value has the same effect as if =1 was specified.

Preprocessor output to file

Diagnostics

Makes the compiler and assembler output the result of the preprocessing to a file with
the filename extension i, located in the 1st directory. Choose between:
Preserve comments
Includes comments in the output. Normally, comments are treated as
whitespace, and their contents are not included in the preprocessor output.
Generate #line directives

Generates #1ine directives in the output to indicate where each line originated
from.

The Diagnostics options determine how diagnostic messages are classified and
displayed. Use the diagnostics options to override the default classification of the

specified diagnostics.
Diagnostics

[Enable remarks

Suppress these diagnostics:

Treat these as remarks:

Treat these as wamings:

Treat these as emors:

[Treat all wamings as emors

Note: The diagnostic messages cannot be suppressed for fatal errors, and fatal errors
cannot be reclassified.

IDE Project Management and Building Guide

for RISC-V

Compiler options _o

Enable remarks

Enables the generation of remarks. By default, remarks are not issued.

The least severe diagnostic messages are called remarks. A remark indicates a source
code construct that might cause strange behavior in the generated code.

Suppress these diagnostics
Suppresses the output of diagnostic messages for the tags that you specity.
For example, to suppress the warnings Xx117 and Xx177, type:

Xx117,Xx177

Treat these as remarks

Classifies diagnostic messages as remarks. A remark is the least severe type of
diagnostic message. It indicates a source code construct that might cause strange
behavior in the generated code.

For example, to classify the warning xx177 as a remark, type:

Xx177

Treat these as warnings

Classifies diagnostic messages as warnings. A warning indicates an error or omission
that is of concern, but which will not cause the compiler to stop before compilation is
completed.

For example, to classify the remark Xx826 as a warning, type:

Xx826

Treat these as errors

Classifies diagnostic messages as errors. An error indicates a violation of the language
rules, of such severity that object code will not be generated, and the exit code will be
non-zero.

For example, to classify the warning Xx117 as an error, type:

Xx117

Treat all warnings as errors

Classifies all warnings as errors. If the compiler encounters an error, object code is not
generated.

227

Description of compiler options

Encodings

The Encodings options determine the encodings for source files, output files, and input

files.
Encodings
Default source file encoding Defautt input file encoding
@ Raw (Clocale) @ System locale
_) System locale I UTF-8
7 UTF-8

Text output file encoding
@ As source encoding
_) System locale
7 UTF-8 with BOM

Default source file encoding

Specifies the encoding that the compiler shall use when reading a source file with no

Byte Order Mark (BOM).
Raw (C locale)

Sets the Raw encoding (C locale) as the default source file encoding.

System locale

Sets the system locale encoding as the default source file encoding.

UTF-8

Sets the UTF-8 encoding as the default source file encoding

Default input file encoding

Specifies the encoding that the compiler shall use when reading a text input file with no

Byte Order Mark (BOM).

System locale

Sets the system locale encoding as the default encoding.

UTF-8

228

IDE Project Management and Building Guide
for RISC-V

Sets the UTF-8 encoding as the default encoding.

Compiler options °

Text output file encoding

Extra Options

Specifies the encoding to be used when generating a text output file.

As source encoding
Uses the same encoding as in the source file.

System locale
Uses the system locale encoding.

UTF-8
Uses the UTF-8 encoding.

With BOM
Adds a Byte Order Mark (BOM) to the output file.

This option is only available when you have selected the UTF-8 encoding.

The Extra Options page provides you with a command line interface to the tool.
| Extra Options

Use command line options

Command line options: (one per line)

Use command line options

Specify additional command line arguments to be passed to the tool (not supported by
the GUI).

229

Description of compiler options

230

Edit Include Directories dialog box

Edit Include Direc_

The Edit Include Directories dialog box is available from the Preprocessor page in the
Options dialog box for the compiler and assembler categories.

Include directory

| C:4Program Fi

$TOOLKIT_DIR$\tutorsing

«Click to add:

Embedded Workbenchhtargethine

C\Program Files (xB6)\IAR Systems\Embedded Workbench'target\inc
STOOLKIT_DIRS\inc

[(0] 8][Cancel]

Use this dialog box to specify or delete include paths, or to make a path relative or
absolute.

To add a path to an include directory:
Click the text <Click to add>. A browse dialog box is displayed.

Browse to the appropriate include directory and click Select. The include path appears.
To add yet another one, click <Click to add>.

To make the path relative or absolute:

Click the drop-down arrow. A context menu is displayed. which shows the absolute
path and paths relative to the argument variables $PROJ_DIRS$ and $TOOLKIT_DIRS,
when possible.

Choose one of the alternatives.

To change the order of the paths:

Use the shortcut key combinations Ctrl+Up/Down.
The list will be sorted accordingly.

To delete an include path:

Select the include path and click the red cross at the beginning of the line, alternatively
press the Delete key.

The selected path will disappear.

IDE Project Management and Building Guide

for RISC-V

Assembler options

e Description of assembler options

Description of assembler options
Reference information about:
Language
Output
List
Preprocessor

Diagnostics

Extra Options

To set assembler options in the IDE:

I Choose Project>Options to display the Options dialog box.
2 Select Assembler in the Category list.

3 To restore all settings to the default factory settings, click the Factory Settings button.

Language
The Language options control certain behavior of the assembler language.
Language
| User symbols are case sensitive
Allow mnemonics in first column
Allow directives in first column

Macro quote characters:

<> -

231

Description of assembler options

232

User symbols are case sensitive

Toggles case sensitivity on and off. By default, case sensitivity is on. This means that,
for example, LABEL and label refer to different symbols. When case sensitivity is off,
LABEL and label will refer to the same symbol.

Allow mnemonics in first column

Makes mnemonics names (without a trailing colon) that start in the first column to be

recognized as mnemonics. By default, the assembler treats all identifiers starting in the
first column as labels.

Allow directives in first column

Makes directive names (without a trailing colon) that start in the first column to be

recognized as directives. By default, the assembler treats all identifiers starting in the
first column as labels.

Macro quote characters

Selects the characters used for the left and right quotes of each macro argument. By
default, the characters are < and >.

Macro quote characters changes the quote characters to suit an alternative convention
or simply to allow a macro argument to contain < or >.
Macro guote characters:

IDE Project Management and Building Guide

for RISC-V

Assembler options ___¢

Output

The Output options determine the generated assembler output.
Qutput

Generate debug information

Generate debug information

Makes the assembler generate debug information. Use this option if you want to use a
debugger with your application. By default, this option is selected in a Debug project,
but not in a Release project.

List
The List options make the assembler generate a list file and determine its contents.

Output list fils
[Do net include diagnostics
[T Include cross reference
[List macro definitions
[Disable macro expansion
[List only assembled parts
[Truncate muttiline data fisld

Output list file

Makes the assembler generate a list file and send it to the file sourcename. 1st. By
default, the assembler does not generate a list file.

If you want to save the list file in another directory than the default directory for list files,
use the Output Directories option in the General Options category. For more

233

Description of assembler options

information, see Qutput, page 209. You can open the output files directly from the
Output folder which is available in the Workspace window.

For the list file content, choose between:

Do not include diagnostics
Excludes diagnostic information from the list file.

Include cross-reference
Generates a cross-reference table at the end of the list file.

List macro definitions

Includes macro definitions in the list file.

Disable macro expansion

Excludes macro expansions from the list file.

List only assembled parts
Excludes lines in false conditional assembly sections from the list file.

Truncate multiline data field

Lists only the first line of a generated multiline construction. If the option is
deselected, all lines are listed.

Preprocessor

The Preprocessor options allow you to define symbols and include paths for use by the

compiler and assembler.
Preprocessor

[Ignore standard include directories

Additional include directories: {one per line)

Preinclude file:

()

Defined symbols: {one per line)
A [Preprocessar output to file
Preserve comments
Generate Hine directives

IDE Project Management and Building Guide
234 for RISC-V

Assembler options ___¢

Ignore standard include directories

Normally, the compiler and assembler automatically look for include files in the
standard include directories. Use this option to turn off this behavior.

Additional include directories

Specify the full paths of directories to search for include files, one per line. Any
directories specified here are searched before the standard include directories, in the
order specified.

Use the browse button to display the Edit Include Directories dialog box, where you
can specify directories using a file browser. For more information, see Edit Include
Directories dialog box, page 230.

To avoid being dependent on absolute paths, and to make the project more easily
portable between different machines and file system locations, you can use argument
variables like $TOOLKIT_DIR$ and $PROJ_DIRS, see Argument variables, page 83.

Preinclude file

Specify a file to include before the first line of the source file.

Defined symbols

Define a macro symbol (one per line), including its value, for example like this:
TESTVER=1

This has the same effect as if a line like this appeared before the start of the source file:
#define TESTVER 1

A line with no value has the same effect as if =1 was specified.

Preprocessor output to file
Makes the compiler and assembler output the result of the preprocessing to a file with
the filename extension i, located in the 1st directory. Choose between:
Preserve comments
Includes comments in the output. Normally, comments are treated as
whitespace, and their contents are not included in the preprocessor output.
Generate #line directives

Generates #1ine directives in the output to indicate where each line originated
from.

235

Description of assembler options

Diagnostics
The Diagnostics options determine how diagnostic messages are classified and

displayed. Use the diagnostics options to override the default classification of the
specified diagnostic messages.

Diagnostics

[Enable remarks

Suppress these diagnostics:

Treat these as remarks:

Treat these as wamings:

Treat these as emors:

[Treat all wamings as emors

[Max number of emors: | 100

Note: The diagnostic messages cannot be suppressed for fatal errors, and fatal errors
cannot be reclassified.

Enable remarks
Enables the generation of remarks. By default, remarks are not issued.
The least severe diagnostic messages are called remarks. A remark indicates a source

code construct that might cause strange behavior in the generated code.

Suppress these diagnostics
Suppresses the output of diagnostic messages for the tags that you specify.
For example, to suppress the warnings Xx117 and xx177, type:

Xx117,Xx177

Treat these as remarks

Classifies diagnostic messages as remarks. A remark is the least severe type of
diagnostic message. It indicates a source code construct that might cause strange
behavior in the generated code.

For example, to classify the warning xx177 as a remark, type:

Xx177

IDE Project Management and Building Guide
236 for RISC-V

Assembler options ___¢

Treat these as warnings

Classifies diagnostic messages as warnings. A warning indicates an error or omission
that is of concern, but which will not cause the assembler to stop before assembly is
completed.

For example, to classify the remark As098 as a warning, type:

As098

Treat these as errors

Classifies diagnostic messages as errors. An error indicates a violation of the language
rules, of such severity that object code will not be generated, and the exit code will be
non-zero.

For example, to classify the warning Xx117 as an error, type:

Xx117

Treat all warnings as errors

Classifies all warnings as errors. If the assembler encounters an error, object code is not
generated.

Max number of errors

Specify the maximum number of errors. This means that you can increase or decrease
the number of reported errors, for example, to see more errors in a single assembly. By
default, the maximum number of errors reported by the assembler is 100.

Extra Options

The Extra Options page provides you with a command line interface to the tool.
| Extra Options

Use command line options

Command line options: (one per line)

237

Description of assembler options

Use command line options

Specify additional command line arguments to be passed to the tool (not supported by
the GUI).

IDE Project Management and Building Guide
238 for RISC-V

Output converter options

e Description of output converter options

Description of output converter options

Reference information about:
e Output
To set output converter options in the IDE:
I Choose Project>Options to display the Options dialog box.

2 Select Output Converter in the Category list.

Output

The Output options determine details about the promable output format.
Qutput

Generate additional output

Motarola

Qutput file

Generate additional output

The ILINK linker generates ELF as output, optionally including DWAREF for debug
information. Generate additional output makes the converter ielftool convert the
ELF output to the format you specify, for example Motorola or Intel-extended. For more
information about the converter, see the JAR C/C++ Development Guide for RISC-V.

Note: If you change the filename extension for linker output and want to use the output
converter ielftool to convert the output, make sure ielftool will recognize the new
filename extension. To achieve this, choose Tools>Filename Extension, select your
toolchain, and click Edit. In the Filename Extension Overrides dialog box, select

239

Description of output converter options

240

Output format

Output file

Output Converter and click Edit. In the Edit Filename Extensions dialog box, select
Override and type the new filename extension and click OK. ielftool will now
recognize the new filename extension.

Selects the format for the output from ielftool. Choose between:

e Motorola S-records

e Intel Extended hex

e Raw binary

o Simple-code

For more information about the converter, see the JAR C/C++ Development Guide for
RISC-V.

Specifies the name of the ielftool converted output file. By default, the linker will use
the project name with a filename extension. The filename extension depends on which
output format you choose. To override the default name, select the Override default
option and specify the alternative filename or filename extension.

IDE Project Management and Building Guide

for RISC-V

Custom build options

e Description of custom build options

Description of custom build options

Reference information about:

o Custom Tool Configuration

To set custom build options in the IDE:
I Choose Project>Options to display the Options dialog box.
2 Select Custom Build in the Category list.

Custom Tool Configuration

The Custom Tool Configuration options control the invocation of the tools you want
to add to the tool chain.
Custom Tool Configuration

Filename extensions:
Command line:

Qutput files (one per line):

Additional input files (one per line):

Build order: |F\Lrt0matic: (based on input and output) bd |

For an example, see Extending the toolchain, page 109.

Filename extensions

Specify the filename extensions for the types of files that are to be processed by the
custom tool. You can type several filename extensions. Use commas, semicolons, or
blank spaces as separators. For example:

.htm; .html

241

Description of custom build options

Command line

Specify the command line for executing the external tool.

Output files

Specify the name for the output files from the external tool.

Additional input files

Specify any additional files to be used by the external tool during the build process. If
these additional input files, dependency files, are modified, the need for a rebuild is
detected.

Build order

Specify where in the build process to execute the external tool. Choose between:

Automatic (based on input and output)
The time of execution will be calculated automatically by the build engine.

Run before compiling/assembling
The tool will be executed before the compiler or assembler.

Run before linking
The tool will be executed after the compiler or assembler, but before the linker.

IDE Project Management and Building Guide
242 for RISC-V

Build actions options

e Description of build actions options

Description of build actions options

Reference information about:

o Build Actions Configuration

To set build action options in the IDE:
I Choose Project>Options to display the Options dialog box.
2 Select Build Actions in the Category list.

Build Actions Configuration

The Build Actions Configuration options specify build actions in the IDE, to be
performed before, during, or after the build. These options apply to the whole build
configuration, and cannot be set on groups or files.

Build Actions Configuration

Build actions:

Command line Build order Output file(s)

If a build action returns a non-zero error code, the entire Build or Make command is
aborted.

Build actions

The display area shows all command lines to be executed at various stages of the build,
when in the build order they will be executed, and which output they produce. Use the
buttons under the display area to create, edit, or remove build actions.

243

Description of build actions options

New
Opens a dialog box where you can create a new build action, see New/Edit Build Action
dialog box, page 244.

Edit
Opens a dialog box where you can edit the selected build action, see New/Edit Build
Action dialog box, page 244.

Remove

Deletes the selected build action.

New/Edit Build Action dialog box

The New/Edit Build Action dialog box is available from the Build Actions
Configuration page in the Options dialog box.

MNew Build Action *

Command line:

Qutput files {one per line):

Input files (one per line):

Working directory:
SPROI_DIRS

Build order: Automatic (based on input and output) w

Ok Cancel

Use this dialog box to create or edit build actions.

Command line

Specify the command line to be executed, with all options and arguments.

Output files

Specify any files that are created by the command line. Note that output from build
actions should not also be added to the project.

IDE Project Management and Building Guide
244 for RISC-V

Build actions options __¢

Input files
Specify any files that the build action depends on.

Working directory
Specify the directory where the build action is executed. A browse button is available
for your convenience.

Build order

Specify where in the build process to execute the build action. Choose between:

Automatic (based on input and output)

The time of execution will be calculated automatically by the build engine.

Run before compiling/assembling
The build action will be executed before the compiler or assembler.

Run before linking

The build action will be executed after the compiler or assembler, but before the
linker.

Run after linking
The build action will be executed after compiling/assembly, and after the linker.

245

Description of build actions options

IDE Project Management and Building Guide
246 for RISC-V

Linker options

e Description of linker options

Description of linker options

Reference information about:

Config
Library

Input
Optimizations
Advanced
Output

List

#define
Diagnostics
Checksum
Encodings
Extra Options
Edit Additional Libraries dialog box

To set linker options in the IDE:

I Choose Project>Options to display the Options dialog box.

2 Select Linker in the Category list.

3 To restore all settings to the default factory settings, click the Factory Settings button.

247

Description of linker options

Config

The Config options specify the path and name of the linker configuration file and define
symbols for the configuration file.
Linker configuration file
[F] Overide defautt
STOOLKIT_DIRS corfigiinkergeneric icf

Configuration file symbol definitions: {one per line)

Linker configuration file

A default linker configuration file is selected automatically based on your project
settings. To override the default file, select Override default and specify an alternative
file.

The argument variables $TOOLKIT_DIRS or $PROJ_DIRS can be used for specifying a
project-specific or predefined configuration file.

Configuration file symbol definitions

Define constant configuration symbols to be used in the configuration file. Such a
symbol has the same effect as a symbol defined using the define symbol directive in
the linker configuration file.

IDE Project Management and Building Guide
248 for RISC-V

Linker options °

Library
The Library options select the set of used libraries.
Library

Automatic runtime librany selection

Additional libraries: {one per line)

[Ovemide default program ertry
(@ Entry symbal __iar_program_start
Mo entry symbal

For more information about available libraries, see the JAR C/C++ Development Guide
for RISC-V.

Automatic runtime library selection

Makes the linker automatically choose the appropriate library based on your project
settings.

Additional libraries

Specify additional libraries that you want the linker to include during the link process.
You can only specify one library per line and you must specify the full path to the library.

Use the browse button to display the Edit Additional Libraries dialog box, where you
can specity libraries using a file browser. For more information, see Edit Additional
Libraries dialog box, page 261.

The argument variables $PROJ_DIRS and $TOOLKIT_DIRS can be used, see Argument
variables, page 83.

Alternatively, you can add an additional library directly to your project in the
Workspace window. You can find an example of this in the tutorial for creating and
using libraries.

Override default program entry

By default, the program entry is the label __iar_program_start. The linker makes
sure that a module containing the program entry label is included, and that the section
containing that label is not discarded.

249

Description of linker options

Override default program entry overrides the default entry label. Choose between:

Entry symbol
Specify an entry symbol other than default.

No entry symbol

No entry symbol will be defined and the entry point of the application image
will be 0. For this reason, the application must contain a symbol or section that
has the root attribute and that refers, directly or indirectly, to the rest of the
application, otherwise the image will be empty.

Input

The Input options specify how to handle input to the linker.
Input

Keep symbols: (one per line)

Baw binary image

File: Symbol: Section: Align:
| S |
File: Symbol: Section: Align:

| 3 | |

Keep symbols

Define the symbol, or several symbols one per line, that shall always be included in the
final application.

By default, the linker keeps a symbol only if your application needs it.

Raw binary image
Links pure binary files in addition to the ordinary input files. Specify these parameters:
File
The pure binary file you want to link.

Symbol
The symbol defined by the section where the binary data is placed.

IDE Project Management and Building Guide
250 for RISC-V

Optimizations

Linker options °

Section
The section where the binary data is placed.

Align
The alignment of the section where the binary data is placed.

The entire contents of the files are placed in the section you specify, which means they
can only contain pure binary data, for example, the raw binary output format. The
section where the contents of a specified file are placed, is only included if the specified
symbol is required by your application. Use Keep symbols if you want to force a
reference to the symbol. Read more about single output files and the --keep option in
the /AR C/C++ Development Guide for RISC-V.

The Optimizations options control linker optimizations.
Optimizations |

[Merge duplicate sections

Perform C++ Virtual Function Elimination
[Even ff some modules are missing VFE information

For more information about these options, see the /AR C/C++ Development Guide for
RISC-V.

Merge duplicate sections

Makes the linker keep only one copy of equivalent read-only sections.

Note that this can cause different functions or constants to have the same address, so an
application that depends on the addresses being different will not work correctly with
this option selected.

Perform C++ Virtual Function Elimination

Enables the Virtual Function Elimination optimization.

251

Description of linker options

Advanced

To force the use of Virtual Function Elimination, enable the Even if some modules are
missing VFE information option. This might be unsafe if some of the modules that
lack the needed information perform virtual function calls or use dynamic Runtime Type
Information.

The Advanced options control some miscellaneous linker features.

Advanced

Enable stack usage analysis
Control file: | |

Call graph output (XML): | |

[Replace linker executable with wrapper

For more information about these options, see the /AR C/C++ Development Guide for
RISC-V.

Enable stack usage analysis

Enables stack usage analysis. If you choose to produce a linker map file, a stack usage
chapter is included in the map file. Additionally, you specify one or more of these files:
Control file

Specify a stack usage control file to use to control stack usage analysis or
provide more stack usage information for modules or functions. If no filename
extension is specified, the extension suc is used.

Call graph output (XML)

Specity the name of a call graph file to be generated by the linker. If no filename
extension is specified, the extension cgx is used.

Replace linker executable with wrapper

This option allows you to specify an executable file or script to replace the build engine’s
call to the linker.

IDE Project Management and Building Guide

252 for RISC-V

Linker options °

This makes it possible to execute commands just before or after calling the linker. The
option requires that the wrapper calls the linker properly (in place of the replaced call).

This is a very powerful option that lets you make radical changes to the linking process.
Use it with care.

Output

The Output options determine the generated linker output.

Qutput

Qutput filename:
Myproject out

Include debug information in output

Output filename

Sets the name of the ILINK output file. By default, the linker will use the project name
with the filename extension out. To override the default name, specify an alternative
name of the output file.

Note: If you change the filename extension for linker output and want to use the output
converter iel ftool to convert the output, make sure ielftool will recognize the new
filename extension. To achieve this, choose Tools>Filename Extension, select your
toolchain, and click Edit. In the Filename Extension Overrides dialog box, select
Output Converter and click Edit. In the Edit Filename Extensions dialog box, select
Override and type the new filename extension and click OK. ielftool will now
recognize the new filename extension.

Include debug information in output

Makes the linker generate an ELF output file including DWARF for debug information.

253

Description of linker options

254

List

The List options control the generation of linker listings.

[|

Generate linker map file

Generate log file
[Automatic library selection [CRT routine selection

[Initialization decisions [Extra infa for sections
[Module selections [Small function inlining
[Redirected symbals [Resutts of merging sections
[Section selections [Demangled symbals in logs

[Stack usage call graph
[Unused section fragments

Generate linker map file

Generate log file

Makes the linker generate a linker memory map file and send it to the
projectname.map file located in the 1ist directory. For detailed information about
the map file and its contents, see the /AR C/C++ Development Guide for RISC-V.

Makes the linker save log information to the projectname. logfile locatedinthe 1ist
directory. The log information can be useful for understanding why an executable image
became the way it is. You can log:

Automatic library selection

Initialization decisions

Module selections

Redirected symbols

Section selections

Stack usage call graph

Unused section fragments

CRT routine selection

Extra info for sections

Small function inlining

Results of merging sections

C/C++ symbols with demangled names instead of mangled names

IDE Project Management and Building Guide

for RISC-V

Linker options °

#define

The #define options define absolute symbols at link time.
Hdefine

Defined symbols: (one per ling)

Defined symbols

Define absolute symbols to be used at link time. This is especially useful for
configuration purposes. Type the symbols that you want to define for the project, one
per line, and specify their value. For example:

TESTVER=1
Note that there should be no space around the equals (=) sign.

Any number of symbols can be defined in a linker configuration file. The symbol(s)
defined in this manner will be located in a special module called ?ABS_ENTRY_MOD,
which is generated by the linker.

The linker will display an error message if you attempt to redefine an existing symbol.

255

Description of linker options

Diagnostics

The Diagnostics options determine how diagnostic messages are classified and
displayed. Use the diagnostics options to override the default classification of the

specified diagnostics.
Diagnostics

[Enable remarks

Suppress these diagnostics:

Treat these as remarks:

Treat these as wamings:

Treat these as emors:

[Treat all wamings as emors

Note: The diagnostic messages cannot be suppressed for fatal errors, and fatal errors
cannot be reclassified.

Enable remarks
Enables the generation of remarks. By default, remarks are not issued.
The least severe diagnostic messages are called remarks. A remark indicates a source

code construct that might cause strange behavior in the generated code.

Suppress these diagnostics
Suppresses the output of diagnostic messages for the tags that you specity.
For example, to suppress the warnings Xx117 and Xx177, type:

Xx117,Xx177

Treat these as remarks

Classifies diagnostic messages as remarks. A remark is the least severe type of
diagnostic message. It indicates a source code construct that might cause strange
behavior in the generated code.

For example, to classify the warning xx177 as a remark, type:

Xx177

IDE Project Management and Building Guide
256 for RISC-V

Linker options °

Treat these as warnings

Classifies diagnostic messages as warnings. A warning indicates an error or omission
that is of concern, but which will not cause the linker to stop before linking is completed.

For example, to classify the remark xx826 as a warning, type:

Xx826

Treat these as errors

Classifies diagnostic messages as errors. An error indicates a violation of the linking
rules, of such severity that an executable image will not be generated, and the exit code
will be non-zero.

For example, to classify the warning Xx117 as an error, type:

Xx117

Treat all warnings as errors

Classifies all warnings as errors. If the linker encounters an error, an executable image
is not generated.

Checksum

The Checksum options control filling and checksumming.

Checksum

Fill unused code memary

Fill pattem: [keFF
Start address: 0 End address: (x0
Generate checksum

Checksum size: Alignment: 1
Algorithm: CRC16 > | |E11021

Result in full size

Initial value
Bit order: MSE first - Use as input

[Reverse byte order within word

Checksum unit size:

For more information about checksum calculation, see the I[AR C/C++ Development
Guide for RISC-V.

257

Description of linker options

Fill unused code memory
Fills unused memory in the range you specify. Choose between:

Fill pattern

Specifies a size, in hexadecimal notation, of the filler to be used in gaps between
segment parts.

Start address
Specifies the start address for the range to be filled.

End address
Specifies the end address for the range to be filled.

Generate checksum
Generates a checksum for the specified range. Choose between:

Checksum size
Selects the size of the checksum, which can be 1, 2, 4, or 8 bytes.

Alignment

Specifies an optional alignment for the checksum. Typically, this is useful when
the processor cannot access unaligned data. If you do not specify an alignment
explicitly, an alignment of 1 is used.

Algorithm

Selects the algorithm to be used when calculating the checksum. Choose
between:

Arithmetic sum, the simple arithmetic sum algorithm. The result is truncated
to one byte.

CRC16 (default), the CRC16 algorithm (generating polynomial 0x1021).
CRC32, the CRC32 algorithm (generating polynomial 0x4C11DB?7).

CRC polynomial, the CRC polynomial algorithm, a generating polynomial of
the value you specify.

CRC64IS0, the CRC64ISO algorithm (generating polynomial 0x1B).

CRC64ECMA, the CRC64ECMA algorithm (generating polynomial
0x42FOE1EBA9EA3693).

Sum32, a word-wise (32 bits) calculated arithmetic sum.

Result in full size

Generates the result of the arithmetic sum algorithm in the size you specify
instead of truncating it to one byte.

IDE Project Management and Building Guide
258 for RISC-V

Linker options °

Complement
Selects the complement variant. Leave either as is, or select the one’s
complement or two’s complement.

Bit order
Selects the order in which the bits in each byte will be processed. Choose
between:

MSB first, outputs the most significant bit first for each byte.

LSB first, reverses the bit order for each byte and outputs the least significant
bit first.

Reverse byte order within word

Reverses the byte order of the input data within each word of the size specified
in Checksum unit size.

Initial value
Specifies an initial value for the checksum. This is useful if the core you are
using has its own checksum calculation and you want that calculation to
correspond to the calculation performed by the linker.

Use as input
Prefixes the input data with a word of size Checksum unit size that contains the
value specified in Initial value.

Checksum unit size

Selects the size of the unit for which a checksum should be calculated. Typically,
this is useful to make the linker produce the same checksum as some hardware
CRC implementations that calculate a checksum for more than 8 bits per
iteration. Choose between:

8-bit, calculates a checksum for 8 bits in every iteration.
16-bit, calculates a checksum for 16 bits in every iteration.
32-bit, calculates a checksum for 32 bits in every iteration.

64-bit, calculates a checksum for 64 bits in every iteration.

259

Description of linker options

260

Encodings

The Encodings options control the character encodings of the input files to and the

output files from the linker.
Encoding

Defautt input file encoding
@ System locale
7 UTF-8

Text output file encoding
@ System locale
7 UTF-8 With BOM

Default input file encoding
Specifies the default encoding that the linker shall use when reading a text input file with
no Byte Order Mark (BOM). Choose between:

System locale
Sets the system locale as the default encoding.

UTF-8
Sets the UTF-8 encoding as the default.

Text output file encoding
Specifies the encoding that the linker shall use when generating a text output file.
Choose between:

System locale

Uses the system locale encoding.
UTF-8

Uses the UTF-8 encoding.

With BOM
Adds a Byte Order Mark to the output file.

This option is only available when you have selected one of the UTF encodings
for your output file.

IDE Project Management and Building Guide

for RISC-V

Linker options °

Extra Options

The Extra Options page provides you with a command line interface to the tool.
| Extra Options

Use command line options

Command line options: (one per line)

Use command line options

Specify additional command line arguments to be passed to the tool (not supported by
the GUI).

Edit Additional Libraries dialog box
The Edit Additional Libraries dialog box is available from the Library page in the

Options dialog box.
Edit Additional Libraries =
Library
C:\Program Files (#8B)\AR Systems'\Embedded Workbench'targethlibhdl4t_abf.a
A STOOLEIT_DIR$4E ibhdldt_abn.a

<Click to add: C:\Program Files (x86)\IAR Systems\Embedded Workbench\target\lib\di4t_abn.a

STOOLKIT_DIRS\target\lib\dl4t_abn.a

[(] 3 J[Cancel]

Use this dialog box to specify additional libraries, or to make a path to a library relative
or absolute.

To specify an additional library:
I Click the text <Click to add>. A browse dialog box is displayed.

2 Browse to the appropriate include directory and click Open. The library is listed.

To add yet another one, click <Click to add>.

261

Description of linker options

To make the path relative or absolute:

I Click the drop-down arrow. A context menu is displayed, which shows the absolute
path and paths relative to the argument variables $PROJ_DIR$ and $TOOLKIT_DIRS,
when possible.

2 Choose one of the alternatives.

To change the order of the libraries:
I Use the shortcut key combinations Ctrl+Up/Down.
2 Notice that the list will be sorted accordingly.

To delete a library from the list:

I Select the library and click the red cross at the beginning of the line, alternatively press
the Delete key.

2 Notice that the selected library will disappear.

IDE Project Management and Building Guide
262 for RISC-V

Library builder options

e Description of library builder options

Description of library builder options

Reference information about:
e Output

Options for the library builder are not available by default. Before you can set these
options in the IDE, you must add the library builder tool to the list of categories.

To set Library Builder options in the IDE:
I Choose Project>Options>General Options>Output.

2 Select the Library option, which means that Library Builder appears as a category in
the Options dialog box.

3 Select Library Builder in the Category list.

263

Description of library builder options

Output

The Output options control the library builder and as a result of the build process, the
library builder will create a library output file.

Options for node "project3” @

Category: Factary Settings

General Options
Static Analysis
C/C++ Compiler

Assembler Output

Custom Build)
Build Actions Outpus file
7] Overie defaut

ants'JAR Embedded Workbench'chip‘tutor.Debug'Exe'\project3.a

(] 3] [Cancel

Output file

Specifies the name of the output file from the library builder. By default, the linker will
use the project name with a filename extension. To override the default name, select
Override default and specify an alternative name of the output file.

IDE Project Management and Building Guide
264 for RISC-V

Glossary

This is a general glossary for terms relevant to
embedded systems programming. Some of the terms do
not apply to the IAR Embedded Workbench® version
that you are using.

A

Absolute location.

A specific memory address for an object specified in the
source code, as opposed to the object being assigned a location
by the linker

Address expression
An expression which has an address as its value.

Application

The program developed by the user of the IAR toolkit and
which will be run as an embedded application on a target
processor.

Ar
The GNU binary utility for creating, modifying, and extracting
from archives, that is, libraries. See also larchive.

Architecture

A term used by computer designers to designate the structure
of complex information-processing systems. It includes the
kinds of instructions and data used, the memory organization
and addressing, and the methods by which the system is
implemented. The two main architecture types used in
processor design are Harvard architecture and von Neumann
architecture.

Archive
See Library.

Assembler directives

The set of commands that control how the assembler operates.

Glossary ___4

Assembler language

A machine-specific set of mnemonics used to specify
operations to the target processor and input or output registers
or data areas. Assembler language might sometimes be
preferred over C/C++ to save memory or to enhance the
execution speed of the application.

Assembler options
Parameters you can specity to change the default behavior of
the assembler.

Attributes
See Section attributes.

Auto variables

The term refers to the fact that each time the function in which
the variable is declared is called, a new instance of the variable
is created automatically. This can be compared with the
behavior of local variables in systems using static overlay,
where a local variable only exists in one instance, even if the
function is called recursively. Also called local variables.
Compare Register variables.

Backtrace

Information for keeping call frame information up to date so
that the IAR C-SPY® Debugger can return from a function
correctly. See also Call frame information.

Bank
See Memory bank.

Bank switching

Switching between different sets of memory banks. This
software technique increases a computer's usable memory by
allowing different pieces of memory to occupy the same
address space.

Banked code
Code that is distributed over several banks of memory. Each
function must reside in only one bank.

265

266

Banked data
Data that is distributed over several banks of memory. Each
data object must fit inside one memory bank.

Banked memory
Has multiple storage locations for the same address. See also
Memory bank.

Bank-switching routines
Code that selects a memory bank.

Batch files

A text file containing operating system commands which are
executed by the command line interpreter. In Unix, this is
called a “shell script” because it is the Unix shell which
includes the command line interpreter. Batch files can be used
as a simple way to combine existing commands into new
commands.

Bitfield
A group of bits considered as a unit.

Block, in linker configuration file

A continuous piece of code or data. It is either built up of
blocks, overlays, and sections or it is empty. A block has a
name, and the start and end address of the block can be referred
to from the application. It can have attributes such as a
maximum size, a specific size, or a minimum alignment. The
contents can have a specific order or not.

Breakpoint

1 Code breakpoint. A point in a program that, when reached,
triggers some special behavior useful to the process of
debugging. Generally, breakpoints are used for stopping
program execution or dumping the values of some or all of
the program variables. Breakpoints can be part of the
program itself, or they can be set by the programmer as
part of an interactive session with a debugging tool for
scrutinizing the program's execution.

2 Data breakpoint. A point in memory that, when accessed,
triggers some special behavior useful to the process of
debugging. Generally, data breakpoints are used to stop
program execution when an address location is accessed
either by a read operation or a write operation.

IDE Project Management and Building Guide
for RISC-V

3 Immediate breakpoint. A point in memory that, when
accessed, trigger some special behavior useful in the
process of debugging. Immediate breakpoints are
generally used for halting the program execution in the
middle of a memory access instruction (before or after the
actual memory access depending on the access type) while
performing some user-specified action. The execution is
then resumed. This feature is only available in the
simulator version of C-SPY.

C

Call frame information

Information that allows the IAR C-SPY® Debugger to show,
without any runtime penalty, the complete stack of function
calls—call stack—wherever the program counter is, provided
that the code comes from compiled C functions. See also
Backtrace.

Calling convention

A calling convention describes the way one function in a
program calls another function. This includes how register
parameters are handled, how the return value is returned, and
which registers that will be preserved by the called function.
The compiler handles this automatically for all C and C++
functions. All code written in assembler language must
conform to the rules in the calling convention to be callable
from C or C++, or to be able to call C and C++ functions. The
C calling convention and the C++ calling conventions are not
necessarily the same.

Cheap

As in cheap memory access. A cheap memory access either
requires few cycles to perform, or few bytes of code to
implement. A cheap memory access is said to have a low cost.
See Memory access cost.

Checksum

A small piece of data calculated from a larger block of data for
the purpose of detecting errors that might have been introduced
during its transmission or storage. Compare CRC (cyclic
redundancy check).

Code banking
See Banked code.

Code model

The code model controls how code is generated for an
application. Typically, the code model controls behavior such
as how functions are called and in which code segment
functions will be located. All object files of an application
must be compiled using the same code model.

Code pointers

A code pointer is a function pointer. As many microcontrollers
allow several different methods of calling a function,
compilers for embedded systems usually provide the users
with the ability to use all these methods.

Do not confuse code pointers with data pointers.

Code segments
Read-only segments that contain code. See also Section.

Compilation unit
See Translation unit.

Compiler options
Parameters you can specify to change the default behavior of
the compiler.

Context menu
A context menu appears when you right-click in the user
interface, and provides context-specific menu commands.

Cost
See Memory access cost.

CRC (cyclic redundancy check)

A checksum algorithm based on binary polynomials and an
initial value. A CRC algorithm is more complex than a simple
arithmetic checksum algorithm and has a greater error
detecting capability. Most checksum calculation algorithms

currently in wide used are based on CRC. Compare Checksum.

C-SPY options
Parameters you can specify to change the default behavior of
the IAR C-SPY Debugger.

Glossary ___4

Cstartup
Code that sets up the system before the application starts
executing.

C-style preprocessor

A preprocessor is either a stand-alone application or an
integrated part of a compiler, that performs preprocessing of
the input stream before the actual compilation occurs. A
C-style preprocessor follows the rules set up in Standard C and
implements commands like #define, #if, and #include,
which are used to handle textual macro substitution,
conditional compilation, and inclusion of other files.

D

Data banking
See Banked data.

Data model

The data model specifies the default memory type. This means
that the data model typically controls one or more of the
following: The method used and the code generated to access
static and global variables, dynamically allocated data, and the
runtime stack. It also controls the default pointer type and in
which data sections static and global variables will be located.
A project can only use one data model at a time, and the same
model must be used by all user modules and all library
modules in the project.

Data pointers

Many cores have different addressing modes to access
different memory types or address spaces. Compilers for
embedded systems usually have a set of different data pointer
types so they can access the available memory efficiently.

Data representation
How different data types are laid out in memory and what
value ranges they represent.

Declaration

A specification to the compiler that an object, a variable or
function, exists. The object itself must be defined in exactly
one translation unit (source file). An object must either be
declared or defined before it is used. Normally an object that is

267

268

used in many files is defined in one source file. A declaration
is normally placed in a header file that is included by the files
that use the object.

For example:

/* Variable "a" exists somewhere. Function
"b" takes two int parameters and returns an
int. */

extern int a;
int b(int, int);

Definition

The variable or function itself. Only one definition can exist
for each variable or function in an application. See also
Tentative definition.

For example:

int a;
int b(int x, int y)
{

return x + y;

Demangling
To restore a mangled name to the more common C/C++ name.
See also Mangling.

Device description file

A file used by C-SPY that contains various device-specific
information such as I/O register (SFR) definitions, interrupt
vectors, and control register definitions.

Device driver
Software that provides a high-level programming interface to
a particular peripheral device.

Digital signal processor (DSP)

A device that is similar to a microprocessor, except that the
internal CPU is optimized for use in applications involving
discrete-time signal processing. In addition to standard
microprocessor instructions, digital signal processors usually
support a set of complex instructions to perform common
signal-processing computations quickly.

IDE Project Management and Building Guide
for RISC-V

Disassembly window

A C-SPY window that shows the memory contents
disassembled as machine instructions, interspersed with the
corresponding C source code (if available).

DWARF

An industry-standard debugging format which supports source
level debugging. This is the format used by the IAR ILINK
Linker for representing debug information in an object.

Dynamic initialization

Variables in a program written in C are initialized during the
initial phase of execution, before the main function is called.
These variables are always initialized with a static value,
which is determined either at compile time or at link time. This
is called static initialization. In C++, variables might require
initialization to be performed by executing code, for example,
running the constructor of global objects, or performing
dynamic memory allocation.

Dynamic memory allocation

There are two main strategies for storing variables: statically at
link time, or dynamically at runtime. Dynamic memory
allocation is often performed from the heap and it is the size of
the heap that determines how much memory that can be used
for dynamic objects and variables. The advantage of dynamic
memory allocation is that several variables or objects that are
not active at the same time can be stored in the same memory,
thus reducing the memory requirements of an application. See
also Heap memory.

Dynamic object

An object that is allocated, created, destroyed, and released at
runtime. Dynamic objects are almost always stored in memory
that is dynamically allocated. Compare Static object.

E

EEPROM

Electrically Erasable, Programmable Read-Only Memory. A
type of ROM that can be erased electronically, and then be
re-programmed.

ELF

Executable and Linking Format, an industry-standard object
file format. This is the format used by the IAR ILINK Linker.
The debug information is formatted using DWARF.

Embedded C++

A subset of the C++ programming language, which is intended
for embedded systems programming. The fact that
performance and portability are particularly important in
embedded systems development was considered when
defining the language.

Embedded system

A combination of hardware and software, designed for a
specific purpose. Embedded systems are often part of a larger
system or product.

Emulator

An emulator is a hardware device that performs emulation of
one or more derivatives of a processor family. An emulator can
often be used instead of the actual core and connects directly
to the printed circuit board—where the core would have been
connected—via a connecting device. An emulator always
behaves exactly as the processor it emulates, and is used when
debugging requires all systems actuators, or when debugging
device drivers.

Enea OSE Load module format
A specific ELF format that is loadable by the OSE operating
system. See also ELF.

Enumeration

A type which includes in its definition an exhaustive list of
possible values for variables of that type. Common examples
include Boolean, which takes values from the list [true, false],
and day-of-week which takes values [Sunday, Monday,
Tuesday, Wednesday, Thursday, Friday, Saturday].
Enumerated types are a feature of typed languages, including
C and Ada.

Characters, (fixed-size) integers, and even floating-point types
might be (but are not usually) considered to be (large)
enumerated types.

Glossary ___4

EPROM

Erasable, Programmable Read-Only Memory. A type of ROM
that can be erased by exposing it to ultraviolet light, and then
be re-programmed.

Executable image

Contains the executable image; the result of linking several
relocatable object files and libraries. The file format used for
an object file is ELF with embedded DWARF for debug
information.

Exceptions

An exception is an interrupt initiated by the processor
hardware, or hardware that is tightly coupled with the
processor, for instance, a memory management unit (MMU).
The exception signals a violation of the rules of the
architecture (access to protected memory), or an extreme error
condition (division by zero).

Do not confuse this use of the word exception with the term
exception used in the C++ language (but not in Embedded
C++).

Expensive

As in expensive memory access. An expensive memory access
either requires many cycles to perform, or many bytes of code
to implement. An expensive memory access is said to have a
high cost. See Memory access cost.

Extended keywords

Non-standard keywords in C and C++. These usually control
the definition and declaration of objects (that is, data and
functions). See also Keywords.

F

Filling

How to fill up bytes—with a specific fill pattern—that exists
between the sections in an executable image. These bytes exist
because of the alignment demands on the sections.

Format specifiers
Used to specity the format of strings sent by library functions
such as print£. In the following example, the function call

269

270

contains one format string with one format specifier, %c, that
prints the value of a as a single ASCII character:

printf("a = %c", a);

G

General options
Parameters you can specify to change the default behavior of
all tools that are included in the IDE.

Generic pointers
Pointers that have the ability to point to all different memory

types in, for example, a core based on the Harvard architecture.

H

Hardware thread (hart)

A processing engine with its own user register state and
program counter, executing within a common user address
space. Usually, when one thread is waiting for memory, other
threads can continue. Hardware threads (harts) can make
efficient use of the large register sets and can be a way to
handle interrupts—no registers have to be saved or restored,
instead another hardware thread can be executed. The only
required hardware thread is thread zero.

Harvard architecture

A core based on the Harvard architecture has separate data and
instruction buses. This allows execution to occur in parallel.
As an instruction is being fetched, the current instruction is
executing on the data bus. Once the current instruction is
complete, the next instruction is ready to go. This theoretically
allows for much faster execution than a von Neumann
architecture, but adds some silicon complexity. Compare von
Neumann architecture.

Heap memory

The heap is a pool of memory in a system that is reserved for
dynamic memory allocation. An application can request parts
of the heap for its own use; once memory is allocated from the
heap it remains valid until it is explicitly released back to the
heap by the application. This type of memory is useful when

IDE Project Management and Building Guide
for RISC-V

the number of objects is not known until the application
executes.

Note that this type of memory is risky to use in systems with a
limited amount of memory or systems that are expected to run
for a very long time.

Heap size
Total size of memory that can be dynamically allocated.

Host

The computer that communicates with the target processor.
The term is used to distinguish the computer on which the
debugger is running from the core the embedded application
you develop runs on.

larchive
The IAR utility for creating archives, that is, libraries. larchive
is delivered with IAR Embedded Workbench.

IDE (integrated development environment)
A programming environment with all necessary tools
integrated into one single application.

lelfdumpriscv
The IAR utility for creating a text representation of the
contents of ELF relocatable or executable image.

lelftool

The IAR utility for performing various transformations on an
ELF executable image, such as fill, checksum, and format
conversion.

ILINK
The IAR ILINK Linker which produces absolute output in the
ELF/DWAREF format.

ILINK configuration

The definition of available physical memories and the
placement of sections—pieces of code and data—into those
memories. ILINK requires a configuration to build an
executable image.

Image
See Executable image.

Include file
A text file which is included into a source file. This is often
done by the preprocessor.

Initialization setup in linker configuration file

Defines how to initialize RAM sections with their initializers.
Normally, only non-constant non-noinit variables are
initialized but, for example, pieces of code can be initialized as
well.

Initialized sections
Read-write sections that should be initialized with specific
values at startup. See also Section.

Inline assembler
Assembler language code that is inserted directly between C
statements.

Inlining

An optimization that replaces function calls with the body of
the called function. This optimization increases the execution
speed and can even reduce the size of the generated code.

Instruction mnemonics

A word or acronym used in assembler language to represent a
machine instruction. Different processors have different
instruction sets and therefore use a different set of mnemonics
to represent them, such as, ADD, BR (branch), BLT (branch if
less than), MOVE, LDR (load register).

Instrumentation Trace Component (ITC)

On-chip circuitry which C-SPY uses to make it possible for the
application running on the target system to send text to the
stdout and stderr streams by way of trace output, rather
than by temporarily stopping at a breakpoint.

Interrupt vector
A small piece of code that will be executed, or a pointer that
points to code that will be executed when an interrupt occurs.

Glossary ___4

Interrupt vector table

A table containing interrupt vectors, indexed by interrupt type.
This table contains the processor's mapping between interrupts
and interrupt service routines and must be initialized by the
programmer.

Interrupts

In embedded systems, the use of interrupts is a method of
detecting external events immediately, for example a timer
overflow or the pressing of a button.

Interrupts are asynchronous events that suspend normal
processing and temporarily divert the flow of control through
an “interrupt handler” routine. Interrupts can be caused by
both hardware (I/0O, timer, machine check) and software
(supervisor, system call or trap instruction). Compare Trap.

Intrinsic
An adjective describing native compiler objects, properties,
events, and methods.

Intrinsic functions

1. Function calls that are directly expanded into specific
sequences of machine code. 2. Functions called by the
compiler for internal purposes (that is, floating-point
arithmetic etc.).

lobjmanip
The IAR utility for performing low-level manipulation of ELF
object files.

K

Key bindings
Key shortcuts for menu commands used in the IDE.

Keywords

A fixed set of symbols built into the syntax of a programming
language. All keywords used in a language are reserved—they
cannot be used as identifiers (in other words, user-defined
objects such as variables or procedures). See also Extended
keywords.

271

272

L

L-value

A value that can be found on the left side of an assignment and
that can, therefore, be changed. This includes plain variables
and dereferenced pointers. Expressions like (x + 10) cannot
be assigned a new value and are therefore not L-values.

Language extensions
Target-specific extensions to the C language.

Library
See Runtime library.

Library configuration file

A file that contains a configuration of the runtime library. The
file contains information about what functionality is part of the
runtime environment. The file is used for tailoring a build of a
runtime library. See also Runtime library.

Linker configuration file

A file that contains a configuration used by the IAR ILINK
Linker when building an executable image. See also ILINK
configuration.

Local variable
See Auto variables.

Location counter
See Program location counter (PLC).

Logical address
See Virtual address (logical address).

M

MAC (Multiply and accumulate)

A special instruction, or on-chip device, that performs a
multiplication together with an addition. This is very useful
when performing signal processing where many filters and
transforms have the form:

IDE Project Management and Building Guide
for RISC-V

N
Yi = Zcf'xfw'
i=0

The accumulator of the MAC usually has a higher precision
(more bits) than normal registers. See also Digital signal
processor (DSP).

Macro

1 Assembler macros are user-defined sets of assembler lines
that can be expanded later in the source file by referring to
the given macro name. Parameters will be substituted if
referred to.

2 C macro. A text substitution mechanism used during
preprocessing of source files. Macros are defined using the
#define preprocessing directive. The replacement text of
each macro is then substituted for any occurrences of the
macro name in the rest of the translation unit.

3 C-SPY macros are programs that you can write to enhance
the functionality of C-SPY. A typical application of C-SPY
macros is to associate them with breakpoints; when such a
breakpoint is hit, the macro is run and can, for example, be
used to simulate peripheral devices, to evaluate complex
conditions, or to output a trace.

The C-SPY macro language is like a simple dialect of C, but is
less strict with types.

Mailbox

A mailbox in an RTOS is a point of communication between
two or more tasks. One task can send messages to another task
by placing the message in the mailbox of the other task.
Mailboxes are also known as message queues or message
ports.

Mangling

Mangling is a technique used for mapping a complex C/C++
name into a simple name. Both mangled and demangled names
can be produced for C/C++ symbols in ILINK messages.

Memory, in linker configuration file
A physical memory. The number of units it contains and how
many bits a unit consists of, are defined in the linker

configuration file. The memory is always addressable from
0x0 to size -1.

Memory access cost

The cost of a memory access can be in clock cycles, or in the
number of bytes of code needed to perform the access. A
memory which requires large instructions or many instructions
is said to have a higher access cost than a memory which can
be accessed with few, or small instructions.

Memory area
A region of the memory.

Memory bank

The smallest unit of continuous memory in banked memory.
One memory bank at a time is visible in a core’s physical
address space.

Memory map
A map of the different memory areas available to the core.

Memory model

Specifies the memory hierarchy and how much memory the
system can handle. Your application must use only one
memory model at a time, and the same model must be used by
all user modules and all library modules.

Microcontroller

A microprocessor on a single integrated circuit intended to
operate as an embedded system. In addition to a CPU, a
microcontroller typically includes small amounts of RAM,
PROM, timers, and I/O ports.

Microprocessor

A CPU contained on one (or a few) integrated circuits. A
single-chip microprocessor can include other components
such as memory, memory management, caches, floating-point
unit, I/O ports and timers. Such devices are also known as
microcontrollers.

Module

An object. An object file contains a module and library
contains one or more objects. The basic unit of linking. A
module contains definitions for symbols (exports) and

Glossary ___4

references to external symbols (imports). When you compile
C/C++, each translation unit produces one module.

Multi-file compilation

A technique which means that the compiler compiles several
source files as one compilation unit, which enables for
interprocedural optimizations such as inlining, cross call, and
cross jump on multiple source files in a compilation unit.

N

Nested interrupts
A system where an interrupt can be interrupted by another
interrupt is said to have nested interrupts.

Non-banked memory
Has a single storage location for each memory address in a
core’s physical address space.

Non-initialized memory
Memory that can contain any value at reset, or in the case of a
soft reset, can remember the value it had before the reset.

No-init sections
Read-write sections that should not be initialized at startup.
See also Section.

Non-volatile storage

Memory devices such as battery-backed RAM, ROM,
magnetic tape and magnetic disks that can retain data when
electric power is shut off. Compare Volatile storage.

NOP

No operation. This is an instruction that does not do anything,
but is used to create a delay. In pipelined architectures, the NOP
instruction can be used for synchronizing the pipeline. See also
Pipeline.

o

Objcopy

A GNU binary utility for converting an absolute object file in
ELF format into an absolute object file, for example the format
Motorola-std or Intel-std. See also /lelffool.

273

Object
An object file or a library member.

Object file, absolute
See Executable image.

Object file, relocatable

The result of compiling or assembling a source file. The file
format used for an object file is ELF with embedded DWARF
for debug information.

Operator

A symbol used as a function, with infix syntax if it has two
arguments (+, for example) or prefix syntax if it has only one
(for instance, bitwise negation, ~). Many languages use
operators for built-in functions such as arithmetic and logic.

Operator precedence

Each operator has a precedence number assigned to it that
determines the order in which the operator and its operands are
evaluated. The highest precedence operators are evaluated
first. Use parentheses to group operators and operands to
control the order in which the expressions are evaluated.

Options

A set of commands that control the behavior of a tool, for
example the compiler or linker. The options can be specified
on the command line or via the IDE.

Output image
See Executable image.

Overlay, in linker configuration file

Like a block, but it contains several overlaid entities, each built
up of blocks, overlays, and sections. The size of an overlay is
determined by its largest constituent. Code in overlaid memory
areas cannot be debugged in the C-SPY Debugger.

P

Parameter passing
See Calling convention.

IDE Project Management and Building Guide
for RISC-V

Peripheral unit
A hardware component other than the processor, for example
memory or an I/O device.

Pipeline

A structure that consists of a sequence of stages through which
a computation flows. New operations can be initiated at the
start of the pipeline even though other operations are already
in progress through the pipeline.

Placement, in linker configuration file

How to place blocks, overlays, and sections into a region. It
determines how pieces of code and data are actually placed in
the available physical memory.

Pointer
An object that contains an address to another object of a
specified type.

#pragma

During compilation of a C/C++ program, the #pragma
preprocessing directive causes the compiler to behave in an
implementation-defined manner. This can include, for
example, producing output on the console, changing the
declaration of a subsequent object, changing the optimization
level, or enabling/disabling language extensions.

Pre-emptive multitasking

An RTOS task is allowed to run until a higher priority process
is activated. The higher priority task might become active as
the result of an interrupt. The term preemptive indicates that
although a task is allotted to run a given length of time (a
timeslice), it might lose the processor at any time. Each time
an interrupt occurs, the task scheduler looks for the highest
priority task that is active and switches to that task. If the
located task is different from the task that was executing before
the interrupt, the previous task is suspended at the point of
interruption.

Compare Round Robin.

Preprocessing directives
A set of directives that are executed before the parsing of the
actual code is started.

Preprocessor
See C-style preprocessor.

Processor variant
The different chip setups that the compiler supports.

Program counter (PC)
A special processor register that is used to address instructions.
Compare Program location counter (PLC).

Program location counter (PLC)

Used in the IAR Assembler to denote the code address of the
current instruction. The PLC is represented by a special symbol
(typically $) that can be used in arithmetic expressions. Also

known as a location counter (LC).

Project
The user application development project.

Project options
General options that apply to an entire project, for example the
target processor that the application will run on.

PROM
Programmable Read-Only Memory. A type of ROM that can
only be programmed once.

Q

Qualifiers
See Type qualifiers.

R

Range, in linker configuration file
A range of consecutive addresses in a memory. A region is
built up of ranges.

Read-only sections
Sections that contain code or constants. See also Section.

Real-time operating system (RTOS)
An operating system which guarantees the latency between an
interrupt being triggered and the interrupt handler starting, and

Glossary ___4

how tasks are scheduled. An RTOS is typically much smaller
than a normal desktop operating system. Compare Real-time
system.

Real-time system
A computer system whose processes are time-sensitive.
Compare Real-time operating system (RTOS).

Region, in linker configuration file

A set of non-overlapping ranges. The ranges can lie in one or
more memories. For ILINK, blocks, overlays, and sections are
placed into regions in the linker configuration file.

Region expression, in linker configuration file
A region built up from region literals, regions, and the common
set operations possible in the linker configuration file.

Region literal, in linker configuration file
A literal that defines a set of one or more non-overlapping
ranges in a memory.

Register

A small on-chip memory unit, usually just one or a few bytes
in size, which is particularly efficient to access and therefore
often reserved as a temporary storage area during program
execution.

Register constant

A register constant is a value that is loaded into a dedicated
processor register when the system is initialized. The compiler
can then generate code that assumes that the constants are
present in the dedicated registers.

Register locking

Register locking means that the compiler can be instructed that
some processor registers shall not be used during normal code
generation. This is useful in many situations. For example,
some parts of a system might be written in assembler language
to gain speed. These parts might be given dedicated processor
registers. Or the register might be used by an operating system,
or by other third-party software.

Register variables
Typically, register variables are local variables that are placed
in registers instead of on the (stack) frame of the function.

275

276

Register variables are much more efficient than other variables
because they do not require memory accesses, so the compiler
can use shorter/faster instructions when working with them.
See also Auto variables.

Relay
A synonym to veneer, see Veneer-.

Relocatable sections

Sections that have no fixed location in memory before linking.

Reset

A reset is arestart from the initial state of a system. A reset can
originate from hardware (hard reset), or from software (soft
reset). A hard reset can usually not be distinguished from the
power-on condition, which a soft reset can be.

ROM-monitor

A piece of embedded software designed specifically for use as
adebugging tool. It resides in the ROM of the evaluation board
chip and communicates with a debugger via a serial port or
network connection. The ROM-monitor provides a set of
primitive commands to view and modify memory locations
and registers, create and remove breakpoints, and execute your
application. The debugger combines these primitives to fulfill
higher-level requests like program download and single-step.

Round Robin

Task scheduling in an operating system, where all tasks have
the same priority level and are executed in turn, one after the
other. Compare Pre-emptive multitasking.

RTOS
See Real-time operating system (RTOS).

Runtime library

A collection of relocatable object files that will be included in
the executable image only if referred to from an object file, in
other words conditionally linked.

Runtime model attributes

A mechanism that is designed to prevent modules that are not
compatible to be linked into an application. A runtime attribute
is a pair constituted of a named key and its corresponding
value.

IDE Project Management and Building Guide
for RISC-V

ILINK uses the runtime model attributes when automatically
choosing a library, to verify that the correct one is used.

R-value
A value that can be found on the right side of an assignment.
This is just a plain value. See also L-value.

S

Saturation arithmetics

Most, if not all, C and C++ implementations use mod—2N
2-complement-based arithmetics where an overflow wraps the
value in the value domain, that is, (127 + 1) = -128. Saturation
arithmetics, on the other hand, does not allow wrapping in the
value domain, for instance, (127 + 1) = 127, if 127 is the upper
limit. Saturation arithmetics is often used in signal processing,
where an overflow condition would have been fatal if value
wrapping had been allowed.

Scheduler

The part of an RTOS that performs task-switching. It is also
responsible for selecting which task that should be allowed to
run. Many scheduling algorithms exist, but most of them are
either based on static scheduling (performed at compile-time),
or on dynamic scheduling (where the actual choice of which
task to run next is taken at runtime, depending on the state of
the system at the time of the task-switch). Most real-time
systems use static scheduling, because it makes it possible to
prove that the system will not violate the real-time
requirements.

Scope

The section of an application where a function or a variable can
be referenced by name. The scope of an item can be limited to
file, function, or block.

Section

An entity that either contains data or text. Typically, one or
more variables, or functions. A section is the smallest linkable
unit.

Section attributes

Each section has a name and an attribute. The attribute defines
what a section contains, that is, if the section content is
read-only, read/write, code, data, etc.

Section fragment
A part of a section, typically a variable or a function.

Section selection

In the linker configuration file, defining a set of sections by
using section selectors. A section belongs to the most
restrictive section selector if it can be part of more than one
selection. Three different selectors can be used individually or
in conjunction to select the set of sections: section attribute
(selecting by the section content), section name (selecting by
the section name), and object name (selecting from a specific
object).

Semaphore

A semaphore is a type of flag that is used for guaranteeing
exclusive access to resources. The resource can be a hardware
port, a configuration memory, or a set of variables. If several
tasks must access the same resource, the parts of the code (the
critical sections) that access the resource must be made
exclusive for every task. This is done by obtaining the
semaphore that protects that resource, thus blocking all other
tasks from it. If another task wishes to use the resource, it also
must obtain the semaphore. If the semaphore is already in use,
the second task must wait until the semaphore is released.
After the semaphore is released, the second task is allowed to
execute and can obtain the semaphore for its own exclusive
access.

Severity level

The level of seriousness of the diagnostic response from the
assembler, compiler, or debugger, when it notices that
something is wrong. Typical severity levels are remarks,
warnings, errors, and fatal errors. A remark just points to a
possible problem, while a fatal error means that the
programming tool exits without finishing.

Sharing
A physical memory that can be addressed in several ways. For
ILINK, defined in the linker configuration file.

Glossary ___4

Short addressing

Many cores have special addressing modes for efficient access
to internal RAM and memory mapped I/O. Short addressing is
therefore provided as an extended feature by many compilers
for embedded systems. See also Data pointers.

Side effect

An expression in C or C++ is said to have a side-effect if it
changes the state of the system. Examples are assignments to
avariable, or using a variable with the post-increment operator.
The C and C++ standards state that a variable that is subject to
a side-effect should not be used more that once in an
expression. As an example, this statement violates that rule:

*d++ = *d;

Signal

Signals provide event-based communication between tasks. A
task can wait for one or more signals from other tasks. Once a
task receives a signal it waits for, execution continues. A task
in an RTOS that waits for a signal does not use any processing
time, which allows other tasks to execute.

Simulator

A debugging tool that runs on the host and behaves as similar
to the target processor as possible. A simulator is used for
debugging the application when the hardware is unavailable,
or not needed for proper debugging. A simulator is usually not
connected to any physical peripheral devices. A simulated
processor is often slower, or even much slower, than the real
hardware.

Single stepping
Executing one instruction or one C statement at a time in the
debugger.

Skeleton code
An incomplete code framework that allows the user to
specialize the code.

Special function register (SFR)
A register that is used to read and write to the hardware
components of the core.

277

Stack frames

Data structures containing data objects like preserved
registers, local variables, and other data objects that must be
stored temporary for a particular scope (usually a function).

Earlier compilers usually had a fixed size and layout on a stack
frame throughout a complete function, while modern
compilers might have a dynamic layout and size that can
change anywhere and anytime in a function.

Stack sections

The section or sections that reserve space for the stack(s). Most
processors use the same stack for calls and parameters, but
some have separate stacks.

Standard libraries

The C and C++ library functions as specified by the C and C++
standard, and support routines for the compiler, like
floating-point routines.

Static object

An object whose memory is allocated at link-time and is
created during system startup (or at first use). Compare
Dynamic object.

Static overlay

Instead of using a dynamic allocation scheme for parameters
and auto variables, the linker allocates space for parameters
and auto variables at link time. This generates a worst-case
scenario of stack usage, but might be preferable for small chips
with expensive stack access or no stack access at all.

Statically allocated memory

This kind of memory is allocated once and for all at link-time,
and remains valid all through the execution of the application.
Variables that are either global or declared static are
allocated this way.

Structure value

A collecting names for structs and unions. A struct is a
collection of data object placed sequentially in memory
(possibly with pad bytes between them). A union is a
collection of data sharing the same memory location.

IDE Project Management and Building Guide
for RISC-V

Symbolic location
A location that uses a symbolic name because the exact
address is unknown.

T

Target
1 An architecture.

2 A piece of hardware. The particular embedded system you
are developing the application for. The term is usually used
to distinguish the system from the host system.

Task (thread)

A task is an execution thread in a system. Systems that contain
many tasks that execute in parallel are called multitasking
systems. Because a processor only executes one instruction
stream at the time, most systems implement some sort of
task-switch mechanism (often called context switch) so that all
tasks get their share of processing time. The process of
determining which task that should be allowed to run next is
called scheduling. Two common scheduling methods are
Pre-emptive multitasking and Round Robin.

Tentative definition
A variable that can be defined in multiple files, provided that
the definition is identical and that it is an absolute variable.

Terminal 11O
A simulated terminal window in C-SPY.

Timer
A peripheral that counts independent of the program
execution.

Timeslice

The (longest) time an RTOS allows a task to run without
running the task-scheduling algorithm. A task might be
allowed to execute during several consecutive timeslices
before being switched out. A task might also not be allowed to
use its entire time slice, for example if, in a preemptive system,
a higher priority task is activated by an interrupt.

Translation unit

A source file together with all the header files and source files
included via the preprocessor directive #include, except for
the lines skipped by conditional preprocessor directives such
as #if and #ifdef.

Trap

A trap is an interrupt initiated by inserting a special instruction
into the instruction stream. Many systems use traps to call
operating system functions. Another name for trap is software
interrupt.

Type qualifiers

In Standard C/C++, const or volatile. IAR compilers
usually add target-specific type qualifiers for memory and
other type attributes.

U

UBROF (Universal Binary Relocatable Object
Format)

File format produced by some of the IAR programming tools,
if your product package includes the XLINK linker.

\'

Value expressions, in linker configuration file
A constant number that can be built up out of expressions that
has a syntax similar to C expressions.

Veneer

A small piece of code that is inserted as a springboard between
caller and callee when the call instruction does not reach its
destination.

Virtual address (logical address)

An address that must be translated by the compiler, linker or
the runtime system into a physical memory address before it is
used. The virtual address is the address seen by the application,
which can be different from the address seen by other parts of
the system.

Glossary ___4

Virtual space

An IAR Embedded Workbench Editor feature which allows
you to place the insertion point outside of the area where there
are actual characters.

Volatile storage

Data stored in a volatile storage device is not retained when the
power to the device is turned off. To preserve data during a
power-down cycle, you should store it in non-volatile storage.
This should not be confused with the C keyword volatile.
Compare Non-volatile storage.

von Neumann architecture

A computer architecture where both instructions and data are
transferred over a common data channel. Compare Harvard
architecture.

\a4

Woatchpoints

Watchpoints keep track of the values of C variables or
expressions in the C-SPY Watch window as the application is
being executed.

X

XAR
An IAR tool that creates archives (libraries) in the UBROF
format.

XLIB

An IAR tool that creates archives (libraries) in the UBROF
format, listing object code, converting and absolute object file
into an absolute object file in another format.

XLINK
The IAR XLINK Linker which uses the UBROF output
format.

279

280

Z

Zero-initialized sections
Sections that should be initialized to zero at startup. See also
Section.

Zero-overhead loop

A loop in which the loop condition, including branching back
to the beginning of the loop, does not take any time at all. This
is usually implemented as a special hardware feature of the
processor and is not available in all architectures.

Zone

Different processors have widely differing memory
architectures. Zone is the term C-SPY uses for a named
memory area. For example, on processors with separately
addressable code and data memory there would be at least two
zones. A processor with an intricate banked memory scheme
might have several zones.

IDE Project Management and Building Guide
for RISC-V

A

A extension, enabling support for................... 204
a (filename extension). 180
absolute location, definitionof 265
accelerator keys. See shortcut keys
Add Project Connection dialog box (Project menu) 106
Additional include directories (preprocessor option) 225, 235
Additional input files (custom build option) 242
Additional libraries (linker option) 249
address expression, definitionof. 265
Advanced (linker option)o.... 252
Algorithm (Generate checksum setting) 258
Alias (Key bindings option) 52
Align (Raw binary image setting). 251
Alignment (Generate checksum setting) 258
Allow directives in first column (assembler option) 232
Allow misaligned data accesses (general option) 209
Allow mnemonics in first column (assembler option). . . . 232
Allow VLA (C dialectsetting) 219
Ambiguous Definitions (View menu). 160
AndeStar™ CoDense extension, enabling support for . . . 207
AndeStar™ DSP extension, enabling support for. 207
AndeStar™ Performance extension,
enabling supportfor L ... 207
ANSI C. See C89
application, definitionof.......... 265
architecture, definitionof 265
archive, definitionof. 265
argument variables L L i 77
CUSEOIML . ¢ vttt et e e e e e 84-85
environment variables 84
in #include filepaths 225,235
summary of predefined 83
Arguments (External editor option) 59
Arithmetic sum (checksum algorithm) 258
arranging windows. See windows
ar, definitionof 265
asm (filename extension)o.... 180

Index °

assembler comments, text style in editor. 136
assembler directives
definitionof i L 265
textstyleineditor, 136
assembler language, definitionof 265
assembler list files
compiler call frame information. 225
conditional information, specifying............... 233
GENETALNG . . oottt 233
Assembler mnemonics (Output list file setting) 224
assembler options 231
definitionof L L 265
Diagnosticso 236
Language 231
LSt oot 233
OUEPUL .« ottt e 233
assembler output, including debug information 233
Assembler source file (Workspace window icon). 100
assembler, command line version. 23
assert, in built applications 92
assumptions, programming eXperience. 15
attributes on sections, definitionof 277
Auto code completion and parameter hints (editor option) . 57
Auto indent (editor option) 56
Auto (Language setting) 219
Automatic runtime library selection (linker option) 249

Automatic setup of interrupt vector table (general option) 209

B extension, enabling supportfor................... 204
B extension, enabling support for bit manipulation. 205
backtrace information, definitionof 265
bank switching, definitionof 265
banked code, definitionof. 265
banked data, definitionof 266
banked memory, definitionof...................... 266
bank-switching routines, definitionof. 266
base ISA, selectingt 204

281

bat (filename extension) 180
Batch Build dialog box (Project menu). 122
batch files

definitionof 266

specifying from the Tools menu. 34
bin, common (subdirectory) 177
bin, riscv (subdirectory), 176
Bit order (Generate checksum setting) 259
bitfield, definitionof. 266
Block, definitionof. 266
Body (b) (Configure auto indent option). 58
bold style, inthis guide. 19
bookmarks

adding 136

showingineditor............. 56
breakpoints, definitionof 266
@brief (doxygen keyword). 142
Browse files (Output directories setting). 210
Browse processes (IDE Project option). 65
Browselnfo (output directory). 177
Buffered write (linker option). 215
-build (iarbuild command line option) 124

Build Actions Configuration (Build Actions options). . . .243

build configuration

CIEALNG . . oottt e 95
definitionof L 92
Build files (Output directories setting) 210
Build window (Viewmenu) 120
building
batches.t 116
commandsfor 114
excludingfiles it 101
from the command line 117, 124
OPLIONS .« ettt ettt e 64
pre- and post-actionse.iiinaaen.. 115
theprocess......... ...l 109
Button Appearance dialogbox 44

IDE Project Management and Building Guide
for RISC-V

C

C comments, text styleineditor 136
C dialect (compileroption).ccvun... 219
C extension, enabling supportfor................... 204
C keywords, text styleineditor. 136
C source file (Workspace window icon).............. 100
¢ (filename extension).ttt 180
C (Language Setting).o o oo v e e einieeanennn. 218
cache management, enabling support for 206
call frame information
definitionof i 266
including in assembler listfile 225
See also backtrace information
Call graph output (linker option). 252
calling convention, definitionof 266
category, in Options dialogbox 113,119
cc (filename extension)., 180
cfg (filename extension), 180
cgx (filename extension)., 180
characters, in assembler macro quotes 232
cheap memory access, definitionof 266
checksum
CRC. . 267
definitionof 266
GENEratingttt 258
tool for generatingol 270
Checksum size (Generate checksum setting) 258
Checksum unit size (Generate checksum setting) 259
Checksum (linker options)c..c...... 257
chm (filename extension) 180
-clean (iarbuild command line option) 125
Clean (Workspace window context menu) 102
Close Workspace (Filemenu). 185
CMO extensions, enabling supportfor............... 206
code
banked, definitionof 265
showing inactive (ineditor) 57
skeleton, definitionof, 277

EESHNE oo ettt 115
code completion, ineditor. 133
code folding, ineditor., 132
Code Generation (general options) 208
code memory, fillingunused. 258
Code model (general option). 208
code model, definitionof 267
code pointers, definitionof 267
Code section name (compiler option) 223
code sections, definitionof 267
code templates, usingineditor 134
CoDense, enabling supportfor..................... 207
color accessibility i 47
color vision deficiencies L. 47
Colors and Fonts (IDE Options dialog box) 46
command line options

specifying from the Tools menu. 34

typographic convention, .. 19
Command line (custom build option) 242
command prompt icon, in this guide. 19
comments

documentation comment type, 142

shown in tooltips and parameter hints 142
common (directory)c.uuererernenenen... 177
Compile (Workspace window context menu) 102
compiler diagnostics i 224
compiler list files

assembler mnemonics, including 224

GENETALING .« . oottt ettt e 224

source code, including 224
compiler OptionS . . . oo vttt 217

definitionof L 267

Diagnosticsc i, 226, 256

Encodingso 228

Language 1 218

Language 2t 220

List. .o 224

Optimizations.o vvvt ettt 221

OULPUL &« o ottt 223

Index °

compiler output

including debug information 223

overriding default directory for 210
compiler, command line version. 23
Complement (Generate checksum setting) 259
computer style (monospace font), typographic convention. 19
Config (linker options)c.oveienenenn. .. 248
configuration file for linker, definitionof 270
Configuration file symbol definitions (linker option)248
Configuration file (general option) 211
Configurations for project dialog box (Project menu). . .. 104
Configure Auto Indent (IDE Options dialog box). 58
Configure Custom Argument Variables dialog box 85
Configure Tools (Toolsmenu) 76
Configure Viewers dialog box (Tools menu) 78
$CONFIG_NAMES (argument variable) 83
config, common (subdirectory)..................... 177
config, riscv (subdirectory). 176
Connect Project to Subversion
(Subversion controlmenu) 107
context menu, definitionof. 267
Control file (linker option) 252
Control file (Workspace window icon). 100
conventions, used inthisguide 18
CONVEIEr OPLIONS . vt ettt et eeene 239
Copyright noticet 2
correcting errors found during build 115
cost. See memory access cost
cp (filename extension).c.ovuvnennnnen.. 180
cpp (filename extension). 180
CRC polynomial (checksum algorithm) 258
CRC, definitionof 267
CRC16 (checksum algorithm). 258
CRC32 (checksum algorithm). 258
CRC64ECMA (checksum algorithm)................ 258
CRC64ISO (checksum algorithm) 258
Create New Project dialog box (Project menu). 103
cstartup (system startup code)

definitionof L 267

stack pointers not valid until reaching 73

283

284

cstatcommands.txt (command line commands). 125

-cstat_analyze (iarbuild command line option) 125
-cstat_clean (iarbuild command line option). 125
-cstat_cmds (iarbuild command line option). 125
-cstat_report (iarbuild command line option) 125
cstat, riscv (subdirectory) 176
$CUR_DIRS (argument variable). 83
$CUR_LINES (argument variable). 83
custombuild....... L 109

USINE .ottt e e 117
custom tool configuration. 109
Custom Tool Configuration (custom build options) 241
custom variables, as argument variables. 84
Customize dialog boxX 42
cxx (filename extension).o. ... 180
C-SPY options

definitionof L L 267
C-STAT for static analysis, documentation for.......... 17
C-STAT (output directory)o vovvennenenen .. 178
C-style preprocessor, definitionof 267
C/C++ syntax

enablingincompiler, 219
C++ comments, text style ineditor. 136
C++ inline semantics (C dialect setting) 219
C++ keywords, text styleineditor 136
C++ options (compileroption) 220
C++ source file (Workspace window icon). 100
c++ (filename extension)o..... 180
C++ (Language setting)oveueunenn.. 219
C89 (C dialect setting)oouvuvunenenen .. 219
D extension, enabling support for................... 205
dark mode in IDE windows 47
dark solarized colors in IDE windows 47
dat (filename extension) 180, 182
data model, definitionof................. 267
data pointers, definitionof 267

IDE Project Management and Building Guide
for RISC-V

data representation, definitionof. 267
$DATES (argument variable) 83
dbgdt (filename extension)c.c.o.... 180
ddf (filename extension) 180
debug information

generating inassembler 233

in compiler, generating 223
Debugger (IDE Options dialog box). 71
Declarations window (View menu). 159
declaration, definitionof. 267
Default input file encoding (compiler option). 228
Default input file encoding (linker option) 260
default installation path. 175
Default integer format (IDE option) 72
Default source file encoding (compiler option). 228
#define options (linker options) 255
define (linker options). oL, 255
Defined symbolsoption 226, 235
Defined symbols (linker option) 255
definition, definitionof 268
demangling, definitionof 268
dep (filename extension).c.coeuenn... 180
Destroy static objects (C++ options setting) 220
development environment, introduction 23
device descriptionfiles.............. 176

definitionof 268
device driver, definitionof 268
device selectionfiles. 176
diagnostics

compiler

includinginlistfile......................... 224

SUPPIESSING .. oottt 227, 236, 256
Diagnostics (assembler options) 236
Diagnostics (compiler options) 226, 256
digital signal processor, definitionof 268
directories

&0 11 11T) s AN 177

compiler, ignore standard include 225,235

TISCV e v ettt e e e e e e e 176

TOOT v vttt et e e e e e e e e e 175
directory structure.ttt 175
Disable language extensions
(Language conformance setting). 219
Disable macro expansions (Output list file setting). 234
Disassembly window, definitionof. 268
Discard Unused Publics
(multi-file compilation setting) 218
disclaimer. 2
Disconnect Project from Subversion
(Subversion controlmenu) 107
DLIB

Naming CoNvention.oueuernenenen... 20
dnx (filename extension).u.... 180
Do not include diagnostics (Output list file setting) 234
dockable windows, 25
document conventionsieiain.... 18
documentation i 175

online. ...t 176

overviewof guides. i 17

overview of thisguide 16

thisguide 15
documentation comment type. 142
doc, common (subdirectory) 177
doc, riscv (subdirectory) 176
doxygen keywords in comments. 142
drag-and-drop

of files in workspace window 94

textineditorwindow., 132
drivers, riscv (subdirectory) 176
DSP, enabling support for. 207
DSP. See digital signal processor
Duplicate (IDE colors and fonts option) 48
DWAREF, definitionof 268
dynamic initialization, definitionof 268
dynamic memory allocation, definitionof 268
dynamic object, definitionof 268

Index

E

Edit Additional Libraries dialog box (linker options) 261

Edit Batch Build dialog box (Project menu) 123
Edit Build Action (Build Actions dialog box).......... 244
Edit Colors dialog boxccoviiiininenan.. 49
Edit Filename Extensions dialog box (Tools menu) 82
Edit Fonts dialogbox, 50
Edit Include Directories dialog box
(preprocessor OPHioNS). . v v v v v v e e e e eennns 230
Editmenu......... i 186
Edit Viewer Extensions (Toolsmenu) 79
editing source files, 130
edition, of thisguide 2
editor
backgroundcolor............. 50
codecompletion., 133
codefolding.covuinvninnininenennn.. 132
codetemplatescouniininnnnenan.. 134
commandst 136
customizing the environment. 130
external e 34
indentation. il 131
matching parentheses and brackets 131
OPLIONS .« vttt et e e 54
parameterhint 134
shortcut Keysooinn i 169
shortcut to functions. 138, 144
splittercontrols, 144
status bar, using in........... 137
SYNLAX COIOTS .« oot v ettt e et e 49
syntax feedback L 142
USIIE &« o vttt ettt et e e e e 129
word completion 132
Editor Setup Files (IDE Options dialog box) 60
editor setup files,options 60
Editor Syntax Feedback (IDE Options dialog box). 61
Editorwindow 141

See also editor

—eo

285

286

Editor (External editor option) 59

Editor (IDE Options dialog box). 54
EEPROM, definitionof 268
ELF, convertingfrom 240
Embedded C++

definitionof L 269
embedded system, definitionof 269
Embedded Workbench

ditOr . ..o 129

layout. .. .ot 25

main window 37

reference information. 183

TUNMING. « o ettt et e et et e 26

version number, displaying 201
emulator (C-SPY driver), definitionof 269
Enable graphical stack display and stack usage tracking
(Stack Option) . .« .o oot 72
Enable multibyte support (general option) 213
Enable parallel build (IDE Project options) 66
Enable project connections (IDE Project options). 66
Enable remarks (compiler option). 227,236, 256
Enable stack usage analysis (linker option). 252
Enable thread support in library (general option) 211
Enable virtual space (editor option) 57
Enabled transformations (compiler option). 222
Encodings (compiler options) 228
encoding, editor options 55
End address (Fill setting) 258
Enea OSE load module format, definitionof 269
enumeration, definitionof. 269
environment variables, as argument variables. 84
EOL character (editoroption).c.c.o..... 56
EPROM, definitionof. 269
error messages

compiler. 2217, 237

linkero 257
@ITOTS, COTTECHNG. « « « v vt v ettt e ee e 115
ewd (filename extension) 180
ewp (filename extension) 180
ewplugin (filename extension) 180

IDE Project Management and Building Guide
for RISC-V

eww (filename extension). 180
the workspace file 26
$EW_DIRS (argument variable). 83
example Projects.o vttt e 26
TUNMINEZ. © ot v ettt et e e e e e e eee e 26
examples, riscv (subdirectory) 176
exceptions, definitionof L 269
excluding files frombuild. 101
Exe (output direCtory). vvve i 177
executable image
analyzing using logfile 254
definitionof L L 269
Executable (Output file setting) 209
Executables/libraries (output directory setting). 210
$EXE_DIRS (argument variable) 83
expensive memory access, definitionof 269
Export (IDE colors and fonts option) 48
extended command linefile 182
extended keywords, definitionof 269

extensions. See filename extensions,
RISC-V standard extensions, or language extensions

External Analyzer (IDE Options dialog box) 66, 68
External Editor (IDE Options dialog box). 59
external editor, using. 34
Extra Options

specifying command line options. 229, 237, 261
F extension, enabling supportfor 205
Factory settings (build configuration option) 105
factory settings, restoring default settings. 114
File Encoding (editor option) 55
file extensions. See filename extensions
Filemenuo i 183
file types

C-STAT . .o ee e e 176

device description 176

deviceselection, 176

documentation i 176
ArVerS ..ot 176
extended command line........................ 182
header i 176
include. 176
library 176
linker configuration files 176
projecttemplates 176
readme.ot 176
syntax coloring configuration 176
File (Raw binary image setting) 250
filename exXtensionscouuiuiranenan.. 180
eww, the workspacefile......................... 26
otherthandefault.............................. 31
Filename Extensions dialog box (Tools menu).......... 80
Filename Extensions Overrides dialog box (Tools menu). . 81
Filename extensions (custom build option). 241
files
editing .. oo v 130
Nnavigating among.vit it 91
$FILE_DIRS (argument variable). 83
$FILE_FNAMES$ (argument variable) 83
$FILE_PATHS (argument variable) 83
Fill pattern (Fill setting) 258
Fill unused code memory (linker option) 258
filling, definitionof. 269
Find All References window (View menu). 167
Find dialog box (Editmenu). 150
Find in Files dialog box (Edit menu). 153
Find in Files window (View menu). 151
floating windows, 25
floating-point expressions, improving performance 221
Floating-point semantics (compiler option) 221
fmt (filename extension).u..... 180
fonts
CUSTOMIZING .« . vt ettt ettt et e 50
monospace (fixed-width) 51
proportional (variable-width). 50
format specifiers, definitionof 269

Index °

FPU, enabling supportfor. 205
functions
intrinsic, definitionof 271
shortcut to in editor windows. 138, 144

G

general options

Code Generation optionsovvrvenenen.. 208
definitionof 270
ISA EXtensionsc.uiuniunennennan.. 206
Library Configuration 211
Library Options 1., .. 212
Library Options 2.o oottt i 214
OUtPUL . o et e 209
Target. .. oot 204
Generate additional output (converter option). 239
Generate browse information (IDE Project options). 65
Generate checksum (linker option) 258
Generate debug information (assembler option) 233
Generate debug information (compiler option). 223
Generate linker map file (linker option) 254
Generate log file (linker option) 254
Generate #line directives
(Preprocessor output to file setting) 226, 235
generic pointers, definitionof 270
glosSary. 265
Go to function (editor button) 138, 144
Goto Line dialogboxo, 188
Group excluded from the build
(Workspace windowicon)c...o.... 100
Group of files (Workspace window icon)............. 100
groups, definitionof L ... 93
h (filename extension)c.uuinr.n. 180
hardware thread, definitionof...................... 270

hart. See hardware thread

287

288

Harvard architecture, definitionof
Header file (Workspace window icon)
headerfiles..............

quickaccessto.t
heap memory, definitionof....................
Heap size (general option)
heap size, definitionof
Helpmenu i i
helpfiles (filename extension)..................
High (Level setting),
highly contrasting window colors.
host, definitionof
htm (filename extension)
HTML text file (Workspace window icon).
html (filename extension)

i(filename extension),
IAR Breakpoint (general option for I/O).
iarbuild, building from the command line.........
iarbuild.exe

reference information.
JarldePmeexe.,
icf (filename extension)
icons

in Workspace window

SVNstatescoviiiinnnnen..
icons,inthisguide
IDE

definitionof L L

logging performance

OVEIVIEW .o ovitt e
IDE internal file (Workspace window icon)
ielfdump, definitionof
ielftool, definitionof.
Ignore standard include directories
(compileroption)coiiininan...

IDE Project Management and Building Guide
for RISC-V

....108

ILINK
definitionof 270
OPLIONS . « . vttt et e e 247
inc (filename extension) 181
Include compiler call frame information
(Output assembler file setting) 225
Include cross-reference (Output list file setting) 234
Include debug information in output (linker option). 253
includefiles i 176
compiler, specifying path. 225,235
definitionof 271
specifyingpath. 225,235
Include source (Output assembler file setting) 224
Incremental Search dialog box (Editmenu) 158
inc, riscv (subdirectory) 176
Indent size (editor option). 54
Indent with spaces (Tab Key Function setting).......... 54
indentation, ineditor. 131
inherited settings, overriding. 113
ini (filename extension) 181
Initial value (Generate checksum setting). 259
initialization in ILINK config file, definitionof 271
initialized sections, definitionof.................... 271
inline assembler, definitionof. 271
inlining, definitionof 271
input file encoding
specifyinginlinker 260
Input (linkeroption), 250
Insert tab (Tab Key Function setting) 54-55
insertion point
navigating initshistory 137
shortcut key formoving. 137
installation directory i 18
installation path, default 175
installed files. i 175
documentation i 176
executable L 177
include. 176
library 176
instruction mnemonics, definitionof 271

Instrumentation Trace Component, definition of 271
Integrated Development Environment (IDE)

definitionof 270
interrupt vector table, definitionof 271
interrupt vector table, initializing automatically 209
interrupt vector, definitionof 271
interrupts

definitionof 271

nested, definitionof 273
intrinsic functions, definitionof 271
intrinsic, definitionof 271
iobjmanip, definitionof 271
ISA Extensions (general options) 206
italic style,inthisguide 19
ITC, definitionof 271

/O register. See SFR

J

-jsondb (iarbuild command line option) 125
Keep symbol (linker option) 250
Key bindings (IDE Options dialogbox) 51
key bindings, definitionof 271
key summary, editor. i 169
keyboard shortcuts. See shortcut keys
keywords
definitionof i il 271
enable language extensions for 219
INCOMMENtS. . .o vvve sttt 142
specify syntax color forineditor................. 136
Label (c) (Configure auto indent option). 58
Language conformance (compiler option) 219

Index

language extensions

definitionof i L 272

disablingincompiler.......... 219
Language (assembler options). 231
Language (compiler option) 218
Language (IDE Options dialogbox). 53
Language (Language option) 53
Language 1 (compiler options) 218
Language 2 (compiler options) 220
layout, of Embedded Workbench 25
Level (compileroption) 221
library builder, output options. 264
library configuration file

definitionof L L 272

specifyingfrom IDE 211
Library Configuration (general options) 211
library files 176
library functions

avoid stepping into (Functions with source only). 71

configurable. oL 176
Library low-level interface
implementation (general option). 211
Library Options 1 (general options) 212
Library Options 2 (general options) 214
Library (general option)c.cvuinnen.. 211
Library (linker options)., 249
Library (Output file setting) 210
library, definitionof 276
lib, riscv (subdirectory)., 176
lightbulb icon, in this guide. 19
#line directives, generating in compiler 226, 235
linker

command line version, 23

settingoptions for L oL 247

linker command file. See linker configuration file
linker configuration file

definitionof L 272
INAIreCtOry. .« v vt 176
specifyinginlinker 248
Linker configuration file (linker option) 248

—eo

289

linker options 247
typographic convention 19
Advanced. i 252
Checksum 257
Config .. .ovv e 248
define......... i 255
Input ... 250
Library. o 249
LiSt. oot 254
Optimizations.o oottt 251
OULPUL .« o ot 253
#define......... L 255

linker symbols, defining 255

list files
assembler

compiler runtime information................. 225

conditional information, specifying 233
compiler

assembler mnemonics, including 224

GENETALNG . . . v\ vttt 224

source code, including 224

List files (Output directories setting). 210

List macro definitions (Output list file setting) 234

List only assembled parts (Output list file setting) 234

List (assembler options)oviinon... 233

List (compiler options), 224

List (linkeroption) en .. 254

List (output dir€Ctory).o vvvv et 178

$LIST_DIRS (argument variable). 83

location counter, definitionof. 275

-log (iarbuild command line option) 126

log file, generate from linker. 254

log (filename extension)c.c.o.... 181

logical address, definitionof....................... 279

Low (Level setting).c.covuininnnenen .. 222

Ist (filename eXtension).c.ouuiueennnnn. 181

L-value, definitionof 272

IDE Project Management and Building Guide
for RISC-V

M

M extension, enabling supportfor. 204
mac (filename extension) 181
Macro quote characters (assembler option). 232
macros, definitionof. L. 272
MAGC, definitionof 272
mailbox (RTOS), definitionof 272
-make (iarbuild command line option) 124, 126
Make before debugging (IDE Project options) 65
Make (Workspace window context menu) 101
mangling, definitionof 272
map file, generate from linker. 254
Math functions (general option) 213
Max number of errors (assembler option). 237
Medium (Level setting).coviuinnen... 222
memory

definitionof 272
memory access cost, definitionof................... 273
memory area, definitionof 273
memory bank, definitionof. o L 273
memory map, definitionof L. 273
memory model, definitionof 273
memory, fillingunused. 258
menubar. L 37
menu (filename extension) 181
Menu (Key bindings option). 51
01C) L PP 183
Merge duplicate sections (linker option). 251
Messages window, amount of output 121, 166
Messages (IDE Options dialogbox) 62
metadata (subdirectory)o ... 177
microcontroller, definitionof 273
microprocessor, definitionof 273
misaligned data accesses, data accesses 209
modules, definitionof. L L. 273
monospace font, meaning of in guide. See computer style
Multiply and accumulate, definitionof............... 272
multitasking, definitionof. 274

multi-file compilation

definitionof L 273

specifying options for 217
N extension, enabling support for................... 204
NamMing CONVENtionsvuvuvrernrnenenenen.. 20
navigating

in insertion point history 137

toafunction......... L i i, 138
NDEBUG, preprocessor symbol. 92
nested interrupts, definitionof 273
New Build Action (Build Actions dialog box) 244
New Configuration dialog box (Project menu) 105
-ninja (iarbuild command line option). 126
No size constraints (Level setting) 222
No source browser and build status updates when the IDE
is not the foreground process (IDE Project options) 66
None (Level setting)c.ooveninnnnenen .. 221
non-banked memory, definitionof 273
non-initialized memory, definitionof 273
non-volatile storage, definitionof................... 273
NOP (assembler instruction), definitionof 273
no-init sections, definitionof 273
o (filename extension)ouuuuunnn. 181
Obj (output directory).o enen .. 178
objcopy, definitionof o L 273
Object file or library (Workspace window icon). 100
object file (absolute), definitionof 274
object file (relocatable), definitionof 274
Object files (Output directories setting) 210
object, definitionof. L L. 274
OBJ_DIRS (argument variable) 83

online documentation
available from Helpmenu 201

Index °

target-specific, in directory 176
Open Containing Folder (editor window context menu) . . 144
Open Containing Folder

(Workspace window contextmenu) 103
Open Workspace (Filemenu) 184
Opening Brace (a) (Configure auto indent option) 58
operator precedence, definitionof. 274
operators, definitionof 274
optimization levels, setting 221
Optimizations (compiler options) 221
Optimizations (linker option) 251
options
assembler. L L i 231
buildactions. i 243
compiler. 217
CONVEITET . ..ttt t et et 239
custombuild L oL 241
editor 54
library builder 263
linker 247
setup files foreditor. 60
Options dialog box (Projectmenu) 119
USING « .ottt e 111
Options (Workspace window context menu) 101
options, definitionof. L L ... 274
Other file (Workspace window icon) 100
out (filename extension)uu..n.. 181
output
assembler. L Lo 233
including debug information. 233
compiler. 223
including debug information. 223
converting fromELF................... ... 239-240
including debug information 253
linker, specifying filename. 253
PIEPIOCESSOT. « v v e e e e e e e e e e 226, 235
Output assembler file (compiler option) 224
Output directories (general option) 210
output file encoding
specifyinginlinker 260

291

292

Output file (converteroption) 240

Output file (custom build option) 242,245
Output file (general option). 209
Output file (library builder options) 264
Output filename (linker option) 253
Output files (custom build option) 242
output image. See executable image
Output list file (assembler option). 233
Output list file (compiler option) 224
Output (assembler option). 233
Output (compiler options).vvvennenen .. 223
Output (converter Options)uvuvenenen... 239
Output (general options)c.ovvvnnenen. .. 209
-output (iarbuild command line option) 126
Output (library builder options) 264
Output (linker options) 253
overlay, definitionof. L L. 274
Override default program entry (linker option). 249
P extension, enabling supportfor 207
-parallel (iarbuild command line option). 127
parameter hint, ineditor 134
parameters

typographic convention 19

when building from command line 117, 124
parentheses and brackets, matching (in editor) 131
part number, of thisguide. 2
paths

compiler include files. 225,235

includefiles 225,235

relative, in Embedded Workbench............. 93,142

source files. i 142
pbd (filename extension).vuvenenen... 181
pbi (filename extension) 181
Perform C++ Virtual Function Elimination
(linkeroption).ottt 251
Performance extension, enabling support for 207

IDE Project Management and Building Guide
for RISC-V

performance issues, troubleshooting. 63
peripheral units, definitionof 274
peripherals register. See SFR
pew (filename extension)u..o.. 181
pipeline, definitionof 274
placement, definitionof 274
Plain ‘char’ is (compiler option) 220
Play a sound after build operations (IDE Project options). . 65
plugins

common (subdirectory)c. ... 177
pointers

definitionof L L 274

warn when stack pointer is out of range. 73
pop-up menu. See context menu
#pragma directive, definitionof 274
precedence, definitionof. 274
preemptive multitasking, definitionof 274
Preinclude file (compiler option) 225, 235
preprocessor

definition of. See C-style preprocessor

NDEBUG symbolccoiii.. 92
preprocessor directives

definitionof 274

text styleineditor 136
Preprocessor options. 225,234
Preprocessor output to file (compiler option) 226, 235
prerequisites, programming eXperience 15
Preserve comments (preprocessor output setting) . . . 226, 235
Press shortcut key (Key bindings option) 52
Pre-build command line (build actions option). 244-245
Primary (Key bindings option) 52
Printf formatter (general option) 212
prj (filename extension)c.ouuuvun... 181
problems, troubleshooting. 63
Processor variant (general option). 204
processor variant, definitionof 275
Product Info dialog box (Helpmenu) 82

product overview
directory structuret 175

filetypes .. .oovnin i 180
program counter, definitionof 275
program location counter, definitionof. 275
programming eXperiencec...enenenaon.. 15
program, see also application
Project Make, Optionso vv vt 64
Projectmenu. i 193
projectmodel 89
project options, definitionof............ 275
Project page (IDE Options dialog box)................ 64
Project with multi-file compilation
(Workspace windowicon), 100
Project (Workspace window icon) 100
projects

addingfilesto i 95

build configuration, creating 95

bullding 114

inbatches L L. 116

CIEALINE « o v vt ottt et ettt 95

definitionof, 91, 275

XAMPIES . ..o 26

TUNDINE « ¢ ovee et e et e e e e e 26

excluding groups andfiles....................... 95

SrOUPS, CTEALNG . .« . v vttt ettt eee e 95

MANAZING .« o v oe ettt e e e 89

Organizationovutnen e 91

workspace, creatingo 95
$PROJ_DIRS (argument variable) 83
$PROJ_FNAMES (argument variable). 83
$PROJ_PATHS (argument variable). 84
Promable output format (converter option). 240
PROM, definitionof 275
prototypes, verifying the existence of 220
publication date, of this guide. 2

Q

qualifiers, definition of. See type qualifiers

Index

R

range, definitionof, 275
Raw binary image (linker option) 250
reading guidelines. 15
readme files, See release notes
read-only sections, definitionof 275
real-time operating system, definitionof. 275
real-time system, definitionof 275
Rebuild All (Workspace window context menu) 102
reference information, typographic convention. 19
References window (Viewmenu). 161
region expression, definitionof. 275
region literal, definitionof 275
register constant, definitionof. 275
register locking, definitionof 275
register variables, definitionof 275
registered trademarks oL 2
registers

definitionof 275

header files for in inc directory 176
relative paths. i 93, 142
relay, definitionof 276
release NOeS . . . oo v vttt 176
Reload last workspace at startup (IDE Project options) . . .65
relocatable segments, definitionof 276
remarks, classifying diagnosticsas.......... 227,236, 256
Remove trailing blanks (editor option) 57
Remove (IDE colors and fonts option) 48
Rename Group dialogbox 103
Rename (IDE colors and fonts option) 48
Replace dialog box (Editmenu) 152
Replace in Files dialog box (Editmenu).............. 155
Require prototypes (C dialect setting). 220
Reset All (Key bindings option) 52
Reset (IDE colors and fonts option) 47-48
reset, definitionof. oL 276
restoring default factory settings. 114
Result in full size (Generate checksum setting) 258

—eo

293

294

Reverse byte order within word
(Generate checksum setting).
risCV (direCtory) ... ovvvn e
RISC-V base ISA, selectingcoenen...
RISC-V standard extensions, enabling support for
ROM-monitor, definitionof
TOOt dir€COTY . oo vt
Round Robin, definitionof
RTOS, definitionof
rtos, riscv (subdirectory).,
runtime libraries

definitionof

Specifyingo
runtime model attributes, definitionof
RV32E, generatingcode for
RV32], generating code for.
R-value, definitionof

S

s (filename extension).,
saturation arithmetics, definitionof
Save All (Filemenu).
Save As(Filemenu)
Save editor windows before building
(IDE Project Options)vvvinenenenenennnn..
Save workspace and projects before building
(IDE Project Options)vvevenenenenennnnnn..
Save Workspace (Filemenu)
Save (Filemenu).,
Scan for changed files (editor option)
Scanf formatter (general option)
scheduler (RTOS), definitionof
scope, definitionof L L L.,
scrolling, shortcutkey for.............
searching in editor windows
section

definitionof L L L

forbinarydata..........
section fragment, definitionof

IDE Project Management and Building Guide
for RISC-V

section selection, definitionof 277
Section (Raw binary image setting) 251
selecting text, shortcutkey for 137
semaphores, definitionof 277
Set as Active (Workspace window context menu) 103
settings (directory)t 182
severity level

changing default for assembler diagnostics 236

changing default for compiler diagnostics 226, 256

definitionof 277
SFR

definitionof 277

inheaderfiles............... 176
sharing, definitionof. 277
short addressing, definitionof. 277
shortcut keys.o 136

CUSTOMUZING .« . v\ttt e ettt e 51
Show bookmarks (editor option). 56
Show fold margin (editor option) 56
Show inactive code (editor option) 57
Show line break characters (editor option) 57
Show line numbers (editor option) 56
Show right margin (editor option). 55
Show whitespaces (editor option) 57
side-effect, definitionof 277
signals, definitionof 277
sim (filename extension). 181
simulator, definitionof 277
skeleton code, definitionof. 277
solarized colors in IDE windows 47
Source Browse Log (Viewmenu). 165
source browser output

overriding default directory for 210
Source Browser window. 162

USING . oot 139
source code

including in compiler listfile. 224

templates 134
Source Code Control (IDE Options dialog box) 70

Index __o

Source file excluded from the build symbolic location, definitionof 278
(Workspace window icon) 100 symbols
source files See also user symbols

editing 130 defining in linker 255

managing in Projectsuuiiiia... 93 definition of\ 278

pathstoo 93, 142 symbols, defining, 226, 235
special function registers (SFR) syntax coloring 49

definitionof i 277 configuration files 176

inheaderfiles............. 176 INeditorot 136
STC, TiSCV (SUbdirectory) ..., 176 syntax feedback ineditor 142
stack frames, definitionof. 278 SEHNEUD .« .« o ettt 61
stack segment, definitionof 278 Syntax Feedback Level (editor option) 61
Stack size (general option) 208 Syntax highlighting (editor option). 56
Stack (IDE Options dialog box) 72 syntax highlighting, in editor window. 136
Standard C

making compiler adhere to. 219 T

syntax, enabling in compiler 219
standard extensions, enabling supportfor............. 204 Tab Key Function (editor option) 54
standard libraries, definitionof 278 Tab size (€ditor OPton).ovoveereeeeenn .. 54
Standard (Language conformance setting) 219 Target (general OPHONS)o vvveeeeeeenn... 204
Start address (Fill setting), 258 $TARGET_BNAMES$ (argument variable) 84
static analysis tool, documentation for 17 $TARGET_BPATHS (argument variable) 84
static objects, definitionof 278 $TARGET_DIRS (argument variable) 84
static overlay, definitionof 278 $TARGET_FNAMES (argument variable). 84
statically allocated memory, definitionof............. 278 $TARGET_PATHS (argument variable) 84
StAtUS bar. 41 target, definition of . . . o o v v o 278
Stdout/Stderr (general option). 212 task, definition ofooiiiii 278
Step into functions (IDE option). 71 Template dialog box (Edit menu) 168
stepping, definitionof.......... 2717 templates for code, USINGoveneenennn.. 134
STL container expansion (IDE option). 72 tentative definition, definition of. 278
Stop build operation on (IDE Project options) 64 Terminal I/O window, definitionof 278
Stop Build (Workspace window context menu) 102 Terminal I/O (IDE Options dialog box) 74
Strict (Language conformance setting) 219 terminology.o vt 265
strings, text style ineditor. 136 teStNE, OF COAE . .+ .o\ e e e e et 115
structure value, definitionof 278 Text file (Workspace window icon) 100
Subversion states and corresponding icons. 108 Text output file encoding (compiler option) 229
suc (filename extension), 181 Text output file encoding (linker option) 260
Sum32 (checksum algorithm)...................... 258 Themes (IDE colors and fonts option) 46
Suppress these diagnostics (compiler option) . . 227, 236, 256 thread, definition of 278
Symbol (Raw binary image setting) 250

295

296

timer, definitionof 278

timeslice, definitionof 278
Tool Output window., 45
-tool (iarbuild command line option) 127
toolbar, IDE 38

CUSTOMIZING .« . v ettt e 29
toolchain

extending 109

OVEIVIEW . ettt ettt et e e et 23
$TOOLKIT_DIRS (argument variable) 84
tools icon,inthisguide. 19
Toolsmenu.cooiniiniiiinnen... 198
tools, user-configured L oL 76
trademarks e 2
transformations, enabled in compiler 222
translation unit, definitionof. 279
trap, definitionofo L. 279
Treat all warnings as errors (compiler option) 227
Treat all warnings as errors (linker option). 257
Treat these as errors (compiler option) 2217, 237
Treat these as errors (linker option) 257
Treat these as remarks (compiler option) 2217, 236, 256
Treat these as warnings (assembler option). 237
Treat these as warnings (compiler option) 227
Treat these as warnings (linker option). 257
Treat warnings as errors (assembler option) 237
Troubleshooting (IDE Options dialog box). 63
Truncate multiline data field (Output list file). 234
tutorials, riscv (subdirectory) 176
type qualifiers, definitionof 279
typographic conventions. 19
UBROF

definitionof L i 279

tool for generating, 279
Update intervals (IDE option). 72
Use as input (Generate checksum setting). 259

IDE Project Management and Building Guide
for RISC-V

Use Code Templates (editor option) 60
Use command line options (compiler option) . . 229, 238, 261
Use Custom Keyword File (editor option) 60
Use External Editor (External editor option). 59
User symbols are case sensitive (assembler option) 232
$USER_NAMES (argument variable) 84
value expressions, definitionof. 279
-varfile (iarbuild command line option) 127
variable length arrays 219
variables, using inarguments 77
veneer, definitionof 279
version

ofthisguide. i 2
Version Control Systemmenu 106
Version Control System
(Workspace window contextmenu) 103
version number

of Embedded Workbench. 201
VIEW MENU . . oo ov et e ettt 190
virtual address, definitionof 279
virtual space

definitionof 279

enablingintheeditor........................... 57
Visual State

partofthe toolchain 24

projectfile 181
volatile storage, definitionof 279
von Neumann architecture, definitionof.............. 279
vsp (filename extension).c.cvuinven... 181
Warn when exceeding stack threshold (Stack option). 73
Warn when stack pointer is out of bounds (Stack option). .73
warnings

assembler. L 237

compiler. 227
linkero 257
warnings icon, inthisguide 19
watchpoints, definitionof 279
web sites, recommended. 18
When source resolves to multiple function instances 71
whitespace, showing ineditor. 57
Window menu.ttt 199
windows
about organizing on the screen. 25
brightcolors.o 47
darkmode 47
default colorsand fonts 46
high contrastcolors i 47
how to organize onthe screen 28
word completion, ineditor 132
Workspace window 99
drag-and-drop of files 94
Workspace windowicons.c...... 100
Workspace (Workspace window icon) 100
workspaces
CIEALNG . . oottt e 95
USINE .ottt 95
wsdt (filename extension).coouen... 182
Xandesdsp extension, enabling support for. 207
Xandesperf extension, enabling support for 207
XAR, definitionof i L. 279
xcl (filename extension)uou... 182
Xcodense extension, enabling support for. 207
XLIB, definitionof 279
XLINK, definitionof 279
Zdinx extension, enabling supportfor. 205
zero-initialized sections, definitionof................ 280

Index °

zero-overhead loop, definitionof 280
Zfinx extension, enabling supportfor................ 205
Zicbom extension, enabling supportfor 206
Zicbop extension, enabling support for. 206
Zicboz extension, enabling supportfor............... 206
zone, definitionof. 280

Symbols

-build (iarbuild command line option) 124
-cstat_analyze (iarbuild command line option) 125
-cstat_clean (iarbuild command line option). 125
-cstat_cmds (iarbuild command line option). 125
-cstat_report (iarbuild command line option) 125
-jsondb (iarbuild command line option) 125
-log (iarbuild command line option) 126
-ninja (iarbuild command line option). 126
-output (iarbuild command line option) 126
-parallel (iarbuild command line option). 127
-tool (iarbuild command line option) 127
-varfile (iarbuild command line option) 127
@brief (doxygen keyword)., 142
#define options (linker options) 255
#pragma directive, definitionof 274
% stack usage threshold (Stack option). 73
$CONFIG_NAMES$ (argument variable) 83
CUR_DIR (argument variable). 83
$CUR_LINES (argument variable). 83
$DATES (argument variable) 83
EW_DIRS (argument variable). 83
$EXE_DIRS (argument variable) 83
$FILE_DIRS (argument variable). 83
$FILE_FNAMES (argument variable) 83
$FILE_PATHS (argument variable) 83
$LIST_DIRS (argument variable). 83
$OBJ_DIRS (argument variable) 83
$PROJ_DIRS (argument variable) 83
$PROJ_FNAMES (argument variable). 83

297

298

$PROJ_PATHS (argument variable). 84

$TARGET_BNAMES (argument variable) 84
$TARGET_BPATHS (argument variable) 84
$TARGET_DIRS (argument variable) 84
$TARGET_FNAMES (argument variable). 84
$TARGET_PATHS (argument variable) 84
$TOOLKIT_DIRS (argument variable) 84
$USER_NAMES (argument variable) 84

IDE Project Management and Building Guide
for RISC-V

	Brief contents
	Contents
	Tables
	Preface
	Who should read this guide
	Required knowledge

	How to use this guide
	What this guide contains
	Part 1. Project management and building
	Part 2. Reference information

	Other documentation
	User and reference guides
	The online help system
	Web sites

	Document conventions
	Typographic conventions
	Naming conventions

	Part 1. Project management and building
	The development environment
	Introduction to the IAR Embedded Workbench IDE
	Briefly about the IDE and the build toolchain
	Tools for analyzing and checking your application
	An extensible and modular environment
	The layout of the windows on the screen

	Using and customizing the IDE
	Running the IDE
	Double-clicking the workspace filename

	Working with example projects
	Organizing windows on the screen
	Specifying tool options
	Adding a button to a toolbar
	Removing a button from a toolbar
	Showing/hiding toolbar buttons
	Recognizing filename extensions
	Getting started using external analyzers
	Invoking external tools from the Tools menu
	Adding command line commands to the Tools menu
	Using an external editor

	Reference information on the IDE
	IAR Embedded Workbench IDE window
	Menu bar
	Toolbar
	Context menu
	Toolbars Options menu
	Status bar

	Customize dialog box
	Categories
	Commands
	Show Screen Tips on toolbars
	Show shortcut keys in Screen Tips
	Large Icons
	Toolbars
	Reset
	Reset All
	Show text labels

	Button Appearance dialog box
	Image only
	Text only
	Image and text
	Use Default Image
	Select User-defined Image
	New
	Edit
	Button text

	Tool Output window
	Context menu

	Colors and Fonts options
	Themes
	Colors
	Fonts
	Reset
	Duplicate
	Remove
	Rename
	Import
	Export

	Edit Colors dialog box
	Syntax Coloring
	Color
	Type style
	Background Color

	Edit Fonts dialog box
	Proportional Font
	Fixed Font
	Editor Font
	Apply font changes to all themes

	Key Bindings options
	Menu
	List of commands
	Press shortcut key
	Primary
	Alias
	Reset All

	Language options
	Language

	Editor options
	Tab size
	Indent size
	Tab Key Function
	Show right margin
	File Encoding
	Syntax highlighting
	Auto indent
	Show line numbers
	Scan for changed files
	Show bookmarks
	Show fold margin
	Enable virtual space
	Remove trailing blanks
	Auto code completion and parameter hints
	Show source browser tooltips
	Show line break characters
	Show whitespaces
	Show inactive code

	Configure Auto Indent dialog box
	Opening Brace (a)
	Body (b)
	Label (c)
	Sample code

	External Editor options
	Use External Editor
	Editor
	Arguments

	Editor Setup Files options
	Use Custom Keyword File
	Use Code Templates

	Editor Syntax Feedback options
	Syntax Feedback Level

	Messages options
	Enable All Dialogs

	Troubleshooting options
	Enable IDE logging
	Logging directory

	Project options
	Stop build operation on
	Save editor windows before building
	Save workspace and projects before building
	Make before debugging
	Reload last workspace at startup
	Play a sound after build operations
	Generate browse information
	No source browser and build status updates when the IDE is not the foreground process
	Enable project connections
	Enable parallel build

	External Analyzers options
	Analyzers
	Move Up
	Move Down
	Add
	Delete
	Edit

	External Analyzer dialog box
	Name
	Path
	Arguments
	Location
	Warning
	Error

	Source Code Control options (deprecated)
	Keep items checked out when checking in
	Save editor windows before performing source code control commands

	Debugger options
	When source resolves to multiple function instances
	Step into functions
	STL container expansion
	Update intervals
	Default integer format

	Stack options
	Enable graphical stack display and stack usage tracking
	Warn when stack pointer is out of bounds
	Stack pointer(s) not valid until program reaches
	Warnings
	Limit stack display to

	Terminal I/O options
	Input mode
	Input echoing
	Encoding
	Show target reset in Terminal I/O window

	Configure Tools dialog box
	New
	Delete
	Menu Content
	Menu Text
	Command
	Argument
	Initial Directory
	Redirect to Output window
	Prompt for Command Line
	Tool Available

	Configure Viewers dialog box
	Display area
	New
	Edit
	Delete
	Import
	Export

	Edit Viewer Extensions dialog box
	File name extensions
	Action

	Filename Extensions dialog box
	Toolchain
	Edit

	Filename Extension Overrides dialog box
	Display area
	Edit

	Edit Filename Extensions dialog box
	Factory setting
	Override

	Product Info dialog box
	Details

	Argument variables
	Configure Custom Argument Variables dialog box
	Workspace and Global tabs
	Expand/Collapse All
	Hide disabled groups
	Enable Group / Disable Group
	New Group
	Add Variable
	Edit Variable
	Delete
	Import

	Project management
	Introduction to managing projects
	Briefly about managing projects
	Navigating between project files

	How projects are organized
	Projects and workspaces
	Projects and build configurations
	Groups
	Source files and their paths
	Drag and drop

	The IDE interacting with version control systems

	Managing projects
	Creating and managing a workspace and its projects
	Viewing the workspace and its projects
	Interacting with Subversion
	Viewing the Subversion states

	Reference information on managing projects
	Workspace window
	Drop-down list
	The display area
	Context menu

	Create New Project dialog box
	Tool chain
	Project templates
	Description

	Configurations for project dialog box
	Configurations
	New
	Remove

	New Configuration dialog box
	Name
	Tool chain
	Based on configuration
	Factory settings

	Add Project Connection dialog box
	Connect using
	OK

	Version Control System menu for Subversion
	Menu commands

	Subversion states

	Building projects
	Introduction to building projects
	Briefly about building a project
	Extending the toolchain
	Tools that can be added to the toolchain

	Building a project
	Setting project options using the Options dialog box
	Building your project
	Correcting errors found during build
	Using pre- and post-build actions
	Using a build action for time stamping
	Using a build action to copy files

	Building multiple configurations in a batch
	Building from the command line
	Adding an external tool

	Reference information on building
	Options dialog box
	Category
	Factory Settings

	Build window
	Context menu

	Batch Build dialog box
	Batches
	Build
	New
	Edit
	Delete

	Edit Batch Build dialog box
	Name
	Available configurations
	Configurations to build

	iarbuild.exe—the IAR Command Line Build Utility
	-build
	-clean
	-cstat_analyze
	-cstat_clean
	-cstat_cmds
	-cstat_report
	-jsondb
	-make
	-ninja
	-log
	-output
	-parallel
	-tool
	-varfile

	Editing
	Introduction to the IAR Embedded Workbench editor
	Briefly about the editor
	Briefly about source browse information
	Customizing the editor environment

	Editing a file
	Indenting text automatically
	Matching brackets and parentheses
	Splitting the editor window into panes
	Dragging text
	Code folding
	Word completion
	Code completion
	Parameter hint
	Using and adding code templates
	Syntax coloring
	Adding bookmarks
	Using and customizing editor commands and shortcut keys
	Displaying status information

	Programming assistance
	Navigating in the insertion point history
	Navigating to a function
	Finding a definition or declaration of a symbol
	Finding references to a symbol
	Finding function calls for a selected function
	Switching between source and header files
	Displaying source browse information
	Text searching
	Accessing online help for reference information

	Reference information on the editor
	Editor window
	Relative source file paths
	Documentation comments
	Syntax feedback
	Window tabs, tab groups, and tab context menu
	Multiple editor windows and splitter controls
	Go to function
	Context menu

	Find dialog box
	Find what
	Match case
	Match whole word
	Search as hex
	Only in selection
	Find Next
	Find Previous
	Stop

	Find in Files window
	Context menu

	Replace dialog box
	Find what
	Replace with
	Match case
	Match whole word
	Search as hex
	Only in selection
	Find next
	Replace
	Replace all

	Find in Files dialog box
	Find what
	Look in
	File types
	Stop

	Replace in Files dialog box
	Find what
	Replace with
	Look in
	File types
	Stop
	Close
	Find Next
	Replace
	Replace All
	Skip file

	Incremental Search dialog box
	Find what
	Match case
	Find Next
	Close
	Only in selection

	Declarations window
	Context menu

	Ambiguous Definitions window
	Context menu

	References window
	Context menu

	Source Browser window
	The display area
	Icons used for the symbol types
	Context menu
	Progress bar

	Source Browse Log window
	Context menu

	Resolve File Ambiguity dialog box
	Call Graph window
	Display area
	Context menu

	Template dialog box
	Text fields
	Display area

	Editor shortcut key summary
	Moving the insertion point
	Selecting text
	Scrolling text
	Miscellaneous shortcut keys
	Additional Scintilla shortcut keys

	Part 2. Reference information
	Product files
	Installation directory structure
	Root directory
	The riscv directory
	The common directory
	The install-info directory

	Project directory structure
	Various settings files
	Files for global settings
	Files for local settings

	File types

	Menu reference
	Menus
	File menu
	Menu commands

	Edit menu
	Menu commands

	View menu
	Menu commands

	Project menu
	Menu commands

	Tools menu
	Menu Commands

	Window menu
	Menu commands

	Help menu

	General options
	Description of general options
	Target
	Device
	Base ISA
	Standard extensions
	Floating-point settings
	Bit manipulation
	Code size reduction
	Scalar cryptography

	ISA Extensions
	Cache management
	Andes extensions
	DSP

	Code Generation
	Code model
	Stack size
	Heap size
	Allow misaligned data accesses
	Automatic setup of interrupt vector table

	Output
	Output file
	Output directories

	Library Configuration
	Library
	Configuration file
	Enable thread support in library
	Library low-level interface implementation
	Stdout/Stderr

	Library Options 1
	Printf formatter
	Scanf formatter
	Math functions

	Library Options 2
	Heap selection
	Locale support
	Buffered terminal output

	Compiler options
	Description of compiler options
	Multi-file Compilation
	Multi-file Compilation
	Discard Unused Publics

	Language 1
	Language
	Language conformance
	C dialect
	C++ options

	Language 2
	Plain 'char' is
	Floating-point semantics

	Optimizations
	Level
	Enabled transformations

	Output
	Generate debug information
	Code section name

	List
	Output list file
	Output assembler file

	Preprocessor
	Ignore standard include directories
	Additional include directories
	Preinclude file
	Defined symbols
	Preprocessor output to file

	Diagnostics
	Enable remarks
	Suppress these diagnostics
	Treat these as remarks
	Treat these as warnings
	Treat these as errors
	Treat all warnings as errors

	Encodings
	Default source file encoding
	Default input file encoding
	Text output file encoding

	Extra Options
	Use command line options

	Edit Include Directories dialog box

	Assembler options
	Description of assembler options
	Language
	User symbols are case sensitive
	Allow mnemonics in first column
	Allow directives in first column
	Macro quote characters

	Output
	Generate debug information

	List
	Output list file

	Preprocessor
	Ignore standard include directories
	Additional include directories
	Preinclude file
	Defined symbols
	Preprocessor output to file

	Diagnostics
	Enable remarks
	Suppress these diagnostics
	Treat these as remarks
	Treat these as warnings
	Treat these as errors
	Treat all warnings as errors
	Max number of errors

	Extra Options
	Use command line options

	Output converter options
	Description of output converter options
	Output
	Generate additional output
	Output format
	Output file

	Custom build options
	Description of custom build options
	Custom Tool Configuration
	Filename extensions
	Command line
	Output files
	Additional input files
	Build order

	Build actions options
	Description of build actions options
	Build Actions Configuration
	Build actions
	New
	Edit
	Remove

	New/Edit Build Action dialog box
	Command line
	Output files
	Input files
	Working directory
	Build order

	Linker options
	Description of linker options
	Config
	Linker configuration file
	Configuration file symbol definitions

	Library
	Automatic runtime library selection
	Additional libraries
	Override default program entry

	Input
	Keep symbols
	Raw binary image

	Optimizations
	Merge duplicate sections
	Perform C++ Virtual Function Elimination

	Advanced
	Enable stack usage analysis
	Replace linker executable with wrapper

	Output
	Output filename
	Include debug information in output

	List
	Generate linker map file
	Generate log file

	#define
	Defined symbols

	Diagnostics
	Enable remarks
	Suppress these diagnostics
	Treat these as remarks
	Treat these as warnings
	Treat these as errors
	Treat all warnings as errors

	Checksum
	Fill unused code memory
	Generate checksum

	Encodings
	Default input file encoding
	Text output file encoding

	Extra Options
	Use command line options

	Edit Additional Libraries dialog box

	Library builder options
	Description of library builder options
	Output
	Output file

	Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z
	Symbols

