IAR Embedded
Workbench

JAR Assembler User
Guide

for the Renesas
RL78 Microcontroller Family

ARL78_1-2

2

IAR Assembler User Guide
for RL78

COPYRIGHT NOTICE
© 2011-2018 IAR Systems AB.

No part of this document may be reproduced without the prior written consent of IAR
Systems AB. The software described in this document is furnished under a license and
may only be used or copied in accordance with the terms of such a license.

DISCLAIMER

The information in this document is subject to change without notice and does not
represent a commitment on any part of [AR Systems. While the information contained
herein is assumed to be accurate, IAR Systems assumes no responsibility for any errors
or omissions.

In no event shall IAR Systems, its employees, its contractors, or the authors of this
document be liable for special, direct, indirect, or consequential damage, losses, costs,
charges, claims, demands, claim for lost profits, fees, or expenses of any nature or kind.

TRADEMARKS

IAR Systems, IAR Embedded Workbench, Embedded Trust, IAR Connect, C-SPY,
C-RUN, C-STAT, IAR Visual State, IAR KickStart Kit, I-jet, I-jet Trace, I-scope, IAR
Academy, IAR, and the logotype of IAR Systems are trademarks or registered
trademarks owned by IAR Systems AB.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

Renesas is a registered trademark of Renesas Electronics Corporation. RL78 is a
trademark of Renesas Electronics Corporation.

Adobe and Acrobat Reader are registered trademarks of Adobe Systems Incorporated.

All other product names are trademarks or registered trademarks of their respective
owners.

EDITION NOTICE
Second edition: December 2018

Part number: ARL78_1-2

This guide applies to version 4.x of IAR Embedded Workbench® for Renesas
Electronics” RL78 microcontroller family.

Internal reference: BB4, ILINK, asrct2010.3, V_110411, IJOA.

Contents

TABIES ... 9

Preface ... 11
Who should read this guide ... 11
How to use this guide ... 11
What this guide contains ..., 12
Document coNVENtions ..o

Typographic conventions ...

Naming CONVENLIONS ...ccveruierieeriierieeieeienientenieenieeseeesteeresreseeesseenaes 13
Introduction to the IAR Assembler for RL78c.ccc........ 15
Introduction to assembler programming ... 15
Getting StATtedcc.eoveruiririeeirieeetetetee ettt 15
Modular programming ... 16
External interface detailsccoooooriiiii 17
Assembler iNVOCAtION SYNTAXcceeveverrerierreriererenesenesesseeeeeeneenees 17
Passing OPLONS ...cooveiueeriiiiieieeie ettt st 18
Environment variablescccoocereerernienieeieee e 18
EITOI TEtUIN COACS ...vinvieniieiieiieie ettt 18
SoUrCe fOrMAL ... 19
Assembler instructions ...

Expressions, operands, and operators

INLEZET CONSLANLSeeueieniieiieieeie ettt 20
ASCII character CONSLANESccceeeeeeeeierrerrerienieneneneneneereeeeeeeens 21
Floating-point CONSLANTSccververrerrerrereniinieiieteniereene s seesreeneas 21
True and falsec.cccooivirinininiiiiic 22

Predefined Symbolsccccoeviriririiniiiiiciieeee e 23

Absolute and relocatable eXpressionscecceceevererereneneneneenees 25

EXPression restriCtionscoceeeeeeeeeeeieienienieneneneseseeeenenennes 26

HeEAderovoiiiiiiiiiicce e 27
BOAY oottt 27
SUMMATY ettt ettt et 27
Symbol and cross-reference tablecccoeveviiniieneiniininnineeee 27
Programming hints ...
Accessing special function registers
Using C-style preprocessor dir€Ctivesocevveeveerveneeneeneeneeneennes 28
Tracking call frame usage ... 28
Call frame information OVEIVIEWcccceceeievienienieneneneneneneeeeeene 29
Call frame information in more detailcccceceevevvininiiiiiiniinininens 29
Defining a names blOCKc.ccoceveviiieiiiiiiieiiinincncnennececececne 30
Defining a common blOCKccceeveririiiiiiieneninenenenceceeeeeeen 31
Annotating your source code within a data blockccccceceveennenne. 32
Specifying rules for tracking resources and the stack depth 33
Using CFI expressions for tracking complex casesc..c.ccoceeeeueenee. 35
Stack usage analysis dir€CtiVesccoceevueereriierierieneeneenieenieeieenenn

Examples of using CFI directives

AsSSEMbIEr OPLIONS ..o 39
Using command line assembler options ... 39
Specifying command 1ine Optionsccccceveeveerecreineeneniecneenes 39

Specifying Parameterscceceveereerieenieenienieeieeeeneeseesieeseeesae e 40

Extended command line file ... 40

Summary of assembler options ... 41
Description of assembler options ..., 43
==CASE_INSENSILIVEeviuiiiiiiiiiiiieiereeierecce e 43

—=COAE_MOAEL ...ooiiiiiiiiiiiiie ettt 43

==dePENAENCIESoeureniiiiieienierierteeeeeee ettt 46

“=IAG_EITOT .viiiiiiieiteietet ettt s ene e 47

IAR Assembler User Guide
for RL78

Contents °

—=d1aZ_TEMATK ..ottt 48
“=QIAZ_SUPPIESS .eervviruieriiiiieieenteeie ettt st e et e st ete st et s e sbeeseeereeneeas 48
-=d1aZ_WATNINE ..evvevieiiiieieietertenteee ettt ettt 49
--diagnOSHCS_tADIES ...c..ovviriireiriiniieiieieeeeee e 49
S=0IE_FITST ettt 50

--generate_far_runtime_library_callscc.ccceveriiiiiiinininninenene 52
=-NEAAET_CONLEXL ..vvienienienieieierierteei ettt 52
e s 52
ettt 53
M et bbbt 54
--MAacro_positions_in_dia@nOStCSccecuereerueerierniernierieniienieenieeeenn 54

B 1010130 1 01 ¢ AU 55
“NO_DOM ettt ettt sttt 55
=-N0_COTe_IT_ALIIDULEeoiriiiiiiiiiiiiiiieicieene e 55
--no_path_in_file_macrosc.cccceeevereninienienieninienineneceeeeeene 56
--NO_TUNME_AttIDULES ...vvvvviiiiiiiii ittt 56
--NO_SYStEM_INCIUAR ..c..eiiiiiiiiiiiiiieeee e 56
“SNO_WAITINEZS .evvevirieriierieiieiieiteneetetetetestestestesuesiesseeseesesueeseeneeneensens 56
--NO_WIAP_dIaZNOSHICS ...eveuieuienienieieieniestestestesie sttt et esee e 57
“=ONLY_SEAOUL ..eoiiiiiiiiiiiriieiteceeeeee et 57
--output, -0

~-Predef_MACTOSceovierieierieierieeieeit ettt sttt et et 58
“PIEINCIUAE ...eiviiiniiiiiiiicie ettt 58
SoPIEPIOCESS ..eveevevreurenretentententessesseestestestesteneenteeesesessessesaessesuesseeseene 58
SmTEINATKS .evviteieeteeierie ettt ettt st be et ettt 59
SmSIIBIE ottt 60
==SOUICE_ENCOMING ..evviruiiiiiieiieieteienterttrtt ettt s 60
--system_include_dirccovevirenenenie e 60
--text_out

--use_UniX_direCtory_SeParatorscccceeeerrerererererereeeeeeeennens 61
V1 £ T <>, (S 1 1 O URRROR PR 62

6

IAR Assembler User Guide
for RL78

--warnings_affect_exit_Codec..coceviririiriieiieniinineneneneeeeeene 62

== WAININZS_ATE_EITOTS ...evveertrerveereereerereerisesseesseesseesseessesssesssesssesnens 62

AssembIer OPerators ... 63
Precedence of assembler operators ... 63
Summary of assembler operators ... 63
Parenthesis OPEratorccoceeeeeeieieieieieieee e 63

FUNCHON OPEIALOLS ..couveeuiieiiiiierierite sttt 64

Unary operators

Multiplicative arithmetic OpPeratorsecevvereerererereneseeeeeenea 64
Additive arithmetiC OPETatorscocveveerueerierriersienieeee et sieeseeenees 65
Shift OPEIAtOTSeuveuieriirierieriirieeeeeecee ettt 65
COMPATISON OPETALOLS ...eevvereenrereereerierteerieteneeteseestensessesbesiessesseeseeneens 65
Equivalence Operatorsc..ceceveerieneenieeneenieesienie et siee e 65
L0ZIcal OPETALOTSovevierierieiieiieiieteteitet et 66
Conditional OPEratorcccecevierierierierienienentese ettt 66
Description of assembler operators ... 66
() Parenthesis
F MUILPHCATION ..eutiiiiieiieiee ettt ettt 66
F UNATY PIUS oottt 67
F AQAIEON vttt e 67
— UNArY MINUS coeoieiiieieseieeteeieeeeet ettt 67
— SUBLFACHON ...ooviiiiiiiiiiiicc e 68
T DIVISION ettt 68
7 : Conditional OPETALOrcceeevuerueririinieeieieieie et 68

< Less than

<=Less than or €qualcccceceeireriiiiieieiceccee e 69
<>, 1= NOE @QUAL et 69
=, == EqUal s 69
> Greater than ..o 70
>= Greater than or equalcceeceeviiiieiiiiree e 70
&& Logical ANDoiiiiiiiiiiieeeeeeee e 70
& Bitwise AND ..o 71

~ Bitwise NOT

Contents °

| Bitwise OR

A Bitwise exclusive OR .o..cooiiiiiiiiiiiiiiiiiiiiceccee 71
o MOAUIO ...ttt 72
TLOZICAl NOT ..ottt 72
[l Logical OR ...oooiiiiiiiiiieeeteetee ettt e
<< Logical shift 1eftccccocviiriiiiiiiiiiiiiceccecce
>> Logical shift right ...

BYTEI FIrSt DY ...ooouveriiiiieiieieeieeieetestete et
BYTE2 Second BYLEcccceveeirereririiieieictenenene e
BYTE3 Third DYE ...ceceeuiieiieieieieiececeteetee et 74
BYTEA4 Fourth BYtecc.cooviiiiiiiiieiiieeeeeeceeee e 74
DATE Current time/datecccceoeeeeeeienienienieneneneneneneeieeeeeeneene 74
HIGH High DYe ..ot 75
HWRD High Wordcoooiiiiiiiiiiieeeeeee e 75
LOW LOW DY ettt ettt 75
LWRD Low word

SFB section begin
SFE section end ()

SIZEOF SECtON SIZE () weeevveeeirieetieeeiieeeeeeetee ettt eevee e 77
UGT Unsigned greater thanc.cooceevieneeninneniienieeeeseneeseee 78
ULT Unsigned 1ess thanc..ccccoceevevievienienienenenienienenneceeeceeeene 78
UPPER Third DYte ...cccvevuiriieiieiieiieeeieiteteee e 78
XOR Logical exclusive ORccccooiiiiiniinienieeciceeeeeeeeeeee 78
Assembler dir€CtiVES ... 79
Summary of assembler directives ...
Description of assembler directives
Module control dir€CtiVEScceceeierierierierierienienieneseeeeeeeeeeeeeeneas
Symbol control dir€CtVEScceerueerieerieriiirieeieeie et 85
Section CONtrol dir€CIVEScoevereererieieieieieniesene et

Value assignment directives

Conditional assembly dir€Ctivesccoceeveereereriierieenienieneenieeeens 92
Macro processing dir€Ctiveseeeeeeiereerierieriereneneneeeeeeeeeeeenees 94
Listing control dir€CtiVeScecueveerierierienereneneeeeteneeneesie e 100

C-style preprocessor dir€Ctivescocevereeeeienieniereneneneneeeeneenne 103

Data definition or allocation dir€Ctivescceeeeveeeriieenveensveeennnnnn 108
Assembler control dir€CtiVesccueeeereeiieeiieeeiieesie e 110
Function dif€CtiVesc..cocuiieiiieeiie ettt 112

Summary of pragma directives ... 121
Descriptions of pragma directives ..o 121
diag_defaultc.ooiiiiiiei e 121
QIAZ_CTTOT ettt s 122
diag_TeMATKooviiiiiiiieece e 122
diag_suppress 123
diag_warning123
INESSAZE .veenveenreeureeteriteatenteenteesteebeestestesasesseenseesseenbeeaseentesanenaeenseens 123
DHAGNOSTICS ...ooooreiei et 125

Message format ...

Severity leVels ...

ReMATK ..o

WATTIINEZ ..ottt s s ebe et

EITOT oo

Fatal €ITOToooviiiiiiiiieieeee et

Setting the severity level

INEErNAl EITOT ...ocoviieiiiiiiieeiee et et

IAR Assembler User Guide
for RL78

Tables

1: Typographic conventions used in this UIAEcc.cccevervieieiieiienieneiinercneenee 12
2: Naming conventions used in this gUIdecccceevieiriiriieiienienienenerererese e 13
3: Assembler environment vVariablesc..c.ccoevirinininininiteieeeee e 18
4: Assembler error return COUGScoerimiririririeieieientesestesie ettt ettt see e eaeas 18
5: Integer constant formats

6: ASCII character constant fOrmatscocceceeeereerieienieneninieeeeererereresesenieene 21
7: Floating-pOint CONSANESc..eeeeteiertiriertentinienteettetetetestestestesreseesseebeeseeseeeenaeneens 22
8: Predefined re@iSter SYMDOLScceveririirieieienieieieseseee ettt 23
9: Predefined SYMDOIScccouiriiriininiiiieiccccenee et 23
10: Symbol and cross-reference tableccoccoeverereninininieeeeeeeee e 27
11: Code sample with call frame informationcccceveeverieriinieniienieneneeneee 36
12: Assembler Options SUMIMATYccccccveverierererrinsiereereeeetetensensesessessesseeseeeeeens 41
13: Assembler directives summary -..... 79
14: Module control directives 83
15: Symbol control dir€CtIVEScccceerueeueruieieiiienienienesteetete ettt 86
16: Section CONLIOl IrECLIVES ...ecuevveruerieiiiiieieierierteterteet ettt 88
17: Operand MOIfIEIScceeviiiriiirieiieeieeerteet ettt sttt e s 91
18: Value assignment dir€CtIVESecveruerueriereneniniiniierietetetererere s ene 91
19: Macro processing dir€CtIVESo.eeerueruieieierierierieniestenieeieeseeeetetensensestesiesiesienne
20: Listing cOntrol dir€CtIVESccueeruerrierierieeienitenitesiee ettt st seee e eas

21: C-style preprocessor dir€CtiVESc.ccoevereeirieienienieneneneneeeeieeeeeeresnesnenes

22: Data definition or allocation directives ...

23: Assembler control dir€CtivVesccecierieriinieniininieieieiceieiee e

24: Call frame information directives names block

25: Call frame information directives common block

26: Call frame information directives for data blocksc.ceccvevenceinicreccncnnenee 115
27: Unary operators in CFL @XPIresSionscececeevevenieneneneneeeeeeneeneensenrenennes 116
28: Binary operators in CFL eXPressionscceceverereneneneeneeneenienieneenreseneennes 117
29: Ternary operators in CFL @Xpressionscoccevveveenieneenieeneenieenieeneseeeveenens 118
30: Call frame information directives for tracking resources and CFAs

31: Call frame information directives for stack usage analysisc..ccccecerrerennenne.

10

IAR Assembler User Guide
for RL78

32: Pragma directives summary

Preface

Welcome to the IAR Assembler User Guide for RL78. The purpose of this
guide is to provide you with detailed reference information that can help you
to use the IAR Assembler for RL78 to develop your application according to
your requirements.

Who should read this guide

You should read this guide if you plan to develop an application, or part of an
application, using assembler language for the RL78 microcontroller and need to get
detailed reference information on how to use the IAR Assembler for RL78. In addition,
you should have working knowledge of the following:

o The architecture and instruction set of the RL78 microcontroller (refer to the chip
manufacturer’s documentation)

o General assembler language programming

o Application development for embedded systems

o The operating system of your host computer.

How to use this guide

When you first begin using the IAR Assembler for RL78, you should read the chapter
Introduction to the IAR Assembler for RL7S.

If you are an intermediate or advanced user, you can focus more on the reference
chapters that follow the introduction.

If you are new to using the IAR Embedded Workbench, we recommend that you first
work through the tutorials, which you can find in the IAR Information Center and which
will help you get started using IAR Embedded Workbench.

What this guide contains

12

What this guide contains

Below is a brief outline and summary of the chapters in this guide.

Introduction to the IAR Assembler for RL78 provides programming information. It
also describes the source code format, and the format of assembler listings.

Assembler options first explains how to set the assembler options from the
command line and how to use environment variables. It then gives an alphabetical
summary of the assembler options, and contains detailed reference information
about each option.

Assembler operators gives a summary of the assembler operators, arranged in order
of precedence, and provides detailed reference information about each operator.

Assembler directives gives an alphabetical summary of the assembler directives, and
provides detailed reference information about each of the directives, classified into
groups according to their function.

® Pragma directives describes the pragma directives available in the assembler.

e Diagnostics contains information about the formats and severity levels of diagnostic

messages.

Document conventions

IAR Assembler User Guide
for RL78

When, in the IAR Systems documentation, we refer to the programming language C, the
text also applies to C++, unless otherwise stated.

When referring to a directory in your product installation, for example r178\doc, the
full path to the location is assumed, for example c: \Program Files\IAR
Systems\Embedded Workbench N.n\r178\doc, where the initial digit of the version
number reflects the initial digit of the version number of the IAR Embedded Workbench
shared components.

TYPOGRAPHIC CONVENTIONS

The IAR Systems documentation set uses the following typographic conventions:

Style Used for

computer * Source code examples and file paths.

* Text on the command line.
* Binary, hexadecimal, and octal numbers.

parameter A placeholder for an actual value used as a parameter, for example

filename.h where filename represents the name of the file.

Table 1: Typographic conventions used in this guide

Preface __4

Style Used for

[option] An optional part of a directive, where [and] are not part of the actual
directive, but any [, 1, {, or } are part of the directive syntax.

{option} A mandatory part of a directive, where { and } are not part of the
actual directive, but any [, 1, {, or } are part of the directive syntax.

[option] An optional part of a command.

[a]b|c] An optional part of a command with alternatives.

{a|b]|c} A mandatory part of a command with alternatives.

bold Names of menus, menu commands, buttons, and dialog boxes that

appear on the screen.

italic * A cross-reference within this guide or to another guide.
* Emphasis.
An ellipsis indicates that the previous item can be repeated an arbitrary
number of times.

Identifies instructions specific to the IAR Embedded Workbench® IDE

interface.
Identifies instructions specific to the command line interface.

Identifies helpful tips and programming hints.
E

Identifies warnings.

Table 1: Typographic conventions used in this guide (Continued)

NAMING CONVENTIONS

The following naming conventions are used for the products and tools from IAR
Systems®, when referred to in the documentation:

Brand name Generic term

IAR Embedded Workbench® for RL78 IAR Embedded Workbench®
IAR Embedded Workbench® IDE for RL78 the IDE

IAR C-SPY® Debugger for RL78 C-SPY, the debugger

IAR C-SPY® Simulator the simulator

IAR C/C++ Compiler™ for RL78 the compiler

IAR Assembler™ for RL78 the assembler

IAR ILINK Linker™ ILINK, the linker

IAR DLIB Runtime Environment™ the DLIB runtime environment

Table 2: Naming conventions used in this guide

Document conventions

IAR Assembler User Guide
14 for RL78

Introduction to the IAR
Assembler for RL78

e Introduction to assembler programming
e Modular programming

e External interface details

e Source format

e Assembler instructions

e Expressions, operands, and operators

o List file format

e Programming hints

e Tracking call frame usage

Introduction to assembler programming

Even if you do not intend to write a complete application in assembler language, there
might be situations where you find it necessary to write parts of the code in assembler,
for example, when using mechanisms in the RL78 microcontroller that require precise
timing and special instruction sequences.

To write efficient assembler applications, you should be familiar with the architecture
and instruction set of the RL78 microcontroller. Refer to the Renesas hardware
documentation for syntax descriptions of the instruction mnemonics.

GETTING STARTED

To ease the start of the development of your assembler application, you can:

o Work through the tutorials—especially the one about mixing C and assembler
modules—that you find in the Information Center

o Read about the assembler language interface—also useful when mixing C and
assembler modules—in the /AR C/C++ Development Guide for RL78

Modular programming

o In the IAR Embedded Workbench IDE, you can base a new project on a template
for an assembler project.

Modular programming

IAR Assembler User Guide
16 for RL78

Itis widely accepted that modular programming is a prominent feature of good software
design. If you structure your code in small modules—in contrast to one single
monolith—you can organize your application code in a logical structure, which makes
the code easier to understand, and which aids:

e efficient program development
e reuse of modules

® maintenance.

The IAR development tools provide different facilities for achieving a modular structure
in your software.

Typically, you write your assembler code in assembler source files; each file becomes a
named module. If you divide your source code into many small source files, you will get
many small modules. You can divide each module further into different subroutines.

A section is a logical entity containing a piece of data or code that should be mapped to
a physical location in memory. Use the section control directives to place your code and
data in sections. A section is relocatable. An address for a relocatable section is resolved
at link time. Sections let you control how your code and data is placed in memory. A
section is the smallest linkable unit, which allows the linker to include only those units
that are referred to.

If you are working on a large project you will soon accumulate a collection of useful
routines that are used by several of your applications. To avoid ending up with a huge
amount of small object files, collect modules that contain such routines in a library
object file. Note that a module in a library is always conditionally linked. In the IAR
Embedded Workbench IDE, you can set up a library project, to collect many object files
in one library. For an example, see the tutorials in the Information Center.

To summarize, your software design benefits from modular programming, and to
achieve a modular structure you can:
Create many small modules, one per source file

In each module, divide your assembler source code into small subroutines
(corresponding to functions on the C level)

o Divide your assembler source code into sections, to gain more precise control of
how your code and data finally is placed in memory

Introduction to the IAR Assembler for RL78 __4

e Collect your routines in libraries, which means that you can reduce the number of
object files and make the modules conditionally linked.

External interface details
This section provides information about how the assembler interacts with its
environment:
e Assembler invocation syntax, page 17
e Passing options, page 18
® Environment variables, page 18
® Error return codes, page 18
You can use the assembler either from the AR Embedded Workbench IDE or from the

command line. Refer to the IDE Project Management and Building Guide for RL78 for
information about using the assembler from the IAR Embedded Workbench IDE.

ASSEMBLER INVOCATION SYNTAX
The invocation syntax for the assembler is:
iasmrl78 [options] [sourcefile] [options]

For example, when assembling the source file prog. s, use this command to generate an
object file with debug information:

iasmrl78 prog --debug

By default, the IAR Assembler for RL78 recognizes the filename extensions s, asm, and
msa for source files. The default filename extension for assembler output is o.

Generally, the order of options on the command line, both relative to each other and to
the source filename, is not significant. However, there is one exception: when you use
the -I option, the directories are searched in the same order that they are specified on the
command line.

If you run the assembler from the command line without any arguments, the assembler
version number and all available options including brief descriptions are directed to
stdout and displayed on the screen.

External interface details

18

IAR Assembler User Guide
for RL78

PASSING OPTIONS
You can pass options to the assembler in three different ways:

e Directly from the command line

Specity the options on the command line after the iasmr178 command; see
Assembler invocation syntax, page 17.

e Via environment variables

The assembler automatically appends the value of the environment variables to every
command line, so it provides a convenient method of specifying options that are
required for every assembly; see Environment variables, page 18.

e Via a text file by using the - £ option; see -f, page 50.

For general guidelines for the option syntax, an options summary, and more information
about each option, see the Assembler options chapter.

ENVIRONMENT VARIABLES
You can use these environment variables with the IAR Assembler:
Environment variable Description
IASMRL78 Specifies command line options; for example:
set IASMRL78=la . --warnings_are_errors
TIASMRL78_INC Specifies directories to search for include files; for example:

set IASMRL78_INC=c:\myinc\

Table 3: Assembler environment variables

For example, setting this environment variable always generates a list file with the name
temp.lst:

set IASMRL78=-1 temp.lst

For information about the environment variables used by the compiler and linker, see the
IAR C/C++ Development Guide for RL78.

ERROR RETURN CODES

When using the IAR Assembler from within a batch file, you might have to determine
whether the assembly was successful to decide what step to take next. For this reason,
the assembler returns these error return codes:

Return code Description

0 Assembly successful, warnings might appear.

Table 4: Assembler error return codes

Return code

Introduction to the IAR Assembler for RL78 __4

Description

1

3

Warnings occurred , provided that the option
--warnings_affect_exit_code was used.

Non-fatal errors or fatal assembly errors occurred (making the assembler

Crashing errors occurred.

Table 4: Assembler error return codes (Continued)

Source format

The format of an assembler source line is as follows:

[Iabel [:

[operation] [operands] [; comment]

where the components are as follows:

label

operation

operands

comment

A definition of a label, which is a symbol that represents
an address. If the label starts in the first column—that is, at
the far left on the line—the : (colon) is optional.

An assembler instruction or directive. This must not start
in the first column—there must be some whitespace to the
left of it.

An assembler instruction or directive can have zero, one,
or more operands. The operands are separated by commas.
An operand can be:

* a symbolic name representing a numeric value or an
address (where the latter also is referred to as a label)

* a register

¢ a predefined symbol

* the program location counter (PLC)

* an expression.

Comment, preceded by a ; (semicolon)

C or C++ comments are also allowed.

The components are separated by spaces or tabs.

A source line cannot exceed 2047 characters.

Assembler instructions

20

Tab characters, ASCII 09H, are expanded according to the most common practice; i.e.
to columns 8, 16, 24 etc. This affects the source code output in list files and debug
information. Because tabs might be set up differently in different editors, do not use tabs
in your source files.

Assembler instructions

The IAR Assembler for RL78 supports the syntax for assembler instructions as
described in the Renesas hardware documentation, with these exceptions:

The instruction operators $ and $! are not permitted before a PC-relative address, and
1t and !! are not permitted before an absolute address.

See also Operand modifiers, page 91.

Expressions, operands, and operators

IAR Assembler User Guide
for RL78

Expressions consist of expression operands and operators.

The assembler accepts a wide range of expressions, including both arithmetic and
logical operations. All operators use 64-bit two’s complement integers. Range checking
is performed if a value is used for generating code.

Expressions are evaluated from left to right, unless this order is overridden by the
priority of operators; see also Assembler operators.

These operands are valid in an expression:

o Constants for data or addresses, excluding floating-point constants.

o Symbols—symbolic names—which can represent either data or addresses, where
the latter also is referred to as labels.

o The program location counter (PLC), $ (dollar).
The operands are described in greater details on the following pages.

Note: You cannot have two symbols in one expression, or any other complex
expression, unless the expression can be resolved at assembly time. If they are not
resolved, the assembler generates an error.

INTEGER CONSTANTS

Because all IAR Systems assemblers use 64-bit two’s complement internal arithmetic,
integers have a (signed) range from 203102031,

Constants are written as a sequence of digits with an optional - (minus) sign in front to
indicate a negative number.

Introduction to the IAR Assembler for RL78 __4

Commas and decimal points are not permitted.

The following types of number representation are supported:

Integer type Example

Binary 1010b,b'1010

Octal 1234qg,g'1234

Decimal 1234,-1,d'1234
Hexadecimal OFFFFh, OXFFFF, h' FFFF

Table 5: Integer constant formats

Note: Both the prefix and the suffix can be written with either uppercase or lowercase
letters.

ASCIl CHARACTER CONSTANTS

ASCII constants can consist of any number of characters enclosed in single or double
quotes. Only printable characters and spaces can be used in ASCII strings. If the quote
character itself will be accessed, two consecutive quotes must be used:

Format Value

'"ABCD' ABCD (four characters).

"ABCD" ABCD'\O0"' (five characters the last ASCII null).
'A''B!' A'B

T NE <

"' (4 quotes) '

"' (2 quotes) Empty string (no value).

" " (2 double quotes) "\0' (an ASCII null character).

\! ', for quote within a string, asin 'I\'d love to'
\\ \, for \ within a string
A\ ", for double quote within a string

Table 6: ASCII character constant formats

FLOATING-POINT CONSTANTS

The IAR Assembler accepts floating-point values as constants and converts them into
IEEE single-precision (32-bit) floating-point format, double-precision (64-bit), or
fractional format.

Floating-point numbers can be written in the format:

[+]|-1[digits].[digits] [{E|e}[+]|-1digits]

21

Expressions, operands, and operators

22

IAR Assembler User Guide
for RL78

This table shows some valid examples:

Format Value

10.23 1.023 x 10!
1.23456E-24 1.23456 x 104
1.0E3 1.0x 103

Table 7: Floating-point constants
Spaces and tabs are not allowed in floating-point constants.

Note: Floating-point constants do not give meaningful results when used in expressions.

TRUE AND FALSE
In expressions a zero value is considered false, and a non-zero value is considered true.

Conditional expressions return the value O for false and 1 for true.

SYMBOLS

User-defined symbols can be up to 255 characters long, and all characters are
significant. Depending on what kind of operation a symbol is followed by, the symbol
is either a data symbol or an address symbol where the latter is referred to as a label. A
symbol before an instruction is a label and a symbol before, for example the EQU
directive, is a data symbol. A symbol can be:

e absolute—its value is known by the assembler
e relocatable—its value is resolved at link time.

Symbols must begin with a letter, a—z or A—Z, ? (question mark), or _ (underscore).
Symbols can include the digits 0-9 and $ (dollar).

Symbols may contain any printable characters if they are quoted with * (backquote), for
example:

‘strange#label’

Case is insignificant for built-in symbols like instructions, registers, operators, and
directives. For user-defined symbols, case is by default significant but can be turned on
and off using the Case sensitive user symbols (--case_insensitive) assembler
option. For more information, see --case_insensitive, page 43.

Use the symbol control directives to control how symbols are shared between modules.
For example, use the PUBLIC directive to make one or more symbols available to other
modules. The EXTERN directive is used for importing an untyped external symbol.

Introduction to the IAR Assembler for RL78 __4

LABELS

Symbols used for memory locations are referred to as labels.

Program location counter (PLC)

The assembler keeps track of the start address of the current instruction. This is called
the program location counter.

To refer to the program location counter in your assembler source code, use the $
(dollar) character. For example:

BR S ; Loop forever
REGISTER SYMBOLS
This table shows the existing predefined register symbols:
Name Size Description
X A,C B,E DL, H 8 bits Byte registers
AX, BC, DE, HL 16 bits Word registers
PC 20 bits Program counter
SP 16 bits Stack pointer
PSW 8 bits Processor status
cs 8 bits Code segment registers
ES 8 bits Data segment registers

Table 8: Predefined register symbols

PREDEFINED SYMBOLS

The IAR Assembler for RL78 defines a set of symbols for use in assembler source files.
The symbols provide information about the current assembly, allowing you to test them
in preprocessor directives or include them in the assembled code.

These predefined symbols are available:

Symbol Value

__IASMRL78__ An integer that is set to 1 when the code is assembled with
the IAR Assembler for RL78.

__BUILD_NUMBER_ _ A unique integer that identifies the build number of the
assembler currently in use. The build number does not
necessarily increase with an assembler that is released later.

Table 9: Predefined symbols

23

Expressions, operands, and operators

24

IAR Assembler User Guide
for RL78

Symbol

Value

__CODE_MODEL_ _

__CORE__

__DATA_MODEL_ _

__DATE_ _

__FILE__

__TIAR_SYSTEMS_ASM__

__LINE__

SUBVERSION _

__TIME_

__USE_FAR_RT CALLS_ _

VER_

Identifies the setting of the option --code_model, either
__CODE_MODEL_NEAR__ or __CODE_MODEL_FAR_ _.

Identifies the setting of the --core option and is defined
to__S1__,__S2__,or__S3__. These symbolic names
can be used when testing the __CORE__ symbol. For
backward compatibility, this symbol can also be tested
against the values __RL78_0__,__RL78_1__,and

__RL78_2__.

Identifies the setting of the option --data_model, either
__DATA_MODEL_NEAR__,__DATA_ MODEL_FAR__ or
__DATA_MODEL_HUGE_ _.

The current date in dd/Mmm/yyyy format (string).

The name of the current source file (string).

IAR assembler identifier (number). The current value is 7.
Note that the number could be higher in a future version of
the product. This symbol can be tested with #ifdef to
detect whether the code was assembled by an assembler
from IAR Systems.

The current source line number (number).

An integer that identifies the version letter of the assembler

version number, for example the C in 4.21C, as an ASCI|
character.

The current time in hh:mm: ss format (string).

An integer that is set to 1 when the
--generate_far_runtime_library_calls
option is used.

The version number in integer format; for example, version
4.17 is returned as 417 (number).

Table 9: Predefined symbols (Continued)

Including symbol values in code

Several data definition directives make it possible to include a symbol value in the code.
These directives define values or reserve memory. To include a symbol value in the code,
use the symbol in the appropriate data definition directive.

Introduction to the IAR Assembler for RL78 __4

For example, to include the time of assembly as a string for the program to display:

name timeOfAssembly
extern printString
public printTime
section CODE:CODE

data8 ; select data model
timdat DC8 __TIME_ ,",",__DATE_ ,0 ; timd for big-endian
code
printTime:
MOVW AX, #timdat ; load address of string
CALL printString ; routine to print string
end

Testing symbols for conditional assembly

To test a symbol at assembly time, use one of the conditional assembly directives. These
directives let you control the assembly process at assembly time.

For example, if you want to assemble separate code sections depending on whether you
are using an old assembler version or a new assembler version, do as follows:

#if (__VER__ > 300) ; New assembler version
#else ; 01d assembler version
#endif

For more information, see Conditional assembly directives, page 92.

ABSOLUTE AND RELOCATABLE EXPRESSIONS

Depending on what operands an expression consists of, the expression is either absolute
or relocatable. Absolute expressions are those expressions that only contain absolute
symbols or relocatable symbols that cancel each other out.

Expressions that include symbols in relocatable sections cannot be resolved at assembly
time, because they depend on the location of sections. These are referred to as
relocatable expressions.

Such expressions are evaluated and resolved at link time, by the IAR ILINK Linker.
They can only be built up out of a maximum of one symbol reference and an offset after
the assembler has reduced it.

25

Expressions, operands, and operators

26

IAR Assembler User Guide
for RL78

For example, a program could define absolute and relocatable expressions as follows:

name simpleExpressions
section MYCONST:CONST (2)
first dc8 5 ; A relocatable label.
second equ 10 + 5 ; An absolute expression.
dc8 first ; Examples of some legal
dc8 first + 1 ; relocatable expressions.
dc8 first + second
end

Note: At assembly time, there is no range check. The range check occurs at link time
and, if the values are too large, there is a linker error.
EXPRESSION RESTRICTIONS

Expressions can be categorized according to restrictions that apply to some of the
assembler directives. One such example is the expression used in conditional statements
like TF, where the expression must be evaluated at assembly time and therefore cannot
contain any external symbols.

The following expression restrictions are referred to in the description of each directive
they apply to.

No forward

All symbols referred to in the expression must be known, no forward references are
allowed.

No external

No external references in the expression are allowed.

Absolute

The expression must evaluate to an absolute value; a relocatable value (section offset) is
not allowed.

Fixed

The expression must be fixed, which means that it must not depend on variable-sized
instructions. A variable-sized instruction is an instruction that might vary in size
depending on the numeric value of its operand.

Introduction to the IAR Assembler for RL78 __4

List file format

The format of an assembler list file is as follows:

HEADER

The header section contains product version information, the date and time when the file
was created, and which options were used.

BODY

The body of the listing contains the following fields of information:

o The line number in the source file. Lines generated by macros, if listed, have a .
(period) in the source line number field.

o The address field shows the location in memory, which can be absolute or relative
depending on the type of section. The notation is hexadecimal.

o The data field shows the data generated by the source line. The notation is
hexadecimal. Unresolved values are represented by (periods), where two periods
signify one byte. These unresolved values are resolved during the linking process.

o The assembler source line.

SUMMARY

The end of the file contains a summary of errors and warnings that were generated.

SYMBOL AND CROSS-REFERENCE TABLE

When you specify the Include cross-reference option, or if the LSTXRF+ directive was
included in the source file, a symbol and cross-reference table is produced.

This information is provided for each symbol in the table:

Information Description

Symbol The symbol’s user-defined name.

Mode ABS (Absolute), or REL (Relocatable).

Sections The name of the section that this symbol is defined relative to.
Value/Offset The value (address) of the symbol within the current module, relative to

the beginning of the current section.

Table 10: Symbol and cross-reference table

27

Programming hints

28

Programming hints

This section gives hints on how to write efficient code for the IAR Assembler. For
information about projects including both assembler and C or C++ source files, see the
IAR C/C++ Development Guide for RL7S.

ACCESSING SPECIAL FUNCTION REGISTERS

Specific header files for several RL78 devices are included in the IAR Systems product
package, in the r178\inc directory. These header files define the processor-specific
special function registers (SFRs) and interrupt vector numbers.

The header files are intended to be used also with the IAR C/C++ Compiler for RL78,
and they are suitable to use as templates when creating new header files for other RL78
derivatives.

If any assembler-specific additions are needed in the header file, you can easily add
these in the assembler-specific part of the file:

#ifdef _ IAR_SYSTEMS_ASM_
; Add your assembler-specific defines here.
#endif

USING C-STYLE PREPROCESSOR DIRECTIVES

The C-style preprocessor directives are processed before other assembler directives.
Therefore, do not use preprocessor directives in macros and do not mix them with
assembler-style comments. For more information about comments, see Assembler
control directives, page 110.

C-style preprocessor directives like #define are valid in the remainder of the source
code file, while assembler directives like EQU only are valid in the current module.

Tracking call frame usage

IAR Assembler User Guide
for RL78

In this section, these topics are described::

o Call frame information overview, page 29

o Call frame information in more detail, page 29
These tasks are described:

® Defining a names block, page 30

® Defining a common block, page 31

® Annotating your source code within a data block, page 32
°

Specifying rules for tracking resources and the stack depth, page 33

Introduction to the IAR Assembler for RL78 __4

o Using CFI expressions for tracking complex cases, page 35

o Stack usage analysis directives, page 35

o FExamples of using CFI directives, page 36

For reference information, see:

Call frame information directives for names blocks, page 112
Call frame information directives for common blocks, page 113
Call frame information directives for data blocks, page 115

Call frame information directives for tracking resources and CFAs, page 116

Call frame information directives for stack usage analysis, page 118

CALL FRAME INFORMATION OVERVIEW

Call frame information (CFI) is information about the call frames. Typically, a call
frame contains a return address, function arguments, saved register values, compiler
temporaries, and local variables. Call frame information holds enough information
about call frames to support two important features:

o C-SPY can use call frame information to reconstruct the entire call chain from the
current PC (program counter) and show the values of local variables in each function
in the call chain.

o Call frame information can be used, together with information about possible calls
for calculating the total stack usage in the application. Note that this feature might
not be supported by the product you are using.

The compiler automatically generates call frame information for all C and C++ source
code. Call frame information is also typically provided for each assembler routine in the
system library. However, if you have other assembler routines and want to enable C-SPY
to show the call stack when executing these routines, you must add the required call
frame information annotations to your assembler source code. Stack usage can also be
handled this way (by adding the required annotations for each function call), but you can
also specify stack usage information for any routines in a stack usage control file (see
the /AR C/C++ Development Guide for RL78), which is typically easier.

CALL FRAME INFORMATION IN MORE DETAIL

You can add call frame information to assembler files by using c£i directives. You can
use these to specify:

o The start address of the call frame, which is referred to as the canonical frame
address (CFA). There are two different types of call frames:

® On a stack—stack frames. For stack frames the CFA is typically the value of the
stack pointer after the return from the routine.

29

Tracking call frame usage

30

IAR Assembler User Guide
for RL78

e In static memory, as used in a static overlay system—static overlay frames. This
type of call frame is not required by the RL78 microcontroller and is thus not
supported.

e How to find the return address.

e How to restore various resources, like registers, when returning from the routine.
When adding the call frame information for each assembler module, you must:
1 Provide a names block where you describe the resources to be tracked.

2 Provide a common block where you define the resources to be tracked and specify
their default values. This information must correspond to the calling convention
used by the compiler.

3 Annotate the resources used in your source code, which in practice means that you
describe the changes performed on the call frame. Typically, this includes
information about when the stack pointer is changed, and when permanent registers
are stored or restored on the stack.

To do this you must define a data block that encloses a continuous piece of source
code where you specify rules for each resource to be tracked. When the descriptive
power of the rules is not enough, you can instead use CF/ expressions.

A full description of the calling convention might require extensive call frame
information. In many cases, a more limited approach will suffice. The recommended
way to create an assembler language routine that handles call frame information
correctly is to start with a C skeleton function that you compile to generate assembler
output. For an example, see the [AR C/C++ Development Guide for RL7S.

DEFINING A NAMES BLOCK

A names block is used for declaring the resources available for a processor. Inside the
names block, all resources that can be tracked are defined.

Start and end a names block with the directives:

CFI NAMES name
CFI ENDNAMES name

where name is the name of the block.

Only one names block can be open at a time.

Introduction to the IAR Assembler for RL78 __4

Inside a names block, four different kinds of declarations can appear: a resource
declaration, a stack frame declaration, a static overlay frame declaration, and a base
address declaration:

o To declare a resource, use one of the directives:

CFI RESOURCE resource : bits
CFI VIRTUALRESOURCE resource : bits

The parameters are the name of the resource and the size of the resource in bits. The
name must be one of the register names defined in the RL78 ABI specification. A
virtual resource is a logical concept, in contrast to a “physical” resource such as a
processor register. Virtual resources are usually used for the return address.

To declare more than one resource, separate them with commas.

A resource can also be a composite resource, made up of at least two parts. To declare
the composition of a composite resource, use the directive:

CFI RESOURCEPARTS resource part, part,

The parts are separated with commas. The resource and its parts must have been
previously declared as resources, as described above.

o To declare a stack frame CFA, use the directive:
CFI STACKFRAME cfa resource type

The parameters are the name of the stack frame CFA, the name of the associated
resource (the stack pointer), and the memory type (to get the address space). To
declare more than one stack frame CFA, separate them with commas.

When going “back” in the call stack, the value of the stack frame CFA is copied into
the associated stack pointer resource to get a correct value for the previous function
frame.

DEFINING A COMMON BLOCK

The common block is used for declaring the initial contents of all tracked resources.
Normally, there is one common block for each calling convention used.

Start a common block with the directive:
CFI COMMON name USING namesblock

where name is the name of the new block and namesblock is the name of a previously
defined names block.

Declare the return address column with the directive:
CFI RETURNADDRESS resource type

where resource is a resource defined in namesblock and type is the memory in
which the calling function resides. You must declare the return address column for the
common block.

31

Tracking call frame usage

32

IAR Assembler User Guide
for RL78

Inside a common block, you can declare the initial value of a CFA or a resource by using
the directives available for common blocks, see Call frame information directives for
common blocks, page 113. For more information about how to use these directives, see
Specifying rules for tracking resources and the stack depth, page 33 and Using CFI
expressions for tracking complex cases, page 35.

End a common block with the directive:

CFI ENDCOMMON name

where name is the name used to start the common block.
ANNOTATING YOUR SOURCE CODE WITHIN A DATA
BLOCK

The data block contains the actual tracking information for one continuous piece of
code.

Start a data block with the directive:
CFI BLOCK name USING commonblock

where name is the name of the new block and commonblock is the name of a previously
defined common block.

If the piece of code for the current data block is part of a defined function, specify the
name of the function with the directive:

CFI FUNCTION label
where label is the code label starting the function.

If the piece of code for the current data block is not part of a function, specify this with
the directive:

CFI NOFUNCTION

End a data block with the directive:

CFI ENDBLOCK name

where name is the name used to start the data block.

Inside a data block, you can manipulate the values of the resources by using the
directives available for data blocks, see Call frame information directives for data
blocks, page 115. For more information on how to use these directives, see Specifying
rules for tracking resources and the stack depth, page 33, and Using CFI expressions for
tracking complex cases, page 35.

Introduction to the IAR Assembler for RL78 __4

SPECIFYING RULES FOR TRACKING RESOURCES AND THE
STACK DEPTH

To describe the tracking information for individual resources, two sets of simple rules
with specialized syntax can be used:
o Rules for tracking resources

CFI resource { UNDEFINED | SAMEVALUE | CONCAT }

CFI resource { resource | FRAME (cfa, offset) }
o Rules for tracking the stack depth (CFAs)

CFI cfa { NOTUSED | USED }

CFI cfa { resource | resource + constant | resource - constant }
You can use these rules both in common blocks to describe the initial information for

resources and CFAs, and inside data blocks to describe changes to the information for
resources or CFAs.

In those rare cases where the descriptive power of the simple rules are not enough, you
can use a full CFI expression with dedicated operators to describe the information, see
Using CFI expressions for tracking complex cases, page 35. However, whenever
possible, you should always use a rule instead of a CFI expression.

Rules for tracking resources

The rules for resources conceptually describe where to find a resource when going back
one call frame. For this reason, the item following the resource name in a CFI directive
is referred to as the Jocation of the resource.

To declare that a tracked resource is restored, in other words, already correctly located,
use SAMEVALUE as the location. Conceptually, this declares that the resource does not
have to be restored because it already contains the correct value. For example, to declare
that a register R11 is restored to the same value, use the directive:

CFI R11 SAMEVALUE

To declare that a resource is not tracked, use UNDEFINED as location. Conceptually, this
declares that the resource does not have to be restored (when going back one call frame)
because it is not tracked. Usually it is only meaningful to use it to declare the initial
location of a resource. For example, to declare that R11 is a scratch register and does not
have to be restored, use the directive:

CFI R11 UNDEFINED

33

Tracking call frame usage

34

IAR Assembler User Guide
for RL78

To declare that a resource is temporarily stored in another resource, use the resource
name as its location. For example, to declare that a register R11 is temporarily located
in a register R12 (and should be restored from that register), use the directive:

CFI R11 R12

To declare that aresource is currently located somewhere on the stack, use FRAME (cfa,
offset) as location for the resource, where cfa is the CFA identifier to use as “frame
pointer” and of fset is an offset relative the CFA. For example, to declare that a register
R11 is located at offset —4 counting from the frame pointer CFA_SP, use the directive:

CFI R11 FRAME (CFA_SP,-4)

For a composite resource there is one additional location, CONCAT, which declares that
the location of the resource can be found by concatenating the resource parts for the
composite resource. For example, consider a composite resource RET with resource
parts RETLO and RETHI. To declare that the value of RET can be found by investigating
and concatenating the resource parts, use the directive:

CFI RET CONCAT

This requires that at least one of the resource parts has a definition, using the rules
described above.

Rules for tracking the stack depth (CFAs)

In contrast to the rules for resources, the rules for CFAs describe the address of the
beginning of the call frame. The call frame often includes the return address pushed by
the assembler call instruction. The CFA rules describe how to compute the address of
the beginning of the current stack frame.

Each stack frame CFA is associated with a stack pointer. When going back one call
frame, the associated stack pointer is restored to the current CFA. For stack frame CFAs
there are two possible rules: an offset from a resource (not necessarily the resource
associated with the stack frame CFA) or NOTUSED.

To declare that a CFA is not used, and that the associated stack pointer should be tracked
as a normal resource, use NOTUSED as the address of the CFA. For example, to declare
that the CFA with the name CFA_SP is not used in this code block, use the directive:

CFI CFA_SP NOTUSED

To declare that a CFA has an address that is offset relative the value of a resource, specify
the stack pointer and the offset. For example, to declare that the CFA with the name
CFA_SP can be obtained by adding 4 to the value of the SP resource, use the directive:

CFI CFA_SP SP + 4

Introduction to the IAR Assembler for RL78 __4

USING CFI EXPRESSIONS FOR TRACKING COMPLEX CASES

You can use call frame information expressions (CFI expressions) when the descriptive
power of the rules for resources and CFAs is not enough. However, you should always
use a simple rule if there is one.

CFI expressions consist of operands and operators. Three sets of operators are allowed
in a CFI expression:

e Unary operators
e Binary operators

e Ternary operators
In most cases, they have an equivalent operator in the regular assembler expressions.

In this example, R12 is restored to its original value. However, instead of saving it, the
effect of the two post increments is undone by the subtract instruction.

AddTwo:
cfi block addTwoBlock using myCommon
cfi function addTwo
cfi nocalls
cfi rl2 samevalue
add @rl2+, rl3
cfi rl2 sub(rl2, 2)
add @rl2+, rl3
cfi rl2 sub(rl2, 4)
sub #4, rl2
cfi rl2 samevalue
ret
cfi endblock addTwoBlock

For more information about the syntax for using the operators in CFI expressions, see
Call frame information directives for tracking resources and CFAs, page 116.

STACK USAGE ANALYSIS DIRECTIVES

The stack usage analysis directives (CFI FUNCALL, CFI TAILCALL, CFI
INDIRECTCALL, and CFI NOCALLS) are used for building a call graph which is needed
for stack usage analysis. These directives can be used only in data blocks. When the data
block is a function block (in other words, when the CFI FUNCTION directive has been
used in the data block), you should not specify a caller parameter. When a stack usage
analysis directive is used in code that is shared between functions, you must use the

caller parameter to specify which of the possible functions the information applies to.

The CFI FUNCALL, CFI TAILCALL, and CFI INDIRECTCALL directives must be placed
immediately before the instruction that performs the call. The CFI NOCALLS directive
can be placed anywhere in the data block.

35

Tracking call frame usage

36

IAR Assembler User Guide
for RL78

EXAMPLES OF USING CFI DIRECTIVES

The following is a generic example of how to add and use the required CFI directives.
The example is not specific to the RL78 microcontroller. To obtain an example specific
to the microcontroller you are using, generate assembler output when you compile a C
source file.

Consider a generic processor with a stack pointer sp, and two registers RO and R1.
Register RO is used as a scratch register (the register may be destroyed by a function
call), whereas register R1 must be restored after the function call. To simplify, all
instructions, registers, and addresses are assumed to have a width of 16 bits.

Consider the following short code example with the corresponding call frame
information. At entry, assume that the stack contains a 16-bit return address. The stack
grows from high addresses toward zero. The CFA denotes the top of the call frame, in
other words, the value of the stack pointer after returning from the function.

Address CFA RO RI RET Assembler code

0000 SP + 2 undefined SAME CFA - 2 funcl: PUSH R1
0002 SP + 4 CFA - 4 MOV R1,#4
0004 CALL func2
0006 POP RO
0008 SP + 2 RO MOV R1,RO
000A SAME RET

Table 11: Code sample with call frame information

Each row describes the state of the tracked resources before the execution of the
instruction. As an example, for the MOV R1, RO instruction the original value of the R1
register is located in the RO register and the top of the function frame (the CFA column)
is Sp + 2. The row at address 0000 is the initial row and the result of the calling
convention used for the function.

The RET column is the return address column—that is, the location of the return
address. The value of RO is undefined because it does not need to be restored on exit
from the function. The R1 column has SAME in the initial row to indicate that the value
of the R1 register will be restored to the same value it already has.

Defining the names block

The names block for the small example above would be:

cfi names trivialNames
cfi resource SP:16, R0:16, R1:16
cfi stackframe CFA SP DATA

Introduction to the IAR Assembler for RL78 __4

; The virtual resource for the return address column.

cfi
cfi

virtualresource RET:16
endnames trivialNames

Defining the common block

The common block for the simple example above would be:

cfi
cfi
cfi
cfi
cfi

common trivialCommon using trivialNames
returnaddress RET DATA

CFA SP + 2

RO undefined

R1 samevalue

; Offset -2 from top of frame.

cfi
cfi

RET frame (CFA,-2)

endcommon trivialCommon

Note: sp cannot be changed using a CFI directive as it is the resource associated with

CFA.

Annotating your source code within a data block

You should place the CFI directives at the point where the call frame information has
changed, in other words, immediately affer the instruction that changes the call frame

information.

Continuing the simple example, the data block would be:

rseg
cfi
cfi

funcl push
cfi
cfi
mov
call
pop
cfi
cfi
mov
cfi
ret
cfi

CODE : CODE
block funclblock using trivialCommon
function funcl

rl

CFA SP + 4

R1 frame (CFA, -4)
rl,#4

func?2

r0

R1 RO

CFA SP + 2
rl,r0

R1 samevalue

endblock funclblock

37

Tracking call frame usage

IAR Assembler User Guide
38 for RL78

Assembler options

e Using command line assembler options
e Summary of assembler options

e Description of assembler options

Using command line assembler options

Assembler options are parameters you can specify to change the default behavior of the
assembler. You can specify options from the command line—which is described in more
detail in this section—and from within the IAR Embedded Workbench® IDE.

The IDE Project Management and Building Guide for RL78 describes how to set
assembler options in the IDE, and gives reference information about the available
options.

SPECIFYING COMMAND LINE OPTIONS

To set assembler options from the command line, include them on the command line
after the iasmr178 command, either before or after the source filename. For example,
when assembling the source file prog. s, use this command to generate an object file
with debug information:

iasmrl78 prog.s --debug

Some options accept a filename, included after the option letter with a separating space.
For example, to generate a listing to the file prog.1lst:

iasmrl78 prog.s -1 prog.lst

Some other options accept a string that is not a filename. The string is included after the
option letter, but without a space. For example, to define a symbol:

iasmrl78 prog.s -DDEBUG=1

Generally, the order of options on the command line, both relative to each other and to
the source filename, is not significant. However, there is one exception: when you use
the -I option, the directories are searched in the same order as they are specified on the
command line.

Notice that a command line option has a short name and/or a long name:

e A short option name consists of one character, with or without parameters. You
specify it with a single dash, for example -r.

39

Using command line assembler options

40

IAR Assembler User Guide
for RL78

o A long name consists of one or several words joined by underscores, with or
without parameters. You specify it with double dashes, for example --debug.
SPECIFYING PARAMETERS

When a parameter is needed for an option with a short name, you can specify it either
immediately following the option or as the next command line argument.

For instance, you can specify an include file path of \usr\include either as:
-I\usr\include

or as

-I \usr\include

Note: You canuse / instead of \ as directory delimiter. A trailing slash or backslash can
be added to the last directory name, but is not required.

Additionally, some options can take a parameter that is a directory name. The output file
then receives a default name and extension.

When a parameter is needed for an option with a long name, you can specify it either
immediately after the equal sign (=) or as the next command line argument, for example:

--diag_suppress=Pe0001
or
--diag_suppress Pe0001

Options that accept multiple values can be repeated, and can also have comma-separated
values (without space), for example:

--diag_warning=Be0001,Be0002

The current directory is specified with a period (.), for example:

iasmrl78 prog -1

A file specified by - (a single dash) is standard input or output, whichever is appropriate.

Note: When an option takes a parameter, the parameter cannot start with a dash (-)
followed by another character. Instead you can prefix the parameter with two dashes
(--). This example generates a list on standard output:

iasmrl78 prog -1 ---

EXTENDED COMMAND LINE FILE

In addition to accepting options and source filenames from the command line, the
assembler can accept them from an extended command line file.

Assembler options ___¢

By default, extended command line files have the extension xc1, and can be specified
using the - £ command line option. For example, to read the command line options from

extend.xcl, enter:

iasmrl78 -f extend.xcl

Summary of assembler options

This table summarizes the assembler options available from the command line:

Command line option

Description

--case_insensitive
--code_model
--core

-D

--debug
--dependencies
--diag_error
--diag_remark
--diag_suppress
--diag_warning
--diagnostics_tables
--dir_first

--—error_limit

-f
--f

--generate_far_runtime_library
_calls

--header_context
-1
-1
-M

--macro_positions_in

_diagnostics

Case-insensitive user symbols
Defines the symbol __CODE_MODEL_ __
Specifies the microcontroller core
Defines preprocessor symbols
Generates debug information

Lists file dependencies

Treats these diagnostics as errors
Treats these diagnostics as remarks
Suppresses these diagnostics

Treats these diagnostics as warnings
Lists all diagnostic messages

Allows directives in the first column

Specifies the allowed number of errors before
the assembler stops

Extends the command line

Extends the command line, optionally with a
dependency

Generates __ far runtime library calls

Lists all referred source files

Adds a search path for a header file
Generates a list file

Macro quote characters

Obtains positions inside macros in diagnostic
messages

Table 12: Assembler options summary

41

Summary of assembler options

42

IAR Assembler User Guide
for RL78

Command line option

Description

--mnem_first

--no_bom

--no_core_rt_attribute

--no_path_in_file_macros

--no_runtime_attributes

--no_system_include

--no_warnings
--no_wrap_diagnostics
-o

--only_stdout
--output
--predef_macros

--preinclude

--preprocess

-r

--remarks

--silent
--source_encoding
--system_include_dir
--text_out

--use_unix_directory_
separators

--utf8_text_in
--warnings_affect_exit_code

--warnings_are_errors

Allows mnemonics in the first column

Omits the Byte Order Mark for UTF-8 output
files

Suppresses generation of the CPU core option
runtime model attribute

Removes the path from the return value of the
symbols __FILE__ and __BASE_FILE__

Disables the automatic output of RTMODEL
attributes

Disables the automatic search for system include
files

Disables all warnings

Disables wrapping of diagnostic messages

Sets the object filename. Alias for --output.
Uses standard output only

Sets the object filename

Lists the predefined symbols

Includes an include file before reading the source
file

Preprocessor output to file

Generates debug information. Alias for
--debug.

Enables remarks

Sets silent operation

Specifies the encoding for source files
Specifies the path for system include files
Specifies the encoding for text output files

Uses / as directory separator in paths

Uses the UTF-8 encoding for text input files
Warnings affect exit code

Treats all warnings as errors

Table 12: Assembler options summary (Continued)

Assembler options ___¢

Description of assembler options

--case_insensitive

Syntax

Description

Example

See also

--code_model

Syntax

Parameters

Description

See also

The following sections give detailed reference information about each assembler option.

Note that if you use the page Extra Options to specify specific command line options,
the IDE does not perform an instant check for consistency problems like conflicting
options, duplication of options, or use of irrelevant options.

--case_insensitive

Use this option to make user symbols case-insensitive. By default, case sensitivity is on.

You can also use the assembler directives CASEON and CASEOFF to control case
sensitivity for user-defined symbols.

Note: The --case_insensitive option does not affect preprocessor symbols.
Preprocessor symbols are always case-sensitive, regardless of whether they are defined
in the IDE or on the command line.

By default, for example, LABEL and label refer to different symbols. When
--case_insensitive is used, LABEL and label instead refer to the same symbol.

Assembler control directives, page 110 and information about defining and undefining
preprocessor symbols under C-style preprocessor directives, page 103.

Project>Options>Assembler >Language>User symbols are case sensitive

--code_model={near |n|far|f}

near |n (default) Sets the predefined symbol __CODE_MODEL__ to
__CODE_MODEL_NEAR__.

far|f Sets the predefined symbol __CODE_MODEL_ _ to
__CODE_MODEL_FAR_ _.

Use this option to define the symbol __CODE_MODEL_ _.

Predefined symbols, page 23.

43

Description of assembler options

-=core

Syntax

Parameters

Description

-D
Syntax

Parameters

Description

IAR Assembler User Guide
44 for RL78

Project>Options>General Options>Target >Code model

--core={sl|s2|s3}

sl Generates code for S1, the RL78 core with only one register
bank and a multiplexed 8-bit bus.

s2 Generates code for S2, the core without instructions to
support a hardware multiplier/divider.

s3 (default) Generates code for S3, the core with instructions to support
a hardware multiplier/divider.

Use this option to select the processor core for which the code will be generated.

If you do not use the option to specify a core, the assembler generates code for the s3
core as default. Note that all modules of your application must use the same --core
option.

This option also sets the value of the predefined symbol __CORE__, see Predefined
symbols, page 23.

To set related options, select:

Project>Options>General Options>Target >Device

-Dsymbol [=value]

symbol The name of the symbol you want to define.

value The value of the symbol. If no value is specified, 1 is used.

Use this option to define a symbol to be used by the preprocessor.

Example

--data_model

Syntax

Parameters

Description

See also

Assembler options ___¢

You might want to arrange your source code to produce either the test version or the
production version of your application, depending on whether the symbol TESTVER was
defined. To do this, use include sections such as:

#ifdef TESTVER

. ; additional code lines for test version only
#endif
Then select the version required on the command line as follows:

Production version: iasmrl78 prog
Test version: iasmrl78 prog -DTESTVER

Alternatively, your source might use a variable that you must change often. You can then
leave the variable undefined in the source, and use -D to specify the value on the
command line; for example:

iasmrl78 prog -DFRAMERATE=3

Project>Options>Assembler>Preprocessor>Defined symbols

--data_model={near|n|far|f|huge|h}

near |n (default) Sets the predefined symbol __DATA MODEL__ to
__DATA_MODEL_NEAR__.

far|f Sets the predefined symbol __DATA MODEL__ to
__DATA_MODEL_FAR__.

huge|h Sets the predefined symbol __DATA MODEL__ to
__DATA_MODEL_HUGE_ _.

Use this option to define the symbol __DATA_ MODEL_ _.

Predefined symbols, page 23.

Project>Options>General Options>Target >Data model

45

Description of assembler options

--debug, -r

Syntax

Description

--dependencies

Syntax

Parameters

Description

IAR Assembler User Guide
46 for RL78

--debug
-r

Use this option to make the assembler generate debug information, which means the
generated output can be used in a symbolic debugger such as IAR C-SPY® Debugger.

To reduce the size and link time of the object file, the assembler does not generate debug

information by default.

Project>Options>Assembler >Output>Generate debug information

--dependencies=[1i] [m] {filename|directory}

No parameter

i (default)

filename

directory

The same affect as for the parameter 1.

The names of the dependent files, including the full path if
available, is output. For example:

c:\lar\product\include\stdio.h
d:\myproject\include\foo.h

The output uses makefile style. For each source file, one line
containing a makefile dependency rule is output. Each line
consists of the name of the object file, a colon, a space, and
the name of a source file. For example:

foo.o0: c:\iar\product\include\stdio.h
foo.o: d:\myproject\include\foo.h

The output is stored in the specified file.

The output is stored in a file (filename extension i) which is
stored in the specified directory.

For information about specifying a filename or directory, see Specifying parameters,

page 40.

Use this option to list each source file opened by the assembler in a file.

Example

--diag_error

Syntax

Parameters

Description

Example

Assembler options ___¢

To generate a listing of file dependencies to the file 1isting. i, use:
iasmrl78 prog --dependencies=i listing

An example of using --dependencies with gmake:

Set up the rule for assembling files to be something like:

%.0 : %.C
$ (ASM) $ (ASMFLAGS) $< --dependencies=m $*.d

That is, in addition to producing an object file, the command also produces a dependent
file in makefile style (in this example using the extension . d).

Include all the dependent files in the makefile, using for example:
-include $(sources:.c=.d)
Because of the -, it works the first time, when the . d files do not yet exist.

This option is not available in the IDE.

--diag_error=tag, tag, ...

tag The number of a diagnostic message, for example the
message number As001.

Use this option to classify diagnostic messages as errors.

An error indicates a violation of the assembler language rules, of such severity that
object code is not generated, and the exit code will not be 0. The option can be used more
than once on the command line.

This example classifies warning As001 as an error:

--diag_error=As001

Project>Options>Assembler >Diagnostics>Treat these as errors

47

Description of assembler options

--diag_remark

Syntax

Parameters

Description

Example

--diag_suppress

Syntax

Parameters

Description

Example

IAR Assembler User Guide
48 for RL78

--diag_remark=tag, tag, ...

tag The number of a diagnostic message, for example the
message number As001.

Use this option to classify diagnostic messages as remarks.

A remark is the least severe type of diagnostic message and indicates a source code
construct that might cause strange behavior in the generated code.

This example classifies the warning As001 as a remark:

--diag_remark=As001

Project>Options>Assembler >Diagnostics>Treat these as remarks

--diag_suppress=tag, tag, ...

tag The number of a diagnostic message, for example the
message number As001.

Use this option to suppress diagnostic messages.

This example suppresses the warnings As001 and As002:
--diag_suppress=As001,As002

Project>Options>Assembler >Diagnostics>Suppress these diagnostics

--diag_warning
Syntax

Parameters

Description

Example

--diagnostics_tables

Syntax

Parameters

Description

Example

Assembler options ___¢

--diag_warning=tag, tag, ...

tag The number of a diagnostic message, for example the
message number As001.

Use this option to classify diagnostic messages as warnings.

A warning indicates an error or omission that is of concern, but which does not cause
the assembler to stop before the assembly is completed.

This example classifies the remark As028 as a warning:

--diag_warning=As028

Project>Options>Assembler >Diagnostics>Treat these as warnings

--diagnostics_tables {filename|directory}

filename The diagnostic messages are stored in the specified file.

directory The diagnostic messages are stored in a file (filename
extension i) which is stored in the specified directory.

For information about specifying a filename or directory, see Specifying parameters,
page 40.

Use this option to list all possible diagnostic messages in a named file. This can be very
convenient, for example, if you used a #pragma directive to suppress or change the
severity level of any diagnostic messages, but forgot to document why.

This option cannot be given together with other options.

To output a list of all possible diagnostic messages to the file diag. txt, use:
--diagnostics_tables diag

This option is not available in the IDE.

49

Description of assembler options

--dir_first

Syntax

Description

--error_limit

Syntax

Parameters

Description

-f
Syntax

Parameters

Description

IAR Assembler User Guide

50 for RL78

--dir_first
Use this option to make directive names (without a trailing colon) that start in the first
column to be recognized as directives.

The default behavior of the assembler is to treat all identifiers starting in the first column
as labels.

Project>Options>Assembler >Language>Allow directives in first column

--error_limit=n

n The number of errors before the assembler stops the
assembly. n must be a positive integer; 0 indicates no limit.

Use this option to specify the number of errors allowed before the assembler stops. By
default, 100 errors are allowed.

This option is not available in the IDE.

-f filename

The commands that you want to extend the command line
with are read from the specified file. Notice that there must
be a space between the option itself and the filename.

filename

For information about specifying a filename, see Specifying parameters, page 40.

Use this option to extend the command line with text read from the specified file.

The - £ option is particularly useful if there are many options which are more
conveniently placed in a file than on the command line itself.

--f

Example

See also

Syntax

Parameters

Description

See also

Assembler options ___¢

To run the assembler with further options taken from the file extend.xc1, use:

iasmrl78 prog -f extend.xcl

--f, page 51 and Extended command line file, page 40.
To set this option, use:

Project>Options>Assembler>Extra Options

--f filename

filename The commands that you want to extend the command line
with are read from the specified file. Notice that there must
be a space between the option itself and the filename.

For information about specifying a filename, see Specifying parameters, page 40.
Use this option to make the assembler read command line options from the named file,
with the default filename extension xc1.

In the command file, you format the items exactly as if they were on the command line
itself, except that you may use multiple lines, because the newline character acts just as
a space or tab character.

Both C and C++ style comments are allowed in the file. Double quotes behave in the
same way as in the Microsoft Windows command line environment.

If you use the assembler option --dependencies, extended command line files
specified using -- £ will generate a dependency, but those specified using - £ will not
generate a dependency.

--dependencies, page 46 and -f, page 50.

To set this option, use Project>Options>Assembler>Extra Options.

51

Description of assembler options

--generate_far_runtime_library_calls

Syntax

Description

--header_context

Syntax

Description

Syntax

Parameters

Description

IAR Assembler User Guide
52 for RL78

--generate_far_runtime_library_calls

Use this option to generate __far runtime library calls to assembler support routines.
Used together with the corresponding compiler option, this option moves the support

routines from near to far memory when you build a customized library. Note that the

startup code will still be located in near memory.

This option defines the symbol __USE_FAR_RT CALLS__ and sets the runtime model
attribute __far rt_calls to true.

To set this option, use Project>Options>Assembler>Extra Options.

--header_context

Occasionally, you must know which header file that was included from what source line,
to find the cause of a problem. Use this option to list, for each diagnostic message, not
only the source position of the problem, but also the entire include stack at that point.

This option is not available in the IDE.

-Ipath

path The search path for #include files.

Use this option to specify paths to be used by the preprocessor. This option can be used
more than once on the command line.

By default, the assembler searches for #include files in the current working directory,
in the system header directories, and in the paths specified in the TASMr178_INC
environment variable. The - I option allows you to give the assembler the names of
directories which it will also search if it fails to find the file in the current working
directory.

Example

Syntax

Parameters

Description

Assembler options ___¢

For example, using the options:
-Ic:\global\ -Ic:\thisproj\headers\
and then writing:

#include "asmlib.hdr"

in the source code, make the assembler search first in the current directory, then in the
directory c: \global\, and then in the directory C: \thisproj\headers\. Finally,
the assembler searches the directories specified in the IASMr178_INC environment
variable, provided that this variable is set, and in the system header directories.

Project>Options>Assembler>Preprocessor>Additional include directories

-1llal[d]l[e]l[m][o] [x]I[N][H] {filename|directory}

a Assembled lines only.

d The LsTOUT directive controls if lines are written to the list
file or not. Using -1d turns the start value for this to off.

e No macro expansions.

m Macro definitions.

o) Multiline code.

x Includes cross-references.

N Do not include diagnostics.

H Includes header file source lines.

filename The output is stored in the specified file.

directory The output is stored in a file (filename extension i) which is

stored in the specified directory.

For information about specifying a filename or directory, see Specifying parameters,
page 40.

By default, the assembler does not generate a listing. Use this option to generate a listing
to a file.

53

Description of assembler options

54

Example

Syntax

Parameters

Description

Example

To generate a listing to the file 1ist.1st, use:
iasm sourcefile -1 list
To set related options, select:

Project>Options>Assembler >List

-Mab

ab The characters to be used as left and right quotes of each
macro argument, respectively.

Use this option to sets the characters to be used as left and right quotes of each macro
argument to a and b respectively.

By default, the characters are < and >. The -M option allows you to change the quote
characters to suit an alternative convention or simply to allow a macro argument to
contain < or > themselves.

For example, using the option:

-M[]

in the source you would write, for example:

print [>]

to call a macro print with > as the argument.

Note: Depending on your host environment, it might be necessary to use quote marks
with the macro quote characters, for example:

iasmrl78 filename -M'<>'

Project>Options>Assembler >Language>Macro quote characters

--macro_positions_in_diagnostics

IAR Assembler User Guide

for RL78

Syntax

Description

--macro_positions_in_diagnostics

Use this option to obtain position references inside macros in diagnostic messages. This
is useful for detecting incorrect source code constructs in macros.

--mnem_first

Syntax

Description

--no_bom

Syntax

Description

See also

--no_core_rt_attribute

Syntax

Description

Assembler options ___¢

To set this option, use Project>Options>Assembler>Extra Options.

--mnem_first

Use this option to make mnemonics names (without a trailing colon) starting in the first
column be recognized as mnemonics.

The default behavior of the assembler is to treat all identifiers starting in the first column
as labels.

Project>Options>Assembler >Language>Allow mnemonics in first column

--no_bom

Use this option to omit the Byte Order Mark (BOM) when generating a UTF-8 output
file.

--text_out, page 61. For more information about encodings, see the /AR C/C++
Development Guide for RL78.

Project>Options>Assembler>Encodings>Text output file encoding

--no_core_rt_attribute

Use this option to suppress generation of the CPU core option runtime model attribute.

To set this option, use Project>Options>Assembler>Extra Options.

55

Description of assembler options

--no_path_in_file_macros

Syntax

Description

--no_path_in_file_macros

Use this option to exclude the path from the return value of the predefined preprocessor
symbols __FILE__ and __BASE_FILE _.

This option is not available in the IDE.

--no_runtime_attributes

Syntax

Description

--no_system_include

Syntax

Description

--no_warnings

Syntax

Description

IAR Assembler User Guide
56 for RL78

--no_runtime_attributes

Use this option to suppress the automatic output of RTMODEL attributes that the options
--code_model, --core. --data_model, and
--generate_far runtime_library_ calls generate.

To set this option, use Project>Options>Assembler>Extra Options.

--no_system_include

By default, the assembler automatically locates the system include files. Use this option
to disable the automatic search for system include files. In this case, you might need to
set up the search path by using the -1 assembler option.

Project>Options>Assembler>Preprocessor>Ignore standard include directories

--no_warnings

By default, the assembler issues standard warning messages. Use this option to disable
all warning messages.

This option is not available in the IDE.

Assembler options ___¢

--no_wrap_diagnostics

Syntax --no_wrap_diagnostics

Description By default, long lines in assembler diagnostic messages are broken into several lines to
make the message easier to read. Use this option to disable line wrapping of diagnostic
messages.

This option is not available in the IDE.

--only_stdout

Syntax --only_stdout

Description Use this option to make the assembler direct messages to stdout instead of to stderr.

mm This option is not available in the IDE.

--output, -o

Syntax --output {filename| directory}
-0 {filename|directory}

Parameters
filename The object code is stored in the specified file.
directory The object code is stored in a file (filename extension o)
which is stored in the specified directory.
For information about specifying a filename or directory, see Specifying parameters,
page 40.
Description By default, the object code produced by the assembler is located in a file with the same

name as the source file, but with the extension o. Use this option to specify a different
output filename for the object code output.

m Project>Options>General Options>Output>Output directories>Object files

57

Description of assembler options

--predef_macros

Syntax

Parameters

Description

--preinclude

Syntax

Parameters

Description

--preprocess

Syntax

Parameters

IAR Assembler User Guide
58 for RL78

--predef_macros {filename | directory}
filename The list of predefined macros is stored in the specified file.

The list of predefined macros is stored in a file (filename
extension predef) which is stored in the specified directory.

directory

For information about specifying a filename or directory, see Specifying parameters,
page 40.

Use this option to list all symbols defined by the assembler or on the command line.
When using this option, make sure to also use the same options as for the rest of your
project.

Note that this option requires that you specify a source file on the command line.

This option is not available in the IDE.

--preinclude includefile

The header file to be included.

includefile

Use this option to make the assembler include the specified include file before it starts
to read the source file. This is useful if you want to change something in the source code
for the entire application, for instance if you want to define a new symbol.

To set this option, use:

Project>Options>Assembler>Preprocessor>Preinclude file

{filename|directory}

--preprocess=[c] [n] [s]

No parameter A preprocessed file.

Description

Example

--remarks

Syntax

Description

See also

Assembler options ___¢

c Preserves C and C++ style comments that otherwise are
removed by the preprocessor. Assembler style comments are
always preserved.

n Preprocess only.

S Suppress #1ine directives.

filename The output is stored in the specified file.

directory The output is stored in a file (filename extension i) which is

stored in the specified directory. The filename is the same as
the name of the assembled source file.

For information about specifying a filename or directory, see Specifying parameters,
page 40.

Use this option to direct preprocessor output to a named file.

To store the assembler output with preserved comments to the file output. i, use:
iasmrl78 sourcefile --preprocess=c output

Project>Options>Assembler >Preprocessor>Preprocessor output to file

--remarks
Use this option to make the assembler generate remarks, which is the least severe type
of diagnostic message and which indicates a source code construct that might cause

strange behavior in the generated code. By default, remarks are not generated.

Severity levels, page 125.

Project>Options>Assembler >Diagnostics>Enable remarks

59

Description of assembler options

60

--silent

Syntax

Description

--source_encoding

Syntax

Parameters

Description

See also

--system_include_dir

Syntax

Parameters

IAR Assembler User Guide
for RL78

--silent

By default, the assembler sends various minor messages via the standard output stream.
Use this option to make the assembler operate without sending any messages to the
standard output stream.

The assembler sends error and warning messages to the error output stream, so they are
displayed regardless of this setting.

This option is not available in the IDE.

--source_encoding {loca1e|utf8}

locale The default source encoding is the system locale encoding.

utfs The default source encoding is the UTF-8 encoding.

When reading a source file with no Byte Order Mark (BOM), use this option to specify
the encoding.

If this option is not specified and the source file does not have a BOM, the Raw encoding
will be used.

For more information about encodings, see the JAR C/C++ Development Guide for
RL78.

Project>Options>Assembler>Encodings>Default source file encoding

--system_include_dir path

path The path to the system include files.

Assembler options ___¢

Description By default, the assembler automatically locates the system include files. Use this option
to explicitly specify a different path to the system include files. This might be useful if
you have not installed IAR Embedded Workbench in the default location.

This option is not available in the IDE.

--text_out
Syntax --text_out {utf8|utfléle|utflébe|locale}
Parameters
utfs Uses the UTF-8 encoding
utfléle Uses the UTF-16 little-endian encoding
utflébe Uses the UTF-16 big-endian encoding
locale Uses the system locale encoding
Description Use this option to specify the encoding to be used when generating a text output file.
The default for the assembler list files is to use the same encoding as the main source
file. The default for all other text files is UTF-8 with a Byte Order Mark (BOM).
If you want text output in UTF-8 encoding without a BOM, use the option --no_bom.
See also --no_bom, page 55. For more information about encodings, see the /AR C/C++

Development Guide for RL78.

Project>Options>Assembler>Encodings>Text output file encoding

--use_unix_directory_separators

Syntax --use_unix_directory_separators

Description Use this option to make DWARF debug information use / (instead of \) as directory
separators in file paths.

This option can be useful if you have a debugger that requires directory separators in
UNIX style.

To set this option, use Project>Options>Assembler>Extra Options.

61

Description of assembler options

--utf8_ text_in

Syntax

Description

See also

--warnings_affect_exit_

Syntax

Description

--warnings_are_errors

Syntax

Description

See also

IAR Assembler User Guide
62 for RL78

--utf8_text_in
Use this option to specify that the assembler shall use UTF-8 encoding when reading a
text input file with no Byte Order Mark (BOM).

Note: This option does not apply to source files.

The IAR C/C++ Development Guide for RL78 for more information about encodings.

Project>Options>Assembler>Encodings>Default input file encoding

code

--warnings_affect_exit_code
By default, the exit code is not affected by warnings, only errors produce a non-zero exit
code. Use this option to make warnings generate a non-zero exit code.

This option is not available in the IDE.

--warnings_are_errors
Use this option to make the assembler treat all warnings as errors. If the assembler
encounters an error, no object code is generated.

If you want to keep some warnings, use this option in combination with the option
--diag_warning. First make all warnings become treated as errors and then reset the
ones that should still be treated as warnings, for example:

--diag_warning=As001

--diag_warning, page 49.

Project>Options>Assembler >Diagnostics>Treat all warnings as errors

Assembler operators

e Precedence of assembler operators
e Summary of assembler operators

e Description of assembler operators

Precedence of assembler operators

Each operator has a precedence number assigned to it that determines the order in which
the operator and its operands are evaluated. The precedence numbers range from 1 (the
highest precedence, that is, first evaluated) to 15 (the lowest precedence, that is, last
evaluated).

These rules determine how expressions are evaluated:

o The highest precedence operators are evaluated first, then the second highest
precedence operators, and so on until the lowest precedence operators are evaluated.

o Operators of equal precedence are evaluated from left to right in the expression.

o Parentheses (and) can be used for grouping operators and operands and for
controlling the order in which the expressions are evaluated. For example, this
expression evaluates to 1:

7/ (1+(2*3))

Note: The precedence order in the IAR Assembler for RL78 closely follows the
precedence order of the ANSI C++ standard for operators, where applicable.

Summary of assembler operators

The following tables give a summary of the operators, in order of precedence.
Synonyms, where available, are shown after the operator name.

PARENTHESIS OPERATOR

Precedence: 1

0) Parenthesis.

Summary of assembler operators

64

IAR Assembler User Guide
for RL78

FUNCTION OPERATORS

Precedence: 2

BYTEL First byte.
BYTE2 Second byte.
BYTE3 Third byte.
BYTE4 Fourth byte.
DATE Current date/time.
HIGH High byte.
HWRD High word.
LOW Low byte.
LWRD Low word.
SFB Section begin.
SFE Section end.
SIZEOF Section size.
UPPER Third byte.
UNARY OPERATORS

Precedence: 3

+ Unary plus.
BINNOT [~] Bitwise NOT.
NOT [!] Logical NOT.

- Unary minus.

MULTIPLICATIVE ARITHMETIC OPERATORS

Precedence: 4

* Multiplication.

/ Division.

MOD [%] Modulo.

ADDITIVE ARITHMETIC OPERATORS

Precedence: 5

+ Addition.

- Subtraction.

SHIFT OPERATORS

Precedence: 6

SHL [<<] Logical shift left.

SHR [>>] Logical shift right.

COMPARISON OPERATORS

Precedence: 7

GE [>=] Greater than or equal.
GT [>] Greater than.

LE [<=] Less than or equal.

LT [<] Less than.

UGT Unsigned greater than.
ULT Unsigned less than.

EQUIVALENCE OPERATORS

Precedence: 8

EQ [=] [==] Equal.

NE [<>] [!=] Not equal.

Assembler operators ___o

65

Description of assembler operators

LOGICAL OPERATORS

Precedence: 9-14

BINAND [&] Bitwise AND (9).

BINXOR ["] Bitwise exclusive OR (10).
BINOR []] Bitwise OR (11).

AND [&&] Logical AND (12).

XOR Logical exclusive OR (13).
OR []]] Logical OR (14).

CONDITIONAL OPERATOR

Precedence: 15

? Conditional operator.

Description of assembler operators

This section gives detailed descriptions of each assembler operator.

See also Expressions, operands, and operators, page 20.

() Parenthesis

Precedence 1

Description (and) group expressions to be evaluated separately, overriding the default precedence
order.

Example 1+42%3 —> 7
(1+2)*3 -=> 9

* Multiplication
Precedence 4

Description * produces the product of its two operands. The operands are taken as signed 32-bit
integers and the result is also a signed 32-bit integer.

IAR Assembler User Guide
66 for RL78

Example

+ Unary plus

Precedence
Description

Example

+ Addition

Precedence

Description

Example

— Unary minus

Precedence

Description

Example

Assembler operators ___o

2%2 -> 4
-2*%2 —> -4

Unary plus operator; performs nothing.

+3 -> 3
3*+2 —> 6
5

The + addition operator produces the sum of the two operands which surround it. The

operands are taken as signed 32-bit integers and the result is also a signed 32-bit integer.

92419 -> 111
-2+2 —> 0
-2+-2 -> -4

The unary minus operator performs arithmetic negation on its operand.

The operand is interpreted as a 32-bit signed integer and the result of the operator is the
two’s complement negation of that integer.

-3 -> -3
3%-2 -> -6
4--5 -> 9

67

Description of assembler operators

68

- Subtraction

Precedence

Description

Example

| Division
Precedence

Description

Example

The subtraction operator produces the difference when the right operand is taken away
from the left operand. The operands are taken as signed 32-bit integers and the result is
also signed 32-bit integer.

92-19 -> 73
—2-2 -> -4
-2--2 => 0

4

/ produces the integer quotient of the left operand divided by the right operator. The
operands are taken as signed 32-bit integers and the result is also a signed 32-bit integer.

9/2 —> 4
-12/3 -> -4
9/2*6 —-> 24

? : Conditional operator

Syntax
Precedence

Description

Example

IAR Assembler User Guide
for RL78

condition ? expr : expr
15

2 results in the first expr if condi tion evaluates to true and the second expr if
condi tion evaluates to false.

Note: The question mark and a following label must be separated by space or a tab,
otherwise the 2 is considered the first character of the label.

6 : 7 —>6
6 : 7 =>7

RSNV

o Ul

Assembler operators ___o

< Less than
Precedence 7
Description < or LT evaluates to 1 (true) if the left operand has a lower numeric value than the right
operand, otherwise it is O (false).
Example -1 <2 ->1
2 <1 ->0
2 <2 -—>0
<= Less than or equal
Precedence 7
Description <= or LE evaluates to 1 (true) if the left operand has a numeric value that is lower than

or equal to the right operand, otherwise it is O (false).
Example 1 <=2 ->1
2 <=1->0
1 <=1->1
<>, != Not equal

Precedence 8

Description <>, I =, or NE evaluates to 0 (false) if its two operands are identical in value or to 1 (true)
if its two operands are not identical in value.

Example 1 <>2 ->1

2 <>2 >0
'A' <> 'B' -> 1

=, == Equal
Precedence 8

Description =, ==, or EQ evaluates to 1 (true) if its two operands are identical in value, or to O (false)
if its two operands are not identical in value.

69

Description of assembler operators

Example

> Greater than

Precedence

Description

Example

> or GT evaluates to 1 (true) if the left operand has a higher numeric value than the right
operand, otherwise it is 0 (false).

-1 >1 ->0
2>1 —>1
1>1->0

>= Greater than or equal

Precedence

Description

Example

&& Logical AND

Precedence

Description

Example

IAR Assembler User Guide
70 for RL78

7

>= or GE evaluates to 1 (true) if the left operand is equal to or has a higher numeric value
than the right operand, otherwise it is O (false).

1 >=2 ->0
2 >=1 —>1
1 >=1 -—>1

12

&& or AND performs logical AND between its two integer operands. If both operands are
non-zero the result is 1 (true), otherwise it is O (false).

1010B && 0011B -> 1
1010B && 0101B -> 1
1010B && 0000B -> O

& Bitwise AND

Precedence

Description

Example

~ Bitwise NOT

Precedence

Description

Example

| Bitwise OR

Precedence

Description

Example

A Bitwise exclusive OR

Precedence

Description

Example

Assembler operators ___4

9

& or BINAND performs bitwise AND between the integer operands. Each bit in the 32-bit
result is the logical AND of the corresponding bits in the operands.

1010B & 0011B -> 0010B

1010B & 0101B -> 0000B
1010B & 0000B -> 0000B

~ or BINNOT performs bitwise NOT on its operand. Each bit in the 32-bit result is the
complement of the corresponding bit in the operand.

~ 1010B -> 11111111111111111111111111110101B

11

| or BINOR performs bitwise OR on its operands. Each bit in the 32-bit result is the
inclusive OR of the corresponding bits in the operands.

1010B | 0101B —> 1111B
1010B | 0000B —> 1010B

10

~ or BINXOR performs bitwise XOR on its operands. Each bit in the 32-bit result is the
exclusive OR of the corresponding bits in the operands.

1010B ~ 0101B -> 1111B
1010B ~ 0011B -> 1001B

71

Description of assembler operators

% Modulo

Precedence 4

Description % or MOD produces the remainder from the integer division of the left operand by the right
operand. The operands are taken as signed 32-bit integers and the result is also a signed
32-bit integer.
X % Yisequivalent to X-Y* (X/Y) using integer division.

Example 2%2->0
12 7 -> 5
3% 2 —>1

! Logical NOT

Precedence 3

Description

Example

|| Logical OR

Precedence
Description

Example

<< Logical shift left

Precedence

Description

IAR Assembler User Guide
72 for RL78

! or NOT negates a logical argument.

! 0101B -> O
! 0000B -> 1

14

| | or or performs a logical OR between two integer operands.

1010B || 0000B -> 1
0000B || 0000B -> 0
6

<< or sHL shifts the left operand, which is always treated as unsigned, to the left. The
number of bits to shift is specified by the right operand, interpreted as an integer value

between 0 and 32.

Assembler operators ___4

Example 00011100B << 3 —-> 11100000B
00000111111111111B << 5 -> 11111111111100000B
14 << 1 -> 28

>> Logical shift right

Precedence 6
Description >> or SHR shifts the left operand, which is always treated as unsigned, to the right. The
number of bits to shift is specified by the right operand, interpreted as an integer value

between 0 and 32.

Example 01110000B >> 3 -> 00001110B
1111111111111111B >> 20 -> 0
14 >> 1 —> 7

BYTEI First byte

Precedence 2

Description BYTEL takes a single operand, which is interpreted as an unsigned 32-bit integer value.
The result is the unsigned, 8-bit integer value of the lower order byte of the operand.

Example BYTEL 0xABCD -> 0xCD

BYTE2 Second byte

Precedence 2

Description BYTE?2 takes a single operand, which is interpreted as an unsigned 32-bit integer value.
The result is the middle-low byte (bits 15 to 8) of the operand.

Example BYTE2 0x12345678 -> 0x56

73

Description of assembler operators

BYTE3 Third byte

Precedence

Description

Example

BYTE4 Fourth byte

Precedence

Description

Example

BYTE3 takes a single operand, which is interpreted as an unsigned 32-bit integer value.
The result is the middle-high byte (bits 23 to 16) of the operand.

BYTE3 0x12345678 -> 0x34

BYTE4 takes a single operand, which is interpreted as an unsigned 32-bit integer value.
The result is the high byte (bits 31 to 24) of the operand.

BYTE4 0x12345678 -> 0x12

DATE Current time/date

Precedence

Description

Example

IAR Assembler User Guide
74 for RL78

2

DATE gets the time when the current assembly began.

The DATE operator takes an absolute argument (expression) and returns:

DATE 1 Current second (0-59).

DATE 2 Current minute (0-59).

DATE 3 Current hour (0-23).

DATE 4 Current day (1-31).

DATE 5 Current month (1-12).

DATE 6 Current year MOD 100 (1998 —>98, 2000 —>00, 2002 —>02).

To specify the date of assembly:

today: DC8 DATE 5, DATE 4, DATE 3

HIGH High byte

Precedence

Description

Example

HWRD High word

Precedence

Description

Example

LOW Low byte

Precedence

Description

Example

LWRD Low word

Precedence

Description

Example

Assembler operators ___o

HIGH takes a single operand to its right which is interpreted as an unsigned, 16-bit
integer value. The result is the unsigned 8-bit integer value of the higher order byte of
the operand.

HIGH OxABCD -> 0xAB

HWRD takes a single operand, which is interpreted as an unsigned, 32-bit integer value.
The result is the high word (bits 31 to 16) of the operand.

HWRD 0x12345678 -> 0x1234

Low takes a single operand, which is interpreted as an unsigned, 32-bit integer value.
The result is the unsigned, 8-bit integer value of the lower order byte of the operand.

LOW OxABCD -> 0xCD

LWRD takes a single operand, which is interpreted as an unsigned, 32-bit integer value.
The result is the low word (bits 15 to 0) of the operand.

LWRD 0x12345678 -> 0x5678

75

Description of assembler operators

SFB section begin

Syntax
Precedence

Parameters

Description

Example

SFE section end ()

Syntax
Precedence

Parameters

Description

IAR Assembler User Guide
76 for RL78

SFB(section [{+|-}offset])

2
section The name of a section, which must be defined before SFB is used.
offset An optional offset from the start address. The parentheses are

optional if offset is omitted.

SFB accepts a single operand to its right. The operator evaluates to the absolute address
of the first byte of that section. This evaluation occurs at linking time.

name sectionBegin
section MYCODE:CODE(2) ; Forward declaration
; of MYCODE.
section MYCONST:CONST (2)
start dc32 sfb (MYCODE)
end

Even if this code is linked with many other modules, start is still set to the address of
the first byte of the section.

SFE (section [{+ | -} offset])
2
section The name of a section, which must be defined before SFE is used.

offset An optional offset from the start address. The parentheses are
optional if of £set is omitted.

SFE accepts a single operand to its right. The operator evaluates to the address of the first
byte after the section end. This evaluation occurs at linking time.

Assembler operators ___4

Example name sectionEnd
section MYCODE:CODE(2) ; Forward declaration
; of MYCODE.
section MYCONST:CONST (2)
end dc32 sfe (MYCODE)
end

Even if this code is linked with many other modules, end is still set to the first byte after
the section MYCODE.

The size of the section MYCODE can be achieved by using the SIZEOF operator.

SIZEOF section size ()

Syntax SIZEOF section
Precedence 2
Parameters
section The name of a relocatable section, which must be defined
before STZEOF is used.
Description SIZEOF generates SFE-SFB for its argument. That is, it calculates the size in bytes of a

section. This is done when modules are linked together.

Example These two files set size to the size of the section MYCODE.
Table.s:

module table
section MYCODE:CODE ; Forward declaration of MYCODE.
section SEGTAB:CONST(2)
data
size dc32 sizeof (MYCODE)
end

Application.s:

module application

section MYCODE:CODE(2)

code

nop ; Placeholder for application.
end

77

Description of assembler operators

UGT Unsigned greater than

Precedence

Description

Example

7

UGT evaluates to 1 (true) if the left operand has a larger value than the right operand,
otherwise it is 0 (false). The operation treats the operands as unsigned values.

2 UGT 1 -> 1
-1 UGT 1 —> 1

ULT Unsigned less than

Precedence

Description

Example

UPPER Third byte

Precedence

Description

Example

7

ULT evaluates to 1 (true) if the left operand has a smaller value than the right operand,
otherwise it is O (false). The operation treats the operands as unsigned values.

1 ULT 2 —> 1
-1 ULT 2 -> 0

UPPER takes a single operand, which is interpreted as an unsigned 32-bit integer value.
The result is the middle-high byte (bits 23 to 16) of the operand.

UPPER 0x12345678 -> 0x34

XOR Logical exclusive OR

Precedence

Description

Example

IAR Assembler User Guide
78 for RL78

13

XOR evaluates to 1 (true) if either the left operand or the right operand is non-zero, but
to O (false) if both operands are zero or both are non-zero. Use XOR to perform logical
XOR on its two operands.

0101B XOR 1010B -> 0
0101B XOR 0000B -> 1

Assembler directives

This chapter gives a summary of the assembler directives and provides detailed

reference information for each category of directives.

Summary of assembler d

irectives

The assembler directives are classified into these groups according to their function:

Module control directives, page 83

Symbol control directives, page 85

Section control directives, page 87

Value assignment directives, page 90

Conditional assembly directives, page 92

Macro processing directives, page 94

Listing control directives, page 100

C-style preprocessor directives, page 103

Data definition or allocation directives, page 108

Assembler control directives, page 110

Function directives, page 112

Call frame information directives for names blocks, page 112.
Call frame information directives for common blocks, page 113
Call frame information directives for data blocks, page 115
Call frame information directives for tracking resources and CFAs, page 116

Call frame information directives for stack usage analysis, page 118

This table gives a summary of all the assembler directives:

Directive Description Section

_args Is set to number of arguments passed to macro. Macro processing

#define Assigns a value to a label. C-style preprocessor

#elif Introduces a new condition in an #if...#endif C-style preprocessor
block.

#else Assembles instructions if a condition is false. C-style preprocessor

#endif Ends an #1if, #ifdef, or #ifndef block. C-style preprocessor

Table 13: Assembler directives summary

79

Summary of assembler directives

Directive Description Section

#error Generates an error. C-style preprocessor

#if Assembles instructions if a condition is true. C-style preprocessor
#ifdef Assembles instructions if a symbol is defined. C-style preprocessor
#ifndef Assembles instructions if a symbol is undefined. C-style preprocessor
#include Includes a file. C-style preprocessor
#line Changes the line numbers. C-style preprocessor
#pragma Controls extension features. C-style preprocessor
#undef Undefines a label. C-style preprocessor

/*comment*/

//

C-style comment delimiter.
C++ style comment delimiter.

Assigns a permanent value local to a module.

Assembler control
Assembler control

Value assignment

ALIGN Aligns the program location counter by inserting Section control
zero-filled bytes.

ALIGNRAM Aligns the program location counter. Section control

ASEGN Begins a named absolute segment. Segment control

ASSIGN Assigns a temporary value. Value assignment

CASEOFF Disables case sensitivity. Assembler control

CASEON Enables case sensitivity. Assembler control

CFI Specifies call frame information. Call frame
information

DB Generates 8-bit constants, including strings. Data definition or
allocation

DC8 Generates 8-bit constants, including strings. Data definition or
allocation

DC16 Generates |6-bit constants. Data definition or
allocation

DC24 Generates 24-bit constants. Data definition or
allocation

DC32 Generates 32-bit constants. Data definition or
allocation

DD Generates 32-bit constants. Data definition or
allocation

DEFINE Defines a file-wide value. Value assignment

Table 13: Assembler directives summary (Continued)

IAR Assembler User Guide
80 for RL78

Assembler directives ___¢

Directive Description Section

DF32 Generates 32-bit floating-point constants. Data definition or
allocation

DF64 Generates 64-bit floating-point constants. Data definition or
allocation

DP Generates 24-bit constants. Data definition or
allocation

DS Allocates space for 8-bit integers. Data definition or
allocation

DS8 Allocates space for 8-bit integers. Data definition or
allocation

DS16 Allocates space for |6-bit integers. Data definition or
allocation

DS24 Allocates space for 24-bit integers. Data definition or
allocation

DS32 Allocates space for 32-bit integers. Data definition or
allocation

DW Generates |6-bit constants. Data definition or
allocation

ELSE Assembles instructions if a condition is false. Conditional
assembly

ELSEIF Specifies a new condition in an IF...ENDIF block. Conditional
assembly

END Ends the assembly of the last module in a file. Module control

ENDIF Ends an IF block. Conditional
assembly

ENDM Ends a macro definition. Macro processing

ENDMAC Exits prematurely from a macro. Macro processing

ENDR Ends a repeat structure. Macro processing

EQU Assigns a permanent value local to a module. Value assignment

EVEN Aligns the program counter to an even address. Section control

EXITM Exits prematurely from a macro. Macro processing

EXPORT Exports symbols to other modules. Symbol control

EXTERN Imports an external symbol. Symbol control

EXTWEAK Imports an external symbol (which can be Symbol control

undefined.

Table 13: Assembler directives summary (Continued)

81

Summary of assembler directives

82

IAR Assembler User Guide
for RL78

Directive Description Section
IF Assembles instructions if a condition is true. Conditional
assembly
IMPORT Imports an external symbol. Symbol control
LIBRARY Begins a module; an alias for PROGRAM and NAME. ~ Module control
LOCAL Creates symbols local to a macro. Macro processing
LSTCND Controls conditional assembler listing. Listing control
LSTCOD Controls multi-line code listing. Listing control
LSTEXP Controls the listing of macro generated lines. Listing control
LSTMAC Controls the listing of macro definitions. Listing control
LSTOUT Controls assembler-listing output. Listing control
LSTPAG Retained for backward compatibility reasons; Listing control

recognized but ignored.

LSTREP Controls the listing of lines generated by repeat
directives.

LSTXRF Generates a cross-reference table.

MACRO Defines a macro.

MODULE Begins a module; an alias for PROGRAM and NAME.

NAME Begins a program module.

ODD Aligns the program location counter to an odd
address.

OVERLAY Recognized but ignored.

PROGRAM Begins a module.

PUBLIC Exports symbols to other modules.

PUBWEAK Exports symbols to other modules, multiple

definitions allowed.

RADIX Sets the default base.

REPT Assembles instructions a specified number of
times.

REPTC Repeats and substitutes characters.

REPTI Repeats and substitutes strings.

REQUIRE Forces a symbol to be referenced.

RSEG Begins a section.

Listing control

Listing control
Macro processing
Module control
Module control

Section control

Symbol control

Module control
Symbol control

Symbol control

Assembler control

Macro processing

Macro processing
Macro processing
Symbol control

Section control

Table 13: Assembler directives summary (Continued)

Assembler directives ___¢

Directive Description Section
RTMODEL Declares runtime model attributes. Module control
SECTION Begins a section. Section control
SECTION_TYPE Sets ELF type and flags for a section. Section control
SET Assigns a temporary value. Value assignment
VAR Assigns a temporary value. Value assignment

Table 13: Assembler directives summary (Continued)

Description of assembler directives

The following pages give reference information about the assembler directives.

Module control directives

Syntax END
NAME symbol
PROGRAM symbol

RTMODEL key, value

Parameters
key A text string specifying the key.
symbol Name assigned to module.
value A text string specifying the value.
Description Module control directives are used for marking the beginning and end of source program

modules, and for assigning names to them. For information about the restrictions that
apply when using a directive in an expression, see Expression restrictions, page 26.

Directive Description Expression restrictions

END Ends the assembly of the last module in a file. Only locally defined
labels or integer
constants

NAME Begins a module; alias to PROGRAM. No external references
Absolute

PROGRAM Begins a module. No external references
Absolute

Table 14: Module control directives

83

Description of assembler directives

84

Directive Description Expression restrictions

RTMODEL Declares runtime model attributes. Not applicable

Table 14: Module control directives (Continued)

Beginning a program module

Use NAME or PROGRAM to begin a program module, and to assign a name for future
reference by the IAR XLINK Linker, the [AR XAR Library Builder, and the IAR XLIB
Librarian.

Program modules are unconditionally linked by XLINK, even if other modules do not
reference them.

Beginning a module

Use any of the directives NAME or PROGRAM to begin an ELF module, and to assign a
name.

A module is included in the linked application, even if other modules do not reference
them. For more information about how modules are included in the linked application,
read about the linking process in the /AR C/C++ Development Guide for RL78.

Note: There can be only one module in a file.

Terminating the source file

Use END to indicate the end of the source file. Any lines after the END directive are
ignored. The END directive also ends the module in the file.

Declaring runtime model attributes

IAR Assembler User Guide
for RL78

Use RTMODEL to enforce consistency between modules. All modules that are linked
together and define the same runtime attribute key must have the same value for the
corresponding key value, or the special value *. Using the special value * is equivalent
to not defining the attribute at all. It can however be useful to explicitly state that the
module can handle any runtime model.

A module can have several runtime model definitions.

Note: The compiler runtime model attributes start with double underscores. In order to
avoid confusion, this style must not be used in the user-defined assembler attributes.

If you are writing assembler routines for use with C or C++ code, and you want to
control the module consistency, refer to the JAR C/C++ Development Guide for RL78.

The following examples defines three modules in one source file each, where:

e MOD_1 and MOD_2 cannot be linked together since they have different values for
runtime model CAN.

Assembler directives ___¢

e MOD_1 and MOD_3 can be linked together since they have the same definition of

runtime model RTOS and no conflict in the definition of CAN.

e MOD_2 and MOD_3 can be linked together since they have no runtime model

conflicts. The value * matches any runtime model value.

Assembler source file £f1.s:

module mod_1

Symbol control directives

Syntax

Parameters

rtmodel "CAN", "IS011519"
rtmodel "Platform", "M7"
end
Assembler source file £2.s:
module mod_2
rtmodel "CAN", "15011898"
rtmodel "Platform", "*"
end
Assembler source file £3.s:
module mod_3
rtmodel "Platform", "M7"
end
EXPORT symbol [, symbol]
EXTERN symbol [, symbol]
EXTWEAK symbol [, symbol]
IMPORT symbol [,symbol]
PUBLIC symbol [,symboll]
PUBWEAK symbol [,symbol]
REQUIRE symbol
label Label to be used as an alias for a C/C++ symbol.

85

Description of assembler directives

symbol Symbol to be imported or exported.
Description These directives control how symbols are shared between modules:
Directive Description
EXTERN, IMPORT Imports an external symbol.
EXTWEAK Imports an external symbol. The symbol can be undefined.
OVERLAY Recognized but ignored.
PUBLIC, EXPORT Exports symbols to other modules.
PUBWEAK Exports symbols to other modules, multiple definitions
allowed.
REQUIRE Forces a symbol to be referenced.

Table 15: Symbol control directives

Exporting symbols to other modules

Use PUBLIC to make one or more symbols available to other modules. Symbols defined
PUBLIC can be relocatable or absolute, and can also be used in expressions (with the
same rules as for other symbols).

The pUBLIC directive always exports full 32-bit values, which makes it feasible to use
global 32-bit constants also in assemblers for 8-bit and 16-bit processors. With the Low,
HIGH, >>, and << operators, any part of such a constant can be loaded in an 8-bit or
16-bit register or word.

There can be any number of PUBLIC-defined symbols in a module.

Exporting symbols with multiple definitions to other modules

PUBWEAK is similar to PUBLIC except that it allows the same symbol to be defined in
more than one module. Only one of those definitions is used by ILINK. If a module
containing a PUBLIC definition of a symbol is linked with one or more modules
containing PUBWEAK definitions of the same symbol, ILINK uses the PUBLIC definition.

Note: Library modules are only linked if a reference to a symbol in that module is made,
and that symbol was not already linked. During the module selection phase, no
distinction is made between PUBLIC and PUBWEAK definitions. This means that to
ensure that the module containing the PUBLIC definition is selected, you should link it
before the other modules, or make sure that a reference is made to some other PUBLIC
symbol in that module.

Importing symbols

Use EXTERN or IMPORT to import an untyped external symbol.

IAR Assembler User Guide
86 for RL78

Assembler directives ___¢

The REQUIRE directive marks a symbol as referenced. This is useful if the section
containing the symbol must be loaded even if the code is not referenced.

Example The following example defines a subroutine to print an error message, and exports the
entry address err so that it can be called from other modules.

Because the message is enclosed in double quotes, the string will be followed by a zero
byte.

It defines print as an external routine; the address is resolved at link time.

name errorMessage
extern print
public err
section CODE:CODE
code
err call print
data
dc8 "*% Error **"
code
ret
end

Section control directives

Syntax ALIGN align [,valuel
ALIGNRAM align
ASEGN section [:typel [:flagl [,address]
EVEN [value]
ODD [valuel]
RSEG section [:type] [:flag]l [(align)]
SECTION segment :type [:flag] [(align)]

SECTION_TYPE type-expr {,flags-expr}

Parameters
address Address where this section part is placed.

align The power of two to which the address should be aligned.
The default align value is 0.

87

Description of assembler directives

88

Description

IAR Assembler User Guide
for RL78

flag

section

type
value
type-expr

flags-expr

ROOT, NOROOT

ROOT (the default mode) indicates that the section fragment must not
be discarded.

NOROOT means that the section fragment is discarded by the linker if
no symbols in this section fragment are referred to. Normally, all
section fragments except startup code and interrupt vectors should
set this flag.

REORDER, NOREORDER

NOREORDER (the default mode) starts a new fragment in the section
with the given name, or a new section if no such section exists.

REORDER starts a new section with the given name.

The name of the section. The section name is a user-defined symbol
that follows the rules described in Symbols, page 22.

The memory type, which can be either CODE, CONST, or DATA.
Byte value used for padding, default is zero.
A constant expression identifying the ELF type of the section.

A constant expression identifying the ELF flags of the section.

The section directives control how code and data are located. For information about the
restrictions that apply when using a directive in an expression, see Expression
restrictions, page 26.

Directive Description Expression restrictions

ALIGN Aligns the program location counter by inserting No external references
zero-filled bytes. Absolute

ALIGNRAM Aligns the program location counter. No external references
Absolute

ASEGN Begins a named absolute section. No external references
Absolute

EVEN Aligns the program counter to an even address. No external references
Absolute

ODD Aligns the program counter to an odd address. ~ No external references
Absolute

RSEG Begins an ELF section; alias to SECTION. No external references
Absolute

Table 16: Section control directives

Assembler directives ___¢

Directive Description Expression restrictions
SECTION Begins an ELF section. No external references
Absolute

SECTION_TYPE Sets ELF type and flags for a section.

Table 16: Section control directives (Continued)

Beginning a named absolute section

Use ASEGN to start a named absolute section located at the address address.

This directive has the advantage of allowing you to specify the memory type of the
section.

Beginning a relocatable section

Use SECTION (or RSEG) to start a new section. The assembler maintains separate
location counters (initially set to zero) for all sections, which makes it possible to switch
sections and mode anytime without having to save the current program location counter.

Note: The first instance of a SECTION or RSEG directive must not be preceded by any
code generating directives, such as DC8 or DS8, or by any assembler instructions.

To set the ELF type, and possibly the ELF flags for the newly created section, use
SECTION_TYPE. By default, the values of the flags are zero. For information about valid
values, refer to the ELF documentation.

In the following example, the data following the first SECTION directive is placed in a
relocatable section called TABLE.

The code following the second SECTION directive is placed in a relocatable section
called CODE:

name calculate
extern divrtn,mulrtn

section TABLE:CONST(0)
dclé divrtn,mulrtn
dclé subrtn

section code:code(0)

subrtn mov a,r7
sub a, #20
end

Aligning a section

Use ALIGN to align the program location counter to a specified address boundary. You
do this by specifying an expression for the power of two to which the program counter

89

Description of assembler directives

90

should be aligned. That is, a value of 1 aligns to an even address and a value of 2 aligns
to an address evenly divisible by 4.

The alignment is made relative to the section start; normally this means that the section
alignment must be at least as large as that of the alignment directive to give the desired
result.

ALIGN aligns by inserting zero/filled bytes, up to a maximum of 255. The EVEN directive
aligns the program counter to an even address (which is equivalent to ALIGN 1) and the
oDp directive aligns the program location counter to an odd address. The value used for
padding bytes must be within the range 0 to 255.

Use ALIGNRAM to align the program location counter by incrementing it; no data is
generated. The parameter align can be within the range 0 to 30.

EVEN, ODD, and ALIGN can only be used for ROM sections. Use ALIGNRAM for RAM
sections.

This example starts a section, moves to an even address, and adds some data. It then
aligns to a 64-byte boundary before creating a 64-byte table.

name align

section code:code (1) ; Start a relocatable code section

even ; Ensure it i1s on an even boundary
target dclé6 1 ; target is on an even boundary

align 8 ; Zero-fill to a 64-byte boundary
results dc8 64 ; Create a 64-byte table

section data:data(l) ; Start a relocatable data section

alignram 3 ; Align to a 8-byte boundary
ages ds8 64 ; Create another 64-byte table

end

Value assignment directives

Syntax

IAR Assembler User Guide
for RL78

label = expr

label ASSIGN expr

label DEFINE const_expr
label EQU expr

label SET expr

label VAR expr

Parameters

Operand modifiers

Description

Assembler directives ___¢

const_expr Constant value assigned to symbol.
expr Value assigned to symbol or value to be tested.
label Symbol to be defined.

These prefixes can be used to modify operands:

Prefix Usage Description

no prefix source/destination The assembler uses SFR or 16-bit (near) addressing

S: source/destination Forces the assembler to use short addressing (saddr)
N: source/destination Forces the assembler to use 16-bit (near) addressing
F:, ES: source/destination Forces the assembler to use ES: 16-bit (far) addressing
$:,8:,8:% branch Forces the assembler to use 8-bit relative addressing
no prefix, R:, R: $ branch The assembler uses |6-bit relative addressing

N: branch Forces the assembler to use |6-bit absolute addressing
F:,ES: branch Forces the assembler to use 20-bit absolute addressing
R:, R:S call Forces the assembler to use |6-bit relative addressing
no prefix, N: call The assembler uses |6-bit absolute addressing
F:,ES: call Forces the assembler to use 20-bit absolute addressing

Table 17: Operand modifiers

These directives are used for assigning values to symbols:

Directive Description

=, EQU Assigns a permanent value local to a module.
ASSIGN, SET, VAR Assigns a temporary value.

DEFINE Defines a file-wide value.

Table 18: Value assignment directives

Defining a temporary value

Use ASSIGN, SET, or VAR to define a symbol that might be redefined, such as for use
with macro variables. Symbols defined with ASSIGN, SET, or VAR cannot be declared
PUBLIC.

This example uses SET to redefine the symbol cons in a loop to generate a table of the
first 8 powers of 3:

name table
cons set 1

91

Description of assembler directives

; Generate table of powers of 3.

cr_tabl macro times
dc32 cons

cons set cons * 3
if times > 1
cr_tabl times - 1
endif
endm

section .text:CODE(2)
table cr_tabl 4
end

Defining a permanent local value

Use EQU or = to create a local symbol that denotes a number or offset. The symbol is
only valid in the module in which it was defined, but can be made available to other
modules with a PUBLIC directive (but not with a PUBWEAK directive).

Use EXTERN to import symbols from other modules.

Defining a permanent global value

Use DEFINE to define symbols that should be known to the module containing the
directive . After the DEFINE directive, the symbol is known.

A symbol which was given a value with DEFINE can be made available to modules in
other files with the PUBLIC directive.

Symbols defined with DEFINE cannot be redefined within the same file. Also, the
expression assigned to the defined symbol must be constant.

Conditional assembly directives
Syntax ELSE
ELSEIF condition
ENDIF

IF condition

Parameters
condition One of these:

IAR Assembler User Guide
92 for RL78

Assembler directives ___¢

An absolute expression The expression must not contain
forward or external references, and
any non-zero value is considered as
true.

stringl==string2 The condition is true if stringl and
string2 have the same length and
contents.

stringl!=string2 The condition is true if stringl and
string2 have different length or
contents.

Description Use the IF, ELSE, and ENDIF directives to control the assembly process at assembly
time. If the condition following the IF directive is not true, the subsequent instructions
do not generate any code (that is, it is not assembled or syntax checked) until an ELSE
or ENDIF directive is found.

Use ELSEIF to introduce a new condition after an IF directive. Conditional assembly
directives can be used anywhere in an assembly, but have their greatest use in
conjunction with macro processing.

All assembler directives (except for END) as well as the inclusion of files can be disabled
by the conditional directives. Each IF directive must be terminated by an ENDIF
directive. The ELSE directive is optional, and if used, it must be inside an IF. . .ENDIF
block. IF...ENDIF and IF...ELSE. . .ENDIF blocks can be nested to any level.

Example This example uses a macro to add a constant to a direct page memory location:

; If the second argument to the addMem macro is 1, 2, or 3,

; 1t generates the equivalent number of INC instructions. For any
; other non-zero value of the second argument, it generates an

; LDA, an ADD, and an STA instruction.

93

Description of assembler directives

94

addMem macro

if

elseif
inc
elseif
inc
inc
elseif
inc
inc
inc
else
movw
addw
movw
endif
endm

module
section
code
addSome addMem

addMem
addMem
addMem
addMem
ret

end

Macro processing directives

Syntax

IAR Assembler User Guide
for RL78

_args

ENDM

ENDMAC

ENDR

EXITM

loc,val ; loc is a direct page memory
; location, and val is a
; 32-bit value to add to that

; location.
val = 0
; Do nothing.
val = 1
loc
val = 2
loc
loc
val = 3
loc
loc
loc
AX, loc
AX, #val
loc, AX
addwithMacro
CODE : CODE
0xal,0 ; Add 0 to mem location 0xa0
0xal,1 ; Add 1 to the same address
0xa0, 2 ; Add 2 to the same address
0xal,3 ; Add 3 to the same address
0xa0,47 ; Add 47 to the same address

LOCAL symbol [, symbol]

name MACRO [argument] [,argument]

Assembler directives ___¢

REPT expr
REPTC formal,actual

REPTI formal,actual [,actuall

Parameters
actual Strings to be substituted.
argument Symbolic argument names.
expr An expression.
formal An argument into which each character of actual (REPTC) or each
string of actual (REPTT) is substituted.
name The name of the macro.
symbol Symbols to be local to the macro.
Description These directives allow user macros to be defined. For information about the restrictions

that apply when using a directive in an expression, see Expression restrictions, page 26.

Directive Description Expression restrictions

_args Is set to number of arguments passed to macro.

ENDM Ends a macro definition.

ENDMAC Ends a macro definition.

ENDR Ends a repeat structure.

EXITM Exits prematurely from a macro.

LOCAL Creates symbols local to a macro.

MACRO Defines a macro.

REPT Assembles instructions a specified number of times. No forward references
No external references
Absolute
Fixed

REPTC Repeats and substitutes characters.

REPTI Repeats and substitutes text.

Table 19: Macro processing directives

A macro is a user-defined symbol that represents a block of one or more assembler
source lines. Once you have defined a macro, you can use it in your program like an
assembler directive or assembler mnemonic.

95

Description of assembler directives

96

Defining a macro

IAR Assembler User Guide
for RL78

When the assembler encounters a macro, it looks up the macro’s definition, and inserts
the lines that the macro represents as if they were included in the source file at that
position.

Macros perform simple text substitution effectively, and you can control what they
substitute by supplying parameters to them.

The macro process consists of three distinct phases:

1 The assembler scans and saves macro definitions. The text between MACRO and
ENDM is saved but not syntax checked.

2 A macro call forces the assembler to invoke the macro processor (expander). The
macro expander switches (if not already in a macro) the assembler input stream
from a source file to the output from the macro expander. The macro expander takes
its input from the requested macro definition.

The macro expander has no knowledge of assembler symbols since it only deals with
text substitutions at source level. Before a line from the called macro definition is
handed over to the assembler, the expander scans the line for all occurrences of
symbolic macro arguments, and replaces them with their expansion arguments.

3 The expanded line is then processed as any other assembler source line. The input
stream to the assembler continues to be the output from the macro processor, until
all lines of the current macro definition have been read.

You define a macro with the statement:
name MACRO [argument] [,argument]

Here name is the name you are going to use for the macro, and argument is an argument
for values that you want to pass to the macro when it is expanded.

For example, you could define a macro errMac as follows:

name errMacro

errMac macro text
extern abort
call abort
dc8 text, 0
endm

This macro uses a parameter text to set up an error message for a routine abort. You
would call the macro with a statement such as:

errMac 'Disk not ready'

Assembler directives ___¢

The assembler expands this to:

call abort
dc8 'Disk not ready',0

If you omit a list of one or more arguments, the arguments you supply when calling the
macro are called \1 to \9 and \A to \Z.

The previous example could therefore be written as follows:

name errMacro

errMac macro text
extern abort
call abort
dc8 \1,0
endm

Use the EXITM directive to generate a premature exit from a macro.
EXITM is not allowed inside REPT...ENDR, REPTC...ENDR, Or REPTI...ENDR blocks.

Use LOCAL to create symbols local to a macro. The LOCAL directive must be used before
the symbol is used.

Each time that a macro is expanded, new instances of local symbols are created by the
LocaL directive. Therefore, it is legal to use local symbols in recursive macros.

Note: It is illegal to redefine a macro.

Passing special characters

Macro arguments that include commas or white space can be forced to be interpreted as
one argument by using the matching quote characters < and > in the macro call.

For example:

name macroUser
ldaMac macro op

mov op

endm

The macro can be called using the macro quote characters:
ldaMac <A, #1>

You can redefine the macro quote characters with the -M command line option; see -M,
page 54.

97

Description of assembler directives

98

Predefined macro symbols

The symbol _args is set to the number of arguments passed to the macro. This example
shows how _args can be used:

fill macro
if _args == 2
rept \2
dc8 \1
endr
else
dc8 \1
endif
endm

module filler
section .text:CODE(2)

fill 3
fill 4, 3
end

Repeating statements

IAR Assembler User Guide
for RL78

Use the REPT. . . ENDR structure to assemble the same block of instructions several
times. If expr evaluates to 0 nothing is generated.

Use REPTC to assemble a block of instructions once for each character in a string. If the
string contains a comma it should be enclosed in quotation marks.

Only double quotes have a special meaning and their only use is to enclose the
characters to iterate over. Single quotes have no special meaning and are treated as any
ordinary character.

Use REPTT to assemble a block of instructions once for each string in a series of strings.
Strings containing commas should be enclosed in quotation marks.

This example assembles a series of calls to a subroutine plot to plot each character in
a string:

name reptc
extern plotc
section CODE:CODE
code

banner reptc chr, "Welcome"
mov A,#'chr'
call plotc
endr
ret
end

Assembler directives ___¢

This example uses REPTT to clear several memory locations:

name repti
extern base,count,init
section CODE:CODE(0)
mov A, #0
banner repti adds, base, count, init
mov adds, A
endr
end

Coding inline for efficiency

In time-critical code it is often desirable to code routines inline to avoid the overhead of
a subroutine call and return. Macros provide a convenient way of doing this.

This example outputs bytes from a buffer to a port:

name play
PO define O0xFFO00

section DATA:DATA(0)
buffer ds8 25
watch dc8 0xFF

section CODE:CODE(0)
play movw AX, #buffer

movw HL, AX

mov b, #0

mov A, [HL+B]
loop inc B

mov PO, A

mov A, [HL+B]

cmp A,watch

bnz loop

ret

end

The main program calls this routine as follows:

doplay call play

For efficiency we can recode this using a macro:

name play
play macro
local loop
movw AX, #buffer
movw HL, AX
mov B, #0
mov A, [HL+B]

929

Description of assembler directives

loop inc B
mov PO, A
mov A, [HL+B]
cmp A,watch
bnz loop
endm
PO define O0xFFO00
section DATA:DATA(0)
buffer ds8 25
watch dc8 0xFF
section CODE:CODE(0)
main play
play
ret
end

Notice the use of the LOCAL directive to make the label 1oop local to the macro;
otherwise an error is generated if the macro is used twice, as the 1oop label already
exists.

Listing control directives

Syntax LSTCND{+ |-}
LSTCOD{+ |-}
LSTEXP{+|-}
LSTMAC{+|-}
LSTOUT{+|-}
LSTREP{+|-}

LSTXRF{+|-}

Description These directives provide control over the assembler list file:
Directive Description
LSTCND Controls conditional assembly listing.
LSTCOD Controls multi-line code listing.
LSTEXP Controls the listing of macro-generated lines.
LSTMAC Controls the listing of macro definitions.
LSTOUT Controls assembly-listing output.

Table 20: Listing control directives

IAR Assembler User Guide
100 for RL78

Assembler directives ___¢

Directive Description
LSTREP Controls the listing of lines generated by repeat directives.
LSTXRF Generates a cross-reference table.

Table 20: Listing control directives (Continued)
Note: The directives COL, LSTPAGE, PAGE, and PAGSIZ are included for backward
compatibility reasons; they are recognized but no action is taken.

Turning the listing on or off

Use LSTOUT- to disable all list output except error messages. This directive overrides
all other listing control directives.

The default is LsTouT+, which lists the output (if a list file was specified).

To disable the listing of a debugged section of program:

lstout-

; This section has already been debugged.
lstout+

; This section is currently being debugged.
end

Listing conditional code and strings

Use LsTCND+ to force the assembler to list source code only for the parts of the assembly
that are not disabled by previous conditional IF statements.

The default setting is LSTCND-, which lists all source lines.

Use LsTCOD+ to list more than one line of code for a source line, if needed; that is, long
ASCII strings produce several lines of output.

The default setting is LSTCOD-, which restricts the listing of output code to just the first
line of code for a source line.

Using the LSTCND and LSTCOD directives does not affect code generation.

101

Description of assembler directives

This example shows how LSTCND+ hides a call to a subroutine that is disabled by an IF

directive:
name lstcndtst
extern print
section prom:code(0)

debug var 0

begin if debug
call print
endif
lstcnd+

begin2 if debug
call print
endif
end

Controlling the listing of macros

Use LSTEXP- to disable the listing of macro-generated lines. The default is LSTEXP+,
which lists all macro-generated lines.

Use LSTMAC+ to list macro definitions. The default is LSTMAC-, which disables the
listing of macro definitions.

This example shows the effect of LSTMAC and LSTEXP:

name lstmacTest

dec2 macro arg
dec arg
dec arg
endm
lstmac-

inc2 macro arg
inc arg
inc arg
endm

begin dec2 A
lstexp-
inc2 B
ret
end

Controlling the listing of generated lines

Use LSTREP- to turn off the listing of lines generated by the directives REPT, REPTC,
and REPTI.

IAR Assembler User Guide
102 for RL78

Assembler directives ___¢

The default is LSTREP+, which lists the generated lines.

Generating a cross-reference table

Use LSTXRF+ to generate a cross-reference table at the end of the assembler list for the
current module. The table shows values and line numbers, and the type of the symbol.

The default is LSTXRF-, which does not give a cross-reference table.

C-style preprocessor directives

Syntax #define symbol text
#elif condition
#else
#endif
#error "message"
#if condition
#ifdef symbol
#ifndef symbol
#include {"filename" | <filename>}
#line line-no {"filename"}

#undef symbol

Parameters
condition An absolute assembler expression, see Expressions, operands, and
operators, page 20.

The expression must not contain any assembler labels or symbols,
and any non-zero value is considered as true. The C preprocessor
operator defined can be used.

filename Name of file to be included or referred.

line-no Source line number.

message Text to be displayed.

symbol Preprocessor symbol to be defined, undefined, or tested.
text Value to be assigned.

103

Description of assembler directives

104

Description

The assembler has a C-style preprocessor that follows the C99 standard.

These C-language preprocessor directives are available:

Directive Description

#define Assigns a value to a preprocessor symbol.

#elif Introduces a new condition in an #if. . .#endif block.
#else Assembles instructions if a condition is false.

#endif Ends an #1if, #ifdef, or #ifndef block.

#error Generates an error.

#if Assembles instructions if a condition is true.

#ifdef Assembles instructions if a preprocessor symbol is defined.
#ifndef Assembles instructions if a preprocessor symbol is undefined.
#include Includes a file.

#line Changes the source references in the debug information.
#pragma Controls extension features. The supported #pragma directives are

described in the chapter Pragma directives.

#undef Undefines a preprocessor symbol.

Table 21: C-style preprocessor directives

You must not mix assembler language and C-style preprocessor directives.
Conceptually, they are different languages and mixing them might lead to unexpected
behavior because an assembler directive is not necessarily accepted as a part of the C
preprocessor language.

Note that the preprocessor directives are processed before other directives. As an
example avoid constructs like:

redef macro ; Avoid the following!
#define \1 \2
endm

because the \1 and \2 macro arguments are not available during the preprocessing
phase.

Defining and undefining preprocessor symbols

IAR Assembler User Guide
for RL78

Use #define to define a value of a preprocessor symbol.
#define symbol value

Use #undef to undefine a symbol; the effect is as if it had not been defined.

Assembler directives ___¢

Conditional preprocessor directives

Use the #if...#else...#endif directives to control the assembly process at assembly
time. If the condition following the #1i £ directive is not true, the subsequent instructions
will not generate any code (that is, it will not be assembled or syntax checked) until an
#endif or #else directive is found.

All assembler directives (except for END) and file inclusion can be disabled by the
conditional directives. Each #i £ directive must be terminated by an #endi £ directive.
The #else directive is optional and, if used, it must be inside an #if...#endif block.

#if..#endif and #if...#else...#endif blocks can be nested to any level.

Use #1ifdef to assemble instructions up to the next #else or #endif directive only if
a symbol is defined.

Use #ifndef to assemble instructions up to the next #else or #endif directive only if
a symbol is undefined.

This example defines the labels tweak and adjust. If tweak is defined, the register A
is decremented by an amount that depends on adjust, in this case 30.

name calibrate
extern calibrationConstant
section CODE:CODE

#define tweak 1
#define adjust 3
#ifdef tweak
#1if adjust==

sub A, #4
#elif adjust==2

sub A, #20
#elif adjust==

sub A, #30
#endif
#endif /* ifdef tweak */

end

Including source files

Use #include to insert the contents of a file into the source file at a specified point. The
filename can be specified within double quotes or within angle brackets.

Following is the full description of the assembler’s #include file search procedure:

e If the name of the #include file is an absolute path, that file is opened.

o When the assembler encounters the name of an #include file in angle brackets
such as:

#include <io.h>

105

Description of assembler directives

it searches the following directories for the file to include:

1 The directories specified with the -T option, in the order that they were
specified.

2 Any directories specified using the ARL78_INC environment variable.

3 The automatically set up library system include directories. See
--no_system_include, page 56 and --system_include_dir, page 60.

o When the assembler encounters the name of an #include file in double quotes
such as:

#include "vars.h"

it searches the directory of the source file in which the #include statement occurs,
and then performs the same sequence as for angle-bracketed filenames.

If there are nested #include files, the assembler starts searching the directory of the
file that was last included, iterating upwards for each included file, searching the
source file directory last.

Use angle brackets for header files provided with the IAR Assembler for r178, and
double quotes for header files that are part of your application.

This example uses #include to include a file defining macros into the source file. For
example, these macros could be defined in Macros . inc:

xchrp macro a,b
push a
push b
pop a
pop b
endm

The macro definitions can then be included, using #include, as in this example:

name include

; Standard macro definitions
#include "c:\iar\asm\inc\macros.inc"

; Program

main: xchrp RP2,RP3
ret
end main

Displaying errors

Use #error to force the assembler to generate an error, such as in a user-defined test.

IAR Assembler User Guide
106 for RL78

Assembler directives ___¢

Changing the source line numbers

Use the #1ine directive to change the source line numbers and the source filename used
in the debug information. #1ine operates on the lines following the #1ine directive.

Comments in C-style preprocessor directives

If you make a comment within a define statement, use:

o the C comment delimiters /* ... */tocomment sections

o the C++ comment delimiter // to mark the rest of the line as comment.

Do not use assembler comments within a define statement as it leads to unexpected
behavior.

This expression evaluates to 3 because the comment character is preserved by #define:

#define x 3 ; This is a misplaced comment.

module misplacedCommentl
expression equ x * 8 + 5

end

This example illustrates some problems that might occur when assembler comments are
used in the C-style preprocessor:

#define five 5 ; This comment is not OK.
#define six 6 // This comment is OK.
#define seven 7 /* This comment is OK. */

module misplacedComment?2
section MYCONST:CONST (2)

DC32 five, 11, 12

; The previous line expands to:

; "DC32 5 ; This comment is not OK., 11, 12"
DC32 six + seven, 11, 12

; The previous line expands to:

; "DC32 6 + 7, 11, 12"
end

107

Description of assembler directives

Data definition or allocation directives

Syntax DB expr [,expr]
DC8 expr [,expr]

DC16
DC24
DC32
DF32
DF64

expr [,expr]
expr [,expr]
expr |[,expr]
value [,value]
value [,valuel]

DP expr [,expr]

DS co
DS8 ¢
DS16
DS24
DS32

Parameters
count

expr

value

unt
ount
count
count
count

A valid absolute expression specifying the number of elements to be

reserved.

A valid absolute, relocatable, or external expression, or an ASCII string.
ASCII strings are zero filled to a multiple of the data size implied by the
directive. Double-quoted strings are zero-terminated.

A valid absolute expression or floating-point constant.

Description These directives define values or reserve memory.

Use DC8, DC16, DC24, DC32, DF32, or DF64 to create a constant, which means an area
of bytes is reserved big enough for the constant.

Use DS, DS8, DS16, DS24, DS32 to reserve a number of uninitialized bytes.

For information about the restrictions that apply when using a directive in an expression,
see Expression restrictions, page 26.

The column Alias in the following table shows the Renesas directive that corresponds to

the IAR Systems directive.

Description

Directive Alias
DC8 DB
DC1l6 Dw
DC24 DP
DC32 DD
DF32

Generates 8-bit constants, including strings.
Generates | 6-bit constants.
Generates 24-bit constants.
Generates 32-bit constants.

Generates 32-bit floating-point constants.

Table 22: Data definition or allocation directives

IAR Assembler User Guide
108 for RL78

Assembler directives ___¢

Directive Alias Description

DF64 Generates 64-bit floating-point constants.
DS8 DS Allocates space for 8-bit integers.

DS16 Allocates space for |6-bit integers.

DS24 Allocates space for 24-bit integers.

DS32 Allocates space for 32-bit integers.

Table 22: Data definition or allocation directives (Continued)

Generating a lookup table

Defining strings

Reserving space

This example generates a lookup table of addresses to routines:

module

sumTableAndIndex

section CONST:DATA(0)

table dclé6

addsubr, subsubr, clrsubr

section CODE:CODE(0)

addsubr add
ret
subsubr sub
ret
clrsubr mov
ret
end

To define a string:

A,C

myMsg DC8 'Please enter your name'

To define a string which includes a trailing zero:

myCstr DC8 "This is a string."

To include a single quote in a string, enter it twice; for example:

errMsg DC8 'Don''t understand!'

To reserve space for 10 bytes:

table DS8

10

109

Description of assembler directives

110

Assembler control directives

Syntax

Parameters

Description

/* comment*/
// comment
CASEOFF
CASEON

RADIX expr

comment Comment ignored by the assembler.

expr Default base; default 10 (decimal).

These directives provide control over the operation of the assembler. For information
about the restrictions that apply when using a directive in an expression, see Expression
restrictions, page 26.

Directive Description Expression restrictions

/*comment*/ C-style comment delimiter.

!/ C++ style comment delimiter.

CASEOFF Disables case sensitivity.

CASEON Enables case sensitivity.

RADIX Sets the default base on all numeric No forward references

values. No external references

Absolute
Fixed

Table 23: Assembler control directives

Use /*...*/ to comment sections of the assembler listing.
Use // to mark the rest of the line as comment.

Use RADIX to set the default base for constants. The default base is 10.

Controlling case sensitivity

IAR Assembler User Guide
for RL78

Use CASEON or CASEOFF to turn on or off case sensitivity for user-defined symbols. By
default, case sensitivity is on.

When CASEOFF is active all symbols are stored in upper case, and all symbols used by
ILINK should be written in upper case in the ILINK definition file.

Assembler directives ___¢

When CASEOFF is set, label and LABEL are identical in this example:

module caseSensitivityl
section CODE:CODE

caseoff
label nop ; Stored as "LABEL"
br LABEL
nop
end

The following will generate a duplicate label error:

module caseSensitivity?2
section CODE:CODE

caseoff

label nop ; Stored as "LABEL"

LABEL nop ; Error, "LABEL" already defined
end

Defining comments

This example shows how /*. . .*/ can be used for a multi-line comment:

/*

Program to read serial input.
Version 1: 19.2.11

Author: mjp

*/

See also information about comments in C-style preprocessor directives in the section
C-style preprocessor directives, page 103.

Changing the base
To set the default base to 16:

name radix

section CODE:CODE(0)

radix D'16

mov A, #12
; To reset the base from 16 to 10 again, the argument must be
; written in hexadecimal format.

radix 0x0a

end

Description of assembler directives

Function directives

Syntax

Parameters

Description

Example

See also

CALL_GRAPH_ROOT function [,categoryl]
function The function, a symbol.

category An optional call graph root category, a string.

Use this directive to specify that, for stack usage analysis purposes, the function
function is a call graph root. You can also specify an optional category, a quoted
string.

The compiler will generate this directive in assembler list files, when needed.

CALL_GRAPH_ROOT my_interrupt, "interrupt"
Call frame information directives for stack usage analysis, page 118, for information
about CFI directives required for stack usage analysis.

IAR C/C++ Development Guide for RL78 for information about how to enable and use
stack usage analysis.

Call frame information directives for names blocks

Syntax

Parameters

IAR Assembler User Guide
112 for RL78

Names block directives:
CFI NAMES name

CFI ENDNAMES name
CFI RESOURCE resource bits [, resource : bits]

CFI VIRTUALRESOURCE resource : bits [, resource : bits]

CFI RESOURCEPARTS resource part, part [, part] ...

CFI STACKFRAME cfa resource type [, cfa resource typel
CFI BASEADDRESS cfa type [, cfa typel

bits The size of the resource in bits.

cfa The name of a CFA (canonical frame address).
name The name of the block.

Assembler directives ___¢

namesblock The name of a previously defined names block.
offset The offset relative the CFA. An integer with an optional sign.
part A part of a composite resource. The name of a previously

declared resource.

resource The name of a resource.
size The size of the frame cell in bytes.
type The segment memory type, such as CODE, CONST or DATA. In

addition, any of the memory types supported by the IAR ILINK
Linker. It is only used for denoting an address space.

Description Use these directives to define a names block:
Directive Description
CFI BASEADDRESS Declares a base address CFA (Canonical Frame Address).
CFI ENDNAMES Ends a names block.
CFI FRAMECELL Creates a reference into the caller’s frame.
CFI NAMES Starts a names block.
CFI RESOURCE Declares a resource.
CFI RESOURCEPARTS Declares a composite resource.
CFI STACKFRAME Declares a stack frame CFA.
CFI VIRTUALRESOURCE Declares a virtual resource.

Table 24: Call frame information directives names block
Example Examples of using CFI directives, page 36

See also Tracking call frame usage, page 28

Call frame information directives for common blocks

Syntax Common block directives:
CFI COMMON name USING namesblock
CFI ENDCOMMON name
CFI CODEALIGN codealignfactor

CFI DATAALIGN dataalignfactor

113

Description of assembler directives

CFI DEFAULT { UNDEFINED | SAMEVALUE }

CFI RETURNADDRESS resource type

Parameters
codealignfactor The smallest common factor of all instruction sizes. Each CFI
directive for a data block must be placed according to this
alignment. 1 is the default and can always be used, but a larger
value reduces the produced call frame information in size. The
possible range is 1-256.
commonblock The name of a previously defined common block.
dataalignfactor The smallest common factor of all frame sizes. If the stack
grows toward higher addresses, the factor is negative; if it grows
toward lower addresses, the factor is positive. 1 is the default, but
a larger value reduces the produced call frame information in
size. The possible ranges are —256 to —1 and 1 to 256.
name The name of the block.
namesblock The name of a previously defined names block.
resource The name of a resource.
type The memory type, such as CODE, CONST or DATA. In addition,
any of the segment memory types supported by the IAR ILINK
Linker. It is only used for denoting an address space.
Description Use these directives to define a common block:
Directive Description
CFI CODEALIGN Declares code alignment.
CFI COMMON Starts or extends a common block.
CFI DATAALIGN Declares data alignment.
CFI DEFAULT Declares the default state of all resources.
CFI ENDCOMMON Ends a common block.
CFI RETURNADDRESS Declares a return address column.
Table 25: Call frame information directives common block
In addition to these directives you might also need the call frame information directives
for specifying rules or CFI expressions for resources and CFAs, see Call frame
information directives for tracking resources and CFAs, page 116.
Example Examples of using CFI directives, page 36

IAR Assembler User Guide
114 for RL78

Assembler directives ___¢

See also Tracking call frame usage, page 28

Call frame information directives for data blocks

Syntax CFI BLOCK name USING commonblock
CFI ENDBLOCK name
CFI { NOFUNCTION | FUNCTION label }
CFI { INVALID | VALID }
CFI { REMEMBERSTATE | RESTORESTATE }
CFI PICKER

CFI CONDITIONAL label [, labell]

Parameters
commonblock The name of a previously defined common block.
label A function label.
name The name of the block.
Description These directives allow call frame information to be defined in the assembler source
code:
Directive Description
CFI BLOCK Starts a data block.
CFI CONDITIONAL Declares a data block to be a conditional thread.
CFI ENDBLOCK Ends a data block.
CFI FUNCTION Declares a function associated with a data block.
CFI INVALID Starts a range of invalid call frame information.
CFI NOFUNCTION Declares a data block to not be associated with a function.
CFI PICKER Declares a data block to be a picker thread. Used by the

compiler for keeping track of execution paths when code
is shared within or between functions.

CFI REMEMBERSTATE Remembers the call frame information state.
CFI RESTORESTATE Restores the saved call frame information state.
CFI VALID Ends a range of invalid call frame information.

Table 26: Call frame information directives for data blocks

115

Description of assembler directives

In addition to these directives you might also need the call frame information directives
for specifying rules or CFI expressions for resources and CFAs, see Call frame
information directives for tracking resources and CFAs, page 116.

Example Examples of using CFI directives, page 36

See also Tracking call frame usage, page 28

Call frame information directives for tracking resources and CFAs

Syntax CFI cfa { resource | resource + constant | resource - constant }
CFI cfa cfiexpr
CFI resource { UNDEFINED | SAMEVALUE | CONCAT }
CFI resource { resource | FRAME (cfa, offset) }

CFI resource cfiexpr

Parameters
cfa The name of a CFA (canonical frame address).
cfiexpr A CFI expression, which can be one of these:
o A CFI operator with operands
e A numeric constant
o A CFA name
® A resource name.
constant A constant value or an assembler expression that can be
evaluated to a constant value.
offset The offset relative the CFA. An integer with an optional sign.
resource The name of a resource.
Unary operators Overall syntax: OPERATOR (operand)
CFl operator Operand Description
COMPLEMENT cfiexpr Performs a bitwise NOT on a CFl expression.
LITERAL expr Get the value of the assembler expression. This can insert

the value of a regular assembler expression into a CFl
expression.

Table 27: Unary operators in CFI expressions

IAR Assembler User Guide
116 for RL78

Assembler directives ___¢

CFl operator Operand Description
NOT cfiexpr Negates a logical CFl expression.
UMINUS cfiexpr Performs arithmetic negation on a CFl expression.

Table 27: Unary operators in CFI expressions (Continued)

Binary operators Overall syntax: OPERATOR (operandl, operand2)

CFl operator Operands Description

ADD cfiexpr,cfiexpr Addition

AND cfiexpr,cfiexpr Bitwise AND

DIV cfiexpr,cfiexpr Division

EQ cfiexpr,cfiexpr Equal

GE cfiexpr,cfiexpr Greater than or equal

GT cfiexpr,cfiexpr Greater than

LE cfiexpr,cfiexpr Less than or equal

LSHIFT cfiexpr,cfiexpr Logical shift left of the left operand. The number of
bits to shift is specified by the right operand. The sign
bit will not be preserved when shifting.

LT cfiexpr,cfiexpr Less than

MOD cfiexpr,cfiexpr Modulo

MUL cfiexpr,cfiexpr Multiplication

NE cfiexpr,cfiexpr Not equal

OR cfiexpr,cfiexpr Bitwise OR

RSHIFTA cfiexpr,cfiexpr Arithmetic shift right of the left operand. The
number of bits to shift is specified by the right
operand. In contrast with RSHIFTL, the sign bit is
preserved when shifting.

RSHIFTL cfiexpr,cfiexpr Logical shift right of the left operand. The number of
bits to shift is specified by the right operand. The sign
bit will not be preserved when shifting.

SUB cfiexpr,cfiexpr Subtraction

XOR cfiexpr,cfiexpr Bitwise XOR

Table 28: Binary operators in CFI expressions

17

Description of assembler directives

Ternary operators

Description

Example

See also

Overall syntax: OPERATOR (operandl, operand2, operand3)

Operator Operands Description

FRAME cfa,size,offset Gets the value from a stack frame. The operands are:
cfa, an identifier that denotes a previously declared CFA.
Ssize, a constant expression that denotes a size in bytes.
offset,a constant expression that denotes a size in bytes.
Gets the value at address cfa+offset of size size.

IF cond, true, false Conditional operator. The operands are:
cond, a CFl expression that denotes a condition.
true, any CFl expression.
false, any CFl expression.
If the conditional expression is non-zero, the result is the
value of the true expression; otherwise the result is the
value of the false expression.

LOAD size, type,addr Gets the value from memory. The operands are:
s1ze, a constant expression that denotes a size in bytes.
type, a memory type.
addr, a CFl expression that denotes a memory address.
Gets the value at address addr in the segment memory
type type of size size.

Table 29: Ternary operators in CFI expressions

Use these directives to track resources and CFAs in common blocks and data blocks:

Directive Description
CFI cfa Declares the value of a CFA.
CFI resource Declares the value of a resource.

Table 30: Call frame information directives for tracking resources and CFAs
Examples of using CFI directives, page 36

Tracking call frame usage, page 28

Call frame information directives for stack usage analysis

Syntax

IAR Assembler User Guide
118 for RL78

CFI FUNCALL { caller } callee
CFI INDIRECTCALL { caller }
CFI NOCALLS { caller }

CFI TAILCALL { callee }

Assembler directives ___¢

Parameters
callee The label of the called function.
caller The label of the calling function.

Description These directives allow call frame information to be defined in the assembler source
code:
Directive Description
CFI FUNCALL Declares function calls for stack usage analysis.
CFI INDIRECTCALL Declares indirect calls for stack usage analysis.
CFI NOCALLS Declares absence of calls for stack usage analysis.
CFI TAILCALL Declares tail calls for stack usage analysis.
Table 31: Call frame information directives for stack usage analysis

See also Tracking call frame usage, page 28

The IAR C/C++ Development Guide for RL78 for information about stack usage
analysis.

19

Description of assembler directives

IAR Assembler User Guide
120 for RL78

Pragma directives

This chapter describes the pragma directives of the IAR Assembler for RL78.

The pragma directives control the behavior of the assembler, for example
whether it outputs warning messages. The pragma directives are
preprocessed, which means that macros are substituted in a pragma directive.

Summary of pragma directives

This table lists the pragma directives of the assembler:

#pragma directive Description

diag_default Changes the severity level of diagnostic messages
diag_error Changes the severity level of diagnostic messages
diag_remark Changes the severity level of diagnostic messages
diag_suppress Suppresses diagnostic messages
diag_warning Changes the severity level of diagnostic messages
message Prints a message

Table 32: Pragma directives summary

Descriptions of pragma directives

diag_default

Syntax

Parameters

The following pages describe each pragma directive.

Note that all pragma directives using = for value assignment should be entered like:
#pragma pragmaname=pragmavalue

or

#pragma pragmaname = pragmavalue

#pragma diag_default=tag, tag, ...

tag The number of a diagnostic message, for example the
message number Pell7.

121

Descriptions of pragma directives

Description

Example

See also

diag _error

Syntax

Parameters

Description

Example

See also

diag remark

Syntax

Parameters

Description

Example

See also

IAR Assembler User Guide
122 for RL78

Use this pragma directive to change the severity level back to the default, or to the
severity level defined on the command line by any of the options --diag_error,
--diag_remark, --diag_suppress, or --diag_warning, for the diagnostic
messages specified with the tags.

#pragma diag_default=Pell?7

The chapter Diagnostics.

#pragma diag_error=tag, tag, ...

tag The number of a diagnostic message, for example the
message number Pell7.

Use this pragma directive to change the severity level to error for the specified
diagnostic messages.

#pragma diag_error=Pell?7

The chapter Diagnostics.

#pragma diag_remark=tag, tag, ...

tag The number of a diagnostic message, for example the
message number Pel17.

Use this pragma directive to change the severity level to remark for the specified
diagnostic messages.

#pragma diag_remark=Pel77

The chapter Diagnostics.

diag_suppress

Syntax

Parameters

Description
Example

See also

diag_warning

Syntax

Parameters

Description

Example

See also

message

Syntax

Parameters

Description

Pragma directives °

#pragma diag_suppress=tag, tag, ...

tag The number of a diagnostic message, for example the
message number Pell7.

Use this pragma directive to suppress the specified diagnostic messages.
#pragma diag_suppress=Pell7,Pel77

The chapter Diagnostics.

#pragma diag_warning=tag, tag, ...

tag The number of a diagnostic message, for example the
message number Pe826.

Use this pragma directive to change the severity level to warning for the specified
diagnostic messages.

#pragma diag_warning=Pe826

The chapter Diagnostics.

#pragma message (string)

string The message that you want to direct to the standard output
stream.

Use this pragma directive to make the assembler print a message on stdout when the
file is assembled.

123

Descriptions of pragma directives

Example #ifdef TESTING
#pragma message ("Testing")
#endif

IAR Assembler User Guide
124 for RL78

Diagnostics

The following pages describe the format of the diagnostic messages and
explains how diagnostic messages are divided into different levels of severity.

Message format

All diagnostic messages are issued as complete, self-explanatory messages. A typical
diagnostic message from the assembler is produced in the form:

filename, linenumber levell[tag]: message

where filename is the name of the source file in which the error was encountered;
1linenumber is the line number at which the assembler detected the error; 1evel is the
level of seriousness of the diagnostic; tag is a unique tag that identifies the diagnostic
message; message is a self-explanatory message, possibly several lines long.

Diagnostic messages are displayed on the screen, and printed in the optional list file. In
the IAR Embedded Workbench IDE, diagnostic messages are displayed in the Build
messages window.

Severity levels

The diagnostics are divided into different levels of severity:

REMARK

A diagnostic message that is produced when the assembler finds a source code construct
that can possibly lead to erroneous behavior in the generated code. Remarks are, by
default, not issued but can be enabled, see --remarks, page 59.

WARNING

A diagnostic message that is produced when the assembler finds a programming error
or omission which is of concern but not so severe as to prevent the completion of
compilation. Warnings can be disabled with the command line option --no_warnings,
see --no_warnings, page 56.

ERROR

A diagnostic message that is produced when the assembler finds a construct which
clearly violates the language rules, such that code cannot be produced. An error
produces a non-zero exit code.

125

Severity levels

126

IAR Assembler User Guide
for RL78

FATAL ERROR

A diagnostic message that is produced when the assembler finds a condition that not
only prevents code generation, but which makes further processing of the source code
pointless. After the diagnostic is issued, assembly ends. A fatal error produces a
non-zero exit code.

SETTING THE SEVERITY LEVEL

The diagnostic messages can be suppressed or the severity level can be changed for all
types of diagnostics except for fatal errors and some of the regular errors.

For information about the assembler options that are available for setting severity levels,
see Summary of assembler options, page 41.

For information about the pragma directives that are available for setting severity levels,
see the chapter Pragma directives.

INTERNAL ERROR

An internal error is a diagnostic message that signals that there was a serious and
unexpected failure due to a fault in the assembler. It is produced using this form:

Internal error: message

where message is an explanatory message. If internal errors occur, they should be
reported to your software distributor or AR Systems Technical Support. Please include
information enough to reproduce the problem. This would typically include:

o The product name

@ The version number of the assembler, which can be seen in the header of the list
files generated by the assembler

Your license number
The exact internal error message text

The source file of the program that generated the internal error

A list of the options that were used when the internal error occurred.

A

absolute eXpPressionsvvv it 25
ADD (CFLoperator)covvie v 117
addition (assembler operator) 67
address field, in assembler listfile 27
ALIGN (assembler directive)covun... 88
alignment, Of SECHONSo vttt 89
ALIGNRAM (assembler directive). 88
AND (CFLoperator)cvvvie i 117
_args (assembler directive), 95
_args (predefined macro symbol) 98
ASCII character constants.couvuu.... 21
ASEGN (assembler directive). 88
assembler control directives 110
assembler diagnosticso 125
assembler directives
assemblercontrol. 110
CFI directives for common blocks. 113
CFI directives for datablocks 115
CFI directives for names blocks. 112
CFI directives for tracking resources and CFAs. 116
CFI for stack usage analysis) 118
conditional assembly L L 92
See also C-style preprocessor directives
C-style preprocessorc.oeevnenenon... 103
data definition or allocation 108
function 112
listfilecontrol 100
MACTO PrOCESSING « .« ¢ ot o vttt e e 94
modulecontrol. 83
segmentcontrol, 87
SUMMATY © e vt v ettt ettt e et e e et eenes 79
symbol control i 85
value assignmentl 90
HPragma.ov i e 121
assembler environment variables 18
assembler eXpressions. 20
assembler instructions. 20

Index °

assembler invocation Syntax 17
assemblerlabels L L 23
formatof L L 19
assembler list files
addressfield. LiiiLL 27
COMMENES. . ..ottt ettt 110
conditional code and strings. 101
cross-references
generating (LSTXRF).......... 103
generating (-1) L 53
datafield L LiiiLL, 27
enabling and disabling (LSTOUT)................ 101
filename, specifying (-1). 53
generated lines, controlling (LSTREP) 102
macro-generated lines, controlling. 102
symbol and cross-reference table. 27
assembler macros
arguments, passing to.t 98
definingc.co i 96
generated lines, controlling in listfile 102
inlineroutines 99
predefined symbol 98
quote characters, specifying. 54
special characters, using. 97
assembler Operators 63
I EXPIESSIONS . o v v vttt et e e e e e e 20
Precedence.ov i 63
assembler options
passingtoassembler 18
reading from file (--f). L L 51
extended command file, setting 40
specifying parametersionen.. 40
SUIMMATY « . v ovt et e e e et e e eaene 41
assembler output, including debug information 46
assembler source files, including 105
assembler source format., 19
assembler subversionnumber. 24
assembler symbols i 22
EXPOTEING .« o vttt e et e 86

127

128

IMPOTtING . . o vttt e 86

in relocatable expressions 25

predefined i 23
assembling, invocation syntax 17
assembly messages format 125
ASSIGN (assembler directive) 91
assumptions (programming eXperience) 11
bitwise AND (assembler operator) 71
bitwise exclusive OR (assembler operator). 71
bitwise NOT (assembler operator) 71
bitwise OR (assembler operator). 71
bold style, inthisguide. 13
__BUILD_NUMBER___ (predefined symbol) 23
BYTEI (assembler operator)oou.n.. 73
BYTE2 (assembler operator)o.o.. 73
BYTE3 (assembler operator) 74
BYTE4 (assembler operator) 74

C

call frame information directives ...112-113, 115-116, 118

CALL_GRAPH_ROOT (assembler directive) 112
case sensitivity, controlling. 43,110
CASEOFF (assembler directive). 110
CASEON (assembler directive) 110
--case_insensitive (assembler option) 43
CFA, CFlI directives for tracking 116
CFI BASEADDRESS (assembler directive)........... 113
CFI BLOCK (assembler directive) 115
CFI cfa (assembler directive) 118
CFI CODEALIGN (assembler directive) 114
CFI COMMON (assembler directive). 114
CFI CONDITIONAL (assembler directive) 115
CFI DATAALIGN (assembler directive) 114
CFI DEFAULT (assembler directive). 114
CFI directives for common blocks 113

IAR Assembler User Guide
for RL78

CFI directives fordatablocks. 115

CFlI directives for names blocks 112
CFI directives for stack usage analysis............... 118
CFI directives for tracking resources and CFAs 116
CFI ENDBLOCK (assembler directive) 115
CFI ENDCOMMON (assembler directive). 114
CFI ENDNAMES (assembler directive). 113
CFIL eXpressionsc.vuunirnenenenenenenennnns 35
CFI FRAMECELL (assembler directive) 113
CFI FUNCALL (assembler directive). 119
CFI FUNCTION (assembler directive). 115
CFI INDIRECTCALL (assembler directive) 119
CFI INVALID (assembler directive) 115
CFI NAMES (assembler directive). 113
CFI NOCALLS (assembler directive). 119
CFI NOFUNCTION (assembler directive)............ 115
CFI PICKER (assembler directive). 115
CFI REMEMBERSTATE (assembler directive). 115
CFI RESOURCE (assembler directive) 113
CFI resource (assembler directive) 118
CFI RESOURCEPARTS (assembler directive) 113
CFI RESTORESTATE (assembler directive).......... 115
CFI RETURNADDRESS (assembler directive)........ 114
CFI STACKFRAME (assembler directive) 113
CFI TAILCALL (assembler directive) 119
CFI VALID (assembler directive). 115
CFI VIRTUALRESOURCE (assembler directive). 113
character constants, ASCII 21
code model, specitying (--code_model) 43
__CODE_MODEL__ (predefined symbol). 24
--code_model (assembler option) 43
COL (assembler directive)coouni.nn. 101
command line options

part of invocation Syntaxiu.... 17

PaSSING. . oottt 18

typographic convention 13
command line, extending 50
command prompt icon, in this guide. 13

comments

in assembler listfile........................... 110

in assembler sourcecode 19

in C-style preprocessor directives 107

multi-line, using with assembler directives 111
common block (call frame information) 30
common blocks, CFI directivesfor. 113
common block, defining 31
COMPLEMENT (CFl operator). 116
computer style, typographic convention 12
conditional assembly directives 92

See also C-style preprocessor directives
conditional code and strings, listing 101
constants

defaultbaseof 110

INEEEET v v ettt ettt e e e 20
conventions, used in thisguide 12
copyright noticeot 2
_ _CORE__ (predefined symbol). 24
--core (assembleroption), 44
core, Specifying (--Core)o.vuiinnenenan.. 44
CRC, inassembler listfile 27
cross-references, in assembler list file

generating (LSTXRF) 103

generating (1) 53
current time/date (assembler operator) 74
C-style preprocessor directives. 103
C++terminology.o in i 12
-D (assembler option) 44
data allocation directives.oovuvuernen.n. 108
data block (call frame information). 30
data blocks, CFI directives for 115
data definition directives. 108
data field, in assembler listfile. 27
data model, specifying (--data_model) 45
_ DATA_MODEL__ (predefined symbol) 24

Index °

--data_model (assembler option). 45
_ DATE__ (predefined symbol). 24
DATE (assembler operator)c..... 74
DB (assembler directive) 108
DCS8 (assembler directive) 108
DCI16 (assembler directive) 108
DC24 (assembler directive) 108
DC32 (assembler directive) 108
DD (assembler directive) 108
--debug (assembler option) 46
debug information, including in assembler output 46
default base, forconstants. 110
#define (assembler directive) 104
DEFINE (assembler directive) 91
defining acommonblock 31
defining anamesblock.......... 30
--dependencies (assembler option) 46
DF32 (assembler directive). 108
DF64 (assembler directive). 109
diagnostic MeSSAZES .« .« oot e 125

classifying aserrors 47

classifyingasremarks 48

classifying as warnings 49

disabling warnings., 56

disabling wrapping of 57

enablingremarks L L. 59

listingall 49

SUPPIESSING . vttt et e e 48
--diagnostics_tables (assembler option) 49
diag_default (pragma directive) 121
--diag_error (assembler option). 47
diag_error (pragma directive) 122
--diag_remark (assembler option). 48
diag_remark (#pragma directive) 122
--diag_suppress (assembler option). 48
diag_suppress (pragma directive) 123
--diag_warning (assembler option) 49
diag_warning (pragma directive) 123

directives. See assembler directives

129

130

--dir_first (assembler option), 50

disclaimer.o i e 2
DIV (CFLOperator) vcvve et eeeeeeeeae 117
division (assembler operator) 68
DLIB

naming Convention.ouuuenenen... 13
document conventionsiiieaa... 12
DP (assembler directive)., 108
DS (assembler directive)., 109
DSB8 (assembler directive). 109
DS16 (assembler directive). 109
DS24 (assembler directive). 109
DS32 (assembler directive). 109
DW (assembler directive) 108
edition, of thisguide i, 2
efficient coding techniques. 28
#elif (assembler directive). 104
#else (assembler directive), 104
END (assembler directive) 83
#endif (assembler directive) 104
ENDM (assembler directive) 95
ENDMAC (assembler directive). 95
ENDR (assembler directive). 95
environment variables

assembler. 18

IASMRLT78 .. o 18

IASMRL78_INC 18
EQ (CFIoperator).oovve v i 117
EQU (assembler directive)coo.... 91
equal (assembler Operator)ueninenan.. 69
#error (assembler directive) 104
CITOT MESSAZES + « v v v e ve et e e et et e e e eneens 125

classifyingt 47

#error, using todisplay 106
--error_limit (assembler option) 50
EVEN (assembler directive) 88

IAR Assembler User Guide
for RL78

EXITM (assembler directive) 95
experience, programmingeueuennenenen.. 11
EXPORT (assembler directive). 86
EXPIESSIONS & ¢ o v oe et ettt e e 20
extended command line file

forassembler............... 51
extended command line file (extend.xcl) 40, 50
EXTERN (assembler directive) 86
EXTWEAK (assembler directive) 86
-f (assembleroption)., 40, 50
--f (assembleroption) 51
false value, in assembler expressions 22
fatal error messagesttt 126
__FILE__ (predefined symbol). 24
file dependencies, tracking 46
file extensions. See filename extensions
file types

extended commandline...................... 40, 50

#include, specifyingpath. 52
filename extensions

XCl o 40, 50
filenames, specifying for assembler object file.......... 57
first byte (assembler operator) 73
floating-point constants.ouerernenan.. 21
formats

assembler sourcecode 19

diagnostic MeSSages. . . v vt v vv e 125

inlistfiles, 27
fourth byte (assembler operator) 74
FRAME (CFLoperator).vveinieeneennnnn 118
function directivescoiiiiiiiiia.. 112
GE (CFLOperator).o oot 117

--generate_far_runtime_library_calls

(assembler Option)t 52
global value, defining 92
greater than or equal (assembler operator) 70
greater than (assembler operator) 70
GT (CFLoperator).vuee et 117
header files, SFR. 28
--header_context (assembler option). 52
high byte (assembler operator) 75
high word (assembler operator) 75
HIGH (assembler operator).c.cuvnnn.. 75
HWRD (assembler operator) 75
- (assembler option).ot 52
IAR Technical Support.coviiiinon... 126
_ IAR_SYSTEMS_ASM__ (predefined symbol). 24
_ IASMRL78__ (predefined symbol) 23
IASMRL78 (environment variable) 18
IASMRL78_INC (environment variable) 18
icons

inthisguide i i 13
#if (assembler directive), 104
IF (CFLOperator).oovvvnt e 118
#ifdef (assembler directive) 104
#ifndef (assembler directive) 104
IMPORT (assembler directive).ouuun... 86
#include files, specifying 52
#include (assembler directive) 104
include paths, specifying. 52
inline coding, using macros 99
installation directory 12
INtEEEr CONSLANtSottt 20
internal error. 126
INVOCALION SYNEAX . . oo ettt et e e e e 17

Index °

italic style, inthisguide 12-13
-1 (assembleroption).viiiii . 53
labels. See assembler labels
LE (CFLOperator)vovuve e i eeeennn 117
less than or equal (assembler operator). 69
less than (assembler operator). 69
LIBRARY (assembler directive). 82
lightbulb icon, in this guide. 13
__LINE__ (predefined symbol) 24
#line (assembler directive) 104
linker options
typographic convention 13
listfileformat. i, 27
DoAY, . ot 27
CRC. . 27
header ... 27

symbol and cross reference
list files

control directives for 100

generating (-1) 53
LITERAL (CFIoperator)ovvveenenennnnn.. 116
LOAD (CFLOperator)o ove e e ieee e 118
local value, defining, 92
LOCAL (assembler directive). 95
logical AND (assembler operator) 70
logical exclusive OR (assembler operator) 78
logical NOT (assembler operator). 72
logical OR (assembler operator) 72
logical shift left (assembler operator) 72
logical shift right (assembler operator) 73
low byte (assembler operator). 75
low word (assembler operator) 75
LOW (assembler operator)covuenn.... 75
LSHIFT (CFLoperator).ouuvenenennnnnn. 117
LSTCND (assembler directive).coouvun... 100
LSTCOD (assembler directive).ovuvun... 100

131

132

LSTEXP (assembler directives) 100

LSTMAC (assembler directive) 100
LSTOUT (assembler directive). 100
LSTPAGE (assembler directive). 101
LSTREP (assembler directive) 101
LSTXRF (assembler directive). 101
LT (CFLOPerator)o vv et eeeeeae e 117
LWRD (assembler operator).cocuennn.. 75
-M (assembler option). vt 54
macro processing directivesc..oe.... 94
macro quote characters, 97
SPeCifyingt 54
MACRO (assembler directive) 95
macros. See assembler macros
--macro_positions_in_diagnostics (compiler option) 54
MEeMmory, reserving Space inoeuen... 108
message (pragma directive), 123
messages, excluding from standard output stream 60
--mnem_first (assembler option). 55
MOD (CFLOperator).o v v eaeeenenn. 117
module consistency.ot 84
module control directives 83
modules, beginning. i 84
MUL (CFLoperator)c..veve e, 117
multiplication (assembler operator) 66
NAME (assembler directive) 83
names block (call frame information)................. 30
names blocks, CFI directivesfor. 112
names block, defining. 30
Naming CONVENHONS vv vttt e 13
NE (CFLoperator).ovvvuvinieie i 117
not equal (assembler operator) 69
NOT (CFLoperator)ouuenenenenennnn.. 117

IAR Assembler User Guide
for RL78

--no_bom (assembleroption) 55
--no_core_rt_attribute (assembler option). 55
--no_path_in_file_macros (assembler option). 56
--no_runtime_attributes (assembler option) 56
--no_system_include (assembler option). 56
--no_warnings (assembler option). 56
--no_wrap_diagnostics (assembler option) 57
-0 (assembler option) i 42
ODD (assembler directive)ot n. .. 88
--only_stdout (assembler option) 57
operands

formatof 19

in assembler expressions, 20
operations, formatof............. 19
operation, silent 60
operators. See assembler operators
OPLION SUMMATY . .\ vt vt ittt et e e e e 41
OR (CFIOoperator).vovvve e eeeens 117
--output (assembleroption). 57
OVERLAY (assembler directive).................... 86
PAGE (assembler directive) 101
PAGSIZ (assembler directive) 101
parameters

specifying 40

typographic convention 12
part number, of this guide 2
#pragma (assembler directive) 104, 121
precedence, of assembler operators. 63
predefined register symbols 23
predefined symbols. L oLt 23

in assembler macros. ool 98
--predef_macros (assembler option) 58
--preinclude (assembler option) 58

--preprocess (assembler option) 58
preprocessor symbols
defining and undefining. 104
defining on command line 44
prerequisites (programming experience). 11
program location counter (PLC) 23
program modules, beginning. 84
PROGRAM (assembler directive) 83
programming experience, required 11
programming hints L oL, 28
PUBLIC (assembler directive) 86
publication date, of this guide. 2
PUBWEAK (assembler directive) 86
-r (assembler option). 42
RADIX (assembler directive)ovenen... 110
reference information, typographic convention. 13
registered trademarks L L oL, 2
TEZISIEIS v ottt e et e e e e 23
relocatable eXpressionsoui i 25
remark (diagnostic message).o, .. 125
classifyingt 48
enabling. 59
--remarks (assembler option) 59
repeating Statementsov vttt 98
REPT (assembler directive) 95
REPTC (assembler directive) 95
REPTI (assembler directive). 95
REQUIRE (assembler directive). 86
resources, CFI directives for tracking 116
RSEG (assembler directive) 88
RSHIFTA (CFIoperator)c..vuevtvennenen.. 117
RSHIFTL (CFloperator)c.couvueeuenen.. 117
RTMODEL (assembler directive). 84
rules, in CFl directives 33
runtime model attributes, declaring. 84

Index °

S

second byte (assembler operator) 73
SECTION (assembler directive) 89
sections

aligning i 89

beginning.ttt 89
SECTION_TYPE (assembler directive) 89
segment begin (assembler operator) 76
segment control directives, 87
segment end (assembler operator). 76
segment size (assembler operator) 77
SET (assembler directive).ccovirinn... 91
severity level, of diagnostic messages. 125

Specifying 126
SFB (assembler operator)c.couvuin... 76
SFE (assembler operator)coovieinin... 76
SFR. See special function registers
--silent (assembler option), 60
silent operation, specifying......................... 60
simple rules, in CFl directives 33
SIZEOF (assembler operator)c..c.ouvunn.. 77
source files

including o i 105

listallreferred, 52
source format, assembler 19
source line numbers, changing 107
--source_encoding (assembler option) 60
special function registers.l 28
stack usage analysis, CFI directives for 118
standard error 57
standard output stream, disabling messagesto 60
standard output, specifying. 57
statements, Tepeating.ottt 98
stderr, messages too 57
stdout, direct messages toi i 57
SUB (CFLoperator)c.covuviiinenenen... 117
subtraction (assembler operator). 68
__SUBVERSION__ (predefined symbol) 24

133

134

Support, Technical 126
symbol and cross-reference table, in assembler list file .. .27
See also Include cross-reference

symbol control directives 85
symbols

See also assembler symbols

exporting to other modules 86

predefined, in assembler 23

predefined, in assembler macro 98

user-defined, case sensitive 43
--system_include_dir (assembler option) 60
Technical Support, IAR 126
temporary values, defining 91
terminology.ot 12
--text_out (assembleroption) 61
third byte (assembler operator) 74
__TIME__ (predefined symbol) 24
time-criticalcode il 99
tools icon,inthisguide.............. 13
trademarks 2
true value, in assembler expressions. 22
typographic conventions.c.oiuina.... 12
UGT (assembler operator)c.oouvuuennn. 78
ULT (assembler operator).c.ocovuvuvunen.n. 78
UMINUS (CFIoperator).covueninvnnnnnn.. 117
unary minus (assembler operator). 67
unary plus (assembler operator) 67
#undef (assembler directive). 104
unsigned greater than (assembler operator). 78
unsigned less than (assembler operator) 78
UPPER (assembler operator) 78
user symbols, case sensitive 43
_ USE_FAR_RT_CALLS__ (predefined symbol). 24

IAR Assembler User Guide
for RL78

--use_unix_directory_separators (compiler option). 61
--utf8_text_in (assembler option) 62
value assignment directives 90
values, defining. 108
VAR (assembler directive) 91
__VER__ (predefined symbol)...................... 24
version
ofassembler. i 24
ofthisguide. i 2
WAIDINZS « ¢ . o e ettt e e e 125
classifying 49
disabling 56
eXItCode. . oot 62
treating as eITorsS oo vv vttt e 62
warnings icon, inthisguide 13
--warnings_affect_exit_code (assembler option) 19, 62
--warnings_are_errors (assembler option). 62
xcl (filename extension) 40, 50
XOR (assembler operator)iiiiaan.. 78
XOR (CFLOperator)ouvuninneeiaeennn 117

Symbols

_args (assembler directive) 95
_args (predefined macrosymbol) 98
__BUILD_NUMBER___ (predefined symbol) 23
__CODE_MODEL__ (predefined symbol). 24
__CORE__ (predefined symbol). 24
_ DATA_MODEL__ (predefined symbol) 24
__DATE__ (predefined symbol). 24

__FILE__ (predefined symbol). 24
_ IAR_SYSTEMS_ASM__ (predefined symbol) 24
_ IASMRL78__ (predefined symbol) 23
_ LINE__ (predefined symbol) 24
_ SUBVERSION___ (predefined symbol) 24
_ _TIME__ (predefined symbol) 24
__USE_FAR_RT_CALLS__ (predefined symbol). 24
__VER__ (predefined symbol)...................... 24
- (assembler operator). 67-68
-D (assembleroption) i 44
-f (assembleroption). 40, 50
-I (assembler option).t 52
-1 (assembleroption). 53
-M (assembler Option).ttt 54
-0 (assembler option)i i 42
-1 (assembler option). 42
--case_insensitive (assembler option) 43
--code_model (assembler option) 43
--core (assembleroption), 44
--data_model (assembler option). 45
--debug (assembleroption) 46
--dependencies (assembler option) 46
--diagnostics_tables (assembler option) 49
--diag_error (assembler option). 47
--diag_remark (assembler option). 48
--diag_suppress (assembler option). 48
--diag_warning (assembler option) 49
--dir_first (assembler option) 50
--error_limit (assembler option) 50
--f (assembleroption) 51
--generate_far_runtime_library_calls

(assembler Option)t 52
--header_context (assembler option). 52
--macro_positions_in_diagnostics (compiler option) 54
--mnem_first (assembler option). 55
--no_bom (assembleroption) 55
--no_core_rt_attribute (assembler option). 55
--no_path_in_file_macros (assembler option). 56
--no_runtime_attributes (assembler option) 56
--no_system_include (assembler option). 56

Index °

--no_warnings (assembler option). 56
--no_wrap_diagnostics (assembler option) 57
--only_stdout (assembler option) 57
--output (assembler option). L 57
--predef_macros (assembler option) 58
--preinclude (assembler option) 58
--preprocess (assembler option) 58
--remarks (assembler option) 59
--silent (assembler option) 60
--source_encoding (assembler option) 60
--system_include_dir (assembler option) 60
--text_out (assembleroption) 61
--use_unix_directory_separators (compiler option). 61
--utf8_text_in (assembler option) 62
--warnings_affect_exit_code (assembler option) 19, 62
--warnings_are_errors (assembler option). 62
! (assembler operator). 72
I=(assembler operator)., 69
?7: (assembler Operator) i 68
() (assembler Operator)cueuenenenannnnenn 66
* (assembler Operator)t 66
/ (assembler operator) 68
/*...*%[(assembler directive). 110
// (assembler directive) 110
& (assembler Operator)o vt iin i 71
&& (assembler operator) 70
#define (assembler directive) 104
#elif (assembler directive). 104
#else (assembler directive) 104
#endif (assembler directive) 104
#error (assembler directive) 104
#if (assembler directive) 104
#ifdef (assembler directive) 104
#ifndef (assembler directive) 104
#include files, specifying 52
#include (assembler directive) 104
#line (assembler directive) 104
#pragma (assembler directive) 104, 121
#undef (assembler directive). 104

135

136

A (assembler Operator).o vttt 71

+ (assembler Operator)iuiiiiienenan.. 67
< (assembler Operator)ouviiinenenan.. 69
<< (assembler Operator)veuiienenan.. 72
<= (assembler Operator)veuiienenan.. 69
<> (assembler Operator)ouiiiiienenan.. 69
= (assemblerdirective), 91
= (assembler Operator)ouiiiinenenan.. 69
== (assembler Operator)eueienenan.. 69
> (assembler Operator)o.iuiiinenenan.. 70
>= (assembler Operator)iiiiieninan.. 70
>> (assembler Operator)vuiiiin . 73
| (assembler operator) 71
Il (assembler operator).t 72
~ (assembler Operator) 71
$ (program location counter). 23

IAR Assembler User Guide
for RL78

	Contents
	Tables
	Preface
	Who should read this guide
	How to use this guide
	What this guide contains
	Document conventions
	Typographic conventions
	Naming conventions

	Introduction to the IAR Assembler for RL78
	Introduction to assembler programming
	Getting started

	Modular programming
	External interface details
	Assembler invocation syntax
	Passing options
	Environment variables
	Error return codes

	Source format
	Assembler instructions
	Expressions, operands, and operators
	Integer constants
	ASCII character constants
	Floating-point constants
	True and false
	Symbols
	Labels
	Program location counter (PLC)

	Register symbols
	Predefined symbols
	Including symbol values in code
	Testing symbols for conditional assembly

	Absolute and relocatable expressions
	Expression restrictions
	No forward
	No external
	Absolute
	Fixed

	List file format
	Header
	Body
	Summary
	Symbol and cross-reference table

	Programming hints
	Accessing special function registers
	Using C-style preprocessor directives

	Tracking call frame usage
	Call frame information overview
	Call frame information in more detail
	Defining a names block
	Defining a common block
	Annotating your source code within a data block
	Specifying rules for tracking resources and the stack depth
	Rules for tracking resources
	Rules for tracking the stack depth (CFAs)

	Using CFI expressions for tracking complex cases
	Stack usage analysis directives
	Examples of using CFI directives
	Defining the names block
	Defining the common block
	Annotating your source code within a data block

	Assembler options
	Using command line assembler options
	Specifying command line options
	Specifying parameters
	Extended command line file

	Summary of assembler options
	Description of assembler options
	--case_insensitive
	Syntax
	Description
	Example
	See also

	--code_model
	Syntax
	Parameters
	Description
	See also

	--core
	Syntax
	Parameters
	Description

	-D
	Syntax
	Parameters
	Description
	Example

	--data_model
	Syntax
	Parameters
	Description
	See also

	--debug, -r
	Syntax
	Description

	--dependencies
	Syntax
	Parameters
	Description
	Example

	--diag_error
	Syntax
	Parameters
	Description
	Example

	--diag_remark
	Syntax
	Parameters
	Description
	Example

	--diag_suppress
	Syntax
	Parameters
	Description
	Example

	--diag_warning
	Syntax
	Parameters
	Description
	Example

	--diagnostics_tables
	Syntax
	Parameters
	Description
	Example

	--dir_first
	Syntax
	Description

	--error_limit
	Syntax
	Parameters
	Description

	-f
	Syntax
	Parameters
	Description
	Example
	See also

	--f
	Syntax
	Parameters
	Description
	See also

	--generate_far_runtime_library_calls
	Syntax
	Description

	--header_context
	Syntax
	Description

	-I
	Syntax
	Parameters
	Description
	Example

	-l
	Syntax
	Parameters
	Description
	Example

	-M
	Syntax
	Parameters
	Description
	Example

	--macro_positions_in_diagnostics
	Syntax
	Description

	--mnem_first
	Syntax
	Description

	--no_bom
	Syntax
	Description
	See also

	--no_core_rt_attribute
	Syntax
	Description

	--no_path_in_file_macros
	Syntax
	Description

	--no_runtime_attributes
	Syntax
	Description

	--no_system_include
	Syntax
	Description

	--no_warnings
	Syntax
	Description

	--no_wrap_diagnostics
	Syntax
	Description

	--only_stdout
	Syntax
	Description

	--output, -o
	Syntax
	Parameters
	Description

	--predef_macros
	Syntax
	Parameters
	Description

	--preinclude
	Syntax
	Parameters
	Description

	--preprocess
	Syntax
	Parameters
	Description
	Example

	--remarks
	Syntax
	Description
	See also

	--silent
	Syntax
	Description

	--source_encoding
	Syntax
	Parameters
	Description
	See also

	--system_include_dir
	Syntax
	Parameters
	Description

	--text_out
	Syntax
	Parameters
	Description
	See also

	--use_unix_directory_separators
	Syntax
	Description

	--utf8_text_in
	Syntax
	Description
	See also

	--warnings_affect_exit_code
	Syntax
	Description

	--warnings_are_errors
	Syntax
	Description
	See also

	Assembler operators
	Precedence of assembler operators
	Summary of assembler operators
	Parenthesis operator
	Function operators
	Unary operators
	Multiplicative arithmetic operators
	Additive arithmetic operators
	Shift operators
	Comparison operators
	Equivalence operators
	Logical operators
	Conditional operator

	Description of assembler operators
	() Parenthesis
	Precedence
	Description
	Example

	* Multiplication
	Precedence
	Description
	Example

	+ Unary plus
	Precedence
	Description
	Example

	+ Addition
	Precedence
	Description
	Example

	– Unary minus
	Precedence
	Description
	Example

	– Subtraction
	Precedence
	Description
	Example

	/ Division
	Precedence
	Description
	Example

	? : Conditional operator
	Syntax
	Precedence
	Description
	Example

	< Less than
	Precedence
	Description
	Example

	<= Less than or equal
	Precedence
	Description
	Example

	<>, != Not equal
	Precedence
	Description
	Example

	=, == Equal
	Precedence
	Description
	Example

	> Greater than
	Precedence
	Description
	Example

	>= Greater than or equal
	Precedence
	Description
	Example

	&& Logical AND
	Precedence
	Description
	Example

	& Bitwise AND
	Precedence
	Description
	Example

	~ Bitwise NOT
	Precedence
	Description
	Example

	| Bitwise OR
	Precedence
	Description
	Example

	^ Bitwise exclusive OR
	Precedence
	Description
	Example

	% Modulo
	Precedence
	Description
	Example

	! Logical NOT
	Precedence
	Description
	Example

	|| Logical OR
	Precedence
	Description
	Example

	<< Logical shift left
	Precedence
	Description
	Example

	>> Logical shift right
	Precedence
	Description
	Example

	BYTE1 First byte
	Precedence
	Description
	Example

	BYTE2 Second byte
	Precedence
	Description
	Example

	BYTE3 Third byte
	Precedence
	Description
	Example

	BYTE4 Fourth byte
	Precedence
	Description
	Example

	DATE Current time/date
	Precedence
	Description
	Example

	HIGH High byte
	Precedence
	Description
	Example

	HWRD High word
	Precedence
	Description
	Example

	LOW Low byte
	Precedence
	Description
	Example

	LWRD Low word
	Precedence
	Description
	Example

	SFB section begin
	Syntax
	Precedence
	Parameters
	Description
	Example

	SFE section end ()
	Syntax
	Precedence
	Parameters
	Description
	Example

	SIZEOF section size ()
	Syntax
	Precedence
	Parameters
	Description
	Example

	UGT Unsigned greater than
	Precedence
	Description
	Example

	ULT Unsigned less than
	Precedence
	Description
	Example

	UPPER Third byte
	Precedence
	Description
	Example

	XOR Logical exclusive OR
	Precedence
	Description
	Example

	Assembler directives
	Summary of assembler directives
	Description of assembler directives
	Module control directives
	Syntax
	Parameters
	Description
	Beginning a program module
	Beginning a module
	Terminating the source file
	Declaring runtime model attributes

	Symbol control directives
	Syntax
	Parameters
	Description
	Exporting symbols to other modules
	Exporting symbols with multiple definitions to other modules
	Importing symbols
	Example

	Section control directives
	Syntax
	Parameters
	Description
	Beginning a named absolute section
	Beginning a relocatable section
	Aligning a section

	Value assignment directives
	Syntax
	Parameters
	Operand modifiers
	Description
	Defining a temporary value
	Defining a permanent local value
	Defining a permanent global value

	Conditional assembly directives
	Syntax
	Parameters
	Description
	Example

	Macro processing directives
	Syntax
	Parameters
	Description
	Defining a macro
	Passing special characters
	Predefined macro symbols
	Repeating statements
	Coding inline for efficiency

	Listing control directives
	Syntax
	Description
	Turning the listing on or off
	Listing conditional code and strings
	Controlling the listing of macros
	Controlling the listing of generated lines
	Generating a cross-reference table

	C-style preprocessor directives
	Syntax
	Parameters
	Description
	Defining and undefining preprocessor symbols
	Conditional preprocessor directives
	Including source files
	Displaying errors
	Changing the source line numbers
	Comments in C-style preprocessor directives

	Data definition or allocation directives
	Syntax
	Parameters
	Description
	Generating a lookup table
	Defining strings
	Reserving space

	Assembler control directives
	Syntax
	Parameters
	Description
	Controlling case sensitivity
	Defining comments
	Changing the base

	Function directives
	Syntax
	Parameters
	Description
	Example
	See also

	Call frame information directives for names blocks
	Syntax
	Parameters
	Description
	Example
	See also

	Call frame information directives for common blocks
	Syntax
	Parameters
	Description
	Example
	See also

	Call frame information directives for data blocks
	Syntax
	Parameters
	Description
	Example
	See also

	Call frame information directives for tracking resources and CFAs
	Syntax
	Parameters
	Unary operators
	Binary operators
	Ternary operators
	Description
	Example
	See also

	Call frame information directives for stack usage analysis
	Syntax
	Parameters
	Description
	See also

	Pragma directives
	Summary of pragma directives
	Descriptions of pragma directives
	diag_default
	Syntax
	Parameters
	Description
	Example
	See also

	diag_error
	Syntax
	Parameters
	Description
	Example
	See also

	diag_remark
	Syntax
	Parameters
	Description
	Example
	See also

	diag_suppress
	Syntax
	Parameters
	Description
	Example
	See also

	diag_warning
	Syntax
	Parameters
	Description
	Example
	See also

	message
	Syntax
	Parameters
	Description
	Example

	Diagnostics
	Message format
	Severity levels
	Remark
	Warning
	Error
	Fatal error
	Setting the severity level
	Internal error

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Symbols

