g IAR Embedded
Workbench
C-SPY® Debugging Guide

for the Renesas
RL78 Microcontroller Family

UCSRL78_I-4

2

C-SPY® Debugging Guide
for RL78

COPYRIGHT NOTICE
© 2011-2019 IAR Systems AB.

No part of this document may be reproduced without the prior written consent of IAR
Systems AB. The software described in this document is furnished under a license and
may only be used or copied in accordance with the terms of such a license.

DISCLAIMER

The information in this document is subject to change without notice and does not
represent a commitment on any part of [AR Systems. While the information contained
herein is assumed to be accurate, IAR Systems assumes no responsibility for any errors
or omissions.

In no event shall IAR Systems, its employees, its contractors, or the authors of this
document be liable for special, direct, indirect, or consequential damage, losses, costs,
charges, claims, demands, claim for lost profits, fees, or expenses of any nature or kind.

TRADEMARKS

IAR Systems, IAR Embedded Workbench, Embedded Trust, C-Trust, IAR Connect,
C-SPY, C-RUN, C-STAT, IAR Visual State, IAR KickStart Kit, I-jet, I-jet Trace,
I-scope, IAR Academy, IAR, and the logotype of IAR Systems are trademarks or
registered trademarks owned by IAR Systems AB.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

Renesas is a registered trademark of Renesas Electronics Corporation. RL78 is a
trademark of Renesas Electronics Corporation.

Adobe and Acrobat Reader are registered trademarks of Adobe Systems Incorporated.

All other product names are trademarks or registered trademarks of their respective
owners.

EDITION NOTICE
Fourth edition: November 2019

Part number: UCSRL78_I-4

This guide applies to version 4.x of IAR Embedded Workbench® for the Renesas RL78
microcontroller family.

Internal reference: BBS, Mym8.4, IJOA.

Brief contents

TABIES ... 19
Preface ... 21
Part |. Basic debugging ... 27
The IAR C-SPY Debugger ... 29
Getting started using C-SPY ... 41
Executing your application ... 63
Variables and eXpressions ... 99
Breakpoints ... 125
MemOory and reGISTErS ... 153
Part 2. Analyzing your application 193
TIHACE .o 195
The application timeline ... 221
Profiling ... 261
COdE COVEIAEoooee e 271
Power debugging ... e 277
Part 3. Advanced debugging ... 295
INEEITUPTS ..ot 297
C-SPY MACIOS .o sssssesssss s 321

The C-SPY command line utility—cspybat ..., 379

4

C-SPY® Debugging Guide
for RL78

Part 4. Additional reference information ... 397

Debugger OPLIONS ... ssssss s 399
Additional information on C-SPY drivers ..., 407
OCD emulators reserved resources ..., 425
INAEX oo 429

Contents

TADIES ... 19
Preface ... 21
Who should read this guide ... 21
Required KNOWIEAZEccceeeeiiieieieieieieeee e 21
What this guide contains ...,
Part 1. Basic debuggingc.ceceeveeeeiieieieieneneneneneneeseeeee
Part 2. Analyzing your application
Part 3. Advanced debuggingcccceevevievienieninnieeeeeeee e
Part 4. Additional reference informationc.cccecceiiicnininenn 22
Other documentation ... 23
User and reference guidesc..coceeveeeeieeeieiieniencnienencneneeeeeeeene 23
The online help SYSteMccceueieierieiiinienenieneneseseeeeceeeeeeee 23
Web sites
Document CONVENLIONS ..o e 24
Typographic CONVENTIONScceeverrerririerieieiereiene st sreeieeneeneenees 25
Naming CONVENTIONScc.eeueeuirureieieieierierieriesieseesiestesseeseeseeeeeeneeneas 26
Part |. Basic debugging ... 27
The IAR C-SPY Debugger ... 29
Introduction to C-SPY ... 29
An integrated enVIFONMENLc..coeverierireeeeieiererenenene e seereeeene 29
General C-SPY debugger featuresccccooeveverenicneneeeeeeecneenene 30
RTOS aWarenessccoceeeeeeirieieieieieienienenese s 31
Debugger cONCePLs ... 32
C-SPY and target SYSLEIMScc.eeververueeeemieieienienteieienteniesieniesiesiesienne 32
The deDUZZET ...c.eeeiiiiiie et 33
The target SYSIBIMN ...c.ecveereereriririreeiteitetetete et 33
The apPlICAtONoveviiiriieiieiieiieietetete e

C-SPY debugger systems
The ROM-mONItOr Programcccceceeeeveereeeeeerrenenereneneneeeeeenees 34

Third-party debuggers

C-SPY plugin modulescccceeverierieniiniiiieieeieeeseeiee e 34
C-SPY drivers OVErVIeW ... 35
Differences between the C-SPY driverscccccceeeevercvencvenveneeenne. 35
The IAR C-SPY Simulatorccccoooviiiiiiiiecieeceeeeaa 36
The C-SPY hardware debugger drivers ... 37

Features

CIMUIALOTS ...eviiiieeiieiieece ettt te st et e et et e e e eneesaeennes 38

The IECUBE emUlatorccccevveviieeiieieeieeie et 39

Getting started using C-SPY ... 41
Setting UP C-SPY ..o e

Setting up for debugging

Executing from IScceeererirerininieieieeeese e

Using a setup macro file

Selecting a device description filecooeevveviniiniiniiinienieneeen. 42
Loading plugin modulesceceeeeieieieieienenieneneneneneeeeeeeceneen 43
Starting C-SPY ... s 43
Starting a debug SESSIONcccveeiiriiriirieieeeeceeeeeee e 43
Loading executable files built outside of the IDEcccccceeeneeeee 44
Starting a debug session with source files misSingcc.ccceeeeeeeneene 44
Loading multiple debug imagescccccoceevierieneenenneniienienieneene 45
Editing in C-SPY WINAOWS ...cc.coceriririiiieieienienieresienieeeeeceeeeee 45

Hardware configuration when starting for the first time 46
Adapting for target hardware ..., 47
Modifying a device description filec..ceceeeverenenenencniceieienee 47
Initializing target hardware before C-SPY startsccccoceverernennene 47
Reference information on starting C-SPY ... 48
C-SPY Debugger main Windowccccceevererenenieneneneeeeeeeeneens 49
Images window
Get Alternative File dialog DOXccoceeviiviniiniiiniiieiececeeeee 54
Operating Frequency dialog BoXccccccevevenenienieniinienenecieieecene 55
Hardware SELUP ...cc.ooveeveeiriieieieieteetee e 56

C-SPY® Debugging Guide
for RL78

Contents °

Executing your application ... 63

Introduction to application execution ... 63
Briefly about application €XeCutionc.ccceceeveerierieneeneeneeneennes 63
Source and disassembly mode debuggingc..ccccecevverererieieeenne 63
Single stepping
Troubleshooting slow stepping Speedcccccovevverierieneenieeneeneene 67
Running the applicationc..ccccecceceevievieiieniinenencnienencneseeeneeene 68
Highlightingooooveiiniiii e 68
Viewing the call Stackcccccoveeiiiiiiiiiniieeee e 69
Terminal input and OULPULcccecveierieriinienienenenereeeeeeceeeeeeeeene 70
Debug logging

AnalyzZing eXecUtion ... 70
Measuring the execution time (IECUBE)ccccccocnvnnininncncnnne 70

Reference information on application execution 71
Disassembly WINAOWcccoviiriiriiniiiiniereesteeee et 72
Call Stack WindOWccccoiiiiiiiiiiiiiicee 77
Terminal I/O WindOWccoiiiiiiiiiiiiccceeeee e 79
Terminal I/O Log File dialog boXccccevievienieneiniiiiinieniesienene 80
Debug Log WINAOWcoeeiriiiiiiiiiiiiienieneneneseeeeesieeeeeeeeeeene 81
Log File dialog BOXcccoceeiririeieieieicieierenereseseeeee e 82
Report Assert dialog DOXcc.eevueevieriiiriieniinieniieseese e 83
Start/Stop Function Settings dialog boXccccecervevverericieciiciecncnnene 84
Select Label dialog DOXccccevverieierienienienieneneneneeeeenieseeieeeeeeeene 86
Autostep settings dialog BOXeccuervereenieriinenrienie e 87
DMM Function Settings dialog BOXccccoceveveneninencninrneneennne 87
Stub Function Settings dialog bOXcccceceevieievieneniinenenenineeeeene 89
Edit Events dialog BOXccccoeeriiriiiiiinieniecienteseeieeeeee et
Edit Sequencer Events dialog box
Timer Settings dialog DOXcceeceevievieiienininenereeseeeeeeeeen
Cores WINAOWcoiiiiiiiiiiiiiiiii s

Variables and eXpressions ..., 99

Introduction to working with variables and expressions 99

Briefly about working with variables and expressionsc........... 99

C-SPY expressions

Limitations on variable informationcececeevervinvienieiiencnennens 103
Working with variables and expressionsc.cccoccennne. 103
Using the windows related to variables and expressions 104
Viewing assembler variablesc.ccoccevierieninnenienienienieneenens 104

Reference information on working with variables and
expressions

AULO WINAOW ettt 106

Locals WINAOW ...c..coeiiiiiiiiiiiiiieniiiieieereeeeeeee et 108

Watch WINAOWcoveiuiiiiiiiieicicieeeeee et 110

Live Watch WINdOWccccoeviiviiiiiniiniiniininienininccectcee e 112

Statics WINAOW ...covevuiriiiiiiiiiiieieietctereette ettt s 115

Quick Watch WIndOWcooviieiiiiiiiiieiieecee e 118

SymboOIS WINAOWoouviiiiiiiiiiiiieieeicetescee et 121

Resolve Symbol Ambiguity dialog bOXc.cccceeeeeeerivcieciecenenene 123

Breakpointso 125

Introduction to setting and using breakpoints 125
Reasons for using breakpointscoceeceeererereneenienienienienenennens

Briefly about setting breakpoints ..

Breakpoint tyPescc.eeeeeeieiieieieienereneeeeeeeeet ettt
Breakpoint 1CONScceeieieiieiieieienesesieeee ettt
Breakpoints in the C-SPY simulatorccccevveeveineniieeneniencenene 129
Breakpoints in the C-SPY hardware debugger driversc........ 129
Breakpoint consumers 129
Setting breakpoints 130
Various ways to set a breakpointcoceeveveeverereeneeneeneenenenenens 131
Toggling a simple code breakpointcccceceeereenienienienienerenennens 131
Setting breakpoints using the dialog boXc...ccccevvevvieniiiniiinennennns 131
Setting a data breakpoint in the Memory windowc...c.cccceveuee. 132
Setting breakpoints using system macros
Useful breakpoint hintsccocceveriierienienieniieeieeeseeseeneesens
Reference information on breakpoints ... 136
Breakpoints Windowcoceceveieninienininneeeeeee e 137

C-SPY® Debugging Guide
for RL78

Contents °

Breakpoint Usage window

Code breakpoints dialog DOXccceeverierienieeniiniienienienieeneerieeieenne
Code HW breakpoints dialog box
Event breakpoints dialog bOXcccccevererienenieneneenieieienenenenene
Log breakpoints dialog DOXc.coverviervierienieniinieeierieseeseenieenene
Data breakpoints dialog bOXcccceveeieinirininiiieieieienenenenee
Data Log breakpoints dialog box ..

Immediate breakpoints dialog box

Enter Location dialog boXcccceevuieieinieinenieieicieienienenenene
Resolve Source Ambiguity dialog bOXceceeveveeievienienenenenennene 150
Memory and FEGISTErS ... 153
Introduction to monitoring memory and registers 153

Briefly about monitoring memory and registers

C-SPY MEMOIY ZOMEServevermeereemieietereneenreeseeseeseeseensessensenseseeseenne
Memory configuration for the C-SPY simulatorc.ccocceceeeeneee
Monitoring memory and registers ...
Defining application-specific register groupscoccecevvererreeruennene
Monitoring Stack USAZEevververueeuieieieieieiesieeie ettt
Reference information on memory and registers
MEMOTY WINAOWeoviniiiiiieiiiiiieieieneneseseeeieeie ettt
Data Flash Memory Windowccccccevereneneneeeeienieneenieneeneeneens
Data Flash dialog BOXcocceeviiniiiiiiiiiiiiniceeccceeeeste e
Memory Save dialog DOXccccceevievieviineniininenereneeee e
Memory Restore dialog box
Fill dialog DOX .c.eeeiiiiiieiietecceeeeeeteee e
Symbolic Memory WindOWcccceeeeeerineneneeieieieienenenienenee
Stack WINAOW ..cc.oruiriiiiiiiiiieieieteeeeeet ettt s
RegiSters WINAOWcoc.evieriiiniieniieieeieeienteeeeseeeteeeeee st
Register User Groups Setup Windowc..cocceevereneneeeeneeneeneennens
SFR Setup window
Edit SFR dialog DOXoocviriiiiiiiieiiiieeieteeeceeee et
Memory Access Setup dialog BOXccceeevererererenienienieneneneneens
Edit Memory Access dialog DOXccccocevererirenienienieieieseneniene

Introduction to using trace ...
Reasons for USING traCecccceveruieuieieieieienienie et

Briefly about tracecccoevivinieieiiiiiiieicicencecceeecene

Requirements for using trace

Collecting and using trace dataccocoooiicn 197
Getting started With traCeccoceervieriinienenieierieeeeeseeseeeee 197
Trace data collection using breakpointsc.cceceeverereeeeeenenuennens 197
Trace data collection USINg EVENtsc.cceveeruervevenreerennennerennenes 198
Searching in trace datacoccevceerierienienenicee et 198
Browsing through trace datac..coceceevveneneneninnncnecieeee 199
Reference information on trace ..o 199
Trace Settings dialog box for IECUBEcccccociviininiiiniinceene 200
Trace Settings dialog box for E1, E2, E2 Lite/E2 On-Board, and
EZ-CUBE2 ...ttt
Snap Shot Function Settings dialog box
Trace WINAOW ...cc.ooviviiiiiiiieiiiciceseseseneeeeeee ettt
Function Trace WindOWcccoceeieirieiienienienene et
Trace Start breakpoints dialog bOXcccceevvevieieiieniinienieneenene
Trace Stop breakpoints dialog DOXc..ccceeverererieiienieiencncncnennens
Trace EXpressions WindoWccccceverereneneneneentenieneenienieniennens
Find in Trace dialog box
Find in Trace dialog box (IECUBE)cccccceoinininininiiicienenene
Find in Trace Windowccccocuevievienienienenineneeeee ettt
Trace Save dialog DOXcoveveiriiriiriiinierieeeeeeeeest e
The application timeline ... 221
Introduction to analyzing your application’s timeline 221
Briefly about analyzing the timeline
Requirements for timeling SUPPOItccceeevvererereriinnienieienienienaens
Analyzing your application’s timeline ..., 223
Displaying a graph in the Timeline windowcc.cccceceevvenenenennne 224

C-SPY® Debugging Guide
for RL78

Contents °

Navigating in the graphs

Analyzing performance using the graph datac..ccceceecvenienennns 225
Getting started using data l0ggINGcccccoevvevinininrininenierereenn 226
Getting started using data SAMPINGcceovevvererereneeieieienenenene 227
Getting started using Smart Analog (event 10gging)cccceceevueene 227
Reference information on application timeline 229

Timeline window—Call Stack graph
Timeline window—Data Log graph

Data Log WINAOW ..c..coeiiiiiiiiiiiiiiiiiierceeeeeeeeererete e
Data Log Summary Windowcccccccevevenieneneneneenieieneeneneneneens
Sampled Graphs WiNAOWc.cecverierienienenienenieeteneeseeseeeieenne
Data Sample Setup WindOWccccoevenenininineeiieeeieienrenenenenae
Data Sample WindOwccccoeviivieiininienieninineneeeeeeeeeeseeeeeene
Timeline window—Events graphccccoeceviiniinenienneniencenene
Event Log WinAOWcccocueiiniiniiniiniiniinieieeteieteecvese e

Event Log Summary WindoWccccceverienenenenenienieneerieneneneens

Viewing Range dialog DOXc.ccoocverieriiniiniiniiiiecieeesteseesceene
Profiling ... 261

Introduction to the profiler

Reasons for using the profilerccccoeeieieiieiienenininicneneeeeene
Briefly about the profilerccccocevieieiieiieiinineneneeeeeeeeene
Requirements for using the profilerc.cccevvenienienenncnnennene
Using the profiler ...
Getting started using the profiler on function level
Analyzing the profiling datacccccceevveiiiviininiiniininieiciencienee
Getting started using the profiler on instruction level 265
Reference information on the profiler ... 266
Function Profiler Windowcccceveveninininiininiciiieicienenien 266
COdE COVEIAEoooie e 271
Introduction to code coverageccoovrniniinicninnennns 271
Reasons for using code COVETageeceeveieveevieneneneneneneeieneens 271
Briefly about code COVETagececeeeeieieiienienieneneneeeeieneeieeens 271
Requirements and restrictions for using code coverage 271

Using code coverage ... 272

Getting started using cOde COVETAZEceevuerveruereenieeneenieerienieenne 272
Reference information on code coveragecccocovurnne. 272
Code Coverage WindOWc.cccceveerierienieneineninenieneeeeieeeeeeeeeenne 273
Power debugging ... 277
Introduction to power debugging ...
Reasons for using power debugging
Briefly about power debuggingcocceevenerenenenrneneeieieeeanee
Requirements and restrictions for power debuggingccccceueuene 278
Optimizing your source code for power consumption 278
Waiting for device StatUsccceceeeeueeieieieienieneneneneeeeeeeeeeene 279
SOftWare delaysc.cceeeeeieieniinieieereee e e
DMA versus polled I/0
Low-power mode diagnostiCsccuevuevuerierierenenieneneneeeeeeeeneens 280
CPU fIEQUENCY ..eouveuieiiieienienieeieeiteteteie sttt ettt ettt see e 280
Detecting mistakenly unattended peripheralsccoccovceevieneennen. 280
Peripheral units in an event-driven SyStemccccecevvererereeeenene 281
Finding conflicting hardware Setupsccccevvevererenenreeierenieneens 282
Analog interference
Debugging in the power domain ... 283
Displaying a power profile and analyzing the resultcccecnee. 283
Detecting unexpected power usage during application execution ...284
Changing the graph reSOlUtionccccecueveiriereninrenenieeeieenenene 284
Reference information on power debugging 285
Power Log Setup WindOWcocooouerieniinienienieeieeie et 285
Power Log WINdOWcoeeiiieiiieiiniineneneneeeeecteteeeeesee e 287
Timeline window—Power graphc.cccoeovenininencenencennes 290
Part 3. Advanced debugging ... 295
INEEITUPTS ..ot 297
Introduction to interrupts ... 297
Briefly about the interrupt simulation Systemc..c..cccceceeveeuenenne. 297

C-SPY® Debugging Guide
for RL78

Contents °

Interrupt characterisSticseeereeieieierieieienere et 298
Interrupt SIMUlation SLAtEScceveerierieerieeriirieeierre et 299
C-SPY system macros for interrupt simulationc..cecceceeeeeenee. 300
Target-adapting the interrupt simulation Systemcc.cccceveruennene 301
Briefly about interrupt 10ZgIngccceeveevirnieriienienieneeneeieeiene 301
Using the interrupt system ...
Simulating a simple interrupt
Simulating an interrupt in a multi-task systemcccceceeenenenne 303
Getting started using interrupt logingcc.ceceevvevveveverrenenenienenne 304
Reference information on interrupts ... 304
Interrupt Setup dialog BOXcoveeviiiiiiiiiiniiiiiieeeeeeeeeee 305
Edit Interrupt dialog boXc.ccoceviriiieiiiniiniiinineneeeeeceeene 307
Forced Interrupt Windowccceeverenenenininecieieeeeeneneneneene 308
Interrupt Status WIndOWc.oovveriiriirienienieieneeste e 309

Interrupt Log window

Interrupt Log Summary windowc..cecceceverereneenienenenencnennens 314
Timeline window—Interrupt Log graphccccoecevveriincieniieneenen. 316
C-SPY MACIOS .o 321
Introduction to C-SPY macrosccoenencncnennennnns 321
Reasons for using C-SPY mMacroscccceceevevvevienenenenienenneeniennens 321
Briefly about using C-SPY mMacrosccceceeeeevierenenenienenneenienens 322
Briefly about setup macro functions and filesc..cccoccevvenenennne 322
Briefly about the macro 1anguagecccceevvenereniinieenecncncnennene
Using C-SPY MaACros ..o
Registering C-SPY macros—an overview ...
Executing C-SPY macros—an OVEIrVIeWc..cecceveeereeeereeneenuennens
Registering and executing using setup macros and setup files 325
Executing macros using Quick Watchcocceeviviiniinieniiencenen. 325
Executing a macro by connecting it to a breakpointc..c.cceueuee. 326
Aborting a C-SPY MACIO ...cceeueriiruieiiiieieieeseeeseetet e 327
Reference information on the macro language 328
MaCro fUNCHONScouiiiiiiiiiciieicec e 328

Macro variables

14

C-SPY® Debugging Guide
for RL78

Macro parameters
MACTO SLIINES ..veeieiieiieieeeeteee ettt ettt st saee st e e e e ens

Macro statements

Formatted output

Reference information on reserved setup macro function

execUserExecutionStartedcccocevieniinininiininiiniiinienicnencnennen 334
execUserExecutionStopped.cccceeverenenenicnenecnieieecnencnennene 334
EXECUSETSELUP ..uviviviiieiieiieiieiete ettt ettt 334
eXeCUSEIPIeRESetcceeuiiiiiiiiiiiiiiiiiccccc 335
EXECUSETRESEL ...t 335
EXECUSETEXIL .uveiiiieiieiieicieceesc e 335
Reference information on C-SPY system macros 335
__abortLaunch ... 338
__CaNCEIAIINIETTUPLS ..evevirvierieeieiieiieiieietete sttt 338
__CANCEIINLEITUPL ...oeuviiiiiiiiieeierte et 338

__clearBreak ...

__driverType
__eNabIeINLEeITUPLS ...eoveieiiiietieiieieeiiettet ettt 343
__EVAUALE ..ottt
__fillMemory8
__fillMemory16
__fillMemory32
__8etSelectedCOTec.coevveeuieuieiiiieicieeese ettt 346
__ASBAtCHMOUAEooiieeiieeeeeeeeeee e 347
__10adImagecoooiiiiiiiee e 347

__MEMOTyRESIOTEcooviiiiiiiiiiiiiiiicc 348

__MEMOTYSAVE ..eutiuriitenieenteenteeteeitestesseesseesseenseessesaseseesseenseesseens 349

Contents °

__messageBoxYesCancel ...
__messageBoXYESNOooviiriiiiiieiieeeeee e

__OPENFIIE .o

__OTAETINERITUPE .e.oeneiniiiiiiiieiieteeceeece ettt
__popSimulatorInterruptExecutingStackcccccoverviniiiniiinnnen. 353
_1€AAFIIE ..ot
_readFileByte ...

__readMemory8, __readMemoryByteccccoociviiniiniiniineinenne 354
__1€adMemOTY 16 ...ccocouiviiiiiiiiieicicecce e 355
__1€adMEmOTY32 ...coiiiiiiiiieeiieteeeee et 355
__1eg@iSterMacrOFIlecooiiviiiniiiiiiiiieee e 356
_T@SCLFILE Lot 356
__SCIECLCOTE ..uinvitiviiietietieit ettt 357
__8etCodeBreak ..ot 357
__SetCOdeHWBIeakccccoceviririiiiiiiiieienenenencreccceeecienane 358
__SetDataBreakcocvevieiiieniiin e 358
__setDatalLogBreakcocccoveiiiiiiniiee e 360
__setLogBreak ...

_SEESIMBIEAK ...t
__setTraceStartBreakccccoceviiviiniinininiiinicicieicncnencee 363
__SetTraceStopBreakcccecvevieviiviineninininicececteececcsceee 364
—_SOUICEPOSITION ..veiiieeviiiiiiiiie ettt et eae e e enas 365
_SEFINA L
__subString

__targetDebug@erVersioncccceveveneneneneneneenieieeesieseneens 366
_EOLIOWET it
__EOSHING oottt
EOUPPET ettt et
__unloadImage

U WIIRFILE et
__WIIEFIIEBYLE ..oviiiiiiiiiiiieieieeeeeeee et 369
__writeMemory8, __writeMemoryByteccccccocevviineniiinnennnenne 370
__WIEMEMOTY 16oviiiiieiieiiieicceeeccecectee e 370
__WIIEMEMOTY32 .ottt 371

Graphical environment for macros ... 371

Macro Registration Windowccecveevierienieneenienienreneeseenee e 372
Debugger Macros Windowc..ccceeeeeieieeneeieeeiereeenenenenenne 374
Macro Quicklaunch Windowcccoeevveeiiiiiiieecie e 376
The C-SPY command line utility—cspybat ..., 379
Using C-SPY in batchmode ... 379
Starting cspybat
OULPUL ettt er bbbttt snesn et e e et
Invocation syntax
Summary of C-SPY command line optionsc.c.ccc..c.... 381
General cSpybat OPHONS ..co.eeueeveerierierieieniinienieereeieee ettt seeneenee
Options available for all C-SPY driversc..cccceceeveevienienienenenenne
Options available for the simulator driver
Options available for the C-SPY hardware debugger drivers 383
Reference information on C-SPY command line options ...383
--apPLICAtION_ATES ..covevuiiviiiiiiiiiiieieieteetteee e 383
--attach_to_running_targetccoceveeeeveeiereneeeeieieieeenienieneenienee 384
“DACKEIA ...t

--code_coverage_file

==dEDUGLILE oo
--disable_interrupts ...
-=doWNIoad_ONlY ...coouiiiiiiiiiiiieice e

—=€XEC_AIL ettt

--function_profilingcccceeviveniiniiniininininieieiccieceeenee
--leave_target_TUNMINGc.ccoevverueruereeruenrenriereeieeeereetereeesaesseseeseenee
--live_debug
2210 A€ o

C-SPY® Debugging Guide
16 for RL78

Contents °

--SUPPress_downloadccoceeceevieniiinienie e 394
--suppress_exchange_adaptercocoevererineneeienieneneeiereeenne 395
SmHIINEOUL ettt ettt ettt eb bbbttt estesae e e saeseenaene 395
--verify_download ... 395
Part 4. Additional reference information ... 397
Debugger OPLIONS ... 399
Setting debugger options ..., 399
Reference information on general debugger options 400

SEUUP .ottt ettt

Images

Extra Options

PIUZINS .ottt
Reference information on C-SPY hardware debugger driver
OPLIONS ...t 404
SEUUP .ottt 404
Additional information on C-SPY drivers ..., 407
Reference information on C-SPY driver menus 407
C-SPY AFIVEF ..ottt ereens

Simulator menu

Emulator menu

Reference information on the C-SPY simulator 414
Simulated Frequency dialog bBOXcccceeveeieinirieieieieenenicnene 414

Reference information on the C-SPY hardware debugger

AFIVEES ..ottt
Mask Option Settings dialog BOXcccceeeieieieieiiciiienicnenencnene
Pseudo Emulation dialog BOXccccevieviirienininicncneneneeeeeeieene
Flash Programming Emulation dialog boxc.cccceceveniiiiicinncnnns
Edit Flash Emulation Events dialog boXcccccceeveeviciincncncncnenne
Edit Flash Emulation Timing dialog box

Programmer PG-FPx Security Flags dialog boxc.ccceccevvieveenenn. 420
Flash Shield Setting dialog BOXc.cccccevevvirinieirinieieienicrenenene 421
Data Flash Emulation dialog boXccccecevverinenieienenicncncncnenne 422

Resolving problems ... 423
Write failure during 10adcoceveeiiiiiiiiiiininnneccceciene 423
No contact with the target hardwarecccecevvervenienieenenencnennen. 424

OCD emulators reserved resources ... 425

Reserving resources when debugging ... 425
ROM areas used for on-chip debuggingcccceveeveeverienvieninenne 425
RAM SPACE ..ttt 426
PANS oo 426

Security ID and option bytes ...

Reserving the ROM memory area for the monitorc..c..ceceeeeeuee 427
Stack area for debuggingccceveveririnininieeeieeee e 427
CaULIONS .o
Further reading ...
Target system design
Flash programmingcccoceeeierienieneenieeneneeieste et
INAEX e 429

C-SPY® Debugging Guide
for RL78

Tables

1: Typographic conventions used in this UIAEcc.cccevervieieiieiienieneiinercneenee 25
2: Naming conventions used in this gUIdecccceevieiriiriieiienienienenerererese e 26
3: Driver differencescoeveriririiiiicteiecetestee ettt 35
4: Emulator debug featuresccccovievieiienieneneninineneeeeeetet et 37
5: Target Power Off OPLONSc.ccooveuiriiiirenieinicine et 59
6: C-SPY assembler Symbols eXPresSionsc.ccocoererererereeeeneenuenensenreneneenns 101
7: Handling name conflicts between hardware registers and assembler labels 102
8: Available breakpoints in C-SPY hardware debugger driversc.ccceeeeeee. 129
9: C-SPY macros for breakpointsc..ceeeeeieieniiniininenineeeeeeieenesene e

10: Supported graphs in the Timeline window

11: Project options for enabling the profilerccccoccevviininiiniininiiiinceeee,

12: Project options for enabling code COVETageocovererererneenuenieniinrcnenenenes 272
13: Timer interruPt SELNES ..eeveeueeuieiereienierierieriereee sttt ettt sb e b e 303
14: Examples of C-SPY macro variablesccccoververieniiinienienienieeneeie e 329
15: Summary of SYSteIM MACTOScevrurereriirierierieriererieeeteteteee et sre e eaeeae

16: __cancellnterrupt return values

17: __disableInterrupts return ValUesc.cceceeveerierierienieeneeneeneeeieeeesee e ennens 342
18: __driverType return ValUESccceeceeiirierieriereneneniteteeeteneetere e 342
19: __enableInterrupts return ValUescoccoceverererenieneeeeieneeneniesresese e 343
20: __evaluate Teturn ValUESccceceevieieiiiniinieniiniinieeteteceereeee e 343
21: __isBatchMode return Valuesc..cocceveeeevieiiinienieninineneeceeeeseeeceresne e 347
22: __loadImage return VAIUESc.ccocevererinininieieteiesietesre ettt 347
23: __messageBoxYesCancel return valuescccooceevieneeneenieenenneenenieseennns 350
24: __messageBoxYesNO return Valluesccccoceverireeienieniinieneneneeieeereiennenne 350
25: __openFile TetUrn VAlUESccccoereririininieieieceeietetesreiesr et 351
26: __readFile return valuescccooeoiiiiiniinininiiiicieicceece e 353
27: __setCodeBreak return values

28: __setCodeHWBreak return valuesccccooevciiiiiiiiiciiceiecncececeees 358
29: __setDataBreak return valuesccccocevievieiieniinieninininieiciceece e 359
30: __setDatalLogBreak return valuesc..cococeverevineeienienienieneneneneneeeeeeenee 360
31: __setLogBreak return ValUuescc.coccvererenineneneeieeeieneeneesesesrceie e 361

20

C-SPY® Debugging Guide
for RL78

32 _

33:

34: __setTraceStopBreak return valuesc.cccoceeveeieienienieneneneninceeeceeeeenes 364
35: __sourcePosition return Valuescceceeeeienienienieneneneeceteeeeseereeie e 365
36: __unloadImage return Valuesccooeevueriierienieniieniceieeeeese e 369
37: CSPYDAL PATAMELETSeoveveinieiieiieiirienienteettet ettt sttt et st ne

38: Options specific to the C-SPY drivers you are using

Preface

Welcome to the C-SPY® Debugging Guide for RL78. The purpose of this guide
is to help you fully use the features in the IAR C-SPY® Debugger for debugging
your application based on the RL78 microcontroller.

Who should read this guide

Read this guide if you plan to develop an application using IAR Embedded Workbench
and want to get the most out of the features available in C-SPY.

REQUIRED KNOWLEDGE

To use the tools in IAR Embedded Workbench, you should have working knowledge of:

o The architecture and instruction set of the RL78 microcontroller family (refer to the
chip manufacturer's documentation)

® The C or C++ programming language

o Application development for embedded systems

o The operating system of your host computer.

For more information about the other development tools incorporated in the IDE, refer
to their respective documentation, see Other documentation, page 23.

What this guide contains
Below is a brief outline and summary of the chapters in this guide.

Note: Some of the screenshots in this guide are taken from a similar product and not
from IAR Embedded Workbench for RL78.

PART |. BASIC DEBUGGING

® The IAR C-SPY Debugger introduces you to the C-SPY debugger and to the
concepts that are related to debugging in general and to C-SPY in particular. The
chapter also introduces the various C-SPY drivers. The chapter briefly shows the
difference in functionality that the various C-SPY drivers provide.

o Getting started using C-SPY helps you get started using C-SPY, which includes
setting up, starting, and adapting C-SPY for target hardware.

What this guide contains

22

C-SPY® Debugging Guide
for RL78

Executing your application describes the conceptual differences between source
and disassembly mode debugging, the facilities for executing your application, and
finally, how you can handle terminal input and output.

Variables and expressions describes the syntax of the expressions and variables
used in C-SPY, as well as the limitations on variable information. The chapter also
demonstrates the various methods for monitoring variables and expressions.

Breakpoints describes the breakpoint system and the various ways to set
breakpoints.

Memory and registers shows how you can examine memory and registers.

PART 2. ANALYZING YOUR APPLICATION

Trace describes how you can inspect the program flow up to a specific state using
trace data.

The application timeline describes the Timeline window, and how to use the
information in it to analyze your application’s behavior.

Profiling describes how the profiler can help you find the functions in your
application source code where the most time is spent during execution.

Code coverage describes how the code coverage functionality can help you verify
whether all parts of your code have been executed, thus identifying parts which have
not been executed.

Power debugging describes techniques for power debugging and how you can use
C-SPY to find source code constructions that result in unexpected power
consumption.

PART 3. ADVANCED DEBUGGING

Interrupts contains detailed information about the C-SPY interrupt simulation
system and how to configure the simulated interrupts to make them reflect the
interrupts of your target hardware.

C-SPY macros describes the C-SPY macro system, its features, the purposes of
these features, and how to use them.

The C-SPY command line utility—cspybat describes how to use C-SPY in batch
mode.

PART 4. ADDITIONAL REFERENCE INFORMATION

Debugger options describes the options you must set before you start the C-SPY
debugger.

e Additional information on C-SPY drivers describes menus and features provided by

the C-SPY drivers not described in any dedicated topics.

Preface __4

® OCD emulators reserved resources contains important information about using
some of the hardware debuggers with the RL78 microcontroller.

Other documentation

User documentation is available as hypertext PDFs and as a context-sensitive online
help system in HTML format. You can access the documentation from the Information
Center or from the Help menu in the IAR Embedded Workbench IDE. The online help
system is also available via the F1 key.

USER AND REFERENCE GUIDES

The complete set of IAR Systems development tools is described in a series of guides.
Information about:

o System requirements and information about how to install and register the IAR
Systems products are available in the Installation and Licensing Quick Reference
Guide and the Licensing Guide.

o Using the IDE for project management and building, is available in the IDE Project
Management and Building Guide for RL7S.

o Using the IAR C-SPY® Debugger, is available in the C-SPY® Debugging Guide
for RL78.

o Programming for the AR C/C++ Compiler for RL78 and linking using the IAR
ILINK Linker, is available in the [AR C/C++ Development Guide for RL7S.

o Programming for the I[AR Assembler for RL78, is available in the /AR Assembler
Reference Guide for RL7S.

o Performing a static analysis using C-STAT and the required checks, is available in
the C-STAT® Static Analysis Guide.

e Developing safety-critical applications using the MISRA C guidelines, is available
in the JAR Embedded Workbench® MISRA C:2004 Reference Guide or the [AR
Embedded Workbench® MISRA C:1998 Reference Guide.

e Migrating from an older UBROF-based product version to a newer version that uses
the ELF/DWAREF object format, is available in the guide /AR Embedded
Workbench® Migrating from UBROF to ELF/DWARF.

Note: Additional documentation might be available depending on your product
installation.

THE ONLINE HELP SYSTEM
The context-sensitive online help contains information about:

e IDE project management and building

23

Document conventions

24

Debugging using the IAR C-SPY® Debugger
The IAR C/C++ Compiler
The IAR Assembler

Keyword reference information for the DLIB library functions. To obtain reference
information for a function, select the function name in the editor window and press
F1.

C-STAT
MISRA C

WEB SITES

Recommended web sites:

The Renesas web site, www.renesas.com, that contains information and news about
the RL78 microcontrollers.

The IAR Systems web site, www.iar.com, that holds application notes and other
product information.

The web site of the C standardization working group,
www.open-std.org/jtcl/sc22/wgl4.

The web site of the C++ Standards Committee, www.open-std.org/jtcl/sc22/wg21.

The C++ programming language web site, isocpp.org. This web site also has a list
of recommended books about C++ programming.

The C and C++ reference web site, en.cppreference.com.

Document conventions

C-SPY® Debugging Guide
for RL78

When, in the IAR Systems documentation, we refer to the programming language C, the
text also applies to C++, unless otherwise stated.

When referring to a directory in your product installation, for example r178\doc, the
full path to the location is assumed, for example c: \Program Files\IAR
Systems\Embedded Workbench N.n\r178\doc, where the initial digit of the version
number reflects the initial digit of the version number of the IAR Embedded Workbench
shared components.

Preface __4

TYPOGRAPHIC CONVENTIONS
The IAR Systems documentation set uses the following typographic conventions:

Style Used for

computer * Source code examples and file paths.
* Text on the command line.
* Binary, hexadecimal, and octal numbers.

parameter A placeholder for an actual value used as a parameter, for example
filename.h where filename represents the name of the file.

[option] An optional part of a linker or stack usage control directive, where [
and] are not part of the actual directive, but any [, 1, {, or } are part
of the directive syntax.

{option} A mandatory part of a linker or stack usage control directive, where {
and } are not part of the actual directive, but any [, 1, {, or } are part
of the directive syntax.

[option] An optional part of a command line option, pragma directive, or library
filename.
[a|b]|c] An optional part of a command line option, pragma directive, or library

filename with alternatives.

{a|b]|c} A mandatory part of a command line option, pragma directive, or
library filename with alternatives.

bold Names of menus, menu commands, buttons, and dialog boxes that
appear on the screen.

italic * A cross-reference within this guide or to another guide.
* Emphasis.
An ellipsis indicates that the previous item can be repeated an arbitrary

number of times.

Identifies instructions specific to the IAR Embedded Workbench® IDE
interface.

Identifies instructions specific to the command line interface.

Identifies helpful tips and programming hints.

Identifies warnings.

Table 1: Typographic conventions used in this guide

25

Document conventions

NAMING CONVENTIONS

The following naming conventions are used for the products and tools from IAR
Systems®, when referred to in the documentation:

Brand name Generic term

IAR Embedded Workbench® for RL78 IAR Embedded Workbench®
IAR Embedded Workbench® IDE for RL78 the IDE

IAR C-SPY® Debugger for RL78 C-SPY, the debugger

IAR C-SPY® Simulator the simulator

IAR C/C++ Compiler™ for RL78 the compiler

IAR Assembler™ for RL78 the assembler

IAR ILINK Linker™ ILINK, the linker

IAR DLIB Runtime Environment™ the DLIB runtime environment

Table 2: Naming conventions used in this guide

C-SPY® Debugging Guide
26 for RL78

Part |. Basic debugging

This part of the C-SPY® Debugging Guide for RL78 includes these chapters:
e The IAR C-SPY Debugger

e Getting started using C-SPY

e Executing your application

e Variables and expressions

e Breakpoints

e Memory and registers

.hmuhhhhi

N

7

AAARRIE

8

o~

The IAR C-SPY Debugger

e Introduction to C-SPY

e Debugger concepts

e C-SPY drivers overview
e The IAR C-SPY Simulator

e The C-SPY hardware debugger drivers

Introduction to C-SPY

These topics are covered:

o An integrated environment
o General C-SPY debugger features

e RTOS awareness

AN INTEGRATED ENVIRONMENT

C-SPY is a high-level-language debugger for embedded applications. It is designed for
use with the IAR Systems compilers and assemblers, and is completely integrated in the
IDE, providing development and debugging within the same application. This will give
you possibilities such as:

e FEditing while debugging
During a debug session, you can make corrections directly in the same source code

window that is used for controlling the debugging. Changes will be included in the
next project rebuild.

o Setting breakpoints at any point during the development cycle

You can inspect and modify breakpoint definitions also when the debugger is not
running, and breakpoint definitions flow with the text as you edit. Your debug
settings, such as watch properties, window layouts, and register groups will be
preserved between your debug sessions.

All windows that are open in the IAR Embedded Workbench workspace will stay open
when you start the C-SPY Debugger. In addition, a set of C-SPY-specific windows are
opened.

29

Introduction to C-SPY

30

C-SPY® Debugging Guide
for RL78

GENERAL C-SPY DEBUGGER FEATURES

Because IAR Systems provides an entire toolchain, the output from the compiler and
linker can include extensive debug information for the debugger, resulting in good
debugging possibilities for you.

C-SPY offers these general features:

Source and disassembly level debugging

C-SPY allows you to switch between source and disassembly debugging as required,
for both C or C++ and assembler source code.

Single-stepping on a function call level

Compared to traditional debuggers, where the finest granularity for source level
stepping is line by line, C-SPY provides a finer level of control by identifying every
statement and function call as a step point. This means that each function call—
inside expressions, and function calls that are part of parameter lists to other
functions—can be single-stepped. The latter is especially useful when debugging
C++ code, where numerous extra function calls are made, for example to object
constructors.

Code and data breakpoints

The C-SPY breakpoint system lets you set breakpoints of various kinds in the
application being debugged, allowing you to stop at locations of particular interest.
For example, you set breakpoints to investigate whether your program logic is correct
or to investigate how and when the data changes.

Monitoring variables and expressions

For variables and expressions there is a wide choice of facilities. You can easily
monitor values of a specified set of variables and expressions, continuously or on
demand. You can also choose to monitor only local variables, static variables, etc.

Container awareness

When you run your application in C-SPY, you can view the elements of library data
types such as STL lists and vectors. This gives you a very good overview and
debugging opportunities when you work with C++ STL containers.

Call stack information

The compiler generates extensive call stack information. This allows the debugger to
show, without any runtime penalty, the complete stack of function calls wherever the
program counter is. You can select any function in the call stack, and for each
function you get valid information for local variables and available registers.

Powerful macro system

C-SPY includes a powerful internal macro system, to allow you to define complex
sets of actions to be performed. C-SPY macros can be used on their own or in

The IAR C-SPY Debugger ___o

conjunction with complex breakpoints and—if you are using the simulator—the
interrupt simulation system to perform a wide variety of tasks.

Additional general C-SPY debugger features
This list shows some additional features:

Threaded execution keeps the IDE responsive while running the target application
Automatic stepping

The source browser provides easy navigation to functions, types, and variables
Extensive type recognition of variables

Configurable registers (CPU and peripherals) and memory windows

Graphical stack view with overflow detection

Support for code coverage and function level profiling

The target application can access files on the host PC using file I/O

Optional terminal I/O emulation.

RTOS AWARENESS
C-SPY supports RTOS-aware debugging.
These operating systems are currently supported:

FreeRTOS, OpenRTOS, and SafeRTOS
Micrium uC/OS
OSEK Run Time Interface (ORTI)

°
°
°
o Segger embOS

RTOS plugin modules can be provided by IAR Systems, and by third-party suppliers.
Contact your software distributor or IAR Systems representative, alternatively visit the

IAR Systems web site, for information about supported RTOS modules.

A C-SPY RTOS awareness plugin module gives you a high level of control and visibility
over an application built on top of an RTOS. It displays RTOS-specific items like task
lists, queues, semaphores, mailboxes, and various RTOS system variables. Task-specific
breakpoints and task-specific stepping make it easier to debug tasks.

A loaded plugin will add its own menu, set of windows, and buttons when a debug
session is started (provided that the RTOS is linked with the application). For
information about other RTOS awareness plugin modules, refer to the manufacturer of
the plugin module.

31

Debugger concepts

Debugger concepts

This section introduces some of the concepts and terms that are related to debugging in
general and to C-SPY in particular. This section does not contain specific information
related to C-SPY features. Instead, you will find such information in the other chapters
of this documentation. The IAR Systems user documentation uses the terms described
in this section when referring to these concepts.

These topics are covered:

C-SPY and target systems
The debugger

The target system

The application

C-SPY debugger systems
The ROM-monitor program
Third-party debuggers

C-SPY plugin modules

C-SPY AND TARGET SYSTEMS

You can use C-SPY to debug either a software target system or a hardware target system.

C-SPY® Debugging Guide
32 for RL78

The IAR C-SPY Debugger ___o

This figure gives an overview of C-SPY and possible target systems:

— e e e e g e e e e e e — ==

| |
| | !
| | | !
| | Si:‘:\':f’" | Simulator :
| | |
I [— I
I |
: I Emulator |
| driver —\[IS Target |
IAR Embedded | emulator hardware
Workbench | C-SPY !
|
! 3rd-party |
I driver |
| Target
| hardware :
|
|
|
|
|
|
|
|
|
|
|
|

= Provided by IAR Systems

|:| = Provided by IAR Systems or third-party vendors

THE DEBUGGER

The debugger, for instance C-SPY, is the program that you use for debugging your
applications on a target system.

THE TARGET SYSTEM

The target system is the system on which you execute your application when you are
debugging it. The target system can consist of hardware, either an evaluation board or
your own hardware design. It can also be completely or partially simulated by software.
Each type of target system needs a dedicated C-SPY driver.

THE APPLICATION

A user application is the software you have developed and which you want to debug
using C-SPY.

C-SPY DEBUGGER SYSTEMS

C-SPY consists of both a general part which provides a basic set of debugger features,
and a target-specific back end. The back end consists of two components: a processor
module—one for every microcontroller, which defines the properties of the
microcontroller, and a C-SPY driver. The C-SPY driver is the part that provides
communication with and control of the target system. The driver also provides the user

33

Debugger concepts

34

C-SPY® Debugging Guide
for RL78

interface—menus, windows, and dialog boxes—to the functions provided by the target
system, for instance, special breakpoints.

Typically, there are three main types of C-SPY drivers:

e Simulator driver
® ROM-monitor driver

e Emulator driver.

C-SPY is available with a simulator driver, and depending on your product package,
optional drivers for hardware debugger systems. For an overview of the available C-SPY
drivers and the functionality provided by each driver, see C-SPY drivers overview, page
35.

THE ROM-MONITOR PROGRAM

The ROM-monitor program is a piece of firmware that is loaded to non-volatile memory
on your target hardware; it runs in parallel with your application. The ROM-monitor
communicates with the debugger and provides services needed for debugging the
application, for instance stepping and breakpoints.

THIRD-PARTY DEBUGGERS

You can use a third-party debugger together with the IAR Systems toolchain as long as
the third-party debugger can read ELF/DWAREF, Intel-extended, or Motorola. For
information about which format to use with a third-party debugger, see the user
documentation supplied with that tool.

C-SPY PLUGIN MODULES

C-SPY is designed as a modular architecture with an open SDK that can be used for
implementing additional functionality to the debugger in the form of plugin modules.
These modules can be seamlessly integrated in the IDE.

Plugin modules are provided by IAR Systems, or can be supplied by third-party vendors.

Examples of such modules are:

o The various C-SPY drivers for debugging using certain debug systems.

o RTOS plugin modules for support for real-time OS aware debugging.

o C-SPYLink that bridges IAR Visual State and IAR Embedded Workbench to make
true high-level state machine debugging possible directly in C-SPY, in addition to

the normal C level symbolic debugging. For more information, see the
documentation provided with IAR Visual State.

For more information about the C-SPY SDK, contact IAR Systems.

The IAR C-SPY Debugger ___o

C-SPY drivers overview

These topics are covered:
o Differences between the C-SPY drivers

At the time of writing this guide, the IAR C-SPY Debugger for the RL78
microcontrollers is available with drivers for these target systems and evaluation boards:
Simulator

El

E2

E2 Lite (including E2 On-Board)

E20

EZ-CUBE

EZ-CUBE2

IECUBE

TK.

Note: The El1, E2, E2 Lite/E2 On-Board, E20, EZ-CUBE, EZ-CUBE2, and TK
emulators use the same C-SPY driver, the OCD driver.

DIFFERENCES BETWEEN THE C-SPY DRIVERS
This table summarizes the key differences between the C-SPY drivers:

El, E2, E2 Lite, E2 E20,

Feature Simulator IECUBE On-Board, EZ-CUBE2 EZ.CUBE, TK
Code breakpointsI Unlimited Yes Yes? Yes?
Data breakpoints Yes Yes Yes? Yes?
Event breakpoints — Yes Yes? Yes?
Execution in real time — Yes Yes Yes
Zero memory footprint Yes Yes — —
Simulated interrupts Yes — — —

Real interrupts — Yes Yes Yes
Interrupt logging Yes — — —

Data logging Yes — — —
Smart Analog data collection — — Yes Only E20
Live watch Yes Yes Yes Yes

Table 3: Driver differences

35

The IAR C-SPY Simulator

El, E2, E2 Lite, E2 E20,

Feature Simulator IECUBE On-Board, EZ-CUBE2 EZ-CUBE, TK
Cycle counter Yes — — —
Execution timer — Yes Yes? Yes?
Code coverage Yes Yes — —
Data coverage Yes Yes — —
Function/instruction profiling Yes — — —
Trace! Yes Yes Yes —
Timer — Yes — —
Flash self programming emulation — Yes — —
Pseudo emulation — Yes — —
Direct Memory Modification — Yes — —
Power debugging ! — — Limited (E2 only) —
Data flash emulation — Yes — —

Table 3: Driver differences (Continued)
1. With specific requirements or restrictions, see the respective chapter in this guide.
2. Breakpoints are ignored in some circumstances, see Breakpoints when single stepping

using the OCD driver, page 65. See also Breakpoints in the C-SPY hardware debugger
drivers, page 129.

The IAR C-SPY Simulator

The C-SPY Simulator simulates the functions of the target processor entirely in
software, which means that you can debug the program logic long before any hardware
is available. Because no hardware is required, it is also the most cost-effective solution
for many applications.

The C-SPY Simulator supports:

Instruction-level simulation
Memory configuration and validation

Interrupt simulation

Peripheral simulation (using the C-SPY macro system in conjunction with
immediate breakpoints).

Simulating hardware instead of using a hardware debugging system means that some
limitations do not apply, but that there are other limitations instead. For example:

® You can set an unlimited number of breakpoints in the simulator.

C-SPY® Debugging Guide
36 for RL78

The IAR C-SPY Debugger ___o

o When you stop executing your application, time actually stops in the simulator.
When you stop application execution on a hardware debugging system, there might
still be activities in the system. For example, peripheral units might still be active
and reading from or writing to SFR ports.

o Application execution is significantly much slower in a simulator compared to when
using a hardware debugging system. However, during a debug session, this might
not necessarily be a problem.

o The simulator is not cycle accurate.

e Peripheral simulation is limited in the C-SPY Simulator and therefore the simulator
is suitable mostly for debugging code that does not interact too much with
peripheral units.

The C-SPY hardware debugger drivers

C-SPY can connect to a hardware debugger using a C-SPY hardware debugger driver as
an interface. The C-SPY hardware debugger drivers are automatically installed during
the installation of IAR Embedded Workbench.

IAR Embedded Workbench for RL78 comes with several C-SPY hardware debugger
drivers and you use the driver that matches the hardware debugger you are using.
FEATURES

In addition to the features described in Differences between the C-SPY drivers, page 35,

the emulator drivers also provide:

El, E2, E2 Lite/On-board, E20,

Feature IECUBE

EZ-CUBE, EZ-CUBE2, TK
Security No 10-byte ID code authentication
Application Yes Yes
download
Hardware Device-specific Device-specific

breakpoints

Software breakpoints ~ Unlimited Unlimited

RAM monitoring Yes Pseudo real-time monitoring

Pin masking For internal and external reset For internal and external reset
pins pins

Table 4: Emulator debug features

37

The C-SPY hardware debugger drivers

38

C-SPY® Debugging Guide
for RL78

El, E2, E2 Lite/On-board, E20,

Feature IECUBE
EZ-CUBE, EZ-CUBE2, TK
Time measurement Resolution: 16.667 ns, Resolution: 100 s,
(from execution start ~ Max. time: Max. time:
to break) ~10 min ~100 hours
Built-in flash loader Yes No (monitor)

Table 4: Emulator debug features (Continued)

THE EI, E2, E2 LITE/ON-BOARD, E20, EZ-CUBE, EZ-CUBE2,
AND TK EMULATORS

The C-SPY hardware debugger driver uses USB to communicate with the hardware
debugger. The hardware debugger communicates with the JTAG interface on the
microcontroller.

C-SPY debugger

C-SPY OCD driver

USB connéction

Emulator

<

JTAG cable =

/ JTA(‘E Y

For further information, refer to the documentation supplied with the hardware
debugger.

‘When a debugging session is started, your application is automatically downloaded and
programmed into flash memory. You can disable this feature, if necessary.

The IAR C-SPY Debugger ___o

Hardware installation

For information about the hardware installation, see the documentation supplied with
the hardware debugger from Renesas. A Renesas USB driver that is needed for
communicating with the emulator is optionally installed during the IAR Embedded
Workbench installation.The following power-up sequence is recommended to ensure
proper communication between the target board, hardware debugger, and C-SPY:

Connect the emulator to the host computer.

Start the C-SPY debugging session.

THE IECUBE EMULATOR

The C-SPY hardware debugger driver uses USB to communicate with the hardware
debugger.

C-SPY debugger
—C-SPY IECUBE driver

USB connection

-

For further information, refer to the documentation supplied with the hardware
debugger.

When a debugging session is started, your application is automatically downloaded and
programmed into flash memory. You can disable this feature, if necessary.
Hardware installation

For information about the hardware installation, see the documentation supplied with
the hardware debugger from Renesas. A Renesas USB driver that is needed for
communicating with the emulator is optionally installed during the IAR Embedded

39

The C-SPY hardware debugger drivers

Workbench installation.The following power-up sequence is recommended to ensure
proper communication between the target board, hardware debugger, and C-SPY:

I Power up the IECUBE emulator.
2 Start the C-SPY debugging session.

C-SPY® Debugging Guide
40 for RL78

Getting started using
C-SPY

e Setting up C-SPY
e Starting C-SPY
e Adapting for target hardware

e Reference information on starting C-SPY

Setting up C-SPY

These tasks are covered:
Setting up for debugging
Executing from reset
Using a setup macro file

Selecting a device description file

Loading plugin modules

SETTING UP FOR DEBUGGING

Before you start C-SPY, choose Project>Options>Debugger>Setup and select the
C-SPY driver that matches your debugger system: simulator or a hardware debugger
system.

In the Category list, select the appropriate C-SPY driver and make your settings. For
information about these options, see Debugger options, page 399.

Click OK.
Choose Tools>Options to open the IDE Options dialog box:

o Select Debugger to configure the debugger behavior

o Select Stack to configure the debugger’s tracking of stack usage.

For more information about these options, see the /DE Project Management and
Building Guide for RL7S.

See also Adapting for target hardware, page 47.

41

Setting up C-SPY

42

C-SPY® Debugging Guide
for RL78

EXECUTING FROM RESET

The Run to option—available on the Debugger>Setup page—specifies a location you
want C-SPY to run to when you start a debug session as well as after each reset. C-SPY
will place a temporary breakpoint at this location and all code up to this point is executed
before stopping at the location. Note that this temporary breakpoint is removed when the
debugger stops, regardless of how. If you stop the execution before the Run to location
has been reached, the execution will not stop at that location when you start the
execution again.

The default location to run to is the main function. Type the name of the location if you
want C-SPY to run to a different location. You can specify assembler labels or whatever
can be evaluated to such, for instance function names.

If you leave the check box empty, the program counter will contain the regular hardware
reset address at each reset. The reset address is set by C-SPY.

USING A SETUP MACRO FILE

A setup macro file is a macro file that you choose to load automatically when C-SPY
starts. You can define the setup macro file to perform actions according to your needs,
using setup macro functions and system macros. Thus, if you load a setup macro file you
can initialize C-SPY to perform actions automatically.

For more information about setup macro files and functions, see Introduction to C-SPY
macros, page 321.

For an example of how to use a setup macro file, see Initializing target hardware before
C-SPY starts, page 47.

To register a setup macro file:
Before you start C-SPY, choose Project>Options>Debugger>Setup.

Select Use macro file and type the path and name of your setup macro file, for
example Setup.mac. If you do not type a filename extension, the extension mac is
assumed.

SELECTING A DEVICE DESCRIPTION FILE

C-SPY uses device description files to handle device-specific information.

A default device description file is automatically used based on your project settings. If
you want to override the default file, you must select your device description file. Device
description files from IAR Systems are provided in the r178\config directory and
they have the filename extension ddf.

For more information about device description files, see Adapting for target hardware,
page 47.

Getting started using C-SPY ___4

To override the default device description file:
Before you start C-SPY, choose Project>Options>Debugger>Setup.

Enable the use of a device description file and select a file using the Device
description file browse button.

Note: You can easily view your device description files that are used for your project.
Choose Project>Open Device Description File and select the file you want to view.
LOADING PLUGIN MODULES

On the Plugins page you can specify C-SPY plugin modules to load and make available
during debug sessions. Plugin modules can be provided by IAR Systems, and by
third-party suppliers. Contact your software distributor or IAR Systems representative,
or visit the IAR Systems web site, for information about available modules.

For more information, see Plugins, page 403.

Starting C-SPY

When you have set up the debugger, you are ready to start a debug session.
These tasks are covered:

Starting a debug session

Loading executable files built outside of the IDE
Starting a debug session with source files missing
Loading multiple debug images

Editing in C-SPY windows

Hardware configuration when starting for the first time

STARTING A DEBUG SESSION

You can choose to start a debug session with or without loading the current executable
file.

To start C-SPY and download the current executable file, click the Download and
Debug button. Alternatively, choose Project>Download and Debug.

To start C-SPY without downloading the current executable file, click the Debug
without Downloading button. Alternatively, choose Project>Debug without
Downloading.

43

Starting C-SPY

44

C-SPY® Debugging Guide
for RL78

°3

LOADING EXECUTABLE FILES BUILT OUTSIDE OF THE IDE

You can also load C-SPY with an application that was built outside the IDE, for example
applications built on the command line. To load an externally built executable file and
to set build options you must first create a project for it in your workspace.

To create a project for an externally built file:

Choose Project>Create New Project, and specify a project name.

To add the executable file to the project, choose Project>Add Files and make sure to
choose All Files in the Files of type drop-down list. Locate the executable file.

To start the executable file, click the Download and Debug button. The project can be
reused whenever you rebuild your executable file.

The only project options that are meaningful to set for this kind of project are options in
the General Options and Debugger categories. Make sure to set up the general project
options in the same way as when the executable file was built.

STARTING A DEBUG SESSION WITH SOURCE FILES MISSING

Normally, when you use the IAR Embedded Workbench IDE to edit source files, build
your project, and start the debug session, all required files are available and the process
works as expected.

However, if C-SPY cannot automatically find the source files, for example if the
application was built on another computer, the Get Alternative File dialog box is
displayed:

Get Alternative File §|

Could nat find the following source file:
C:hprojectshtutorsTutor.c

<RNones J
| Skip |

Suggested alternative:

I If possible, don't show this dialog again

Typically, you can use the dialog box like this:

e The source files are not available: Click If possible, don’t show this dialog again
and then click Skip. C-SPY will assume that there is no source file available. The
dialog box will not appear again, and the debug session will not try to display the
source code.

e Alternative source files are available at another location: Specify an alternative
source code file, click If possible, don’t show this dialog again, and then click Use
this file. C-SPY will assume that the alternative file should be used. The dialog box

Getting started using C-SPY ___4

will not appear again, unless a file is needed for which there is no alternative file
specified and which cannot be located automatically.

If you restart the AR Embedded Workbench IDE, the Get Alternative File dialog box
will be displayed again once even if you have clicked If possible, don’t show this
dialog again. This gives you an opportunity to modify your previous settings.

For more information, see Get Alternative File dialog box, page 54.

LOADING MULTIPLE DEBUG IMAGES

Normally, a debuggable application consists of a single file that you debug. However,
you can also load additional debug files (debug images). This means that the complete
program consists of several debug images.

Typically, this is useful if you want to debug your application in combination with a
prebuilt ROM image that contains an additional library for some platform-provided
features. The ROM image and the application are built using separate projects in the
IAR Embedded Workbench IDE and generate separate output files.

If more than one debug image has been loaded, you will have access to the combined
debug information for all the loaded debug images. In the Images window you can
choose whether you want to have access to debug information for a single debug image
or for all images.

To load additional debug images at C-SPY startup:

Choose Project>Options>Debugger>Images and specify up to three additional
debug images to be loaded. For more information, see /mages, page 401.

Start the debug session.
To load additional debug images at a specific moment:

Use the __loadImage system macro and execute it using either one of the methods
described in Using C-SPY macros, page 323.

To display a list of loaded debug images:

Choose Images from the View menu. The Images window is displayed, see Images
window, page 53.

EDITING IN C-SPY WINDOWS

You can edit the contents of the Memory, Symbolic Memory, Registers, Register
User Groups Setup, Auto, Watch, Locals, Statics, Live Watch, and Quick Watch
windows.

45

Starting C-SPY

46

C-SPY® Debugging Guide
for RL78

Use these keyboard keys to edit the contents of these windows:

Enter Makes an item editable and saves the new value.

Esc Cancels a new value.

In windows where you can edit the Expression field and in the Quick Watch window,
you can specify the number of elements to be displayed in the field by adding a
semicolon followed by an integer. For example, to display only the three first elements

of an array named myArray, or three elements in sequence starting with the element
pointed to by a pointer, write:

myArray; 3
To display three elements pointed to by myPtr, myPtr+1, and myPtr+2, write:
myPtr;3

Optionally, add a comma and another integer that specifies which element to start with.
For example, to display elements 10-14, write:

myArray; 5,10

To display myPtr+10, myPtr+11, myPtr+12, myPtr+13, and myPtr+14, write:
myPtr;5,10

Note: For pointers, there are no built-in limits on displayed element count, and no

validation of the pointer value.

HARDWARE CONFIGURATION WHEN STARTING FOR THE
FIRST TIME

When a C-SPY emulator is started for the first time in a new project, the hardware must
be set up.

9 Emulator has to be configured before downloading a new application.

Press OK to enter Emulator Hardware Setup,

Click OK to enter the Hardware Setup dialog box. See Hardware Setup, page 56.

When the hardware setup is done and you click OK, the download of the debug file is
started.

If the debug file contains a memory area that is not defined in the hardware setup, several
warnings will be displayed in the Debug Log window.

Getting started using C-SPY ___4

The hardware setup is saved for each project and does not have to be set more than once.
If you want to change the setup for a project, choose Hardware Setup from the
Emulator menu.

Adapting for target hardware

These tasks are covered:

o Modifying a device description file

o Initializing target hardware before C-SPY starts

MODIFYING A DEVICE DESCRIPTION FILE

C-SPY uses device description files provided with the product to handle several of the
target-specific adaptations, see Selecting a device description file, page 42. Device
description files contain device-specific information such as:

o Memory information for device-specific memory zones, see C-SPY memory zones,
page 154.

e Definitions of memory-mapped peripheral units, device-specific CPU registers, and
groups of these.

e Definitions for device-specific interrupts, which makes it possible to simulate these
interrupts in the C-SPY simulator, see Interrupts, page 297.

e Definitions of Renesas device files.
o Definitions of emulator memory information and number of flash blocks.
Normally, you do not need to modify the device description file. However, if the

predefinitions are not sufficient for some reason, you can edit the file. Note, however,
that the format of these descriptions might be updated in future upgrades of the product.

Make a copy of the device description file that best suits your needs, and modify it
according to the description in the file. Reload the project to make the changes take
effect.

For information about how to load a device description file, see Selecting a device
description file, page 42.

INITIALIZING TARGET HARDWARE BEFORE C-SPY STARTS

You can use C-SPY macros to initialize target hardware before C-SPY starts. For
example, if your hardware uses external memory that must be enabled before code can

47

Reference information on starting C-SPY

be downloaded to it, C-SPY needs a macro to perform this action before your
application can be downloaded.

I Create a new text file and define your macro function.

By using the built-in execUserPreload setup macro function, your macro function
will be executed directly after the communication with the target system is established
but before C-SPY downloads your application.

For example, a macro that enables external SDRAM could look like this:

/* Your macro function. */
enableExternal SDRAM ()
{
__message "Enabling external SDRAM\n";
_ _writeMemory32(...);

}

/* Setup macro determines time of execution. */
execUserPreload()

{
enableExternal SDRAM() ;

}
2 Save the file with the filename extension mac.

Before you start C-SPY, choose Project>Options>Debugger and click the Setup tab.
4 Select the option Use Setup file and choose the macro file you just created.

Your setup macro will now be loaded during the C-SPY startup sequence.

Reference information on starting C-SPY

Reference information about:

C-SPY Debugger main window, page 49
Images window, page 53

Get Alternative File dialog box, page 54
Operating Frequency dialog box, page 55

Hardware Setup, page 56
See also:

e Tools options for the debugger in the IDE Project Management and Building Guide
for RL78.

C-SPY® Debugging Guide
48 for RL78

Getting started using C-SPY ___4

C-SPY Debugger main window
When you start a debug session, these debugger-specific items appear in the main IAR
Embedded Workbench IDE window:
e A dedicated Debug menu with commands for executing and debugging your
application

o Depending on the C-SPY driver you are using, a driver-specific menu, often
referred to as the Driver menu in this documentation. Typically, this menu contains
menu commands for opening driver-specific windows and dialog boxes.

e A special debug toolbar
e A special hardware debugger toolbar
o Several windows and dialog boxes specific to C-SPY.

The C-SPY main window might look different depending on which components of the
product installation you are using.

Menu bar
These menus are available during a debug session:

Debug
Provides commands for executing and debugging the source application. Most
of the commands are also available as icon buttons on the debug toolbar.
C-SPY driver menu

Provides commands specific to a C-SPY driver. The driver-specific menu is only
available when the driver is used. For information about the driver-specific
menu commands, see Reference information on C-SPY driver menus, page 407.

49

Reference information on starting C-SPY

50

Debug menu

C-SPY® Debugging Guide
for RL78

The Debug menu is available during a debug session. The Debug menu provides
commands for executing and debugging the source application. Most commands are
also available as icon buttons on the debug toolbar.

» Go

F5

Break

Reset

Stop Debugging Ctrl=Shift+D

Step Into F11

Step Out Shift+F11
Mext Statement

pa
(>}
M Step Over F10
-
r
4}

*] Runto Cursor

s Autostep..,

*= Set Mext Statement

C++ Exceptions 3

Memaory 3

Refresh

Logaging 3

These commands are available:

Go (F5)

Break

Reset

Executes from the current statement or instruction until a breakpoint or program
exit is reached.

Stops the application execution.

Resets the target processor. Click the drop-down button to access a menu with
additional commands.

Enable Run to 'I1abel', where label typically is main. Enables and disables
the project option Run to without exiting the debug session. This menu
command is only available if you have selected Run to in the Options dialog
box.

Reset strategies, which contains a list of reset strategies supported by the C-SPY
driver you are using. This means that you can choose a different reset strategy
than the one used initially without exiting the debug session. Reset strategies are
only available if the C-SPY driver you are using supports alternate reset
strategies.

Getting started using C-SPY ___4

o Stop Debugging (Ctrl+Shift+D)
Stops the debugging session and returns you to the project manager.
Step Over (F10)

Executes the next statement, function call, or instruction, without entering C or
C++ functions or assembler subroutines.

»

1 Step Into (F11)
Executes the next statement or instruction, or function call, entering C or C++
functions or assembler subroutines.
I.p Step Out (Shift+F11)
Executes from the current statement up to the statement after the call to the
current function.
= Next Statement
Executes directly to the next statement without stopping at individual function
calls.
._I Run to Cursor
Executes from the current statement or instruction up to a selected statement or
instruction.
Autostep
Displays a dialog box where you can customize and perform autostepping, see
Autostep settings dialog box, page 87.
Set Next Statement
Moves the program counter directly to where the cursor is, without executing
any source code. Note, however, that this creates an anomaly in the program
flow and might have unexpected effects.
C++ Exceptions>Break on Throw
Specifies that the execution shall break when the target application executes a
throw statement.

To use this feature, your application must be built with the option Library
low-level interface implementation selected and the language option C++
With exceptions.

This menu command is not supported by your product package.

C++ Exceptions>Break on Uncaught Exception

Specifies that the execution shall break when the target application throws an
exception that is not caught by any matching catch statement.

51

Reference information on starting C-SPY

52

C-SPY windows

C-SPY® Debugging Guide
for RL78

To use this feature, your application must be built with the option Library
low-level interface implementation selected and the language option C++
With exceptions.

This menu command is not supported by your product package.

Memory>Save

Displays a dialog box where you can save the contents of a specified memory
area to a file, see Memory Save dialog box, page 168.

Memory>Restore
Displays a dialog box where you can load the contents of a file in, for example
Intel-extended or Motorola s-record format to a specified memory zone, see
Memory Restore dialog box, page 169.

Refresh
Refreshes the contents of all debugger windows. Because window updates are
automatic, this is needed only in unusual situations, such as when target memory
is modified in ways C-SPY cannot detect. It is also useful if code that is
displayed in the Disassembly window is changed.

Logging>Set Log file
Displays a dialog box where you can choose to log the contents of the Debug
Log window to afile. You can select the type and the location of the log file. You
can choose what you want to log: errors, warnings, system information, user
messages, or all of these. See Log File dialog box, page 82.

Logging>Set Terminal I/0O Log file

Displays a dialog box where you can choose to log simulated target access
communication to a file. You can select the destination of the log file. See
Terminal 1/0 Log File dialog box, page 80

Depending on the C-SPY driver you are using, these windows specific to C-SPY are
available during a debug session:

C-SPY Debugger main window

Disassembly window

Memory window

Symbolic Memory window

Registers window

Watch window

Locals window

Getting started using C-SPY ___4

Auto window

Live Watch window
Quick Watch window
Statics window

Call Stack window

Trace window

Function Trace window
Timeline window, see Reference information on application timeline, page 229
Terminal I/O window
Code Coverage window
Function Profiler window
Images window

Stack window

Symbols window.

Additional windows are available depending on which C-SPY driver you are using.

Images window

The Images window is available from the View menu.

Images * O X
MName Core 0 Path

Timerinterrupt ChDocuments\lAR Embedded WorkbenchiarmD ..

SerialPort o CADocumentsilAR Embedded Workbenchy,. ..

This window lists all currently loaded debug images (debug files).

Normally, a source application consists of a single debug image that you debug.
However, you can also load additional images. This means that the complete debuggable
unit consists of several debug images. See also Loading multiple debug images, page 45.

Requirements

None; this window is always available.

53

Reference information on starting C-SPY

54

Display area

C-SPY can use debug information from one or more of the loaded debug images
simultaneously. Double-click on a row to make C-SPY use debug information from that
debug image. The current choices are highlighted.

This area lists the loaded debug images in these columns:

Name
The name of the loaded debug image.

Core N

Double-click in this column to toggle using debug information from the debug
image when that core is in focus.

Path
The path to the loaded debug image.

Related information

For related information, see:

® Loading multiple debug images, page 45
o [mages, page 401

o loadlmage, page 347

Get Alternative File dialog box

The Get Alternative File dialog box is displayed if C-SPY cannot automatically find
the source files to be loaded, for example if the application was built on another
computer.

Get Alternative File P§|

Could nat find the following source file:
C:hprojectshtutorsTutor.c

<RNones J
| Skip |

Suggested alternative:

I If possible, don't show this dialog again

See also Starting a debug session with source files missing, page 44.

Could not find the following source file

C-SPY® Debugging Guide
for RL78

The missing source file.

Getting started using C-SPY ___4

Suggested alternative

Specify an alternative file.

Use this file

After you have specified an alternative file, Use this file establishes that file as the alias
for the requested file. Note that after you have chosen this action, C-SPY will
automatically locate other source files if these files reside in a directory structure similar
to the first selected alternative file.

The next time you start a debug session, the selected alternative file will be preloaded
automatically.
Skip

C-SPY will assume that the source file is not available for this debug session.

If possible, don’t show this dialog again

Instead of displaying the dialog box again for a missing source file, C-SPY will use the
previously supplied response.

Related information

For related information, see Starting a debug session with source files missing, page 44.

Operating Frequency dialog box

The Operating Frequency dialog box is available from the C-SPY driver menu during
a debug session.

Operating Frequency &J
Operating frequency:
12.5000 MHz
POk | | Cancel |

Use this dialog box to inform the emulator of the operating frequency that the MCU is
running at. This information is used by the Timeline window and by the interrupt and
power logging.

Requirements
A C-SPY hardware debugger driver.

55

Reference information on starting C-SPY

Operating frequency

Specifies the operating frequency that the MCU is running at. This value is used by the
interrupt and power logging to convert cycles to time and by the Timeline window to

estimate the number of elapsed cycles.
Related information
For related information, see:
® Requirements for interrupt logging, page 301

® Power debugging using C-SPY, page 278
o The application timeline, page 221.

Hardware Setup

The Hardware Setup dialog box is available from the Emulator menu.
f E1 Hardware Setup (RSF10FME)

1D Code Time unit

00000000000000000000
neec Cancel

[Erase flash before nest 1D check

o
7< [E
|

Main clock Sub clock Monitar clock
Clock board Clock board @ System
_ _ - Default
@) External @) External () User
Sustem Sustem Fail-safe break
Mone * MHz Mone * kHz Wiew zatup
Flash programrming Target power off Low-vaoltage Power supply
@ Permit () Permit 1 0n [BV v]
() Mot Permit @ Mot Permit @ 0f
Fin mask Peripheral break. Target Target connect
walT [TARGET RESET ;
[& timer) Connect T00LD -
Ml [C]INTERMAL RESET [T B [zerial etc.) Mot Connect
Memory map
Start address: Length: Type:

0x0 9E0 - Intemal RO hd Add

000000 - 0<0FFFF Internal ROM 64 Kbytes
0<FEFO0 - O4FFEFF Intermal RAk 4096 bytes

Remave Al

%

Use this dialog box to configure the emulator. All options are not available for all
emulators.

C-SPY® Debugging Guide
56 for RL78

ID Code

Getting started using C-SPY ___4

Use this option for devices that are read-protected with an ID Code. Type a hexadecimal
number of 20 digits (10 bytes) as the ID Code. By default, all digits are F.

For examples about how to define the ID Code, see Security ID and option bytes, page
426.

IECUBE: This option is not used.

Erase flash before next ID check

Time unit

Main clock

Sub clock

Monitor clock

Clears the flash memory before downloading your application.

IECUBE: This option is not used.

Selects the time unit to be used in the Trace View window, the Function Profiler
window, and by the TIME registers in the Registers window.

Selects the main clock source input to the CPU. If a main clock board with an oscillator
or resonator is connected, the setting is automatically set to Clock board and cannot be
changed. If no clock board is connected, the setting is System.

El, E2, E2 Lite/E2 On-Board, E20, EZ-CUBE, EZ-CUBE2, TK: The main clock is
always set to External.

Selects the sub clock source input to the CPU. Choose between:

External The target power supply (TVDD) detection result is ON.

System The target power supply (TVDD) detection result is OFF.

E1l, E2, E2 Lite/E2 On-Board, E20, EZ-CUBE, EZ-CUBE2, TK: The sub clock is
always set to External.

Controls the operation clock of the monitor program. System configures the monitor
program to be executed using the main clock. User configures the monitor program to
be executed using the clock selected by the user application.

IECUBE: This option is not used.

57

Reference information on starting C-SPY

58

Fail-safe break

IECUBE: Select the View Setup option to make the Fail-safe break options available.

Choose between:

Flash illegal

Fetch from protect
Write to protect
Read protect SFR
Write protect SFR
Odd word access
Stack overflow
Stack underflow
Read uninit. RAM

Unmapped area

Illegal flash access.

Fetch from fetch-prohibited area.

Write to write-prohibited area.

Read of read-prohibited SFR.

Write to write-prohibited SFR.

Word access on odd address.

User-specified stack limit exceeded (upper limit).
User-specified stack limit not reached (lower limit).
Failure to perform RAM initialization.

Access to non-mapped area.

Uninit. stack pointer Failure to perform stack pointer initialization.

Fail-safe peripheral Fail-safe from peripheral.

Note: See the in-circuit emulator and the emulation board documentation for detailed
information about the options.

Deselect the View setup option to hide the options.

El, E2, E2 Lite/E2 On-Board, E20, EZ-CUBE, EZ-CUBE2, TK: This option is not

used.

Flash programming

C-SPY® Debugging Guide
for RL78

Controls flash programming. Choose between:

Permit

Not permit

Allows downloading to flash memory.

Prohibits downloading to flash memory.

IECUBE: This option is not used.

Getting started using C-SPY ___4

Target Power Off

Low-voltage

Target connect

Pin mask

Peripheral break

Together with the Pin mask option Target reset, this option controls the Power Off
emulation of the target board. A reset operation will result in the following:

Target power off Target reset Result of reset operation

Permit Selected No reset operation performed

Permit Deselected Executes the application immediately after a reset
operation

Not permit Selected No reset operation performed

Not permit Deselected Generates a break after a reset operation

Table 5: Target Power Off options
IECUBE: This option is not used.

Enables low-voltage flash programming down to 1.8 V.

IECUBE: This option is not used.

Selects the communication port between the emulator and the target board. The only
available option is TOOLO.

IECUBE: This option is not used.

Select the non-connected pod pins.

Controls peripheral emulation.

IECUBE: Choose between:

Disabled Stops emulation on break.

Enabled Does not stop emulation on break.

El, E2, E2 Lite/E2 On-Board, E20, EZ-CUBE, EZ-CUBE2, TK: Choose between:

A (timer) Stops timer-related peripheral emulation on break.

B (serial etc.) Stops peripheral emulation related to serial communication on break.

59

Reference information on starting C-SPY

Target

IECUBE: Select whether the target board is to be connected to the IECUBE in-circuit
emulator or not.

El, E2, E2 Lite/E2 On-Board, E20, EZ-CUBE, EZ-CUBE2, TK: This option is not

used.

Power supply

E1, E2, E2 Lite/E2 On-Board, EZ-CUBE2: Specifies the target board power. Choose
between:

3V low voltage adapter The emulator provides 3 V power. This option must be
used for the S1 core with a low voltage adapter board.

3v The emulator provides 3 V power.

5v The emulator provides 5 V power. (Not available for the
E2 Lite emulator.)

Target The board has its own power supply.

E20, EZ-CUBE, TK: The power supply is always set to Target.
IECUBE: This option is not used.

Memory map

Use the Memory map options to change the predefined memory areas.

Unallocated memory areas, except the SFR area, are always set as guarded, which
means that they are read- and write-protected. If an application reads or writes in
guarded memory or writes in ROM, the execution is stopped.

Start address The starting address of the memory area.

Length The length in bytes of the memory area.

C-SPY® Debugging Guide
60 for RL78

Getting started using C-SPY ___4

Type Internal ROM - The internal ROM area, 8-960 Kbytes. By
default, the maximum available area is defined.

Internal RAM — The internal RAM area, 512-63,232 bytes.
By default, the maximum available area is defined.

External Target area — The target memory area.

Internal Stack Area — The assumed stack area. The internal
high-speed RAM area can be used for the stack. Any stack
operations performed outside this area will result in stack
overflow.

Add Adds a new memory area with the properties of the current
settings of the Start address, Length, and Type options.

Remove Removes the memory area selected in the display list from
the memory map.

Remove all Removes all memory areas in the display list from the
memory map.

Display list Displays the memory map.

61

Reference information on starting C-SPY

C-SPY® Debugging Guide
62 for RL78

Executing your application

e Introduction to application execution
e Analyzing execution

e Reference information on application execution

Introduction to application execution

These topics are covered:

Briefly about application execution
Source and disassembly mode debugging
Single stepping

Troubleshooting slow stepping speed
Running the application

Highlighting

Viewing the call stack

Terminal input and output

Debug logging

BRIEFLY ABOUT APPLICATION EXECUTION

C-SPY allows you to monitor and control the execution of your application. By
single-stepping through it, and setting breakpoints, you can examine details about the
application execution, for example the values of variables and registers. You can also use
the call stack to step back and forth in the function call chain.

The terminal I/O and debug log features let you interact with your application.

You can find commands for execution on the Debug menu and on the toolbar.

SOURCE AND DISASSEMBLY MODE DEBUGGING

C-SPY allows you to switch between source mode and disassembly mode debugging as
needed.

Source debugging provides the fastest and easiest way of developing your application,
without having to worry about how the compiler or assembler has implemented the

63

Introduction to application execution

64

C-SPY® Debugging Guide
for RL78

code. In the editor windows you can execute the application one statement at a time
while monitoring the values of variables and data structures.

Disassembly mode debugging lets you focus on the critical sections of your application,
and provides you with precise control of the application code. You can open a
disassembly window which displays a mnemonic assembler listing of your application
based on actual memory contents rather than source code, and lets you execute the
application exactly one machine instruction at a time.

Regardless of which mode you are debugging in, you can display registers and memory,
and change their contents.

SINGLE STEPPING

C-SPY allows more stepping precision than most other debuggers because it is not
line-oriented but statement-oriented. The compiler generates detailed stepping
information in the form of step points at each statement, and at each function call. That
is, source code locations where you might consider whether to execute a step into or a
step over command. Because the step points are located not only at each statement but
also at each function call, the step functionality allows a finer granularity than just
stepping on statements.

There are several factors that can slow down the stepping speed. If you find it too slow,
see Troubleshooting slow stepping speed, page 67 for some tips.

The step commands
There are four step commands:

e Step Into
e Step Over
o Next Statement
e Step Out.

Using the Autostep settings dialog box, you can automate the single stepping. For more
information, see Autostep settings dialog box, page 87.

If your application contains an exception that is caught outside the code which would
normally be executed as part of a step, C-SPY terminates the step at the catch
statement.

Executing your application ___4

Consider this example and assume that the previous step has taken you to the £ (i)
function call (highlighted):

extern int g(int);

int f(int n)

{

value = g(n-1) + g(n-2) + g(n-3);
return value;

}
int main()

{

£(i);
value ++;

Breakpoints when single stepping using the OCD driver

If you are using one of the OCD emulators—E]1, E2, E2 Lite/E2 On-Board, E20,
EZ-CUBE, EZ-CUBE2, TK—breakpoints are ignored in code during single stepping,
and also when the Run to Cursor command is used. Among other things, this means
that terminal I/O does not work when single stepping using an OCD emulator.

Step Into

While stepping, you typically consider whether to step into a function and continue
stepping inside the function or subroutine. The Step Into command takes you to the first
step point within the subroutine g (n-1):

extern int g(int);

int f(int n)

{

value = g(n-1) + g(n-2) + g(n-3);
return value;

}

The Step Into command executes to the next step point in the normal flow of control,
regardless of whether it is in the same or another function.

Step Over

The Step Over command executes to the next step point in the same function, without
stopping inside called functions. The command would take you to the g (n-2) function
call, which is not a statement on its own but part of the same statement as g (n-1) . Thus,

65

Introduction to application execution

66

C-SPY® Debugging Guide
for RL78

you can skip uninteresting calls which are parts of statements and instead focus on
critical parts:

extern int g(int);

int f(int n)

{

value = g(n-1) + g(n-2) + g(n-3);
return value;

}

Next Statement

The Next Statement command executes directly to the next statement, in this case
return value, allowing faster stepping:

extern int g(int);

int f(int n)

{

value = g(n-1) + g(n-2) + g(n-3);
return value;

}

Step Out

When inside the function, you can—if you wish—use the Step Out command to step
out of it before it reaches the exit. This will take you directly to the statement
immediately after the function call:

extern int g(int);

int f(int n)

{

value = g(n-1) + g(n-2) g(n-3);
return value;

}

int main()

{

£(i);
value ++;

}

The possibility of stepping into an individual function that is part of a more complex
statement is particularly useful when you use C code containing many nested function
calls. It is also very useful for C++, which tends to have many implicit function calls,
such as constructors, destructors, assignment operators, and other user-defined
operators.

Executing your application __¢

This detailed stepping can in some circumstances be either invaluable or unnecessarily
slow. For this reason, you can also step only on statements, which means faster stepping.

TROUBLESHOOTING SLOW STEPPING SPEED

If you find that stepping speed is slow, these troubleshooting tips might speed up
stepping:

e If you are using a hardware debugger system, keep track of how many hardware
breakpoints that are used and make sure some of them are left for stepping.

Stepping in C-SPY is normally performed using breakpoints. When C-SPY performs
a step command, a breakpoint is set on the next statement and the application
executes until it reaches this breakpoint. If you are using a hardware debugger
system, the number of hardware breakpoints—typically used for setting a stepping
breakpoint in code that is located in flash/ROM memory—is limited. If you, for
example, step into a C switch statement, breakpoints are set on each branch; this
might consume several hardware breakpoints. If the number of available hardware
breakpoints is exceeded, C-SPY switches into single stepping on assembly level,
which can be very slow.

For more information, see Breakpoints in the C-SPY hardware debugger drivers,
page 129 and Breakpoint consumers, page 129.

e Disable trace data collection, using the Enable/Disable button in both the Trace
and the Function Profiling windows. Trace data collection might slow down
stepping because the collected trace data is processed after each step. Note that it is
not sufficient to just close the corresponding windows to disable trace data
collection.

o Choose to view only a limited selection of SFR registers. You can choose between
two alternatives. Either type # SFR_name (Where SFR_name reflects the name of the
SFR you want to monitor) in the Watch window, or create your own filter for
displaying a limited group of SFRs in the Registers window. Displaying many SFR
registers might slow down stepping because all registers must be read from the
hardware after each step. See Defining application-specific register groups, page
156.

o Close the Memory and Symbolic Memory windows if they are open, because the
visible memory must be read after each step and that might slow down stepping.

o Close any window that displays expressions such as Watch, Live Watch, Locals,
Statics if it is open, because all these windows read memory after each step and that
might slow down stepping.

o Close the Stack window if it is open. Choose Tools>Options>Stack and disable the
Enable graphical stack display and stack usage tracking option if it is enabled.

e If possible, increase the communication speed between C-SPY and the target
board/emulator.

67

Introduction to application execution

68

C-SPY® Debugging Guide
for RL78

RUNNING THE APPLICATION

Go

The Go command continues execution from the current position until a breakpoint or
program exit is reached.

Run to Cursor

The Run to Cursor command executes to the position in the source code where you
have placed the cursor. The Run to Cursor command also works in the Disassembly
window and in the Call Stack window.

HIGHLIGHTING

At each stop, C-SPY highlights the corresponding C or C++ source or instruction with
a green color, in the editor and the Disassembly window respectively. In addition, a
green arrow appears in the editor window when you step on C or C++ source level, and
in the Disassembly window when you step on disassembly level. This is determined by
which of the windows is the active window. If none of the windows are active, it is
determined by which of the windows was last active.
Tutor.c I!EEE

void init_fib({ woid)

{ int i = 45;
o root[0] = root[l] = 1;

for { i=2 ; i<MAX _FIE : i++)
{

For simple statements without function calls, the whole statement is typically
highlighted. When stopping at a statement with function calls, C-SPY highlights the first
call because this illustrates more clearly what Step Into and Step Over would mean at
that time.

Occasionally, you will notice that a statement in the source window is highlighted using
a pale variant of the normal highlight color. This happens when the program counter is
at an assembler instruction which is part of a source statement but not exactly at a step
point. This is often the case when stepping in the Disassembly window. Only when the
program counter is at the first instruction of the source statement, the ordinary highlight
color is used.

Code coverage

From the context menu in the Code Coverage window, you can toggle highlight colors
and icons in the editor window that show code coverage analysis for the source code,
see Code Coverage window, page 273.

Executing your application __¢

These are the colors and icons that are used:

o Red highlight color and a red diamond: the code range has not been executed.
Green highlight color: 100% of the code range has been executed.
Yellow highlight color and a red diamond: parts of the code range have been
executed.

This figure illustrates all three code coverage highlight colors:
callCount = 0;

InitFib():
L while (callCount < MRX FIE)

=

DoForegroundProcess () ;

VIEWING THE CALL STACK

The compiler generates extensive call frame information. This allows C-SPY to show,
without any runtime penalty, the complete function call chain at any time.

Typically, this is useful for two purposes:

o Determining in what context the current function has been called

o Tracing the origin of incorrect values in variables and in parameters, thus locating
the function in the call chain where the problem occurred.

The Call Stack window shows a list of function calls, with the current function at the
top. When you inspect a function in the call chain, the contents of all affected windows
are updated to display the state of that particular call frame. This includes the editor,
Locals, Register, Watch, and Disassembly windows. A function would normally not
make use of all registers, so these registers might have undefined states and be displayed
as dashes (---).

In the editor and Disassembly windows, a green highlight indicates the topmost, or
current, call frame; a yellow highlight is used when inspecting other frames.

For your convenience, it is possible to select a function in the call stack and click the
Run to Cursor command to execute to that function.

Assembler source code does not automatically contain any call frame information. To
see the call chain also for your assembler modules, you can add the appropriate CFI
assembler directives to the assembler source code. For more information, see the /4R
Assembler Reference Guide for RL78.

69

Analyzing execution

70

TERMINAL INPUT AND OUTPUT

Sometimes you might have to debug constructions in your application that use stdin
and stdout without an actual hardware device for input and output. The Terminal I/O
window lets you enter input to your application, and display output from it. You can also
direct terminal I/O to a file, using the Terminal I/O Log Files dialog box.

This facility is useful in two different contexts:

e If your application uses stdin and stdout
e For producing debug trace printouts.

For more information, see Terminal 1/0 window, page 79 and Terminal I/O Log File
dialog box, page 80.

Note: If you are using one of the OCD emulators, terminal I/O might not work. See
Breakpoints when single stepping using the OCD driver, page 65.

DEBUG LOGGING

The Debug Log window displays debugger output, such as diagnostic messages,
macro-generated output, and information about trace.

It can sometimes be convenient to log the information to a file where you can easily
inspect it, see Log File dialog box, page 82. The two main advantages are:

o The file can be opened in another tool, for instance an editor, so you can navigate
and search within the file for particularly interesting parts

o The file provides history about how you have controlled the execution, for instance,
which breakpoints that have been triggered etc.

Analyzing execution

C-SPY® Debugging Guide
for RL78

MEASURING THE EXECUTION TIME (IECUBE)

To measure the execution time between two points:
Choose Emulator>Edit Events to open the Edit Events dialog box.

Define two OP fetch events at two addresses (select Access type: OP fetch). For more
information, see Edit Events dialog box, page 90.

Click OK to close the dialog box.
Choose Emulator>Timer Setup to open the Timer Settings dialog box.

Select Enable conditional measurement, and in the Start timer and Stop timer lists,
select the two events that you defined earlier.

Executing your application __¢

Click OK to close the dialog box.

Make sure to disable any code breakpoints before running, except a final breakpoint—
the timer results are only shown after execution stops.

8 Choose Debug>Go.

After the execution has stopped, the measurement result can be seen in the Debug Log
window.

Reference information on application execution

Reference information about:

Disassembly window, page 72

Call Stack window, page 77

Terminal I/0 window, page 79

Terminal 1/O Log File dialog box, page 80
Debug Log window, page 81

Log File dialog box, page 82

Report Assert dialog box, page 83
Start/Stop Function Settings dialog box, page 84
Select Label dialog box, page 86

Autostep settings dialog box, page 87

DMM Function Settings dialog box, page 87
Stub Function Settings dialog box, page 89
Edit Events dialog box, page 90

Edit Sequencer Events dialog box, page 93
Timer Settings dialog box, page 95

Cores window, page 96

See also Terminal I/O options in the IDE Project Management and Building Guide for
RL78.

71

Reference information on application execution

Disassembly window
The C-SPY Disassembly window is available from the View menu.

[Go to memory address] [Select zone to display] I Toggle embedded source code

Disassemhly\ /// v O X

Gow v (Memoy ~J[B)

Disassembly J
& 001EA o7 RET |—|
NextCounter() ;
D DoForegroundProcess:
Code coverage ’7-‘ O0LEE FDE701 CALL N:NextCounter
 informarion fib = GetFib(callCount) ;
& 0O01EE AFOOEF MOV A¥, N:callCount
& 001F1 FD4502 CALL N:UFOSTR
PutFila{ fily) ;
& 001F4 EDS002 ER N:UF1CTLO
callCount = 0O;
main:
_ & 001F7 Fi5 CLEW AKX
[Current position }7*_
—_— InitFila() ;
& 001FE FDOEODZ2 CALL N:TCR27
& 001FE EFO03 ER S:5+0x05
_— DoForegroundProcess() ;
[Breakpeint }7'.
- while (callCount = MAX FIE)
& 00203 AFOOEF MOV A¥, N:callCount
& 00206 TCR0 XOR A, #0x80 5

This window shows the application being debugged as disassembled application code.
To change the default color of the source code in the Disassembly window:
I Choose Tools>Options>Debugger.
2 Set the default color using the Source code coloring in disassembly window option.

To view the corresponding assembler code for a function, you can select it in the editor
5 window and drag it to the Disassembly window.

See also Source and disassembly mode debugging, page 63.

Requirements

None; this window is always available.

C-SPY® Debugging Guide
72 for RL78

Toolbar

Display area

Executing your application __¢

The toolbar contains:

Go to
The memory location or symbol you want to view.

Zone
Selects a memory zone, see C-SPY memory zones, page 154.

Toggle Mixed-Mode

Toggles between displaying only disassembled code or disassembled code
together with the corresponding source code. Source code requires that the
corresponding source file has been compiled with debug information

The display area shows the disassembled application code. This area contains these
graphic elements:

Green highlight color Indicates the current position, that is the next assembler
instruction to be executed. To move the cursor to any line
in the Disassembly window, click the line. Alternatively,
move the cursor using the navigation keys.

Yellow highlight color Indicates a position other than the current position, such as
when navigating between frames in the Call Stack window
or between items in the Trace window.

Red dot Indicates a breakpoint. Double-click in the gray left-side
margin of the window to set a breakpoint. For more
information, see Breakpoints, page 125.

Green diamond Code coverage icon—indicates code that has been
executed.

Red diamond Code coverage icon—indicates code that has not been
executed.

Red/yellow diamond (red Code coverage icon—indicates a branch that is never
top/yellow bottom) taken.

Red/yellow diamond (red Code coverage icon—indicates a branch that is always
left side/yellow right side) taken.

If instruction profiling has been enabled from the context menu, an extra column in the
left-side margin appears with information about how many times each instruction has
been executed.

73

Reference information on application execution

Context menu

This context menu is available:
Move to PC

Run to Cursor

Code Coverage

Instruction Profiling

Toggle Breakpoint (Code)
Toggle Breakpoint (Log)
Toggle Breakpoint (Trace Start)
Toggle Breakpoint (Trace Stop)
Enable/Disable Breakpoint
Edit Breakpoint...

Set Mext Statement

Copy Window Contents
Mixed-Mode

Find in Trace
Zone

Note: The contents of this menu are dynamic, which means that the commands on the
menu might depend on your product package.

These commands are available:

Move to PC
Displays code at the current program counter location.

Run to Cursor
Executes the application from the current position up to the line containing the
cursor.

Code Coverage

Displays a submenu that provides commands for controlling code coverage.
This command is only enabled if the driver you are using supports it.

Enable Toggles code coverage on or off.

Show Toggles the display of code coverage on or off. Code
coverage is indicated by a red, green, and red/yellow
diamonds in the left margin.

Clear Clears all code coverage information.

C-SPY® Debugging Guide
74 for RL78

Executing your application __¢

Next Different Moves the insertion point to the next line in the
Coverage > window with a different code coverage status than
the selected line.

Previous Different Moves the insertion point to the closest preceding
Coverage < line in the window with a different code coverage
status than the selected line.

Instruction Profiling

Displays a submenu that provides commands for controlling instruction
profiling. This command is only enabled if the driver you are using supports it.

Enable Toggles instruction profiling on or off.

Show Toggles the display of instruction profiling on or off.
For each instruction, the left-side margin displays
how many times the instruction has been executed.

Clear Clears all instruction profiling information.

Toggle Breakpoint (Code)
Toggles a code breakpoint. Assembler instructions and any corresponding label
at which code breakpoints have been set are highlighted in red. For more
information, see Code breakpoints dialog box, page 140.

Toggle Breakpoint (Log)

Toggles a log breakpoint for trace printouts. Assembler instructions at which log
breakpoints have been set are highlighted in red. For more information, see Log
breakpoints dialog box, page 143.

Toggle Breakpoint (Trace Start)

Toggles a Trace Start breakpoint. When the breakpoint is triggered, the trace
data collection starts. Note that this menu command is only available if the
C-SPY driver you are using supports trace. For more information, see Trace
Start breakpoints dialog box, page 212.

Toggle Breakpoint (Trace Stop)

Toggles a Trace Stop breakpoint. When the breakpoint is triggered, the trace
data collection stops. Note that this menu command is only available if the
C-SPY driver you are using supports trace. For more information, see Trace
Stop breakpoints dialog box, page 213.

75

Reference information on application execution

Toggle Breakpoint (Code HW)

Toggles a code hardware breakpoint. Assembler instructions and any
corresponding label at which code hardware breakpoints have been set are
highlighted in red. See Code HW breakpoints dialog box, page 141.

Enable/Disable Breakpoint

Enables and Disables a breakpoint. If there is more than one breakpoint at a
specific line, all those breakpoints are affected by the Enable/Disable
command.

Edit Breakpoint

Displays the breakpoint dialog box to let you edit the currently selected
breakpoint. If there is more than one breakpoint on the selected line, a submenu
is displayed that lists all available breakpoints on that line.

Set Next Statement
Sets the program counter to the address of the instruction at the insertion point.

Copy Window Contents
Copies the selected contents of the Disassembly window to the clipboard.

Mixed-Mode

Toggles between showing only disassembled code or disassembled code
together with the corresponding source code. Source code requires that the
corresponding source file has been compiled with debug information.

Find in Trace
Searches the contents of the Trace window for occurrences of the given
location—the position of the insertion point in the source code—and reports the
result in the Find in Trace window. This menu command requires support for
Trace in the C-SPY driver you are using, see Differences between the C-SPY
drivers, page 35.

Zone
Selects a memory zone, see C-SPY memory zones, page 154.

C-SPY® Debugging Guide
76 for RL78

Executing your application __¢

Call Stack window

The Call Stack window is available from the View menu.

Call Stack * o X

T Fibonacci::next()

2 main

Destination for Step ‘
[_call_main + 0x9] .

Jump te main from label
plus offset

This window displays the C function call stack with the current function at the top. To
inspect a function call, double-click it. C-SPY now focuses on that call frame instead.

If the next Step Into command would step to a function call, the name of the function is
displayed in the gray bar at the top of the window. This is especially useful for implicit
function calls, such as C++ constructors, destructors, and operators.

See also Viewing the call stack, page 69.

Requirements

None; this window is always available.

Display area

Each entry in the display area is formatted in one of these ways:

function(values) *** A C/C++ function with debug information.

Provided that Show Arguments is enabled, values
is a list of the current values of the parameters, or
empty if the function does not take any parameters.

**x_if present, indicates that the function has been
inlined by the compiler. For information about
function inlining, see the AR C/C++ Development
Guide for RL78.

[label + offset] An assembler function, or a C/C++ function without
debug information.

<exception_frame> An interrupt.

77

Reference information on application execution

Context menu

This context menu is available:
Go to Source
Show Arguments
Run to Cursor
Copy Window Contents
Toggle Breakpoint (Code)
Toggle Breakpoint (Log)
Toggle Breakpoint (Trace Start)
Toggle Breakpoint (Trace Stop)
Enable/Disable Breakpoint

These commands are available:

Go to Source
Displays the selected function in the Disassembly or editor windows.

Show Arguments
Shows function arguments.

Run to Cursor
Executes until return to the function selected in the call stack.

Copy Window Contents
Copies the contents of the Call Stack window and stores them on the clipboard.

Toggle Breakpoint (Code)
Toggles a code breakpoint.

Toggle Breakpoint (Log)
Toggles a log breakpoint.

Toggle Breakpoint (Trace Start)

Toggles a Trace Start breakpoint. When the breakpoint is triggered, trace data
collection starts. Note that this menu command is only available if the C-SPY
driver you are using supports it.

Toggle Breakpoint (Trace Stop)
Toggles a Trace Stop breakpoint. When the breakpoint is triggered, trace data
collection stops. Note that this menu command is only available if the C-SPY
driver you are using supports it.

Enable/Disable Breakpoint
Enables or disables the selected breakpoint

C-SPY® Debugging Guide
78 for RL78

Executing your application __¢

Terminal 1/O window

The Terminal I/O window is available from the View menu.
Terminal /O x

Output: Loq file: Off
A Fibonacci object was created.

A Fibonacci object that starts at Fil
1

1 13

2

3 21

5

8 34

13

21 55

34
55 &g

Fl 10 2

Input: Chl codes || Options...

Buffer size: 1]

Use this window to enter input to your application, and display output from it.
To use this window, you must:
I Link your application with the option Include C-SPY debugging support.

C-SPY will then direct stdin, stdout and stderr to this window. If the Terminal I/O
window is closed, C-SPY will open it automatically when input is required, but not for
output.

See also Terminal input and output, page 70.

Requirements

None; this window is always available.

Input

Type the text that you want to input to your application.

79

Reference information on application execution

Ctrl codes

Options

Opens a menu for input of special characters, such as EOF (end of file) and NUL.

0:x00-0x0f »
O:x10-0:x1F »
ECF

Opens the IDE Options dialog box where you can set options for terminal I/0. For
information about the options available in this dialog box, see Terminal 1I/O options in

IDE Project Management and Building Guide for RL78.

Terminal I/O Log File dialog box

Requirements

The Terminal 1/0 Log File dialog box is available by choosing Debug>Logging>Set

Terminal 1/0 Log File.

Terminal I/0 Log File

Termninal 140 Log File

™ Enable Teminal 10 log file

| il

Cancel

Use this dialog box to select a destination log file for terminal I/O from C-SPY.

See also Terminal input and output, page 70.

None; this dialog box is always available.

Terminal 10 Log Files

C-SPY® Debugging Guide
80 for RL78

Controls the logging of terminal I/O. To enable logging of terminal I/O to a file, select
Enable Terminal 10 log file and specify a filename. The default filename extension is

log. A browse button is available for your convenience.

Executing your application __¢

Debug Log window

The Debug Log window is available by choosing View>Messages.
Debug Log v 0 X

Log
Mon Jun 19, 2017 13:21:16: Loaded module
ton Jun 19, 2017 13:21:16: Target reset

Fl nm 3

This window displays debugger output, such as diagnostic messages, macro-generated
output, and information about trace. This output is only available during a debug
session. When opened, this window is, by default, grouped together with the other
message windows, see IDE Project Management and Building Guide for RL7S.

Double-click any rows in one of the following formats to display the corresponding
source code in the editor window:

<path> (<row>) :<message>
<path> (<row>,<column>) :<message>

See also Debug logging, page 70 and Log File dialog box, page 82.

Requirements

None; this window is always available.

Context menu

This context menu is available:
Filter Level:
All
Messages
Warnings

Errors

Copy
Select All

Clear All
These commands are available:

All
Shows all messages sent by the debugging tools and drivers.

Messages
Shows all C-SPY messages.

81

Reference information on application execution

Log File dialog box

Requirements

Enable log file

Include

C-SPY® Debugging Guide
82 for RL78

Warnings

Shows warnings and errors.
Errors

Shows errors only.
Copy

Copies the contents of the window.
Select All

Selects the contents of the window.

Clear All

Clears the contents of the window.

The Log File dialog box is available by choosing Debug>Logging>Set Log File.

Log File =
7] Enable log fle
Include: W
| Ermars
| W arnings
| User
| Info
Loq file:
$PROJ_DIR$'LogFileT.log D

Use this dialog box to log output from C-SPY to a file.

None; this dialog box is always available.

Enables or disables logging to the file.

The information printed in the file is, by default, the same as the information listed in
the Debug Log window. Use the browse button, to override the default file and location

Executing your application __¢

of the log file (the default filename extension is 1og). To change the information logged,
choose between:
Errors
C-SPY has failed to perform an operation.
Warnings
An error or omission of concern.
User
Messages from C-SPY macros, that is, your messages using the __message
statement.
Info

Progress information about actions C-SPY has performed.

Report Assert dialog box

Abort

Debug

Ignore

The Report Assert dialog box appears if you have a call to the assert function in your
application source code, and the assert condition is false. In this dialog box you can
choose how to proceed.

Report Assert P§|

The following Failed:

File: C:\Documents and SettingsiMy DocumentsiIAR Embedded Workbenchiresolve.cpp
Line: 35

Expression Failed:

a

Abort | Debug |

The application stops executing and the runtime library function abort, which is part
of your application on the target system, will be called. This means that the application
itself terminates its execution.

C-SPY stops the execution of the application and returns control to you.

The assertion is ignored and the application continues to execute.

83

Reference information on application execution

84

Start/Stop Function Settings dialog box

Requirements

The Start/Stop Function Settings dialog box is available from the C-SPY Driver menu.

Start/Stop Function Settings &J
[~ Enable start routine.
Start routine location:
-
[~ Enable stop routine.
Stop routine location:
&
I oK I I Cancel I

Use this dialog box to configure the emulator to execute specific routines of your
application immediately before the execution starts and/or after it halts. This is useful if
you want to control your system in synchronization with starting and stopping the
execution of your application.

One of these alternatives:

The C-SPY E2 driver
The C-SPY E2 Lite driver.
The C-SPY E2 On-Board driver.

°
°
°
o The C-SPY EZ-CUBE2 driver.

Restrictions on using start/stop routines

C-SPY® Debugging Guide
for RL78

Some restrictions apply:

o If the start/stop routines write to the CPU registers, the registers are restored when
the routines finish executing.

e The execution of the start/stop routines cannot be single-stepped.

o Breakpoints cannot be used in start/stop routines.
Note! This means that library functions that use an internal breakpoint in the default
debugging support implementation cannot be used, for instance printf and scanf

(see Breakpoint consumers, page 129). Such functions can only be used with a
custom debugging support implementation.

o When your application starts executing from an address where a software
breakpoint has been set, the instruction at the breakpoint is single-stepped, then the
start routine is executed.

Executing your application __¢

e If you have specified and enabled a start routine and your application starts
executing from an address where you have set an event breakpoint, the breakpoint is
triggered if the condition is satisfied and the start routine will be executed. If the
start routine is disabled, the event breakpoint will not be triggered. To trigger the
event breakpoint without executing the start routine, you must single-step the
instruction in the Disassembly window before you execute the rest of your
application, or disable the start routine.

e If you intend to use a stop routine, specify one that returns normally. If the routine
does not return normally, the emulator debugger cannot control execution. To
restore control, reset the debugger.

e Hot plug-in is disabled when the start/stop feature is enabled.

Enable start routine

Enables the execution of a routine immediately before your application starts executing.

Start routine location

Specifies the routine to be executed immediately before your application starts
executing. Type a label or an address, or click the browse button to open the Select
Label dialog box; see Select Label dialog box, page 86.

Enable stop routine

Enables the execution of a routine immediately after your application stops executing.

Stop routine location

Specifies the routine to be executed immediately after your application stops executing.
Type a label or an address, or click the browse button to open the Select Label dialog
box; see Select Label dialog box, page 86.

85

Reference information on application execution

Select Label dialog box
The Select Label dialog box is available from the Start/Stop Function Settings dialog

box.

Select Label ==
Label Address i
main OxFFEB39C0
next_pos 0x10
Region$sTable$sBase OxFFE83B1C
Region$$Table SSLimit OxFFE83B5C
STACKSSSBase 0x314
STACKSSSLimit Ox514
StartADC 0xFFE8364C
StartTimer 0xFFE83671
Statics_Test 0xFFE&3946
SW1_debounce OxFFE831AF
SW1_handler OxFFE8327F
SW2_debounce OxFFEB31A2
SW2_handler OxFFES321E
SW3_debounce OxFFE83195
SW3_handler 0xFFE831BC
TimerADC OxFFES36AC
TimerADC_callback OxFFE&3605
TMR_Callback OxFFES37AT7
Togglel EDs OxFFE8374C
ucReplace OxFFE20000
ucstr Ox4 —

| OK | [Cancel]

Select the routine you want to be executed and click OK.

Requirements

One of these alternatives:

The C-SPY E2 driver
The C-SPY E2 Lite driver.
The C-SPY E2 On-Board driver.

[]
°
°
o The C-SPY EZ-CUBE2 driver.

C-SPY® Debugging Guide
86 for RL78

Executing your application __¢

Autostep settings dialog box

The Autostep settings dialog box is available from the Debug menu.

Autostep settings @

[Step Into [Source level] hd] [Start]

Delay [milliseconds): 1000 Cancel

Use this dialog box to customize autostepping.

The drop-down menu lists the available step commands, see Single stepping, page 64.

Requirements

None; this dialog box is always available.

Delay (milliseconds)

Specify the delay between each step in milliseconds.

DMM Function Settings dialog box

The DMM Function Settings dialog box is available by choosing DMM Setup from
the Emulator menu.

DMM Function Settings

X
Dbt W ame:

dmm1 v
Dbk Event Dbk Entry
dmm_ewvent ultddress, 04007234, W
Select
() Memory ‘wiite Address: ulsddress | DataSize: W hd
Os Wiite Data: 001234
[add] [Modiy | [FRemove |

Use this dialog box to specify which events that will trigger a memory modification and
the characteristics of the modification. The supported events are data accesses and
execution events. Events that occur before execution cannot define a DMM.

The Direct Memory Modification (DMM) function provides the possibility to modify
memory addresses or SFRs if an event occurs.

87

Reference information on application execution

Requirements

DMM Name

DMM Event

DMM Entry

Select

Write Address

Write Data

Data Size

Sfr Name

C-SPY® Debugging Guide
88 for RL78

The IECUBE emulator.

To define anew DMM event, enter the name in the DMM Name drop-down list. Choose
the appropriate characteristics and click OK.

To modify an existing DMM event, choose the event from the DMM Name list, enter
the new characteristics and click OK.

Displays the events that will trigger the memory modification.

Displays the memory addresses and SFRs to be modified, together with their new
values.

Select what to modify:

Memory Modifies a memory address.
Sfr Modifies an SFR.

Depending on your choice, different sets of options appear to the right.

Specifies the memory address to modify. Symbol names can be used instead of absolute
addresses to define an address area.

Specifies the new value of the memory address or the SFR.

Specifies the size of the new data. Choose between B for byte and W for word.

Displays all available SFRs. Choose the SFR that you want to modify.

Executing your application __¢

Buttons

These buttons are available:

Add Displays the new DMM entry in the DMM Entry box.
Modify Changes a selected item in the DMM Entry box.
Remove Deletes a selected item in the DMM Entry box.

Stub Function Settings dialog box

The Stub Function Settings dialog box is available from the Emulator menu.

Stub Function Settings @
Stub1 -
Stub Exent:
[C1Bk2
GeTo

StubFuncl -

e

Use this dialog box to execute a stub function of the application on the occurrence of an
event. The supported events are data accesses and execution events. Events that occur
before execution cannot define a stub function call.

Requirements
The IECUBE emulator.

Stub Name
To define a new stub event, enter the name in the Stub Name drop-down list. Choose
the appropriate characteristics and click OK.
To modify an existing stub event, choose the event from the Stub Name list, enter the
new characteristics and click OK.

Stub Event
Displays the events that will trigger the execution of the stub function.

Go To

Specify the function to be executed when the event occurs. Instead of a function name,
an absolute address can be specified.

89

Reference information on application execution

Edit Events dialog box

The Edit Events dialog box is available from the Emulator menu.

Edit Events X
Mame: Pass count:
TrcQfy v 1
| ' o
Access type Address
(%) Read write Start:
O Read Condition: D4FE2D e
O white = End:
() 0P fetch O =
O<=
O Inside
O Outside
Diata
Start: Mask:
000 v [0FFFF v
Conditior:
= End: Start pattern:
Q= 000000071 00000000 -
Q- End patterrs
O<= ey nd pattern:
Omids Ouge —
Outtsid ‘wiord
O O Remave Al
Mame Uszage Acc | ACond AddiRange | DCond DSize DataRange DataPattern | Count
Tim1 Mot Used FB EQ 0x1FF - - - -
Tim2 Mot Used FB EQ 0x2FF
TrcBeg Mot Used F EQ 0x1FF - - - - 1
TrcEnd Mot Used F EQ Ox2FF - 1
TrcOf 0 L. 1
TreDly Mot Used 1

Use this dialog box to define the events used by the emulator as breakpoint, trace, timer
and sequencer events.

In real-time, the emulator compares the address, data, access type, and probe signals
with the events that you have defined. When all defined conditions are true, the event is
raised.

Each event is uniquely named and listed with its settings at the bottom of the Edit
Events dialog box. In the list, the Usage column shows how the event is used, that is, as
breakpoint, trace, timer, or sequencer event.

C-SPY® Debugging Guide
90 for RL78

Requirements

Name

Pass count

Access type

Address

Executing your application __¢

Any supported hardware debugger system, but requires a device that supports events.

To define a new event, enter the event name in the Name list box and choose the
appropriate characteristics. Click Add.

To modify an existing event, choose the event from the Name list box, enter the new
characteristics and click on one of the Modify, Remove, or Remove All buttons.

For each event you can specify the access type, address, data, and external probe.

Specify the number of times the event must be repeated before the event is triggered.
The valid range of values is 1-255.

Selects the access type that should trigger the event:

Read/write A read/write access.

Read A read access.

Write A write access.

OP fetch An operation fetch access. An OP fetch event will by

default break after execution, but you can modify it to
break before execution by selecting the option Before
exec (IECUBE only).

Specify an address or an address range. Any access to the specified address or address
range with the specified condition, causes the event to be triggered.

To define a single address, select a single condition option and enter the value in the
Start field. For the IECUBE emulator, the condition can be ==, >=, or <=. For all other
emulators, only the equal (==) condition is available.

To define an address range, select the Inside or Outside condition option and enter the
start and end values in the Start and End fields, respectively. This is only possible for
the IECUBE emulator. For all other emulators, only a single address can be specified.

Note: You can enter a label instead of an address value.

91

Reference information on application execution

Data

Specify a condition, access size, and a data value or data range. An access with data or
data range with the specified condition, access size and mask, causes the event to be
triggered.

To define a single data value, select a single condition option (==, ! =, >=, or <=), access
size (Byte or Word) and enter the data value in the Start field. You can choose to enter
amask in the Mask field. The bit pattern for the value with the mask applied is displayed
in the Start Pattern text box.

To define a data range, select the Inside or Outside condition option, access size (Byte
or Word) and enter the start and end values in the Start and End fields, respectively.
You can choose to enter a mask in the Mask field. The bit pattern for the value range
with the mask applied is displayed in the Start Pattern and End Pattern text boxes.

Only the IECUBE emulator supports all these options. For all other emulators, these
restrictions apply:

o Only the equal (==) condition is available
o Only byte accesses are available

o Only a single address can be entered.

Buttons

These buttons are available:

Add Adds the selected event in the Name list box.

Modify Modifies the selected event in the Name list box using the current
settings in the dialog box.

Remove Removes the selected event from the Name list box.

Remove All Removes all events from the Name list box.

C-SPY® Debugging Guide
92 for RL78

Executing your application __¢

Edit Sequencer Events dialog box

The Edit Sequencer Events dialog box is available from the Emulator menu.

Edit Sequencer. Events

M ame: Pass count:
Seq v
| '
Enable 1 Enable 2 Enable3 Enable 4 Disable

Tim1 Tim1 Tim1 Tim1

Tim2 Tim2 Tim2 Tim2

TrcBeg TrcBeg TrcBeg TrcBeg

TrcEnd TrcEnd TrcEnd TrcEnd 7

TrcQfy TrcQfy TrcQfy TrcQfy

TreDly TreDly TreDly TreDly

Erk1 Erk1 Erk1 Erk1

Brk2 Bik2 Brk2
EBrk3 Brk3 Brk3 Brk3
Remave Al
Uszage Enable 1 Enable 2 Enable 3 Enable 4 Dizable Count
1

Use this dialog box to set a sequence of events that must occur before a sequencer event

is triggered.
Requirements

Any supported hardware debugger system, but requires a device that supports events.
Name

To define a new event, enter the event name in the Name list box and choose the

appropriate characteristics. Click Add.

To modify an existing event, choose the event from the Name list box, enter the new

characteristics and click on one of the Modify, Remove, or Remove All buttons.
Pass count

Specify the number of times the event must be repeated before the event is triggered.
The valid range of values is 1-255.

93

Reference information on application execution

94

Enable/Disable

Display area

Buttons

C-SPY® Debugging Guide
for RL78

Select up to four Enable events that must be triggered in a sequence to create a
sequencer event. You can only select one event in each Enable list. You do not have to
use all Enable lists.

If the Disable event occurs, the sequence starts over with the first Enable event again.

This area displays all created events and their settings. The Usage column shows how
the event is used: as a breakpoint, a trace, a timer, or a sequencer event.

These buttons are available:

Add Adds the selected event in the Name list box.

Modify Modifies the selected event in the Name list box using the current
settings in the dialog box.

Remove Removes the selected event from the Name list box.

Remove All Removes all events from the Name list box.

Executing your application __¢

Timer Settings dialog box

The Timer Settings dialog box is available from the Emulator menu.

Timer Settings

¥ Enable conditional measurement

Count rate el
wd -

I Clear timer before Ga

Timer conditions

Start timer Stop timer
v Tim1
[C1Tim2
[ITrcBeg [ITrcBeg
[1TrcEnd [1TrcEnd
[C1Trclfy [1TrcQfy
Timer break.
" Disable " Overflaw + Timeout
haur ity 360 MIEC LSEC

nsec

o Jo Js Jo Jo Jo

Use this dialog box to define the timer behavior. The timer measures the time between
events that you select with the Timer conditions options. The result is displayed in the
C-SPY Debug Log window.
Requirements
The IECUBE emulator.
Enable conditional measurement
Enables the timer.

Count rate

Sets the timer rate value for execution time measurement. The count rate can be set to
between 1 and 2048 times the current clock frequency.

Clear timer before Go

Select to clear the timer every time before any Go or step command is performed.

95

Reference information on application execution

96

Timer conditions

Timer break

Cores window

Requirements

Display area

C-SPY® Debugging Guide
for RL78

Select the timer events that should start and stop the time measuring. If more than one
event is selected in the same list, the timer condition is true when one of the events has
occurred.

You define the events that appear in the Timer conditions lists either in the Edit Events
dialog box or in the Edit Sequencer Events dialog box.

Specify when the timer should stop measuring the time. Choose between:

Disable No timer breaks will occur.

Overflow A break will occur when the timer exceeds the highest possible
measurable value.

Timeout A break will occur after the amount of time you specify using the
boxes below.

The Cores window is available from the View menu.
Cores w 0 X

Core Status PC Cycles
[E 0:Cored Stopped ORE0055F 74

This window displays information about the executing core, such as its execution state.
This information is primarily useful for AR Embedded Workbench products that
support multicore debugging.

None; this window is always available.

A row in this area shows information about a core, in these columns:

Execution state

Displays one of these icons to indicate the execution state of the core.

- in focus, not executing

Executing your application __¢

O not in focus, not executing
El in focus, executing

3 not in focus, executing
|E| in focus, in sleep mode

] not in focus, in sleep mode
:] in focus, unknown status

not in focus, unknown status

Core
The name of the core.

Status
The status of the execution, which can be one of Stopped, Running, Sleeping,
or Unknown.

PC

The value of the program counter.

Cycles | Time
The value of the cycle counter or the execution time since the start of the
execution, depending on the debugger driver you are using.

97

Reference information on application execution

C-SPY® Debugging Guide
98 for RL78

Variables and expressions

o Introduction to working with variables and expressions
o Working with variables and expressions

e Reference information on working with variables and expressions

Introduction to working with variables and expressions

This section introduces different methods for looking at variables and introduces some
related concepts.

These topics are covered:

e Briefly about working with variables and expressions
o C-SPY expressions

e Limitations on variable information

BRIEFLY ABOUT WORKING WITH VARIABLES AND
EXPRESSIONS

There are several methods for looking at variables and calculating their values. These
methods are suitable for basic debugging:

e Tooltip watch—in the editor window—provides the simplest way of viewing the
value of a variable or more complex expressions. Just point at the variable with the
mouse pointer. The value is displayed next to the variable.

o The Auto window displays a useful selection of variables and expressions in, or
near, the current statement. The window is automatically updated when execution
stops.

o The Locals window displays the local variables, that is, auto variables and function
parameters for the active function. The window is automatically updated when
execution stops.

o The Watch window allows you to monitor the values of C-SPY expressions and
variables. The window is automatically updated when execution stops.

o The Live Watch window repeatedly samples and displays the values of expressions
while your application is executing. Variables in the expressions must be statically
located, such as global variables.

o The Statics window displays the values of variables with static storage duration.
The window is automatically updated when execution stops.

929

Introduction to working with variables and expressions

100

C-SPY® Debugging Guide
for RL78

o The Macro Quicklaunch window and the Quick Watch window give you precise
control over when to evaluate an expression.

e The Symbols window displays all symbols with a static location, that is, C/C++
functions, assembler labels, and variables with static storage duration, including
symbols from the runtime library.

These additional methods for looking at variables are suitable for more advanced
analysis:

o The Data Log window and the Data Log Summary window display logs of
accesses to up to four different memory locations you choose by setting data log
breakpoints. Data logging can help you locate frequently accessed data. You can
then consider whether you should place that data in more efficient memory.

o The Data Sample window displays samples for up to four different variables. You
can also display the data samples as graphs in the Sampled Graphs window. By
using data sampling, you will get an indication of the data value over a length of
time. Because it is a sampled value, data sampling is best suited for slow-changing
data.

e The Event Log window and the Event Log Summary window display event logs
from collected Smart Analog data. The Timeline window graphically displays these
event logs correlated to a common time-axis. Event logging requires a device that
supports Smart Analog data collection and an E1, E2, E20, E2 Lite/E2 On-Board, or
EZ-CUBE2 emulator.

For more information about these windows, see The application timeline, page 221.

C-SPY EXPRESSIONS

C-SPY expressions can include any type of C expression, except for calls to functions.
The following types of symbols can be used in expressions:

o C/C++ symbols
o Assembler symbols (register names and assembler labels)
o C-SPY macro functions

o C-SPY macro variables.

Variables and expressions °

Expressions that are built with these types of symbols are called C-SPY expressions and
there are several methods for monitoring these in C-SPY. Examples of valid C-SPY
expressions are:

i+ 3

i = 42

myVar = cVar

cVar = myVar + 2

#asm_label

#R2

#PC

my_macro_func(19)

If you have a static variable with the same name declared in several different functions,
use the notation function: : variable to specify which variable to monitor.

C/C++ symbols

C symbols are symbols that you have defined in the C source code of your application,
for instance variables, constants, and functions (functions can be used as symbols but
cannot be executed). C symbols can be referenced by their names. Note that C++
symbols might implicitly contain function calls which are not allowed in C-SPY
symbols and expressions.

Note: Some attributes available in C/C++, like volatile, are not fully supported by
C-SPY. For example, this line will not be accepted by C-SPY:

sizeof (unsigned char volatile __memattr *)
However, this line will be accepted:

sizeof (unsigned char __memattr *)

Assembler symbols

Assembler symbols can be assembler labels or registers, for example the program
counter, the stack pointer, or other CPU registers. If a device description file is used, all
memory-mapped peripheral units, such as I/O ports, can also be used as assembler
symbols in the same way as the CPU registers. See Modifying a device description file,
page 47.

Assembler symbols can be used in C-SPY expressions if they are prefixed by #.

Example What it does
#PC++ Increments the value of the program counter.
myVar = #SP Assigns the current value of the stack pointer register to your

C-SPY variable.

Table 6: C-SPY assembler symbols expressions

101

Introduction to working with variables and expressions

102

C-SPY® Debugging Guide
for RL78

Example What it does
myVar = #label Sets myVar to the value of an integer at the address of 1abel.
myptr = &#label7 Sets myptr to an int * pointer pointing at label7.

Table 6: C-SPY assembler symbols expressions (Continued)

In case of a name conflict between a hardware register and an assembler label, hardware
registers have a higher precedence. To refer to an assembler label in such a case, you
must enclose the label in back quotes * (ASCII character 0x60). For example:

Example What it does
#PC Refers to the program counter.
PC’ Refers to the assembler label PC.

Table 7: Handling name conflicts between hardware registers and assembler labels

Which processor-specific symbols are available by default can be seen in the Registers
window, using the CPU Registers register group. See Registers window, page 178.

C-SPY macro functions

Macro functions consist of C-SPY macro variable definitions and macro statements
which are executed when the macro is called.

For information about C-SPY macro functions and how to use them, see Briefly about
the macro language, page 322.

C-SPY macro variables

Macro variables are defined and allocated outside your application, and can be used in
a C-SPY expression. In case of a name conflict between a C symbol and a C-SPY macro
variable, the C-SPY macro variable will have a higher precedence than the C variable.
Assignments to a macro variable assign both its value and type.

For information about C-SPY macro variables and how to use them, see Reference
information on the macro language, page 328.

Using sizeof

According to standard C, there are two syntactical forms of sizeof:

sizeof (type)
sizeof expr

The former is for types and the latter for expressions.

Note: In C-SPY, do not use parentheses around an expression when you use the sizeof
operator. For example, use sizeof x+2 instead of sizeof (x+2).

Variables and expressions °

LIMITATIONS ON VARIABLE INFORMATION

The value of a C variable is valid only on step points, that is, the first instruction of a
statement and on function calls. This is indicated in the editor window with a bright
green highlight color. In practice, the value of the variable is accessible and correct more
often than that.

When the program counter is inside a statement, but not at a step point, the statement or
part of the statement is highlighted with a pale variant of the ordinary highlight color.

Effects of optimizations

The compiler is free to optimize the application software as much as possible, as long
as the expected behavior remains. The optimization can affect the code so that
debugging might be more difficult because it will be less clear how the generated code
relates to the source code. Typically, using a high optimization level can affect the code
in a way that will not allow you to view a value of a variable as expected.

Consider this example:

myFunction ()
{
int i = 42;

x = computer(i); /* Here, the value of i is known to C-SPY */

}

From the point where the variable i is declared until it is actually used, the compiler
does not need to waste stack or register space on it. The compiler can optimize the code,
which means that C-SPY will not be able to display the value until it is actually used. If
you try to view the value of a variable that is temporarily unavailable, C-SPY will
display the text:

Unavailable

If you need full information about values of variables during your debugging session,
you should make sure to use the lowest optimization level during compilation, that is,
None.

Working with variables and expressions

These tasks are covered:

o Using the windows related to variables and expressions

o Viewing assembler variables

103

Working with variables and expressions

See also Analyzing your application s timeline, page 223

USING THE WINDOWS RELATED TO VARIABLES AND
EXPRESSIONS

Where applicable, you can add, modify, and remove expressions, and change the display
format in the windows related to variables and expressions.

To add a value you can also click in the dotted rectangle and type the expression you
want to examine. To modify the value of an expression, click the Value field and modify
its content. To remove an expression, select it and press the Delete key.

For text that is too wide to fit in a column—in any of these windows, except the Trace
g window—and thus is truncated, just point at the text with the mouse pointer and tooltip
information is displayed.

Right-click in any of the windows to access the context menu which contains additional
commands. Convenient drag-and-drop between windows is supported, except for in the
Locals window, Data logging windows, and the Quick Watch window where it is not
relevant.

VIEWING ASSEMBLER VARIABLES

An assembler label does not convey any type information at all, which means C-SPY
cannot easily display data located at that label without getting extra information. To
view data conveniently, C-SPY by default treats all data located at assembler labels as
variables of type int. However, in the Watch, Live Watch, and Quick Watch
windows, you can select a different interpretation to better suit the declaration of the
variables.

C-SPY® Debugging Guide
104 for RL78

Variables and expressions ___¢

In this figure, you can see four variables in the Watch window and their corresponding
declarations in the assembler source file to the left:

. f) + x Watch1
HAME main — | Expression Yalue Location Type
= asmvarl 42 0x00000080 int
PUBLIC _ iar program start asrrvard 456 0=00000084 int
astrvard 55 O0=00000088 <8-bit unsigned>

SECTION .intvec : CODE (2}
CODES2

<clickto ... Default Format

__iar program start Binary Format
B main Octal Format

v Decimal Format

SECTION .text : CODE (2) Hexadecimal Format

Char Format
asmvarl: DC32 42

asmvar2: DC32 456 Show As b Asls
asmvar3: DC8 55 8-bit Signed
asmvard: DC8 10 Saveto File...
16-bit Signed
copes2z 16-bit Unsigned
= main NOE 32-bit Signed
B main 32-bit Unsigned
64-bit Signed
EID 64-bit Unsigned
float
double

Note that asmvar4 is displayed as an int, although the original assembler declaration
probably intended for it to be a single byte quantity. From the context menu you can
make C-SPY display the variable as, for example, an 8-bit unsigned variable. This has
already been specified for the asmvar3 variable.

Reference information on working with variables and expressions

Reference information about:

Auto window, page 106

Locals window, page 108
Watch window, page 110

Live Watch window, page 112
Statics window, page 115
Quick Watch window, page 118
Symbols window, page 121

Resolve Symbol Ambiguity dialog box, page 123

105

Reference information on working with variables and expressions

106

Auto window

Requirements

Context menu

C-SPY® Debugging Guide
for RL78

See also:

® Reference information on trace, page 199 for trace-related reference information

® Macro Quicklaunch window, page 376

The Auto window is available from the View menu.

Auto * o X
Expression Yalue Location Type
MextCounter MNextCounter (0x40E) woid ...
filh 1 Memory : OxFEF74 uint3Z2_t
GetFib GetFib (0x141) uint32_t (...
callCount 3 Memory : 0xFEFAS signed int

This window displays a useful selection of variables and expressions in, or near, the
current statement. Every time execution in C-SPY stops, the values in the Auto window
are recalculated. Values that have changed since the last stop are highlighted in red.

See also Editing in C-SPY windows, page 45.

None; this window is always available.

This context menu is available:

Remove

Rermove All

Default Format
Binary Format

Octal Format
Decimal Format
Hexadecimal Format

Char Format
Show As 3
Save to File...
Options...
Note: The contents of this menu are dynamic and depend on which features that your

combination of software and hardware supports. However, the list of menu commands
below is complete and covers all possible commands.

Variables and expressions °

These commands are available:

Remove
Removes the selected expression from the window.

Remove All

Removes all expressions listed in the window.

Default Format

Binary Format

Octal Format

Decimal Format

Hexadecimal Format

Char Format
Changes the display format of expressions. The display format setting affects
different types of expressions in different ways. Your selection of display format
is saved between debug sessions. These commands are available if a selected
line in the window contains a variable.

The display format setting affects different types of expressions in these ways:

Variables The display setting affects only the selected variable, not
other variables.

Array elements The display setting affects the complete array, that is, the
same display format is used for each array element.

Structure fields All elements with the same definition—the same field
name and C declaration type—are affected by the
display setting.

Show As

Displays a submenu that provides commands for changing the default type
interpretation of variables. The commands on this submenu are mainly useful
for assembler variables—data at assembler labels—because these are, by
default, displayed as integers. For more information, see Viewing assembler
variables, page 104.

Save to File
Saves content to a file in a tab-separated format.

Options
Displays the IDE Options dialog box where you can set various options for
C-SPY windows.

107

Reference information on working with variables and expressions

Locals window

Requirements

Context menu

C-SPY® Debugging Guide
108 for RL78

The Locals window is available from the View menu.

Locals * o X

Location
Memory : 0xFEF72

Yariable Value
i 1244

Type
signed int

This window displays the local variables and parameters for the current function. Every
time execution in C-SPY stops, the values in the window are recalculated. Values that
have changed since the last stop are highlighted in red.

See also Editing in C-SPY windows, page 45.

None; this window is always available.

This context menu is available:

Remove

Rermove All

Default Format
Binary Format

Octal Format
Decimal Format
Hexadecimal Format

Char Format
Show As 3
Save to File...
Options...
Note: The contents of this menu are dynamic and depend on which features that your

combination of software and hardware supports. However, the list of menu commands
below is complete and covers all possible commands.

These commands are available:

Remove

Removes the selected expression from the window.

Remove All
Removes all expressions listed in the window.

Variables and expressions °

Default Format

Binary Format

Octal Format

Decimal Format

Hexadecimal Format

Char Format
Changes the display format of expressions. The display format setting affects
different types of expressions in different ways. Your selection of display format
is saved between debug sessions. These commands are available if a selected
line in the window contains a variable.

The display format setting affects different types of expressions in these ways:

Variables The display setting affects only the selected variable, not
other variables.

Array elements The display setting affects the complete array, that is, the
same display format is used for each array element.

Structure fields All elements with the same definition—the same field
name and C declaration type—are affected by the
display setting.

Show As

Displays a submenu that provides commands for changing the default type
interpretation of variables. The commands on this submenu are mainly useful
for assembler variables—data at assembler labels—because these are, by
default, displayed as integers. For more information, see Viewing assembler
variables, page 104.

Save to File
Saves content to a file in a tab-separated format.

Options
Displays the IDE Options dialog box where you can set various options for
C-SPY windows.

109

Reference information on working with variables and expressions

110

Watch window

Requirements

C-SPY® Debugging Guide

for RL78

The Watch window is available from the View menu.

Watch 1 *
Expression Yalue Location Type
callCount 2 Memory : 0xFEFAS signed int
= Fib <array> Memory : 0xFEF20 uint3z2_t10]
e 0] 1 Memory : OxFEFR0 uint3z_t
1] 1 Memory : 0xFEFa4 uint3z2_t
[2] 2 Memory : 0xFEFRE uint3z2_t
[3] 3 0xFEF8C uint32_t
[4] 5 v : 0xFEF90 uint32_t
[5] a v : OXFEF94 uint3z2_t
[6] 13 0xFEF28 uint32_t
[71 21 0xFEF2C uint32_t
[8] 34 0xFEFAD uint32_t
19 55 v : OXFEFA4 uint3z2_t

Use this window to monitor the values of C-SPY expressions or variables. You can open
up to four instances of this window, where you can view, add, modify, and remove
expressions. Tree structures of arrays, structs, and unions are expandable, which means
that you can study each item of these.

Every time execution in C-SPY stops, the values in the Watch window are recalculated.
Values that have changed since the last stop are highlighted in red.

Be aware that expanding very large arrays can cause an out-of-memory crash. To avoid
this, expansion is automatically performed in steps of 5000 elements.

See also Editing in C-SPY windows, page 45.

None; this window is always available.

Variables and expressions °

Context menu

This context menu is available:
Remove
Rermove All
Default Format
Binary Format
Octal Format
Decimal Format
Hexadecimal Format

Char Format
Show As 3
Save to File...

Options...

Note: The contents of this menu are dynamic and depend on which features that your
combination of software and hardware supports. However, the list of menu commands
below is complete and covers all possible commands.

These commands are available:

Remove
Removes the selected expression from the window.

Remove All

Removes all expressions listed in the window.

Default Format

Binary Format

Octal Format

Decimal Format

Hexadecimal Format

Char Format
Changes the display format of expressions. The display format setting affects
different types of expressions in different ways. Your selection of display format
is saved between debug sessions. These commands are available if a selected
line in the window contains a variable.

The display format setting affects different types of expressions in these ways:

Variables The display setting affects only the selected variable, not
other variables.

Array elements The display setting affects the complete array, that is, the
same display format is used for each array element.

Reference information on working with variables and expressions

112

Live Watch window

Requirements

Display area

C-SPY® Debugging Guide
for RL78

Structure fields All elements with the same definition—the same field
name and C declaration type—are affected by the
display setting.

Show As

Displays a submenu that provides commands for changing the default type
interpretation of variables. The commands on this submenu are mainly useful
for assembler variables—data at assembler labels—because these are, by
default, displayed as integers. For more information, see Viewing assembler
variables, page 104.

Save to File
Saves content to a file in a tab-separated format.
Options

Displays the IDE Options dialog box where you can set various options for
C-SPY windows.

The Live Watch window is available from the View menu.

Live Watch * o X
Expression Yalue Location Type
= GetFib GetFib (0x141) uint3zZ_t(_ne..

------ GetFib (0x141) Memory:Oxl41 uint32_t{int_f.

This window repeatedly samples and displays the value of expressions while your
application is executing. Variables in the expressions must be statically located, such as
global variables.

See also Editing in C-SPY windows, page 45.

None; this window is always available.

This area contains these columns:

Expression
The name of the variable. The base name of the variable is followed by the full
name, which includes module, class, or function scope. This column is not
editable.

Context menu

Variables and expressions °

Value
The value of the variable. Values that have changed are highlighted in red.

Dragging text or a variable from another window and dropping it on the Value
column will assign a new value to the variable in that row.

This column is editable.
Location
The location in memory where this variable is stored.

Type
The data type of the variable.

Note: There are restrictions to what this window can display:

For the OCD debugger driver, a maximum of § variables with a maximum total size of
16 bytes can be displayed.

For all debugger drivers, only 8 or 16-bit values can be guaranteed to be displayed
correctly, and the data must be located at an even address.

This context menu is available:
Remove

Rermove All

Default Format
Binary Format

Octal Format
Decimal Format
Hexadecimal Format

Char Format
Show As 3
Save to File...
Options...
Note: The contents of this menu are dynamic and depend on which features that your

combination of software and hardware supports. However, the list of menu commands
below is complete and covers all possible commands.

These commands are available:

Remove
Removes the selected expression from the window.

113

Reference information on working with variables and expressions

Remove All

Removes all expressions listed in the window.

Default Format

Binary Format

Octal Format

Decimal Format

Hexadecimal Format

Char Format
Changes the display format of expressions. The display format setting affects
different types of expressions in different ways. Your selection of display format
is saved between debug sessions. These commands are available if a selected
line in the window contains a variable.

The display format setting affects different types of expressions in these ways:

Variables The display setting affects only the selected variable, not
other variables.

Array elements The display setting affects the complete array, that is, the
same display format is used for each array element.

Structure fields All elements with the same definition—the same field
name and C declaration type—are affected by the
display setting.

Show As

Displays a submenu that provides commands for changing the default type
interpretation of variables. The commands on this submenu are mainly useful
for assembler variables—data at assembler labels—because these are, by
default, displayed as integers. For more information, see Viewing assembler
variables, page 104.

Save to File
Saves content to a file in a tab-separated format.
Options

Displays the IDE Options dialog box where you can set various options for
C-SPY windows.

C-SPY® Debugging Guide
114 for RL78

Variables and expressions °

Statics window
The Statics window is available from the View menu.

Statics * o X

Yariable Yalue Location Type Module =

= fibStat <UsingClassesifibStat> <class> Memory :0xFB140 class Fibonacci UsingClasses
mCurrent 2 Memory :0xFB140 uint_fastd_t

= msFib <FibonacciByClass\FibonaccizmsFib> size=100 Memory:0xFE134 class vector<uint3z_t» FibonacciByClass |z

<class> Memory : 0xFE134 class vector<uinti2_t»
<class> Memory :0xFEL134 wector<uint3Z_t>:_Impl
<class> Memory :0xFB134 class _Vector_walue<allocatar..
<class> Memory :0xFB134 class _ClassUtil_AllocHaolder..

0xA0ED Memory :0xFB134 woid __near®

0xA270 Memory :0xFB136 woid __near®

0xA270 Memory :0xFB138 woid__near®

o] Memory : OxFROED uint3Z2_t

o] Memory : OxFRAOE4 uint3Z2_t b

This window displays the values of variables with static storage duration that you have
selected. Typically, that is variables with file scope but it can also be static variables in
functions and classes. Note that volatile declared variables with static storage
duration will not be displayed.

Every time execution in C-SPY stops, the values in the Statics window are recalculated.
Values that have changed since the last stop are highlighted in red.

Click any column header (except for Value) to sort on that column.
See also Editing in C-SPY windows, page 45.

To select variables to monitor:

I In the window, right-click and choose Select statics from the context menu. The
window now lists all variables with static storage duration.

2 Either individually select the variables you want to display, or choose one of the Select
commands from the context menu.

3 When you have made your selections, choose Select statics from the context menu to
toggle back to normal display mode.

Requirements

None; this window is always available.

115

Reference information on working with variables and expressions

116

Display area

C-SPY® Debugging Guide
for RL78

This area contains these columns:

Variable

The name of the variable. The base name of the variable is followed by the full
name, which includes module, class, or function scope. This column is not
editable.

Value
The value of the variable. Values that have changed are highlighted in red.

Dragging text or a variable from another window and dropping it on the Value
column will assign a new value to the variable in that row.

This column is editable.

Location
The location in memory where this variable is stored.

Type
The data type of the variable.

Module
The module of the variable.

Variables and expressions °

Context menu

This context menu is available:
v Default Format
Binary Format
Octal Format
Decimal Format
Hexadecimal Format

Char Format
Show As 3
Save to File...

v Select Statics
Select All
Select None
Select All in ‘Tutor'

Select None in ‘Tutor'

These commands are available:

Default Format

Binary Format

Octal Format

Decimal Format

Hexadecimal Format

Char Format
Changes the display format of expressions. The display format setting affects
different types of expressions in different ways. Your selection of display format
is saved between debug sessions. These commands are available if a selected
line in the window contains a variable.

The display format setting affects different types of expressions in these ways:

Variables The display setting affects only the selected variable, not
other variables.

Array elements The display setting affects the complete array, that is, the
same display format is used for each array element.

Structure fields All elements with the same definition—the same field
name and C declaration type—are affected by the
display setting.

17

Reference information on working with variables and expressions

118

Quick Watch window

C-SPY® Debugging Guide
for RL78

Show As
Displays a submenu that provides commands for changing the default type
interpretation of variables. The commands on this submenu are mainly useful
for assembler variables—data at assembler labels—because these are, by
default, displayed as integers. For more information, see Viewing assembler
variables, page 104.

Save to File

Saves the content of the Statics window to a log file.

Select Statics
Selects all variables with static storage duration; this command also enables all
Select commands below. Select the variables you want to monitor. When you
have made your selections, select this menu command again to toggle back to
normal display mode.

Select All
Selects all variables.

Select None
Deselects all variables.

Select All in module

Selects all variables in the selected module.

Select None in module
Deselects all variables in the selected module.

The Quick Watch window is available from the View menu and from the context menu
in the editor window.

Quick Watch * O X

E Timer -

Expression Yalue Location Type
TimerStatus() 'Timer disabled® macro string

Use this window to watch the value of a variable or expression and evaluate expressions
at a specific point in time.

In contrast to the Watch window, the Quick Watch window gives you precise control
over when to evaluate the expression. For single variables this might not be necessary,

Variables and expressions °

but for expressions with possible side effects, such as assignments and C-SPY macro
functions, it allows you to perform evaluations under controlled conditions.

See also Editing in C-SPY windows, page 45.

To evaluate an expression:

I In the editor window, right-click on the expression you want to examine and choose
Quick Watch from the context menu that appears.

2 The expression will automatically appear in the Quick Watch window.
Alternatively:

3 In the Quick Watch window, type the expression you want to examine in the
Expressions text box.

g 4 Click the Recalculate button to calculate the value of the expression.
For an example, see Using C-SPY macros, page 323.

Requirements

None; this window is always available.

Context menu

This context menu is available:
Remove

Rermove All

Default Format
Binary Format

Octal Format
Decimal Format
Hexadecimal Format

Char Format
Show As 3
Save to File...
Options...
Note: The contents of this menu are dynamic and depend on which features that your

combination of software and hardware supports. However, the list of menu commands
below is complete and covers all possible commands.

These commands are available:

Remove
Removes the selected expression from the window.

19

Reference information on working with variables and expressions

Remove All

Removes all expressions listed in the window.

Default Format

Binary Format

Octal Format

Decimal Format

Hexadecimal Format

Char Format
Changes the display format of expressions. The display format setting affects
different types of expressions in different ways. Your selection of display format
is saved between debug sessions. These commands are available if a selected
line in the window contains a variable.

The display format setting affects different types of expressions in these ways:

Variables The display setting affects only the selected variable, not
other variables.

Array elements The display setting affects the complete array, that is, the
same display format is used for each array element.

Structure fields All elements with the same definition—the same field
name and C declaration type—are affected by the
display setting.

Show As

Displays a submenu that provides commands for changing the default type
interpretation of variables. The commands on this submenu are mainly useful
for assembler variables—data at assembler labels—because these are, by
default, displayed as integers. For more information, see Viewing assembler
variables, page 104.

Save to File
Saves content to a file in a tab-separated format.
Options

Displays the IDE Options dialog box where you can set various options for
C-SPY windows.

C-SPY® Debugging Guide
120 for RL78

Variables and expressions °

Symbols window

The Symbols window is available from the View menu.

Symbals x
<filter by name: - Clear
Syrmbaol Location Full Marme Module Type i
B Code:0x0020 7B TABS_ENTRY_MOD Lahel
?call_main Code:0x0039 7call_main Tocmain Label
?ocmain Code:0x002E 7cmain ?ocmain Label
DoForegroundProcess Code:0x0294 DoForegroundProcess Interrupt Function
Fik IData:0x23 Fih Utilities Yariable |_
GetFib Code:0x01A6 GetFib Ltilities Function |~
IE SFR: 0xA8 IE Interrupt Lahel
IE_hit SFRE:0xA8 IE_hit Interrupt Label
InitFik Code:0x0137 InitFib Lhtilities Function
Initllart Code:0x028C |nitlart Interrupt Function
FCOM SFR:0x27 FCOM Interrupt Label
PCOM_hit SFR:0x87 PCOM_hit Interrupt Label
FutFib Code:0x01CE PutFib Lhtilities Function +

This window displays all symbols with a static location, that is, C/C++ functions,
assembler labels, and variables with static storage duration, including symbols from the
runtime library.

You can drag the contents of cells in the Symbol, Location, and Full Name columns
and drop in some other windows in the IDE.

Requirements

None; this window is always available.

Toolbar

The toolbar contains:

<filter by name>

Type the first characters of the symbol names that you want to find, and press
Enter. All symbols (of the types you have selected on the context menu) whose
name starts with these characters will be displayed. If you have chosen not to
display some types of symbols, the window will list how many of those that
were found but are not displayed.

Use the drop-down list to use old search strings. The search box has a history
depth of 8 search entries.

Clear
Cancels the effects of the search filter and restores all symbols in the window.

121

Reference information on working with variables and expressions

Display area
This area contains these columns:

Symbol
The symbol name.

Location
The memory address.

Full name
The symbol name; often the same as the contents of the Symbeol column but
differs for example for C++ member functions.
Module
The program module where the symbol is defined.
Type
The symbol type, whether it is a function, label, or variable.

Click the column headers to sort the list by symbol name, location, full name, module,
or type.

Context menu

This context menu is available:

Functions
v Variables
Labels

Add to Watch
Add to Live Watch

Copy 3 Row
Symbol
Location
Full Name
Module

Type
These commands are available:

Functions

Toggles the display of function symbols on or off in the list.
Variables

Toggles the display of variables on or off in the list.

Labels
Toggles the display of labels on or off in the list.

C-SPY® Debugging Guide
122 for RL78

Variables and expressions °

Add to Watch
Adds the selected symbol to the Watch window.

Add to Live Watch
Adds the selected symbol to the Live Watch window.

Copy
Copies the contents of the cells on the selected line.
Row Copies all contents of the selected line
Symbol Copies the contents of the Symbol cell on the selected line
Location Copies the contents of the Location cell on the selected line
Full Name Copies the contents of the Full Name cell on the selected line
Module Copies the contents of the Module cell on the selected line

Type Copies the contents of the Type cell on the selected line

Resolve Symbol Ambiguity dialog box

The Resolve Symbol Ambiguity dialog box appears, for example, when you specify a
symbol in the Disassembly window to go to, and there are several instances of the same
symbol due to templates or function overloading.

Resolve Symbol Ambiguity

Ambiguous symbol: foo

Fleaze select one symbal:

fon<T: Camcel

Requirements

None; this window is always available.

Ambiguous symbol

Indicates which symbol that is ambiguous.

123

Reference information on working with variables and expressions

Please select one symbol

A list of possible matches for the ambiguous symbol. Select the one you want to use.

C-SPY® Debugging Guide
124 for RL78

Breakpoints

e Introduction to setting and using breakpoints
e Setting breakpoints

e Reference information on breakpoints

Introduction to setting and using breakpoints

These topics are covered:

Reasons for using breakpoints

Briefly about setting breakpoints

Breakpoint types

Breakpoint icons

Breakpoints in the C-SPY simulator

Breakpoints in the C-SPY hardware debugger drivers

Breakpoint consumers

REASONS FOR USING BREAKPOINTS

C-SPY® lets you set various types of breakpoints in the application you are debugging,
allowing you to stop at locations of particular interest. You can set a breakpoint at a code
location to investigate whether your program logic is correct, or to get trace printouts.
In addition to code breakpoints, and depending on what C-SPY driver you are using,
additional breakpoint types might be available. For example, you might be able to set a
data breakpoint, to investigate how and when the data changes.

You can let the execution stop under certain conditions, which you specify. You can also
let the breakpoint trigger a side effect, for instance executing a C-SPY macro function,
by transparently stopping the execution and then resuming. The macro function can be
defined to perform a wide variety of actions, for instance, simulating hardware behavior.

All these possibilities provide you with a flexible tool for investigating the status of your
application.

BRIEFLY ABOUT SETTING BREAKPOINTS

You can set breakpoints in many various ways, allowing for different levels of
interaction, precision, timing, and automation. All the breakpoints you define will

125

Introduction to setting and using breakpoints

appear in the Breakpoints window. From this window you can conveniently view all
breakpoints, enable and disable breakpoints, and open a dialog box for defining new
breakpoints. The Breakpoint Usage window also lists all internally used breakpoints,
see Breakpoint consumers, page 129.

Breakpoints are set with a higher precision than single lines, using the same mechanism
as when stepping. For more information about the precision, see Single stepping, page
64.

You can set breakpoints while you edit your code even if no debug session is active. The
breakpoints will then be validated when the debug session starts. Breakpoints are
preserved between debug sessions.

Note: For most hardware debugger systems it is only possible to set breakpoints when
the application is not executing.

BREAKPOINT TYPES

Depending on the C-SPY driver you are using, C-SPY supports different types of
breakpoints.

Code breakpoints

Code breakpoints are used for code locations to investigate whether your program logic
is correct or to get trace printouts. Code breakpoints are triggered when an instruction is
fetched from the specified location. If you have set the breakpoint on a specific machine
instruction, the breakpoint will be triggered and the execution will stop, before the
instruction is executed.

If you are using the C-SPY OCD driver, code breakpoints (implemented as software
breakpoints) are only available when a device based on the S2 or S3 core has been
selected. When a device based on the S1 core has been selected, you must instead use
Code hardware breakpoints.

Code hardware breakpoints

Code hardware breakpoints are triggered when an instruction is fetched from the
specified location. If you have set the breakpoint on a specific machine instruction, the
breakpoint will be triggered and the execution will stop.

For emulators supporting Fetch break before execution, the breakpoint type Code
hardware is implemented as an event fetch breakpoint.

For the OCD emulators, the breakpoint type Code hardware is implemented as a break
after execution hardware event; see the description under Event breakpoints, page 127.

C-SPY® Debugging Guide
126 for RL78

Breakpoints °

Event breakpoints

The hardware debugger systems can define one or more hardware events, such as
various types of fetch conditions and various data access conditions, and sequences of
events. You can make use of these events by setting Event breakpoints. You can make
these event breakpoints to be either code or data breakpoints.

For the OCD emulators, fetch condition hardware events are of the type break after
execution. When a hardware event is used as a code breakpoint, execution always slips
anumber of cycles from the address the breakpoint has been set on. This slip occurs also
when you use debug commands like Step Over, Run to cursor, etc. Because of this,
terminal I/O is not supported and the application will not stop at the exit label. To be able
to use all available events (normally two) as breakpoints, you must also deselect the
Stack options in the IDE Options dialog box.

Log breakpoints

Log breakpoints provide a convenient way to add trace printouts without having to add
any code to your application source code. Log breakpoints are triggered when an
instruction is fetched from the specified location. If you have set the breakpoint on a
specific machine instruction, the breakpoint will be triggered and the execution will
temporarily stop and print the specified message in the C-SPY Debug Log window.

Trace Start and Stop breakpoints

Trace Start and Stop breakpoints start and stop trace data collection—a convenient way
to analyze instructions between two execution points.

Data breakpoints

Data breakpoints are primarily useful for variables that have a fixed address in memory.
If you set a breakpoint on an accessible local variable, the breakpoint is set on the
corresponding memory location. The validity of this location is only guaranteed for
small parts of the code. Data breakpoints are triggered when data is accessed at the
specified location. The execution will usually stop directly after the instruction that
accessed the data has been executed.

Data Log breakpoints

Data log breakpoints are triggered when a specified memory address is accessed. A log
entry is written in the Data Log window for each access. Data logs can also be displayed
on the Data Log graph in the Timeline window, if that window is enabled.

You can set data log breakpoints using the Breakpoints window, the Memory window,
and the editor window.

127

Introduction to setting and using breakpoints

C-SPY® Debugging Guide
128 for RL78

Using a single instruction, the microcontroller can only access values that are two bytes
or less. If you specify a data log breakpoint on a memory location that cannot be
accessed by one instruction, for example a double or a too large area in the Memory
window, the result might not be what you intended.

Immediate breakpoints

The C-SPY Simulator lets you set immediate breakpoints, which will halt instruction
execution only temporarily. This allows a C-SPY macro function to be called when the
simulated processor is about to read data from a location or immediately after it has
written data. Instruction execution will resume after the action.

This type of breakpoint is useful for simulating memory-mapped devices of various
kinds (for instance serial ports and timers). When the simulated processor reads from a
memory-mapped location, a C-SPY macro function can intervene and supply
appropriate data. Conversely, when the simulated processor writes to a memory-mapped
location, a C-SPY macro function can act on the value that was written.

BREAKPOINT ICONS

A breakpoint is marked with an icon in the left margin of the editor window, and the icon
varies with the type of breakpoint:

Tutor.c m |

unsigned int get_fib({ int nr |
i

o iECmes) s (e < mFIB))
l Log breakpoint l {
'

l Toeltip information l | |tog @ Utilities.c:37.5
—_— Memory:0x6a [Fetch]

] return [0];:
'

l Code breakpoint l

Disabled code
breakpeint

If the breakpoint icon does not appear, make sure the option Show bookmarks is
selected, see Editor options in the IDE Project Management and Building Guide for
RL7S.

Just point at the breakpoint icon with the mouse pointer to get detailed tooltip
information about all breakpoints set on the same location. The first row gives user
breakpoint information, the following rows describe the physical breakpoints used for
implementing the user breakpoint. The latter information can also be seen in the
Breakpoint Usage window.

Note: The breakpoint icons might look different for the C-SPY driver you are using.

Breakpoints °

BREAKPOINTS IN THE C-SPY SIMULATOR

The C-SPY simulator supports all breakpoint types and you can set an unlimited amount
of breakpoints.

BREAKPOINTS IN THE C-SPY HARDWARE DEBUGGER
DRIVERS

Using the C-SPY drivers for hardware debugger systems you can set various breakpoint
types. If possible, the debugger will use software breakpoints for the breakpoints you
set, unless you explicitly set a code hardware breakpoint. However, software
breakpoints are not available for the OCD driver when using an S1 core. The amount of
code hardware breakpoints you can set is limited and depends on the number of
hardware breakpoints available on the target system.

This table summarizes the characteristics of breakpoints for the different target systems:

C-SPY hardware debugger driver Codeandlog Trace Data
breakpoints breakpoints breakpoints
The OCD driver
using hardware breakpoints Device-specific Device-specific Device-specific
using software breakpoints Unlimited — —
IECUBE
using hardware breakpoints Device-specific Device-specific Device-specific
using software breakpoints Unlimited — —

Table 8: Available breakpoints in C-SPY hardware debugger drivers

Note: Data and Trace breakpoints can be set using the Edit Events dialog box. Code
breakpoints can be set using either the Edit Events dialog box or the Code HW
breakpoints dialog box.

Note: If you are using the E1, E2, E2 Lite/E2 On-Board, E20, EZ-CUBE, EZ-CUBE?2,
or TK emulator, breakpoints are ignored in code during single stepping. See Breakpoints
when single stepping using the OCD driver, page 65.

BREAKPOINT CONSUMERS

A debugger system includes several consumers of breakpoints.

User breakpoints

The breakpoints you define in the breakpoint dialog box or by toggling breakpoints in
the editor window often consume one physical breakpoint each, but this can vary greatly.
Some user breakpoints consume several physical breakpoints and conversely, several

user breakpoints can share one physical breakpoint. User breakpoints are displayed in

129

Setting breakpoints

130

the same way both in the Breakpoint Usage window and in the Breakpoints window,
for example Data @|[R] callCount.

C-SPY itself
C-SPY itself also consumes breakpoints. C-SPY will set a breakpoint if:

o The debugger option Run to has been selected, and any step command is used.
These are temporary breakpoints which are only set during a debug session. This
means that they are not visible in the Breakpoints window.

o The linker option Include C-SPY debugging support has been selected.

In the DLIB runtime environment, C-SPY will set a system breakpoint on the
__DebugBreak label.

These types of breakpoint consumers are displayed in the Breakpoint Usage window,
for example, C-SPY Terminal I/O & libsupport module.
C-SPY plugin modules

For example, modules for real-time operating systems can consume additional
breakpoints. Specifically, by default, the Stack window consumes one physical
breakpoint.

To disable the breakpoint used by the Stack window:
Choose Tools>Options>Stack.
Deselect the Stack pointer(s) not valid until program reaches: /abel option.

To disable the Stack window entirely, choose Tools>Options>Stack and make sure all
options are deselected.

Setting breakpoints

C-SPY® Debugging Guide
for RL78

These tasks are covered:

Various ways to set a breakpoint

Toggling a simple code breakpoint

Setting breakpoints using the dialog box

Setting a data breakpoint in the Memory window

Setting breakpoints using system macros

Useful breakpoint hints

Breakpoints °

VARIOUS WAYS TO SET A BREAKPOINT
You can set a breakpoint in various ways:

o Toggling a simple code breakpoint.

o Using the New Breakpoints dialog box and the Edit Breakpoints dialog box
available from the context menus in the editor window, Breakpoints window, and
in the Disassembly window. The dialog boxes give you access to all breakpoint
options.

e Setting a data breakpoint on a memory area directly in the Memory window.

o Using predefined system macros for setting breakpoints, which allows automation.

The different methods offer different levels of simplicity, complexity, and automation.

TOGGLING A SIMPLE CODE BREAKPOINT

Toggling a code breakpoint is a quick method of setting a breakpoint. The following
methods are available both in the editor window and in the Disassembly window:

e Click in the gray left-side margin of the window

o Place the insertion point in the C source statement or assembler instruction where
you want the breakpoint, and click the Toggle Breakpoint button in the toolbar

o Choose Edit>Toggle Breakpoint

e Right-click and choose Toggle Breakpoint from the context menu.

SETTING BREAKPOINTS USING THE DIALOG BOX

The advantage of using a breakpoint dialog box is that it provides you with a graphical
interface where you can interactively fine-tune the characteristics of the breakpoints.
You can set the options and quickly test whether the breakpoint works according to your
intentions.

All breakpoints you define using a breakpoint dialog box are preserved between debug
sessions.

You can open the dialog box from the context menu available in the editor window,
Breakpoints window, and in the Disassembly window.

To set a new breakpoint:
Choose View>Breakpoints to open the Breakpoints window.

In the Breakpoints window, right-click, and choose New Breakpoint from the context
menu.

On the submenu, choose the breakpoint type you want to set.

Depending on the C-SPY driver you are using, different breakpoint types are available.

131

Setting breakpoints

C-SPY® Debugging Guide
132 for RL78

4 1In the breakpoint dialog box that appears, specify the breakpoint settings and click OK.

The breakpoint is displayed in the Breakpoints window.

To modify an existing breakpoint:

In the Breakpoints window, editor window, or in the Disassembly window, select the
breakpoint you want to modify and right-click to open the context menu.

| UsingClasses.cpp * | IAR Information Center | FibonacciByClass.cpp |

mainf) fur
fibl = 1; // Call to Fi] ibonacci (fast +
// Fibona
// and the Fibonacci destructor.
[L] _' Call to Fibopgeei::operator+,
Cut
T Eci destructor.
/4 Extrac
for (uint loggle Breakpoint (Code) =
= Toggle Breakpoint (Log)
bool ew]
= cout << Toggle Breakpoint (Trace Start) setw(Z) << fibl.nex
Toggle Breakpoint (Trace Stop)
= +# TF ™ s
= /* :ie Enable/disable Breakpoint = pumbsr of
L #/ Set Data Breakpoint for 'fibl' —
if (1% Set Data Log Breakpoint for ‘fibl'
=] { . . ; .
even Edit Breakpoint 3 Edit Code Breakpoint at column 5...
| } cout I — Edit Log Breakpoint at column 18...
Add to Quick Watch: 'fibl' i i
| AFIE " next Fibonacei
numb . Depending on
4 T Chardter End€ding o [
Options...

If there are several breakpoints on the same source code line, the breakpoints will be
listed on a submenu.

On the context menu, choose the appropriate command.
In the breakpoint dialog box that appears, specify the breakpoint settings and click OK.

The breakpoint is displayed in the Breakpoints window.

SETTING A DATA BREAKPOINT IN THE MEMORY WINDOW

You can set breakpoints directly on a memory location in the Memory window.
Right-click in the window and choose the breakpoint command from the context menu
that appears. To set the breakpoint on a range, select a portion of the memory contents.

Breakpoints °

The breakpoint is not highlighted in the Memory window; instead, you can see, edit,
and remove it using the Breakpoints window, which is available from the View menu.
The breakpoints you set in the Memory window will be triggered for both read and
write accesses. All breakpoints defined in this window are preserved between debug
sessions.

Note: Setting breakpoints directly in the Memory window is only possible if the driver
you use supports this.

SETTING BREAKPOINTS USING SYSTEM MACROS

You can set breakpoints not only in the breakpoint dialog box but also by using built-in
C-SPY system macros. When you use system macros for setting breakpoints, the
breakpoint characteristics are specified as macro parameters.

Macros are useful when you have already specified your breakpoints so that they fully
meet your requirements. You can define your breakpoints in a macro file, using built-in
system macros, and execute the file at C-SPY startup. The breakpoints will then be set
automatically each time you start C-SPY. Another advantage is that the debug session
will be documented, and that several engineers involved in the development project can
share the macro files.

Note: If you use system macros for setting breakpoints, you can still view and modify
them in the Breakpoints window. In contrast to using the dialog box for defining
breakpoints, all breakpoints that are defined using system macros are removed when you
exit the debug session.

133

Setting breakpoints

134

C-SPY® Debugging Guide
for RL78

These breakpoint macros are available:

All other C-SPY

C-SPY macro for breakpoints Simulator IECUBE drivers
__setCodeBreak Yes Yes Yes
__setCodeHWBreak -- Yes Yes
__setDataBreak Yes — —
__setLogBreak Yes Yes Yes
__setDbataLogBreak Yes — —
__setSimBreak Yes — —
__setTraceStartBreak Yes — —
__setTraceStopBreak Yes — —
__clearBreak Yes Yes Yes

Table 9: C-SPY macros for breakpoints

For information about each breakpoint macro, see Reference information on C-SPY
system macros, page 335.

Setting breakpoints at C-SPY startup using a setup macro file
You can use a setup macro file to define breakpoints at C-SPY startup. Follow the
procedure described in Using C-SPY macros, page 323.

USEFUL BREAKPOINT HINTS

Below are some useful hints related to setting breakpoints.

Tracing incorrect function arguments

If a function with a pointer argument is sometimes incorrectly called with a NULL
argument, you might want to debug that behavior. These methods can be useful:

e Set a breakpoint on the first line of the function with a condition that is true only
when the parameter is 0. The breakpoint will then not be triggered until the

problematic situation actually occurs. The advantage of this method is that no extra

source code is needed. The drawback is that the execution speed might become
unacceptably low.

Breakpoints °

® You can use the assert macro in your problematic function, for example:

int MyFunction (int * MyPtr)
{

assert (MyPtr != 0); /* Assert macro added to your source

code. */

/* Here comes the rest of your function. */
}
The execution will break whenever the condition is true. The advantage is that the
execution speed is only slightly affected, but the drawback is that you will get a small
extra footprint in your source code. In addition, the only way to get rid of the
execution stop is to remove the macro and rebuild your source code.

e Instead of using the assert macro, you can modify your function like this:

int MyFunction (int * MyPtr)
{

if (MyPtr == 0)

MyDummyStatement; /* Dummy statement where you set a
breakpoint. */

/* Here comes the rest of your function. */
}
You must also set a breakpoint on the extra dummy statement, so that the execution
will break whenever the condition is true. The advantage is that the execution speed
is only very slightly affected, but the drawback is that you will still get a small extra
footprint in your source code. However, in this way you can get rid of the execution
stop by just removing the breakpoint.

Performing a task and continuing execution

You can perform a task when a breakpoint is triggered and then automatically continue
execution.

You can use the Action text box to associate an action with the breakpoint, for instance
a C-SPY macro function. When the breakpoint is triggered and the execution of your
application has stopped, the macro function will be executed. In this case, the execution
will not continue automatically.

Instead, you can set a condition which returns 0 (false). When the breakpoint is
triggered, the condition—which can be a call to a C-SPY macro that performs a task—
is evaluated and because it is not true, execution continues.

135

Reference information on breakpoints

Consider this example where the C-SPY macro function performs a simple task:

__var my_counter;

count ()

{
my_counter += 1;
return 0;

}

To use this function as a condition for the breakpoint, type count () in the Expression
text box under Conditions. The task will then be performed when the breakpoint is
triggered. Because the macro function count returns 0, the condition is false and the
execution of the program will resume automatically, without any stop.

Reference information on breakpoints
Reference information about:

Breakpoints window, page 137

Breakpoint Usage window, page 139

Code breakpoints dialog box, page 140
Code HW breakpoints dialog box, page 141
Event breakpoints dialog box, page 142

Log breakpoints dialog box, page 143

Data breakpoints dialog box, page 145
Data Log breakpoints dialog box, page 147
Immediate breakpoints dialog box, page 148
Enter Location dialog box, page 149

Resolve Source Ambiguity dialog box, page 150
See also:

® Reference information on C-SPY system macros, page 335

® Reference information on trace, page 199

C-SPY® Debugging Guide
136 for RL78

Breakpoints °

Breakpoints window

The Breakpoints window is available from the View menu.

Breakpoints x
Type Location Extra

W . Code UsingClasses.cpp:39.3

W G Log UsingClasses.cpp:39.10

This window lists all breakpoints you define.

Use this window to conveniently monitor, enable, and disable breakpoints; you can also
define new breakpoints and modify existing breakpoints.

Requirements

None; this window is always available.

Display area

This area lists all breakpoints you define. For each breakpoint, information about the
breakpoint type, source file, source line, and source column is provided.

Context menu
This context menu is available:
Go to Source
Edit...

Delete
Enable

Enable All
Disable All
Delete All

MNew Breakpoint 3

These commands are available:

Go to Source

Moves the insertion point to the location of the breakpoint, if the breakpoint has
a source location. Double-click a breakpoint in the Breakpoints window to
perform the same command.

137

Reference information on breakpoints

138

C-SPY® Debugging Guide
for RL78

Edit
Opens the breakpoint dialog box for the breakpoint you selected.
Delete
Deletes the breakpoint. Press the Delete key to perform the same command.

Enable
Enables the breakpoint. The check box at the beginning of the line will be
selected. You can also perform the command by manually selecting the check
box. This command is only available if the breakpoint is disabled.
Disable
Disables the breakpoint. The check box at the beginning of the line will be
deselected. You can also perform this command by manually deselecting the
check box. This command is only available if the breakpoint is enabled.
Enable All
Enables all defined breakpoints.

Disable All
Disables all defined breakpoints.

Delete All
Deletes all defined breakpoints.

New Breakpoint
Displays a submenu where you can open the breakpoint dialog box for the
available breakpoint types. All breakpoints you define using this dialog box are
preserved between debug sessions.

Breakpoints °

Breakpoint Usage window

Requirements

Display area

The Breakpoint Usage window is available from the menu specific to the C-SPY driver
you are using.

Breakpoint Usage x
Breakpaint

71 Memory : 0x3C3F [Fetch 1

=1 Memory : 0x4D75 [Fetch 1

- C-SPY Terminal I/0 && library support module

This window lists all breakpoints currently set in the target system, both the ones you
have defined and the ones used internally by C-SPY. The format of the items in this
window depends on the C-SPY driver you are using.

The window gives a low-level view of all breakpoints, related but not identical to the list
of breakpoints displayed in the Breakpoints window.

C-SPY uses breakpoints when stepping. Use the Breakpoint Usage window for:

o Identifying all breakpoint consumers
o Checking that the number of active breakpoints is supported by the target system

o Configuring the debugger to use the available breakpoints in a better way, if
possible.

For more information, see Breakpoints in the C-SPY hardware debugger drivers, page
129.

None; this window is always available.

For each breakpoint in the list, the address and access type are displayed. Each
breakpoint in the list can also be expanded to show its originator.

139

Reference information on breakpoints

Code breakpoints dialog box

The Code breakpoints dialog box is available from the context menu in the editor
window, Breakpoints window, and in the Disassembly window.

& Code
Break at:
Edit...
Size
@ Auto
) Manual
Action
Expression:
Condtions
Expression:
@ Condttion true Skip court: 0
_) Condition changed

This figure reflects the C-SPY simulator.

Use the Code breakpoints dialog box to set a code breakpoint, see Setting breakpoints
using the dialog box, page 131.

Requirements

One of these alternatives:

o The C-SPY simulator
o The IECUBE emulator

e The El, E2, E2 Lite/E2 On-Board, E20, EZ-CUBE, EZ-CUBE?2, and TK emulators,
but not for the S1 core.

Break At

Specify the code location of the breakpoint in the text box. Alternatively, click the Edit
button to open the Enter Location dialog box, see Enter Location dialog box, page 149.

Size
Determines whether there should be a size—in practice, a range—of locations where the
breakpoint will trigger. Each fetch access to the specified memory range will trigger the
breakpoint. Select how to specify the size:
Auto
The size will be set automatically, typically to 1.

C-SPY® Debugging Guide
140 for RL78

Breakpoints °

Manual
Specity the size of the breakpoint range in the text box.

Action

Specify a valid C-SPY expression, which is evaluated when the breakpoint is triggered
and the condition is true. For more information, see Useful breakpoint hints, page 134.

Conditions

Specify simple or complex conditions:

Expression
Specify a valid C-SPY expression, see C-SPY expressions, page 100.

Condition true
The breakpoint is triggered if the value of the expression is true.

Condition changed
The breakpoint is triggered if the value of the expression has changed since it
was last evaluated.

Skip count

The number of times that the breakpoint condition must be fulfilled before the
breakpoint starts triggering. After that, the breakpoint will trigger every time the
condition is fulfilled.

Code HW breakpoints dialog box

The Code HW breakpoints dialog box is available from the context menu in the editor
window, Breakpoints window, and in the Disassembly window.
B codstiw |

Break at:

| Edit..

Use the Code HW breakpoints dialog box to set a code hardware breakpoint.

Code hardware breakpoints are triggered when an instruction is fetched from the
specified location. If you have set the breakpoint on a specific machine instruction, the

141

Reference information on breakpoints

142

breakpoint will be triggered and the execution will stop. For implementation details and
restrictions, see Code hardware breakpoints, page 126.

Requirements

Any supported hardware debugger system.

Break At

Specify the code location of the breakpoint in the text box. Alternatively, click the Edit
button to open the Enter Location dialog box, see Enter Location dialog box, page 149.

Event breakpoints dialog box

The Event breakpoints dialog box is available from the context menu in the
Breakpoints window.

27 Ewent

Break &t

Select Event - v

Selected event

<NONEs

[Wiew Events. ..] [View Sequencer...]

Use the Event breakpoints dialog box to specify an event as a breakpoint condition. You
can make these event breakpoints either code or data breakpoints.

Requirements

Any supported hardware debugger system.

Break At

Select an event from the Break At list to use it as a condition for the breakpoint.

The list contains all events defined in the Edit Events or Edit Sequencer dialog boxes.
The access type is identified by a bracketed tag:

[F] Fetch

C-SPY® Debugging Guide
for RL78

Breakpoints °

[R] Read
[w] Write
[R/W] Read/write

For information about the access types, see Edit Events dialog box, page 90.

Selected event

Displays the current event to be used as a condition for the breakpoint.

View Events
Displays the Edit Events dialog box in view-only mode, to let you inspect an event. To
define or modify an event, open this dialog box from the Emulator menu. See Edit
Events dialog box, page 90.

View Sequencer
Displays the Edit Sequencer Events dialog box in view-only mode, to let you inspect
an event. To define or modify an event, open this dialog box from the Emulator menu.
See Edit Sequencer Events dialog box, page 93.

Log breakpoints dialog box
The Log breakpoints dialog box is available from the context menu in the editor
window, Breakpoints window, and in the Disassembly window.

0 Lo

Trigger at:
Edit...
Message: [T C-Spy macro "__message" style
Condtions
Expression:
@ Condition true
_) Condition changed

This figure reflects the C-SPY simulator.

143

Reference information on breakpoints

144

Requirements

Trigger at

Message

C-SPY macro"__|

Conditions

C-SPY® Debugging Guide

for RL78

Use the Log breakpoints dialog box to set a log breakpoint, see Setting breakpoints
using the dialog box, page 131.

One of these alternatives:

o The C-SPY simulator
o The IECUBE emulator

e TheEl, E2, E2 Lite/E2 On-Board, E20, EZ-CUBE, EZ-CUBE2, and TK emulators,
but not for the S1 core.

Specify the code location of the breakpoint. Alternatively, click the Edit button to open
the Enter Location dialog box, see Enter Location dialog box, page 149.

Specify the message you want to be displayed in the C-SPY Debug Log window. The
message can either be plain text, or—if you also select the option C-SPY macro
" __message" style—a comma-separated list of arguments.

message" style

Select this option to make a comma-separated list of arguments specified in the Message
text box be treated exactly as the arguments to the C-SPY macro language statement
__message, see Formatted output, page 331.

Specify simple or complex conditions:

Expression
Specify a valid C-SPY expression, see C-SPY expressions, page 100.

Condition true

The breakpoint is triggered if the value of the expression is true.

Condition changed

The breakpoint is triggered if the value of the expression has changed since it
was last evaluated.

Breakpoints °

Data breakpoints dialog box

The Data breakpoints dialog box is available from the context menu in the editor
window, Breakpoints window, the Memory window, and in the Disassembly window.

Data
Break at:
Edit...
Access Type Size
@ Read/write 0 a’m | 1
() Read - Manua
) Write Action
Expression:
Condtions
Expression:
(@ Condition true Skip count: 0
() Condition changed

This figure reflects the C-SPY simulator.

Use the Data breakpoints dialog box to set a data breakpoint, see Setting breakpoints
using the dialog box, page 131. Data breakpoints never stop execution within a single
instruction. They are recorded and reported after the instruction is executed.

Requirements
The C-SPY simulator.

Break At

Specify the data location of the breakpoint in the text box. Alternatively, click the Edit
button to open the Enter Location dialog box, see Enter Location dialog box, page 149.

Access Type
Selects the type of memory access that triggers the breakpoint:
Read/Write
Reads from or writes to location.
Read

Reads from location.

Write
Writes to location.

145

Reference information on breakpoints

146

Size

Action

Conditions

C-SPY® Debugging Guide
for RL78

Determines whether there should be a size—in practice, a range—of locations where the
breakpoint will trigger. Each fetch access to the specified memory range will trigger the
breakpoint. Select how to specify the size:

Auto
The size will automatically be based on the type of expression the breakpoint is
set on. For example, if you set the breakpoint on a 12-byte structure, the size of
the breakpoint will be 12 bytes.

Manual

Specify the size of the breakpoint range in the text box.

For data breakpoints, this can be useful if you want the breakpoint to be triggered on
accesses to data structures, such as arrays, structs, and unions.

Specify a valid C-SPY expression, which is evaluated when the breakpoint is triggered
and the condition is true. For more information, see Useful breakpoint hints, page 134.

Specify simple or complex conditions:

Expression
Specify a valid C-SPY expression, see C-SPY expressions, page 100.

Condition true
The breakpoint is triggered if the value of the expression is true.

Condition changed
The breakpoint is triggered if the value of the expression has changed since it
was last evaluated.

Skip count

The number of times that the breakpoint condition must be fulfilled before the
breakpoint starts triggering. After that, the breakpoint will trigger every time the
condition is fulfilled.

Breakpoints °

Data Log breakpoints dialog box

The Data Log breakpoints dialog box is available from the context menu in the
Breakpoints window.

Data Log

Break at:
myVar

Access Type
~) Readfwrite

Use the Data Log breakpoints dialog box to set a maximum of four data log breakpoints
on memory addresses, see Setting breakpoints using the dialog box, page 131.

See also Data Log breakpoints, page 127 and Getting started using data logging, page
226.

Requirements
The C-SPY simulator.

Break At

Specify a memory location as a variable (with static storage duration) or as an address.

Access Type
Selects the type of access to the variable that generates a log entry:

Read/Write
Read and write accesses from or writes to location of the variable.

Read

Read accesses from the location of the variable.

Write
Write accesses to location of the variable.

147

Reference information on breakpoints

148

Immediate breakpoints dialog box

Requirements

Trigger at

Access Type

Action

C-SPY® Debugging Guide
for RL78

The Immediate breakpoints dialog box is available from the context menu in the editor
window, Breakpoints window, the Memory window, and in the Disassembly window.

Immediate

Trigger at:
Edit...
Access Type Action
@ Read Expression:
) Write

In the C-SPY simulator, use the Immediate breakpoints dialog box to set an immediate
breakpoint, see Setting breakpoints using the dialog box, page 131. Immediate
breakpoints do not stop execution at all; they only suspend it temporarily.

The C-SPY simulator.

Specify the data location of the breakpoint. Alternatively, click the Edit button to open
the Enter Location dialog box, see Enter Location dialog box, page 149.

Selects the type of memory access that triggers the breakpoint:
Read

Reads from location.

Write

Writes to location.

Specify a valid C-SPY expression, which is evaluated when the breakpoint is triggered
and the condition is true. For more information, see Useful breakpoint hints, page 134.

Breakpoints °

Enter Location dialog box

The Enter Location dialog box is available from the breakpoints dialog box, either
when you set a new breakpoint or when you edit a breakpoint.

Enter Location @

Type Expression:
@ Expreszion

Absolute address

Source location

[(0] 3]| Cancel |

Use the Enter Location dialog box to specify the location of the breakpoint.

Note: This dialog box looks different depending on the Type you select.

Type
Selects the type of location to be used for the breakpoint, choose between:

Expression
A C-SPY expression, whose value evaluates to a valid code or data location.

A code location, for example the function main, is typically used for code
breakpoints.

A data location is the name of a variable and is typically used for data
breakpoints. For example, my_var refers to the location of the variable my_var,
and arr [3] refers to the location of the fourth element of the array arr. For
static variables declared with the same name in several functions, use the syntax
my_func::my_static_variable to refer to a specific variable.

For more information about C-SPY expressions, see C-SPY expressions, page
100.

Absolute address
An absolute location on the form zone: hexaddress or simply hexaddress
(for example Memory: 0x42). zone refers to C-SPY memory zones and
specifies in which memory the address belongs, see C-SPY memory zones, page
154.

Source location
A location in your C source code using the syntax:

{filename} .row.column.

filename specifies the filename and full path.

149

Reference information on breakpoints

row specifies the row in which you want the breakpoint.
column specifies the column in which you want the breakpoint.

For example, {C:\src\prog.c}.22.3 sets a breakpoint on the third character
position on row 22 in the source file prog. c. Note that in quoted form, for
example in a C-SPY macro, you must instead write
{C:\\src\\prog.c}.22.3.

Note that the Source location type is usually meaningful only for code locations in code
breakpoints. Depending on the C-SPY driver you are using, Source location might not
be available for data and immediate breakpoints.

Resolve Source Ambiguity dialog box

The Resolve Source Ambiguity dialog box appears, for example, when you try to set a
breakpoint on templates and the source location corresponds to more than one function.

Resolve Source Ambiguity

The zource location coresponds to multiple functions.
‘which onefz] do you mean?

woid foo(T, T #|[with T=unsigned long] Al

woid foo(T, T #|[with T=double]

Cancel

™ Automatically choose all

If you check. this item, the dialog will not be shown again
unless you re-enable it in the Tools->Dptions dialog, on
the Debugger page.

To resolve a source ambiguity, perform one of these actions:

o In the text box, select one or several of the listed locations and click Selected.
e Click All

All

The breakpoint will be set on all listed locations.

C-SPY® Debugging Guide
150 for RL78

Breakpoints °

Selected

The breakpoint will be set on the source locations that you have selected in the text box.

Cancel

No location will be used.

Automatically choose all

Determines that whenever a specified source location corresponds to more than one
function, all locations will be used.

Note that this option can also be specified in the IDE Options dialog box, see Debugger
options in the IDE Project Management and Building Guide for RL78.

151

Reference information on breakpoints

C-SPY® Debugging Guide
152 for RL78

Memory and registers

e Introduction to monitoring memory and registers
e Monitoring memory and registers

e Reference information on memory and registers

Introduction to monitoring memory and registers

These topics are covered:

e Briefly about monitoring memory and registers
o C-SPY memory zones

o Memory configuration for the C-SPY simulator

BRIEFLY ABOUT MONITORING MEMORY AND REGISTERS

C-SPY provides many windows for monitoring memory and registers, most of them
available from the View menu:

o The Memory window

Gives an up-to-date display of a specified area of memory—a memory zone—and
allows you to edit it. Data coverage along with execution of your application is
highlighted with different colors. You can fill specified areas with specific values and
you can set breakpoints directly on a memory location or range. Y ou can open several
instances of this window, to monitor different memory areas. The content of the
window can be regularly updated while your application is executing.

o The Symbolic Memory window

Displays how variables with static storage duration are laid out in memory. This can
be useful for better understanding memory usage or for investigating problems
caused by variables being overwritten, for example by buffer overruns.

o The Stack window

Displays the contents of the stack, including how stack variables are laid out in
memory. In addition, integrity checks of the stack can be performed to detect and
warn about problems with stack overflow. For example, the Stack window is useful
for determining the optimal size of the stack. You can open up to two instances of
this window, each showing different stacks or different display modes of the same
stack.

153

Introduction to monitoring memory and registers

154

C-SPY® Debugging Guide
for RL78

o The Registers window

Gives an up-to-date display of the contents of the processor registers and SFRs, and
allows you to edit them. Because of the large amount of registers—memory-mapped
peripheral unit registers and CPU registers—it is inconvenient to show all registers
concurrently in the Registers window. Instead you can divide registers into
application-specific groups. You can choose to load either predefined register groups
or define your own groups. You can open several instances of this window, each
showing a different register group.

o The SFR Setup window

Displays the currently defined SFRs that C-SPY has information about, both
factory-defined (retrieved from the device description file) and custom-defined
SFRs. If required, you can use the Edit SFR dialog box to customize the SFR
definitions.

To view the memory contents for a specific variable, simply drag the variable to the
Memory window or the Symbolic memory window. The memory area where the
variable is located will appear.

Reading the value of some registers might influence the runtime behavior of your
application. For example, reading the value of a UART status register might reset a
pending bit, which leads to the lack of an interrupt that would have processed a received
byte. To prevent this from happening, make sure that the Registers window containing
any such registers is closed when debugging a running application.

C-SPY MEMORY ZONES

In C-SPY, the term zone is used for a named memory area. A memory address, or
location, is a combination of a zone and a numerical offset into that zone. By default,

Memory and registers __4

the RL78 architecture has one zone, Memory, that covers the whole RL78 memory range
(although, for convenience, there are two “shortcut” zones to the saddr and sfr areas).
0x00000

0xFFE20

saddr zone

0xFFFO00

e
OxXFFF1F

sfr zone

OxXFFFFF

OxFFFFF

Default zone Memory

Memory zones are used in several contexts, most importantly in the Memory and
Disassembly windows, and in C-SPY macros. In the windows, use the Zone box to
choose which memory zone to display.

Device-specific zones

Memory information for device-specific zones is defined in the device description files.
When you load a device description file, additional zones that adhere to the specific
memory layout become available.

See the device description file for information about available memory zones.

For more information, see Selecting a device description file, page 42 and Modifying a
device description file, page 47.

MEMORY CONFIGURATION FOR THE C-SPY SIMULATOR

To simulate the target system properly, the C-SPY simulator needs information about
the memory configuration. By default, C-SPY uses a configuration based on
information retrieved from the device description file.

The C-SPY simulator provides various mechanisms to improve the configuration
further:

o If the default memory configuration does not specify the required memory address
ranges, you can specify the memory address ranges shall be based on:
o The zones predefined in the device description file
o The section information available in the debug file

o Or, you can define your own memory address ranges, which you typically might
want to do if the files do not specify memory ranges for the specific device that

155

Monitoring memory and registers

you are using, but instead for a family of devices (perhaps with various amounts
of on-chip RAM).

e For each memory address range, you can specify an access type. If a memory access
occurs that does not agree with the specified access type, C-SPY will regard this as
an illegal access and warn about it. In addition, an access to memory that is not
defined is regarded as an illegal access. The purpose of memory access checking is
to help you to identify memory access violations.

For more information, see Memory Access Setup dialog box, page 189.

Monitoring memory and registers

These tasks are covered:
o Defining application-specific register groups
o Monitoring stack usage

DEFINING APPLICATION-SPECIFIC REGISTER GROUPS

Defining application-specific register groups minimizes the amount of registers
displayed in the Registers windows and makes the debugging easier.

I Choose View>Registers>Register User Groups Setup during a debug session.

Register User Groups Setup x

Group Farmat
= regCroupine

Hexadecimal
Hexadecimal
Hexadecimal
Hexadecimal
Hexadecimal
Hexadecimal
Hexadecimal
Hexadecimal
Binary

Hexadecimal
Binary
Binary
Hexadecimal

------ <click to add reg>
<click to add group>

Right-clicking in the window displays a context menu with commands. For information
about these commands, see Register User Groups Setup window, page 182.

C-SPY® Debugging Guide
156 for RL78

Memory and registers __4

Click on <click to add group> and specify the name of your group, for example
My Timer Group and press Enter.

Underneath the group name, click on <click to add reg> and type the name of a
register, and press Enter. You can also drag a register name from another window in the
IDE. Repeat this for all registers that you want to add to your group.

As an optional step, right-click any registers for which you want to change the integer
base, and choose Format from the context menu to select a suitable base.

When you are done, your new group is now available in the Registers windows.

If you want to define more application-specific groups, repeat this procedure for each
group you want to define.

MONITORING STACK USAGE
These are the two main use cases for the Stack window:

o Monitoring stack memory usage

o Monitoring the stack memory content.

In both cases, C-SPY retrieves information about the defined stack size and its allocation
from the definition in the linker configuration file of the section holding the stack. If you,
for some reason, have modified the stack initialization in the system startup code,
cstartup, you should also change the section definition in the linker configuration file
accordingly, otherwise the Stack window cannot track the stack usage. For more
information, see the /AR C/C++ Development Guide for RL78.

To monitor stack memory usage:
Before you start C-SPY, choose Tools>Options. On the Stack page:
o Select Enable graphical stack display and stack usage tracking. This option also

enables the option Warn when exceeding stack threshold. Specify a suitable
threshold value.

e Note also the option Warn when stack pointer is out of bounds. Any such
warnings are displayed in the Debug Log window.

157

Monitoring memory and registers

1DE Options @

- Common Fonts

|¥] Enable graphical stack display and stack usage trasiing

Key Bindings

. Language 90 % stack usage threshold

' Editor Wam when exceeding stack threshold
i Messages

i) Project [7] Wam when stack pointer s out of bounds

i Source Code Control
Nebianar

L. Stack

Stack poitne ey oot v=lid eedl e g reaches:

main

Wamings
@ Log
) Log and alett

|1 Limit stack display to 50 bytes

2 Start C-SPY.

When your application is first loaded, and upon each reset, the memory for the stack area
is filled with the dedicated byte value 0xCD before the application starts executing.

3 Choose View>Stack>Stack 1 to open the Stack window.

Note that you can open up to two Stack windows, each showing a different stack—if
several stacks are available—or the same stack with different display settings.

4 Start executing your application.

Whenever execution stops, the stack memory is searched from the end of the stack until
a byte whose value is not 0xCD is found, which is assumed to be how far the stack has
been used. The light gray area of the stack bar represents the unused stack memory area,
whereas the dark gray area of the bar represents the used stack memory.

C-SPY® Debugging Guide
158 for RL78

Memory and registers __4

For this example, you can see that only 44% of the reserved memory address range was
used, which means that it could be worth considering decreasing the size of memory:

Used stack memary, Unused stack memary,
Stack pointer J in dark gray in light gray
=i)\ [: 2
) I |
. 36 bytes used out of 80 (44%) -
jrocationjjglala Stack range: Memony:0:3FBO0 - Memory:0x4000 Frame

OxF0O
0x3FFB 0Oxdl
0x3FFC 0x40180000

Toeltip informartion with facts
about used stack memory

4 m | +

Note: Although this is a reasonably reliable way to track stack usage, there is no
guarantee that a stack overflow is detected. For example, a stack can incorrectly grow
outside its bounds, and even modify memory outside the stack area, without actually
modifying any of the bytes near the end of the stack range. Likewise, your application
might modify memory within the stack area by mistake.

To monitor the stack memory content:

Before you start monitoring stack memory, you might want to disable the option
Enable graphical stack display and stack usage tracking to improve performance
during debugging.

Start C-SPY.
Choose View>Stack>Stack 1 to open the Stack window.

Note that you can access various context menus in the display area from where you can
change display format, etc.

Start executing your application.

159

Reference information on memory and registers

Whenever execution stops, you can monitor the stack memory, for example to see
function parameters that are passed on the stack:

Current stack pointer |

.

Stack 1
Stack ||
Location Data YWariable YWalue Type Frame
0x3FDE 0x0001 p.mHandle 1 int [0] _dwrite
0x3FED Ox3FES p.mBuffer 0x3FEB "‘n' unsigned charconst® [0] __chwrite
0x3FE2 0x0001 p.msize 1 size_t [0] __dwrite
0x3FE4 0x0001 p.mBetunst. 1 size_t [0] __dwrite

0x3FE6 0x72

0x3FE7 0Oxdl

0x3FE8 0x000A000A
0x3FEC 0xCDCD4048
0x3FF0 0xCDCDCDCD
0x3FF4 0xCDCDCDCD
0x3FF8 0x0000CDCD
0x3FFC 0x401441D2

Reference information on memory and registers

Reference information about:

Memory window, page 161

Data Flash Memory window, page 165
Data Flash dialog box, page 167

Memory Save dialog box, page 168
Memory Restore dialog box, page 169

Fill dialog box, page 169

Symbolic Memory window, page 171

Stack window, page 174

Registers window, page 178

Register User Groups Setup window, page 182
SFR Setup window, page 184

Edit SFR dialog box, page 187

Memory Access Setup dialog box, page 189

Edit Memory Access dialog box, page 191

C-SPY® Debugging Guide
160 for RL78

Memory and registers __4

Memory window

The Memory window is available from the View menu.

Available zones Context menu button

‘ Live update

Memory 1 \\\ / x

;
e 9w
£f £f £f £f ff

000feefd £f £f £f ££f ££f ££f ££ ££ -
000feefl f£f £f £f £ff £f £f ££f £f
R 000fef00 48 65 6c 6c 6 20 57 6f Hello Wo
Mem ory DO0fef0s 72 62 64 21 00 00 68 6a rld!

000feflD Bc 74 7a 4c 00 OO OO OO .
Bddieszes 000fefld OO0 OO OO OO OO OO OO OO0
000fef20 OO0 OO OO OO OO OO OO OO0
000fef2f ﬁﬁfrOO 00 00 cd cd cd cd
DDDfeﬁ}G” cd cd cd cd cd cd cd cd
DDQEéfBS 3c 01 00 ed £f £f £f £f
_,GﬁDfef4D £ff £f £f £f £f £f £f £f
000fef4d £f £f £f ££f ££f ££f ££ ££
000fefS50 f£f ££-ff £f £f £f ££f ££f

Go to location

Data coverage
information

Mem ory contents Mem ory contents in ASCII format

This window gives an up-to-date display of a specified area of memory—a memory
zone—and allows you to edit it. You can open several instances of this window, which
is very convenient if you want to keep track of several memory or register zones, or
monitor different parts of the memory.

To view the memory corresponding to a variable, you can select it in the editor window
g5 anddrag it to the Memory window.

See also Editing in C-SPY windows, page 45.

Requirements

None; this window is always available.

Toolbar

The toolbar contains:

Go to
The memory location or symbol you want to view.

Zone

Selects a memory zone, see C-SPY memory zones, page 154.

Context menu button
Displays the context menu.

161

Reference information on memory and registers

162

Display area

C-SPY® Debugging Guide
for RL78

Update Now

Updates the content of the Memory window while your application is
executing. This button is only enabled if the C-SPY driver you are using has
access to the target system memory while your application is executing.

El, E2, E2 Lite/E2 On-Board, E20, EZ-CUBE, EZ-CUBE2, and TK: If any live
watch variables exist, the Memory window will only show the ones covered by
the variables.

Live Update

Updates the contents of the Memory window regularly while your application
is executing. This button is only enabled if the C-SPY driver you are using has
access to the target system memory while your application is executing. To set
the update frequency, specify an appropriate frequency in the IDE
Options>Debugger dialog box.

El, E2, E2 Lite/E2 On-Board, E20, EZ-CUBE, EZ-CUBE2, and TK: If any live
watch variables exist, the Memory window will only show the ones covered by
the variables.

The display area shows the addresses currently being viewed, the memory contents in
the format you have chosen, and—provided that the display mode is set to 1x Units—
the memory contents in ASCII format. You can edit the contents of the display area, both
in the hexadecimal part and the ASCII part of the area.

Data coverage is displayed with these colors:

Yellow
Blue

Green

Indicates data that has been read.
Indicates data that has been written

Indicates data that has been both read and written.

Note: Data coverage is not supported by all C-SPY drivers. Data coverage is supported
by the C-SPY Simulator.

Memory and registers __4

Context menu

This context menu is available:

Copy
Paste

Zone 3

v lxUnits
2x Units
4x Units
8x Units

v Little Endian
Big Endian

Data Coverage 3

Find...

Replace...

Mermory Fill...
Memory Save...

Mermory Restore...
Set Data Breakpoint

Set Data Log Breakpoint

These commands are available:

Copy, Paste

Standard editing commands.

Zone
Selects a memory zone, see C-SPY memory zones, page 154.

1x Units

Displays the memory contents as single bytes.
2x Units

Displays the memory contents as 2-byte groups.
4x Units

Displays the memory contents as 4-byte groups.
8x Units

Displays the memory contents as 8-byte groups.

Little Endian
Displays the contents in little-endian byte order.

163

Reference information on memory and registers

Big Endian
Displays the contents in big-endian byte order.

Data Coverage
Choose between:

Enable toggles data coverage on or off.
Show toggles between showing or hiding data coverage.
Clear clears all data coverage information.

These commands are only available if your C-SPY driver supports data
coverage.

Find
Displays a dialog box where you can search for text within the Memory

window; read about the Find dialog box in the IDE Project Management and
Building Guide for RL78.

Replace
Displays a dialog box where you can search for a specified string and replace
each occurrence with another string; read about the Replace dialog box in the
IDE Project Management and Building Guide for RL78.

Memory Fill

Displays a dialog box, where you can fill a specified area with a value, see Fill
dialog box, page 169.

Memory Save

Displays a dialog box, where you can save the contents of a specified memory
area to a file, see Memory Save dialog box, page 168.

Memory Restore
Displays a dialog box, where you can load the contents of a file in Intel-hex or
Motorola s-record format to a specified memory zone, see Memory Restore
dialog box, page 169.

Set Data Breakpoint

Sets breakpoints directly in the Memory window. The breakpoint is not
highlighted; you can see, edit, and remove it in the Breakpoints dialog box. The
breakpoints you set in this window will be triggered for both read and write
access. For more information, see Setting a data breakpoint in the Memory
window, page 132.

C-SPY® Debugging Guide
164 for RL78

Memory and registers __4

Set Data Log Breakpoint
Sets a breakpoint on the start address of a memory selection directly in the
Memory window. The breakpoint is not highlighted; you can see, edit, and
remove it in the Breakpoints dialog box. The breakpoints you set in this
window will be triggered by both read and write accesses; to change this, use the
Breakpoints window. For more information, see Data Log breakpoints, page
127 and Getting started using data logging, page 226.

Data Flash Memory window

The Data Flash Memory window is available from the Emulator menu.

|
Address I j

onoea00 f£f ff £f f£f ff ff f£f f£f ff f£f £f f£f ff f£f ff ff
oooe9810 f£f ff £f f£f ff ff f£f f£f ff f£f £f f£f ff f£f ff ff
onoe9sz20 f£f ff £f f£f ff ff f£f f£f ff f£f £f f£f ff f£f ff ff
onoe9830 f£f ff £f f£f ff ff f£f f£f ff f£f £f f£f ff f£f ff ff
0noe9840 £f ff f£f f£f ff ff £f f£f f£f f£f £f f£f ff f£f ff ff
onoeas0 f£f ff £f f£f ff ff f£f f£f ff f£f f£f f£f ff f£f ff ff
onoe98e0 f£f ff f£f ff ff ff f£f f£f ff f£f £f f£f ff f£f ff ff
onoea?0 f£f ff £f ff ff ff f£f f£f ff f£f £f f£f ff f£f ff ff
onoe9880 f£f ff £f ff ff ff f£f f£f ff f£f £f f£f ff f£f ff ff
onoe9890 f£f ff £f ff ff ff f£f f£f ff f£f £f f£f ff f£f ff ff

e S e S e S
e
e S e S e S
e

|

Use this window to monitor and edit a specified area of the data flash memory.
The Data Flash Memory window lets you save and restore the data flash memory area.

This saving/restoring includes the value and the ID tag.

Requirements

A device with data flash memory.

Address

Specify the location you want to view. This can be a memory address, or the name of a
variable, function, or label.
Display area

Displays the addresses currently being viewed, the memory contents in the format you
have chosen, and the ID tags. You can edit the contents of the Memory window.

Data coverage is displayed with these colors:

o Yellow indicates data that has been read

o Blue indicates data that has been written

165

Reference information on memory and registers

166

Context menu

C-SPY® Debugging Guide
for RL78

o Green indicates data that has been both read and written.

To view the memory corresponding to a variable, select it in the editor window and drag
it to the Data Flash Memory window.

This context menu is available:

v lxUnits
2x Units
4x Units

Data Coverage

Save memory to file

Restore memeory from file

Restore memory from file with ID-tag

Erase memory

Erase memory and ID tags

3 Enable
Show

Clear

These commands are available on the context menu:

1x, 2x, 4x Units

Data Coverage

Save memory to file

Restore memory from file

Restore memory from file
with ID-tag

Erase memory

Erase memory and ID-tags

Switches between displaying the memory contents in
units of 8, 16, or 32 bits.

Choose between:
Enable toggles data coverage on and off.

Show toggles between showing and hiding data
coverage.

Clear clears all data coverage information.

Displays the Data Flash dialog box, where you can
save the contents of a specified memory area to a file,
see Data Flash dialog box, page 167.

Displays a standard Open dialog box, where you can
choose the file to restore from.

Displays a standard Open dialog box, where you can
choose the file to restore from.

Erases the memory contents but not the ID tags.

Erases the memory contents and the ID tags.

Data Flash dialog box

Requirements

Start address

End address

Format

File

Memory and registers __4

The Data Flash dialog box is available by choosing Save Memory to File from the

context menu in the Data Flash Memory window.

Data Flash @
Start address End address
0x000F 1000 0x000F 1090
Cancel
Format
~) Intel Hex

Intel Hex with ID-tag
'@ Motorola s-record

Motorola s—record with ID-tag
File

DataFlash.hex

Browse...

Use this dialog box to save the contents of a specified memory area to a file.

A a device with data flash memory.

Specify the start address of the memory range to be saved.

Specify the end address of the memory range to be saved.

Selects the file format to be used.

Specify the destination file to be used; a browse button is available for your convenience.

167

Reference information on memory and registers

Memory Save dialog box

The Memory Save dialog box is available by choosing Debug>Memory>Save or from

Requirements

Zone

Start address

End address

File format

Filename

Save

C-SPY® Debugging Guide

168 for RL78

the context menu in the Memory window.

Memory Save

Zone:

==l

Memory 7 I [Save

]

Start address: End address:
0x30 0xFF

File format:

Iintel-exhended - I

Filename:
C:\Documents\IAR Embedded Workbench'memory.hex

Close

=

Use this dialog box to save the contents of a specified memory area to a file.

None; this dialog box is always available.

Selects a memory zone, see C-SPY memory zones, page 154.

Specify the start address of the memory range to be saved.

Specify the end address of the memory range to be saved.

Selects the file format to be used, which is Intel-extended by default.

Specify the destination file to be used; a browse button is available for your convenience.

Saves the selected range of the memory zone to the specified file.

Memory and registers __4

Memory Restore dialog box

Requirements

Zone

Filename

Restore

Fill dialog box

The Memory Restore dialog box is available by choosing Debug>Memory>Restore
or from the context menu in the Memory window.

Merory Restore @
Zone:
| Memory - | [Restore]
Close
Filename:
C:'\Documents\TAR \memory . hex l:l

Use this dialog box to load the contents of a file in Intel-extended or Motorola S-record
format to a specified memory zone.

None; this dialog box is always available.

Selects a memory zone, see C-SPY memory zones, page 154.

Specify the file to be read; a browse button is available for your convenience.

Loads the contents of the specified file to the selected memory zone.

The Fill dialog box is available from the context menu in the Memory window.

Fill =
Start address: Length: Zone:
01010 004 Memory -
Walue: Operation
O=FF @ Copy AND
XOR oR
[(0] 8] | Cancel |

Use this dialog box to fill a specified area of memory with a value.

169

Reference information on memory and registers

170

Requirements

Start address

Length

Zone

Value

Operation

C-SPY® Debugging Guide

for RL78

None; this dialog box is always available.

Type the start address—in binary, octal, decimal, or hexadecimal notation.

Type the length—in binary, octal, decimal, or hexadecimal notation.

Selects a memory zone, see C-SPY memory zones, page 154.

Type the 8-bit value to be used for filling each memory location.

These are the available memory fill operations:

Copy
Value will be copied to the specified memory area.

AND
An AND operation will be performed between Value and the existing contents of
memory before writing the result to memory.

XOR
An XOR operation will be performed between Value and the existing contents of
memory before writing the result to memory.

OR

An OR operation will be performed between Value and the existing contents of
memory before writing the result to memory.

Memory and registers __4

Symbolic Memory window

Requirements

Toolbar

The Symbolic Memory window is available from the View menu during a debug
session.

Symbolic Memory x
Go to: hd |Data v||Pre\c'ious|[Mext]
Location Data “ariable Value Type i

0x21 0x0000 callCount O int

Ox23 0x0001 Fib[0] 1 unsigned int

0x25 0x0001 Fib[1] 1 unsigned int =
0x27 0x0002 Fik[2] 2 unsigned int 3
0x29 0x0003 Fib[3] 3 unsigned int

0x2B 0x0005 Fib[4] 5| unsigned int

0x2D 0x0008 Fib[E] a unsigned int

0x2F 0x000D Fib[E] 13 unsigned int

Ox3l 0x0015 Fib[7] 21 unsigned int

Ox33 0x0022 Fib[8] 34 unsigned int -

This window displays how variables with static storage duration, typically variables
with file scope but also static variables in functions and classes, are laid out in memory.
This can be useful for better understanding memory usage or for investigating problems
caused by variables being overwritten, for example buffer overruns. Other areas of use
are spotting alignment holes or for understanding problems caused by buffers being
overwritten.

To view the memory corresponding to a variable, you can select it in the editor window
and drag it to the Symbolic Memory window.

See also Editing in C-SPY windows, page 45.

None; this window is always available.

The toolbar contains:

Go to
The memory location or symbol you want to view.

Zone
Selects a memory zone, see C-SPY memory zones, page 154.

Previous
Highlights the previous symbol in the display area.

Next
Highlights the next symbol in the display area.

171

Reference information on memory and registers

Display area
This area contains these columns:

Location
The memory address.

Data
The memory contents in hexadecimal format. The data is grouped according to
the size of the symbol. This column is editable.

Variable
The variable name; requires that the variable has a fixed memory location. Local
variables are not displayed.

Value
The value of the variable. This column is editable.

Type

The type of the variable.
There are several different ways to navigate within the memory space:

Text that is dropped in the window is interpreted as symbols
The scroll bar at the right-side of the window

°
°
@ The toolbar buttons Next and Previous
°

The toolbar list box Go to can be used for locating specific locations or symbols.

Note: Rows are marked in red when the corresponding value has changed.

C-SPY® Debugging Guide
172 for RL78

Context menu

Memory and registers __4

This context menu is available:
MNext Symbol

Previous Symbol

1x Units
v 2xUnits
4x Units

Add to Watch
Add to Live Watch

v Default Format
Binary Format
Octal Format
Decimal Format
Hexadecimal Format

Char Format

These commands are available:
Next Symbol

Highlights the next symbol in the display area.
Previous Symbol

Highlights the previous symbol in the display area.
1x Units

Displays the memory contents as single bytes. This applies only to rows that do
not contain a variable.

2x Units

Displays the memory contents as 2-byte groups.
4x Units

Displays the memory contents as 4-byte groups.
Add to Watch

Adds the selected symbol to the Watch window.
Add to Live Watch

Adds the selected symbol to the Live Watch window.
Default format

Displays the memory contents in the default format.

Binary format
Displays the memory contents in binary format.

173

Reference information on memory and registers

Octal format

Displays the memory contents in octal format.

Decimal format

Displays the memory contents in decimal format.

Hexadecimal format
Displays the memory contents in hexadecimal format.

Char format

Displays the memory contents in char format.

Stack window

The Stack window is available from the View menu.

I Current stack pointer] I Used memory stack, in gray ‘
E e The graphical
[Stack view l Stack1 \ = * stack bar with
- _ . | — toeltip
Location Data Yarable ‘“alue Type Frame information
0x04DC | 1244 signedint [0] InitFik
— 1 0x04DC —_———
Cu.rrent stack ‘ 0%CD00 Unused stack
pointer 030432 | memery, in
0x0000 light gray
+10 0x0408)
+12 0xCDOD

This window is a memory window that displays the contents of the stack. The graphical
stack bar shows stack usage.

Note: By default, this window uses one physical breakpoint. For more information, see
Breakpoint consumers, page 129.

For information about options specific to the Stack window, see the IDE Project
Management and Building Guide for RL7S.

Requirements

None; this window is always available.

C-SPY® Debugging Guide
174 for RL78

Memory and registers __4

Toolbar
The toolbar contains:

Stack

Selects which stack to view. This applies to microcontrollers with multiple
stacks.

The graphical stack bar
Displays the state of the stack graphically.
The left end of the stack bar represents the bottom of the stack, in other words, the
position of the stack pointer when the stack is empty. The right end represents the end

of the memory address range reserved for the stack. The graphical stack bar turns red
when the stack usage exceeds a threshold that you can specify.

To enable the stack bar, choose Tools>Options>Stack>Enable graphical stack
display and stack usage tracking. This means that the functionality needed to detect
and warn about stack overflows is enabled.

Place the mouse pointer over the stack bar to get tooltip information about stack usage.

Display area
This area contains these columns:

Location

Displays the location in memory. The addresses are displayed in increasing
order. The address referenced by the stack pointer, in other words the top of the
stack, is highlighted in a green color.

Data
Displays the contents of the memory unit at the given location. From the Stack
window context menu, you can select how the data should be displayed; as a 1-,
2-, or 4-byte group of data.

Variable
Displays the name of a variable, if there is a local variable at the given location.
Variables are only displayed if they are declared locally in a function, and
located on the stack and not in registers.

Value
Displays the value of the variable.

Type

Displays the data type of the variable.

175

Reference information on memory and registers

176

Context menu

C-SPY® Debugging Guide
for RL78

Frame

Displays the name of the function that the call frame corresponds to.

This context menu is available:

v Show Variables
Show Offsets
1x Units
2x Units

v dxUnits

Default Format
Binary Format

Octal Format
Decimal Format
Hexadecimal Format

Char Format

Options...

These commands are available:

Show variables

Displays separate columns named Variables, Value, and Frame in the Stack
window. Variables located at memory addresses listed in the Stack window are
displayed in these columns.

Show offsets

Displays locations in the Location column as offsets from the stack pointer.
When deselected, locations are displayed as absolute addresses.

1x Units
Displays the memory contents as single bytes.
2x Units

Displays the memory contents as 2-byte groups.

4x Units
Displays the memory contents as 4-byte groups.

Memory and registers __4

Default Format

Binary Format

Octal Format

Decimal Format

Hexadecimal Format

Char Format
Changes the display format of expressions. The display format setting affects
different types of expressions in different ways. Your selection of display format
is saved between debug sessions. These commands are available if a selected
line in the window contains a variable.

The display format setting affects different types of expressions in these ways:

Variables The display setting affects only the selected variable, not
other variables.

Array elements The display setting affects the complete array, that is, the
same display format is used for each array element.

Structure fields All elements with the same definition—the same field
name and C declaration type—are affected by the
display setting.

Options

Opens the IDE Options dialog box where you can set options specific to the
Stack window, see the IDE Project Management and Building Guide for RL7S.

177

Reference information on memory and registers

178

Registers window

Requirements

C-SPY® Debugging Guide
for RL78

The Registers windows are available from the View menu.

Registers 1 5
CPU Registers Yalue Access
BC 0x11EC FeadvWrite
sp 0x0SFE FeadvWrite
SR 0x0003 FeadvWrite
R4 0xCDCD FeadvWrite
RS 0xCDCD FeadvWrite
Ré 0xCDCD FeadvWrite
R7 0xCDCD FeadvWrite
R2 0xCDCD FeadvWrite
RS 0xCDCD FeadvWrite
R10 0xCDCD FeadvWrite
R11 0xCDCD FeadvWrite
R12 0x0216 FeadvWrite
R13 0x0216 FeadvWrite
R14 0xCDCD FeadvWrite
R15 0xCDCD FeadvWrite
CYCLECOUNTER 201 FeadOnly
CCTIMER1 201 FeadvWrite
CCTIMER2 201 FeadvWrite
CCSTEP 201 FeadOnly

These windows give an up-to-date display of the contents of the processor registers and
special function registers, and allow you to edit the contents of some of the registers.
Optionally, you can choose to load either predefined register groups or your own
user-defined groups.

You can open up to four instances of this window, which is convenient for keeping track
of different register groups.

See also Editing in C-SPY windows, page 45.

To enable predefined register groups:

Select a device description file that suits your device, see Selecting a device description
file, page 42. These files contain predefined register groups.

Display the registers of a register group by selecting it from the Group drop-down
menu on the toolbar, or by right-clicking in the window and choosing View Group
from the context menu.

For information about creating your own user-defined register groups, see Defining
application-specific register groups, page 156.

None; this window is always available.

Memory and registers __4

Toolbar

The toolbar contains:

Find
Specify the name, or part of a name, of a register (or group) that you want to
find. Press the Enter key and the first matching register, or group with a
matching register, is displayed. User-defined register groups are not searched.
The search box preserves a history of previous searches. To repeat a search,
select it from the search history and press Enter.

Group

Selects which predefined register group to display. Additional register groups
are predefined in the device description files that make SFR registers available
in the Registers windows. The device description file contains a section that
defines the special function registers and their groups.

Display area

Displays registers and their values. Some registers are expandable, which means that the
register contains interesting bits or subgroups of bits.

If you drag a numerical value, a valid expression, or a register name from another part
of the IDE to an editable value cell in a Registers window, the value will be changed to
that of what you dragged. If you drop a register name somewhere else in the window,
the window contents will change to display the first register group where this register is
found.

Name

The name of the register.

Value

The current value of the register. Every time C-SPY stops, a value that has
changed since the last stop is highlighted. Some of the registers are editable. To
edit the contents of an editable register, click on the register and modify its
value. Press Esc to cancel the change.

To change the display format of the value, right-click on the register and choose
Format from the context menu.

Access

The access type of the register. Some of the registers are read-only, while others
are write-only.

179

Reference information on memory and registers

Context menu

C-SPY® Debugging Guide
180 for RL78

For the C-SPY Simulator, these additional support registers are available in the CPU

Registers group:

CYCLECOUNTER

CCSTEP

CCTIMERI1 and
CCTIMER2

Cleared when an application is started or reset, and is
incremented with the number of used cycles during
execution.

Shows the number of used cycles during the last performed
C/C++ source or assembler step.

Two trip counts that can be cleared manually at any given
time. They are incremented with the number of used cycles
during execution.

For the C-SPY hardware debugger drivers, these additional support registers are
available in the CPU Registers group:

TIME

TIMESTEP

TIMER1 and TIMER2

Cleared when an application is started or reset, and is
incremented with the elapsed time during application
execution. The time is based on the time unit that you
specify in the Hardware Setup dialog box.

Shows the time since the last performed C/C++ source or
assembler step.

Two trip counts that can be cleared manually at any given
time. They are incremented with elapsed time from start to
stop.

This context menu is available:

View Group

View User Group

Format

Open User Groups Setup Window

Save to File...

Find Mext Register

Find Previous Register

SHIFT-G

These commands are available:

View Group

Selects which predefined register group to display.

Memory and registers __4

View User Group
Selects which user-defined register group to display. For information about
creating your own user-defined register groups, see Defining
application-specific register groups, page 156.

Format

Changes the display format for the contents of the register you clicked on. The
display format setting affects different types of registers in different ways. Your
selection of display format is saved between debug sessions.

Open User Groups Setup Window
Opens a window where you can create your own user-defined register groups,
see Register User Groups Setup window, page 182.

Save to File
Opens a standard Save dialog box to save the contents of the window to a
tab-separated text file.

Find Next Register

Finds the predefined register or register group that comes immediately after
what your search found. After the last register was found, this search wraps
around and finds the first register again.

Find Previous Register

Finds the matching predefined register or register group that comes immediately
before what your search found. After the first register was found, this search
wraps around and finds the last register again.

181

Reference information on memory and registers

182

Register User Groups Setup window

Requirements

Display area

C-SPY® Debugging Guide
for RL78

The Register User Groups Setup window is available from the View menu or from the
context menu in the Registers windows.

Register User Groups Setup =
Group Farmat

- regCroupOne

i R4 Hexadecimal

Hexadecimal
Hexadecimal
Hexadecimal
Hexadecimal
Hexadecimal
Hexadecimal
Hexadecimal
Binary

Hexadecimal
Binary
Binary
Hexadecimal

<click to add reg>
<click to add group>

Use this window to define your own application-specific register groups. These register
groups can then be viewed in the Registers windows.

Defining application-specific register groups means that the Registers windows can
display just those registers that you need to watch for your current debugging task. This
makes debugging much easier.

None; this window is always available.

This area contains these columns:

Group
The names of register groups and the registers they contain. Clickingon <click
to add group> or <click to add reg> and typing the name of a register
group or register, adds new groups and registers, respectively. You can also drag
a register name from another window in the IDE. Click a name to change it.

A dimmed register name indicates that it is not supported by the selected device.

Memory and registers __4

Format

Shows the display format for the register’s value. To change the display format
of the value, right-click on the register and choose Format from the context
menu. The selected format is used in all Registers windows.

Context menu

This context menu is available:
Format 4
Rermove
Clear Group

Remove All Groups

Save to File...

These commands are available:

Format
Changes the display format for the contents of the register you clicked on. The
display format setting affects different types of registers in different ways. Your
selection of display format is saved between debug sessions.

Remove
Removes the register or group you clicked on.

Clear Group

Removes all registers from the group you clicked on.

Remove All Groups
Deletes all user-defined register groups from your project.

Save to File

Opens a standard save dialog box to save the contents of the window to a
tab-separated text file.

183

Reference information on memory and registers

184

SFR Setup window

Requirements

Display area

C-SPY® Debugging Guide
for RL78

The SFR Setup window is available from the Project menu.

SFR Setup x
MName Address Zone Size Access 5

+ MyOwnSFR Ox20004000 Mermory g Fead only

+ MyHideSFR 0x20004004 Mermory 16 Maone
Tik2_CR1 O=40000000 termany 32 Feadfifrite

o TIMZ_CR2 0x40000004 Merory 32 Fead only
TIM2_SMCR O=40000008 termany 32 Feadfifrite
Tik2_DIER O=4000000C termany 32 Feadfifrite
TIM2_5R 0x40000010 Merory a2 Eeadhirite
Tik2_EGR 0=40000014 termary 32 Feadpdfrite -

This window displays the currently defined SFRs that C-SPY has information about.
You can choose to display only factory-defined or custom-defined SFRs, or both. If
required, you can use the Edit SFR dialog box to customize the SFR definitions, see
Edit SFR dialog box, page 187. For factory-defined SFRs (that is, retrieved from the ddf
file in use), you can only customize the access type.

To quickly find an SFR, drag a text or hexadecimal number string and drop in this
window. If what you drop starts with a 0 (zero), the Address column is searched,
otherwise the Name column is searched.

Any custom-defined SFRs are added to a dedicated register group called Custom, which
you can choose to display in the Registers window. Your custom-defined SFRs are
saved in projectCustomSFR. sfr. This file is automatically loaded in the IDE when
you start C-SPY with a project whose name matches the prefix of the filename of the
sfr file.

You can only add or modify SFRs when the C-SPY debugger is not running.

None; this window is always available.

This area contains these columns:

Status
A character that signals the status of the SFR, which can be one of:

blank, a factory-defined SFR.
C, a factory-defined SFR that has been modified.

+, a custom-defined SFR.

Memory and registers __4

?, an SFR that is ignored for some reason. An SFR can be ignored when a
factory-defined SFR has been modified, but the SFR is no longer available, or it
is located somewhere else or with a different size. Typically, this might happen
if you change to another device.

Name
A unique name of the SFR.

Address
The memory address of the SFR.

Zone
Selects a memory zone, see C-SPY memory zones, page 154.

Size
The size of the register, which can be any of 8, 16, 32, or 64.

Access
The access type of the register, which can be one of Read/Write, Read only,
Write only, or None.

You can click a name or an address to change the value. The hexadecimal 0x prefix for
the address can be omitted, the value you enter will still be interpreted as hexadecimal.
For example, if you enter 4567, you will get 0x4567.

You can click a column header to sort the SFRs according to the column property.
Color coding used in the display area:

o Green, which indicates that the corresponding value has changed

o Red, which indicates an ignored SFR.

185

Reference information on memory and registers

186

Context menu

C-SPY® Debugging Guide
for RL78

This context menu is available:
v Show All
Show Custom SFRs only
Show Factory SFRs only

Add...

Edit...

Delete

Delete/Revert All Custom SFRs
Save Custom SFRs...

& bits

16 bits

32 bits

64 bits
Read/Write
Read only
Write only

MNone

These commands are available:

Show All
Shows all SFR.
Show Custom SFRs only
Shows all custom-defined SFRs.
Show Factory SFRs only
Shows all factory-defined SFRs retrieved from the ddf file.
Add
Displays the Edit SFR dialog box where you can add a new SFR, see Edit SFR
dialog box, page 187.
Edit
Displays the Edit SFR dialog box where you can edit an SFR, see Edit SFR
dialog box, page 187.
Delete

Deletes an SFR. This command only works on custom-defined SFRs.

Delete/revert All Custom SFRs

Deletes all custom-defined SFRs and reverts all modified factory-defined SFRs
to their factory settings.

Memory and registers __4

Save Custom SFRs
Opens a standard save dialog box to save all custom-defined SFRs.
8/16/32|64 bits

Selects display format for the selected SFR, which can be 8, 16, 32, or 64 bits.
Note that the display format can only be changed for custom-defined SFRs.

Read/Write|Read only|Write only|None

Selects the access type of the selected SFR, which can be Read/Write, Read
only, Write only, or None. Note that for factory-defined SFRs, the default
access type is indicated.

Edit SFR dialog box
The Edit SFR dialog box is available from the context menu in the SFR Setup window.

Edit SFR (=23
SFR
M ame:
MyOwnSFR Carcel
Address: Zone:
0400004567 Memary -
Size Access
@ 8 bits @ Read wiite
16 bitz Fiead only
32 bitz write: only
B4 bits MHone

Definitions of the SFRs are retrieved from the device description file in use. Use this
dialog box to either modify these factory-defined definitions or define new SFRs. See
also SFR Setup window, page 184.

Requirements

None; this dialog box is always available.

Name

Specify the name of the SFR that you want to add or edit.

187

Reference information on memory and registers

188

Address

Zone

Size

Access

C-SPY® Debugging Guide

for RL78

Specify the address of the SFR that you want to add or edit. The hexadecimal 0x prefix
for the address can be omitted, the value you enter will still be interpreted as
hexadecimal. For example, if you enter 4567, you will get 0x4567.

Selects the memory zone for the SFR you want to add or edit. The list of zones is
retrieved from the ddf file that is currently used.

Selects the size of the SFR. Choose between 8, 16, 32, or 64 bits. Note that the display
format can only be changed for custom-defined SFRs.

Selects the access type of the SFR. Choose between Read/Write, Read only, Write
only, or None. Note that for factory-defined SFRs, the default access type is indicated.

Memory Access Setup dialog box

The Memory Access Setup dialog box is available from the C-SPY driver menu.

Memory and registers __4

Memory Access Setup

[Use ranges based on

3) Device description file

[ebug file zegment information [only shown while debugging]

EX=)
Cancel

Zone Start Addr End Addr Accesz Type

Memory 0x0 0«1FFFF R

Memory 020000 0«FFFFF R

Memory 0«7FFCO00 0«7FCAFF R

Memory Ox7FFCO0 0x7FFFFF R

Usze manual ranges

Zone Start Addr End &ddr Access Type New...
Edit...
Delete

Delete &l

Memory access checking
Check for:
Access type violation

Access to unspecified ranges

Action:

~ Log violations

@ Log and stop execution

Use this dialog box to specify which set of memory address ranges to be used by C-SPY
during debugging.

Note: If you enable both the Use ranges based on and the Use manual ranges option,

memory accesses are checked for all defined ranges.

For information about the columns and the properties displayed, see Edit Memory
Access dialog box, page 191. See also Memory configuration for the C-SPY simulator,

page 155.

Requirements

The C-SPY simulator.

Use ranges based on

Specify if the memory configuration should be retrieved from a predefined
configuration. Choose between:

Device description file

Retrieves the memory configuration from the device description file that you
have specified. See Selecting a device description file, page 42.

189

Reference information on memory and registers

This option is used by default.

Debug file segment information

Retrieves the memory configuration from the debug file, which has retrieved it
from the linker configuration file. This information is only available during a
debug session. The advantage of using this option is that the simulator can catch
memory accesses outside the linked application.

Use manual ranges

Specify your own ranges manually via the Edit Memory Access dialog box. To open
this dialog box, click New to specify a new memory address range, or select an existing
memory address range and choose Edit to modify it. For more information, see Edit
Memory Access dialog box, page 191.

The ranges you define manually are saved between debug sessions.

Memory access checking

Check for determines what to check for:

o Access type violation

® Access to unspecified ranges
Action selects the action to be performed if an access violation occurs. Choose between:

o Log violations

o Log and stop execution

Any violations are logged in the Debug Log window.

Buttons

These buttons are available for manual ranges:

New
Opens the Edit Memory Access dialog box, where you can specify a new
memory address range and associate an access type with it, see Edit Memory
Access dialog box, page 191.
Edit
Opens the Edit Memory Access dialog box, where you can edit the selected
memory address range. See Edit Memory Access dialog box, page 191.
Delete

Deletes the selected memory address range definition.

C-SPY® Debugging Guide
190 for RL78

Memory and registers __4

Delete All

Deletes all defined memory address range definitions.

Edit Memory Access dialog box

The Edit Memory Access dialog box is available from the Memory Access Setup
dialog box.

Edit Memory Access @

Memory range

Zone:
II\"Iemor_l,l—VI Cancel

Start address: End address:
0«0 Ox1FFF

Access type
Read and write
@ Fead only

write: only

Use this dialog box to specify your memory address ranges for which you want to detect
illegal accesses during the simulation, and assign an access type to each range.

Requirements
The C-SPY simulator.

Memory range
Defines the memory address range specific to your device:
Zone

Selects a memory zone, see C-SPY memory zones, page 154.

Start address

Specify the start address for the memory address range, in hexadecimal
notation.

End address

Specity the end address for the memory address range, in hexadecimal notation.

Access type

Selects an access type to the memory address range. Choose between:

o Read and write

191

Reference information on memory and registers

e Read only
o Write only.

C-SPY® Debugging Guide
192 for RL78

Part 2. Analyzing your
application

This part of the C-SPY® Debugging Guide for RL78 includes these chapters:
e Trace

e The application timeline

e Profiling

e Code coverage

e Power debugging

.hmuhhhhi

193

AAARRIE

194

Trace

e Introduction to using trace
e Collecting and using trace data

e Reference information on trace

Introduction to using trace

These topics are covered:

o Reasons for using trace

e Briefly about trace

o Requirements for using trace

See also:

Getting started using data logging, page 226

Getting started using Smart Analog (event logging), page 227
Power debugging, page 277

Getting started using interrupt logging, page 304

Profiling, page 261

REASONS FOR USING TRACE

By using trace, you can inspect the program flow up to a specific state, for instance an
application crash, and use the trace data to locate the origin of the problem. Trace data
can be useful for locating programming errors that have irregular symptoms and occur
sporadically.

BRIEFLY ABOUT TRACE

To use trace in C-SPY requires that your target system can generate trace data. Once
generated, C-SPY can collect it and you can visualize and analyze the data in various
windows and dialog boxes.

Depending on your target system, different types of trace data can be generated.

Trace data is a continuously collected sequence of every executed instruction for a
selected portion of the execution.

195

Introduction to using trace

196

C-SPY® Debugging Guide
for RL78

Trace features in C-SPY

In C-SPY, you can use the trace-related windows Trace, Function Trace, Timeline, and
Find in Trace.

Depending on your C-SPY driver, you:

o Can set various types of trace breakpoints and triggers to control the collection of
trace data.

o Have access to windows such as the Interrupt Log, Interrupt Log Summary,
Data Log, and Data Log Summary.

In addition, several other features in C-SPY also use trace data, features such as
Profiling, Code coverage, and Instruction profiling.

Tracein the El, E2, E2 Lite/E2 On-Board, and EZ-CUBE2 emulators

The E1, E2, E2 Lite/E2 On-Board, and EZ-CUBE2 emulators can collect trace data
from RL78 devices that support trace. In the emulator, the trace function has a circular
frame buffer where the emulator can save frames. When the Go or a step command is
executed, the trace function can save information for each executed branch, in the form
of OP-fetch addresses and data.

Up to 256 frames can be saved in the trace buffer.

Note: The Next Statement and Run to Cursor commands do not collect any trace data
for the E1, E2, E2 Lite/E2 On-Board, or EZ-CUBE2 emulators. Using these commands
will disable trace data collection.

Trace in the IECUBE emulator

If you use the C-SPY IECUBE driver, you also have access to the Snap Shot Function
Settings dialog box, see Snap Shot Function Settings dialog box, page 204.

In the IECUBE emulator, the trace function has a circular frame buffer where the
emulator can save frames. When the Go or a step command is executed, the trace
function can save information for each executed instruction. The information saved is:

o OP-fetch address and data

o Data-access address and data.
If you use the Snap Shot Function Settings dialog box, you can also choose to save:

e Memory area
e SFR
o CPU register.

Trace __o

REQUIREMENTS FOR USING TRACE

The C-SPY simulator and the IECUBE, E1, E2, E2 Lite/E2 On-Board, and EZ-CUBE2
emulators support trace-related functionality, and there are no specific requirements.

Trace data cannot be collected from the E20, EZ-CUBE, and TK emulators.

Collecting and using trace data

These tasks are covered:

Getting started with trace
Trace data collection using breakpoints
Trace data collection using events

Searching in trace data

Browsing through trace data

GETTING STARTED WITH TRACE

To get started using trace:
Start C-SPY and choose Emulator>Trace Setup. In the Trace Settings dialog box
that appears, check if you need to change any of the default settings.

Note: If you are using the C-SPY simulator you can ignore this step.

Open the Trace window—available from the driver-specific menu—and click the
Activate button to enable collecting trace data.

Start the execution. When the execution stops, for example because a breakpoint is
triggered, trace data is displayed in the Trace window. For more information about the
window, see Trace window, page 206.

TRACE DATA COLLECTION USING BREAKPOINTS

A convenient way to collect trace data between two execution points is to start and stop
the data collection using dedicated breakpoints. Choose between these alternatives:

o In the editor or Disassembly window, position your insertion point, right-click, and
toggle a Trace Start or Trace Stop breakpoint from the context menu.

o In the Breakpoints window, choose New Breakpoint>Trace Start or Trace Stop
from the context menu.

o The C-SPY system macros __setTraceStartBreak and
_setTraceStopBreak can also be used.

197

Collecting and using trace data

198

C-SPY® Debugging Guide
for RL78

For more information about these breakpoints, see Trace Start breakpoints dialog box,
page 212 and Trace Stop breakpoints dialog box, page 213, respectively.
TRACE DATA COLLECTION USING EVENTS

For the IECUBE, E1, E2 Lite/E2 On-Board, and EZ-CUBE2 emulators, you can specify
dedicated start and stop events to collect trace data between two execution points.

Setting start and stop events:
Choose Emulator>Edit Events and create your start and stop events.
Choose Emulator>Trace Settings and select the start and stop events you just created.

Open the Trace window—available from the driver-specific menu—and click the
Activate button to enable collecting trace data.

Start the execution. When the execution stops, for instance because a breakpoint is
triggered, trace data is displayed in the Trace window. For more information about the
window, see Trace window, page 206.

SEARCHING IN TRACE DATA

When you have collected trace data, you can perform searches in the collected data to
locate the parts of your code or data that you are interested in, for example, a specific
interrupt or accesses of a specific variable.

You specify the search criteria in the Find in Trace dialog box and view the result in the
Find in Trace window.

Note: The Find in Trace dialog box depends on the C-SPY driver you are using.

The Find in Trace window is very similar to the Trace window, showing the same
columns and data, but only those rows that match the specified search criteria.
Double-clicking an item in the Find in Trace window brings up the same item in the
Trace window.

To search in your trace data:

On the Trace window toolbar, click the Find button.

In the Find in Trace dialog box, specify your search criteria.
Typically, you can choose to search for:

e A specific piece of text, for which you can apply further search criteria
o An address range

e A data value

°

A combination of these, like a specific piece of text within a specific address range.

Trace __o

For more information about the various options, see Find in Trace dialog box, page 216
and Find in Trace dialog box (IECUBE), page 217.

3 When you have specified your search criteria, click Find. The Find in Trace window
is displayed, which means you can start analyzing the trace data. For more information,
see Find in Trace window, page 218.

BROWSING THROUGH TRACE DATA

To follow the execution history, simply look and scroll in the Trace window.
Alternatively, you can enter browse mode.

Q To enter browse mode, double-click an item in the Trace window, or click the Browse
toolbar button.

The selected item turns yellow and the source and disassembly windows will highlight
the corresponding location. You can now move around in the trace data using the up and
down arrow keys, or by scrolling and clicking; the source and Disassembly windows
will be updated to show the corresponding location. This is like stepping backward and
forward through the execution history.

Double-click again to leave browse mode.

Reference information on trace

Reference information about:

Trace Settings dialog box for IECUBE, page 200

Trace Settings dialog box for E1, E2, E2 Lite/E2 On-Board, and EZ-CUBE?2, page
202

Snap Shot Function Settings dialog box, page 204
Trace window, page 206

Function Trace window, page 211

Trace Start breakpoints dialog box, page 212
Trace Stop breakpoints dialog box, page 213
Trace Expressions window, page 214

Find in Trace dialog box, page 216

Find in Trace dialog box (IECUBE), page 217
Find in Trace window, page 218

Trace Save dialog box, page 219

199

Reference information on trace

Trace Settings dialog box for IECUBE

The Trace Settings dialog box is available from the Emulator menu.

Trace Settings
Trace operation Stop condition
" Disable " Mo stop
. Cancel
+ Enable {+ Stop tracing on trace buffer full
¥ Section race ™ Break execution an trace buffer ful
v Qualify trace -
I Delay tigger trace -
¥ Clear trace buffer befare Go Trace buffer size:
8 Khyte -
Section trace 1 Section trace 2
Start Stop Start Stop
v TrcBeg |~ [1TrcBeg ad 1 Tim1 |~ 1 Tim1 |
[C1TrcEnd = v TrcEnd = [1Tim2 — [1Tim2 —
[ITrelfy ™ [ITrelfy ™ [(1TicBeg ™ [TicBeg ™
Section trace 3 Section trace 4
Start Stop Start Stop
[1Tim1 | [1Tim1 | [1Tim1 | [1Tim1 [~
[1Tim2] [1Tim2] [1Tim2] [1Tim2]
[TicBeg ™ [TicBeg ™ [TicBeg ™ [TicBeg ™
Qualify trace Dielay trigger race Delay count:
[1Tim1 | [Tim1 [~
[1Tim2] [C1Tim2
[TicBeg ™ [TicBeg ™

Use this dialog box to configure trace generation and collection for the IECUBE
emulator.

See also Getting started with trace, page 197.

Requirements
The IECUBE emulator.

Trace operation

To enable the trace operation, select the Enable option and choose between:

No suboption selected A full trace is performed. The trace starts at any Go
or step command, and stops at break.

Section trace The trace starts and stops by the events defined in the
Start trace and Stop trace lists, respectively.

C-SPY® Debugging Guide
200 for RL78

Trace __o

Qualify trace The trace is active as long as the qualify trace event
is true. The qualify event is defined in the Qualify
trace list.

Delay trigger trace The trace stops by the events defined in the Delay
trigger trace list, and after the Delay count number
of frames.

To disable the trace operation, select the Disable option.

Stop condition

Controls how the trace buffer should be handled when it has become full or when the
delay frame count is reached. Choose between:

No stop The oldest frames are overwritten until a break
occurs.

Stop tracing on trace buffer full The trace stops when the trace buffer is full.

Break execution on trace buffer The trace stops and execution breaks when the
full trace buffer is full.

Stop tracing on delay trigger The trace stops when the delay trigger events are
fulfilled and after the delay count frames are
traced.

Break execution on delay trigger The trace stops and execution breaks when the
delay trigger events are fulfilled and after the delay
count frames are traced.

Clear trace buffer before Go

Clears the trace buffer before each Go or step command is performed.

Trace buffer size

Specity the size of the trace buffer.

Section trace

In the Section Trace 1, 2, 3, and 4 lists, select the section trace events that should control
the trace. If more than one event is selected in the same list, the trace condition will be
true when one of the selected events has occurred.

201

Reference information on trace

Qualify trace

Select the trace events that should control the qualify trace. If more than one event is
selected in the same list, the trace condition will be true when one of the selected events
has occurred.

Delay trigger trace

Select the trace events that should control the delay trigger trace and specify a delay in
the Delay count box. If more than one event is selected in the same list, the trace
condition will be true when one of the selected events has occurred.

Delay count

Specify the number of frames you want the tracing to continue after the condition has
been met for the event selected in the Delay trigger trace list.

Trace Settings dialog box for El, E2, E2 Lite/E2 On-Board, and EZ-CUBE2
The Trace Settings dialog box is available from the Emulator menu.
rTTace Settings l-i&-r

Trace operation Stop condition
@ Mo stop Y
Stop tracing on trace buffer full Iﬂl

|| Section trace

Fill in mizzing frames

Section trace
Start Stop
[¥] TragStart [TraStart
[TraStop [¥] TrgStap

b

Use this dialog box to configure trace generation and collection for the E1, E2, E2
Lite/E2 On-Board, and EZ-CUBE2 emulators.

See also Getting started with trace, page 197.

Requirements

One of these alternatives:

The E1 emulator
The E2 emulator
The E2 Lite/E2 On-Board emulator

°
°
°
o The EZ-CUBE2 emulator.

C-SPY® Debugging Guide
202 for RL78

Trace __o

Trace operation

Controls the trace operation. Choose between:

Disable Disables the trace operation.
Enable Enables the trace operation.
Section trace The trace starts and stops by the events defined in the

Section trace lists.

Stop condition
Controls how the trace buffer should be handled when it has become full. Choose
between:

No stop The oldest frames are overwritten until a break
occurs.

Stop tracing on trace buffer full The trace stops when the trace buffer is full.

Fill in missing frames

The trace only traces branches. Select this option to calculate and fill in the missing
frames.

Section trace

In the Section trace start and Section trace stop lists, select the section trace events
that should control the trace. If more than one event is selected in the same list, the trace
condition will be true when one of the selected events has occurred.

203

Reference information on trace

204

Snap Shot Function Settings dialog box

Requirements

Snap Name

Snap Event

C-SPY® Debugging Guide
for RL78

The Snap Shot Function Settings dialog box is available from the Emulator menu.

Snap Shot Function Settings @

Srobane
zhape w
Snap Event Snap Entry

aaa ultddress, W

[Wlcoo

Select

(®) Memary Memary Address: ultddress | - w
Osh Memory Display: W hd

O Register

[add] [Modiy | [FRemove |

Use this dialog box to control the event-controlled addition of further information to the
Trace window. If the corresponding event occurred, this information can be added to the
trace data:

e Memory area (displayed as byte, word, or double word)
e SFR
o CPU register (register bank must be specified).

The supported events are data accesses and execution events. Events that occur before
execution cannot define a Snap Shot.

Note: You can combine different information types in one combined Snap Shot
definition.

The IECUBE emulator.

To define a new Snap Shot event, enter the name in the Snap Name drop-down list.
Choose the appropriate characteristics and click OK.

To modify an existing Snap Shot event, choose the event from the Snap Name list, enter
the new characteristics and click OK.

Displays the events that will trigger the addition of information to the Trace window.

Trace __o

Snap Entry

Displays the memory addresses, SFRs, and registers to be added to the Trace window.
Select

Select what to add to the Trace window:

Memory Adds a memory address to the Trace window.

Sfr Adds an SFR to the Trace window.

Register Adds a register to the Trace window.

Depending on your choice, different sets of options appear to the right.
Memory Address

Specifies the memory address to add. Symbol names can be used instead of absolute
addresses to define an address area.

Memory Display
Selects how to display the memory: B for byte, W for word, and DW for double word.

Sfr Name
The SFR that you want to add to the Trace window.

Register Name

The register that you want to add to the Trace window.

Register Bank
Specify the register bank. Choose between 0, 1, 2, 3, or Current.

Buttons

These buttons are available:

Add Displays the new Snap Shot entry in the Snap Entry box.
Modify Changes a selected item in the Snap Entry box.
Remove Deletes a selected item in the Snap Entry box.

205

Reference information on trace

206

Trace window

Requirements

Trace toolbar

C-SPY® Debugging Guide
for RL78

B X [e

© B

o

The Trace window is available from the C-SPY driver menu.
This window displays the collected trace data.

See also Collecting and using trace data, page 197.

One of these alternatives:

o The C-SPY Simulator
o The IECUBE emulator
e The El, E2, E2 Lite/E2 On-Board, or EZ-CUBE2 emulator.

The toolbar in the Trace window and in the Function Trace window contains:

Enable/Disable
Enables and disables collecting and viewing trace data in this window. This
button is not available in the Function Trace window.

Clear trace data
Clears the trace buffer. Both the Trace window and the Function Trace window
are cleared.

Toggle source
Toggles the Trace column between showing only disassembly or disassembly
together with the corresponding source code.

Browse
Toggles browse mode on or off for a selected item in the Trace window.

Find
Displays a dialog box where you can perform a search, see Find in Trace dialog
box, page 216.

Save
For the IECUBE, E1, E2, E2 Lite/E2 On-Board, and EZ-CUBE2 emulators, this
button displays the Trace Save dialog box, see Trace Save dialog box, page 219.

In the C-SPY simulator, this button displays a standard Save As dialog box
where you can save the collected trace data to a text file, with tab-separated
columns.

Trace __o

g Edit Settings
In the C-SPY simulator, this button is not enabled.

For the IECUBE, El, E2, E2 Lite/E2 On-Board, and EZ-CUBE2 emulators, this
button displays the Trace Settings dialog box, see Trace Settings dialog box for
IECUBE, page 200 or Trace Settings dialog box for E1, E2, E2 Lite/E2
On-Board, and EZ-CUBE2, page 202.

Edit Expressions (C-SPY simulator only)

FE

Opens the Trace Expressions window, see Trace Expressions window, page
214.

Progress bar

When a large amount of trace data has been collected, there might be a delay
before all of it has been processed and can be displayed. The progress bar
reflects that processing.

Display area (in the C-SPY simulator)

This area displays a collected sequence of executed machine instructions. In addition,
the window can display trace data for expressions.

CNDEIE G
#

Cycles Trace callCount i
1396 2766 FFFR0574 MOV.L 5F, R2 10
1397 2787 FFFR0576 MoV #0x01:4,R1 10
1398 2771 FFFRO578 BESE.A __ DebugBreak 10
__DebugBreak:
1399 2777 FFFRO4ED RTS 10
1400 2780 FFFRO57C BREA.B OxFFFB0572 10
1401 2781 FFFR0572 MOV.L R&, [SF] 10
1402 2782 FFFR0574 MOV.L 5F, R2 10
1403 2783 FFFR0O576 Mov #0x01:4,R1 10 k%
4 n 3

This area contains these columns for the C-SPY simulator:

#
A serial number for each row in the trace buffer. Simplifies the navigation within
the buffer.

Cycles
The number of cycles elapsed to this point.

Trace

The collected sequence of executed machine instructions. Optionally, the
corresponding source code can also be displayed.

207

Reference information on trace

208

Expression
Each expression you have defined to be displayed appears in a separate column.
Each entry in the expression column displays the value affer executing the
instruction on the same row. You specity the expressions for which you want to
collect trace data in the Trace Expressions window, see Trace Expressions
window, page 214.

A red-colored row indicates that the previous row and the red row are not consecutive.
This means that there is a gap in the collected trace data, for example because trace data
has been lost due to an overflow.

Display area (for a supported emulator)

Trace @
OXE Y H|z|

Frame Ewent Time Fetch Address Opcode Trace Access Address Drata -
00620 O0000BEEE3 M1 o019 92 DEC (2
00621 O00006E741 M1 00114 DFFE BNZ $-0x03
00622 000006E931 M1 0m17 9B MOV [HL], &
00623 0000067058 M1 o018 AT INCW HL Wh FEF14 oo
00624 0000067116 M1 o019 92 DEC (2
00625 0000067183 M1 00114 DFFE BNZ $-0x03
00626 0000067433 M1 0m17 9B MOV [HL], &
00627 0000067431 M1 o018 AT INCW HL Wh FEF15 oo

| ooszs 0000067558 M1 o019 92 DEC (2
00629 O000067E1E M1 00114 DFFE BNZ $-0x03
00630 0000067741 M1 omic B DEC B 2

C-SPY® Debugging Guide

for RL78

This area contains these columns for the supported C-SPY emulators:

Frame
The number of the trace buffer frame. By double-clicking the frame number, the
collected fetch address will be displayed in the editor window.

Event
The name of the single events that have been triggered by the event conditions.
For information about event conditions, see Edit Events dialog box, page 90 and
Edit Sequencer Events dialog box, page 93.

Time
IECUBE: The time stamp of the trace frame.
El, E2, E2 Lite/E2 On-Board, and EZ-CUBE2: This column is empty.

Fetch

The fetch type of the instruction associated with the trace frame. For the
IECUBE emulator, this is always M1, an internal IECUBE code.

Trace __o

For the E1, E2, E2 Lite/E2 On-Board, and EZ-CUBE2 emulators, this is one of:
F — a verified trace frame

s — a verified trace frame based on section trace

+ — a calculated trace frame

Fi — an interrupt trace frame

+? — a trace frame that might have been skipped (it cannot be determined
whether it has been executed)

... — atrace restart (to resynchronize the trace and the execution)

Opcode
The operation code of the instruction associated with the trace frame. After the
hexadecimal value, extra information can be displayed: x2 if two instructions
were executed and C if the instruction was read from the I-Cache.

Trace
The collected sequence of executed machine instructions. Optionally, the
corresponding source code can also be displayed.

Access

IECUBE: The access type of the instruction associated with the trace frame.
DMA stands for DMA transfer. The address and data information shows which
transfer that was performed.

El, E2, E2 Lite/E2 On-Board, and EZ-CUBE2: This column is empty.

Address
IECUBE: The address of the access.

El, E2, E2 Lite/E2 On-Board, and EZ-CUBE2: This column is empty.

Data
IECUBE: The data the access has read or written.

El, E2, E2 Lite/E2 On-Board, and EZ-CUBE2: The data the access has read or
written.

209

Reference information on trace

210

Context menu

C-SPY® Debugging Guide
for RL78

This context menu is available:
v Enable

Clear

Embed Source
Browse

Find All...

Save...

Open Trace Expressions Window...

Note: The contents of this menu are dynamic and depend on which features that your
combination of software and hardware supports. However, the list of menu commands
below is complete and covers all possible commands.

These commands are available:

Enable
Enables and disables collecting and viewing trace data in this window.

Clear

Clears the trace buffer. Both the Trace window and the Function Trace window
are cleared.

Embed source

Toggles the Trace column between showing only disassembly or disassembly
together with the corresponding source code.

Browse

Toggles browse mode on or off for a selected item in the Trace window, see
Browsing through trace data, page 199.

Find All

Displays a dialog box where you can perform a search in the Trace window, see
Find in Trace dialog box, page 216. The search results are displayed in the Find
in Trace window—available by choosing the View>Messages command, see
Find in Trace window, page 218.

Save

For the IECUBE, E1, E2, E2 Lite/E2 On-Board, and EZ-CUBE2 emulators, this
command displays the Trace Save dialog box, see Trace Save dialog box, page
219.

In the C-SPY simulator, this command displays a standard Save As dialog box
where you can save the collected trace data to a text file, with tab-separated
columns.

Trace __o

Open Trace Expressions Window

Opens the Trace Expressions window, see Trace Expressions window, page
214.

Function Trace window

Requirements

Toolbar

Display area

The Function Trace window is available from the C-SPY driver menu during a debug
session.

Function Trace x
X EEHQE - |FE

Cycles Trace i i
33 78 O0xFFEOOS5F: main == =
34 79 OxFFEOO4ED: InitUart == =
50 109 O0xFFEOOS562: main + 3 ==

51 110 O0xFFEOD419: InitFib ==

63 130 0xFFEOQQ400: GetFil ==

73 145 0xFFEOO43A: InitFib + 33 2

76 151 0xFFEOQQ400: GetFil ==

a5 166 0xFFEOO442: InitFib + 41 2 o

This window displays a subset of the trace data displayed in the Trace window. Instead
of displaying all rows, the Function Trace window shows:

o The functions called or returned to, instead of the traced instruction

o The corresponding trace data.

One of these alternatives:

o The C-SPY Simulator
o The IECUBE emulator
e The El, E2, E2 Lite/E2 On-Board, or EZ-CUBE2 emulator.

For information about the toolbar, see Trace window, page 206.

However, the Save button opens a standard Save dialog box also in the [IECUBE, E1,
E2, E2 Lite/E2 On-Board, and EZ-CUBE2 emulators.

For information about the columns in the display area, see Trace window, page 206

211

Reference information on trace

Trace Start breakpoints dialog box

The Trace Start dialog box is available from the context menu that appears when you
right-click in the Breakpoints window.

Edit Breakpoint @
o Trace Start

Break at:

Edit...

Use this dialog box to set a Trace Start breakpoint where you want to start collecting
trace data. If you want to collect trace data only for a specific range, you must also set a
Trace Stop breakpoint where you want to stop collecting data.

See also Trace Stop breakpoints dialog box, page 213 and Trace data collection using
breakpoints, page 197.

To set a Trace Start breakpoint:

I In the editor or Disassembly window, right-click and choose Trace Start from the
context menu.

Alternatively, open the Breakpoints window by choosing View>Breakpoints.
2 In the Breakpoints window, right-click and choose New Breakpoint>Trace Start.

Alternatively, to modify an existing breakpoint, select a breakpoint in the Breakpoints
window and choose Edit on the context menu.

3 In the Break at text box, specify an expression, an absolute address, or a source
location. Click OK.

4 When the breakpoint is triggered, the trace data collection starts.

Requirements

The C-SPY simulator.

Trigger at

Specify the code location of the breakpoint. Alternatively, click the Edit button to open
the Enter Location dialog box, see Enter Location dialog box, page 149.

C-SPY® Debugging Guide
212 for RL78

Trace __o

Trace Stop breakpoints dialog box

Requirements

4

The Trace Stop dialog box is available from the context menu that appears when you
right-click in the Breakpoints window.

Edit Breakpoint @
° Trace Stop

Break at:

Edit...

Use this dialog box to set a Trace Stop breakpoint where you want to stop collecting
trace data. If you want to collect trace data only for a specific range, you might also need
to set a Trace Start breakpoint where you want to start collecting data.

See also Trace Start breakpoints dialog box, page 212 and Trace data collection using
breakpoints, page 197.

To set a Trace Stop breakpoint:

In the editor or Disassembly window, right-click and choose Trace Stop from the
context menu.

Alternatively, open the Breakpoints window by choosing View>Breakpoints.
In the Breakpoints window, right-click and choose New Breakpoint>Trace Stop.

Alternatively, to modify an existing breakpoint, select a breakpoint in the Breakpoints
window and choose Edit on the context menu.

In the Break at text box, specify an expression, an absolute address, or a source
location. Click OK.

When the breakpoint is triggered, the trace data collection stops.

The C-SPY simulator.

213

Reference information on trace

Trigger at

Specify the code location of the breakpoint. Alternatively, click the Edit button to open
the Enter Location dialog box, see Enfer Location dialog box, page 149.

Trace Expressions window

Requirements

Display area

C-SPY® Debugging Guide
214 for RL78

The Trace Expressions window is available from the Trace window toolbar.

Trace Expressions x
Expression Farmat
i Default
dec Default
R4 Default
CYCLECOUNTER Default

Use this window to specify, for example, a specific variable (or an expression) for which
you want to collect trace data.

The C-SPY simulator.

Use the display area to specify expressions for which you want to collect trace data:

Expression
Specify any expression that you want to collect data from. You can specify any
expression that can be evaluated, such as variables and registers.

Format
Shows which display format that is used for each expression. Note that you can
change display format via the context menu.

Each row in this area will appear as an extra column in the Trace window.

Trace __o

Context menu

This context menu is available:

Move Up
Mowve Down
Rermove
Default
Binary

Octal
Decimal
Hexadecimal

Char

These commands are available:

Move Up
Moves the selected expression upward in the window.

Move Down
Moves the selected expression downward in the window.

Remove

Removes the selected expression from the window.

Default Format

Binary Format

Octal Format

Decimal Format

Hexadecimal Format

Char Format
Changes the display format of expressions. The display format setting affects
different types of expressions in different ways. Your selection of display format
is saved between debug sessions. These commands are available if a selected
line in the window contains a variable.

The display format setting affects different types of expressions in these ways:

Variables The display setting affects only the selected variable, not
other variables.

Array elements The display setting affects the complete array, that is, the
same display format is used for each array element.

Structure fields All elements with the same definition—the same field
name and C declaration type—are affected by the
display setting.

215

Reference information on trace

Find in Trace dialog box

Requirements

Text search

C-SPY® Debugging Guide
216 for RL78

The Find in Trace dialog box is available by clicking the Find button on the Trace
window toolbar or by choosing Edit>Find and Replace>Find.

Note that the Edit>Find and Replace>Find command is context-dependent. It displays
the Find in Trace dialog box if the Trace window is the current window or the Find
dialog box if the editor window is the current window.

Find in Trace @
| Text search Find
v ——
Cancel
Match case

| Match whole word
Only search in one column

Address range

Use this dialog box to specify the search criteria for advanced searches in the trace data.

The search results are displayed in the Find in Trace window—available by choosing
the View>Messages command, see Find in Trace window, page 218.

See also Searching in trace data, page 198.

One of these alternatives:

e The C-SPY Simulator
e The El, E2, or E2 Lite/E2 On-Board emulator
o The EZ-CUBE2 emulator.

Specify the string you want to search for. To specify the search criteria, choose between:

Match Case
Searches only for occurrences that exactly match the case of the specified text.
Otherwise int will also find INT, Int, and so on.

Match whole word

Searches only for the string when it occurs as a separate word. Otherwise int
will also find print, sprintf, and so on.

Address Range

Only search in one column

Searches only in the column you selected from the drop-down list.

Trace __o

Specify the address range you want to display or search. The trace data within the
address range is displayed. If you have also specified a text string in the Text search

field, the text string is searched for within the address range.

Find in Trace dialog box (IECUBE)

The Find in Trace dialog box is available by clicking the Find button on the Trace

window toolbar or by choosing Edit>Find and Replace>Find.

X

Find In Trace

Access type
) Readfwrite
() Read
O white
() 0P fetch

Diata

Size:

Address
[JUse range

Start:
Ox0FF3F
End:

Walue:

Mask:

Pattern:

Frame:

=)
<

Find All

Use this dialog box to specify the search criteria for advanced searches in the trace data.

The search results are displayed in the Find in Trace window—available by choosing

the View>Messages command, see Find in Trace window, page 218.

To start the search, enter the search conditions and click Find First. To search from the
current position in the trace buffer or search from a frame set in the Frame list box, click
Find Next. To find all frames that match your search criteria and display them in the

Find In Trace window, click Find All.

Note that the Edit>Find and Replace>Find command is context-dependent. It displays
the Find in Trace dialog box if the Trace window is the current window or the Find
dialog box if the editor window is the current window.

See also Searching in trace data, page 198.

217

Reference information on trace

218

Access type

Address

Data

Frame

Find in Trace window

C-SPY® Debugging Guide
for RL78

Specify the type of access you want to search for. Choose between:

Read

°
°
o Write
°

Read/Write

OP fetch.

You must also specify the search conditions: Address, Data, or External probe signals.

Specify the address or address range you want to search:

Use range

Start

End

Select to define an address range to search.

If Use range is not selected, enter a single address to search for
accesses.

If Use range is selected, enter the start value for the range to
search for accesses. Note that you can enter a label instead of an
address value.

Enter the end value for the range to search for accesses. Note that
you can enter a label instead of an address value.

Specify the data you want to search:

Size
Value
Mask

Pattern

Select the size of the access: Byte or Word.
Specify the data value of the access you are searching for.
Specify the mask for the access you are searching for.

Displays the bit pattern for the Value with the Mask applied.

Displays all found frames.

The Find in Trace window is available from the View>Messages menu. Alternatively,
it is automatically displayed when you perform a search using the Find in Trace dialog

Trace __o

box or perform a search using the Find in Trace command available from the context
menu in the editor window.

Find in Trace x
Cycles Trace callCount *
3811 0xB0002b6: LDR.N RO, [PC, #0Oxc] ; callCount [u]
3943 0xB0002b6: LDR.N RO, [PC, #0Oxc] ; callCount [u)
4276 0xB000296: LDR.N RO, [PC, #0Ox2c] ; callCount [u]
4281 0xB0002%9c: LDR.N Rl, [PC, #0x24] ; callCount [u)
4362 0xB0002b6: LDR.N RO, [PC, #0Oxc] ; callCount 1 |E
4494 0xB0002b6: LDR.N RO, [PC, #0Oxc] ; callCount 1
4626 0xB0002b6: LDR.N RO, [PC, #0Oxc] ; callCount 1
4758 0xB0002b6: LDR.N RO, [PC, #0Oxc] ; callCount 1 -

This window displays the result of searches in the trace data. Double-click an item in the
Find in Trace window to bring up the same item in the Trace window.

Before you can view any trace data, you must specify the search criteria in the Find in
Trace dialog box, see Find in Trace dialog box, page 216.

See also Searching in trace data, page 198.

Requirements

One of these alternatives:

o The C-SPY Simulator
o The IECUBE emulator
e The El, E2, E2 Lite/E2 On-Board, or EZ-CUBE2 emulator.

Display area

The Find in Trace window looks like the Trace window and shows the same columns
and data, but only those rows that match the specified search criteria.

Trace Save dialog box

The Trace Save dialog box is available from the Trace window for the IECUBE, E1,
E2 Lite/E2 On-Board, or EZ-CUBE2 emulators.

Frame range
Save

Start: End:

Append to file
File:

trace.tat

[

219

Reference information on trace

Use this dialog box to save the collected trace data to a text file.

Requirements
One of these alternatives:

o The IECUBE emulator

e TheEl, E2, E2 Lite/E2 On-Board, E20, EZ-CUBE, EZ-CUBE?2, and TK emulators,
but not for the S1 core.

Frame range

Set the Start frame and the End frame of the interval to save. By default, the entire trace
is saved.

Append to file

Adds the current trace data to the log file when you save it. If this option is deselected,
the trace data you save will overwrite previously saved trace data in the same log file.

File
Type the name of the text file you want to save the trace data to. Use the browse button
to navigate to the directory where you want to save the file.

C-SPY® Debugging Guide
220 for RL78

The application timeline

e Introduction to analyzing your application’s timeline
e Analyzing your application’s timeline

e Reference information on application timeline

Introduction to analyzing your application’s timeline

These topics are covered:

e Briefly about analyzing the timeline

o Requirements for timeline support
See also:

o Trace, page 195

BRIEFLY ABOUT ANALYZING THE TIMELINE

C-SPY can provide information for various aspects of your application, collected when
the application is running. This can help you to analyze the application’s behavior.

You can view the timeline information in different representations:

o Asdifferent graphs that correlate with the running application in relation to a shared
time axis. The graphs appear either in the Timeline window or the Sampled graphs
window, depending on the source of the data.

® As detailed logs
o As summaries of the logs.

Depending on the capabilities of your hardware, the debug probe, and the C-SPY driver
you are using, timeline information can be provided for:

Call stack Can be represented in the Timeline window, as a graph that displays the
sequence of function calls and returns collected by the trace system. You
get timing information between the function invocations.

Note that there is also a related Call Stack window and a Function
Trace window, see Call Stack window, page 77 and Function Trace
window, page 211, respectively.

221

Introduction to analyzing your application’s timeline

Data logging Based on data logs collected by the trace system for up to four different
variables or address ranges, specified by means of Data Log
breakpoints. Choose to display the data logs:

o In the Timeline window, as a graph of how the values change over
time.
e In the Data Log window and the Data Log Summary window.

Data Based on samples for up to four different variables. Choose to display
sampling the data logs:

e In the Sampled Graphs window, as a graph of how the values
change over time.

e In the Data Sample window.

Data sampling gives an indication of the data value over a length of time.

Because it is a sampled value, data sampling is best suited for
slow-changing data.

Event Based on event logs produced from Smart Analog data collection.
logging Choose to display the event logs:

o In the Timeline window, as a graph of the timing of the events.

e In the Event Log window and the Event Log Summary window.

Event logging requires a hardware debugger driver that supports the
feature, and a Renesas MCU with Smart Analog support.

Interrupt Based on interrupt logs collected by the trace system. Choose to display
logging the interrupt logs:
o In the Timeline window, as a graph of the interrupt events during
the execution of your application.
e In the Interrupt Log window and the Interrupt Log Summary
window.

Interrupt logging can, for example, help you locate which interrupts you
can fine-tune to make your application more efficient.

For more information, see the chapter Interrupts.

C-SPY® Debugging Guide
222 for RL78

The application timeline °

Power Based on logged power measurement samples generated by the debug
logging probe or associated hardware. Choose to display the power logs:

e In the Timeline window, as a graph of the power measurement
samples.

e In the Power Log window.

Power logs can be useful for finding peaks in the power consumption

and by double-clicking on a value you can see the corresponding source

code. The precision depends on the frequency of the samples, but there

is a good chance that you find the source code sequence that caused the
peak.

For more information, see the chapter Power debugging.

REQUIREMENTS FOR TIMELINE SUPPORT

Depending on the capabilities of the hardware, the debug probe, and the C-SPY driver
you are using, trace-based timeline information is supported for:

Data Data Interrupt Power Smart Analog
Target system Call Stack . . K))
logging sampling logging logging event logging*
C-SPY simulator Yes Yes — Yes — —
El, E2, E2 Lite, E2 — — Yes — Yes, E2 If supported by
On-Board, E20, EZ-CUBE2 the device
IECUBE, EZ-CUBE, TK — — Yes — — —

Table 10: Supported graphs in the Timeline window

* This feature collects and displays Smart Analog data, which is supported by some
Renesas MCUs.

For more information about requirements related to trace data, see Requirements for
using trace, page 197.

Analyzing your application’s timeline

These tasks are covered:
Displaying a graph in the Timeline window
Navigating in the graphs
Analyzing performance using the graph data
Getting started using data logging

Getting started using data sampling

223

Analyzing your application’s timeline

224

C-SPY® Debugging Guide
for RL78

o Getting started using Smart Analog (event logging)
See also:

® Debugging in the power domain, page 283
e Using the interrupt system, page 301

DISPLAYING A GRAPH IN THE TIMELINE WINDOW

The Timeline window can display several graphs; follow this example procedure to
display any of these graphs. For an overview of the graphs and what they display, see
Briefly about analyzing the timeline, page 221.

Choose Timeline from the C-SPY driver menu to open the Timeline window.

In the Timeline window, right-click in the window and choose Select graphs from the
context menu to select which graphs to be displayed.

In the Timeline window, right-click in the graph area and choose Enable from the
context menu to enable a specific graph.

For the Data Log graph, you must set a Data Log breakpoint for each variable you want
a graphical representation of in the Timeline window. See Data Log breakpoints
dialog box, page 147.

For the Event graph, you must add a preprocessor macro to your application source
code where you want events to be generated. See Getting started using Smart Analog
(event logging), page 227.

Click Go on the toolbar to start executing your application. The graphs that you have
enabled appear.

NAVIGATING IN THE GRAPHS

After you have performed the steps in Displaying a graph in the Timeline window, page
224, you can use any of these alternatives to navigate in the graph:

o Right-click and from the context menu choose Zoom In or Zoom Out.
Alternatively, use the + and — keys. The graph zooms in or out depending on which
command you used.

o Right-click in the graph and from the context menu choose Navigate and the

appropriate command to move backwards and forwards on the graph. Alternatively,
use any of the shortcut keys: arrow keys, Home, End, and Ctrl+End.

o Double-click on a sample of interest to highlight the corresponding source code in
the editor window and in the Disassembly window.

o Click on the graph and drag to select a time interval, which will correlate to the
running application. The selection extends vertically over all graphs, but appears

The application timeline °

highlighted in a darker color for the selected graph. Press Enter or right-click and
from the context menu choose Zoom>Zoom to Selection. The selection zooms in.
Use the navigation keys in combination with the Shift key to extend the selection.

ANALYZING PERFORMANCE USING THE GRAPH DATA

The Timeline window provides a set of tools for analyzing the graph data.

I In the Timeline window, right-click and choose Time Axis Unit from the context
menu. Select which unit to be used on the time axis; choose between Seconds and
Cycles. If Cycles is not available, the graphs are based on different clock sources.

2 Execute your application to display a graph, following the steps described in
Displaying a graph in the Timeline window, page 224.

3 Whenever execution stops, point at the graph with the mouse pointer to get detailed
tooltip information for that location.

— } }

IRQTI at level 1
CPU Clock (5 MHz)

t1: 20148.00 us (100740 cycles)
t2: 20859.20 us (104296 cycles) |

T(t2 - t1): 711.20 us (3556 cycles)

L | BN

—| '7
— =
I = U
IR
Tl
=
0.020s 0.021s 0.022s 0.023s 0.0;

Note that if you have enabled several graphs, you can move the mouse pointer over the
different graphs to get graph-specific information.

4 Click in the graph and drag to select a time interval. Point in the graph with the mouse
pointer to get timing information for the selection.

225

Analyzing your application’s timeline

Start time of

e 127
selection in
seconds and yﬂw
cycles T t1: 181.70 us (1817 cycles)

CJ-t2: 194,50 us (1945 cycles) "Thefrequency that

u
: T (82 - t1): 1280 us (128 cycles) by | COTTesPonds tothe
in secends and N u

‘ End of selection

i time interval.
. cycles T8 1/T; 78125 Hz —— 1= | Typically, useful for
= periodically
e

| s 020s 025 occurring events.
The time interval 5s 0.00020s 0.00025s]

of the selection

GETTING STARTED USING DATA LOGGING
I To set a data log breakpoint, use one of these methods:

o In the Breakpoints window, right-click and choose New Breakpoint>Data Log to
open the breakpoints dialog box. Set a breakpoint on the memory location that you
want to collect log information for. This can be specified either as a variable or as an
address.

o Inthe Memory window, select a memory area, right-click and choose Set Data Log
Breakpoint from the context menu. A breakpoint is set on the start address of the
selection.

o In the editor window, select a variable, right-click and choose Set Data Log
Breakpoint from the context menu. The breakpoint will be set on the part of the
variable that the microcontroller can access using one instruction.

You can set up to four data log breakpoints. For more information about data log
breakpoints, see Data Log breakpoints, page 127.

2 Choose C-SPY driver>Data Log to open the Data Log window. Optionally, you can
also choose:

o C-SPY driver>Data Log Summary to open the Data Log Summary window

o C-SPY driver>Timeline to open the Timeline window to view the Data Log graph.

3 From the context menu, available in the Data Log window, choose Enable to enable
the logging.

4 Start executing your application program to collect the log information.

To view the data log information, look in the Data Log window, the Data Log
Summary window, or the Data graph in the Timeline window.

6 If you want to save the log or summary to a file, choose Save to log file from the
context menu in the window in question.

C-SPY® Debugging Guide
226 for RL78

The application timeline °

To disable data logging, choose Disable from the context menu in each window where
you have enabled it.

GETTING STARTED USING DATA SAMPLING
Choose C-SPY driver>Data Sample Setup to open the Data Sample Setup window.
In the Data Sample Setup window, perform these actions:

o In the Expression column, type the name of the variable for which you want to
sample data. The variable must be an integral type with a maximum size of 32 bits
and you can specify up to four variables. Make sure that the checkbox is selected for
the variable that you want to sample.

o In the Sampling interval column, type the number of milliseconds to pass between
the samples.

To view the result of data sampling, you must enable it in the window in question:

o Choose C-SPY driver>Data Sample to open the Data Sample window. From the
context menu, choose Enable.

o Choose C-SPY driver>Sampled Graphs to open the Sampled Graphs window.
From the context menu, choose Enable.

Start executing your application program. This starts the data sampling. When the
execution stops, for example because a breakpoint is triggered, you can view the result
either in the Data Sample window or as the Data Sample graph in the Sampled
Graphs window

If you want to save the log or summary to a file, choose Save to log file from the
context menu in the window in question.

To disable data sampling, choose Disable from the context menu in each window
where you have enabled it.

GETTING STARTED USING SMART ANALOG (EVENT
LOGGING)

If you use an emulator and a device that support Smart Analog data
collection and display, you can view Smart Analog data as event logs.

To enable Smart Analog data collection, choose
Project>Options>Debugger>Driver>Setup and select the option Collect data, see
Setup, page 404.

To view collected Smart Analog data, you can choose between these alternatives:

o Choose C-SPY driver>Timeline to open the Timeline window and choose Enable
from the context menu. You can now view collected Smart Analog data for each

227

Analyzing your application’s timeline

228

C-SPY® Debugging Guide
for RL78

channel as a graph (Event graph). See also Timeline window—~Events graph, page
249.

o Choose C-SPY driver>Event Log to open the Event Log window and choose
Enable from the context menu. You can now view the collected Smart Analog data
for each channel as numbers. See also Event Log window, page 253.

o Choose C-SPY driver>Event Log Summary to open the Event Log Summary
window and choose Enable from the context menu. You will now get a summary of
all collected Smart Analog data. See also Event Log Summary window, page 256.

Note: Whenever the Events graph or the Event Log window is enabled, you can also
enable the Event Log Summary window to get a summary. However, if you have
enabled the Event Log Summary window, but not the Event Log window or the Event
graph in the Timeline window, you can get a summary but not detailed information
about collected Smart Analog data.

Select the graph and right-click to view the context menu. Here you can choose to:

o Change the radix (you can choose between displaying values in hexadecimal or in
decimal format). Note that this setting affects also the Event Log window and the
Event Log Summary window.

Show the numerical value of the variables

Show the value of the collected Smart Analog data
Select the style of the graph (as bars, levels, or linear)
Select the size of the graph (S, M, or L)

Go to source.
Start executing your application program to collect the log information.

To view the information, look at either the Event Log window, the Event Log
Summary window, or the event graph for the specific channel in the Timeline
window.

If you want to save the log or summary to a file, choose Save to log file from the
context menu in the window.

To disable event logging, choose Disable from the context menu in each window
where you have enabled it.

Note: In Smart Analog debug mode, the only debug commands that can be used in the
C-SPY Debugger are Go, Break, and Stop Debugging.

The application timeline °

Reference information on application timeline
Reference information about:

Timeline window—Call Stack graph, page 230
Timeline window—Data Log graph, page 233
Data Log window, page 237

Data Log Summary window, page 240
Sampled Graphs window, page 243

Data Sample Setup window, page 246

Data Sample window, page 248

Timeline window—Events graph, page 249
Event Log window, page 253

Event Log Summary window, page 256
Viewing Range dialog box, page 259

See also:

Timeline window—Interrupt Log graph, page 316
Interrupt Log window, page 311

Interrupt Log Summary window, page 314
Timeline window—Power graph, page 290
Power Log window, page 287

229

Reference information on application timeline

Timeline window—Call Stack graph

The Timeline window is available from the C-SPY driver menu during a debug session.

I Timing information

Timeline =
1] -
W W Wi W W
[putchar]| [putchar]| [putchar]| [putchar]| [putchar]| 3
) |?Springboa| |?Springboa| |?Springboa| |?Springboa| |?Springboa|
putch [_printf 517
?Spring [printf 537 |
_Printf | [nmiHandler::??INTVEC 16 1
printf | [nmiHandler:??INTVEC 16 ;
main 87 / <
0.000022s, ©.000024s 8.008026s 8.080028s 8.008030s 8.008032s
Il [l 3
Commaon time axis ‘ { Selection for current graph
This window displays trace data represented as different graphs, in relation to a shared
time axis.
The Call Stack graph displays the sequence of function calls and returns collected by the
trace system.
Note: There is a limit on the number of saved logs. When this limit is exceeded, the
oldest entries in the buffer are erased.
Requirements

The C-SPY simulator.

Display area for the Call Stack graph

Each function invocation is displayed as a horizontal bar which extends from the time
of entry until the return. Called functions are displayed above its caller. The horizontal
bars use four different colors:

Medium green for normal C functions with debug information

Light green for functions known to the debugger through an assembler label

Medium yellow for normal interrupt handlers, with debug information

Light yellow for interrupt handlers known to the debugger through an assembler
label

C-SPY® Debugging Guide
230 for RL78

The application timeline °

The timing information represents the number of cycles spent in, or between, the
function invocations.

At the bottom of the window, there is a shared time axis that uses seconds or cycles as
the time unit.

Click in the graph to display the corresponding source code.

Context menu

This context menu is available:

MNavigate 3
v Auto Scroll
Zoom 3
Call Stack
v Enable

v | Show Timing

Go to Source

Save to File...
Select Graphs 3
Time Axis Unit 3

Note: The contents of this menu are dynamic and depend on which features that your
combination of software and hardware supports. However, the list of menu commands
below is complete and covers all possible commands.

These commands are available:

Navigate
Commands for navigating the graph(s). Choose between:

Next moves the selection to the next relevant point in the graph. Shortcut key:
right arrow.

Previous moves the selection backward to the previous relevant point in the
graph. Shortcut key: left arrow.

First moves the selection to the first data entry in the graph. Shortcut key:
Home.

Last moves the selection to the last data entry in the graph. Shortcut key: End.

End moves the selection to the last data in any displayed graph, in other words
the end of the time axis. Shortcut key: Ctrl+End.

Auto Scroll

Toggles automatic scrolling on or off. When on, the most recently collected data
is automatically displayed when you choose Navigate>End.

231

Reference information on application timeline

232

C-SPY® Debugging Guide
for RL78

Zoom
Commands for zooming the window, in other words, changing the time scale.
Choose between:

Zoom to Selection makes the current selection fit the window. Shortcut key:
Return.

Zoom In zooms in on the time scale. Shortcut key: +
Zoom Out zooms out on the time scale. Shortcut key: —

10ns, 100ns, 1us, etc makes an interval of 10 nanoseconds, 100 nanoseconds, 1
microsecond, respectively, fit the window.

1ms, 10ms, etc makes an interval of 1 millisecond or 10 milliseconds,
respectively, fit the window.

10m, 1h, etc makes an interval of 10 minutes or 1 hour, respectively, fit the
window.

Call Stack
A heading that shows that the Call stack-specific commands below are available.

Enable

Toggles the display of the graph on or off. If you disable a graph, that graph will
be indicated as OFF in the window. If no data has been collected for a graph, no
data will appear instead of the graph.

Show Timing
Toggles the display of the timing information on or off.
Go To Source
Displays the corresponding source code in an editor window, if applicable.
Save to File
Saves all contents (or the selected contents) of the Call Stack graph to a file. The
menu command is only available when C-SPY is not running.
Select Graphs
Selects which graphs to be displayed in the Timeline window.
Time Axis Unit
Selects the unit used in the time axis; choose between Seconds and Cycles.
If Cycles is not available, the graphs are based on different clock sources. In that

case you can view cycle values as tooltip information by pointing at the graph
with your mouse pointer.

The application timeline __¢

Profile Selection
Enables profiling time intervals in the Function Profiler window. Note that this
command is only available if the C-SPY driver supports PC Sampling.

Timeline window—Data Log graph

Requirements

The Timeline window is available from the C-SPY driver menu during a debug session.

[Graph in Levels style] [Graph in Linear style]

| 0x10 —— ox0n 0x10 ox10

8.80398s 8.08399s © 9.80400s 8.80401s 8.80402s
o

™

L 4 L

r,

Commaon time axis]

This window displays trace data represented as different graphs, in relation to a shared

time axis.

The Data Log graph displays the data logs collected by the trace system, for up to four
different variables or address ranges specified as Data Log breakpoints.

Note: There is a limit on the number of saved logs. When this limit is exceeded, the
oldest entries in the buffer are erased.

The C-SPY simulator.

Display area for the Data Log graph

Where:

o The label area at the left end of the graph displays the variable name or the address
for which you have specified the Data Log breakpoint.

o The graph itself displays how the value of the variable changes over time. The label
area also displays the limits, or range, of the Y-axis for a variable. You can use the

233

Reference information on application timeline

234

Context menu

C-SPY® Debugging Guide
for RL78

context menu to change these limits. The graph is a graphical representation of the
information in the Data Log window, see Data Log window, page 237.

o The graph can be displayed either as a thin line between consecutive logs or as a
rectangle for every log (optionally color-filled).

o Ared vertical line indicates overflow, which means that the communication channel
failed to transmit all data logs from the target system. A red question mark indicates
a log without a value.

At the bottom of the window, there is a shared time axis that uses seconds or cycles as
the time unit.

This context menu is available:

MNavigate 3
v Auto Scroll

Zoom 3

Data Log
v Enable
Clear

o

Viewing Range...

Size 3

Style 3
v | Solid Graph

Show Numerical Values

<

v Hexadecimal

Go to Source

Select Graphs 3
Time Axis Unit 3

Note: The contents of this menu are dynamic and depend on which features that your
combination of software and hardware supports. However, the list of menu commands
below is complete and covers all possible commands.

These commands are available:

Navigate
Commands for navigating the graph(s). Choose between:

Next moves the selection to the next relevant point in the graph. Shortcut key:
right arrow.

Previous moves the selection backward to the previous relevant point in the
graph. Shortcut key: left arrow.

The application timeline °

First moves the selection to the first data entry in the graph. Shortcut key:
Home.

Last moves the selection to the last data entry in the graph. Shortcut key: End.

End moves the selection to the last data in any displayed graph, in other words
the end of the time axis. Shortcut key: Ctrl+End.

Auto Scroll
Toggles automatic scrolling on or off. When on, the most recently collected data
is automatically displayed when you choose Navigate>End.

Zoom
Commands for zooming the window, in other words, changing the time scale.
Choose between:

Zoom to Selection makes the current selection fit the window. Shortcut key:
Return.

Zoom In zooms in on the time scale. Shortcut key: +
Zoom Out zooms out on the time scale. Shortcut key: —

10ns, 100ns, 1us, etc makes an interval of 10 nanoseconds, 100 nanoseconds, 1
microsecond, respectively, fit the window.

1ms, 10ms, etc makes an interval of 1 millisecond or 10 milliseconds,
respectively, fit the window.

10m, 1h, etc makes an interval of 10 minutes or 1 hour, respectively, fit the
window.
Data Log

A heading that shows that the Data Log-specific commands below are available.

Enable
Toggles the display of the graph on or off. If you disable a graph, that graph will
be indicated as OFF in the window. If no data has been collected for a graph, no
data will appear instead of the graph.

Clear
Deletes the log information. Note that this will also happen when you reset the
debugger.

Variable

The name of the variable for which the Data Log-specific commands below
apply. This menu command is context-sensitive, which means it reflects the
Data Log graph you selected in the Timeline window (one of up to four).

235

Reference information on application timeline

236

C-SPY® Debugging Guide
for RL78

Viewing Range
Displays a dialog box, see Viewing Range dialog box, page 259.

Size
Determines the vertical size of the graph; choose between Small, Medium, and
Large.

Style
Selects the style of the graph. Choose between:

Bars, displays a vertical bar for each log

Columns, displays a column for each log

Levels, displays the graph with a rectangle for each log, optionally color-filled
Linear, displays the graph as a thin line between consecutive logs

Note that all styles are not available for all graphs.

Solid Graph

Displays the graph as a color-filled solid graph instead of as a thin line.
Show Numerical Value

Shows the numerical value of the variable, in addition to the graph.

Hexadecimal
Toggles between displaying the selected value in decimal or hexadecimal
format. Note that this setting also affects the log window.

Go To Source
Displays the corresponding source code in an editor window, if applicable.

Select Graphs
Selects which graphs to be displayed in the Timeline window.
Time Axis Unit
Selects the unit used in the time axis; choose between Seconds and Cycles.
If Cyecles is not available, the graphs are based on different clock sources. In that

case you can view cycle values as tooltip information by pointing at the graph
with your mouse pointer.

The application timeline °

Data Log window
The Data Log window is available from the C-SPY driver menu.

Time | Program Counter | 11 Address 52 Address 2
. lG6Es === W 0=0000 @ 0=2004
0.160us O=FFEOOD49 = @ 0=x2000
24 .480us O0=FFEOOOBS R 0=0000 @ 0=2006
24 .720us O0=FFEOOOBF W O0=0042 @ 0=2004
24 .760us O=FFEOOOCE R 0O=0042 @ 0=2006
24 .960us O=FFEOODOE4 W O=00004444 @ 0=2000
FE FEfGes O=FFE00104 R 0O=0042 @ O=2004+7
79.000us — W O0=0084 @ 0=2004
100.800us O=FFEOO104 R 0=0084 @ 0=2006
101.040us O=FFEOO10E W 0=00CA @ 0=2004
JFE Edfus Overflow
136.880us O=FFEOO10E = @ 0=2004 a3
White rows indicate Grey rows indicate

read accesses write accesses

Use this window to log accesses to up to four different memory locations or areas.

Note: There is a limit on the number of saved logs. When this limit is exceeded, the
oldest entries in the buffer are erased.

See also Getting started using data logging, page 226.

Requirements
The C-SPY simulator.

Display area

Each row in the display area shows the time, the program counter, and, for every tracked
data object, its value and address. All information is cleared on reset. The information
is displayed in these columns:

Time
If the time is displayed in italics, the target system has not been able to collect a
correct time, but instead had to approximate it.
This column is available when you have selected Show time from the context
menu.

Cycles

The number of cycles from the start of the execution until the event.

237

Reference information on application timeline

If a cycle is displayed in italics, the target system has not been able to collect a
correct time, but instead had to approximate it.

This column is available when you have selected Show cycles from the context
menu.

Program Counter*
Displays one of these:

An address, which is the content of the pc, that is, the address of the instruction
that performed the memory access.

---, the target system failed to provide the debugger with any information.

Overflow in red, the communication channel failed to transmit all data from the
target system.

Value

Displays the access type and the value (using the access size) for the location or
area you want to log accesses to. For example, if zero is read using a byte access
it will be displayed as 0x00, and for a long access it will be displayed as
0x00000000.

To specify what data you want to log accesses to, use the Data Log breakpoint
dialog box. See Data Log breakpoints, page 127.

Address

The actual memory address that is accessed. For example, if only a byte of a
word is accessed, only the address of the byte is displayed. The address is
calculated as base address + offset, where the base address is retrieved from the
Data Log breakpoint dialog box and the offset is retrieved from the logs. If the
log from the target system does not provide the debugger with an offset, the
offset contains + 2.

* You can double-click a line in the display area. If the value of the pc for that line is
available in the source code, the editor window displays the corresponding source code
(this does not include library source code).

C-SPY® Debugging Guide
238 for RL78

The application timeline °

Context menu

This context menu is available:
v Enable

Clear
v Hexadecimal

Save to File...

v | Show Time
Show Cycles

These commands are available:

Enable
Enables the logging system. The system will log information also when the
window is closed.

Clear
Deletes the log information. Note that this will also happen when you reset the
debugger.

Hexadecimal
Toggles between displaying the selected value in decimal or hexadecimal
format. Note that this setting also affects the log window.

Save to File
Displays a standard file selection dialog box where you can select the
destination file for the log information. The entries in the log file are separated
by TaB and LF characters. An X in the Approx column indicates that the
timestamp is an approximation.

Show Time
Displays the Time column.
If the Time column is displayed by default in the C-SPY driver you are using,
this menu command is not available.

Show Cycles
Displays the Cycles column.

If the Cycles column is not supported in the C-SPY driver you are using, this
menu command is not available.

239

Reference information on application timeline

240

Data Log Summary window

The Data Log Summary window is available from the C-SPY driver menu.

Data
tVarl
tVar2
tvar3

DataLog Summary

Requirements

Display area

C-SPY® Debugging Guide
for RL78

Total Accesses Read Accesses Write Accesses Unknown Accesses
42 8 25 17

66 17 49 8

32 32 2] 2]

Approximative time count: 16
Overflow count: 8
Current time: 4301.52 us

This window displays a summary of data accesses to specific memory location or areas.

See also Getting started using data logging, page 226.

The C-SPY simulator.

Each row in this area displays the type and the number of accesses to each memory
location or area in these columns. Summary information is listed at the bottom of the
display area.
Data
The name of the data object you have selected to log accesses to. To specify
what data object you want to log accesses to, use the Data Log breakpoint
dialog box. See Data Log breakpoints, page 127.
Total Accesses
The total number of accesses.
If the sum of read accesses and write accesses is less than the total accesses, the

target system for some reason did not provide valid access type information for
all accesses.

Read Accesses

The total number of read accesses.

Write Accesses
The total number of write accesses.

The application timeline °

Unknown Accesses
The number of unknown accesses, in other words, accesses where the access
type is not known.

Approximative time count
The information displayed depends on the C-SPY driver you are using.

For some C-SPY drivers, this information is not displayed or the value is always
zero. In this case, all logs have an exact time stamp.

For other C-SPY drivers, a non-zero value is displayed. The value represents the
amount of logs with an approximative time stamp. This might happen if the
bandwidth in the communication channel is too low compared to the amount of
data packets generated by the CPU or if the CPU generated packets with an
approximative time stamp.

Overflow count
The information displayed depends on the C-SPY driver you are using.

For some C-SPY drivers, this information is not displayed or the value is always
zero.

For other C-SPY drivers, the number represents the amount of overflows in the
communication channel which can cause logs to be lost. If this happens, it
indicates that logs might be incomplete. To solve this, make sure not to use all
C-SPY log features simultaneously or check used bandwidth for the
communication channel.

Current time
/Current cycles

The information displayed depends on the C-SPY driver you are using.
For some C-SPY drivers, the value is always zero or not visible at all.

For other C-SPY drivers, the number represents the current time or cycles—the
number of cycles or the execution time since the start of execution.

241

Reference information on application timeline

242

Context menu

C-SPY® Debugging Guide
for RL78

This context menu is available:
v Enable

Clear

Save to File...

Show Time

v | Show Cycles

These commands are available:

Enable
Enables the logging system. The system will log information also when the
window is closed.

Clear
Deletes the log information. Note that this will also happen when you reset the
debugger.

Save to File
Displays a standard file selection dialog box where you can select the
destination file for the log information. The entries in the log file are separated
by TaB and LF characters. An X in the Approx column indicates that the
timestamp is an approximation.

Show Time
Displays the Time column.
If the Time column is displayed by default in the C-SPY driver you are using,
this menu command is not available.

Show Cycles
Displays the Cycles column.

If the Cycles column is not supported in the C-SPY driver you are using, this
menu command is not available.

Sampled Graphs window

Color-filled
herizental graph

I Linear graph

The application timeline °

The Sampled Graphs window is available from the C-SPY driver menu.

Sampled Graphs @

N

l

1288ms 1488ms 1608ms 1886ms 2008ms 2208ms

4 L 2

Use this window to display graphs for up to four different variables, and where:

The graph displays how the value of the variable changes over time. The area on the
left displays the limits, or range, of the Y-axis for the variable. You can use the
context menu to change these limits. The graph is a graphical representation of the
information in the Data Sample window, see Data Sample window, page 248.

The graph can be displayed as levels, where a horizontal line—optionally
color-filled—shows the value until the next sample. Alternatively, the graph can be
linear, where a line connects consecutive samples.

A red vertical line indicates the time of application execution stops.

At the bottom of the window, there is a shared time axis that uses seconds as the time
unit.

To navigate in the graph, use any of these alternatives:

Right-click and choose Zoom In or Zoom Out from the context menu.
Alternatively, use the + and — keys to zoom.

Right-click in the graph and choose Navigate and the appropriate command to
move backward and forward on the graph. Alternatively, use any of the shortcut
keys: arrow keys, Home, End, and Ctrl+End.

Double-click on a sample to highlight the corresponding source code in the editor

window and in the Disassembly window.

Click on the graph and drag to select a time interval. Press Enter or right-click and
choose Zoom>Zoom to Selection from the context menu. The selection zooms in.

Hover with the mouse pointer in the graph to get detailed tooltip information for that
location.

243

Reference information on application timeline

See also Getting started using data sampling, page 227.

Requirements

Any supported hardware debugger system.

Context menu

This context menu is available:

MNavigate 3
v Auto Scroll
Zoom 3

Data Sample
v | Enable

Clear

myVar2:

Viewing Range...

Size 3

Style 3
v | Solid Graph

Show Mumerical Values

<

v | Hexadecimal
Select Graphs 3
These commands are available:

Navigate
Commands for navigating in the graphs. Choose between:

Next moves the selection to the next relevant point in the graph. Shortcut key:
right arrow.

Previous moves the selection to the previous relevant point in the graph.
Shortcut key: left arrow.

First moves the selection to the first data entry in the graph. Shortcut key:
Home.

Last moves the selection to the last data entry in the graph. Shortcut key: End.

End moves the selection to the last data in any displayed graph, in other words
the end of the time axis. Shortcut key: Ctrl+End.
Auto Scroll

Toggles automatic scrolling on or off. When on, the most recently collected data
is automatically displayed when you choose Navigate>End.

C-SPY® Debugging Guide
244 for RL78

The application timeline °

Zoom
Commands for zooming the window, in other words, changing the time scale.
Choose between:

Zoom to Selection makes the current selection fit the window. Shortcut key:
Return.

Zoom In zooms in on the time scale. Shortcut key: +
Zoom Out zooms out on the time scale. Shortcut key: -

1us, 10us, 100us makes an interval of 1 microseconds, 10 microseconds, or 100
microseconds, respectively, fit the window.

1ms, 10ms, 100ms makes an interval of 1 millisecond, 10 milliseconds, or 100
milliseconds, respectively, fit the window.

1s, 10s, 100s makes an interval of 1 second, 10 seconds, or 100 seconds,
respectively, fit the window.

1k s, 10k s, 100k s makes an interval of 1,000 seconds, 10,000 seconds, or
100,000 seconds, respectively, fit the window.

1M s, 10M s, makes an interval of 1,000,000 seconds or 10,000,000 seconds,
respectively, fit the window.

Data Sample
A menu item that shows that the Data Sample-specific commands below are
available.

Open Setup window (Data Sample Graph)
Opens the Data Sample Setup window.

Enable
Toggles the display of the graph on or off. If you disable a graph, that graph will
be indicated as OFF in the window. If no data has been collected for a graph, no
data will appear instead of the graph.

Clear
Clears the sampled data.

Variable

The name of the variable for which the Data Sample-specific commands below
apply. This menu item is context-sensitive, which means it reflects the Data
Sample graph you selected in the Sampled Graphs window (one of up to four).

Viewing Range
Displays a dialog box, see Viewing Range dialog box, page 259.

245

Reference information on application timeline

Size
Controls the vertical size of the graph; choose between Small, Medium, and
Large.

Style
Choose how to display the graph. Choose between:

Levels, where a horizontal line—optionally color-filled—shows the value until
the next sample.

Linear, where a line connects consecutive samples.

Solid Graph

Displays the graph as a color-filled solid graph instead of as a thin line. This is
only possible if the graph is displayed as Levels.

Hexadecimal

Toggles between displaying the selected value in decimal or hexadecimal
format. Note that this setting also affects the log window.

Show Numerical Value
Shows the numerical value of the variable, in addition to the graph.

Select Graphs
Selects which graphs to display in the Sampled Graphs window.

Data Sample Setup window

The Data Sample Setup window is available from the C-SPY driver menu.

Data Sample Setup @
Expression Address Size Sampling interval [ms]
v myVarl OxFFFFBO2A 1 1@
v myVar2 OxFFFFBO04 4 48
cl OxFFFFBO2B 1 1680

Use this window to specify up to four variables to sample data for. You can view the
sampled data for the variables either in the Data Sample window or as graphs in the
Sampled Graphs window.

See also Getting started using data sampling, page 227.

C-SPY® Debugging Guide
246 for RL78

The application timeline °

Requirements

Any supported hardware debugger system.

Display area
This area contains these columns:

Expression

Type the name of the variable which must be an integral type with a maximum
size of 32 bits. Click the check box to enable or disable data sampling for the
variable.

Alternatively, drag an expression from the editor window and drop it in the
display area.

Variables in the expressions must be statically located, for example global
variables.
Address
The actual memory address that is accessed. The column cells cannot be edited.
Size
The size of the variable, either 1, 2, or 4 bytes. The column cells cannot be
edited.
Sampling interval [ms]
Type the number of milliseconds to pass between the samples. The shortest

allowed interval is 10 ms and the interval you specify must be a multiple of that.

Note that the sampling time you specify is just the interval (according to the
Microsoft Windows calculations) for how often C-SPY checks with the C-SPY
driver (which in turn must check with the MCU for a value). If this takes longer
than the sampling interval you have specified, the next sampling will be omitted.
If this occurs, you might want to consider increasing the sampling time.

Context menu

This context menu is available:

Rermove

Rermove All

These commands are available:

Remove

Removes the selected variable.

247

Reference information on application timeline

248

Data Sample window

Requirements

Display area

C-SPY® Debugging Guide
for RL78

Remove All

Removes all variables.

The Data Sample window is available from the C-SPY driver menu.

Data Sample @
Sampling Time myVarl myVar2 i
1160 ms R 8xB@ R ©x000006ES
1170 ms R @x1@
1178 ms Stop
1180 ms R 8x1@ R ©x06eeeeDs
1196 ms R 8x20
1280 ms R @x1@
1210 ms R 8x1@ R ©x0000060B8
1220 ms R 8x8e -

Use this window to view the result of the data sampling for the variables you have
selected in the Data Sample Setup window.

Choose Enable from the context menu to enable data sampling.

See also Getting started using data sampling, page 227.

Any supported hardware debugger system.

This area contains these columns:

Sampling Time
The time when the data sample was collected. Time starts at zero after a reset.
Every time the execution stops, a red Stop indicates when the stop occurred.
The selected expression

The column headers display the names of the variables that you selected in the
Data Sample Setup window. The column cells display the sampling values for
the variable.

There can be up to four columns of this type, one for each selected variable.

* You can double-click a row in the display area. If you have enabled the data sample
graph in the Sampled Graphs window, the selection line will be moved to reflect the
time of the row you double-clicked.

The application timeline °

Note: Only 8- or 16-bit values can be guaranteed to be displayed correctly, and the data
must be located at an even address.

Context menu

This context menu is available:
v Enable

Clear

Hexadecimal (for myVarl)
v | Hexadecimal (for myVar2)

Save to File...

Open Setup Window

These commands are available:

Enable

Enables data sampling.
Clear

Clears the sampled data.

Hexadecimal
Toggles between displaying the selected value in decimal or hexadecimal
format. Note that this setting also affects the log window.

Save to File

Displays a standard file selection dialog box where you can select the
destination file for the log information. The entries in the log file are separated
by TaB and LF characters. An X in the Approx column indicates that the
timestamp is an approximation.

Open setup window
Opens the Data Sample Setup window.

Timeline window—Events graph

The Timeline window is available from the C-SPY driver menu during a debug session.

249

Reference information on application timeline

[Cwerflow |
/ x
/ oFF
OFF
T T T T
019 019 019 019
1 1 1 1
0.55 / 1.0s 1.5s 2.0s 2 5s 3 0s
7 (i] b

[Commaon time axis

This window displays trace data represented as different graphs, in relation to a shared
time axis.

The Events graph displays the collected Smart Analog data.

Note: There is a limit on the number of saved logs. When this limit is exceeded, the
oldest entries in the buffer are erased.

Requirements
e AnEl, E2, E20, E2 Lite/E2 On-Board, or EZ-CUBE2 emulator
o A device that supports Smart Analog data collection and display

Display area for the Events graph
Where:

o The label area at the left end of the graph displays the name of the channel.

o For each channel, there will be a vertical line that indicates when the data was
collected. Optionally, you can choose to display the data value.

e The graph can be displayed in different styles—as a thin line between consecutive
logs, as a rectangle for every log (optionally color-filled), or as vertical bars.

o A red vertical line indicates overflow, which means that the communication channel
failed to transmit all data logs from the target system.

At the bottom of the window, there is a shared time axis that uses seconds or cycles as
the time unit.

C-SPY® Debugging Guide
250 for RL78

The application timeline °

See also Getting started using Smart Analog (event logging), page 227.

Context menu

This context menu is available:

MNavigate 3
¥ Auto Scroll
| Zoom 3
Events
v Enable
| Clear
Eval:
Size 2
Style 3
|' ¥ Show Numerical Values
_\-" Signed
Hexadecimal
Go to Source
Select Graphs 3
Time Axis Unit 3

These commands are available:

Navigate
Commands for navigating the graph(s). Choose between:

Next moves the selection to the next relevant point in the graph. Shortcut key:
right arrow.

Previous moves the selection backward to the previous relevant point in the
graph. Shortcut key: left arrow.

First moves the selection to the first data entry in the graph. Shortcut key:
Home.

Last moves the selection to the last data entry in the graph. Shortcut key: End.

End moves the selection to the last data in any displayed graph, in other words
the end of the time axis. Shortcut key: Ctrl+End.

Auto Scroll

Toggles automatic scrolling on or off. When on, the most recently collected data
is automatically displayed when you choose Navigate>End.

251

Reference information on application timeline

252

C-SPY® Debugging Guide
for RL78

Zoom
Commands for zooming the window, in other words, changing the time scale.
Choose between:
Zoom to Selection makes the current selection fit the window. Shortcut key:
Return.
Zoom In zooms in on the time scale. Shortcut key: +
Zoom Out zooms out on the time scale. Shortcut key: —
10ns, 100ns, 1us, etc makes an interval of 10 nanoseconds, 100 nanoseconds, 1
microsecond, respectively, fit the window.
1ms, 10ms, etc makes an interval of 1 millisecond or 10 milliseconds,
respectively, fit the window.
10m, 1h, etc makes an interval of 10 minutes or 1 hour, respectively, fit the
window.
Events
A heading that shows that the Events-specific commands below are available.
Enable
Toggles the display of the graph on or off. If you disable a graph, that graph will
be indicated as OFF in the window. If no data has been collected for a graph, no
data will appear instead of the graph.
Clear
Deletes the log information. Note that this will also happen when you reset the
debugger.
Variable

The name of the channel for which the Events-specific commands below apply.
This menu command is context-sensitive, which means it reflects the channel in
the Events graph you selected in the Timeline window (one of up to four).
Viewing Range
Displays a dialog box, see Viewing Range dialog box, page 259.
Size
Determines the vertical size of the graph; choose between Small, Medium, and
Large.
Style
Selects the style of the graph. Choose between:

Bars, displays a vertical bar for each log

The application timeline °

Columns, displays a column for each log

Levels, displays the graph with a rectangle for each log, optionally color-filled
Linear, displays the graph as a thin line between consecutive logs

Note that all styles are not available for all graphs.

Show Numerical Value
Shows the numerical value of the variable, in addition to the graph.

Signed
Toggles between displaying the selected value as a signed or unsigned number.
Note that this setting also affects the log window.

Hexadecimal
Toggles between displaying the selected value in decimal or hexadecimal
format. Note that this setting also affects the log window.

Go To Source
Displays the corresponding source code in an editor window, if applicable.

Select Graphs
Selects which graphs to be displayed in the Timeline window.
Time Axis Unit

Selects the unit used in the time axis; choose between Seconds and Cycles.

If Cycles is not available, the graphs are based on different clock sources. In that
case you can view cycle values as tooltip information by pointing at the graph
with your mouse pointer.

Event Log window

The Event Log window is available from the C-SPY driver menu.

Event Log x
Tirme Frogram Counter sa_val
1= 940000.00 us —_— 0=z7E9E
1= 950000.00 us —_— 0=z7E9F
1= 960000.00 us —_— 0=z7E9E
1= 970000.00 us —_— 0=z7E9E
1= 980000.00 us —_— 0=z7E9F
1= 990000.00 us —_— 0=z7E9F
2= 0.00 us —_— 0=z7E9F
2= 10000.00 us —_— 0=z7E9F
2= 20000.00 us —_— 0=z7E9F W

This window displays the collected Smart Analog data.

253

Reference information on application timeline

Note: There is a limit on the number of saved logs. When this limit is exceeded, the
oldest entries in the buffer are erased.

See also Getting started using Smart Analog (event logging), page 227.

Requirements
e AnEl, E2, E20, E2 Lite/E2 On-Board, or EZ-CUBE2 emulator
o A device that supports Smart Analog data collection and display

Display area
Each row in the display area shows the events in these columns:

Cycles

The number of cycles from the start of the execution until the Smart Analog data
was collected. This information is cleared at reset.

If a cycle is displayed in italics, the target system has not been able to collect a
correct time, but instead had to approximate it.

This column is available when you have selected Show cycles from the context
menu.

Program Counter

---, the target system does not provide the debugger with any information.

sa_val
The Smart Analog channel for which data is collected.

Context menu

This context menu is available:

E\-" Enable
Clear
Eval:

v | Signed
Hexadecimal

Save to File...

Show Time

v | Show Cycles

These commands are available:

Enable

Enables the logging system. The system will log information also when the
window is closed.

C-SPY® Debugging Guide
254 for RL78

The application timeline °

Clear

Deletes the log information. Note that this will also happen when you reset the
debugger.

Variable

The name of the channel for which the Events-specific commands below apply.
This menu command is context-sensitive, which means it reflects the channel in
the Events graph you selected in the Timeline window (one of up to four).

Signed
Toggles between displaying the selected value as a signed or unsigned number.
Note that this setting also affects the log window.

Hexadecimal

Toggles between displaying the selected value in decimal or hexadecimal
format. Note that this setting also affects the log window.

Save to File
Displays a standard file selection dialog box where you can select the
destination file for the log information. The entries in the log file are separated
by TaB and LF characters. An X in the Approx column indicates that the
timestamp is an approximation.

Show Time
Displays the Time column.
If the Time column is displayed by default in the C-SPY driver you are using,
this menu command is not available.

Show Cycles
Displays the Cycles column.

If the Cycles column is not supported in the C-SPY driver you are using, this
menu command is not available.

255

Reference information on application timeline

Event Log Summary window

The Event Log Summary window is available from the C-SPY driver menu.

Event Log Summary * O X
Channel Count Awerage .. MinValue MaxValue Average Interval in Intersal Max Interval
sa_val 1047 0=7E7A 0=7E47 0=7EAT 10000.00 ws 10000.00 us 10000.00 us

Approximative time count: 0
Cwverflow count: 0
Currenttime: 0.00 us

This window displays a summary of collected Smart Analog data.

See also Getting started using Smart Analog (event logging), page 227.

Requirements
e AnEl, E2, E20, E2 Lite/E2 On-Board, or EZ-CUBE2 emulator
o A device that supports Smart Analog data collection and display

Display area

Each row displays the type and the number of accesses to each location in your
application code in these columns. Summary information is listed at the bottom of the
display area.

Channel

The name of the communication channel for which data is collected.

Count
The number of logged values.

Average Value
The average value of all received values.

Min Value
The smallest value of all received values.
Max Value

The largest value of all received values.

Average Interval
The average time (in cycles) between logged values.

Min Interval
The shortest time (in cycles) between two logged values.

C-SPY® Debugging Guide
256 for RL78

The application timeline °

Max Interval

The longest time (in cycles) between two logged values.
Approximative time count
The information displayed depends on the C-SPY driver you are using.

For some C-SPY drivers, this information is not displayed or the value is always
zero. In this case, all logs have an exact time stamp.

For other C-SPY drivers, a non-zero value is displayed. The value represents the
amount of logs with an approximative time stamp. This might happen if the
bandwidth in the communication channel is too low compared to the amount of
data packets generated by the CPU or if the CPU generated packets with an
approximative time stamp.

Overflow count
The information displayed depends on the C-SPY driver you are using.

For some C-SPY drivers, this information is not displayed or the value is always
zero.

For other C-SPY drivers, the number represents the amount of overflows in the
communication channel which can cause logs to be lost. If this happens, it
indicates that logs might be incomplete. To solve this, make sure not to use all
C-SPY log features simultaneously or check used bandwidth for the
communication channel.

Current time|cycles
The information displayed depends on the C-SPY driver you are using.

For some C-SPY drivers, the value is always zero or not visible at all.

For other C-SPY drivers, the number represents the current time or cycles—the
number of cycles or the execution time since the start of execution.

257

Reference information on application timeline

258

Context menu

This context menu is available:

E\-" Enable
Clear
Eval:

v | Signed
Hexadecimal

Save to File...

Show Time

v | Show Cycles

These commands are available:

Enable
Enables the logging system. The system will log information also when the
window is closed.

Clear
Deletes the log information. Note that this will also happen when you reset the
debugger.

Variable
The name of the channel for which the Events-specific commands below apply.
This menu command is context-sensitive, which means it reflects the channel in
the Events graph you selected in the Timeline window (one of up to four).

Signed
Toggles between displaying the selected value as a signed or unsigned number.
Note that this setting also affects the log window.

Hexadecimal
Toggles between displaying the selected value in decimal or hexadecimal
format. Note that this setting also affects the log window.

Save to File

Displays a standard file selection dialog box where you can select the
destination file for the log information. The entries in the log file are separated
by TaB and LF characters. An X in the Approx column indicates that the
timestamp is an approximation.

Show Time
Displays the Time column.

If the Time column is displayed by default in the C-SPY driver you are using,
this menu command is not available.

C-SPY® Debugging Guide
for RL78

The application timeline °

Show Cycles
Displays the Cycles column.

If the Cycles column is not supported in the C-SPY driver you are using, this
menu command is not available.

Viewing Range dialog box

Requirements

Range for ...

The Viewing Range dialog box is available from the context menu that appears when
you right-click in any graph in the Timeline window that uses the linear, levels or
columns style.

Viewing Range §|

Range for power:

(& Auto
O Factory
O Custom

Lowest value:

{currently 0 - 70)
(5 - 200)

Highest value:

Scale:

O Linear
(%) Logarithmic

[ok |[Cancel]

Use this dialog box to specify the value range, that is, the range for the Y-axis for the
graph.

The C-SPY simulator.

Selects the viewing range for the displayed values:

Auto
Uses the range according to the range of the values that are actually collected,
continuously keeping track of minimum or maximum values. The currently
computed range, if any, is displayed in parentheses. The range is rounded to
reasonably even limits.

Factory

For the Power Log graph: Uses the range according to the properties of the
measuring hardware (only if supported by the product edition you are using).

259

Reference information on application timeline

For the other graphs: Uses the range according to the value range of the variable,
for example 0-65535 for an unsigned 16-bit integer.

Custom

Use the text boxes to specify an explicit range.

Scale
Selects the scale type of the Y-axis:

e Linear

o Logarithmic.

C-SPY® Debugging Guide
260 for RL78

Profiling

e Introduction to the profiler
e Using the profiler

e Reference information on the profiler

Introduction to the profiler

These topics are covered:

o Reasons for using the profiler
e Briefly about the profiler

o Requirements for using the profiler

REASONS FOR USING THE PROFILER

Function profiling can help you find the functions in your source code where the most
time is spent during execution. You should focus on those functions when optimizing
your code. A simple method of optimizing a function is to compile it using speed
optimization. Alternatively, you can move the data used by the function into more
efficient memory. For detailed information about efficient memory usage, see the /4R
C/C++ Development Guide for RL7S.

Alternatively, you can use filtered profiling, which means that you can exclude, for
example, individual functions from being profiled. To profile only a specific part of your
code, you can select a time interval—using the Timeline window—for which C-SPY
produces profiling information.

Instruction profiling can help you fine-tune your code on a very detailed level, especially
for assembler source code. Instruction profiling can also help you to understand where
your compiled C/C++ source code spends most of its time, and perhaps give insight into
how to rewrite it for better performance.

BRIEFLY ABOUT THE PROFILER

Function profiling information is displayed in the Function Profiler window, that is,
timing information for the functions in an application. Profiling must be turned on
explicitly using a button on the window’s toolbar, and will stay enabled until it is turned
off.

261

Using the profiler

262

Instruction profiling information is displayed in the Disassembly window, that is, the
number of times each instruction has been executed.

Profiling sources

The profiler can use different mechanisms, or sources, to collect profiling information.
Depending on the available trace source features, one or more of the sources can be used
for profiling:

o Trace (calls)

The full instruction trace is analyzed to determine all function calls and returns.
When the collected instruction sequence is incomplete or discontinuous, the
profiling information is less accurate.

o Trace (flat)

Each instruction in the full instruction trace or each PC Sample is assigned to a
corresponding function or code fragment, without regard to function calls or returns.
This is most useful when the application does not exhibit normal call/return
sequences, such as when you are using an RTOS, or when you are profiling code
which does not have full debug information.

REQUIREMENTS FOR USING THE PROFILER
The C-SPY simulator driver supports the profiler; there are no specific requirements.

The C-SPY hardware debugger drivers do not support profiling.

Using the profiler

C-SPY® Debugging Guide
for RL78

These tasks are covered:

o Getting started using the profiler on function level
o Analyzing the profiling data

o Getting started using the profiler on instruction level

GETTING STARTED USING THE PROFILER ON FUNCTION
LEVEL

To display function profiling information in the Function Profiler window:

Build your application using these options:

Category Setting

C/C++ Compiler Output>Generate debug information

Table 11: Project options for enabling the profiler

Profiling °

Category Setting

Linker Output>Include debug information in output

Table 11: Project options for enabling the profiler (Continued)

When you have built your application and started C-SPY, choose C-SPY
driver>Function Profiler to open the Function Profiler window, and click the
Enable button to turn on the profiler. Alternatively, choose Enable from the context
menu that is available when you right-click in the Function Profiler window.

Start executing your application to collect the profiling information.

Profiling information is displayed in the Function Profiler window. To sort, click on
the relevant column header.

When you start a new sampling, you can click the Clear button—alternatively, use the
context menu—to clear the data.

ANALYZING THE PROFILING DATA
Here follow some examples of how to analyze the data.

The first figure shows the result of profiling using Source: Trace (calls). The profiler

follows the program flow and detects function entries and exits.

o For the InitFib function, Flat Time 231 is the time spent inside the function itself.

o For the InitFib function, Acc Time 487 is the time spent inside the function itself,
including all functions InitFib calls.

o For the InitFib/GetFib function, Acc Time 256 is the time spent inside GetFib (but
only when called from InitFib), including any functions GetFib calls.

263

Using the profiler

o Further down in the data, you can find the GetFib function separately and see all of
its subfunctions (in this case none).

X
Function Calls Flat Tirme FlatTime (%) Acc. Time Acc Time (%)
= rnain 1 165 3.58 4356 94 .39 |—|
| DoForegroundProcess 10 3704
InitFik i 487
PutFib 10 3174 68.78 3174 68.78
MextCounter 10 100 A il 7 100 il
= InitFib il @ 5.01 487 10.55
= GetFib 18 256
GetFib 28 4186 9.01 4186 9.01
= DoForegroundProcess 10 270 5.85 3704 80.26
MextCounter 10
PutFik 10
= <Cther> 0 98.a5
HiE main 1
Source: Trace (calls)
Source: Trace (flat)
4 i | »

The second figure shows the result of profiling using Source: Trace (flat). In this case,
the profiler does not follow the program flow, instead the profiler only detects whether
the pC address is within the function scope. For incomplete trace data, the data might
contain minor errors.

C-SPY® Debugging Guide
264 for RL78

Profiling °

For the InitFib function, Flat Time 231 is the time (number of hits) spent inside the
function itself.

X

FCSamp... PCSamples .. -
<ldle> 0 0.00
<Mo function> 5 0.21
DoForegroundProcess 20 3.85
GetFib 260 11.12
InitFiky 141 5.03 =
MextCounter &0 2.57
PutFib 230 9.84
__crain, Tmain 4 0.17
TAAn
__dwrite v Enable
__exit -
__iar_close_ttio ear
_!ar_copy_.ln.ltS Filtering 3
__iar_data_init3
__iar_get_ttio Source; alls’
_iar_lookup_tich @e: Trace (flat)
__iar_sh_stdout -
|< = m = b

To secure valid data when using a debug probe, make sure to use the maximum trace
buffer size and set a breakpoint in your code to stop the execution before the buffer is
full.

Note: The <No function> entry represents PC values that are not within the known
C-SPY ranges for the application.

GETTING STARTED USING THE PROFILER ON INSTRUCTION
LEVEL

To display instruction profiling information in the Disassembly window:

When you have built your application and started C-SPY, choose View>Disassembly
to open the Disassembly window, and choose Instruction Profiling>Enable from the
context menu that is available when you right-click in the left-hand margin of the
Disassembly window.

Make sure that the Show command on the context menu is selected, to display the
profiling information.

Start executing your application to collect the profiling information.

When the execution stops, for instance because the program exit is reached or a
breakpoint is triggered, you can view instruction level profiling information in the
left-hand margin of the window.

265

Reference information on the profiler

266

Disassembly x
Disassembly il
__enable_interrupt() ; 4
0xB0002ae: Oxb662 CPSIE i
0xB000200: Oxe00l B.N 0xB00020bE
DoForegroundProcess() ;
0xB0002k2: OxEf7ff Oxffed EL DoForegroundProces
while (callCount = MAX FIE)
0xB0002b6: 0x4803 LOR.N RO, [PC, #0xc]
0xB000208 : 0xG800 LOR RO, [RO]
0xB0002ba: O0x280a CMP RO, #10
0xB0002bc: Oxd3f9 BCC.N 0xB000202
¥
0xB0002be: Oxbdol POP {RO, PC}
0xB0002c0: O0x40013804 DC32 USART1_DR &
4 . 1 | +

For each instruction, the number of times it has been executed is displayed.

Reference information on the profiler

Reference information about:
® Function Profiler window, page 266
See also:

® Disassembly window, page 72

Function Profiler window
The Function Profiler window is available from the C-SPY driver menu.

Function Profiler
[.
Function Calls Flat Time FlatTime (%) Acc. Time Acc. Time (%)
DoForegroundProcess 49 5770 31.14 7198 38.84
GetFib a a 0.00 [u) 0.00
InitFib a a 0.00 [u) 0.00
Initart a a 0.00 [u) 0.00
PutFib 4 1332 7.19 1332 7.19
UanReceiveHandler 4 96 0.52 1428 7.71
rmain a a 0.00 [u) 0.00

m

This window displays function profiling information.

C-SPY® Debugging Guide
for RL78

Profiling °

When Trace (flat) is selected, a checkbox appears on each line in the left-side margin of
the window. Use these checkboxes to include or exclude lines from the profiling.
Excluded lines are dimmed but not removed.

See also Using the profiler, page 262.

Requirements
The C-SPY simulator.

Toolbar

The toolbar contains:

| Enable/Disable
O
Enables or disables the profiler.
ﬁl Clear
Clears all profiling data.
[Save

Opens a standard Save As dialog box where you can save the contents of the
window to a file, with tab-separated columns. Only non-expanded rows are
included in the list file.

Graphical view

Overlays the values in the percentage columns with a graphical bar.

Progress bar

Displays a backlog of profiling data that is still being processed. If the rate of
incoming data is higher than the rate of the profiler processing the data, a
backlog is accumulated. The progress bar indicates that the profiler is still
processing data, but also approximately how far the profiler has come in the
process.

Note that because the profiler consumes data at a certain rate and the target
system supplies data at another rate, the amount of data remaining to be
processed can both increase and decrease. The progress bar can grow and shrink
accordingly.

Display area

The content in the display area depends on which source that is used for the profiling
information:

® For the Trace (calls) source, the display area contains one line for each function
compiled with debug information enabled. When some profiling information has
been collected, it is possible to expand rows of functions that have called other

267

Reference information on the profiler

268

C-SPY® Debugging Guide
for RL78

functions. The child items for a given function list all the functions that have been
called by the parent function and the corresponding statistics.

® Forthe Trace (flat) source, the display area contains one line for each C function of
your application, but also lines for sections of code from the runtime library or from
other code without debug information, denoted only by the corresponding
assembler labels. Each executed PC address from trace data is treated as a separate
sample and is associated with the corresponding line in the Profiling window. Each
line contains a count of those samples.

For information about which views that are supported in the C-SPY driver you are using,
see Requirements for using the profiler, page 262.

More specifically, the display area provides information in these columns:

Function (All sources)
The name of the profiled C function.

Calls (Trace (calls))
The number of times the function has been called.

Flat time (Trace (calls))
The time expressed as the estimated number of cycles spent inside the function.

Flat time (%) (Trace (calls))
Flat time expressed as a percentage of the total time.

Acc. time (Trace (calls))

The time expressed as the estimated number of cycles spent inside the function
and everything called by the function.

Acc. time (%) (Trace (calls))
Accumulated time expressed as a percentage of the total time.

PC Samples (Trace (flat))
The number of PC samples associated with the function.

PC Samples (%) (Trace (flat))

The number of PC samples associated with the function as a percentage of the
total number of samples.

Profiling °

Context menu

This context menu is available:
v Enable

Clear

v Source: Trace (calls)

Source: Trace (flat)

Save to File...

Show Source

The contents of this menu depend on the C-SPY driver you are using.
These commands are available:

Enable

Enables the profiler. The system will also collect information when the window
is closed.

Clear
Clears all profiling data.

Filtering
Selects which part of your code to profile. Choose between:

Check All—Excludes all lines from the profiling.
Uncheck All—Includes all lines in the profiling.
Load—Reads all excluded lines from a saved file.

Save—Saves all excluded lines to a file. Typically, this can be useful if you are
a group of engineers and want to share sets of exclusions.

These commands are only available when using Trace (flat).

Source

Selects which source to be used for the profiling information. See also Profiling
sources, page 262.

Note that the available sources depend on the C-SPY driver you are using.
Choose between:

Trace (calls)—the instruction count for instruction profiling is only as complete
as the collected trace data.

Trace (flat)—the instruction count for instruction profiling is only as complete
as the collected trace data.

269

Reference information on the profiler

Save to File

Saves all profiling data to a file.

Show Source

Opens the editor window (if not already opened) and highlights the selected
source line.

C-SPY® Debugging Guide
270 for RL78

Code coverage

e Introduction to code coverage
e Using code coverage

e Reference information on code coverage

Introduction to code coverage

These topics are covered:

o Reasons for using code coverage
e Briefly about code coverage

o Requirements and restrictions for using code coverage

REASONS FOR USING CODE COVERAGE

The code coverage functionality is useful when you design your test procedure to verify
whether all parts of the code have been executed. It also helps you identify parts of your
code that are not reachable.

BRIEFLY ABOUT CODE COVERAGE

The Code Coverage window reports the status of the current code coverage analysis for
C code. For every program, module, and function, the analysis shows the percentage of
code that has been executed since code coverage was turned on up to the point where the
application has stopped. In addition, all statements that have not been executed are
listed. The analysis will continue until turned off.

Note: Assembler code is not covered by the code coverage analysis. To view assembler
code, use the Disassembly window.

REQUIREMENTS AND RESTRICTIONS FOR USING CODE
COVERAGE

Code coverage is supported by the C-SPY Simulator and by some hardware debugger
drivers, and there are no specific requirements or restrictions. See Differences between
the C-SPY drivers, page 35.

271

Using code coverage

Using code coverage

These tasks are covered:

o Getting started using code coverage

GETTING STARTED USING CODE COVERAGE

To get started using code coverage:

I Before you can use the code coverage functionality, you must build your application
using these options:

Category Setting

C/C++ Compiler Output>Generate debug information

Linker Output>Include debug information in output
Debugger Plugins>Code Coverage

Table 12: Project options for enabling code coverage

2 After you have built your application and started C-SPY, choose View>Code
Coverage to open the Code Coverage window.

m 3 Click the Activate button, alternatively choose Activate from the context menu, to
switch on code coverage.

4 Start the execution. When the execution stops, for instance because the program exit is
reached or a breakpoint is triggered, the code coverage information is updated
automatically.

Reference information on code coverage
Reference information about:

o Code Coverage window, page 273
See also Single stepping, page 64.

C-SPY® Debugging Guide
272 for RL78

Code coverage °

Code Coverage window

Requirements

The Code Coverage window is available from the View menu.

Code Coverage x
ollalé)
Code Cowverage (%) Code Range File Line Column =
= % GetStarted(Program) 75.8
: % Fibonacci (Module) 90.9 Fibonacei.c
.[¥] 4 DoForegroundP. .. 100.0
-# ¢ NextCounter 100.0
% main a0.0
4 DoForegroun. . . 0x2000032c-0x2000032 51 5-26 E
4 return 0; 0x2000033c-0x2000034b 53 N
@ Utilities(Module) 68.2 |tilities.c
..o % GetFib 50.0
retval = Ou; 0x200001 £c-0x200001££ 44 5-16
4 return retval; 0x20000200-0x20000203 4k 316
""" ¢ InitFib 100.0
4 PutFib 58.3
4 dec = 10u, 0x20000044-0x20000047 52 12-21
¢ 1if (out == ... 0x20000048-0x20000053 54 3-20
¢ putchar({'#'); 0%20000054-0x2000005f BB 517
@ putchar('in'); 0%20000060- 0x2000006k B0 518 "

This window reports the status of the current code coverage analysis. For every program,
module, and function, the analysis shows the percentage of code that has been executed
since code coverage was turned on up to the point where the application has stopped. In
addition, all statements that have not been executed are listed. The analysis will continue
until turned off.

Only source code that was compiled with debug information is displayed. Therefore,
startup code, exit code, and library code are not displayed in the window. Furthermore,
coverage information for statements in inlined functions is not displayed. Only the
statement containing the inlined function call is marked as executed.

A statement is considered to be executed when all its instructions have been executed.
By default, when a statement has been executed, it is removed from the window and the
percentage is increased correspondingly.

One of these alternatives:

o The C-SPY Simulator
o The IECUBE emulator.

273

Reference information on code coverage

274

Toolbar

Display area

C-SPY® Debugging Guide
for RL78

The toolbar contains buttons for switching code coverage on and off, clearing the code
coverage information, and saving/restoring the code coverage session. See the
description of the context menu for more detailed information.

The toolbar contains these buttons:

Activate
Switches code coverage on and off during execution.

Clear
Clears the code coverage information. All step points are marked as not
executed.

Save session

Saves your code coverage session data to a * . dat file. This is useful if you for
some reason must abort your debug session, but want to continue the session
later on. This command might not be supported by the C-SPY driver you are
using.

Restore session

Restores previously saved code coverage session data. This is useful if you for
some reason must abort your debug session, but want to continue the session
later on. This command might not be supported by the C-SPY driver you are
using.

Double-clicking a statement or a function in the Code Coverage window displays that
statement or function as the current position in the editor window, which becomes the
active window.

These columns are available:

Code

The code coverage information as a tree structure, showing the program,
module, function, and statement levels. The plus sign and minus sign icons
allow you to expand and collapse the structure.

These icons give you an overview of the current status on all levels:
Red diamond: 0% of the modules or functions has been executed.

Green diamond: 100% of the modules or functions has been executed.

Red and green diamond: Some of the modules or functions have been
executed.

Code coverage ___4

Red, green, and yellow colors can be used as highlight colors in the source editor
window. In the editor window, the yellow color signifies partially executed.
Coverage (%)
The amount of statements that has been covered so far, that is, the number of
executed statements divided with the total number of statements.
Code Range
The address range in code memory where the statement is located.
File
The source file where the step point is located.
Line
The source file line where the step point is located.
Column

The source file column where the step point is located.

Context menu

This context menu is available:
v Activate
Clear
Hide Covered Step Points
Show Coverage in Editor
Save Session...
Restore Session...

Save As...

These commands are available:

g Activate

Switches code coverage on and off during execution.
+—| Clear
hui

Hide Covered Step Points

Toggles the display of covered step points on and off. When this option is
selected, executed statements are removed from the window.

Clears the code coverage information. All step points are marked as not
executed.

Show Coverage in Editor

Toggles the red, green, and yellow highlight colors that indicate code coverage
in the source editor window on and off.

275

Reference information on code coverage

ﬁ | Save session
Saves your code coverage session data to a * . dat file. This is useful if you for
some reason must abort your debug session, but want to continue the session
later on. This command is available on the toolbar. This command might not be
supported by the C-SPY driver you are using.

ﬁ Restore session

Restores previously saved code coverage session data. This is useful if you for
some reason must abort your debug session, but want to continue the session
later on. This command is available on the toolbar. This command might not be
supported by the C-SPY driver you are using.

Save As
Saves the current code coverage result in a text file.

C-SPY® Debugging Guide
276 for RL78

Power debugging

e Introduction to power debugging
e Optimizing your source code for power consumption
e Debugging in the power domain

e Reference information on power debugging

Introduction to power debugging

These topics are covered:

e Reasons for using power debugging
e Briefly about power debugging

o Requirements and restrictions for power debugging

REASONS FOR USING POWER DEBUGGING

Long battery lifetime is a very important factor for many embedded systems in almost
any market segment: medical, consumer electronics, home automation, etc. The power
consumption in these systems does not only depend on the hardware design, but also on
how the hardware is used. The system software controls how it is used.

For examples of when power debugging can be useful, see Optimizing your source code
for power consumption, page 278.

BRIEFLY ABOUT POWER DEBUGGING

Power debugging is based on the ability to sample the power consumption—more
precisely, the power being consumed by the CPU and the peripheral units—and
correlate each sample with the application’s instruction sequence and hence with the
source code and various events in the program execution.

Traditionally, the main software design goal has been to use as little memory as possible.
However, by correlating your application’s power consumption with its source code you
can gain insight into how the software affects the power consumption, and thus how it
can be minimized.

277

Optimizing your source code for power consumption

Measuring power consumption

The debug probe measures the voltage drop across a small resistor in series with the
supply power to the device. The voltage drop is measured by a differential amplifier and
then sampled by an AD converter.

Power debugging using C-SPY

C-SPY provides an interface for configuring your power debugging and a set of
windows for viewing the power values:

o The Power Log Setup window is where you can specify a threshold and an action
to be executed when the threshold is reached. This means that you can enable or
disable the power measurement or you can stop the application’s execution and
determine the cause of unexpected power values.

o The Power Log window displays all logged power values. This window can be used
for finding peaks in the power logging and because the values are correlated with
the executed code, you can double-click on a value in the Power Log window to get
the corresponding code. The precision depends on the frequency of the samples, but
there is a good chance that you find the source code sequence that caused the peak.

o The Power graph in the Timeline window displays power values on a time scale.
This provides a convenient way of viewing the power consumption in relation to the
other information displayed in the window. The Timeline window is correlated to
both the Power Log window, the source code window, and the Disassembly
window, which means you are just a double-click away from the source code that
corresponds to the values you see on the timeline.

REQUIREMENTS AND RESTRICTIONS FOR POWER
DEBUGGING

To use the features in C-SPY for power debugging, you need an E2 emulator which must
be powering the target board. E2 Lite and E2 on-board do not support power debugging.

Important! Power measurement for the E2 emulator is based on collecting pairs of
current measurements and timestamps after the application execution stops. This slows
down debugging performance considerably, so make sure that power logging is only
enabled when you are actively using the feature. It also means that if the IDE seems to
stall now and then, it might be because of this performance reduction.

Optimizing your source code for power consumption

This section gives some examples where power debugging can be useful and hopefully
help you identify source code constructions that can be optimized for low power
consumption.

C-SPY® Debugging Guide
278 for RL78

Power debugging ___4

These topics are covered:

Waiting for device status

Software delays

DMA versus polled I/0

Low-power mode diagnostics

CPU frequency

Detecting mistakenly unattended peripherals
Peripheral units in an event-driven system

Finding conflicting hardware setups

Analog interference

WAITING FOR DEVICE STATUS

One common construction that could cause unnecessary power consumption is to use a
poll loop for waiting for a status change of, for example a peripheral device.
Constructions like this example execute without interruption until the status value
changes into the expected state.

while (USBD_GetState() < USBD_STATE_CONFIGURED) ;
while ((BASE_PMC->PMC_SR & MC_MCKRDY) != PMC_MCKRDY) ;

To minimize power consumption, rewrite polling of a device status change to use
interrupts if possible, or a timer interrupt so that the CPU can sleep between the polls.

SOFTWARE DELAYS
A software delay might be implemented as a for or while loop like for example:

i = 10000; /* A software delay */
do i--;
while (i != 0);

Such software delays will keep the CPU busy with executing instructions performing
nothing except to make the time go by. Time delays are much better implemented using
a hardware timer. The timer interrupt is set up and after that, the CPU goes down into a
low power mode until it is awakened by the interrupt.

DMA VERSUS POLLED I/O

DMA has traditionally been used for increasing transfer speed. For MCUs there are
plenty of DMA techniques to increase flexibility, speed, and to lower power
consumption. Sometimes, CPUs can even be put into sleep mode during the DMA
transfer. Power debugging lets you experiment and see directly in the debugger what

279

Optimizing your source code for power consumption

effects these DMA techniques will have on power consumption compared to a
traditional CPU-driven polled solution.

LOW-POWER MODE DIAGNOSTICS

Many embedded applications spend most of their time waiting for something to happen:
receiving data on a serial port, watching an I/O pin change state, or waiting for a time
delay to expire. If the processor is still running at full speed when it is idle, battery life
is consumed while very little is being accomplished. So in many applications, the
microcontroller is only active during a very small amount of the total time, and by
placing it in a low-power mode during the idle time, the battery life can be extended
considerably.

A good approach is to have a task-oriented design and to use an RTOS. In a task-oriented
design, a task can be defined with the lowest priority, and it will only execute when there
is no other task that needs to be executed. This idle task is the perfect place to implement
power management. In practice, every time the idle task is activated, it sets the
microcontroller into a low-power mode. Many microprocessors and other silicon
devices have a number of different low-power modes, in which different parts of the
microcontroller can be turned off when they are not needed. The oscillator can for
example either be turned off or switched to a lower frequency. In addition, individual
peripheral units, timers, and the CPU can be stopped. The different low-power modes
have different power consumption based on which peripherals are left turned on. A
power debugging tool can be very useful when experimenting with different low-level
modes.

CPU FREQUENCY

Power consumption in a CMOS MCU is theoretically given by the formula:
P=f* U2 * k

where f is the clock frequency, Uis the supply voltage, and k is a constant.

Power debugging lets you verify the power consumption as a factor of the clock
frequency. A system that spends very little time in sleep mode at 50 MHz is expected to
spend 50% of the time in sleep mode when running at 100 MHz. You can use the power
data collected in C-SPY to verify the expected behavior, and if there is a non-linear
dependency on the clock frequency, make sure to choose the operating frequency that
gives the lowest power consumption.

DETECTING MISTAKENLY UNATTENDED PERIPHERALS

Peripheral units can consume much power even when they are not actively in use. If you
are designing for low power, it is important that you disable the peripheral units and not
just leave them unattended when they are not in use. But for different reasons, a

C-SPY® Debugging Guide
280 for RL78

Power debugging ___4

peripheral unit can be left with its power supply on; it can be a careful and correct design
decision, or it can be an inadequate design or just a mistake. If not the first case, then
more power than expected will be consumed by your application. This will be easily
revealed by the Power graph in the Timeline window. Double-clicking in the Timeline
window where the power consumption is unexpectedly high will take you to the
corresponding source code and disassembly code. In many cases, it is enough to disable
the peripheral unit when it is inactive, for example by turning off its clock which in most
cases will shut down its power consumption completely.

However, there are some cases where clock gating will not be enough. Analog
peripherals like converters or comparators can consume a substantial amount of power
even when the clock is turned off. The Timeline window will reveal that turning off the
clock was not enough and that you need to turn off the peripheral completely.

PERIPHERAL UNITS IN AN EVENT-DRIVEN SYSTEM

Consider a system where one task uses an analog comparator while executing, but the
task is suspended by a higher-priority task. Ideally, the comparator should be turned off
when the task is suspended and then turned on again once the task is resumed. This
would minimize the power being consumed during the execution of the high-priority
task.

This is a schematic diagram of the power consumption of an assumed event-driven
system where the system at the point of time t; is in an inactive mode and the current is
Iof

Power consumption

Time

v

% LR, 5} 5 4

Atty, the system is activated whereby the current rises to I; which is the system’s power
consumption in active mode when at least one peripheral device turned on, causing the
current to rise to I. At t,, the execution becomes suspended by an interrupt which is

281

Optimizing your source code for power consumption

handled with high priority. Peripheral devices that were already active are not turned off,
although the task with higher priority is not using them. Instead, more peripheral devices
are activated by the new task, resulting in an increased current I, between t, and t; where
control is handed back to the task with lower priority.

The functionality of the system could be excellent and it can be optimized in terms of
speed and code size. But in the power domain, more optimizations can be made. The
shadowed area represents the energy that could have been saved if the peripheral devices
that are not used between t, and t; had been turned off, or if the priorities of the two tasks
had been changed.

If you use the Timeline window, you can make a closer examination and identify that
unused peripheral devices were activated and consumed power for a longer period than
necessary. Naturally, you must consider whether it is worth it to spend extra clock cycles
to turn peripheral devices on and off in a situation like in the example.

FINDING CONFLICTING HARDWARE SETUPS

To avoid floating inputs, it is a common design practice to connect unused MCU I/O
pins to ground. If your source code by mistake configures one of the grounded I/O pins
as a logical 1 output, a high current might be drained on that pin. This high unexpected
current is easily observed by reading the current value from the Power graph in the
Timeline window. It is also possible to find the corresponding erratic initialization code
by looking at the Power graph at application startup.

A similar situation arises if an I/O pin is designed to be an input and is driven by an
external circuit, but your code incorrectly configures the input pin as output.
ANALOG INTERFERENCE

When mixing analog and digital circuits on the same board, the board layout and routing
can affect the analog noise levels. To ensure accurate sampling of low-level analog
signals, it is important to keep noise levels low. Obtaining a well-mixed signal design

C-SPY® Debugging Guide
282 for RL78

Power debugging ___4

requires careful hardware considerations. Your software design can also affect the
quality of the analog measurements.

Performing a lot of I/O activity at the same time as sampling analog signals causes many
digital lines to toggle state at the same time, which might introduce extra noise into the
AD converter.

Noise spike |

Umin=—3.12l)

Power debugging will help you investigate interference from digital and power supply
lines into the analog parts. Power spikes in the vicinity of AD conversions could be the
source of noise and should be investigated. All data presented in the Timeline window
is correlated to the executed code. Simply double-clicking on a suspicious power value
will bring up the corresponding C source code.

Debugging in the power domain

These tasks are covered:
e Displaying a power profile and analyzing the result
o Detecting unexpected power usage during application execution

o Changing the graph resolution
See also:

o Timeline window—Power graph, page 290

DISPLAYING A POWER PROFILE AND ANALYZING THE
RESULT

To view the power profile:

| Start the debugger.

283

Debugging in the power domain

284

C-SPY® Debugging Guide
for RL78

Choose C-SPY driver>Power Log Setup. Enable power logging and make the
required settings. If you are using an E2 emulator, you must also open the Hardware
Setup dialog box and make sure that the target board is powered by the emulator.

Choose C-SPY driver>Timeline to open the Timeline window.

Right-click in the graph area and choose Enable from the context menu to enable the
power graph you want to view.

Choose C-SPY driver>Power Log to open the Power Log window.

Optionally, before you start executing your application you can configure the viewing
range of the Y-axis for the power graph. See Viewing Range dialog box, page 259.

Click Go on the toolbar to start executing your application. In the Power Log window,
all power values are displayed. In the Timeline window, you will see a graphical
representation of the power values. For information about how to navigate on the
graph, see Navigating in the graphs, page 224.

DETECTING UNEXPECTED POWER USAGE DURING
APPLICATION EXECUTION

To detect unexpected power consumption:

Choose C-SPY driver>Power Log Setup to open the Power Setup window.

In the Power Setup window, specify a threshold value and the appropriate action, for
example Log All and Halt CPU Above Threshold.

Choose C-SPY driver>Power Log to open the Power Log window. If you
continuously want to save the power values to a file, choose Choose Live Log File
from the context menu. In this case you also need to choose Enable Live Logging to.

Start the execution.

When the power consumption passes the threshold value, the execution will stop and
perform the action you specified.

If you saved your logged power values to a file, you can open that file in an external tool
for further analysis.

CHANGING THE GRAPH RESOLUTION

To change the resolution of a Power graph in the Timeline window:

In the Timeline window, select the Power graph, right-click and choose Open Setup
Window to open the Power Log Setup window.

From the context menu in the Power Log Setup window, choose a suitable unit of
measurement.

Power debugging ___4

3 In the Timeline window, select the Power graph, right-click and choose Viewing
Range from the context menu.

4 In the Viewing Range dialog box, select Custom and specify range values in the
Lowest value and the Highest value text boxes. Click OK.

5 The graph is automatically updated accordingly.

Reference information on power debugging

Reference information about:

® Power Log Setup window, page 285
® Power Log window, page 287

o Timeline window—Power graph, page 290
See also:
o Trace window, page 206

o The application timeline, page 221
o Viewing Range dialog box, page 259

Power Log Setup window

The Power Log Setup window is available from the C-SPY driver menu during a debug
session.

Power Log Setup @

| Enable power log

Monitaring mode:

[Fil il stop -

Sampling rate:

| 10 us - |

Action:

| Log all and halt CPU above threshold hd | 0 ud,
[(] 8] | Cancel

Use this window to configure the power measurement.

Note: To enable power logging, choose Enable from the context menu in the Power
Log window or from the context menu in the power graph in the Timeline window.

285

Reference information on power debugging

286

Requirements

Enable power log

See also Debugging in the power domain, page 283.

An E2 emulator.

Enables/disables power logging for the C-SPY E2 emulator driver.

Monitoring mode

Sampling rate

Action

C-SPY® Debugging Guide
for RL78

Controls the collection of power data. Chose between:
o Fill until stop—collects data as long as the application is executing. If the buffer
fills up, the oldest data is cleared as new data is written.

o Fill until full—collects data until the buffer is full, but continues executing the
application.

e Stop program when full—stops executing the application when the buffer is full.

Sets the sampling rate in microseconds.

Controls how power data is logged. Choose between:

o Log all—logs all collected data.

o Log all and halt CPU above threshold—logs all data and stops executing the
application when the measured current exceeds the specified value.

o Log all and halt CPU below threshold—logs all data and stops executing the
application when the measured current falls below the specified value.

Power Log window

Requirements

Display area

Power debugging ___4

The Power Log window is available from the C-SPY driver menu during a debug

session.

Power Log

791196
891212,
991212
1= 91228
1= 191228
1= 291229
1= 391229

Time

95
95
95
95
95
33
33

us=
us=
us=
us=
us=
us=
us=

Channel B (current) [maA]
270
252
472
478
475
475
254

m

This window displays collected power values.

A row with only Time/Cycles displayed in pink denotes a logged power value for a
channel that was active during the actual collection of data but currently is disabled in

the Power Log Setup window.

Note: There is a limit on the number of saved logs. When this limit is exceeded, the
oldest entries in the buffer are erased.

See also Debugging in the power domain, page 283.

An E2 emulator.

This area contains these columns:

Time

The time from the application reset until the event, based on the clock

frequency.

If the time is displayed in italics, the target system could not collect a correct
time, but instead had to approximate it.

This column is available when you have selected Show Time from the context

menu.

Cycles

The number of cycles from the application reset until the event, based on the
operating frequency specified in the Operating Frequency dialog box, see
Operating Frequency dialog box, page 55. This information is cleared at reset.

If a cycle is displayed in italics, the target system could not collect a correct
time, but instead had to approximate it.

287

Reference information on power debugging

This column is available when you have selected Show Cycles from the context
menu.

Name |unit]

The power measurement value expressed in the unit you specified in the Power
Setup window.

Context menu
This context menu is available:

| ¥ Enable
Clear

Save to Log File...

Choose Live Log File...
Enable Live Logging to ‘PowerLoglivelog’

Clear 'PowerLoglive.log

Show Time

| ¥ Show Cycles

Open Setup Window

These commands are available:

Enable

Enables the logging system, which means that power values are saved internally
within the IDE. The values are displayed in the Power Log window and in the
Power graph in the Timeline window (if enabled). The system will log
information also when the window is closed.

Note: For the E2 emulator, this command only toggles the display of power log
data. The power log system can only be enabled/disabled in the Power Log
Setup window.

Clear

Deletes the log information. Note that this will also happen when you reset the
debugger, or if you change the execution frequency in the Operating
Frequency dialog box.

Save to File

Displays a standard file selection dialog box where you can select the
destination file for the log information. The entries in the log file are separated
by TaB and LF characters. An X in the Approx column indicates that the
timestamp is an approximation.

C-SPY® Debugging Guide
288 for RL78

Power debugging ___4

Choose Live Log File
Displays a standard file selection dialog box where you can choose a destination
file for the logged power values. The power values are continuously saved to that
file during execution. The content of the live log file is never automatically
cleared, the logged values are simply added at the end of the file.

Enable Live Logging to
Toggles live logging on or off. The logs are saved in the specified file.

Clear log file
Clears the content of the live log file.

Show Time
Displays the Time column.
This menu command might not be available in the C-SPY driver you are using,
which means that the Time column is displayed by default.
Show Cycles
Displays the Cycles column.
This menu command might not be available in the C-SPY driver you are using,
which means that the Cycles column is not supported.
Open Setup Window
Opens the Power Log Setup window.

The format of the log file
The log file has a tab-separated format. The entries in the log file are separated by TAB
and line feed. The logged power values are displayed in these columns:
Time/Cycles
The time from the application reset until the power value was logged.
Approx

An x in the column indicates that the power value has an approximative value
for time/cycle.

PC

The value of the program counter close to the point where the power value was
logged. For the E2 emulator, this will be — - — - for all values, because the C-SPY
E2 emulator driver does not support this feature.

289

Reference information on power debugging

Namelunit]
The corresponding value from the Power Log window, where Name and unit
are according to your settings in the Power Log Setup window. For the E2
emulator, this will be Current [ma] for all values.

Timeline window—Power graph

Requirements

Display area

C-SPY® Debugging Guide
290 for RL78

The power graph in the Timeline window is available from the C-SPY driver menu
during a debug session.

OFF

Linear

1.680s /

1. 6?58

10000

1. E?DS

1 66Es

1. 6858

[Commaon time axis] { Selection for current garaph ‘

The power graph displays a graphical view of power measurement samples generated
by the debug probe or associated hardware in relation to a common time axis.

Note: There is a limit on the number of saved logs. When this limit is exceeded, the
oldest entries in the buffer are erased.

For more information about the Timeline window, how to display a graph, and the other
supported graphs, see The application timeline, page 221.

See also Requirements and restrictions for power debugging, page 278.

An E2 emulator.

Where:
o The label area at the left end of the graph displays the name of the measurement
channel.

o The graph itself shows power measurement samples generated by the debug probe
or associated hardware.

Context menu

Power debugging ___4

o The graph can be displayed as a thin line between consecutive logs, as a rectangle
for every log (optionally color-filled), or as columns.

The resolution of the graph can be changed.

A red vertical line indicates overflow, which means that the communication channel
failed to transmit all interrupt logs from the target system.

Atthe b
unit.

ottom of the window, there is a common time axis that uses seconds as the time

This context menu is available:

Navi

igate 3

v Auto Scroll

Zoo

m 3

Power Log
v | Enable

Clear

Log0:

Viewing Range...

Size

Style 3
v | Solid Graph

v Show Numerical Values

Go to Source

Open Setup Window

Select Graphs 3

Tim

e Axis Unit 3

Note: The exact contents of the context menu you see on the screen depends on which

features

that your combination of software and hardware supports. However, the list of

menu commands below is complete and covers all possible commands.

These commands are available:

Navigate

Commands for navigating the graph(s). Choose between:

Next moves the selection to the next relevant point in the graph. Shortcut key:
right arrow.

Previous moves the selection backward to the previous relevant point in the
graph. Shortcut key: left arrow.

First moves the selection to the first data entry in the graph. Shortcut key:
Home.

291

Reference information on power debugging

Last moves the selection to the last data entry in the graph. Shortcut key: End.

End moves the selection to the last data in any displayed graph, in other words
the end of the time axis. Shortcut key: Ctrl+End.

Auto Scroll
Toggles automatic scrolling on or off. When on, the most recently collected data
is automatically displayed when you choose Navigate>End.

Zoom
Commands for zooming the window, in other words, changing the time scale.

Choose between:

Zoom to Selection makes the current selection fit the window. Shortcut key:
Return.

Zoom In zooms in on the time scale. Shortcut key: +
Zoom Out zooms out on the time scale. Shortcut key: —

10ns, 100ns, 1us, etc makes an interval of 10 nanoseconds, 100 nanoseconds, 1
microsecond, respectively, fit the window.

1ms, 10ms, etc makes an interval of 1 millisecond or 10 milliseconds,
respectively, fit the window.

10m, 1h, etc makes an interval of 10 minutes or 1 hour, respectively, fit the
window.

Power Log
A heading that shows that the Power Log-specific commands below are
available.

Enable
Toggles the display of the graph on or off. If you disable a graph, that graph will
be indicated as OFF in the window. If no data has been collected for a graph, no
data will appear instead of the graph.

Clear
Deletes the log information. Note that this will also happen when you reset the
debugger.

Viewing Range
Displays a dialog box, see Viewing Range dialog box, page 259.

Size
Determines the vertical size of the graph; choose between Small, Medium, and
Large.

C-SPY® Debugging Guide
292 for RL78

Power debugging ___4

Style
Selects the style of the graph. Choose between:

Bars, displays a vertical bar for each log

Columns, displays a column for each log

Levels, displays the graph with a rectangle for each log, optionally color-filled
Linear, displays the graph as a thin line between consecutive logs

Note that all styles are not available for all graphs.

Solid Graph
Displays the graph as a color-filled solid graph instead of as a thin line.

Show Numerical Value
Shows the numerical value of the variable, in addition to the graph.
Go To Source
Displays the corresponding source code in an editor window, if applicable.
Open Setup Window
Opens the Power Log Setup window.
Select Graphs
Selects which graphs to be displayed in the Timeline window.
Time Axis Unit
Selects the unit used in the time axis; choose between Seconds and Cycles.
If Cycles is not available, the graphs are based on different clock sources. In that
case you can view cycle values as tooltip information by pointing at the graph
with your mouse pointer.
Profile Selection

Enables profiling time intervals in the Function Profiler window. Note that this
command is only available if the C-SPY driver supports PC Sampling.

293

Reference information on power debugging

C-SPY® Debugging Guide
294 for RL78

Part 3. Advanced
debugging

This part of the C-SPY® Debugging Guide for RL78 includes these chapters:
e Interrupts

o C-SPY macros

e The C-SPY command line utility—cspybat

.hmuhhhhi

295

AAARRIE

296

Interrupts

e Introduction to interrupts
e Using the interrupt system

e Reference information on interrupts

Introduction to interrupts

These topics are covered:

Briefly about the interrupt simulation system
Interrupt characteristics

Interrupt simulation states

C-SPY system macros for interrupt simulation

Target-adapting the interrupt simulation system

Briefly about interrupt logging
See also:
® Reference information on C-SPY system macros, page 335

® Breakpoints, page 125
o The IAR C/C++ Development Guide for RL78

BRIEFLY ABOUT THE INTERRUPT SIMULATION SYSTEM

By simulating interrupts, you can test the logic of your interrupt service routines and

debug the interrupt handling in the target system long before any hardware is available.
If you use simulated interrupts in conjunction with C-SPY macros and breakpoints, you
can compose a complex simulation of, for instance, interrupt-driven peripheral devices.

The C-SPY Simulator includes an interrupt simulation system where you can simulate
the execution of interrupts during debugging. You can configure the interrupt simulation
system so that it resembles your hardware interrupt system.

The interrupt system has the following features:

e Simulated interrupt support for the RL78 microcontroller
e Single-occasion or periodical interrupts based on the cycle counter

e Predefined interrupts for various devices

297

Introduction to interrupts

298

C-SPY® Debugging Guide
for RL78

o Configuration of hold time, probability, and timing variation
State information for locating timing problems

Configuration of interrupts using a dialog box or a C-SPY system macro—that is,
one interactive and one automating interface. In addition, you can instantly force an
interrupt.

o A log window that continuously displays events for each defined interrupt.
o A status window that shows the current interrupt activities.
All interrupts you define using the Interrupt Setup dialog box are preserved between

debug sessions, unless you remove them. A forced interrupt, on the other hand, exists
only until it has been serviced and is not preserved between sessions.

The interrupt simulation system is activated by default, but if not required, you can turn
off the interrupt simulation system to speed up the simulation. To turn it off, use either
the Interrupt Setup dialog box or a system macro.

INTERRUPT CHARACTERISTICS

The simulated interrupts consist of a set of characteristics which lets you fine-tune each
interrupt to make it resemble the real interrupt on your target hardware. You can specify
a first activation time, a repeat interval, a hold time, a variance, and a probability.

H H H
Activation | |_‘ |_|—| | | |
signal } I | I I
F‘meI] | | | l |
cycles
B Ton ot wt it
A A+R A+2R A+3R

*If probability is less than 100%, some interrupts may be omitted.

A = Activation time
R = Repeat interval
H =Hold time

Y =Variance

The interrupt simulation system uses the cycle counter as a clock to determine when an
interrupt should be raised in the simulator. You specify the first activation time, which
is based on the cycle counter. C-SPY will generate an interrupt when the cycle counter
has passed the specified activation time. However, interrupts can only be raised between
instructions, which means that a full assembler instruction must have been executed
before the interrupt is generated, regardless of how many cycles an instruction takes.

To define the periodicity of the interrupt generation you can specify the repeat interval
which defines the amount of cycles after which a new interrupt should be generated. In
addition to the repeat interval, the periodicity depends on the two options probability—

Interrupts °

the probability, in percent, that the interrupt will actually appear in a period—and
variance—a time variation range as a percentage of the repeat interval. These options
make it possible to randomize the interrupt simulation. You can also specify a hold time
which describes how long the interrupt remains pending until removed if it has not been
processed. If the hold time is set to infinite, the corresponding pending bit will be set
until the interrupt is acknowledged or removed.

INTERRUPT SIMULATION STATES

The interrupt simulation system contains status information that you can use for locating
timing problems in your application. The Interrupt Status window displays the
available status information. For an interrupt, these states can be displayed: /dle,
Pending, Executing, or Suspended.

Normally, a repeatable interrupt has a specified repeat interval that is longer than the
execution time. In this case, the status information at different times looks like this:

Hold time
- >
| T
interrupe. A | B : C D: E F : G| H
activation | I \ R
signal | I |
I*—lvl Iq
Execution time for
interrupt handler Time Status
A Idle
B Pending
D Executing
E Idle
F Pending
G, H Executing

Note: The interrupt activation signal—also known as the pending bit—is automatically
deactivated the moment the interrupt is acknowledged by the interrupt handler.

299

Introduction to interrupts

300

C-SPY® Debugging Guide
for RL78

However, if the interrupt repeat interval is shorter than the execution time, and the
interrupt is reentrant (or non-maskable), the status information at different times looks
like this:

Hold time
-
T

I |
Interrupt AlBy C b Ey F G
activation : ! L
signal i !

i

Execution time for

interrupt invocation (1) Execution time for

interrupt invocation (2)

Time Status
A Idle
B Pending

CDE Executing
FG 1st interrupt: Suspended
2nd interrupt: Executing

An execution time that is longer than the repeat interval might indicate that you should
rewrite your interrupt handler and make it faster, or that you should specify a longer
repeat interval for the interrupt simulation system.

C-SPY SYSTEM MACROS FOR INTERRUPT SIMULATION

Macros are useful when you already have sorted out the details of the simulated interrupt
so that it fully meets your requirements. If you write a macro function containing
definitions for the simulated interrupts, you can execute the functions automatically
when C-SPY starts. Another advantage is that your simulated interrupt definitions will
be documented if you use macro files, and if you are several engineers involved in the
development project you can share the macro files within the group.

The C-SPY Simulator provides these predefined system macros related to interrupts:
__enableInterrupts

__disableInterrupts

__orderInterrupt

__cancelInterrupt

__cancelAllInterrupts

__popSimulatorInterruptExecutingStack

The parameters of the first five macros correspond to the equivalent entries of the
Interrupt Setup dialog box.

Interrupts °

For more information about each macro, see Reference information on C-SPY system
macros, page 335.

TARGET-ADAPTING THE INTERRUPT SIMULATION SYSTEM

The interrupt simulation system is easy to use. However, to take full advantage of the
interrupt simulation system you should be familiar with how to adapt it for the processor
you are using.

The interrupt simulation has the same behavior as the hardware. This means that the
execution of an interrupt is dependent on the status of the global interrupt enable bit. The
execution of maskable interrupts is also dependent on the status of the individual
interrupt enable bits.

To simulate device-specific interrupts, the interrupt system must have detailed
information about each available interrupt. This information is provided in the device
description files.

For information about device description files, see Selecting a device description file,
page 42.

BRIEFLY ABOUT INTERRUPT LOGGING

Interrupt logging provides you with comprehensive information about the interrupt
events. This might be useful, for example, to help you locate which interrupts you can
fine-tune to become faster. You can log entrances and exits to and from interrupts. You
can also log internal interrupt status information, such as triggered, expired, etc. In the
IDE:

e The logs are displayed in the Interrupt Log window

e A summary is available in the Interrupt Log Summary window

o The Interrupt graph in the Timeline window provides a graphical view of the
interrupt events during the execution of your application.

Requirements for interrupt logging

Interrupt logging is supported by the C-SPY simulator.

See also Getting started using interrupt logging, page 304.

Using the interrupt system

These tasks are covered:

e Simulating a simple interrupt

o Simulating an interrupt in a multi-task system

301

Using the interrupt system

302

C-SPY® Debugging Guide
for RL78

o Getting started using interrupt logging
See also:

o Using C-SPY macros, page 323 for details about how to use a setup file to define
simulated interrupts at C-SPY startup

o The tutorial Simulating an interrupt in the Information Center.

SIMULATING A SIMPLE INTERRUPT

This example demonstrates the method for simulating a timer interrupt. However, the
procedure can also be used for other types of interrupts.

To simulate and debug an interrupt:

Assume this simple application which contains an interrupt service routine for a timer,
which increments a tick variable. The main function sets the necessary status registers.
The application exits when 100 interrupts have been generated.

#pragma language = extended
#include <stdio.h>

#include "iorl78.h"
#include <intrinsics.h>

volatile int ticks = 0;
void main (void)
{

/* Timer setup code */

__disable_interrupt(); /* Disable all interrupts */
TMIF00 = O; /* Reset interrupt request flag */
TMMKOO = 0; /* Enable timer interrupts */

TSO |= 0; /* Start the timer */
__enable_interrupt(); /* Enable all interrupts */
{

ticks += 1;

}

while (ticks < 100); /* Endless loop */

printf ("Done\n") ;
}

/* Timer interrupt service routine */
#pragma vector = INTTMOO_vect

{

ticks += 1;

}

Interrupts °

Add your interrupt service routine to your application source code and add the file to
your project.

Choose Project>Options>Debugger>Setup and select a device description file. The

device description file contains information about the interrupt that C-SPY needs to be
able to simulate it. Use the Use device description file browse button to locate the ddf
file.

Build your project and start the simulator.

Choose Simulator>Interrupt Setup to open the Interrupts Setup dialog box. Select
the Enable interrupt simulation option to enable interrupt simulation. Click New to
open the Edit Interrupt dialog box. For the timer example, verify these settings:

Option Settings
Interrupt INTTMO00
First activation 1000
Repeat interval 500

Hold time 10
Probability (%) 100
Variance (%) 0

Table 13: Timer interrupt settings

Click OK.

Execute your application. If you have enabled the interrupt properly in your application
source code, C-SPY will:

o Generate an interrupt when the cycle counter has passed 1000

o Continuously repeat the interrupt after approximately 500 cycles.

To watch the interrupt in action, choose Simulator>Interrupt Log to open the
Interrupt Log window.

From the context menu, available in the Interrupt Log window, choose Enable to
enable the logging. If you restart program execution, status information about
entrances and exits to and from interrupts will now appear in the Interrupt Log window.

For information about how to get a graphical representation of the interrupts correlated
with a time axis, see Timeline window—Interrupt Log graph, page 316.
SIMULATING AN INTERRUPT IN A MULTI-TASK SYSTEM

If you are using interrupts in such a way that the normal instruction used for returning
from an interrupt handler is not used, for example in an operating system with
task-switching, the simulator cannot automatically detect that the interrupt has finished

303

Reference information on interrupts

304

executing. The interrupt simulation system will work correctly, but the status
information in the Interrupt Setup dialog box might not look as you expect. If too
many interrupts are executing simultaneously, a warning might be issued.

To simulate a normal interrupt exit:
Set a code breakpoint on the instruction that returns from the interrupt function.

Specify the __popSimulatorInterruptExecutingStack macro as a condition to
the breakpoint.

When the breakpoint is triggered, the macro is executed and then the application
continues to execute automatically.

GETTING STARTED USING INTERRUPT LOGGING

Choose C-SPY driver>Interrupt Log to open the Interrupt Log window. Optionally,
you can also choose:

o C-SPY driver>Interrupt Log Summary to open the Interrupt Log Summary
window

o C-SPY driver>Timeline to open the Timeline window and view the Interrupt
graph.

From the context menu in the Interrupt Log window, choose Enable to enable the

logging.

Start executing your application program to collect the log information.

To view the interrupt log information, look in the Interrupt Log or Interrupt Log
Summary window, or the Interrupt graph in the Timeline window.

If you want to save the log or summary to a file, choose Save to log file from the
context menu in the window in question.

To disable interrupt logging, from the context menu in the Interrupt Log window,
toggle Enable off.

Reference information on interrupts

C-SPY® Debugging Guide
for RL78

Reference information about:

Interrupt Setup dialog box, page 305
Edit Interrupt dialog box, page 307
Forced Interrupt window, page 308
Interrupt Status window, page 309

Interrupt Log window, page 311

Interrupts °

o [nterrupt Log Summary window, page 314
o Timeline window—Interrupt Log graph, page 316

Interrupt Setup dialog box

The Interrupt Setup dialog box is available by choosing Simulator>Interrupt Setup.

Interrupt Setup

Enable interrupt simulation

Intermupt [} Type Timing [cycles] 0K
MM 2 Fepeat 0+ n*2000

Delete

L

This dialog box lists all defined interrupts. Use this dialog box to enable or disable the
interrupt simulation system, as well as to enable or disable individual interrupts.

See also Using the interrupt system, page 301.

Requirements
The C-SPY simulator.

Enable interrupt simulation

Enables or disables interrupt simulation. If the interrupt simulation is disabled, the
definitions remain but no interrupts are generated. Note that you can also enable and
disable installed interrupts individually by using the check box to the left of the interrupt
name in the list of installed interrupts.

Display area
This area contains these columns:

Interrupt
Lists all interrupts. Use the checkbox to enable or disable the interrupt.

ID
A unique interrupt identifier.

305

Reference information on interrupts

306

Buttons

C-SPY® Debugging Guide
for RL78

Type

Timing

Shows the type of the interrupt. The type can be one of:

Forced, a single-occasion interrupt defined in the Forced Interrupt window.
Single, a single-occasion interrupt.

Repeat, a periodically occurring interrupt.

If the interrupt has been set from a C-SPY macro, the additional part (macro) is
added, for example: Repeat(macro).

The timing of the interrupt. For a Single and Forced interrupt, the activation
time is displayed. For a Repeat interrupt, the information has the form:
Activation Time + n*Repeat Time. For example, 2000 + n*2345. This
means that the first time this interrupt is triggered, is at 2000 cycles and after that
with an interval of 2345 cycles.

These buttons are available:

New

Edit

Delete

Opens the Edit Interrupt dialog box, see Edit Interrupt dialog box, page 307.

Opens the Edit Interrupt dialog box, see Edit Interrupt dialog box, page 307.

Removes the selected interrupt.

Delete All

Removes all interrupts.

Interrupts °

Edit Interrupt dialog box
The Edit Interrupt dialog box is available from the Interrupt Setup dialog box.

Edit Interrupt g|
Interrupt:
UaRT v

Drescription:

1 0x40 UART.INTEN UART INTPEND

First activatior:

4000 Hold tirne
(&) Infinite
Fiepeat interval:
2000 o
Wariance [%]: Probability [%]:
a v 100 .

Use this dialog box to interactively fine-tune the interrupt parameters. You can add the
parameters and quickly test that the interrupt is generated according to your needs.

Note: You can only edit or remove non-forced interrupts.

See also Using the interrupt system, page 301.

Requirements
The C-SPY simulator.
Interrupt
Selects the interrupt that you want to edit. The drop-down list contains all available
interrupts. Your selection will automatically update the Description box. The list is
populated with entries from the device description file that you have selected.
Description

A description of the selected interrupt, if available. The description is retrieved from the
selected device description file and consists of a string describing the vector address,
default priority, enable bit, request bit, and priority bit, separated by space characters.
For interrupts specified using the system macro __orderInterrupt, the Description
box is empty.

First activation

Specify the value of the cycle counter after which the specified type of interrupt will be
generated.

307

Reference information on interrupts

308

Repeat interval

Variance %

Hold time

Probability %

Specify the periodicity of the interrupt in cycles.

Selects a timing variation range, as a percentage of the repeat interval, in which the
interrupt might occur for a period. For example, if the repeat interval is 100 and the
variance 5%, the interrupt might occur anywhere between T=95 and T=105, to simulate
a variation in the timing.

Specify how long, in cycles, the interrupt remains pending until removed if it has not
been processed. If you select Infinite, the corresponding pending bit will be set until the
interrupt is acknowledged or removed.

Selects the probability, in percent, that the interrupt will actually occur within the
specified period.

Forced Interrupt window

C-SPY® Debugging Guide
for RL78

The Forced Interrupt window is available from the C-SPY driver menu.

Forced Interrupt x
Interrupt Description it
PORTI 0x0C 2 P2IEF1 P2IFG.F1 E
PORTEZ 0x10 2 P2IEF2 P2IFG.PZ

Use this window to force an interrupt instantly. This is useful when you want to check
your interrupt logic and interrupt routines. Just start typing an interrupt name and focus
shifts to the first line found with that name.

The hold time for a forced interrupt is infinite, and the interrupt exists until it has been
serviced or until a reset of the debug session.

To sort the window contents, click on either the Interrupt or the Description column
header. A second click on the same column header reverses the sort order.

To force an interrupt:
Enable the interrupt simulation system, see Interrupt Setup dialog box, page 305.

Double-click the interrupt in the Forced Interrupt window, or activate it by using the
Force command available on the context menu.

Requirements

Display area

Context menu

Interrupts °

The C-SPY simulator.

This area lists all available interrupts and their definitions. This information is retrieved
from the selected device description file. See this file for a detailed description.

This context menu is available:

Force

This command is available:

Force

Triggers the interrupt you selected in the display area.

Interrupt Status window

Requirements

Display area

The Interrupt Status window is available from the C-SPY driver menu.

Interrupt Status * O X

Interrupt D Type Status Mext Time Timing [eycles]
TIM_INT 1 Single Idle o 0
MNRAI 0 Single Idle 0 0
SClo_lo 2 Repeat{macra) Idle 4000 4000 + n*2000

This window shows the status of all the currently active interrupts, in other words
interrupts that are either executing or waiting to be executed.

The C-SPY simulator.

This area contains these columns:

Interrupt
Lists all interrupts.
ID

A unique interrupt identifier.

309

Reference information on interrupts

Type
The type of the interrupt. The type can be one of:
Forced, a single-occasion interrupt defined in the Forced Interrupt window.
Single, a single-occasion interrupt.
Repeat, a periodically occurring interrupt.
If the interrupt has been set from a C-SPY macro, the additional part (macro) is
added, for example: Repeat(macro).
Status
The state of the interrupt:
Idle, the interrupt activation signal is low (deactivated).
Pending, the interrupt activation signal is active, but the interrupt has not been
yet acknowledged by the interrupt handler.
Executing, the interrupt is currently being serviced, that is the interrupt handler
function is executing.
Suspended, the interrupt is currently suspended due to execution of an interrupt
with a higher priority.
(deleted) is added to Executing and Suspended if you have deleted a currently
active interrupt. (deleted) is removed when the interrupt has finished executing.
Next Time
The next time an idle interrupt is triggered. Once a repeatable interrupt stats
executing, a copy of the interrupt will appear with the state Idle and the next time
set. For interrupts that do not have a next time—that is pending, executing, or
suspended—the column will show --.
Timing

The timing of the interrupt. For a Single and Forced interrupt, the activation
time is displayed. For a Repeat interrupt, the information has the form:
Activation Time + n*Repeat Time. For example, 2000 + n*2345. This
means that the first time this interrupt is triggered, is at 2000 cycles and after that
with an interval of 2345 cycles.

C-SPY® Debugging Guide
310 for RL78

Interrupt Log window

Requirements

Display area

Interrupts °

The Interrupt Log window is available from the C-SPY driver menu.

Interrupt Log *®
Time Interrupt Status Frogram Counter Execution Time i
189.32 us IRQTO Triggered Bx13E8
111.26 us IRQTO Enter Bx13F@
135.78 us IRQT1 Enter Bx1126
148.72 us IRQT1 Leave Bx1378 12.94 us
189.34 us Overflow
29?:’-_39 us IRQTO Leave Bx1126 96.84 us
230.00 us IRQTO Triggered 9x1118
231.34 us IRQTO Enter 0x1126
248.26\us IRQTO Leave Bx1122 . 8.92 us
300.00 s IRQTL Enter . ---
371.12 L,Ii"& IRQT1 Leave N, Bx1128 \71.12 us
431.3@ ud_ IROTI Enter - -
\ -
Red indicates overflows Light-celored rows !:)arker =
and italic indicates indicate entrances indicate exits
approximate values to interrupts from interrupts .

This window logs entrances to and exits from interrupts. The C-SPY simulator also logs
internal state changes.

The information is useful for debugging the interrupt handling in the target system.
When the Interrupt Log window is open, it is updated continuously at runtime.

Note: There is a limit on the number of saved logs. When this limit is exceeded, the
oldest entries in the buffer are erased.

For more information, see Getting started using interrupt logging, page 304.

For information about how to get a graphical view of the interrupt events during the
execution of your application, see Timeline window—Interrupt Log graph, page 316.

The C-SPY simulator.

This area contains these columns:
Time

The time for the interrupt entrance, based on an internally specified clock
frequency.

Reference information on interrupts

This column is available when you have selected Show Time from the context
menu.

Cycles
The number of cycles from the start of the execution until the event.

This column is available when you have selected Show Cycles from the context
menu.

Interrupt
The interrupt as defined in the device description file.

Status
Shows the event status of the interrupt:

Triggered, the interrupt has passed its activation time.

Forced, the same as Triggered, but the interrupt was forced from the Forced
Interrupt window.

Enter, the interrupt is currently executing.
Leave, the interrupt has been executed.

Expired, the interrupt hold time has expired without the interrupt being
executed.

Rejected, the interrupt has been rejected because the necessary interrupt
registers were not set up to accept the interrupt.

Program Counter
The value of the program counter when the event occurred.

Execution Time/Cycles
The time spent in the interrupt, calculated using the Enter and Leave
timestamps. This includes time spent in any subroutines or other interrupts that
occurred in the specific interrupt.

C-SPY® Debugging Guide
312 for RL78

Interrupts °

Context menu

This context menu is available:
v Enable

Clear

Save to File...

v | Show Time
Show Cycles

These commands are available:

Enable
Enables the logging system. The system will log information also when the
window is closed.

Clear
Deletes the log information. Note that this will also happen when you reset the
debugger.

Save to File
Displays a standard file selection dialog box where you can select the
destination file for the log information. The entries in the log file are separated
by TaB and LF characters. An X in the Approx column indicates that the
timestamp is an approximation.

Show Time
Displays the Time column.
If the Time column is displayed by default in the C-SPY driver you are using,
this menu command is not available.

Show Cycles
Displays the Cycles column.

If the Cyecles column is not supported in the C-SPY driver you are using, this
menu command is not available.

313

Reference information on interrupts

Interrupt Log Summary window

The Interrupt Log Summary window is available from the C-SPY driver menu.

Interrupt Log Summary x
Interrupt Count First Time Total (Time) Total (>4) Fastest Slowest in Intersal Max Interval
ADC 5 25 . 560us 95 . 400us 17 .61 16.320us 30.120us 192 640us 1284 . 100us
RTC 4 41 . 700us 55.200us 22 BB 13.800us 13.800us 27 .060us 2687 . 420us

Approximative time count. 1
Cwerflow count. 1
Currenttime: 3350.080us us

This window displays a summary of logs of entrances to and exits from interrupts.
For more information, see Getting started using interrupt logging, page 304.

For information about how to get a graphical view of the interrupt events during the
execution of your application, see Timeline window—Interrupt Log graph, page 316.

Requirements

The C-SPY simulator.

Display area

Each row in this area displays statistics about the specific interrupt based on the log
information in these columns:

Interrupt

The type of interrupt that occurred.
Count

The number of times the interrupt occurred.
First time

The first time the interrupt was executed.
Total (Time)**

The accumulated time spent in the interrupt.
Total (%)

The time in percent of the current time.

Fastest**

The fastest execution of a single interrupt of this type.

C-SPY® Debugging Guide
314 for RL78

Interrupts °

Slowest**

The slowest execution of a single interrupt of this type.

Min interval
The shortest time between two interrupts of this type.
The interval is specified as the time interval between the entry time for two
consecutive interrupts.

Max interval
The longest time between two interrupts of this type.

The interval is specified as the time interval between the entry time for two
consecutive interrupts.

** Calculated in the same way as for the Execution time/cycles in the Interrupt Log
window.

Context menu

This context menu is available:
v Enable

Clear

Save to File...

v | Show Time
Show Cycles

These commands are available:

Enable
Enables the logging system. The system will log information also when the
window is closed.

Clear
Deletes the log information. Note that this will also happen when you reset the
debugger.

Save to File
Displays a standard file selection dialog box where you can select the
destination file for the log information. The entries in the log file are separated
by TaB and LF characters. An X in the Approx column indicates that the
timestamp is an approximation.

Show Time
Displays the Time column.

315

Reference information on interrupts

If the Time column is displayed by default in the C-SPY driver you are using,
this menu command is not available.

Show Cycles
Displays the Cycles column.

If the Cyecles column is not supported in the C-SPY driver you are using, this
menu command is not available.

Timeline window—Interrupt Log graph

The Interrupt Log graph displays interrupts collected by the trace system. In other
words, the graph provides a graphical view of the interrupt events during the execution
of your application.

Active interrupt l |Overf|ow |

Timeline ...\. V4 ®
— — O
= : E==—Traa
= T
2.00815s 8.000208s 8.00025s 8.000308s 8.90835s

Commaon time axis

Note: There is a limit on the number of saved logs. When this limit is exceeded, the
oldest entries in the buffer are erased.

Requirements

The C-SPY simulator.

Display area
o The label area at the left end of the graph displays the names of the interrupts.

o The graph itself shows active interrupts as a thick green horizontal bar where the
white figure indicates the time spent in the interrupt. This graph is a graphical
representation of the information in the Interrupt Log window, see Interrupt Log
window, page 311.

e If the bar is displayed without horizontal borders, there are two possible causes:

o The interrupt is reentrant and has interrupted itself. Only the innermost interrupt
will have borders.

o There are irregularities in the interrupt enter-leave sequence, probably due to
missing logs.

C-SPY® Debugging Guide
316 for RL78

Context menu

Interrupts °

o If the bar is displayed without a vertical border, the missing border indicates an
approximate time for the log.

o A red vertical line indicates overflow, which means that the communication channel
failed to transmit all interrupt logs from the target system.

At the bottom of the window, there is a common time axis that uses seconds as the time
unit.

This context menu is available:

MNavigate 3
v Auto Scroll
Zoom 3
Interrupts
v Enable
Clear

Go to Source

Sort by 3
IRQTO: 2
Select Graphs 3
Tirme Axis Unit 3

Note: The exact contents of the context menu you see on the screen depends on which
features that your combination of software and hardware supports. However, the list of
menu commands below is complete and covers all possible commands.

These commands are available:

Navigate
Commands for navigating the graph(s). Choose between:

Next moves the selection to the next relevant point in the graph. Shortcut key:
right arrow.

Previous moves the selection backward to the previous relevant point in the
graph. Shortcut key: left arrow.

First moves the selection to the first data entry in the graph. Shortcut key:
Home.

Last moves the selection to the last data entry in the graph. Shortcut key: End.

End moves the selection to the last data in any displayed graph, in other words
the end of the time axis. Shortcut key: Ctrl+End.

317

Reference information on interrupts

318

C-SPY® Debugging Guide
for RL78

Auto Scroll

Toggles automatic scrolling on or off. When on, the most recently collected data
is automatically displayed when you choose Navigate>End.

Zoom
Commands for zooming the window, in other words, changing the time scale.
Choose between:
Zoom to Selection makes the current selection fit the window. Shortcut key:
Return.
Zoom In zooms in on the time scale. Shortcut key: +
Zoom Out zooms out on the time scale. Shortcut key: —
10ns, 100ns, 1us, etc makes an interval of 10 nanoseconds, 100 nanoseconds, 1
microsecond, respectively, fit the window.
1ms, 10ms, etc makes an interval of 1 millisecond or 10 milliseconds,
respectively, fit the window.
10m, 1h, etc makes an interval of 10 minutes or 1 hour, respectively, fit the
window.

Interrupt
A heading that shows that the Interrupt Log-specific commands below are
available.

Enable
Toggles the display of the graph on or off. If you disable a graph, that graph will
be indicated as OFF in the window. If no data has been collected for a graph, no
data will appear instead of the graph.

Clear

Deletes the log information. Note that this will also happen when you reset the
debugger.

Go To Source
Displays the corresponding source code in an editor window, if applicable.

Sort by
Sorts the entries according to their ID or name. The selected order is used in the
graph when new interrupts appear.

source

Goes to the previous/next log for the selected source.

Interrupts °

Select Graphs
Selects which graphs to be displayed in the Timeline window.

Time Axis Unit
Selects the unit used in the time axis; choose between Seconds and Cycles.

If Cycles is not available, the graphs are based on different clock sources. In that
case you can view cycle values as tooltip information by pointing at the graph
with your mouse pointer.

319

Reference information on interrupts

C-SPY® Debugging Guide
320 for RL78

C-SPY macros

e Introduction to C-SPY macros

e Using C-SPY macros

e Reference information on the macro language

e Reference information on reserved setup macro function names
e Reference information on C-SPY system macros

e Graphical environment for macros

Introduction to C-SPY macros

These topics are covered:

o Reasons for using C-SPY macros
e Briefly about using C-SPY macros
e Briefly about setup macro functions and files

e Briefly about the macro language

REASONS FOR USING C-SPY MACROS

You can use C-SPY macros either by themselves or in conjunction with complex
breakpoints and interrupt simulation to perform a wide variety of tasks. Some examples
where macros can be useful:

o Automating the debug session, for instance with trace printouts, printing values of
variables, and setting breakpoints.

e Hardware configuring, such as initializing hardware registers.

e Feeding your application with simulated data during runtime.

o Simulating peripheral devices, see the chapter /nterrupts. This only applies if you
are using the simulator driver.

o Developing small debug utility functions.

321

Introduction to C-SPY macros

322

C-SPY® Debugging Guide
for RL78

BRIEFLY ABOUT USING C-SPY MACROS
To use C-SPY macros, you should:

o Write your macro variables and functions and collect them in one or several macro
files

e Register your macros

e Execute your macros.

For registering and executing macros, there are several methods to choose between.

Which method you choose depends on which level of interaction or automation you
want, and depending on at which stage you want to register or execute your macro.

BRIEFLY ABOUT SETUP MACRO FUNCTIONS AND FILES

There are some reserved setup macro function names that you can use for defining
macro functions which will be called at specific times, such as:

o Once after communication with the target system has been established but before
downloading the application software

o Once after your application software has been downloaded

o FEach time the reset command is issued

o Once when the debug session ends.

To define a macro function to be called at a specific stage, you should define and register

a macro function with one of the reserved names. For instance, if you want to clear a

specific memory area before you load your application software, the macro setup

function execUserPreload should be used. This function is also suitable if you want

to initialize some CPU registers or memory-mapped peripheral units before you load
your application software.

You should define these functions in a setup macro file, which you can load before
C-SPY starts. Your macro functions will then be automatically registered each time you
start C-SPY. This is convenient if you want to automate the initialization of C-SPY, or
if you want to register multiple setup macros.

For more information about each setup macro function, see Reference information on
reserved setup macro function names, page 333.

BRIEFLY ABOUT THE MACRO LANGUAGE

The syntax of the macro language is very similar to the C language. There are:

® Macro statements, which are similar to C statements.

® Macro functions, which you can define with or without parameters and return
values.

C-SPY macros __4

o Predefined built-in system macros, similar to C library functions, which perform
useful tasks such as opening and closing files, setting breakpoints, and defining
simulated interrupts.

® Macro variables, which can be global or local, and can be used in C-SPY
expressions.

® Macro strings, which you can manipulate using predefined system macros.

For more information about the macro language components, see Reference information
on the macro language, page 328.

Example

Consider this example of a macro function which illustrates the various components of
the macro language:

__var oldval;
CheckLatest (val)
{
if (oldval !'= wval)
{
__message "Message: Changed from ", oldval, " to ", wval, "\n";
oldval = val;
}
}

Note: Reserved macro words begin with double underscores to prevent name conflicts.

Using C-SPY macros

These tasks are covered:

Registering C-SPY macros—an overview

Executing C-SPY macros—an overview

Registering and executing using setup macros and setup files
Executing macros using Quick Watch

Executing a macro by connecting it to a breakpoint

Aborting a C-SPY macro

For more examples using C-SPY macros, see:

o The tutorial about simulating an interrupt, which you can find in the Information
Center

o [nitializing target hardware before C-SPY starts, page 47

323

Using C-SPY macros

324

C-SPY® Debugging Guide
for RL78

REGISTERING C-SPY MACROS—AN OVERVIEW

C-SPY must know that you intend to use your defined macro functions, and therefore
you must register your macros. There are various ways to register macro functions:

You can register macro functions during the C-SPY startup sequence, see
Registering and executing using setup macros and setup files, page 325.

You can register macros interactively in the Macro Registration window, see
Macro Registration window, page 372. Registered macros appear in the Debugger
Macros window, see Debugger Macros window, page 374.

You can register a file containing macro function definitions, using the system
macro __registerMacroFile. This means that you can dynamically select which
macro files to register, depending on the runtime conditions. Using the system
macro also lets you register multiple files at the same moment. For information
about the system macro, see __registerMacroFile, page 356.

Which method you choose depends on which level of interaction or automation you
want, and depending on at which stage you want to register your macro.

EXECUTING C-SPY MACROS—AN OVERVIEW

There are various ways to execute macro functions:

You can execute macro functions during the C-SPY startup sequence and at other

predefined stages during the debug session by defining setup macro functions in a

setup macro file, see Registering and executing using setup macros and setup files,
page 325.

The Quick Watch window lets you evaluate expressions, and can thus be used for
executing macro functions. For an example, see Executing macros using Quick
Watch, page 325.

The Macro Quicklaunch window is similar to the Quick Watch window, but is
more specified on designed for C-SPY macros. See Macro Quicklaunch window,
page 376.

A macro can be connected to a breakpoint; when the breakpoint is triggered the
macro is executed. For an example, see Executing a macro by connecting it to a
breakpoint, page 326.

Which method you choose depends on which level of interaction or automation you
want, and depending on at which stage you want to execute your macro.

C-SPY macros __4

REGISTERING AND EXECUTING USING SETUP MACROS AND
SETUP FILES

It can be convenient to register a macro file during the C-SPY startup sequence. To do
this, specify a macro file which you load before starting the debug session. Your macro
functions will be automatically registered each time you start the debugger.

If you use the reserved setup macro function names to define the macro functions, you
can define exactly at which stage you want the macro function to be executed.

To define a setup macro function and load it during C-SPY startup:
Create a new text file where you can define your macro function.
For example:

execUserSetup ()
{

_ _registerMacroFile("MyMacroUtils.mac") ;
_ _registerMacroFile("MyDeviceSimulation.mac") ;

}

This macro function registers the additional macro files MyMacroUtils.mac and
MyDeviceSimulation.mac. Because the macro function is defined with the function
name execUserSetup, it will be executed directly after your application has been
downloaded.

Save the file using the filename extension mac.

Before you start C-SPY, choose Project>Options>Debugger>Setup. Select Use
Setup file and choose the macro file you just created.

The macros will now be registered during the C-SPY startup sequence.

EXECUTING MACROS USING QUICK WATCH

The Quick Watch window lets you dynamically choose when to execute a macro
function.

Consider this simple macro function that checks the status of a timer enable bit:

TimerStatus ()
{
if ((TimerStatreg & 0x01) != 0)/* Checks the status of reg */
return "Timer enabled"; /* C-SPY macro string used */
else
return "Timer disabled"; /* C-SPY macro string used */

325

Using C-SPY macros

326

C-SPY® Debugging Guide
for RL78

Save the macro function using the filename extension mac.

To load the macro file, choose View>Macros>Macro Registration. The Macro
Registration window is displayed. Click Add and locate the file using the file browser.
The macro file appears in the list of macros in the Macro Registration window.

Select the macro you want to register and your macro will appear in the Debugger
Macros window.

Choose View>Quick Watch to open the Quick Watch window, type the macro call
TimerStatus () in the text field and press Return,

Alternatively, in the macro file editor window, select the macro function name
TimerStatus (). Right-click, and choose Quick Watch from the context menu that

appears.
Quick Watch * O X
@ Tirners tatus(] -
Expression Yalue Location Type
TimerStatus() 'Timer disabled® macro string

The macro will automatically be displayed in the Quick Watch window. For more
information, see Quick Watch window, page 118.

EXECUTING A MACRO BY CONNECTINGITTO A
BREAKPOINT

You can connect a macro to a breakpoint. The macro will then be executed when the
breakpoint is triggered. The advantage is that you can stop the execution at locations of
particular interest and perform specific actions there.

For instance, you can easily produce log reports containing information such as how the
values of variables, symbols, or registers change. To do this you might set a breakpoint
on a suspicious location and connect a log macro to the breakpoint. After the execution
you can study how the values of the registers have changed.

To create a log macro and connect it to a breakpoint:
Assume this skeleton of a C function in your application source code:

int fact(int x)
{

}

C-SPY macros __4

2 Create a simple log macro function like this example:

logfact ()
{
__message "fact(" ,x, ")";

}
The __message statement will log messages to the Debug Log window.
Save the macro function in a macro file, with the filename extension mac.

3 To register the macro, choose View>Macros>Macro Registration to open the Macro
Registration window and add your macro file to the list. Select the file to register it.
Your macro function will appear in the Debugger Macros window.

4 To set a code breakpoint, click the Toggle Breakpoint button on the first statement
within the function fact in your application source code. Choose View>Breakpoints
to open the Breakpoints window. Select your breakpoint in the list of breakpoints and
choose the Edit command from the context menu.

5 To connect the log macro function to the breakpoint, type the name of the macro
function, logfact (), in the Action field and click OK to close the dialog box.

6 Execute your application source code. When the breakpoint is triggered, the macro
function will be executed. You can see the result in the Debug Log window.

Note that the expression in the Action field is evaluated only when the breakpoint causes
the execution to really stop. If you want to log a value and then automatically continue
execution, you can either:

o Use a Log breakpoint, see Log breakpoints dialog box, page 143

o Use the Condition field instead of the Action field. For an example, see Performing
a task and continuing execution, page 135.

7 You can easily enhance the log macro function by, for instance, using the __ fmessage
statement instead, which will print the log information to a file. For information about
the __fmessage statement, see Formatted output, page 331.

For an example where a serial port input buffer is simulated using the method of
connecting a macro to a breakpoint, see the tutorial Simulating an interrupt in the
Information Center.

ABORTING A C-SPY MACRO

To abort a C-SPY macro:
I Press Ctrl+Shift+. (period) for a short while.

2 A message that says that the macro has terminated is displayed in the Debug Log
window.

327

Reference information on the macro language

This method can be used if you suspect that something is wrong with the execution, for
example because it seems not to terminate in a reasonable time.

Reference information on the macro language
Reference information about:

Macro functions, page 328
Macro variables, page 328
Macro parameters, page 329
Macro strings, page 329

Macro statements, page 330

Formatted output, page 331

MACRO FUNCTIONS

C-SPY macro functions consist of C-SPY variable definitions and macro statements
which are executed when the macro is called. An unlimited number of parameters can
be passed to a macro function, and macro functions can return a value on exit.

A C-SPY macro has this form:

macroName (parameterList)
{

macroBody

}

where parameterList is a list of macro parameters separated by commas, and
macroBody is any series of C-SPY variable definitions and C-SPY statements.

Type checking is neither performed on the values passed to the macro functions nor on
the return value.
MACRO VARIABLES

A macro variable is a variable defined and allocated outside your application. It can then
be used in a C-SPY expression, or you can assign application data—values of the
variables in your application—to it. For more information about C-SPY expressions, see
C-SPY expressions, page 100.

The syntax for defining one or more macro variables is:
__var nameList;

where nameList is a list of C-SPY variable names separated by commas.

C-SPY® Debugging Guide
328 for RL78

C-SPY macros __4

A macro variable defined outside a macro body has global scope, and it exists
throughout the whole debugging session. A macro variable defined within a macro body
is created when its definition is executed and destroyed on return from the macro.

By default, macro variables are treated as signed integers and initialized to 0. When a
C-SPY variable is assigned a value in an expression, it also acquires the type of that
expression. For example:

Expression What it means
myvar = 3.5; myvar is now type double, value 3. 5.
myvar = (int*)i; myvar is now type pointer to int, and the value is the same as i.

Table 14: Examples of C-SPY macro variables

In case of a name conflict between a C symbol and a C-SPY macro variable, C-SPY
macro variables have a higher precedence than C variables. Note that macro variables
are allocated on the debugger host and do not affect your application.

MACRO PARAMETERS

A macro parameter is intended for parameterization of device support. The named

parameter will behave as a normal C-SPY macro variable with these differences:

o The parameter definition can have an initializer

o Values of a parameters can be set through options (either in the IDE or in cspybat).

o A value set from an option will take precedence over a value set by an initializer

e A parameter must have an initializer, be set through an option, or both. Otherwise, it
has an undefined value, and accessing it will cause a runtime error.

The syntax for defining one or more macro parameters is:

__param param[=value, ...;]

Use the command line option --macro_param to specify a value to a parameter, see
--macro_param, page 391.

MACRO STRINGS

In addition to C types, macro variables can hold values of macro strings. Note that
macro strings differ from C language strings.

When you write a string literal, such as "Hello! ", in a C-SPY expression, the value is
a macro string. It is not a C-style character pointer char*, because char* must point to
a sequence of characters in target memory and C-SPY cannot expect any string literal to
actually exist in target memory.

You can manipulate a macro string using a few built-in macro functions, for example
__strFind or __subsString. The result can be a new macro string. You can

329

Reference information on the macro language

concatenate macro strings using the + operator, for example str + "tail". You can
also access individual characters using subscription, for example st [3]. You can get the
length of a string using sizeof (str). Note that a macro string is not
NULL-terminated.

The macro function __toString is used for converting from a NULL-terminated C
string in your application (char* or char []) to a macro string. For example, assume
this definition of a C string in your application:

char const *cstr = "Hello";

Then examine these macro examples:

__var str; /* A macro variable */

str = cstr /* str is now just a pointer to char */

sizeof str /* same as sizeof (char*), typically 2 or 4 */
str = __toString(cstr,512) /* str is now a macro string */
sizeof str /* 5, the length of the string */

str[l] /* 101, the ASCII code for 'e' */

str += " World!" /* str is now "Hello World!" */

See also Formatted output, page 331.

MACRO STATEMENTS

Statements are expected to behave in the same way as the corresponding C statements
would do. The following C-SPY macro statements are accepted:

Expressions
expression;

For more information about C-SPY expressions, see C-SPY expressions, page 100.

Conditional statements

if (expression)
Sstatement

if (expression)
statement
else
statement

C-SPY® Debugging Guide
330 for RL78

C-SPY macros __4

Loop statements

for (init_expression; cond_expression; update_expression)
statement

while (expression)
statement

do
Sstatement
while (expression);

Return statements
return;

return expression;

If the return value is not explicitly set, signed int 0 is returned by default.

Blocks

Statements can be grouped in blocks.

{
statementl
statement2

statementN

FORMATTED OUTPUT

C-SPY provides various methods for producing formatted output:

__message argList; Prints the output to the Debug Log window.
__fmessage file, argList; Prints the output to the designated file.

__smessage argList; Returns a string containing the formatted output.

where argList is acomma-separated list of C-SPY expressions or strings, and fileis
the result of the __openFile system macro, see _openkFile, page 351.

331

Reference information on the macro language

332

C-SPY® Debugging Guide
for RL78

To produce messages in the Debug Log window:

varl = 42;
var2 = 37;
__message "This line prints the values ", varl, " and ", var2,

" in the Debug Log window.";

This produces this message in the Debug Log window:

This line prints the values 42 and 37 in the Debug Log window.
To write the output to a designated file:

__fmessage myfile, "Result is ", res, "!\n";

To produce strings:

myMacroVar = __smessage 42, " is the answer.";

myMacroVar now contains the string "42 is the answer.".

Specifying display format of arguments

To override the default display format of a scalar argument (number or pointer) in
argList, suffix it with a : followed by a format specifier. Available specifiers are:

%b for binary scalar arguments

%0 for octal scalar arguments

%d for decimal scalar arguments

$x for hexadecimal scalar arguments
%c for character scalar arguments

These match the formats available in the Watch and Locals windows, but number
prefixes and quotes around strings and characters are not printed. Another example:

__message "The character '", cvar:%c, "' has the decimal value
", cvar;

Depending on the value of the variables, this produces this message:
The character 'A' has the decimal value 65

Note: A character enclosed in single quotes (a character literal) is an integer constant
and is not automatically formatted as a character. For example:

__message 'A', " is the numeric value of the character ",
'A':%C;

C-SPY macros __4

would produce:
65 is the numeric value of the character A

Note: The default format for certain types is primarily designed to be useful in the
Watch window and other related windows. For example, a value of type char is
formatted as 'A' (0x41), while a pointer to a character (potentially a C string) is
formatted as 0x8102 "Hello", where the string part shows the beginning of the string
(currently up to 60 characters).

When printing a value of type char*, use the $x format specifier to print just the pointer
value in hexadecimal notation, or use the system macro __toString to get the full
string value.

Reference information on reserved setup macro function names

There are reserved setup macro function names that you can use for defining your setup
macro functions. By using these reserved names, your function will be executed at
defined stages during execution. For more information, see Briefly about setup macro
functions and files, page 322.

Reference information about:

execUserPreload
execUserExecutionStarted

execUserExecutionStopped

execUserPreReset

[}

[J

[}

® execUserSetup
[J

® execUserReset
[}

execUserExit

execUserPreload
Syntax execUserPreload
For use with All C-SPY drivers.
Description Called after communication with the target system is established but before

downloading the target application.

Implement this macro to initialize memory locations and/or registers which are vital for
loading data properly.

333

Reference information on reserved setup macro function names

execUserExecutionStarted

Syntax
For use with

Description

execUserExecutionStarted
All C-SPY drivers.
Called when the debugger is about to start or resume execution. The macro is not called

when performing a one-instruction assembler step, in other words, Step or Step Into in
the Disassembly window.

execUserExecutionStopped

Syntax
For use with

Description

execUserSetup

Syntax
For use with

Description

C-SPY® Debugging Guide
334 for RL78

execUs erExecutionStopped
All C-SPY drivers.

Called when the debugger has stopped execution. The macro is not called when
performing a one-instruction assembler step, in other words, Step or Step Into in the
Disassembly window.

execUserSetup
All C-SPY drivers.

Called once after the target application is downloaded.

Implement this macro to set up the memory map, breakpoints, interrupts, register macro
files, etc.

If you define interrupts or breakpoints in a macro file that is executed at system start
(using execUserSetup) we strongly recommend that you also make sure that they are
removed at system shutdown (using execUserExit). An example is available in
SetupSimple.mac, see the tutorials in the Information Center.

The reason for this is that the simulator saves interrupt settings between sessions and if
they are not removed they will get duplicated every time execUserSetup is executed
again. This seriously affects the execution speed.

execUserPreReset

Syntax
For use with

Description

execUserReset

Syntax
For use with

Description

execUserExit

Syntax
For use with

Description

C-SPY macros __4

execUserPreReset
All C-SPY drivers.

Called each time just before the reset command is issued.

Implement this macro to set up any required device state.

execUserReset
All C-SPY drivers.

Called each time just after the reset command is issued.

Implement this macro to set up and restore data.

execUserExit
All C-SPY drivers.

Called once when the debug session ends.

Implement this macro to save status data etc.

Reference information on C-SPY system macros

This section gives reference information about each of the C-SPY system macros.
This table summarizes the pre-defined system macros:

Macro Description

__abortLaunch Aborts the launch of the debugger

__cancelAllInterrupts Cancels all ordered interrupts
__cancelInterrupt Cancels an interrupt

__clearBreak Clears a breakpoint

Table 15: Summary of system macros

Reference information on C-SPY system macros

Macro

Description

__closeFile
__dataflashMemoryRestore

__dataflashMemorySave

__delay
__disablelInterrupts
__driverType
__enableInterrupts

__evaluate

__fillMemory8
__fillMemorylé6
__fillMemory32

__getSelectedCore

_ _isBatchMode
__loadImage

__memoryRestore

__memorySave

__messageBoxYesCancel
_ _messageBoxYesNo
__openFile

__orderInterrupt

__popSimulatorInterruptExec
utingStack

__readFile
__readFileByte

__readMemorys8,
__readMemoryByte

__readMemoryl6

__readMemory32

Closes a file that was opened by __openFile
Restores the contents of a file to data flash memory

Saves the contents of a specified data flash memory
area to a file

Delays execution

Disables generation of interrupts
Verifies the driver type

Enables generation of interrupts

Interprets the input string as an expression and
evaluates it

Fills a specified memory area with a byte value
Fills a specified memory area with a 2-byte value
Fills a specified memory area with a 4-byte value

Only for use with IAR Embedded Workbench
products that support multicore debugging

Checks if C-SPY is running in batch mode or not.
Loads a debug image

Restores the contents of a file to a specified memory
zone

Saves the contents of a specified memory area to a
file

Displays a Yes/Cancel dialog box for user interaction
Displays a Yes/No dialog box for user interaction
Open:s a file for I/O operations

Generates an interrupt

Informs the interrupt simulation system that an
interrupt handler has finished executing

Reads from the specified file
Reads one byte from the specified file

Reads one byte from the specified memory location

Reads two bytes from the specified memory location

Reads four bytes from the specified memory location

Table 15: Summary of system macros (Continued)

C-SPY® Debugging Guide
336 for RL78

Macro

C-SPY macros __4

Description

__registerMacroFile

_resetFile

__selectCore

__setCodeBreak

__setCodeHWBreak

__setDataBreak

__setDatalLogBreak

_setLogBreak

__setSimBreak

__setTraceStartBreak

__setTraceStopBreak

__sourcePosition

__strFind

__subString

_targetDebuggerVersion

_ _toLower

__toString

_toUpper

__unloadImage

__writeFile

__writeFileByte

_ _writeMemory8§,

__writeMemoryByte

__writeMemorylé6

__writeMemory32

Registers macros from the specified file
Rewinds a file opened by __openFile

Only for use with IAR Embedded Workbench
products that support multicore debugging

Sets a code breakpoint

Sets a code hardware breakpoint
Sets a data breakpoint

Sets a data log breakpoint

Sets a log breakpoint

Sets a simulation breakpoint
Sets a trace start breakpoint
Sets a trace stop breakpoint

Returns the file name and source location if the
current execution location corresponds to a source
location

Searches a given string for the occurrence of another
string

Extracts a substring from another string
Returns the version of the target debugger

Returns a copy of the parameter string where all the
characters have been converted to lower case

Prints strings

Returns a copy of the parameter string where all the
characters have been converted to upper case

Unloads a debug image
Werites to the specified file
Werites one byte to the specified file

Werites one byte to the specified memory location

Writes a two-byte word to the specified memory
location

Writes a four-byte word to the specified memory
location

Table 15: Summary of system macros (Continued)

337

Reference information on C-SPY system macros

__abortLaunch

Syntax

Parameters

Return value
For use with

Description

Example

__cancelAllinterrupts

Syntax
Return value
For use with

Description

__cancellnterrupt

Syntax

Parameters

C-SPY® Debugging Guide
338 for RL78

__abortLaunch (message)

message

A string that is printed as an error message when the macro executes.
None.
All C-SPY drivers.

This macro can be used for aborting a debugger launch, for example if another macro
sees that something goes wrong during initialization and cannot perform a proper setup.

This is an emergency stop when launching, not a way to end an ongoing debug session
like the C library function abort ().

if (!__messageBoxYesCancel ("Do you want to mass erase to unlock
the device?", "Unlocking device"))
{ __abortLaunch("Unlock canceled. Debug session cannot
continue."); }

__cancelAllInterrupts()
int 0
The C-SPY Simulator.

Cancels all ordered interrupts.

__cancelInterrupt (interrupt_id)

interrupt_id
The value returned by the corresponding __orderInterrupt macro call
(unsigned long).

Return value

For use with

Description

__clearBreak

Syntax

Parameters

Return value
For use with
Description

See also

__closeFile

Syntax

Parameters

Return value
For use with

Description

C-SPY macros __4

Result Value
Successful int 0
Unsuccessful Non-zero error number

Table 16: __cancellnterrupt return values
The C-SPY Simulator.

Cancels the specified interrupt.

__clearBreak (break_id)

break_id
The value returned by any of the set breakpoint macros.

int 0
All C-SPY drivers.
Clears a user-defined breakpoint.

Breakpoints, page 125.

__closeFile(fileHandle)

fileHandle

A macro variable used as filehandle by the __openFile macro.

int 0
All C-SPY drivers.

Closes a file previously opened by __openFile.

339

Reference information on C-SPY system macros

340

__dataflashMemoryRestore

Syntax

Parameters

Return value

__dataflashMemoryRestore (filename)

filename
A string that specifies the file to be read. The filename must include a path,
which must either be absolute or use argument variables. For information about
argument variables, see the /DE Project Management and Building Guide for
RL78.

0 if something was written to data flash memory, even if an error occurred and not all
data was written, otherwise 1.

For use with The C-SPY hardware debugger drivers.

Description Reads the contents of the specified file and writes it to data flash memory. The address
ranges are checked, and addresses which are not part of the data flash memory are
skipped, while valid addresses are processed.

Invalid addresses result in a warning and the processing continues.

Example __dataflashMemoryRestore("c:\\temp\\saved_memory.hex") ;

See also Data Flash Memory window, page 165.

__dataflashMemorySave
Syntax __dataflashMemorySave (start, stop, format, filename)
Parameters start

C-SPY® Debugging Guide

for RL78

A string that specifies the first location of the data flash memory area to be
saved.

stop
A string that specifies the last location of the data flash memory area to be saved.

format

A string that specifies the format to be used for the saved data flash memory.
Choose between:

intel-extended

motorola-s37

Return value

For use with

Description

Example

See also

__delay

Syntax

Parameters

Return value
For use with

Description

C-SPY macros __4

filename

A string that specifies the file to write to. The filename must include a path,
which must either be absolute or use argument variables. For information about
argument variables, see the IDE Project Management and Building Guide for
RL78.

0 if something was written, even if an error occurred and not all data was written,
otherwise 1.

The C-SPY hardware debugger drivers.
Saves the contents of a specified data flash memory area to a file. The address ranges

are checked, and addresses which are not part of the data flash memory are skipped,
while valid addresses are processed.

Invalid addresses result in a warning and the processing continues.

__dataflashMemorySave ("0xF1000", "OxF1FFF", "intel-extended",
"c:\\temp\\saved_memory.hex") ;

Data Flash dialog box, page 167.

_delay(value)

value

The number of milliseconds to delay execution.
int 0
All C-SPY drivers.

Delays execution the specified number of milliseconds.

341

Reference information on C-SPY system macros

342

__disablelnterrupts

Syntax

Return value

For use with

Description

__driverType

C-SPY® Debugging Guide

for RL78

Syntax

Parameters

Return value

For use with

__disableInterrupts/()

Result Value
Successful int 0
Unsuccessful Non-zero error number

Table 17: __disablelnterrupts return values
The C-SPY Simulator.

Disables the generation of interrupts.

_ _driverType (driver_ id)
driver_id
A string corresponding to the driver you want to check for. Choose one of these:
"sim" corresponds to the simulator driver
"iecube" corresponds to the IECUBE emulator
"el" corresponds to the E1 emulator
"e2" corresponds to the E2 emulator
"e2lite" corresponds to the E2 Lite/E2 On-Board or EZ-CUBE2 emulator
"e20" corresponds to the E20 emulator
"ezcube" corresponds to the EZ-CUBE emulator

"tk" corresponds to the TK emulator

Result Value
Successful 1
Unsuccessful 0

Table 18: __driverType return values

All C-SPY drivers

C-SPY macros __4

Description Checks to see if the current C-SPY driver is identical to the driver type of the
driver_1id parameter.

Example __driverType("sim")

If the simulator is the current driver, the value 1 is returned. Otherwise 0 is returned.

__enablelnterrupts

Syntax __enableInterrupts()

Return value

Result Value
Successful int 0
Unsuccessful Non-zero error number

Table 19: __enablelnterrupts return values

For use with The C-SPY Simulator.

Description Enables the generation of interrupts.
__evaluate

Syntax __evaluate(string, valuePtr)

Parameters string

Expression string.

valuePtr

Pointer to a macro variable storing the result.

Return value

Result Value
Successful int 0
Unsuccessful int 1

Table 20: __evaluate return values
For use with All C-SPY drivers.

Description This macro interprets the input string as an expression and evaluates it. The result is
stored in a variable pointed to by valuePtr.

343

Reference information on C-SPY system macros

Example

__fillMemory8

Syntax

Parameters

Return value
For use with
Description

Example

C-SPY® Debugging Guide
344 for RL78

This example assumes that the variable i is defined and has the value 5:
__evaluate("i + 3", &myVar)

The macro variable myvar is assigned the value 8.

__fillMemory8 (value, address, zone, length, format)
value
An integer that specifies the value.

address

An integer that specifies the memory start address.

zone
A string that specifies the memory zone, see C-SPY memory zones, page 154.
length
An integer that specifies how many bytes are affected.
format
A string that specifies the exact fill operation to perform. Choose between:
Copy value will be copied to the specified memory area.
AND An AND operation will be performed between value and the
existing contents of memory before writing the result to memory.
OR An OR operation will be performed between value and the
existing contents of memory before writing the result to memory.
XOR An XOR operation will be performed between value and the
existing contents of memory before writing the result to memory.
int 0

All C-SPY drivers.
Fills a specified memory area with a byte value.

__fillMemory8(0x80, 0x700, "", 0x10, "OR");

C-SPY macros __4

__fillMemoryl 6
Syntax __fillMemoryl6 (value, address, zone, length, format)
Parameters value
An integer that specifies the value.
address
An integer that specifies the memory start address.
zone
A string that specifies the memory zone, see C-SPY memory zones, page 154.
length
An integer that defines how many 2-byte entities to be affected.
format
A string that specifies the exact fill operation to perform. Choose between:
Copy value will be copied to the specified memory area.
AND An AND operation will be performed between value and the
existing contents of memory before writing the result to memory.
OR An OR operation will be performed between value and the
existing contents of memory before writing the result to memory.
XOR An XOR operation will be performed between value and the
existing contents of memory before writing the result to memory.
Return value int 0
For use with All C-SPY drivers.
Description Fills a specified memory area with a 2-byte value.
Example __fillMemoryl6 (0xCDCD, 0x7000, "", 0x200, "Copy"):
__fillMemory32
Syntax __fillMemory32 (value, address, zone, length, format)
Parameters value

An integer that specifies the value.

345

Reference information on C-SPY system macros

Return value
For use with
Description

Example

__getSelectedCore

Description

C-SPY® Debugging Guide
346 for RL78

address

An integer that specifies the memory start address.

zone

A string that specifies the memory zone, see C-SPY memory zones, page 154.

length

An integer that defines how many 4-byte entities to be affected.

format

A string that specifies the exact fill operation to perform. Choose between:

Copy value will be copied to the specified memory area.

AND An AND operation will be performed between value
and the existing contents of memory before writing
the result to memory.

OR An OR operation will be performed between value
and the existing contents of memory before writing
the result to memory.

XOR An XOR operation will be performed between value
and the existing contents of memory before writing
the result to memory.

int 0

All C-SPY drivers.
Fills a specified memory area with a 4-byte value.

__fillMemory32 (0x0000FFFF, 0x4000, "", 0x1000, "XOR");

This macro returns 0 for a single-core system. It is only useful for IAR Embedded
Workbench products that support multicore debugging.

C-SPY macros __4

__isBatchMode

Syntax __isBatchMode ()

Return value

Result Value
True int 1
False int 0

Table 21: __isBatchMode return values

For use with All C-SPY drivers.
Description This macro returns True if the debugger is running in batch mode, otherwise it returns
False.
__loadlmage
Syntax __loadImage (path, offset, debugInfoOnly)
Parameters path

A string that identifies the path to the debug image to download. The path must
either be absolute or use argument variables. For information about argument
variables, see the IDE Project Management and Building Guide for RL78.

offset
An integer that identifies the offset to the destination address for the downloaded
debug image.

debugInfoOnly

A non-zero integer value if no code or data should be downloaded to the target
system, which means that C-SPY will only read the debug information from the
debug file. Or, 0 (zero) for download.

Return value
Value Result

Non-zero integer number A unique module identification.

int 0 Loading failed.

Table 22: __loadlmage return values
For use with All C-SPY drivers.

Description Loads a debug image (debug file).

347

Reference information on C-SPY system macros

Example |

Example 2

See also

__memoryRestore

Syntax

Parameters

Return value
For use with

Description

C-SPY® Debugging Guide
348 for RL78

Your system consists of a ROM library and an application. The application is your active
project, but you have a debug file corresponding to the library. In this case you can add
this macro call in the execUserSetup macro in a C-SPY macro file, which you
associate with your project:

__loadImage("ROMfile", 0x8000, 1);

This macro call loads the debug information for the ROM library rRoMfi1e without
downloading its contents (because it is presumably already in ROM). Then you can
debug your application together with the library.

Your system consists of a ROM library and an application, but your main concern is the
library. The library needs to be programmed into flash memory before a debug session.
While you are developing the library, the library project must be the active project in the
IDE. In this case you can add this macro call in the execUserSetup macro in a C-SPY
macro file, which you associate with your project:

__loadImage("ApplicationFile", 0x8000, 0);

The macro call loads the debug information for the application and downloads its
contents (presumably into RAM). Then you can debug your library together with the
application.

Images, page 401 and Loading multiple debug images, page 45.

__memoryRestore (zone, filename)

zone

A string that specifies the memory zone, see C-SPY memory zones, page 154.

filename

A string that specifies the file to be read. The filename must include a path,
which must either be absolute or use argument variables. For information about
argument variables, see the /DE Project Management and Building Guide for
RL78.

0 if successful, otherwise 1
All C-SPY drivers.

Reads the contents of a file and saves it to the specified memory zone.This macro does
not work with data flash memory.

C-SPY macros __4

Example __memoryRestore("", "c:\\temp\\saved_memory.hex") ;
See also Memory Restore dialog box, page 169.

__MmemorySave
Swﬂax __memorySave (start, stop, format, filename)
Parameters start

A string that specifies the first location of the memory area to be saved.

stop
A string that specifies the last location of the memory area to be saved.

format

A string that specifies the format to be used for the saved memory. Choose
between:

intel-extended
motorola
motorola-sl19
motorola-s28
motorola-s37.

filename

A string that specifies the file to write to. The filename must include a path,
which must either be absolute or use argument variables. For information about
argument variables, see the /DE Project Management and Building Guide for
RL7S.

Return value int 0

For use with All C-SPY drivers.

Description Saves the contents of a specified memory area to a file.

Example __memorySave (":0x00", ":0xFF", "intel-extended",
"c:\\temp\\saved_memory.hex") ;

See also Memory Save dialog box, page 168.

349

Reference information on C-SPY system macros

__messageBoxYesCancel

Syntax __messageBoxYesCancel (message, caption)

Parameters message

A message that will appear in the message box.

caption

The title that will appear in the message box.

Return value

Result Value
Yes 1
No 0

Table 23: __messageBoxYesCancel return values
For use with All C-SPY drivers.

Description Displays a Yes/Cancel dialog box when called and returns the user input. Typically, this
is useful for creating macros that require user interaction.

__messageBoxYesNo
Syntax __messageBoxYesNo (message, caption)
Parameters message

A message that will appear in the message box.

caption

The title that will appear in the message box.

Return value

Result Value
Yes 1
No 0

Table 24: __messageBoxYesNo return values
For use with All C-SPY drivers.

Description Displays a Yes/No dialog box when called and returns the user input. Typically, this is
useful for creating macros that require user interaction.

C-SPY® Debugging Guide
350 for RL78

C-SPY macros __4

__openFile
Syntax __openFile(filename, access)
Parameters filename

The file to be opened. The filename must include a path, which must either be
absolute or use argument variables. For information about argument variables,
see the IDE Project Management and Building Guide for RL7S.

access

The access type (string).

These are mandatory but mutually exclusive:

"a" append, new data will be appended at the end of the open file

"r" read (by default in text mode; combine with b for binary mode: rb)
"w" write (by default in text mode; combine with b for binary mode: wb)
These are optional and mutually exclusive:

"b" binary, opens the file in binary mode

"t ASCII text, opens the file in text mode

This access type is optional:

"+ together with r, w, or a; r+ or w+ is read and write, while a+ is read and

append
Return value
Result Value
Successful The file handle
Unsuccessful An invalid file handle, which tests as False

Table 25: __openFile return values
For use with All C-SPY drivers.

Description Opens a file for I/O operations. The default base directory of this macro is where the
currently open project file (* . ewp) is located. The argument to __openFile can
specify a location relative to this directory. In addition, you can use argument variables
such as $PROJ_DIRS$ and $TOOLKIT_DIRS in the path argument.

351

Reference information on C-SPY system macros

Example __var myFileHandle; /* The macro variable to contain */
/* the file handle */
myFileHandle = __openFile("$SPROJ_DIRS\\Debug\\Exe\\test.tst",
npy

if (myFileHandle)
{

/* successful opening */

See also For information about argument variables, see the IDE Project Management and
Building Guide for RL78.
__orderlinterrupt
Swwax __orderInterrupt (specification, first_activation,

repeat_interval, variance, infinite_hold time,
hold_time, probability)

Parameters specification
The interrupt (string). The specification can either be the full specification used
in the device description file (ddf) or only the name. In the latter case the
interrupt system will automatically get the description from the device
description file.

first_activation

The first activation time in cycles (integer)

repeat_interval

The periodicity in cycles (integer)

variance

The timing variation range in percent (integer between 0 and 100)

infinite_ _hold time

1 if infinite, otherwise 0.

hold_time
The hold time (integer)

probability
The probability in percent (integer between 0 and 100)
Return value The macro returns an interrupt identifier (unsigned long).

If the syntax of specification is incorrect, it returns -1.

C-SPY® Debugging Guide
352 for RL78

C-SPY macros __4

For use with The C-SPY Simulator.

Description Generates an interrupt.

Example This example generates a repeating interrupt using an infinite hold time first activated
after 4000 cycles:

__orderInterrupt ("USARTR_VECTOR", 4000, 2000, 0, 1, 0O, 100);

__popSimulatorinterruptExecutingStack

Syntax _ _popSimulatorInterruptExecutingStack (void)

Return value int 0

For use with The C-SPY Simulator.

Description Informs the interrupt simulation system that an interrupt handler has finished executing,

as if the normal instruction used for returning from an interrupt handler was executed.

This is useful if you are using interrupts in such a way that the normal instruction for
returning from an interrupt handler is not used, for example in an operating system with
task-switching. In this case, the interrupt simulation system cannot automatically detect
that the interrupt has finished executing.

See also Simulating an interrupt in a multi-task system, page 303.
__readFile

Syntax __readFile(fileHandle, valuePtr)

Parameters fileHandle

A macro variable used as filehandle by the __openFile macro.

valuePtr

A pointer to a variable.

Return value

Result Value
Successful 0
Unsuccessful Non-zero error number

Table 26: __readFile return values

353

Reference information on C-SPY system macros

For use with

Description

Example

__readFileByte

Syntax

Parameters

Return value
For use with
Description

Example

All C-SPY drivers.

Reads a sequence of hexadecimal digits from the given file and converts them to an
unsigned long which is assigned to the value parameter, which should be a pointer
to a macro variable.

Only printable characters representing hexadecimal digits and white-space characters
are accepted, no other characters are allowed.

__var number;
if (__readFile(myFileHandle, &number) == 0)
{

// Do something with number

}

In this example, if the file pointed to by myFileHandle contains the ASCII characters
1234 abcd 90ef, consecutive reads will assign the values 0x1234 Oxabcd 0x90ef
to the variable number.

__readFileByte(fileHandle)

fileHandle
A macro variable used as filehandle by the __openFile macro.

-1 upon error or end-of-file, otherwise a value between 0 and 255.
All C-SPY drivers.
Reads one byte from a file.

__var byte;
while ((byte = __readFileByte(myFileHandle)) != -1)
{

/* Do something with byte */

__readMemory8, __readMemoryByte

Syntax

C-SPY® Debugging Guide
354 for RL78

__readMemory8 (address, zone)

__readMemoryByte (address, zone)

C-SPY macros __4

Parameters address

The memory address (integer).

zone
A string that specifies the memory zone, see C-SPY memory zones, page 154.
Return value The macro returns the value from memory.
For use with All C-SPY drivers.
Description Reads one byte from a given memory location.
Example __readMemory$8 (0x0108, "");
__readMemoryl 6
Syntax __readMemorylé6 (address, zone)
Parameters address
The memory address (integer).
zone
A string that specifies the memory zone, see C-SPY memory zones, page 154.
Return value The macro returns the value from memory.
For use with All C-SPY drivers.
Description Reads a two-byte word from a given memory location.
Example __readMemoryl6 (0x0108, "");
__readMemory32
Syntax __readMemory32 (address, zone)
Parameters address
The memory address (integer).
zone

A string that specifies the memory zone, see C-SPY memory zones, page 154.

355

Reference information on C-SPY system macros

Return value The macro returns the value from memory.

For use with All C-SPY drivers.

Description Reads a four-byte word from a given memory location.

Example __readMemory32 (0x0108, "");
__registerMacrofFile

Syntax __registerMacroFile(filename)

Parameters filename

A file containing the macros to be registered (string). The filename must include
a path, which must either be absolute or use argument variables. For information
about argument variables, see the IDE Project Management and Building Guide

for RL7S.
Return value int 0
For use with All C-SPY drivers.
Description Registers macros from a setup macro file. With this function you can register multiple

macro files during C-SPY startup.

Example __registerMacroFile("c:\\testdir\\macro.mac") ;
See also Using C-SPY macros, page 323.
__resetFile
Syntax __resetFile(fileHandle)
Parameters fileHandle

A macro variable used as filehandle by the __openFile macro.

Return value int 0
For use with All C-SPY drivers.
Description Rewinds a file previously opened by __openFile.

C-SPY® Debugging Guide
356 for RL78

C-SPY macros __4

__selectCore
Description This macro can only be used with IAR Embedded Workbench products that support
multicore debugging.
__setCodeBreak
Syntax __setCodeBreak (location, count, condition, cond_type, action)
Parameters location

A string that defines the code location of the breakpoint, either a valid C-SPY
expression whose value evaluates to a valid address, an absolute location, or a
source location. For more information about the location types, see Enter
Location dialog box, page 149.

count
The number of times that a breakpoint condition must be fulfilled before a break
occurs (integer).

condition
The breakpoint condition. This must be a valid C-SPY expression, for instance
a C-SPY macro function.

cond_type
The condition type; either "CHANGED" or "TRUE" (string).

action

An expression, typically a call to a macro, which is evaluated when the
breakpoint is detected.

Return value
Result Value

Successful An unsigned integer uniquely identifying the breakpoint. This value
must be used to clear the breakpoint.

Unsuccessful 0

Table 27: __setCodeBreak return values

For use with The C-SPY simulator.

Description Sets a code breakpoint, that is, a breakpoint which is triggered just before the processor
fetches an instruction at the specified location.

357

Reference information on C-SPY system macros

358

__setCodeHWABreak

__setDataBreak

C-SPY® Debugging Guide

for RL78

Examples

See also

Syntax

Parameters

Return value

For use with

Description

Examples

See also

Syntax

__setCodeBreak ("{D:\\src\\prog.c}.12.9", 3, "d>16", "TRUE",
"ActionCode () ") ;

This example sets a code breakpoint on the label main in your source:

__setCodeBreak("main", 0, "1", "TRUE", "");

Breakpoints, page 125.

__setCodeHWBreak (location)

location
A string that defines the code location of the breakpoint, either a valid C-SPY
expression whose value evaluates to a valid address, an absolute location, or a
source location. For more information about the location types, see Enter
Location dialog box, page 149.

Result Value

Successful An unsigned integer uniquely identifying the breakpoint. This value
must be used to clear the breakpoint.

Unsuccessful 0

Table 28: __setCodeHWBreak return values
The C-SPY hardware debugger drivers.

Sets a code hardware breakpoint, that is, a breakpoint that is triggered just before the
processor fetches an instruction at the specified location.

__setCodeHWBreak ("{D:\\src\\prog.c}.12.9");

Breakpoints, page 125.

__setDataBreak(location, count, condition, cond_ type, access,
action)

Parameters

Return value

For use with

Description

Example

See also

C-SPY macros __4

location

A string that defines the data location of the breakpoint, either a valid C-SPY
expression whose value evaluates to a valid address or an absolute location. For
information about the location types, see Enter Location dialog box, page 149.

count
The number of times that a breakpoint condition must be fulfilled before a break
occurs (integer).

condition

The breakpoint condition (string).

cond_type
The condition type; either "CHANGED" or "TRUE" (string).

access

The memory access type: "R", for read, "w" for write, or "Rw" for read/write.

action

An expression, typically a call to a macro, which is evaluated when the
breakpoint is detected.

Result Value

Successful An unsigned integer uniquely identifying the breakpoint. This value
must be used to clear the breakpoint.

Unsuccessful 0

Table 29: __setDataBreak return values
The C-SPY Simulator.

Sets a data breakpoint, that is, a breakpoint which is triggered directly after the processor
has read or written data at the specified location.

__var brk;
brk = __setDataBreak(":0x4710", 3, "d>»6", "TRUE",

"W", "ActionData()");

__clearBreak (brk) ;

Breakpoints, page 125.

359

Reference information on C-SPY system macros

__setDatalLogBreak
Syntax __setDataLogBreak (variable, access)
Parameters variable

A string that defines the variable the breakpoint is set on, a variable of integer
type with static storage duration. The microcontroller must also be able to
access the variable with a single-instruction memory access, which means that
you can only set data log breakpoints on 8 and 16-bit variables.

access

The memory access type: "R", for read, "w" for write, or "Rw" for read/write.

Return value
Result Value

Successful An unsigned integer uniquely identifying the breakpoint. This value
must be used to clear the breakpoint.

Unsuccessful 0

Table 30: __setDataLogBreak return values

For use with The C-SPY Simulator.

Description Sets a data log breakpoint, that is, a breakpoint which is triggered when a specified
variable is accessed. Note that a data log breakpoint does not stop the execution, it just

generates a data log.

Example __var brk;
brk = __setDataLogBreak ("MyVar", "R");

__clearBreak (brk) ;

See also Breakpoints, page 125 and Getting started using data logging, page 226.

C-SPY® Debugging Guide
360 for RL78

__setLogBreak

Syntax

Parameters

Return value

For use with

Description

C-SPY macros __4

__setLogBreak (location, message, msg_type, condition,
cond_type)

location

A string that defines the code location of the breakpoint, either a valid C-SPY
expression whose value evaluates to a valid address, an absolute location, or a
source location. For more information about the location types, see Enter
Location dialog box, page 149.

message

The message text.

msg_type
The message type; choose between:

TEXT, the message is written word for word.

ARGS, the message is interpreted as a comma-separated list of C-SPY
expressions or strings.

condition

The breakpoint condition (string).

cond_type
The condition type; either "CHANGED" or "TRUE" (string).

Result Value

Successful An unsigned integer uniquely identifying the breakpoint. The same
value must be used when you want to clear the breakpoint.

Unsuccessful 0

Table 31: __setLogBreak return values
All C-SPY drivers.

Sets a log breakpoint, that is, a breakpoint which is triggered when an instruction is
fetched from the specified location. If you have set the breakpoint on a specific machine
instruction, the breakpoint will be triggered and the execution will temporarily halt and
print the specified message in the C-SPY Debug Log window.

361

Reference information on C-SPY system macros

362

Example

See also

__setSimBreak

Syntax

Parameters

Return value

For use with

C-SPY® Debugging Guide
for RL78

__var logBpl;
__var logBp2;
logOn ()
{
logBpl = __setLogBreak ("{C:\\temp\\Utilities.c}.23.1",
"\"Entering trace zone at :\", #PC:%X", "ARGS", "1", "TRUE");
logBp2 = __setLogBreak ("{C:\\temp\\Utilities.c}.30.1",
"Leaving trace zone...", "TEXT", "1", "TRUE");
}
logOff ()

{
__clearBreak(logBpl) ;
__clearBreak (logBp2) ;

Formatted output, page 331 and Breakpoints, page 125.

__setSimBreak(location, access, action)

location

A string that defines the data location of the breakpoint, either a valid C-SPY
expression whose value evaluates to a valid address or an absolute location. For
information about the location types, see Enter Location dialog box, page 149.

access

The memory access type: "R" for read or "w" for write.

action

An expression, typically a call to a macro, which is evaluated when the
breakpoint is detected.

Result Value

Successful An unsigned integer uniquely identifying the breakpoint. This value
must be used to clear the breakpoint.

Unsuccessful 0

Table 32: __setSimBreak return values

The C-SPY Simulator.

C-SPY macros __4

Description Use this system macro to set immediate breakpoints, which will halt instruction
execution only temporarily. This allows a C-SPY macro function to be called when the
processor is about to read data from a location or immediately after it has written data.
Instruction execution will resume after the action.

This type of breakpoint is useful for simulating memory-mapped devices of various
kinds (for instance serial ports and timers). When the processor reads at a
memory-mapped location, a C-SPY macro function can intervene and supply the
appropriate data. Conversely, when the processor writes to a memory-mapped location,
a C-SPY macro function can act on the value that was written.

__setTraceStartBreak
Syntax __setTraceStartBreak (location)
Parameters location

A string that defines the code location of the breakpoint, either a valid C-SPY
expression whose value evaluates to a valid address, an absolute location, or a
source location. For more information about the location types, see Enter
Location dialog box, page 149.

Return value
Result Value

Successful An unsigned integer uniquely identifying the breakpoint. The same
value must be used when you want to clear the breakpoint.

Unsuccessful 0

Table 33: __setTraceStartBreak return values
For use with The C-SPY Simulator.

Description Sets a breakpoint at the specified location. When that breakpoint is triggered, the trace
system is started.

363

Reference information on C-SPY system macros

Example

See also

__setTraceStopBreak

Syntax

Parameters

Return value

For use with

Description

Example

C-SPY® Debugging Guide
364 for RL78

__var startTraceBp;

__var stopTraceBp;

traceOn ()
{
startTraceBp = __setTraceStartBreak
("{C:\\TEMP\\Utilities.c}.23.1");
stopTraceBp = __setTraceStopBreak

("{C:\\temp\\Utilities.c}.30.1");

traceOff ()
{

__clearBreak(startTraceBp) ;
__clearBreak (stopTraceBp) ;

Breakpoints, page 125.

__setTraceStopBreak (location)

location
A string that defines the code location of the breakpoint, either a valid C-SPY
expression whose value evaluates to a valid address, an absolute location, or a
source location. For more information about the location types, see Enter
Location dialog box, page 149.

Result Value

Successful An unsigned integer uniquely identifying the breakpoint. The same
value must be used when you want to clear the breakpoint.

Unsuccessful int 0

Table 34: __setTraceStopBreak return values
The C-SPY Simulator.

Sets a breakpoint at the specified location. When that breakpoint is triggered, the trace
system is stopped.

See setTraceStartBreak, page 363.

C-SPY macros __4

See also Breakpoints, page 125.
__sourcePosition

Syntax __sourcePosition(linePtr, colPtr)

Parameters linePtr

Pointer to the variable storing the line number

colPtr
Pointer to the variable storing the column number

Return value

Result Value
Successful Filename string
Unsuccessful Empty (" ") string

Table 35: __sourcePosition return values
For use with All C-SPY drivers.

Description If the current execution location corresponds to a source location, this macro returns the
filename as a string. It also sets the value of the variables, pointed to by the parameters,
to the line and column numbers of the source location.

__strFind
Syntax __strFind(macroString, pattern, position)
Parameters macroString
A macro string.
pattern
The string pattern to search for
position
The position where to start the search. The first position is 0
Return value The position where the pattern was found or -1 if the string is not found.
For use with All C-SPY drivers.

365

Reference information on C-SPY system macros

Description

Example

See also

__subString

Syntax

Parameters

Return value
For use with
Description

Example

See also

This macro searches a given string (macroString) for the occurrence of another string
(pattern).

__strFind("Compiler", "pile", 0) =3
__strFind("Compiler", "foo", 0) = -1

Macro strings, page 329.

__subString(macroString, position, length)

macroString

A macro string.

position

The start position of the substring. The first position is 0.

length
The length of the substring

A substring extracted from the given macro string.
All C-SPY drivers.
This macro extracts a substring from another string (macroString).

__subString("Compiler", 0, 2)
The resulting macro string contains Co.
__subString("Compiler", 3, 4)

The resulting macro string contains pile.

Macro strings, page 329.

__targetDebuggerVersion

Syntax
Return value

For use with

C-SPY® Debugging Guide
366 for RL78

__targetDebuggerVersion ()
A string that represents the version number of the C-SPY debugger processor module.

All C-SPY drivers.

C-SPY macros __4

Description This macro returns the version number of the C-SPY debugger processor module.
Example __var toolVer;
toolVer = __targetDebuggerVersion() ;
__message "The target debugger version is, ", toolVer;
__toLower
Syntax __toLower (macroString)
Parameters macroString

A macro string.

Return value The converted macro string.
For use with All C-SPY drivers.
Description This macro returns a copy of the parameter macroString where all the characters have

been converted to lower case.

Example __toLower ("IAR")
The resulting macro string contains iar.
__toLower ("Mix42")

The resulting macro string contains mix42.

See also Macro strings, page 329.
__toString

Syntax __toString(C_string, maxlength)

Parameters C_string

Any null-terminated C string.

maxlength

The maximum length of the returned macro string.
Return value Macro string.

For use with All C-SPY drivers.

367

Reference information on C-SPY system macros

368

Description

Example

See also

__toUpper

Syntax

Parameters

Return value
For use with

Description

Example

See also

__unloadimage

Syntax

Parameters

C-SPY® Debugging Guide
for RL78

This macro is used for converting C strings (char* or char []) into macro strings.

Assuming your application contains this definition:
char const * hptr = "Hello World!";

this macro call:

__toString (hptr, 5)

would return the macro string containing Hello.

Macro strings, page 329.

__toUpper (macroString)

macroString

A macro string.
The converted string.
All C-SPY drivers.

This macro returns a copy of the parameter macroString where all the characters have
been converted to upper case.

_toUpper ("string")

The resulting macro string contains STRING.

Macro strings, page 329.

__unloadImage (module_id)

module_id

An integer which represents a unique module identification, which is retrieved
as a return value from the corresponding __loadImage C-SPY macro.

Return value

For use with
Description

See also

__writeFile

Syntax

Parameters

Return value
For use with

Description

__writeFileByte

Syntax

Parameters

C-SPY macros __4

Value Result

module_id A unique module identification (the same as the input
parameter).

int 0 The unloading failed.

Table 36: __unloadlmage return values

All C-SPY drivers.

Unloads debug information from an already downloaded debug image.

Loading multiple debug images, page 45 and Images, page 401.

__writeFile(fileHandle, value)

fileHandle

A macro variable used as filehandle by the __openFile macro.

value

An integer.
int 0

All C-SPY drivers.

Prints the integer value in hexadecimal format (with a trailing space) to the file file.

Note: The __fmessage statement can do the same thing. The __writeFile macro is

provided for symmetry with __readFile.

__writeFileByte(fileHandle, value)

fileHandle

A macro variable used as filehandle by the __openFile macro.

value

An integer.

369

Reference information on C-SPY system macros

Return value int 0
For use with All C-SPY drivers.
Description Writes one byte to the file fileHandle.

__writeMemory8, __writeMemoryByte

Syntax __writeMemory8 (value, address, zone)
__writeMemoryByte(value, address, zone)

Parameters value
An integer.

address

The memory address (integer).

zone
A string that specifies the memory zone, see C-SPY memory zones, page 154.
Return value int 0
For use with All C-SPY drivers.
Description Writes one byte to a given memory location.
Exmnpk _ _writeMemory8 (0x2F, 0x8020, "");
__writeMemoryl 6
Syntax __writeMemoryl6 (value, address, zone)
Parameters value
An integer.
address
The memory address (integer).
zone
A string that specifies the memory zone, see C-SPY memory zones, page 154.
Return value int 0

C-SPY® Debugging Guide
370 for RL78

C-SPY macros __4

For use with All C-SPY drivers.
Description Writes two bytes to a given memory location.
Example __writeMemoryl6 (0x2FFF, 0x8020, "");
__writeMemory32

Syntax __writeMemory32 (value, address, zone)
Parameters value

An integer.

address

The memory address (integer).

zone

A string that specifies the memory zone, see C-SPY memory zones, page 154.

Return value int 0

For use with All C-SPY drivers.

Description Writes four bytes to a given memory location.
Example __writeMemory32 (0x5555FFFF, 0x8020, "");

Graphical environment for macros
Reference information about:

® Macro Registration window, page 372
® Debugger Macros window, page 374
® Macro Quicklaunch window, page 376

371

Graphical environment for macros

372

Macro Registration window

Requirements

Display area

C-SPY® Debugging Guide
for RL78

The Macro Registration window is available from the View>Macros submenu during
a debug session.

Macro Registration x
Add Remove Remove Al Reload
File Full Path it
V| SetupSimple.mac ChtutonSetupSimple.mac
SetupAdvanced.mac ChtutonSetupAdvanced.mac

Use this window to list, register, and edit your debugger macro files.
Double-click a macro file to open it in the editor window and edit it.

See also Registering C-SPY macros—an overview, page 324.

None; this window is always available.

This area contains these columns:

File
The name of an available macro file. To register the macro file, select the check
box to the left of the filename. The name of a registered macro file appears in
bold style.

Full path

The path to the location of the added macro file.

C-SPY macros __4

Context menu

This context menu is available:
Add...

Remove
Rermove All

Reload
Open File

Open Debugger Macros Window

These commands are available:

Add
Opens a file browser where you can locate the macro file that you want to add
to the list. This menu command is also available as a function button at the top
of the window.

Remove

Removes the selected debugger macro file from the list. This menu command is
also available as a function button at the top of the window.

Remove All

Removes all macro files from the list. This menu command is also available as
a function button at the top of the window.

Reload

Registers the selected macro file. Typically, this is useful when you have edited
a macro file. This menu command is also available as a function button at the
top of the window.

Open File

Opens the selected macro file in the editor window.

Open Debugger Macros Window
Opens the Debugger Macros window.

373

Graphical environment for macros

Debugger Macros window
The Debugger Macros window is available from the View>Macros submenu during a
debug session.
Click the Name header or the File

header to sort alphabetically on
either function name or filename.

Debugger Macros x
MName Parameters File it
Access i} SetupSimulation.mac 3
__abortlaunch (string)

__cancelAllinterrupts 0

__cancellnterrupt {inf)

__clearBreak {id)

__closeFile (file) :

_ delay fvalug) Sglect amacroand '

_ disablelnterrupts i ick Fl for reference ©

__driverType {string) information £ -

Use this window to list all registered debugger macro functions, either predefined

system macros or your own. This window is useful when you edit your own macro

functions and want an overview of all available macros that you can use.

o Click the column headers Name or File to sort alphabetically on either function
name or filename.

o Double-clicking a macro defined in a file opens that file in the editor window.

o To open a macro in the Macro Quicklaunch window, drag it from the Debugger
Macros window and drop it in the Macro Quicklaunch window.

o Select a macro and press F1 to get online help information for that macro.

Requirements
None; this window is always available.

Display area
This area contains these columns:

Name
The name of the debugger macro.

Parameters
The parameters of the debugger macro.

File
For macros defined in a file, the name of the file is displayed. For predefined
system macros, -System Macro- is displayed.

C-SPY® Debugging Guide
374 for RL78

C-SPY macros __4

Context menu

This context menu is available:

Open File

Add to Quicklaunch Window

User Macros
System Macros

v All Macros

Open Macro Registration Window

These commands are available:
Open File
Opens the selected debugger macro file in the editor window.

Add to Quicklaunch Window
Adds the selected macro to the Macro Quicklaunch window.

User Macros

Lists only the debugger macros that you have defined yourself.

System Macros
Lists only the predefined system macros.

All Macros

Lists all debugger macros, both predefined system macros and your own.

Open Macro Registration Window
Opens the Macro Registration window.

375

Graphical environment for macros

376

Macro Quicklaunch window

al

Requirements

C-SPY® Debugging Guide
for RL78

The Macro Quicklaunch window is available from the View menu.

= Expression Result
G testEval()
G nval Error (col 1): Unknown or ambiguous symbol. nval
G testEval2() 0
Q s2-37
G incval() 3
=
2
B
=
5
&
2
= Macro Quicklaunch B

Use this window to evaluate expressions, typically C-SPY macros.

For some devices, there are predefined C-SPY macros available with device support,
typically provided by the chip manufacturer. These macros are useful for performing
certain device-specific tasks. The macros are available in the Macro Quicklaunch
window and are easily identified by their green icon,

The Macro Quicklaunch window is similar to the Quick Watch window, but is
primarily designed for evaluating C-SPY macros. The window gives you precise control
over when to evaluate an expression.

See also Executing C-SPY macros—an overview, page 324.
To add an expression:
Choose one of these alternatives:

o Drag the expression to the window

e In the Expression column, type the expression you want to examine.

If the expression you add and want to evaluate is a C-SPY macro, the macro must first
be registered, see Registering C-SPY macros—an overview, page 324.

To evaluate an expression:

Double-click the Recalculate icon to calculate the value of that expression.

None; this window is always available.

C-SPY macros __4

Display area
This area contains these columns:

g Recalculate icon

To evaluate the expression, double-click the icon. The latest evaluated
expression appears in bold style.

Expression

One or several expressions that you want to evaluate. Click <click to add>
to add an expression. If the return value has changed since last time, the value
will be displayed in red.

Result
Shows the return value from the expression evaluation.

Context menu

This context menu is available:

Evaluate Now
Rermove
Rermove All

These commands are available:

Evaluate Now

Evaluates the selected expression.

Remove
Removes the selected expression.

Remove All
Removes all selected expressions.

377

Graphical environment for macros

C-SPY® Debugging Guide
378 for RL78

The C-SPY command line
utility—cspybat

e Summary of C-SPY command line options

e Reference information on C-SPY command line options

Using C-SPY in batch mode

You can execute C-SPY in batch mode if you use the command line utility cspybat,
installed in the directory common\bin.

These topics are covered:

e Starting cspybat
e Output

e Invocation syntax

STARTING CSPYBAT

I To start cspybat you must first create a batch file. An easy way to do that is to use one
of the batch files that C-SPY automatically generates when you start C-SPY in the
IDE.

C-SPY generates a batch file projectname. buildconfiguration.cspy.bat every
time C-SPY is initialized. In addition, two more files are generated:

® project.buildconfiguration.general.xcl, which contains options specific
to cspybat.

® project.buildconfiguration.driver.xcl, which contains options specific to
the C-SPY driver you are using.

You can find the files in the directory $PROJ_DIR$\settings. The files contain the
same settings as the IDE, and provide hints about additional options that you can use.

2 To start cspybat, you can use this command line:

project.cspybat.bat [debugfile]

379

Using C-SPY in batch mode

380

C-SPY® Debugging Guide
for RL78

Note that debug£ileis optional. You can specify it if you want to use a different debug
file than the one that is used in the project.buildconfiguration.general .xcl
file.

Before you run cspybat for the first time using an emulator debugger, you
must:

Start the AR Embedded Workbench IDE and set up the hardware debugger in the
Hardware Setup dialog box—available from the C-SPY driver menu when you start a
debug session. Save the project. The settings are saved to a file.

Set up the environment variable CSPYBAT_INIFILE to point to the saved hardware
settings file (. dnx) in the settings subdirectory in your project directory.

For example, SET CSPYBAT_ INIFILE=C:\my_proj\settings\myproject.dnx.
Note that no quotation marks should be used around the path, even if there are blank
characters.

OUTPUT
When you run cspybat, these types of output can be produced:

o Terminal output from cspybat itself

All such terminal output is directed to stderr. Note that if you run cspybat from
the command line without any arguments, the cspybat version number and all
available options including brief descriptions are directed to stdout and displayed
on your screen.

o Terminal output from the application you are debugging

All such terminal output is directed to stdout, provided that you have used the
--plugin option. See --plugin, page 393.

® Error return codes

cspybat returns status information to the host operating system that can be tested in
abatch file. For successful, the value int 0 is returned, and for unsuccessful the value
int 1 is returned.

INVOCATION SYNTAX

The invocation syntax for cspybat is:

cspybat processor_ DLL driver_DLL debug file
[cspybat_options] --backend driver_ options

Note: In those cases where a filename is required—including the DLL files—you are
recommended to give a full path to the filename.

The C-SPY command line utility—cspybat ___o

Parameters

The parameters are:

Parameter Description

processor_DLL The processor-specific DLL file; available in r178\bin.

driver DLL The C-SPY driver DLL file; available in r178\bin.

debug_file The object file that you want to debug (filename extension out). See

also —debugfile, page 387.

cspybat_options The command line options that you want to pass to cspybat. Note
that these options are optional. For information about each option,
see Reference information on C-SPY command line options, page 383.

--backend Marks the beginning of the parameters to the C-SPY driver; all
options that follow will be sent to the driver. Note that this option is
mandatory.

driver_options The command line options that you want to pass to the C-SPY driver.
Note that some of these options are mandatory and some are
optional. For information about each option, see Reference information
on C-SPY command line options, page 383.

Table 37: cspybat parameters

Summary of C-SPY command line options

Reference information about:

o General cspybat options

o Options available for all C-SPY drivers

o Options available for the simulator driver
°

Options available for the C-SPY hardware debugger drivers

GENERAL CSPYBAT OPTIONS

--application_args Passes command line arguments to the debugged
application.

--attach_to_running_ta Makes the debugger attach to a running application at
rget its current location, without resetting the target system.

--backend Marks the beginning of the parameters to be sent to the
C-SPY driver (mandatory).

381

Summary of C-SPY command line options

382

C-SPY® Debugging Guide
for RL78

--code_coverage_file

--cycles
--debugfile

--download_only

-f

--leave_target_running

--macro
--macro_param
--plugin
--silent

--timeout

Enables the generation of code coverage information
and places it in a specified file.

Specifies the maximum number of cycles to run.
Specifies an alternative debug file.

Downloads a code image without starting a debug
session afterwards.

Extends the command line.

Makes the debugger leave the application running on
the target hardware after the debug session is closed.

Specifies a macro file to be used.

Assigns a value to a C-SPY macro parameter.
Specifies a plugin file to be used.

Onmits the sign-on message.

Limits the maximum allowed execution time.

OPTIONS AVAILABLE FOR ALL C-SPY DRIVERS

—--Ccore

-d

Specifies the core to be used.

Specifies the C-SPY target system.

--near_const_location Specifies the location for __near-declared constants and

--near_const_size

--near_const_start

strings.
Specifies the size in Kbytes of the near constants area.

Specifies the start address for the near constants RAM

area.

-

Specifies the device description file to be used.

OPTIONS AVAILABLE FOR THE SIMULATOR DRIVER

--disable_interrupts

--function_profiling

--mapu

Disables the interrupt simulation.

Analyzes your source code to find where the most time
is spent during execution.

Activates memory access checking.

The C-SPY command line utility—cspybat ___o

OPTIONS AVAILABLE FOR THE C-SPY HARDWARE
DEBUGGER DRIVERS

--exec_dll Specifies the Exec DLL file.

--live_debug Makes C-SPY use the live debug feature that is available
on some core S3 devices.

--log_file Creates a log file.
--suppress_download Suppresses download of the executable image.

--suppress_exchange_a Suppresses the IECUBE message that asks you to check
dapter the connection of the exchange adapter.

--verify download Verifies the executable image.

Reference information on C-SPY command line options

This section gives detailed reference information about each cspybat option and each
option available to the C-SPY drivers.

--application_args

Swwax --application_args="arg0 argl ..."

Parameters arg

A command line argument.
For use with cspybat

Description Use this option to pass command line arguments to the debugged application. These
variables must be defined in the application:

/* __argc, the number of arguments in __argv. */

__no_init int __argc;

/* __argv, an array of pointers to the arguments (strings); must
be large enough to fit the number of arguments.*/

__no_init const char * __argv[MAX_ ARGS];

/* __argvbuf, a storage area for __argv; must be large enough to

hold all command line arguments. */
__no_init __root char __argvbuf [MAX_ARG_SIZE];

383

Reference information on C-SPY command line options

384

Example

--application_args="--logfile log.txt --verbose"
To set related options, choose:

Project>Options>Debugger>Extra Options

--attach_to_running_target

Syntax

For use with

Description

--backend

C-SPY® Debugging Guide

for RL78

Syntax

Parameters

For use with

Description

--attach_to_running_target

cspybat.

Note: This option might not be supported by the combination of C-SPY driver and
device that you are using. If you are using this option with an unsupported combination,
C-SPY produces a message.

Use this option to make the debugger attach to a running application at its current
location, without resetting the target system.

If you have defined any breakpoints in your project, the C-SPY driver will set them
during attachment. If the C-SPY driver cannot set them without stopping the target
system, the breakpoints will be disabled. The option also suppresses download and the
Run to option.

When you use this option, the hot-plugin feature that is available on some core S3
devices is used. The RAM, SFRs, and the registers a, X, B, C, D, E, H, and L can be read
and written to during execution.

Project>Attach to Running Target

--backend {driver options}

driver options

Any option available to the C-SPY driver you are using.
cspybat (mandatory).

Use this option to send options to the C-SPY driver. All options that follow --backend
will be passed to the C-SPY driver, and will not be processed by cspybat itself.

This option is not available in the IDE.

--code_coverage _file

Syntax

Parameters

For use with

Description

See also

=-=core

Syntax

Parameters

For use with
Description

See also

The C-SPY command line utility—cspybat ___o

--code_coverage_file file
Note that this option must be placed before the - -backend option on the command line.

file
The name of the destination file for the code coverage information.

cspybat

Use this option to enable the generation of a text-based report file for code coverage
information. The code coverage information will be generated after the execution has
completed and you can find it in the specified file. Because most embedded applications
do not terminate, you might have to use this option in combination with --timeout or
--cycles.

Note that this option requires that the C-SPY driver you are using supports code
coverage. If you try to use this option with a C-SPY driver that does not support code
coverage, an error message will be directed to stderr.

Code coverage, page 271, --cycles, page 386, --timeout, page 395.

To set this option, choose View>Code Coverage, right-click and choose Save As when
the C-SPY debugger is running.

--core {sl|s2|s3}

sl|s2]|s3
The core you are using. This option reflects the corresponding compiler option.

All C-SPY drivers.
Use this option to specify the core you are using.

The IAR C/C++ Development Guide for RL78 for information about the cores.

Project>Options>General Options>Target>Device>Core

385

Reference information on C-SPY command line options

--cycles

Syntax

Parameters

For use with

Description

Syntax

Parameters

For use with

Description

C-SPY® Debugging Guide
386 for RL78

--cycles cycles
Note that this option must be placed before the - -backend option on the command line.

cycles

The number of cycles to run.
cspybat

Use this option to specify the maximum number of cycles to run. If the target program
executes longer than the number of cycles specified, the target program will be aborted.
Using this option requires that the C-SPY driver you are using supports a cycle counter,
and that it can be sampled while executing.

This option is not available in the IDE.

-d {sim|iecube|el|e2|e2lite|e20|ezcube]|tk}

sim Specifies the simulator.

iecube Specifies the IECUBE emulator.

el Specifies the E1 emulator.

e2 Specifies the E2 emulator.

e2lite Specifies the E2 Lite/E2 On-Board or EZ-CUBE2 emulator.
e20 Specifies the E20 emulator.

ezcube Specifies the EZ-CUBE emulator.

tk Specifies the TK emulator.

All C-SPY drivers.

Use this option to specify the C-SPY target system you are using.

Project>Options>Debugger>Driver

--debugfile

Syntax

Parameters

For use with

Description

--disable_interrupts

Syntax
For use with

Description

--download_only

Syntax

For use with

Description

The C-SPY command line utility—cspybat ___o

--debugfile filename

filename

The name of the debug file to use.

cspybat

This option can be placed both before and after the --backend option on the command
line.

Use this option to make cspybat use the specified debug file instead of the one used in
the generated cpsybat .bat file.

This option is not available in the IDE.

--disable_interrupts
The C-SPY Simulator driver.

Use this option to disable the interrupt simulation.

To set this option, choose Simulator>Interrupt Setup and deselect the Enable
interrupt simulation option.

--download_only

Note that this option must be placed before the --backend option on the command line.
cspybat

Use this option to download the code image without starting a debug session afterwards.
To set a related option, choose:

Project>Options>Debugger>Setup and deselect Run to.

387

Reference information on C-SPY command line options

388

--exec_dll

-f

C-SPY® Debugging Guide

for RL78

Syntax

Parameters

For use with

Description

Syntax

Parameters

For use with

Description

--exec_dll=filename

filename

The name of the Exec DLL file.
All C-SPY hardware debugger drivers.
Use this option to specify the Exec DLL file that will be used for controlling the

emulator.

This option is not available in the IDE.

-f filename

filename

A text file that contains the command line options (default filename extension
xcl).
cspybat
This option can be placed either before or after the --backend option on the command
line.
Use this option to make cspybat read command line options from the specified file.

In the command file, you format the items exactly as if they were on the command line
itself, except that you may use multiple lines, because the newline character is treated
like a space or tab character.

Both C/C++ style comments are allowed in the file. Double quotes behave in the same
way as in the Microsoft Windows command line environment.

Project>Options>Debugger>Extra Options.

--function_profiling

Syntax

Parameters

For use with

Description

The C-SPY command line utility—cspybat ___o

--function_profiling filename

filename

The name of the log file where the profiling data is saved.
The C-SPY simulator driver.
Use this option to find the functions in your source code where the most time is spent

during execution. The profiling information is saved to the specified file. For more
information about function profiling, see Profiling, page 261.

C-SPY driver>Function Profiling

--leave_target_running

Syntax

For use with

Description

--leave_target_running

cspybat.

For any of these emulators, provided that the target board is supplied with external
power:

El

E2

E2 Lite/E2 On-Board

E20

EZ-CUBE

EZ-CUBE2

TK

Note: Even if this option is supported by the C-SPY driver you are using, there might
be device-specific limitations.

Use this option to make the debugger leave the application running on the target
hardware after the debug session is closed.

Any existing breakpoints will not be automatically removed. You might want to
consider disabling all breakpoints before using this option.

389

Reference information on C-SPY command line options

--live_debug

Syntax

For use with

Description

--log_file

Syntax

Parameters

For use with

Description

=-=-macro

Syntax

Parameters

C-SPY® Debugging Guide
390 for RL78

C-SPY driver>Leave Target Running

--live_debug

The E1, E2, E2 Lite/E2 On-Board, E20, EZ-CUBE, EZ-CUBE?2, and TK emulators for
some devices.

Use this option to use the live debug feature that is available on some core S3 devices.
The live debug feature means that RAM, SFRs, and the registers A, X, B, C, D, E, H, and
L can be read and written to during execution.

Use this option with care.

This option is not available in the IDE.

--log_file=filename

filename

The name of the log file.
Any C-SPY hardware debugger driver.

Use this option to log the communication between C-SPY and the target system to a file.
To interpret the result, detailed knowledge of the communication protocol is required.

Project>Options>Debugger>Driver>Communication Log

--macro filename

Note that this option must be placed before the --backend option on the command line.

filename

The C-SPY macro file to be used (filename extension mac).

The C-SPY command line utility—cspybat ___o

For use with cspybat

Description Use this option to specify a C-SPY macro file to be loaded before executing the target
application. This option can be used more than once on the command line.

See also Briefly about using C-SPY macros, page 322.
Project>Options>Debugger>Setup>Setup macros>Use macro file

--mMacro_param
Syntax --macro_param [param=value]

Note that this option must be placed before the - -backend option on the command line.

Parameters param=value

paramis a parameter defined using the __param C-SPY macro construction.
value is a value.

For use with cspybat

Description Use this option to assign a value to a C-SPY macro parameter. This option can be used
more than once on the command line.

See also Macro parameters, page 329.

Project>Options>Debugger>Extra Options

--mapu

Syntax --mapu

For use with The C-SPY simulator driver.

Description Specify this option to use the section information in the debug file for memory access
checking. During the execution, the simulator will then check for accesses to
unspecified memory ranges. If any such access is found, the C function call stack and a
message will be printed on stderr and the execution will stop.

See also Monitoring memory and registers, page 156.

391

Reference information on C-SPY command line options

[IH

--near_const_location

Syntax

Parameters

For use with

Description

--near_const_size

Syntax

Parameters

For use with

Description

C-SPY® Debugging Guide
392 for RL78

To set related options, choose:

Simulator>Memory Access Setup

--near_const_location {ram|rom0|roml}

ram __near-declared constants and strings are located in RAM,
in the memory range 0xF0000—0xFFFFF.

rom0 _near-declared constants and strings are located in ROM,

in the memory range 0x00000—0x0FFFF. They are mirrored
by hardware to RAM, in the range 0xF0000—0xFFFFF.

roml __near-declared constants and strings are located in ROM,
in the memory range 0x10000—0x1FFFF. They are mirrored
by hardware to RAM, in the range 0xF0000—0xFFFFF.

All C-SPY drivers.

Use this option to specify the location for __near-declared constants and strings.

Project>Options>General Options>Target>Near constant location

--near_const_size size

size The size in Kbytes of the near constants area. This is a
decimal value from 1.00 to 59. 75, where the mandatory
decimal part must be one of 00, 25, 50, or 75.

All C-SPY drivers.

Use this option to specify the size in Kbytes of the near constants area.

Project>Options>General Options>Target>Near constant location>Size

The C-SPY command line utility—cspybat ___o

--near_const_start

Syntax --near_const_start address

Parameters
address The start address for the near constants RAM area, in
hexadecimal notation.

For use with All C-SPY drivers.

Description Use this option to specify the start address for the near constants RAM area.

m Project>Options>General Options>Target>Near constant location>Start address

-p

Syntax -p filename

Parameters filename

The device description file to be used.

For use with All C-SPY drivers.

Description Use this option to specify the device description file to be used.

See also Selecting a device description file, page 42.

[[E Project>Options>Debugger>Setup>Device description file

--plugin

Syntax --plugin filename

Note that this option must be placed before the - -backend option on the command line.

Parameters filename
The plugin file to be used (filename extension d11).

For use with cspybat

393

Reference information on C-SPY command line options

394

Description

--silent

Syntax

For use with

Description

--suppress_download

Syntax
For use with

Description

C-SPY® Debugging Guide
for RL78

Certain C/C++ standard library functions, for example print£, can be supported by
C-SPY—for example, the C-SPY Terminal I/0 window—instead of by real hardware
devices. To enable such support in cspybat, a dedicated plugin module called
r178bat.dll located in the r178\bin directory must be used.

Use this option to include this plugin during the debug session. This option can be used
more than once on the command line.

Note: You can use this option to also include other plugin modules, but in that case the
module must be able to work with cspybat specifically. This means that the
C-SPY plugin modules located in the common\plugin directory cannot normally be
used with cspybat.

Project>Options>Debugger>Plugins

--silent

Note that this option must be placed before the - -backend option on the command line.
cspybat

Use this option to omit the sign-on message.

This option is not available in the IDE.

--suppress_download
Any C-SPY hardware debugger driver.

Use this option to suppress the downloading of the executable image to a non-volatile
type of target memory. The image corresponding to the debugged application must
already exist in the target.

If this option is combined with the option --verify_download, the debugger will read
back the executable image from memory and verify that it is identical to the debugged
application.

Project>Options>Debugger>Driver>Setup>Download>Suppress

The C-SPY command line utility—cspybat ___o

--suppress_exchange_adapter

Syntax
For use with

Description

--timeout

Syntax

Parameters

For use with

Description

--verify_download

Syntax
For use with

Description

--suppress_exchange_adapter
The IECUBE emulator driver.

Use this option to suppress the message that asks you to check the connection of the
exchange adapter every time you start an IECUBE emulator debug session.

Project>Options>Debugger>IECUBE>Suppress exchange adapter message

--timeout milliseconds

Note that this option must be placed before the - -backend option on the command line.

milliseconds

The number of milliseconds before the execution stops.
cspybat

Use this option to limit the maximum allowed execution time.

This option is not available in the IDE.

--verify_download
Any C-SPY hardware debugger driver.

Use this option to verify that the downloaded code image can be read back from target
memory with the correct contents.

Project>Options>Debugger>Driver>Setup>Download>Verify

395

Reference information on C-SPY command line options

C-SPY® Debugging Guide
396 for RL78

Part 4. Additional
reference information

This part of the C-SPY® Debugging Guide for RL78 includes these chapters:

e Debugger options
e Additional information on C-SPY drivers

o OCD emulators reserved resources

.hmuhhhhi

397

AAARRIE

398

Debugger options

e Setting debugger options
e Reference information on general debugger options

e Reference information on C-SPY hardware debugger driver options

Setting debugger options

Before you start the C-SPY debugger you might need to set some options—both C-SPY
generic options and options required for the target system (C-SPY driver-specific
options). This section gives detailed information about the options in the Debugger
category.

To set debugger options in the IDE:
I Choose Project>Options to display the Options dialog box.
2 Select Debugger in the Category list.

For more information about the generic options, see Reference information on general
debugger options, page 400.

3 On the Setup page, select the appropriate C-SPY driver from the Driver drop-down
list.

4 To set the driver-specific options, select the appropriate driver from the Category list.
Depending on which C-SPY driver you are using, different options are available.

C-SPY driver Available options pages
C-SPY emulator Reference information on C-SPY hardware debugger driver options, page
404

Table 38: Options specific to the C-SPY drivers you are using
To restore all settings to the default factory settings, click the Factory Settings button.

6 When you have set all the required options, click OK in the Options dialog box.

399

Reference information on general debugger options

Reference information on general debugger options

Reference information about:

o Setup, page 400

® Images, page 401

® Extra Options, page 402
o Plugins, page 403

Setup

The general Setup options select the C-SPY driver, the setup macro file, and device
description file to use, and specify which default source code location to run to.

Setup

Driver: Run to:
main
Setup macros

[Use macro file:

5PROJ_DIR&\Setup Simulation. mac

Device description file
[Overide defautt:
STOOLKIT_DIRS corfig'debugger.generic ddf

Driver

Selects the C-SPY driver for the target system you have.

Run to

Specifies the location C-SPY runs to when the debugger starts after a reset. By default,
C-SPY runs to the main function.

To override the default location, specify the name of a different location you want
C-SPY torunto. You can specify assembler labels or whatever can be evaluated as such,
for example function names.

See also Executing from reset, page 42.

Setup macros

Registers the contents of a setup macro file in the C-SPY startup sequence. Select Use
macro file and specify the path and name of the setup file, for example

C-SPY® Debugging Guide
400 for RL78

Debugger options °

SetupSimple.mac. If no extension is specified, the extension mac is assumed. A
browse button is available for your convenience.

Device description file

A default device description file is selected automatically based on your project settings.
To override the default file, select Override default and specify an alternative file. A
browse button is available for your convenience.

For information about the device description file, see Modifying a device description
file, page 47.

Images
The Images options control the use of additional debug files to be downloaded.

Images

Download extra image

Path: (=]

Offzet: [Debug infa onty

[Download extra image

Debug info only

[Download extra image

Debug info only

Note: Images are only downloaded to RAM and no flash loading will be performed.

Download extra Images
Controls the use of additional debug files to be downloaded:

Path
Specify the debug file to be downloaded. A browse button is available for your
convenience.

Offset
Specity an integer that determines the destination address for the downloaded
debug file.

Debug info only

Makes the debugger download only debug information, and not the complete
debug file.

401

Reference information on general debugger options

If you want to download more than three debug images, use the related C-SPY macro,
see __loadlmage, page 347.

For more information, see Loading multiple debug images, page 45.

Extra Options

The Extra Options page provides you with a command line interface to C-SPY.
Extra Options

[Use command line options

Use command line options

Specify command line arguments that are not supported by the IDE to be passed to
C-SPY.

Note that it is possible to use the /args option to pass command line arguments to the
debugged application.

Syntax: /args arg0 argl ...
Multiple lines with /args are allowed, for example:
/args --logfile log.txt

/args --verbose

C-SPY® Debugging Guide
402 for RL78

Debugger options °

If you use /args, these variables must be defined in your application:

/* __argc, the number of arguments in __argv. */
__no_init int __argc;
/* __argv, an array of pointers to strings that holds the

arguments; must be large enough to fit the number of
parameters.*/
__no_init const char * __argv[MAX_ ARGS];

/* __argvbuf, a storage area for __argv; must be large enough to
hold all command line parameters. */
__no_init __root char __argvbuf [MAX_ARG_SIZE];

Plugins
The Plugins options select the C-SPY plugin modules to be loaded and made available
during debug sessions.

Plugins

Select plugins to load:

Code Coverage

Description: Enables code coverage in the debugger.

Location: n 8.0_2"common*pluging“CodeCoverage CodeCoverage dll
Criginator: IAR Systems

Version: 8.05.4818

Select plugins to load

Selects the plugin modules to be loaded and made available during debug sessions. The
list contains the plugin modules delivered with the product installation.

Description

Describes the plugin module.

Location

Informs about the location of the plugin module.

Generic plugin modules are stored in the common\plugins directory. Target-specific
plugin modules are stored in the r178\plugins directory.

403

Reference information on C-SPY hardware debugger driver options

Originator

Informs about the originator of the plugin module, which can be modules provided by
IAR Systems or by third-party vendors.

Version

Informs about the version number.

Reference information on C-SPY hardware debugger driver options

Setup

By default, C-SPY downloads the application to RAM or flash when a debug session
starts. The Download options let you modify the behavior of the download.
Setup
Download

[Suppress
[Verity

[Suppress exchange adapter message

[Collect data
Emulator serial number: Automatic LJ
Communication log

[Use communication log file:
$PROJ_DIRS\cspycomm Jog

Download

Sets options for the code image to debug.

Suppress Disables the downloading of code, while preserving the present
content of the flash. This command is useful if you want to debug
an application that already resides in target memory.

If this option is combined with the Verify option, the debugger will
read back the code image from non-volatile memory and verify
that it is identical to the built application.

Verify Verifies that the downloaded code image can be read back from
target memory with the correct contents.

C-SPY® Debugging Guide
404 for RL78

Debugger options °

Suppress exchange adapter message

Suppresses the message that asks you to check the connection of the exchange adapter
every time you start an [IECUBE emulator debug session. This option only exists for the
IECUBE emulator.

Collect data

Enables data collection for devices that support Smart Analog data collection and
display. If this option has been selected, the only debug commands that can be used in
the C-SPY Debugger are Go, Break, and Stop Debugging. The collected data is
displayed in the Timeline, Event Log, and Event Log Summary windows.

This option only exists for the E1, E2, E20, and E2 Lite/E2 On-Board emulators.

Emulator serial number

Selects which Renesas emulator to use, if more than one is connected to your host
computer via USB. This option only exists for the E1, E2, E20, E2 Lite/E2 On-Board,
and EZCube2 emulators.

Log communication

Logs the communication between C-SPY and the target system to a file. To interpret the
result, detailed knowledge of the interface is required.

405

Reference information on C-SPY hardware debugger driver options

C-SPY® Debugging Guide
406 for RL78

Additional information on
C-SPY drivers

This chapter describes the additional menus and features provided by the

C-SPY® drivers. You will also find some useful hints about resolving problems.

Reference information on C-SPY driver menus

C-SPY driver

Reference information about:

o C-SPY driver, page 407
o Simulator menu, page 408

o Emulator menu, page 410

Before you start the C-SPY debugger, you must first specify a C-SPY driver in the
Options dialog box, using the option Debugger>Setup>Driver.

When you start a debug session, a menu specific to that C-SPY driver will appear on the
menu bar, with commands specific to the driver.

When we in this guide write “choose C-SPY driver>" followed by a menu command,
C-SPY driver refers to the menu. If the feature is supported by the driver, the command
will be on the menu.

407

Reference information on C-SPY driver menus

408

Simulator menu

Menu commands

C-SPY® Debugging Guide
for RL78

When you use the simulator driver, the Simulator menu is added to the menu bar.
Memory Access Setup...

* Trace

+|= Function Trace

Trace Expressions
Function Profiler

Data Log
Data Log Summary
Interrupt Log

Interrupt Summary

Timeline

& B AR

Simulated Frequency...

Interrupt Setup...
Forced Interrupt

Interrupt Status

==, Breakpoint Usage

These commands are available on the menu:

Memory Access Setup
Displays a dialog box to simulate memory access checking by specifying
memory areas with different access types, see Memory Access Setup dialog box,
page 189.

Trace

Opens a window which displays the collected trace data, see Trace window,
page 206.

Function Trace

Opens a window which displays the trace data for function calls and function
returns, see Function Trace window, page 211.

Trace Expressions

Opens a window where you can specify specific variables and expressions for
which you want to collect trace data, see Trace Expressions window, page 214.

Function Profiler

Opens a window which shows timing information for the functions, see
Function Profiler window, page 266.

& B K B

Additional information on C-SPY drivers ___¢

Data Log
Opens a window which logs accesses to up to four different memory locations
or areas, see Data Log window, page 237.

Data Log Summary
Opens a window which displays a summary of data accesses to specific memory
location or areas, see Data Log Summary window, page 240.

Interrupt Log
Opens a window which displays the status of all defined interrupts, see Interrupt
Log window, page 311.

Interrupt Log Summary
Opens a window which displays a summary of the status of all defined
interrupts, see Interrupt Log Summary window, page 314.

Timeline
Opens a window which gives a graphical view of various kinds of information
on a timeline, see The application timeline, page 221.

Simulated Frequency

Opens the Simulated Frequency dialog box where you can specify the
simulator frequency used when the simulator displays time information, for
example in the log windows. Note that this does not affect the speed of the
simulator. For more information, see Simulated Frequency dialog box, page
414.

Interrupt Setup
Displays a dialog box where you can configure C-SPY interrupt simulation, see
Interrupt Setup dialog box, page 305.

Forced Interrupts
Opens a window from where you can instantly trigger an interrupt, see Forced
Interrupt window, page 308.

Interrupt Status
Opens a window from where you can instantly trigger an interrupt, see Interrupt
Status window, page 309.

Breakpoint Usage

Displays a window which lists all active breakpoints, see Breakpoint Usage
window, page 139.

409

Reference information on C-SPY driver menus

Emulator menu

When you are using the C-SPY hardware debugger drivers, the Emulator menu is
added to the menu bar.

* Hardware Setup...
LE Operating Frequency...

Leave Target Running
Breakpoint Toggle During Run

Mask Option...

Pseudo Emulation...

DMM Setup...
Snap Shot Setup...
Stub Setup...
Trace Setup...
Timer Setup...
Data Sample Setup
Edit Events...

HEESELES DA

Edit Sequencer...

Start/Stop Function Settings...

Enable Flash Self Programming

Flash Programming Emulation...

Data Flash Emulation...

PG-FPx Security Flags Setting Emulation...
Flash Shield Setting...

Data Sample
Sampled Graphs

Trace

Function Trace

Event Log

Event Summary

Power Log Setup...

Power Log
m Timeline
Data Flash Memaory

Breakpoint Usage...

C-SPY® Debugging Guide
410 for RL78

Additional information on C-SPY drivers ___¢

Menu commands

These commands are available on the menu:

E Hardware Setup

Displays the driver-specific Hardware Setup dialog box, where you can make
the basic configuration for the emulator. See Hardware Setup, page 56.

When C-SPY is not running, select this menu command to automatically display
the Hardware Setup dialog box the next time you start C-SPY.

Operating Frequency
Displays a dialog box where you can inform the emulator of the operating
frequency that the MCU is running at, see Operating Frequency dialog box,
page 55.

Leave Target Running

Leaves the application running on the target hardware after the debug session is
closed.

Any existing breakpoints will not be automatically removed. You might want to
consider disabling all breakpoints before using this menu command.

If this menu command is not available, it is not supported by the C-SPY driver
you are using.

Breakpoint Toggle During Run

Allows toggling breakpoints on or off during emulator execution. Toggling a
breakpoint on or off will temporarily halt the emulator.

Mask Option
Displays the Mask Option Settings dialog box, in which the mask option and
pin mode settings can be changed.

Pseudo Emulation

Displays the Pseudo Emulation dialog box, in which the pseudo emulation
behavior can be defined.

E DMM Setup
Displays the DMM Function Settings dialog box, see DMM Function Settings
dialog box, page 87.

@ Snap Shot Setup
Displays the Snap Shot Function Settings dialog box, see Snap Shot Function
Settings dialog box, page 204.

411

Reference information on C-SPY driver menus

a Stub Setup
Displays the Stub Function Settings dialog box, see Stub Function Settings
dialog box, page 89.

v, Trace Setup
Displays a dialog box where you can configure the trace generation and
collection, see Reference information on trace, page 199.

ijj Timer Setup
Displays the Timer Settings dialog box, in which the timer behavior can be
defined; see Timer Settings dialog box, page 95.

J-I_ Data Sample Setup
Opens a window where you can specify variables to sample data for, see Data
Sample Setup window, page 246

Edit Events
|

Displays the driver-specific Edit Events dialog box, in which the events used as
breakpoint, trace, timer, trigger output, and sequencer events can be defined; see
Edit Events dialog box, page 90. When this dialog box is active, you can still
access other elements in the IDE.

' Edit Sequencer

Displays the driver-specific Edit Sequencer Events dialog box, in which you
can define sequences of events that must occur before a sequencer event is
triggered; see Edit Sequencer Events dialog box, page 93.

Start/Stop Function Settings

Displays a dialog box where you can configure the emulator to execute specific
routines of your application immediately before the execution starts and/or after
it halts, see Start/Stop Function Settings dialog box, page 84.

Enable Flash Self Programming

Enables the flash self-programming feature and makes the Flash Programming
Emulation and PG-FPx Security Flags Setting Emulation commands
available. Only IECUBE for devices with flash memory. If flash programming
emulation is enabled, the internal ROM size defined in the device description
file must be used and cannot be changed.

Flash Programming Emulation

Opens the Flash Programming Emulation dialog box, in which you can set up
the flash programming emulation. Only IECUBE devices with flash memory.
See Flash Programming Emulation dialog box, page 417.

C-SPY® Debugging Guide
412 for RL78

Additional information on C-SPY drivers ___¢

Data Flash Emulation
Displays the Data Flash Emulation dialog box, see Data Flash Emulation
dialog box, page 422.

PG-FPx Security Flags Setting Emulation
Opens the PG-FPx Security Flags Setting Emulation dialog box, in which you
can configure the emulation of PG-FPx security. Only IECUBE devices with
flash memory. See Programmer PG-FPx Security Flags dialog box, page 420.

Flash Shield Setting
Opens the Flash Shield Setting dialog box, in which you can open a range of
flash memory blocks for modification by the flash self programming. Only
IECUBE for devices with flash memory. See Flash Shield Setting dialog box,
page 421.

Data Sample
Opens a window where you can view the result of the data sampling, see Data
Sample window, page 248.

Sampled Graphs
Opens a window which gives a graphical view of various kinds of sampled
information, see Data Sample window, page 248.

Trace
Opens a window which displays the collected trace data, see Trace window,
page 206.

Function Trace
Opens a window which displays the trace data for function calls and function
returns, see Function Trace window, page 211.

Event Log
Opens a window where you can configure the collection of Smart Analog data
(event logging); see Event Log window, page 253.

Event Summary
Opens a window where you can view the collected Smart Analog data; see Event
Log Summary window, page 256.

Power Log Setup
Opens a window where you can configure the power measurement; see Power
Log Setup window, page 285.

Power Log

Opens a window that displays collected power values; see Power Log window,
page 287.

413

Reference information on the C-SPY simulator

Timeline
Opens a window which gives a graphical view of various kinds of information
on a timeline, see The application timeline, page 221.

Data Flash Memory
Displays the Data Flash Memory window, see Data Flash Memory window,
page 165.

Breakpoint Usage

Displays a window which lists all active breakpoints, see Breakpoint Usage
window, page 139.

Reference information on the C-SPY simulator

This section gives additional reference information the C-SPY simulator, reference
information not provided elsewhere in this documentation.

Reference information about:

o Simulated Frequency dialog box, page 414

Simulated Frequency dialog box
The Simulated Frequency dialog box is available from the C-SPY driver menu.
f Simulated Frequency &J‘

Frequency [Hz]:

oo |
1 MHz Cancel

Uszed only for converting cycles to time.

L

Use this dialog box to specify the simulator frequency used when the simulator displays
time information.

Requirements
The C-SPY simulator.

Frequency

Specify the frequency in Hz.

C-SPY® Debugging Guide
414 for RL78

Additional information on C-SPY drivers ___¢

Reference information on the C-SPY hardware debugger drivers
This section gives additional reference information on the C-SPY hardware debugger
drivers, reference information not provided elsewhere in this documentation.

Reference information about:

Mask Option Settings dialog box, page 415

Pseudo Emulation dialog box, page 416

Flash Programming Emulation dialog box, page 417

Edit Flash Emulation Events dialog box, page 418

Edit Flash Emulation Timing dialog box, page 419
Programmer PG-FPx Security Flags dialog box, page 420
Flash Shield Setting dialog box, page 421

Data Flash Emulation dialog box, page 422

Mask Option Settings dialog box

The Mask Option Settings dialog box is available from the Emulator menu.
Mask Opticn Settings

Group name:

Ring-05C ~|

Option name:

Cancel
Set

Use this dialog box to change the mask option and pin mode settings.

Requirements
The IECUBE emulator.

Group name
Select the group name of the pin you want to change. By default, the current option
setting is shown, marked with an asterisk.

Option name

Select the option name of the mask you want to change. By default, the current option
setting is shown, marked with an asterisk.

Click Set to save the new settings.

415

Reference information on the C-SPY hardware debugger drivers

416

For more information, see the in-circuit emulator and the emulation board
documentation.

Pseudo Emulation dialog box

Requirements

Name

Command

C-SPY® Debugging Guide
for RL78

The Pseudo Emulation dialog box is available from the Emulator menu.

Pseudo Emulation

Mame:

LYD L3

Command:

WDD = Yreset Yint N

Use this dialog box to execute pseudo emulation commands. For information about
pseudo emulation commands, see the documentation delivered with the emulator and
the emulation board.

The IECUBE emulator.

The name of the emulation you want to run.

Select the command you want to execute.

Click Execute to execute the command.

Additional information on C-SPY drivers ___¢

Flash Programming Emulation dialog box

The Flash Programming Emulation dialog box is available from the Emulator menu.
FLASH Programming Emulation

Event Owverview
Erase Erase Error (MRG10) (0x1A) at address 0x01234

O
Write Write Error (0x1C) at address 0x02222

K.

Events...

Timing Crwverview

Write command retry: 1

Erase command retry: 2
Set_XXX command retry: 3
EEPROMWrite command retry: 4

Use this dialog box to get an overview of the current flash programming settings.
Requirements
The IECUBE emulator and a device with flash memory.
Event Overview
Displays the active flash emulation events.
Timing Overview
Displays the user-defined flash emulation timing.
Buttons

These buttons are available:

Events Displays the Edit Flash Emulation Events dialog box where
you can edit the events.

Timing Displays the Edit Flash Emulation Timing dialog box
where you can set up the timing.

417

Reference information on the C-SPY hardware debugger drivers

Edit Flash Emulation Events dialog box

The Edit Flash Emulation Events dialog box is available from the Flash
Programming Emulation dialog box.

Edit FLASH Emulation Events

Address Command Errar
1 | oxoo1z34 |Erase v| |EraseErr0r(MRG10)(Dx1A) v| [#|Enatle
Cancel

2 | Ox002222 Write v |Write Error (0:x1C) v| [#]Enable

Use this dialog box to set up events to test the flash self programming error handling.
You can define up to two events.

Requirements

The IECUBE emulator and a device with flash memory.

Address
Specify the address where the emulation shall generate the defined error (in
hexadecimal notation). The maximum value is determined by the ROM size of the
device. The error will not be generated at any other address.

Command
Choose flash control firmware function to be executed. See the Flash Memory
Programming documentation for your device.

Error
Choose the operation of the self library function that generates the returned error. See
the Flash Memory Programming documentation for your device.

Enable

Enables the event definition.

C-SPY® Debugging Guide
418 for RL78

Additional information on C-SPY drivers ___¢

Edit Flash Emulation Timing dialog box

The Edit Flash Emulation Timing dialog box is available from the Flash
Programming Emulation dialog box.

Edit FLASH Emulation Timing g|
Retry

Wirite 3 hd

Erase 5 v

Set_iHKK 2 v

EEPROMite 0 v

Use this dialog box to edit the timing of the flash emulation.

Requirements

The IECUBE emulator and a device with flash memory.

Retry

Sets the timing of the flash emulation command. The default retry value is 0 (=no retry),
which results in the fastest timing. The higher the retry value, the more delayed the
timing will be.

Emulation commands

You can set the timing for these commands:

Write The write command.
Erase The erase command.
Set_ XXX The set_info command.

EEPROM Write The eeprom_write command.

Default

Restores the retry values to the factory settings.

419

Reference information on the C-SPY hardware debugger drivers

Programmer PG-FPx Security Flags dialog box

The Programmer PG-FPx Security Flags dialog box is available from the Emulator
menu.

PG-FPx Security Flags Setting Emulation

QK
|v Disable Chip Erase

C |
I Disable Block Erase anee

Restore

el

[Disable Program

[Disable Boot Cluster Reprogramming

Use this dialog box to set the initial value of the flash programming security flags.

Requirements

The IECUBE emulator and a device with flash memory.

Disable Chip Erase

Sets a security flag that protects the entire chip contents from being erased.

Disable Block Erase

Sets a security flag that protects the contents of the current block from being erased.

Disable Program

Sets a security flag that write-protects the flash memory.

Disable Boot Cluster Reprogramming

Sets a security flag that write-protects the boot area. Only for devices that support this
feature.

Restore

Resets the flags to the values they had when you opened the dialog box.

C-SPY® Debugging Guide
420 for RL78

Additional information on C-SPY drivers ___¢

Flash Shield Setting dialog box

The Flash Shield Setting dialog box is available from the Emulator menu.

Flash Shield Setting

Flash shield Window QK

StartBlock | pxopoo1z

By default, the entire flash memory is write-protected by a flash shield.

Use this dialog box to specify that a memory range can be modified by the flash
self-programming.

Note: When you open this dialog box, the specified values have been changed either by

the debugger or by your application, since you closed the dialog box last time.

Requirements

The IECUBE emulator and a device with flash memory.

Flash Shield Window

Opens up a “window” in the flash shield, a range of memory blocks can be modified by
the flash self-programming.

Start Block
Specify the number of the first memory block of the flash shield window, in hexadecimal
or decimal notation.

End Block
Specify the number of the last memory block of the flash shield window.

Restore

Restores the values to what they were when you opened the dialog box.

421

Reference information on the C-SPY hardware debugger drivers

Data Flash Emulation dialog box

The Data Flash Emulation dialog box is available from the Emulator menu.

3

Data Flash Emulation

Enable data emulation

Error Emulation
Wyrike
Ox1Fs00

|:| Erase

Timing emulation
Wyrike

O Min

(&) Typical

(O Typical warst

O Max

=

[Jirkernal verify

[1Blank check

Default

Erase
O Min
(&) Typical
(O Typical warst

O Max

Use this dialog box to access the data flash memory from the Data Flash Memory
window, and to test error handling and timing issues in the data flash memory.

Requirements

The IECUBE emulator and a device with flash memory.

Enable data emulation

Enables the error emulation and timing emulation.

Error Emulation
Specify which type of error to emulate. Choose between:
o Write
o Erase
o Internal verify

e Blank check.

You must also specify a generation address, the address where the error occurs. If this
address is outside the data flash memory area, an error message is issued.

By default, error emulation is not set.

C-SPY® Debugging Guide

422 for RL78

Additional information on C-SPY drivers ___¢

Timing Emulation
Specify the timing for write errors and erase errors. Choose between:
Min
Typical (default)
Typical worst (worst case)
Max.

Resolving problems
These topics are covered:
o Write failure during load

o No contact with the target hardware

Debugging using the C-SPY hardware debugger systems requires interaction between
many systems, independent from each other. For this reason, setting up this debug
system can be a complex task. If something goes wrong, it might be difficult to locate
the cause of the problem.

This section includes suggestions for resolving the most common problems that can
occur when debugging with the C-SPY hardware debugger systems.

For problems concerning the operation of the evaluation board, refer to the
documentation supplied with it, or contact your hardware distributor.
WRITE FAILURE DURING LOAD

There are several possible reasons for write failure during load. The most common is
that your application has been incorrectly linked:

o Check the contents of your linker configuration file and make sure that your
application has not been linked to the wrong address

o Check that you are using the correct linker configuration file.

m In the IDE, the linker configuration file is automatically selected based on your choice
of device.

To choose a device:
I Choose Project>Options.
Select the General Options category.
Click the Target tab.

H W N

Choose the appropriate device from the Device drop-down list.

423

Resolving problems

424

C-SPY® Debugging Guide
for RL78

H W N

To override the default linker configuration file:
Choose Project>Options.

Select the Linker category.

Click the Config tab.

Choose the appropriate linker configuration file in the Linker configuration file area.

NO CONTACT WITH THE TARGET HARDWARE

There are several possible reasons for C-SPY to fail to establish contact with the target
hardware. Do this:

Check the communication devices on your host computer

Verify that the cable is properly plugged in and not damaged or of the wrong type

Make sure that the evaluation board is supplied with sufficient power

Check that the correct options for communication have been specified in the IAR
Embedded Workbench IDE.

Examine the linker configuration file to make sure that the application has not been
linked to the wrong address.

OCD emulators reserved
resources

This chapter contains important information about using the RL78
microcontroller together with one of the emulators that use the OCD driver:
El, E2, E2 Lite/E2 On-Board, E20, EZ-CUBE, EZ-CUBE2, and TK.

Reserving resources when debugging
When an OCD emulator is debugging an application, some resources cannot be used by

the application and must be reserved. Any modification of these areas is prohibited.

All ROM areas used by the monitor program must be reserved by your application. Any
modification of these areas is prohibited. These areas must be excluded from the usable
address space in the linker configuration file.

Device-specific linker configuration files to be used as templates are included in the
$TOOLKIT_DIRS\config\ directory.

If unused ROM addresses are filled, you must use ielftool to exclude the resources
required by the debug monitor program.

ROM AREAS USED FOR ON-CHIP DEBUGGING
These ROM areas must be reserved:

e The reset vector. Will be overwritten by the monitor program during debugging.
o The IRQ vector at address 0x0002, 0x0003. Used by the monitor program.

o The OCD option byte area address at 0x00C3. Used for configuring the OCD
interface.

o The User option byte area address at 0x00C0—-0x00C2. Used for device
configuration such as watchdog, voltage detection, on-chip oscillator, etc.

e The Security ID area at 0x00C4—-0x00CD. Contains the authentication code.
® Monitor area 1 at 0x00CE—0x00D7. Used by the monitor program.

® Monitor area 2, 256 or 512 bytes at the end of the internal ROM. Used by the
monitor program. If the pseudo RRM feature is not used in 2-wire mode, this area is
only 88 bytes.

425

Reserving resources when debugging

426

C-SPY® Debugging Guide
for RL78

RAM SPACE

An additional 6 bytes of the stack area must be reserved.

PINS

The TOOLO pin must be reserved.

SECURITY ID AND OPTION BYTES

The area 0x00C0-0x00C3 of the RL78 flash memory is called the Option byte area.
This area holds the User option byte (0x00C0-0x00c2) and the On-chip debug option
byte (0x00C3). During power-up and reset of an application, the Option byte area is
automatically referenced by the device, so you must make sure that it is correctly
configured. Refer to the hardware user manual for your device.

The Security ID allows an authentication check before the debug session is started. The
behavior in case of a using an incorrect security ID can be configured. The Security ID
of an erased device is 10 times 0xFF (this means that 0xFF is reserved, and that you
cannot use it as an ID code).

Define the Security ID and option bytes using one of two methods:

e In specific constant sections

o By absolute memory allocation.

Examples
1 Using specific constant sections:

#pragma constseg=.option_byte

__root const unsigned char optbyteld] = {vO0,vl,v2,v3};

#pragma constseg=.security_id

__root const unsigned char secu_ID[10]= {s0,sl1,s2,s3,s4,s5,s6,
s7,s88,59};

#pragma constseg=default
2 Using absolute memory allocation:

__root const unsigned char optbyte[4] @ 0x00CO0 =
{v0,vl,v2,v3};

__root const unsigned char secu_ID[10] @ 0x00C4 =
{s0,s51,52,53,54,55,56,57,58,59};

OCD emulators reserved resources ___o

3 In assembler language:

ORG 0x00CO
; Option bytes
DB 0x00, OXFE, 0xFF, 0x85

ORG 0x00C4

; Security ID

DB OxFF, OXFF, OxFF, OxFF, OXFF, OxXFF, OxFF, OXFF, OXFF, OxXFF
END

The ten bytes s0—s9 make up the ID Code that you are defining. By default, all values
are 0xFF. See Hardware Setup, page 56.

You can change the section names .option_byte and .security_id. New names
must be defined in the linker configuration file.

The device-specific values v0-v2 are described in the device documentation. The value
v3 configures the OCD interface. For more information, refer to the User s Manual for
your emulator, available from the Renesas website www.renesas.eu/el.

RESERVING THE ROM MEMORY AREA FOR THE MONITOR

The addresses 0x02, 0x03, the area between 0x00CE-0x00D7, and the last 256 or 512
bytes of the internal ROM must be reserved for the debug monitor program. If this area
is rewritten by the flash self-programming, on-chip debugging can no longer be
performed. Make sure to reserve these areas in your linker configuration file.

Device-specific linker configuration file templates reserving all necessary areas are
included with the product. The templates are located in the $TOOLKIT_DIR$\config\
directory. The naming convention is transparent; the template for a device is named
Inkdevicename. icf.

STACK AREA FOR DEBUGGING

On-chip debugging requires another 6 bytes of stack. Therefore, the stack size of the
application must be increased. In the IAR Embedded Workbench IDE, choose
Project>Options and open the Stack/Heap page in the General Options category. If
you are debugging from the command line, the stack size is defined in the linker
configuration file:

--config_def _STACK_SIZE=128

427

Further reading

428

CAUTIONS

There are a number of important things you need to know when debugging with an OCD
emulator. Refer to the User s Manual for your emulator, available from the Renesas
website www . renesas.eu/el.

Further reading

C-SPY® Debugging Guide
for RL78

For more information about using your OCD emulator, see the User s Manual for your
emulator, available from the Renesas website www . renesas . eu/docuweb.

For information about known problems and for a list of supported devices, see the
Universal Flash Memory Programmer and Serial On-chip Debugger Operating
Precautions guide for your emulator. It is available from the Renesas website
www . renesas . eu/docuweb.

TARGET SYSTEM DESIGN

The target system design is described in the User’s Manual for all microcontroller series.

FLASH PROGRAMMING

Using an OCD emulator as a flash programmer is described in User’s Manual for all
microcontroller series.

A

Abort (Report Assert option)cooueunn.. 83
__abortLaunch (C-SPY system macro). 338
absolute location, specifying for a breakpoint. 149
Access type (Edit Events dialogbox) 91
Access type (Edit Memory Access option) 191
Access type (IECUBE Find in Trace option) 218
Access (Edit SFRoption)o, 188
Add to Watch Window (Symbolic Memory window context

10731111 [N 173
Add (SFR Setup window context menu). 186
Address Range (Find in Trace option) 217
Address (Edit Events dialogbox) 91
Address (Edit SFRoption)cooen... 188
Address IECUBE Find in Trace option) 218
Ambiguous symbol (Resolve Symbol Ambiguity option). 123
--application_args (C-SPY command line option) 383
application, built outside the IDE 44
assembler labels, viewing 104
assembler source code, fine-tuning. 261
assembler symbols, using in C-SPY expressions 101
assembler variables, viewing 104
assumptions, programming experience. 21

Auto Scroll (Sampled Graphs window context menu) . . . 244
Auto Scroll (Timeline

window contextmenu) 231, 235,251,292, 318
AUto Windowt 106
Autostep settings dialog box. 87
Autostep (Debugmenu) 51

--attach_to_running_target (C-SPY command line option)384
--backend (C-SPY command line option). 384
backtrace information

viewing in Call Stack window 77
batch mode, using C-SPYin.............. 379
Big Endian (Memory window context menu). 164

Index °

blocks, in C-SPY macrosoviinnn.. 331
bold style, inthisguide. 25
Break At (Event breakpoints option). 142
Break on Throw (Debugmenu) 51
Break on Uncaught Exception (Debug menu). 51
Break (Debugmenu). 50
breakpoint condition, example 134-135
Breakpoint Toggle During Run (Emulator menu). 411
Breakpoint Usage window 139
Breakpoint Usage (Emulatormenu) 414
breakpoints
codehardware 126, 141
code,example 358
connectinga C-SPYmacro 326
consumersof L L Ll 129
data 145
datalog ... 147
descriptionof L 125
disabling used by Stack window 130
L 1 L 142
iconsforinthe IDE 128
ignored when single stepping (OCD). 65
in Memory window 132
listingall 139
reasons forusing 125
setting
inmemory window., 132
USING SYSLEM MACTOS . « « v o v v e e eeeeeaen 133
using the dialogbox 131
toggling 131
tyPes Of oot 126
useful tips. . ..o i 134
Breakpoints dialog box
Code ..o 140
Code HW. 126, 141
Data. ... 145
Datalogooi 147
Event..... ..o 142
Immediate i 148

429

430

Log .o
Trace Start.............
Trace StOp « .« o v
Breakpoints window. il
Browse (Tracetoolbar)
byte order, setting in Memory window

C

C function information, in C-SPY.
C symbols, using in C-SPY expressions.
C variables, using in C-SPY expressions
call chain, displaying in C-SPY
Call stack information.
Call Stack window,

for backtrace information.
Call Stack (Timeline window context menu)
__cancelAlllnterrupts (C-SPY system macro)
__cancellnterrupt (C-SPY system macro).
Clear All (Debug Log window context menu)
Clear Group (Registers User Groups
Setup window contextmenu),
Clear timer before Go (timer option)
Clear trace data (Trace toolbar).
Clear (Power Log window context menu).
__clearBreak (C-SPY systemmacro)
clock frequency, simulated
__closeFile (C-SPY systemmacro)
code breakpoints

OVEIVIEW o\t e vttt ettt e et e et e eeens

toggling
code coverage

USING « ot v ettt
Code Coverage windowc.ouvuvenen...

Code Coverage (Disassembly window context menu)

code hardware breakpoints
--code_coverage_file (C-SPY command line option)
code, covering executionof
Collect data (debugger option)

C-SPY® Debugging Guide
for RL78

command line options. 383
typographic convention 25
command prompt icon, in this guide. 25
Command (Pseudo Emulation option) 416
computer style, typographic convention 25
conditional statements, in C-SPY macros............. 330
configuration, of emulator hardware. 46
context menu, in windows 104
conventions, used inthisguide 24
Copy Window Contents (Call Stack
window CONteEXt MENU) ov v vvi e i e eee e e, 78
Copy Window Contents (Disassembly
window CONtEXt MENU)o vt vv e e e eee e e, 76
Copy (Debug Log window context menu) 82
Copyright noticeot 2
--core (C-SPY command line option) 385
Core (Cores window)ooiii i, 97
cores
inspecting state of L il 96
Cores Window.oiiiin i 96
Count rate (timer Option)c.oeueuenennnn. 95
CSPYbat . .. 379
reading options from file (-f) 388
CSPYBAT_INIFILE (environment variable) 380
current position, in C-SPY Disassembly window 73
cursor, in C-SPY Disassembly window 73
--cycles (C-SPY command line option) 386
Cycles (Cores Window). covinin i, 97
C-SPY
batch mode, usingin 379
debugger systems, overview of 33
eNnVIronment OVeIViewoovvnvnenenenen .. 29
plugin modules, loading. 43
scripting. See macros
SEUNZ UP « .« v v ettt e e e 41-42
starting the debugger 43
C-SPY drivers
differences betweendrivers................ 35
OVEIVIEW . ottt ettt e e 35
specifying 400

EYPeS Of .« oot 34
C-SPY eXpressionso.veenenenennnnenenen... 100
evaluating, using Macro Quicklaunch window 376
evaluating, using Quick Watch window. 118
inC-SPYmacros................ 330
Tooltip watch, using 99
Watch window, using. 99
C-SPY macros
blocks. 331
conditional statements 330
C-SPY expressionsc.eeeueuenennnn.. 330
eXamples 323
checking status of register. 325
creatingalogmacro 326
CXECULINE -« v v oe ettt et e e 323
connecting to a breakpoint 326
using Quick Watch 325
using setup macro and setup file............... 325
functions 102, 328
keywords 328-329, 331
loop statementsc.coeniniii... 331
MACIO SLALETMNENES . . . o\ v vt e et e ee e 330
PArAmMetersot 329
setupmacrofile oL 322
EXECULING. v o vttt e e e e e e 325
setup macro functions 322
SUMMATY .« v v ovvete et e e e e e e e e 333
system macros, summary of. 335
USING « ot v ettt 321
variables. 102, 328
C-SPY options
Extra Options.oovininn i 402
Images.. ... 401
Plugins. ... 403
SetUP .ttt 400
C-SPYLink...... ...t 34
C-STAT for static analysis, documentation for. 23

C++ exceptions
debugging 51

Index °

single Stepping.ot 64
C++terminology. .. .o oot 24
-d (C-SPY command lineoption) 386
data breakpoints, OVerviewcovenenn. .. 127
Data Coverage (Memory window context menu) 164
data coverage, in Data Flash Memory window 165
data coverage, in Memory window. 162
Data Flash Emulation (dialogbox) 422
Data Flash Emulation (Emulator menu) 413
Data Flash Memory window. 165-166

CONEEXEMENU . . o\ v v vt e te e e e e eeeeeeenn 166
Data Flash Memory (Emulator menu). 414
data log breakpoints, overview 127
Data Log Summary window 240
Data Log Summary (Simulatormenu) 409
DataLogwindowoiiiiiinininnnnn.. 237
Data Log (Simulatormenu) 409
Data Log (Timeline window context menu) 235
Data Sample Setup window 246
Data Sample Setup (Emulatormenu) 412
Data Sample window 248
Data Sample (Emulatormenu) 413
Data Sample (Sampled Graphs window context menu) . . 245
Data (Edit Events dialogbox). 92
Data (IECUBE Find in Trace option) 218
__dataflashMemoryRestore (C-SPY system macro). 340
__dataflashMemorySave (C-SPY system macro). 340
ddf (filename extension), selecting afile 42
debug file, downloading, 46
Debug Logwindow, 81
Debug menu (C-SPY main window). 50
Debug (Report Assertoption).ovuvunen.... 83
--debugfile (cspybat option) 387
debugger concepts, definitionsof 32
debugger drivers

setting options for, 399

431

432

simulator 36
debugger drivers. See C-SPY drivers

Debugger Macros window 374
debugger SyStem OVEerviewveuenenen.n.. 33
debugging projects
externally built applications. 44
loading multiple images. 45
debugging, RTOS awareness 31
__delay (C-SPY system macro)c....... 341
Delay (Autostep Settings option) 87
Delete All (Breakpoints window context menu). 138
Delete (Breakpoints window context menu). 138
Delete (SFR Setup window context menu). 186
Delete/revert All Custom SFRs (SFR Setup window context
10153110 [P 186
Description (Edit Interrupt option) 307
description (interrupt property).coooen... 307
Device description file (debugger option). 401
device descriptionfiles 42
definitionof L il 47
MEMOTY ZONES .+« e v e vvt e te et e eeeeaenen 155
modifying 47
TEZISIET ZOMC. « . ¢ v vttt et e e 155
specifying interrupts, 352
device files, described inddffile 47
Disable All (Breakpoints window context menu) 138

Disable Block Erase (flash programming security flag) . . 420
Disable Boot block cluster reprogramming

(flash programming security flag). 420
Disable Chip Erase (flash programming security flag) . . . 420
Disable Program (flash programming security flag) 420
Disable (Breakpoints window context menu) 138
__disablelnterrupts (C-SPY system macro) 342
--disable_interrupts (C-SPY command line option) 387
Disassembly window i 72

COMEEXEMENU .« . v vttt et e e e e e e 74
disclaimer.......... i 2
DLIB

consuming breakpoints 130

Naming CONVeNtoN. «vvvt vt neenen.. 26

C-SPY® Debugging Guide
for RL78

DMM Function Settings (dialogbox)................. 87
DMM Setup (Emulatormenu) 411
do (macro statement)t 331
document conventions i, 24
documentation

overview of guides. il 23

overview of thisguide 21
--download_only (C-SPY command line option) 387
Driver (debuggeroption) 400
__driverType (C-SPY systemmacro)................ 342
Edit Events dialog box Emulator menu) 90
Edit Events (Emulatormenu) 412
Edit Expressions (Trace toolbar). 207
Edit Flash Emulation Events (dialog box). 418
Edit Flash Emulation Timing (dialogbox) 419
Edit Interrupt dialog box. oL 307
Edit Memory Access dialogbox.................... 191
Edit Memory Range dialogbox 187
Edit Sequencer Events dialogbox. 93
Edit Sequencer (Emulatormenu) 412
Edit Settings (Trace toolbar). 207
Edit (Breakpoints window context menu). 138
Edit (SFR Setup window context menu). 186
edition, of thisguide i 2
eeprom_write (flash emulation command) 419
emulator memory information, inddf file. 47
emulator memory type. See memory types, emulator
Emulatormenu............. ..., 410
Emulator serial number (debugger option) 405
emulator, hardware configuration. 46
Enable All (Breakpoints window context menu). 138
Enable conditional measurement (timer option) 95
Enable data emulation (IECUBE data flash)........... 422
Enable Flash Self Programming (Emulator menu) 412
Enable interrupt simulation (Interrupt Setup option). 305
Enable Log File (Log File option). 82

Enable start routine (Start/Stop Function Settings option) .85
Enable stop routine (Start/Stop Function Settings option). . 85

Enable (Breakpoints window context menu). 138
Enable (Edit Sequencer Events dialog box) 94
Enable (Power Log window context menu) 288
Enable (Sampled Graphs window context menu) 245
Enable (Timeline window context menu) 232
__enablelnterrupts (C-SPY system macro)............ 343
Enable/Disable Breakpoint (Call
Stack window contextmenu) 78
Enable/Disable Breakpoint (Disassembly window context
110153 110 A 76
Enable/Disable (Trace toolbar) 206
End address (Data Flash dialog box option) 167
End address (Memory Save option) 168
endianness. See byte order
Enter Location dialog box. 149
Erase flash before next ID check,
OCD debugger hardware setup. 57
erase (flash emulation command) 419
__evaluate (C-SPY systemmacro) 343
Evaluate Now (Macro Quicklaunch
WiIndow CONtEXt MENU)o v ev e e e eene s 377
Event Log Summary window 256
EventLogwindow, 253
Event Log (Emulatormenu) 413
Event Log (Timeline window context menu) 252
Event Overview (IECUBE flash programming option). . . 417
Event Summary (Emulator menu). 413
events
definingo i 143
editing . ..ot e 90-91
events in emulator, defining 91
examples
C-SPY Macrosoovvveiiin i 323
interrupts
interrupt logging 304
HMEr . ..ot 302
macros
checking status of register. 325

Index °

creatingalogmacro 326
using Quick Watch 325
performing tasks and continue execution. 135
tracing incorrect function arguments 134
execUserExecutionStarted (C-SPY setup macro) 334
execUserExecutionStopped (C-SPY setup macro) 334
execUserExit (C-SPY setupmacro) 335
execUserPreload (C-SPY setup macro) 333
execUserPreReset (C-SPY setup macro). 335
execUserReset (C-SPY setupmacro) 335
execUserSetup (C-SPY setupmacro) 334
executed code, COVEringcovnienenennenn.. 273
execution history, tracing 199
Execution state (Cores window) 96
--exec_dll (C-SPY command line option). 388
expressions. See C-SPY expressions
extended command line file, for cspybat. 388
External target area, emulator memory type 61
Extra Options, for C-SPY 402
EZ-CUBE emulator, C-SPY driverfor................ 35
EZ-CUBE (C-SPY driver), hardware installation. 39
EZ-CUBE2 emulator, C-SPY driverfor............... 35
El emulator, C-SPY driverfor...................... 35
E1 (C-SPY driver), hardware installation 39
E2 emulator, C-SPY driverfor...................... 35
E2 Lite emulator, C-SPY driverfor 35
E2 Lite (C-SPY driver), hardware installation 39
E2 On-Board emulator, C-SPY driverfor.............. 35
E2 On-Board (C-SPY driver), hardware installation. 39
E20 emulator, C-SPY driverfor 35
E20 (C-SPY driver), hardware installation 39
-f(cspybatoption). i 388
Fail-safe Break, IECUBE hardware setup. 58
File format (Memory Save option) 168
file types
device description, specifyinginIDE 42

433

434

File (Data Flash dialog box option). 167
filename extensions

ddf, selecting device description file 42

mac, using macrofile. L. 42
Filename (Memory Restore option) 169
Filename (Memory Save option) 168
Fill dialog boX. 169
__writeMemory8 (C-SPY system macro)............. 344
__writeMemory16 (C-SPY system macro)............ 345
__writeMemory32 (C-SPY system macro)............ 345
Find in Trace dialogbox......... 216
Findin Trace window. 218
Find in Trace (Disassembly window context menu). 76
Find in Trace (IECUBE dialogbox)................. 217

Find Next Register (Registers window context menu) . . . 181
Find Previous Register (Registers window context menu) 181

Find (Memory window contextmenu) 164
Find (Trace toolbar) 206
first activation time (interrupt property)

definitionof 298
First activation (Edit Interrupt option) 307
flash blocks, inddffile 47
flash control firmware functions. 418
flash memory, load library module to................ 348
Flash Programming Emulation (Emulator menu) 412
Flash Programming Emulation IECUBE dialog box) . ..417
flash programming security flags 420
Flash programming, OCD debugger hardware setup 58
Flash Shield Setting (dialog box) 421
Flash Shield Setting (Emulator menu) 413
flash shield window 421
__fmessage (C-SPY macrokeyword)................ 331
for (macro statement) 331
Force (Forced Interrupt window context menu) 309
Forced Interrupt window. 308
Forced Interrupts (Simulatormenu) 409
Format (Data Flash dialog box option) 167
Format (Registers User Groups

Setup window contextmenu) 183

C-SPY® Debugging Guide
for RL78

Format (Registers window context menu) 181
Frame (IECUBE Find in Trace option). 218
Function Profiler window 266
Function Profiler (Simulator menu) 408
Function Trace window 211
Function Trace (Emulatormenu) 413
functions

C-SPY running to when starting 42,400

most time spent in, locating 261
--function_profiling (cspybat option) 389
__getSelectedCore (C-SPY system macro). 346
Go to Source (Breakpoints window context menu). 137
Go to Source (Call Stack window context menu) 78
Go To Source (Timeline window context menu) 293
Go To Source (Timeline
window context menu) 232,236, 253,293, 318
Go(Debugmenu)..........covuiriniinnnan. 50, 68
Group name (Mask Option Settings option) 415
hardware configuration. 46
Hardware Setup (Emulator menu). 411
hardware setup, power consumption because of 282
highlighting, in C-SPY 68
Hold time (Edit Interrupt option) 308
hold time (interrupt property), definitionof 299
icons

inthisguide i 25
ID Code, OCD debugger hardware setup 57
IECUBE (C-SPY driver)

hardware installation 39
if else (macro statement). 330

if (macro statement), 330
Ignore (Report Assert option)covuenen.n.. 83
Imageswindow. i 53
Images, loading multiple. 401
immediate breakpoints, overview 127-128
Include (Log Fileoption), 82
Input Mode dialogbox 80
input, special characters in Terminal I/O window. 80
installation directoryo 24
Instruction Profiling (Disassembly window context menu) 75
Intel-extended, C-SPY output format 34
interference, power consumption because of 283
Internal RAM, emulator memory type 61
Internal ROM, emulator memory type 61
Internal Stack Area, emulator memory type 61
interrupt handling, power consumption during 281
Interrupt Log graph in Timeline window 316
Interrupt Log Summary window. 314
Interrupt Log window oL 311
Interrupt Setup dialogbox 305
Interrupt Setup (Simulatormenu) 409
Interrupt Status window 309
interrupt system, using device description file 301
Interrupt (Edit Interrupt option) 307
Interrupt (Timeline window context menu). 318
interrupts
adapting C-SPY system for target hardware 301
simulated, introductionto 297
timer,example. i 302
USING SYSLEM MACTOS . .« v v v ev e eeee e 300
__isBatchMode (C-SPY system macro) 347
italic style, inthisguide 25

I/O register. See SFR

L

labels (assembler), viewing. 104
Leave Target Running (Emulator menu). 411
--leave_target_running (C-SPY command line option). . . 389

Index °

Length (Fill option)., 170
library functions

C-SPY support for using, plugin module 394

onlinehelpfor........ 24
lightbulb icon, in this guide. 25
linker options

typographic convention 25

consuming breakpoints, 130
Little Endian (Memory window context menu) 163
Live Watchwindow 112
--live_debug (C-SPY command line option). 390
__loadImage (C-SPY system macro) 347
loading multiple debug files, list currently loaded 53
loading multiple images 45
Localswindow, 108
log breakpoints, overview. 127
Log File dialogboX., 82
Logging>Set Log file (Debugmenu) 52
Logging>Set Terminal I/O Log file (Debug menu). 52
--log_file (C-SPY command line option) 390
loop statements, in C-SPY macros 331
low-power mode, power consumption during. 280
mac (filename extension), using a macro file 42
--macro (C-SPY command line option) 390
macro files, specifying 42,401
Macro Quicklaunch window. 376
Macro Registration window 372
MACTO StAtEMENTSo vt ettt e e e 330
macros

EXECULINZ . o vttt e e e et 323

USIIE &« vt et ettt e et e e e 321
--macro-param (C-SPY command line option) 391
Main Clock (hardware setup option). 57
main function, C-SPY running to when starting 42, 400
--mapu (C-SPY command line option) 391
Mask Option Settings dialogbox 415

435

436

Mask Option (Emulatormenu) 411

MCU speed, specifying.c.covuiinnnenn.. 55
Memory access checking (Memory Access Setup option) 190
Memory Access Setup dialogbox. 189
Memory Access Setup (Simulator menu) 408
Memory Fill (Memory window context menu). 164
1001500102 728 112 o PP 189
Memory map, emulator hardware setup 60
Memory Restore dialogbox 169
Memory Restore (Memory window context menu) 164
Memory Save dialog box 167-168
Memory Save (Memory window context menu). 164
Memory window. 161
MEMOTY ZONES. « « ¢ v e vov v eeeee et e e e e e e 154

in device descriptionfile 155
__memoryRestore (C-SPY system macro) 348
__memorySave (C-SPY system macro) 349
Memory>Restore (Debugmenu) 52
Memory>Save (Debugmenu). 52
menu bar, C-SPY-specific 49
__message (C-SPY macro keyword) 331
__messageBoxYesCancel (C-SPY system macro) 350
__messageBoxYesNo (C-SPY system macro) 350
Messages window, amount of output 81
migration

from a UBROF-based product. 23
MISRA C

documentationouuititiian 23
Mixed Mode (Disassembly window context menu) 76
Monitor clock (hardware setup option). 57
Motorola, C-SPY output format 34
Move to PC (Disassembly window context menu) 74
Name (Edit Events dialogbox). 91
Name (Edit Sequencer Events dialogbox) 93
Name (Edit SFRoption) 187
Name (Pseudo Emulation option) 416

C-SPY® Debugging Guide
for RL78

Naming CoONVeNtionsc.c.euerenennenenen.. 26
Navigate (Sampled Graphs window context menu) 244
Navigate (Timeline window

contextmenu). 231, 234, 251, 291, 317
--near_const_location (C-SPY command line option). . . . 392
--near_const_size (C-SPY command line option). 392
--near_const_start (C-SPY command line option). 393
New Breakpoint (Breakpoints window context menu) . . . 138
Next Statement (Debugmenu) 51

Next Symbol (Symbolic Memory window context menu) 173

o

OCDAriVer. . .ot e e e 35
OCD emulators
furtherreading L. 428
1€Served rESOUICES « o v v vt v e et e e eeeeeeen 425
On-chip debug optionbyte 426

Open Setup Window (Power Log window context menu) 289
Open User Groups Setup Window (Registers window context

130153 110) I 181
__openFile (C-SPY systemmacro). 351
Operating Frequency (Emulator menu). 411
operating frequency, specifying 55
Operation (Filloption) o.... 170
operators, sizeof in C-SPY 102
optimizations, effects on variables 103
option bytes (OCD debugging). 426
Option name (Mask Option Settings option). 415
options

intheIDE 399

onthe commandline 383, 402
Options (Stack window contextmenu). 177
__orderInterrupt (C-SPY system macro). 352
Originator (debuggeroption) 404
-p (C-SPY command line option) 393

__param (C-SPY macrokeyword) 329
parameters
tracing incorrect values of 69
typographic convention, .. 25
part number, of this guide. 2
Pass count (Edit Events dialogbox) 91,93
PC (Cores window).ot iii i 97
Peripheral Break, emulator hardware setup. 59
peripheral units
debugging power consumption for. 2717
detecting mistakenly unattended 280
detecting unattended, 280
device-specific.o 47
displayed in Registers window. 154
in an event-driven system 281
in C-SPY expressionsc..c.ooueuennun.. 101
initializing using setup macros. 322

peripherals register. See SFR
PG-FPx Security Flags Setting

Emulation (Emulatormenu) 413
Pin Mask, emulator hardware setup 59
pins, reserving (OCD debugging) 426
Please select one symbol
(Resolve Symbol Ambiguity option) 124
--plugin (C-SPY command line option) 393
plugin modules (C-SPY). o... 34
loading.ottt 43
Plugins (C-SPY options).coovuiinenon.. 403
pod pins, IECUBE emulator ignoring. 59
__popSimulatorInterruptExecutingStack (C-SPY
SYStEM MACTO). « v e v ettt e e e e e e e e 353
pop-up menu. See context menu
power consumption, Measuring 277
Power Log Setupwindow. 285
Power Log Setup (Emulator menu). 413
Power Logwindow. 287
Power Log (Emulator menu). 413
Power Log (Timeline window context menu). 292
prerequisites, programming experience 21

Index

Previous Symbol (Symbolic

Memory window context menu) 173
probability (interrupt property) 308
definitionof L 298
Probability % (Edit Interrupt option) 308
Profile Selection (Timeline window context menu) . 233, 293
profiling
analyzingdata i 263
onfunctionlevel 262
oninstructionlevel. L. 265
profiling information, on functions and instructions. 261
profiling sources
trace (calls) i 262
trace (flat) 262
program execution
breaking......... i 126-127
INC-SPY ... 63
Programmer PG-FPx Security Flags (dialog box). 420
programming eXperienceoeienen.. 21
program. See application
projects, for debugging externally built applications. 44
Pseudo Emulation dialogbox 416
Pseudo Emulation (Emulator menu) 411
publication date, of this guide. 2
Quick Watchwindow 118
executing C-SPY macros. 325
RAM areas, reserving (OCD debugging) 426
Range for (Viewing Range option). 259
__readFile (C-SPY systemmacro) 353
__readFileByte (C-SPY system macro) 354
__readMemoryByte (C-SPY system macro)........... 354
__readMemory8 (C-SPY system macro) 354
__readMemory16 (C-SPY system macro) 355

—eo

437

438

__readMemory32 (C-SPY system macro) 355
reference information, typographic convention. 25
Refresh (Debugmenu), 52
TEEISET GTOUPS « .« o v v ettt e e e e e 154
predefined, enabling. 178
Register User Groups Setup window 182
registered trademarks oL 2
__registerMacroFile (C-SPY system macro) 356
Registers window 178
registers, displayed in Registers window 178
Removal All Groups (Registers User
Groups Setup window context menu). 183
Remove All (Macro Quicklaunch window
CONEEXEMENU) . & v vttt ettt e e e et e e ee e 377

Remove (Macro Quicklaunch window context menu) . . .377
Remove (Registers User Groups

Setup window context menu) 183
Repeat interval (Edit Interrupt option) 308
repeat interval (interrupt property), definition of 298
Replace (Memory window context menu) 164
Report Assert dialogbox, 83
Reset (Debugmenu)........... ..., 50
__resetFile (C-SPY systemmacro). 356
Resolve Source Ambiguity dialogbox 150
Restore (Memory Restore option). 169
retry values, of flash emulation commands............ 419
return (macro statement)., 331
ROM addresses, filling (OCD) 425
ROM areas, reserved (OCD debugging).......... 425,427
ROM-monitor, definitionof 34
RTOS awareness debugging. 31
RTOS awareness (C-SPY pluginmodule) 31
Run to Cursor (Call Stack window context menu) 78
Run to Cursor (Debugmenu) 51
Run to Cursor (Disassembly window context menu) 74
Run to Cursor, command for executing 68
Runto (C-SPY option) 42, 400

C-SPY® Debugging Guide
for RL78

S

Sampled Graphs window 243
Sampled Graphs (Emulatormenu) 413
Save Custom SFRs (SFR Setup window context menu) . . 187
Save to File (Register User Groups

Setup window contextmenu) 183
Save to File (Registers window context menu). 181
Save to File (Timeline window context menu) 232
Save (Memory Save option)c.covun... 168
Save (Tracetoolbar)c....... 206
Scale (Viewing Range option) 260
scripting C-SPY. See macros
security flags, for flash programming................ 420
Security ID (OCD debugging) 426
Select All (Debug Log window context menu). 82
Select Graphs (Sampled Graphs window context menu). . 246
Select Graphs
(Timeline window context menu). . . 232, 236, 253, 293, 319
Select plugins to load (debugger option). 403
__selectCore (C-SPY system macro) 357
self library functions. 418
sequencer events, defining 93
Set Data Breakpoint (Memory window context menu). . . 164
Set Data Log
Breakpoint (Memory window context menu) 165
Set Next Statement (Debugmenu) 51
Set Next Statement (Disassembly window context menu) .76
__setCodeBreak (C-SPY system macro). 357
__setCodeHWBreak (C-SPY system macro) 358
__setDataBreak (C-SPY systemmacro) 358
__setDatal.ogBreak (C-SPY system macro)........... 360
__setLogBreak (C-SPY system macro) 361
__setSimBreak (C-SPY system macro) 362
__setTraceStartBreak (C-SPY system macro) 363
__setTraceStopBreak (C-SPY system macro).......... 364
setup macro file, registering 42
setup macro functions. oL, 322
reserved NAmeSs.o oo vttt 333

Setup macros (debugger option), 400
Setup (C-SPY options) . ..o, 400
set_info (flash emulation command)................. 419
SFR

in Registers window. 179

using as assembler symbols, 101
SFR Setupwindowo ... 184
shortcut menu. See context menu
Show All (SFR Setup window context menu). 186
Show Arguments (Call Stack window context menu). 78
Show Custom SFRs only (SFR Setup
Window conteXt MeNu)o vvneine i 186
Show Cycles (Interrupt Log window context menu). 289
Show Factory SFRs only (SFR Setup
window conteXt menu)c...ooueuitiienen... 186
Show Numerical Value (Timeline
window contextmenu) 236, 246, 253, 293
Show offsets (Stack window context menu) 176
Show Time (Interrupt Log window context menu). 289
Show variables (Stack window context menu) 176
--silent (C-SPY command line option) 394
Simulated Frequency dialog box. 414
simulating interrupts, enabling/disabling 305
Simulatormenu. L i 408
simulator, introduction o 36
Size (Edit SFRoption), 188
Size (Sampled Graphs window context menu) 246
Size (Timeline window context menu) 236, 252,292
SIZEOL ..o 102
Smart Analog

displaying collected data 249-250, 253, 256

driver supportfor. oo 35

enable data collection. 405

howtouse i 227
__smessage (C-SPY macro keyword). 331
Snap Shot Function Settings IECUBE dialog box) 204
snap shot functions, IECUBE trace setup 204
Snap Shot Setup (Emulator menu) 411
software delay, power consumption during. 279

Solid Graph (Sampled Graphs window context menu) . . . 246

Index °

Solid Graph (Timeline window context menu). 236, 293
Sort by (Timeline window context menu). 318
__sourcePosition (C-SPY system macro) 365
special function registers (SFR)

in Registers window. 179

using as assembler symbols 101
Stackwindow i 174
stack, reserving (OCD debugging) 427
standard C, sizeof operator in C-SPY 102
Start address (Data Flash dialog box option). 167
Start address (Filloption) 170
Start address (Memory Save option). 168
Start routine location (Start/Stop Function Settings option) 85
Start/Stop Function Settings dialogbox 84
Start/Stop Function Settings (Emulator menu) 412
static analysis

documentationfor L L. 23
Staticswindow L 115
Status (Cores Window)coviiriunnnan... 97
Step Into (Debugmenu) 51
Step Into, description, 65
Step Out (Debugmenu)coinininn.. 51
Step Out, description.vuvinninnenenan. 66
Step Over (Debugmenu)c.cvuinn... 51
Step Over, description.vuuenenenenennnn. 65
step points, definitionof L. 64
Stop Debugging (Debugmenu) 51
Stop routine location (Start/Stop Function Settings option) 85
__strFind (C-SPY systemmacro) 365
Stub Function Settings (dialog box) 89
Stub Setup (Emulator menu). 412
Style (Timeline window context menu) 236, 252,293
Sub Clock, emulator hardware setup. 57
__subString (C-SPY system macro) 366

Suppress exchange adapter message (debugger option) . . 405
Suppress (debugger option), 404
--suppress_download (C-SPY command line option). . . . 394
--suppress_exchange_adapter (C-SPY

command line option).l 395
Symbolic Memory window. 171

439

440

Symbols window 121

symbols, using in C-SPY expressions. 100
Target Connect, OCD debugger hardware setup. 59
Target Power Off, OCD debugger hardware setup 59
target system, definitionof 33
__targetDebuggerVersion (C-SPY system macro) 366
Target, IECUBE hardware setup. 60
Terminal IO Log Files (Terminal IO Log Files option) .. .80
Terminal I/O Log Files dialogbox 80
Terminal /Owindow 70,79
terminal I/O, unavailable for OCD emulators. 65
terminology.ot 24
Text search (Find in Trace option) 216
Time Axis Unit (Timeline

window context menu) 232,236, 253,293, 319
Time Unit, emulator hardware setup. 57
Timeline window 230, 233, 249, 316
Timeline (Emulatormenu) 414
--timeout (C-SPY command line option) 395
Timer break (timeroption) 96
Timer conditions (timeroption) 96
timer interrupt, example 302
Timer Settings dialogbox............ 95
Timer Setup (Emulatormenu) 412
Timing Overview (IECUBE flash programming option) .417
timing, of flash emulation. 419
TK emulator, C-SPY driverfor. 35
TK (C-SPY driver), hardware installation. 39
Toggle Breakpoint (Code) (Call

Stack window conteXtmenu) 78
Toggle Breakpoint (Code) (Disassembly

Window conteXt menu)oueuvnnnnenenenn.. 75
Toggle Breakpoint (Log) (Call

Stack window contextmenu)c.o..... 78

Toggle Breakpoint (Log) (Disassembly
window conteXt menu)o.iintiinn... 75-76

C-SPY® Debugging Guide
for RL78

Toggle Breakpoint (Trace Start) (Call

Stack window contextmenu) 78
Toggle Breakpoint (Trace Start) (Disassembly
Wwindow CONteXt MENU)o vt vv e e e eeeee e, 75
Toggle Breakpoint (Trace Stop) (Call
Stack window contextmenu) 78
Toggle Breakpoint (Trace Stop) (Disassembly
WiIindow CONtEXt MENU) . . .o oot ve e oo ee e eeeee e 75
Toggle source (Trace toolbar). 206
__toLower (C-SPY system macro) 367
tools icon, inthisguide. 25
__toString (C-SPY systemmacro) 367
__toUpper (C-SPY system macro) 368
1821 195, 221
Trace buffer size IECUBE) 201
trace buffer (Eland E2 Lite) 196
trace buffer IECUBE) 196
Trace Expressions windowcovuuunen... 214
Trace Save dialog box (IECUBE, El, and E2 Lite) 219
trace settings in E1 and E2 Lite emulators
Fill in missing frames 203
SectionTrace......... ..o, 203
StopCondition.o 203
Trace Operation.ouvuvininenenenen... 203
trace settings in [IECUBE emulator
Clear trace buffer before go..................... 201
Delaycountcovuiinininininnenenen.. 202
Delay Trigger Trace.covviinnenan.. 202
Qualify Trace.ooviiiii i 202
SectionTrace......... ..o, 201
StopCondition.covvuinininnnn.. 201
Trace Operation.ouvuvininenenenen... 200
Trace Settings (E1 and E2 Lite dialogbox) 202
Trace Settings (IECUBE dialogbox) 200
Trace Setup (Emulatormenu). 412
trace start and stop breakpoints, overview 127
Trace Start breakpoints dialogbox 212
Trace Stop breakpoints dialogbox 213
Trace Window ovt it 206
trace (calls), profiling source 262

Trace (Emulatormenu). 413
trace (flat), profiling source 262
trace, in Timeline window 230, 233, 249
trademarks e 2
typographic conventions.oueuenen.n.. 25
Unavailable, C-SPY messagecooven... 103
__unloadImage(C-SPY system macro)............... 368
unused ROM addresses, filling (OCD)............... 425
Use command line options (debugger option). 402
Use Extra Images (debugger option). 401
Use manual ranges (Memory Access Setup option) 190
Use ranges based on (Memory Access Setup option) 189
user application, definitionof 33
Useroptionbytet 426
Value (Filloption) 170
__var (C-SPY macrokeyword). 328
variables

effects of optimizations 103

information, limitationon 103

using in C-SPY expressions. 101
variance (interrupt property), definitionof 299
Variance % (Edit Interrupt option) 308
Verify (debugger option) 404
--verify_download (C-SPY command line option) 395
version

ofthisguide........ i i 2
View Events (button) 143
View Group (Registers window context menu) 180
View Sequencer (button) 143
View User Group (Registers window context menu) 181
Viewing Range dialogbox 259

Viewing Range (Sampled Graphs window context menu) 245

Index °

Viewing Range (Timeline window

CONtEXtMENU)o oot ee e e i e e e 236, 252,292
Visual State, C-SPY plugin module for 34
waiting for device, power consumption during. 279
warnings icon, inthisguide 25
Watchwindow 110
USING . oot 99
web sites, recommended. 24
while (macro statement) 331
windows, specific to C-SPY 52
write (flash emulation command)................... 419
__writeFile (C-SPY systemmacro) 369
__writeFileByte (C-SPY system macro).............. 369
__writeMemoryByte (C-SPY system macro) 370
__writeMemory8 (C-SPY system macro). 370
__writeMemory16 (C-SPY system macro)............ 370
__writeMemory32 (C-SPY system macro)............ 371
zone
defined in device descriptionfile................. 155
inC-SPY 154
part of an absolute address. 149
Zone (Edit SFRoption).c.ooiiiiiii. 188
Zoom (Sampled Graphs window context menu). 245

Zoom (Timeline window
contextmenu) 232,235,252,292, 318

Symbols

__abortLaunch (C-SPY system macro). 338
__cancelAllInterrupts (C-SPY system macro) 338
__cancellnterrupt (C-SPY system macro). 338
__clearBreak (C-SPY systemmacro) 339
__closeFile (C-SPY systemmacro) 339

441

__dataflashMemoryRestore (C-SPY system macro). 340 __setTraceStopBreak (C-SPY system macro).......... 364

__dataflashMemorySave (C-SPY system macro). 340 __smessage (C-SPY macro keyword). 331
__delay (C-SPY system macro)c....... 341 __sourcePosition (C-SPY system macro) 365
__disablelnterrupts (C-SPY system macro) 342 __strFind (C-SPY system macro) 365
__driverType (C-SPY system macro). 342 __subString (C-SPY system macro) 366
__enablelnterrupts (C-SPY system macro)............ 343 __targetDebuggerVersion (C-SPY system macro) 366
__evaluate (C-SPY systemmacro) 343 __toLower (C-SPY system macro) 367
__fillMemory8 (C-SPY system macro) 344 __toString (C-SPY system macro) 367
__fillMemory16 (C-SPY system macro). 345 __toUpper (C-SPY system macro) 368
__fillMemory32 (C-SPY system macro). 345 __unloadImage (C-SPY system macro) 368
__fmessage (C-SPY macrokeyword)................ 331 __var (C-SPY macro keyword). 328
__getSelectedCore (C-SPY system macro). 346 __writeFile (C-SPY systemmacro) 369
__isBatchMode (C-SPY system macro) 347 __writeFileByte (C-SPY system macro). 369
__loadImage (C-SPY systemmacro) 347 __writeMemoryByte (C-SPY system macro) 370
__memoryRestore (C-SPY system macro) 348 __writeMemory8 (C-SPY system macro). 370
__memorySave (C-SPY system macro) 349 __writeMemory16 (C-SPY system macro)............ 370
__message (C-SPY macro keyword) 331 __writeMemory32 (C-SPY system macro)............ 371
__messageBoxYesCancel (C-SPY system macro) 350 -d (C-SPY command lineoption) 386
__messageBoxYesNo (C-SPY system macro) 350 -f(cspybatoption). 388
__openFile (C-SPY system macro). 351 -p (C-SPY command lineoption) 393
__orderInterrupt (C-SPY system macro). 352 --application_args (C-SPY command line option) 383
__param (C-SPY macrokeyword) 329 --attach_to_running_target (C-SPY command line option)384
__popSimulatorInterruptExecutingStack (C-SPY --backend (C-SPY command line option). 384
SYSEEIM MACTO). + ¢ v v ettt et et e e e eeeen s 353 --code_coverage_file (C-SPY command line option) 385
_readFile (C-SPY system macro) 353 --core (C-SPY command line option) 385
__readFileByte (C-SPY system macro) 354 --cycles (C-SPY command line option) 386
__readMemoryByte (C-SPY system macro)........... 354 --debugfile (cspybat option) 387
__readMemory8 (C-SPY system macro) 354 --disable_interrupts (C-SPY command line option) 387
__readMemory16 (C-SPY system macro) 355 --download_only (C-SPY command line option) 387
__readMemory32 (C-SPY system macro) 355 --exec_dll (C-SPY command line option). 388
__registerMacroFile (C-SPY system macro) 356 --function_profiling (cspybat option) 389
__resetFile (C-SPY system macro). 356 --leave_target_running (C-SPY command line option). . . 389
__selectCore (C-SPY system macro) 357 --live_debug (C-SPY command line option). 390
__setCodeBreak (C-SPY system macro). 357 --log_file (C-SPY command line option) 390
__setCodeHWBreak (C-SPY system macro) 358 --macro (C-SPY command line option) 390
__setDataBreak (C-SPY system macro) 358 --macro_param (C-SPY command line option). 391
__setDataLogBreak (C-SPY system macro)........... 360 --mapu (C-SPY command line option) 391
__setLogBreak (C-SPY system macro) 361 --near_const_location (C-SPY command line option). . . . 392
__setSimBreak (C-SPY system macro) 362 --near_const_size (C-SPY command line option). 392
__setTraceStartBreak (C-SPY system macro) 363

C-SPY® Debugging Guide
442 for RL78

--near_const_start (C-SPY command line option).
--plugin (C-SPY command line option)
--silent (C-SPY command line option)
--suppress_download (C-SPY command line option). . . .
--suppress_exchange_adapter (C-SPY

command line option). i
--timeout (C-SPY command line option)
--verify_download (C-SPY command line option)

Numerics

1x Units (Symbolic Memory window context menu)
8x Units (Memory window context menu)

Index °

443

	Brief contents
	Contents
	Tables
	Preface
	Who should read this guide
	Required knowledge

	What this guide contains
	Part 1. Basic debugging
	Part 2. Analyzing your application
	Part 3. Advanced debugging
	Part 4. Additional reference information

	Other documentation
	User and reference guides
	The online help system
	Web sites

	Document conventions
	Typographic conventions
	Naming conventions

	Part 1. Basic debugging
	The IAR C-SPY Debugger
	Introduction to C-SPY
	An integrated environment
	General C-SPY debugger features
	Additional general C-SPY debugger features

	RTOS awareness

	Debugger concepts
	C-SPY and target systems
	The debugger
	The target system
	The application
	C-SPY debugger systems
	The ROM-monitor program
	Third-party debuggers
	C-SPY plugin modules

	C-SPY drivers overview
	Differences between the C-SPY drivers

	The IAR C-SPY Simulator
	The C-SPY hardware debugger drivers
	Features
	The E1, E2, E2 Lite/On-Board, E20, EZ-CUBE, EZ-CUBE2, and TK emulators
	Hardware installation

	The IECUBE emulator
	Hardware installation

	Getting started using C-SPY
	Setting up C-SPY
	Setting up for debugging
	Executing from reset
	Using a setup macro file
	Selecting a device description file
	Loading plugin modules

	Starting C-SPY
	Starting a debug session
	Loading executable files built outside of the IDE
	Starting a debug session with source files missing
	Loading multiple debug images
	Editing in C-SPY windows
	Hardware configuration when starting for the first time

	Adapting for target hardware
	Modifying a device description file
	Initializing target hardware before C-SPY starts

	Reference information on starting C-SPY
	C-SPY Debugger main window
	Menu bar
	Debug menu
	C-SPY windows

	Images window
	Requirements
	Display area
	Related information

	Get Alternative File dialog box
	Could not find the following source file
	Suggested alternative
	Use this file
	Skip
	If possible, don’t show this dialog again
	Related information

	Operating Frequency dialog box
	Requirements
	Operating frequency
	Related information

	Hardware Setup
	ID Code
	Erase flash before next ID check
	Time unit
	Main clock
	Sub clock
	Monitor clock
	Fail-safe break
	Flash programming
	Target Power Off
	Low-voltage
	Target connect
	Pin mask
	Peripheral break
	Target
	Power supply
	Memory map

	Executing your application
	Introduction to application execution
	Briefly about application execution
	Source and disassembly mode debugging
	Single stepping
	The step commands
	Breakpoints when single stepping using the OCD driver
	Step Into
	Step Over
	Next Statement
	Step Out

	Troubleshooting slow stepping speed
	Running the application
	Go
	Run to Cursor

	Highlighting
	Code coverage

	Viewing the call stack
	Terminal input and output
	Debug logging

	Analyzing execution
	Measuring the execution time (IECUBE)

	Reference information on application execution
	Disassembly window
	Requirements
	Toolbar
	Display area
	Context menu

	Call Stack window
	Requirements
	Display area
	Context menu

	Terminal I/O window
	Requirements
	Input
	Ctrl codes
	Options

	Terminal I/O Log File dialog box
	Requirements
	Terminal IO Log Files

	Debug Log window
	Requirements
	Context menu

	Log File dialog box
	Requirements
	Enable log file
	Include

	Report Assert dialog box
	Abort
	Debug
	Ignore

	Start/Stop Function Settings dialog box
	Requirements
	Restrictions on using start/stop routines
	Enable start routine
	Start routine location
	Enable stop routine
	Stop routine location

	Select Label dialog box
	Requirements

	Autostep settings dialog box
	Requirements
	Delay (milliseconds)

	DMM Function Settings dialog box
	Requirements
	DMM Name
	DMM Event
	DMM Entry
	Select
	Write Address
	Write Data
	Data Size
	Sfr Name
	Buttons

	Stub Function Settings dialog box
	Requirements
	Stub Name
	Stub Event
	Go To

	Edit Events dialog box
	Requirements
	Name
	Pass count
	Access type
	Address
	Data
	Buttons

	Edit Sequencer Events dialog box
	Requirements
	Name
	Pass count
	Enable/Disable
	Display area
	Buttons

	Timer Settings dialog box
	Requirements
	Enable conditional measurement
	Count rate
	Clear timer before Go
	Timer conditions
	Timer break

	Cores window
	Requirements
	Display area

	Variables and expressions
	Introduction to working with variables and expressions
	Briefly about working with variables and expressions
	C-SPY expressions
	C/C++ symbols
	Assembler symbols
	C-SPY macro functions
	C-SPY macro variables
	Using sizeof

	Limitations on variable information
	Effects of optimizations

	Working with variables and expressions
	Using the windows related to variables and expressions
	Viewing assembler variables

	Reference information on working with variables and expressions
	Auto window
	Requirements
	Context menu

	Locals window
	Requirements
	Context menu

	Watch window
	Requirements
	Context menu

	Live Watch window
	Requirements
	Display area
	Context menu

	Statics window
	Requirements
	Display area
	Context menu

	Quick Watch window
	Requirements
	Context menu

	Symbols window
	Requirements
	Toolbar
	Display area
	Context menu

	Resolve Symbol Ambiguity dialog box
	Requirements
	Ambiguous symbol
	Please select one symbol

	Breakpoints
	Introduction to setting and using breakpoints
	Reasons for using breakpoints
	Briefly about setting breakpoints
	Breakpoint types
	Code breakpoints
	Code hardware breakpoints
	Event breakpoints
	Log breakpoints
	Trace Start and Stop breakpoints
	Data breakpoints
	Data Log breakpoints
	Immediate breakpoints

	Breakpoint icons
	Breakpoints in the C-SPY simulator
	Breakpoints in the C-SPY hardware debugger drivers
	Breakpoint consumers
	User breakpoints
	C-SPY itself
	C-SPY plugin modules

	Setting breakpoints
	Various ways to set a breakpoint
	Toggling a simple code breakpoint
	Setting breakpoints using the dialog box
	Setting a data breakpoint in the Memory window
	Setting breakpoints using system macros
	Setting breakpoints at C-SPY startup using a setup macro file

	Useful breakpoint hints
	Tracing incorrect function arguments
	Performing a task and continuing execution

	Reference information on breakpoints
	Breakpoints window
	Requirements
	Display area
	Context menu

	Breakpoint Usage window
	Requirements
	Display area

	Code breakpoints dialog box
	Requirements
	Break At
	Size
	Action
	Conditions

	Code HW breakpoints dialog box
	Requirements
	Break At

	Event breakpoints dialog box
	Requirements
	Break At
	Selected event
	View Events
	View Sequencer

	Log breakpoints dialog box
	Requirements
	Trigger at
	Message
	C-SPY macro "__message" style
	Conditions

	Data breakpoints dialog box
	Requirements
	Break At
	Access Type
	Size
	Action
	Conditions

	Data Log breakpoints dialog box
	Requirements
	Break At
	Access Type

	Immediate breakpoints dialog box
	Requirements
	Trigger at
	Access Type
	Action

	Enter Location dialog box
	Type

	Resolve Source Ambiguity dialog box
	All
	Selected
	Cancel
	Automatically choose all

	Memory and registers
	Introduction to monitoring memory and registers
	Briefly about monitoring memory and registers
	C-SPY memory zones
	Device-specific zones

	Memory configuration for the C-SPY simulator

	Monitoring memory and registers
	Defining application-specific register groups
	Monitoring stack usage

	Reference information on memory and registers
	Memory window
	Requirements
	Toolbar
	Display area
	Context menu

	Data Flash Memory window
	Requirements
	Address
	Display area
	Context menu

	Data Flash dialog box
	Requirements
	Start address
	End address
	Format
	File

	Memory Save dialog box
	Requirements
	Zone
	Start address
	End address
	File format
	Filename
	Save

	Memory Restore dialog box
	Requirements
	Zone
	Filename
	Restore

	Fill dialog box
	Requirements
	Start address
	Length
	Zone
	Value
	Operation

	Symbolic Memory window
	Requirements
	Toolbar
	Display area
	Context menu

	Stack window
	Requirements
	Toolbar
	The graphical stack bar
	Display area
	Context menu

	Registers window
	Requirements
	Toolbar
	Display area
	Context menu

	Register User Groups Setup window
	Requirements
	Display area
	Context menu

	SFR Setup window
	Requirements
	Display area
	Context menu

	Edit SFR dialog box
	Requirements
	Name
	Address
	Zone
	Size
	Access

	Memory Access Setup dialog box
	Requirements
	Use ranges based on
	Use manual ranges
	Memory access checking
	Buttons

	Edit Memory Access dialog box
	Requirements
	Memory range
	Access type

	Part 2. Analyzing your application
	Trace
	Introduction to using trace
	Reasons for using trace
	Briefly about trace
	Trace features in C-SPY
	Trace in the E1, E2, E2 Lite/E2 On-Board, and EZ-CUBE2 emulators
	Trace in the IECUBE emulator

	Requirements for using trace

	Collecting and using trace data
	Getting started with trace
	Trace data collection using breakpoints
	Trace data collection using events
	Searching in trace data
	Browsing through trace data

	Reference information on trace
	Trace Settings dialog box for IECUBE
	Requirements
	Trace operation
	Stop condition
	Clear trace buffer before Go
	Trace buffer size
	Section trace
	Qualify trace
	Delay trigger trace
	Delay count

	Trace Settings dialog box for E1, E2, E2 Lite/E2 On-Board, and EZ-CUBE2
	Requirements
	Trace operation
	Stop condition
	Fill in missing frames
	Section trace

	Snap Shot Function Settings dialog box
	Requirements
	Snap Name
	Snap Event
	Snap Entry
	Select
	Memory Address
	Memory Display
	Sfr Name
	Register Name
	Register Bank
	Buttons

	Trace window
	Requirements
	Trace toolbar
	Display area (in the C-SPY simulator)
	Display area (for a supported emulator)
	Context menu

	Function Trace window
	Requirements
	Toolbar
	Display area

	Trace Start breakpoints dialog box
	Requirements
	Trigger at

	Trace Stop breakpoints dialog box
	Requirements
	Trigger at

	Trace Expressions window
	Requirements
	Display area
	Context menu

	Find in Trace dialog box
	Requirements
	Text search
	Address Range

	Find in Trace dialog box (IECUBE)
	Access type
	Address
	Data
	Frame

	Find in Trace window
	Requirements
	Display area

	Trace Save dialog box
	Requirements
	Frame range
	Append to file
	File

	The application timeline
	Introduction to analyzing your application’s timeline
	Briefly about analyzing the timeline
	Requirements for timeline support

	Analyzing your application’s timeline
	Displaying a graph in the Timeline window
	Navigating in the graphs
	Analyzing performance using the graph data
	Getting started using data logging
	Getting started using data sampling
	Getting started using Smart Analog (event logging)

	Reference information on application timeline
	Timeline window—Call Stack graph
	Requirements
	Display area for the Call Stack graph
	Context menu

	Timeline window—Data Log graph
	Requirements
	Display area for the Data Log graph
	Context menu

	Data Log window
	Requirements
	Display area
	Context menu

	Data Log Summary window
	Requirements
	Display area
	Context menu

	Sampled Graphs window
	Requirements
	Context menu

	Data Sample Setup window
	Requirements
	Display area
	Context menu

	Data Sample window
	Requirements
	Display area
	Context menu

	Timeline window—Events graph
	Requirements
	Display area for the Events graph
	Context menu

	Event Log window
	Requirements
	Display area
	Context menu

	Event Log Summary window
	Requirements
	Display area
	Context menu

	Viewing Range dialog box
	Requirements
	Range for ...
	Scale

	Profiling
	Introduction to the profiler
	Reasons for using the profiler
	Briefly about the profiler
	Profiling sources

	Requirements for using the profiler

	Using the profiler
	Getting started using the profiler on function level
	Analyzing the profiling data
	Getting started using the profiler on instruction level

	Reference information on the profiler
	Function Profiler window
	Requirements
	Toolbar
	Display area
	Context menu

	Code coverage
	Introduction to code coverage
	Reasons for using code coverage
	Briefly about code coverage
	Requirements and restrictions for using code coverage

	Using code coverage
	Getting started using code coverage

	Reference information on code coverage
	Code Coverage window
	Requirements
	Toolbar
	Display area
	Context menu

	Power debugging
	Introduction to power debugging
	Reasons for using power debugging
	Briefly about power debugging
	Measuring power consumption
	Power debugging using C-SPY

	Requirements and restrictions for power debugging

	Optimizing your source code for power consumption
	Waiting for device status
	Software delays
	DMA versus polled I/O
	Low-power mode diagnostics
	CPU frequency
	Detecting mistakenly unattended peripherals
	Peripheral units in an event-driven system
	Finding conflicting hardware setups
	Analog interference

	Debugging in the power domain
	Displaying a power profile and analyzing the result
	Detecting unexpected power usage during application execution
	Changing the graph resolution

	Reference information on power debugging
	Power Log Setup window
	Requirements
	Enable power log
	Monitoring mode
	Sampling rate
	Action

	Power Log window
	Requirements
	Display area
	Context menu
	The format of the log file

	Timeline window—Power graph
	Requirements
	Display area
	Context menu

	Part 3. Advanced debugging
	Interrupts
	Introduction to interrupts
	Briefly about the interrupt simulation system
	Interrupt characteristics
	Interrupt simulation states
	C-SPY system macros for interrupt simulation
	Target-adapting the interrupt simulation system
	Briefly about interrupt logging
	Requirements for interrupt logging

	Using the interrupt system
	Simulating a simple interrupt
	Simulating an interrupt in a multi-task system
	Getting started using interrupt logging

	Reference information on interrupts
	Interrupt Setup dialog box
	Requirements
	Enable interrupt simulation
	Display area
	Buttons

	Edit Interrupt dialog box
	Requirements
	Interrupt
	Description
	First activation
	Repeat interval
	Variance %
	Hold time
	Probability %

	Forced Interrupt window
	Requirements
	Display area
	Context menu

	Interrupt Status window
	Requirements
	Display area

	Interrupt Log window
	Requirements
	Display area
	Context menu

	Interrupt Log Summary window
	Requirements
	Display area
	Context menu

	Timeline window—Interrupt Log graph
	Requirements
	Display area
	Context menu

	C-SPY macros
	Introduction to C-SPY macros
	Reasons for using C-SPY macros
	Briefly about using C-SPY macros
	Briefly about setup macro functions and files
	Briefly about the macro language
	Example

	Using C-SPY macros
	Registering C-SPY macros—an overview
	Executing C-SPY macros—an overview
	Registering and executing using setup macros and setup files
	Executing macros using Quick Watch
	Executing a macro by connecting it to a breakpoint
	Aborting a C-SPY macro

	Reference information on the macro language
	Macro functions
	Macro variables
	Macro parameters
	Macro strings
	Macro statements
	Expressions
	Conditional statements
	Loop statements
	Return statements
	Blocks

	Formatted output
	Specifying display format of arguments

	Reference information on reserved setup macro function names
	execUserPreload
	Syntax
	For use with
	Description

	execUserExecutionStarted
	Syntax
	For use with
	Description

	execUserExecutionStopped
	Syntax
	For use with
	Description

	execUserSetup
	Syntax
	For use with
	Description

	execUserPreReset
	Syntax
	For use with
	Description

	execUserReset
	Syntax
	For use with
	Description

	execUserExit
	Syntax
	For use with
	Description

	Reference information on C-SPY system macros
	_ _abortLaunch
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example

	_ _cancelAllInterrupts
	Syntax
	Return value
	For use with
	Description

	_ _cancelInterrupt
	Syntax
	Parameters
	Return value
	For use with
	Description

	_ _clearBreak
	Syntax
	Parameters
	Return value
	For use with
	Description
	See also

	_ _closeFile
	Syntax
	Parameters
	Return value
	For use with
	Description

	_ _dataflashMemoryRestore
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example
	See also

	_ _dataflashMemorySave
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example
	See also

	_ _delay
	Syntax
	Parameters
	Return value
	For use with
	Description

	_ _disableInterrupts
	Syntax
	Return value
	For use with
	Description

	_ _driverType
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example

	_ _enableInterrupts
	Syntax
	Return value
	For use with
	Description

	_ _evaluate
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example

	_ _fillMemory8
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example

	_ _fillMemory16
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example

	_ _fillMemory32
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example

	_ _getSelectedCore
	Description

	_ _isBatchMode
	Syntax
	Return value
	For use with
	Description

	_ _loadImage
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example 1
	Example 2
	See also

	_ _memoryRestore
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example
	See also

	_ _memorySave
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example
	See also

	_ _messageBoxYesCancel
	Syntax
	Parameters
	Return value
	For use with
	Description

	_ _messageBoxYesNo
	Syntax
	Parameters
	Return value
	For use with
	Description

	_ _openFile
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example
	See also

	_ _orderInterrupt
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example

	_ _popSimulatorInterruptExecutingStack
	Syntax
	Return value
	For use with
	Description
	See also

	_ _readFile
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example

	_ _readFileByte
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example

	_ _readMemory8, _ _readMemoryByte
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example

	_ _readMemory16
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example

	_ _readMemory32
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example

	_ _registerMacroFile
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example
	See also

	_ _resetFile
	Syntax
	Parameters
	Return value
	For use with
	Description

	_ _selectCore
	Description

	_ _setCodeBreak
	Syntax
	Parameters
	Return value
	For use with
	Description
	Examples
	See also

	_ _setCodeHWBreak
	Syntax
	Parameters
	Return value
	For use with
	Description
	Examples
	See also

	_ _setDataBreak
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example
	See also

	_ _setDataLogBreak
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example
	See also

	_ _setLogBreak
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example
	See also

	_ _setSimBreak
	Syntax
	Parameters
	Return value
	For use with
	Description

	_ _setTraceStartBreak
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example
	See also

	_ _setTraceStopBreak
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example
	See also

	_ _sourcePosition
	Syntax
	Parameters
	Return value
	For use with
	Description

	_ _strFind
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example
	See also

	_ _subString
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example
	See also

	_ _targetDebuggerVersion
	Syntax
	Return value
	For use with
	Description
	Example

	_ _toLower
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example
	See also

	_ _toString
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example
	See also

	_ _toUpper
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example
	See also

	_ _unloadImage
	Syntax
	Parameters
	Return value
	For use with
	Description
	See also

	_ _writeFile
	Syntax
	Parameters
	Return value
	For use with
	Description

	_ _writeFileByte
	Syntax
	Parameters
	Return value
	For use with
	Description

	_ _writeMemory8, _ _writeMemoryByte
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example

	_ _writeMemory16
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example

	_ _writeMemory32
	Syntax
	Parameters
	Return value
	For use with
	Description
	Example

	Graphical environment for macros
	Macro Registration window
	Requirements
	Display area
	Context menu

	Debugger Macros window
	Requirements
	Display area
	Context menu

	Macro Quicklaunch window
	Requirements
	Display area
	Context menu

	The C-SPY command line utility—cspybat
	Using C-SPY in batch mode
	Starting cspybat
	Output
	Invocation syntax
	Parameters

	Summary of C-SPY command line options
	General cspybat options
	Options available for all C-SPY drivers
	Options available for the simulator driver
	Options available for the C-SPY hardware debugger drivers

	Reference information on C-SPY command line options
	--application_args
	Syntax
	Parameters
	For use with
	Description
	Example

	--attach_to_running_target
	Syntax
	For use with
	Description

	--backend
	Syntax
	Parameters
	For use with
	Description

	--code_coverage_file
	Syntax
	Parameters
	For use with
	Description
	See also

	--core
	Syntax
	Parameters
	For use with
	Description
	See also

	--cycles
	Syntax
	Parameters
	For use with
	Description

	-d
	Syntax
	Parameters
	For use with
	Description

	--debugfile
	Syntax
	Parameters
	For use with
	Description

	--disable_interrupts
	Syntax
	For use with
	Description

	--download_only
	Syntax
	For use with
	Description

	--exec_dll
	Syntax
	Parameters
	For use with
	Description

	-f
	Syntax
	Parameters
	For use with
	Description

	--function_profiling
	Syntax
	Parameters
	For use with
	Description

	--leave_target_running
	Syntax
	For use with
	Description

	--live_debug
	Syntax
	For use with
	Description

	--log_file
	Syntax
	Parameters
	For use with
	Description

	--macro
	Syntax
	Parameters
	For use with
	Description
	See also

	--macro_param
	Syntax
	Parameters
	For use with
	Description
	See also

	--mapu
	Syntax
	For use with
	Description
	See also

	--near_const_location
	Syntax
	Parameters
	For use with
	Description

	--near_const_size
	Syntax
	Parameters
	For use with
	Description

	--near_const_start
	Syntax
	Parameters
	For use with
	Description

	-p
	Syntax
	Parameters
	For use with
	Description
	See also

	--plugin
	Syntax
	Parameters
	For use with
	Description

	--silent
	Syntax
	For use with
	Description

	--suppress_download
	Syntax
	For use with
	Description

	--suppress_exchange_adapter
	Syntax
	For use with
	Description

	--timeout
	Syntax
	Parameters
	For use with
	Description

	--verify_download
	Syntax
	For use with
	Description

	Part 4. Additional reference information
	Debugger options
	Setting debugger options
	Reference information on general debugger options
	Setup
	Driver
	Run to
	Setup macros
	Device description file

	Images
	Download extra Images

	Extra Options
	Use command line options

	Plugins
	Select plugins to load
	Description
	Location
	Originator
	Version

	Reference information on C-SPY hardware debugger driver options
	Setup
	Download
	Suppress exchange adapter message
	Collect data
	Emulator serial number
	Log communication

	Additional information on C-SPY drivers
	Reference information on C-SPY driver menus
	C-SPY driver
	Simulator menu
	Menu commands

	Emulator menu
	Menu commands

	Reference information on the C-SPY simulator
	Simulated Frequency dialog box
	Requirements
	Frequency

	Reference information on the C-SPY hardware debugger drivers
	Mask Option Settings dialog box
	Requirements
	Group name
	Option name

	Pseudo Emulation dialog box
	Requirements
	Name
	Command

	Flash Programming Emulation dialog box
	Requirements
	Event Overview
	Timing Overview
	Buttons

	Edit Flash Emulation Events dialog box
	Requirements
	Address
	Command
	Error
	Enable

	Edit Flash Emulation Timing dialog box
	Requirements
	Retry
	Emulation commands
	Default

	Programmer PG-FPx Security Flags dialog box
	Requirements
	Disable Chip Erase
	Disable Block Erase
	Disable Program
	Disable Boot Cluster Reprogramming
	Restore

	Flash Shield Setting dialog box
	Requirements
	Flash Shield Window
	Start Block
	End Block
	Restore

	Data Flash Emulation dialog box
	Requirements
	Enable data emulation
	Error Emulation
	Timing Emulation

	Resolving problems
	Write failure during load
	No contact with the target hardware

	OCD emulators reserved resources
	Reserving resources when debugging
	ROM areas used for on-chip debugging
	RAM Space
	Pins
	Security ID and option bytes
	Examples

	Reserving the ROM memory area for the monitor
	Stack area for debugging
	Cautions

	Further reading
	Target system design
	Flash programming

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z
	Symbols
	Numerics

